
34th European Conference on
Object-Oriented Programming

ECOOP 2020, November 15–17, 2020, Berlin, Germany
(Virtual Conference)

Edited by

Robert Hirschfeld
Tobias Pape

LIPIcs – Vo l . 166 – ECOOP 2020 www.dagstuh l .de/ l ip i c s

Editors

Robert Hirschfeld
Hasso Plattner Institute, University of Potsdam, Germany
robert.hirschfeld@hpi.uni-potsdam.de

Tobias Pape
Hasso Plattner Institute, University of Potsdam, Germany
tobias.pape@hpi.uni-potsdam.de

ACM Classification 2012
Software and its engineering

ISBN 978-3-95977-154-2

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-154-2.

Publication date
November, 2020

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ECOOP.2020.0

ISBN 978-3-95977-154-2 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-4249-6003
mailto:robert.hirschfeld@hpi.uni-potsdam.de
https://orcid.org/0000-0003-0110-6918
mailto:tobias.pape@hpi.uni-potsdam.de
https://www.dagstuhl.de/dagpub/978-3-95977-154-2
https://www.dagstuhl.de/dagpub/978-3-95977-154-2
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/LIPIcs.ECOOP.2020.0
https://www.dagstuhl.de/dagpub/978-3-95977-154-2
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU München)
Meena Mahajan (Institute of Mathematical Sciences)
Dieter van Melkebeek (University of Wisconsin-Madison)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

ECOOP 2020

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Robert Hirschfeld . 0:ix

Message from the General Chair
Christian Hammer . 0:xi–0:xii

Message from the Artifact Evaluation Chairs
Lisa Nguyen Quang Do and Manuel Rigger . 0:xiii–0:xiv

Objects and a Changing World: Foreword by the President of AITO
Eric Jul . 0:xv

Organization
. 0:xvii–0:xviii

List of Authors
. 0:xix–0:xxi

List of Reviewers
. .0:xxiii–0:xxvii

Regular Papers

Sound Regular Corecursion in coFJ
Davide Ancona, Pietro Barbieri, Francesco Dagnino, and Elena Zucca 1:1–1:28

Perfect Is the Enemy of Good: Best-Effort Program Synthesis
Hila Peleg and Nadia Polikarpova . 2:1–2:30

Blame for Null
Abel Nieto, Marianna Rapoport, Gregor Richards, and Ondřej Lhoták 3:1–3:28

Static Race Detection and Mutex Safety and Liveness for Go Programs
Julia Gabet and Nobuko Yoshida . 4:1–4:30

Reconciling Event Structures with Modern Multiprocessors
Evgenii Moiseenko, Anton Podkopaev, Ori Lahav, Orestis Melkonian, and
Viktor Vafeiadis . 5:1–5:26

Don’t Panic! Better, Fewer, Syntax Errors for LR Parsers
Lukas Diekmann and Laurence Tratt . 6:1–6:32

K-LLVM: A Relatively Complete Semantics of LLVM IR
Liyi Li and Elsa L. Gunter . 7:1–7:29

Space-Efficient Gradual Typing in Coercion-Passing Style
Yuya Tsuda, Atsushi Igarashi, and Tomoya Tabuchi . 8:1–8:29

Multiparty Session Programming With Global Protocol Combinators
Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen 9:1–9:30

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Designing with Static Capabilities and Effects: Use, Mention, and
Invariants (Pearl)

Colin S. Gordon . 10:1–10:25

Owicki-Gries Reasoning for C11 RAR
Sadegh Dalvandi, Simon Doherty, Brijesh Dongol, and Heike Wehrheim 11:1–11:26

A Semantics for the Essence of React
Magnus Madsen, Ondřej Lhoták, and Frank Tip . 12:1–12:26

Test-Case Reduction via Test-Case Generation: Insights from the Hypothesis
Reducer (Tool Insights Paper)

David R. MacIver and Alastair F. Donaldson . 13:1–13:27

Model-View-Update-Communicate: Session Types Meet the Elm Architecture
Simon Fowler . 14:1–14:28

Static Analysis of Shape in TensorFlow Programs
Sifis Lagouvardos, Julian Dolby, Neville Grech, Anastasios Antoniadis, and
Yannis Smaragdakis . 15:1–15:29

Value Partitioning: A Lightweight Approach to Relational Static Analysis for
JavaScript

Benjamin Barslev Nielsen and Anders Møller . 16:1–16:28

Static Type Analysis by Abstract Interpretation of Python Programs
Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné . 17:1–17:29

Reference Mutability for DOT
Vlastimil Dort and Ondřej Lhoták . 18:1–18:28

Tackling the Awkward Squad for Reactive Programming: The Actor-Reactor
Model

Sam Van den Vonder, Thierry Renaux, Bjarno Oeyen, Joeri De Koster, and
Wolfgang De Meuter . 19:1–19:29

A Framework for Resource Dependent EDSLs in a Dependently Typed
Language (Pearl)

Jan de Muijnck-Hughes, Edwin Brady, and Wim Vanderbauwhede 20:1–20:31

Data Consistency in Transactional Storage Systems: A Centralised Semantics
Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner 21:1–21:31

Putting Randomized Compiler Testing into Production (Experience Report)
Alastair F. Donaldson, Hugues Evrard, and Paul Thomson . 22:1–22:29

Lifting Sequential Effects to Control Operators
Colin S. Gordon . 23:1–23:30

Flow-Sensitive Type-Based Heap Cloning
Mohamad Barbar, Yulei Sui, and Shiping Chen . 24:1–24:26

Scala with Explicit Nulls
Abel Nieto, Yaoyu Zhao, Ondřej Lhoták, Angela Chang, and Justin Pu 25:1–25:26

A Type-Directed Operational Semantics For a Calculus with a Merge Operator
Xuejing Huang and Bruno C. d. S. Oliveira . 26:1–26:32

Contents 0:vii

Row and Bounded Polymorphism via Disjoint Polymorphism
Ningning Xie, Bruno C. d. S. Oliveira, Xuan Bi, and Tom Schrijvers 27:1–27:30

A Trusted Infrastructure for Symbolic Analysis of Event-Driven Web Applications
Gabriela Sampaio, José Fragoso Santos, Petar Maksimović, and
Philippa Gardner . 28:1–28:29

The Duality of Subtyping
Bruno C. d. S. Oliveira, Cui Shaobo, and Baber Rehman . 29:1–29:29

Safe, Flexible Aliasing with Deferred Borrows
Chris Fallin . 30:1–30:26

Abstracts of “Science of Computer Programming” Journal-first Papers

Reshape Your Layouts, Not Your Programs: A Safe Language Extension for
Better Cache Locality

Alexandros Tasos, Juliana Franco, Sophia Drossopoulou, Tobias Wrigstad, and
Susan Eisenbach . 31:1–31:3

A Big Step from Finite to Infinite Computations
Davide Ancona, Francesco Dagnino, Jurriaan Rot, and Elena Zucca 32:1–32:2

Abstracting Gradual References
Matías Toro and Éric Tanter . 33:1–33:4

ECOOP 2020

Preface

ECOOP is a conference about programming. Originally its focus was on object orientation,
but now it looks at a much broader range of programming topics. Areas of interest include
the design, implementation, optimization, analysis, and theory of programs, programming
languages, and programming environments. The conference welcomes innovative and creative
solutions to real problems, evaluations that provide new insights into existing solutions, and
reproduction studies.

This year ECOOP received 71 submissions categorized by their authors as research papers,
tool insight papers, reproduction studies, experience reports, pearls, or brave new ideas.
Papers were evaluated based on originality, significance, evidence, and clarity. After careful
and thorough review following a light double-blind, identify-the-champion process, 30 of
them were accepted by the Program and External Review Committees. Papers written by
committee members received extra reviews by the rest of the committee. While some papers
received up to six reviews, none had fewer than three.

Due to the COVID-19 pandemic, a physical meeting of the Program Committee was
impossible. Despite that, all members of the Program and the External Review Committees
did exceptional work, dealt with every obstacle in their way, and stayed positive and
constructive, leading to rich and interesting proceedings.

ECOOP 2020 was planned to be held in July in Berlin, Germany, but went virtual and
co-located with ACM SIGPLAN’s SPLASH conference. Together with OOPSLA, Onward!,
GPCE, SLE, DLS, SAS, and several workshops, ECOOP took place in November 2020.

The 2020 AITO Dahl-Nygaard Junior Prize was awarded to Jonathan Bell for his signifi-
cant contributions to tooling in the Java ecosystem, which has improved our understanding
and ability to test and discover bugs in software. The Senior Prize was presented to Jan Vitek,
whose work has been to observe how software is being developed and how programming
languages are being used; over his career he has studied and improved practical programming
languages.

A journal-first arrangement with Elsevier’s Science of Computer Programming yielded
the first “Special Issue on Selected Papers from the European Conference on Object-Oriented
Programming.”

It was an honor and a privilege to serve as Program Chair for this edition of ECOOP.
I would like to thank the following: all authors who submitted their research; my amazing
colleagues of the Program and External Review Committees along with our other external
reviewers for their outstanding work and help; the Artifact Evaluation Committee; the
Organizing Committee; and my Software Architecture Group here at HPI for their invaluable
support.

Robert Hirschfeld
Fall 2020

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Message from the General Chair

It is my great pleasure to welcome you to ECOOP’20, to be held during 15–17 Nov, the first
virtual instance of ECOOP in its 34 years of history. ECOOP is the European forum for
bringing together researchers, practitioners, and students to share their ideas and experiences
on all topics related to programming languages, software development, object-oriented
technologies, systems and applications.

The Corona pandemic quickly raised doubts whether we could have a physical meeting in
Berlin during July, as originally planned. Like many other conferences we had to evaluate
the situation carefully and eventually came to the conclusion that a physical meeting, while
not forbidden by law in the German state of Berlin at the planned timeframe, would not be
possible, mostly due to international travel restrictions.

Instead, ECOOP co-located with SPLASH, which gave the organizing team time to
plan a virtual meeting and the authors their online presentation. Other conferences and
several of ECOOP’s satellite events like the Scala Symposium followed, such that SPLASH
this year is a true multi-conference on programming and related communities. This year’s
ECOOP features a doctoral symposium and a poster session, which are jointly organized
with SPLASH, as well as tutorials. In the joint SPLASH virtualization team we developed a
plan for ECOOP/SPLASH to be experienced world-wide, in particular with closed captioning
and a daily 12h program that is repeated in the subsequent half day. Experience was also
drawn from other virtually organized conferences like PLDI, ICSE, and ICFP. While nothing
can compensate for the networking at a physical meeting, we therefore hope that we can
provide you with the best online experience possible.

My congratulations go to the junior and senior AITO Dahl-Nygaard Prize winners,
Jonathan Bell and Jan Vitek, who will present keynotes during ECOOP, and the paper
“Load-Time Structural Reflection in Java” by Shigeru Chiba, which was selected for the
AITO Test of Time Award.

Organizing ECOOP in these challenging times would not have been possible without the
support of a great team. I would like to express my gratitude towards all the people involved
in organizing this year’s ECOOP and the joint virtual event, in particular the members of the
ECOOP’20 Organizing Committee, the joint SPLASH Virtualization Committee, especially
the intersection of those two consisting of Toni Mattis, Patrick Rein, and Fabio Niephaus, the
Program Committee led by Robert Hirschfeld for compiling an excellent program, AITO e.V.
and the support from its Executive Board. Many people contributed to various aspects of
the program: the Doctoral Symposium was chaired by Philipp Dominik Schubert, Nafise
Eskandani Masoule, Chengsong Tan; Julia Belyakova served as Diversity Chair; Annabel
Satin served as Finance Chair; Jan Vitek and Gregor Richards co-organized the workshops;
Jacob Hughes and Toni Mattis served as Student Volunteer Co-Chairs; Tim Felgentreff and
Tobias Pape managed the ECOOP web site; Fabio Niephaus served as Publicity Chair; Eric
Bodden served as Sponsorship Chair; Goran Piskachev and Patrik Rein served as Posters
Co-Chairs; and last but not least, Lisa Nguyen Quang Do and Manuel Rigger served as
Artifact Evaluation Co-Chairs for ECOOP 2020.

I would like to gratefully acknowledge our sponsor AITO and funding by Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) – HA 6869/2-1, our financial
supporters Facebook, Google, Connext Communications GmbH, and Huawei Technologies,
as well as the cooperation with ACM and SIGPLAN.
34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xii Message from the General Chair

Finally, I wish all attendants of ECOOP’20 and the co-located events a fantastic time,
thought-provoking, and inspiring talks, stimulating discussions and that the online conference
offers ample opportunities to network with your peers, researchers and practitioners from
our vibrant community.

Christian Hammer
Fall 2020

Message from the Artifact Evaluation Chairs

The goal of the Artifact Evaluation (AE) is to foster the reproducibility of results by providing
authors the possibility to submit an artifact for accepted papers. For ECOOP 2020, artifacts
include, but are not limited to, software artifacts, data sets, and proofs. An Artifact
Evaluation Committee (AEC) reviews these artifacts and decides upon their acceptance. The
accepted artifacts are archived in the Dagstuhl Artifacts Series (DARTS) published on the
Dagstuhl Research Online Publication Server (DROPS). Each artifact is assigned a Digital
Object Identifier (DOI) that can be used in future citations.

This year, the committee evaluated 21 artifacts out of 29 papers accepted at the confer-
ence’s research track. This corresponds to a participation rate of 72%. 20 of those artifacts
were accepted, marking a 95% acceptance rate.

In total 70% of the research papers published at ECOOP 2020 have successfully passed the
AE process, indicated by an artifact-evaluation badge on the paper. This is an improvement
over the previous ECOOP editions: from 2017 to 2019, respectively 59%, 38%̇, and 50% of
the research papers were accompanied by accepted artifacts.

The AE process for 2020 was a continuation of the AE process of previous ECOOP
editions. In particular, the process was based on the artifact evaluation guidelines by
Shriram Krishnamurthi, Matthias Hauswirth, Steve Blackburn, and Jan Vitek published
on the Artifact Evaluation site.1 In addition, the authors and reviewers were provided
with guidelines for creating and reviewing software artifacts, in particular guidelines from
the Artifact Evaluation site,2 the HOWTO for AEC Submitters by Dan Barowy, Charlie
Curtsinger, Emma Tosch, and John Vilk,3 Marianna Rapoport’s Proof Artifacts – Guidelines
for Submission and Reviewing,4 and Erin Dahlgren’s study on the OOPSLA 2019 artifact
evaluation process.

Each artifact was evaluated by three AEC members, which corresponded to a reviewer
load of two to three artifacts. The reviewing process consisted of three phases:

In the kick-the-tires phase, reviewers briefly verified the basic integrity of the artifacts to
discover any issues that could prevent the evaluation of the artifact (e.g., a corrupted
virtual machine image) and to assign a grade for the getting-started guide.
In case of any issues, reviewers could, during the interactive reviewing period, indicate
issues and ask clarifying questions to the authors. Authors, in turn, could respond to the
reviewers’ feedback, and update their artifacts to answer questions and address issues
that the reviewers could then also respond to. During that phase, reviewers started a
more comprehensive evaluation of their assigned artifacts. They were asked to assess
the consistency of the artifact with respect to the paper, the artifact’s completeness,
documentation, and reusability for future research and to decide on an overall grade.
In the final reviewing period, the submission system was closed to the authors. Each
reviewer had a week to finish the evaluation of their assigned artifacts.

The review phase was then followed by a discussion phase, in which artifacts were
discussed to converge on either the artifacts’ acceptance or rejection.

1 http://www.artifact-eval.org
2 https://www.artifact-eval.org/guidelines.html
3 http://bit.ly/HOWTO-AEC
4 https://proofartifacts.github.io/guidelines/

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.artifact-eval.org
https://www.artifact-eval.org/guidelines.html
http://bit.ly/HOWTO-AEC
https://proofartifacts.github.io/guidelines/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xiv Message from the Artifact Evaluation Chairs

Authors that received an acceptance notification were given one week of time to incorporate
reviewers’ feedback and submit the camera-ready version of their artifacts.

We would like to commend the efforts of all 23 members of this year’s AEC, who, in spite
of the global crisis, donated their valuable time and effort to make the AE process possible.
We thank Martin Kavalar, Philipp Markovics, and Jan Vitek for their efforts in enabling
Nextjournal as an option for authors to submit and host their artifacts. We would also like
to thank Michael Wagner and the DARTS team for their efforts enabling the publication of
the artifacts volume, as well as ECOOP 2020’s General Chair Christian Hammer, and the
Program Chair Robert Hirschfeld for helping us coordinate the AE with the paper review
process.

Lisa Nguyen Quang Do and Manuel Rigger
Fall 2020

Objects and a Changing World
Foreword by the President of AITO

The world has changed abruptly: The arrival of a new corona virus has seriously impacted
society and traditional academic conferences have not been spared, but rather cancelled, or,
at best, become virtual as ECOOP 2020. And, already, we have to start seriously considering
going virtual in 2021, thus possibly missing out two years in a row, both Berlin 2020 and
Aarhus 2021. We may also already now start wondering about the Post-Corona virus time
that we hope will follow the likely (we hope) approval and adoption of a corona vaccine: What
will that look like? Will we be able to go back to the tradition physical-meeting-for-a-week
academic conferences? Will we want to? Or will everyone, including funding agencies, find
that, well, virtual is good enough and a lot cheaper? I hope not as the personal interactions
at physical conferences is very hard to mimic virtually. What will happen, time will tell.

Another change that has been slowly evolving over the past decades is that the original
strong Object Orientation of ECOOP is that OO has become mainstream, and has diversified:
thus ECOOP is mellowing into a more general programming language conference.

I would like to thank the ECOOP 2020 Program Chair, his crew and his PC for putting
together an excellent program, Christian Hammer and his crew for organizing ECOOP 2020,
and Annabel Satin who has been AITO’s indispensable behind-the-scene-manager. I hope
you-all will enjoy ECOOP 2020.

Sincerely,
Eric Jul

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Organization

General Chair

Christian Hammer (University of Potsdam, Germany)

Program Chair

Robert Hirschfeld (Hasso Plattner Institute, University of Potsdam, Germany)

Workshops Co-Chairs

Gregor Richards (University of Waterloo, Canada)
Jan Vitek (Northeastern University, USA)

Student Volunteer Co-Chairs

Jacob Hughes (King’s College London, United Kingdom)
Toni Mattis (Hasso Plattner Institute, University of Potsdam, Germany)

Virtualization Co-Chairs

Toni Mattis (Hasso Plattner Institute, University of Potsdam, Germany)
Patrick Rein (Hasso Plattner Institute, University of Potsdam, Germany)
Fabio Niephaus (Hasso Plattner Institute, University of Potsdam, Germany)

Artifact Evaluation Co-Chairs

Lisa Nguyen Quang Do (Google, Switzerland)
Manuel Rigger (ETH Zurich, Switzerland)

Posters Co-Chairs

Goran Piskachev (Fraunhofer IEM, Germany)
Patrick Rein (Hasso Plattner Institute, University of Potsdam, Germany)

Diversity Chair

Julia Belyakova (Northeastern University, USA)

Sponsorship Chair

Eric Bodden (Heinz Nixdorf Institut, Paderborn University and Fraunhofer IEM, Germany)

Finance Chair

Annabel Satin (P.C.K., United Kingdom)
34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xviii Organization

Doctoral Symposium Co-Chairs
Philipp Dominik Schubert (Heinz Nixdorf Institut, Paderborn University, Germany)
Nafise Eskandani Masoule (Technical University of Darmstadt, Germany)
Chengsong Tan (King’s College London, United Kingdom)

Publicity Chair
Fabio Niephaus (Hasso Plattner Institute, University of Potsdam, Germany)

Web Technology Co-Chairs
Tim Felgentreff (Oracle Labs, Potsdam, Germany)
Tobias Pape (Hasso Plattner Institute, University of Potsdam, Germany)

Publications Chair
Tobias Pape (Hasso Plattner Institute, University of Potsdam, Germany)

List of Authors

Davide Ancona (1, 32)
DIBRIS, University of Genova, Italy

Anastasios Antoniadis (15)
University of Athens, Greece

Mohamad Barbar (24)
University of Technology Sydney, Australia;
CSIRO’s Data61, Sydney, Australia

Pietro Barbieri (1)
DIBRIS, University of Genova, Italy

Xuan Bi (27)
The University of Hong Kong, China

Edwin Brady (20)
University of St Andrews, United Kingdom

Andrea Cerone (21)
Department of Computing,
Imperial College London, United Kingdom

Angela Chang (25)
University of Waterloo, Canada

Shiping Chen (24)
CSIRO’s Data61, Sydney, Australia

Francesco Dagnino (1, 32)
DIBRIS, University of Genova, Italy

Sadegh Dalvandi (11)
University of Surrey, United Kingdom

Joeri De Koster (19)
Software Languages Lab,
Vrije Universiteit Brussel, Belgium

Wolfgang De Meuter (19)
Software Languages Lab,
Vrije Universiteit Brussel, Belgium

Jan de Muijnck-Hughes (20)
University of Glasgow, United Kingdom

Lukas Diekmann (6)
Software Development Team,
King’s College London, United Kingdom

Simon Doherty (11)
University of Sheffield, United Kingdom

Julian Dolby (15)
IBM Research, Yorktown Heights, NY, USA

Alastair F. Donaldson (13, 22)
Google, London, United Kingdom;
Imperial College London, United Kingdom

Brijesh Dongol (11)
University of Surrey, United Kingdom

Vlastimil Dort (18)
Charles University, Prague, Czech Republic

Sophia Drossopoulou (31)
Imperial College London, United Kingdom;
Microsoft Research, London, United Kingdom

Susan Eisenbach (31)
Imperial College London, United Kingdom

Hugues Evrard (22)
Google, London, United Kingdom

Chris Fallin (30)
Mozilla, Mountain View, CA, USA

Simon Fowler (14)
University of Edinburgh, United Kingdom

José Fragoso Santos (28)
INESC-ID/Instituto Superior Técnico,
Universidade de Lisboa, Portugal;
Imperial College London, United Kingdom

Juliana Franco (31)
Microsoft Research, London, United Kingdom

Julia Gabet (4)
Imperial College London, United Kingdom

Philippa Gardner (21, 28)
Department of Computing,
Imperial College London, United Kingdom

Colin S. Gordon (10, 23)
Department of Computer Science,
Drexel University, Philadelphia, PA, USA

Neville Grech (15)
University of Athens, Greece

Elsa L. Gunter (7)
Department of Computer Science,
University of Illinois at Urbana-Champaign,
Urbana, IL, USA

Xuejing Huang (26)
The University of Hong Kong, China

Atsushi Igarashi (8)
Graduate School of Informatics, Kyoto
University, Japan

Keigo Imai (9)
Gifu University, Japan

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6297-2011
https://doi.org/10.4230/LIPIcs.ECOOP.2020.1
https://doi.org/10.4230/LIPIcs.ECOOP.2020.32
https://doi.org/10.4230/LIPIcs.ECOOP.2020.15
https://doi.org/10.4230/LIPIcs.ECOOP.2020.24
https://orcid.org/0000-0003-3193-5549
https://doi.org/10.4230/LIPIcs.ECOOP.2020.1
https://doi.org/10.4230/LIPIcs.ECOOP.2020.27
https://orcid.org/0000-0002-9734-367X
https://doi.org/10.4230/LIPIcs.ECOOP.2020.20
https://doi.org/10.4230/LIPIcs.ECOOP.2020.21
https://doi.org/10.4230/LIPIcs.ECOOP.2020.25
https://doi.org/10.4230/LIPIcs.ECOOP.2020.24
https://orcid.org/0000-0003-3599-3535
https://doi.org/10.4230/LIPIcs.ECOOP.2020.1
https://doi.org/10.4230/LIPIcs.ECOOP.2020.32
https://orcid.org/0000-0001-8813-780X
https://doi.org/10.4230/LIPIcs.ECOOP.2020.11
https://orcid.org/0000-0002-2932-8208
https://doi.org/10.4230/LIPIcs.ECOOP.2020.19
https://orcid.org/0000-0002-5229-5627
https://doi.org/10.4230/LIPIcs.ECOOP.2020.19
https://orcid.org/0000-0003-2185-8543
https://doi.org/10.4230/LIPIcs.ECOOP.2020.20
https://doi.org/10.4230/LIPIcs.ECOOP.2020.6
https://orcid.org/0000-0001-8822-1091
https://doi.org/10.4230/LIPIcs.ECOOP.2020.11
https://doi.org/10.4230/LIPIcs.ECOOP.2020.15
https://orcid.org/0000-0002-7448-7961
https://doi.org/10.4230/LIPIcs.ECOOP.2020.13
https://doi.org/10.4230/LIPIcs.ECOOP.2020.22
https://orcid.org/0000-0003-0446-3507
https://doi.org/10.4230/LIPIcs.ECOOP.2020.11
https://orcid.org/0000-0002-0213-7524
https://doi.org/10.4230/LIPIcs.ECOOP.2020.18
https://doi.org/10.4230/LIPIcs.ECOOP.2020.31
https://doi.org/10.4230/LIPIcs.ECOOP.2020.31
https://doi.org/10.4230/LIPIcs.ECOOP.2020.22
https://doi.org/10.4230/LIPIcs.ECOOP.2020.30
https://orcid.org/0000-0001-5143-5475
https://doi.org/10.4230/LIPIcs.ECOOP.2020.14
https://doi.org/10.4230/LIPIcs.ECOOP.2020.28
https://doi.org/10.4230/LIPIcs.ECOOP.2020.31
https://orcid.org/0000-0001-9944-9497
https://doi.org/10.4230/LIPIcs.ECOOP.2020.4
https://doi.org/10.4230/LIPIcs.ECOOP.2020.21
https://doi.org/10.4230/LIPIcs.ECOOP.2020.28
https://orcid.org/0000-0002-9012-4490
https://doi.org/10.4230/LIPIcs.ECOOP.2020.10
https://doi.org/10.4230/LIPIcs.ECOOP.2020.23
https://doi.org/10.4230/LIPIcs.ECOOP.2020.15
https://doi.org/10.4230/LIPIcs.ECOOP.2020.7
https://orcid.org/0000-0002-8496-491X
https://doi.org/10.4230/LIPIcs.ECOOP.2020.26
https://orcid.org/0000-0002-5143-9764
https://doi.org/10.4230/LIPIcs.ECOOP.2020.8
https://orcid.org/0000-0003-1602-8473
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xx Authors

Sifis Lagouvardos (15)
University of Athens, Greece

Ori Lahav (5)
Tel Aviv University, Israel

Ondřej Lhoták (3, 12, 18, 25)
University of Waterloo, Canada

Liyi Li (7)
Department of Computer Science,
University of Illinois at Urbana-Champaign,
Urbana, IL, USA

David R. MacIver (13)
Imperial College London, United Kingdom

Magnus Madsen (12)
Aarhus University, Denmark

Petar Maksimović (28)
Imperial College London, United Kingdom

Orestis Melkonian (5)
University of Edinburgh, UK

Antoine Miné (17)
Sorbonne Université, CNRS, LIP6, Paris, France;
Institut Universitaire de France, Paris, France

Evgenii Moiseenko (5)
St. Petersburg State University, Russia;
JetBrains Research, St. Petersburg, Russia

Raphaël Monat (17)
Sorbonne Université, CNRS, LIP6, Paris, France

Anders Møller (16)
Aarhus University, Denmark

Rumyana Neykova (9)
Brunel University London, United Kingdom

Benjamin Barslev Nielsen (16)
Aarhus University, Denmark

Abel Nieto (3, 25)
University of Waterloo, Canada

Bjarno Oeyen (19)
Software Languages Lab,
Vrije Universiteit Brussel, Belgium

Bruno C. d. S. Oliveira (26, 27, 29)
The University of Hong Kong, China

Abdelraouf Ouadjaout (17)
Sorbonne Université, CNRS, LIP6, Paris, France

Hila Peleg (2)
University of California San Diego, CA, USA

Anton Podkopaev (5)
National Research University Higher School of
Economics, Moscow, Russia;
MPI-SWS, Kaiserslautern, Germany;
JetBrains Research, St. Petersburg, Russia

Nadia Polikarpova (2)
University of California San Diego, CA, USA

Justin Pu (25)
University of Waterloo, Canada

Azalea Raad (21)
MPI-SWS, Kaiserslautern, Germany

Marianna Rapoport (3)
University of Waterloo, Canada

Baber Rehman (29)
The University of Hong Kong, China

Thierry Renaux (19)
Software Languages Lab, Vrije Universiteit
Brussel, Belgium

Gregor Richards (3)
University of Waterloo, Canada

Jurriaan Rot (32)
Radboud University, The Netherlands

Gabriela Sampaio (28)
Imperial College London, United Kingdom

Tom Schrijvers (27)
KU Leuven, Belgium

Cui Shaobo (29)
University of California San Diego, CA, USA

Yannis Smaragdakis (15)
University of Athens, Greece

Yulei Sui (24)
University of Technology Sydney, Australia

Tomoya Tabuchi (8)
Graduate School of Informatics, Kyoto
University, Japan

Éric Tanter (33)
PLEIAD Laboratory, Computer Science
Department (DCC), University of Chile,
Santiago, Chile

Alexandros Tasos (31)
Imperial College London, United Kingdom

Paul Thomson (22)
Google, London, United Kingdom

Frank Tip (12)
Northeastern University, Boston, MA, USA

https://doi.org/10.4230/LIPIcs.ECOOP.2020.15
https://doi.org/10.4230/LIPIcs.ECOOP.2020.5
https://orcid.org/0000-0001-9066-1889
https://doi.org/10.4230/LIPIcs.ECOOP.2020.3
https://doi.org/10.4230/LIPIcs.ECOOP.2020.12
https://doi.org/10.4230/LIPIcs.ECOOP.2020.18
https://doi.org/10.4230/LIPIcs.ECOOP.2020.25
https://doi.org/10.4230/LIPIcs.ECOOP.2020.7
https://orcid.org/0000-0002-8635-3223
https://doi.org/10.4230/LIPIcs.ECOOP.2020.13
https://orcid.org/0000-0002-7510-8724
https://doi.org/10.4230/LIPIcs.ECOOP.2020.12
https://doi.org/10.4230/LIPIcs.ECOOP.2020.28
https://doi.org/10.4230/LIPIcs.ECOOP.2020.5
https://orcid.org/0000-0002-6375-3179
https://doi.org/10.4230/LIPIcs.ECOOP.2020.17
https://doi.org/10.4230/LIPIcs.ECOOP.2020.5
https://orcid.org/0000-0001-8487-0326
https://doi.org/10.4230/LIPIcs.ECOOP.2020.17
https://orcid.org/0000-0003-1333-2314
https://doi.org/10.4230/LIPIcs.ECOOP.2020.16
https://orcid.org/0000-0002-2755-7728
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://doi.org/10.4230/LIPIcs.ECOOP.2020.16
https://orcid.org/0000-0003-2741-8119
https://doi.org/10.4230/LIPIcs.ECOOP.2020.3
https://doi.org/10.4230/LIPIcs.ECOOP.2020.25
https://orcid.org/0000-0002-2100-4559
https://doi.org/10.4230/LIPIcs.ECOOP.2020.19
https://doi.org/10.4230/LIPIcs.ECOOP.2020.26
https://doi.org/10.4230/LIPIcs.ECOOP.2020.27
https://doi.org/10.4230/LIPIcs.ECOOP.2020.29
https://orcid.org/0000-0001-7248-5914
https://doi.org/10.4230/LIPIcs.ECOOP.2020.17
https://orcid.org/0000-0002-0107-5659
https://doi.org/10.4230/LIPIcs.ECOOP.2020.2
https://doi.org/10.4230/LIPIcs.ECOOP.2020.5
https://orcid.org/0000-0001-5571-173X
https://doi.org/10.4230/LIPIcs.ECOOP.2020.2
https://doi.org/10.4230/LIPIcs.ECOOP.2020.25
https://doi.org/10.4230/LIPIcs.ECOOP.2020.21
https://doi.org/10.4230/LIPIcs.ECOOP.2020.3
https://doi.org/10.4230/LIPIcs.ECOOP.2020.29
https://orcid.org/0000-0002-9301-2187
https://doi.org/10.4230/LIPIcs.ECOOP.2020.19
https://orcid.org/0000-0001-5058-2174
https://doi.org/10.4230/LIPIcs.ECOOP.2020.3
https://doi.org/10.4230/LIPIcs.ECOOP.2020.32
https://doi.org/10.4230/LIPIcs.ECOOP.2020.28
https://orcid.org/0000-0001-8771-5559
https://doi.org/10.4230/LIPIcs.ECOOP.2020.27
https://doi.org/10.4230/LIPIcs.ECOOP.2020.29
https://doi.org/10.4230/LIPIcs.ECOOP.2020.15
https://doi.org/10.4230/LIPIcs.ECOOP.2020.24
https://doi.org/10.4230/LIPIcs.ECOOP.2020.8
https://doi.org/10.4230/LIPIcs.ECOOP.2020.33
https://doi.org/10.4230/LIPIcs.ECOOP.2020.31
https://doi.org/10.4230/LIPIcs.ECOOP.2020.22
https://orcid.org/0000-0002-1862-3498
https://doi.org/10.4230/LIPIcs.ECOOP.2020.12

Authors 0:xxi

Matías Toro (33)
PLEIAD Laboratory, Computer Science
Department (DCC), University of Chile,
Santiago, Chile

Laurence Tratt (6)
Software Development Team,
King’s College London, United Kingdom

Yuya Tsuda (8)
Graduate School of Informatics,
Kyoto University, Japan

Viktor Vafeiadis (5)
MPI-SWS, Kaiserslautern, Germany

Sam Van den Vonder (19)
Software Languages Lab,
Vrije Universiteit Brussel, Belgium

Wim Vanderbauwhede (20)
University of Glasgow, United Kingdom

Heike Wehrheim (11)
Paderborn University, Germany

Tobias Wrigstad (31)
Uppsala University, Sweden

Ningning Xie (27)
The University of Hong Kong, China

Shale Xiong (21)
Department of Computing,
Imperial College London, United Kingdom

Nobuko Yoshida (4, 9)
Imperial College London, United Kingdom

Shoji Yuen (9)
Nagoya University, Japan

Yaoyu Zhao (25)
University of Waterloo, Canada

Elena Zucca (1, 32)
DIBRIS, University of Genova, Italy

ECOOP 2020

https://doi.org/10.4230/LIPIcs.ECOOP.2020.33
https://orcid.org/0000-0002-5258-3805
https://doi.org/10.4230/LIPIcs.ECOOP.2020.6
https://orcid.org/0000-0002-7420-2575
https://doi.org/10.4230/LIPIcs.ECOOP.2020.8
https://doi.org/10.4230/LIPIcs.ECOOP.2020.5
https://orcid.org/0000-0002-9241-1098
https://doi.org/10.4230/LIPIcs.ECOOP.2020.19
https://orcid.org/0000-0001-6768-0037
https://doi.org/10.4230/LIPIcs.ECOOP.2020.20
https://orcid.org/0000-0002-2385-7512
https://doi.org/10.4230/LIPIcs.ECOOP.2020.11
https://doi.org/10.4230/LIPIcs.ECOOP.2020.31
https://doi.org/10.4230/LIPIcs.ECOOP.2020.27
https://doi.org/10.4230/LIPIcs.ECOOP.2020.21
https://orcid.org/0000-0002-3925-8557
https://doi.org/10.4230/LIPIcs.ECOOP.2020.4
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://orcid.org/0000-0003-2642-0647
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://doi.org/10.4230/LIPIcs.ECOOP.2020.25
https://orcid.org/0000-0002-6833-6470
https://doi.org/10.4230/LIPIcs.ECOOP.2020.1
https://doi.org/10.4230/LIPIcs.ECOOP.2020.32

List of Reviewers

Program Committee

Robert Hirschfeld (chair)
Hasso Plattner Institute
University of Potsdam
Germany
robert.hirschfeld@gmx.net

Karim Ali
University of Alberta
USA
karim.ali@ualberta.ca

Davide Ancona
DIBRIS, University of Genova
Italy
davide.ancona@unige.it

Carl Friedrich Bolz-Tereick
Heinrich-Heine-Universität Düsseldorf
Germany
cfbolz@gmx.de

John Boyland
Univeristy of Wisconsin
USA
boyland@cs.uwm.edu

Shigeru Chiba
The University of Tokyo
Japan
chiba@chibas.net

Theo D’Hondt
Vrije Universiteit Brussel
Belgium
tjdhondt@vub.ac.be

Wolfgang De Meuter
Vrije Universiteit Brussel
Belgium
wdmeuter@vub.ac.be

Sebastian Erdweg
JGU Mainz
Germany
erdweg@uni-mainz.de

Tim Felgentreff
Oracle Labs, Potsdam
Germany
tim.felgentreff@hpi.uni-potsdam.de

Olivier Flückiger
Northeastern University
USA
olivf@ccs.neu.edu

Lidia Fuentes
Universidad de Málaga
Spain
lff@lcc.uma.es

Richard P. Gabriel
Dream Songs, Inc. & HPI
California & Germany
rpg@dreamsongs.com

Anitha Gollamudi
Harvard University
USA
agollamudi@g.harvard.edu

Elisa Gonzalez Boix
Vrije Universiteit Brussel
Belgium
egonzale@vub.ac.be

Philipp Haller
KTH Royal Institute of Technology
Sweden
hallerp@gmail.com

Christian Hammer
University of Potsdam
Germany
hammer@cs.uni-potsdam.de

Felienne Hermans
Leiden University
The Netherlands
f.f.j.hermans@liacs.leidenuniv.nl

Atsushi Igarashi
Kyoto University
Japan
igarashi@kuis.kyoto-u.ac.jp

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:robert.hirschfeld@gmx.net
mailto:karim.ali@ualberta.ca
mailto:davide.ancona@unige.it
mailto:cfbolz@gmx.de
mailto:boyland@cs.uwm.edu
mailto:chiba@chibas.net
mailto:tjdhondt@vub.ac.be
mailto:wdmeuter@vub.ac.be
mailto:erdweg@uni-mainz.de
mailto:tim.felgentreff@hpi.uni-potsdam.de
mailto:olivf@ccs.neu.edu
mailto:lff@lcc.uma.es
mailto:rpg@dreamsongs.com
mailto:agollamudi@g.harvard.edu
mailto:egonzale@vub.ac.be
mailto:hallerp@gmail.com
mailto:hammer@cs.uni-potsdam.de
mailto:f.f.j.hermans@liacs.leidenuniv.nl
mailto:igarashi@kuis.kyoto-u.ac.jp
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xxiv Reviewers

Stephen Kell
University of Kent
United Kingdom
stephen.kell@cl.cam.ac.uk

Raffi Khatchadourian
City University of New York (CUNY)
Hunter College
USA
raffi.khatchadourian@hunter.cuny.edu

Yu David Liu
State University of New York (SUNY)
Binghamton
USA
davidl@cs.binghamton.edu

Hidehiko Masuhara
Tokyo Institute of Technology
Japan
masuhara@acm.org

James Noble
Victoria University of Wellington
New Zealand
kjx@ecs.vuw.ac.nz

Klaus Ostermann
University of Tübingen
Germany
klaus.ostermann@uni-tuebingen.de

Patrick Rein
Hasso Plattner Institute
University of Potsdam
Germany
patrick.rein@hpi.uni-potsdam.de

Guido Salvaneschi
University of St. Gallen
Swizerland
guido.salva@gmail.com

Manuel Serrano
Inria
France
manuel.serrano@inria.fr

Jeremy G. Siek
Indiana University
USA
jsiek@indiana.edu

Friedrich Steimann
Fernuniversität Hagen
Germany
steimann@fernuni-hagen.de

Emma Söderberg
Lund University
Sweden
emma.m.soderberg@gmail.com

Peter Thiemann
University of Freiburg
Germany
thiemann@acm.org

Eli Tilevich
Virginia Tech
USA
tilevich@cs.vt.edu

Frank Tip
Northeastern University
USA
f.tip@northeastern.edu

Jan Vitek
Northeastern University
USA
j.vitek@neu.edu

Tobias Wrigstad
Uppsala University
Sweden
tobias.wrigstad@it.uu.se

Tijs van der Storm
CWI & University of Groningen
The Netherlands
storm@cwi.nl

External Reviewer Committee

Robert Hirschfeld (chair)
Hasso Plattner Institute
University of Potsdam
Germany
robert.hirschfeld@gmx.net

Erik Ernst
Google
Denmark
eernst@acm.org

mailto:stephen.kell@cl.cam.ac.uk
mailto:raffi.khatchadourian@hunter.cuny.edu
mailto:davidl@cs.binghamton.edu
mailto:masuhara@acm.org
mailto:kjx@ecs.vuw.ac.nz
mailto:klaus.ostermann@uni-tuebingen.de
mailto:patrick.rein@hpi.uni-potsdam.de
mailto:guido.salva@gmail.com
mailto:manuel.serrano@inria.fr
mailto:jsiek@indiana.edu
mailto:steimann@fernuni-hagen.de
mailto:emma.m.soderberg@gmail.com
mailto:thiemann@acm.org
mailto:tilevich@cs.vt.edu
mailto:f.tip@northeastern.edu
mailto:j.vitek@neu.edu
mailto:tobias.wrigstad@it.uu.se
mailto:storm@cwi.nl
mailto:robert.hirschfeld@gmx.net
mailto:eernst@acm.org

Reviewers 0:xxv

Matthew Flatt
University of Utah
USA
mflatt@cs.utah.edu

Jeremy Gibbons
Department of Computer Science
University of Oxford
United Kingdom
jeremy.gibbons@cs.ox.ac.uk

Doug Lea
State University of New York (SUNY)
Oswego
USA
dl@cs.oswego.edu

Crista Lopes
University of California, Irvine
California
lopes@uci.edu

Toni Mattis
Hasso Plattner Institute
University of Potsdam
Germany
toni.mattis@hpi.de

Todd Millstein
University of California, Los Angeles
USA
todd@cs.ucla.edu

Jens Palsberg
University of California, Los Angeles
USA
palsberg@ucla.edu

Tomas Petricek
University of Kent
United Kingdom
tomas@tomasp.net

Benjamin C. Pierce
University of Pennsylvania
USA
bcpierce@cis.upenn.edu

Joe Gibbs Politz
University of California, San Diego
USA
jpolitz@cs.swarthmore.edu

Tiark Rompf
Purdue University
USA
tiark@purdue.edu

Laurence Tratt
King’s College London
United Kingdom
laurie@tratt.net

Additional Reviewers

Leonidas Lampropoulos
University of Pennsylvania
University of Maryland
USA
leonidaslamp@hotmail.com

Magnus Madsen
University of Waterloo
Canada
magnusm@cs.au.dk

Matthias Springer
Google
Japan
me@matthiasspringer.de

Nicholas Rioux
University of Pennsylvania
USA
nrioux@seas.upenn.edu

Rui Abreu
University of Lisbon
Portugal
rui.maranhao@tecnico.ulisboa.pt

Artifact Evaluation Committee

Lisa Nguyen Quang Do (chair)
Google
Switzerland
lisa.nqd@gmail.com

Manuel Rigger (chair)
ETH Zurich
Switzerland
manuel.rigger@inf.ethz.ch

ECOOP 2020

mailto:mflatt@cs.utah.edu
mailto:jeremy.gibbons@cs.ox.ac.uk
mailto:dl@cs.oswego.edu
mailto:lopes@uci.edu
mailto:toni.mattis@hpi.de
mailto:todd@cs.ucla.edu
mailto:palsberg@ucla.edu
mailto:tomas@tomasp.net
mailto:bcpierce@cis.upenn.edu
mailto:jpolitz@cs.swarthmore.edu
mailto:tiark@purdue.edu
mailto:laurie@tratt.net
mailto:leonidaslamp@hotmail.com
mailto:magnusm@cs.au.dk
mailto:me@matthiasspringer.de
mailto:nrioux@seas.upenn.edu
mailto:rui.maranhao@tecnico.ulisboa.pt
mailto:lisa.nqd@gmail.com
mailto:manuel.rigger@inf.ethz.ch

0:xxvi Reviewers

Ellen Arteca
Northeastern University
USA
earteca@uwaterloo.ca

Alexandre Bartel
University of Luxembourg
alexandre.bartel@uni.lu

Francesco Dagnino
DIBRIS, University of Genova
Italy
francesco.dagnino@dibris.unige.it

Erin Dahlgren
University of Chicago
USA
edahlgren@uchicago.edu

Kiko Fernandez-Reyes
Uppsala University
Sweden
kiko.fernandez@it.uu.se

Zheng Guo
University of California, San Diego
USA
zhg069@ucsd.edu

Byron Hawkins
INRIA Rennes
France
byron.hawkins@inria.fr

Pinjia He
ETH Zurich
Switzerland
pinjia.he@inf.ethz.ch

Aarti Kashyap
University of British Columbia
Canada
kaarti.sr@gmail.com

Alyssa Milburn
Vrije Universiteit Amsterdam
The Netherlands
a.a.milburn@vu.nl

Felix Pauck
Paderborn University
Germany
fpauck@mail.uni-paderborn.de

Cedric Richter
Paderborn University
Germany
cedricr@mail.upb.de

Andrea Rosà
University of Lugano
Switzerland
andrea.rosa@usi.ch

Somesh Singh
Indian Institute of Technology, Madras
India
somesh.singh1992@gmail.com

Justin Smith
Lafayette College, Easton
USA
justinssmith1@gmail.com

Quentin Stiévenart
Vrije Universiteit Brussel
Belgium
qstieven@vub.ac.be

Qiyi Tang
University of Oxford
United Kingdom
qiyi.tang71@gmail.com

John Toman
University of Washington, Seattle
USA
jtoman@cs.washington.edu

Alix Trieu
Aarhus University
Denmark
alix.trieu@cs.au.dk

Alexi Turcotte
Northeastern University
USA
aturcotte@uwaterloo.ca

Junwen Yang
University of Chicago
USA
junwen@uchicago.edu

Chengyu Zhang
East China Normal University
China
dale.chengyu.zhang@gmail.com

mailto:earteca@uwaterloo.ca
mailto:alexandre.bartel@uni.lu
mailto:francesco.dagnino@dibris.unige.it
mailto:edahlgren@uchicago.edu
mailto:kiko.fernandez@it.uu.se
mailto:zhg069@ucsd.edu
mailto:byron.hawkins@inria.fr
mailto:pinjia.he@inf.ethz.ch
mailto:kaarti.sr@gmail.com
mailto:a.a.milburn@vu.nl
mailto:fpauck@mail.uni-paderborn.de
mailto:cedricr@mail.upb.de
mailto:andrea.rosa@usi.ch
mailto:somesh.singh1992@gmail.com
mailto:justinssmith1@gmail.com
mailto:qstieven@vub.ac.be
mailto:qiyi.tang71@gmail.com
mailto:jtoman@cs.washington.edu
mailto:alix.trieu@cs.au.dk
mailto:aturcotte@uwaterloo.ca
mailto:junwen@uchicago.edu
mailto:dale.chengyu.zhang@gmail.com

Reviewers 0:xxvii

Fuyuan Zhang
MPI-SWS
Germany
fuyuan@mpi-sws.org

Daming Zou
Peking University
China
zoudm@pku.edu.cn

ECOOP 2020

mailto:fuyuan@mpi-sws.org
mailto:zoudm@pku.edu.cn

Sound Regular Corecursion in coFJ
Davide Ancona
DIBRIS, University of Genova, Italy
davide.ancona@unige.it

Pietro Barbieri
DIBRIS, University of Genova, Italy
pietro.barbieri@edu.unige.it

Francesco Dagnino
DIBRIS, University of Genova, Italy
francesco.dagnino@dibris.unige.it

Elena Zucca
DIBRIS, University of Genova, Italy
elena.zucca@unige.it

Abstract
The aim of the paper is to provide solid foundations for a programming paradigm natively supporting
the creation and manipulation of cyclic data structures. To this end, we describe coFJ, a Java-like
calculus where objects can be infinite and methods are equipped with a codefinition (an alternative
body). We provide an abstract semantics of the calculus based on the framework of inference systems
with corules. In coFJ with this semantics, FJ recursive methods on finite objects can be extended
to infinite objects as well, and behave as desired by the programmer, by specifying a codefinition.
We also describe an operational semantics which can be directly implemented in a programming
language, and prove the soundness of such semantics with respect to the abstract one.

2012 ACM Subject Classification Theory of computation → Operational semantics; Software and
its engineering → Recursion; Software and its engineering → Semantics

Keywords and phrases Operational semantics, coinduction, programming paradigms, regular terms

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.1

Related Version A full version of the paper is available at https://arxiv.org/abs/2005.14085.

Funding Davide Ancona: Member of GNCS (Gruppo Nazionale per il Calcolo Scientifico), INdAM
(Istituto Nazionale di Alta Matematica “F. Severi”)

Introduction

Applications often deal with data structures which are conceptually infinite, such as streams
or infinite trees. Thus, a major problem for programming languages is how to finitely
represent something which is infinite, and, even harder, how to correctly manipulate such
finite representations to reflect the expected behaviour on the infinite structure.

A well-established solution is lazy evaluation, as, e.g., in Haskell. In this approach, the
conceptually infinite structure is represented as the result of a function call, which is evaluated
only as much as needed. Focusing on the paradigmatic example of streams (infinite lists)
of integers, we can define two_one = 2:1:two_one, or even represent the list of natural
numbers as from 0, where from n = n:from(n+1). In this way, functions which only need
to inspect a finite portion of the structure, e.g., getting the i-th element, can be correctly
implemented. On the other hand, functions which need to inspect the whole structure, e.g.,
min getting the minimal element, or allPos checking that all elements are positive, have an
undefined result (that is, non-termination, operationally).

© Davide Ancona, Pietro Barbieri, Francesco Dagnino, and Elena Zucca;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 1; pp. 1:1–1:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6297-2011
mailto:davide.ancona@unige.it
https://orcid.org/0000-0003-3193-5549
mailto:pietro.barbieri@edu.unige.it
https://orcid.org/0000-0003-3599-3535
mailto:francesco.dagnino@dibris.unige.it
https://orcid.org/0000-0002-6833-6470
mailto:elena.zucca@unige.it
https://doi.org/10.4230/LIPIcs.ECOOP.2020.1
https://arxiv.org/abs/2005.14085
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Sound Regular Corecursion in coFJ

More recently, a different, in a sense complementary1, approach has been considered
[17, 8, 3], which focuses on cyclic structures (e.g., cyclic lists, trees and graphs). They can
be regarded as a particular case of infinite structures: abstractly, they correspond to regular
terms (or trees), that is, finitely branching trees whose depth can be infinite, but contain only
a finite set of subtrees. For instance, the list two_one is regular, whereas the list of natural
numbers is not. Typically, cyclic data structures are handled by programming languages by
relying on imperative features or ad hoc data structures for bookkeeping. For instance, we
can build a cyclic object by assigning to a field of an object a reference to the object itself,
or we can visit a graph by marking already encountered nodes. In this approach [17, 8, 3],
instead, the programming language natively supports regular structures, as outlined below:

Data constructors are enriched by allowing equations, e.g., x = 2 ∶ 1 ∶ x.
Functions are regularly corecursive, that is, execution keeps track of pending function
calls, so that, when the same call is encountered the second time, this is detected, avoiding
non-termination as with ordinary recursion. For instance, when calling min on the list
x = 2 ∶ 1 ∶ x, after an intermediate call on the list y = 1 ∶ 2 ∶ y, the same call is encountered.

Regular corecursion originates from co-SLD resolution [20, 21, 7], where already encountered
goals (up to unification), called coinductive hypotheses, are considered successful. However,
co-SLD resolution is not flexible enough to to correctly express certain predicates on regular
terms; for instance, in the min example, the intuitively correct corecursive definition is not
sound, because the predicate succeeds for all lower bounds of l, as shown in the following.

When moving from goals to functions calls, the same problem manifests more urgently
because a result should always be provided for already encountered calls. To solve this issue,
the mechanism of flexible regular corecursion can be adopted to allow the programmer to
correctly specify the behaviour of recursive functions on cyclic structures. For instance, for
function min, the programmer specifies that the head of the list should be returned when
detecting a cyclic call; in this way, on the list x = 2 ∶ 1 ∶ x, the result of the cyclic call is 2, so
that the result of the original call is 1, as expected.

Flexible regular corecursion as outlined above has been proposed in the object-oriented
[8], functional [17], and logic [3] paradigms (see Section 7 for more details). However, none
of these proposals provides formal arguments for the correctness of the given operational
semantics, by proving that it is sound with respect to some model of the behaviour of
functions (or predicates) on infinite structures. The aim of this paper is to bridge this gap,
by providing solid foundations for a programming paradigm natively supporting cyclic data
structures. This is achieved thanks to the recently introduced framework of inference systems
with corules [4, 13], allowing definitions which are neither inductive, nor purely coinductive.
We present the approach in the context of Java-like languages, namely on an extension of
Featherweight Java (FJ) [15] called coFJ, outlined as follows:

FJ objects are smoothly generalized from finite to infinite by interpreting their definition
coinductively, and methods are equipped with a codefinition (an alternative body).
We provide an abstract big-step semantics for coFJ by an inference system with corules.
In coFJ with this semantics, FJ recursive methods on finite objects can be extended
to infinite objects as well, and behave as desired by the programmer, by specifying a
codefinition. For instance, if the codefinitions for min and allPos are specified to return
the head, and true, respectively, then min returns 1 on x = 2 ∶ 1 ∶ x, and 0 on the list of
the natural numbers, whereas allPos returns true on both lists.

1 As we will discuss further in the Conclusion.

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca 1:3

Then, we provide an operational (hence, executable) semantics where infinite objects are
restricted to regular ones and methods are regularly corecursive, and we show that such
operational semantics is sound with respect to the abstract one.

At https://person.dibris.unige.it/zucca-elena/coFJ_implementation.zip we pro-
vide a prototype implementation of coFJ, briefly described in the Conclusion. A preliminary
version of the operational semantics, with no soundness proof with respect to a formal model,
has been given in [10]. An extended version of the paper including proofs can be found at
https://arxiv.org/abs/2005.14085.

Section 1 is a quick introduction to inference systems with corules. Section 2 describes
FJ and informally introduces our approach. In Section 3 we define coFJ and its abstract
semantics, in Section 4 the operational semantics, in Section 5 we show some advanced
examples, and in Section 6 we prove soundness. Finally, we discuss related work and draw
conclusions in Section 7 and Section 8, respectively.

1 Inference systems with corules

First we recall standard notions on inference systems [1, 19]. Assuming a universe U of
judgments, an inference system I is a set of (inference) rules, which are pairs Pr

c
, with

Pr ⊆ U the set of premises, and c ∈ U the consequence (a.k.a. conclusion). A rule with an
empty set of premises is an axiom. A proof tree (a.k.a. derivation) for a judgment j is a tree
whose nodes are (labeled with) judgments, j is the root, and there is a node c with children
Pr only if there is a rule Pr

c
.

The inductive and the coinductive interpretation of I, denoted Ind(I) and CoInd(I),
are the sets of judgments with, respectively, a finite2, and a possibly infinite proof tree. In
set-theoretic terms, let FI ∶ ℘(U)→ ℘(U) be defined by FI(S) = {c ∣ Pr ⊆ S, Pr

c
∈ I}, and say

that a set S is closed if FI(S) ⊆ S, consistent if S ⊆ FI(S). Then, it can be proved that
Ind(I) is the smallest closed set, and CoInd(I) is the largest consistent set. We write I⊢ j
when j has a finite derivation in I, that is, j ∈ Ind(I).

An inference system with corules, or generalized inference system, is a pair (I,Ico) where
I and Ico are inference systems, whose elements are called rules and corules, respectively.
Corules can only be used in a special way, as defined below.

For a subset S of the universe, let I⊓S denote the inference system obtained from I by
keeping only rules with consequence in S. Let (I,Ico) be a generalized inference system.
Then, its interpretation Gen(I,Ico) is defined by Gen(I,Ico) = CoInd(I⊓Ind(I∪Ico)).

In proof-theoretic terms, Gen(I,Ico) is the set of judgments that have a possibly infinite
proof tree in I, where all nodes have a finite proof tree in I ∪ Ico, that is, the (standard)
inference system consisting of rules and corules. We write (I,Ico)⊢ j when j is derivable in
(I,Ico), that is, j ∈ Gen(I,Ico). Note that (I,∅)⊢ j is the same as I⊢ j.

We illustrate these notions by a simple example. As usual, sets of rules are expressed by
meta-rules with side conditions, and analogously sets of corules are expressed by meta-corules
with side conditions. (Meta-)corules will be written with thicker lines, to be distinguished
from (meta-)rules. The following inference system defines the minimum element of a list,
where [x] is the list consisting of only x, and x ∶ u the list with head x and tail u.

min([x], x)
min(u, y)
min(x∶u, z)z = min(x, y).

2 Under the common assumption that sets of premises are finite, otherwise we should say well-founded.

ECOOP 2020

https://person.dibris.unige.it/zucca-elena/coFJ_implementation.zip
https://arxiv.org/abs/2005.14085

1:4 Sound Regular Corecursion in coFJ

The inductive interpretation gives the correct result only on finite lists, since for infinite lists
an infinite proof is clearly needed. However, the coinductive one fails to be a function. For
instance, for L the infinite list 2 ∶ 1 ∶ 2 ∶ 1 ∶ 2 ∶ 1 ∶ . . ., any judgment min(L,x) with x ≤ 1 can
be derived, as shown below.

. . .

min(L,1)
min(1∶L,1)
min(2∶1∶L,1)

. . .

min(L,0)
min(1∶L,0)
min(2∶1∶L,0)

By adding a corule (in this case a coaxiom), wrong results are “filtered out”:

min(x∶ε, x)
min(u, y)
min(x∶u, z)z = min(x, y)

min(x∶u,x)

Indeed, the judgment min(2∶1∶L,1) has the infinite proof tree shown above, and each node
has a finite proof tree in the inference system extended by the corule:

. . .

min(L,1)
min(1∶L,1)
min(2∶1∶L,1)

min(1∶L,1)
min(2∶1∶L,1)

The judgment min(2∶1∶L, 0), instead, has the infinite proof tree shown above, but has no finite
proof tree in the inference system extended by the corule. Indeed, since 0 does not belong to
the list, the corule can never be applied. On the other hand, the judgment min(L,2) has a
finite proof tree with the corule, but cannot be derived since they it has no infinite proof
tree. We refer to [4, 5, 6, 13] for other examples.

As final remark, note that requiring the existence of a finite proof tree with corules only
for the root is not enough. For regular proof trees, the requirement to have such a proof tree
for each node can be simplified in two ways:

either requiring a sufficiently large finite proof-with-corules for the root, that is, a finite
proof tree for the root which includes all the nodes of the regular proof tree
or requiring a finite proof-with-corules for one node taken from each infinite path.
Let (I,Ico) be a generalized inference system. The bounded coinduction principle [4], a

generalization of the standard coinduction principle, can be used to prove completeness of
(I,Ico) w.r.t. a set S (for “specification”) of valid judgments.

I Theorem 1 (Bounded coinduction). If the following two conditions hold:
1. S ⊆ Ind(I ∪ Ico), that is, each valid judgment has a finite proof tree in I ∪ Ico;
2. S⊆FI(S), that is, each valid judgment is the consequence of a rule in I with premises in S
then S ⊆ Gen(I,Ico).

2 From FJ to coFJ

We recall FJ, and informally explain its extension with infinite objects and codefinitions.

Featherweight Java. The standard syntax and semantics in big-step style of FJ are shown
in Figure 1. We omit cast since this feature does not add significant issues. We adopt a
big-step, rather than a small-step style as in the original FJ definition, since in this way the
semantics is directly defined by an inference system, denoted IFJ in the following, which
will be equipped with corules to support infinite objects. We write cd as metavariable for
cd1 . . . cdn, n ≥ 0, and analogously for other sequences. We sometimes use the wildcard _
when the corresponding metavariable is not relevant.

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca 1:5

cd ∶∶ = class C extends C ′ { fd md } class declaration
fd ∶∶ = C f ; field declaration
md ∶∶ = C m(C1 x1, . . . ,Cn xn) {e} method declaration
e ∈ E ∶∶ = x ∣ e.f ∣ new C(e) ∣ e.m(e) expression

v ∈ V ∶∶ = new C(v) (finite) object

(FJ-field)
e⇓v

e.f ⇓vi

v = new C(v1, . . . , vn)
fields(C) = f1 . . . fn
f = fi, i ∈ 1..n

(FJ-new)
e⇓v

new C(e)⇓new C(v)

(FJ-invk)
e0⇓v0 e⇓v e[v0/this][v/x]⇓v

e0.m(e)⇓v
v0 = new C(_)
mbody(C ,m) = (x, e)

Figure 1 FJ syntax and big-step rules.

A sequence of class declarations cd is called a class table. Each class has a canonical
constructor whose parameters match the fields of the class, the inherited ones first. We
assume standard FJ constraints, e.g., no field hiding and no method overloading. The only
variables occurring in method bodies are parameters (including this). Values are objects,
that is, constructor invocations where arguments are values in turn.

The judgment e⇓v is implicitly parameterized on a fixed class table. In the rules we use
standard FJ auxiliary functions, omitting their formal definition. Notably, fields(C) returns
the sequence f1 . . . fn of the field names3 of the class, in declaration order with the inherited
first, and mbody(C ,m), for method m of the class, the pair of the sequence of parameters and
the definition. Substitution e[e/x], for e and x of the same length, is defined in the customary
manner. Finally, for e = e1 . . . en and v = v1 . . . vn, e⇓v is an abbreviation for e1⇓v1 . . . en⇓vn.

Rule (FJ-field) models field access. If the selected field is actually a field of the receiver’s
class, then the corresponding value is returned as result. Rule (FJ-new) models object
creation: if the argument expressions e evaluate to values v, then the result is an object of
class C. Rule (FJ-invk) models method invocation. The receiver and argument expressions
are evaluated first. Then, method look-up is performed, starting from the receiver’s class, by
the auxiliary function mbody. Lastly, the definition e of the method, where this is replaced
by the receiver, and the parameters by the arguments, is evaluated, and its result is returned.

Infinite objects and codefinitions. We take as running example the following FJ imple-
mentation of lists of integers, equipped with some typical methods: isEmpty tests the
emptiness, incr returns the list where all elements have been incremented by one, allPos
checks whether all elements are positive, member checks whether the argument is in the list,
and min returns the minimal element.

3 We omit types since not relevant here. We discuss about type systems for coFJ in the conclusion.

ECOOP 2020

1:6 Sound Regular Corecursion in coFJ

class List extends Object {
bool isEmpty () {true}
List incr () {new EmptyList ()}
bool allPos () {true}
bool member (int x) {false}

}
class EmptyList extends List { }
class NonEmptyList extends List {

int head; List tail;
bool isEmpty () {false}
List incr () {new NonEmptyList (this.head +1, this.tail.incr ())}
bool allPos () {if (this.head <=0) false else this.tail. allPos ()}
bool member (int x) {if (this.head ==x) true else this.tail. member (x)}
int min () {

if (this.tail. isEmpty ()) this.head
else Math.min(this.tail.min (), this.head)

}
}

We used some additional standard constructs, such as conditional and primitive types bool
and int with their operations; to avoid to use abstract methods, List provides the default
implementation on empty lists, overridden in NonEmptyList, except for method min which
is only defined on non empty lists.

In FJ we can represent finite lists. For instance, the object

new NonEmptyList (2, new NonEmptyList (1, new EmptyList ()))

which we will abbreviate [2, 1], represents a list of two elements, and it is easy to see that all
the above method definitions provide the expected meaning on finite lists.

On the other hand, since the syntactic definition for objects is interpreted, like the
others, inductively, in FJ objects are finite, hence we cannot represent, e.g., the infinite
list of natural numbers [0,1,2,3, . . .], abbreviated [0..], or the infinite list [2,1,2,1,2,1, . . .],
abbreviated [2,1]ω. To move from finite to infinite objects, it is enough to interpret the
syntactic definition for values coinductively, so to obtain infinite terms as well. However, to
make the extension significant, we should be able to generate such infinite objects as results
of expressions, and to appropriately handle them by methods.

To generate infinite objects, e.g., the infinite lists mentioned above, a natural approach is
to consider method definitions as corecursive, that is, to take the coinductive interpretation
of the inference system in Figure 1. Consider the following class:

class ListFactory extends Object {
NonEmptyList from(int x) {new NonEmptyList (x, this.from(x+1)}
NonEmptyList two_one () {new NonEmptyList (2, this. one_two ())}
NonEmptyList one_two () {new NonEmptyList (1, this. two_one ())}

}

With the standard FJ semantics, given by the inductive interpretation of the inference system
in Figure 1, the method invocation new ListFactory().from(0) (abbreviated from0 in
the following) has no result, since there is no finite proof tree for a judgment of shape
from0 ⇓_. Taking the coinductive interpretation, instead, such call returns as result the
infinite list of natural numbers [0..], since there is an infinite proof tree for the judgment
from0⇓[0..]. Analogously, the method invocation new ListFactory().two_one() returns
[2,1]ω. Moreover, the method invocations [0..].incr() and [2,1]ω.incr() correctly return
as result the infinite lists [1..] and [3,2]ω, respectively.

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca 1:7

However, in many cases to consider method definitions as corecursive is not satisfact-
ory, since it leads to non-determinism, as shown for inference systems in Section 1. For
instance, for the method invocation [0..].allPos() both judgments [0..].allPos()⇓true and
[0..].allPos()⇓false are derivable, and analogously for [2,1]ω.allPos(). In general, both
results can be obtained for any infinite list of all positive numbers. A similar behavior is
exhibited by method member: given an infinite list L which does not contain x, both judg-
ments L.member(x)⇓true and L.member(x)⇓false are derivable. Finally, for the method
invocation [2,1]ω.min(), any judgment [2,1]ω.min()⇓x with x ≤ 1 can be derived.

To solve this problem, coFJ allows the programmer to control the semantics of corecursive
methods by adding a codefinition4, that is, an alternative method body playing a special role.
Depending on the codefinition, the purely coinductive interpretation is refined, by filtering
out some judgments. In the example, to achieve the expected meaning, the programmer
should provide the following codefinitions.

class ListFactory extends Object {
NonEmptyList from(int x) {

new NonEmptyList (x, this.from(x+1)} corec {any}
NonEmptyList one_two () {

new NonEmptyList (1, this. two_one ())} corec {any}
NonEmptyList two_one () {

new NonEmptyList (2, this. one_two ())} corec {any}
}
class NonEmptyList extends List {

int head; List tail;
bool isEmpty () {false}
List incr () {

new NonEmptyList (this.head +1, this.tail.incr ())} corec {any}
bool allPos () {

if (this.head <= 0) false else this.tail. allPos ()} corec {true}
bool member (int x) {

if (this.head == x) true else this.tail. member (x)} corec {false}
int min () {

if (this.tail. isEmpty ()) this.head
else Math.min(this.tail.min (), this.head)

} corec {this.head}
}

For the three methods of ListFactory and for the method incr the codefinition is any.
This corresponds to keeping the coinductive interpretation as it is, as is appropriate in these
cases since it provides only the expected result. In the other three methods, instead, the
effect of the codefinition is to filter the results obtained by the coinductive interpretation.
The way this is achieved is explained in the following section. Finally, for method isEmpty
no codefinition is added, since the inductive behaviour works on infinite lists as well.

3 coFJ and its abstract semantics

We formally define coFJ, illustrate how the previous examples get the expected semantics,
and show that, despite its non-determinism, coFJ is a conservative extension of FJ.

4 The term “codefinition” is meant to suggest “alternative definition used to handle corecursion”.

ECOOP 2020

1:8 Sound Regular Corecursion in coFJ

cd ∶∶ = class C extends C ′ { fd md } class declaration
fd ∶∶ = C f ; field declaration
md ∶∶ = C m(C1 x1, . . . ,Cn xn) {e} [corec {e′}] method declaration with codefinition
e ∈ E ∶∶ = x ∣ e.f ∣ new C(e) ∣ e.m(e) expression

v ∈ Va ∶∶ =co new C(v) possibly infinite object
e ∈ Ea ∶∶ = x ∣ e.f ∣ new C(e) ∣ e.m(e) ∣ v runtime expression

(abs-field)
e⇓v

e.f ⇓vi

v = new C(v1, . . . , vn)
fields(C) = f1...fn
f = fi, i ∈ 1..n

(abs-new)
e⇓v

new C(e)⇓new C(v)

(abs-invk)
e0⇓v0 e⇓v e[v0/this][v/x]⇓v

e0.m(e)⇓v
v0 = new C(_)
mbody(C ,m) = (x, e) (abs-co-val)

v⇓v

(abs-co-invk)

e0⇓v0 e⇓v e′[v0/this][v/x][v/any]⇓vco

e0.m(e)⇓vco

v0 = new C(_)
co-mbody(C ,m) = (x, e′)

Figure 2 coFJ syntax and abstract semantics.

Formal definition of coFJ. The coFJ syntax is given in Figure 2. As the reader can note,
the only difference is that method declarations include now, besides a definition e, an optional
codefinition e′, as denoted by the square brackets in the production. Furthermore, besides
this, there is another special variable any, which can only occur in codefinitions. The
codefinition will be used to provide an abstract semantics through an inference system with
corules, where the role of any is to be a placeholder for an arbitrary value. For simplicity, we
require the codefinition e′ to be statically restricted to avoid recursive (even indirect) calls
to the same method (we omit the standard formalization). Note that FJ is a (proper) subset
of coFJ: indeed, an FJ class table is a coFJ class table with no codefinitions.

The syntactic definition for values is the same as before, but is now interpreted coin-
ductively, as indicated by the symbol ∶∶=co. In this way, infinite objects are supported. By
replacing method parameters by arguments, we obtain runtime expressions admitting infinite
objects as subterms. The sets V and E of FJ objects and expressions are subsets of Va and
Ea, respectively. The judgment e⇓v, with e ∈ Ea and v ∈ Va, is defined by an inference system
with corules (IFJ,IcoFJ) where the rules IFJ are those5 of FJ, as in Figure 1, and the corules
IcoFJ are instances of two metacorules.

Corule (abs-co-val) is needed to obtain a value for infinite objects, as shown below.
Corule (abs-co-invk) is analogous to the standard rule for method invocation, but uses
the codefinition, and the variable any can be non-deterministically substituted with an
arbitrary value. The auxiliary function co-mbody is defined analogously to mbody, but it
returns the codefinition. Note that, even when mbody(C ,m) is defined, co-mbody(C ,m) can
be undefined since no codefinition has been specified. This can be done to force a purely
inductive behaviour for the method.

5 To be precise, meta-rules are the same, with meta-variables e and v ranging on Ea, and Va, respectively.
However, we could have taken this larger universe in FJ as well without affecting the defined relation.

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca 1:9

Tn=(abs-invk)

(abs-new)
new LF()⇓new LF()

(n-val)
n⇓n

(abs-new)

(n-val)
n⇓n Tn

new NEL(n,new LF().from(n+1))⇓[n..]
fromn⇓[n..]

Tn+1=(abs-invk)

(abs-new)
new LF()⇓new LF()

(+)
⋯

n+1⇓n+1
(abs-new)

(n-val)
n+1⇓n+1 Tn+2

new NEL(n+1,new LF().from(n+1+1))⇓[n+1..]
new LF().from(n+1)⇓[n+1..]

(abs-co-invk)

(abs-new)
new LF()⇓new LF()

(n-val)
n⇓n

(abs-co-val)

[n..] ≡ any[new LF()/this][[n..]/any]⇓[n..]

fromn⇓[n..]

Figure 3 Infinite (top) and finite (bottom) proof trees for fromn⇓[n..].

Examples. As an example, we illustrate in Figure 3 the role of the two corules for the call
new ListFactory().from(0). For brevity, we write abbreviated class names. Furthermore,
fromn stands for the call new ListFactory().from(n) and [n..] for the infinite object new
NonEmptyList(n,new NonEmptyList(n+1,...))).

In the top part of Figure 3, we show the infinite proof tree Tn which can be constructed,
for any natural number n, for the judgment fromn⇓[n..] without the use of corules. We use
standard rules (n-val) and (+) to deal with integer constants and addition.

To derive the judgment in the inference system with corules, each node in this infinite
tree should have a finite proof tree with the corules. Notably, this should hold for nodes of
shape fromn⇓[n..], and indeed the finite proof tree for such nodes is shown in the bottom
part of the figure. Note that, in this example, the result for the call fromn is uniquely
determined by the rules, hence the role of the corules is just to “validate” this result. To this
end, the codefinition of the method from is the special variable any, which, when evaluating
the codefinition, can be replaced by any value, hence, in particular, by the correct result
[n..]. Corule (abs-co-val) is needed to obtain a finite proof tree for the infinite objects of
shape [n..]. Analogous infinite and finite proof trees can be constructed for the judgments
new ListFactory().two_one()⇓[2,1]ω, [0..].incr()⇓[1..] and [2,1]ω.incr() ⇓[3,2]ω.

For the method call [0..].allPos(), instead, both judgments [0..].allPos()⇓true and
[0..].allPos()⇓false have an infinite proof tree. However, no finite proof tree using the
codefinition can be constructed for the latter, whereas this is trivially possible for the
former. Analogously, given an infinite list L which does not contain x, only the judgment
L.member(x)⇓false has a finite proof tree using the codefinition.

Finally, for the method invocation [2,1]ω.min(), for any v ≤ 1 there is an infinite proof
tree built without corules for the judgment [2,1]ω.min()⇓v as shown in Figure 4. However,
only the judgment [2,1]ω.min()⇓1 has a finite proof tree using the codefinition (Figure 5).
For space reasons in both figures ellipses are used to omit the less interesting parts of the
proof trees; we use the standard rule (if-f) for conditional, and the predefined function
Math.min on integers.

Non-determinism and conservativity. The coFJ abstract semantics is inherently non-
deterministic. Indeed, depending on the codefinition, the non-determinism of the coinductive
interpretation may be kept. For instance, consider the following method declaration:

ECOOP 2020

1:10 Sound Regular Corecursion in coFJ

(abs-invk)
T0 T1

[2,1]ω.min()⇓v
T0=(abs-new)

(n-val)
2⇓2

(abs-new)

(n-val)
1⇓1 T0

[1,2]ω ⇓[1,2]ω

[2,1]ω ⇓[2,1]ω

T1=(if-f)

⋮

[2,1]ω.tail.isEmpty()⇓false

T2

⋮

[2,1]ω.tail.min()⇓v
⋮

[2,1]ω.head⇓2
Math.min([2,1]ω.tail.min(), [2,1]ω.head)⇓v

if [2,1]ω.tail.isEmpty() then [2,1]ω.head else Math.min([2,1]ω.tail.min(), [2,1]ω.head)⇓v

T2=(if-f)

⋮

[1,2]ω.tail.isEmpty()⇓false

T1

⋮

[1,2]ω.tail.min()⇓v
⋮

[1,2]ω.head⇓1
Math.min([1,2]ω.tail.min(), [1,2]ω.head)⇓v

if [1,2]ω.tail.isEmpty() then [1,2]ω.head else Math.min([1,2]ω.tail.min(), [1,2]ω.head)⇓v

Figure 4 Infinite proof tree for [2,1]ω.min()⇓v with v ≤ 1 (main tree at the top left corner).

(abs-invk)
T0

(if-f)

⋮

[2,1]ω.tail.isEmpty()⇓false

(abs-co-invk)

⋯

(abs-co-val)

[1,2]ω ⇓[1,2]ω

[1,2]ω.head⇓1

[2,1]ω.tail.min()⇓1

⋮

[2,1]ω.head⇓2

Math.min([2,1]ω.tail.min(), [2,1]ω.head)⇓1
if [2,1]ω.tail.isEmpty() then [2,1]ω.head else Math.min([2,1]ω.tail.min(), [2,1]ω.head)⇓1

[2,1]ω.min()⇓1

Figure 5 Finite proof tree with codefinition for [2,1]ω.min()⇓1 (T0 as in Figure 4).

class C {
C m() { this.m() } corec { any }

}

Method m() recursively calls itself. In the abstract semantics, the judgment new C().m()⇓v
can be derived for any value v. In the operational semantics defined in Section 4, such
method call evaluates to (x, x ∶ x), that is, the representation of undetermined.

However, determinism of FJ evaluation is preserved. Indeed, coFJ abstract semantics is
a conservative extension of FJ semantics, as formally stated below.

I Theorem 2 (Conservativity). If IFJ⊢e⇓v, then (IFJ,IcoFJ)⊢e⇓v′ iff v = v′.

Proof. Both directions can be easily proved by induction on the definition of IFJ⊢e⇓v. For
the left-to-right direction, the fact that each syntactic category has a unique applicable
meta-rule is crucial. J

This theorem states that, whichever the codefinitions chosen, coFJ does not change the
semantics of expressions evaluating to some value in FJ. That is, coFJ abstract semantics
allows derivation of new values only for expressions whose semantics is undefined in standard
FJ, as in the examples shown above. Note also that, if no codefinition is specified, then the
coFJ abstract semantics coincides with the FJ one, because corule (abs-co-invk) cannot be
applied, hence no infinite proof trees can be built for the evaluation of FJ expressions.

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca 1:11

4 Operational semantics

We informally introduce the operational semantics of coFJ, provide its formal definition,
and prove that it is deterministic and conservative.

Outline. In contrast to the abstract semantics of the previous section, the aim is to define a
semantics which leads to an interpreter for the calculus. To obtain this, there are two issues
to be considered:
1. infinite (regular) objects should be represented in a finite way;
2. infinite (regular) proof trees should be replaced by finite proof trees.
In the following we explain how these issues are handled in the coFJ operational semantics.

To obtain (1), we use an approach based on capsules [16], which are essentially expressions
supporting cyclic references. In our context, capsules are pairs (e, σ) where e is an FJ
expression and σ is an environment, that is, a finite mapping from variables into FJ
expressions. Moreover, the following capsule property is satisfied: writing FV(e) for the set
of free variables in e, FV(e) ⊆ dom(σ) and, for all x ∈ dom(σ), FV(σ(x)) ⊆ dom(σ). An
FJ source expression e is represented by the capsule (e,∅), where ∅ denotes the empty
environment. In particular, values are pairs (v, σ) where v is an open FJ object, that is, an
object possibly containing variables. In this way, cyclic objects can be obtained: for instance,
(x, x ∶ new NEL(2,new NEL(1, x))) represents the infinite regular list [2,1]ω considered before.

To obtain (2), methods are regularly corecursive. This means that execution keeps track
of the pending method calls, so that, when a call is encountered the second time, this is
detected6, avoiding non-termination as it would happen with ordinary recursion. Regular
corecursion in coFJ is flexible, since the behaviour of the method when a cycle is detected is
specified by the codefinition.

Consider, for instance, the method call new ListFactory().two_one(); thanks to regular
corecursion, the result is the cyclic object (x, x ∶ new NEL(2,new NEL(1, x))). Indeed, the
operational semantics associates a fresh variable, say, x, to the initial call, so that, when the
same call is encountered the second time, the association x ∶ x is added in the environment,
and the codefinition is evaluated where any is replaced by x. Hence, (x, x ∶ x) is returned as
result, so that the result of the original call is (x, x ∶ new NEL(2,new NEL(1, x))). The call new
ListFactory().from(0), instead, does not terminate in the operational semantics, since no
call is encountered more than once (the resulting infinite object is non-regular).

Consider now the call [2,1]ω.allPos(). In this case, when the call is encountered the
second time, after an intermediate call [1,2]ω.allPos(), the result of the evaluation of the
codefinition is true, so that the result of the original call is true as well.7 If the codefinition
were any, then the result would be (x, x ∶ x), that is, undetermined. Note that, if the list is
finite, then no regular corecursion is involved, since the same call cannot occur more than
once; the same holds if the list is cyclic, but contains a non-positive element, hence the
method invocation returns false. The only case requiring regular corecursion is when the
method is invoked on a cyclic list with all positive elements, as [2,1]ω.

In the case of [2,1]ω.min(), when the call is encountered the second time the result of
the evaluation of the codefinition is 2, so that the result of the intermediate call [1, 2]ω.min()
is 1, and this is also the result of the original call.

6 The semantics detects an already encountered call by relying on capsule equivalence (Figure 7).
7 To be rigorous, a capsule of shape (true,_).

ECOOP 2020

1:12 Sound Regular Corecursion in coFJ

Formal definition. To formally express the approach described above, the judgment of the
operational semantics has shape e, σ, τ ⇓v, σ′ where: (e, σ) is the capsule to be evaluated; τ
is a call trace, used to keep track of already encountered calls, that is, an injective map from
calls v0.m(v) to (possibly tagged) variables, and (v, σ′) is the capsule result. Variables in the
codomain of the call trace have a tag ck during the checking step for the corresponding call,
as detailed below. The pair (e, σ) and (v, σ′) are assumed to satisfy the capsule property.

The semantic rules are given in Figure 6. We denote by σ{x ∶v} the environment which
gives v on x, and is equal to σ elsewhere, and analogously for other maps. Furthermore, we
use the following notations, formally defined in Figure 7.

unfold(v, σ) is the unfolding of v in σ, that is, the corresponding object, if any.
σ1⊔σ2 is the union of environments, defined if they agree on the common domain.
(v, σ)≈(v′, σ′) is the equivalence of capsules. As will be formalized in the first part of
Section 6, equivalent capsules denote the same sets of abstract objects. This equivalence
is extended by congruence to expressions, in particular to calls v0.m(v).
τ≈σ is obtained by extending τ up to equivalence in σ. That is, detection of already
encountered calls is performed up-to equivalence in the current environment.

Rule (val) is needed for objects which are not FJ objects. Rule (field) is similar to that
of FJ except that the capsule (v, σ′) must be unfolded to retrieve the corresponding object.
Furthermore, the resulting environment is that obtained by evaluating the receiver. Rule
(new) is analogous to that of FJ. The resulting environment is the union of those obtained
by evaluating the arguments.

There are four rules for method invocation. In all of them, as in the FJ rule, the receiver
and argument expressions are evaluated first to obtain the call c = v.m(v). The environment σ̂
is the union of those obtained by these evaluations. Then, the behavior is different depending
whether such call (meaning a call equivalent to c in σ̂) has been already encountered.

Rules (invk-ok) and (invk-check) handle8 a call c which is encountered the first time, as
expressed by the side condition c /∈ dom(τ≈σ̂). In both, the definition e, where the receiver
replaces this and the arguments replace the parameters, is evaluated. Such evaluation is
performed in the call trace τ updated to associate the call c with an unused variable x (in
these two rules “x fresh” means that x does not occur in the derivations of ei, σ, τ ⇓vi, σ′i,
for all i ∈ 0..n), and produces the capsule (v, σ′). Then there are two cases, depending on
whether x ∈ dom(σ′) holds.

If x /∈ dom(σ′), then the evaluation of the definition for c has been performed without
evaluating the codefinition. That is, the same call has not been encountered, hence the result
has been obtained by standard recursion, and no additional check is needed.

If x ∈ dom(σ′), instead, then the evaluation of the definition for c has required to evaluate
the codefinition. In this case, an additional check is required (third premise). That is,
e[v0/this][v/x] is evaluated once more under the assumption that v is the result of the call.
Formally, evaluation takes place in an environment updated to associate x with v, and the
variable x corresponding to the call is tagged with ck. The capsule result obtained in this
way must be (equivalent to) that obtained by the first evaluation of the body of the method.
In Section 5 we discuss in detail the role of this additional check, showing an example where
it is necessary. If the check succeeds, then the final result is the variable x in the environment
updated to associate x with v. Otherwise, rule (invk-check) cannot be applied since the last
premise does not hold. For simplicity, we assume the result of c to be undefined in this case;
an additional rule could be added raising a runtime error in case the result is different from
the expected one, as should be done in an implementation.

8 The two rules could be merged together, but we prefer to make explicit the difference for sake of clarity.

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca 1:13

v ∈ Vop ∶∶ = new C(v) ∣ x open object
σ ∶∶ = x1 ∶ v1 . . . xn ∶ vn (n ≥ 0) environment
c ∶∶ = v.m(v) call
t ∶∶ = [ck] optional checking tag
τ ∶∶ = c1 ∶xt11 , . . . , cn ∶xtnn (n ≥ 0) call trace

(val)
v, σ, τ ⇓v, σ

(field)
e, σ, τ ⇓v, σ′

e.f , σ, τ ⇓vi, σ′
unfold(v, σ′) = new C(v1, . . . ,vn)
fields(C) = f1...fn
f = fi, i ∈ 1..n

(new)
ei, σ, τ ⇓vi, σ′i ∀i ∈ 1..n

new C(e1, . . . , en), σ, τ ⇓new C(v1, . . . ,vn),⊔i∈1..n σ′i

In all the following rules:

e = e1, . . . , en
v = v1 . . .vn
c = v0.m(v)
σ̂ = ⊔i∈0..n σ′i
unfold(v0, σ

′

0) = new C(_)

(invk-ok)

ei, σ, τ ⇓vi, σ′i ∀i ∈ 0..n
e[v0/this][v/x], σ̂, τ{c ∶x}⇓v, σ′

e0.m(e), σ, τ ⇓v, σ′

c /∈ dom(τ≈σ̂)
x fresh
mbody(C ,m) = (x, e)
x /∈ dom(σ′)

(invk-check)

ei, σ, τ ⇓vi, σ′i ∀i ∈ 0..n
e[v0/this][v/x], σ̂, τ{c ∶x}⇓v, σ′
e[v0/this][v/x], σ̂ ⊔ σ′{x ∶v}, τ{c ∶xck}⇓v′, σ′′

e0.m(e), σ, τ ⇓x, σ′{x ∶v}

c /∈ dom(τ≈σ̂)
x fresh
mbody(C ,m) = (x, e)
x ∈ dom(σ′)
(x, σ′{x ∶v})≈(v′, σ′′)

(corec)

ei, σ, τ ⇓vi, σ′i ∀i ∈ 0..n
e′[v0/this][v/x][x/any], σ̂{x ∶x}, τ ⇓v, σ′

e0.m(e), σ, τ ⇓v, σ′{x ∶x}
τ≈σ̂(c) = x
co-mbody(C ,m) = (x, e′)

(look-up)
ei, σ, τ ⇓vi, σ′i ∀i ∈ 0..n

e0.m(e), σ, τ ⇓x, σ̂ τ≈σ̂(c) = xck

Figure 6 coFJ operational semantics.

ECOOP 2020

1:14 Sound Regular Corecursion in coFJ

unfold(v, σ) =
⎧⎪⎪⎨⎪⎪⎩

new C(v) if v = new C(v)
unfold(σ(v), σ) if v = x

undet(σ) = {x ∈ dom(σ) ∣ unfold(x, σ) ↑}

For σ1 and σ2 such that σ1(x) = σ2(x) for all x ∈ dom(σ1) ∩ dom(σ2)

(σ1⊔σ2)(x) =
⎧⎪⎪⎨⎪⎪⎩

σ1(x) x ∈ dom(σ1)
σ2(x) x ∈ dom(σ2)

Set σ↔ the least equivalence relation on undet(σ) such that x σ↔ y if σ(x) = y, [x] the equivalence
class of x, and undet↔(σ) the quotient. A relation α ⊆ undet(σ1) × undet(σ2) is a σ1, σ2-renaming
if it induces a (partial) bijection from undet↔(σ1), still denoted α, to undet↔(σ2). Given α a
σ1, σ2-renaming, the relation (x, σ1)≈α(x′, σ2) is coinductively defined by:

(x, σ)≈α(x′, σ′)
xαx′

(vi, σ)≈α(v′i, σ′) ∀i ∈ 1..n
(v, σ)≈α(v′, σ′)

unfold(v, σ) = new C(v1, ..,vn)
unfold(v′, σ′) = new C(v′1, ..,v′n)

A σ1, σ2-renaming α is strict if, for x, y ∈ undet(σ1) ∩ undet(σ2), [x]α[y] iff x σ1↔ y and x σ2↔ y.
We write (v, σ)≈(v′, σ′) if (v, σ)≈α(v′, σ′) for some strict α.

τ≈σ(c′) = τ(c) for each c′ such that (c′, σ)≈(c, σ)

Figure 7 coFJ auxiliary definitions.

The remaining rules handle an already encountered call c, that is, τ≈σ̂(c) is defined. The
behaviour is different depending on whether the corresponding variable x is tagged or not.

If x is not tagged, then rule (corec) evaluates the codefinition where the receiver object
replaces this, the arguments replace the parameters, and, furthermore, the variable x found
in the call trace replaces any. In addition, σ̂ is updated to associate x with x. In this way,
the semantics keeps track of the application of rule (corec).

If x is tagged, instead, then we are in a checking step for the corresponding call. In this
case, rule (look-up) simply returns the associated variable for a call; by definition of the
operational semantics, in this case such a variable is always defined in the environment.

Figure 7 contains the formal definitions of the notations used in the rules.
Note that unfold, being inductively defined, can be undefined, denoted ↑, in presence

of unguarded cycles among variables. Capsule equivalence, instead, is defined coinduct-
ively, so that, e.g., (x, x ∶ new C(x)) is equivalent to (x, x ∶ new C(new C(x))). Capsule
equivalence implicitly subsumes α-equivalence of variables whose unfolding is defined, e.g.,
(x, x ∶ new C(x)) is equivalent to (y, y ∶ new C(y)). Instead, α-equivalence of undetermined
variables is given by an explicit renaming, which should preserve disjointness of cycles. For
instance, (new C(x, y), (x ∶ y, y ∶ x)) is equivalent to (new C(x, x), x ∶ x), but is not equivalent
to (new C(x, y), (x ∶ x, y ∶ y)). Indeed, in the latter case x and y can be instantiated independ-
ently. We will prove in Section 6 (Theorem 10) that the relation ≈α, for some σ1, σ2-renaming
α, is the operational counterpart of the fact that two capsules denote the same set of abstract
values. The stronger strictness condition prevents erroneous identification of objects during
evaluation, e.g., (new C(x, y), (x ∶ x, y ∶ y)) is not equivalent to (new C(y, x), (y ∶ y, x ∶ x)).

Determinism and conservativity. In contrast to coFJ abstract semantics, but like FJ,
coFJ operational semantics is deterministic.

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca 1:15

I Theorem 3 (Determinism). If e, σ, τ1 ⇓ v1, σ1 and e, σ, τ2 ⇓ v2, σ2 hold and dom(τ1) =
dom(τ2), then (v1, σ1) and (v2, σ2) are equal up-to α-equivalence.

Proof. The proof is by induction on the derivation for e, σ, τ1⇓v1, σ1. The key point is that,
once fixed e, σ and dom(τ1), there is a unique applicable rule, hence both e, σ, τ1⇓v1, σ1 and
e, σ, τ2⇓v2, σ2 are derived by the same rule. J

As the abstract one, the operational semantics is a conservative extension of the standard
FJ semantics. This result follows from soundness with respect to the abstract semantics in
next section, however the direct proof below provides some useful insight.

I Theorem 4 (Conservativity). If IFJ⊢e⇓v, then e,∅,∅⇓v, σ holds iff v = v and σ = ∅.

For the proof, we need some auxiliary lemmas and definitions. First, we note that FJ has
the strong determinism property: each expression has at most one finite proof tree in IFJ.

I Lemma 5 (FJ strong determinism). If IFJ ⊢ e⇓v1 by a proof tree t1 and IFJ ⊢ e⇓v2 by a
proof tree t2, then t1 = t2 and v1 = v2.

Proof. By induction on the definition of e⇓v1. The key point is that each judgement is the
consequence of exactly one rule. J

By relying on strong determinism, it is easy to see that in FJ a proof tree for an expression
cannot contain another node labelled by the same expression. In other words, if the evaluation
of e requires to evaluate e again, then the FJ semantics is undefined on e, as expected.

I Lemma 6. A proof tree in IFJ for e⇓v cannot contain any other node e⇓v′, for any v′.

Proof. By Lemma 5, there is a unique proof tree t for the expression e. Hence, a node e⇓v′
in t would be necessarily the root of a subtree of t equal to t, that is, it is the root of t. J

I Definition 7. Let IFJ⊢e⇓v. A call trace τ is disjoint from e⇓v if in its proof tree9 there
are no instances of (FJ-invk) where v0.m(v) ∈ dom(τ).

I Lemma 8. If IFJ⊢e⇓v, then, for all τ disjoint from e⇓v, we have e,∅, τ ⇓v,∅.

Proof. The proof is by induction on the definition of e⇓v.
(FJ-field) Let τ be a call trace disjoint from e.f ⇓vi. Since IFJ⊢e⇓v, with v = new C(v1, . . . , vn),

holds by hypothesis, and τ is, by definition, also disjoint from e⇓v, we get e,∅, τ ⇓v,∅ by
induction hypothesis. Then, since unfold(v,∅) = v, we get e.f ,∅, τ ⇓vi,∅ by rule (field).

(FJ-new) Let τ be a call trace disjoint from new C(e1, . . . , en)⇓new C(v1, . . . , vn). For all
i ∈ 1..n, since IFJ⊢e1⇓vi holds by hypothesis, and τ is, by definition, also disjoint from
ei⇓vi, we get ei,∅, τ ⇓vi,∅ by induction hypothesis. Then, we get new C(e1, . . . , en),∅, τ ⇓
new C(v1, . . . , vn),∅ by rule (new).

(FJ-invk) Let τ be a call trace disjoint from e0.m(e1, . . . , en) ⇓ v. For all i ∈ 0..n, since
IFJ ⊢ ei⇓vi holds by hypothesis, and τ is, by definition, also disjoint from ei ⇓ vi, we
get ei,∅, τ ⇓ vi,∅ by induction hypothesis. Set v = v1 . . . vn and e′ = e[v0/this][v/x].
By hypothesis, IFJ ⊢ e′⇓v and, by definition, τ is also disjoint from e′ ⇓ v; furthermore,
by Lemma 6, e′ cannot occur twice in the proof tree for e′ ⇓ v, hence τ{v0.m(v) ∶x} is
disjoint from e′ ⇓ v, for any fresh variable x. Then, by induction hypothesis, we have
e′,∅, τ{v0.m(v) ∶x}⇓v,∅, thus we get e0.m(e1, . . . , en),∅, τ ⇓v,∅ by rule (invk-ok). J

9 Unique thanks to Lemma 5.

ECOOP 2020

1:16 Sound Regular Corecursion in coFJ

We can now prove the conservativity result for coFJ operational semantics.

Proof of Theorem 4. The right-to-left direction follows from Lemma 8, since ∅ is disjoint
from any expression, while the other direction follows from the right-to-left one and Theorem 3.

J

For coFJ operational semantics we can prove an additional result, characterizing derivable
judgements which produce an empty environment. The meaning is that all results obtained
without using the codefinitions are original FJ results.

I Lemma 9. If e,∅, τ ⇓v,∅ holds, then v is an FJ value v, and IFJ⊢e⇓v.

5 Advanced examples

This section provides some more complex examples to better understand the operational
semantics of coFJ in Section 4 and its relationship with the abstract semantics in Section 3.

Examples on lists. We first show an example motivating the additional checking step (third
premise) in rule (invk-check). Essentially, the success of this check for some capsule result
corresponds to the existence of an infinite tree in the abstract semantics, whereas the fact
that this capsule result is obtained by assuming the codefinition as result of the cyclic call
(second premise) corresponds to the existence of a finite tree which uses the codefinition .

Assume to add to our running example of lists of integers a method that returns the sum
of the elements. For infinite regular lists, that is, lists ending with a cycle, a result should be
returned if the cycle has sum 0, for instance for a list ending with infinitely many 0s, and no
result if the cycle has sum different from 0. This can be achieved as follows.

class List extends Object { ...
int sum () {0}

}
class NonEmptyList extends List { ...

int sum () {this.head + this.tail.sum ()} corec {0}
}

It is easy to see that the abstract semantics of the previous section formalizes the expected
behavior. For instance, an infinite tree for a judgment [2,1]ω.sum() ⇓ v only exists for
v = 2 + 1 + v, and there are no solutions of this equation, hence there is no result. In the
operational semantics, by evaluating the body assuming the codefinition as result of the
cyclic call (second premise of rule (invk-check)) the spurious result 3 would be returned.
This is avoided by the third premise, which evaluates the method body assuming 3 as result
of the cyclic call. Since we do not get 3 in turn as result, evaluation is stuck, as expected.

Note that the stuckness situation is detected: the last side-condition of rule (invk-check)
fails, and a dynamic error (not modeled for simplicity, see the comments to the rule) is raised,
likely an exception in an implementation. On the other hand, computations which never
reach (a base case or) an already encountered call still do not terminate in this operational
semantics, exactly as in the standard one, and the fact that this does not happen should be
proved by suitable techniques, see the Conclusion.

All the examples shown until now have a constant codefinition. We show now an example
where this is not enough. Consider the method remPos() that removes positive elements. A
first attempt at a coFJ definition is the following:

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca 1:17

class NonEmptyList extends List { ...
List remPos () {

if(this.head > 0) this.tail. remPos ()
else new NonEmptyList (this.head ,this.tail. remPos ())}

corec {new EmptyList ()}

Is this definition correct? Actually, it provides the expected behavior on finite lists,
and cyclic lists where the cycle contains only positive elements. However, when the cycle
contains at least one non positive element, there is no result. For instance, consider the
method call [0,1]ω.remPos(). In the abstract semantics, an infinite tree can be constructed
for the judgment [0,1]ω.remPos()⇓v only if v = 0 ∶ v, and this clearly only holds for v = [0]ω.
However, no finite tree can be constructed for this judgment using the codefinition. Note
that, in the operational semantics, without the additional check (third premise of rule
(invk-check)), we would get the spurious result [0]. In order to have a coFJ definition
complete with respect to the expected behavior, we should provide a different codefinition
for lists with infinitely many non-positive elements.
class NonEmptyList extends List { ...

List remPos () {
if(this.head > 0) this.tail. remPos ()
else new NonEmptyList (this.head ,this.tail. remPos ())}

corec {if (this. allPos () then new EmptyList () else any}

Arithmetic with rational and real numbers. All real numbers in the closed interval {0..1}
can be represented by infinite lists [d1, d2, . . .] of decimal digits; more precisely, the infinite
list [d1, d2, . . .] represents the real number which is the limit of the series ∑∞

i=1 10−idi.
It is well-known that all rational numbers in {0..1} correspond to either a terminating or

repeating decimal, hence they can be represented by infinite regular lists of digits, where
terminating decimals end with either an infinite sequence of 0 or an infinite sequence of 9;
for instance, the terminating decimal 1

2 can be represented equivalently by either [5, 0, 0, . . .]
or [4,9,9, . . .], while the repeating decimal 1

3 is represented by [3,3, . . .].
Therefore, in coFJ all rational numbers in {0..1} can be effectively represented with

infinite precision at the level of the operational semantics; to this aim, we can declare a class
Number with the two fields digit of type int and others of type Number: digit contains
the leftmost digit, that is, the most significant, while others refers to the remaining digits,
that is, the number we would obtain by a single left shift (corresponding to multiplication by
10). Since also non-regular values are allowed, in the abstract semantics class Number can be
used to represent also all irrational numbers in {0..1}.

We now show how it is possible to compute in coFJ the addition of rational numbers in
{0..1} with infinite precision. We first define the method carry which computes the carry of
the addition of two numbers: its result is 0 if the sum belongs to {0..1}, 1 otherwise.
class Number extends Object { // numbers in {0..1}

int digit; // leftmost digit
Number others ; // all other digits

int carry(Number num){ // returns 0 if this+num <=1, 1 otherwise
if (this.digit+num.digit !=9) (this.digit+num.digit)/10
else this. others .carry(num. others)

} corec {0}
}

ECOOP 2020

1:18 Sound Regular Corecursion in coFJ

The two numbers this and num are inspected starting from the most significant digits: if
their sum is different from 9, then the carry can be computed without inspecting the other
digits, hence the integer division by 10 of the sum is returned. Corecursion is needed when
the sum of the two digits equals 9; in this case the carry is the same obtained from the
addition of this.others and num.others.

Finally, in the codefinition the carry 0 is returned; indeed, the codefinition is evaluated
only when the sum of the digits for all positions inspected so far is 9 and the same patterns
of digits are encountered for the second time. This can only happen for pairs of numbers
whose addition is [9,9, . . .], that is, 1, hence the computed carry must be 0.

Based on method carry, we can define method add which computes the addition of two
numbers, excluding the possible carry in case of overflow.

class Number extends Object { ... // declarations as above
Number add(Number num){ // returns this+num

new Number (
(this.digit+num.digit+this. others .carry(num. others))%10 ,
this. others .add(num. others))} corec {any}

}

For each position, the corresponding digits of this and num are added to the carry computed
for the other digits (this.others.carry(num.others)), then the reminder of the division
by 10 gives the most significant digit of the result, whereas the others are obtained by
corecursively calling the method on the remaining digits (this.others.add(num.others)).
Since this call is guarded by a constructor call, the codefinition is any.

Note that, in the abstract semantics, methods carry and add correctly work also for
irrational numbers.

Method add above is simple, but has the drawback that the same carries are computed
more times; hence, in the worst case, the time complexity is quadratic in the period10 of
the two involved repeating decimals. To overcome this issue, we present a more elaborate
example where carries are computed only once for any position; this is achieved by method
all_carries below, which returns the sequence of all carries (hence, a list of binary digits).

Method simple_add corecursively adds all digits without considering carries, while
method add, defined on top of simple_add and all_carries, computes the final result.
This new version of add is not recursive and, hence. does not need a codefinition.

class Number extends Object { ... // declarations as above
Number all_carries (Number num){ // carries for all positions

this. simple_carries (num). complete ()
}
Number simple_carries (Number num){ // carries computed immediately

if(this.digit+num.digit !=9)
new Number ((this.digit+num.digit)/10 ,

this. others . simple_carries (num. others))
else new Number (9, this. others . simple_carries (num. others))

} corec {any}

Number complete (){ // computes missing carries marked with 9
if(this.digit !=9) new Number (this.digit ,this. others . complete ())
else this.fill(this. carry_lookahead ()). complete ()

} corec {any}

10 Indeed, the worst case scenario is when the carry propagates over all digits because their sum is always
9, and this can happen only if the two numbers have the same period.

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca 1:19

Number fill(int dig){ // fills with dig all next missing carries
if(this.digit !=9) this else new Number (dig ,this. others .fill(dig))

} corec {any}

int carry_lookahead (){ // returns the next computed carry
if(this.digit !=9) this.digit else this. others . carry_lookahead ()

} corec {0}

Number simple_add (Number num){ // addition without carries
new Number ((this.digit+num.digit)%10 ,

this. others . simple_add (num. others))
} corec {any}

Number add(Number num){
this. simple_add (num). simple_add (this. all_carries (num). others)

}
}

Distances on graphs. The last example of this section involves graphs, which are the
paradigmatic example of cyclic data structure. Our aim is to compute the distance, that
is, the minimal length of a path, between two vertexes11. Consider a graph (V , adj) where
V is the set of vertexes and adj ∶ V → ℘(V) gives, for each vertex, the set of the adjacent
vertexes. Each vertex has an identifier id assumed to be unique. We assume a class Nat∞,
with subclasses Nat with an integer field, and Infty with no fields, for naturals and ∞
(distance between unconnected nodes), respectively. Such classes offer methods succ() for
the successor, and min(Nat∞ n) for the minimum, with the expected behaviour (e.g., succ
in class Nat∞ returns ∞).

class Vertex extends Object {
Id id; AdjList adjVerts ;
Nat∞dist(Id id) {

this.id==id?new Nat (0): this. adjVerts .dist(id). succ ()}
corec {new Infty()}

}

class AdjList extends Object { }
class EAdjList extends AdjList {

Nat∞dist(Id id) { new Infty() }
}
class NEAdjList extends AdjList {

Vertex vert; AdjList adjVerts ;
Nat∞dist(Id id) {this.vert.dist(id). min(this. adjVerts .dist(id))}

}

Clearly, if the destination id and the source node coincide, then the distance is 0.
Otherwise, the distance is obtained by incrementing by one the minimal distance from an
adjacent to id, computed by method dist() of AdjList called on the adjacency list. The
codefinition of method dist() of class Vertex is needed since, in presence of a cycle, ∞ is
returned and non-termination is avoided. The same approach can be adopted for visiting a
graph: instead of keeping trace of already encountered nodes, cycles are implicitly handled
by the loop detection mechanism of coFJ.

11The example can be easily adapted to weighted paths.

ECOOP 2020

1:20 Sound Regular Corecursion in coFJ

6 Soundness

Soundness of the operational semantics with respect to the abstract one means, roughly, that
a value derived using the rules in Figure 6 can also be derived by those in Figure 2. However,
this statement needs to be refined, since values in the two semantics are different: possibly
infinite objects in the abstract semantics, and capsules in the operational semantics.

We define a relation from capsules to abstract objects, formally express soundness through
this relation, and introduce an intermediate semantics to carry out the proof in two steps.

From capsules to infinite objects. Intuitively, given a capsule (v, σ), we get an abstract
value by instantiating variables in v with abstract values, in a way consistent with σ. To
make this formal, we need some preliminary definitions.

A substitution θ is a function from variables to abstract values. We denote by e θ the
abstract expression obtained by applying θ to e. In particular, if e is an open value v, then
v θ is an abstract value. Given an environment σ and a substitution θ, the substitution σ[θ]
is defined by:

σ[θ](x) =
⎧⎪⎪⎨⎪⎪⎩

σ(x) θ x ∈ dom(σ)
θ(x) x ∉ dom(σ)

Then, a solution of σ is a substitution θ such that σ[θ] = θ. Let Sol(σ) be the set of solutions
of σ. Finally, if (e, σ) is a capsule, we define the set of abstract expressions it denotes as
Je, σK = {e θ ∣ θ ∈ Sol(σ)}. Note that Jv, σK ⊆ Va, for any capsule (v, σ). We now show an
operational characterization of the semantic equality.

I Theorem 10. Jv1, σ1K=Jv2, σ2K iff (v1, σ1)≈α(v2, σ2), for some σ1, σ2-renaming α.

To prove this result we need some auxiliary definitions and lemmas. The tree expansion
of a capsule (v, σ) is the possibly infinite open value coinductively defined as follows:

T(v, σ) =
⎧⎪⎪⎨⎪⎪⎩

x v = x and unfold(x, σ) ↑
new C(T(v1, σ), . . . ,T(vn, σ)) unfold(v, σ) = new C(v1, . . . ,vn)

The next proposition shows relations between solutions and tree expansion of a capsule.

I Proposition 11. Let (v, σ) be a capsule and θ ∈ Sol(σ), then
1. if unfold(v, σ) ↑ then v = x and x σ↔ x
2. FV(T(v, σ)) ⊆ {x ∈ dom(σ) ∣ x σ↔ x}
3. if x σ↔ y then θ(x) = θ(y)
4. if unfold(v, σ) = new C(v1, . . . ,vn) then v θ = new C(v1 θ, . . . ,vn θ)
5. v θ = T(v, σ) θ

Given a relation α on variables, we will denote by α○ the opposite relation and by =α the
equality of possibly infinite open values up-to α, coinductively defined by the following rules:

x =α y
xαy

ti =α si ∀i ∈ 1..n
new C(t1, . . . , tn) =α new C(s1, . . . , sn)

It is easy to check that
α is a σ1, σ2-renaming iff α○ is a σ2, σ1-renaming,
(v1, σ1)≈α(v2, σ2) iff (v2, σ2)≈α○(v1, σ1),
t1 =α t2 iff t2 =α○ t1.

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca 1:21

We have the following lemmas:

I Lemma 12. (v1, σ1)≈α(v2, σ2) iff T(v1, σ1)=αT(v2, σ2), for each σ1, σ2-renaming α.

Proof. The proof is immediate by coinduction in both directions. J

I Lemma 13. If T(v1, σ1)=αT(v2, σ2), where α is a σ1, σ2-renaming, then Jv1, σ1K = Jv2, σ2K.

I Proposition 14. If Jv1, σ1K = Jv2, σ2K then
1. if unfold(v1, σ1) ↑ then unfold(v2, σ2) ↑,
2. if unfold(v1, σ1) = new C(v1,1, . . . ,v1,n) then unfold(v2, σ2) = new C(v2,1, . . . ,v2,n) and,

for all i ∈ 1..n, Jv1,i, σ1K = Jv2,i, σ2K.

I Lemma 15. If Jv1, σ1K=Jv2, σ2K then T(v1, σ1) =α T(v2, σ2), for some σ1, σ2-renaming α.

Proof of Theorem 10. The right-to-left direction follows from Lemma 12 and Lemma 13,
while the other direction follows from Lemma 15 and Lemma 12. J

Since by definition ≈ is equal to ≈α for some α, applying Lemma 12 and Lemma 13 we
get that if (v1, σ1)≈(v2, σ2) then Jv1, σ1K = Jv2, σ2K. Actually we can prove a stronger result:

I Lemma 16. If (v1, σ1)≈α(v2, σ2) for some strict σ1, σ2-renaming α, then, for each solution
θ ∈ Sol(σ1 ∩ σ2), there are θ1 ∈ Sol(σ1) and θ2 ∈ Sol(σ2) such that v1 θ1 = v2 θ2 and, for all
x ∈ dom(σ1 ∩ σ2), θ1(x) = θ(x) = θ2(x).

Soundness statement. We can now formally state the soundness result:

I Theorem 17. If e,∅,∅⇓v, σ, then, for all v ∈ Jv, σK, (IFJ,IcoFJ)⊢e⇓v.

This main result is about the evaluation of source expressions, hence both the environment
and the call trace are empty. To carry out the proof we need to generalize the statement.

I Theorem 18 (Soundness). If e, σ,∅⇓v, σ′, then, for all θ ∈ Sol(σ′), (IFJ,IcoFJ)⊢e θ⇓v θ.

To show that this is actually a generalization, set σ1 ≤ σ2 if dom(σ1) ⊆ dom(σ2), and, for all
x ∈ dom(σ1), σ1(x) = σ2(x). We use the following lemmas.

I Lemma 19. If σ1 ≤ σ2, then Sol(σ2) ⊆ Sol(σ1).

I Lemma 20. If e, σ, τ ⇓v, σ′, then σ ≤ σ′.

In the statement of Theorem 18, thanks to Lemma 20, we know that σ ≤ σ′, hence, by
Lemma 19, θ ∈ Sol(σ), thus e θ ∈ Je, σK. Theorem 18 implies Theorem 17, since, when σ = ∅,
e is closed, hence e θ = e, and all elements in Jv, σ′K have shape v θ with θ ∈ Sol(σ′).

Proof through intermediate semantics. In order to prove Theorem 18, we introduce a new
semantics called intermediate, defined in Figure 8. Values are those of the abstract semantics,
hence calls are of shape v.m(v) (abstract calls). The judgment has shape e, ρ, S⇓IN v, S′, with
S,S′ sets of abstract calls, ρ map from abstract calls to values. Comparing with e, σ, τ ⇓v, σ′
in the operational semantics, no variables are introduced for calls; ρ and S play the role of the
ck and non ck part of τ , respectively, keeping trace of already encountered calls. Moreover, ρ
directly associates to a call its value to be used in the checking step, which in σ is associated
to the corresponding variable. Finally, S′ plays the role of σ′, tracing the calls for which the
codefinition has been evaluated, hence the checking step will be needed. This correspondence
is made precise below. The rules are analogous to those of Figure 6, with the difference that,

ECOOP 2020

1:22 Sound Regular Corecursion in coFJ

for an already encountered call c ∈ S, either rule (IN-invk-ok) or rule (IN-corec) can be
applied. In other words, evaluation of the codefinition is not necessarily triggered when the
first cycle is detected. This non-determinism makes the relation with the abstract semantics
simpler.

By relying on the intermediate semantics, we can prove Theorem 18 by two steps:
1. The operational semantics is sound w.r.t. the intermediate semantics (Theorem 21).
2. The intermediate semantics is sound w.r.t. the abstract semantics (Theorem 23).
At the beginning of Section 4, we mentioned two issues for an operational semantics:
representing infinite objects in a finite way, and replacing infinite (regular) proof trees by
finite proof trees. This proof technique nicely shows that the two issues are orthogonal:
notably, detection of cyclic calls is independent from the format of values.

To express the soundness of the operational semantics w.r.t. the intermediate one, we
need to formally relate the two judgments. First of all, a call trace τ is the disjoint union of
two maps τ ck and τ¬ck into tagged and non-tagged variables, respectively. Then, given an
environment σ, we define the following sets of (operational) calls:

Sτ = dom(τ¬ck)
Sτ,σ = dom(σ ○ τ¬ck), where ○ is the composition of partial functions
Sτ,σ,σ

′ = Sτ,σ′ ∖ Sτ,σ
For S set of calls and θ substitution, we abbreviate by Sθ the set of abstract calls S θ. Note
that Sτ,σθ ⊆ Sτθ and, if σ1 ≤ σ2, then Sτ,σ1

θ ⊆ Sτ,σ2
θ . Finally, ρτθ(c θ) = v iff v = θ(τ ck(c)).

Then, the soundness result can be stated as follows:

I Theorem 21 (Soundness operational w.r.t. intermediate). If e, σ, τ ⇓ v, σ′ then, for all
θ ∈ Sol(σ′), there exists S such that Sτ,σ,σ

′

θ ⊆ S ⊆ Sτ,σ
′

θ and, e θ, ρτθ , Sτθ ⇓IN v θ,S.

In particular, the bounds on S ensure that it is empty when τ = ∅. Hence, if e, σ,∅⇓v, σ′
(hypothesis of Theorem 18), then e θ,∅,∅⇓IN v θ,∅, that is, the hypothesis of Theorem 23
below holds.

The proof of the theorem uses the following corollary of Lemma 16.

I Corollary 22. If (v1, σ1)≈(v2, σ2), θ1∈Sol(σ1), σ1 ≤ σ2, then there is θ2 ∈ Sol(σ2) such that
v1 θ1 = v2 θ2 and, for all x ∈ dom(σ1), θ1(x) = θ2(x). Moreover, if σ1 = σ2, then v1 θ1 = v2 θ1.

We now state the second step of the proof: the soundness result of the intermediate
semantics with respect to the abstract semantics.

I Theorem 23 (Soundness intermediate w.r.t. abstract). If e,∅,∅⇓IN v,∅, then (IFJ,IcoFJ)⊢e⇓v.

The proof uses the bounded coinduction principle (Theorem 1), and requires some lemmas.
Recall that IFJ∪IcoFJ ⊢ e⇓v means that the judgment e ⇓ v has a finite proof tree in the
(standard) inference system consisting of FJ rules and coFJ corules.

I Lemma 24. If e,∅, S⇓IN v, S′ then IFJ∪IcoFJ ⊢e⇓v holds.

I Lemma 25. If e, ρ, S ∪ {c}⇓IN v, S′ holds, and c /∈ S′, then e, ρ, S⇓IN v, S′.

I Lemma 26. If e, ρ{c ∶v′}, S⇓IN v, S′ and c, ρ, S⇓IN v′,∅, then e, ρ, S⇓IN v, S′.

We can now prove Theorem 23.

Proof of Theorem 23. We take as specification the set A = {(e, v) ∣ e,∅,∅⇓IN v,∅}, and we
use bounded coinduction (Theorem 1). We have to prove the following:

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca 1:23

v ∈ Va ∶∶ =co new C(v) possibly infinite object
c ∶∶ = v.m(v) abstract call
S ∶∶ = c1 . . . cn (n ≥ 0) set of abstract calls
ρ ∶∶ = c1 ∶ v1 . . . cn ∶ vn (n ≥ 0)

(IN-val)
v, ρ, S⇓IN v,∅ (IN-field)

e, ρ, S⇓IN v, S′

e.f , ρ, S⇓IN vi, S′
v = new C(v1, . . . , vn)
fields(C) = f1...fn
f = fi, i ∈ 1..n

(IN-new)
ei, ρ, S⇓IN vi, S′i ∀i ∈ 1..n

new C(e1, . . . , en), ρ, S⇓IN new C(v1, . . . , vn),⋃i∈1..n S′i

In all the following rules:

e = e1, . . . , en
v = v1 . . . vn
c = v0.m(v)
v0 = new C(_)

(IN-invk-ok)

ei, ρ, S⇓IN vi, S′i ∀i ∈ 0..n
e[v0/this][v/x], ρ, S ∪ {c}⇓IN v, S′

e0.m(e), ρ, S⇓IN v,⋃i∈0..n S′i∪S′
c /∈ S′ or c ∈ S
mbody(C ,m) = (x, e)

(IN-invk-check)

ei, ρ, S⇓IN vi, S′i ∀i ∈ 0..n
e[v0/this][v/x], ρ, S ∪ {c}⇓IN v, S′
e[v0/this][v/x], ρ{c ∶v}, S⇓IN v, S′′

e0.m(e), ρ, S⇓IN v,⋃i∈0..n S′i ∪ (S′ ∖ {c})

c /∈ S
mbody(C ,m) = (x, e)
c ∈ S′

(IN-corec)

ei, ρ, S⇓IN vi, S′i ∀i ∈ 0..n
e′[v0/this][v/x][u/any], ρ, S⇓IN v, S′

e0.m(e), ρ, S⇓IN v,⋃i∈0..n S′i ∪ S′ ∪ {c}

c ∈ S
co-mbody(C ,m) = (x, e′)
c /∈ dom(ρ)

(IN-look-up)
ei, ρ, S⇓IN vi, S′i ∀i ∈ 0..n
e0.m(e), ρ, S⇓IN v,⋃i∈0..n S′i

ρ(c) = v

Figure 8 coFJ intermediate semantics.

ECOOP 2020

1:24 Sound Regular Corecursion in coFJ

Boundedness For all (e, v) ∈ A, IFJ∪IcoFJ ⊢e⇓v holds.
Consistency For all (e, v) ∈ A, there exist a rule in the abstract semantics having e⇓ v as

consequence, and such that all its premises are elements of A.
Boundedness follows immediately from Lemma 24. We now prove consistency.

Consider a pair (e, v) ∈ A, hence we know that e,∅,∅⇓IN v,∅ is derivable. We proceed by
case analysis on the last applied rule in the derivation of this judgement.
(IN-val) We know that e = v = new C(v1, . . . , vn). We choose as candidate rule (abs-new).

We have to show that, for all i ∈ 1..n, (vi, vi) ∈ A, that is, vi,∅,∅⇓IN vi,∅ holds We can
get the thesis thanks to rule (IN-val).

(IN-field) We know that e = e′.f and e′,∅,∅⇓IN new C(v1 . . . vn),∅. We choose as candidate
rule (abs-field), with conclusion e′.f ⇓vi. We have to show that (e′,new C(v1 . . . vv)) ∈ A,
that is, e′,∅,∅⇓IN new C(v1 . . . vv),∅ holds, but this is true by hypothesis.

(IN-new) We know that ei,∅,∅⇓IN vi,∅ holds for all i ∈ 1..n. We choose as candidate rule
(abs-new). We have to show that, for all i ∈ 1..n, (ei, vi) ∈ A, that is, ei,∅,∅ ⇓IN vi,∅
holds, but this is true by hypothesis.

(IN-invk-ok) We know that e = e0.m(e), ei,∅,∅ ⇓IN vi,∅ holds for all i ∈ 0..n, c = v0.m(v),
mbody(C ,m) = (x, e′), and e′[v0/this][v/x],∅,{c} ⇓IN v,∅ holds. We choose as can-
didate rule (abs-invk). We have to show that, for all i ∈ 0..n, (ei, vi) ∈ A, and
(e′[v0/this][v/x], v) ∈ A. That is, that the following judgments hold: ei,∅,∅ ⇓IN vi,∅
for all i ∈ 0..n, and e′[v0/this][v/x],∅,∅⇓IN v,∅. The judgments in the first set hold by
hypothesis. The last judgment holds thanks to Lemma 25, where S′ = ∅.

(IN-invk-check) We know that e = e0.m(e), ei,∅,∅⇓IN vi,∅ holds for all i ∈ 0..n, c = v0.m(v),
mbody(C ,m) = (x, e′), and e′[v0/this][v/x],{c ∶ v},∅ ⇓IN v,∅ holds. We choose as
candidate rule (abs-invk). We have to show that for all i ∈ 0..n, (ei, vi) ∈ A, and
(e′[v0/this][v/x], v) ∈ A. That is, that the following judgments hold: ei,∅,∅ ⇓IN vi,∅
for all i ∈ 0..n, and e′[v0/this][v/x],∅,∅⇓IN v,∅. The judgments in the first set hold by
hypothesis. The last judgment holds thanks to Lemma 26, since from the hypothesis we
easily get c,∅,∅⇓IN v,∅.

(IN-corec) Empty case since to apply the rule it should be S ≠ ∅.
(IN-look-up) Empty case since to apply the rule it should be ρ ≠ ∅.

J

7 Related work

As already mentioned, the idea of regular corecursion (keeping track of pending method
calls, so to detect cyclic calls), originates from co-SLD resolution [20, 21, 7]. Making regular
corecursion flexible means that the programmer can specify the behaviour in case a cycle is
detected. Language constructs to achieve such flexibility have been proposed in the logic
[2, 3], functional [17], and object-oriented [8, 9] paradigm.

Logic paradigm. The above mentioned co-SLD resolution [20, 21, 7] is a sound resolution
procedure based on cycle detection. That is, the interpreter keeps track of resolved atoms and
an atom selected from the current goal can be resolved if it unifies with an atom that has been
already resolved. In this way it is possible to define coinductive predicates. Correspondingly,
models are subsets of the complete Herbrand basis, that is, the set of ground atoms built on
arbitrary (finite or infinite) terms, and the declarative semantics is the greatest fixed point
of the monotone function associated with a program. Structural resolution [18, 14] (a.k.a.
S-resolution) is a proposed generalization for cases when formulas computable at infinity are

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca 1:25

not regular; infinite derivations that cannot be built in finite time are generated lazily, and
only partial answers are shown. More recently, a comprehensive theory has been proposed
[11] to provide operational semantics that go beyond loop detection.

Anyway, in coinductive logic programming, only standard coinduction is supported. The
notion of finally clause, introduced in [2], allows the programmer to specify a fact to be
resolved when a cycle is detected, instead of simply accepting the atom. The approach has
been refined in [3], following the guidelines given by the formal framework of generalized
inference systems. That is, the programmer can write special clauses corresponding to corules,
so that, when an atom is found for the second time, standard SLD resolution is triggered
in the program enriched by the corules. However, this paradigm is very different from the
object-oriented one, since based on relations rather than functions: cycles are detected on
the same atom, where input and output are not distinguished, by unification.

Functional paradigm. CoCaml (www.cs.cornell.edu/Projects/CoCaml) [17, 16] is a
fully-fledged extension of OCaml supporting non-well-founded data types and corecurs-
ive functions. CoCaml, as OCaml, allows programmers to declare regular values through the
let-rec construct, and, moreover, detects cyclic calls as in our approach. However, whereas
coFJ immediately evaluates the cyclic call by using the codefinition, the CoCaml approach
is in two phases. First, a system of equations is constructed, associating with each call
a variable and partially evaluating the body of functions, where calls are replaced with
associated variables. Then, the system of equations is given to a solver specified in the
function definition. Solvers can be either pre-defined or written by the programmer in order
to enhance flexibility. An advantage that we see in our approach is that the programmer has
to write the codefinition (standard code) rather than working at the meta-level to write a
solver, which is in a sense a fragment of the interpreter. A precise comparison is difficult for
the lack of a simple operational model of the CoCaml mechanism. In future work, we plan
to develop such model, and to relate the two approaches on a formal basis.

Object-oriented paradigm. A previous version of coFJ has been proposed in [8]. At this
time, however, the framework of inference systems with corules was still to come, so there
was no formal model against which to check the given operational semantics, which, indeed,
derived spurious results in some cases, as illustrated in Section 4 at page 16. The operational
semantics provided in the current paper solves this problem, and is proved to be sound with
respect to the abstract semantics. Moreover, we adopt a simpler representation of cyclic
objects through capsules [16]. A type system has been proposed [9] for the previous version
of coFJ to prevent unsafe use of the “undetermined” value. We leave to further work the
investigation of typing issues for the approach presented in this paper.

8 Conclusion

The Java-like calculus presented in this paper promotes a novel programming style, which
smoothly incorporates support for cyclic data structures and coinductive reasoning, in the
object-oriented paradigm. Our contribution is foundational: we provide an abstract semantics
based on corules and show that it is possible to define a sound operational model; such
operational semantics is inductive, syntax-directed and deterministic, hence can be directly
turned into an interpreter. In order to get a “real-world” language, of course many other
issues should be taken into account.

ECOOP 2020

www.cs.cornell.edu/Projects/CoCaml

1:26 Sound Regular Corecursion in coFJ

Our prototype implements the abstract semantics on top of a Prolog meta-interpreter
supporting flexible regular corecursion [3]. In this way, the inference system is naturally
translated in Prolog12, cyclic terms are natively supported, and their equality handled by
unification. A fully-fledged interpreter of the operational semantics should directly handle
these issues and, moreover, attempt at some optimization.

The current paper does not deal with types: an important concern is to guarantee type
soundness, statically ensuring that an undetermined value never occurs as receiver of field
access or method invocation, as investigated in [9] for the previous coFJ version [8].

Another issue is how to train developers to write codefinitions. Standard recursion is
non-trivial as well for beginners, whereas it becomes quite natural after understanding its
mechanism. For regular corecursion the same holds, with is the additional difficulty of
reasoning on infinite structures. Intuitively, the codefinition can be regarded as a base case
to be applied when a loop is detected. Moreover, again as for standard recursion, this novel
programming style could be integrated with proof techniques to show the correctness of
algorithms on cyclic data structures. Such proofs could be mechanized in proof assistants, as
Agda, that provide built-in support for coinductive definitions and proofs by coinduction.

Finally, a non-trivial challenge is how to integrate regular corecursion, requiring to detect
“the same call”, with the notion of mutable state. Likely, some immutability constraints will be
needed, or a variant of the model where such a check requires a stateless computation. Another
solution is to consider the check as an assertion that can be disabled if the programmer has
verified the correctness of the method by hand or assisted by a tool.

The semantics of flexible regular corecursion in the paper is the operational counterpart of
that obtained by considering recursive functions as relations, and recursive definitions (with
codefinition) as inference systems (with corules). We prove that the operational semantics is
sound with respect to that interpretation. Obviously, completeness does not hold in general,
since the abstract semantics deals with not only cyclic data structures (such as [2,1]ω), but
arbitrary non-well-founded structures (such as the list of natural numbers). Even considering
only regular proof trees in the abstract semantics, in some subtle cases there is more than
one admissible result13, whereas the operational semantics, being deterministic, finds “the
first” among such results, as reasonable in an implementation . We plan to investigate such
completeness issues in further work, also in the more general framework of inference systems,
that is, to characterize judgments which have a regular proof tree.

We also plan to study how to deal with flexible corecursion in other programming
paradigms, notably in the functional paradigm, and to compare on a formal basis this
approach with the CoCaml approach relying on solvers, rather than codefinitions.

As already discussed in the Introduction, lazy evaluation and regular corecursion are
complementary approaches to deal with infinite data structures. With the lazy approach,
arbitrary (computable) non-well-founded data structures are supported. However, we cannot
compute results which need to explore the whole structure, whereas, with regular corecursion,
this becomes possible for cyclic structures: for instance we can compute allPos one_two,
which diverges in Haskell. A natural question is then whether it is possible to extend
the regular corecursion approach to manage also non-regular objects, thus overcoming the
principal drawback with respect to the lazy approach. A possible interesting direction,
exploiting the work of Courcelle [12] on infinite trees, could be to move from regular to
algebraic objects.

12A logic program can be seen as an inference system where judgments are atoms.
13For instance, the list with no repetitions extracted from [1, 2]ω can be either [1, 2] or [2, 1].

D. Ancona, P. Barbieri, F. Dagnino, and E. Zucca 1:27

References
1 P. Aczel. An introduction to inductive definitions. In Handbook of Mathematical logic. North

Holland, 1977.
2 Davide Ancona. Regular corecursion in Prolog. Computer Languages, Systems & Structures,

39(4):142–162, 2013.
3 Davide Ancona, Francesco Dagnino, and Elena Zucca. Extending coinductive logic program-

ming with co-facts. In Ekaterina Komendantskaya and John Power, editors, First Workshop on
Coalgebra, Horn Clause Logic Programming and Types, CoALP-Ty’16, volume 258 of Electronic
Proceedings in Theoretical Computer Science, pages 1–18. Open Publishing Association, 2017.
doi:10.4204/EPTCS.258.1.

4 Davide Ancona, Francesco Dagnino, and Elena Zucca. Generalizing inference systems by
coaxioms. In Hongseok Yang, editor, 26th European Symposium on Programming, ESOP
2017, volume 10201 of Lecture Notes in Computer Science, pages 29–55. Springer, 2017.
doi:10.1007/978-3-662-54434-1_2.

5 Davide Ancona, Francesco Dagnino, and Elena Zucca. Reasoning on divergent computations
with coaxioms. PACMPL, 1(OOPSLA):81:1–81:26, 2017.

6 Davide Ancona, Francesco Dagnino, and Elena Zucca. Modeling infinite behaviour by corules.
In ECOOP’18 - Object-Oriented Programming, pages 21:1–21:31, 2018.

7 Davide Ancona and Agostino Dovier. A theoretical perspective of coinductive logic program-
ming. Fundamenta Informaticae, 140(3-4):221–246, 2015.

8 Davide Ancona and Elena Zucca. Corecursive Featherweight Java. In FTfJP’12 - Formal
Techniques for Java-like Programs, pages 3–10. ACM Press, 2012.

9 Davide Ancona and Elena Zucca. Safe corecursion in coFJ. In FTfJP’13 - Formal Techniques
for Java-like Programs, page 2. ACM Press, 2013.

10 Pietro Barbieri, Francesco Dagnino, Elena Zucca, and Davide Ancona. Corecursive Feather-
weight Java revisited. In Alessandra Cherubini, Nicoletta Sabadini, and Simone Tini, editors,
ICTCS’19 - Italian Conf. on Theoretical Computer Science, volume 2504 of CEUR Workshop
Proceedings, pages 158–170. CEUR-WS.org, 2019. URL: http://ceur-ws.org/Vol-2504/
paper19.pdf.

11 Henning Basold, Ekaterina Komendantskaya, and Yue Li. Coinduction in uniform: Foundations
for corecursive proof search with Horn clauses. In Programming Languages and Systems -
28th European Symposium on Programming, ESOP 2019, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April
6-11, 2019, Proceedings, pages 783–813, 2019.

12 B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science, 25:95–169,
1983.

13 Francesco Dagnino. Coaxioms: flexible coinductive definitions by inference systems. Logical
Methods in Computer Science, 15(1), 2019. URL: https://lmcs.episciences.org/5277.

14 E.Komendantskaya et al. A productivity checker for logic programming. Post-proc. LOPSTR’16,
2017. arXiv:1608.04415.

15 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: A minimal core
calculus for Java and GJ. In ACM Symp. on Object-Oriented Programming: Systems, Languages
and Applications 1999, pages 132–146. ACM Press, 1999. doi:10.1145/320384.320395.

16 Jean-Baptiste Jeannin and Dexter Kozen. Computing with capsules. Journal of Automata,
Languages and Combinatorics, 17(2-4):185–204, 2012. doi:10.25596/jalc-2012-185.

17 Jean-Baptiste Jeannin, Dexter Kozen, and Alexandra Silva. Cocaml: Functional programming
with regular coinductive types. Fundamenta Informaticae, 150:347–377, 2017.

18 E. Komendantskaya et al. Coalgebraic logic programming: from semantics to implementation.
J. Logic and Computation, 26(2):745, 2016. doi:10.1093/logcom/exu026.

ECOOP 2020

https://doi.org/10.4204/EPTCS.258.1
https://doi.org/10.1007/978-3-662-54434-1_2
http://ceur-ws.org/Vol-2504/paper19.pdf
http://ceur-ws.org/Vol-2504/paper19.pdf
https://lmcs.episciences.org/5277
http://arxiv.org/abs/1608.04415
https://doi.org/10.1145/320384.320395
https://doi.org/10.25596/jalc-2012-185
https://doi.org/10.1093/logcom/exu026

1:28 Sound Regular Corecursion in coFJ

19 X. Leroy and H. Grall. Coinductive big-step operational semantics. Information and Compu-
tation, 207(2):284–304, 2009.

20 L. Simon. Extending logic programming with coinduction. PhD thesis, University of Texas at
Dallas, 2006.

21 L. Simon, A. Bansal, A. Mallya, and G. Gupta. Co-logic programming: Extending logic
programming with coinduction. In ICALP 2007, pages 472–483, 2007.

Perfect Is the Enemy of Good: Best-Effort
Program Synthesis
Hila Peleg
University of California San Diego, CA, USA
hpeleg@eng.ucsd.edu

Nadia Polikarpova
University of California San Diego, CA, USA
npolikarpova@eng.ucsd.edu

Abstract
Program synthesis promises to help software developers with everyday tasks by generating code
snippets automatically from input-output examples and other high-level specifications. The conven-
tional wisdom is that a synthesizer must always satisfy the specification exactly. We conjecture that
this all-or-nothing paradigm stands in the way of adopting program synthesis as a developer tool: in
practice, the user-written specification often contains errors or is simply too hard for the synthesizer
to solve within a reasonable time; in these cases, the user is left with a single over-fitted result or,
more often than not, no result at all. In this paper we propose a new program synthesis paradigm
we call best-effort program synthesis, where the synthesizer returns a ranked list of partially-valid
results, i.e. programs that satisfy some part of the specification.

To support this paradigm, we develop best-effort enumeration, a new synthesis algorithm that
extends a popular program enumeration technique with the ability to accumulate and return multiple
partially-valid results with minimal overhead. We implement this algorithm in a tool called Bester,
and evaluate it on 79 synthesis benchmarks from the literature. Contrary to the conventional wisdom,
our evaluation shows that Bester returns useful results even when the specification is flawed or too
hard: i) for all benchmarks with an error in the specification, the top three Bester results contain
the correct solution, and ii) for most hard benchmarks, the top three results contain non-trivial
fragments of the correct solution. We also performed an exploratory user study, which confirms our
intuition that partially-valid results are useful: the study shows that programmers use the output of
the synthesizer for comprehension and often incorporate it into their solutions.

2012 ACM Subject Classification Theory of computation → Program specifications; Software and
its engineering → Automatic programming

Keywords and phrases Program Synthesis, Programming by Example

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.2

Supplementary Material ECOOP 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.2.16.

Funding This work has been supported by the National Science Foundation under Grant 1911149.

1 Introduction

Program synthesis has emerged as a promising technology for automating low-level program-
ming tasks [24, 50, 54, 3]. For software developers, program synthesis can be an attractive
alternative to online help forums when it comes to “opportunistic programming” [11], or
hunting for code that will perform a small subtask needed in a larger development task.
Using a Programming by Example (PBE) synthesizer [36, 21, 20, 19, 46, 25, 56], developers
can specify the desired behavior with a set of input-output examples (or unit tests), and the
synthesizer would generate a code snippet that satisfies each of the examples.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Hila Peleg and Nadia Polikarpova;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 2; pp. 2:1–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0107-5659
mailto:hpeleg@eng.ucsd.edu
https://orcid.org/0000-0001-5571-173X
mailto:npolikarpova@eng.ucsd.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2020.2
https://doi.org/10.4230/DARTS.6.2.16
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Perfect Is the Enemy of Good: Best-Effort Program Synthesis

Although PBE techniques have made great strides in recent years and have been used
successfully in end-user tools [23, 31, 29], they have not seen wide adoption in mainstream
software development. We conjecture that one important reason is that existing synthesizers
follow an “all-or-nothing” paradigm: they either return a program that is correct on all
examples, or fail. In practice, however, humans make mistakes, so examples might contains
errors. Even if all the examples are correct, the program might just be too complex for the
synthesizer to generate: no matter how much we improve the synthesizer, there will always
be problems it fails to solve within the amount of time that the user is willing to wait. In
these cases, all-or-nothing synthesis is utterly useless to the programmer: it either returns a
single over-fitted result (that satisfies the erroneous specification) or, more often then not,
no result at all. Iterative synthesizers [32, 39, 7] offer a partial remedy by allowing the user
to refine a problematic specification, but they still waste user’s time in the unsuccessful
iterations.

We believe that turning PBE synthesizers into useful mainstream programming tools
requires addressing two core challenges:

1) Erroneous specifications: How can we make the synthesizer robust to small errors in
the specification?

2) Hard problems: How can we make the synthesizer helpful even if it cannot solve a
problem completely?

Switching paradigms

To address the two core challenges, we need to abandon the all-or-nothing view of synthesis
and instead take the approach of successful code completion tools: an imperfect result is
better than no result, as long as it is indicated as such. To this end, we propose a new PBE
paradigm we dub best-effort program synthesis, in which the user provides examples, and the
synthesizer returns a shortlist of partially-valid results, i.e. programs that satisfy at least
some of the examples. Previous work has shown that a) partially-valid programs often share
non-trivial fragments with the correct solution [46], and b) users prefer editing incorrect
code to writing code from scratch [13]. Hence it is reasonable to assume that partially-valid
results help the user move forward both when the specification contains errors (by generating
a solution for the error-free subset of the examples) and when the problem is too hard (by
generating a spacial-case program that can be used as a building block in the final solution).

Efficient best-effort synthesis

A naive way to implement best-effort synthesis would be to use an existing synthesizer as a
black box and re-run it again and again with different subsets of the specification, displaying
any generated programs to the user. This is highly inefficient, however, especially when the
original synthesis problem takes too long to solve: in this case, some specification subsets may
still take too long. Ideally, we would like to deliver partially-valid results without requiring
the synthesizer to do more work.

Our core technical insight is that a popular program search algorithm – bottom-up
enumeration with observational equivalence reduction [55, 2] – can be extended to accumulate
partially-valid results during search with minimal overhead. The extension is possible because
this search algorithm is monotonic in the set of examples: the set of programs explored with
the full specification includes all programs that would be explored with a partial specification.
We formalize this monotonicity property and our extended best-effort enumeration algorithm
in Section 3.

H. Peleg and N. Polikarpova 2:3

Ranking partially-valid results

In general, there can be too many partially-valid results to display them all to the user, so a
best-effort synthesizer needs a way to automatically select a manageable number of results
(3–5) that are most likely to be useful to the programmer. It is common in program synthesis
to introduce a ranking function for the generated programs and present top N ≥ 1 ranked
results to the user [23, 28, 43]. For the best-effort setting, we design a ranking function that
incorporates both syntactic and semantic features of programs, such as simplicity and the
number of examples satisfied. The details of the ranking are described in Section 4.

Evaluating best-effort solutions

We implement our approach in a tool called Bester (Best-Effort Synthesis TERminal), which
gives users access to a best-effort synthesizer from a Read-Evaluate-Print-Loop (REPL). We
evaluate Bester on 79 benchmarks we collected from the 2017 SyGuS competition [4] and the
Euphony benchmark suite [33]. Our evaluation shows that i) Bester can overcome errors
in the specification and still return the correct solution in the top three results, ii) when a
synthesis problem is hard and times out, Bester still returns useful fragments of the solution,
and iii) Bester’s ability to solve correct specifications is not impacted (Section 5). Moreover,
Bester compares favorably to the naive approach of using a state-of-the-art synthesizer1as a
black box and eliminating examples from the specification one by one.

We also performed a small exploratory user study of Bester, in which programmers used
Bester to solve tasks in an unfamiliar programming language; the tasks were too hard for
the synthesizer to solve completely within 40 seconds (Section 6). Our study shows that
programmers make use of synthesis results for comprehension, both of the task and of the
language, and that programmers often incorporate synthesis results into their solutions either
by copy-pasting or by editing a partially-valid solution until it fully satisfies the examples.

Main contributions

To summarize, this paper makes the following contributions:
1. Best-effort program synthesis: a new user interaction paradigm for PBE that is likely to

yield helpful results even when the problem is ill-specified or too hard to solve completely.
2. Best-effort enumeration: an algorithm for efficiently collecting partially-valid solutions

during enumerative synthesis.
3. A ranking function for partially-valid solutions that incorporates both syntactic and

semantic properties of programs, and performs well in our experiments.
4. Bester: a prototype implementation of best-effort synthesis, shown both empirically and

in an exploratory user study to be robust to specification errors and to produce useful
program fragments on hard problems.

2 Overview

In this section, we consider a scenario that requires best-effort synthesis.

1 We used CVC4 [44], the winner of the 2017–2019 SyGuS competitions in the PBE-Strings category.

ECOOP 2020

2:4 Perfect Is the Enemy of Good: Best-Effort Program Synthesis

> (- (str.len arg0) (str.len (str.replace arg0 "\n" "")))
+--------------------------------+--------+----------+
| input | result | expected |
+================================+========+==========+
| arg0 -> "one" | 0 | 0 |
+--------------------------------+--------+----------+
| arg0 -> "one\ntwo" | 1 | 1 |
+--------------------------------+--------+----------+
| arg0 -> "one\ntwo\nthree" | 1 | 2 |
+--------------------------------+--------+----------+
| arg0 -> "one\ntwo\nthree\four" | 1 | 3 |
+--------------------------------+--------+----------+
>

(a) Evaluating user-written program on the
examples.

> :s
Synthesizing... (Press any key to interrupt)
Current best: [3/4]
1: (- (str.len arg0) (str.len (str.replace (str.replace arg0 "\n" "") "\n" ""))) [3/4]
2: (str.len (int.to.str (str.len arg0))) [2/4]
3: (str.indexof arg0 (str.at arg0 -1) (str.indexof arg0 "\n" 1)) [2/4]
4: (str.indexof "" (str.at arg0 -1) (str.indexof arg0 "\n" 1)) [2/4]
5: (str.indexof "\n" (str.at arg0 -1) (str.indexof arg0 "\n" 1)) [2/4]
> :1
+--------------------------------+--------+----------+
| input | result | expected |
+================================+========+==========+
| arg0 -> "one" | 0 | 0 |
+--------------------------------+--------+----------+
| arg0 -> "one\ntwo" | 1 | 1 |
+--------------------------------+--------+----------+
| arg0 -> "one\ntwo\nthree" | 2 | 2 |
+--------------------------------+--------+----------+
| arg0 -> "one\ntwo\nthree\four" | 2 | 3 |
+--------------------------------+--------+----------+

(b) Best-effort synthesis results.

Figure 1 The Bester REPL interface.

2.1 A motivating example
Our example is derived from one of the benchmarks in the PBE-Strings track of the SyGuS
(Syntax-Guided Synthesis) competition [5, 4]. In this competition, synthesizers are expected
to generate programs in a simple language of S-expressions with built-in operations on
integers (such as + or -) and strings (such as, str.len and str.replace). A benchmark in the
PBE-Strings track is given by a set of input-output examples and a grammar that defines
the space of candidate programs (i.e. the relevant subset of the SyGuS language). These
benchmarks mimic small tasks performed by programmers, and some are directly derived
from StackOverflow questions.

In this scenario, a programmer is attempting to solve a task that asks them to count the
number of line breaks in a string. They are using a development environment enriched with a
synthesizer: they have the option to invoke the synthesizer at any point during development
and incorporate (fragments of) its output into their own code.

The programmer starts by providing a set of test cases (examples):

e0 = "one"→ 0
e1 = "one\ntwo"→ 1
e2 = "one\ntwo\nthree"→ 2
e3 = "one\ntwo\nthree\four"→ 3

We notice, though the user does not, that e3 contains a typo in the string and would, given
the expected program, only return 2 rather than 3.

The user then attempts to write a program to satisfy their test cases by computing the
difference in length between the input string, arg0, and arg0 with newlines removed:

(- (str.len arg0) (str.len (str.replace arg0 "\n" "")))

The user executes their tests, and only e0 and e1 pass, as shown in Figure 1a. They
might not immediately realize that the reason for this behavior is the unexpected semantics
of str.replace in the SyGuS language, which only replaces the first instance of the substring
rather than all instances. Because e2 fails as well as e3, the typo in e3 goes unnoticed.

At this point, the user decides to delegate solving the task to the synthesizer. Running
the state-of-the-art synthesizer CVC4 [44] on this synthesis query yields the result:

(ite (str.contains (str.replace arg0 "\n" "") "\n")
(ite (str.suffixof (str.at arg0 (str.len "\n")) arg0)

(str.len "\n") (str.indexof arg0 "\n" 1))
(ite (str.prefixof arg0 (str.replace arg0 "\n" arg0)) 0 1))

H. Peleg and N. Polikarpova 2:5

This program satisfies all the test cases provided to the synthesizer, but it is so complex that
the user will most likely discard it without reading and be none the wiser about the typo in
the tests or their misconception about the semantics of str.replace.

Running our tool Bester, on the other hand, produces a ranked list of synthesis results,
as shown in Figure 1b. The first result in this list is:

(- (str.len arg0) (str.len (str.replace (str.replace arg0 "\n" "") "\n" "")))

which is relatively simple and in fact similar to the user’s initial solution (except that it
calls str.replace on the input string twice). Contrasting the outputs of the initial program
and this result helps the user realize their misconception about str.replace, while the tool’s
failure to solve e3 is likely to call their attention to the typo.

Best-effort synthesis for hard specifications

Consider a slightly different specification our programmer could have provided, where
examples e0, e1, e2 are as before, but example e3 is replaced with

e′3 = "one\ntwo\nthree\nfour\nfive\nsix\nseven\neight"→ 7

The programmer asks the (traditional) synthesizer for help, but after 30 seconds of waiting,
their patience is exhausted, and they interrupt the synthesizer before it can produce any
results. The reason this problem is taking so long to solve is that the SyGuS language
contains no general solution that works for an arbitrary number of newlines, so the shortest
program that satisfies e′3 contains seven calls to str.replace; programs of this size present a
challenge for state-of-the-art synthesizers. Once again, the user just wasted their time and is
back to square one.

Although this particular example seems contrived, the general scenario where the user is
unaware of the limitations of the synthesis algorithm and gives it more than it can handle,
is very common. If the programmer is using Bester, however, and interrupts it after 30
seconds, they would get exactly the same set of results as in the previous scenario, shown
in Figure 1b. This is because Bester always searches for solutions to all subsets of input
examples simultaneously, and the solution for {e0, e1, e2} is much smaller – and hence will
be discovered much earlier – than the solution for the full set of examples.

2.2 Background: Observational Equivalence Reduction

Before we explain how Bester is able to generate such partially-valid results efficiently, we
must introduce the baseline synthesis technique we build upon: bottom-up enumeration with
observational equivalence reduction [55, 2], or OE-reduction for short. Program synthesizers
work by searching a space of candidate programs until they encounter one that satisfies the
specification. The central challenge of program synthesis is the astronomically large size of
the search space, so different synthesis techniques find different ways to reduce the space, i.e.
exclude large chunks of the space from consideration.

For illustration purposes, in this section we will consider the program space defined by an
artificially small grammar, shown in Figure 2a. This grammar allows using only two integer
literals (0 and 3), one string literal (" "), a single variable (input), and three operations: +,
str.indexof, and str.substr.

ECOOP 2020

2:6 Perfect Is the Enemy of Good: Best-Effort Program Synthesis

Bottom-up enumeration

Bottom-up enumeration is a synthesis technique that maintains a bank of enumerated
programs and constructs new programs by applying production rules to programs from the
bank. Recall the grammar in Figure 2a. We begin enumeration with an empty bank, so in
the first iteration we are limited to production rules that require no subexpressions – literals
and variables; this yields the programs 0, 3, " ", and input, which are added to the bank.
In the following iterations, production rules that require subexpressions are applied to the
programs in the bank: for example, the rule Int → (+ Int Int) is applied to all pairs of
Int expressions, creating new programs (+ 0 0), (+ 0 3), (+ 3 0), and (+ 3 3), as seen in
Figure 2b.

The enumeration is generally performed in the order of height: we first construct all
programs of height 0, then height 1 and so on; each iteration constructs all programs of
height n+ 1 using the programs of heights up to n stored in the bank. As a consequence,
discarding even a few programs from the bank can drastically reduce the number of programs
to be enumerated in future iterations.

Equivalence reduction

A natural candidate for discarding from the bank is a redundant program, i.e. , a program
that is functionally equivalent to another program in the bank. In our example, the program
(+ 0 3) is functionally equivalent to the program 3, and hence can be safely discarded.
State-of-the-art bottom-up synthesizers [55, 2, 6] use a more aggressive notion of program
equivalence called observational equivalence, which is also easier to check: two programs are
considered equivalent if they evaluate to the same output for every input in the user-provided
set of examples.

I Example 1. Let us assume two pairs of input-output examples

e0 = "The Demolished Man"→ "Demolished"
e1 = "The Stars My Destination"→ "Stars"

We follow the enumeration of programs with OE-reduction, summarized in Figure 2b.
First, we create an input vector, which in this case contains two inputs:

〈"The Demolished Man", "The Stars My Destination"〉

The algorithm evaluates each constructed program point-wise on the input vector, producing
an output vector. Two programs are deemed observationally equivalent if their output vectors
are equal.

Height 0: First we enumerate programs of height 0 (programs 1–4 in Figure 2b). The pro-
gram 0 is a literal and evaluates to 0 on every input, resulting in the output vector 〈0, 0〉. Like-
wise the programs 3 and " " result in 〈3, 3〉 and 〈" ", " "〉 respectively. The program input (the
input variable) yields the output vector 〈"The Demolished Man", "The Stars My Destination"〉.
Since all four output vectors are different, all four programs are added to the bank.

Height 1: Next, we enumerate programs of height n+ 1 by applying production rules in
the grammar to programs from the bank at heights up to n (in this case, up to 0). The
production rule for str.indexof requires two arguments of type string, and will be applied to

H. Peleg and N. Polikarpova 2:7

Start → String

Int → 0 | 3
| (+ Int Int)
| (str.indexof String String)

String → " " | input
| (str.substr String Int Int)

(a) A small grammar in the SyGuS format. Notice that the language is
limited to the literal constants that appear here.

program output on e0 output on e1 equivalent to
1 0 0 0
2 3 3 3
3 " " " " " "
4 input "The Demolished "The Stars

Man" My Destination"
5 ���

�(+ 0 0) 0 0 #1
6 ���

�(+ 0 3) 3 3 #2
7 (((((+ 3 0) 3 3 #2
8 (+ 3 3) 6 6
9

((((
((((

(((
(str.indexof " " " ") 0 0 #1

10 (str.indexof " " input) −1 −1

11
((((

(((
((((

((
(str.indexof input input) 0 0 #1

12
((((

((((
((((

(str.indexof input " ") 3 3 #2

(b) An enumeration of the grammar by height.

Figure 2 The enumeration in Example 1. Programs are generated from the grammar by height,
first productions requiring only a terminal, and next productions requiring a subtree, taken from
previously seen programs.

all combinations of string programs of height 0. This will produce, among others, the program
(str.indexof " " " ") with the output vector 〈0, 0〉. Notice that the bank already contains
a program with this vector: the program 0. The algorithm therefore discards (str.indexof
" " " ") and does not add it to the bank. In general, the algorithm maintains an invariant
that the bank contains at most one representative of any observational equivalence class.

The same production rule also generates the program (str.indexof input " "). This pro-
gram seems helpful for solving the given examples; however, its output vector is 〈3, 3〉, whose
equivalence class already has a representative, the program 3, so the program (str.indexof
input " ") will be discarded. Unlike in the case of (str.indexof " " " "), this seems an
imprudent decision. However, it is in fact sound to do so for these inputs: so long as we do
not care about differently structured inputs, (str.indexof input " ") and 3 are completely
interchangeable. If the user introduces another example with a new input such as "Virtual
Unrealities", the new extended output vectors will be 〈3, 3, 3〉 and 〈3, 3, 7〉, and the two
programs will no longer be equivalent.

2.3 Our approach
Next we describe how Bester modifies the baseline OE-reduction enumeration technique from
the previous subsection to maintain a ranked list of partially-valid programs. If the search
happens to encounter a program that fully satisfies the specification, it stops; otherwise, if

ECOOP 2020

2:8 Perfect Is the Enemy of Good: Best-Effort Program Synthesis

the search is interrupted before a solution was found, Bester simply returns the current list
of partially-valid results to the user. We refer to this modification of OE-reduction search as
best-effort enumeration; Section 3 details the search algorithm and its correctness.

Searching for all example subsets

Recall the task from Section 2.1, where the user is trying to count line breaks in a string,
but has an error in the example e3. We would like to show the programmer the following
partially-valid yet useful program p∗, which satisfies examples {e0, e1, e2}:

(- (str.len arg0) (str.len (str.replace (str.replace arg0 "\n" "") "\n" "")))

Since we do not know a-priori which subset of examples would yield a useful result, we would
like the synthesizer to simultaneously search for programs satisfying all non-empty subsets
of {e0, e1, e2, e3} (thus, including {e0, e1, e2}).

Note that many synthesis techniques are not amenable to such simultaneous search: for
example, in constraint-based synthesis [52, 26], a run of the synthesizer with the full set of
examples would never construct p∗, because it does not satisfy e3. We observe that unlike
most synthesis techniques, the OE-reduction algorithm has the ability to maintain solutions
for all example subsets with little to no overhead, thanks to a curious monotonicity property:
adding a new example never excludes programs from the enumeration.

Let us illustrate this property on our running example. Consider a hypothetical run of an
OE-synthesizer on the examples {e0, e1, e2}, and assume that in this run p∗ is added to the
bank. We conclude that p∗ is the first program the synthesizer constructed that produces
the output vector 〈0, 1, 2〉, and hence has been chosen as the representative of the 〈0, 1, 2〉
equivalence class. Now consider the actual run of the synthesizer, on the full set of examples
{e0, e1, e2, e3}; we argue that in this run p∗ must be chosen as the representative of the
〈0, 1, 2, 2〉 equivalence class and cannot be discarded by OE reduction. To see why, assume a
different program p′ is chosen as the representative; then p′ would have been enumerated
before p∗ and would also return 〈0, 1, 2〉 on the first three examples; but this contradicts our
assumption that p∗ is the representative for 〈0, 1, 2〉.

In other words, since each additional example refines the partition of the program space,
the bank in the actual run must be a superset of the bank in the hypothetical run. Moreover,
the output vector of each program in the bank is already computed as part of performing
OE-reduction, and compared to the expected output vector; hence, performing a slightly
more complex check for the purpose of identifying partially-valid results incurs only minimal
overhead.

Ranking best-effort candidates

A best-effort enumeration as described above might accumulate multiple results satisfying
each subset of the examples. However, we cannot simply show them to the user in the
order in which they are discovered: trivial programs such as a literal or variable satisfying
one or two of the examples would be discovered immediately, but would often be a poor
candidate. For instance, in the example from Section 2.1, the program 0 satisfies {e0}, the
program (str.indexof arg0 "\n") satisfies {e4} (the erroneous example), and the program
(ite (str.contains arg0 "\n") 1 0) satisfies {e0, e1}. All of these will be discovered fairly
early on in the enumeration.

Instead, the partially-valid programs in the bank need to be ranked so that a manageable
number (no more than 5) of promising programs can be returned to the user. We have
developed a simple ranking function for Bester that takes into account both syntactic and

H. Peleg and N. Polikarpova 2:9

semantic properties of programs, and performs well empirically. Section 4 details our ranking
function and discusses other possible rankings. Intuitively, our ranking rewards programs
that satisfy more examples, programs that use all of their inputs (the so called relevancy
requirement inspired by other synthesis techniques [20, 27]), smaller programs, and programs
where the incorrect outputs are close to the expected outputs. Among the programs listed
above, (str.indexof arg0 "\n") and 0 both satisfy one example, but the former is preferred
by our ranking because it uses its input.

3 Best-Effort Enumeration With Observational Equivalence

In this section, we detail the way an enumerative search with observational equivalence can
be used to find and rank best-effort results to a synthesis query.

Let us consider the challenge in finding a best-effort solution. Since the set of user-
provided examples E might be unsatisfiable, we wish to return a program that satisfies some
E∗ ⊆ E . However, we do not know in advance whether E is satisfiable, and if it is not, which
E∗ we are searching for a solution to.

We can address this challenge with minimal effort thanks to several properties of equiva-
lence classes.

Refined equivalence classes

Enumerative synthesis with observational equivalence adds only one representative from each
equivalence class to its bank of programs based on an equivalence relation ≡I defined as
follows:

p1 ≡I p2 ⇐⇒ ∀ι ∈ I.Jp1K(ι) = Jp2K(ι)

where the equality of execution results considers outputs, exceptions, and side effects. In
a PBE synthesis query, the inputs in I are derived from the example set E such that
I = {ι | (ι, ω) ∈ E}.

If the enumeration that has already added to the reduced program bank the program
p encounters a program p′ such that p ≡I p′, a decision is made which one will be the
representative of the equivalence class [p] that both p and p′ inhabit. The representative is
then kept in the program bank and the other program is discarded. In most synthesizers that
perform the enumeration in layers (i.e., first programs of height 0, then of height 1, etc.), the
first program encountered from each equivalence class is selected as its representative, as was
shown in Figure 2b.

Now consider E ′ ⊂ E , a non-empty subset of examples, and its input set I ′. It is easy to
see that ≡I is a refinement of ≡I′ , since it is the intersection of ≡I′ and ≡I\I′ . This means
that ≡I refines the partition into equivalence classes made by ≡I′ , or that for a program p

in the candidate program space, [p]≡I
⊆ [p]≡I′ .

We notice that if selection of the representative is deterministic, then if p was the
representative of [p]≡I′ , the less refined (and possibly larger) equivalence class, then p

will also be the representative of [p]≡I
: representative selection has determined p to be

the representative against each of the programs in [p]≡I
when it was decided to be the

representative of [p]≡I′ .
This means that if p was included in the bank of programs in a less refined enumeration

with OE-reduction, p will be in the program bank of a more refined enumeration, one with
more examples.

ECOOP 2020

2:10 Perfect Is the Enemy of Good: Best-Effort Program Synthesis

Algorithm 1 A best-effort enumeration.

Input: E a user-provided example specification, G a grammar, f a fitness function,
maxResults the maximum number of results to return to the user

Result: Top maxResults synthesized programs
1 programBank ← ∅
2 resultCandidates← PriorityQueue()
3 while timeout has not passed do
4 foreach prodRule ∈ G do
5 k ← arity(prodRule)
6 foreach (arg1, . . . , argk) ∈ programBankk do
7 if (arg1, . . . , argk) is suitable for prodRule then
8 newProg ← prodRule(arg1, . . . , argk)
9 if ∀p ∈ programBank. p 6≡I newProg then

/* Found the representative of a new equivalence class,
add to the bank */

10 programBank ← programBank ∪ {newProg}
11 exec← {(ι, JnewProgK(ι)) | ι ∈ I}
12 if exec ∩ E 6= ∅ then /* newProg partially satisfies E */
13 resultCandidates.insertWithPriority(newProg, f(newProg, E))
14 end
15 if exec = E then /* newProg fully satisfies E */
16 break all loops
17 end
18 end
19 end
20 end
21 end

/* Either timeout has passed and or a fully satisfying program was
found. We now return a list of options by rank. */

22 results← List()
23 for i = 1 to min(maxResults, resultCandidates.size()) do
24 results.append(resultCandidates.getFront())
25 end
26 return results

Notice that, despite the use of an inputs vector in Section 2.2 (and in practical imple-
mentations), the operations are unordered. This means that it does not matter which of the
examples are missing from E− for the property to hold.

3.1 Finding best-effort solutions
Fortunately, since performing observational equivalence with E is a refinement of any strict,
nonempty subset of E , we can essentially test all nonempty subsets of E simultaneously.
Representative selection ensures we will see all programs we would see enumerating a subset
of the examples, so we can simply collect programs that satisfy any of the examples, instead
of ones that satisfy all of them.

H. Peleg and N. Polikarpova 2:11

Lines 4− 8 of Algorithm 1 are a simple bottom-up enumeration of the space, applying
each of the production rules to each of the programs previously added to the program bank,
generating additional programs. Lines 9− 10 are the implementation of the OE-reduction,
adding to the program bank only programs that are the first of their equivalence class to be
encountered. Line 15 is the stopping condition for any PBE synthesizer: whether executing
each input leads to its expected output. It is simply lines 12 − 14 that “piggyback” on
the enumeration with observational equivalence, collecting programs that satisfy any of the
examples and create the best-effort search.

This means that when enumerating the example in Section 2.1, the program

(- (str.len arg0) (str.len (str.replace (str.replace arg0 "\n" "") "\n" "")))

is produced by the algorithm on line 8. In a regular observational equivalence reduction, the
program will be added to the reduced program bank on line 10 for use in enumerating larger
programs, and the next step would be to perform the check on line 15, testing whether it
fully satisfies the specification. Since it satisfies 3 of the 4 examples, a simple enumeration
would not return it and enumeration would continue searching for a single fully-satisfying
program to show the user.

In a best-effort enumeration, the condition on line 12 admits programs that satisfy any
nonempty subset of E . The program is added to the list of best-effort results, of which the
best results will be returned to the user.

The correctness proposition of observational equivalence [2] guarantees that if a program
that satisfies E exists in the space, we will encounter exactly one such program, as other
programs satisfying E are in its equivalence class and are not part of the reduced program space.
However, if we consider any strict subset, this guarantee no longer holds: when partitioning
the space of programs possible in the grammar based on observational equivalence for E , any
E ′ ⊂ E is now represented by a number of equivalence classes in the program space instead
of just one. In other words, more than one program satisfying E ′ may be encountered in the
course of the enumeration.

This means there are two dimensions in which our goal is no longer unique: along an
enumeration, we are looking for a program that satisfies one of exponentially many E ′ ⊆ E ,
and there can be many such programs for each E ′. However, since the results of a best-effort
enumeration are intended for consumption by a user, we must limit ourselves to a small
number of returned results. This means that in the course of an enumeration based on E
programs that satisfy any nonempty subset of E are collected, and the best few are returned
to the user. This is determined by a fitness function used to rank the programs in line 13 of
Algorithm 1.

We will introduce our fitness function in the next section.

4 Fitness Function

As we have shown in Sections 2 and 3, more than one program can satisfy the same number
of specifications. In this section, we discuss the considerations in constructing the fitness
function used in our implementation of Bester, and suggest additional parameters that
could be added for other synthesizers.

The composition of the function is:

f(p, E) = 3 · satisfied(p, E) + 2 · relevancy(p) + distance(p, E) + size(p)

We now break down each of these elements.

ECOOP 2020

2:12 Perfect Is the Enemy of Good: Best-Effort Program Synthesis

Examples satisfied

Since a program satisfying one example and a program satisfying all examples but one are
not equally good, we use the portion of examples satisfied in our ranking of the program.

satisfied(p, E) = |{(ι, ω) ∈ E | JpK(ι) = ω}|
|E|

This portion of the fitness function is the most strongly weighted, as we still give the
most importance to the best effort, i.e. solving the largest portion of the specification.

Relevancy

Given two programs that solve the same number of examples, we prefer one that uses more
of its input. For example, let us assume a grammar with two input variables, arg0 and arg1,
and three programs that satisfy 2 of 3 examples in E :

p1 = true
p2 = (str.contains arg0 " ")
p3 = (str.prefixof arg1 arg0)

Intuitively, we are certain we want f(p1) to be the lowest of the three, but in all likelihood,
we also want to reward p3 for using all available input from the user. This is a tactic employed
by other synthesis tools such as [20, 27].

We define for all variables V available in the grammar:

relevancy(p) = |{var ∈ V | var ∈ p}|
|V|

Distance from output

While we strongly reward a program for each satisfied example, we also wish to reward
programs that do “better” with regard to the remaining examples.

Currently we include this element only for synthesis tasks that search for a string program.
For strings, being closer to the expected output can be seen as returning a subset or superset
of it, or constructing a close string. This is easily rewarded by using Levenshtein Distance [34]
to measure the distance of the unsatisfied example results from the intended output. While
this component may not be suitable for numeric types, for other structured types such as
lists or trees, other such structured distance metrics can be employed in place of LD.

We denote E− = {(ι, ω) ∈ E | JpK(ι) 6= ω} to be the unsatisfied examples, and define:

distance(p, E) =

 avg
(ι,ω)∈E−

({1− LD(JpK(ι),ω)
max(|ω|,|JpK(ι)|)}) p is a string program and |E−| > 0

0 o.w.

While we include this in the fitness function, we do not weight it as high as some of the
other components as we do still want to allow other logic that may help the user toward the
correct answer, e.g., constructing a complement of the result in order to remove it, to rank
well and be displayed.

H. Peleg and N. Polikarpova 2:13

Program size

Finally, we incorporate the size of the program into the function. In a regular enumerative
synthesizer, ranking by size is implicit, as programs of a lower height will be reached first.
Since programs of a lower height are simpler programs, this tactic is employed in many
synthesizers. In best-effort synthesis we may encounter programs of very different sizes that
satisfy the same examples before we reach the timeout. We therefore add the height of the
program into the ranking to prefer shorter ASTs.

Additionally, we would like to distinguish between programs of the same height. To do
this, we use terms(p), the nubmer of nodes in the AST of p. For example, p1 =(str.at arg0
(+ 1 1)) and p2 =(str.++ (str.++ " " " ") (str.substr arg0 1 1)) are both programs of
height 2, but terms(p1) = 5 whereas terms(p2) = 8.

Since programs are eventually displayed to a user, given two programs of the same height
that are indistinguishable by other parameters, we would like to show the user first the one
that is easier to read, or the overall-smaller one.

Together, we define:

size(p) = 1
height(p) + 1 + 1

terms(p)

Including other data

In a domain where not all specifications are created equal, some may be ranked as more
important than others. For instance, examples that detail an error scenario may be deemed
more or less important than examples that specify a simple output value. Likewise, if not all
specifications are examples [40], an importance ranking between different specification types
can be used to decide which are more likely to be dropped.

Finally, we address the fact that our fitness function is not learned. In theory, a model
could be trained to compute a fitness function according to desired program rankings, or to
provide features for a fitness function (e.g., [8, 33] compute the probability of a program,
which in their tool is used to speed up the search but could also be used for simple numerical
ranking). However, the pool of programs is small, and creating a dataset of ranked best-effort
programs large enough to train from, either manually or automatically, would be unreliable
at best. In addition, our fitness function, both in selected features and in their weights,
encodes in it what we consider to be the important aspects of a best-effort program, rather
than numbers overfitted to a small dataset.

5 Empirical Evaluation

In this section we detail the empirical evaluation performed to validate our approach. Our
experiments are based on the benchmarks of the SyGuS competition [4] and Euphony [33].

Implementation

We implemented an enumerating, observational equivalence synthesizer for the SyGuS
language in Scala, then augmented it for best-effort enumeration2. Best-effort solutions
are accumulated as the enumeration progresses, and the top 5 results are returned. The
enumeration loop of our synthesizer has a 40s timeout, selected since it is a manageable
length of task interruption for a human user [37].

2 https://github.com/peleghila/bester

ECOOP 2020

https://github.com/peleghila/bester

2:14 Perfect Is the Enemy of Good: Best-Effort Program Synthesis

Benchmarks

We used a set of 79 synthesis queries from the 2017 SyGuS competition and the Euphony
benchmarks. These benchmarks contain a selection of data wrangling and string transforma-
tion tasks: the SyGuS benchmarks are entirely string to string transformations but 19 of the
Euphony benchmarks either have a non-string parameter or synthesize a numeric or boolean
expression. Duplicate tasks between SyGuS and Euphony were removed from the original
benchmark set, as well as benchmarks requiring recursion.

We initially divided them into two sets using a simple OE-based enumerating synthesizer
(that does not collect best-effort results): 63 that can be solved within 40s, denoted “easy”,
and 16 that cannot, denoted “hard”.

We then created a modified version of the benchmarks in the “easy” set by adding
erroneous examples such as typos, off-by-one errors, etc. This was done manually and
required great care in order to make sure that the additions are i) not consistent with
the original target program, and ii) do not always create a new example set that is easily
generalized. Of 37 modified benchmarks, two contain more than one erroneous example.

We note that while we introduced errors, it is near impossible to introduce contradictions,
short of pairing the same input with two different outputs. Since most of the SyGuS and
Euphony benchmarks include the conditional ite in their grammar, given enough time the
inconsistency in the examples in many of the modified benchmarks can be overcome with
case-splitting. The exception to this is a result that requires string constants not included in
the grammar and that cannot be generated from the input.

For convenience, we use the simple OE synthesizer to make a distinction between the
modified benchmarks:
1. “no-solution”: benchmarks in which the synthesizer does not find a program that satisfies

all examples within the 40s timeout, and
2. “overfitted”: benchmarks in which the synthesizer is able to find a solution to the given

examples (this solution will usually be long and overfitted via multiple case splits).

Since the origin of many of our benchmarks is the PBE-Strings track of the SyGuS
competition, we take as state-of-the-art the synthesizer/solver CVC4 [44], winner of the
PBE-Strings track of the competition since 2017. We use CVC4 1.7, the most recent version
available.

Experimental setup

We generated gold-standard solutions for each of the original, unmodified 79 benchmarks. Our
gold standard is more forgiving than the SyGuS competition, including both hand-written
solutions for the task in the benchmark, as understood by the authors, and solutions from
CVC4 that cover all examples, despite taking a different approach. Solutions by CVC4 were
accepted as-is, in order to use it as a baseline, despite the fact that, as seen in Section 2.1,
those solutions are at times overfitted and full of case-splits, but for every such case a
hand-crafted gold-standard solution was also added.

All benchmarks were run on a Lenovo laptop with a i7 quad-core CPU @ 2.60GHz with
16GB of RAM.

Research questions

RQ1: Can Bester discard contradicting examples better than a naive search using
a state-of-the-art tool? To test this, we examine the result of running Bester
on the “no-solution” portion of the modified benchmark set. We run Bester with
a 40s timeout, which is not enough for a simple enumerating synthesizer to find a

H. Peleg and N. Polikarpova 2:15

satisfying program for these tasks. We then test whether a gold-standard program for
the original benchmark was returned as the top-ranked result, and compare to the
ability of CVC4 to find the gold-standard result when run first with the full example
set and then with reduced example sets.

RQ2: Can Bester rank a gold-standard result high when there is an overfitted,
uninteded result for the example set? To test this, we examine the “overfitted”
portion of the modified benchmark set. We still ran Bester with a 40s timeout, but
since a fully satisfying result exists, these benchmarks terminate before the timeout.
Though Bester will find a fully-satifying result to the examples, it will also return
other best-effort results. We search for a gold-standard solution in the top 3 results
for each task.

RQ3: Can Bester find pieces of a gold-standard solution when the task is too hard
for it to synthesize? To test this, we search for pieces of gold-standard solutions in
the top results when enumerating the “hard” benchmark set. This question is further
examined in the user study in Section 6.

RQ4: Does the best-effort enumeration in Bester interfere with its ability to solve
a simple synthesis task? In other words, can Bester solve the “easy” benchmark
set, returning the gold-standard solution as the top-rated result?

5.1 Erroneous examples
In RQ1 and RQ2, we wish to empirically quantify the effort of a user looking at a list of
results. That the gold-standard solution appear somewhere on the list of programs shown
as a result to a synthesis call is necessary but insufficient. Ideally, the user would have to
look through as few programs as possible until they find the one they are looking for–and for
confidence in the tool to be high, this should also be consistent.

Since CVC4 only returns one result that satisfies all examples, it will successfully synthesize
none of the modified benchmarks by construction of the benchmark set. To test RQ1 and
RQ2, we implemented a naive best-effort search using CVC4:

CVC4-subsets runs on E , and then on all subsets of size |E| − 1 in a random order. Each
such run is done with a 20s timeout (a longer timeout would give Bester an unfair
advantage in the measurements, and as can be seen in Figure 4b, 20s is sufficient for
CVC4 for most of the unmodified benchmarks), and results are accumulated in the order
that they are discovered and deduplicated in-order.
CVC4-timeout runs as CVC4-subsets, but with an additional overall timeout of 45s, in
order to be comparable to Bester.

We ran the 37 modified benchmarks with Bester, CVC4-subsets, and CVC4-timeout.
Since CVC4-subsets and CVC4-timeout depend on the random order of the dropped
examples, we ran each 5 times and indicate the median and variance. The results are shown
in Figure 3.
RQ1: Can Bester discard contradictions in the example set? Out of 31 benchmarks in
the “no-solution” subset of the modified benchmarks, Bester returned the gold-standard
solution first for 26, and the remaining 5 as the second solution. CVC4-subsets returned
the gold-standard solution within the top 3 for only 25 of the 31 “no-solution” benchmarks
(over 5 runs, min 23, max 28), notably failing completely to synthesize a specification with
more than one erroneous example, of which “no-solution” contains two. In addition, it only
returned the gold-standard solution first for 17 of the benchmarks (min 16, max 18), with

ECOOP 2020

2:16 Perfect Is the Enemy of Good: Best-Effort Program Synthesis

(a) Number of benchmarks in which the gold-standard solution was returned for a given length of result
list. More benchmarks in which a gold-standard solution was found in a shorter list is better. CVC4 runs
include a random component, so indicated is the median over 5 runs, with the shaded area indicating the
variance.

(b) Number of benchmarks that terminate within a given length of time. This is irrespective of correctness,
as the tool must first terminate for its results to be judged by the user. CVC4 runs include a random
component, so indicated is the median over 5 runs, with the shaded area indicating the variance. The
first plateau for Bester indicates the “overfitted” benchmark set, where a fully-satisfying but overfitted
program is found within the timeout.

Figure 3 Correctness and termination times on benchmarks containing at least one erroneous
example.

some gold-standard solutions being as low as fifth. Finally, CVC-timeout fails to return a
gold-standard solution in the top 5 for 15 of the 31 benchmarks (min 13, max 18), and only
returns the gold-standard solution first for 7 of them (min 2, max 9).

We therefore conclude that Bester is effective at discarding contradictions from the
specification and returning a desirable program to the user. Additionally, we conclude
that our efficient best-effort implementation is more efficient than a naive approach
using a state of the art synthesizer.

RQ2: Can Bester return a useful solution despite an overfitted program matching the
examples? Out of the remaining 6 “overfitted” modified benchmarks, Bester shows 5 in the
top three results and 4 in the top 2, exactly the same as CVC4-subsets (min 4, max 6 and
min 3, max 4, respectively). CVC4-timeout had 4 in the top three results (min 3, max 5)
and 3 in the top two (min 2, max 4).

H. Peleg and N. Polikarpova 2:17

We can also see the “overfitted” benchmarks in Figure 3b, as the first plateau between 3
and 40 seconds: overfitted programs are found quickly, and other program options collected
along the way are also shown to the user, as opposed to enumerating a benchmark from
“no-solution”, which will continue until the timeout.

We conclude that Bester performs as well as CVC4-subsets and CVC4-timeout at
ranking the gold-standard solution in the top 3 when an overfitted solution exists. This
is done more efficiently than a naive solution implemented with CVC4, which still pays
the overhead of having to perform multiple runs.

5.2 Partially solving hard benchmarks
In RQ3, we examine the results of Bester on the “hard” set of benchmarks, which are
benchmarks that a simple enumerating OE-reduction synthesizer cannot complete within 40s.
Bester also runs with a timeout of 40s, but returns any best-effort results it finds. None
of the results returned will be a gold-standard solution, but they may be part of a path to
a solution. Therefore, to answer RQ3, we try to quanitify how much of each of the results
returned by Bester can be used to construct a solution.

In order to do that, we must first define the way we measure this similarity.

Tree similarity

In order to judge how much of a result returned by Bester is relevant to the user, we use
a similarity metric between trees on the ASTs of the Bester result and the gold-standard
solution. This metric essentially counts what non-trivial parts of the code can be copied out
verbatim.

When computing s(p1, p2), we look for maximal sub-expressions (or subtrees) x within
p1 (denotes x ∈ p1) that are also included in p2. For each such x, if height(x) > 0 (i.e., x
is not a leaf node) we count terms(x). Additionally, we reward the same term for using
some identical children even if not all children are identical. For example, if there exist
two trees, t(x, y) ∈ p1 and t(x, z) ∈ p2 (notice that t is the same node type and x is in the
same location) we count the root t in addition to terms(x), i.e., add 1 to the accumulated
similarity.

Equivalent programs that result in structurally different trees (e.g., (str.++ "be seeing"
(str.++ " " "you")) vs. (str.++ (str.++ "be seeing" " ") "you")) were handled manually
by first performing equivalence-preserving tree transformations on the gold standard and
then computing the similarity.

Other similarity metrics were originally considered. Program repair projects often employ
distance metrics between programs to choose between several possible repairs. Distance
metrics for structured objects such as DiffX [1] for XMLs were applied to ASTs, and
application-specific ones were crafted [15, 57]. However, the fragment mapping employed by
such distances is more useful for describing insertion and deletion of code (e.g., wrapping a
part of the tree in a conditional, removing a statement), whereas we are interested in pieces
of code that can be used without modification.

Usable parts of best-effort solutions

We ran Bester on the 16 benchmarks in the “hard” set. The results are shown in Table 1.
RQ3: Can Bester return a useful best-effort solution for tasks that it cannot solve within the
timeout? On average, Bester results discover over 40% of the gold-standard solution to a
task (or the most similar one, if there is more than one), or over 11 terms. When considering

ECOOP 2020

2:18 Perfect Is the Enemy of Good: Best-Effort Program Synthesis

Table 1 Portions of the gold-standard solutions discovered by Bester for the tasks in the “hard”
set. The first set of columns is information on the gold standard solutions available for a task:
number and average size. The second set shows the program Bester ranked first: size, its similarity
to the most similar gold-standard solution, and what percentage of the terms in the gold-standard
solution is covered (sim(p, gs)/terms(gs)). For the closest solution to a gold-standard solution, the
rank of the program in Bester’s list is also indicated. t denotes terms, h denotes height (this is
zero-based), sim denotes the similarity to most similar gold-standard solution.

gold standard top Bester solution closest solution to GS

avg avg % best % best
benchmark # GS h t h t sim GS rank h t sim GS
11604909 3 3.7 15.0 2 12 8 62% 1 2 12 8 62%
30732554 1 3.0 12.0 0 1 0 0% 1 0 1 0 0%
38871714 2 6.0 19.0 2 7 7 37% 1 2 7 7 37%
39060015 2 11.0 72.0 2 6 0 0% 2 2 7 15 45%
41503046 3 8.0 64.7 2 7 11 7% 1 2 7 11 7%
43606446 2 5.5 24.5 3 16 12 38% 1 3 16 12 38%
44789427 3 5.7 40.3 2 7 15 21% 2 2 11 16 73%
bikes 2 4.0 16.5 3 14 13 50% 3 3 14 20 77%
count-total-words 1 5.0 35.0 3 14 22 63% 3 3 20 23 66%
exceljet2 1 7.0 43.0 2 11 14 33% 1 2 11 14 33%
stackoverflow1 1 3.0 16.0 2 9 9 56% 1 2 9 9 56%
stackoverflow2 1 6.0 28.0 3 20 24 86% 1 3 20 24 86%
stackoverflow3 1 4.0 12.0 2 6 0 0% 1 2 6 0 0%
strip-html 1 4.0 15.0 - - - - - - - - -
univ_2_short 1 4.0 20.0 2 7 7 35% 1 2 7 7 35%
univ_3_short 1 4.0 14.0 0 1 0 0% 1 0 1 0 0%

only the programs ranked first by Bester, 32% of the gold-standard solution is discovered
with an average of almost 9.5 terms. In 3 of the benchmarks, the entire top-ranking Bester
result was a sub-expression of the solution to the task.

Notice that in some of the tasks (e.g., stackoverflow2) the similarity between the
Bester result and its nearest gold-standard solution is greater than the number of terms in
the Bester result. This is because an expression in the Bester result can repeat multiple
times in the gold-standard solution.

In one of the 16 benchmarks, Bester did not find any program that satisfies at least one
example, and so returned no programs. In 3 additional benchmarks, none of the programs
returned had any non-trivial subtree in common with a gold-standard solution.

Overall, we conclude that Bester generates results that can advance the uesr toward
a solution even when they do not fully satisfy the specification. This will be further
demonstrated in Section 6. Even though in some of the benchmarks none of the
results had any usable components, these are still a minority (overall a quarter of the
benchmarks) and the high similarity of those that did succeed indicates the approach
can be of great use to a user.

5.3 Solving the original easy benchmarks
Since Bester ranks its results, taking into account but not relying solely on the number of
examples satisfied (see Section 4), we must verify that the solutions to the original, unmodified
benchmarks that can be solved by the simple OE synthesizer are still found.

H. Peleg and N. Polikarpova 2:19

(a) Number of benchmarks in which the gold-standard solution was returned for a given length of result
list. CVC4 only returns a single result.

(b) Number of benchmarks that terminate within a given length of time, graph is logscale.

Figure 4 Correctness and time to solution on “easy” benchmarks. CVC4, which was part of the
baseline for correct results, is correct every task that terminates within the 40s timeout. CVC4 is
faster, but the difference is not extreme.

To test RQ4, we ran Bester and CVC4 with a 40s timeout on the unmodified “easy” set
of benchmarks. The results are in Figure 4.

RQ4: Can Bester return the correct result for unmodified “easy” benchmarks? Bester
succeeds in returning a correct solution that is ranked first for 61 out of 63 of the benchmarks
in the “easy” set, on par with the performance of CVC4. (Since CVC4 was used in the
creation of the gold standard, it succeeds on every benchmark it terminates on within the
40s timeout.)

In the remaining two benchmarks, the gold standard solution is ranked second. In both
of these benchmarks, the desired outputs are a substring of arg0, the input variable. Both
also contain multiple examples where the input is unchanged. For both of these benchmarks,
Bester ranks the program arg0 before the target program, since it satisfies some of the
examples and is very close to the correct output in the others, uses all the variables, and is
very simple. This is rare, and when presented to a user, as in Figure 1a, the program would
be accompanied by the number of benchmarks it solves, and we belive it will be easy for
users to discard.

Additionally, Bester is not considerably slower than CVC4 on the benchmarks in “easy”.

ECOOP 2020

2:20 Perfect Is the Enemy of Good: Best-Effort Program Synthesis

We conclude that implementing the best-effort enumeration in Bester does not harm its
correctness on benchmarks that contain no error or contradition, and that its efficiency
in such cases is not much worse than a state of the art synthesizer optimized for
competitions.

6 An Exploratory User Study

In this section we detail the results of a small exploratory study in which 8 users were asked
to use Bester to perform two tasks each. Tasks were selected from the benchmark suite
presented in Section 5, from the “hard” set of benchmarks, i.e., benchmarks that could not
be solved within the timeout by a simple enumerating synthesizer. Notice that these are not
modified tasks, i.e., they are identical to their version in the Euphony benchmark set from
which they both originated. After completing the tasks, we asked each user to answer a set
of questions in a brief interview.

Experiment setup

8 graduate students participated in the study. Users were presented with a brief task
description (as it appears in a comment in the benchmark file), the examples in the benchmark,
and the grammar at their disposal. As shown in Section 2.1, the semantics of some grammar
elements can be misleading, particularly in edge cases.

Participants used a REPL for the target SyGuS language that is initialized with the
limited grammar and the example set for the task. For each program entered, the REPL
prints the output for every input in the example set. Satisfied examples (matching the
example’s expected output) are indicated in green. Screenshots of the REPL are shown
in Figure 1. Participants could edit the program on their own or, at any point, call the
synthesizer to find a program that would satisfy the examples. The Bester synthesizer runs
either until a timeout of 40s or until interrupted by the user (“press any key” in Figure 1b).
While synthesis ran, a number showing the maximum number of examples satisfied was
shown and updated when new programs were found. The top 5 programs found by the
synthesizer are presented to the user, and can be executed or copied. Participants could call
the synthesizer multiple times in the course of one task, as a longer wait could possibly yield
more results.

A task was concluded when a participant said they solved the task, when they gave up
on the task, or when 20 minutes had elapsed.

Users were told that the tasks are underspecified, and they may resolve any ambiguity as
they see fit. Correctness was judged according to semantic equivalence to one of the gold
standard solutions for Section 5.

After performing the tasks, users were given a brief structured interview with questions
about their use of the synthesizer and the helpfulness of the results. Each participant was
paid $10.

Study tasks

The two tasks given to the participants shared a SyGuS grammar, differing only in the
available string literals.

H. Peleg and N. Polikarpova 2:21

Task 1: “stackoverflow1” in Table 1. Its comment in the benchmark file, provided to
participants, was “function to replace substring”.

Examples:

arg0 expected result
"Trucking Inc." "Trucking"
"New Truck Inc" "New Truck"
"ABV Trucking Inc, LLC" "ABV Trucking"

The available string literals were: "", " ", "Inc", ".", ",", and "LLC".

Task 2: “41503046” in Table 1. Its comment in the task file was “find string in substring
with lookup”.

Examples:

arg0 expected result
"Polygonum amphibium" "Polygonum"
"Hippuris vulgaris" "Hippuris"
"Lysimachia vulgaris" "Lysimachia"
"Juncus bulbosus ssp. bulbosus" "Juncus bulbosus"
"Lycopus europaeus ssp. europaeus" "Lycopus europaeus"
"Nymphaea alba" "Nymphaea"

The available string literals were: "", " ", and "ssp.".

Research questions

In order to find out whether the best-effort paradigm can be useful to programmers, we
attempt to answer the following questions:

RQ1: Did users apply any part of the results from Bester to their solution?
RQ2: Did users find the results from Bester helpful even though they do not satisfy every

example?

6.1 Observed behavior
Participants completed task 1 in an average of 9.56 minutes and task 2 in an average of 11.35
minutes. The fastest solution was programmed in just under 5 minutes.

Of 8 users performing two tasks each, 7 successfully completed both tasks. One user
failed to finish the first task within the 20 minute bound and successfully finished the second
task. In addition, one user finished the second task with an incorrect result, and, as they
were not satisfied with it and had time left, continued to rewrite it until they reached a
correct result.

In 15 of the 16 task sessions, the users called the synthesizer at some point during the
session. In task 1, 3 of the users ran the synthesizer a second time in the course of the session.
In task 2, 2 of the users did so, and one ran the synthesizer a third time. One user performed
task 1 without running the synthesizer at all.

Users waited for the synthesizer an average of 17.5s per session while working on task 1
and 27.6s per session while working on task 2, or an average of 14s per individual run of the
synthesizer for task 1 and an average of 18.4s for task 2. Only twice did users allow their
synthesis request to run until the 40s timeout, both in the course of solving task 2.

7 of the 8 participants executed the top synthesis result once the synthesizer terminated.
Only one user executed any result other than the top result – and they executed all results.
6 users later returned to an executed synthesis result using the REPL history and continued
to edit it from there.

ECOOP 2020

2:22 Perfect Is the Enemy of Good: Best-Effort Program Synthesis

6 of the users used the mouse to highlight and copy a synthesized expression and paste it
into their code. Two users also copied parts of a synthesized expression, but for the most
part, the synthesis results that were copied by users were used in their entirety and placed
within larger expressions.

Task 1 has two possible modes of solution: one using str.substr to slice the string up
to the occurrence of "Inc" and using str.replace to replace undesirable substrings with "".
Four users followed the synthesizer’s lead in solving the task with str.replace, and another
user attempted this and abandoned the direction.

Of the 8 users, 5 ran the synthesizer immediately upon being given task 1 (of the 3 who
did not, one did not run the synthesizer at all), and 7 ran it immediately upon being given
task 2.

Many of the participants struggled with the behavior of the str.indexof function which
returns the index of a substring within a string. Unlike the simplified version included in the
grammar in Figure 2a, the function takes an integer parameter which indicates at what index
the search for the substring should begin. Many of the users assumed the index parameter to
indicate which occurrence of the string should be returned. In the solution of task 2, users
spent some time trying to get the second occurrence of " " under this assumption.

6.2 Interviews
In the interview conducted after the tasks were concluded, participants were asked about
their decision to call the synthesizer (and to call it again in the course of the session, if
they did so), about how they decided how long to wait for the synthesizer, and about the
helpfulness of the results.

Calling the synthesizer

Several users explained their call to synthesis as a way to search for a solution they were not
seeing, or in hopes it will simply solve the task for them (or, in the case of one user, “just to
see what it can do”). Some also recognized, particularly for task 2, that there may be at
least a subproblem that can be solved by the synthesizer, providing them with “a start on
the solution” or “a piece that can be reused”.

However, many of the users explained their call to synthesis as a way to help them
understand the problem: either by seeing if there was a generalization of the examples they
were not considering, or to get a confirmation of their understanding, “make sure the model
in [their] head was correct”.

The user who performed task 1 without synthesis said they did not think there exists a
simpler way to perform the task than the one they had in mind, so there was no need for
synthesis.

Finally, many of the users explained that synthesized code was, to them, a good source of
example programs on the inputs. Synthesized code gave them examples of a) the language
syntax and useful available functions, b) the semantics of the functions, and the order of
the arguments, c) function composition, and how different functions interact, and d) help
dealing with what one of the users called “an unnatural collection of primitives”.

Waiting for the synthesizer

Most users who ran the synthesizer immediately at the start of the task attested that it
seemed to them a good use of time to let it run as they were reading the task – it might find
something and save them the effort. One user ran the synthesizer again (and to timeout)
while they were thinking through a problem they had encountered, just in case.

H. Peleg and N. Polikarpova 2:23

Users could stop the synthesizer at any time. Three of the users said they used the
printout of how many examples were solved by the best discovered program as an indication of
when to stop: “[as long as] it made some progress, it was fine”. When the number plateaued,
they “figured it solved part of the problem, but the rest isn’t easy.”

Frustration was also a deciding factor in willingness to wait. Users who were not having
a hard time with the tasks and simply wanted some reference, terminated the synthesizer
very quickly, and they just wanted to see the first results rather than be slowed down by
waiting. Users who were more frustrated, especially those who entered task 2 frustrated from
task 1, expressed being more willing to wait. The user who failed to finish task 1 and ran
the synthesizer to timeout (40s) in task 2 said, “I really struggled, so even if the timeout
was 10 minutes, it’s worth it.”

Only two of the 8 users explicitly named impatience as the criterion for deciding how
long to wait for the synthesizer.

Half (4) the users re-ran the synthesizer within the course of the same task for one of
the two tasks. All said it was in hopes that waiting longer would produce more or better
results. One did so because they lost their train of thought and wanted to start over from a
synthesized solution in order to remember what they were trying to do, and had forgotten
they can call up the solutions from the last run of the synthesizer. This user also stated
that, as they were struggling a bit, they were now more willing to wait for a result. Two
users stated wanting to utilize time when they had stopped to think about what to do next,
in case better solutions would be found. (One user who did not run it a second time said
that “in hindsight, letting it run while I was thinking would have been good.”) One user said
they were curious as to whether there was a random component that would lead to different
results.

Helpfulness of the results

All participants stated the synthesized results were helpful to them in some way.

Getting to a solution: In each of the tasks, the synthesizer returned a different kind of a
sub-solution. In task 1, it needed to be wrapped in more function applications to solve more
cases, whereas task 2 required a case-split and the synthesizer returned a solution to one
of the two cases. Some users viewed one as far more helpful than the other, though which
one was not a constant. Some treated the solution to task 1 as “nearly solved the problem”,
whereas others saw the solution to task 1 as less helpful but the solution to task 2 as giving
them the subprogram that they wanted, where “I could just steal that as a subcomponent”.

Comprehension of the language: Participants who used the synthesizer to understand the
language said synthesized results gave them “phrases” for later use and what constants were
available; “here is some code, here’s what it does.” (In task 2, when they got used to the
language, it was less helpful). Those who did not trust themselves with the language trusted
synthesized code.

Comprehension of the task: Users also attested that synthesized results helped them better
understand the task itself and in what way the examples generalized. This was particularly
true in the second task which contained a case-split. Users said the result of the synthesizer
classified the examples for them into the two cases of the split, or as one user said, “once I
saw the response from the synthesizer, I knew exactly what the correct answer was.”

ECOOP 2020

2:24 Perfect Is the Enemy of Good: Best-Effort Program Synthesis

6.3 Discussion
We return to our research questions:
RQ1: Did users use Bester results in their code? Participants of our study used both entire
Bester results and subprograms of them in their solution code. In addition, in task 1, several
participants let the synthesizer direct the algorithm of their solution. We therefore answer
this question in the affirmative.
RQ2: Did users find the results of Bester helpful? Participants of our study listed different
ways in which the results of Bester were helpful to them, including (but not limited to)
finding code that solves a subproblem. Synthesizer results were also widely used as a
comprehension tool by the users. We therefore answer this question in the affirmative.

6.4 Threats to validity
Finally, we briefly discuss the threats to the validity of our conclusions from the study.

Number of participants and number of tasks: The study was conducted on 8 participants,
performing only two tasks each, which is not enough to make any statistically significant
claims. We therefore try to steer away from such conclusions, and instead observe and report
usage patterns that occurred throughout user sessions.

Selection of programming language: While using the SyGuS language can be seen as an
advantage of the study, mimicking a situation where users are not the most familiar with the
language or API they are using, and therefore need the help of a synthesizer, it is also not the
easiest programming language to read or write, and includes nontrivial semantics for some of
its functions (as demonstrated both in Section 2.1 and in this section). This may lead to
different results than a synthesizer for a programming language users are more comfortable
reading and writing. All the participants in the study were familiar with the S-expression
syntax and had some experience in using it, mitigating some of the comprehension difficulty
if not the problematic semantics.

Homogeneous participants: Since students were recruited from a single department in a
single institution, there is great similarity in their knowledge and ability. This may have
resulted in similar behaviors in the course of the study.

Inability to specify the synthesizer: The Bester implementation used in the study was
not fully-equipped for an iterative and interactive workflow, and users could not control
the specifications the synthesizer attempted to solve. This also means users did not spend
time on (or have a learning curve in) entering specifications or deciding what they should be.
Within such a larger workflow, the observed behaviors may be different. However, we have
tried to only draw conclusions about the usefulness of the results of a synthesizer iteration,
rather than on the interactive incorporation of synthesis in the development workflow.

7 Related work

Syntax-guided synthesis [3] is the domain of program synthesis where the target program
is derived from a set of syntax rules. [30, 55, 18, 56] all fall within this scope. FlashFill
and FlashMeta [23, 42] are tools for automating string transformations and data wrangling
tasks, whose DSL design centers the delicate balance between an expressive grammar, which

H. Peleg and N. Polikarpova 2:25

is needed to find a solution, and a tractable enumeration. Padhi et al. [38] raise the issue of
the overfitting of an over-expressive grammar, leading to programs such as the one shown in
Section 2.1.
The SyGuS competition [5, 4] is held every year and allows solvers and synthesizers to
compete for both performance and correctness on a large selection of benchmarks. The
competition introduced a PBE track in 2016, and now has two PBE tacks, one for string tasks
and one for bit-vector tasks. Both CVC4 [45] and EUSolver [6] have won the competition in
the past.
Programming by Example is a popular technique in program synthesis that leverages either
user-provided input-outputs [56, 36, 21, 25, 23, 24, 42, 58] or tests [20]. Most PBE techniques
target exact specifications and do not handle noise in user input. Some notable exceptions
are FlashFill [23] and RuleSynth [48], as well as Bayesian and neural program induction
techniques [16, 17, 53]. None of these approaches, however, compute results for all subsets of
examples, or deal with timeouts.
Ranking and returning multiple results are two common approach to handing ambiguous
specifications in program synthesis; the two often – but not always – go hand-in-hand. The
FlashX tool family [23, 42] uses a ranking function to select a single, most likely program
among all the programs that satisfy all user-provided examples. This line of work has
explored both hand-crafted [23] and learned [47] ranking functions. Recent work on guiding
synthesis using learned probabilistic models [33] can also be seen as applying a learned
ranking, but during synthesis rather than at the end. Our ranking function for Bester is
hand-crafted, but is different from existing work in that it incorporates semantic features of
programs in addition to syntactic ones, such as the number of examples satisfied, and the
distance between the expected and actual outputs. Recent work on synthesizing lenses [35]
proposed a novel approach to semantic ranking based on information theory. In the future
we would like to explore whether best-effort synthesis can benefit from a more sophisticated
ranking function along these lines. Unlike PBE tools, which use ranking to select a single
result, code completion tools [28, 43] typically present a ranked list of results to the user,
and most commonly rely on learned statistical models and syntactic features.
Observational equivalence Many enumerating synthesizers apply equivalence reductions as
a form of pruning the program space [28, 36, 22, 21, 49]. Observational equivalence [2, 55],
as a more agressive and therefore more optimizing form of equivalence, is used in many
bottom-up synthesizers [56, 6, 51, 41].

EUSolver [6] specializes in solving benchmarks that require case-splitting by performing
an OE-reduced enumeration searching for two subprograms that together cover the examples
and a condition to decide between them. The enumeration performed by EUSolver is similar
to that of Bester in that it is an enumeration over all the examples that also considers
subsets of the examples, but only the first program covering a specific subset of the examples
is used within the (single) result program, whereas Bester ranks all such programs and
returns the highest ranking ones even if several of them cover the same subset of the examples.

Interaction models for program synthesis are a recent field of research, which has taken two
main directions: Modifying specification mechanisms and output formats [40, 13] to make
synthesis easier to use and better targeted to specific populations of users. Iterative program
synthesis [32, 39, 7] focuses on allowing the user to refine the specification while running
the synthesizer after each such refinement, essentially making explicit and improving upon
what has been the implicit assumption of all synthesis tools. Bester is currently situated
well within the first direction, but we believe it will also aid the users greatly in an iterative
setting.

ECOOP 2020

2:26 Perfect Is the Enemy of Good: Best-Effort Program Synthesis

MaxSAT [10] and MaxSMT [9] are the formulation of the satisfiability problem in which
certain clauses are marked as hard constraints and others as soft constraints, and the solver
attempts to find an assignment that satisfies all hard constraints while maximizing the
number of soft constraints satisfied. Viewing the world through this terminology, we see
that previous work has viewed user-provided inputs as hard constraints, and even in work
where other soft constraints are available to the user [14], examples are still considered hard
constraints. In Bester, all examples are soft constraints and a ranking function is being
maximized likening our paradigm to weighted MaxSAT. In Section 4 we suggest a case where
there could be additional weights between the specifications.
Opportunistic programming [12, 11] is the programming paradigm in which composite
programming tasks are solved by hunting for and joining pieces of existing code from other
sources. Projects such as ExampleStack [59] are intended to make the process of importing
found code easier. The Bester user study in Section 6 demonstrates synthesis as another
method that can provide pieces of the solution to the programmer.

8 Conclusion

We proposed a new program synthesis paradigm we call best-effort program synthesis, where
the synthesizer returns a ranked list of programs that satisfy some part of the specification,
rather than just one program that satisfies all of it or no program at all.

This paradigm is implemented in a best-effort enumeration, a new synthesis algorithm that
extends a bottom-up enumeration with observational equivalence, and is able to accumulate
multiple partially-valid results with minimal overhead. We implemented this algorithm in a
tool called Bester, and evaluated it on 79 synthesis benchmarks from the SyGuS competition
and the Euphony benchmark suite.

Our empirical evaluation showed that best-effort enumeration is more efficient and returns
better results than a naive approach to best-effort program synthesis, and that Bester
returned useful results even when the specification is flawed or too hard: i) for specifications
containing an erroneous example, the top three Bester results contained the correct solution,
and ii) for most hard benchmarks, the top three results contained non-trivial fragments of
the correct solution. Our user study showed that users apply partially-valid results and parts
of those results to their code. Additionally, we observed that programmers use the output of
the synthesizer for comprehension and not only as a possible part of their solution.

References

1 Raihan Al-Ekram, Archana Adma, and Olga Baysal. diffx: an algorithm to detect changes in
multi-version xml documents. In Proceedings of the 2005 conference of the Centre for Advanced
Studies on Collaborative research, pages 1–11. IBM Press, 2005.

2 Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. Recursive program synthesis. In
International Conference on Computer Aided Verification, pages 934–950. Springer, 2013.

3 Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund Raghothaman,
Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa.
Syntax-guided synthesis. Dependable Software Systems Engineering, 40:1–25, 2015.

4 Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama. Sygus-comp 2017:
Results and analysis.

5 Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama. Sygus-comp 2016:
Results and analysis. arXiv preprint, 2016. arXiv:1611.07627.

http://arxiv.org/abs/1611.07627

H. Peleg and N. Polikarpova 2:27

6 Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. Scaling enumerative program
synthesis via divide and conquer. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 319–336. Springer, 2017.

7 Shengwei An, Rishabh Singh, Sasa Misailovic, and Roopsha Samanta. Augmented example-
based synthesis using relational perturbation properties. Proceedings of the ACM on Program-
ming Languages, 4(POPL):56, 2019.

8 Pavol Bielik, Veselin Raychev, and Martin Vechev. Phog: Probabilistic model for code. In
Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research,
pages 2933–2942, New York, New York, USA, 20–22 june 2016. PMLR. URL: http://
proceedings.mlr.press/v48/bielik16.html.

9 Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. νz-an optimizing smt solver. In
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 194–199. Springer, 2015.

10 Brian Borchers and Judith Furman. A two-phase exact algorithm for max-sat and weighted
max-sat problems. Journal of Combinatorial Optimization, 2(4):299–306, 1998.

11 Joel Brandt, Philip J Guo, Joel Lewenstein, Mira Dontcheva, and Scott R Klemmer. Two
studies of opportunistic programming: interleaving web foraging, learning, and writing code.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages
1589–1598. ACM, 2009.

12 Joel Brandt, Philip J Guo, Joel Lewenstein, and Scott R Klemmer. Opportunistic programming:
How rapid ideation and prototyping occur in practice. In Proceedings of the 4th international
workshop on End-user software engineering, pages 1–5. ACM, 2008.

13 Sarah Chasins. Democratizing Web Automation: Programming for Social Scientists and Other
Domain Experts. PhD thesis, EECS Department, University of California, Berkeley, October
2019. URL: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-139.html.

14 Yanju Chen, Ruben Martins, and Yu Feng. Maximal multi-layer specification synthesis. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 602–612, 2019.

15 Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. Qlose: Program repair with quantitative
objectives. In Computer Aided Verification - 28th International Conference, CAV 2016,
Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II, pages 383–401, 2016. doi:
10.1007/978-3-319-41540-6_21.

16 Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed,
and Pushmeet Kohli. Robustfill: Neural program learning under noisy I/O. In Proceedings of
the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, pages 990–998, 2017.

17 Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. Learning to infer
graphics programs from hand-drawn images. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems 31, pages 6059–6068. Curran Associates, Inc., 2018. URL: http://papers.nips.cc/
paper/7845-learning-to-infer-graphics-programs-from-hand-drawn-images.pdf.

18 Azadeh Farzan and Victor Nicolet. Modular divide-and-conquer parallelization of nested
loops. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, pages 610–624, New York, NY, USA, 2019. ACM.
doi:10.1145/3314221.3314612.

19 Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. Component-
based synthesis of table consolidation and transformation tasks from examples. In Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages 422–436, 2017.

20 Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W Reps. Component-based
synthesis for complex apis. ACM SIGPLAN Notices, 52(1):599–612, 2017.

ECOOP 2020

http://proceedings.mlr.press/v48/bielik16.html
http://proceedings.mlr.press/v48/bielik16.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-139.html
https://doi.org/10.1007/978-3-319-41540-6_21
https://doi.org/10.1007/978-3-319-41540-6_21
http://papers.nips.cc/paper/7845-learning-to-infer-graphics-programs-from-hand-drawn-images.pdf
http://papers.nips.cc/paper/7845-learning-to-infer-graphics-programs-from-hand-drawn-images.pdf
https://doi.org/10.1145/3314221.3314612

2:28 Perfect Is the Enemy of Good: Best-Effort Program Synthesis

21 John K Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data structure transformations
from input-output examples. In ACM SIGPLAN Notices, volume 50(6), pages 229–239. ACM,
2015.

22 Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. Example-directed
synthesis: A type-theoretic interpretation. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’16, pages 802–815,
New York, NY, USA, 2016. ACM. doi:10.1145/2837614.2837629.

23 Sumit Gulwani. Automating string processing in spreadsheets using input-output examples.
In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’11, pages 317–330, New York, NY, USA, 2011. ACM.
doi:10.1145/1926385.1926423.

24 Sumit Gulwani. Synthesis from examples: Interaction models and algorithms. In Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC), 2012 14th International Symposium
on, pages 8–14. IEEE, 2012.

25 Sumit Gulwani. Programming by examples (and its applications in data wrangling). In Javier
Esparza, Orna Grumberg, and Salomon Sickert, editors, Verification and Synthesis of Correct
and Secure Systems. IOS Press, 2016.

26 Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Synthesis of
loop-free programs. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages
62–73, 2011. doi:10.1145/1993498.1993506.

27 Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, Ziteng Wang, Ranjit Jhala, and
Nadia Polikarpova. Program synthesis by type-guided abstraction refinement. In Principles
of programming languages, page to appear, 2020.

28 Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Complete completion using
types and weights. In ACM SIGPLAN Notices, volume 48(6), pages 27–38. ACM, 2013.

29 Jeevana Priya Inala and Rishabh Singh. Webrelate: integrating web data with spreadsheets
using examples. PACMPL, 2(POPL):2:1–2:28, 2018. doi:10.1145/3158090.

30 Shachar Itzhaky, Rohit Singh, Armando Solar-Lezama, Kuat Yessenov, Yongquan Lu, Charles
Leiserson, and Rezaul Chowdhury. Deriving divide-and-conquer dynamic programming al-
gorithms using solver-aided transformations. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, pages 145–164. ACM, 2016.

31 Vu Le and Sumit Gulwani. FlashExtract: a framework for data extraction by examples. In
Michael F. P. O’Boyle and Keshav Pingali, editors, Proceedings of the 35th Conference on
Programming Language Design and Implementation, page 55. ACM, 2014. doi:10.1145/
2594291.2594333.

32 Vu Le, Daniel Perelman, Oleksandr Polozov, Mohammad Raza, Abhishek Udupa, and Sumit
Gulwani. Interactive program synthesis. CoRR, abs/1703.03539, 2017. arXiv:1703.03539.

33 Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. Accelerating search-based program
synthesis using learned probabilistic models. In ACM SIGPLAN Notices, volume 53(4), pages
436–449. ACM, 2018.

34 Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
In Soviet physics doklady, volume 10(8), pages 707–710, 1966.

35 Anders Miltner, Solomon Maina, Kathleen Fisher, Benjamin C. Pierce, David Walker, and
Steve Zdancewic. Synthesizing symmetric lenses. Proc. ACM Program. Lang., 3(ICFP), July
2019. doi:10.1145/3341699.

36 Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed program synthesis. In
ACM SIGPLAN Notices, volume 50(6), pages 619–630. ACM, 2015.

37 Antti Oulasvirta and Pertti Saariluoma. Surviving task interruptions: Investigating the
implications of long-term working memory theory. International Journal of Human-Computer
Studies, 64(10):941–961, 2006.

https://doi.org/10.1145/2837614.2837629
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1145/3158090
https://doi.org/10.1145/2594291.2594333
https://doi.org/10.1145/2594291.2594333
http://arxiv.org/abs/1703.03539
https://doi.org/10.1145/3341699

H. Peleg and N. Polikarpova 2:29

38 Saswat Padhi, Todd D. Millstein, Aditya V. Nori, and Rahul Sharma. Overfitting in synthesis:
Theory and practice. In Computer Aided Verification - 31st International Conference, CAV
2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I, pages 315–334, 2019.
doi:10.1007/978-3-030-25540-4_17.

39 Hila Peleg, Shachar Itzhaky, and Sharon Shoham. Abstraction-based interaction model for
synthesis. In Isil Dillig and Jens Palsberg, editors, Verification, Model Checking, and Abstract
Interpretation, pages 382–405, Cham, 2018. Springer International Publishing.

40 Hila Peleg, Sharon Shoham, and Eran Yahav. Programming not only by example. In
Proceedings of the 40th International Conference on Software Engineering, pages 1114–1124.
ACM, 2018.

41 Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar Dhurjati.
Scaling up superoptimization. In ACM SIGARCH Computer Architecture News, volume 44(2),
pages 297–310. ACM, 2016.

42 Oleksandr Polozov and Sumit Gulwani. Flashmeta: A framework for inductive program
synthesis. ACM SIGPLAN Notices, 50(10):107–126, 2015.

43 Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion with statistical language
models. In ACM SIGPLAN Notices, volume 49(6), pages 419–428. ACM, 2014.

44 Andrew Reynolds, Haniel Barbosa, Andres Nötzli, Clark W. Barrett, and Cesare Tinelli.
cvc4sy: Smart and fast term enumeration for syntax-guided synthesis. In Computer Aided
Verification - 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18,
2019, Proceedings, Part II, pages 74–83, 2019.

45 Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark Barrett.
Counterexample-guided quantifier instantiation for synthesis in smt. In International Confer-
ence on Computer Aided Verification, pages 198–216. Springer, 2015.

46 Kensen Shi, Jacob Steinhardt, and Percy Liang. Frangel: Component-based synthesis with
control structures. Proc. ACM Program. Lang., 3(POPL), January 2019. doi:10.1145/
3290386.

47 Rishabh Singh and Sumit Gulwani. Predicting a correct program in programming by
example. In Computer Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I, pages 398–414, 2015.
doi:10.1007/978-3-319-21690-4_23.

48 Rohit Singh, Venkata Vamsikrishna Meduri, Ahmed K. Elmagarmid, Samuel Madden, Paolo
Papotti, Jorge-Arnulfo Quiané-Ruiz, Armando Solar-Lezama, and Nan Tang. Synthesizing
entity matching rules by examples. PVLDB, 11(2):189–202, 2017. URL: http://www.vldb.
org/pvldb/vol11/p189-singh.pdf.

49 Calvin Smith and Aws Albarghouthi. Program synthesis with equivalence reduction. In
Verification, Model Checking, and Abstract Interpretation - 20th International Conference,
VMCAI 2019, Cascais, Portugal, January 13-15, 2019, Proceedings, pages 24–47, 2019. doi:
10.1007/978-3-030-11245-5_2.

50 Armando Solar-Lezama. Program sketching. STTT, 15(5-6):475–495, 2013. doi:10.1007/
s10009-012-0249-7.

51 Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik. Sketching concurrent
data structures. In ACM SIGPLAN Notices, volume 43(6), pages 136–148. ACM, 2008.

52 Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat.
Combinatorial sketching for finite programs. ACM SIGOPS Operating Systems Review,
40(5):404–415, 2006.

53 Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T. Freeman, Joshua B.
Tenenbaum, and Jiajun Wu. Learning to infer and execute 3d shape programs. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019, 2019.

54 Emina Torlak and Rastislav Bodík. A lightweight symbolic virtual machine for solver-aided
host languages. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, page 54, 2014.
doi:10.1145/2594291.2594340.

ECOOP 2020

https://doi.org/10.1007/978-3-030-25540-4_17
https://doi.org/10.1145/3290386
https://doi.org/10.1145/3290386
https://doi.org/10.1007/978-3-319-21690-4_23
http://www.vldb.org/pvldb/vol11/p189-singh.pdf
http://www.vldb.org/pvldb/vol11/p189-singh.pdf
https://doi.org/10.1007/978-3-030-11245-5_2
https://doi.org/10.1007/978-3-030-11245-5_2
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1145/2594291.2594340

2:30 Perfect Is the Enemy of Good: Best-Effort Program Synthesis

55 Abhishek Udupa, Arun Raghavan, Jyotirmoy V Deshmukh, Sela Mador-Haim, Milo MKMartin,
and Rajeev Alur. Transit: specifying protocols with concolic snippets. ACM SIGPLAN Notices,
48(6):287–296, 2013.

56 Chenglong Wang, Alvin Cheung, and Rastislav Bodik. Synthesizing highly expressive sql
queries from input-output examples. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 452–466. ACM, 2017.

57 Ke Wang, Rishabh Singh, and Zhendong Su. Search, align, and repair: data-driven feedback
generation for introductory programming exercises. In ACM SIGPLAN Notices, volume 53(4),
pages 481–495. ACM, 2018.

58 Navid Yaghmazadeh, Xinyu Wang, and Isil Dillig. Automated migration of hierarchical data
to relational tables using programming-by-example. Proc. VLDB Endow., 11(5):580–593,
January 2018. doi:10.1145/3187009.3177735.

59 Tianyi Zhang, Di Yang, Crista Lopes, and Miryung Kirnt. Analyzing and supporting adaptation
of online code examples. In Proceedings of the 41st International Conference on Software
Engineering, pages 316–327. IEEE Press, 2019.

https://doi.org/10.1145/3187009.3177735

Blame for Null
Abel Nieto
University of Waterloo, Canada
anietoro@uwaterloo.ca

Marianna Rapoport
University of Waterloo, Canada
mrapoport@uwaterloo.ca

Gregor Richards
University of Waterloo, Canada
gregor.richards@uwaterloo.ca

Ondřej Lhoták
University of Waterloo, Canada
olhotak@uwaterloo.ca

Abstract
Multiple modern programming languages, including Kotlin, Scala, Swift, and C#, have type systems
where nullability is explicitly specified in the types. All of the above also need to interoperate with
languages where types remain implicitly nullable, like Java. This leads to runtime errors that can
manifest in subtle ways. In this paper, we show how to reason about the presence and provenance
of such nullability errors using the concept of blame from gradual typing. Specifically, we introduce
a calculus, λnull, where some terms are typed as implicitly nullable and others as explicitly nullable.
Just like in the original blame calculus of Wadler and Findler, interactions between both kinds of
terms are mediated by casts with attached blame labels, which indicate the origin of errors. On top
of λnull, we then create a second calculus, λs

null, which closely models the interoperability between
languages with implicit nullability and languages with explicit nullability, such as Java and Scala.
Our main result is a theorem that states that nullability errors in λs

null can always be blamed
on terms with less-precise typing; that is, terms typed as implicitly nullable. By analogy, this
would mean that NullPointerExceptions in combined Java/Scala programs are always the result
of unsoundness in the Java type system. We summarize our result with the slogan explicitly nullable
programs can’t be blamed. All our results are formalized in the Coq proof assistant.

2012 ACM Subject Classification Software and its engineering → General programming languages;
Theory of computation → Type theory; Software and its engineering → Interoperability; Theory of
computation → Operational semantics

Keywords and phrases nullability, type systems, blame calculus, gradual typing

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.3

Supplementary Material ECOOP 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.2.10.

Funding This research was supported by the Natural Sciences and Engineering Research Council of
Canada and by the Waterloo-Huawei Joint Innovation Lab.

Acknowledgements We would like to thank the anonymous reviewers for their valuable feedback.

1 Introduction

The problem of null pointers has plagued programming languages since 1965 [28]. In
languages with null pointers, references may be to valid values, or may be null, which
cannot be dereferenced. Attempting to dereference a null reference typically raises a runtime
exception in modern, garbage-collected programming languages. This presents a problem for

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Abel Nieto, Marianna Rapoport, Gregor Richards, and Ondřej Lhoták;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 3; pp. 3:1–3:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2741-8119
mailto:anietoro@uwaterloo.ca
mailto:mrapoport@uwaterloo.ca
https://orcid.org/0000-0001-5058-2174
mailto:gregor.richards@uwaterloo.ca
https://orcid.org/0000-0001-9066-1889
mailto:olhotak@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.ECOOP.2020.3
https://doi.org/10.4230/DARTS.6.2.10
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Blame for Null

type soundness and for program maintainability: null is considered a subtype of all reference
types, and yet has the interface of none. A number of solutions have been created to address
this problem, ranging from type-based solutions [4, 7, 9, 10, 20] to static analyses [24, 30],
and from statically sound [10] to heuristic [3].

One type-based solution is to liberate null from its special status as subtype of all reference
types. In a language with a null isolated as such, references which are nullable must be
explicitly specified as such: the type T cannot reference null, but a type such as T? (“nullable
T”, in Kotlin) or T|Null (“T or Null”, in Scala) can. These explicitly nullable types must be
explicitly verified not to be null before being dereferenced. This adds an extra burden on
the programmer to perform such checks, but eliminates all null dereference errors if used
consistently1.

Unfortunately, modern programming languages with null often inherit it from connected
languages, and this inheritance restricts the scope of nullability. Kotlin, C#, and Swift, for
example, all have explicitly nullable types, but due to their interactions with Java, other
.NET languages, and Objective-C respectively, may still encounter null dereference errors.
For instance, Kotlin [15] has explicitly nullable types, but is designed to be fully compatible
with Java. But, Java has implicitly nullable types – that is, variables and fields of all reference
types may refer to null, unsoundly. As a consequence, even if Kotlin’s own type system
perfectly prevents all null dereferences, its interactions with Java will lead to problems.

Luckily, the interaction between languages with differing levels of type soundness has been
studied, in the field of gradual typing [22]. In this paper, we apply the principles of gradual
typing – and, in particular, the core result that unsoundness can always be correctly blamed
on the unsound language – to the problem of interfacing languages with explicit nullability
and languages with implicit nullability. We use the context of Scala, which has implemented
explicitly nullable types as an optional feature of its in-development next compiler2, and
Java, which has implicitly nullable reference types.

A sophisticated infrastructure, such as gradual typing’s blame, is needed, because there
are several ways that nulls can cause problems. Consider the following snippets of Scala and
Java code:

1 // Scala
2 class ScalaStringOps {
3 def len(s : String): Int = s.length
4 }
5
6 def main() = {
7 val jso = new JavaStringOps()
8 jso . len(null)
9 jso .nlen()

10 }

1 // Java
2 class JavaStringOps {
3 int len(String s) {
4 return s.length;
5 }
6
7 int nlen() {
8 return new ScalaStringOps().len(null);
9 }
10 }

Scala’s line 8 calls the len method of Java’s JavaStringOps. When importing Java code
into Scala, Scala must choose how to represent Java’s implicitly nullable types. Naturally,
the Java code might – and in this context, will – fail: Java’s line 4 is unsafe. It’s reasonable
to instead try to guarantee that the execution of Scala code will never dereference null. A

1 Care must be taken to handle the related problem of uninitialized or partially-initialized objects, which
can lead to subtle nullability errors [24, 30].

2 https://dotty.epfl.ch/

https://dotty.epfl.ch/

A. Nieto, M. Rapoport, G. Richards, and O. Lhoták 3:3

natural assumption is that Scala can assure this by importing all reference types as nullable
types. For instance, Java’s String is reinterpreted as String|Null. This option could be
cumbersome for users, but may prevent Scala from raising null errors, as all values from Java
must be checked. For practical reasons, most implementations choose instead to unsoundly
import String as String, allowing null dereferences in the “safe” language, but as we will
see in the next paragraph, plugging this hole is insufficient to solve the soundness problem
anyway. A further problem arises because the interaction between these languages is not
one-directional.

Consider Java’s line 8. In this context, Scala’s ScalaStringOps is imported into Java,
and we have no choice: Its String can only reasonably be a String, even though Scala
Strings are not nullable, and Java Strings are. With this forced unsound type conversion,
Java is free to call len with null, causing Scala to raise a null dereference error on line 3.
But, while the error was raised in Scala code, the cause for the problem is Java: Java put a
null where it was not suitable. We aim to prove that even when errors occur in Scala code,
it is the Java code’s fault.

In gradual typing, “well-typed programs can’t be blamed” [27]. In this work, explicitly
nullable programs can’t be blamed.

This paper’s contributions are:
A core calculus, λnull (“lambda null”), that formalizes the essence of type systems with
implicit and explicit nullability, like those of Kotlin and Scala. λnull is based on the
blame calculus of Wadler and Findler [27].
A higher-level calculus, λs

null (“stratified lambda null”), that models the interoperability
between languages with implicit nullability and languages with explicit nullability. We
can think of λs

null as a stratified version of λnull, where the implicit and explicit terms
are kept separate, but can depend on each other, much like Scala code, which can depend
on Java code.
A metatheory for λnull, consisting of the standard progress and preservation lemmas
(Lemmas 5 and 8), as well as well as blame theorems that characterize how nullability
errors can occur in λnull (Theorems 15 and 16).
A metatheory for λs

null with two main components. First, a semantics of λs
null that

desugars λs
null terms as λnull terms. Second, our main result, Theorem 22, which states

that nullability errors can always be blamed on terms with less-precise typing; that is, terms
typed as implicitly nullable. By analogy, this would mean that NullPointerExceptions
in combined Java/Scala programs are always the result of unsoundness in the Java type
system, which treats reference types as implicitly nullable. In the style of Wadler and
Findler [27], we summarize our result with the slogan explicitly nullable programs can’t be
blamed.
A Coq mechanization of all our results.

2 Blame Calculus

The blame calculus of Wadler and Findler [27] models the interactions between less-precisely
and more-precisely typed code. For example, the less-precisely typed code could come
from a dynamically-typed language, and the more-precisely typed code could come from a
statically-typed language like Scala. The goal of the calculus is twofold:

To characterize situations where errors can or cannot occur as a result of the interaction
between both languages: e.g. “there will not be runtime errors, unless the typed code
calls the untyped code”.
If runtime errors do occur, to assign blame (responsibility) for the error to some term
present in the evaluation.

ECOOP 2020

3:4 Blame for Null

To do the above, the blame calculus extends the simply-typed lambda calculus with casts
that contain blame labels3. The notation 4 for casting a term s from a type S to another
type T with blame label p is s : S =⇒p T .

During evaluation, a cast might succeed, fail, or be be broken up into further casts. For
example, suppose that we cast the value 4 from an integer into a natural number. Such
a cast would naturally succeed, and one step of evaluation then makes the cast disappear:
4 : Int =⇒p Nat 7−→ 4. A cast can also fail. This is when we use the blame label. For
example, if we try to turn an integer into a string using a cast with blame label p, then we
fail and blame p: 4 : Int =⇒p String 7−→⇑ p.

If the cast is higher-order, however, things get tricky. How are we to determine whether
a function of type Int→ Int also has type Nat→ Nat?

(λ(x : Int).x− 2) : Int→ Int =⇒p Nat→ Nat

Informally, the cast above is saying: “if you provide as input a Nat that is also an Int,
the function will return an Int that is also a Nat”. Intuitively, the cast is incorrect, because
the function can return negative numbers. In general, however, we cannot hope to statically
ascertain the validity of a higher-order cast. The insight about what to do here comes from
work on higher-order contracts [11]. The key idea is to delay the evaluation of the cast until
the function is applied. That is, we consider the entire term above, the lambda plus its cast,
a value. Then, if we need to apply the lambda wrapped in a cast, we use the following rule:

((v : (A→ B) =⇒p (A′ → B′)) w) 7−→ (v (w : A′ =⇒p A)) : B′ =⇒p B

Notice how the original cast was decomposed into two separate casts on subterms. This
rule says that applying a lambda wrapped in a cast involves three steps:

First, we cast the argument w, which is expected to have type A′, to type A.
Then we apply the function v to its argument, as usual.
Finally, we cast the result of the application from B′ back to the expected type B.

Also notice how the blame label in the cast w : A′ =⇒p A′ changed from p to its complement p.
We can think of blame labels as opaque identifiers. We assume the existence of a complement
function on blame labels, and write p for the label that is the complement of blame label p.
The complement operation is involutive, meaning that it is its own inverse: p = p.

When a runtime error happens, complementing blame labels leads to two kinds of blame:
positive and negative:

Positive blame. Given a cast with blame label p, positive blame happens when the term
inside the cast is responsible for the failure. In this case, the (failed) term will evaluate to
⇑ p. For example, recall our example with the faulty function that subtracts two from its
argument:

((λ(x : Int).x− 2) : Int→ Int =⇒p Nat→ Nat) 1
7−→ ((λ(x : Int).x− 2) (1 : Nat =⇒p Int)) : Int =⇒p Nat

7−→ ((λ(x : Int).x− 2) 1) : Int =⇒p Nat

7−→ (1− 2) : Int =⇒p Nat

7−→ − 1 : Int =⇒p Nat

7−→ ⇑ p

3 The original presentation in Wadler and Findler [27] also adds refinement types, but we will not need
them here.

4 The notation for casts we use comes from Ahmed et al. [1].

A. Nieto, M. Rapoport, G. Richards, and O. Lhoták 3:5

The term being cast (the lambda) is responsible for the failure, because it promised to
return a Nat, which −1 is not.

Negative blame. If the cast fails because it is provided an argument of an incorrect type
by its context (surrounding code), then we will say the failure has negative blame. In this
case, the term will evaluate to ⇑ p. For example, suppose our example function is used in an
untyped context, where the only type is ?. Without help from its type system, the context
might try to pass in a String as argument:

((λ(x : Int).x− 2) : Int→ Int =⇒p ?→ ?) "one"

7−→ ((λ(x : Int).x− 2) ("one" : ? =⇒p Int)) : Int =⇒p ?

7−→ ⇑ p

Because the context tried to pass an argument that is not an Int, we blame the failure
on the context.

2.1 Well-typed Programs Can’t Be Blamed
The central result in Wadler and Findler [27] is a blame theorem that provides two guarantees:

Casts from less-precise5 to more-precise types, like v : Int→ Int =⇒p Nat→ Nat, only
fail with positive blame.
Casts from more-precise to less-precise types, like v : Int → Int =⇒p ? → ?, only fail
with negative blame.

In both cases, the less precisely typed code is assigned responsibility for the failure. The
authors summarize this result with the slogan “well-typed programs can’t be blamed”, itself
a riff on an earlier catchphrase, “well-typed programs cannot go wrong”, by Milner [18]. In
the next section, we will show how we can adapt ideas from the blame calculus to reason
about nullability errors.

3 Main Ideas

This section offers a bird’s-eye view of the rest of the paper. The main idea is to cast (no pun
intended) the null interoperability problem as a gradual typing problem. Then, using casts
with blame, we show that the implicit language can always be blamed for interoperability
errors. That is, explicitly nullable programs can’t be blamed.

3.1 λnull

The first step is to formalize null pointer exceptions. We start with a calculus λnull (“lambda
null”), based on the blame calculus of Wadler and Findler [27], to which we add a null literal
with type Null. We keep the casts with blame: s : S =⇒p T . Additionally, we distinguish
between three kinds of function types:

#(S → T) is a presumed non-nullable function, meaning that values of this type are
expected to be non-null, but could be null if a downcast was involved (see Section 4).
That these functions should be non-null is relevant to how we assign blame.
?(S → T) is a safe nullable function, meaning that values of this type can be null, but
the type system makes sure that they are safely used.
!(S → T) is an unsafe nullable function, meaning that values of this type can be null,
but the type system does not protect against unsafe uses of them.

5 The formal definition of “less-precise” is given by a naive subtyping relation in Wadler and Findler [27].

ECOOP 2020

3:6 Blame for Null

The table below shows the three function types in λnull and the kinds of Java and Scala
types they model6:

λs
null Scala Java

#(S → T) StringScala

?(S → T) String|Null
!(S → T) StringJava

Nullability errors happen when we have a function application u v, but the value u in the
function position is in fact null. This corresponds closely to what happens in real languages,
where null pointer exceptions occur when we select a field or method on a null receiver:
e.g. we evaluate s.length() and s is null. In fact, u will be “disguised” inside one or more
casts, so the type system is fooled into thinking u is a function. For example, taking one
step of evaluation on the following term leads to an error ⇑ p, where the label in the error
comes from the cast: (null : Null =⇒p?(Null→ Null)) null 7−→⇑ p.

If one wants to be safe from nullability errors, then instead of a regular application s t,
we can use a safe application app(s, t, r), which conceptually desugars into if (s != null)
then (s t) else r.

3.2 Blame Assignment
In the example above, (null : Null =⇒p?(Null→ Null)) null 7−→⇑ p, how did we decide
to blame p? The basic rules for assigning blame are as follows:

If the cast that causes the failure casts to a presumed non-nullable function, e.g. v :?(S →
T) =⇒p #(S → T), then we blame the cast: i.e. ⇑ p. This is because the context (the
surrounding code) was promised a value that should not be null, yet the cast delivered
null.
On the other hand, if the cast is to an unsafe nullable function, e.g. v : #(S →
T) =⇒p!(S → T), then we blame the context, because the context should know that the
presumptive function value could in fact be null, but nevertheless chose to use a regular
application, instead of a safe application.
Casts to a safe nullable function, e.g. v : #(S → T) =⇒p?(S → T), will never fail,
because the type system ensures that such functions are always applied through safe
applications.

In addition to the rules above, our blame assignment needs to support nested casts. For
example, suppose we have a null value that passes through the following casts, Null⇒p

? ⇒q # ⇒r !7. If the resulting cast is used in the function position of an application,
it will lead to a failure, but which cast should we blame? We could blame r, as per the
second blame assignment rule above. However, something feels off, because intuitively a
cast #⇒r ! should never be blamed for a failure. Indeed, the cast was promised a non-null
value, which it should be safe to consider as a !. Instead, we identify ?⇒q # as the problem,
and blame q, as per the first rule above.

To summarize, blame assignment is a two-part process: we first identify the cast responsible
for the error using a blame assignment relation ↑ (this might involve skipping over one or
more nested casts), and then we blame the relevant label, or its complement, depending on
whether the destination type is # or !.

6 Since λnull is a core calculus, it does not have objects or classes, but only functions. In λnull it is
function types that are nullable or non-nullable.

7 Here we are using a shorthand syntax for casts, where we only show the top-level function type. For
example, we abbreviate a cast s : #(S → T) =⇒p!(S → T) as #⇒p !

A. Nieto, M. Rapoport, G. Richards, and O. Lhoták 3:7

3.3 λsnull

With λnull sketched, we then define a second, higher-level calculus λs
null (“stratified lambda

null”). Whereas in λnull the three function types can be mixed freely, λs
null stratifies terms

into implicit and explicit sublanguages. Within the implicit sublanguage, we can only use
unsafe nullable functions (e.g. !(S → T)), while in the explicit sublanguage we can use both
non-nullable (#(S → T)) and safe nullable functions (?(S → T)). The implicit sublanguage
models languages where null is a subtype of any other (reference) type, like Java. The
explicit sublanguage models languages where the user can choose whether a type is nullable
or not, like Kotlin and Scala.

The last step is to model the interoperability between the implicit and explicit worlds. To
do that, we add to λs

null an import term that makes an implicit term available to the explicit
world and vice versa. Imports look very similar to let-bindings: importe x : Te = (ti : Ti) in te.
This says that we evaluate the implicit term ti and assign it to x, which is then available in
the body te (implicit and explicit terms and types are written in red and blue, respectively).
Additionally, the implicit type of ti is Ti, but to the explicit world the type is translated as
Te. This kind of view shift in the type closely models what happens in real-world languages
that support explicit nulls, but need to operate with another language where null is implicit.
For example, the Java type String is translated as String|Null in Scala.

3.3.1 Semantics

We give type systems for λnull and λs
null, and an operational semantics for λnull. The

semantics of λs
null are given via a desugaring to λnull. The desugaring is straightforward,

but it allows us to identify the three kinds of casts that can make a program fail:
Internal casts within the implicit world.
Internal casts within the explicit world.
Interoperability casts that result from desugaring imports. For example, the import
term above generates the cast ti : Ti =⇒I Te. Similarly, an import of an explicit term
into the implicit world would generate a cast te : Te =⇒E Ti. Here, I and E are labels
that interoperability casts based on the cast’s “direction”.

3.3.2 Metatheory

We show that if we start with a well-typed term from λs
null, desugar it, and evaluate it using

the λnull operational semantics, then the term’s normal form (if it exists) is either a value,
or an error with blame. In fact, we are able to characterize this behaviour more precisely.
By reasoning about which casts are safe using positive and negative subtyping, which are
standard tools from gradual typing, we are able to show our main result:

Internal casts within the explicit world can never be blamed for failures.
Interoperatibility casts can be blamed, but we always blame the implicit world in such
cases. That is, the blame always goes to I or E .

This main result formalizes our intuition that explicitly nullable programs can’t be blamed.
It is also evidence that gradual typing can accurately model the null interoperability problem.
All our results have been verified in Coq.

ECOOP 2020

3:8 Blame for Null

x, y, z Variables

p, q Blame labels
p Label complement

f, s, t ::= Terms
x variable
null null literal
λ(x : T).s abstraction
s t application
app(f, s, t) safe application
s : S =⇒p T cast

u, v ::= Values
λ(x : T).s abstraction
null null literal
v : S =⇒p T cast

r ::= Results
t term
⇑ p blame

S, T, U ::= Types
Null null type
α (S → T) function type with modality

α, β ::= Function Type Modality
presumed non-nullable
? safe nullable
! unsafe nullable

Figure 1 Terms and types of λnull.

4 A Calculus with Implicit and Explicit Nulls

In this section, we describe the λnull calculus in full. λnull is based on the blame calculus
of Wadler et al. [27, 26]. λnull contains the two key ingredients we need to model language
interoperability with respect to null:

Types that are implicitly nullable and types that are explicitly nullable.
Casts that mediate the interaction between the types above, along with blame labels to
track responsibility for failures, should they occur.

The terms and types of λnull are shown in Figure 1, and are explained below. Section 5 shows
how to use λnull to model the interaction between two languages, each treating nullability
differently (like Java and Scala). This section focuses on λnull and its metatheory.

4.1 Values of λnull

A value in λnull can be any of the following: an abstraction λ(x : T).s, the null literal, or
another value v wrapped in a cast, v : S =⇒p T .

The motivation for classifying certain casts as values is as follows. Consider the cast
null : Null =⇒p!(S → T). As we will see later, !(S → T) is an unsafe nullable function type,
so the cast can fail. However, the cast does not fail immediately; instead, the cast only fails
if we try to apply the (null) function to an argument, like so (null : Null =⇒p!(S → T)) w.
This matches e.g. Java’s behaviour, where passing a null when an object is expected only
triggers an exception if we try to select a field or method from the null object:

String s = null ; // no exception is raised here
s . length() // an exception is raised only when we try to select a method or field

A. Nieto, M. Rapoport, G. Richards, and O. Lhoták 3:9

4.2 Terms of λnull

A term of λnull is either a variable x, the literal null, an abstraction λ(x : T).s, an application
s t, a safe application app(s, t, u), or a cast s : S =⇒p T . The meaning of most terms is
standard; the interesting ones are explained below:

The null literal is useful for modelling null pointer exceptions. Specifically, an application
s t, where s reduces to null, results in a failure.
A safe application app(s, t, u) is a regular application that can also handle the case where
s is null. If s is non-null, then the safe application behaves like the regular application
s t. However, if s is null then the entire safe application reduces to u. Safe applications
could be desugared into a combination of if-expressions and flow typing [12]:

app(s, t, u) ≡ if (s != null) then s t else u

In particular, this means safe applications are “lazy”: they do not initially evaluate either
the argument t or sentinel value u. Instead, we only evaluate the expression s in function
position, and then proceed depending on whether s is null or not.
For the desugaring above to work we would need flow typing, because within the then
branch we need to be able to assume that s is non-null. Safe applications allow us to
work with nullable values without introducing flow typing.
Safe applications closely model Kotlin’s “Elvis” operator [16], written ?:. In Kotlin, the
expression a ?: b evaluates to a, unless the left-hand side is null, in which case the
entire expression evaluates to b.
The cast s : S =⇒p T is used to change the type of s from S to T . The blame label p
will be used to assign blame should the cast cause a failure.

Finally, the result of evaluating a λnull term is either a value v or an error with blame p,
denoted by ⇑ p.

4.3 Types of λnull

The types of λnull are also shown in Figure 1. There are four kinds of types:
The Null type contains a single element: null.
The presumed non-nullable function type #(S → T), as the name indicates, contains
values that should not be null. However, the value might still end up being null, through
casts. This corresponds to non-nullable types like StringScala. For conciseness, we will
refer to these types simply as non-nullable function types.
A value with safe nullable function type ?(S → T) is allowed to be null. The type system
will ensure that any such functions are applied using safe applications. This corresponds
to nullable union types like StringScala|Null.
By contrast, a value with unsafe nullable function type !(S → T) is also allowed to be
null, but the type system does not enforce a null check before an application. That is, if
s has type !(S → T), the type system will allow both s t and app(s, t, u), even though
the former might fail. This corresponds to types in Java, which are implicitly nullable.

As we will see below, some typing rules apply to more than one function type. For
example, when typing an application s t, we will require that s have a type of the form
#(S → T) or !(S → T). Instead of duplicating the relevant inference rule, the syntax for
function types α (S → T) includes a modality α. In the application case, we can then say
that s must have type α (S → T) with α ∈ {#, !}.

ECOOP 2020

3:10 Blame for Null

Γ ` t : T

Γ(x) = T

Γ ` x : T
(T-Var)

Γ ` null : Null (T-Null)

Γ, x : S ` s : T
Γ ` λ(x : S).s : #(S → T)

(T-Abs)

Γ ` s : α (S → T)
α ∈ {#, !} Γ ` t : S

Γ ` s t : T
(T-App)

Γ ` f : α (S → T) α ∈ {?, !}
Γ ` s : S Γ ` t : T

Γ ` app(f, s, t) : T
(T-SafeApp)

Γ ` s : S S T

Γ ` (s : S =⇒p T) : T
(T-Cast)

S T

Null Null (C-NullRefl)

α ∈ {?, !}
Null α (S → T)

(C-Null)

S′ S T T ′

α, β ∈ {#, ?, !}
α (S → T) β (S′ → T ′)

(C-Arrow)

Figure 2 Typing and compatibility rules of λnull.

Keeping λnull simple. We could reduce the number of function types and avoid the
need for safe applications through a combination of sum types and case analysis. For example,
in Scala nullable values are represented with sum types (e.g. a nullable string has type
String | Null). The case analysis in turn requires support for flow-typing:

val s : String | Null = ...
// s inferred to have type String in the ‘then‘ branch, so s . length is type−correct
val len : Int = if (s != null) s . length else 0

Since λnull is a core calculus, we focus on modelling the assignment of blame for nullability
errors, which revolves around blaming casts or their client code, at function application time.
This is why λnull eschews sum types and flow typing in favour of primitives for nullable
function types and safe applications. Additionally, both of these primitives appear in modern
programming languages (e.g. in Kotlin).

4.4 Typing λnull

The typing rules for λnull are shown in Figure 2. The three interesting rules are T-App,
T-SafeApp, and T-Cast:

(T-App) The rule for a type application s t is almost standard, except that s can not
only have type #(S → T), but also the unsafe nullable function type !(S → T). This
models languages with implicit nullability (like Java), where the type system allows
operations that can lead to null-related errors.
(T-SafeApp) To type a safe application app(f, s, t), we check that f is a nullable function
type; that is, it must have type ?(S → T) or !(S → T) (if f had type #(S → T) we
would use T-App). Notice that the type of s must be S (the argument type), but t must
have type T (the return type). This is because t is the “default” value that we return if
f is null.

A. Nieto, M. Rapoport, G. Richards, and O. Lhoták 3:11

null(v)

null(null) (N-Null)

null(v)
null(v : S =⇒p T)

(N-Cast)

abs(v)

abs(λ(x : T).s) (A-Abs)

abs(v)
abs(v : S =⇒p T)

(A-Cast)

Figure 3 abs and null predicates.

(T-Cast) To type a cast s : S =⇒p T we check that s indeed has the source type S. The
entire cast then has type T . Additionally, we make sure that S and T are compatible,
written S T . Type compatibility is described below.

Notice that the type of null is always Null, so in order to get a nullable function we
need to use casts. For instance,

T-Null
` null : Null Null ?(Null→ Null)

C-Null

` null : Null =⇒p?(Null→ Null) : ?(Null→ Null)
T-Cast

4.4.1 Compatibility
Compatibility is a binary relation on types that is used to limit (albeit only slightly) which
casts are valid. Given types S and T , we can cast S to T only if S T . The compatibility
rules are shown in Figure 2.

I Lemma 1. Compatibility is reflexive, but is neither symmetric nor transitive.

A counter-example to symmetry is that Null ?(Null → Null), but the latter
is not compatible with the former. A counter-example to transitivity is that Null
?(Null → Null) and ?(Null → Null) #(Null → Null), but Null is not compatible
with #(Null→ Null).

4.5 Semantics of λnull

We give a small-step operational semantics for λnull, using evaluation contexts. The rules
are shown in Figure 5. Notice that the result r of an evaluation step can be a term or an
error, denoted by ⇑ p.

4.5.1 Auxiliary Predicates
The unary predicates on types null and abs, shown in Figure 3, test whether a value v is
equal to null or to a lambda abstraction, respectively. These predicates are able to “see
through” casts.

I Example 2. The following hold:
null(null), null(null : Null =⇒p #(Null→ Null))
abs(λ(x : Null).x), abs(λ(x : Null).x : #(Null→ Null) =⇒p?(Null→ Null))

ECOOP 2020

3:12 Blame for Null

R-SafeAppNorm

R-SafeAppNull

R-App/R-AppNorm

R-AppCast

R-AppFail

t =
app(v1, v2, v3)

abs(v1)

null(v1)

t = v1 v2

abs(v1)

otherwise

v1 is a cast to
#(S → T)

null(v1)

t

Figure 4 Simplified decision tree for λnull reduction rules.

4.5.2 Reduction Relation
The decision tree in Figure 4 shows a simplified view of the reduction rules. The rules are
described in detail below.

R-App is standard beta reduction.
R-AppFail handles the case where we have a function application and the value in the
function position is in fact null. This last fact is checked via the auxiliary predicate
null(v). In this case, the entire term (and not just the subterm within the evaluation
context) evaluates to an error. What remains is to determine the blame label that we
will use. This we do using the blame assignment relation (also shown in Figure 5): we
write v ↑ p to indicate that the blame should go to a label p. As we will see in Section
4.5.3, v will contain one or more casts, and the label p is obtained from one of the casts.
Here is a sample application of R-AppFail, where v = null : Null =⇒p!(Null→ Null):

(null : Null =⇒p!(Null→ Null)) null 7−→⇑ p

In this case, the only cast in v is selected as the source of the blame (in general, v could
contain multiple casts). We blame p because the surrounding code (the code doing the
application v null), should have used a safe application, based on v’s nullable type.
R-AppCast handles the case where the value v′ in the function position is a cast
involving only non-nullable function types; i.e. v′ = v : #(S1 → S2) =⇒p #(T1 → T2).
In this case, the application v′ u reduces to

(v (u : T1 =⇒p S1)) : S2 =⇒p T2

This is the classic behaviour of blame in a function application, and comes from [11]. The
type system guarantees that the argument u is typed as a T1, but the function v expects
it to have type S1. We then need the cast u : T1 =⇒p S1 before passing the argument
to function. Notice that the blame label has been complemented (p), because it is the
context (the code calling the function v) who is responsible for passing an argument of the
right type. Conversely, when the function v returns, its return value will have type S2,
but the surrounding code is expecting a value of type T2. We then need to cast the entire
application from S2 to T2; this time, the blame label is p. As Findler and Felleisen [11]
remark, the handling of the blame label matches the rule for function subtyping present
in other system, where the argument and return type must be contra- and covariant,
respectively.

A. Nieto, M. Rapoport, G. Richards, and O. Lhoták 3:13

R-AppNorm handles the case where we have an application v u, and v is a cast to
a nullable function type (either a ? function or a ! function). Additionally, we know
that abs(v) holds. In this case, what we would want to do is “translate” the nullable
function type into a non-nullable function type. This is fine because abs(v) implies that
the underlying function is non-null. The normalization relation v � v′ (also shown in
Figure 5) achieves this translation of casts.
I Example 3. Let t = λ(x : Null).x. Suppose we are evaluating the application

(t : #(Null→ Null) =⇒p?(Null→ Null)) null

We proceed by first noticing that abs(t : #(Null→ Null) =⇒p?(Null→ Null)). Then
we normalize the value in the function position

t� t
Norm-Abs

t : #(Null→ Null) =⇒p?(Null→ Null)�
Norm-Cast
t : #(Null→ Null) =⇒p #(Null→ Null)

Now we can use R-AppNorm to turn the origin application into

(t : #(Null→ Null) =⇒p #(Null→ Null)) null

We can then proceed the evaluation using R-AppCast.
R-SafeAppNull is simple: if we are evaluating a safe application app(v, u, u′) and the
underlying function v is null, then the entire term reduces to u′ (the default value).
Finally, R-SafeAppNorm handles the remaining case. We have a safe application
app(v, u, u′) like before, but this time we know that v is an abstraction (via abs(v)). What
we would like to do is to turn the safe application into a regular one: app(v, u, u′) 7−→ v u.
However, this can lead to the term getting stuck, if v is a cast to a safe nullable function
(a ? function). The problem is that safe nullable functions are not supposed to appear in
regular applications. The solution is to normalize v to v′. Since v′ is guaranteed to have
a regular function type after normalization, we can take the step app(v, u, u′) 7−→ v′ u,
and then follow up with R-AppCast or R-App.

4.5.3 Blame Assignment
The blame assignment relation is responsible for determining which cast in a value is
responsible for a nullability error. Once the responsible cast has been identified, blame
assignment also determines whether the blame is positive (blame the cast) or negative (blame
the context). The notation for blame assignment is v ↑ p, and indicates that if the value v,
containing one or more casts, leads to a failure (because null(v) holds and v was used in the
function position of an application), then we will blame label p.

The rules for blame assignment are shown in Figure 5. There are two kinds of rules,
based on what they do with the outermost cast: those that discard the outermost cast, and
those that use the outermost cast to assign blame. Both kinds are described below.

Rules that discard the outermost cast:
B-NonNullable handles the cast where the outermost cast has the form v′ : #(S →
T) =⇒p U ; that is, the source type is a non-nullable function type. Intuitively, we do
not want to assign blame to either p or p, because the source type in the cast promised
that the underlying value is non-null, but the value being cast is in fact null. That is,
there must be another “risky” cast that is part of v′ that should be blamed. For example,

ECOOP 2020

3:14 Blame for Null

Reduction
s 7−→ r

E[(λ(x : T).s) v] 7−→ E[[v/x]s] (R-App)

null(v) v ↑ p
E[v u] 7−→⇑ p

(R-AppFail)

abs(v) v � v′

E[v u] 7−→ E[v′ u]
(R-AppNorm)

null(v)
E[app(v, s, t)] 7−→ E[t]

(R-SafeAppNull)

abs(v) v � v′

E[app(v, s, t)] 7−→ E[v′ s]
(R-SafeAppNorm)

abs(v)
E[(v : #(S1 → S2) =⇒p #(T1 → T2)) u] 7−→ E[(v (u : T1 =⇒p S1)) : S2 =⇒p T2]

(R-AppCast)

Evaluation contexts
E ::=

[]
E s

v E

app(E, s, t)
E : S =⇒p T

Blame assignment
v ↑ p

(v : Null =⇒p!(S → T)) ↑ p (B-Null)

v ↑ p′

(v : #(S → T) =⇒p U) ↑ p′
(B-NonNullable)

v ↑ p′

(v :!(S → T) =⇒p!(S′ → T ′)) ↑ p′
(B-Unsafe!)

(v :?(S → T) =⇒p!(S′ → T ′)) ↑ p (B-Safe!)

α ∈ {?, !}
(v : α (S → T) =⇒p #(S′ → T ′)) ↑ p

(B-Nullable#)

Normalization
v � u

λ(x : T).s� λ(x : T).s (Norm-Abs)

v � u α, β ∈ {#, ?, !}
v : α (S1 → S2) =⇒p β (T1 → T2)� u : #(S1 → S2) =⇒p #(T1 → T2)

(Norm-Cast)

Figure 5 Reduction rules of λnull, along with blame assignment and normalization relations.

A. Nieto, M. Rapoport, G. Richards, and O. Lhoták 3:15

consider the cast ((Null⇒r ?)⇒q #)⇒p !, where we have written only the top level
“modalities” of the function types. In this cast, a null value that starts as having type
Null is cast first to a safe nullable function, then to a non-nullable function, and finally
to an unsafe nullable function. Blame assignment models the intuition that the second
cast (from ? to #) is the unsafe one, and so should be blamed. Because the destination
type in that second cast is a #, we blame the term (i.e. blame q).
B-Unsafe! is similar to the previous case: when confronted with a cast v′ : S =⇒p T

where both S and T are ! types, then we “recurse” on v′ to find the guilty cast. The
reason is that the last cast did not change the kind of function type, so whatever
went wrong must have happened earlier. For example, suppose the outermost cast is
!(Null→ Null)⇒p !(Null→ Null). This cast leaves the type unchanged, so it should
never be blamed for a failure.
Notice that the equivalent rule for # types is subsumed by B-NonNullable. ? types do
not need an equivalent rule, because a cast of the form v : S =⇒p? cannot fail.

Rules that assign blame based on the outermost cast:
B-Null handles the case where we cast Null to an unsafe function type. In this case, we
blame the context, because the target type is a !.
B-Nullable# casts some kind of nullable function (either a ? or a !) to a non-nullable
function. In this case, we want to blame the term, because the context was promised a
non-nullable value that nevertheless ended up being null.
B-Unsafe! handles casts of the form ? ⇒p !. In this case, we blame p, because the
context should know that the value is potentially null.

4.6 Metatheory of λnull

In developing the metatheory, we closely followed the syntactic approach taken in Wadler and
Findler [27]. All the results in this section have been verified using the Coq proof assistant.

4.6.1 Safety Lemmas
The first step is establishing that evaluation of well-typed λnull terms does not get stuck.
We do this by proving the classic progress and preservation lemmas due to Wright and
Felleisen [29]. First, we need an auxiliary lemma that says that normalization preserves
well-typedness.

I Lemma 4 (Soundness of normalization). Let α ∈ {#, ?, !}, Γ ` v : α (S → T) and v � v′.
Then Γ ` v′ : #(S → T).

Then we can prove preservation.

I Lemma 5 (Preservation). Let Γ ` t : T and suppose that t 7−→ r. Then either
r =⇑ p, for some blame label p, or
r = t′ for some term t′, and Γ ` t′ : T

Notice that, because of unsafe casts like null : Null =⇒p!(S → T), taking an evaluation
step might lead to an error ⇑ p.

Before showing progress, we need a lemma that says that non-nullable values typed with
a function type can be normalized.

I Lemma 6 (Completeness of normalization). Let α ∈ {#, ?, !}, Γ ` v : α (S → T) and
suppose that abs(v) holds. Then there exists a value v′ such that v � v′.

ECOOP 2020

3:16 Blame for Null

S <:+ T

Null <:+ Null (PS-NullRefl)

α ∈ {?, !}
Null <:+ α (S → T)

(PS-Null)

S′ <:− S T <:+ T ′

α ∈ {#, ?, !}
#(S → T) <:+ α (S′ → T ′)

(PS-Arrow#)

S′ <:− S T <:+ T ′

α, β ∈ {?, !}
α (S → T) <:+ β (S′ → T ′)

(PS-ArrowNullable)

S <:− T

Null <:− Null (NS-NullRefl)

Null <:− ?(S → T) (NS-Null)

S′ <:+ S T <:− T ′

α ∈ {#, ?, !}
#(S → T) <:− α (S′ → T ′)

(NS-Arrow#)

S′ <:+ S T <:− T ′

α ∈ {#, ?, !}
!(S → T) <:− α (S′ → T ′)

(NS-Arrow!)

S′ <:+ S T <:− T ′

α ∈ {#, ?}
?(S → T) <:− α (S′ → T ′)

(NS-Arrow?)

Figure 6 Positive and negative subtyping.

This lemma is necessary because if we are ever evaluating a well-typed safe application (e.g.
app(v, u, u′)) where the function value (v) is known to be non-nullable, then we need to be
able to turn the safe application into a regular application (v u) using R-SafeAppNorm.

We also need a weakening lemma.

I Lemma 7 (Weakening). Let Γ ` t : T and x 6∈ dom(Γ). Then Γ, x : U ` t : T for any
type U .

We can then show progress.

I Lemma 8 (Progress). Let ` t : T . Then either
t is a value
t 7−→⇑ p, for some blame label p
t 7−→ t′, for some term t′

4.6.2 Blame Lemmas
The progress and preservation lemmas do not tell us as much as they usually do, because of
the possibility of errors. It would then be nice to rule out errors in some cases. Examining
the evaluation rules, we can notice that errors occur due to casts: specifically, because we
sometimes cast a null value to a function type, which we later try to apply.

Inspecting the rules for blame assignment shows that casts to !(T → U) can lead to
negative blame, and casts to #(T → U) can lead to positive blame. We can then define two
relations: positive subtyping (T <:+ U) and negative subtyping (T <:− U), that identify
which casts cannot lead to positive and negative blame, respectively. The subtyping rules,
adapted from Wadler and Findler [27], are shown in Figure 6.

I Example 9. Since the type system ensures that ?(S → T) functions are only ever applied
through safe casts, we would hope that the cast null : Null =⇒p?(S → T) will not
fail with either blame ⇑ p or ⇑ p. Therefore we have both Null <:+ ?(S → T) and
Null <:− ?(S → T).

A. Nieto, M. Rapoport, G. Richards, and O. Lhoták 3:17

t safe for p

x safe for p (SF-Var)

null safe for p (SF-Null)

s safe for p
λ(x : T).s safe for p

(SF-Abs)

s safe for p t safe for p
s t safe for p

(SF-App)

f safe for p s safe for p
t safe for p

app(f, s, t) safe for p
(SF-SafeApp)

S <:+ T s safe for p
s : S =⇒p T safe for p

(SF-CastPos)

S <:− T s safe for p
s : S =⇒p T safe for p

(SF-CastNeg)

s safe for p
q 6= p q 6= p

s : S =⇒q T safe for p
(SF-CastDiff)

Figure 7 Safe for relation.

I Example 10. Since a cast null : Null =⇒p!(S → T) can fail with blame p, we have
Null <:+ !(S → T), but not Null <:− !(S → T).

I Lemma 11 (Positive and negative subtyping are reflexive). Let T be an arbitrary type. Then
T <:+ T and T <:− T .

I Lemma 12 (Subtyping implies compatibility). Let S and T be types. Then
S <:+ T =⇒ S T

S <:− T =⇒ S T

Lemma 12 implies that if S is a (positive or negative) subtype of T , then we can cast S
to T (which requires compatibility).

The next step is to lift positive and negative subtyping to work on terms. The safe for
relation, again adapted from Wadler and Findler [27] and shown in Figure 7, accomplishes
this. We say that a term t is safe for a blame label p, written t safe for p, if evaluating t
cannot lead to an error with blame p. That is, evaluating t either diverges, results in a value,
or results in an error with blame different from p. We formalize this fact as a theorem below.

Most of the rules in the safe for relation just involve structural recursion on the subterms
of a term. The connection with subtyping appears in SF-CastPos and SF-CastNeg. For
example, to conclude that (s : S =⇒p T) safe for p, we require that s safe for p and
S <:+ T .

The following lemmas say that safe for is preserved by normalization and substitution.

I Lemma 13 (Normalization preserves safe for). Let v be a value such that v safe for p

and suppose that v � v′. Then v′ safe for p.

I Lemma 14 (Substitution preserves safe for). Let t and t′ be terms such that t safe for p

and t′ safe for p. Then [t′/x]t safe for p.

We now arrive at the main results in this section, the progress and preservation theorems
for safe terms.

I Theorem 15 (Preservation of safe terms). Let Γ ` t : T and t safe for p. Now suppose
that t steps to a term t′ (that is, taking an evaluation step from t is possible and does not
result in an error). Then t′ safe for p.

ECOOP 2020

3:18 Blame for Null

I Theorem 16 (Progress of safe terms). Let ` t : T and t safe for p. Then either
t is a value
t 7−→⇑ p′, for some blame label p′ 6= p.
t 7−→ t′, for some term t′

Notice that this theorem does not preclude the term from stepping to an error, but it
does say that the error will not have blame label p. This is a stronger guarantee than what
we get from Lemma 8 (Progress), which placed no restrictions on the blame label p′ when
t 7−→⇑ p′.

Here are a few implications of the theorems above:
A term without casts cannot fail. This is because a term can only fail with some blame
label p, and a term without casts is necessarily safe for p.
Casts that turn a “Java” type like !(!(Null → Null) → Null) into the corresponding
“Scala” type ?(?(Null → Null) → Null) via “nullification” can only fail with positive
blame, because of negative subtyping.
Conversely, casts that turn a “Scala” type like #(#(Null → Null) → Null) into the
corresponding “Java” type !(!(Null → Null) → Null) via erasure can only fail with
negative blame, because of positive subtyping.

The last two claims form the bases for our model of language interoperability, described in
the next section.

5 A Calculus for Null Interoperability

The λnull calculus is very flexible in that it allows us to freely mix in implicitly nullable
terms with explicitly nullable terms. On the other hand, it is perhaps too flexible. In the
real world, when a language where null is explicit interoperates with a language where null
is implicit, the separation between terms from both languages is very clear (it is usually
enforced at a file or module boundary). For example, in the Java and Scala case, the Scala
typechecker will only allow explicit nulls, while the Java typechecker only allows implicit
nulls. To more faithfully model this kind of language interoperability, this section introduces
a slight modification of λnull called λs

null (“stratified lambda null”).

5.1 Terms and Types of λsnull

The terms and types of λs
null are shown in Figure 8. The main difference with respect

to λnull is that terms and types are stratified into the world of explicit nulls (subscript
e) and the world of implicit nulls (subscript i). Notice that the grammar for types in the
“explicit sublanguage” only allows for non-nullable functions (#(S → T)) and safe nullable
functions (?(S → T)). Similarly, the implicit sublanguage only has unsafe nullable functions
(!(S → T)). The only new terms are imports, which in the explicit sublanguage have syntax

importe x : Te = (ti : Ti) in te

Informally, an import term is similar to a let-binding: it binds x as having type Te in
the body te. However, the term that x is bound to, ti, comes from the implicit sublanguage:
it is a ti and not a te. Furthermore, ti is expected to have type Ti. Dually, the implicit
sublanguage has an import term that binds x to an element of te, as opposed to a ti:

importi x : Ti = (te : Te) in ti

A. Nieto, M. Rapoport, G. Richards, and O. Lhoták 3:19

t ::= Terms
te terms with explicit nulls
ti terms with implicit nulls

fe, se, te ::= Explicit terms
x variable
null null literal
λ(x : Te).se abstraction
se te application
app(fe, se, te) safe application
se : Se =⇒ Te cast
importe x : Te = (ti : Ti) in te import

fi, si, ti ::= Implicit terms
x variable
null null literal
λ(x : Ti).(si : Si) abstraction
si ti application
app(fi, si, ti) safe application
si : Si =⇒p Ti cast
importi x : Ti = (te : Te) in ti import

Se, Te ::= Explicit types
Null null
#(Se → Te) presumed non-nullable function
?(Se → Te) safe nullable function

Si, Ti ::= Implicit types
Null null
!(Si → Ti) unsafe nullable function

Figure 8 Terms and types of λs
null. Differences with λnull are highlighted.

Imports allow us to link the world of explicit nulls with the world of implicit nulls, in
much the same way as Scala’s import statements allow us to use Java libraries from Scala
code (similarly, Java’s import statements allow us to use Scala libraries from Java code).

Casts in the explicit sublanguage do not have blame labels. This is because the type
system will force all such casts to be upcasts: i.e. casts that respect subtyping. We will see
that this means that “internal” casts within the explicit sublanguage will never be blamed
for failures. Relatedly, notice that λs

null, unlike e.g. Scala, has no subsumption rule. We
opted for casts instead of subsumption to keep λs

null close to λnull. Subsumptions and casts
are similarly expressive: one can think of subsumption as casts automatically introduced by
the type checker.

Finally, abstractions in the implicit sublanguage, written λ(x : Ti).(s : Si), are annotated
with their return type Si. This is not strictly necessary, but it simplifies the presentation of
desugaring in Section 5.3.

5.2 Typing λsnull

The typing rules for λs
null are shown in Figure 9. These rules are almost verbatim copies of

the typing rules for λnull (and the compatibility relation is reused from Figure 2). The two
new rules handle imports:

TE-Import handles the case where an implicitly nullable term is used from the world
of explicit nulls. To type importe x : Te = (ti : Ti) in te, we first type te in the context
Γ, x : Te, obtaining a type Se. This will be the type of the entire term. The interesting
twist comes next: the term ti is typed with the `i relation in an empty context, so that
∅ `i ti : Ti. Finally, we need to somehow check that the type Ti determined by the `i

relation and the type Te expected by the `e relation are “in agreement”. This is done by
the nullification relation, whose judgment is written Ti ↪→N Te, and is shown in Figure
10.
TI-Import handles the opposite case, where a term from the world of explicit nulls is
used in an implicitly nullable term. Here we use the “dual” of nullification: the erasure
relation, written Te ↪→E Ti. Erasure is also shown in Figure 10.

ECOOP 2020

3:20 Blame for Null

I Remark 17. In designing TE-Import and TI-import, we have to decide under which context
we will type the “embedded” term that comes from the foreign sublanguage. For simplicity,
we have chosen to do the typechecking under the empty context. This prevents λs

null from
modelling circular dependencies between terms of different languages, but otherwise seems
not unduly restrictive.

Nullification and erasure, shown in Figure 10, are binary relations on types. They are
inspired by how Java and Scala interoperate; specifically, the types of Java terms are “nullified”
before being used by Scala code, and the types of Scala terms are “erased” before being used
by Java code. Of course, the real-world nullification and erasure are more complicated than
the simple relations presented here, but we believe the formalization in this section does
capture the essence of how these relations affect nullability of types; namely, nullification
conservatively assumes that every component of a Java type is nullable, while erasure
eliminates the distinction between nullable and non-nullable types in the `e type system.

Notice that the typing rules for casts are now different in the explicit and implicit
sublanguages. In the implicit sublanguage, like in λnull, to type the cast si : Si =⇒p Ti, we
require that Si be compatible with Ti (Si Ti). By contrast, when typing casts in the
explicit sublanguage, e.g. se : Se =⇒ Te, we check that Se can be upcasted to Te, written
Se <:e Te. The upcasting is defined by the explicit subtyping relation, given in Figure 11.
Explicit subtyping is defined just like we would define a regular subtyping relation, that is, it
implies substitutability [17]. For example, we have the judgment #(S → T) <:e ?(S → T),
which is akin to the Scala judgment String <: String|Null.

Crucially, we can show that explicit subtyping implies both positive and negative subtyping.

I Lemma 18. S <:e T implies S <:+ T and S <:− T .

This is useful, because it hints that casts that rely on explicit subtyping will never be
blamed for failures.

5.3 Desugaring λsnull to λnull

The last step is to give meaning to λs
null terms. We could repeat the approach followed

for λnull using operational semantics, but instead we will do something different. We will
desugar λs

null terms and types to λnull terms and types, respectively. This is useful, because
in Section 4.6 we proved many results about λnull terms, and we would like to re-use these
results to reason about λs

null as well.
We will do the desugaring using a pair of functions (De,Di). De is a function that sends

λs
null terms from the explicit sublanguage to λnull terms. Similarly, Di is a function that

maps λs
null terms from the implicit sublanguage to λnull terms. Both functions are shown in

Figure 12.
The first thing to notice is that we do not actually need to desugar types. This is because

λs
null types (from both sublanguages) are also λnull types.
When it comes to terms, most cases in Figure 12 are handled by straightforward structural

recursion on the term. There are only four interesting cases:
(DE-Cast) Casts in the explicit sublanguage do not have blame labels, but casts in λnull

must always have labels. When we desugar explicit casts, we tag them with the same
(“compiler-generated”) label Eint. Later, we show that these casts are never blamed for
failures (neither positively nor negatively).
(DI-Abs) An abstraction λ(x : Si).(si : Ti) from the implicit sublanguage is typed as
!(Si → Ti) (Figure 9). However, the corresponding lambda in λnull, λ(x : Si).Di(si),
will have type #(Si → Ti). So that the metatheory in Section 5.4 works out, we need

A. Nieto, M. Rapoport, G. Richards, and O. Lhoták 3:21

Γ `e te : Te

Γ(x) = Te

Γ `e x : Te

(TE-Var)

Γ `e null : Null (TE-Null)

Γ, x : Se `e se : Te

Γ `e λ(x : Se).se : #(Se → Te)
(TE-Abs)

Γ `e se : #(Se → Te) Γ `e te : Se

Γ `e se te : Te

(TE-App)

Γ `e fe :?(Se → Te) Γ `e se : S
Γ `e te : Te

Γ `e app(fe, se, te) : Te

(TE-SafeApp)

Γ `e se : Se Se <:e Te

Γ `e (se : Se =⇒ Te) : Te

(TE-Cast)

Γ, x : Te `e te : Se

∅ `i ti : Ti

Ti ↪→N Te

Γ `e importe x : Te = (ti : Ti) in te : Se

(TE-Import)

Γ `i ti : Ti

Γ(x) = Ti

Γ `i x : Ti

(TI-Var)

Γ ` null : Null (TI-Null)

Γ, x : Si `i si : Ti

Γ `i λ(x : Si).(si : Ti) :!(Si → Ti)
(TI-Abs)

Γ `i si :!(Si → Ti) Γ `i ti : Si

Γ `i si ti : Ti

(TI-App)

Γ `i fi :!(Si → Ti) Γ `i si : Si

Γ `i ti : Ti

Γ `i app(fi, si, ti) : Ti

(TI-SafeApp)

Γ `i s : Si Si Ti

Γ `i (si : Si =⇒p Ti) : Ti

(TI-Cast)

Γ, x : Ti `i ti : Si

∅ `e te : Te

Te ↪→E Ti

Γ `i importi x : Ti = (te : Te) in ti : Si

(TI-Import)

Figure 9 Typing rules of λs
null.

ECOOP 2020

3:22 Blame for Null

Ti ↪→N Te

Null ↪→N Null (N-Null)

Si ↪→N Se

Ti ↪→N Te

!(Si → Ti) ↪→N ?(Se → Te)
(N-Arrow!)

Te ↪→E Ti

Null ↪→E Null (E-Null)

Se ↪→E Si

Te ↪→E Ti

?(Se → Te) ↪→E !(Si → Ti)
(E-Arrow?)

Se ↪→E Si

Te ↪→E Ti

#(Se → Te) ↪→E !(Si → Ti)
(E-Arrow#)

Figure 10 Nullification and erasure relations.

Null <:e Null (ES-NullRefl)
Null <:e ?(S → T) (ES-Null?)

S′ <:e S T <:e T ′

#(S → T) <:e #(S′ → T ′)
(ES-Arrow#)

S′ <:e S T <:e T ′

#(S → T) <:e ?(S′ → T ′)
(ES-Arrow?)

S′ <:e S T <:e T ′

?(S → T) <:e ?(S′ → T ′)
(ES-Safe)

Figure 11 Explicit subtyping (upcast) relation.

the types to match; hence the cast. This is another instance of a blame label being
automatically inserted by desugaring. We will use the blame label Iint: the I stands for
implicit, indicating that the term being cast is from the implicit sublanguage. The int
subscript indicates that it is an internal cast; that is, it does not occur at the boundary
between the implicit and explicit sublanguages. To do the cast, we need the return type
Ti of the function: this is why abstractions in the implicit sublanguage contain type
annotations for the return type.

(DE-Import) This handles the case where we import a term from the implicit world
into the explicit world. There are two desugarings that happen in this rule. The first is
a standard desugaring that turns the import (effectively, a let binding) into a lambda
abstraction that is immediately applied. In this way, we do not need to add let bindings to
λnull. The second desugaring is the insertion of a cast that “guards” the transformation
of the original implicit type Ti into the explicit type Te. The cast has blame label I to
indicate that the term being cast is from the implicit world (conversely, we could say that
the context using the term is from the explicit world).

(DI-Import) We also need a dual rule for importing a term from the explicit world
into the implicit world. This rule does the same as (DE-Import), except that the cast
now goes in the opposite direction: from Te to Ti. The cast is labelled with blame E ,
indicating that the term being cast comes from the explicit sublanguage.

A. Nieto, M. Rapoport, G. Richards, and O. Lhoták 3:23

De : se −→ s

De(x) = x (DE-Var)
De(null) = null (DE-Null)

De(λ(x : Te).se) = λ(x : Te).De(se) (DE-Abs)
De(se te) = De(se) De(te) (DE-App)

De(app(fe, se, te)) = app(De(fe),De(se),De(te)) (DE-SafeApp)
De(se : Se =⇒ Te) = De(se) : Se =⇒Eint Te (DE-Cast)

De(importe xe : Te = (ti : Ti) in te) = (λ(x : Te).De(te)) (Di(ti) : Ti =⇒I Te)
(DE-Import)

Di : si −→ s

Di(x) = x (DI-Var)
Di(null) = null (DI-Null)

Di(λ(x : Si).(si : Ti)) = (λ(x : Si).Di(si)) : #(Si → Ti) =⇒Iint !(Si → Ti)
(DI-Abs)

Di(si ti) = Di(si) Di(ti) (DI-App)
Di(app(fi, si, ti)) = app(Di(fi),Di(si),Di(ti)) (DI-SafeApp)
Di(si : Si =⇒p Ti) = Di(si) : Si =⇒p Ti (DI-Cast)

Di(importi xi : Ti = (te : Te) in ti) = (λ(x : Ti).Di(ti)) (De(te) : Te =⇒E Ti)
(DI-Import)

Figure 12 Desugaring λs
null terms to λnull terms.

5.4 Metatheory of λsnull

The following lemma shows that nullification implies negative subtyping, and erasure implies
positive subtyping.

I Lemma 19. Let S and T be types. Then S ↪→N T implies S <:− T and T <:+ S, and
S ↪→E T implies S <:+ T and T <:− S.

This is important because nullification is used to import implicit terms into the explicit
world. The lemma shows that nullification implies negative subtyping, and casts where
the arguments are negative subtypes never fail with negative blame. This means that if
nullification-related casts fail, they do so by blaming the term being cast (which belongs to
the implicit world), and never the context (which belongs to the explicit world). That is, the
code with implicit nulls is at fault!

Dually, erasure is used to import explicit terms into the implicit world. Since erasure
implies positive subtyping, then erasure-related casts can only fail with negative blame. That
is, the context (which belongs to the implicit world) is at fault for erasure-related failures.
Again, implicit nulls are to blame!

ECOOP 2020

3:24 Blame for Null

I Theorem 20 (Desugaring preserves typing). Let te and ti be explicit and implicit terms
from λs

null, respectively. Then
Γ `e te : Te =⇒ Γ ` De(te) : Te, and
Γ `i ti : Ti =⇒ Γ ` Di(ti) : Ti

I Definition 21 (Set of user-written blame labels in a term). We will denote the set of
user-written blame labels in a term t of λs

null by labels(t). We do not give an explicit
definition here, but labels(t) can be defined inductively on the structure of terms. Notice that
user-written blame labels can only come from implicit casts si : Si =⇒p Ti.

The next theorem is our main result: it characterizes the failures that can occur while
evaluating a (desugared) λs

null term. Specifically, it says that:
Upcasts within the explicit world, which have blame Eint, are never blamed for failures,
neither positively nor negatively.
Interop casts that result from importing an implicit term into an explicit term can only
fail with positive blame, that is, they blame I. This means the term being cast, which
originated in the implicit sublanguage, is at fault.
Interop casts that result from importing an explicit term into an implicit term can only
fail with negative blame, that is, they blame E . If the blame is E , then the context
surrounding the term being cast is at fault; in this case, the term being cast comes from
the explicit sublanguage, so the context is in the implicit sublanguage.
Internal casts tagged with Iint, which result from desugaring λ(x : Si).(si : Ti) expressions,
are never blamed for failures, neither positively nor negatively. That is, the desugaring
does not introduce faulty casts.
User-written casts (si : Si =⇒p Ti) within the implicit sublanguage can still be blamed,
but that is expected because some of those casts are indeed unsafe.

I Theorem 22 (Explicitly nullable programs can’t be blamed). Let t be a term of λs
null. Suppose

that {I, I, Iint, Iint, E , E , Eint, Eint}∩labels(t) = ∅. Further, suppose that t is well-typed under
`e or `i and a context Γ. Then

If t = te, then De(te) safe for {Eint, Eint, I, E , Iint, Iint}.8
If t = ti, then Di(ti) safe for {Eint, Eint, I, E , Iint, Iint}.

Just like a central result in gradual typing is that “well-typed programs can’t be blamed”
[27], we can summarize our main result as explicitly nullable programs can’t be blamed.

6 Coq Mechanization

All our results have been verified using the Coq theorem prover. The two main differences
between the presentation of λnull in this paper and in the Coq proofs are:

The definition of evaluation in the Coq code does not use evaluation contexts, unlike
Figure 5. Instead, we have explicit rules for propagating errors.
The definition of terms in the Coq code uses a locally-nameless representation of terms [5].

In the mechanization of the proofs, we used the Ott [21] and LNgen [2] tools, which
automate the generation of some useful auxiliary lemmas from a description of the language
grammar. In total, the Coq code has 4657 lines of code, of which 1423 are manually-written
proofs, while the rest are either library code or automatically-generated by Ott and LNgen.

8 The notation t safe for L, where L is a set of blame labels, indicates that t safe for l for every l ∈ L.

A. Nieto, M. Rapoport, G. Richards, and O. Lhoták 3:25

7 Related Work

The concept of blame comes from work on higher-order contracts by Findler and Felleisen
[11]. The application of blame to gradual typing was pioneered by Tobin-Hochstadt and
Felleisen [25], and Wadler and Findler [27]. We followed the latter closely when developing
the operational semantics and safety proofs for λnull. Our syntax for casts comes from
Ahmed et al. [1]. Wadler [26] provides additional context on the use of blame for gradual
typing.

The gradual guarantee, introduced by Siek et al. [23], is a property of gradually-typed
languages that characterizes the behaviour of terms as type annotations are added or removed
from a program. Roughly speaking, removing type annotations preserves program behaviour,
while adding type annotations can lead only to certain classes of errors. In this way, languages
that satisfy the gradual guarantee allow well-behaved migrations of untyped code into the
typed world. Determining whether λs

null satisfies a property analogous to the gradual
guarantee remains future work.

Linking types [19] solve the related (and more general) problem of ensuring that typing
guarantees that hold in one or more source languages (e.g. Java and Scala) continue to hold,
after compilation, in a target language (e.g. JVM bytecode), even in the presence of linking.
However, linking types require that the source languages be augmented with additional types
(the linking types), and that the target language be sufficiently expressive. In the case of null
interoperability for Java and Scala, for example, this would mean adding a notion of nullable
types both to Java (the source language) and JVM bytecode (the target language). This
makes the null interoperability problem trivial, but would require considerable additional
effort, when compared to our approach.

Multiple modern programming languages have types that are non-nullable by default.
Examples include Kotlin [16], Swift [13], C# [6], and (recently) Scala [8]. In all of these, it is
possible to recover nullability at the type level. For example, in Kotlin the type String is
non-nullable, but String? is nullable. In Scala, nullability is expressed as a special case of
type unions: String|Null represents nullable strings. Additionally, all of these languages
also need to support some form of interoperability with a “less-precisely typed” language,
where nullability remains implicit and is not tracked in the types. In the Kotlin and Scala
case, the less-precisely typed language is Java; for Swift, it is Objective-C; and for C#, it is
any language that compiles to the .NET runtime.

All of the languages above make pragmatic design decisions in their null interoperability.
Specifically, their versions of type nullification trade off soundness for usability. For example,
in Kotlin, a String type flowing from Java is translated as the platform type [14] String!,
as opposed to String?. Platform types allow different kinds of unsound, yet convenient,
behaviour. For example, we can select fields and methods on a platform type, or assign a
platform type to the corresponding non-nullable type (e.g. assign a String! to a String).
Naturally, these unsafe operations might fail at runtime. Similarly to platform types in Kotlin,
Swift has implicitly unwrapped optionals and Scala has an UncheckedNull type (which has
fewer soundness holes, but does not help as much with usability).

The design of λs
null was inspired by null interoperability in Scala and Kotlin. The main

difference is that type nullification is “sound” in λs
null: that is, the unsafe nullable type

!(S → T) is translated into the safe nullable type ?(S → T). However, as we have seen,
nullability errors remain, which motivates the use of blame to assign responsibility.

ECOOP 2020

3:26 Blame for Null

8 Conclusions

In this paper, we looked at the problem of characterizing the nullability errors that occur
from two interoperating languages: one with explicit nulls, the other with implicit nulls.
We showed how the concept of blame from gradual typing can be co-opted to provide such a
characterization. Specifically, by making type casts explicit and labelling casts with blame
labels, we are able to assign responsibility for runtime failures. To formally study the use
of blame for tracking nullability errors, we introduced λnull, a calculus where terms can
be explicitly nullable or implicitly nullable. We showed that even though evaluation of
λnull terms can fail, such failures can be constrained if we restrict casts using positive and
negative subtyping. Finally, we used λnull as the basis for a higher-level calculus, λs

null,
which more closely models language interoperability. Our main result is a theorem that says
that explicitly nullable programs can’t be blamed for null interoperability errors in λs

null.

References
1 Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. Blame for all. In

Thomas Ball and Mooly Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January
26-28, 2011, pages 201–214. ACM, 2011.

2 Brian Aydemir and Stephanie Weirich. LNgen: Tool support for locally nameless represent-
ations. Technical Report MS-CIS-10-24, Computer and Information Science, University of
Pennsylvania, 2010.

3 Subarno Banerjee, Lazaro Clapp, and Manu Sridharan. Nullaway: Practical type-based null
safety for java. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pages
740–750. ACM, 2019.

4 Dan Brotherston, Werner Dietl, and Ondřej Lhoták. Granullar: Gradual nullable types for
java. In Proceedings of the 26th International Conference on Compiler Construction, pages
87–97. ACM, 2017.

5 Arthur Charguéraud. The locally nameless representation. Journal of automated reasoning,
49(3):363–408, 2012.

6 Microsoft Corporation. Nullable reference types. [Online; accessed 5-November-2019]. URL:
https://docs.microsoft.com/en-us/dotnet/csharp/nullable-references.

7 Werner Dietl, Stephanie Dietzel, Michael D Ernst, Kivanç Muşlu, and ToddW Schiller. Building
and using pluggable type-checkers. In Proceedings of the 33rd International Conference on
Software Engineering, pages 681–690. ACM, 2011.

8 Dotty Team. Explicit nulls. [Online; accessed 9-January-2020]. URL: https://dotty.epfl.
ch/docs/reference/other-new-features/explicit-nulls.html.

9 Manuel Fähndrich and K. Rustan M. Leino. Declaring and checking non-null types in an
object-oriented language. In Ron Crocker and Guy L. Steele Jr., editors, Proceedings of the
2003 ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and
Applications, OOPSLA 2003, October 26-30, 2003, Anaheim, CA, USA, pages 302–312. ACM,
2003.

10 Manuel Fähndrich and Songtao Xia. Establishing object invariants with delayed types. In
Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy L. Steele Jr., editors,
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec,
Canada, pages 337–350. ACM, 2007.

https://docs.microsoft.com/en-us/dotnet/csharp/nullable-references
https://dotty.epfl.ch/docs/reference/other-new-features/explicit-nulls.html
https://dotty.epfl.ch/docs/reference/other-new-features/explicit-nulls.html

A. Nieto, M. Rapoport, G. Richards, and O. Lhoták 3:27

11 Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In Mitchell
Wand and Simon L. Peyton Jones, editors, Proceedings of the Seventh ACM SIGPLAN
International Conference on Functional Programming (ICFP ’02), Pittsburgh, Pennsylvania,
USA, October 4-6, 2002, pages 48–59. ACM, 2002.

12 Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. Typing local control and state
using flow analysis. In European Symposium on Programming, pages 256–275. Springer, 2011.

13 Apple Inc. Swift language guide. [Online; accessed 5-November-2019]. URL: https://docs.
swift.org/swift-book/LanguageGuide/TheBasics.html.

14 JetBrains. Calling Java code from Kotlin. [Online; accessed 9-January-2020]. URL: https:
//kotlinlang.org/docs/reference/java-interop.html.

15 JetBrains. Kotlin programming language. [Online; accessed 5-November-2019]. URL: https:
//kotlinlang.org/.

16 JetBrains. Null safety. [Online; accessed 5-November-2019]. URL: https://kotlinlang.org/
docs/reference/null-safety.html.

17 Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Trans.
Program. Lang. Syst., 16(6):1811–1841, 1994.

18 Robin Milner. A theory of type polymorphism in programming. J. Comput. Syst. Sci.,
17(3):348–375, 1978.

19 Daniel Patterson and Amal Ahmed. Linking types for multi-language software: Have your cake
and eat it too. In Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi, editors,
2nd Summit on Advances in Programming Languages, SNAPL 2017, May 7-10, 2017, Asilomar,
CA, USA, volume 71 of LIPIcs, pages 12:1–12:15. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2017.

20 Xin Qi and Andrew C. Myers. Masked types for sound object initialization. In Zhong Shao
and Benjamin C. Pierce, editors, Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January 21-23,
2009, pages 53–65. ACM, 2009.

21 Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit
Sarkar, and Rok Strnisa. Ott: Effective tool support for the working semanticist. J. Funct.
Program., 20(1):71–122, 2010.

22 Jeremy G Siek and Walid Taha. Gradual typing for functional languages. In Scheme and
Functional Programming Workshop, volume 6, pages 81–92, 2006.

23 Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. Refined criteria
for gradual typing. In Thomas Ball, Rastislav Bodík, Shriram Krishnamurthi, Benjamin S.
Lerner, and Greg Morrisett, editors, 1st Summit on Advances in Programming Languages,
SNAPL 2015, May 3-6, 2015, Asilomar, California, USA, volume 32 of LIPIcs, pages 274–293.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

24 Alexander J. Summers and Peter Müller. Freedom before commitment: a lightweight type
system for object initialisation. In Cristina Videira Lopes and Kathleen Fisher, editors,
Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2011, part of SPLASH 2011, Portland, OR,
USA, October 22 - 27, 2011, pages 1013–1032. ACM, 2011.

25 Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage migration: from scripts to
programs. In OOPSLA Companion, pages 964–974. ACM, 2006.

26 Philip Wadler. A complement to blame. In Thomas Ball, Rastislav Bodík, Shriram Krish-
namurthi, Benjamin S. Lerner, and Greg Morrisett, editors, 1st Summit on Advances in
Programming Languages, SNAPL 2015, May 3-6, 2015, Asilomar, California, USA, volume 32
of LIPIcs, pages 309–320. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

27 Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed. In Gi-
useppe Castagna, editor, Programming Languages and Systems, 18th European Symposium on
Programming, ESOP 2009, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, volume 5502
of Lecture Notes in Computer Science, pages 1–16. Springer, 2009.

ECOOP 2020

https://docs.swift.org/swift-book/LanguageGuide/TheBasics.html
https://docs.swift.org/swift-book/LanguageGuide/TheBasics.html
https://kotlinlang.org/docs/reference/java-interop.html
https://kotlinlang.org/docs/reference/java-interop.html
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/docs/reference/null-safety.html
https://kotlinlang.org/docs/reference/null-safety.html

3:28 Blame for Null

28 Niklaus Wirth and C. A. R. Hoare. A contribution to the development of ALGOL. Commun.
ACM, 9(6):413–432, 1966.

29 Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Inf.
Comput., 115(1):38–94, 1994.

30 Yoav Zibin, David Cunningham, Igor Peshansky, and Vijay Saraswat. Object initialization in
x10. In European Conference on Object-Oriented Programming, pages 207–231. Springer, 2012.

Static Race Detection and Mutex Safety and
Liveness for Go Programs
Julia Gabet
Imperial College London, United Kingdom
j.gabet18@imperial.ac.uk

Nobuko Yoshida
Imperial College London, United Kingdom
n.yoshida@imperial.ac.uk

Abstract
Go is a popular concurrent programming language thanks to its ability to efficiently combine
concurrency and systems programming. In Go programs, a number of concurrency bugs can be
caused by a mixture of data races and communication problems. In this paper, we develop a
theory based on behavioural types to statically detect data races and deadlocks in Go programs.
We first specify lock safety/liveness and data race properties over a Go program model, using the
happens-before relation defined in the Go memory model. We represent these properties of programs
in a µ-calculus model of types, and validate them using type-level model-checking. We then extend
the framework to account for Go’s channels, and implement a static verification tool which can detect
concurrency errors. This is, to the best of our knowledge, the first static verification framework of
this kind for the Go language, uniformly analysing concurrency errors caused by a mix of shared
memory accesses and asynchronous message-passing communications.

2012 ACM Subject Classification Software and its engineering → Concurrent programming lan-
guages; Software and its engineering → Model checking; Theory of computation → Process calculi

Keywords and phrases Go language, behavioural types, race detection, happens-before relation,
safety, liveness

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.4

Related Version A full version of the paper is available at [13], https://arxiv.org/abs/2004.12859.

Supplementary Material ECOOP 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.2.12.
The source code for the tool presented in this paper and instructions to run it are available at
[2, 1, 3].

Funding The work is partially supported by VeTSS, EPSRC EP/K011715/1, EP/K034413/1,
EP/L00058X/1, EP/N027833/1, EP/N028201/1, EP/T006544/1 and EP/T014709/1.

Acknowledgements The authors want to thank Nicholas Ng for his initial collaboration on the
project.

1 Introduction

Go is a concurrent programming language designed by Google for programming at scale [35].
Over the last few years, it has seen rapid growth and adoption: for instance in 2018, major
developer surveys [12] show that StackOverflow placed Go in the top 5 most loved and the
top 5 most wanted languages; and Github has reported in [14] that Go was the 7th fastest
growing language.

One of the core pillars of Go is concurrent programming features, including the locking of
shared memory for thread synchronisation, and the use of explicit message passing through
channels, inspired by process calculi concurrency models [22, 31]. In practice, shared accesses

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Julia Gabet and Nobuko Yoshida;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 4; pp. 4:1–4:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-9944-9497
mailto:j.gabet18@imperial.ac.uk
https://orcid.org/0000-0002-3925-8557
mailto:n.yoshida@imperial.ac.uk
https://doi.org/10.4230/LIPIcs.ECOOP.2020.4
https://arxiv.org/abs/2004.12859
https://doi.org/10.4230/DARTS.6.2.12
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Static Race Detection and Mutex Safety and Liveness for Go Programs

to memory using locking mechanisms are unavoidable, and could be accidental. It is also of
note that both shared memory and message passing operations provide a substantial part
of the concurrency features of Go, and are the ones that are more prone to misuse-induced
bugs. These unsafe memory accesses may lead to data races, where programs silently enter
an inconsistent execution state leading to hard-to-debug failures.

1 func main () {
2 var x int
3 m := new(sync . RWMutex)
4 go f(m, &x)
5 m. RLock () // acquire the lock for reading
6 x += 10 // write not protected by the lock
7 m. RUnlock () // release the read -lock
8 m.Lock () // acquire the lock for writing
9 fmt. Println ("x is", x)

10 m. Unlock () // release the write -lock
11 }
12
13 func f(m * sync . RWMutex , ptr *int) {
14 m. RLock ()
15 *ptr += 20 // write not protected by the lock
16 m. RUnlock ()
17 }

Figure 1 Go program with RWMutex (unsafe).

Figure 1 illustrates a Go program, which makes use of lock m to synchronise the main
and f functions updating the content of variable x. On line 3, the statement m := new(sync
.RWMutex) creates a new read-write lock m, called RWMutex in Go, used to guard memory
accesses based on their status as readers or writers. The RWMutex object can then be passed
around directly as on line 4, circumventing the issue that could arise if we copied the mutex
structure instead. It can be locked for writing by calling its Lock() method, unlocked from
writing handle with its Unlock() method, and locked and unlocked for reading with the
RLock() and RUnlock() methods. Readers and writers are mutually exclusive, and writers
are mutually exclusive to each other too (hence the name Mutex, for mutual exclusion lock),
but an arbitrary number of readers can hold the lock at the same time. The go keyword in
front of a function call on line 4 spawns a lightweight thread (called a goroutine) to execute
the body of function f. The two parameters of function f – a rwmutex m, and an int pointer
ptr – are shared between the caller and callee goroutines, main and f. Since concurrent
access to the shared pointer ptr may introduce a data race, the developer tries to ensure
serialised, mutually exclusive access to ptr in f and x in main by using read-locks. Using
read-locks is unsafe in this case, allowing simultaneous write requests to x on lines 6 and 15,
the program could then output “x is 20” with a bad scheduling, dropping the increase of
10 in the same thread as the print statement.

Figure 2 illustrates the same Go program, using the RWMutex feature correctly by putting
writer sections of the code under writer locks. This alone prevents the data race seen in the
first version of the program.

Go provides an optional runtime data race detector [48, 15] as a part of the Go compiler
toolchain. The race detector is based on LLVM’s ThreadSanitizer [40, 45, 41] library, which
detects races that manifest during execution. It can be enabled by building a program using
the “-race” flag. During the program execution, the race detector creates up to four shadow
words for every memory object to store historical accesses of the object. It compares every
new access with the stored shadow word values to detect possible races. These runtime
operations cause high overheads of the runtime detector (5–10 times overhead in memory
usage and 2–20 times in execution time on average [15]), hence it is unrealistic to run it with

J. Gabet and N. Yoshida 4:3

1 func main () {
2 var x int
3 m := new(sync . RWMutex)
4 go f(m, &x)
5 m.Lock () // acquire the lock for writing
6 x += 10 // protected by the lock
7 m. Unlock () // release the write -lock
8 m. RLock () // acquire the lock for reading
9 fmt. Println ("x is", x)

10 m. RUnlock () // release the read -lock
11 }
12
13 func f(m * sync . RWMutex , ptr *int) {
14 m.Lock ()
15 *ptr += 20 // protected by the lock
16 m. Unlock ()
17 }

Figure 2 Go program with RWMutex (safe).

race detection turned on in production code; and because of that, race detection relies on
extensive testing or fuzzing techniques [47, 43]. Moreover, as reported in [46], the detector
fails to find many non-blocking bugs as it cannot keep a sufficiently long enough history; and
its semantics does not capture Go specific non-blocking bugs.

The Go memory model [16] defines the behaviour of memory access in Go as a happens-
before relation by a combination of shared memory and channel communications. It is also
reported in [46] that the most difficult bugs to detect are caused when synchronisation
mechanisms are used together with message passing operations. For instance, Go can
use message passing for sharing memory (channel-as-lock) or passing pointers through
channels (pointer-through-channel), which might lead to a serious non-blocking bug, i.e. the
program may continue to execute in unwanted and incorrect states or corrupt data in its
computations [46], due to subtle interplays with buffered asynchronous communications.

These motivate us to uniformly model, statically analyse and detect concurrent non-
blocking/blocking shared memory/channel-communications bugs in Go, using a formal model
based on a process calculus [22, 31].

MiGo+

abstracts Go

MiGo (§ 7)
channel

concurrency

GoL (§ 2)
shared memory

and locks

Behavioural
Types (§ 7.2)

Behavioural
Types (§ 4)

Go

Integrated in

Integrated in

Abstracts to

Properties project
(liveness: under conditions)

Model checked using
modal µ-calculus (§ 7.3)

Abstracts to

Properties project
(liveness: under conditions)

Model checked using
modal µ-calculus (§ 6) Extracts to

behaviour guaranteed by the
happens-before relation (§ 3.2)

Figure 3 Overview of this paper.

Contributions and Outline. Figure 3 outlines the relationship between the results presented
in this paper. This work proposes a uniform model which handles first shared memory con-
currency (§ 2), and then message-passing concurrency (§ 7) based on concurrent behavioural
types, and presents the theory, design and implementation of a concurrent bug detector for
Go. We formalise a happens-before relation and several key safety and liveness properties in
the process calculus following the Go memory model [16] (§ 3). More specifically, in this

ECOOP 2020

4:4 Static Race Detection and Mutex Safety and Liveness for Go Programs

P,Q,R := µ;P | (P | Q) | 0 | (νu)P
| if e then P else Q
| X〈ẽ, ũ〉 | new(x : σ);P
| newl(l);P | newrwl(l);P
| [x, σ :: v] | dle | dle?
| 〈l〉i | 〈l〉?i | 〈l〉Hi

D := X(x̃) = P

P := {Di}i∈I inP
µ := τ | y ← load(x)

| store(x, e) | `
` := lock(l) | unlock(l)

| rlock(l) | runlock(l)
v := n | true | false | x
e := v | not(e) | succ(e)

P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R P | 0 ≡ P (νx) [x, σ :: v] ≡ 0
(νl)dle ≡ 0 (νl)dle? ≡ 0 (νl)〈l〉i ≡ 0 (νl)〈l〉?i ≡ 0 (νl)〈l〉Hi ≡ 0

(νu)(νu′)P ≡ (νu′)(νu)P P | (νu)Q ≡ (νu) (P | Q) (u 6∈ fn(P))

Figure 4 Syntax of the Process language (top) and Structural Congruence for Stores (bottom).

work, we present the GoldyLocks language (GoL for short), used as a subset of processes
of the Go language, and the behavioural types used to model mutual-exclusion locks and
shared memory primitives. We then use this calculus and its types to tackle lock liveness
and safety, as well as another form of safety: data race detection. Our further extension to
channels (§ 7) enables us to detect the errors caused by a mixture of shared memory and
message passing concurrency. The formulation of a happens-before relation and classification
of a data race with respect to the Go memory model along with static analysis of this kind
is, to the best of our knowledge, the first of its kind, at least for Go and its mixed memory
management features.

Through type soundness and progress theorems of our behavioural typing system (§ 4,§ 5),
we are able to represent properties of processes by those of types in the modal µ-calculus
(§ 6). In this paper, we explore in particular the formal relationship between type-level
properties given by the modal µ-calculus and process properties: we prove which subsets of
GoL satisfy the properties of the types characterised by the modal µ-calculus (Theorem 30).

We also present a static analysis tool based on the theory. The tool infers from Go
programs [3] the memory accesses, locks and message-passing primitives as behavioural types,
and generates a µ-calculus model from these types [2]. We then apply the mCRL2 model
checker [8] to detect blocking and non-blocking concurrency errors (§ 8). We conclude the
paper with an overview of related works (§ 9).

Detailed proofs and additional material can be found in the full version of the paper [13].
The tool and benchmark are available from [2, 1, 3].

2 GoL: a Memory-Aware Core Language for Go

This section introduces a core language that models shared memory concurrency, dubbed
GoldyLocks (simple subset of Go with shared memory primitives and locks only), shortened
as GoL. GoL supports two key features for shared memory concurrency: (1) shared variables,
created by a shared variable creation primitive, whose values can be read from and written
to by multiple threads; and (2) locks and read-write locks (rwlocks) are modelled by creating
a lock store, and recording how it is accessed by (read-)lock and (read-)unlock calls.

J. Gabet and N. Yoshida 4:5

2.1 Syntax of GoL

The syntax of the calculus, together with the standard structural congruence P ≡ P ′ (which
includes ≡α), is given in Figure 4, where e, e′ range over expressions, x, y over variables, l, l′
over locks, u, u′ over identifiers (either shared variables or locks) and v over values (either
local variables, natural numbers or booleans). We write ẽ, ṽ, x̃ and ũ for a list of expressions,
values, variables and names respectively, and use · as the concatenation operator.

Process syntax (P,Q,R, ...) is given as follows. The prefix µ;P contains either (1) a
silent action τ ; (2) a store action of e in x̃, store(x, e); (3) a load action of x, bound to y in
the continuation, y ← load(x); and (4) actions (`) for lock/unlock and read-lock/unlock on
program locks (denoted by l).

There are three constructs for “new”: a new variable process new(x : σ);P creates a new
shared variable in the heap with payload type σ, binding it to x in the continuation P ; a new
lock process newl(l);P creates a new program lock and newrwl(l);P creates a new program
read-write lock, binding them to l in the continuation. The syntax includes the conditional
if e then P else Q, parallel process P | Q, and the inactive process 0 (often omitted).

A Go program is modelled as a program P in GoL, written {Di}i∈I inP , which consists
of a set of mutually recursive process definitions which encode the goroutines and functions
used in the program, together with a process P that encodes the program entry point (main).
The entry point is usually modelled as X0〈〉, a call to a defined process X0. The entry point
is the main process in a collection of mutually recursive process definitions (ranged over by
D), parametrised by a list of (expressions and locks) variables.

Process variable X is bound by definition D of the form of X(x̃) = P where fn(D) = ∅.
This is used by process call X〈ẽ, ũ〉 which denotes an instance of the process definition bound
to X, with formal parameters instantiated to ẽ and ũ. Note that the entry point could take
parameters, if the programmer wants the program to depend on user input data for example,
but our examples never make use of that capability.

The part of the syntax denoted by the stores is runtime constructs which are generated
during the execution (i.e. not written by the programmer and appearing as standalone parallel
terms): a shared variable store [x, σ :: v] contains message v of type σ; and we represent five
internal states of lock stores, situated on the last line of the left column, where the index i is
used for rwlocks and the superscripts ? and H respectively denote locked and waiting locks.
Restriction (νu)P denotes the runtime handle u for a lock or shared variable bound in P ,
and thus hidden from external processes.

Finally, the notation fn(P) denotes the sets of free names (locks, shared variables, local
variables), ie. ones that have not been bound by a restriction operator (νu), a definition D,
a “new” construct, or a load action.

I Example 1 (Processes from Figure 1 and Figure 2). The following process represents the
code in Figure 1. We first separate the main function in two parts: the part that instantiates
the variable and lock, and spawns the side process in parallel to the continuation, that we call
X0; and the rest that processes in parallel to the second goroutine that we put in a separate
process P . Process Q is the representation of function f, that is run in the second goroutine.

Prace :=

X0 = new(x : int); newrwl(l); (P 〈x, l〉 | Q〈x, l〉)
P (y, z) = rlock(z); t1 ← load(y); store(y, t1 + 10); runlock(z);

rlock(z); t2 ← load(y); τ ; runlock(z); 0
Q(y, z) = rlock(z); t0 ← load(y); store(y, t0 + 20); runlock(z); 0

 inX0〈〉

ECOOP 2020

4:6 Static Race Detection and Mutex Safety and Liveness for Go Programs

The next process represents the code in Figure 2 in the same fashion as above.

Psafe :=

X0 = new(x : int); newrwl(l); (P 〈x, l〉 | Q〈x, l〉)
P (y, z) = lock(z); t1 ← load(y); store(y, t1 + 10); unlock(z);

rlock(z); t2 ← load(y); τ ; runlock(z); 0
Q(y, z) = lock(z); t0 ← load(y); store(y, t0 + 20); unlock(z); 0

 inX0〈〉

2.2 Operational Semantics
The semantics of GoL is given by the labelled transition system (LTS) shown in Figure 5.
The LTS system enables us to give a simple and uniform definition of barbs in Definition 5
and a formal correspondence with the modal µ-calculus described in § 6. The LTS rules are
written P α−→ P ′, where α is a label of the form:

α := ol | om, e ι := ∗ | 1.ι | 2.ι om := r〈x〉 | r〈x〉 | (w〈x〉, ι) | w〈x〉
ol := l〈l〉 | ul〈l〉 | rl〈l〉 | rul〈l〉 | plq | plq? | xly | xlyH | xlyN | τu | τ o := om | ol

They can be either a data-dependent action om along with its data e, used for synchronisation
purposes on actions that transmit data, or a data-independent action ol alone, used for
synchronisation on actions that do not transmit meaningful data, and for the synchronisations
τu and silent action τ .

The actions in om define r〈x〉 (read), (w〈x〉, ι) (write), r〈x〉 and w〈x〉 (dual actions) of a
shared variable x, where ι denotes an occurrence (a position in the parallel composition)
that is a string of 1s, 2s and ∗. The actions in ol define (1) l〈l〉 (lock), ul〈l〉 (unlock), rl〈l〉
(read-lock) and rul〈l〉 (read-unlock); (2) lock store actions, plq, plq?, xly, xlyH and xlyN

(whose purpose is to interact with each action in (1) to produce the lock synchronisation τl);
as well as (3) synchronisations τu and silent actions.
I Remark 2. (1) The write action (w〈x〉, ι) uses occurrence ι to denote the position of the
thread which contains that action. By using occurrences, we can differentiate two writes on
the same variable happening at the same time, and thereby formally define the notion of
data race (see Definition 8); and (2) one lock store can produce several different actions
which then produce lock synchronisation τl with different lock primitives. This allows us to
implement the properties with mCRL2 straightforwardly, cf. § 8.

We also define the general label o for actions, which only contains action markers and no
data, and will be of use for data-independent marking later on, such as barbs. Occurences are
ranged over by ι, ι′,..., where ∗ denotes the empty occurrence, while 1.ι (resp. 2.ι) denotes
the left (resp. right) shift of of ι. The left and right shifting operators on action α, left (α)
and right (α), are defined as:

left ((w〈x〉, ι), e) = (w〈x〉, 1.ι), e and right ((w〈x〉, ι), e) = (w〈x〉, 2.ι), e

with left (α) = right (α) = α if α 6= (w〈x〉, ι), e. Example 3 will explain the use of these
operators with the LTS rules.

This LTS defines the semantics of shared variables, locks, and read-write locks which
closely follow the specifications in [19]. We first highlight the operational semantics of
locks from [17] and rwlocks from [18]. A lock is a mutual exclusion lock. It must not be
copied after its first use: a lock l is created by [newm], which is guaranteed fresh by the
“(νl)” operation. It is then locked by [c-lck] and unlocked by [c-ulck]. A read-write lock
(rwlock) is a reader/writer mutual exclusion lock. The lock can be held by an arbitrary
number of readers or a single writer. The zero value for a rwlock is an unlocked state. If a

J. Gabet and N. Yoshida 4:7

Lock and Memory actions

[lck] lock(l);P l〈l〉−−→ P

[ulck] unlock(l);P ul〈l〉−−→ P

[rlck] rlock(l);P rl〈l〉−−→ P

[rulck] runlock(l);P rul〈l〉−−−→ P

[load] y ← load(x);P r〈x〉,v−−−−→ P {v/y}
[sto] store(x, e);P (w〈x〉,∗),e−−−−−−→ P

[m-lck] dle plq−−→ dle?

[m-ulck] dle? plq?−−−→ dle
[rw-lck] 〈l〉H0

plq−−→ 〈l〉?0
[rw-ulck] 〈l〉?0

plq?−−−→ 〈l〉0
[rw-rlck] 〈l〉i

xly−−→ 〈l〉i+1

[rw-rulck] 〈l〉i+1
xlyH

−−−→ 〈l〉i
[rw-wait] 〈l〉i

xlyN

−−−→ 〈l〉Hi
[rw-wulck] 〈l〉Hi+1

xlyH

−−−→ 〈l〉Hi
[h-ld] [x, σ :: v] r〈x〉,v−−−−→ [x, σ :: v]

[h-st] [x, σ :: v] w〈x〉,v′−−−−→ [x, σ :: v′]

Synchronisation rules

[c-ld]
P

r〈x〉,ṽ−−−−→ P ′ Q
r〈x〉,v−−−−→ Q′

P | Q τx−→ P ′ | Q

[c-st]
P

(w〈x〉,ι),e−−−−−−→ P ′ Q
w〈x〉,v−−−−→ Q′ e ↓ v

P | Q τx−→ P ′ | Q′

[c-lck]
P

l〈l〉−−→ P ′ Q
plq−−→ Q′

P | Q τl−→ P ′ | Q′

[c-ulck]
P

ul〈l〉−−→ P ′ Q
plq?−−−→ Q′

P | Q τl−→ P ′ | Q′

[c-rlck]
P

rl〈l〉−−→ P ′ Q
xly−−→ Q′

P | Q τl−→ P ′ | Q′

[c-rulck]
P

rul〈l〉−−−→ P ′ Q
xlyH

−−−→ Q′

P | Q τl−→ P ′ | Q′

[c-wait]
P

l〈l〉−−→ P ′ Q
xlyN

−−−→ Q′

P | Q τ−→ P | Q′

[tau] τ ;P τ−→ P

Runtime structures creation [newv] new(y : σ);P τ−→ (νy) (P | [y, σ :: ⊥])

[newm] newl(l);P τ−→ (νl) (P | dle) [newrwm] newrwl(l);P τ−→ (νl) (P | 〈l〉0)

[par-l]
P

α−→ P ′

P | Q left(α)−−−−→ P ′ | Q
[par-r]

Q
α−→ Q′

P | Q right(α)−−−−→ P | Q′
[res1]

P
α−→ P ′ u /∈ fn(α)

(νu)P α−→ (νu)P ′

[ift]
e ↓ true

if e then P else Q τ−→ P
[iff]

e ↓ false
if e then P else Q τ−→ Q

[res2]
P

τu−→ P ′

(νu)P τ−→ (νu)P ′

[def]
P {ṽ,ũ/x̃} | Q α−→ R ei ↓ vi X(x̃) = P ∈ {Di}i∈I

X〈ẽ, ũ〉 | Q α−→ R
[alpha]

P ≡α P ′ P ′
β−→ P ′′

P
β−→ P ′′

Figure 5 LTS Reduction Semantics for the Processes.

goroutine holds a rwlock for reading and another goroutine calls Lock, no goroutine should
expect to be able to acquire a read-lock until both the initial read-lock and the staged Lock
call are released. This is to ensure that the lock eventually becomes available to writers; a
blocked Lock call excludes new readers from acquiring the lock. To model this situation,
we annotate a freshly created rwlock by the counter i (instanciated at 0 by [newrwm]); this
counter is incremented by any fired read-lock (by [c-rlck]), and blocked from increasing if
a Lock action gets staged (by [c-wait], note how the Lock action is not consumed by
this rule); then it is unlocked by read-unlock calls (by [c-rulck]) until the pending number
of read-locks becomes 0, and finally write-locked (by [c-lck]) and further unlocked by the
corresponding unlock (by [c-ulck]), if a Lock was previously staged by [c-wait].

A shared variable is implemented at runtime by a named area in the store, which stores
a value of its payload data type, and that can be written to or read by any process within
its scope. It is created by [newv] with an initial value for declared type σ (0 for int, false for
bool, etc.), accessed for reading by [c-ld] and for writing by [c-st].

ECOOP 2020

4:8 Static Race Detection and Mutex Safety and Liveness for Go Programs

The [par-∗] rules are explained in Example 3 below.

I Example 3 (Occurrences). Let P = store(x, e);P ′, Q = store(x, e′);Q′ and R = z ←
load(x);R′. It follows P (w〈x〉,∗),e−−−−−−→ P ′, Q (w〈x〉,∗),e′−−−−−−−→ Q′ and R r〈x〉,v−−−→ R′ {v/z}.
If we compose P and Q, we use [par-l] and [par-r] to determine the new reductions:

P | Q (w〈x〉,1.∗),e−−−−−−−→ P ′ | Q left ((w〈x〉, ∗), e) = (w〈x〉, 1.∗), e
P | Q (w〈x〉,2.∗),e′−−−−−−−−→ P | Q′ right ((w〈x〉, ∗), e′) = (w〈x〉, 2.∗), e′

Composing again, with R:

(P | Q) | R (w〈x〉,1.1.∗),e−−−−−−−−→ (P ′ | Q) | R left ((w〈x〉, 1.∗), e) = (w〈x〉, 1.1.∗), e
(P | Q) | R (w〈x〉,1.2.∗),e′−−−−−−−−−→ (P | Q′) | R left ((w〈x〉, 2.∗), e′) = (w〈x〉, 1.2.∗), e′

(P | Q) | R r〈x〉,v−−−→ (P | Q) | R′ {v/z} right (r〈x〉, v) = r〈x〉, v

For process definitions, we implicitly assume the existence of an ambient set of definitions
{Di}i∈I . Rule [def] replaces X by the corresponding process definition (according to the
underlying definition environment), instantiating the parameters accordingly. The remaining
rules are standard from process calculus literature [36]. We define −→ as ≡ τ−→≡ ∪ ≡ τu−→≡.

We define a normal form for terms, which is used later in § 6:

I Definition 4 (Normal Form). A term P is in normal form if P = (νũ)P ′ and P ′ 6≡ (νu)P ′′.

We note that, with structural congruence, every well-formed term can be transformed to
normal form, and we can then study reduction up to normal form, in order to witness
synchronisation actions on channels, memory and mutex.

3 Defining Safety and Liveness: Data Race and Happens-Before

We define the properties of data race freedom and lock safety/liveness through barbs (§ 3.1).
A data race happens when two writers (or a reader and a writer) can concurrently access
the same shared variable at the same time. Unsafe lock access happens if (1) unlock
happens before lock happens or before waiting read-unlocks release the lock; or (2) read-
unlock happens before read-lock happens or after a lock call accesses the process lock. Lock
liveness identifies the ability of (read-)lock requests to always eventually fire. Our first main
result is a formalisation of the happens-before relation and other properties specified in the
Go memory model [16] and a correspondence between a data race characterisation through
the happens before relation and another characterisation of a data race through barbs.

3.1 Safety and Liveness Properties through Barbs
We first define barbed process predicates [32] introducing predicates for locks and shared
variable accesses. The predicate P ↓o means that P immediately offers a visible action o.

I Definition 5 (Process barbs). The barbs are defined as follows:

Prefix Actions:
store(x, e) ↓(w〈x〉,∗); y ← load(x) ↓r〈x〉; lock(l) ↓l〈l〉;
unlock(l) ↓ul〈l〉; rlock(l) ↓rl〈l〉; runlock(l) ↓rul〈l〉

Programs: if P o,e−−→ P ′ where o = om is an action over a shared variable, or P o−→ P ′ where
o = ol is τu or a lock action, then P ↓o.

J. Gabet and N. Yoshida 4:9

(con)
µ ↓o P ↓o′
µ;P . o 7→ o′

(tra)
P . o 7→ o′ P . o′ 7→ o′′

P . o 7→ o′′
(red)

P −→∗ P ′ P ′ . o 7→ o′

P . o 7→ o′

(par-l)
P . o 7→ o′

P | Q . left (o) 7→ left (o′)
(par-r)

Q . o 7→ o′

P | Q . right (o) 7→ right (o′)

(u-l)
P ↓l〈l〉 P ↓ul〈l〉

P . ul〈l〉 7→ l〈l〉
(ru-l)

P ↓l〈l〉 P ↓rul〈l〉

P . rul〈l〉 7→ l〈l〉

(u-rl)
P ↓rl〈l〉 P ↓ul〈l〉

P . ul〈l〉 7→ rl〈l〉
(l-rl)

P ↓rl〈l〉 P ↓l〈l〉

P . l〈l〉 7→ rl〈l〉

(res)
P . o 7→ o′ u 6∈ fn(o) ∪ fn(o′)

(νu)P . o 7→ o′
(alpha)

P . o 7→ o′ P ≡α Q
Q . o 7→ o′

We omit the symmetric rules for most rules ending in a parallel process P | Q.

Figure 6 Happens-Before Relation.

Actions in this case are the same ones as defined before in the operational semantics of
GoL, expect for silent action τ . We write P ⇓o if P −→∗ P ′ and P ′ ↓o.

We first define a safety property for locks in Definition 6.

I Definition 6 (Safety). Program P is safe if for all P such that P −→∗ (νũ)P , (a) if P ↓ul〈l〉
then P ↓plq? ; and (b) if P ↓rul〈l〉 then P ↓xlyH .

Safety states that in all reachable program states, the unlock action will happen only if
the process lock is already locked by the lock action; and the read-unlock will happen only if
the process lock is locked by the read-lock action.

Next we define the liveness property: all (read-)lock requests will always eventually fire
(i.e. perform a synchronisation).

I Definition 7 (Liveness). Program P is live if for all P such that P −→∗ (νũ)P , if P ↓l〈l〉
or P ↓rl〈l〉 then P ⇓τl .

3.2 Happens Before and Data Race
We now define the happens-before relation, closely following [16], and investigate its rela-
tionship with data races. The happens-before relation between actions o and o′, denoted by
P . o 7→ o′, is defined in Figure 6. It is a binary relation which is transitive, non-reflexive
and non-symmetric, where o, o′ ∈ {(w〈x〉, ι), r〈x〉, l〈l〉, ul〈l〉, rl〈l〉, rul〈l〉}. The operation left (o)
denotes that occurrence ι in o changes to 1.ι, defined as before by left ((w〈x〉, ι)) = (w〈x〉, 1.ι);
otherwise left (o) = o. The rules follow the specification in [16].

Rule (con) specifies that within a single goroutine, the happens-before order is the order
expressed by the program. Rule (red) gives a form of inheritance: if P reduces to P ′ and
P ′ has an order between two actions, then P accepts this order as valid as well, as it is a
possible future. However, if P . o 7→ o′, it does not necessarily hold for all of P ’s reductions.

Rule (par-l) replaces (w〈x〉, ι) with (w〈x〉, 1.ι) if o or o′ is a write action. Rule (par-r) is
symmetric. Rules (u-l), (ru-l), (u-rl) and (l-rl) specify the ordering between (read)locks and
(read)unlocks, following the reduction semantics.

The following definition states that if a write action happens concurrently with another
write action or a read action to the same variable, the program has a data-race.

ECOOP 2020

4:10 Static Race Detection and Mutex Safety and Liveness for Go Programs

I Definition 8 (Data Race). Program P has a data race if there exist two distinct actions
o1 6= o2, two distinct occurrences ι 6= ι′, and P −→∗ (νũ)P , with o1 = (w〈x〉, ι) and
o2 ∈ {(w〈x〉, ι′), r〈x〉}, such that P ⇓o1 , P ⇓o2 , ¬(P . o1 7→ o2) and ¬(P . o2 7→ o1). Program
P is data race free if it has no data race.

The following theorem states that the data race defined with the happens-before relation
coincides with the characterisation given by barbs. The proof is by induction, see [13].

I Theorem 9 (Characterisation of Data Race). P has a data race if and only if there exists
P such that P −→∗ (νũ)P with P ↓o1 , P ↓o2 , o1 = (w〈x〉, ι), o2 ∈ {(w〈x〉, ι′), r〈x〉} and ι 6= ι′.

I Example 10 (Processes from Figure 1). We show a possible reduction of Prace in Example 1
that causes the (bad) race.

Prace = new(x : int); newrwl(l);

 rlock(l); t1 ← load(x); store(x, t1 + 10); runlock(l);
rlock(l); t2 ← load(x); τ ; runlock(l); 0
| rlock(l); t0 ← load(x); store(x, t0 + 20); runlock(l); 0

−→2 (νxl)

 rlock(l); t1 ← load(x); store(x, t1 + 10); runlock(l);
rlock(l); t2 ← load(x); τ ; runlock(l); 0
| rlock(l); t0 ← load(x); store(x, t0 + 20); runlock(l); 0 | [x, int :: 0] | 〈l〉0

−→6 (νxl)

(
store(x, 10); runlock(l); rlock(l); t2 ← load(x); τ ; runlock(l); 0
| store(x, 20); runlock(l); 0 | [x, int :: 0] | 〈l〉2

)
= (νxl)P ′

Note that the first line is obtained by rewriting using the process definition structure and
the [def] rule, that tells us the rewritten program and the program with calls share the same
reductions. Then we have P ′ ↓(w〈x〉,1.1.1.∗) and P ′ ↓(w〈x〉,1.1.2.∗), hence Prace has a data race.

On the other hand, Psafe is data race free, which is ensured by checking every reduction
chain of the process for the absence of data race.

4 A Behavioural Typing System for GoL

Our typing system introduces types for locks and shared memory, representing the status of
runtime processes accessing to shared variables. It serves as a behavioural abstraction of a
valid GoL program, where types take the form of CCS processes with name creation.

4.1 Behavioural Types with Shared Variables and Mutexes
The syntax of types (T, S, ...) and the structural congruence for the types are given in Figure 7.
The type ϑ;T denotes a store w(u), load r(u) of shared variable u, lock l(l), unlock ul(l),
rlock rl(l), runlock rul(l) of a (rw)lock l, followed by the behaviour denoted by type T . It
also includes an explicit silent action τ followed by the behaviour TP .

The type constructs x�, dle, dle?, 〈l〉i, 〈l〉?i and 〈l〉Hi denote the type representations of
runtime shared variable, unlocked and locked locks, unlocked (or read-locked), locked and
lock-waiting rwlocks, respectively. Types for variables and locks include shared variable and
(rw)lock creation new(x);T , newl(l);T and newrwl(l);T which respectively bind x and l in T .
fn(T) denotes the set of free names of type T .

4.2 Typing System with Shared Variables and Mutexes
Our typing system is defined in Figure 8.

The judgement (Γ ` P I T), where Γ is a typing environment that maintains information
about locks and shared variables, and types the part of a term explicitly written by the
developer. We write Γ ` J for J ∈ Γ and Γ ` e :σ to state that the expression e is well-typed

J. Gabet and N. Yoshida 4:11

T, S := ϑ;T | (T | S) | 0 | (νu)T
| ⊕{Ti}i∈I | tX〈ũ〉 | new(x);T
| newl(l);T | newrwl(l);T
| x� | dle | dle?
| 〈l〉i | 〈l〉?i | 〈l〉Hi

T := {ti(ỹi) = Ti}i∈I inT
ϑ := τ | r(x)

| w(x) | ξ
ξ := l(l) | ul(l)

| rl(l) | rul(l)

T | S ≡ S | T T | (S | S′) ≡ (T | S) | S′ T | 0 ≡ T (νx)x� ≡ 0
(νl)dle ≡ 0 (νl)dle? ≡ 0 (νl)〈l〉i ≡ 0 (νl)〈l〉?i ≡ 0 (νl)〈l〉Hi ≡ 0

(νu)(νu′)T ≡ (νu′)(νu)T T | (νu)S ≡ (νu) (T | S) (u 6∈ fn(T))

Figure 7 Syntax of the types.

according to the types of variables in Γ. We write u : t for the typing of a name in generality,
which can be (1) x :var(σ) to denote a shared variable x with stored value type σ and (2)
l :Lock to state that l is a (rw)lock. We omit the rules of expressions e. We write dom(Γ) to
denote the set of locks and shared variable bindings in Γ.

The rules are as follows. Rules 〈load〉 and 〈sto〉 type load and store types for shared
variable x where the type of the stored value matches the payload type σ of value x, and
the continuation P has type T . Rules 〈lck〉 and 〈ulck〉 (and 〈rlck〉 and 〈rulck〉) type the lock
actions in processes by corresponding types. There is no payload type to check, only that the
lock name is associated to a lock or read-write lock. Rules 〈newv〉 and 〈newm〉 (resp. 〈newrwm〉)
allocate a fresh shared variable name with payload type σ or a lock (resp. rwlock). Other
context rules are standard.

The judgement (Γ `B P I T) types process created during execution of a program
and provides the invariants to prove the type safety. B is a set of shared variables and
locks with associated runtime buffers to ensure their uniqueness. A shared variable heap
is typed with rule 〈heap〉, and all five states of locks are typed by corresponding lock types.
Restriction is typed here, as it takes the relevant type out of the typing context and removes
the corresponding name from B.

The judgement (Γ `B P I T) types a program, that consists of a process and a set of
runtime stores, accordingly to their respective types.

We use the structural congruence on types to define normal forms of types in the same
way as done for GoL terms in Definition 4, and study further properties on types up to
normal form. Examples of typing of processes can be found in Example 11.

I Example 11. The unsafe program of Figure 1, modelled by process Prace in Example 1,
has the following type:

Trace :=

t0 = new(x); newrwl(l); (tP 〈x, l〉 | tQ〈x, l〉)
tP (y, z) = rl(z); r(y); w(y); rul(z); rl(z); r(y); τ ; rul(z); 0
tQ(y, z) = rl(z); r(y); w(y); rul(z); 0

 in t0〈〉

The safe version in Figure 2, modelled by process Psafe in Example 1, has type:

Tsafe :=

t0 = new(x); newrwl(l); (tP 〈x, l〉 | tQ〈x, l〉)
tP (y, z) = l(z); r(y); w(y); ul(z); rl(z); r(y); τ ; rul(z); 0
tQ(y, z) = l(z); r(y); w(y); ul(z); 0

 in t0〈〉

4.3 Operational Semantics of the Behavioural Types
This section defines the semantics of our types. The labels, ranged over by o, o′, have the
form:

ECOOP 2020

4:12 Static Race Detection and Mutex Safety and Liveness for Go Programs

Γ ` P I T 〈zero〉
Γ ` 0 I 0

〈newv〉
Γ, x :var(σ) ` P I T

Γ ` new(x : σ);P I new(x);T

〈newm〉
Γ, l :Lock ` P I T

Γ ` newl(l);P I newl(l);T
〈newrwm〉

Γ, l :Lock ` P I T

Γ ` newrwl(l);P I newrwl(l);T

〈lck〉
Γ ` l :Lock Γ ` P I T

Γ ` lock(l);P I l(l);T
〈sto〉

Γ ` x :var(σ) Γ ` e :σ Γ ` P I T

Γ ` store(x, e);P I w(x);T

〈ulck〉
Γ ` l :Lock Γ ` P I T

Γ ` unlock(l);P I ul(l);T
〈load〉

Γ ` x :var(σ) Γ, y :var(σ) ` P I T

Γ ` y ← load(x);P I r(x);T

〈rlck〉
Γ ` l :Lock Γ ` P I T

Γ ` rlock(l);P I rl(l);T
〈rulck〉

Γ ` l :Lock Γ ` P I T

Γ ` runlock(l);P I rul(l);T

〈tau〉
Γ ` P I T

Γ ` τ ;P I τ ;T
〈var〉

Γ ` ẽ : σ̃ Γ ` ũ : t̃
Γ, X(σ̃, t̃) ` X〈ẽ, ũ〉 I tX〈ũ〉

〈par〉
Γ ` P I T Γ ` Q I S

Γ ` P | Q I (T | S)
〈sel〉

Γ ` e :bool Γ ` P I T Γ ` Q I S

Γ ` if e then P else Q I ⊕{T, S}

Γ `B P I T 〈mut〉
Γ ` l :Lock

Γ `{l} dle I dle
〈l-m〉

Γ ` l :Lock
Γ `{l} dle? I dle?

〈rmut〉
Γ ` l :Lock

Γ `{l} 〈l〉i I 〈l〉i

〈l-rw〉
Γ ` l :Lock

Γ `{l} 〈l〉?i I 〈l〉?i
〈w-rw〉

Γ ` l :Lock
Γ `{l} 〈l〉Hi I 〈l〉Hi

〈heap〉
Γ ` x :var(σ)

Γ `{x} [x, σ :: v] I x�

〈res〉
Γ, u : t `B P I T

Γ `B\u (νu)P I (νu)T
〈parr〉

Γ `B1 P I T Γ `B2 Q I S B1 ∩ B2 = ∅

Γ `B1∪B2 P | Q I (T | S)

Γ `B P I T

〈def〉
Γ, Xi(σ̃i, t̃i), x̃i : σ̃i, ỹi : t̃i ` Pi I Ti Γ, X1(σ̃1, t̃1), . . . , Xn(σ̃n, t̃n) ` Q I S

Γ ` {Xi(x̃i, ỹi) = Pi}i∈I inQ I {tXi(ỹi) = Ti}i∈I inS

Figure 8 Typing Rules for Shared Variables and Mutexes.

o := r〈x〉 | (w〈x〉, ι) | l〈l〉 | ul〈l〉 | rl〈l〉 | rul〈l〉 | x� | plq | plq? | xly | xlyH | xlyN | τ | τu

The labels denote the actions introduced in this paper: load and store actions, lock, unlock,
rlock and runlock actions, shared heap manipulation, and the five kinds of (rw)lock state
transitions. The end of the line is for silent transition and synchronisation over a name.

The semantics of our types is given by the labelled transition system (LTS) (modulo
α-conversion), extending that of CCS, which is shown in Figure 9.
Rules |sto| and |load| allow a type to emit a store and load action on a shared variable x.
Rule |lck| (resp. |ulck|) emits a lock (resp. unlock) action on a shared lock l. Rules |newv| and
|newm| (resp. |newrwm|) create a a new shared heap x or unlocked lock (resp. rwlock) store l.
Rule |heap| models the ability of a shared heap to be read or updated at any time, and rule
|c-heap| allows a load or store action to synchronise with its associated heap.

Rule |m-lck| makes a lock to be closed, and rule |m-ulck| unlocks a claimed lock. Rules
|c-lck| and |c-ulck| make the corresponding actions to synchronise with their associated lock
store. Equivalent rules for rwlocks act the same as in the processes. Pay attention to the
same quirk as in processes: |c-wait| does not consume the lock action in T , as this rules serves
to forbid further read-lock calls from being executed if a lock call is staged.

J. Gabet and N. Yoshida 4:13

Lock and Memory actions

|lck| l(l);T l〈l〉−−→ T

|ulck| ul(l);T ul〈l〉−−→ T

|rlck| rl(l);T rl〈l〉−−→ T

|rulck| rul(l);T rul〈l〉−−−→ T

|load| r(x);T r〈x〉−−→ T

|sto| w(x);T (w〈x〉,∗)−−−−−→ T

|m-lck| dle plq−−→ dle?

|m-ulck| dle? plq?−−−→ dle
|rw-lck| 〈l〉H0

plq−−→ 〈l〉?0
|rw-ulck| 〈l〉?0

plq?−−−→ 〈l〉0
|rw-rlck| 〈l〉i

xly−−→ 〈l〉i+1

|rw-rulck| 〈l〉i+1
xlyH

−−−→ 〈l〉i
|rw-wait| 〈l〉i

xlyN

−−−→ 〈l〉Hi
|rw-wulck| 〈l〉Hi+1

xlyH

−−−→ 〈l〉Hi

|heap| x�
x�−−→ x�

Synchronisation rules

|c-heap|
T

o−→ T ′ S
x�−−→ S′ o = (w〈x〉, ι), r〈x〉

T | S τx−→ T ′ | S′

|c-lck|
T

l〈l〉−−→ T ′ S
plq−−→ S′

T | S τl−→ T ′ | S′

|c-ulck|
T

ul〈l〉−−→ T ′ S
plq?−−−→ S′

T | S τl−→ T ′ | S′

|c-rlck|
T

rl〈l〉−−→ T ′ S
xly−−→ S′

T | S τl−→ T ′ | S′

|c-rulck|
T

rul〈l〉−−−→ T ′ S
xlyH

−−−→ S′

T | S τl−→ T ′ | S′

|c-wait|
T

l〈l〉−−→ T ′ S
xlyN

−−−→ S′

T | S τl−→ T | S′

|tau| τ ;T τ−→ T

Runtime structures creation |newv| new(x);T τ−→ (νx)
(
T | x�

)
|newm| newl(l);T τ−→ (νl) (T | dle) |newrwm| newrwl(l);T τ−→ (νl) (T | 〈l〉0)

Context rules |alpha|
T ≡ T ′ T ′

o−→ T ′′

T
o−→ T ′′

|sel|
j ∈ I

⊕{Ti}i∈I
τ−→ Tj

|res1|
T

o−→ T ′ u /∈ fn(o)
(νu)T o−→ (νu)T ′

|res2|
T

τu−→ T ′

(νu)T τ−→ (νu)T ′
|par-l|

T
o−→ T ′

T | S left(o)−−−→ T ′ | S

|par-r|
S

o−→ S′

T | S right(o)−−−−→ T | S′
|def|

T {ũ/x̃} | S o−→ T ′ tX(x̃) = T

tX〈ũ〉 | S
o−→ T ′

Figure 9 LTS Reduction Semantics for the Types.

Rule |sel| represents the internal choice behaviour of the conditional processes.
In Figure 9, we omit the symmetric rules for parallel composed processes (such as

|c-heap|). We write −→ for ≡ τ−→≡ ∪ ≡ τu−→≡ and T −→∗ o−→ if there exist T ′ and T ′′ such that
T −→∗ T ′ o−→ T ′′.

I Example 12. The unsafe version of Figure 1, modelled by process Prace in Example 1
and typed by Trace in Example 11, has the following possible reduction (following the same
reduction order as Example 10):

Trace = new(x); newrwl(l);
(

rl(l); r(x); w(x); rul(l); rl(l); r(x); τ ; rul(l); 0
| rl(l); r(x); w(x); rul(l); 0

)
−→2 (νxl)

(
rl(l); r(x); w(x); rul(l); rl(l); r(x); τ ; rul(l); 0
| rl(l); r(x); w(x); rul(l); 0 | x� | 〈l〉0

)
−→6 (νxl)

(
w(x); rul(l); rl(l); r(x); τ ; rul(l); 0
| w(x); rul(l); 0 | x� | 〈l〉2

)
= (νxl)T ′

We note that T ′ is a type of P ′ which has a data race in Example 10.

ECOOP 2020

4:14 Static Race Detection and Mutex Safety and Liveness for Go Programs

5 Properties of GoL Processes and Types

This section proves two main results, the subject reduction and progress properties with
respect to behavioural types. Our goal is to classify subsets of GoL programs for which
liveness, data race freedom and safety coincide with liveness, data race freedom and safety of
their types. Detailled proofs for this section are available in [13].

5.1 Type soundness of GoL processes
A basic property for types is to be preserved under structural congruence and to be able to
reduce the same as the process.

I Proposition 13 (Subject Congruence). If Γ `B P I T and P ≡ P ′, then ∃T ′ ≡ T such
that Γ `B P ′ I T ′.

The following type soundness theorem shows that behaviours of processes can be simulated
by behaviours of types.

I Theorem 14 (Subject Reduction). If Γ `B P I T and P −→ P ′, then ∃T ′ such that
Γ `B P ′ I T ′ and T −→ T ′.

The following progress theorem says that the action availability on types infers that on
processes.

We first need to define barbs to represent capabilities of a type at a given time in reduction,
akin to how process barbs are defined in Definition 5.

I Definition 15 (Type Barbs). The barbs on types are defined as follows:

Prefix Actions:
w(x) ↓(w〈x〉,∗); r(x) ↓r〈x〉; l(l) ↓l〈l〉;
ul(l) ↓ul〈l〉; rl(l) ↓rl〈l〉; rul(l) ↓rul〈l〉

Types: if T o−→ T ′ where o is a communication action over a shared variable or τu or a lock
action, then T ↓o.

I Theorem 16 (Progress). Suppose Γ ` P I T . Then if T o−→ T0 for o ∈ {τu, τ} for some
heap or lock u, then there exists P ′, T ′ such that P −→ P ′, T o−→ T ′, and Γ ` P ′ I T ′.

To prove this theorem, we use a lemma which shows a correspondence of barbs between
processes and types (defined similarly with barbs of processes, cf Definition 15). Note that
in Theorem 16, T ′ and T0 might be different. This is because a selection type (i.e. the
internal choice) can reduce non-deterministically but the corresponding conditional process
usually is deterministic.

5.2 Safety and Liveness for Types
In this subsection, we define safety and liveness for types, which correspond to Definitions 6,
7 and 8, respectively.

I Definition 17 (Safety). Type T is safe if for all T such that T −→∗ (νũ)T , (a) if T ↓ul〈l〉
then T ↓plq? ; and (b) if T ↓rul〈l〉 then T ↓xlyH .

I Definition 18 (Liveness). Type T is live if for all T such that T −→∗ (νũ)T , if T ↓l〈l〉 or
T ↓rl〈l〉 then T ⇓τl .

I Definition 19 (Data Race). T has a data race if and only if there exists T such that
T −→∗ (νũ)T with T ↓o1 , T ↓o2 , o1 = (w〈x〉, ι), o2 ∈ {(w〈x〉, ι′), r〈x〉} and ι 6= ι′.

We say that T is data race free if it has no data race.

J. Gabet and N. Yoshida 4:15

5.3 Liveness and Safety for Typed GoL
In this section, we state several propositions and theorems adapted from [27] to our new
process and types primitives and their LTSs. Our goal is to classify subsets of GoL programs
for which liveness, data race freedom and safety coincide with liveness, data race freedom
and safety of their types.

First, we prove that safety and data race freedom (which is a form of safety) have no
restriction, and that proving that a type is safe always entails the associated program is safe.

I Theorem 20 (Process Safety and Data Race Freedom). Suppose Γ ` P I T and T is safe
(resp. data race free). Then P is safe (resp. data race free).

We then prove that liveness of types is equivalent to liveness of programs for a subset of
the GoL programs, in three steps: (1) programs that always have a terminating path, (2)
finite branching programs, and (3) programs that simulate non-deterministic branching in
infinitely recurring conditionals.

We first study the case of programs that always have a path to termination:

I Definition 21 (May Converging Program). Let Γ ` P I T . We write P ∈ May⇓ if for all
P −→∗ P ′, P ′ −→∗ 0.

An example of May Converging program is the following program, where process P loops
and alternates x to values 1 and 0 until the end flag is set, and Q loops reading x until it
reads a value 0, in which case it sets the end flag and returns:

Pmc :=

X0 = new(x : int); new(end : bool); newrwl(l);
(P 〈x, end, l〉 | Q〈x, end, l〉)

P (x, end, l) = lock(l); y ← load(x); store(x, 1− y); z ← load(end);
unlock(l); if z then 0 else P 〈x, end, l〉

Q(x, end, l) = lock(l); y ← load(x); unlock(l);
if y = 0 then lock(l); store(end, true); unlock(l); 0
else Q〈x, end, l〉

inX0〈〉

The next proposition states that on these programs, proving liveness of their types is
enough to ensure liveness of the associated program.

I Proposition 22. Assume Γ ` P I T and T is live. (1) Suppose there exists P ′ such that
P −→∗ P ′ 6−→. Then P ′ ≡ 0; and (2) If P ∈ May⇓, then P is live.

We now need to define a subset of May Converging programs, that is the set of always
terminating programs. This is needed because our implementation, that we describe in § 8,
only allows to check and ensure liveness for terminating programs, ie. the result of our tool
for liveness is assured to coincide with actual program liveness only on terminating programs.

Note that the tool is able to model check non-terminating programs (under the assumption
they don’t spawn an unbounded amount of new threads), but may in rare instances lead to
a false positive, due to the approximations the model checker has to make in this case.

I Definition 23 (Terminating Program). We write P ∈ Terminate if there exists some non-
negative number n such that, for all P such that P −→n P , P 6−→.

The following proposition states that this subset of programs is included in the set of
May Converging programs. We note that this inclusion is strict: a program that may loop
forever on a select construct, with a timeout branch that terminates the program, is May
Converging but not terminating in the sense of the above definition, as we may always find a
reduction path that continues longer than any finite bound.

ECOOP 2020

4:16 Static Race Detection and Mutex Safety and Liveness for Go Programs

I Proposition 24. P ∈ Terminate implies P ∈ May⇓.

Proof. By definition of the May Converging set of programs, all programs that always
converge are May Converging. J

I Example 25. Note that the running examples we defined in Figure 1 and 2 are both
terminating, and so are their modelling processes given in Example 1.

The next set of programs we highlight is finite branching programs. We first define
a series of items, including deterministic marking of conditionals and the set of infinitely
branching programs, in order to grab everything not infinitely branching (ie. outside of the
defined set).
Marked Programs. Given a program P we define its marking, written mark(P), as the
program obtained by deterministically labelling every occurrence of a conditional of the form
if e then P else Q in P, as ifn e then P else Q, such that n is distinct natural number for
all conditionals in P.
Marked Reduction Semantics. We modify the marked reduction semantics, written P l−→ P ′,
stating that program P reduces to P ′ in a single step, performing action l. The grammar of
action labels is defined as: l := α | n·L | n·R where α denotes a non-conditional action, taking
into account all existing actions and all rules expect [ift] and [iff], n·L denotes a conditional
branch marked with the natural number n in which the then branch is chosen, and n ·R
denotes a conditional branch in which the else branch is chosen. Because of the changes in
notations, conditional branches are not considered a standard reduction step in −→ any more.
The marked reduction semantics replace rules [ift] and [iff].
Trace. We define an execution trace of a program P as the potentially infinite sequence of
action labels ~l such that P l1−→ P1

l2−→ . . ., with ~l = {l1, l2 . . .}. We write TP for the set of all
possible traces of a process P .
Reduction Contexts are given by: Cr := [] | (P | Cr) | (Cr | P) | (νu)Cr.
Infinite Conditional. We say that P has infinite conditionals, written as P ∈ Inf, iff
mark(P) −→∗ Cr[ifn e then P else Q] = R, for some n, and R has an infinite trace where n·L
or n·R appears infinitely often. We say that such an n is an infinite conditional mark and
write InfCond(P) for the set of all such marks.

We state in the next proposition that finite branching programs can be ensured live by
checking for liveness of their types.

I Proposition 26 (Liveness for Finite Branching). Suppose Γ ` P I T and T is live and
P 6∈ Inf. Then P is live.

An example of finite branching program is the Dining Philosophers problem:

Pdinephil :=

X0 = new(f1 : int); new(f2 : int); new(f3 : int);
newl(l1); newl(l2); newl(l3);(

P 〈f1, f2, l1, l2, 1〉 | P 〈f2, f3, l2, l3, 2〉
| P 〈f1, f3, l1, l3, 3〉

)
P (fl, fr, ll, lr, id) = lock(ll); y ← load(fl); τ ; store(fl, id);

lock(lr); z ← load(fr); τ ; store(fr, id+ 2);
unlock(lr); unlock(ll);P 〈fl, fr, ll, lr, id〉

inX0〈〉

Here, P defines the behaviour of a philosopher, trying to get a hold of both forks assigned
to him, and them release them. Other implementations of this problem’s algorithm (including
ones using channel communications) can be found in the full version [13].

J. Gabet and N. Yoshida 4:17

Next we define in the infinite branching programs a subset containing only programs that
simulate non-deterministic branching.
Conditional Mapping. The mapping (P)∗ replaces all occurrences of marked conditionals
ifn e then P else Q, such that n ∈ InfCond(P), with if ∗ then P else Q. Its reduction
semantics follow the nondeterministic semantics of selection in types, reducing with a τ label.
This mapping is applicable to processes P .
Alternating Conditionals. We say that P has alternating conditional branches, written
P ∈ AC, iff P ∈ Inf and if P −→∗ (νũ)P then P ∗ ⇓o implies P ⇓o.

The concurrent version of the Prime Sieve [27, 33] is an example of program that has
alternating conditionals. Our implementation of it in Go can be found in the full version [13],
and is not detailed here as it uses channels, which we will introduce in an extension to this
work in § 7. An other simple example of alternating conditionals is as follows:

Pac :=

X0 = new(x : bool); new(y : int);P 〈x, y〉
P (b, i) = z ← load(b); if z then t← load(i);

store(i, t+ 1); store(b, not(z));P 〈b, i〉 else store(b, not(z));P 〈b, i〉

 inX0〈〉

We finally state that programs in the alternating conditionals set can be ensured live by
ensuring that their types are live.

I Theorem 27 (Liveness). Suppose Γ ` P I T and T is live and P ∈ AC. Then P is live.

To summarise this section, we identified three classes of GoL programs for which we can
prove liveness by proving type liveness: (1) programs that always have access to a terminating
path (Definition 21 and Proposition 22), including the strict subset of programs that always
terminate within a finite number of reduction steps, similar to our running examples; (2)
programs that do not exhibit an infinite branch containing an infinitely occurring conditional
(Proposition 26), such as the Dining Philosophers problem (used in our benchmarks, see § 8
for more details); and (3) programs with infinite branches that contain infinitely occurring
conditionals, with the condition that these infinitely occurring conditionals simulate a non-
deterministic choice (Theorem 27), like our Prime Sieve implementation [27, 33] and the
example presented above.

6 Verifying Program Properties: the Modal µ-Calculus

In this section, we introduce the modal µ-calculus and express various properties over
the types. We then explain how the type-level properties are transposed to process-level
properties, as proved in § 5.3.

6.1 The Modal µ-Calculus
We first define a pointed LTS for the types, to denote the capabilities available at this point
in the simulation.

I Definition 28 (Pointed LTS of types). We define the pointed LTS of a program’s types as:
A set of states S, labelled by the (restriction-less) types accessible by reducing from the

entrypoint t0 with τ−→ and τu−→; this entrypoint is defined as the type of the entrypoint
X0 of the program: S := {T : t0 −→∗ (νũ)T and T 6≡ (νũ′)T ′}.

A set of labelled transitions A, in S×S×{τ, τu}: A := {(T, T ′, o) : T, T ′ ∈ S and T o−→ T ′}.

ECOOP 2020

4:18 Static Race Detection and Mutex Safety and Liveness for Go Programs

A set of barbs attached to each state, describing the actions its labelled type can take
according to the set of barbs of this type. These take the form of the barbs as they were
defined above: ∀T ∈ S,F(T) := {↓o : T ↓o}.

The modal µ-calculus is a calculus that allows to express temporal properties on such
pointed LTS, like the fact that there exists an accessible state where some property is true,
or the fact that some property is true in all reachable states. The syntax of these formulae
is given below, where α is a set of barbs over the types available to the LTS of types, or
transition actions τ or τu available as transitions to the LTS of types, as defined above:

φ := > | ⊥ | ¬φ | φ ∧ φ | φ ∨ φ | φ⇒ φ | [α]φ | 〈α〉φ | νZ.φ | µZ.φ | Z
α := α+ α | ↓o | ↓õ | τ | τu | S S := {τu : u ∈ fn(T)} ∪ {τ}

The formulae contain the true and false constants, negation, implication, conjunction and
disjunction (both of which can be generalised over a set of actions, where this set can be
restrained by some condition).

The diamond modality, 〈α〉φ, is true when at least one of the actions in α is available
from the current state and, if it is a barb then φ must be true in the current state, and
if it is a transition action then φ must be true in the resulting state. If no action in α is
available, then this formula is false. For example,

〈
↓(w〈z〉,∗)

〉
> holds on every state where a

store action on z is available as the main action, but not when the only store action available
is labelled otherwise, e.g. 1.∗.

The box modality, [α]φ, is valid when, for every state reachable by following an action in
α from the current state, φ is true. This set of states can be empty, in case no action in α is
available, in which case this formula is vacuously true. For example, [τ]⊥ is true only when
no τ transition is available to the current state of the pointed LTS of the type.

The lowest fixed point µZ.φ and greatest fixed point νZ.φ are the standard recursive
constructs, where the least fixed point is the intersection of prefixed points, and the greatest
fixed point is the union of postfixed points. That implies the following properties, given for
understanding:

1. µZ.Z = ⊥: the lowest fixed point defaults to false;
2. νZ.Z = >: the greatest fixed point defaults to true;
3. if φ[Z := ψ]⇒ ψ then µZ.φ⇒ ψ: the lowest fixed point can be expanded on the left of a

logical implication;
4. if ψ⇒ φ[Z := ψ] then ψ⇒ νZ.φ: the greatest fixed point can be expanded on the right of

a logical implication.

To express that some modal µ-calculus formula φ is true on a state labelled with type T
in the LTS T , we say that T satisfies φ in the LTS T , written T |=T φ.

Two key properties that can be expressed are: φ is always true, which means that every
state T in T satisfies that formula; and φ is eventually true which means that there exists a
reachable state that satisfies this formula. These are expressed with the fixed-point modalities
explained above:

Always φ: Ψ(φ) =νZ.φ ∧ [−]Z Eventually φ: Φ(φ) =µZ.φ ∨ 〈−〉Z

6.2 Properties of the Behavioural Types
Figure 10 defines the local properties we check on the states of the behavioural types LTS,
which means they are defined for one state only. The global properties can be checked on
the entrypoint of the LTS by checking for Ψ(φ), ie. “always φ”.

J. Gabet and N. Yoshida 4:19

1. Mutex safety (a):
ψsa =

∧
l

〈
↓ul〈l〉

〉
>⇒ 〈↓plq?〉>

2. Mutex safety (b):
ψsb =

∧
l

〈
↓rul〈l〉

〉
>⇒

〈
↓xlyH

〉
>

3. Mutex liveness:
ψl =

∧
l

〈
↓l〈l〉 + ↓rl〈l〉

〉
>⇒ Φ (〈τl〉>)

4. Data race freedom:
ψd =

∧
x,ι

〈
↓(w〈x〉,ι)

〉
>⇒

[∑
ι′ 6=ι ↓(w〈x〉,ι′) + ↓r〈x〉

]
⊥

Figure 10 Modal µ-calculus properties of types.

Property ψsa checks for the first half of lock safety, that is a lock can only be unlocked if
it is currently in locked state, and property ψsb checks the second half of lock safety, that is
a read/write-lock can only be read-unlocked one level if it is in a read-locked state currently.

Property ψl states lock liveness, that is if a lock or read-lock action is staged, the same
lock will eventually synchronise (and as such, when applied on a global level Ψ(ψl), the lock
or read-lock in question will eventually fire, since it becomes false if at any point there is a
lock or read-lock staged but no future synchronisation on the lock). Remember that in our
model, liveness of the types only entails liveness of the program if the program is in one of
the subsets defined previously, in particular if the program terminates or only has alternating
conditionals.

Finally, property ψd checks local data race freedom, that is if a write action is available
on some variable x, then no other read or write action is available on the same variable
in the current state. Ψ(ψd) checks for data race freedom on the whole of accessible states,
so checking that on the entrypoint t0 of a type LTS T ensures the type of the associated
program is data race free, and thus that said program is data race free.

I Example 29. We can check that the type T ′ from Example 12 does not verify ψd:

ψd =
(〈
↓(w〈z〉,1.1.1.∗)

〉
>⇒

[
↓(w〈z〉,1.1.2.∗) + ↓r〈z〉

]
⊥
)
∧
(〈
↓(w〈z〉,1.1.2.∗)

〉
>⇒

[
↓(w〈z〉,1.1.1.∗) + ↓r〈z〉

]
⊥
)

which is false for T ′, hence T ′ 6|=Trace ψd : locally, T ′ has a datarace. Then t0 6|=Trace Ψ(ψd),
meaning Trace has a data race, since its associated entrypoint in its LTS Trace does not satisfy
data race freedom property Ψ(ψd).

On the other hand, the type Tsafe from Example 12, modelling the safe version of our
running example, verifies the data race freedom property, as well as safety and liveness:

Tsafe |=Tsafe Ψ(ψd) ∧Ψ(ψl) ∧Ψ(ψsa ∧ ψsb)

The types corresponding to the other examples in § 5.3 (Pmc,Pdinephil and Pac) are also
safe, live and data race free.

The following theorem states that type-level model-checking can justify process properties
under the conditions given in § 5.3. We define the pointed LTS of processes TP and the
satisfaction property P |=TP φ in the same way as they are defined for types in this section.

I Theorem 30 (Model Checking of GoL processes). Suppose Γ ` P I T .
1. If T |=TT Ψ(φ) for φ ∈ {ψsa , ψsb , ψd}, then P |=TP Ψ(φ).
2. If T |=TT Ψ(ψl) and either (a) P ∈ May⇓ or (b) P 6∈ Inf or (c) P ∈ AC, then P |=TP Ψ(ψl).

Proof. By Theorems 20 and 27, and Propositions 22 and 26. J

ECOOP 2020

4:20 Static Race Detection and Mutex Safety and Liveness for Go Programs

1 func main () {
2 var x int
3 ch := make(chan int , 1) ⇒ 2
4 go f(ch , &x)
5 ch <- Lock // send to ch
6 x += 10 // protected by ch ⇒ race
7 <-ch // receive from ch
8 ch <- Lock
9 fmt. Println ("x is", x)

10 <-ch
11 }
12
13 func f(ch chan int , ptr *int) {
14 ch <- Lock
15 *ptr += 20 // protected by ch ⇒ race
16 <-ch
17 }

Figure 11 Go programs: safe (size 1) ⇒ race (size 2).

7 Extending the framework for Go with channels

One of the core features of the Go language is the use of channels for communication in
concurrent programming. In Go programs, a number of concurrency bugs can be caused by
a mixture of data races and communication problems. In this section, we develop a theory
which can uniformly analyse concurrency errors caused by a mix of shared memory accesses
and asynchronous message-passing communications, integrating coherently our framework in
[27, 28]. We include channel communications as a synchronisation primitive in our model for
data race checking, following the official Go specification.

Figure 11 illustrates a Go program, which makes use of a channel ch to synchronise the
main and f functions updating the content of the shared variable x. On line 3, the statement
ch := make(chan int, num) creates a new shared channel ch with a buffer size of num
for passing int values. Channels can be sent to or received from using the <- operator,
where ch <- value and <-ch depict sending value to the channel and receiving from the
channel respectively. At runtime, sending to a full channel (i.e. number of items in channel
≥ num), or receiving from an empty channel (i.e. number of items in channel = 0) blocks.
The go keyword in front of a function call on line 4 spawns a lightweight thread (called a
goroutine) to execute the body of function f. The two parameters of function f – a channel
ch, and an int pointer ptr – are shared between the caller and callee goroutines, main and
f. Since concurrent access to the shared pointer ptr may introduce a data race, a pair of
channel send and receive are used to ensure serialised, mutually exclusive access to ptr in f
and x in main. If the buffer size of the shared channel is set to 2 by mistake (as denoted by
⇒ in line 3), allowing simultaneous write requests to x on lines 6 and 15, the program could
output “x is 20” with a bad scheduling, dropping the increase of 10 in the same thread as
the print statement. We use this program as our running example in this section.

7.1 Channels in Processes
We add to the processes the following constructs to account for channel actions (defined as
π := c!〈e〉 | c?(x) | τ) and runtime buffer:

P := . . . | π;P | close c;P | select{πi;Pi}i∈I | newchan(c:σ, n);P | c〈σ, n〉::ṽ | c?〈σ, n〉::ṽ

Channels are ranged over by a, b, c, which are from now also included under the generic
names u, and sets of channels are ranged over by c̃. The new syntax contains the ability to
send and receive messages through channels, in capabilities under prefix π, and the ability

J. Gabet and N. Yoshida 4:21

Channel actions
[snd] c!〈e〉;P c,e−−→ P

[rvc] c?(y);Q c,v−−→ Q {v/y}
[end] close c;P end[c]−−−→ P

[buf] c〈σ, n〉::ṽ end[c]−−−→ c?〈σ, n〉::ṽ

[push]
|ṽ| < n

c〈σ, n〉::ṽ
•c,v−−−→ c〈σ, n〉::v · ṽ

[pop] c〈σ, n〉::ṽ · v c•,v−−−→ c〈σ, n〉::ṽ
[cpop] c?〈σ, n〉::ṽ · v c?,v−−−→ c?〈σ, n〉::ṽ
[cld] c?〈σ, n〉::∅ c?,⊥σ−−−−→ c?〈σ, n〉::∅

Synchronisation rules

[close]
P

end[c]−−−→ P ′ Q
end[c]−−−→ Q′

P | Q τ−→ P ′ | Q′

[scom]
P

c,e−−→ P ′ Q
c,v−−→ Q′ e ↓ v

(P | Q) | c〈σ, 0〉::∅ τc−→
(
P ′ | Q′

)
| c〈σ, 0〉::∅

[out]
P

c,e−−→ P ′ Q
•c,v−−−→ Q′ e ↓ v

P | Q τc−→ P ′ | Q′

[in]
P

c,v−−→ P ′ Q
c•,v−−−→ Q′ or Q c?,v−−−→ Q′

P | Q τc−→ P ′ | Q′

[bra]
πj ;Pj | P

α−→ P ′ α ∈ {τ, τc}
select{πi;Pi}i∈I | P

α−→ P ′

Runtime creation [newc] newchan(y:σ, n);P τ−→ (νc) (P {c/y} | c〈σ, n〉::∅) (c /∈ fn(P))

Figure 12 Remaining LTS Semantics of Processes.

to close a channel. There is also a select construct that allows selection between several
processes guarded by channel send or receive actions, or a silent action. Lastly, we can create
a new channel, and there are two runtime constructs denoting respectively open and closed
channel c with payload type σ, allowed buffer size n and current buffered messages ṽ.

We add the structural congruence rules for queues, (νc)c〈σ, n〉::ṽ ≡ 0 and (νc)c?〈σ, n〉::ṽ ≡
0, and to the LTS the new corresponding reduction rules, along with their labels, shown in
Figure 12. The rules include creating a new channel with [newc]; sending to and receiving from a
buffered channel with [out] and [in]; closing a channel with [close]; synchronous communications
for channels with buffer size 0 using rule [scom]; and reducing a select construct with [bra].

I Example 31 (Processes from Figure 11). The following process represents the unsafe version
of the code in Figure 11. As in Example 1, we separate the main function in two parts, the
part that instantiates the variable and channel, and spawns the side process in parallel to
the continuation; and two called processes P and Q.

Pc−race :=

X0 = new(x : int); newchan(c:int, 2); (P 〈x, c〉 | Q〈x, c〉)
P (y, z) = z!〈Lock〉; t1 ← load(y); store(y, t1 + 10); z?(u1);

z!〈Lock〉; t2 ← load(y); τ ; z?(u2); 0
Q(y, z) = z!〈Lock〉; t0 ← load(y); store(y, t0 + 20); z?(u0); 0

 inX0〈〉

The safe version Pc−safe is the same, replacing the 2 for a 1 in the channel instanciation.
This example reduces, like the one with a rwlock, allowing to see the possible data race:

Pc−race −→6 (νxl)

 store(x, 10); c?(u1);
c!〈Lock〉; t2 ← load(x); τ ; c?(u2); 0
| store(x, 20); c?(u0); 0 | [x, int :: 0] | c〈int, 2〉::Lock · Lock

 = (νxl)P ′

7.2 Liveness and Safety for Channels
To define the liveness and safety properties for channels, we first extend the barbs as follows:

ECOOP 2020

4:22 Static Race Detection and Mutex Safety and Liveness for Go Programs

I Definition 32 (Process barbs). The barbs are expanded as follows:
prefix actions: c?(x) ↓c; c!〈e〉 ↓c.

select: we add the rule:
∀i ∈ {1, ..., n} : πi;Pi

oi−→ Pi ∧ oi 6= τ

select{πi;Pi}i∈{1,...,n} ↓{o1,...,on}
The rest is unchanged, but takes into account end actions, as well as buffer actions.

Next is extending the safety and liveness properties to channels, by adding the following
definitions: (1) Channel Safety: A channel can be closed only once, and when closed
should not be used to send a message. A closed channel can be used to receive an unbounded
number of times though, and will yield a default value of the channel’s type when the queue
is empty; and (2) Channel Liveness: no channel action blocks indefinitely, ie. all channel
actions lead to synchronisation on the channel eventually (or on a channel of the list of
guarding actions for a select construct that has no silent action guard).

I Definition 33 (Channel Safety). Program P is channel safe if for all P such that P −→∗
(νũ)P , if P ↓c? then ¬(P ⇓end[c]) and ¬(P ⇓c).

I Definition 34 (Channel Liveness). Program P satisfies channel liveness if for all P such
that P −→∗ (νũ)P , (a) if P ↓c or P ↓c then P ⇓τc ; and (b) if P ↓õ then P ⇓τci for some
ci ∈ fn(õ).

(buf)
P ↓c P ↓c |ṽ| = n

P | c〈σ, n〉::ṽ . c 7→ c
(buf-rcv)

P ↓c ∃j ∈ I : πj ↓c |ṽ| = n

(P | select{πi;Qi}i∈I) | c〈σ, n〉::ṽ . c 7→ c

(cl-rcv)
P ↓c

P | c?〈σ, n〉::ṽ . c? 7→ c
(buf-snd)

P ↓c ∃j ∈ I : πj ↓c |ṽ| = n

(P | select{πi;Qi}i∈I) | c〈σ, n〉::ṽ . c 7→ c

(scom)
P ↓c P ↓c

P | c〈σ, n〉::∅ . c 7→ c
(scom-snd)

P ↓c ∃j ∈ I : πj ↓c
(P | select{πi;Qi}i∈I) | c〈σ, n〉::∅ . c 7→ c

(end)
P ↓end[c]

P . end[c] 7→ c?
(scom-rcv)

P ↓c ∃j ∈ I : πj ↓c
(P | select{πi;Qi}i∈I) | c〈σ, n〉::∅ . c 7→ c

We omit the symmetric rules for most rules ending in a parallel process P | Q.

Figure 13 Rest of Go’s Happens-Before Relation.

The channel synchronisations for the happens-before relation are listed in Figure 13.
They consist of channel communication according to the official Go memory model: a send
happens-before the corresponding receive, and if the channel buffer size is n, then the k-th
receive happens-before the k + n-th send. We add on top of that that closing a channel
happens-before any default value is received from it, and when a channel is closed, default
values are emmited by the closed buffer before the corresponding receive reads it.

We extend our behavioural types with the following constructs, mirroring process con-
structs, and using the syntax and semantics from [27, 28]:

S, T := . . . | κ;T | end[c];T | N{κi;Ti}i∈I | (ν cn)T | bccnk | c? κ := c | c | τ

We show the typing rules for added channel constructs, which contain the new type primitives,
in Figure 14. We also add the structure rules (νc)bccnk ≡ 0 and (νc)c? ≡ 0; and the LTS
semantics for the communication primitives (Figure 15). They correspond to the ones found
for the processes.

J. Gabet and N. Yoshida 4:23

Γ ` P I T 〈newc〉
Γ, y :ch(σ, n) ` P I T c 6∈ dom(Γ) ∪ fn(T)

Γ ` newchan(y:σ, n);P I (ν cn)T {c/y}

〈snd〉
Γ ` c :ch(σ, n) Γ ` e :σ Γ ` P I T

Γ ` c!〈e〉;P I c;T
〈rvc〉

Γ ` c :ch(σ, n) Γ, x :σ ` P I T

Γ ` c?(x);P I c;T

〈bra〉
Γ ` πi;Pi I κi;Ti

Γ ` select{πi;Pi}i∈I I N{κi;Ti}i∈I
〈end〉

Γ ` P I T

Γ ` close c;P I end[c];T

Γ `B P I T 〈buf〉
Γ ` c :ch(σ, n) |ṽ| = k

Γ `{c} c〈σ, n〉::ṽ I bccnk
〈c-buf〉

Γ ` c :ch(σ, n)
Γ `{c} c?〈σ〉::ṽ I c?

Figure 14 Typing Rules for Channels.

Channel actions
|snd| c;T c−→ T

|rvc| c;T c−→ T

|end| end[c];T end[c]−−−→ T

|cld| c?
c?−→ c?

|buf| bccnk
end[c]−−−→ c?

|pop|
k ≥ 1

bccnk
c•−→ bccnk−1

|push|
k < n

bccnk
•c−→ bccnk+1

Runtime creation
|newc| (ν cn)T τ−→ (νc) (T | bccn0)

Synchronisation rules

|close|
T

end[c]−−−→ T ′ S
end[c]−−−→ S′

T | S τ−→ T ′ | S′

|scom|
T

c−→ T ′ S
c−→ S′

(T | S) | bcc00
τc−→
(
T ′ | S′

)
| bcc00

|out|
T

c−→ T ′ S
•c−→ S′

T | S τc−→ T ′ | S′

|in|
T

c−→ T ′ S
o−→ S′ o ∈ {c•, c?}

T | S τc−→ T ′ | S′

|bra|
κj ;Tj | T

o−→ T ′ o ∈ {τ, τc}
N{κi;Ti}i∈I | T

o−→ T ′

Figure 15 Remaining LTS Semantics of Types.

All results in § 5 hold as-is with the new definitions. We only add the new barbs, like for
processes (identical definition), and the following type properties:

I Definition 35 (Channel Safety). Type T is channel safe if for all T such that T −→∗ (νũ)T ,
if T ↓c? then ¬(T ⇓end[c]) and ¬(T ⇓c).

I Definition 36 (Channel Liveness). Type T is channel live if for all T such that T −→∗ (νũ)T ,
(a) if T ↓c or T ↓c then T ⇓τc ; and (b) if T ↓õ then T ⇓τci for some ci ∈ fn(õ).

They correspond to the ones added for processes, and are integrated in other theorems of § 5.

7.3 Modal µ-Calculus Properties for Channels
With extending to the channel primitives, all definitions in § 6 still hold with added properties
in the modal µ-calculus for channel liveness and safety. These are defined in Figure 16.

The model-checking result is also extended as the following theorem to capture the
situation where shared memory and message passing co-exist.

I Theorem 37 (Model Checking of GoL processes). Suppose Γ ` P I T .
1. If T |=TT Ψ(φ) for φ ∈ {ψsa , ψsb , ψs, ψd}, then P |=TP Ψ(φ).
2. If T |=TT Ψ(φ) for φ ∈ {ψl, ψla , ψlb} and either (a) P ∈ May⇓ or (b) P 6∈ Inf or (c)

P ∈ AC, then P |=TP Ψ(φ).

ECOOP 2020

4:24 Static Race Detection and Mutex Safety and Liveness for Go Programs

1. Channel safety:
ψs =

∧
c 〈↓c?〉>⇒Ψ

([
↓c + ↓end[c]

]
⊥
)

2. Channel liveness (a):
ψla =

∧
c 〈↓c + ↓c〉>⇒ Φ (〈τc〉>)

3. Channel liveness (b):
ψlb =

∧
c̃ 〈↓c̃〉>⇒ Φ

(〈∑
ci∈c̃ τci

〉
>
)

Figure 16 Modal µ-calculus properties for channels.

This extension to our framework allows us not only to integrate the previous framework
by [27, 28], but also show to some extent the modularity of our memory-based approach.
With channels, this extension of GoL is implementing a significant range of the concurrency
features of Go, allowing for a range of programs to be model-checked for data races, liveness
issues and other safety issues in the use of locks and channels.

7.4 Types and process (program) liveness
There are several categories of processes for which the equivalence between types and process
(program) liveness is not ensured: (3) programs that have an infinite conditional that is not
an alternating conditional, if they do not always have a termination path available. They can
be checked by the model checker if they are not in (3), however the result may not coincide
with the process liveness; (2) programs that neither have an infinite conditional, nor always
have a potential path for termination (e.g. a program that recurses indefinitely without
ever having an ending branch available through a select construct, without the need of
a conditional in the recursing selection); and (3) programs that are not finite control – i.e.
programs that spawn an unbounded amount of new processes – because the model-checker
will not be able to generate a linear representation of them (see § 8).

Note that for (1) and (2), the tool returns “live” if the types are live, though it may be
the case that the programs are not live.

8 Implementation and Evaluation

Godel2

mCRL2 KiTTEL

migoinfer+
go/ssa package

Go source code

Load main()

Behavioural types

Godel2 written in Haskell
This tool uses either KiTTEL to check for termination of the input behavioural types, or mCRL2
to check for properties like liveness, safety and data-race freedom of the types.

migoinfer+ written in Go
This tool loads source code, type-checks and builds SSA IR using the go/ssa package, then ex-
tracts communication, mutexes and shared variables from the SSA IR as behavioural types.

Figure 17 Workflow of the verification toolchain.

The tool chain. Our implementation tool (shown in Figure 17) consists of a type inference
tool and a type verifier. The type inference tool (migoinfer+) [3] extracts behavioural types,
including eight new primitives related to shared memory: creating a new lock (called mutex

J. Gabet and N. Yoshida 4:25

in the tool, in reference to the name of the mutual exclusion lock implementation in Go)
or shared address, exclusive write-locking or unlocking of a lock or a read-write lock, read-
locking/unlocking a read-write lock, and reading or writing a shared variable. This new
inference tool supports both channel-based communication primitives from [28] and shared
memory primitives.

migoinfer+ currently supports a subset of the Go language syntax, extracting only variables
and mutexes created explicitly inside the body of a function, and does not support embedding
or mutexes in struct. These usage patterns of mutexes can be transformed to the flat
representation we support, allowing us to analyse the examples in our benchmark [1]. Note
that it is advised to avoid the non-declared sharing of variables, channels and mutexes to a
nameless child goroutine, as it may not extract the parameter passing properly, and this is
a good practice in Go to specify shared parameters. Programs that spawn an unbounded
number of goroutines such as our prime-sieve example can be extracted by migoinfer+ if they
respect the above limitations. Lastly, the use of some (non-default) packages, such as the
net package, is known to break migoinfer+ under certain conditions, making it not extract
the types correctly.

The type verifier (Godel2) [2] analyses the new extracted primitives, implements the
theory presented in this paper, and uses the mCRL2 [44, 20] model checker as a backend
to check safety and data race properties. Regarding the liveness properties, as discussed
after Theorem 16 and in [27, 28], liveness of types does not imply liveness of processes, due
to conditionals behaving differently in the types and the processes. In Theorem 30, we
identified the three classes of Go programs where both liveness properties coincide. One such
class is a set of terminating processes, as defined in Definition 23, which is a strict subset of
may converging processes (Proposition 24). To make sure liveness coincides on types and
processes, we combine the termination checker KITTeL [11] to our tool (see also [28, § 5]).
This tool can check processes that are not terminating under certain conditions, namely they
should not spawn an unbounded number of threads. However, such programs may, in rare
cases, lead to false positives or negatives regarding liveness (and possibly safety), because of
the approximations the model checker has to make when running against models with cycles.

Evaluations. We evaluate our tool for reference on an 8-core Intel i7-7700K machine with
16 GB memory, in a 64-bit Linux environment running go 1.12.2. Table 1 shows the results
for a range of programs that mix shared memory with either channels or mutexes as locking
mechanism. The sources for those examples can be found in the benchmark repository [1].
Programs no-race and simple-race are programs made to test the behaviour of mutexes and
check that liveness errors are properly reported. The channel version of our running example,
from Figure 11 is named channel-as-lock, and channel-as-lock-bad is a variation of the
-fixed version but with channel sends and receive switched, hence the program deadlocks on
the first attempt to lock of each thread as there is nothing to receive.

The deposit implementation is taken from [10] (the example to present data races and
locking mechanisms), and prod-cons is a shared memory implementation of the classic
producer-consumer algorithm, where two producers race against each other and one consumer
takes whichever product is available first. In this example, all three threads share a single
memory heap, supposed to be protected by a mutex. Finally, dine5 is an implementation of
the Dining Philosophers problem as explained in § 5.3, and dine5-chan is a channel variant
adapted slightly to allow for a potential shared-memory data race.

We note that the Prime Sieve algorithm [27, 33] is not analysed by our tool, as it continually
spawns new threads, making the state space too big for the mCRL2 model-checker.

ECOOP 2020

4:26 Static Race Detection and Mutex Safety and Liveness for Go Programs

Table 1 Go Programs Verified by the Toolchain.

Programs LoC Sum Safe Live DRF time (ms)
no-race 15 9 X X X 691.45
no-race-mutex 24 33 X X X 785.57
no-race-mut-bad 23 20 X × X 721.77
simple-race 13 8 X X × 701.93
simple-race-fix 19 17 X X X 731.73
deposit-race1 18 14 X X × 697.90
deposit-fix1 24 27 X X X 727.43
ch-as-lock-race2 19 20 X X × 753.99
ch-as-lock-fix2 19 20 X X X 745.64
ch-as-lock-bad 19 20 X × X 749.97
prod-cons-race 38 156 X X × 1,903.52
prod-cons-fix 40 188 X X X 1,971.26
dine5-unsafe 35 106 × X X 6,996.27
dine5-deadlock 35 106 X × X 12,278.33
dine5-fix 35 106 X X X 8,998.04
dine5-chan-race 59 2672 X X × ∼ 185mn
dine5-chan-fix 59 2688 X X X ∼ 645mn

1[10], 2Figure 11, LoC: Lines of Code, DRF: Data Race Free,
Sum: Summands, X: Formula is true, ×: Formula is false

Future work for applying this approach to real-world Go programs are: working around
the explosion seen with select+channels in dine5-chan, for which using a different model
for select constructs and channel actions than the one in our implementation might be
sufficient; working on the implementation for a wider range of extractions for channels, shared
memory and mutexes embedded in structs, or to implement a parser that flattens those
structs upstream of migoinfer+; and working on analysis of programs that dynamically spawn
new goroutines – this would require non-trivial approximations to be leveraged. Note that it
should represent only a small fraction of programs, as most daily-use protocols should be
implementable without the need for such unbounded growth in memory usage.

All examples in Table 1 are analysed by our tool, and the time given as an indication
scales exponentially with the number of summands (and possibly action labels) and their
ordering, in the linear process specification that represents the types in the model checker.
Those directly depend from the source code of the analysed program.

9 Conclusion and Related Work

The Go language provides a unique programming environment where both explicit commu-
nication and shared memory concurrency primitives co-exist. This work introduces GoL as
an abstraction layer for Go code, as well as behavioural types to propose a static verification
framework for detecting concurrency bugs in Go. These include deadlocks and safety for
both mutual exclusion locks and channel communication, as well as data race detection for
shared memory primitives.

Shared memory locks and channels cover by themselves a substantial amount of Go’s
concurrency features. The former is a low-level, standard library provision and the latter
is a high-level, built-in language feature. Go only features these two basic building blocks
because one can use them to implement most higher levels of concurrency abstraction, for
example actors models.

The works [27, 28] built behavioural types for verification of concurrency bugs for channel-
based message passing. We integrate with their asynchronous calculus (a.k.a. AMiGo) for our
channel-related extension in § 7. These works, however, were lacking more shared memory

J. Gabet and N. Yoshida 4:27

concurrency with locks and shared pointers, and did not tackle data races for shared pointers,
which we do. It does not study happens before relations either (for channels). It furthermore
was lacking complete proofs on their equivalence theorems for liveness, which is also addressed
in this paper. We also proved GoL satisfies the properties of the types characterised by the
modal µ-calculus (Theorems 30,37). The paper [28] has informally described them, but these
have never been formalised nor proved.

The work [42] defines forkable behaviours (ie. regular expressions with a fork construct)
to capture goroutine spawning in synchronous Go programs. They develop a tool based
on this model to analyse directly Go programs. Their approach is sound, but suffers from
several limitations, which were overcome by [27, 28]; their tool does not treat shared memory
concurrency primitives and locks.

The work [25] observed that asynchronous distributed systems can be verified by only
modelling synchronisations in the core protocol, and introduces a language IceT similar to
GoL for specifying synchronisation in message-passing programs. Their focus was to verify
functional correctness of the input protocol, and requires input programs to be synchronisable
(i.e. no deadlocks nor spurious sends in the input programs). Their approach allows for
checking correctness of an implementation, given a reasonable amount of annotations. It is
orthogonal to our work in which we only need to check for runtime sanity. Both approaches
independently benefit the user, and should be run individually on testing code in order to
check both for concurrency behavioural bugs and for implementation bugs.

Recent works [46, 9] provide empirical studies of Go programs, which show that almost
half of concurrency bugs in Go are non-blocking bugs, mostly shared memory problems, and
the remaining blocking bugs are mostly related to channel and lock misuse. That gives an
incentive to make tools and implementations built on the concurrent behavioural theory, for
easy detection of such bugs. Our work is part of that effort.

A large body of race detection tools targeting other languages such as Java are available.
ThreadSanitizer (TSan) [40, 45, 41] which is included in LLVM/Clang is one of the most
widely deployed dynamic race detectors. The runtime race detector of Go [15] uses TSan’s
runtime library.

The work [30] proposes a subset of the Go language akin to GoL, along with a modular
approach to statically analyse processes. Their approach combines lattice-valued regular
expressions and a shuffle operator allowing for separate analysis of single threads, and they
prove their theory to be sound. They have a prototype implementation in OCaml to check
deadlocks in synchronous message-passing programs. The work [6] uses a protocol description
language, Scribble [39], which is a practical incarnation of multiparty session types [23] to
generate Go APIs, ensuring deadlock freedom and liveness of communications by construction.
Neither [30] nor [6] treat either communication error or data race detection, both handled in
this paper, nor do they treat shared variables, which our approach extends upon.

The main difference in code writing between Go and GoL is the handling of continuations
for select and if-then-else constructs, where Go allows for standard continuation while GoL
restrains the user to use tail calls. This is handled by our extraction tool, as it extracts the
Go code to GoL by building an SSA representation before extracting relevant primitives from
it, see Figure 17 in § 8.

The idea to use the LTS of behavioural types for programming analysis dates back to
[34] for Concurrent ML, and since then, it has been applied to many works [5]. Some tackle
mutual exclusion locks, but systematically lack support for read-write mutual exclusion locks,
including works [24, 4, 21]. The work [26] aims to guarantee liveness with termination of
a typed π-calculus. We study wider classes in the theory, aiming termination to use the
existing tool (KITTeL) in order to integrate with our tool-chain to scale – thus the main aim
and the target (real Go programs in our case) differ from [26].

ECOOP 2020

4:28 Static Race Detection and Mutex Safety and Liveness for Go Programs

Type-level model-checking for message-passing programming was first addressed in [7].
Recent applications using mCRL2 include verifications of multiparty session typed π-calculus
[37] and the Dotty programming language (the future Scala 3) [38].

Our future works include studying the soundness and completeness of the happens-before
relation provided by the Go memory model, ie. studying if the definition of data race given by
it covers all data races that can happen in Go, and whether it does not provide false positives;
speeding-up the analysis using more mCRL2 options and the extension to an incremental
analysis based on happens-before relations, as taken in other languages, e.g. [29, 49]; as well
as possibly counter-example extraction for code failing verification, to provide direct access
to the detected bugs to developers. There is also the possibility to work on handling dynamic
process creation, widening the analysis scope of our current tool and model.

References
1 Godel 2 Benchmarks. URL: https://github.com/JujuYuki/godel2-benchmark.
2 Godel 2. URL: https://github.com/JujuYuki/godel2.
3 migoinfer+. URL: https://github.com/JujuYuki/gospal.
4 Martin Abadi, Cormac Flanagan, and Stephen N. Freund. Types for safe locking: Static

race detection for java. ACM Trans. Program. Lang. Syst., 28(2):207–255, March 2006.
doi:10.1145/1119479.1119480.

5 Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-
Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch
Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nich-
olas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. Behavioral Types in
Programming Languages. Foundations and Trends in Programming Languages, 3(2-3), 2017.
doi:10.1561/2500000031.

6 David Castro, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida.
Distributed Programming Using Role Parametric Session Types in Go. In 46th ACM
SIGPLAN Symposium on Principles of Programming Languages, pages 1–30. ACM, 2019.
doi:10.1145/3290342.

7 Sagar Chaki, Sriram K. Rajamani, and Jakob Rehof. Types as models: model checking
message-passing programs. In POPL’02, pages 45–57, 2002.

8 Sjoerd Cranen, Jan Friso Groote, Jeroen J. A. Keiren, Frank P. M. Stappers, Erik P. de Vink,
Wieger Wesselink, and Tim A. C. Willemse. An Overview of the mCRL2 Toolset and Its
Recent Advances, pages 199–213. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. doi:
10.1007/978-3-642-36742-7_15.

9 Nicolas Dilley and Julien Lange. An empirical study of messaging passing concurrency in Go
projects. In SANER. IEEE, 2019.

10 Alan A.A. Donovan and Brian W. Kernighan. The Go Programming Language. Addison-Wesley
Professional, 1st edition, 2015.

11 Stephan Falke and Marc Brockschmidt. KITTeL/KoAT. https://github.com/s-falke/
kittel-koat, 2018.

12 Steve Francia. Nine years of Go. https://blog.golang.org/9years, 2018.
13 Julia Gabet and Nobuko Yoshida. Static Race Detection and Mutex Safety and Liveness for

Go Programs (extended version). CoRR, abs/2004.12859, 2020. arXiv:2004.12859.
14 GitHub. The fastest growing languages, 2018. URL: http://octoverse.github.com/.
15 Go. Data Race Detector. https://golang.org/doc/articles/race_detector.html, 2013.
16 Go. The Go Memory Model. https://golang.org/ref/mem, 2014.
17 Golang. mutex.go, 2019. URL: https://golang.org/src/sync/mutex.go.
18 Golang. rwmutex.go, 2019. URL: https://golang.org/src/sync/rwmutex.go.
19 Golang. The Go Programming Language, 2019. URL: https://golang.org.

https://github.com/JujuYuki/godel2-benchmark
https://github.com/JujuYuki/godel2
https://github.com/JujuYuki/gospal
https://doi.org/10.1145/1119479.1119480
https://doi.org/10.1561/2500000031
https://doi.org/10.1145/3290342
https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1007/978-3-642-36742-7_15
https://github.com/s-falke/kittel-koat
https://github.com/s-falke/kittel-koat
https://blog.golang.org/9years
http://arxiv.org/abs/2004.12859
http://octoverse.github.com/
https://golang.org/doc/articles/race_detector.html
https://golang.org/ref/mem
https://golang.org/src/sync/mutex.go
https://golang.org/src/sync/rwmutex.go
https://golang.org

J. Gabet and N. Yoshida 4:29

20 Jan Friso Groote and Mohammad Reza Mousavi. Modeling and Analysis of Communicating
Systems. The MIT Press, 2014.

21 Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. Actris: Session-type
based reasoning in separation logic. Proc. ACM Program. Lang., 4(POPL), December 2019.
doi:10.1145/3371074.

22 C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
23 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.

In POPL’08, pages 273–284. ACM, 2008.
24 Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-calculus. In Proceedings

of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’01, pages 128–141, New York, NY, USA, 2001. ACM. doi:10.1145/360204.360215.

25 Klaus v. Gleissenthall and Rami Gökhan Kıcı and Alexander Bakst and Deian Stefan and Ranjit
Jhala. Pretend synchrony: Synchronous verification of asynchronous distributed programs.
Proc. ACM Program. Lang., 3(POPL):59:1–59:30, January 2019. doi:10.1145/3290372.

26 Naoki Kobayashi and Davide Sangiorgi. A hybrid type system for lock-freedom of mobile
processes. ACM Trans. Program. Lang. Syst., 32(5), May 2008. doi:10.1145/1745312.
1745313.

27 Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. Fencing off Go: Liveness
and safety for channel-based programming. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, pages 748–761. ACM, 2017.
doi:10.1145/3009837.3009847.

28 Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. A static verification
framework for message passing in go using behavioural types. In Proceedings of the 40th
International Conference on Software Engineering, ICSE ’18, pages 1137–1148, New York, NY,
USA, 2018. ACM. doi:10.1145/3180155.3180157.

29 Bozhen Liu and Jeff Huang. D4: Fast concurrency debugging with parallel differential
analysis. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2018, pages 359–373, New York, NY, USA, 2018. ACM.
doi:10.1145/3192366.3192390.

30 Jan Midtgaard, Flemming Nielson, and Hanne Riis Nielson. Process-local static analysis of
synchronous processes. In Andreas Podelski, editor, Static Analysis, pages 284–305, Cham,
2018. Springer International Publishing.

31 Robin Milner. A Calculus of Communicating Systems, volume 92. Springer-Verlag, 1980.
32 Robin Milner and Davide Sangiorgi. Barbed bisimulation. In Proc. ICALP’92, volume 623 of

LNCS, 1992.
33 Nicholas Ng and Nobuko Yoshida. Static Deadlock Detection for Concurrent Go by Global

Session Graph Synthesis. In CC 2016, pages 174–184. ACM, 2016.
34 Hanne Riis Nielson and Flemming Nielson. Higher-order concurrent programs with finite

communication topology (extended abstract). In POPL, 1994. doi:10.1145/174675.174538.
35 Rob Pike. Go at Google. In SPLASH, pages 5–6, New York, NY, USA, 2012. ACM.
36 Davide Sangiorgi and David Walker. The π-Calculus: a Theory of Mobile Processes. Cambridge

University Press, 2001.
37 Alceste Scalas and Nobuko Yoshida. Less Is More: Multiparty Session Types Revisited. In

46th ACM SIGPLAN Symposium on Principles of Programming Languages, pages 1–29. ACM,
2019.

38 Alceste Scalas, Nobuko Yoshida, and Elias Benussi. Verifying message-passing programs with
dependent behavioural types. In Programming Language Design and Implementation, 2019.

39 Scribble. Scribble Project, 2008. URL: www.scribble.org.
40 Konstantin Serebryany and Timur Iskhodzhanov. ThreadSanitizer: Data race detection in

practice. In Proceedings of the Workshop on Binary Instrumentation and Applications, WBIA
’09, pages 62–71, New York, NY, USA, 2009. ACM. doi:10.1145/1791194.1791203.

ECOOP 2020

https://doi.org/10.1145/3371074
https://doi.org/10.1145/360204.360215
https://doi.org/10.1145/3290372
https://doi.org/10.1145/1745312.1745313
https://doi.org/10.1145/1745312.1745313
https://doi.org/10.1145/3009837.3009847
https://doi.org/10.1145/3180155.3180157
https://doi.org/10.1145/3192366.3192390
https://doi.org/10.1145/174675.174538
www.scribble.org
https://doi.org/10.1145/1791194.1791203

4:30 Static Race Detection and Mutex Safety and Liveness for Go Programs

41 Konstantin Serebryany, Alexander Potapenko, Timur Iskhodzhanov, and Dmitriy Vyukov.
Dynamic race detection with LLVM compiler. In Proceedings of the Second International
Conference on Runtime Verification, RV’11, pages 110–114, Berlin, Heidelberg, 2012. Springer-
Verlag. doi:10.1007/978-3-642-29860-8_9.

42 Kai Stadmüller, Martin Sulzmann, and Peter Thiemann. Static Trace-Based Deadlock Analysis
for Synchronous Mini-Go. In APLAS, volume 10017 of LNCS, 2016.

43 Syzkaller. Randomized testing for Go. https://github.com/google/syzkaller, 2015.
44 Technische Universiteit Eindhoven. mCRL2.

https://www.mcrl2.org/web/user_manual/index.html, 2018.
45 The Clang Team. ThreadSanitizer.

http://clang.llvm.org/docs/ThreadSanitizer.html, 2015.
46 Tengfei Tu, Xiaoyu Liu, Linhai Song, and Yiying Zhang. Understanding real-world concurrency

bugs in Go. In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’19, pages 865–878,
New York, NY, USA, 2019. ACM. doi:10.1145/3297858.3304069.

47 Dmitry Vyukov. Randomized testing for Go. https://github.com/dvyukov/go-fuzz, 2015.
48 Dmitry Vyukov and Andrew Gerrand. Introducing the Go Race Detector. https://blog.

golang.org/race-detector, 2013.
49 Sheng Zhan and Jeff Huang. Echo: Instantaneous in situ race detection in the IDE. In

Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2016, pages 775–786, New York, NY, USA, 2016. ACM. doi:
10.1145/2950290.2950332.

https://doi.org/10.1007/978-3-642-29860-8_9
https://github.com/google/syzkaller
https://www.mcrl2.org/web/user_manual/index.html
http://clang.llvm.org/docs/ThreadSanitizer.html
https://doi.org/10.1145/3297858.3304069
https://github.com/dvyukov/go-fuzz
https://blog.golang.org/race-detector
https://blog.golang.org/race-detector
https://doi.org/10.1145/2950290.2950332
https://doi.org/10.1145/2950290.2950332

Reconciling Event Structures with Modern
Multiprocessors
Evgenii Moiseenko
St. Petersburg State University, Russia
JetBrains Research, St. Petersburg, Russia
e.moiseenko@2012.spbu.ru

Anton Podkopaev
National Research University Higher School of Economics, Moscow, Russia
MPI-SWS, Kaiserslautern, Germany
JetBrains Research, St. Petersburg, Russia
podkopaev@mpi-sws.org

Ori Lahav
Tel Aviv University, Israel
orilahav@tau.ac.il

Orestis Melkonian
University of Edinburgh, UK
melkon.or@gmail.com

Viktor Vafeiadis
MPI-SWS, Kaiserslautern, Germany
viktor@mpi-sws.org

Abstract
Weakestmo is a recently proposed memory consistency model that uses event structures to resolve
the infamous “out-of-thin-air” problem and to enable efficient compilation to hardware. Nevertheless,
this latter property – compilation correctness – has not yet been formally established.

This paper closes this gap by establishing correctness of the intended compilation schemes from
Weakestmo to a wide range of formal hardware memory models (x86, POWER, ARMv7, ARMv8) in
the Coq proof assistant. Our proof is the first that establishes correctness of compilation of an
event-structure-based model that forbids “out-of-thin-air” behaviors, as well as the first mechanized
compilation proof of a weak memory model supporting sequentially consistent accesses to such a
range of hardware platforms. Our compilation proof goes via the recent Intermediate Memory Model
(IMM), which we suitably extend with sequentially consistent accesses.

2012 ACM Subject Classification Theory of computation → Logic and verification; Software and
its engineering → Concurrent programming languages

Keywords and phrases Weak Memory Consistency, Event Structures, IMM, Weakestmo

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.5

Related Version A full version of the paper is available at
http://plv.mpi-sws.org/weakestmoToImm/.

Supplementary Material ECOOP 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.2.4.

Funding Evgenii Moiseenko: was supported by RFBR (grant number 18-01-00380).
Anton Podkopaev: was supported by RFBR (grant number 18-01-00380).
Ori Lahav: was supported by the Israel Science Foundation (grant number 5166651), by Len Blavatnik
and the Blavatnik Family foundation, and by the Alon Young Faculty Fellowship.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Evgenii Moiseenko, Anton Podkopaev, Ori Lahav, Orestis Melkonian, and
Viktor Vafeiadis;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 5; pp. 5:1–5:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:e.moiseenko@2012.spbu.ru
mailto:podkopaev@mpi-sws.org
mailto:orilahav@tau.ac.il
mailto:melkon.or@gmail.com
mailto:viktor@mpi-sws.org
https://doi.org/10.4230/LIPIcs.ECOOP.2020.5
http://plv.mpi-sws.org/weakestmoToImm/
https://doi.org/10.4230/DARTS.6.2.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Reconciling Event Structures with Modern Multiprocessors

1 Introduction

A major research problem in concurrency semantics is to develop a weak memory model that
allows load-to-store reordering (a.k.a. load buffering, LB) and compiler optimizations (e.g.,
elimination of fake dependencies), while forbidding “out-of-thin-air” behaviors [18, 10, 5, 13].

The problem can be illustrated with the following two programs, which access locations
x and y initialized to 0. The annotated outcome a = b = 1 ought to be allowed for LB-fake
because 1 + a ∗ 0 can be optimized to 1 and then the instructions of thread 1 executed out of
order. In contrast, it should be forbidden for LB-data, since no optimizations are applicable.

a := [x] //1
[y] := 1 + a ∗ 0

b := [y] //1
[x] := b

(LB-fake) a := [x] //1
[y] := a

b := [y] //1
[x] := b

(LB-data)

Among the proposed models that correctly distinguish between these two programs is the
recent Weakestmo model [6]. Weakestmo was developed in response to certain limitations of
earlier models, such as the “promising semantics” of Kang et al. [11], namely that (i) they
did not cover the whole range of C/C++ concurrency features and that (ii) they did not
support the intended compilation schemes to hardware.

Being flexible in its design, Weakestmo addresses the former point. It supports all usual
features of the C/C++11 model [3] and can easily be adapted to support any new concurrency
features that may be added in the future. It does not, however, fully address the latter
point. Due to the difficulty of establishing correctness of the intended compilation schemes
to hardware architectures that permit load-store reordering (i.e., POWER, ARMv7, ARMv8),
Chakraborty and Vafeiadis [6] only establish correctness of suboptimal schemes that add
(unnecessary) explicit fences to prevent load-store reordering.

In this paper, we address this major limitation of the Weakestmo paper. We establish in
Coq correctness of the intended compilation schemes to a wide range of hardware architectures
that includes the major ones: x86-TSO [17], POWER [1], ARMv7 [1], ARMv8 [21]. The com-
pilation schemes, whose correctness we prove, do not require any fences or fake dependencies
for relaxed accesses. Because of a technical limitation of our setup (see §6), however, compi-
lation of read-modify-write (RMW) accesses to ARMv8 uses a load-reserve/store-conditional
loop (similar to that of ARMv7 and POWER) as opposed to the newly introduced ARMv8
instructions for certain kinds of RMWs.

The main challenge in this proof is to reconcile the different ways in which hardware
models and Weakestmo allow load-store reordering. Unlike most models at the programming
language level, hardware models (such as ARMv8) do not execute instructions in sequence;
they instead keep track of dependencies between instructions and ensure that no dependency
cycles ever arise in a single execution. In contrast, Weakestmo executes instructions in order,
but simultaneously considers multiple executions to justify an execution where a load reads
a value that indirectly depends upon a later store. Technically, these multiple executions
together form an event structure, upon which Weakestmo places various constraints.

IMMSC
ARMv7

POWER

x86-TSO

ARMv8

Weakestmo

C11

Figure 1 Results proved in this paper.

E. Moiseenko, A. Podkopaev, O. Lahav, O. Melkonian, and V. Vafeiadis 5:3

The high-level proof structure is shown in Fig. 1. We reuse IMM, an intermediate memory
model, introduced by Podkopaev et al. [19] as an abstraction over all major existing hardware
memory models. To support Weakestmo compilation, we extend IMM with sequentially
consistent (SC) accesses following the RC11 model [13]. As IMM is very much a hardware-like
model (e.g., it tracks dependencies), the main result is compilation from Weakestmo to IMM
(indicated by the bold arrow). The other arrows in the figure are extensions of previous
results to account for SC accesses, while double arrows indicate results for two compilation
schemes.

The complexity of the proof is also evident from the size of the Coq development. We
have written about 30K lines of Coq definitions and proof scripts on top of an existing
infrastructure of about another 20K lines (defining IMM, the aforementioned hardware models
and many lemmas about them). As part of developing the proof, we also had to mechanize
the Weakestmo definition in Coq and to fix some minor deficiencies in the original definition,
which were revealed by our proof effort.

To the best of our knowledge, our proof is the first proof of correctness of compilation of
an event-structure-based memory model. It is also the first mechanized compilation proof
of a weak memory model supporting sequentially consistent accesses to such a range of
hardware architectures. The latter, although fairly straightforward in our case, has had a
history of wrong compilation correctness arguments (see [13] for details).

Outline. We start with an informal overview of IMM, Weakestmo, and our compilation
proof (§2). We then present a fragment of Weakestmo formally (§3) and its compilation
proof (§4). Subsequently, we extend these results to cover SC accesses (§5), discuss related
work (§6) and conclude (§7). The associated proof scripts and supplementary material for
our paper are publicly available at http://plv.mpi-sws.org/weakestmoToImm/.

2 Overview of the Compilation Correctness Proof

To get an idea about the IMM and Weakestmo memory models, consider a version of the
LB-fake and LB-data programs from §1 with no dependency in thread 1:

a := [x] //1
[y] := 1

b := [y] //1
[x] := b

(LB)

As we will see, the annotated outcome is allowed by both IMM and Weakestmo, albeit in
different ways. The different treatment of load-store reordering affects the outcomes of other
programs. For example, IMM forbids the annotate outcome of LB-fake by treating it exactly
as LB-data, whereas Weakestmo allows the outcome by treating LB-fake exactly as LB.

2.1 An Informal Introduction to IMM
IMM is a declarative (also called axiomatic) model identifying a program’s semantics with a
set of execution graphs, or just executions. As an example, Fig. 2a contains GLB, an IMM
execution graph of LB corresponding to an execution yielding the annotated behavior.

Vertices of execution graphs, called events, represent memory accesses either due to the
initialization of memory or to the execution of program instructions. Each event is labeled
with the type of the access (e.g., R for reads, W for writes), the location accessed, and the
value read or written. Memory initialization consists of a set of events labeled W(x, 0) for
each location x used in the program; for conciseness, however, we depict the initialization
events as a single event with label Init.

ECOOP 2020

http://plv.mpi-sws.org/weakestmoToImm/

5:4 Reconciling Event Structures with Modern Multiprocessors

Init
R(x, 1)

W(y, 1)

R(y, 1)

W(x, 1)
po po ppo

rf

po po

(a) GLB: Execution graph of LB.

Init
R(x, 1)

W(y, 1)

R(y, 1)

W(x, 1)
po poppo ppo

rf

po po

(b) Execution of LB-data and LB-fake.

Figure 2 Executions of LB and LB-data/LB-fake with outcome a = b = 1.

Edges of execution graphs represent different relations on events. In Fig. 2, three different
relations are depicted. The program order relation (po) totally orders events originated from
the same thread according to their order in the program, as well as the initialization event(s)
before all other events. The reads-from relation (rf) relates a write event to the read events
that read from it. Finally, the preserved program order (ppo) is a subset of the program
order relating events that cannot be executed out of order. Such ppo edges arise whenever
there is a dependency chain between the corresponding instructions (e.g., a write storing the
value read by a prior read).

Because of the syntactic nature of ppo, IMM conflates the executions of LB-data and
LB-fake leading to the outcome a = b = 1 (see Fig. 2b). This choice is in line with hardware
memory models; it means, however, that IMM is not suitable as a memory model for a
programming language (because, as argued in §1, LB-fake can be transformed to LB by an
optimizing compiler).

The executions of a program are constructed in two steps.1 First, a thread-local semantics
determines the sequential executions of each thread, where the values returned by each
read access are chosen non-deterministically (among the set of all possible values), and the
executions of different threads are combined into a single execution. Then, the execution
graphs are filtered by a consistency predicate, which determines which executions are allowed
(i.e., are IMM-consistent). These IMM-consistent executions form the program’s semantics.

IMM-consistency checks three basic constraints:
Completeness: Every read event reads from precisely one write with the same location and

value;
Coherence: For each location x, there is a total ordering of x-related events extending the

program order so that each read of x reads from the most recent prior write according to
that total order; and

Acyclic dependency: There is no cycle consisting only of ppo and rf edges.
The final constraint disallows executions in which an event recursively depends upon itself,
as this pattern can lead to “out-of-thin-air” outcomes. Specifically, the execution in Fig. 2b,
which represents the annotated behavior of LB-fake and LB-data, is not IMM-consistent
because of the (ppo ∪ rf)-cycle. In contrast, GLB is IMM-consistent.

2.2 An Informal Introduction to Weakestmo
We move on to Weakestmo, which also defines the program’s semantics as a set of execution
graphs. However, they are constructed differently – extracted from a final event structure,
which Weakestmo incrementally builds for a program.

1 For a detailed formal description of the graphs and their construction process we refer the reader to [19,
§2.2].

E. Moiseenko, A. Podkopaev, O. Lahav, O. Melkonian, and V. Vafeiadis 5:5

Init
e1

11 : R(x, 0)

jf

(a) Sa

Init
e1

11 : R(x, 0)

e1
21 : W(y, 1)

jf

(b) Sb with execution Xb selected.

Init
e1

11 : R(x, 0)

e1
21 : W(y, 1)

e2
1 : R(y, 1)

jf

jf

(c) Sc

Init
e1

11 : R(x, 0)

e1
21 : W(y, 1)

e2
1 : R(y, 1)

e2
2 : W(x, 1)

jf

jf

(d) Sd with execution Xd selected.

Init
e1

11 : R(x, 0)

e1
21 : W(y, 1)

e1
12 : R(x, 1) e2

1 : R(y, 1)

e2
2 : W(x, 1)

cf

jfjf

jf

(e) Se

Init
e1

11 : R(x, 0)

e1
21 : W(y, 1)

e1
12 : R(x, 1)

e1
22 : W(y, 1)

e2
1 : R(y, 1)

e2
2 : W(x, 1)

cf

ew

jf

(f) Sf with execution Xf selected.

Figure 3 A run of Weakestmo witnessing the annotated outcome of LB.

An event structure represents multiple executions of a programs in a single graph. Like
execution graphs, event structures contain a set of events and several relations among them.
Like execution graphs, the program order (po) orders events according to each thread’s
control flow. However, unlike execution graphs, po is not necessarily total among the events
of a given thread. Events of the same thread that are not po-ordered are said to be in conflict
(cf) with one another, and cannot belong to the same execution. Such conflict events arise
when two read events originate from the same read instruction (e.g., representing executions
where the reads return different values). Moreover, cf “extends downwards”: events that
depend upon conflicting events (i.e., have conflicting po-predecessors) are also in conflict
with one other. In pictures, we typically show only the immediate conflict edges (between
reads originating from the same instruction) and omit the conflict edges between events
po-after immediately conflicting ones.

Event structures are constructed incrementally starting from an event structure consisting
only of the initialization events. Then, events corresponding to the execution of program
instructions are added one at a time. We start by executing the first instruction of a
program’s thread. Then, we may execute the second instruction of the same thread or the
first instruction of another thread, and so on.

As an example, Fig. 3 constructs an event structure for LB. Fig. 3a depicts the event
structure Sa obtained from the initial event structure by executing a := [x] in LB’s thread 1.
As a result of the instruction execution, a read event e1

11 : R(x, 0) is added.
Whenever the event added is a read, Weakestmo has to justify the returned value from

an appropriate write event. In this case, there is only one write to x – the initialization write
– and so Sa has a justified from edge, denoted jf, going to e1

11 in Sa. This is a requirement of
Weakestmo: each read event in an event structure has to be justified from exactly one write

ECOOP 2020

5:6 Reconciling Event Structures with Modern Multiprocessors

event with the same value and location. (This requirement is analogous to the completeness
requirement in IMM-consistency for execution graphs.) Since events are added in program
order and read events are always justified from existing events in the event structure, po∪ jf
is guaranteed to be acyclic by construction.

The next three steps (Figures 3b to 3d) simply add a new event to the event structure.
Notice that unlike IMM executions, Weakestmo event structures do not track syntactic
dependencies, e.g., Sd in Fig. 3d does not contain a ppo edge between e2

1 and e2
2. This is

precisely what allows Weakestmo to assign the same behavior to LB and LB-fake: they
have exactly the same event structures. As a programming-language-level memory model,
Weakestmo supports optimizations removing fake dependencies.

The next step (Fig. 3e) is more interesting because it showcases the key distinction
between event structures and execution graphs, namely that event structures may contain
more than one execution for each thread. Specifically, the transition from Sd to Se reruns
the first instruction of thread 1 and adds a new event e1

12 justified from a different write
event. We say that this new event conflicts (cf) with e1

11 because they cannot both occur
in a single execution. Because of conflicts, po in event structures does not totally order all
events of a thread; e.g., e1

11 and e1
12 are not po-ordered in Se. Two events of the same thread

are conflicted precisely when they are not po-ordered.
The final construction step (Fig. 3f) demonstrates another Weakestmo feature. Conflicting

write events writing the same value to the same location (e.g., e1
21 and e1

22 in Sf) may be
declared equal writes, i.e., connected by an equivalence relation ew.2

The ew relation is used to define Weakestmo’s version of the reads-from relation, rf,
which relates a read to all (non-conflicted) writes equal to the write justifying the read. For
example, e2

1 reads from both e1
21 and e1

22.
The Weakestmo’s rf relation is used for extraction of program executions. An execution

graph G is extracted from an event structure S denoted S BG if G is a maximal conflict-free
subset of S, it contains only visible events (to be defined in §3), and every read event in G
reads from some write in G according to S.rf. Two execution graphs can be extracted from
Sf : {Init, e1

11, e
1
21, e

2
1, e

2
2} and {Init, e1

12, e
1
22, e

2
1, e

2
2} representing the outcomes a = 0 ∧ b = 1

and a = b = 1 respectively.

2.3 Weakestmo to IMM Compilation: High-Level Proof Structure
In this paper, we assume that Weakestmo is defined for the same assembly language as IMM
(see [19, Fig. 2]) extended with SC accesses and refer to this language as L. Having that, we
show the correctness of the identity mapping as a compilation scheme from Weakestmo to
IMM in the following theorem.

I Theorem 1. Let prog be a program in L, and G be an IMM-consistent execution graph of
prog. Then there exists an event structure S of prog under Weakestmo such that S BG.

To prove the theorem, we must show that Weakestmo may construct the needed event
structure in a step by step fashion. If the IMM-consistent execution graph G contains no
po ∪ rf cycles, then the construction is completely straightforward: G itself is a Weakestmo-
consistent event structure (setting jf to be just rf), and its events can be added in any
order extending po ∪ rf.

2 In this paper, we take ew to be reflexive, whereas it is is irreflexive in Chakraborty and Vafeiadis [6].
Our ew is the reflexive closure of the one in [6].

E. Moiseenko, A. Podkopaev, O. Lahav, O. Melkonian, and V. Vafeiadis 5:7

Init

e1
1 : R(x, 1)

e1
2 : W(y, 1)

e2
1 : R(y, 1)

e2
2 : W(x, 1)

ppo
rf

(a) T Ca.

Init

e1
1 : R(x, 1)

e1
2 : W(y, 1)

e2
1 : R(y, 1)

e2
2 : W(x, 1)

ppo
rf

(b) T Cb.

Init

e1
1 : R(x, 1)

e1
2 : W(y, 1)

e2
1 : R(y, 1)

e2
2 : W(x, 1)

ppo
rf

(c) T Cc.

Init

e1
1 : R(x, 1)

e1
2 : W(y, 1)

e2
1 : R(y, 1)

e2
2 : W(x, 1)

ppo
rf

(d) T Cd.

Init

e1
1 : R(x, 1)

e1
2 : W(y, 1)

e2
1 : R(y, 1)

e2
2 : W(x, 1)

ppo
rf

(e) T Ce.

Init

e1
1 : R(x, 1)

e1
2 : W(y, 1)

e2
1 : R(y, 1)

e2
2 : W(x, 1)

ppo
rf

(f) T Cf .

Figure 4 Traversal configurations for GLB.

The construction becomes tricky for IMM-consistent execution graphs, such as GLB, that
contain po∪rf cycles. Due to the cycle(s), G cannot be directly constructed as a (conflict-free)
Weakestmo event structure. We must instead construct a larger event structure S containing
multiple executions, one of which will be the desired graph G. Roughly, for each po ∪ rf
cycle in G, we have to construct an immediate conflict in the event structure.

To generate the event structure S, we rely on a basic property of IMM-consistent execution
graphs shown by Podkopaev et al. [19, §§6,7], namely that execution graphs can be traversed
in a certain order, i.e., its events can be issued and covered in that order, so that in the end
all events are covered. The traversal captures a possible execution order of the program
that yields the given execution. In that execution order, events are not added according to
program order, but rather according to preserved program order (ppo) in two steps. Events
are first issued when all their dependencies have been resolved, and are later covered when
all their po-prior events have been covered.

In more detail, a traversal of an IMM-consistent execution graph G is a sequence of
traversal steps between traversal configurations. A traversal configuration TC of an execution
graph G is a pair of sets of events, 〈C, I〉, called the covered and issued set respectively. As
an example, Fig. 4 presents all six traversal configurations of the execution graph GLB of LB
from Fig. 2a except for the initial configuration. The issued set is marked by and the
covered set by .

A traversal might be seen as an execution of an abstract machine that can execute write
instructions early but has to execute everything else in order. The first option corresponds
to issuing a write event, and the second option to covering an event. The traversal strategy
has certain constraints. To issue a write event, all external reads that it depends upon
must be resolved; i.e., they must read from already issued events. To cover an event, all
its po-predecessors must also be covered.3 For example, in Fig. 4, a traversal cannot issue
e2

2 : W(x, 1) before issuing e1
2 : W(y, 1) nor cover e1

1 : R(x, 1) before issuing e2
2 : W(x, 1).

According to Podkopaev et al. [19, Prop. 6.5], every IMM-consistent execution graph G
has a full traversal of the following form:

G ` TCinit(G) −→ TC1 −→ TC2 −→ ... −→ TCfinal(G)

3 For readers familiar with PS [11], issuing a write event corresponds to promising a message, and covering
an event to normal execution of an instruction.

ECOOP 2020

5:8 Reconciling Event Structures with Modern Multiprocessors

where the initial configuration, TCinit(G) , 〈G.Init, G.Init〉, has issued and covered only G’s
initial events and the final configuration, TCfinal(G) , 〈G.E, G.W〉, has covered all G’s events
and issued all its write events.

We construct the event structure S following a full traversal of G. We define a simulation
relation, I(prog, G, TC, S,X), between the program prog, the current traversal configuration
TC of execution G and the current event structure’s state 〈S,X〉, where X is a subset of
events corresponding to a particular execution graph extracted from the event structure S.

Our simulation proof is divided into the following three lemmas, which state that the
initial states are simulated, that simulation extends along traversal steps, and that the
similation of final states means that G can be extracted from the generated event structure.

I Lemma 2 (Simulation Start). Let prog be a program of L, and G be an IMM-consistent
execution graph of prog. Then I(prog, G, TCinit(G), Sinit(prog), Sinit(prog).E) holds.

I Lemma 3 (Weak Simulation Step). If I(prog, G, TC, S,X) and G ` TC −→ TC ′ hold,
then there exist S′ and X ′ such that I(prog, G, TC ′, S′, X ′) and S −→∗ S′ hold.

I Lemma 4 (Simulation End). If I(prog, G, TCfinal(G), S,X) holds, then the execution graph
associated with X is isomorphic to G.

The proof of Theorem 1 then proceeds by induction on the length of the traversal
G ` TCinit(G) −→∗ TCfinal(G). Lemma 2 serves as the base case, Lemma 3 is the induction
step simulating each traversal step with a number of event structure construction steps, and
Lemma 4 concludes the proof.

The proofs of Lemmas 2 and 4 are technical but fairly straightforward. (We define I in a
way that makes these lemmas immediate.) In contrast, Lemma 3 is much more difficult to
prove. As we will see, simulating a traversal step sometimes requires us to construct a new
branch in the event structure, i.e., to add multiple events (see Section 4.3).

2.4 Weakestmo to IMM Compilation Correctness by Example
Before presenting any formal definitions, we conclude this overview section by showcasing
the construction used in the proof of Lemma 3 on execution graph GLB in Fig. 2a following
the traversal of Fig. 4. We have actually already seen the sequence of event structures
constructed in Fig. 3. Note that, even though Figures 3 and 4 have the same number of
steps, there is no one-to-one correspondence between them as we explain below.

Consider the last event structure Sf from Fig. 3. A subset of its events Xf marked by ,
which we call a simulated execution, is a maximal conflict-free subset of Sf and all read events
in Xf read from some write in Xf (i.e., are justified from a write deemed “equal” to some
write in Xf). Then, by definition, Xf is extracted from Sf . Also, an execution graph induced
by Xf is isomorphic to GLB. That is, construction of Sf for LB shows that in Weakestmo it is
possible to observe the same behavior as GLB. Now, we explain how we construct Sf and
choose Xf .

During the simulation, we maintain the relation I(prog, G, TC, S,X) connecting a program
prog, its execution graph G, its traversal configuration TC, an event structure S, and a
subset of its events X. Among other properties (presented in Section 4.2), the relation states
that all issued and covered events of TC have exact counterparts in X, and that X can be
extracted from S.

The initial event structure and XInit consist of only initial events. Then, following issuing
of event e1

2 : W(y, 1) in TCa (see Fig. 4a), we need to add a branch to the event structure that
has W(y, 1) in it. Since Weakestmo requires adding events according to program order, we

E. Moiseenko, A. Podkopaev, O. Lahav, O. Melkonian, and V. Vafeiadis 5:9

first need to add a read event corresponding to “a := [x]” of LB’s thread 1. Each read event
in an event structure has to be justified from somewhere. In this case, the only write event to
location x is the initial one. That is, the added read event e1

11 is justified from it (see Fig. 3a).
In the general case, having more than one option, we would choose a “safe” write event for
an added read event to be justified from, i.e., the one which the corresponding branch is
“aware” of already and being justified from which would not break consistency of the event
structure. After that, a write event e1

21 : W(y, 1) can be added po-after e1
11 (see Fig. 3b), and

I(LB, GLB, TCa, Sb, Xb) holds for Xb = {Init, e1
11, e

1
21}.

Next, we need to simulate the second traversal step (see Fig. 4b), which issues W(x, 1). As
with the previous step, we first need to add a read event related to the first read instruction
of LB’s thread 2 (see Fig. 3c). However, unlike the previous step, the added event e2

1 has to
get value 1, since there is a dependency between instructions in thread 2. As we mentioned
earlier, the traversal strategy guarantees that e1

2 : W(y, 1) is issued at the moment of issuing
e2

2 : W(x, 1), so there is the corresponding event in the event structure to justify the read
event e2

1 from. Now, the write event e2
2 : W(y, 1) representing e2

2 can be added to the event
structure (see Fig. 3d) and I(LB, GLB, TCb, Sd, Xd) holds for Xd = {Init, e1

11, e
1
21, e

2
1, e

2
2}.

In the third traversal step (see Fig. 4c), the read event e1
1 : R(x, 1) is covered. To have

a representative event for e1
1 in the event structure, we add e1

12 (see Fig. 3e). It is justified
from e2

2, which writes the needed value 1. Also, e1
12 represents an alternative to e1

11 execution
of the first instruction of thread 1, so the events are in conflict.

However, we cannot choose a simulated execution X related to TCc and Se by the
simulation relation since X has to contain e1

12 and a representative for e1
2 : W(y, 1) (in Se it is

represented by e1
21) while being conflict-free. Thus, the event structure has to make one other

step (see Fig. 3f) and add the new event e1
22 to represent e1

2 : W(y, 1). Now, the simulated
execution contains everything needed, Xf = {Init, e1

12, e
1
22, e

2
1, e

2
2}.

Since Xf has to be extracted from Sf , every read event in X has to be connected via an
rf edge to an event in X.4 To preserve the requirement, we connect the newly added event
e1

22 and e1
21 via an ew edge, i.e., marking them to be equal writes.5 This induces an rf edge

between e1
22 and e2

1. That is, I(LB, GLB, TCc, Sf , Xf) holds.
To simulate the remaining traversal steps (Figures 4d to 4f), we do not need to modify

Sf because it already contains counterparts for the newly covered events and, moreover, the
execution graph associated with Xf is isomorphic to GLB. That is, we just need to show that
I(LB, GLB, TCd, Sf , Xf), I(LB, GLB, TCe, Sf , Xf), and I(LB, GLB, TCf , Sf , Xf) hold.

3 Formal Definition of Weakestmo

In this section, we introduce the notation used in the rest of the paper and define the
Weakestmo memory model. For simplicity, we present only a minimal fragment of Weakestmo
containing only relaxed reads and writes. For the definition of the full Weakestmo model, we
refer the readers to Chakraborty and Vafeiadis [6] and to our Coq development [16].

Notation. Given relations R1 and R2, we write R1 ; R2 for their sequential composition.
Given relation R, we write R?, R+ and R∗ to denote its reflexive, transitive and reflexive-
transitive closures. We write id to denote the identity relation (i.e., id , {〈x, x〉}). For a set

4 Actually, it is easy to show that there could be only one such event since equal writes are in conflict
and X is conflict-free.

5 Note that we could have left e1
22 without any outgoing ew edges since the choice of equal writes for

newly added events in Weakestmo is non-deterministic. However, that would not preserve the simulation
relation.

ECOOP 2020

5:10 Reconciling Event Structures with Modern Multiprocessors

A, we write [A] to denote the identity relation restricted to A (that is, [A] , {〈a, a〉 | a ∈ A}).
Hence, for instance, we may write [A] ;R ; [B] instead of R ∩ (A×B). We also write [e] to
denote [{e}] if e is not a set.

Given a function f : A→ B, we denote by =f the set of f -equivalent elements: (=f ,
{〈a, b〉 ∈ A×A | f(a) = f(b)}). In addition, given a relation R, we denote by R|=f the
restriction of R to f -equivalent elements (R|=f , R∩=f), and by R|6=f be the restriction of
R to non-f -equivalent elements (R| 6=f , R \=f).

3.1 Events, Threads and Labels
Events, e ∈ Event, and thread identifiers, t ∈ Tid, are represented by natural numbers. We
treat the thread with identifier 0 as the initialization thread. We let x ∈ Loc to range over
locations, and v ∈ Val over values.

A label, l ∈ Lab, takes one of the following forms:
R(x, v) – a read of value v from location x.
W(x, v) – a write of value v to location x.

Given a label l the functions typ, loc, val return (when applicable) its type (i.e., R or W),
location and value correspondingly. When a specific function assigning labels to events is
clear from the context, we abuse the notations R and W to denote the sets of all events labelled
with the corresponding type. We also use subscripts to further restrict this set to a specific
location (e.g., Wx denotes the set of write events operating on location x.)

3.2 Event Structures
An event structure S is a tuple 〈E, tid, lab, po, jf, ew, co〉 where:

E is a set of events, i.e., E ⊆ Event.
tid : E→ Tid is a function assigning a thread identifier to every event. We treat events
with the thread identifier equal to 0 as initialization events and denote them as Init, that
is Init , {e ∈ E | tid(e) = 0}.
lab : E→ Lab is a function assigning a label to every event in E.
po ⊆ E × E is a strict partial order on events, called program order, that tracks their
precedence in the control flow of the program. Initialization events are po-before all other
events, whereas non-initialization events can only be po-before events from the same
thread.
Not all events of a thread are necessarily ordered by po. We call such po-unordered
non-initialization events of the same thread conflicting events. The corresponding binary
relation cf is defined as follows:

cf , ([E \ Init] ; =tid ; [E \ Init]) \ (po ∪ po−1)?

jf ⊆ [E∩W] ; (=loc∩=val) ; [E∩R] is the justified from relation, which relates a write event
to the reads it justifies. We require that reads are not justified by conflicting writes (i.e.,
jf ∩ cf = ∅) and jf−1 be functional (i.e., whenever 〈w1, r〉, 〈w2, r〉 ∈ jf, then w1 = w2).
We also define the notion of external justification: jfe , jf \ po. A read event is
externally justified from a write if the write is not po-before the read.
ew ⊆ [E ∩ W] ; (cf ∩=loc ∩=val)? ; [E ∩ W] is an equivalence relation called the equal-writes
relation. Equal writes have the same location and value, and (unless identical) are in
conflict with one another.

E. Moiseenko, A. Podkopaev, O. Lahav, O. Melkonian, and V. Vafeiadis 5:11

co ⊆ [E ∩ W] ; (=loc \ ew) ; [E ∩ W] is the coherence order, a strict partial order that relates
non-equal write events with the same location. We require that coherence be closed with
respect to equal writes (i.e., ew ; co ; ew ⊆ co) and total with respect to ew on writes to
the same location:

∀x ∈ Loc. ∀w1, w2 ∈ Wx. 〈w1, w2〉 ∈ ew ∪ co ∪ co−1

Given an event structure S, we use “dot notation” to refer to its components (e.g.,
S.E, S.po). For a set A of events, we write S.A for the set A ∩ S.E (for instance, S.Wx =
{e ∈ S.E | typ(S.lab(e)) = W ∧ loc(S.lab(e)) = x}). Further, for e ∈ S.E, we write S.typ(e)
to retrieve typ(S.lab(e)). Similar notation is used for the functions loc and val. Given a
set of thread identifiers T , we write S.thread(T) to denote the set of events belonging to one
of the threads in T , i.e., S.thread(T) , {e ∈ S.E | S.tid(e) ∈ T}. When T = {thread(t)}
is a singleton, we often write S.thread(t) instead of S.thread({t}).

We define the immediate po and cf edges of an event structure as follows:

S.poimm , S.po \ (S.po ; S.po) S.cfimm , S.cf ∩ (S.poimm
−1 ; S.poimm)

An event e1 is an immediate po-predecessor of e2 if e1 is po-before e2 and there is no event
po-between them. Two conflicting events are immediately conflicting if they have the same
immediate po-predecessor.6

3.3 Event Structure Construction

Given a program prog, we construct its event structures operationally in a way that guarantees
completeness (i.e., that every read is justified from some write) and po ∪ jf acyclicity. We
start with an event structure containing only the initialization events and add one event at a
time following each thread’s semantics.

For the thread semantics, we assume reductions of the form σ
e−→ σ′ between thread

states σ, σ′ ∈ ThreadState and labeled by the event e ∈ E generated by that execution
step. Given a thread t and a sequence of events e1, ... , en ∈ S.thread(t) in immediate po
succession (i.e., 〈ei, ei+1〉 ∈ S.poimm for 1 ≤ i < n) starting from a first event of thread t (i.e.,
dom(S.po; [e1]) ⊆ Init), we can add an event e po-after that sequence of events provided that
there exist thread states σ1, ... , σn and σ′ such that prog(t) e1−→ σ1

e2−→ σ2 · · ·
en−→ σn

e−→ σ′,
where prog(t) is the initial thread state of thread t of the program prog. By construction,
this means that the newly added event e will be in conflict with all other events of thread t
besides e1, ... , en.

Further, when the new event e is a read event, it has to be justified from an existing
write event, so as to ensure completeness and prevent “out-of-thin-air” values. The write
event is picked non-deterministically from all non-conflicting writes with the same location
as the new read event. Similarly, when e is a write event, its position in co order should be
chosen. It can be done by either picking an ew equivalence class and including the new write
in it, or by putting the new write immediately after some existing write in co order. At each
step, we also check for event structure consistency (to be defined in Def. 5): If the event
structure obtained after the addition of the new event is inconsistent, it is discarded.

6 Our definition of immediate conflicts differs from that of [6] and is easier to work with. The two
definitions are equivalent if the set of initialization events is non-empty.

ECOOP 2020

5:12 Reconciling Event Structures with Modern Multiprocessors

3.4 Event Structure Consistency
To define consistency, we first need a number of auxiliary definitions. The happens-before
order S.hb is a generalization of the program order. Besides the program order edges, it
includes certain synchronization edges (captured by the synchronizes with relation, S.sw).

S.hb , (S.po ∪ S.sw)+

For the fragment covered in this section, there are no synchronization edges (i.e., sw = ∅),
and so hb and po coincide. In the full model,7 however, certain justification edges (e.g.,
between release/acquire accesses) contribute to sw and hence to hb.

The extended conflict relation S.ecf extends the notion of conflicting events to account
for hb; two events are in extended conflict if they happen after conflicting events.

S.ecf , (S.hb−1)? ; S.cf ; S.hb?

As already mentioned in §2, the reads-from relation, S.rf, of a Weakestmo event structure
is derived. It is defined as an extension of S.jf to all S.ew-equivalent writes.

S.rf , (S.ew ; S.jf) \ S.cf

Note that unlike S.jf−1, the relation S.rf−1 is not functional. This does not cause any
problems, however, since all the writes from whence a read reads have the same location and
value and are in conflict with one another.

The relation S.fr, called from-read or reads-before, places read events before subsequent
writes.

S.fr , S.rf−1 ; S.co

The extended coherence S.eco is a strict partial order that orders events operating on the
same location. (It is almost total on accesses to a given location, except that it does not
order equal writes nor reads reading from the same write.)

S.eco , (S.co ∪ S.rf ∪ S.fr)+

We observe that in our model, eco is equal to rf∪co;rf?∪fr;rf?, similar to the corresponding
definitions about execution graphs in the literature.8

The last ingredient that we need for event structure consistency is the notion of visible
events, which will be used to constrain external justifications. We define it in a few steps.
Let e be some event in S. First, consider all write events used to externally justify e or
one of its justification ancestors. The relation S.jfe ; (S.po ∪ S.jf)∗ defines this connection
formally. Among that set of write events restrict attention to those conflicting with e, and
call that set M . That is, M , dom(S.cf ∩ (S.jfe ; (S.po ∪ S.jf)∗) ; [e]). Event e is visible if
all writes in M have an equal write that is po-related with e. Formally,9

S.Vis , {e ∈ S.E | S.cf ∩ (S.jfe ; (S.po ∪ S.jf)∗) ; [e] ⊆ S.ew ; (S.po ∪ S.po−1)?}

Intuitively, visible events cannot depend on conflicting events: for every such justification
dependence, there ought to be an equal non-conflicting write.

7 The full model is presented in [6] and also in our Coq development [16].
8 This equivalence equivalence does not hold in the original Weakestmo model [6]. To make the equivalence
hold, we made ew transitive, and require ew ; co ; ew ⊆ co.

9 Note, that in [6] the definition of the visible events is slightly more verbose. We proved in Coq [16] that
our simpler definition is equivalent to the one given there.

E. Moiseenko, A. Podkopaev, O. Lahav, O. Melkonian, and V. Vafeiadis 5:13

Consistency places a number of additional constraints on event structures. First, it checks
that there is no redundancy in the event structure: immediate conflicts arise only because
of read events justified from non-equal writes. Second, it extends the constraints about cf
to the extended conflict ecf; namely that no event can conflict with itself or be justified
from a conflicting event. Third, it checks that reads are justified either from events of the
same thread or from visible events of other threads. Finally, it ensures coherence, i.e., that
executions restricted to accesses on a single location do not have any weak behaviors.

I Definition 5. An event structure S is said to be consistent if the following conditions hold.

dom(S.cfimm) ⊆ S.R (cfimm-read)
S.jf ; S.cfimm ; S.jf−1 ; S.ew is irreflexive. (cfimm-justification)
S.ecf is irreflexive. (ecf-irreflexivity)
S.jf ∩ S.ecf = ∅ (jf-non-conflict)
dom(S.jfe) ⊆ S.Vis (jfe-visible)
S.hb ; S.eco? is irreflexive. (coherence)

3.5 Execution Extraction
The last part of Weakestmo is the extraction of executions from an event structure. An
execution is essentially a conflict-free event structure.

I Definition 6. An execution graph G is a tuple 〈E, tid, lab, po, rf, co〉 where its components
are defined similarly as in the case of an event structure with the following exceptions:

po is required to be total on the set of events from the same thread. Thus, execution
graphs have no conflicting events, i.e., cf = ∅.
The rf relation is given explicitly instead of being derived. Also, there are no jf and ew
relations.
co totally orders write events operating on the same location.

All derived relations are defined similarly as for event structures. Next we show how to
extract an execution graph from the event structure.

I Definition 7. A set of events X is called extracted from S if the following conditions are
met:

X is conflict-free, i.e., [X] ; S.cf ; [X] = ∅.
X is S.rf-complete, i.e., X ∩ S.R ⊆ codom([X] ; S.rf).
X contains only visible events of S, i.e., X ⊆ S.Vis.
X is hb-downward-closed, i.e., dom(S.hb ; [X]) ⊆ X.

Given an event structure S and extracted subset of its events X, it is possible to associate
with X an execution graph G simply by restricting the corresponding components of S to X:

G.E = X G.tid = S.tid|X G.lab = S.lab|X
G.po = [X] ; S.po ; [X] G.rf = [X] ; S.rf ; [X] G.co = [X] ; S.co ; [X]

We say that such execution graph G is associated with X and that it is extracted from the
event structure: S BG.

Weakestmo additionally defines another consistency predicate to further filter out some
of the extracted execution graphs. In the Weakestmo fragment we consider, this additional
consistency predicate is trivial – every extracted execution satisfies it – and so we do not
present it here. In the full model, execution consistency checks atomicity of read-modify-write
instructions, and sequential consistency for SC accesses.

ECOOP 2020

5:14 Reconciling Event Structures with Modern Multiprocessors

r1 := [x] //1
[y] := r1

[z] := 1

r2 := [y] //1
r3 := [z] //1
[x] := r3

Init

e1
1 : R(x, 1)

e1
2 : W(y, 1)

e1
3 : W(z, 1)

e2
1 : R(y, 1)

e2
2 : R(z, 1)

e2
3 : W(x, 1)

rf

rf

rf
ppo

ppo

Figure 5 A variant of the load-buffering program (left) and the IMM graph G corresponding to
its annotated weak behavior (right).

4 Compilation Proof for Weakestmo

In this section, we outline our correctness proof for the compilation from Weakestmo to
the various hardware models. As already mentioned, our proof utilizes IMM [19]. In the
following, we briefly present IMM for the fragment of the model containing only relaxed
reads and writes (Section 4.1), our simulation relation (Section 4.2) for the compilation from
Weakestmo to IMM, and outline the argument as to why the simulation relation is preserved
(Section 4.3). Mapping from IMM to the hardware models has already been proved correct
by Podkopaev et al. [19], so we do not present this part here. Later, in §5, we will extend
the IMM mapping results to cover SC accesses.

As a further motivating example for this section consider yet another variant of the load
buffering program shown in Fig. 5. As we will see, its annotated weak behavior is allowed by
IMM and also by Weakestmo, albeit in a different way. The argument for constructing the
Weakestmo event structure that exhibits the weak behavior from the given IMM execution
graph is non-trivial.

4.1 The Intermediate Memory Model IMM
In order to discuss the proof, we briefly present a simplified version of the formal IMM
definition, where we have omitted constraints about RMW accesses and fences.

I Definition 8. An IMM execution graph G is an execution graph (Def. 6) extended with
one additional component: the preserved program order ppo ⊆ [R] ; po ; [W].

Preserved program order edges correspond to syntactic dependencies guaranteed to be
preserved by all major hardware platforms. For example, the execution graph in Fig. 5 has
two ppo edges corresponding to the data dependencies via registers r1 and r3. (The full
IMM definition [19] distinguishes between the different types of dependencies – control, data,
adress–and includes them as separate components of execution graphs. In the full model,
ppo is actually derived from the more basic dependencies.)

IMM-consistency checks completeness, coherence, and acyclicity:10

I Definition 9. An IMM execution graph G is IMM-consistent if
codom(G.rf) = G.R, (completeness)
G.hb ;G.eco? is irreflexive, and (coherence)
G.rf ∪G.ppo is acyclic. (no-thin-air)

10Again, this is a simplified presentation for a fragment of the model. We refer the reader to Podkopaev
et al. [19] for the full definition, which further distinguishes between internal and external rf edges.

E. Moiseenko, A. Podkopaev, O. Lahav, O. Melkonian, and V. Vafeiadis 5:15

As we can see, the execution graph G of Fig. 5 is IMM-consistent because every read of
the graph reads from some write event and, moreover, the coherence and no-thin-air
properties hold.

4.2 Simulation Relation for Weakestmo to IMM Proof
In this section, we define the simulation relation I 11, which is used for the simulation of a
traversal of an IMM-consistent execution graph by a Weakestmo event structure presented in
Section 2.3.

The way we define I(prog, G, 〈C, I〉, S,X) induces a strong connection between events in
the execution graph G and the event structure S. We make this connection explicit with the
function s2gG,S : S.E→ G.E, which maps events of the event structure S into the events of
the execution graph G, such that e and s2gG,S(e) belong to the same thread and have the
same po-position in the thread.12 Note that s2gG,S is defined for all events e ∈ S.E, meaning
that the event structure S does not contain any redundant events that do not correspond to
events in the IMM execution graph G. The function s2gG,S , however, does not have to be
injective: in particular, events e and e′ that are in immediate conflict in S have the same
s2gG,S-image in G. In the rest of the paper, whenever G and S are clear from the context,
we omit the G,S subscript from s2g.

In the context of a function s2g (for some G and S), we also use V·W and T·U to lift s2g
to sets and relations:

for AS ⊆ S.E : VASW , {s2g(e) | e ∈ AS}
for AG ⊆ G.E : TAGU , {e ∈ S.E | s2g(e) ∈ AG}

for RS ⊆ S.E× S.E : VRSW , {〈s2g(e), s2g(e′)〉 | 〈e, e′〉 ∈ RS}
for RG ⊆ G.E×G.E : TRGU , {〈e, e′〉 ∈ S.E× S.E | 〈s2g(e), s2g(e′)〉 ∈ RG}

For example, TCU denotes a subset of S’s events whose s2g-images are covered events in G,
and VS.rfW denotes a relation on events in G whose s2g-preimages in S are related by S.rf.

We define the relation I(prog, G, 〈C, I〉, S,X) to hold if the following conditions are met:
1. G is an IMM-consistent execution of prog.
2. S is a Weakestmo-consistent event structure of prog.
3. X is an extracted subset of S.
4. S and X corresponds precisely to all covered and issued events and their po-predecessors:

VS.EW = VXW = C ∪ dom(G.po? ; [I])
(Note that C is closed under po-predecessors, so dom(G.po? ; [C]) = C.)

11A refined version of the simulation relation for the full Weakestmo model can be found in [16, Appendix A].
12Here we assume existence and uniqueness of such a function. In our Coq development [16], we have a

different representation of execution graph events (but the same for events of event structures), which
makes the existence and uniqueness questions trivial.

More specifically, we follow Podkopaev et al. [19, §2.2]. There each non-initializing event e of an execution
graph G is encoded as a pair 〈t, n〉 where t is e’s thread and n is a serial number of e in thread t, i.e., a
position of e in G.po restricted to events of thread t; each initializing event is encoded by the corresponding
location – 〈init l〉.
In this representation, the function s2gG,S for an event e returns (i) the e’s thread and a number of
non-initial events which S.po-preceded e if e is non-initialing or (ii) its location if it is initializing:

s2gG,S(e) ,
{
〈S.tid(e), |dom([S.E \ S.Init]; S.po; [e])|〉 for e 6∈ S.Init
〈init S.loc(e)〉 for e ∈ S.Init

ECOOP 2020

5:16 Reconciling Event Structures with Modern Multiprocessors

Init

e1
1 : R(x, 1)

e1
2 : W(y, 1)

e1
3 : W(z, 1)

e2
1 : R(y, 1)

e2
2 : R(z, 1)

e2
3 : W(x, 1)

The execution graph G and
its traversal configuration TCa.

ppo

ppo

Init

e1
11 : R(x, 0)

e1
21 : W(y, 0)

e1
31 : W(z, 1)

jf

The event structure Sa and
the selected execution Xa.

Figure 6 The execution graph G, its traversal configuration T Ca, the related event structure Sa,
and the selected execution Xa. Covered events are marked by and issued ones by . Events
belonging to the selected execution are marked by .

5. Each S event has the same thread, type, modifier, and location as its corresponding
G event. In addition, covered and issued events in X have the same value as their
corresponding ones in G.
a. ∀e ∈ S.E. S.{tid, typ, loc, mod}(e) = G.{tid, typ, loc, mod}(s2g(e))
b. ∀e ∈ X ∩ TC ∪ IU. S.val(e) = G.val(s2g(e))

6. Program order in S corresponds to program order in G:
VS.poW ⊆ G.po

7. Identity relation in G corresponds to identity or conflict relation in S:
TidU ⊆ S.cf?

8. Reads in S are justified by writes that have already been observed by the corresponding
events in G. Moreover, covered events in X are justified by a write corresponding to that
read from the corresponding read in G:
a. VS.jfW ⊆ G.rf? ;G.hb?

b. VS.jf ; [X ∩ TCU]W ⊆ G.rf
9. Every write event justifying some external read event should be S.ew-equal to some issued

write event in X:
dom(S.jfe) ⊆ dom(S.ew ; [X ∩ TIU])

10. Equal writes in S correspond to the same write event in G:
VS.ewW ⊆ id

11. Every non-trivial S.ew equivalence class contains an issued write in X:
S.ew ⊆ (S.ew ; [X ∩ TIU] ; S.ew)?

12. Coherence edges in S correspond to coherence or identity edges in G. (We will explain in
Section 4.3 why a coherence edge in S might correspond to an identity edge in G.)

VS.coW ⊆ G.co?

As an example, consider the execution G from Fig. 5, the traversal configuration
TCa , 〈{Init}, {Init, e1

3}〉, and the event structure Sa shown in Fig. 6. We will show that
I(prog, G, TCa, Sa, Xa), where Xa , Sa.E, holds.

Take s2gG,Sa
= {Init 7→ Init, e1

11 7→ e1
1, e

1
21 7→ e1

2, e
1
31 7→ e1

3}. Given that cf = ew = ∅, the
consistency constraints hold immediately. For example, condition 8 holds because e1

11 is
justified by Init, which happens before it. Finally, note that only e1

31 and e1
3 are required to

have the same value by constraint 5, the other related thread events only need to have the
same type and address.

E. Moiseenko, A. Podkopaev, O. Lahav, O. Melkonian, and V. Vafeiadis 5:17

Init

e1
1 : R(x, 1)

e1
2 : W(y, 1)

e1
3 : W(z, 1)

e2
1 : R(y, 1)

e2
2 : R(z, 1)

e2
3 : W(x, 1)

The traversal configuration TCb.

vf vf

vf

ppo

ppo

Init

e1
11 : R(x, 0)

e1
21 : W(y, 0)

e1
31 : W(z, 1)

e2
11 : R(y, 0)

e2
21 : R(z, 1)

e2
31 : W(x, 1)

jf jf

jf

The event structure Sb and
the selected execution Xb.

Figure 7 The traversal configuration T Cb, the related event structure Sb, and the selected
execution Xb.

The definition of the simulation relation I renders the proofs of Lemmas 2 and 4 straight-
forward. Specifically, for Lemma 2, the initial configuration TCinit(G) containing only the
initialization events is simulated by the initial event structure Sinit as all the constraints are
trivially satisfied (Sinit.po = Sinit.jf = Sinit.ew = Sinit.co = ∅).

For Lemma 4, since TCfinal(G) covers all events of G, property 5 implies that the labels
of the events in X are equal to the corresponding events of G; property 6 means that po is
the same between them; property 8 means that rf is the same between them; properties 7
and 12 together mean that co is the same. Therefore, G and the execution corresponding to
X are isomorphic.

4.3 Simulation Step Proof Outline
We next outline the proof of Lemma 3, which states that the simulation relation I can be
restored after a traversal step.

Suppose that I(prog, G, TC, S,X) holds for some prog, G, TC, S, and X, and we need
to simulate a traversal step TC −→ TC ′ that either covers or issues an event of thread
t. Then we need to produce an event structure S′ and a subset of its events X ′ such that
I(prog, G, TC ′, S′, X ′) holds. Whenever thread t has any uncovered issued write events,
Weakestmo might need to take multiple steps from S to S′ so as to add any missing events po-
before the uncovered issued writes of thread t. Borrowing the terminology of the “promising
semantics” [11], we refer to these steps as constructing a certification branch for the issued
write(s).

Before we present the construction, let us return to the example of Fig. 5. Consider
the traversal step from configuration TCa to configuration TCb , 〈{Init}, {Init, e1

3, e
2
3}〉 by

issuing the event e2
3 (see Fig. 7). To simulate this step, we need to show that it is possible

to execute instructions of thread 2 and extend the event structure with a set of events Brb
matching these instructions. As we have already seen, the labels of the new events can differ
from their counterparts in G – they only have to agree for the covered and issued events. In
this case, we set Brb = {e2

11, e
2
21, e

2
31}, and adding them to the event structure Sa gives us

event structure Sb shown in Fig. 7.

In more detail, we need to build a run of thread-local semantics prog(2) e2
11−−→ e2

21−−→ e2
31−−→ σ′

such that (1) it contains events corresponding to all the events of thread 2 up to e2
3 (i.e.,

e2
1, e

2
2, e

2
3) with the same location, type, and thread identifier and (2) any events corresponding

to covered or issued events (i.e., e2
3) should also have the same value as the corresponding

event in G.

ECOOP 2020

5:18 Reconciling Event Structures with Modern Multiprocessors

Then, following the run of the thread-local semantics, we should extend the event structure
Sa to Sb by adding new events Brb, and ensure that the constructed event structure Sb is
consistent (Def. 5) and simulates the configuration TCb. In particular, it means that:

for each read event in Brb we need to pick a justification write event, which is either
already present in S or po-preceed the read event;
for each write event in Brb we should determine its position in co order of the event
structure.

Finally, we need to update the selected execution by replacing all events of thread 2 by the
new events Brb: Xb , Xa \ S.thread({2}) ∪Brb.

4.3.1 Justifying the New Read Events
In order to determine whence these read events should be justified (and hence what value
they should return), we have adopted the approach of Podkopaev et al. [19] for a similar
problem with certifying promises in the compilation proof from PS to IMM. The construction
relies on several auxiliary definitions.

First, given an execution G and a traversal configuration 〈C, I〉, we define the set of
determined events to be those events of G that must have equal counterparts in S. In
particular, this means that S should assign to these events the same label as G, and thus the
same reads-from source for the read events.

G.determined〈C,I〉 , C∪I∪dom((G.rf ∩G.po)? ;G.ppo ; [I])∪codom([I] ; (G.rf ∩G.po))

Besides covered and issued events, the set of determined events also contains the ppo-prefixes
of issued events, since issued events may depend on their values, as well as any internal reads
reading from issued events, since their values are also determined by the issued events.

For the graph G and traversal configuration TCb, the set of determined events contains
events e1

3, e2
2, and e2

3. (The events e1
3 and e2

3 are issued, whereas e2
2 has a ppo edge to e2

3.)
In contrast, events e1

1, e1
2, and e2

1 are not determined, since their corresponding events in S
read/write a different value.

Second, we introduce the viewfront relation (vf) to contain all the writes that have been
observed at a certain point in the graph. That is, the edge 〈w, e〉 ∈ G.vfTC indicates that
the write w either happens before e, is read by a covered event happening before e, or is
read by a determined read earlier in the same thread as e.

G.vf〈C,I〉 , [G.W] ; (G.rf ; [C])? ;G.hb? ∪G.rf ; [G.determined〈C,I〉] ;G.po?

Figure 7 depicts three G.vfTCb edges. Since G.vfTC ;G.po ⊆ G.vfTC , the other incoming
viewfront edges to thread 2 can be derived. Note that there is no edge from e1

2 to thread 2,
since e1

2 neither happens before any event in thread 2 nor is read by any determined read.
Finally, we construct the stable justification relation (sjf) that helps us justify the read

events in Brb in the event structure:

G.sjfTC , ([G.W] ; (G.vfTC ∩=G.loc) ; [G.R]) \ (G.co ;G.vfTC)

It relates a read event r to the co-last “observed” write event with same location. Assuming
that G is IMM-consistent, it can be shown that G.sjf agrees with G.rf on the set of
determined reads.

G.sjfTC ; [G.determinedTC] ⊆ G.rf

For the graph G and traversal configuration TCb shown in Fig. 7 the sjf relation coincides
with the depicted vf edges: i.e., we have 〈Init, e1

1〉, 〈Init, e2
1〉, 〈e1

3, e
2
2〉 ∈ G.sjfTCb .

E. Moiseenko, A. Podkopaev, O. Lahav, O. Melkonian, and V. Vafeiadis 5:19

Init

e1
1 : R(x, 1)

e1
2 : W(y, 1)

e1
3 : W(z, 1)

e2
1 : R(y, 1)

e2
2 : R(z, 1)

e2
3 : W(x, 1)

The traversal configuration TCc.

ppo

ppo

Init

e1
11 : R(x, 0)

e1
21 : W(y, 0)

e1
31 : W(z, 1)

e1
12 : R(x, 1)

e1
22 : W(y, 1)

e1
32 : W(z, 1)

e2
11 : R(y, 0)

e2
21 : R(z, 1)

e2
31 : W(x, 1)

cf

co

ew

The event structure Sc and
the selected execution Xc.

Figure 8 The traversal configuration T Cc, the related event structure Sc, and the selected
execution Xc.

Having sjfTCb as a guide for values read by instructions in the certification run, we
construct the steps of the thread-local operational semantics prog(2) −→∗ σ′ using the
receptiveness property of the thread’s semantics, which essentially says that given an execution
trace τ = e1, ... , en of the thread semantics, and a subset of events K ⊆ {e1, ... , en−1} along
that trace that have no ppo-successors in the graph, we arbitrarily change the values of read
events in K, and there exist values for the write events in K such that the updated execution
trace is also a trace of the thread semantics.13

The relation sjfTCb is also used to pick justification writes for the read events in Brb. We
have proved that each sjf edge either starts in some issued event (of the previous traversal
configuration) or it connects two events that are related by po:

G.sjfTCb ⊆ [Ia] ;G.sjfTCb ∪G.po

In the former case, thanks to the property 4 of our simulation relation, we can pick a
write event from Xa corresponding to the issued write (e.g., for Fig. 7, it is the event e1

31,
corresponding to the issued write e1

3). In the latter case, we pick either the initial write or
some Sb.po preceding write belonging to Brb.

4.3.2 Ordering the New Write Events
In order to pick the Sb.co position of the new write events in the updated event structure, we
generally follow the original G.co order of the IMM graph. Because of the conflicting events,
however, it is not always possible to preserve the inclusion between the relations. This is
why we relax the inclusion to VS.coW ⊆ G.co? in property 12 of the simulation relation.

To see the problem let us return to the example. Suppose that the next traversal step
covers the read e1

1. To simulate this step, we build an event structure Sc (see Fig. 8). It
contains the new events Brc , {e1

12, e
1
22, e

1
32}.

Consider the write events e1
21 and e1

22 of the event structure. Since the events have
different labels, we cannot make them ew-equivalent. And since Sc.co should be total among
all writes to the same location (with respect to Sc.ew), we must put a co edge between these
two events in one direction or another. Note that events e1

21 and e1
22 correspond to the same

event e1
2 in the graph, thus we cannot use the coherence order of the graph G.co to guide

our decision.

13The formal definition of the receptiveness property is quite elaborate. For the detailed definition we
refer the reader to the Coq development of IMM [7].

ECOOP 2020

5:20 Reconciling Event Structures with Modern Multiprocessors

In fact, the co-order between these two events does not matter, so we could pick either
direction. For the purposes of our proofs, however, we found it more convenient to always
put the new events earlier in the co order (thus we have 〈e1

22, e
1
21〉 ∈ Sc.co). Thereby we can

show that the co edges of the event structure ending in the new events, have corresponding
edges in the graph: VSc.co ; [Brc]W ⊆ G.co.

Now consider the events e1
31 and e1

32. Since these events have the same label and correspond
to the same event in G, we make them ew-equivalent. In fact, this choice is necessary for the
correctness of our construction. Otherwise, the new events Brc would be deemed invisible,
because of the Sc.cf ∩ (Sc.jfe ; (Sc.po ∪ Sc.jf)∗) path between e1

31 and e1
12. Recall that only

the visible events can be used to extract an execution from the event structure (Def. 7).
In general, assuming that I(prog, G, 〈C, I〉, S,X) holds, we attach the new write event e

to an S.ew equivalence class represented by the write event w, s.t. (i) w has the same s2g
image as e, i.e., s2g(w) = s2g(e); (ii) w belongs to X and its s2g image is issued, that is
w ∈ X ∩ TIU. If there is no such an event w, we put e S.co-after events such that their s2g
images are ordered G.co-before s2g(e), and S.co-before events such that their s2g images
are equal to s2g(e) or ordered G.co-after it. Note that thanks to property 9 of the simulation
relation, that is dom(S.jfe) ⊆ dom(S.ew ; [X ∩ TIU]), our choice of ew guarantees that all
new events will be visible.

4.3.3 Construction Overview
To sum up, to prove Lemma 3, we consider the events of G.thread({t}) where t is the
thread of the event issued or covered by the traversal step TC −→ TC ′, together with the
sjf relation determining the values of the read events. At this point, we can show that
I-conditions for the new configuration TC ′ hold for all events except for those in thread t.

Because of receptiveness, there exists a sequence of the thread steps prog(t) −→∗ σ′ for
some thread state σ′ such that the labels on this sequence match the events G.thread({t})
with the labels determined by sjf, and include an event with the same label as the one
issued or covered by the traversal step TC −→ TC ′.

We then do an induction on this sequence of steps, and add each event to the event
structure S and to its selected subset of events X (unless already there), showing along the
way that the I-conditions also hold for the updated event structure, selected subset, and
the events added. At the end, when we have considered all the events generated by the
step sequence, we will have generated the event structure S′ and execution X ′ such that
I(prog, G, TC ′, S′, X ′) holds.

5 Handling SC Accesses

In this section, we briefly describe the changes needed in order to handle the compilation
of Weakestmo’s sequentially consistent (SC) accesses. The purpose of SC accesses is to
guarantee sequential consistency for the simple programming pattern that uses exclusively
SC accesses to communicate between threads. As Lahav et al. [13] showed, however, their
semantics is quite complicated because they can be freely mixed with non-SC accesses.

We first define an extension of IMM, which we call IMMSC. Its consistency extends that
of IMM with an additional acyclicity requirement concerning SC accesses, which is taken
directly from RC11-consistency [13, Definition 1].

E. Moiseenko, A. Podkopaev, O. Lahav, O. Melkonian, and V. Vafeiadis 5:21

I Definition 10. An execution graph G is IMMSC-consistent if it is IMM-consistent [19,
Definition 3.11] and G.pscbase ∪G.pscF is acyclic, where:14

G.scb , G.po ∪G.po| 6=G.loc ;G.hb ;G.po| 6=G.loc ∪G.hb|=loc ∪G.co ∪G.fr

G.pscbase , ([G.Esc] ∪ [G.Fsc] ;G.hb?) ;G.scb ; ([G.Esc] ∪G.hb? ; [G.Fsc])
G.pscF , [G.Fsc]; (G.hb ∪G.hb;G.eco;G.hb); [G.Fsc]

The scb, pscbase and pscF relations were carefully designed by Lahav et al. [13] (and
recently adopted by the C++ standard), so that they provide strong enough guarantees for
programmers while being weak enough to support the intended compilation of SC accesses
to commodity hardware. In particular, a previous (simpler) proposal in [2], which essentially
includes G.hb between SC accesses in the relation required to be acyclic, is too strong
for efficient compilation to the POWER architecture. Indeed, the compilation schemes to
POWER do not enforce a strong barrier on hb-paths between SC accesses, but rather on
G.po ;G.hb ;G.po-paths between SC accesses.

I Remark 11. The full IMM model (i.e., including release/acquire accesses and SC fences, as
defined by Podkopaev et al. [19]) forbids cycles in rfe∪ppo∪bob∪pscF, where bob is (similar
to ppo) a subset of the program order that must be preserved due to the presence of a memory
fence or release/acquire access. Since pscF is already included in IMM’s acyclicity constraint,
one may consider the natural option of including pscbase in that acyclicity constraint as well.
However, it leads to a model that is too strong, as it forbids the following behavior:

a := [x]rlx //2
[y]sc := 1 [y]sc := 2 b := [y]rlx //2

[x]rlx := b

Rrlx(x, 2)

Wsc(y, 1)

Wsc(y, 2) Rrlx(y, 2)

Wrlx(x, 2)

bob
coe

pscbase

rfe

pporfe

This behavior is allowed by POWER (using any of the two intended compilation schemes for
SC accesses; see Section 5.1.2).

Adapting the compilation from Weakestmo to IMMSC to cover SC accesses is straightfor-
ward because the full definition of Weakestmo [6] does not have any additional constraints
about SC accesses at the level of event structures. It only has an SC constraint at the level of
extracted executions which is actually the same as in RC11, which we took as is for IMMSC.

5.1 Compiling IMMSC to Hardware
In this section, we establish describe the extension of the results of [19] to support SC accesses
with their intended compilation schemes to the different architectures.

As was done in [19], since IMMSC and the models of hardware we consider are all
defined in the same declarative framework (using execution graphs), we formulate our
results on the level of execution graphs. Thus, we actually consider the mapping of IMMSC
execution graphs to target architecture execution graphs that is induced by compilation
of IMMSC programs to machine programs. Hence, roughly speaking, for each architecture
α ∈ {TSO,POWER,ARMv7,ARMv8}, our (mechanized) result takes the following form:

14 In IMMSC, event labels include an “access mode”, where sc denotes an SC access. The sets G.Esc

consists of all SC accesses (reads, writes and fences) in G, and G.Fsc consists of all SC fences in G.

ECOOP 2020

5:22 Reconciling Event Structures with Modern Multiprocessors

If the α-execution-graph Gα corresponds to the IMMSC-execution-graph G, then
α-consistency of Gα implies IMMSC-consistency of G.

Since the mapping from Weakestmo to IMMSC (on the program level) is the identity mapping
(Theorem 1), we obtain as a corollary the correctness of the compilation from Weakestmo to
each architecture α that we consider. The exact notions of correspondence between Gα and
G are presented in [16, Appendicies B, C and D].

The mapping of IMMSC to each architecture follows the intended compilation scheme
of C/C++11 [15, 13], and extends the corresponding mappings of IMM from Podkopaev
et al. [19] with the mapping of SC reads and writes. Next, we schematically present these
extensions.

5.1.1 TSO
There are two alternative sound mappings of SC accesses to x86-TSO:

Fence after SC writes Fence before SC reads
(|Rsc|) , mov (|Rsc|) , mfence;mov
(|Wsc|) , mov;mfence (|Wsc|) , mov
(|RMWsc|) , (lock) xchg (|RMWsc|) , (lock) xchg

The first, which is implemented in mainstream compilers, inserts an mfence after every SC
write; whereas the second inserts an mfence before every SC read. Importantly, one should
globally apply one of the two mappings to ensure the existence of an mfence between every
SC write and following SC read.

5.1.2 POWER
There are two alternative sound mappings of SC accesses to POWER:

Leading sync Trailing sync
(|Rsc|) , sync;(|Racq|) (|Rsc|) , ld;sync
(|Wsc|) , sync;st (|Wsc|) , (|Wrel|);sync
(|RMWsc|) , sync;(|RMWacq|) (|RMWsc|) , (|RMWrel|);sync

The first scheme inserts a sync before every SC access, while the second inserts an sync
after every SC access. Importantly, one should globally apply one of the two mappings to
ensure the existence of a sync between every two SC accesses.

Observing that sync is the result of mapping an SC-fence to POWER, we can reuse the
existing proof for the mapping of IMM to POWER. To handle the leading sync (respectively,
trailing sync) scheme we introduce a preceding step, in which we prove that splitting in the
whole execution graph each SC access to a pair of an SC fence followed (preceded) by a
release/acquire access is a sound transformation under IMMSC. That is, this global execution
graph transformation cannot make an inconsistent execution consistent:

I Theorem 12. Let G be an execution graph such that

[Rsc ∪ Wsc] ; (G.po′ ∪G.po′ ;G.hb ;G.po′) ; [Rsc ∪ Wsc] ⊆ G.hb ; [Fsc] ;G.hb,

where G.po′ , G.po \G.rmw. Let G′ be the execution graph obtained from G by weakening
the access modes of SC write and read events to release and acquire modes respectively. Then,
IMMSC-consistency of G follows from IMM-consistency of G′.

E. Moiseenko, A. Podkopaev, O. Lahav, O. Melkonian, and V. Vafeiadis 5:23

Having this theorem, we can think about mapping of IMMSC to POWER as if it consists
of three steps. We establish the correctness of each of them separately.

1. At the IMMSC level, we globally split each SC-access to an SC-fence and release/acquire
access. Correctness of this step follows by Theorem 12.

2. We map IMM to POWER, whose correctness follows by the existing results of [19], since
we do not have SC accesses at this stage.

3. We remove any redundant fences introduced by the previous step. Indeed, following the
leading sync scheme, we will obtain sync;lwsync;st for an SC write. The lwsync is
redundant here since sync provides stronger guarantees than lwsync and can be removed.
Similarly, following the trailing sync scheme, we will obtain ld;cmp;bc;isync;sync for
an SC read. Again, the sync makes other synchronization instructions redundant.

5.1.3 ARMv7

The ARMv7 model [1] is very similar to the POWER model with the main difference being
that it has a weaker preserved program order than POWER. However, Podkopaev et al. [19]
proved IMM to POWER compilation correctness without relying on POWER’s preserved
program order explicitly, but assuming the weaker version of ARMv7’s order. Thus, their
proof also establishes correctness of compilation from IMM to ARMv7.

Extending the proof to cover SC accesses follows the same scheme discussed for POWER,
since two intended mappings of SC accesses for ARMv7 are the same except for replacing
POWER’s sync fence with ARMv7’s dmb:

Leading dmb Trailing dmb
(|Rsc|) , dmb;(|Racq|) (|Rsc|) , ldr;dmb
(|Wsc|) , dmb;str (|Wsc|) , (|Wrel|);dmb
(|RMWsc|) , dmb;(|RMWacq|) (|RMWsc|) , (|RMWrel|);dmb

5.1.4 ARMv8

Since ARMv8 has added dedicated instructions to support C/C++-style SC accesses, we
have established the correctness of a mapping employing these new instructions:

(|Rsc|) , LDAR
(|Wsc|) , STLR
(|FADDsc|) , L:LDAXR;STLXR;BC L
(|CASsc|) , L:LDAXR;CMP;BC Le;STLXR;BC L;Le:

We note that in this mapping, we follow Podkopaev et al. [19] and compile RMW opera-
tions to loops with load-linked and store-conditional instructions (LDX/STX). An alternative
mapping for RMWs would be to use single hardware instructions, such as LDADD and CAS, that
directly implement the required functionality. Unfortunately, however, due to a limitation of
the current IMM setup and unclarity about the exact semantics of the CAS instruction, we
are not able to prove the correctness of the alternative mapping employing these instructions.
The problem is that IMM assumes that every po-edge from a RMW instruction is preserved,
which holds for the mapping of CAS using the aforementioned loop, but not necessarily using
the single instruction.

ECOOP 2020

5:24 Reconciling Event Structures with Modern Multiprocessors

6 Related Work

While there are several memory model definitions both for hardware architectures [1, 9, 17,
21, 22] and programming languages [3, 4, 10, 14, 18, 20] in the literature, there are relatively
few compilation correctness results [6, 8, 11, 13, 19, 23].

Most of these compilation results do not tackle any of the problems caused by po ∪ rf
cycles, which are the main cause of complexity in establishing correctness of compilation
mappings to hardware architectures. A number of papers (e.g., [6, 11, 23]) consider only
hardware models that forbid such cycles, such as x86-TSO [17] and “strong POWER” [12],
while others (e.g., [8]) consider compilation schemes that introduce fences and/or dependencies
so as to prevent po ∪ rf cycles. The only compilation results where there is some non-trivial
interplay of dependencies are by Lahav et al. [13] and by Podkopaev et al. [19].

The former paper [13] defines the RC11 model (repaired C11), and establishes a number
of results about it, most of which are not related to compilation. The only relevant result
is its pencil-and-paper correctness proof of a compilation scheme from RC11 to POWER
that adds a fence between relaxed reads and subsequent relaxed writes, but not between
non-atomic accesses. As such, the only po ∪ rf cycles possible under the compilation scheme
involve a racy non-atomic access. Since non-atomic races have undefined semantics in RC11,
whenever there is such a cycle, the proof appeals to receptiveness to construct a different
acyclic execution exhibiting the race.

The latter paper [19] introduced IMM and used it to establish correctness of compilation
from the “promising semantics” (PS) [11] to the usual hardware models. As already mentioned,
IMM’s definition catered precisely for the needs of the PS compilation proof, and so did not
include important features such as sequentially consistent (SC) accesses. Our compilation
proof shares some infrastructure with that proof – namely, the definition of IMM and traversals
– but also has substantial differences because PS is quite different from Weakestmo. The main
challenges in the PS proof were (1) to encode the various orders of the IMM execution graphs
with the timestamps of the PS machine, and (2) to construct the certification runs for each
outstanding promise. In contrast, the main technical challenge in the Weakestmo compilation
proof is that event structures represent several possible executions of the program together,
and that Weakestmo consistency includes constraints that correlate these executions, allowing
one execution to affect the consistency of another.

7 Conclusion

In this paper, we presented the first correctness proof of mapping from the Weakestmo
memory model to a number of hardware architectures. As a way to show correctness of
Weakestmo compilation to hardware, we employed IMM [19], which we extended with SC
accesses, from which compilation to hardware follows.

Although relying on IMM modularizes the compilation proof and makes it easy to extend
to multiple architectures, it does have one limitation. As was discussed in Section 5.1.4, IMM
enforces ordering between RMW events and subsequent memory accesses, while one desirable
alternative compilation mapping of RMWs to ARMv8 does not enforce this ordering, which
means that we cannot prove soundness of that mapping via the current definition of IMM.
We are investigating whether one can weaken the corresponding IMM constraint, so that we
can establish correctness of the alternative ARMv8 mapping as well.

Another way to establish correctness of this alternative mapping to ARMv8 may be to use
the recently developed Promising-ARM model [22]. Indeed, since Promising-ARM is closely
related to PS [11], it should be relatively easy to prove the correctness of compilation from

E. Moiseenko, A. Podkopaev, O. Lahav, O. Melkonian, and V. Vafeiadis 5:25

PS to Promising-ARM. Establishing compilation correctness of Weakestmo to Promising-
ARM, however, would remain unresolved because Weakestmo and PS are incomparable [6].
Moreover, a direct compilation proof would probably also be quite difficult because of the
rather different styles in which these models are defined.

References
1 Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, simulation,

testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst., 36(2):7:1–7:74,
July 2014. doi:10.1145/2627752.

2 Mark Batty, Alastair F. Donaldson, and John Wickerson. Overhauling SC atomics in C11 and
OpenCL. In POPL 2016, pages 634–648. ACM, 2016.

3 Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Mathematizing C++
concurrency. In POPL 2011, pages 55–66, New York, 2011. ACM. doi:10.1145/1925844.
1926394.

4 John Bender and Jens Palsberg. A formalization of java’s concurrent access modes. Proc.
ACM Program. Lang., 3(OOPSLA):142:1–142:28, October 2019. doi:10.1145/3360568.

5 Hans-J. Boehm and Brian Demsky. Outlawing ghosts: Avoiding out-of-thin-air results. In
MSPC 2014, pages 7:1–7:6. ACM, 2014. doi:10.1145/2618128.2618134.

6 Soham Chakraborty and Viktor Vafeiadis. Grounding thin-air reads with event structures.
Proc. ACM Program. Lang., 3(POPL):70:1–70:27, 2019. doi:10.1145/3290383.

7 The Coq development of IMM, available at http://github.com/weakmemory/imm, 2019.
8 Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy. Bounding data races in

space and time. In PLDI 2018, pages 242–255, New York, 2018. ACM. doi:10.1145/3192366.
3192421.

9 Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc Maranget,
Will Deacon, and Peter Sewell. Modelling the ARMv8 architecture, operationally: Concurrency
and ISA. In POPL 2016, pages 608–621, New York, 2016. ACM. doi:10.1145/2837614.
2837615.

10 Alan Jeffrey and James Riely. On thin air reads towards an event structures model of relaxed
memory. In LICS 2016, pages 759–767, New York, 2016. ACM. doi:10.1145/2933575.
2934536.

11 Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. A promising
semantics for relaxed-memory concurrency. In POPL 2017, pages 175–189, New York, 2017.
ACM. doi:10.1145/3009837.3009850.

12 Ori Lahav and Viktor Vafeiadis. Explaining relaxed memory models with program transfor-
mations. In FM 2016. Springer, 2016. doi:10.1007/978-3-319-48989-6_29.

13 Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. Repairing
sequential consistency in C/C++11. In PLDI 2017, pages 618–632, New York, 2017. ACM.
doi:10.1145/3062341.3062352.

14 Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory model. In POPL 2005,
pages 378–391, New York, 2005. ACM. doi:10.1145/1040305.1040336.

15 C/C++11 mappings to processors, 2016. URL: http://www.cl.cam.ac.uk/~pes20/cpp/
cpp0xmappings.html.

16 Evgenii Moiseenko, Anton Podkopaev, Ori Lahav, Orestis Melkonian, and Viktor Vafeiadis.
Coq proof scripts and supplementary material for this paper, available at http://plv.mpi-sws.
org/weakestmoToImm/, 2020.

17 Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model: x86-TSO. In
TPHOLs 2009, volume 5674 of LNCS, pages 391–407, Heidelberg, 2009. Springer.

18 Jean Pichon-Pharabod and Peter Sewell. A concurrency semantics for relaxed atomics that
permits optimisation and avoids thin-air executions. In POPL 2016, pages 622–633, New York,
2016. ACM. doi:10.1145/2837614.2837616.

ECOOP 2020

https://doi.org/10.1145/2627752
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.1145/3360568
https://doi.org/10.1145/2618128.2618134
https://doi.org/10.1145/3290383
http://github.com/weakmemory/imm
https://doi.org/10.1145/3192366.3192421
https://doi.org/10.1145/3192366.3192421
https://doi.org/10.1145/2837614.2837615
https://doi.org/10.1145/2837614.2837615
https://doi.org/10.1145/2933575.2934536
https://doi.org/10.1145/2933575.2934536
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1007/978-3-319-48989-6_29
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/1040305.1040336
http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
http://plv.mpi-sws.org/weakestmoToImm/
http://plv.mpi-sws.org/weakestmoToImm/
https://doi.org/10.1145/2837614.2837616

5:26 Reconciling Event Structures with Modern Multiprocessors

19 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. Bridging the gap between programming
languages and hardware weak memory models. Proc. ACM Program. Lang., 3(POPL):69:1–
69:31, 2019. doi:10.1145/3290382.

20 Anton Podkopaev, Ilya Sergey, and Aleksandar Nanevski. Operational aspects of C/C++
concurrency. CoRR, abs/1606.01400, 2016. arXiv:1606.01400.

21 Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell.
Simplifying ARM concurrency: multicopy-atomic axiomatic and operational models for ARMv8.
Proc. ACM Program. Lang., 2(POPL):19:1–19:29, 2018. doi:10.1145/3158107.

22 Christopher Pulte, Jean Pichon-Pharabod, Jeehoon Kang, Sung-Hwan Lee, and Chung-Kil Hur.
Promising-ARM/RISC-V: a simpler and faster operational concurrency model. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2019, pages 1–15, New York, NY, USA, 2019. ACM. doi:10.1145/3314221.3314624.

23 Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter
Sewell. CompCertTSO: A verified compiler for relaxed-memory concurrency. J. ACM, 60(3):22,
2013. doi:10.1145/2487241.2487248.

https://doi.org/10.1145/3290382
http://arxiv.org/abs/1606.01400
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3314221.3314624
https://doi.org/10.1145/2487241.2487248

Don’t Panic! Better, Fewer, Syntax Errors for LR
Parsers
Lukas Diekmann
Software Development Team, King’s College London, United Kingdom
https://lukasdiekmann.com/
lukas.diekmann@gmail.com

Laurence Tratt
Software Development Team, King’s College London, United Kingdom
https://tratt.net/laurie/
laurie@tratt.net

Abstract
Syntax errors are generally easy to fix for humans, but not for parsers in general nor LR parsers
in particular. Traditional “panic mode” error recovery, though easy to implement and applicable
to any grammar, often leads to a cascading chain of errors that drown out the original. More
advanced error recovery techniques suffer less from this problem but have seen little practical use
because their typical performance was seen as poor, their worst case unbounded, and the repairs
they reported arbitrary. In this paper we introduce the CPCT+ algorithm, and an implementation
of that algorithm, that address these issues. First, CPCT+ reports the complete set of minimum
cost repair sequences for a given location, allowing programmers to select the one that best fits their
intention. Second, on a corpus of 200,000 real-world syntactically invalid Java programs, CPCT+ is
able to repair 98.37%±0.017% of files within a timeout of 0.5s. Finally, CPCT+ uses the complete
set of minimum cost repair sequences to reduce the cascading error problem, where incorrect error
recovery causes further spurious syntax errors to be identified. Across the test corpus, CPCT+

reports 435,812±473 error locations to the user, reducing the cascading error problem substantially
relative to the 981,628±0 error locations reported by panic mode.

2012 ACM Subject Classification Theory of computation → Parsing; Software and its engineering
→ Compilers

Keywords and phrases Parsing, error recovery, programming languages

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.6

Related Version Updates will be made available at https://arxiv.org/abs/1804.07133.

Supplementary Material ECOOP 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.2.17.

Funding This research was funded by the EPSRC Lecture (EP/L02344X/1) Fellowship.

Acknowledgements We are grateful to the Blackbox developers for allowing us access to their data,
and particularly to Neil Brown for help in extracting a relevant corpus. We thank Edd Barrett for
helping to set up our benchmarking machine and for comments on the paper. We also thank Carl
Friedrich Bolz-Tereick, Sérgio Queiroz de Medeiros, Sarah Mount, François Pottier, Christian Urban,
and Naveneetha Vasudevan for comments.

1 Introduction

Programming is a humbling job which requires acknowledging that we will make untold errors
in our quest to perfect a program. Most troubling are semantic errors, where we intended
the program to do one thing, but it does another. Less troubling, but often no less irritating,
are syntax errors, which are generally minor deviances from the exacting syntax required

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Lukas Diekmann and Laurence Tratt;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 6; pp. 6:1–6:32

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://lukasdiekmann.com/
mailto:lukas.diekmann@gmail.com
https://orcid.org/0000-0002-5258-3805
https://tratt.net/laurie/
mailto:laurie@tratt.net
https://doi.org/10.4230/LIPIcs.ECOOP.2020.6
https://arxiv.org/abs/1804.07133
https://doi.org/10.4230/DARTS.6.2.17
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Don’t Panic! Better, Fewer, Syntax Errors for LR Parsers

(a) class C {
int x y;

}

(c) Parsing error at line 2 col 9. Repair
sequences found :

1: Delete y
2: Insert ,
3: Insert =

(b) C.java :2: error : ’;’ expected
int x y;

^
C.java :2: error : <identifier > expected

int x y;
^

Figure 1 An example of a simple, common Java syntax error (a) and the problems traditional
error recovery has in dealing with it. javac (b) spots the error when it encounters “y”. Its error
recovery algorithm then repairs the input by inserting a semicolon before “y” (i.e. making the input
equivalent to “int x; y;”). This then causes a spurious parsing error, since “y” on its own is
not a valid statement. The CPCT+ error recovery algorithm we introduce in this paper produces
the output shown in (c): after spotting an error when parsing encounters “y”, it uses the Java
grammar to find the complete set of minimum cost repair sequences (unlike previous approaches
which non-deterministically find one minimum cost repair sequence). In this case three repair
sequences are reported to the user: one can delete “y” entirely (“int x;”), or insert a comma (“int
x, y;”), or insert an equals sign (“int x = y;”).

by a compiler. So common are syntax errors that parsers in modern compilers are designed
to cope with us making several: rather than stop on the first syntax error, they attempt to
recover from it. This allows them to report, and us to fix, all our syntax errors in one go.

When error recovery works well, it is a useful productivity gain. Unfortunately, most
current error recovery approaches are simplistic. The most common grammar-neutral
approach to error recovery are those algorithms described as “panic mode” (e.g. [13, p. 348])
which skip input until the parser finds something it is able to parse. A more grammar-specific
variation of this idea is to skip input until a pre-determined synchronisation token (e.g. “;”
in Java) is reached [8, p. 3], or to try inserting a single synchronisation token. Such strategies
are often unsuccessful, leading to a cascade of spurious syntax errors (see Figure 1 for an
example). Programmers quickly learn that only the location of the first error in a file – not
the reported repair, nor the location of subsequent errors – can be relied upon to be accurate.

It is possible to hand-craft error recovery algorithms for a specific language. These
generally allow better recovery from errors, but are challenging to create. For example, the
Java error recovery approach in the Eclipse IDE is 5KLoC long, making it only slightly
smaller than a modern version of Berkeley Yacc – a complete parsing system! Unsurprisingly,
few real-world parsers contain effective hand-written error recovery algorithms.

Most of us are so used to these trade-offs (cheap generic algorithms and poor recovery
vs. expensive hand-written algorithms and reasonable recovery) that we assume them to be
inevitable. However, there is a long line of work on more advanced generic error recovery
algorithms. Probably the earliest such algorithm is Aho and Peterson [1], which, upon
encountering an error, creates on-the-fly an alternative (possibly ambiguous) grammar which
allows the parser to recover. This algorithm has fallen out of favour in programming language
circles, probably because of its implementation complexity and the difficulty of explaining
to users what recovery has been used. A simpler family of algorithms, which trace their
roots to Fischer et al. [11], instead try to find a single minimum cost repair sequence of
token insertions and deletions which allow the parser to recover. Algorithms in this family
are much better at recovering from errors than naive approaches and can communicate the
repairs they find in a way that humans can easily replicate. However, such algorithms have
seen little practical use because their typical performance is seen as poor and their worst
case unbounded [17, p. 14]. We add a further complaint: such approaches only report a

L. Diekmann and L. Tratt 6:3

single repair sequence to users. In general – and especially in syntactically rich languages –
there are multiple reasonable repair sequences for a given error location, and the algorithm
has no way of knowing which best matches the user’s intentions.

In this paper we introduce a new error recovery algorithm in the Fischer et al. family,
CPCT+. This takes the approach of Corchuelo et al. [5] as a base, corrects it, expands it, and
optimises its implementation. CPCT+ is simple to implement (under 500 lines of Rust code),
is able to repair nearly all errors in reasonable time, reports the complete set of minimum
cost repair sequences to users, and does so in less time than Corchuelo et al..

We validate CPCT+ on a corpus of 200,000 real, syntactically incorrect, Java programs
(Section 6). CPCT+ is able to recover 98.37%±0.017% of files within a 0.5s timeout and does
so while reporting fewer than half the error locations as a traditional panic mode algorithm:
in other words, CPCT+ substantially reduces the cascading error problem. We also show –
for, as far as we know, the first time – that advanced error recovery can be naturally added
to a Yacc-esque system, allowing users to make fine-grained decisions about what to do when
error recovery has been applied to an input (Section 7). We believe that this shows that
algorithms such as CPCT+ are ready for wider usage, either on their own, or as part of a
multi-phase recovery system.

1.1 Defining the problem
Formally speaking, we first test the following hypothesis:

H1 The complete set of minimum cost repair sequences can be found in acceptable time.

The only work we are aware of with a similar concept of “acceptable time” is [6], who
define it as the total time spent in error recovery per file, with a threshold of 1s. We use
that definition with one change: Since many compilers are able to fully execute in less than
1s, we felt that a tighter threshold is more appropriate: we use 0.5s since we think that even
the most demanding users will tolerate such a delay. We strongly validate this hypothesis.

The complete set of minimum cost repair sequences makes it more likely that the
programmer will see a repair sequence that matches their original intention (see Figure 1 for
an example; Appendix A contains further examples in Java, Lua, and PHP). It also opens up
a new opportunity. Previous error recovery algorithms find a single repair sequence, apply
that to the input, and then continue parsing. While that repair sequence may have been a
reasonable local choice, it may cause cascading errors later. Since we have the complete set
of minimum cost repair sequences available, we can select from that set a repair sequence
which causes fewer cascading errors. We thus rank repair sequences by how far they allow
parsing to continue successfully (up to a threshold – parsing the whole file would, in general,
be too costly), and choose from the subset that gets furthest (note that the time required to
do this is included in the 0.5s timeout). We thus also test a second hypothesis:

H2 Ranking the complete set of minimum cost repair sequences by how far they allow parsing
to continue locally reduces the global cascading error problem.

We also strongly validate this hypothesis. We do this by comparing “normal” CPCT+

with a simple variant CPCT+
rev which reverses the ranking process, always selecting from

amongst the worst performing minimum cost repair sequence. CPCT+
rev models the worst

case of previous approaches in the Fischer et al. family, which non-deterministically select a
single minimum cost repair sequence. CPCT+

rev leads to 31.93%±0.289% more errors being
reported (i.e. it substantially worsens the cascading error problem).

ECOOP 2020

6:4 Don’t Panic! Better, Fewer, Syntax Errors for LR Parsers

This paper is structured as follows. We describe the Corchuelo et al. algorithm (Section 4),
filling in missing details from the original description and correcting its definition. We then
expand the algorithm into CPCT+ (Section 5). Finally, we validate CPCT+ on a corpus
of 200,000 real, syntactically incorrect, Java programs comparing it to implementations
of panic mode and Corchuelo et al. (Section 6). To emphasise that our algorithms are
grammar-neutral, we show examples of error recovery on different grammars in Appendix A.

2 Background

We assume a high-level understanding of the mechanics of parsing in this paper, but in this
section we provide a handful of definitions, and a brief refresher of relevant low-level details,
needed to understand the rest of this paper. Although the parsing tool we created for this
paper is written in Rust, we appreciate that this is still an unfamiliar language to many
readers: algorithms are therefore given in Python which, we hope, is familiar to most.

Although there are many flavours of parsing, the Fischer et al. family of error recovery
algorithms are designed to be used with LR(k) parsers [16]. LR parsing remains one of the
most widely used parsing approaches due to the ubiquity of Yacc [14] and its descendants
(which include the Rust parsing tool we created for this paper). We use Yacc syntax
throughout this paper so that examples can easily be tested in Yacc-compatible parsing tools.

Yacc-like tools take in a Context-Free Grammar (CFG) and produce a parser from it. The
CFG has one or more rules; each rule has a name and one or more productions (often called
“alternatives”); each production contains one or more symbols; and a symbol references either
a token type or a grammar rule. One rule is designated the start rule. The resulting parser
takes as input a stream of tokens, each of which has a type (e.g. INT) and a value (e.g. 123) –
we assume the existence of a Lex-like tool which can split a string into a stream of tokens.
Strictly speaking, parsing is the act of determining whether a stream of tokens is correct
with respect to the underlying grammar. Since this is rarely useful on its own, Yacc-like
tools allow grammars to specify “semantic actions” which are executed when a production in
the grammar is successfully matched. Except where stated otherwise, we assume that the
semantic actions build a parse tree, ordering the tokens into a tree of nonterminal nodes
(which can have children) and terminal nodes (which cannot have children).

The CFG is first transformed into a stategraph, a statemachine where each node contains
one or more items (describing the valid parse states at that point) and edges are labelled
with terminals or nonterminals. Since even on a modern machine, a canonical (i.e. unmerged)
LR stategraph can take several seconds to build, and a surprising amount of memory to
store, we use the algorithm of [21] to merge together compatible states1. The effect of this is
significant, reducing the Java grammar we use later from 8908 to 1148 states. The stategraph
is then transformed into a statetable with one row per state. Each row has a possibly empty
action (shift, reduce, or accept) for each terminal and a possibly empty goto state for each
nonterminal. Figure 2 shows an example grammar, its stategraph, and statetable.

The statetable allows us to define a simple, efficient, parsing process. We first define two
functions relative to the statetable: action(s, t) returns the action for the state s and token t
or error if no such action exists; and goto(s,N) returns the goto state for the state s and
the nonterminal N or error if no such goto state exists. We then define a reduction relation

1 [21] can over-merge states when conflicts occur [9, p. 3] (i.e. when Yacc uses precedence rules to turn
an ambiguous grammar into an unambiguous LR parser). Since our error recovery approach operates
purely on the statetable, it should work correctly with other merging approaches such as that of [9].

L. Diekmann and L. Tratt 6:5

Actions
s INT + * () $

0 S(4) S(1)
1 S(4) S(1)
2 S(7) R(II) R(II)
3 R(IV) S(8) R(IV) R(IV)
4 R(VI) R(VI) R(VI) R(VI)
5 Accept
6 S(9)
7 S(4) S(1)
8 S(4) S(1)
9 R(V) R(V) R(V) R(V)
10 R(I) R(I)
11 R(III) R(III) R(III)

%start Expr
%%
Expr: Factor "+" Expr // (I)
 | Factor ; // (II)

Factor: Term "*" Factor // (III)
 | Term ; // (IV)

Term: "(" Expr ")" // (V)
 | "INT" ; // (VI)

Gotos

s

0 2 3 5
1 2 3 6
7 2 3 10
8 11 3

Factor Term Expr

Expr : Factor
Expr : Factor '+' Expr

Factor

Term
Factor

Term

Factor

Factor

Factor

Factor

Term
Term

Term Factor : Term '*' Factor

Factor : Term '*' FactorTerm

Term Term

Factor : Term
Factor : Term '*' Factor

Figure 2 An example grammar (top left), its corresponding stategraph (right), and statetable
(split into separate action and goto tables; bottom left). Productions in the grammar are labelled
(I) to (VI). In the stategraph: S(x) means “shift to state x”; R(x) means “reduce production x
from the grammar” (e.g. action(3, “+”) returns R(IV) which references the production “Factor:
Term;”). Each item within a state [N : α • β] references one of rule N ’s productions; α and β each
represent zero or more symbols; with the dot (•) representing how much of the production must
have been matched (α) if parsing has reached that state, and how much remains (β).

→LR for (parsing stack, token list) pairs with two reduction rules as shown in Figure 3. A full
LR parse →∗LR repeatedly applies the two →LR rules until neither applies, which means that
action(sn, t0) is either: accept (i.e. the input has been fully parsed); or error (i.e. an error
has been detected at the terminal t0). A full parse takes a starting pair of ([0], [t0 . . . tn, $]),
where state 0 is expected to represent the entry point into the stategraph, t0 . . . tn is the
sequence of input tokens, and “$” is the special End-Of-File (EOF) token.

3 Panic mode

Error recovery algorithms are invoked by a parser when it has yet to finish but there is no
apparent way to continue parsing (i.e. when action(sn, t0) = error). Error recovery algorithms
are thus called with a parsing stack and a sequence of remaining input (which we represent
as a list of tokens): they can modify either or both of the parsing stack and the input in
their quest to get parsing back on track. The differences between algorithms are thus in
what modifications they can carry out (e.g. altering the parse stack; deleting input; inserting
input), and how they carry such modifications out.

ECOOP 2020

6:6 Don’t Panic! Better, Fewer, Syntax Errors for LR Parsers

action(sn, t0) = shift s′

([s0 . . . sn], [t0 . . . tn])→LR ([s0 . . . sn, s
′], [t1 . . . tn]) LR Shift

(action(sn, t0) = reduce N : α) ∧ (goto(sn−|α|, N) = s′)
([s0 . . . sn], [t0 . . . tn])→LR ([s0 . . . sn−|α|, s

′], [t0 . . . tn]) LR Reduce

Figure 3 Reduction rules for →LR, which operate on (parsing stack, token list) pairs. LR Shift
advances the input by one token and grows the parsing stack, while LR Reduce unwinds (“reduces”)
the parsing stack when a production is complete before moving to a new (“goto”) state.

1 def holub (pstack , toks):
2 while len(toks) > 0:
3 npstack = pstack .copy ()
4 while len(npstack) > 0:
5 if action (npstack [-1], toks [0]) != error : return (npstack , toks)
6 npstack .pop ()
7 del toks [0]
8 return None

Figure 4 Our version of the Holub [13] algorithm. This panic mode algorithm takes in a (parsing
stack, token list) pair and returns: a (parsing stack, token list) pair if it managed to recover; or None
if it failed to recover. The algorithm tries to find an element in the stack that has a non-error action
for the next token in the input (lines 4–6). If it fails to find such an element, the input is advanced
by one element (line 7) and the stack restored (line 3).

The simplest grammar-neutral error recovery algorithms are widely called “panic mode”
algorithms (the origin of this family of algorithms seems lost in time). While there are
several members of this family for LL parsing, there is only one fundamental way of creating
a grammar-neutral panic mode algorithm for LR parsing. We take our formulation from
Holub [13, p. 348]2. The algorithm works by popping elements off the parsing stack to see if
an earlier part of the stack is able to parse the next input symbol. If no element in the stack
is capable of parsing the next input symbol, the next input symbol is skipped, the stack
restored, and the process repeated. At worst, this algorithm guarantees to find a match at
the EOF token. Figure 4 shows a more formal version of this algorithm.

The advantage of this algorithm is its simplicity and speed. For example, consider the
grammar from Figure 2 and the input “2 + + 3”. The parser encounters an error on the
second “+” token, leaving it with a parsing stack of [0, 2, 7] and the input “+ 3” remaining.
The error recovery algorithm now starts. It first tries action(7, “+”) which (by definition,
since it is the place the parser encountered an error) returns error ; it then pops the top
element from the parsing stack and tries action(2, “+”), which returns shift. This is enough
for the error recovery algorithm to complete, and parsing resumes with a stack [0, 2].

The fundamental problem with error recovery can be seen from the above example: by
popping from the parsing stack, it implicitly deletes input from before the error location (in
this case the first “+”) in order to find a way of parsing input after the error location. This
often leads to panic mode throwing away huge portions of the input in its quest to find a
repair. Not only can the resulting recovery appear as a Deus ex machina, but the more input
that is skipped, the more likely that a cascade of further parsing errors ensues (as we will see
later in Section 6.2).

2 Note that step 2 in Holub causes valid repairs to be missed: while it is safe to ignore the top element of
the parsing stack on the first iteration of the algorithm, as soon as one token is skipped, one must check
all elements of the parsing stack. Our description simply drops step 2 entirely.

L. Diekmann and L. Tratt 6:7

action(sn, t) 6= error ∧ t 6= $ ∧ ([s0 . . . sn], [t, t0 . . . tn])→∗LR ([s′0 . . . s′m], [t0 . . . tn])
([s0 . . . sn], [t0 . . . tn])→CR ([s′0 . . . s′m], [t0 . . . tn], [insert t]) CR Insert

t0 6= $
([s0 . . . sn], [t0, t1 . . . tn])→CR ([s0 . . . sn], [t1 . . . tn], [delete]) CR Delete

([s0 . . . sn], [t0 . . . tn])→∗LR ([s′0 . . . s′m], [tj . . . tn]) ∧ 0 < j ≤ Nshifts

j = Nshifts ∨ action(s′m, tj) ∈ {accept, error}
([s0 . . . sn], [t0 . . . tn])→CR ([s′0 . . . s′m], [tj . . . tn], [shift . . . shift︸ ︷︷ ︸

j

]) CR Shift 1

Figure 5 The repair-creating reduction rules for Corchuelo et al.. CR Insert finds all terminals
reachable from the current state and creates insert repairs for them (other than the EOF token “$”).
CR Delete creates deletion repairs if user defined input remains. CR Shift 1 parses at least 1 and
at most Nshifts tokens; if it reaches an accept or error state, or parses exactly Nshifts tokens, then a
shift repair per token shifted is created.

4 Corchuelo et al.

There have been many attempts to create better LR error recovery algorithms than panic
mode. Most numerous are those error recovery algorithms in what we call the Fischer et al.
family. Indeed, there are far too many members of this family of algorithms to cover in one
paper. We therefore start with one of the most recent – Corchuelo et al. [5]. We first explain
the original algorithm (Section 4.1), although we use different notation than the original,
fill in several missing details, and provide a more formal definition. We then make two
correctness fixes to ensure that the algorithm always finds minimum cost repair sequences
(Section 4.2). Since the original gives few details as to how the algorithm might best be
implemented, we then explain our approach to making a fast implementation (Section 4.3).

4.1 The original algorithm

Intuitively, the Corchuelo et al. algorithm starts at the error state and tries to find a minimum
cost repair sequence consisting of: insert T (“insert a token of type T”), delete (“delete the
token at the current offset”), or shift (“parse the token at the current offset”). The algorithm
completes: successfully if it reaches an accept state or shifts “enough” tokens (Nshifts, set at 3
in Corchuelo et al.); or unsuccessfully if a repair sequence contains too many delete or insert
repairs (set at 3 and 4 respectively in Corchuelo et al.) or spans “too much” input (Ntotal,
set at 10 in Corchuelo et al.). Repair sequences are reported back to users with trailing shift
repairs pruned i.e. [insert x, shift y, delete z, shift a, shift b, shift c] is reported as [insert x,
shift y, delete z].

In order to find repair sequences, the algorithm keeps a breadth-first queue of config-
urations, each of which represents a different search state; configurations are queried for
their neighbours which are put into the queue; and the search terminates when a successful
configuration is found. The cost of a configuration is the sum of the repair costs in its repair
sequence. By definition, a configuration’s neighbours have the same, or greater, cost to it.

As with the original, we explain the approach in two parts. First is a new reduction
relation →CR which defines a configuration’s neighbours (Figure 5). Second is an algorithm
which makes use of the→CR relation to generate neighbours, and determines when a successful
configuration has been found or if error recovery has failed (Figure 6). As well as several

ECOOP 2020

6:8 Don’t Panic! Better, Fewer, Syntax Errors for LR Parsers

1 def corchueloetal (pstack , toks):
2 todo = [[(pstack , toks , [])]]
3 cur_cst = 0
4 while cur_cst < len(todo):
5 if len(todo[cur_cst]) == 0:
6 cur_cst += 1
7 continue
8 n = todo[cur_cst]. pop ()
9 if action (n[0][-1] , n [1][0]) == accept or ends_in_N_shifts (n [2]): return n

10 elif len(n[1]) - len(toks) == N_total : continue
11 for nbr in all_cr_star (n[0] , n [1]):
12 if len(n[2]) > 0 and n[2][-1] == delete and nbr [2][-1] == insert: continue
13 cst = cur_cst + rprs_cst (nbr [2])
14 for _ in range (len(todo), cst): todo.push ([])
15 todo[cst]. append ((nbr [0] , nbr [1] , n[2] + nbr [2]))
16 return None
17
18 def rprs_cst (rprs):
19 c = 0
20 for r in rprs:
21 if r == shift: continue
22 c += 1
23 return c
24
25 def all_cr_star (pstack , toks):
26 # Exhaustively apply the →∗

CR relation to
27 # (pstack , toks) and return the resulting
28 # list of (pstack , toks , repair) triples .

Figure 6 Our version of the Corchuelo et al. algorithm. The main function corchueloetal
takes in a (parsing stack, token list) pair and returns: a (parsing stack, token list, repair sequence)
triple where repair sequence is guaranteed to be a minimum cost repair sequence; or None if it failed
to find a repair sequence. The algorithm maintains a todo list of lists: the first sub-list contains
configurations of cost 0, the second sub-list configurations of cost 1, and so on. The todo list is
initialised with the error parsing stack, remaining tokens, and an empty repair sequence (line 2). If
there are todo items left, a lowest cost configuration n is picked (lines 4–8). If n represents an accept
state or if the last Nshifts repairs are shifts, then n represents a minimum cost repair sequence and
the algorithm terminates successfully (line 9). If n has already consumed Ntotal tokens, then it is
discarded (line 10). Otherwise, n’s neighbours are gathered using the →CR relation (lines 11, 25–28).
To avoid duplicate repairs, delete repairs never follow insert repairs (line 12). Each neighbour has
its repairs costed (line 13) and is then assigned to the correct todo sub-list (line 15). The rprs_cst
function returns the cost of a repair sequence. Inserts and deletes cost 1, shifts 0.

changes for clarity, the biggest difference is that Figure 6 captures semi-formally what
Corchuelo et al. explain in prose (spread amongst several topics over several pages): perhaps
inevitably we have had to fill in several missing details. For example, Corchuelo et al. do not
define what the cost of repairs is: for simplicities sake, we define the cost of insert and delete
as 1, and shift as 0.3

4.2 Ensuring that minimum cost repair sequences aren’t missed
CR Shift 1 (see Figure 5) has two flaws which prevent it from generating all possible
minimum cost repair sequences.

First, CR Shift 1 always consumes input, missing intermediate configurations (including
accept states!) that only require reductions/gotos to be performed. CR Shift 2 in Figure 7
shows the two-phase fix which addresses this problem. We first change the condition

3 It is trivial to extend this to variable token costs if desired, and our implementation supports this.
However, it is unclear whether non-uniform token costs are useful in practise [4, p.96].

L. Diekmann and L. Tratt 6:9

([s0 . . . sn], [t0 . . . tn])→∗LR ([s′0 . . . s′m], [tj . . . tn]) ∧ 0 ≤ j ≤ Nshifts

(j = 0 ∧ [s0 . . . sn] 6= [s′0 . . . s′m]) ∨ j = Nshifts ∨ action(s′m, tj) ∈ {accept, error}
([s0 . . . sn], [t0 . . . tn])→CR ([s′0 . . . s′m], [tj . . . tn], [shift . . . shift︸ ︷︷ ︸

j

]) CR Shift 2

([s0 . . . sn], [t0 . . . tn])→∗LR ([s′0 . . . sm], [tj . . . tn]) ∧ 0 ≤ j ≤ 1
(j = 0 ∧ [s0 . . . sn] 6= [s′0 . . . sm] ∧R = []) ∨ (j = 1 ∧R = [shift])

([s0 . . . sn], [t0 . . . tn])→CR ([s′0 . . . s′m], [tj . . . tn], R) CR Shift 3

Figure 7 CR Shift 1 always consumes input, when sometimes performing one or more reduc-
tion/gotos without consuming input would be better. CR Shift 2 addresses this issue. Both CR
Shift 1 and CR Shift 2 generate multiple shift repairs in one go, which causes them to skip
“intermediate” (and sometimes important) configurations. CR Shift 3 generates at most one shift,
exploring all intermediate configurations.

(a) Delete 3, Delete +
Delete 3, Shift +, Insert Int
Insert +, Shift 3, Shift +, Insert Int
Insert *, Shift 3, Shift +, Insert Int

(b) Insert *, Shift 3, Delete +
Insert +, Shift 3, Delete +

Figure 8 Given the input “2 3 +” and the grammar from Figure 2, CR Shift 1 is unable to
find any repair sequences because it does not perform the reductions/gotos necessary after the final
insert or delete repairs to reach an accept state. (a) CR Shift 2 can find 4 minimum cost repair
sequences. (b) CR Shift 3 can find a further 2 minimum cost repair sequences on top those found
by CR Shift 2 (i.e. 6 in total).

0 < j ≤ Nshifts to 0 ≤ j ≤ Nshifts so that the parser can make progress without consuming
input. However, this opens the possibility of an infinite loop, so we then add a condition that
if no input is consumed, the parsing stack must have changed. In other words, we require
progress to be made, whether or not that progress involved consuming input.

Second, CR Shift 1 and CR Shift 2 generate multiple shifts at a time. This causes
them to skip intermediate configurations from which minimum cost repair sequences may be
found. The solution4 is simple: at most one shift can be generated at any one time. CR
Shift 3 in Figure 7 (as well as incorporating the fix from CR Shift 2) generates at most
one shift repair at a time. Relative to CR Shift 1, it is simpler, though it also inevitably
slows down the search, as more configurations are generated.

The problems with CR Shift 1, in particular, can be severe. Figure 8 shows an example
input where CR Shift 1 is unable to find any repair sequences, CR Shift 2 some, and CR
Shift 3 all minimum cost repair sequences.

4.3 Implementation considerations
The definitions we have given thus far do not obviously lead to an efficient implementation
and Corchuelo et al. give few useful hints. We found that two techniques were both effective
at improving performance while being simple to implement.

4 The problem, and the basis of a fix, derive from [15, p. 12], though their suggestion suffers from the
same problem as CR Shift 1.

ECOOP 2020

6:10 Don’t Panic! Better, Fewer, Syntax Errors for LR Parsers

First, Corchuelo et al. suggest using a breadth-first search but give no further details. It
was clear to us that the most natural way to model the search is as an instance of Dijkstra’s
algorithm. However, rather than use a general queue data-structure (probably based on a
tree) to discover which element to search next, we use a similar queue data-structure to [4,
p. 25]. This consists of one sub-list per cost (i.e. the first sub-list contains configurations
of cost 0, the second sub-list configurations of cost 1 and so on). Since we always know
what cost we are currently investigating, finding the next todo element requires only a single
pop (line 8 of Figure 6). Similarly, adding elements requires only an append to the relevant
sub-list (lines 18, 21, 22). This data-structure is a good fit because costs in our setting
are always small (double digits is unusual for real-world grammars) and each neighbour
generated from a configuration with cost c has a cost ≥ c.

Second, since error recovery frequently adjusts and resets parsing stacks and repair
sequences, during error recovery we do not represent these as lists (as is the case during
normal parsing). We found that lists consume noticeably more memory, and are slightly
less efficient, than using parent pointer trees (often called “cactuses”). Every node in such a
tree has a reference to a single parent (or null for the root node) but no references to child
nodes. Since our implementation is written in Rust – a language without garbage collection –
nodes are reference counted (i.e. a parent is only freed when it is not in a todo list and no
children point to it). When the error recovery algorithm starts, it converts the main parsing
stack (a list) into a parent pointer tree; and repair sequences start as empty parent pointer
trees. The →CR part of our implementation thus operates exclusively on parent pointer trees.
Although this does mean that neighbouring configurations are scattered throughout memory,
the memory sharing involved seems to more than compensate for poor cache behaviour; it
also seems to be a good fit with modern malloc implementations, which are particularly
efficient when allocating and freeing objects of the same size. This representation is likely to
be a reasonable choice in most contexts, although it is difficult to know from our experience
whether it will always be the best choice (e.g for garbage collected languages).

One seemingly obvious improvement is to split the search into parallel threads. However,
we found that the nature of the problem means that parallelisation is more tricky, and less
productive, than might be expected. There are two related problems: we cannot tell in
advance if a given configuration will have huge numbers of successors or none at all; and
configurations are, in general, searched for successors extremely quickly. Thus if we attempt
to seed threads with initial sets of configurations, some threads quickly run out of work
whilst others have ever growing queues. If, alternatively, we have a single global queue then
significant amounts of time can be spent adding or removing configurations in a thread-safe
manner. A work stealing algorithm might solve this problem but, as we shall see in Section 6,
CPCT+ runs fast enough that the additional complexity of such an approach is not, in our
opinion, justified.

5 CPCT+

In this section, we extend the Corchuelo et al. algorithm to become what we call CPCT+.
First we enhance the algorithm to find the complete set of minimum cost repair sequences
(Section 5.1). Since this slows down the search, we optimise by merging together compatible
configurations (Section 5.2). The complete set of minimum cost repair sequences allows us
to make an algorithm less susceptible to the cascading error problem (Section 5.3). We then
change the criteria for terminating error recovery (Section 5.4).

L. Diekmann and L. Tratt 6:11

5.1 Finding the complete set of minimum cost repair sequences
The basic Corchuelo et al. algorithm non-deterministically completes as soon as it has found
a single minimum cost repair sequence. This is confusing in two different ways: the successful
repair sequence found can vary from run to run; and the successful repair sequence might
not match the user’s intention.

We therefore introduce the idea of the complete set of minimum cost repair sequences:
that is, all equivalently good repair sequences. Although we will refine the concept of
“equivalently good” in Section 5.3, at this stage we consider all successful repair sequences
with minimum cost c to be equivalently good. In other words, as soon as we find the first
successful repair sequence, its cost c defines the minimum cost.

An algorithm to generate this set is then simple: when a repair sequence of cost c is
found to be successful, we discard all repair sequences with cost > c, and continue exploring
configurations in cost c (including, transitively, all neighbours that are also of cost c; those
with cost > c are immediately discarded). Each successful configuration is recorded and,
when all configurations in c have been explored, the set of successful configurations is returned.
One of these successful configurations is then non-deterministically chosen, applied to the
input, and parsing continued.

5.2 Merging compatible configurations
Relative to finding a single solution, finding the complete set of repair sequences can be
extremely expensive because there may be many remaining configurations in c, which may,
transitively, have many neighbours. Our solution to this performance problem is to merge
together compatible configurations on-the-fly, preserving their distinct repair sequences while
reducing the search space. Two configurations are compatible if:

1. their parsing stacks are identical,
2. they both have an identical amount of input remaining,
3. and their repair sequences are compatible.

Two repair sequences are compatible:

1. if they both end in the same number (n ≥ 0) of shifts,
2. and, if one repair sequence ends in a delete, the other repair sequence also ends in a

delete.

The first of these conditions is a direct consequence of the fact that a configuration is deemed
successful if it ends in Nshifts shift repairs. When we merge configurations, one part of
the merge is “dominant” (i.e. checked for Nshifts) and the other “subsumed”: we have to
maintain symmetry between the two to prevent the dominant part accidentally preventing
the subsumed part from being recorded as successful. In other words, if the dominant part
of the merge had fewer shifts at the end of its repair sequence than the subsumed part, then
the Nshifts check (line 10, Figure 6) would fail, even though reversing the dominant and
subsumed parts may have lead to success. It is therefore only safe to merge repair sequences
which end in the same number of shifts.

The second condition relates to the weak form of compatible merging inherited from [5,
p. 8]: delete repairs are never followed by an insert (see Figure 6) since [delete, insert x]
always leads to the same configuration as [insert x, delete]. Although we get much of the
same effect through compatible configuration merging, we keep it as a separate optimisation
because: it is such a frequent case; our use of the todo list means that we would not catch

ECOOP 2020

6:12 Don’t Panic! Better, Fewer, Syntax Errors for LR Parsers

every case; the duplicate repair sequences are uninteresting from a user perspective, so we
would have to filter them out later anyway; and each additional merge costs memory. We
thus have to make sure that merged repair sequences don’t accidentally suppress insert
repairs because one part of the repair sequence ends in a delete while the other does not.
The simplest way of solving this problem is thus to forbid merging repair sequences if one
sequence ends in a delete and the other does not.

Fortunately, implementing compatible configuration merging is simple. We first modify
the todo data-structure to be a list-of-ordered-hashsets5. This has near-identical append /
pop performance to a normal list, but filters out duplicates with near-identical performance
to an unordered hashset. We then make use of a simple property of hashsets: an object’s
hashing behaviour need only be a non-strict subset of its equality behaviour. Configuration
hashing is based solely on a configuration’s parsing stack and remaining input, giving us
a fast way of finding configurations that are compatible under conditions #1 (identical
parsing stacks) and #2 (identical input remaining). As well as checking those two conditions,
configuration equality also checks condition #3 (compatible repair sequences).

Conceptually, merging two configurations together is simple: each configuration needs
to store a set of repair sequences, each of which is updated as further repairs are found.
However, this is an extremely inefficient representation as the sets involved need to be copied
and extended as each new repair is found. Instead, we reuse the idea of graph-structured
stacks from GLR parsing [28, p. 4] which allows us to avoid copying whenever possible.
The basic idea is that configurations no longer reference a parent pointer tree of repairs
directly, but instead a parent pointer tree of repair merges. A repair merge is a pair (repair,
merged) where repair is a plain repair and merged is a (possibly null) set of repair merge
sequences. This structure has two advantages. First, the Nshifts check can be performed
solely using the first element of repair merge pairs. Second, we avoid allocating memory
for configurations which have not yet been subject to a merge. The small downside to this
scheme is that expanding configurations into repair sequences requires recursively expanding
both the normal parent pointer tree of the first element as well as the merged parent pointer
trees of the second element.

Compatible configuration merging is particularly effective in complex cases, even though
it can only merge configurations in the todo list (i.e. we cannot detect all possible compatible
merges). An example of compatible configuration merging can be seen in Figure 9.

5.3 Ranking repair sequences
In nearly all cases, members of the complete set of minimum cost repair sequences end with
Nshifts (the only exception being error locations near the end of an input where recovery
leads to an accept state). Thus while the repair sequences we find are all equivalently good
within the range of Nshifts, some, but not others, may perform poorly beyond that range.
This problem is exacerbated by the fact that Nshifts has to be a fairly small integer (we use 3,
the value suggested by Corchuelo et al.) since each additional token searched exponentially
increases the search space. Thus while all repair sequences found may be locally equivalent,
when considered in the context of the entire input, some may be better than others. While it
is, in general, impractically slow to determine which repair sequences are the global best, we
can quickly determine which are better under a wider definition of “local”.

5 An ordered hashset preserves insertion order, and thus allows list-like integer indexing as well as
hash-based lookups.

L. Diekmann and L. Tratt 6:13

Figure 9 An elided visualisation of a real run of CPCT+ with the input “2 3 +” and the grammar
from Figure 2. The left hand side of the tree shows the “normal” parser at work, which hits an error
as soon as it has shifted the token “2”: at this point, CPCT+ starts operating. As this shows, the
search encounters various dead ends, as well as successful routes. As shown in Figure 8, this input
has 6 minimum cost repair sequences, but the search only has 5 success configurations, because two
configurations were merged together.

We thus rank configurations which represent the complete set of minimum cost repair
sequences by how far they allow parsing to continue, up to a limit of Ntry tokens (which
we somewhat arbitrarily set at 250). Taking the furthest-parse point as our top rank, we
then discard all configurations which parsed less input than this. The reason why we rank
the configurations, and not the repair sequences, is that we only need to rank one of the
repair sequences from each merged configuration, a small but useful optimisation. We then
expand the top ranked configurations into repair sequences and remove shifts from the end
of those repair sequences. Since the earlier merging of compatible configurations is imprecise
(it misses configurations that have already been processed), there can be some remaining
duplicate repair sequences: we thus perform a final purge of duplicate repair sequences.
Figure 9 shows a visualisation of CPCT+ in action.

Particularly on real-world grammars, selecting the top-ranked repair sequences substan-
tially decreases cascading errors (see Figure 10 for an example). It also does so for very
little additional computational cost, as the complete set of minimum cost repair sequences
typically contains only a small number of items. However, it cannot entirely reduce the
cascading error problem. Since, from our perspective, each member of the top-ranked set is
equivalently good, we non-deterministically select one of its members to repair the input and
allow parsing to continue. This can mean that we select a repair sequence which performs
less well beyond Ntry tokens than other repair sequences in the top-ranked set.

5.4 Timeout
The final part of CPCT+ relates to the use of Ntotal in Corchuelo et al.. As with all members
of the Fischer et al. family, CPCT+ is not only unbounded in time [17, p. 14], but also
unbounded in memory. In an attempt to combat this, Corchuelo et al. limits repair sequences
to a maximum of 3 deletes and 4 inserts and a span of at most 10 tokens, attempting to stop

ECOOP 2020

6:14 Don’t Panic! Better, Fewer, Syntax Errors for LR Parsers

(a) class C {
T x = 2 +
T y = 3;

}

(b) Parsing Error at line 3 col 7. Repair
sequences found :

1: Insert ,

Figure 10 An example showing how the ranking of repair sequences can lessen the cascading
error problem. The Java example (a) leads to a parsing error on line 3 at “y”, with three minimum
cost repair sequences found: [insert ,], [insert ?], and [insert (]. These repair sequences are then
ranked by how far they allow parsing to continue successfully. [insert ,] leads to the rest of the
file being parsed without further error. [insert ?] causes a cascading error at “;” which must then
be resolved by completing the ternary expression started by “?” (e.g. changing line 3 to “T ? y
: this;”). Similarly, [insert (] causes a cascading error at “;” which must then be resolved by
inserting a “)”. Since [insert ,] is ranked more highly than the other repair sequences, the latter
are discarded, leading to the parsing output shown in (b). javac in contrast attempts to insert “;”
before “y” causing a cascading error on the next token.

the search from going too far. Unfortunately it is impossible to find good values for these
constants, as “too far” is entirely dependent on the grammar and erroneous input: Java’s
grammar, for example, is large with a commensurately large search space (requiring smaller
constants) while Lua’s grammar is small with a commensurately small search space (which
can cope with larger constants).

This problem can be easily seen on inputs with unbalanced brackets (e.g. expressions
such as “x = f(();”): each additional unmatched bracket exponentially increases the search
space. On a modern machine with a Java 7 grammar, CPCT+ takes about 0.3s to find the
complete set of minimum cost repair sequences for 3 unmatched brackets, 3s for 4 unmatched
brackets, and 6 unmatched brackets caused our 32GiB test machine to run out of RAM.

The only sensible alternative is a timeout: up to several seconds is safe in our experience.
We thus remove Ntotal from CPCT+ and rely entirely on a timeout which, in this paper, is
defined to be 0.5s.

6 Experiment

In order to understand the performance of CPCT+, we conducted a large experiment on
real-world Java code. In this section we outline our methodology (Section 6.1) and results
(Section 6.2). Our experiment is fully repeatable and downloadable from https://archive.
org/download/error_recovery_experiment/0.4/. The results from our particular run of
the experiment can also be downloaded from the same location.

6.1 Methodology
In order to evaluate error recovery implementations, we need a concrete implementation.
We created a new Yacc-compatible parsing system grmtools in Rust which we use for our
experiments. Including associated libraries for LR table generation and so on, grmtools is
around 13KLoC. Although intended as a production library, it has accidentally played a part
as a flexible test bed for experimenting with, and understanding, error recovery algorithms.
We added a simple front-end nimbleparse which produces the output seen in e.g. Figure 1.

There are two standard problems when evaluating error recovery algorithms: how to
determine if a good job has been done on an individual example; and how to obtain sufficient
examples to get a wide perspective on an algorithm’s performance. Unfortunately, solutions
to these problems are mutually exclusive, since the only way to tell if a good job has been

https://archive.org/download/error_recovery_experiment/0.4/
https://archive.org/download/error_recovery_experiment/0.4/

L. Diekmann and L. Tratt 6:15

done on a particular is to manually evaluate it, which means that it is only practical to use
a small set of input programs. Most papers we are aware of use at most 200 source files
(e.g. [5]), with one using a single source file with minor variants [15]. [4] was the first to use
a large-scale corpus of approximately 60,000 Java source files. Early in the development of
our methodology, we performed some rough experiments which suggested that statistics only
start to stabilise once a corpus exceeds 10,000 source files. We therefore prefer to use a much
larger corpus than most previous studies. We are fortunate to have access to the Blackbox
project [3], an opt-in data collection facility for the BlueJ editor, which records major editing
events (e.g. compiling a file) and sends them to a central repository. Crucially, one can see
the source code associated with each event. What makes Blackbox most appealing as a data
source is its scale and diversity: it has hundreds of thousands of users, and a huge collection
of source code.

We first obtained a Java 1.5 Yacc grammar and updated it to support Java 1.7.6 We then
randomly selected source files from Blackbox’s database (following the lead of [27], we selected
data from Blackbox’s beginning until the end of 2017-12-31). We then ran such source files
through our Java 1.7 lexer. We immediately rejected files which didn’t lex, to ensure we were
dealing solely with parsing errors7 (see Section 7.4). We then parsed candidate files with our
Java grammar and rejected any which did parse successfully, since there is little point running
an error recovery algorithm on correct input. The final corpus consists of 200,000 source files
(collectively a total of 401MiB). Since Blackbox, quite reasonably, requires each person with
access to the source files to register with them, we cannot distribute the source files directly;
instead, we distribute the (inherently anonymised) identifiers necessary to extract the source
files for those who register with Blackbox.

The size of our corpus means that we cannot manually evaluate repairs for quality.
Instead, we report several other metrics, of which the number of error locations is perhaps
the closest proxy for perceived quality. However, this number has to be treated with caution
for two reasons. First, it is affected by differences in the failure rate: if a particular error
recovery algorithm cannot repair an entire file then it may not have had time to find all the
“true” error locations. Second, the number of error locations only allows relative comparisons.
Although we know that the corpus contains at least 200,000 manually created errors (i.e. at
least one per file), we cannot know if, or how many, files contain more than one error. Since
we cannot know the true number of error locations, we are unable to evaluate algorithms in
an absolute sense.

In order to test hypothesis H1 we ran each error recovery algorithm against the entire
Java corpus, collecting for each file: the time spent in recovery (in seconds); whether error
recovery on the file succeeded or failed (where failure is due to either the timeout being
exceeded or no repair sequences being found for an error location); the number of error
locations; the cost of repair sequences at each error location; and the proportion of tokens
skipped by error recovery (i.e. how many delete repairs were applied). We measure the time
spent in error recovery with a monotonic wall-clock timer, covering the time from when the
main parser first invokes error recovery until an updated parsing stack and parsing index are
returned along with minimum cost repair sequences. The timer is suspended when normal
parsing restarts and resumed if error recovery is needed again (i.e. the timeout applies to the
file as a whole).

6 Unfortunately, changes to the method calling syntax in Java 1.8 mean that it is an awkward, though
not impossible, fit for an LR(1) formalism such as Yacc, requiring substantial changes to the current
Java Yacc grammar. We consider the work involved beyond that useful for this paper.

7 Happily, this also excludes files which can’t possibly be Java source code. Some odd things are pasted
into text editors.

ECOOP 2020

6:16 Don’t Panic! Better, Fewer, Syntax Errors for LR Parsers

We evaluate three main error recovery algorithms: Corchuelo et al., CPCT+, and panic
mode. Our implementation of Corchuelo et al. is to some extent a “best effort” since we
have had to fill in several implementation details ourselves. As per the description, we: use
the same limits on repair sequences (repair sequences can contain at most 3 delete or 4 insert
repairs, and cannot span more than 10 tokens in the input); complete as soon as a single
successful repair sequence is found; and, when no available repair sequence is found, fall
back on panic mode. In addition, we impose the same 0.5s timeout on this algorithm, as
it is otherwise unbounded in length, and sometimes exhausts available RAM. Panic mode
implements the algorithm from Section 3. We do not report the average cost size for panic
mode or Corchuelo et al. (which falls back on panic mode) since they do not (always) report
repair sequences (see Section 3). Although panic mode can implicitly delete input from
before the error location, we only include the input it explicitly skips in the proportion of
tokens skipped.

In order to test hypothesis H2, we created a variant of CPCT+ called CPCT+
rev. Instead

of selecting from the minimum cost repair sequences which allow parsing to continue furthest,
CPCT+

rev selects from those which allow parsing to continue the least far. This models the
worst case for other members of the Fischer et al. family which non-deterministically select
a single minimum cost repair sequence. In other words, it allows us to understand how
many more errors could be reported to users of other members of the Fischer et al. family
compared to CPCT+.

Configuration merging (see Section 5.2) is the most complex part of CPCT+. To
understand whether this complexity leads to better performance, we created another variant
of CPCT+ called CPCT+

DM which disables configuration merging.
We bootstrap [10] our results 10,000 times to produce 99% confidence intervals. However,

as Figure 12 shows, our distribution is heavy-tailed, so we cannot bootstrap naively. Instead,
we ran each error recovery algorithm 30 times on each source file; when bootstrapping we
randomly sample one of the 30 values collected (i.e. our bootstrapped data contains an entry
for every file in the experiment; that entry is one of the 30 values collected for that file).

All experiments were run on an otherwise unloaded Intel Xeon E3-1240 v6 with 32GiB
RAM running Debian 10. We disabled hyperthreading and turbo boost and ran experiments
serially. Our experiments took approximately 15 days to complete. We used Rust 1.43.1 to
compile grmtools (the Cargo.lock file necessary to reproduce the build is included in our
experimental repository).

6.2 Results
Figure 11 shows a summary of the results of our experiment. Comparing the different
algorithms requires care as a higher failure rate tends to lower the cost size, tokens skipped,
and number of error locations simply because files are not completely parsed. For example,
although Corchuelo et al. reports fewer error locations than CPCT+, that is probably due
to Corchuelo et al.’s higher failure rate; however, as we shall see in Section 6.3, panic mode’s
much higher number of error locations relative to CPCT+ might better be explained by
other factors.

With that caution in mind, the overall conclusions are fairly clear. CPCT+ is able to
repair nearly all input files within the 0.5s timeout. While panic mode is able to repair every
file within the 0.5s timeout, it reports well over twice as many error locations as CPCT+–
in other words, panic mode substantially worsens the cascading error problem. As well as
producing more detailed and accurate output, CPCT+ has a lower failure rate, median, and
mean time than Corchuelo et al.. The fact that the median recovery time for CPCT+ is two

L. Diekmann and L. Tratt 6:17

Mean Median Cost Failure Tokens Error
time (s) time (s) size (#) rate (%) skipped (%) locations (#)

Corchuelo et al. 0.042367 0.000335 - 5.54 0.61 374,731
±0.0000057 ±0.0000007 ±0.004 ±<0.001 ±26

CPCT+ 0.013643 0.000251 1.67 1.63 0.31 435,812
±0.0000822 ±0.0000003 ±0.001 ±0.017 ±0.001 ±473

Panic mode 0.000002 0.000001 - 0.00 3.72 981,628
±<0.0000001 ±<0.0000001 ±<0.001 ±<0.001 ±0

CPCT+
DM 0.026127 0.000258 1.63 3.63 0.28 421,897

±0.0001077 ±0.0000003 ±0.001 ±0.025 ±0.001 ±358

CPCT+
rev 0.018374 0.000314 1.77 2.34 0.41 574,979

±0.0001109 ±0.0000006 ±0.001 ±0.023 ±0.002 ±1104

Figure 11 Summary statistics from running various error recovery algorithms over a corpus of
200,000 Java files (for all measures, lower is better). Mean and median times report how much
time was spent in error recovery per file: both figures include files which exceeded the recovery
timeout, so they represent the “real” times that users would experience, whether or not all errors
are repaired or not. Cost size reports the mean cost (i.e. the number of insert and delete repairs)
of each error location repaired (this number is meaningless for Corchuelo et al.– which falls back
on panic mode – and panic mode, since panic mode does not report repair sequences). The failure
rate is the percentage of files which could not be fully repaired within the timeout. Tokens skipped
is the proportion of input skipped (because of a delete repair). CPCT+

rev models the worst case of
non-deterministic Fischer et al. algorithms by reversing the order of repair ranking (see Section 5.3).
CPCT+

DM shows the performance of CPCT+ if configuration merging is disabled (see Section 5.2).

orders of magnitude lower than its mean recovery time suggests that only a small number
of outliers cause error recovery to take long enough to be perceptible to humans; this is
confirmed by the histogram in Figure 12. These results strongly validate Hypothesis H1.

Corchuelo et al.’s poor performance may be surprising, as it produces at most one (possibly
non-minimum cost) repair sequence whereas CPCT+ produces the complete set of minimum
cost repair sequences – in other words, CPCT+ is doing more work, more accurately, and
in less time than Corchuelo et al.. There are three main reasons for Corchuelo et al.’s poor
performance. First, the use of CR Shift 1 causes the search to miss intermediate nodes
that would lead to success being detected earlier. Second, the heuristics used to stop the
search from going too far (e.g. limiting a repair sequence’s number of inserts and deletes) are
not well-suited to a large grammar such as Java’s: the main part of the search often exceeds
the timeout, leaving no time for the fallback mechanism of panic mode to be used. Finally,
Corchuelo et al. lacks configuration merging, causing it to perform needless duplicate work.

CPCT+ ranks the complete set of minimum cost repair sequences by how far parsing
can continue and chooses from those which allow parsing to continue furthest. CPCT+

rev, in
contrast, selects from those which allow parsing to continue the least far. CPCT+

rev shows
that the ranking technique used in CPCT+ substantially reduces the potential for cascading
errors: CPCT+

rev leads to 31.93%±0.289% more error locations being reported to users relative
to CPCT+. We visualise this in the histogram of Figure 13 which shows all files with 1–50
error locations (a complete histogram can be found in Figure 18 in the Appendix). Note
that files where error recovery did not complete and no error locations were found (which
happens occasionally with CPCT+

rev) are excluded from this histogram (since we know that
every file in the corpus has at least one error), but files where error recovery did not complete
but some error locations were found are included (since this gives us, at least, a lower bound
on the number of error locations). As Figure 13 shows, the distribution of error locations in

ECOOP 2020

6:18 Don’t Panic! Better, Fewer, Syntax Errors for LR Parsers

0.0 0.1 0.2 0.3 0.4 0.5

Recovery time (s)

200000

20000

2000

200

20

2

0

N
um

b
er

of
fi

le
s

(l
og

1
0
)

Figure 12 A histogram of the time spent in error recovery by CPCT+ for files in our corpus. The
x axis shows time (up to the timeout of 0.5s) and the y axis is a logarithmic scale for the number of
files. Error bars represent 99% confidence intervals. As this clearly shows, the vast majority of files
fit in the histogram’s first bin; there is then a gradual decrease until around 0.15s, with a broadly flat
distribution from then until the pronounced peak at the timeout of 0.5s. Figure 17 in the Appendix
shows how extending the timeout increases the number of files which can be successfully recovered.

CPCT+ and CPCT+
rev is similar, with the latter simply shifted slightly to the right. In other

words, CPCT+
rev makes error recovery slightly worse in a number of files (rather than making

error recovery in a small number of files a lot worse). This strongly validates Hypothesis H2.
Interestingly, and despite its higher failure rate, CPCT+

rev has a noticeably higher mean
cost of repair sequences relative to CPCT+. In other words, CPCT+

rev not only causes
more error locations to be reported, but those additional error locations have longer repair
sequences. This suggests that there is a double whammy from cascading errors: not only
are more error locations reported, but the poorer quality repair sequences chosen make
subsequent error locations disproportionately harder for the error recovery algorithm to
recover from.

CPCT+
DM shows that configuration merging has a significant effect on the failure rate, in

our opinion justifying both its conceptual complexity and the less than 100LoC Rust code
taken to implement it. The slowdown in the mean and median time for CPCT+

DM suggests
that configuration merging is particularly effective on files with complex or numerous errors.

6.3 The impact of skipping input
The number of error locations reported by panic mode is well over twice that of CPCT+;
even given CPCT+’s higher failure rate relative to panic mode, this seemed hard to explain.
We thus made an additional hypothesis:

H3 The greater the proportion of tokens that are skipped, the greater the number of error
locations.

The intuition underlying this hypothesis is that, in general, the user’s input is very close
to being correct and that the more input that error recovery skips, the less likely it is to get
back to a successful parse. We added the ability to record the proportion of tokens skipped

L. Diekmann and L. Tratt 6:19

0 7 14 21 29 36 43 50

Recovery error locations

200000

20000

2000

200

20

2

0

N
um

b
er

of
fi

le
s

(l
og

1
0
)

CPCT+

CPCT+
rev

Figure 13 A histogram of the number of files with 1–50 error locations for CPCT+ and CPCT+
rev.

Note that we exclude: any files for which an error recovery algorithms did not find a single error
location (either because the timeout was exceeded or no repair sequences could be found); and a
handful of outliers which distort the full histogram found in Figure 18 in the Appendix. The x axis
shows the number of error locations in a file and the y axis is a logarithmic scale for the number of
files. Error bars represent 99% confidence intervals. As this histogram shows, the entire distribution
is skewed slightly rightwards by CPCT+

rev, showing that CPCT+
rev makes error recovery slightly worse

in a number of files (rather than making error recovery in a few files a lot worse).

as the result of delete repairs during error recovery. The results in Figure 11 show a general
correlation between the proportion of tokens skipped and the number of error locations
(e.g. CPCT+ skips very little of the user’s input; CPCT+

rev skips a little more; and panic
mode skips an order of magnitude more). However, Corchuelo et al. does not obviously
follow this pattern: relative to the other algorithms, its number of error locations does not
correlate with the proportion of input skipped. This is mostly explained by its high mean
time and high failure rate: Corchuelo et al. tends to fail on files with large numbers of error
locations, underreporting the “true” number of error locations simply because it cannot make
it all of the way through such files before the timeout. However, this outlier means that we
consider Hypothesis H3 to be only weakly validated.

7 Using error recovery in practice

Although several members of the Fischer et al. family were implemented in parsing tools of
the day, to the best of our knowledge none of those implementations have survived. Equally,
we are not aware of any member of the Fischer et al. family which explains how error recovery
should be used or, indeed, if it has any implications for users at all.

We are therefore forced to treat the following as an open question: can one sensibly
use error recovery in the Fischer et al. family in practice? In particular, given that the
most common way to use LR grammars is to execute semantic actions as each production is
reduced, what should semantic actions do when parts of the input have been altered by error
recovery? This latter question is important for real-world systems (e.g. compilers) which can
still perform useful computations (e.g. running a type checker) in the face of syntax errors.

ECOOP 2020

6:20 Don’t Panic! Better, Fewer, Syntax Errors for LR Parsers

1 % start Expr
2 %%
3 Expr -> u64:
4 Factor "+" Expr { $1 + $3 }
5 | Factor { $1 }
6 ;
7
8 Factor -> u64:
9 Term "*" Factor { $1 * $3 }

10 | Term { $1 }
11 ;
12
13 Term -> u64:
14 "(" Expr ")" { $2 }
15 | "INT"
16 {
17 let n = $lexer . span_str ($1. unwrap (). span ());
18 match s. parse ::<u64 >() {
19 Ok(val) => val as u64 ,
20 Err(_) => panic !("{} cannot be represented as a u64", s)
21 }
22 }
23 ;

Figure 14 A naive version of the calculator grammar with semantic actions on each production.
The traditional Yacc %union declaration is unwieldy in Rust. Instead, grmtools allows each rule to
have a Rust return type associated with it (between “->” and “:”): the actions of each production
in that rule must return values of that type. $n variables reference the nth symbol in a production
(where $1 references the first symbol). If that symbol is a reference to a rule, a value of that rule’s
Rust type will be stored in that variable. If that symbol is a token then the user’s input can be
obtained by $lexer.span_str($1.unwrap().span()) (line 17). Note that while this grammar’s
semantic actions work as expected for inputs such as “2 + 3 * 4”, they will panic if too large a
number is passed (line 20), or if an integer is inserted by error recovery. Figure 15 shows how to
avoid both problems.

While different languages are likely to lend themselves to different solutions, in this
section we show that grmtools allows sensible integration of error recovery in a Rust context.
Readers who prefer to avoid Rust-specific details may wish to move immediately to Section 8.

7.1 A basic solution

Figure 14 shows a naive grmtools version of the grammar from Figure 2 that can evaluate
numeric results as parsing occurs (i.e. given the input 2 + 3 ∗ 4 it returns 14). This grammar
should mostly be familiar to Yacc users: each production has a semantic action (i.e. Rust
code that is executed when the production is reduced); and symbols in the production are
available to the semantic action as pseudo-variables named $n (a production of n symbols
has n pseudo-variables with the first symbol connected to $1 and so on). A minor difference
from traditional Yacc is that grmtools allows rules to specify a different return type, an
approach shared with other modern parsers such as ANTLR [22].

A more significant difference relates to the $n pseudo-variables: if they reference a rule
R, then their type is R’s return type; if they reference a token T , then their type is (slightly
simplified) Result<Lexeme, Lexeme>. We will explain the reasons for this shortly, but at
this stage it suffices to note that, unless a token was inserted by error recovery, we can
extract tokens by calling $1.unwrap(), and obtain the actual string the user passed by using
the globally available $lexer.span_str function.

L. Diekmann and L. Tratt 6:21

1 % start Expr
2 % avoid_insert "INT"
3 %%
4 Expr -> Result <u64 , Box <dyn Error >>:
5 Factor "+" Expr { Ok($1? + $3 ?) }
6 | Factor { $1 }
7 ;
8
9 Factor -> Result <u64 , Box <dyn Error >>:

10 Term "*" Factor { Ok($1? * $3 ?) }
11 | Term { $1 }
12 ;
13
14 Term -> Result <u64 , Box <dyn Error >>:
15 ’(’ Expr ’)’ { $2 }
16 | ’INT ’
17 {
18 let t = $1. map_err (|_| "< evaluation aborted >")?;
19 let n = $lexer . span_str (t.span ());
20 match s. parse ::<u64 >() {
21 Ok(val) => Ok(val as u64),
22 Err(_) => Err(Box :: from(format !("{} cannot be represented as a u64", s)))
23 }
24 }
25 ;

Figure 15 A more sophisticated version of the grammar from Figure 14. Each rule now returns a
Result type. If an integer is inserted by error recovery, the Term rule stops evaluation by percolating
the Err value upwards using the “?” operator (which, if the Result-returning expression it is
attached to evaluates to an Err, immediately returns that error; otherwise it unwraps the Ok); all
other rules percolate such errors upwards similiarly. As a convenience for the user, the contents
of the “Err” value are changed from a lexeme to a string explaining why the calculator has not
produced a value (line 18). Note that other token types are unaffected: if error recovery inserts a
bracket, for example, evaluation of the expression continues.

7.2 Can semantic action execution continue in the face of error
recovery?

In Yacc, semantic actions can assume that each symbol in the production has “normal” data
attached to it (either a rule’s value or the string matching a token; Yacc’s error recovery
is implicitly expected to maintain this guarantee) whereas, in our setting, inserted tokens
have a type but no value. Given the input “(2 + 3”, the inserted close bracket is not hugely
important, and our calculator returns the value 5. However, given the input “2 +”, CPCT+

finds a single repair sequence [Insert Int]: what should a calculator do with an inserted
integer? Our naive calculator simply panics (which is roughly equivalent to “raises an
exception and then exits”) in such a situation (the unwrap in Figure 14 on line 17). However,
there are two alternatives to this rather extreme outcome: the semantic action can assume a
default value or stop further execution of semantic values while allowing parsing to continue.
Determining which is the right action in the face of inserted tokens is inherently situation
specific. We therefore need a pragmatic way for users to control what happens in such cases.

The approach we take is to allow users to easily differentiate normal vs. inserted tokens in
a semantic action. Pseudo-variables that reference tokens have (slightly simplified) the Rust
type Result<Lexeme, Lexeme>. Rust’s Result type8 is a sum type which represents success
(Ok(. . .)) or error (Err(. . .)) conditions. We use the Ok case to represent “normal” tokens
created from user input and the Err case to represent tokens inserted by error recovery. Since
the Result type is widely used in Rust code, users can avail themselves of standard idioms.

8 Equivalents are found in several other languages: Haskell’s Either; O’Caml’s result; or Scala’s Either.

ECOOP 2020

6:22 Don’t Panic! Better, Fewer, Syntax Errors for LR Parsers

(a) . " ERRORTOKEN "

(b) ErrorRule -> ():
" ERRORTOKEN " { }
;

(c) Parsing error at line 1 column 3. Repair sequences found :
1: Insert +, Delete @
2: Insert *, Delete @
3: Delete @, Delete 3

Result : 9

Figure 16 A simple way of turning lexing errors into parsing errors in grmtools. First, we add a
ERRORTOKEN token type, which matches otherwise invalid input, to the end of the Lex file (a). Second,
we add a rule ErrorRule to the Yacc grammar referencing ERRORTOKEN (b). Note that ErrorRule
must not be referenced by any other rule in the Yacc grammar. With those two steps complete,
input with lexing errors such as “2 @ 3 + 4” invokes normal error recovery (c).

For example, we can then alter our calculator grammar to continue parsing, but stop ex-
ecuting meaningful semantic action code, when an inserted integer is encountered. We change
grammar rules from returning type T to Result<T, Box<dyn Error>> (where Box<dyn
Error> is roughly equivalent to “can return any type of error”). It is then, deliberately, fairly
easy to use with the Result<Lexeme, Lexeme> type: for tokens whose value we absolutely
require, we use Rust’s “?” operator (which passes Ok values through unchanged but returns
Err values to the function caller) to percolate our unwillingness to continue evaluation
upwards. While Box<dyn Error> is slightly verbose, it is a widely understood Rust idiom.
Figure 15 shows that changing the grammar to make use of this idiom requires relatively
little extra code.

7.3 Avoiding insert repairs when possible
Although we now have a reasonable mechanism for dealing with inserted tokens, there are
cases where we can bypass them entirely. For example, consider the input “2 + + 3”, which
has two repair sequences [Delete +], [Insert Int]: evaluation of the expression can continue
with the former repair sequence, but not the latter. However, as presented thus far, these
repair sequences are ranked equally and one non-deterministically selected.

We therefore added an optional declaration %avoid_insert to grmtools which allows
users to specify those tokens which, if inserted by error recovery, are likely to prevent semantic
actions from continuing execution. In practise, this is synonymous with those tokens whose
values (and not just their types) are important. In the calculator grammar only the INT
token satisfies this criteria, so we add %avoid_insert "INT" to the grammar. We then make
a simple change to the repair sequence ranking of Section 5.3 such that the final list of repair
sequences is sorted with inserts of such tokens at the bottom of the list. In our case, this
means that we always select Delete + as the repair sequence to apply to the input “2 + + 3”
(i.e. the Insert Int repair sequence is always presented as the second option).

7.4 Turning lexing errors into parsing errors
In most traditional parsing systems, lexing errors are distinct from parsing errors: only files
which can be fully lexed can be parsed. This is confusing for users, who are often unaware of
the distinction between these two phases. To avoid this, we lightly adapt the idea of error
tokens from incremental parsing [31, p. 99]. In essence, any input which cannot be lexed is
put into a token whose type is not referenced in the normal grammar. This guarantees that
all possible input lexes without error and, when the parser encounters an error token, normal
error recovery commences9.

9 Note that this is an opt-in feature: it was not enabled for the experiments in Section 6.

L. Diekmann and L. Tratt 6:23

A basic, but effective, version of this requires no special support from grmtools (see
Figure 16). First, we add a new toke type to the lexer that matches each otherwise invalid
input character. Second, since grmtools requires that all tokens defined in the lexer are
referenced in the grammar, we add a dummy rule to the grammar that references the token
(making sure not to reference this rule elsewhere in the grammar). These two steps are
sufficient to ensure that users always see the same style of error messages, and the same style
of error recovery, no matter whether they make a lexing or a parsing error.

8 Threats to validity

Although it might not be obvious at first, CPCT+ is non-deterministic, which can lead to
different results from one run to the next. The root cause of this problem is that multiple
repair sequences may have identical effects up to Ntry tokens, but cause different effects after
that value. By running each file through each error recovery multiple times and reporting
confidence intervals, we are able to give a good – though inevitably imperfect – sense of the
likely variance induced by this non-determinism.

Our implementation of Corchuelo et al. is a “best effort”. The description in the paper is
incomplete in places and, to the best of our knowledge, the accompanying source code is no
longer available. We thus may not have faithfully implemented the intended algorithm.

Blackbox contains an astonishingly large amount of source code but has two inherent
limitations. First, it only contains Java source code. This means that our main experiment
is limited to one grammar: it is possible that our techniques do not generalise beyond the
Java grammar (though, as Appendix A suggests, our techniques do appear to work well on
other grammars). Although [4, p. 109] suggests that different grammars make relatively
little difference to the performance of such error recovery algorithms, we are not aware of an
equivalent repository for other language’s source code. One solution is to mutate correct
source files (e.g. randomly deleting tokens), thus obtaining incorrect inputs which we can
later test: however, it is difficult to uncover and then emulate the numerous, sometimes
surprising, ways that humans make syntax errors, particularly as some are language specific
(though there is some early work in this area [7]). Second, Blackbox’s data comes largely
from students, who are more likely than average to be somewhat novice programmers. It is
clear that novice programmers make some different syntax errors – and, probably, make some
syntax errors more often – relative to advanced programmers. For example, many of the files
with the greatest number of syntax errors are caused by erroneous fragments repeated with
variants (i.e. it is likely that the programmer wrote a line of code, copy and pasted it, edited
it, and repeated that multiple times before deciding to test for syntactic validity). It is thus
possible that a corpus consisting solely of programs from advanced programmers would lead
to different results. We consider this a minor worry, partly because a good error recovery
algorithm should aim to perform well with inputs from users of different experience levels.

Our corpus was parsed using a Java 1.7 grammar, but some members of the corpus were
almost certainly written using Java 1.8 or later features. Many – though not all – post-1.7
Java features require a new keyword: such candidate source files would thus have failed our
initial lexing test and not been included in our corpus. However, some Java 1.8 files will
have made it through our checks. Arguably these are still a valid test of our error recovery
algorithms. It is even likely that they may be a little more challenging on average, since they
are likely to be further away from being valid syntax than files intended for Java 1.7.

ECOOP 2020

6:24 Don’t Panic! Better, Fewer, Syntax Errors for LR Parsers

9 Related work

Error recovery techniques are so numerous that there is no definitive reference or overview of
them. However, [8] contains an overall historical analysis and [4] an excellent overview of
much of the Fischer et al. family. Both must be supplemented with more recent works.

The biggest limitation of error recovery algorithms in the Fischer et al. family (including
CPCT+) is that they find repairs at the point that an error is discovered, which may be
later in the file than the cause of the error. Thus even when they successfully recover from
an error, the repair sequence reported may be very different from the fix the user considers
appropriate (note that this is distinct from the cascading error problem, which our ranking of
repair sequences in Section 5.3 partly addresses). A common, frustrating, example of this is a
missing “}” character in C/Java-like languages. Some approaches are able to backtrack from
the source of the error in order to try and find more appropriate repairs. However, there are
two challenges to this: first, the cost of maintaining the necessary state to backtrack slows
down normal parsing (e.g. [6] only stores the relevant state at each line encountered to reduce
this cost), whereas we add no overhead at all to normal parsing; second, the search-space is
so hugely increased that it can be harder to find any repairs at all [8].

One approach to global error recovery is to use machine learning to train a system on
syntactically correct programs [27]: when a syntax error is encountered, the resulting model
is used to suggest appropriate global fixes. Although [27] also use data from Blackbox, their
experimental methodology is both stricter – aiming to find exactly the same repair as the
human user applied – and looser – they only consider errors which can be fixed by a single
token, discarding 42% of the data [27, p. 8]) whereas we attempt to fix errors which span
multiple tokens. It is thus difficult to directly compare our results to theirs. However, by the
high bar they have set themselves, they are able to repair 52% of single-token errors.

As CPCT+
rev emphasises, choosing an inappropriate repair sequence during error recovery

leads to cascading errors. The noncorrecting error recovery approach proposed by [26]
explicitly addresses this weakness, eschewing repairs entirely. When a syntax error is
discovered, noncorrecting error recovery attempts to discover all further syntax errors by
checking whether the remaining input (after the point an error is detected) is a valid suffix
in the language. This is achieved by creating a recogniser that can identify all valid suffixes
in the language. Any errors identified in the suffix parse are guaranteed to be genuine syntax
errors because they are uninfluenced by errors in the (discarded) prefix (though this does
mean that some genuine syntax errors are missed that would not have been valid suffixes at
that point in the user’s input had the original syntax error not been present). There seem to
be two main reasons why noncorrecting error recovery has not been adopted. First, building
an appropriate recogniser is surprisingly tricky and we are not currently aware of one that
can handle the full class of LR grammars (though the full class of LL grammars has been
tackled [30]), though we doubt that this problem is insoluble. Second, as soon as a syntax
error is encountered, noncorrecting error recovery is unable to execute semantic actions, since
it lacks the execution context they need.

Although one of our paper’s aims is to find the complete set of minimum cost repair
sequences, it is unclear how best to present them to users, leading to questions such as: should
they be simplified? should a subset be presented? and so on. Although rare, there are some
surprising edge cases. For example, the (incorrect) Java 1.7 expression “x = f(""a""b);”
leads to 23,067 minimum cost repair sequences being found, due to the large number of Java
keywords that are valid in several parts of this expression leading to a combinatorial explosion:
even the most diligent user is unlikely to find such a volume of information valuable. In

L. Diekmann and L. Tratt 6:25

a different vein, the success condition of “reached an accept” state is encountered rarely
enough that we sometimes forgot that it could happen and were confused by an apparently
unexplained difference in the repair sequences reported for the same syntax chunk when it
was moved from the end to the middle of a file. There is a body of work which has tried
to understand how best to structure compiler error messages (normally in the context of
those learning to program). However, the results are hard to interpret: some studies find
that more complex error messages are not useful [20], while others suggest they are [24]. It
is unclear to us what the right approach might be, or how it could be applied in our context.

The approach of [17] is similar to Corchuelo et al., although the former cannot incorporate
shift repairs. It tries harder than CPCT+ to prune out pointless search configurations [17,
p. 12], such as cycles in the parsing stack, although this leads to some minimum cost repairs
being skipped [2]. A number of interlocking, sophisticated pruning mechanisms which build
on this are described in [4]. These are significantly more complex than our merging of
compatible configurations: since this gives us acceptable performance in practise, we have
not investigated other pruning mechanisms.

The most radical member of the Fischer et al. family is that of [15]10. This generates
repair sequences in the vein of Corchuelo et al. using the A* algorithm and a precomputed
distance table. [15] works exclusively on the stategraph, assuming that it is unambiguous.
However, Yacc systems allow ambiguous stategraphs and provide a means for resolving those
ambiguities when creating the statetable. Many real-world grammars (e.g. Lua, PHP) make
use of ambiguity resolution. In an earlier online draft, we created MF , a statetable-based
algorithm which extends CPCT+ with ideas from [15] at the cost of significant additional
complexity. With the benefit of hindsight, we do not consider MF ’s relatively small benefits
(e.g. reducing the failure rate by approximately an additional 0.5%) to be worth that additional
complexity.

CPCT+ takes only the grammar and token types into account. However, it is possible
to use additional information, such as nesting (e.g. taking into account curly brackets) and
indentation when recovering from errors. This has two aims: reducing the size of the search
space (i.e. speeding up error recovery); and making it more likely that the repairs reported
matched the user’s intentions. The most sophisticated approach in this vein we are aware
of is that of [6]. At its core, this approach uses GLR parsing: after a grammar is suitably
annotated by the user, it is then transformed into a “permissive” grammar which can parse
likely erroneous inputs; strings which match the permissive parts of the grammar can then
be transformed into a non-permissive counterpart. In all practical cases, the transformed
grammar will be ambiguous, hence the need for generalised parsing. Our use of parent-pointer
trees in configuration merging gives that part of our algorithm a similar feel to GLR parsing
(even though we do not generate ambiguous strings). However, there are major differences:
LR parsers are much simpler than GLR parsers; and the Fischer et al. family of algorithms
do not require manually annotating, or increasing the size of, the grammar.

A different approach to error recovery is that taken by [23]: rather than try and recover
from errors directly, it reports in natural language how the user’s input caused the parser
to reach an error state (e.g. “I read an open bracket followed by an expression, so I was
expecting a close bracket here”), and possible routes out of the error (e.g. “A function or
variable declaration is valid here”). This involves significant manual work, as every parser

10 In an earlier online draft of this paper we stated that this algorithm has a fundamental flaw. We now
believe this was due to us incorrectly assuming that the “delete” optimisation of Corchuelo et al. applied
to [15]. We apologise to the authors for this mistake.

ECOOP 2020

6:26 Don’t Panic! Better, Fewer, Syntax Errors for LR Parsers

state (1148 in the Java grammar we use) in which an error can occur needs to be manually
marked up, though the approach has various techniques to lessen the problem of maintaining
messages as a grammar evolves.

Many compilers and editors have hand-written parsers with hand-written error recovery.
Though generally ad-hoc in their approach, it is possible, with sufficient effort, to make them
perform well. However, this comes at a cost. For example, the hand-written error recovery
routines in the Eclipse IDE are approximately 5KLoC and are solely for use with Java code:
CPCT+ is approximately 500LoC and can be applied to any LR grammar.

Although error recovery approaches have, historically, been mostly LR based, there are
several non-LR approaches. A full overview is impractical, though a few pointers are useful.
When LL parsers encounter an error, they generally skip input until a token in the follow set
is encountered (an early example is [29]). Although this outperforms the simple panic mode
of Section 3, it will, in general, clearly skip more input than CPCT+, which is undesirable.
LL parsers do, however, make it somewhat easier to express grammar-specific error recovery
rules. The most advanced LL approach that we are aware of is IntelliJ’s Grammar-Kit, which
allows users to annotate their grammars for error recovery. Perhaps the most interesting
annotation is that certain rules can be considered as fully matched even if only a prefix is
matched (e.g. a partially completed function is parsed as if it was complete). It might be
possible to add similar ideas to a successor of CPCT+, though this is more awkward to
express in an LR approach. Error recovery for PEG grammars is much more challenging,
because the non-LL parts of the grammar mean that there is not always a clearly defined point
at which an error is determined to have occurred. PEG error recovery has thus traditionally
required extensive manual annotations in order to achieve good quality recovery. [18] tackles
this problem by automatically adding many (though not necessarily all) of the annotations
needed for good PEG error recovery. However, deciding when to add, and when not to add,
annotations is a difficult task and the two algorithms presented have different trade-offs: the
Standard algorithm adds more annotations, leading to better quality error recovery, but can
change the input language accepted; the Unique algorithm adds fewer annotations, leading
to poorer quality error recovery, but does not affect the language accepted. The quality
of error recovery of the Unique algorithm, in particular, is heavily dependent on the input
grammar: it works well on some (e.g. Pascal) but less well on others (e.g. Java). In cases
where it performs less well, it can lead to parsers which skip large portions (sometimes the
remainder) of the input.

While the field of programming languages has largely forgotten the approach of [1], there
are a number of successor works (e.g. [25]). These improve the time complexity, though none
that we are aware of address the issue of how to present to the user what has been done.

We are not aware of any error recovery algorithms that are formally verified. Indeed, as
shown in this paper, some have serious flaws. We are only aware of two works which have
begun to consider what correctness for such algorithms might mean: [32] provides a brief
philosophical justification of the need and [12] provides an outline of an approach. Until such
time as someone verifies a full error recovery algorithm, it is difficult to estimate the effort
involved, or what issues may be uncovered.

10 Conclusions

In this paper we have shown that error recovery algorithms in the Fischer et al. family can
run fast enough to be usable in the real world. Extending such algorithms to produce the
complete set of minimum cost repair sequences allows parsers to provide better feedback to
users, as well as significantly reducing the cascading error problem. The CPCT+ algorithm is
simple to implement (less than 500LoC in our Rust system) and still has good performance.

L. Diekmann and L. Tratt 6:27

Looking to the future, we, perhaps immodestly, suggest that CPCT+ might be “good
enough” to serve as a common representative of the Fischer et al. family. However, we
do not think that it is the perfect solution. We suspect that, in the future, multi-phase
solutions will be developed. For example, one may use noncorrecting error recovery (e.g. [26])
to identify syntax errors, and then use a combination of machine-learning (e.g. [27]) and
CPCT+ to discover those repair sequences that do not lead to additional error locations
being encountered.

References
1 Alfred Aho and Thomas G. Peterson. A minimum distance error-correcting parser for context-

free languages. J. Comput., 1:305–312, December 1972.
2 Eberhard Bertsch and Mark-Jan Nederhof. On failure of the pruning technique in “error repair

in shift-reduce parsers”. TOPLAS, 21(1):1–10, January 1999.
3 Neil C. C. Brown, Michael Kölling, Davin McCall, and Ian Utting. Blackbox: A large scale

repository of novice programmers activity. In SIGCSE, March 2014.
4 Carl Cerecke. Locally least-cost error repair in LR parsers. PhD thesis, University of Canterbury,

June 2003.
5 Rafael Corchuelo, José Antonio Pérez, Antonio Ruiz-Cortés, and Miguel Toro. Repairing

syntax errors in LR parsers. TOPLAS, 24:698–710, November 2002.
6 Maartje de Jonge, Lennart C. L. Kats, Eelco Visser, and Emma Söderberg. Natural and flexible

error recovery for generated modular language environments. TOPLAS, 34(4):15:1–15:50,
December 2012.

7 Maartje de Jonge and Eelco Visser. Automated evaluation of syntax error recovery. In ASE,
pages 322–325, September 2012.

8 Pierpaolo Degano and Corrado Priami. Comparison of syntactic error handling in LR parsers.
SPE, 25(6):657–679, June 1995.

9 Joel E. Denny and Brian A. Malloy. The IELR(1) algorithm for generating minimal LR(1)
parser tables for non-LR(1) grammars with conflict resolution. SCICO, 75(11):943–979,
November 2010.

10 Bradley Efron. Bootstrap methods: Another look at the jackknife. Ann. Statist., 7(1):1–26,
January 1979.

11 C. N. Fischer, B. A. Dion, and J. Mauney. A locally least-cost LR-error corrector. Technical
Report 363, University of Wisconsin, August 1979.

12 Carlos Gómez-Rodríguez, Miguel A. Alonso, and Manuel Vilares. Error-repair parsing schemata.
TCS, 411(7):1121–1139, February 2010.

13 Allen I. Holub. Compiler Design in C. Prentice-Hall, 1990.
14 S. C. Johnson. YACC: Yet Another Compiler-Compiler. Technical Report Comp. Sci. 32, Bell

Labs, July 1975.
15 Ik-Soon Kim and Kwangkeun Yi. LR error repair using the A* algorithm. Acta Inf., 47:179–207,

May 2010.
16 Donald Knuth. On the translation of languages from left to right. Information and Control,

8(6):607–639, December 1965.
17 Bruce J. McKenzie, Corey Yeatman, and Lorraine de Vere. Error repair in shift-reduce parsers.

TOPLAS, 17(4):672–689, July 1995.
18 Sérgio Medeiros, Gilney de Azevedo Alvez Junior, and Fabio Mascarenhas. Syntax error

recovery in parsing expression grammars. CoRR, May 2019. arXiv:1905.02145.
19 Sérgio Medeiros and Fabio Mascarenhas. Syntax error recovery in parsing expression grammars.

In SAC, pages 1195–1202, April 2018.
20 Marie-Hélène Nienaltowski, Michela Pedroni, and Bertrand Meyer. Compiler error messages:

What can help novices? In SIGCSE, pages 168–172, March 2008.

ECOOP 2020

http://arxiv.org/abs/1905.02145

6:28 Don’t Panic! Better, Fewer, Syntax Errors for LR Parsers

21 David Pager. A practical general method for constructing LR(k) parsers. Acta Inf., 7(3):249–
268, September 1977.

22 Terence Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf, January 2013.
23 François Pottier. Reachability and error diagnosis in LR(1) parsers. In CC, pages 88–98,

March 2016.
24 James Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani Peters, John Homer, Nevan

Simone, and Maxine Cohen. On novices’ interaction with compiler error messages: a human
factors approach. In ICER, pages 74–82, August 2017.

25 Sanguthevar Rajasekaran and Marius Nicolae. An error correcting parser for context free
grammars that takes less than cubic time. In LATA, February 2016.

26 Helmut Richter. Noncorrecting syntax error recovery. TOPLAS, 7(3):478–489, July 1985.
27 Eddie Antonio Santos, Joshua Charles Campbell, Dhvani Patel, Abram Hindle, and José Nelson

Amaral. Syntax and sensibility: Using language models to detect and correct syntax errors.
In SANER, pages 1–11, March 2018.

28 Masaru Tomita. An efficient augmented-context-free parsing algorithm. Comput. Linguist.,
13(1-2):31–46, January 1987.

29 D. A. Turner. Error diagnosis and recovery in one pass compilers. IPL, 6(4):113–115, August
1977.

30 Arthur van Deudekom, Dick Grune, and Peter Kooiman. Initial experience with noncorrecting
syntax error handling. Technical Report IR-339, Vrije Universiteit, Amsterdam, November
1993.

31 Tim A. Wagner. Practical Algorithms for Incremental Software Development Environments.
PhD thesis, University of California, Berkeley, March 1998.

32 Vadim Zaytsev. Formal foundations for semi-parsing. In SMR, pages 313–317, February 2014.

Appendix (not peer-reviewed)

A Curated examples

In this section we show several examples of error recovery using CPCT+ in different languages,
to give some idea of what error recovery looks like in practise, and to emphasise that the
algorithms in this paper are grammar neutral. All of these examples use the output from the
nimbleparse tool that is part of grmtools.

A.1 Java 7
Example 1 input:

1 class C {
2 int x y;
3 }

Example 1 output:
Parsing error at line 2 column 9. Repair sequences found :

1: Insert ,
2: Delete y
3: Insert =

Example 2 input:
1 class C {
2 void f() {
3 if true {
4 }
5 }

L. Diekmann and L. Tratt 6:29

Example 2 output:
Parsing error at line 3 column 8. Repair sequences found :

1: Insert (, Shift true , Insert)
Parsing error at line 5 column 2. Repair sequences found :

1: Insert }

Example 3 (taken from [6, p. 10]) input:
1 class C {
2 void f() {
3 if (temp. greaterThan (MAX) // missing)
4 fridge . startCooling ();
5 }
6 }

Example 3 output:
Parsing error at line 4 column 7. Repair sequences found :

1: Insert)

Example 4 (taken from [6, p. 16]) input:
1 class C {
2 void methodX () {
3 if (true)
4 foo ();
5 }
6 int i = 0;
7 while (i < 8)
8 i=bar(i);
9 }

10 }
11 }

Example 4 output:
Parsing error at line 7 column 5. Repair sequences found :

1: Insert {
Parsing error at line 11 column 1. Repair sequences found :

1: Delete }

Example 5 (taken from [19, p. 2]):
1 public class Example {
2 public static void main(String [] args) {
3 int n = 5;
4 int f = 1;
5 while (0 < n) {
6 f = f * n;
7 n = n - 1
8 };
9 System .out. println (f);

10 }
11 }

Example 5:
Parsing error at line 8 column 5. Repair sequences found :

1: Insert ;
2: Delete }

Example 6:
1 class C {
2 void f() {
3 x ((((((
4 }
5 }

ECOOP 2020

6:30 Don’t Panic! Better, Fewer, Syntax Errors for LR Parsers

Example 6 output, showing the timeout being exceeded and error recovery unable to complete:
Parsing error at line 4 column 3. No repair sequences found .

A.2 Lua 5.3
Example 1 input:

1 print (" Hello World "

Example 1 output:
Parsing error at line 1 column 20. Repair sequences found :

1: Insert)

Example 2 input. Note that “=” in Lua is the assignment operator, which is not valid in
conditionals; and that if/then/else blocks must be terminated by “end”.

1 function fact (n)
2 if n = 0 then
3 return 1
4 else
5 return n * fact(n -1)
6 end

Example 2 output:
Parsing error at line 2 column 8. Repair sequences found :

1: Insert .., Delete =
2: Insert //, Delete =
3: Insert -, Delete =
4: Insert %, Delete =
5: Insert *, Delete =
6: Insert >, Delete =
7: Insert <<, Delete =
8: Insert ^, Delete =
9: Insert <=, Delete =

10: Insert +, Delete =
11: Insert /, Delete =
12: Insert or , Delete =
13: Insert <, Delete =
14: Delete =, Delete 0
15: Insert and , Delete =
16: Insert ==, Delete =
17: Insert ~=, Delete =
18: Insert |, Delete =
19: Insert ~, Delete =
20: Insert >=, Delete =
21: Insert &, Delete =
22: Insert >>, Delete =

Parsing error at line 6 column 4. Repair sequences found :
1: Insert end

Examples 3 and 4 (both derived from the Lua 5.3 reference manual) show that CPCT+

naturally deals with an inherent ambiguity in Lua’s Yacc grammar involving function calls
and assignments (which, following the Lua specification, is resolved by Yacc in favour of
function calls). Example 3 shows the “unambiguous” case (i.e. if Lua forced users to use “;”
everywhere, the grammar would have no ambiguities):

1 a = b + c;
2 (print or io. write)’done ’)

Example 3 output:
Parsing error at line 2 column 26. Repair sequences found :

1: Delete)
2: Insert (

L. Diekmann and L. Tratt 6:31

Example 4 shows what happens in the “ambiguous” case (which Lua’s grammar resolves in
favour of viewing the code below as a function call to c):

1 a = b + c
2 (print or io. write)’done ’)

Example 4 output:
Parsing error at line 2 column 26. Repair sequences found :

1: Delete)

Example 5 (taken from [19, p. 7]):
1 if then print (" that ") end

Example 5 output:
Parsing error at line 1 column 4. Repair sequences found :

1: Insert <Name >
2: Insert <Numeral >
3: Insert true
4: Insert "<String >"
5: Insert [=[< String >]=]
6: Insert nil
7: Insert false
8: Insert ...

A.3 PHP 7.3
Example 1 input:

1 function n() {
2 $x = 1
3 }

Example 1 output:
Parsing error at line 3 column 1. Repair sequences found :

1: Insert ;

Example 2 input:
1 $a = array (" foo", "bar ");
2 $a [0;

Example 2 output:
Parsing error at line 2 column 5. Repair sequences found :

1: Insert]

Example 3 input:
1 class X {
2 function a($x) {
3 if $x {
4 }
5 }

Example 3 output:
Parsing error at line 3 column 12. Repair sequences found :

1: Insert (, Shift $x , Insert)
Parsing error at line 5 column 2. Repair sequences found :

1: Insert }

ECOOP 2020

6:32 Don’t Panic! Better, Fewer, Syntax Errors for LR Parsers

0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

Recovery time (s)

200000

20000

2000

200

20

2

0

N
um

b
er

of
fi

le
s

(l
og

1
0
)

Figure 17 A histogram showing the effect of increasing the timeout from 0.5s to 2s (see Figure 12
for the histogram showing a timeout of 0.5s). Increasing the timeout from 0.5s to 2s lowers the failure
rate from 1.63%±0.017% to 1.02%±0.016%, with a slowly decreasing number of files succeeding as
the timeout increases. Although we used a timeout of 0.5s on the basis that we felt most users
would tolerate such a delay, others may wish to pick a shorter or longer timeout depending on their
perception of their users tolerance of delay vs. tolerance of failed error correction.

0 195 390 585 780 975 1170 1365

Recovery error locations

200000

20000

2000

200

20

2

0

N
um

b
er

of
fi

le
s

(l
og

1
0
)

CPCT+

CPCT+
rev

Figure 18 The full histogram of the number of error locations. The small number of outliers
obscures the main bulk of the data – see Figure 13 for the truncated version.

K-LLVM: A Relatively Complete Semantics of
LLVM IR
Liyi Li
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
liyili2@illinois.edu

Elsa L. Gunter
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
egunter@illinois.edu

Abstract
LLVM [21] is designed for the compile-time, link-time and run-time optimization of programs written
in various programming languages. The language supported by LLVM targeted by modern compilers
is LLVM IR [29]. In this paper we define K-LLVM, a reference semantics for LLVM IR. To
the best of our knowledge, K-LLVM is the most complete formal LLVM IR semantics to date,
including all LLVM IR instructions, intrinsic functions in the LLVM documentation and Standard-C
library functions that are necessary to execute many LLVM IR programs. Additionally, K-LLVM
formulates an abstract machine that executes all LLVM IR instructions. The machine allows to
describe our formal semantics in terms of simulating a conceptual virtual machine that runs LLVM
IR programs, including non-deterministic programs. Even though the K-LLVM memory model in
this paper is assumed to be a sequentially consistent memory model and does not include all LLVM
concurrency memory behaviors, the design of K-LLVM’s data layout allows the K-LLVM abstract
machine to execute some LLVM IR programs that previous semantics did not cover, such as the
full range of LLVM IR behaviors for the interaction among LLVM IR casting, pointer arithmetic,
memory operations and some memory flags (e.g. readonly) of function headers. Additionally, the
memory model is modularized in a manner that supports investigating other memory models. To
validate K-LLVM, we have implemented it in K [41], which generated an interpreter for LLVM IR.
Using this, we ran tests including 1,385 unit test programs and around 3,000 concrete LLVM IR
programs, and K-LLVM passed all of them.

2012 ACM Subject Classification Theory of computation → Operational semantics

Keywords and phrases LLVM, formal semantics, K framework, memory model, abstract machine

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.7

Funding This material is based upon work supported in part by NSF Grant CCF 13-18191. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF.

1 Introduction

The Low Level Virtual Machine (LLVM) is designed for the compile-time, link-time and
run-time optimizations of programs written in unspecified programming languages. An LLVM-
based compiler, such as Clang, relies on a translation from a high-level source language to an
intermediate representation (LLVM IR) that hides details about the specific target execution
platform and acts as an interface for LLVM. Then, users are able to use the LLVM tools
to perform program optimizations, transformations, and static analyses based on LLVM
IR, which can also be translated into target architectures such as x86, PowerPC, and ARM.
Hence, LLVM IR acts as a “central station” for translating high-level languages to target
architectures, with a fixed set of language syntax, instructions, library functions, and a
memory model [29].

© Liyi Li and Elsa L. Gunter;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 7; pp. 7:1–7:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:liyili2@illinois.edu
mailto:egunter@illinois.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2020.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 K-LLVM: A Relatively Complete Semantics of LLVM IR

When using LLVM IR in Clang, the correctness of executing programs is a big concern.
Previous work [44, 30] has identified more than 200 LLVM compiler bugs. To verify Clang,
we first need to know what the correct behavior of LLVM IR is. However, there are several
issues about the currently existing language specifications related to LLVM IR. This paper
provides an overview of a relatively complete semantics addressing these issues. One challenge
to giving a complete semantics is its sheer size. To the best of our knowledge, VeLLVM
[45] is the only notable and published attempt to give LLVM IR a formal semantics, and
it only provides a limited subset of LLVM IR features, which does not include the LLVM
library functions, a multi-threaded memory model, or the standard-C library functions. A
second challenge is finding the right balance between mathematical abstractions and real
world concrete details about the LLVM IR semantics. Most of the previous work [45, 18, 17]
has utilized mathematical abstractions for the LLVM IR semantics so that theorems could
be proved in an elegant and simple way. However, LLVM IR is not a high enough level
of language that such abstractions can reflect the full semantics with total precision. Its
semantics contains a lot of detailed information that a real implementable semantics needs
to explain. For example, even though VeLLVM allows memory alignments, it does not allow
memory operations to have alignment information. In LLVM IR, if the alignment value
for a memory operation is not set properly, the behavior can be undefined. The lack of
such information means that VeLLVM lacks the definition of important features of LLVM
IR. Filling in all these details is challenging but important for defining the whole LLVM
IR semantics. Third, even if one has the details in their semantics, we still need a good
way to combine them together to form a unified framework with simplicity and modularity.
For example, the C semantics in K [11] has considered many details of the memory layouts
necessary for executing C programs. However, its execution and memory models are so basic
that any extension of the semantics requires a major change in them, such as the extension
of atomic memory operations. In this paper, a rigorous executable specification is formalized
for the LLVM IR language to overcome these problems. Our K-LLVM semantics defines
almost all of the features in LLVM IR that are listed in the LLVM IR documentation (see
Limitations at the end of this section), which has more than 219 pages. K-LLVM also
offers a unified framework as an abstract machine that executes LLVM IR programs. The
framework allows us to cover all corner case semantics of LLVM IR operations. The full
details of our semantics can be found in the K-LLVM implementation [26]. This paper
highlights an interesting portion of K-LLVM to show how one can possibly find a balance
between abstractions and real world programming to provide a better, clearer, and more
useful language semantics. First, we introduce some benefits, features, and a limitation of
K-LLVM.

The Most Complete LLVM IR Semantics. K-LLVM is the most complete LLVM IR
semantics to date, and provides a reference for people to use when exploring LLVM IR
behaviors, including threading behaviors. The semantics is complete relative to a byte-wise,
sequentially consistent memory model. K-LLVM defines corner cases for all LLVM IR
operations, some of which have not been defined by previous work.

A Unified and Rigorously Mathematical Framework. We provide a unified and rigorously
mathematical framework where people can observe the semantic behaviors in a single interface
and also prove properties of compilers, with a focus on LLVM IR and LLVM IR compilers.
Transforming programs from a high-level language to a low-level machine code requires a lot
of phases, each of which might cause correctness concerns. For example, the infamous out-of-

L. Li and E. L. Gunter 7:3

thin-air problems can arise at every level of intermediate AST as a result of a transformation
or compiler optimization. They can even appear when some old processors try to execute
certain programs [35]. K-LLVM provides a way for users to reason about the behaviors of
these translations based on the rigorous executable semantics of LLVM IR.

A Conceptual Device and a Virtual Machine. K-LLVM is implemented as a virtual
machine that runs LLVM IR codes, that are interpretable by users. Instead of having to
understand axiomatized memory events, they deal with central processors, threads, memory
caches, etc. K-LLVM accomplishes this by providing an abstract machine that combines
its runtime system, executions and memory models (in byte-wise sequential consistency). It
implements the executable LLVM IR semantics for version 6.0.0. The abstract machine is also
scalable. With simple changes to the current K-LLVM, the machine can allow the LLVM
IR instructions to be executed out of order, handle speculative executions, and simulate a
real-world memory environment that allows for features such as memory caches.

Detailed LLVM IR Low-level Structure. LLVM IR is a low enough language that one cannot
define the semantics without explicitly incorporating aspects of the underlying architecture.
It is important to deal with low-level data values like integers, floats, and pointers in a
more detailed format based on bits and bytes, instead of pure mathematical concepts (see
Section 3.2).

Parametric Behavior. K-LLVM has been implemented in a direct and transparent manner
in K, resulting in an interpreter for LLVM IR. K-LLVM is parameterized by important
information needed for implementing defined behaviors. Users can configure the parameters of
the semantics based on specific architectures or compilers, and then proceed to see executable
behaviors formally in the implementation in K.

Undefined Behavior. We classify three different types of undefinedness in LLVM IR. The
first one is undef, which represents an unspecified value for a program position; the program
should proceed no matter what the value is. In some cases, undef also means that the
program has ill-defined behavior, such as representing a race in the memory. There are two
ways to deal with undef in K-LLVM: krun can be used to execute a program with undef
and get a fixed deterministic behavior by assuming one path, or ksearch can be used to
search for all different behaviors by executing the program non-deterministically. Sometimes,
the non-deterministic search space caused by undef values in LLVM IR is too large. In
such cases, the symbolic execution engine in ksearch with the K equivalence checker can be
used to determine if two programs return the same results. Additional discussion can be
found in Section 5. The second kind of undefinedness is an undefined behavior represented
by a poison value, because LLVM IR does not have a defined symbol for it. Its meaning is
similar to undef, but it has certain undefined behaviors associated with it. K-LLVM will
carry the poison value and continue computation until a non-deterministic point is reached,
then give an error message saying that there is a poison value in the program, and stop the
continuation of the computation. If no non-deterministic point is found, K-LLVM can finish
the computation successfully. The third kind results from underspecification in the LLVM
IR documentation. We named this as unspecified behaviors in this paper. When facing
the third kind, K-LLVM immediately labels the computation an error state, saying there is
an unspecified behavior in the system. More information can be found in Section 5.

ECOOP 2020

7:4 K-LLVM: A Relatively Complete Semantics of LLVM IR

Independent of K. The implementation in K gives K-LLVM the power to have an
interpreter automatically, and have tools for state space searching and symbolic executions.
Essentially, K [42] is an executable semantic framework based a rewriting logic [34]. Once a
language semantics is defined in K, it automatically turns it into a logical form by turning
each semantic rule into an axiomatic rule with pre and post-conditions; thus, it creates an
axiom set for the language. Additionally, there are many tools available in K. For example,
kompile can be used to see if the semantics has static type problems and to generate an
interpreter, so that krun can be used with the interpreter to test their semantics by actual
concrete programs. ksearch allows searches of traces of multi-threaded programs based on
the interpreter. The symbolic engine in ksearch and the program equivalence checker in
K can allow for two sets of traces to be compared by symbolically executing two different
multi-threaded programs and seeing if the two sets produce the same output. Even though
we have defined K-LLVM in K, the semantics is independent of its implementations in K.
In fact, we have defined the K-LLVM abstract machine in Isabelle [39] for manually proving
theorems about K-LLVM. Additional discussion is presented in Section 5.

Limitations. In this paper, the K-LLVM memory model is based on byte-wise sequential
consistency. LLVM IR specifies a range of behaviors for memory operations with different
orderings and for volatile memory accesses, while K-LLVM does not support the full
range. In K-LLVM, every memory location is mapped to a single byte datum; there is only
one memory cache to deal with all memory operation requests from the different threads.
Single thread instruction execution is in the program order. Based on this model with the
K-LLVM abstract machine, we provide an observation in Section 4.4. We implemented
the full LLVM IR concurrency model (based on the glibc and pthread_create libraries)
in K with all of the memory ordering behaviors of the atomic memory operations, but we
have not yet finished proving the properties of that model; so it will be a future extension of
K-LLVM. The work is described in the technical report [26].

2 Related Work

The K-LLVM semantics builds on top of the LLVM semantics in K by Ellison and Lazar [10].
Our semantics directly extends their work to support missing features, including a more precise
memory model and concurrency. Here we provide a description of other projects related
to the definition of the LLVM IR semantics, and also review large language specifications
related to our design.

Other LLVM IR Semantics. Besides K-LLVM, the other formal executable semantics for
LLVM-IR are VeLLVM [24] and the previous LLVM semantics in K [10]. VeLLVM was the
first project to define a relatively complete specification for the core of LLVM IR. It is defined
in the theorem prover Coq [2] and covers a core set of LLVM IR instructions. VeLLVM
formalizes a mechanized semantics for LLVM IR, its type system, and the properties of its
SSA form. It also has an interpreter extracted from Coq that ran 145 test programs and
passed 134 of them. The memory model of VeLLVM is based on CompCert [3, 25] with
newly developed features that are specifically designed by the VeLLVM team for capturing
the memory data layout features in LLVM IR. Their model associates metadata to memory
byte data fields, so that an execution of a LLVM IR program can utilize the metadata. This
feature is similar to the memory data layout in K-LLVM (see Sec. 4.3). With VeLLVM,
users can prove properties about translations defined in LLVM IR. Several papers, such as
[24, 17], have been published about compiler correctness, memory models, and verification of
compiler schemes using VeLLVM.

L. Li and E. L. Gunter 7:5

There are two levels of difference between K-LLVM and VeLLVM. The first level is
the quantitative level. K-LLVM defines semantics for a larger set of LLVM IR operations,
LLVM IR operation features, and library functions than what VeLLVM define. This is partly
because the original VeLLVM semantics was based on LLVM 2.0, while K-LLVM is built
on top of LLVM 6.0.0. There are also features that VeLLVM claimed not to define but
K-LLVM covers, such as the different calling conventions. K-LLVM allows users to set up
different calling conventions for the abstract machine that executes K-LLVM programs, and
these different conventions show different execution behaviors in function call semantics. The
second level is the qualitative level. K-LLVM formalizes the LLVM semantics using a more
directly operational method, reflecting the possible implementation of semantics in a virtual
computer, while VeLLVM focuses on the formalization of LLVM semantics as a mathematical
object. The virtual computer upon which the K-LLVM semantics is built is split into
common conceptual computer components, and the K-LLVM semantics investigates the
interactions between different LLVM IR operations and these different components.

There are three main differences between K-LLVM and VeLLVM on the qualitative level.
The first difference is that the abstract machine underlying K-LLVM supports the memory
object model under the multi-threaded environment, while VeLLVM is single-threaded, which
is all the LLVM documentation [29] specifies for the LLVM IR. The second difference is
the handling of the stack and heap memories. VeLLVM implements the stack and heap
using the same allocation semantics, allocating blocks in main memory. On the other hand,
K-LLVM views them as different components, with each thread having its own size-limited
stack accessed by alloca, but with one shared heap accessed by malloc. The different ways
that each of VeLLVM and K-LLVM provides semantics of memory usage in LLVM IR show
one of the key philosophical differences between the approaches of the two systems. It’s true
that the LLVM documentation does not mention the difference between stack and heap,
therefore it is correct for VeLLVM to use the same semantics for stack and heap allocations.
However, LLVM is a low-level language that contains certain machine level features. A major
design feature of K-LLVM is to formalize an LLVM semantics based on a general underlying
machine structure, which captures many real-world machine features. These features include
being able to support glibc libraries, and the ability to express the LLVM IR multi-threaded
semantics based on the interactions among different components in the machine. For these
reasons, K-LLVM needs a more complex and low-level specification for malloc and alloca
operations.

The third difference is formalization of memory location objects (layout structures). Both
VeLLVM and K-LLVM have special byte data structures including metadata to keep track
of pointer provenance information in a memory location, but VeLLVM has two different byte
data structures, one for byte data that are originally stored as basic data such as integers or
floats, and one for byte data that are originally stored as pointers. In addition, VeLLVM
does not have special structures for basic data values in the registers to carry these metadata.
This allows K-LLVM to give semantics to more valid LLVM IR programs. For example,
assume that we execute the following LLVM program piece in VeLLVM and K-LLVM.

1 %r1 = call i8* @malloc (i64 4)
2 %r2 = call i8* @malloc (i64 4)
3 %r3 = bitcast i8* %r1 to i64*
4 %r4 = ptrtoint i8* %r2 to i64
5 store i64 %r4 , i64* %r3
6 %r5 = bitcast i64* %r3 to i64**
7 %r6 = load i64*, i64** %r5
8 store i64 1, i64* %r6
...

ECOOP 2020

7:6 K-LLVM: A Relatively Complete Semantics of LLVM IR

The execution of the above program piece in VeLLVM gets stuck at the line 8 of the program,
while K-LLVM successfully finishes execution of it, as prescribed by the LLVM documentation.
In VeLLVM, once a pointer is cast to an integer and then stored at a memory location, the
meta provenance information for the pointer is lost. If the pointer is loaded back and used
as a pointer for communicating with the memory, the behavior is forbidden in VeLLVM.
This loss of information was also the motivation for the VeLLVM researchers to develop a C
memory model that supports integer-pointer casts [17]. In K-LLVM, we keep track of the
provenance information for the lifetime of the pointer no matter what the pointer becomes.
The details are in Sec. 4.4.

Other Work Related to the LLVM IR Semantics. There are other pieces of work that are not
meant to directly define the LLVM IR semantics but influence K-LLVM. First, Lee et al. [24]
investigated the LLVM IR undefined behaviors with no concrete semantics for all undefined
behaviors. Kang et al. [17] provided a model in C to support the inttoptr/ptrtoint
casting operations. Their work enlightened K-LLVM. However, their definition focused on
the aspect of a memory model, leaving the execution of programs as a black box. Thus,
their casting operation semantics does not work with the real LLVM IR semantics. Ellison
and Rosu [11] defined the full C semantics with a simplified version of CompCert’s model.
Chakraborty and Vafeiadis [7] provided a concurrent abstracted memory model for LLVM
IR that focused on an abstraction of the concurrent LLVM IR memory behaviors. Lee et
al. proposed a novel LLVM memory model including a data layout and memory pointer
provenance model [23]. They claimed to provide a better LLVM memory model that was
sound and performed better. However, their model targeted a very small set of LLVM IR
memory related instructions, and their abstract machine was simple. It is unclear how their
model can be extended to include the behaviors of other LLVM IR instructions, especially
the side-effects caused by interactions between different instructions, such as the additional
behaviors caused by having the readonly flag or the thread creation instruction in the
system. Compared to Lee et al.’s model, K-LLVM has a much simpler data layout and a
concrete abstract machine to support different semantic behaviors including corner cases and
side effects caused by the interaction of different instructions. Memarian et al. [36] provided
two pointer provenance models for C/C++ languages and reconciled the ISO C standard.
Similar to Lee et al.’s work, Memarian et al. focused on creating better pointer provenance
models for C instead of investigating different C instruction behaviors through a concrete
abstract machine. Without great effort, it is unclear how to build an abstract machine to
support all LLVM IR instructions based on their model.

Other Large Language Specifications. K-LLVM is a formal and executable specification,
of which many have been defined recently. Standard ML by Milner, Tofte, Harper, and
Macqueen [37] is one of the most prominent and mathematical programming language
specifications, whose formal and executable specifications were added to by Lee, Crary, and
Harper [22], VanInwegen and Gunter [15], and Maharaj and Gunter [31]. Blazy and Leroy [3]
verified an optimizing compiler based on CLight in CompCert. Large language specifications
have been defined in K, including C [11], PHP [13], JavaScript [38], and Java [5]. A lot
of work has been done on formalized specifications in Java and C#: Eisenbach’s formal
Java semantics [9] and Syme’s HOL semantics [43] for Drossopoulou, the C# standard by
Börger et al. [6], which is formally executable and uses abstract state machines [14], and
the executable Java specification by Farzan et al. [12]. We cannot list all of the interesting
examples of formalized language specifications in this paper for space reasons.

L. Li and E. L. Gunter 7:7

Our mechanized specification of K-LLVM shares many of the difficult challenges faced
by the works described above and involves many new ones, due to the complex and dynamic
nature of K-LLVM. They are detailed in later sections.

3 Background and Challenges

Below we discuss the major challenges that needed to be faced when developing K-LLVM.
Additionally, we introduce briefly LLVM IR programs, K-LLVM and K.

3.1 A Taste of LLVM IR Programs and Assumptions on LLVM IR
The LLVM language (LLVM IR) is a statically and strongly typed, assembly-like, Static
Single Assignment (SSA) based language. It has undefined behaviors but the undefinedness is
well documented. The LLVM language itself does not have operations or libraries to support
multi-threaded behaviors, but LLVM IR’s structure is highly related to the C/C++ library.
LLVM IR basically assumes a runtime environment of C++. LLVM IR also contains a set of
functions comprising an intrinsic library, in which part of the standard C library is included.
It also relies on other functions in the stdlib.h header. For example, it needs dynamic
memory management functions such as malloc, realloc and free to provide heap memory
access, as well as functions dealing with the environment such as abort, exit and system.
Furthermore, it needs functions listed in the stdio.h header to provide I/O support, as well
as library functions from the Pthread and Pthread-mutex libraries to provide threading and
mutual exclusion behaviors. These functions are not strictly part of the LLVM IR listed in
the documentation but we define them anyway.

The current LLVM IR can be viewed as “C- -”. Except function bodies, most features in
C can be found in LLVM IR, such as global variables, struct datatypes, function headers
and different flags for global variables or functions, etc. The main difference between LLVM
IR programs and C programs are the function bodies, a.k.a. expressions. The LLVM IR
expressions are register-based, SSA based and assembly-like. These features eliminate the
undefinedness of the evaluation order in an LLVM IR program. We show some examples of
LLVM IR expressions in Figure 1 to provide a taste of LLVM IR. These expressions are used
throughout the whole paper. We believe that these expressions are enough to show the key
features of LLVM IR and the construction of LLVM IR programs based on these expressions
and other components (function headers, global variables and modules, etc) can be easily
found in the LLVM documentation. This is also the reason we refer to these expressions as
“programs” in the rest of the paper.

LLVM IR distinguishes local variables from global variables. Variables starting with the
character % are local ones, while those starting with the character @ are global. Global
variables can only have a pointer type. Any number following the character i in LLVM IR,
such as i32 or i1, means an integer type declaration with the size of the bits. i32* refers to
a 32-bit integer pointer type declaration. Instructions starting with the keyword icmp are the
integer comparison operators. With the keyword eq, the instruction %r8 = icmp eq i64
%r7 , 47244640267 tests whether the value in the variable %r7 and 47244640267 are the
same and stores the result to the variable %r8 . The “;” operation allows users to put
comments after a line of code.

Program-A does several pointer arithmetic operations and memory operations. Several
key observations about LLVM IR are made here. First, getelementptr is a memory address
calculation operation and has an inbounds flag. No previous work has formally defined the
behavior of flags of getelementptr. The definition of inbounds is hard because it not only

ECOOP 2020

7:8 K-LLVM: A Relatively Complete Semantics of LLVM IR

Program-A :
1 %r1 = call i8* @malloc (i64 12)
2 %r2 = bitcast i8* %r1 to [3 x i32]*
3 store [3 x i32] [i32 0, i32 0, i32 0], [3 x i32]* %r2
4 %r3 = getelementptr inbounds [3 x i32], [3 x i32]* %r2 , i64 0, i32 1
5 %u1 = getelementptr inbounds [3 x i32], [3 x i32]* %r2 , i64 -1, i32 4 ;poison value.
6 %u2 = getelementptr inbounds i8, i8* %r1 , i64 3
7 %u3 = load i8, i8* %u2
8 %u4 = ptrtoint i8* %u3 to i64
9 %u5 = add i64 %u4 , 1
10 %u6 = inttoptr i64 %u5 to i8*
11 %u7 = load i8, i8* %u6
12 %r4 = bitcast i32* %r3 to [2 x i32]*
13 store [2 x i32] [i32 11, i32 11], [2 x i32]* %r4
14 %r5 = ptrtoint [2 x i32]* %r4 to i64
15 %r6 = inttoptr i64 %r5 to i64*
16 %r7 = load i64, i64* %r6 ;read back the two i32 array as an i64 value 47244640267.
17 %r8 = icmp eq i64 %r7 , 47244640267
18 br i1 %r8 , label %next , label %exit
19 next :
20 %r9 = inttoptr i64 100 to i32*
21 %r10 = getelementptr inbounds i32, i32* %r9 , i64 0 ;poison value.
22 store i32 42, i32* %r9 ;unspecified behavior due to invalid pointer.
23 exit :
...

Program-B :
Thread-1 :
...
store atomic i32 42, i32* @x monotonic, align 1
%a = load atomic i32, i32* @y monotonic, align 1
...

Thread-2 :
...
store atomic i32 1, i32* @y monotonic, align 1
%b = load atomic i32, i32* @x monotonic, align 1
...

Program-C :
Thread-1 :
...
store i32 42, i32* @x
%a = load i32, i32* @y
...

Thread-2 :
...
store i32 1, i32* @y
%b = load i32, i32* @x
...

Program-E :
%r1 = call i8* @malloc (i64 12)
%r2 = ptrtoint i8* %r1 to i32
%r3 = call i8* @printf (@x , i32 %r2)

Program-D :
Thread-1 :
...
%a = load i32, i32* @x
%r = call i32 @pthread_create (i32 ()* @f ,...)
...

Thread-2 :
define i32 () @f {

store i32 1, i32* @x
return 0

}

Figure 1 LLVM IR Example Programs.

affects the final result but also affects every intermediate result of computing the memory
address. For example, in Program-A, %u1 (line 5) is a poison value because we have inbounds
in the getelementptr, and the second index is i64 -1, which makes the intermediate result
out-of-bounds. Even though the final result is in bounds because we add back numbers, the
inbounds still makes the final result a poison value. We talk about our definition of the
getelementptr operation in Section 4.4. Second, as we mentioned in Section 2, LLVM IR
views the main memory as having no type. We can store an array [11, 11] (line 13) and
magically get back the i64 value 47244640267 (line 16). This has effects on defining the
K-LLVM type system, which will be explained in Section 4.1. Finally, executing Program-A
in K-LLVM stops at the line 22. It is an unspecified behavior in LLVM IR to read data
from a memory location pointed to by a pointer that was not properly created. This has
not been properly defined by previous work, especially the definition of a memory operation
combined with casting and pointer arithmetic operations. More details are in Section 4.4.
Program-B and Program-C distinguish between a non-atomic and atomic memory operation.
Thanks to our K-LLVM virtual machine definition, we are able to produce the race caused
by two non-atomic operations in two different threads. Additional details are in Section 4.
While maintaining sequential consistency, the execution of Program-D could result in a race
on @x because of the special instruction execution order of LLVM, which the K-LLVM
abstract machine models. More details are in Section 4.2. Program-E is an example for
showing the usage of the K symbolic execution engine in Section 5.

L. Li and E. L. Gunter 7:9

After reading the programs in Figure 1, questions about the memory locations and
memory alignments may come to mind. Memory implementation is very complicated in real
world programming languages. LLVM IR does not actually fix a special implementation
of memory addresses. For simplicity, we assume in this paper that there is a one-to-one
mapping from natural numbers to memory addresses, and a memory chunk is always in a
range that can be defined between a left and a right integer bound. The memory addresses
refer to conceptual memory byte data. Conceptual memory bytes are not actual byte data –
details are in Section 4.3. LLVM IR also allows setting up alignments for different types,
memory endianness and address space information by using target datalayout. Although
we have implemented these features in K-LLVM, for simplicity, we assume in this paper that
alignments, paddings for structs and address spaces never cause a problem in calculating
memory addresses or type checking, and we assume little-endian byte-order. Finally, we
assume that the heap size is infinite while the stack for each function is finite and has a
maximum bound, and if a stack overflows in a thread, the whole system reaches an error
state. We believe that assuming a max bound on the stack is an advantage of K-LLVM over
previous formal semantics of LLVM IR. In the LLVM documentation, some stack intrinsic
functions and function flags (probe-stack/safestack) indicates that function stacks has
max bounds. The implementation of K-LLVM stacks is introduced in the descrition of the
abstract machine (Sec. 4.2).

3.2 Challenges

Here we introduce some challeges that the development of K-LLVM faces.

Sheer Size of LLVM IR. The first challenge is the sheer size and precision of LLVM IR.
With respect to instructions, LLVM IR has more than 60 operators and 100 intrinsic library
functions. Some operators have complex rules or different requirements according to the
input. For example, store operators can be either non-atomic or atomic, and atomic store
operators have six different orderings. All of these require different semantic rules. The
previous work only defined some of the operators, or some of their features. No previous
work has defined the massive number of intrinsic library functions. K-LLVM defines all the
LLVM operations and intrinsic functions. We handle this challenge through a special heavily
testing strategy to define K-LLVM described in Sec. 5.

Subtlety of Well-formedness. In LLVM IR, the subtlety of various instructions and the well-
formedness of instructions are often directly connected with the semantics of the instructions
in a particular place in a given program. The syntactic nature of even a single instruction
is determined by the semantic context. For example, the getelementptr operator allows
indices to be integer local variables if the pointer input is an array pointer. However, if
it is a struct pointer, LLVM IR requires the indices to be integer constants that can be
statically reduced to integer values. These two types can be mixed together in a single usage
of getelementptr in an LLVM IR program. Another example is that the input containing
a decimal representation of a floating-point constant needs to be exact. This means that
the value 1.1 cannot be a valid constant for floating-point operators in LLVM IR because it
cannot be precisely represented by a finite floating point number, and LLVM IR requires the
compilers to LLVM IR to round the float to a hexadecimal format. This is an error in Clang
(the LLVM compiler).

ECOOP 2020

7:10 K-LLVM: A Relatively Complete Semantics of LLVM IR

Detailed Low-Level Features. As we mentioned in Section 1, it is not feasible to gloss
over the details of LLVM IR’s low-level features, such as how to represent integers, floats
and pointers. The effects are easily felt when we combine casting operations with memory
operations. It is a common source of confusion among LLVM IR users, and thus, a common
source of bugs. We also need to admit the fact that memory locations are highly related
to integer behaviors; so converting pointers to integers, doing certain arithmetic on them,
and converting them back to pointers are valid program exercises within a memory chunk
created by a malloc operation. This brings us a big challenge. For example, in Program-A
(Fig. 1), we cannot use pointer %r9 to store data to the main memory (line 22), even if it
is accidentally at the right range of a memory chunk, because %r9 is not a valid pointer
according to the LLVM IR pointer-aliasing rule. Defining a data structure to capture the
behaviors covering all corner cases is one of the key contributions of K-LLVM. In addition,
it is important to admit that the low-level structure of LLVM IR is based on bits and bytes;
as well as the integer, float and pointer calculations are based on two’s compliments, IEEE
754, and integer pointer calculations.

Instructions Having Side-effects on Subsequent Instructions. Some instructions may
cause side-effects on subsequent instructions depending on their behaviors. For example,
in Program-A (Fig. 1), one can use the pointer %r4 to access memory because it was a
subsequent computation result of the pointer %r1 from a malloc function, while %r9 cannot
be used to access memory data because it is from an integer constant. Defining these
complicated side-effects requires new ideas. In addition, LLVM IR instructions can have very
different requirements for different computer components. This complicates the design of
different components of the K-LLVM abstract machine.

As we solved these challenges, we tried our best to define all language features in
K-LLVM.

3.3 The K Framework
K [42] is a rewrite-based, executable semantic framework in which programming languages,
type systems and formal analysis tools can be defined. K-LLVM is independent of K.
However, the implementation of K-LLVM in K follows the mathematical definition closely,
and some K tools are useful for supporting the usage of K-LLVM. Once a language
semantics is built, one can use kompile to see if it has static type problems and to generate
an interpreter, so that users can use krun with the interpreter to test their semantics by
actual concrete programs. ksearch allows users to search traces of multi-threaded programs
based on the interpreter. The symbolic engine of ksearch and the program equivalence
checker in K allow users to compare two sets of traces from two different symbolically
executed multi-threaded programs to see if their outputs are the same. Additional discussion
is presented in Section 5.

4 K-LLVM Semantics

In this section, we define the semantics of K-LLVM. It is divided into two parts: the
K-LLVM static semantics (Sec. 4.1) and the K-LLVM dynamic semantics (Sec. 4.2 to
Sec. 4.4). In this paper, we focus on parts of the descriptions of the static and dynamic
semantics. We mainly discuss the general process and the type checking stage of the static
semantics; as well as the general (sequentially consistent) abstract machine structure and
memory operation specifications of the dynamic semantics. Other interesting details are in

L. Li and E. L. Gunter 7:11

our technical report and K formalization [26]. Some important features of K-LLVM are
based on VeLLVM [45]. For example, the K-LLVM formalization of SSA and Phi functions
is very similar to the one in VeLLVM. The comparison of the work and K-LLVM is in Sec. 2.

4.1 K-LLVM Static Semantics
When giving the semantics of LLVM IR, K-LLVM uses two different ASTs, a front-end AST
(FAST) and a back-end AST (BAST). The syntax of LLVM IR 6.0.0, which is documented
in the website http://releases.llvm.org/6.0.0/docs/LangRef.html, is directly parsed
into the FAST. We have formally defined the LLVM IR 6.0 syntax in K, and it parses any
LLVM IR program into the FAST format. K-LLVM static semantics refers to the LLVM IR
behaviors that happen at compilation time. For an LLVM IR program, parsing is not enough
to rule out unqualified programs. After parsing, a series of checks need to be performed on an
LLVM IR program, including well-typedness, static single assignment, and well-formedness.
The K-LLVM static semantics implementation applies these checks and rule out unqualified
programs. It also translates a FAST program into a representation in the BAST format as
first defined in [10], which is passed to the dynamic semantics for execution. Figure 2 depicts
the phases in the K-LLVM static semantics.

Figure 2 Static Semantics of K-LLVM.

Here we first sketch the functionality of each phase, and then focus on the type checking
phase. More information can be found in the technical report [26]. The purpose of the
preprocessing phase is to simulate the LLVM compilation steps that happen in the linkage
time, including joining all modules from different files and dealing with global variables. The
constant expression rewriting phase reduces LLVM IR constant expressions to values. After
type checking, the transformation phase translates a program in FAST to a form in BAST.
The validity checks phase applies well-formedness checks to the BAST program code, such as
ensuring the code is in Static Single Assignment (SSA) form. We have proved the following
theorem about the K-LLVM type system.

Type Checking. This step emulates the behaviors of LLVM IR type checking for the
functions in LLVM IR modules. LLVM IR is a relatively strongly-typed language, and its
type system is very straightforward. The K-LLVM type checking process is a complete
implementation of the LLVM IR type system listed in its documentation. The input for
the K-LLVM type checking function is a term and its type; the function outputs true if
the term has been type checked and has the input type, and false otherwise. "Relatively
strongly-typed" here means that the type system of LLVM IR guarantees the type preservation
property, i.e., a typed value produced from a typed LLVM IR expression is compatible with
the size of the value in runtime, and any later usage of the value will not result in a type
error or size error if there is a move (usage). However, the program still has the chance
of going wrong in the case of other problems, such as division by zero. in Program-A in
Figure 1, every line of code except store and br instructions assigns a value to a variable.
After type checking, each variable has a type. %r1 has type i8* (line 1) and %r2 has type

ECOOP 2020

http://releases.llvm.org/6.0.0/docs/LangRef.html

7:12 K-LLVM: A Relatively Complete Semantics of LLVM IR

[3 x i32]* (line 2). If we eliminate line 2 and replace the variable %r2 in line 3 with %r1 ,
the line results in a type error. In addition, there is also a chance that a correctly typed
LLVM IR program is never executed since the execution of an LLVM IR program depends on
the runtime environment setting. For example, The abstract machine in K-LLVM (Sec. 4.2)
is parameterized by the function stack size. Users are free to set the size to 0, in which no
program can be executed in any step.

%struct.RT = type {i8, [10 x [20 x i32]], i8}
getelementptr inbounds %struct.RT , %struct.RT * %u ,i64 0,i32 add (i32 1, i32 0), i32 %x

Figure 3 A Type Example.

There are some tricky cases of the type system. In Figure 3, we show a getelementptr
instruction on a struct type. For a struct, the value of the index for the getelementptr
affects the type result of the final value of an instruction, because every position in a
struct can have different type. Type checking a getelementptr relies on executing part
of the semantics of the getelementptr arguments. That is why some index values of
getelementptr that are associated to struct type positions are required to be inferred
statically. This means that such positions can contain neither local nor global variables,
even if a constant expression (no variables inside) is allowed. For other non-struct index
positions, variables are allowed, such as the x getelementptr in Figure 3.

LLVM IR takes the view that values stored in the memory have no types, and that
memory instructions will always produce values of the prescribed types. In fact, LLVM
IR does not have a clear idea of main memory. It does not even have a built-in memory
allocation instruction, instead, it relies on Standard-C library to provide such instructions.
It basically assumes that the memory machine as a black box, and every memory request
is valid as long as the size of the requested data matches the size of its type, the memory
pointer is not out-of-range, and there is no race. In addition, one can have a correctly typed
program where the result value produced by the program does not make sense. For example,
loading an i31 value from a heap field that is previously stored as an i30 value is unspecified.
To support the type system, K-LLVM assumes that each of the poison value and undefined
value is implemented as a family of constructs, one for each type (ASTs as undef (Type)
and poisonValue (Type)). Combining all these features of LLVM IR type system, we have
shown the following type preservation theorem (the proof sketch is in the technical report
[26]):

I Theorem 1. Assuming every load returning a value in a type prescribed in the load
instruction, the program is well-typed by the K-LLVM type system, and the program
executes at least one step, then every register and every return value of the program will be
of the type assigned during the type checking.

The statement about the loading value in the theorem refers to that every load instruction
reads a value that is previously stored with a proper type matching the load instruction, i.e.,
no having the case such as loading an i31 value from a heap field that is previously stored as
an i30 value. The theorem assumes that every LLVM IR program can make a move, and it
does not guarantee that the execution of a type-correct program has at least one move. After
a program has been checked and transformed through the K-LLVM static semantics, the
transformed BAST program is ready for execution by the K-LLVM dynamic semantics.

L. Li and E. L. Gunter 7:13

4.2 The K-LLVM Abstract Machine
As we mentioned in Section 1, the semantics of the execution of the LLVM IR programs
in K-LLVM described is via an abstract machine. There are three reasons for this. First,
it is a concise way to define all features and aspects of the LLVM IR semantics. LLVM
IR is a programming language that connects different computer resources through many
different instructions. The best way to model these different features is to design a computer-
like mathematical entity which simulates them. Second, the abstract machine is designed
to emulate real world computer components. Often, mathematical abstract machines are
complicated and confusing. The K-LLVM abstract machine execution is easy for users
to follow since they can relate it to real world computer components. Third, our abstract
machine is modular; as a consequence, it is also extendable. In previous language semantics,
designers either only define straight-line single-threaded instruction behaviors or only define
a subset of all instructions with complete concurrent behaviors. Once concurrent behaviors
are introduced, a single instruction’s semantics can affect the whole semantic universe forcing
designers to update all existing instruction semantics to handle any side-effects. The design
of the K-LLVM abstract machine allows us to focus on designing one feature at a time
in isolation. Additionally, because of the modular design, the abstract machine can be
easily updated to support progressive concurrent features. For example, we update the
byte-wise sequential consistency model in this paper to a model containing the full LLVM IR
concurrency features in our corresponding technical report [26], without modifying a single
instruction semantic rule, and only changing transition rules for describing how to maintain
the execution order in the continuation and toCommit component of each thread.

Figure 4 Component Relations in the K-LLVM Memory Layout Structure.

Figure 4 describes the overall structure of the K-LLVM abstract machine and the
interactions of different components. The arrows show the direction of messages passing
between the main components. A rounded dashed component means a program state entity
that might contain other component structures, while a square component means a program
state entity whose content is an integer, list, set, map, etc. The K-LLVM abstract machine
is independent of the platform in which we implement the machine. At the top level, the
abstract machine can be thought of as a set of threads communicating with a set of memory
caches, and a global control unit provides global information for threads. As a simplifying
assumption to achieve byte-wise sequential consistency, we assume the memory cache set is
a singleton set, so we will refer to this cache as the memory cache in the rest of the paper.
The globalControl component represents the global control unit containing several sub-
components storing information about threads, such as thread identifier calculation, thread
final states and mutex lock information. We will see an example of using this information in
Section 5. There are several components in each thread as shown in the left side of Figure 4.

ECOOP 2020

7:14 K-LLVM: A Relatively Complete Semantics of LLVM IR

In Section 4.1, we said that a LLVM IR program is compiled to a list of BAST control
flow graphs (CFGs) for execution. The continuation component represents a dynamically
executing CFG; it contains a sequence of dynamic basic blocks of instructions to be executed.
A thread executes one instruction at a time, i.e., the first instruction in the first block.
Thread execution is modeled by consuming instructions as they are executed and possibly
inserting a new basic block after the current block during loop execution.

For each thread, the control component includes registers, a stack, flags, and
currInst components. The registers component is a map from local variables to values.
We introduce how we represent values in the next section. The stack component records
function call stack frames for context switching in LLVM IR based on call and return
instructions. Each stack also contains fields for local memory allocations in a function directed
by the alloca instruction. The K-LLVM stack implementation is not a simple mapping.
Each K-LLVM function stack has a maximum allowed allocation space, and stack overflow
leads to an error state. Every time when a function is called, a memory range is actually
created in the heap for storing the function stack information. This implementation allows us
to implement some LLVM IR flags such as “inalloca”, and also some extra tools built on top
of K-LLVM (as a future work) to track stack buffer overflows such as AddressSanitizer
and SAFECode. The flags component contains the set of function header flags describing
the function that is currently executing. For example, the readonly flag tells the LLVM
compiler that the function will never produce memory write operations, and this need to be
reflected in the execution semantics; see Section 4.4 for a complete semantics. The currInst
component contains a dynamic block number and instruction number pair representing the
unique identifier for the currently executing instruction. Dynamic block numbers are basically
timestamps and uniquely identify each execution of a basic block; when a new basic block
of instructions is put into the continuation component, a new such number is associated
with the block. Instruction numbers can be assigned statically, e.g., using textual order in
the LLVM IR file. For example, the numbers on the left side of Program-A (Fig. 1) are a
possible instruction numbering.

The currInst pair allows us to modularly add new concurrent behaviors to the K-LLVM
abstract machine. Even though our model assumes byte-wise sequential consistency in this
paper, the machine has potential for additional concurrent behaviors. When dispatching a
memory instruction, a thread need not wait for the instruction commit before proceeding. For
example, a thread will not wait for a load instruction to write values to registers. Instead,
it moves on and marks the specific register as unavailable. If the next instruction needs the
register value, the thread component blocks. Otherwise, the thread continues to execute
instructions. The currInst pair identifies a specific instruction and corresponding register
during write back. The example Program-D (Fig. 1) shows how this feature can affect program
execution in practice. Without this mechanism, the load instruction in Thread-1 always
happens before the store in Thread-2. With this mechanism, an observer can observe the
value 1 or even a race on @x . This example is the motivation of having the abstract machine
in K-LLVM even though its memory model assumes byte-wise sequential consistency in
this paper. K-LLVM is mainly used to verify LLVM compiler steps, and verifying programs
containing library functions is a key verification component. The pthread_create function
in Program-D is a library function and its functionality should contain fences to prevent
the behavior of executing Program-D described above. The abstract machine mechanism in
K-LLVM allows to prove that a particular implementation of pthread_create does not have
harmful behaviors like the one above; whereas otherwise we do not have a mechanism to
verify such library function usage in a program.

L. Li and E. L. Gunter 7:15

The toCommit and readBack components in a thread are to deal with memory instructions,
and they also act as interface communicating with the memory cache. From the memory point
of view, all it knows about memory requests from each thread are from the two components.
In this sense, they belong to the memory model of the K-LLVM abstract machine, even
though they are located in each thread. The toCommit component is implemented as a queue
that receives memory operations from continuation and then sends them to the memory
cache in order. The readback component is implemented as a map and represents the
intermediate step of getting back a value from a memory-read from the memory cache and
assigning the value to registers. These components are needed to distinguish between memory
instructions and their corresponding execution. Another reason is the need to simulate the
difference between the non-atomic and atomic memory operations in LLVM IR. LLVM IR
assumes that each non-atomic memory write or read operation accesses a single byte of data
in the memory cache at a time, while an atomic operation accesses several bytes at once. By
breaking down the execution of non-atomic store and load instructions into possibly several
memory operations, we are able to capture potential races in a multi-threaded program.

The memory cache has a fixed structure in K-LLVM, which is listed on the right side of
Figure 4. The memOpList component stores the memory operations from different threads,
in order to allow the interleaving of memory operations from different threads. The byteMap
component is a function that maps a memory location to a byte of data. A memory write
operation in K-LLVM stores an array of bytes in the byteMap component. While byteMap
represents the entire memory cache, a memory chunk refers to a continuous memory region
in byteMap and is allocated by a global memory initialization or local memory allocation.
An object component stores metadata for a specific memory chunk. Each object contains
a range component indicating the range of the chunk in the whole memory domain (as
keys of byteMap), an alignment component with alignment information, a size component
with the size of the chunk in bytes, and an objType component indicating if the memory
chunk is static or not. The complete and race components are used to record the status
of the operations accessing the memory chunk. According to the LLVM IR documentation,
non-atomic memory operations should access a memory range one byte at a time. When
a non-atomic memory operation is accessing a memory chunk at the same time as another
memory write operation, a race occurs, and the result is undef. The complete and race
components are used to record this status and give the result. The implementations of
the byteMap and object components are used to represent the low-level memory layout
structures in LLVM IR. The reasons to have these components are indicated in Sec. 2. We
summarize them here. The key requirement of having these components in K-LLVM is to
enable a "heavy-weight" pointer provenance model that can carry provenance information for
pointers in every place under the multi-threaded environment, while keeping components
independent and only communicating through observable "official" channels. We believe that
storing metadata on a per-chunk basis is the best way to implement the LLVM IR memory
layout model to maximize the concurrent memory access behaviors allowed by LLVM IR.

We have briefly described the different components of the K-LLVM abstract machine
above. The details of the implementations of each component can be found in our imple-
mentation [26]. In the following sections, we will introduce some detailed implementation
aspects related to memory accesses. The full LLVM IR concurrency model can also be found
in the technical report [26].

4.3 K-LLVM Data Layout

In this and the next sections, we introduce a portion of the K-LLVM abstract machine in
depth, especially, the components and rules related to executing memory related instructions.
The manner in which data layout and memory layout are implemented inK-LLVM facilitates

ECOOP 2020

7:16 K-LLVM: A Relatively Complete Semantics of LLVM IR

the precise semantics of many language features of LLVM IR while maintaining a concise
abstract machine for the execution semantics. In this section, we introduce the implementation
of register and memory location values in K-LLVM and example rules using these values.
The need for two different kinds of values arises as from the fact that memory only sees
values as a sequence of bytes, while instructions see registers as holding compound data. We
describe these two kinds in Figure 5, and we also show some example rules using these data.
In Figure 5, rules connected by a ⇒ operator mean that the transition from the left hand
side to the right hand side happens in the beginning of a continuation component. There is
an implicit rule saying that every transition happening in the beginning of a continuation
also happens globally. More complex transition rules are introduced in Fig. 7. The add and
icmp eq are instructions in LLVM IR appearing here in the concrete syntax.

The undef value for a Bit datum exists due to undefinedness of LLVM IR. In LLVM
IR, if an integer that is not a multiple of the length of a byte (like a 23-bit integer), and is
stored to the memory, then the values for the extra bits generated during the process are
undefined (undef). A memory location value is implemented by the Byte type. In addition
to having eight Bit data, each Byte datum contains a range attribute (Range Option) and
a flag attribute (Range State). If a Byte datum represents a part of a pointer, the range
attribute is the left and right edges of the memory range to which the pointer points, and
if not then none. If a Byte datum represents a part of a pointer, and the pointer is the
result from a getelementptr instruction with a inrange flag, the flag attribute is the left
and right edges of the memory range that the inrange flag defines. If the pointer does not
come from a getelementptr instruction, the flag attribute is none. If a getelementptr
generates an error due to mixing of inrange flags, the flag attribute records the error. We
will see more about the inrange flag of a getelementptr in the paragraph describing store
instruction semantics below. We want to have these two attributes associated with a Byte
datum because we want to provide pointer provenance, so that when a pointer is cast to an
integer or stored to the memory cache, it does not lose side-effect information, such as what
is the memory field the pointer points to. The real data structure of Byte data in K-LLVM
has more fields including information about block address information, endianness, and if a
pointer datum is pointing to a heap, stack, or static constant memory chunk. For simplicity,
we do not include them here, and assume the bytes are in little-endian format. We also
assume no distinction between heap and stack pointers here, even though we have distinct
implementations for each in K-LLVM.

Bit ::= 1 | 0 | undef Range ::= range(Nat , Nat) ′a State ::= Error | ′a Option
Byte ::= byte(Bit List , Range Option , Range State)
Loc ::= loc(Bit List , Type , Range Option , Range State)

Int ::= intLoc(Bit List , Type , Range Option , Range State)
Float ::= floatLoc(Bit List , Type , Range Option , Range State)

(a) add T intLoc(X,A1 ,B1 ,C1), intLoc(Y ,A1 ,B2 ,C2)
⇒ intLoc(bitAdd(T,X,Y), A1 , judge(B1 ,B2), judge(C1 ,C2))

(b) icmp eq T loc(X,A1 ,B1 ,C1), loc(Y ,A1 ,B2 ,C2) ⇒ intLoc([X = Y], i1,none,none)

Figure 5 Memory Data Structure.

For register values, we only introduce integer, float and pointer values here. The description
of other register values can be found in the K-LLVM semantics implementation [26]. Any
of the integer (Int), float (Float) or pointer (Loc) data contains a Bit list, a Type field
representing the type of the datum, a range attribute and a flag attribute. The Bit list
represents the binary format of the value for the datum being either an integer, float (in

L. Li and E. L. Gunter 7:17

the IEEE 754 format) or memory address. The size of the list is equal to the size of the
integer/float/pointer type defined for the data (the pointer size is parameterized inK-LLVM).
We assume that all integer, float and pointer arithmetic is based on the computation of
binary representations, even though we might show decimal representations in some examples
in this paper for presentation purpose. The range and flag attributes have meaning that is
closely related to the ones in a Byte datum, as we will explain below.

The reason for making the register and memory data structure so complicated is that
K-LLVM covers the relatively complete semantics of LLVM IR including corner cases of
not only the individual instruction semantics but also the interactions between casting,
arithmetic and memory related instructions in LLVM IR. Hence, the pointer provenance
information needs to be available both in the threads and the memory cache. In K-LLVM,
the provenance information is stored in the value representation to enable three features of
LLVM IR that require execution decisions based on the past history of the value. First, there
are flags (inrange), which require the possibility of turning the transition state to an error
state in executing a memory instruction long after the computation of a getelementptr
with the flags. Second, a pointer is valid for accessing a memory datum if and only if it is
created from a non-free memory allocation, or it is the result of a finite number of memory
computations based on a non-free memory allocation pointer, and its pointing memory field
is within the memory range of the allocated chunk. Third, an error should be detected
when an execution is accessing memory data by a pointer cast from an integer value whose
calculation never involves values cast from pointers, even if the integer has the same value as
the memory address of a valid pointer.

The two rules (a) and (b) in Fig. 5 give an example describing how an arithmetic
instruction is executed in K-LLVM based on the data structure described above. In
evaluating an LLVM IR add instruction (rule (a)), the value computation happens between
the Bit lists of two data (bitAdd adding two binary numbers together). The function judge
merges two range or flag attributes from possibly two different data that possibly come from
two pointer sources. The judge details are in the actual K-LLVM semantics implementation
[26]. Here, we give some interesting examples. If a pointer is cast to a integer constant (with
the range attribute [L,R]) and added to another integer constant (with the range attribute
none), the judge produces a memory range from the pointer in the range attribute of the
result datum. If the two range attributes of two intLocs have two different memory ranges
(like [L,R] 6= [S ,T]), the judged result is none. If two flag attributes of two data have two
different memory ranges, in this case, judge produces an error state in the flag attribute of
the result datum; and if the result datum is further turned into a pointer, and is used to
read memory data, the program results in unspecified behavior. Rule (b) gives an example
of a comparison instruction that discards the pointer information and produces a pure 1-bit
integer constant. Depending on the instruction, including the nature of its arguments, pointer
information might or might not be transmitted along with the result of the calculation.

4.4 Sample Instruction Semantics
In this section, we introduce semantic rules supporting memory related instructions in K-
LLVM. The set of memory related instructions we select to describe here contains LLVM IR
casting, address calculation (getelementptr) and memory instructions, as well as memory
related flags on the function headers. K-LLVM is the first formal semantics to cover
all behavioral aspects (under byte-wise sequential consistency) of this set, including the
side-effects due to interactions between different instructions inside or outside of the set.
Under the byte-wise sequential consistency assumption, the behaviors of different orderings in
an atomic memory operation collapses to the behavior of the sequentially consistent (seqcst)

ECOOP 2020

7:18 K-LLVM: A Relatively Complete Semantics of LLVM IR

ordering. It is worth noting that there are cases when an instruction can go to an unspecified
behavior or other error states. We will not list all of those rules here, although we have
defined them in K-LLVM. Interested readers may get more details from the K-LLVM
semantics [26].

Casting Instructions. Here we describe the semantics of inttoptr and bitcast as the
highlights of the K-LLVM semantics of casting instructions in Figure 6. The other casting
instructions are implemented in a similar manner. Before K-LLVM, no complete interpreta-
tion for the LLVM IR casting operations existed, especially one supporting casting between
integers or floats and pointers. These casting instructions are hard to define because the
resulting values can vary depending on the program context for the values of the instructions.

(a) inttoptr(intLoc(X,T1 ,B,C),T2)⇒ loc(trunc(X,sizeof(T1) - sizeof(T2)),T2 ,B,C)
if sizeof(T1) ≥ sizeof(T2)

(b) inttoptr(intLoc(X,T1 ,B,C),T2)⇒ loc(addZero(sizeof(T2) - sizeof(T1))@X,T2 ,B,C)
if sizeof(T1) < sizeof(T2)

(c) bitcast(Label(X,T1 ,B,C),T2)⇒ rebuild(X,T2 ,B,C)
if ¬isPointerType(T1) ∧ Label ∈ {intLoc, floatLoc}

(d) bitcast(loc(X,T1 ,B,C),T2)⇒ loc(X,T2 ,B,C)

Figure 6 Casting Rules.

In Figure 6, rules (a) and (b) describe the semantics of inttoptr. The main idea is
to replace the type attribute of the source intLoc with the target type. If the target type
size is smaller than (or equal to) the source one, the semantics truncates (using the trunc
function) the bits (represented by X as a list) by the difference of the sizes of the two types
starting from the most significant bit. Otherwise, we create a list of 0 bits, whose size is
the difference between the two type sizes, by using the addZero function. We place the bits
in front of the source bit list (variable X). For example, in Program-A (Fig. 1), we assume
that the code is running in a 32-bit machine and variable %r5 has the value represented by
intLoc(X , i64, B, C) in line 15. The code tries to convert the %r5 value to a pointer. The
final result pointer can be represented by loc(X ′, i64*, B, C) by taking the right-most
32-bits from X and changing the constructor from intLoc to loc.

Rules (c) and (d) describe the much simpler dynamic semantics of bitcast instructions.
Besides the memory data layout, the K-LLVM type system also contributes to the simplicity.
Once we find out that T1 is not a pointer, we can immediately infer that T2 is also not
a pointer because LLVM IR only allows pointer to pointer or non-pointer to non-pointer
bitcast. Thus, the rule (c) should take the bits (variable X) with additional attribute
information and distribute them to form a corresponding value with respect to the type T2 ,
which is what the function rebuild does. For example, if we bitcast an i24 integer (as
intLoc(X , i24, B, C)) to a three i8 integer array [3 x i8], the 24-bit list X is cut into
three equal parts (X1 , X2 and X3), so we have an array with three elements of the format
intLoc(Y , i8, B, C) where Y can be either X1 , X2 or X3 . Alternatively, if a bitcast
sees a Loc datum, it is immediately inferred that the casting is between two pointers, and
the only effect is the updating of the source type T1 with the target type T2 .

The Semantics of getelementptr. A getelementptr instruction is a memory address
calculation whose main idea is to calculate a memory address value based on a sequence of
indices. Section 3.1 touches on one of the special cases of getelementptr semantics. The
main idea of getelementptr is similar to the one in Zhao’s work [45]. It uses a sequence of

L. Li and E. L. Gunter 7:19

indices of different types to walk incrementally into a data structure layout to calculate a
pointer to the sub-component found at the end of the path the indices describe. Here, we focus
on one particularly important feature of the instruction, the keyword inbounds, which is a flag
applied on the computation results of a getelementptr instruction. For this flag, LLVM IR
requires all the intermediate and final computation results on the address of the input pointer
are within a valid range of the allocated object pointed to by the address. In K-LLVM, we
implement this with the address computation function calGEP. The function calculates an
new address value by adding multiplication results of the index and type size to the input
address, one adding at a time. In each step, before the calculation, the function first checks
if the input address is within the range indicated by the range attribute of the input pointer.
After we compute the final address result, we also check if the memory chunk pointed to by
the input pointer still exists. For example, line 4 of Program-A (Fig. 1) is a getelementptr
instruction, and it is executed successfully in K-LLVM. However, if a memory-free for
the input pointer %r2 is added before the getelementptr, the inbounds flag makes the
instruction result in a poison value, because the memory chunk pointed to by %r2 does
not exist anymore. As another example of an inbounds flag, executing line 5 of Program-A
highlights how a poison value can be produced from a getelementptr. The index i64 -1
makes an intermediate computation result out-of-bound, so variable %u1 gets a poison value.
Another example is to execute line 21 of Program-A. The execution of this getelementptr
fails the inbounds check because its input pointer has range attribute none, so variable %r10
results in a poison value. There is also an inrange flag in a getelementptr instruction.
This flag has subsequent effects on memory instructions after the getelementptr. The flag
information is carried as the flag attribute in the pointer derived from the getelementptr
so that the succeeding memory instructions can use it. We will introduce its semantics in
the next section.

The store Semantics. We only introduce the K-LLVM store memory instructions
here; the other memory instructions are implemented in a similar manner. K-LLVM fully
implements the semantics of stores under the byte-wise sequential consistency assumption.
Specifically, K-LLVM distinguishes the non-atomic and atomic store instructions by
breaking the execution of an memory instruction into three different stages, as shown in
Figure 7. As we mentioned, we do not list negative rules, such as configurations going to an
error state when a store is performing a write operation in the memory cache, when the
memory chunk has already been freed by another thread. The rules in Figure 7 are simplified
versions of the actual K-LLVM rules. The information and handling about address spaces
and memory alignments is not mentioned here. In fact, the construct write has several fields
than one shown in the figure. On the other hand, these rules are non-trivial, and they have
enough functionality to show manner in which the K-LLVM abstract machine distinguishes
between the behaviors of atomic and non-atomic store instructions.

In Figure 7, the Exp type represents an instruction that involves in the computation
in a continuation component (Ψ in Fig. 7). We uses store and atomicStore constructs
in Figure 7 that are different from the LLVM IR concrete syntax. They are BAST format
transformed from an LLVM IR stores instruction in their simplified form here. Each of
them has three fields. The first represents the type of the value; the second is the value
to store in the memory cache and the third is the memory pointer. The write construct
represents the memory operation that a thread uses to communicate with the memory cache
and the memory cache uses to perform memory events. When a store is executed in the
continuation component (Ψ), a list of writes are generated in the toCommit component

ECOOP 2020

7:20 K-LLVM: A Relatively Complete Semantics of LLVM IR

Key ::= (Nat,Nat,Nat) Byte List ::= toBytes(Exp,Nat)
Exp ::= store(Type,Exp,Loc) | atomicStore(Type,Exp,Loc) | write(Key,Nat,Nat,Byte List)

(a)

[X,X + sizeof(T)] ⊆ [L,R] ∧ [X,X + sizeof(T)] ⊆ [L1 ,R1]∧ readonly6∈ Θ(
TID, (BID, IID), (store(T,V ,loc(X,B,range(L,R),range(L1 ,R1)))::Ψ),∆,Θ

)
⇒

(
TID, (BID, IID),Ψ,

∆@genWrites(toBytes(V ,sizeof(T)),(TID,BID, IID),X,sizeof(T)),Θ
)

(b)

[X,X + sizeof(T)] ⊆ [L,R] ∧ [X,X + sizeof(T)] ⊆ [L1 ,R1]∧ readonly6∈ Θ(
TID, (BID, IID), (atomicStore(T,V ,loc(X,B,range(L,R),range(L1 ,R1)))::Ψ),∆,Θ

)
⇒

(
TID, (BID, IID),Ψ,∆@[write((TID,BID, IID),X ,1, toBytes(V ,sizeof(T)))],Θ

)
(c)

({
(TID,CurrInst,Ψ,E::∆,Θ) ∪ Threads

}
, (κ,Rest)

)
⇒

({
(TID,CurrInst,Ψ,∆,Θ) ∪ Threads

}
, (κ@[E],Rest)

)
(d)

Addr ∈ [L,R] ∧ ¬isRace(Key,α)(
write(Key,Addr,1,V)::κ,Γ,

{
([L,R], α,Rest)

}
∪ Ω

)
⇒

(
κ, updateMap(Γ,Addr,V),

{
([L,R], α,Rest)

}
∪ Ω

)
(e)

Size > 1 ∧ β(Key) = none ∧Addr ∈ [L,R] ∧ ¬isRace(Key,α)(
write(Key,Addr,Size,V)::κ,Γ,

{
([L,R], α, β,Rest)

}
∪ Ω

)
⇒

(
κ, updateMap(Γ,Addr,V),

{
([L,R], α ∪ {Key}, β[Key 7→1] , Rest)

}
∪ Ω

)
(f)

Size > 1 ∧ β(Key) = Size - 1 ∧ Addr ∈ [L,R] ∧ ¬isRace(Key,α)(
write(Key,Addr,Size,V)::κ,Γ,

{
([L,R], α, β,Rest)

}
∪ Ω

)
⇒

(
κ, updateMap(Γ,Addr,V),

{
([L,R], α\{Key}, β[Key 7→none] , Rest)

}
∪ Ω

)
Figure 7 Memory Store Rules.

(∆ in Fig. 7). They have the same group ID represented as a Key type that is a triple of
the thread ID, dynamic block number, and instruction number of the store. A write also
has other fields: a natural number representing the memory address value, another natural
number representing the total size of writes from the same Key, and a list of bytes to write
to the memory. The total size is the same for different write operations with the same Key.
It is both the size of the list of writes generated by a non-atomic store and the size of bytes
of the value to write to the memory cache. An atomicStore generates a singleton write.

Before we describe the rules in Figure 7, some conventions are worth noting. Without
special greek letter illustrations on different components, a name of a component with its first
character capitalized is the variable representing the component in all rules (e.g. CurrInst
for the currInst component, and Threads for the threads component). The variable Rest
appearing in some rules in Figure 7 (and Fig. 8) represents the rest of components in a thread
or object component, which do not involve in the computation of the rules. As we have said
in Section 4.2, the K-LLVM abstract machine is for a set of threads communicating with a
single memory cache. The globalControl component is omitted in the computation here,
since we do not need it. Based on these assumptions, we define a transition state to be a
pair of a set of threads and a memory cache: (Threads,Memory). A single thread contains
five components related to memory instructions: thread-ID, currInst, continuation (Ψ),
toCommit (∆) and flag. For simplicity, we assume that a thread only contains these five
components in this section; Also, we assume that the memory cache only contains three
components: the memOpList (κ), byteMap (Γ) and objects (Ω) components. The objects
component (Ω) contains a set of object. Only three sub-components (range, race (α) and
complete (β)) in the object are related in defining the semantics of store. The math

L. Li and E. L. Gunter 7:21

inclusive range [A,B] represents a set of natural number sequencing from the number A to
the number B inclusively. Finally, there are implicit rules omitted in Figure 7, suggesting
that transitions happening in a thread or the memory cache also happens globally.

Rules (a) and (b) in Figure 7 describe how an atomic store and non-atomic store
generate a list of write operations that are pushed to the toCommit component (∆) whose
job is to convey memory operations to the memory cache. The basic idea is to create a list
of writes at the end of toCommit (∆) when we have a store in the head of continuation
(Ψ). The two rules describe the cases when an inrange flag is present in the flag attribute
of the input pointer. In such cases, to execute a store not only requires for the address
value to be within the range indicated in the pointer but also for it to be in the range carried
by the inrange flag; otherwise, the whole system results in an unspecified behavior state.
In K-LLVM, there are rules similar to rules (a) and (b) dealing with pointers without
inrange flags derived by removing the checks for the inrange edges from rules (a) and (b).
Since we will use these rules in an example, we call them rules (ax) and (bx) to distinguish
them from rules (a) and (b). The function toBytes splits a value into a list of bytes (AST
in Fig. 7). The list size is defined by its natural number argument. Its functionality is
similar to the rebuild function to turn a value into a list of elements. The only difference is
that toBytes creates a list of bytes instead of values in the case of rebuild. The function
genWrites takes a list of bytes, a Key datum, a memory address, and the size of the byte
list, then generates a list of writes by distributing a byte at a time from the byte list, and
associates each byte with a memory address and other attributes. The address value is
selected in sequence from the address range between the address and the address plus the
size. Rule (b) is for dealing with atomic stores. The key difference is that it only generates
a singleton write containing the full value to be stored instead of a list. Rule (c) allows the
head element in the toCommit component (∆) of a thread to move to the tail position of the
memOpList (κ) in the memory cache.

Rules (d), (e) and (f) deal with different situations of correctly committing a write to
the byteMap (Γ). The complete component (β) in (e) and (f) is a map from a Key to a
natural number indicating how many writes have been committed to byteMap (Γ) since the
first write with the Key. The Key marks a single instruction and complete allows tracking
the process of the writes entailed by the instruction. To detect races, the race component
(α) contains Keys indicating every Key occupying the memory chunk (object) represented
by the range of the object component. The variable Size represents the number of writes
from the same Key, i.e. the same store instruction. All rules (d), (e) and (f) need to
satisfy two side conditions. The first one is the condition Addr ∈ [L,R] to locate a specific
object in the objects component (Ω) by comparing Addr with the range of the object
(L and R). In K-LLVM, an object is created by a memory allocation; thus, the ranges
of objects (Ω) are always disjoint. Any address (e.g. Addr) within a range (e.g. [L,R])
can be a key to locate the range, which in turn locates an object. The second condition
is to check if a Key is in race with other Keys in race (α) by the function isRace. The
function isRace checks if the race component (α) for the object pointed to by the memory
address value (Addr) has been occupied by another Key. If Size is 1 (rule (d)), the write
represents an atomic memory store, and writes a list of bytes (V) to byteMap (Γ) using
the function updateMap. The function updates a range of bytes to corresponding range of
addresses in byteMap (Γ). Rule (e) is executed if two other conditions are satisfied: the
Size is not 1 and no write for this Key has yet completed. In such case, rule (e) writes a
list of bytes to byteMap (Γ) and updates the information in the race (α), and initializes the
Key in the complete component (β). Rule (f) represents the finish of the execution of a

ECOOP 2020

7:22 K-LLVM: A Relatively Complete Semantics of LLVM IR

non-atomic store in the memory cache. In such cases, we remove the appearance of the
entities represented by variable Key in the race (α) and complete (β) components. We also
need to update byteMap (Γ) with the final write term. Besides rule (e) and (f), another
rule not listed here deals with the case when β(Key) does exist and is less than Size - 1. In
this rule, we continue to write a byte to the byteMap component (Γ) without touching the
race component (α) and incrementing the complete component (β) for Key.

(s)
({(

ϕ,(1,13), (store([2 x i32],[11,11], loc(100,[2 x i32]*,

range(96, 108), none)):: Ψ), [], ∅
)}
∪ Ξ,

(
[],Σ,

{(
[96,108], ∅, ∅,Υ

)}
∪ Ω

))
⇒

({(
ϕ,(1,13),Ψ, (write((ϕ,1,13),100,8,byte(B,none,none))::∆), ∅

)}
∪ Ξ,(

[],Σ,
{(

[96,108], ∅, ∅,Υ
)}
∪ Ω

))
⇒

({(
ϕ,(1,13),Ψ,∆, ∅

)}
∪ Ξ,(

[write((ϕ ,1,13),100,8,byte(B ,none,none)))],Σ,
{(

[96,108], ∅, ∅,Υ
)}
∪ Ω

))
⇒

({(
ϕ,(1,13),Ψ,∆, ∅

)}
∪ Ξ,(

[],Σ[1007→ byte(B,none,none)],
{(

[96,108], {(ϕ,1,13)}, {(ϕ,1,13) 7→1},Υ
)}
∪ Ω

))
⇒···

(t)
({(

ϕ,(1,22), (store(i32, 42, loc(100, i32*, none, none)):: Ψ), [], ∅
)}
∪ Ξ,Rest

)
⇒

(
error unspecifiedBehavior

)
Figure 8 Memory Store Example Configuration Transitions.

As an example of applying the store rules, we focus on the store instruction in line 13
of Program-A (Fig. 1). Group (s) in Figure 8 represents the computations for executing
the first few steps of the store instruction. In these diagrams, we show the computations
as transitions from one state to another. Each transition state is a tuple of a thread set
and the memory cache. In threads, Ξ represents all threads that are not involved in the
computation. The thread we care about has a thread ID ϕ. We assume that the (1,13)
in the first state after the label (s) represents the currInst pair. In the continuation
component, we have the store instruction of line 13 (Fig. 1) on the top of the computation,
and Ψ represents the rest of the computations in continuation. For simplicity, we assume
that the toCommit and flags components are empty for thread ϕ, so they have the values []
and ∅, respectively. In the memory cache, for simplicity, we assume that memOpList is empty,
byteMap is represented by the variable Σ. The memory cache contains some objects. The Ω
in Fig. 8 represents objects not related to this store computation, and there is an object
with range value [96,108] that matters in this computation (Let’s assume that [96,108] is
the memory range created previously). We also assume that the current race and complete
components are both empty (an empty set and empty map). Υ represents the rest of the
components in the object that is not involved in the computation. The to-store data for the
store operation is an array of type [2 x i32] and value [11,11]. Here, we show these data
in decimal formats. In the real K-LLVM abstract machine, they should be in the binary
format. In this example, we assume that the memory pointer address is a natural number
100, and the range of the memory chunk pointed to by the pointer is in the range [96,108].

By applying rule (ax) above, we get a new transition state after the first “⇒” (Fig. 8).
Rule (ax) generates a list of eight bytes in the toCommit component. The first one is the
write term shown in the state, and the other seven bytes are represented by variable ∆.
The variable B inside the byte construct is an eight bit list with all of 0 bits because we
are getting the left-most eight bits of the [11,11] array. By applying rule (c), we get
the resulting state after the second “⇒”. This rule moves the write operation from the
component toCommit in thread ϕ to the empty component memOpList in the memory cache.

L. Li and E. L. Gunter 7:23

Next, rule (e) is executed and we get another new state after the third “⇒”. We can see
that the components race, complete, and byteMap (Γ) are updated, and the memOpList
component becomes empty. This process keeps going until all items in toCommit have reached
byteMap (Γ).

Another example is group (t) in Figure 8. It represents the computations of the store
instruction at line 22 of Program-A (Fig. 1). In the initial state, the pointer has the range
attribute none, so the state is transitioned to an error state with the unspecifiedBehavior
indicator.

Notice that in some states in Group (s), the system might have non-deterministic choices
over transition rules. For these non-deterministic choices, we have the following important
observation, which is clearly true in K-LLVM because the toCommit and memOpList com-
ponents are in FIFO order, and each thread executes instructions in the program order in
the continuation component.

I Observation 2. Assume that a trace of memory operations is generated by observing
the order of memory operations committed to the byteMap in the memory cache. For a
valid LLVM IR program, no matter which rule the K-LLVM abstract machine chooses to
apply in a transition state if such rule correctly pattern matches the state, the memory trace
generated by executing the program is byte-wise sequentially consistent.

The readonly Function Flag. LLVM IR allows users to set flags on the function headers
that suggest that the function has certain features over memory instructions. The readonly
flag is a representative. It means that the execution of the function with the flag should not
use any memory write operations, e.g. a store instruction. If executing a function does
use a write operation, it is unspecified behavior. In Figure 4, there is a flags component
in the control component of a thread. During the static semantics step in Section 4.1, all
functions from a LLVM IR program are compiled to BAST format and stored in a database,
including function header flag information. During executing in the K-LLVM abstract
machine, when a function is called, K-LLVM context switches the control component
for the function, including the flag information called from the database and stored in the
flags component. When K-LLVM is executing a store operation, according to the store
rules (Fig. 7), K-LLVM checks if the flags contain a readonly flag. If not, the store
operation can proceed; otherwise, the whole transition state is transitioned to an error state
of unspecifiedBehavior.

We have given a general idea of how K-LLVM implements different semantic aspects
of LLVM IR here. The full details from the real K-LLVM semantics in K and another
K-LLVM abstract machine in the Isabelle implementation [26].

5 Evaluation and Applications

Evaluating K-LLVM took more than half of the development time. We used K to generate
an interpreter for K-LLVM and ran LLVM IR programs in it. We mainly used the testing
process as a tool to validate the correctness of our semantics, comprised of individual
instruction semantics and our memory models. We also developed several tools to show the
usage of K-LLVM.

Testing Process of K-LLVM. The validation of language semantics is usually accomplished
through the use of external test suites [4, 11, 13], which was also part of our strategy. We
use a large test suite to test the output of K-LLVM against Clang/Clang++. The tests are

ECOOP 2020

7:24 K-LLVM: A Relatively Complete Semantics of LLVM IR

split into two sets. We have a set of unit test cases containing totally 1,385 medium size test
programs, and they were made in the process of defining K-LLVM. They are made to test
each individual instruction or intrinsic function listed in the LLVM documentation with the
consideration of all corner cases. We also have a set of regression test suite. There are 2,156
programs from the GCC-torture test suites. They are compiled from C to LLVM directly
without optimizations. They are used as a regression test suite to validate K-LLVM. Besides,
we also use the test suite (around 900 test cases) from previous K-Java semantics [5] as a
regression test suite to test K-LLVM. We compiled the Java test cases from Java to LLVM
without optimizations. For all of these cases, we first get the output from Clang/Clang++
for compiling a test program to machine code and executing it, and then compare the
output with the output of executing the same program by K-LLVM. For validating the
threading libraries (including mutex ones), we use the K state space exploration tool that
will be introduced later in the section. In the unit test suite, we had 128 multi-threaded
programs. We first execute them by the state space exploration tool, and get all traces
(including all syscalls/memory operations) of each individual program, and examine manually
if they are correct. The test cases and Clang bugs have been documented in the K-LLVM
implementation [26], and the bugs have been reported to the LLVM community.

The methodology for developing K-LLVM was based on a strategy named Test Driven
Development (TDD), whose basic idea is to develop tests before implementing the actual
features. LLVM IR has an official test suite, but it is hard to break it down into individual
pieces. In developing K-LLVM, the test principle is to test individual features while
coordinating new features with old defined ones. When we defined a new feature in K-
LLVM, we followed four steps. First, we read the details about the feature in the LLVM
IR documentation, and thought about how to define the static and dynamic semantics of it.
Next, we wrote out unit test cases to test the feature in the current LLVM IR implementation
(Clang/Clang++). We made sure that we covered enough corner cases by designing a good
set of new unit tests. We then defined the feature and tested it with the new unit tests,
making sure it could pass them all. Third, we added the new feature to all of the defined
unit tests to see if it caused any new problems. Finally, we tested the whole semantics with
the regression test suite (the GCC-torture and K-Java test suites) and made sure that it
passed more test cases than before and did not introduce new problems. When we developed
K-LLVM, we started by defining the static semantics for each individual feature in LLVM
IR, and made sure that all static features were validated for every variable, expression,
instruction, function and module. After that, we defined the K-LLVM memory model and
validated the correctness of the model. Following the definition of the model, we incrementally
defined the semantics of the instructions, working from those that interacted least with other
instructions and the memory such as the arithmetic and conversion instructions, through to
the branching instructions and finally those that affected the memory. Lastly, we defined
different memory operations. The distinction between the atomic and non-atomic memory
operations is particularly complicated due to the fact that we define the non-atomic memory
system to be based on reading/writing one byte at a time.

While searching for undesirable behaviors in Clang was not an objective of this project, we
found some in the process of defining the K-LLVM semantics. Mainly, we ran test programs,
and compared their outputs with those listed in the LLVM documentation. Undesirable
behaviors happened in very diverse circumstances. A large number of them related to the
fact that Clang does not place enough checks to validate what the LLVM IR documentation
suggests. In other cases, Clang has missing features. For example, one cannot cast an fp128
constant to a ppc_fp128 constant, which should be allowed. In some cases, the description

L. Li and E. L. Gunter 7:25

of the LLVM documentation is not clear. For example, in describing the fptrunc and fpext
instructions, LLVM IR uses the idea of large floating point types, and allows a comparison of
two of them. However, it does not give a precise description of how to make this comparison.
In fact, we found that the two types fp128 and ppc_fp128 are not comparable, so there is
no way in LLVM IR to cast from one to the other, contrary to the documentation.

Finally, we use 128 multi-threaded programs to test the K-LLVM thread library with
ksearch. K-LLVM produced a set of behaviors that are all expected according with
respect to our thread and byte-wise sequentially consistent memory model. There are other
multi-threaded programs used for testing the full memory concurrency behaviors, which is
out-of-scope of the paper.

Morpheus on K-LLVM. We built the Morpheus tool [33] on top of K-LLVM to support
correct specifications of compiler optimizations of LLVM IR programs. The Morpheus
core language is a domain-specific one for formal specifications of program transformations.
It describes program transformations as rewrites on control flow graphs with temporal
logic (CTL) side conditions. Morpheus allows users to specify comprehensible program
optimizations including those in data flow analysis and data dependence graph analysis. Its
executable semantics allows these specifications to act as prototypes for the optimizations
themselves, so that candidate optimizations can be tested and refined before including them
in a compiler. We built Morpheus on top of K-LLVM in K, so that users are able to
specify program optimizations in LLVM IR, and test the optimizations by using K tools for
LLVM IR programs. Through the IsaK and TransK tools [28, 27], we translate K-LLVM
into a transition system in Isabelle, and merge it with the Morpheus tool in Isabelle. With
this system, we are able to prove the correctness of the optimizations in Isabelle under the
assumption that programs are executed in the K-LLVM abstract machine and a choice of
memory model. As an instance, we are able to define redundant store elimination properties
on LLVM IR programs in Isabelle under sequential consistency. With the K-LLVM abstract
machine, we have a framework for proving the correctness of the optimization for all programs
in LLVM IR in Isabelle. The finalization of the proof will be an interesting future work of
K-LLVM. The detailed semantics of Morpheus, and its union with a transition semantics
for a fragment of LLVM for use in proving properties of program transformations is in [32],
but K-LLVM came after the paper.

Detecting Undefined Behaviors. When an undefined behavior happens, K-LLVM outputs
an error state. This is particularly useful for programmers to reveal unexpected behaviors
to programmers, especially memory access errors. For example, in Program-A (Fig. 1), the
execution of the program results in a transition state with an error component containing
an unspecifiedBehavior construct (Fig. 8). This is because pointer %r9 comes from a
non-valid source. By using krun, we can see the following error message for the Program-A
execution:

$ krun program -a.ll
ERROR while executing the program .
Description : The argument pointer points to an illegal location .
Line - number : 22

For some undefined behaviors in LLVM IR, the ksearch space exploration method cannot
list all outputs. Program-E (Fig. 1) is such an example. The program is to create a memory
field, get a memory pointer, then turn the pointer to an integer and print it. The output
is a non-deterministic value with infinite many possible values. When using krun (the
single-thread execution engine in K) to execute the program, it prints out a random integer

ECOOP 2020

7:26 K-LLVM: A Relatively Complete Semantics of LLVM IR

value depending on the runtime memory address allocation in K-LLVM. A better way to
analyze the program is to use the K symbolic execution engine. One can use ksearch with
the –symbolic flag to execute this program, and the final result is a variable representing a
integer value. One can also use the K symbolic equivalence checker to check if the executions
of two similar programs printing out variables representing the same range of integers. The
equivalence checker relies on the Z3 SMT solver to calculate if two variables representing the
same range of values.

State Space Exploration. A trivial utility of K-LLVM is state space exploration through
the ksearch tool. Users can use ksearch (actual command: krun –search) to see all
possible final results and traces of multi-threaded programs based on the automatically
generated interpreter for K-LLVM in K. This can be useful for detecting out-of-thin-air
behaviors. For example, by assuming sequential consistency, if we execute program-B (Fig. 1)
with the initial values of zero in both memory fields for pointers @x and @y, the final
results of %a and %b can never both be zero. We can also detect undefined values of a
race. According to the documentation of LLVM IR, when a non-atomic store happens, and
another memory operation from another thread is trying to access the same field, a race
happens, and the two memory operations both get undef. By using ksearch to execute
program-C (Fig. 1), we can see undef for variables %a and %b in some final results.

Additionally, the option –pattern allows us to filter the traces generated by executing
a multi-threaded program. This option can be used to detect some interesting behaviors.
For example, in K-LLVM, the globalControl component has a sub-component named
waitJoinThreads that is used to store the states when a thread is waiting to join its child
threads. If two threads in K-LLVM use the Pthread library function pthread_join to
wait for each other in a multi-threaded program, the result is a deadlock. We can use the
–pattern option with the pattern 〈M (X |-> EDEADLK) 〉waitJoinThreads to detect if any
trace of the multi-threaded program results in a deadlock. The key word EDEADLK is a flag in
the Pthread library meaning that a thread has ended in a deadlock. Variable X represents
any thread with an unspecified thread ID.

6 Conclusion and Future Work

In this paper, we propose K-LLVM, a formal semantics of LLVM IR in K. The main
advantages of K-LLVM is its relatively completeness and its implementation via a novel
abstract machine for LLVM IR. To the best of our knowledge, K-LLVM is the most
complete formal semantics of LLVM IR. We fully define the static semantics and dynamic
semantics of LLVM IR relative to a sequentially consistent memory model. To validate its
completeness, we ran 1,385 unit testing and around 3,000 concrete test programs, all of
which K-LLVM successfully executed. K-LLVM provides guidance and reference to future
compiler developers on exactly what are permissible behaviors in running LLVM IR programs.
It also provides important piece of a framework for proving properties of compilers to or
from LLVM IR. The K-LLVM abstract machine is a concise way of specifying how each
LLVM IR instruction interacts with different computer components. In particular, K-LLVM
covers corner cases and side-effects of instruction semantics that previous work does not have,
such as the different cases of the getelementptr operators, casting operators, and memory
operators. K-LLVM also supports multi-threaded behaviors and provides users a collection
of tools, including a state-space searching tool to explore traces of their LLVM IR programs
under the assumption of sequential consistency. While this was not the main focus of this
work, we also found more than 20 bugs in the current LLVM implementation, Clang.

L. Li and E. L. Gunter 7:27

In follow-on work to this paper, we have two on-going studies of K-LLVM. First, we are
trying to finalize the full LLVM IR memory model in K-LLVM, including the behaviors of
different atomic memory orderings and volatile memory accesses, with heavy testings and
proofs of its relationship with existing C++ memory models [1, 19, 20, 16, 40, 8]. Second,
we are defining a formal semantics for Haskell and verifying the correctness of the compiler
from Haskell to LLVM IR, which requires both the semantics of Haskell and the semantics of
LLVM IR as given in this paper.

References
1 Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Mathematizing C++

Concurrency. SIGPLAN Not., 46(1):55–66, January 2011. doi:10.1145/1925844.1926394.
2 Yves Bertot and Pierre Casteran. Interactive Theorem Proving and Program Development.

SpringerVerlag, 2004.
3 Sandrine Blazy and Xavier Leroy. Mechanized Semantics for the Clight Subset of the

C Language. Journal of Automated Reasoning, 43(3):263–288, 2009. doi:10.1007/
s10817-009-9148-3.

4 Martin Bodin, Arthur Chargueraud, Daniele Filaretti, Philippa Gardner, Sergio Maffeis,
Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. A Trusted Mechanised JavaScript
Specification. SIGPLAN Not., 49(1):87–100, January 2014. doi:10.1145/2578855.2535876.

5 Denis Bogdănaş and Grigore Roşu. K-Java: A Complete Semantics of Java. In Proceedings
of the 42nd Symposium on Principles of Programming Languages (POPL’15), pages 445–456.
ACM, January 2015. doi:10.1145/2676726.2676982.

6 Egon Börger, Nicu G. Fruja, Vincenzo Gervasi, and Robert F. Stärk. A High-level Modular
Definition of the Semantics of C#. Theor. Comput. Sci., 336(2-3):235–284, May 2005. doi:
10.1016/j.tcs.2004.11.008.

7 Soham Chakraborty and Viktor Vafeiadis. Formalizing the Concurrency Semantics of an
LLVM Fragment. In Proceedings of the 2017 International Symposium on Code Generation
and Optimization, CGO ’17, pages 100–110, Piscataway, NJ, USA, 2017. IEEE Press. URL:
http://dl.acm.org/citation.cfm?id=3049832.3049844.

8 Soham Chakraborty and Viktor Vafeiadis. Grounding Thin-air Reads with Event Structures.
Proc. ACM Program. Lang., 3(POPL):70:1–70:28, January 2019. doi:10.1145/3290383.

9 Sophia Drossopoulou, Susan Eisenbach, and Sarfraz Khurshid. Is the Java Type System Sound?
Theor. Pract. Object Syst., 5(1):3–24, January 1999. doi:10.1002/(SICI)1096-9942(199901/
03)5:1<3::AID-TAPO2>3.0.CO;2-T.

10 Chucky Ellison and David Lazar. The LLVM Semantics in K, 2012. URL: https://github.
com/davidlazar/llvm-semantics.

11 Chucky Ellison and Grigore Rosu. An Executable Formal Semantics of C with Applications.
In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’12, pages 533–544, New York, NY, USA, 2012. ACM.
doi:10.1145/2103656.2103719.

12 Azadeh Farzan, Feng Chen, José Meseguer, and Grigore Roşu. Formal Analysis of Java Pro-
grams in JavaFAN. In Rajeev Alur and Doron A. Peled, editors, Computer Aided Verification,
pages 501–505, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

13 Daniele Filaretti and Sergio Maffeis. An Executable Formal Semantics of PHP. In Richard
Jones, editor, ECOOP 2014 – Object-Oriented Programming, pages 567–592, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg.

14 Yuri Gurevich. Evolving algebras 1993: Lipari guide. In Egon Börger, editor, Specification
and Validation Methods, pages 9–36. Oxford University Press, Inc., New York, NY, USA, 1995.
URL: http://dl.acm.org/citation.cfm?id=233976.233979.

ECOOP 2020

https://doi.org/10.1145/1925844.1926394
https://doi.org/10.1007/s10817-009-9148-3
https://doi.org/10.1007/s10817-009-9148-3
https://doi.org/10.1145/2578855.2535876
https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1016/j.tcs.2004.11.008
https://doi.org/10.1016/j.tcs.2004.11.008
http://dl.acm.org/citation.cfm?id=3049832.3049844
https://doi.org/10.1145/3290383
http://coq.inria.fr
https://doi.org/10.1002/(SICI)1096-9942(199901/03)5:1<3::AID-TAPO2>3.0.CO;2-T
https://doi.org/10.1002/(SICI)1096-9942(199901/03)5:1<3::AID-TAPO2>3.0.CO;2-T
https://doi.org/10.1145/2103656.2103719

7:28 K-LLVM: A Relatively Complete Semantics of LLVM IR

15 Myra Van Inwegen and Elsa L. Gunter. HOL-ML. In Proceedings of the 6th International
Workshop on Higher Order Logic Theorem Proving and Its Applications, HUG ’93, pages
61–74, London, UK, UK, 1994. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?
id=646520.694367.

16 Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. A Promising
Semantics for Relaxed-memory Concurrency. SIGPLAN Not., 52(1):175–189, January 2017.
doi:10.1145/3093333.3009850.

17 Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov, Steve Zdancewic, and
Viktor Vafeiadis. A Formal C Memory Model Supporting Integer-pointer Casts. SIGPLAN
Not., 50(6):326–335, June 2015. doi:10.1145/2813885.2738005.

18 Jeehoon Kang, Yoonseung Kim, Youngju Song, Juneyoung Lee, Sanghoon Park,
Mark Dongyeon Shin, Yonghyun Kim, Sungkeun Cho, Joonwon Choi, Chung-Kil Hur, and
Kwangkeun Yi. Crellvm: Verified Credible Compilation for LLVM. SIGPLAN Not., 53(4):631–
645, June 2018. doi:10.1145/3296979.3192377.

19 Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. Taming Release-acquire Consistency.
SIGPLAN Not., 51(1):649–662, January 2016. doi:10.1145/2914770.2837643.

20 Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. Repairing
Sequential Consistency in C/C++11. SIGPLAN Not., 52(6):618–632, June 2017. doi:
10.1145/3140587.3062352.

21 Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In Proceedings of the International Symposium on Code Gener-
ation and Optimization: Feedback-directed and Runtime Optimization, CGO ’04, pages 75–,
Washington, DC, USA, 2004. IEEE Computer Society. URL: http://dl.acm.org/citation.
cfm?id=977395.977673.

22 Daniel K. Lee, Karl Crary, and Robert Harper. Towards a Mechanized Metatheory of Standard
ML. SIGPLAN Not., 42(1):173–184, January 2007. doi:10.1145/1190215.1190245.

23 Juneyoung Lee, Chung-Kil Hur, Ralf Jung, Zhengyang Liu, John Regehr, and Nuno P. Lopes.
Reconciling High-level Optimizations and Low-level Code in LLVM. Proc. ACM Program.
Lang., 2(OOPSLA):125:1–125:28, October 2018. doi:10.1145/3276495.

24 Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy Das, David Majnemer,
John Regehr, and Nuno P. Lopes. Taming Undefined Behavior in LLVM. SIGPLAN Not.,
52(6):633–647, June 2017. doi:10.1145/3140587.3062343.

25 Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart. The CompCert
Memory Model, Version 2. Research Report RR-7987, INRIA, June 2012. URL: https:
//hal.inria.fr/hal-00703441.

26 Liyi Li and Elsa Gunter. LLVM Semantics, 2019. URL: https://github.com/liyili2/
llvm-semantics-1.

27 Liyi Li and Elsa L Gunter. IsaK: A Complete Semantics of K. Technical Report
http://hdl.handle.net/2142/100116, University of Illinois at Urbana-Champaign, June 2018.

28 Liyi Li and Elsa L. Gunter. IsaK-Static: A Complete Static Semantics of K. In Kyungmin Bae
and Peter Csaba Ölveczky, editors, Formal Aspects of Component Software, pages 196–215,
Cham, 2018. Springer International Publishing.

29 llvm.org. LLVM Language Reference Manual, 2018. URL: http://releases.llvm.org/6.0.
0/docs/LangRef.html.

30 Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. Provably Correct
Peephole Optimizations with Alive. SIGPLAN Not., 50(6):22–32, June 2015. doi:10.1145/
2813885.2737965.

31 Savi Maharaj and Elsa L. Gunter. Studying the ML Module System in HOL. In Proceedings of
the 7th International Workshop on Higher Order Logic Theorem Proving and Its Applications,
pages 346–361, London, UK, UK, 1994. Springer-Verlag. URL: http://dl.acm.org/citation.
cfm?id=646521.759249.

http://dl.acm.org/citation.cfm?id=233976.233979
http://dl.acm.org/citation.cfm?id=646520.694367
http://dl.acm.org/citation.cfm?id=646520.694367
https://doi.org/10.1145/3093333.3009850
https://doi.org/10.1145/2813885.2738005
https://doi.org/10.1145/3296979.3192377
https://doi.org/10.1145/2914770.2837643
https://doi.org/10.1145/3140587.3062352
https://doi.org/10.1145/3140587.3062352
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1145/1190215.1190245
https://doi.org/10.1145/3276495
https://doi.org/10.1145/3140587.3062343
https://hal.inria.fr/hal-00703441
https://hal.inria.fr/hal-00703441
https://github.com/liyili2/llvm-semantics-1
https://github.com/liyili2/llvm-semantics-1

L. Li and E. L. Gunter 7:29

32 William Mansky. Specifying and verifying program transformations with PTRANS. Technical
Report http://hdl.handle.net/2142/49385, University of Illinois at Urbana-Champaign, May
2014.

33 William Mansky, Elsa L. Gunter, Dennis Griffith, and Michael D. Adams. Specifying and
Executing Optimizations for Generalized Control Flow Graphs. Science of Computer Pro-
gramming, 130:2–23, November 2016. doi:10.1016/j.scico.2016.06.003.

34 Narciso Martí-Oliet and José Meseguer. Rewriting Logic as a Logical and Semantic Framework.
In J. Meseguer, editor, Electronic Notes in Theoretical Computer Science, volume 4. Elsevier
Science Publishers, 2000.

35 Paul E. Mckenney. Memory Barriers: a Hardware View for Software Hackers, 2009.
36 Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell, Alexander Richardson,

Robert N. M. Watson, and Peter Sewell. Exploring C Semantics and Pointer Provenance.
Proc. ACM Program. Lang., 3(POPL):67:1–67:32, January 2019. doi:10.1145/3290380.

37 Robin Milner, Mads Tofte, and David MacQueen. The Definition of Standard ML. MIT Press,
Cambridge, MA, USA, 1997.

38 Daejun Park, Andrei Ştefănescu, and Grigore Roşu. KJS: A Complete Formal Semantics
of JavaScript. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’15), pages 346–356. ACM, June 2015. doi:
10.1145/2737924.2737991.

39 Lawrence C. Paulson. Isabelle: The Next 700 Theorem Provers. In P. Odifreddi, editor, Logic
and Computer Science, pages 361–386. Academic Press, 1990.

40 Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. Bridging the gap between programming
languages and hardware weak memory models. Proc. ACM Program. Lang., 3(POPL):69:1–
69:31, January 2019. doi:10.1145/3290382.

41 Grigore Roşu. K Implementation, 2016. URL: https://github.com/kframework/k.
42 Grigore Roşu and Traian Florin Şerbănuţă. An Overview of the K Semantic Framework. Journal

of Logic and Algebraic Programming, 79(6):397–434, 2010. doi:10.1016/j.jlap.2010.03.012.
43 Don Syme. Proving Java Type Soundness. In Formal Syntax and Semantics of Java, pages

83–118, London, UK, UK, 1999. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?
id=645580.658814.

44 Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and Understanding Bugs in
C Compilers. SIGPLAN Not., 46(6):283–294, June 2011. doi:10.1145/1993316.1993532.

45 Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. Formalizing
the LLVM Intermediate Representation for Verified Program Transformations. SIGPLAN
Not., 47(1):427–440, January 2012. doi:10.1145/2103621.2103709.

ECOOP 2020

http://releases.llvm.org/6.0.0/docs/LangRef.html
http://releases.llvm.org/6.0.0/docs/LangRef.html
https://doi.org/10.1145/2813885.2737965
https://doi.org/10.1145/2813885.2737965
http://dl.acm.org/citation.cfm?id=646521.759249
http://dl.acm.org/citation.cfm?id=646521.759249
https://doi.org/10.1016/j.scico.2016.06.003
https://doi.org/10.1145/3290380
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1145/3290382
https://github.com/kframework/k
https://doi.org/10.1016/j.jlap.2010.03.012
http://dl.acm.org/citation.cfm?id=645580.658814
http://dl.acm.org/citation.cfm?id=645580.658814
https://doi.org/10.1145/1993316.1993532
https://doi.org/10.1145/2103621.2103709

Revision Notice

This is a revised version of the eponymous paper appeared in the proceedings of ECOOP 2020
(LIPIcs, volume 166, http://www.dagstuhl.de/dagpub/978-3-95977-154-2, published in
November, 2020), in which the following changes were made:

Page 4, Section 2, the following sentence is added: “The K-LLVM semantics builds on top
of the LLVM semantics in K by Ellison and Lazar [10]. Our semantics directly extends their
work to support missing features, including a more precise memory model and concurrency”.
Page 4, the first paragraph is replaced with: “Other LLVM IR Semantics. Besides K-LLVM,
the other formal executable semantics we keep track of the provenance information for
the lifetime of the pointer no matter what the pointer becomes. The details are in Sec. 4.4.”.
Page 27, the reference [10] by Chucky Ellison and David Lazar is added.

Dagstuhl Publishing – April 12, 2021.

Space-Efficient Gradual Typing in
Coercion-Passing Style
Yuya Tsuda
Graduate School of Informatics, Kyoto University, Japan
tsuda@fos.kuis.kyoto-u.ac.jp

Atsushi Igarashi
Graduate School of Informatics, Kyoto University, Japan
igarashi@kuis.kyoto-u.ac.jp

Tomoya Tabuchi
Graduate School of Informatics, Kyoto University, Japan
tabuchi@fos.kuis.kyoto-u.ac.jp

Abstract
Herman et al. pointed out that the insertion of run-time checks into a gradually typed program
could hamper tail-call optimization and, as a result, worsen the space complexity of the program.
To address the problem, they proposed a space-efficient coercion calculus, which was subsequently
improved by Siek et al. The semantics of these calculi involves eager composition of run-time
checks expressed by coercions to prevent the size of a term from growing. However, it relies also
on a nonstandard reduction rule, which does not seem easy to implement. In fact, no compiler
implementation of gradually typed languages fully supports the space-efficient semantics faithfully.

In this paper, we study coercion-passing style, which Herman et al. have already mentioned,
as a technique for straightforward space-efficient implementation of gradually typed languages.
A program in coercion-passing style passes “the rest of the run-time checks” around – just like
continuation-passing style (CPS), in which “the rest of the computation” is passed around – and
(unlike CPS) composes coercions eagerly. We give a formal coercion-passing translation from λS
by Siek et al. to λS1, which is a new calculus of first-class coercions tailored for coercion-passing
style, and prove correctness of the translation. We also implement our coercion-passing style
transformation for the Grift compiler developed by Kuhlenschmidt et al. An experimental result
shows stack overflow can be prevented properly at the cost of up to 3 times slower execution for
most partially typed practical programs.

2012 ACM Subject Classification Theory of computation → Semantics and reasoning; Software
and its engineering → Compilers; Theory of computation → Operational semantics

Keywords and phrases Gradual typing, coercion calculus, coercion-passing style, dynamic type
checking, tail-call optimization

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.8

Related Version A full version of the paper is available at https://arxiv.org/abs/1908.02414.

Funding This work was partially supported by JSPS KAKENHI Grant Number JP17H01723.

Acknowledgements We thank anonymous reviewers for valuable comments and John Toman for
proofreading.

1 Introduction

1.1 Space-Efficiency Problem in Gradual Typing
Gradual typing [36, 40] is one of the linguistic approaches to integrating static and dynamic
typing. Allowing programmers to mix statically typed and dynamically typed fragments
in a single program, it advocates the “script to program” evolution [40]. Namely, software

© Yuya Tsuda, Atsushi Igarashi, and Tomoya Tabuchi;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 8; pp. 8:1–8:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7420-2575
mailto:tsuda@fos.kuis.kyoto-u.ac.jp
https://orcid.org/0000-0002-5143-9764
mailto:igarashi@kuis.kyoto-u.ac.jp
mailto:tabuchi@fos.kuis.kyoto-u.ac.jp
https://doi.org/10.4230/LIPIcs.ECOOP.2020.8
https://arxiv.org/abs/1908.02414
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Space-Efficient Gradual Typing in Coercion-Passing Style

development starts with simple, often dynamically typed scripts, which evolve to more robust,
fully statically typed programs through intermediate stages of partially typed programs. To
make this evolution work in practice, it is important that the performance of partially typed
programs at intermediate stages is comparable to that of (the slower of) the two ends, that
is, dynamically typed scripts and statically typed programs.

However, it has been pointed out that gradual typing suffers from serious efficiency
problems from both theoretical and practical viewpoints [19, 20, 39]. In particular, Takikawa
et al. [39] showed that even a state-of-the-art gradual typing implementation could show
catastrophic slowdown for partially typed programs due to run-time checking to ensure safety.
Worse, such slowdown is not easy to predict because it depends on implicit run-time checks
inserted by the language implementation and it requires fairly deep knowledge about the
underlying gradual type system to understand when and where run-time checks are inserted
and how they behave. Since then, several pieces of work have investigated the performance
issues [4, 27, 31, 29, 24, 12].

Earlier work by Herman et al. [19, 20] pointed out a related problem. They showed that,
when values are passed between a statically typed part and a dynamically typed part many
times, delayed run-time checks may accumulate and make space complexity of a program
worse than an unchecked semantics.

To make the discussion more concrete, consider the following mutually recursive functions
(written in ML-like syntax):

let rec even (x : int) : ? =
if x = 0 then true〈bool!〉 else (odd (x - 1))〈bool!〉

and odd (x : int) : bool =
if x = 0 then false else (even (x - 1))〈bool?p〉

Ignoring the gray part (in angle brackets), which will be explained shortly, this is a tail-
recursive definition of functions to decide whether a given integer is even or odd, except that
the return type of one of the functions is written ?, which is the dynamic type, which can
be any tagged value. This definition expresses a situation where a statically typed and a
dynamically typed function call each other.1 The gray part represents inserted run-time
checks, written using Henglein’s coercion syntax [18]: bool! is a coercion from bool to ? and
true〈bool!〉 means that (untagged) Boolean value true will be tagged with bool to make a
value of the dynamic type; bool?p is a coercion from ? to bool and (even (x - 1))〈bool?p〉
means that the value returned from recursive call even (x - 1) will be tested whether it
is tagged with bool – if so, the run-time check removes the tag and returns the untagged
Boolean value, and, otherwise, it results in blame, which is an uncatchable exception (with
label p to indicate where the check has failed).

The crux of this example is that the insertion of run-time checks has broken tail recursion:
due to 〈bool!〉 and 〈bool?p〉, the recursive calls are not in tail positions any longer. So,
according to the original semantics of coercions [18], evaluation of odd 4 is as follows:

odd 4 7−→∗ (even 3)〈bool?p〉 7−→∗ (odd 2)〈bool!〉〈bool?p〉
7−→∗ (even 1)〈bool?p〉〈bool!〉〈bool?p〉 7−→∗ (odd 0)〈bool!〉〈bool?p〉〈bool!〉〈bool?p〉
7−→∗ false〈bool!〉〈bool?p〉〈bool!〉〈bool?p〉 7−→∗ false

1 In this sense, the argument of even should have been ?, too, but it would clutter the code after inserting
run-time checks.

Y. Tsuda, A. Igarashi, and T. Tabuchi 8:3

odd 4
7−→∗ (even 3)〈bool?p〉
7−→ (odd (3− 1))〈bool!〉〈bool?p〉
7−→ (odd (3− 1))〈bool! # bool?p〉
= (odd (3− 1))〈idbool〉
7−→ (odd 2)〈idbool〉
7−→ (even (2− 1))〈bool?p〉〈idbool〉
7−→ (even (2− 1))〈bool?p # idbool〉
= (even (2− 1))〈bool?p〉
7−→ (even 1)〈bool?p〉
7−→ . . .

oddk (4, idbool)
7−→ evenk (4− 1, bool?p ;; idbool)
7−→ evenk (4− 1, bool?p)
7−→ evenk (3, bool?p)
7−→ oddk (3− 1, bool! ;; bool?p)
7−→ oddk (3− 1, idbool)
7−→ oddk (2, idbool)
7−→ evenk (2− 1, bool?p ;; idbool)
7−→ evenk (2− 1, bool?p)
7−→ evenk (1, bool?p)
7−→ . . .

Figure 1 Reduction from odd 4 in λS (left) and reduction from odd (4, idbool) in λS1 (right).

Thus, the size of a term being evaluated is proportional to the argument n at its longest,
whereas unchecked semantics (without coercions) allows for tail-call optimization and constant-
space execution. This is the space-efficiency problem of gradual typing.

1.2 Space-Efficient Gradual Typing

Herman et al. [19, 20] also presented a solution to this problem. In the evaluation sequence of
oddn above, we could immediately “compress” nested coercion applications M 〈bool!〉〈bool?p〉
before computation of the target term M ends, because 〈bool!〉〈bool?p〉 – tagging immediately
followed by untagging – is equivalent to the identity function. By doing so, we can maintain
that the order of the size of a term in the middle of evaluation is constant. This idea is
formalized in terms of a “space-efficient” extension of the coercion calculus [18]. Since then,
a few space-efficient coercion/cast calculi have been proposed [37, 38, 35].

Among them, Siek et al. [37] have proposed a space-efficient coercion calculus λS. λS
is equipped with a composition function that compresses consecutive coercions in certain
canonical forms. The coercion composition is achieved as a simple recursive function thanks
to the canonical forms. We show evaluation of odd 4 according to the λS semantics in the
left of Figure 1.2 Here, s # t is a meta-level operation that composes two coercions s, t (in
canonical forms) and yields another canonical coercion that semantically corresponds to their
sequential composition. This composition function enables us to prevent the size of a term
from growing.

However, in order to ensure that nested coercion applications are always merged, the
operational semantics of λS relies on a nonstandard reduction rule and nonstandard evaluation
contexts. Although it does not cause any theoretical problems, it does not seem easy to
implement – in particular, its compilation method seems nontrivial. In fact, none of the
existing compiler implementations that address the space-efficiency problem [24, 12] solves
the problem of growing coercions at tail positions (an exception is recent work by Castagna
et al. [5] – See Section 6 for more comparison).

2 Strictly speaking, bool! and bool?p are abbreviations of idbool; bool! and bool?p; idbool, respectively, in
λS.

ECOOP 2020

8:4 Space-Efficient Gradual Typing in Coercion-Passing Style

1.3 Our Work: Coercion-Passing Style

In this paper, we study coercion-passing style for space-efficient gradual typing. Just as
continuation-passing style, in which “the rest of the computation” is passed around as
first-class functions and every function call is at a tail position, a program in coercion-passing
style passes “the rest of the run-time checks” around. Actually, the idea of coercion-passing
style has already been listed as one of the possible implementation techniques by Herman et
al. [19, 20] but it has been neither well studied nor formalized.

We use the even/odd example above to describe our approach to the problem. Here are
the even/odd functions in coercion-passing style. (We omit type declarations for simplicity.)

let rec evenk (x, κ) =
if x = 0 then true〈bool! ;; κ〉 else oddk (x - 1, bool! ;; κ)

and oddk (x, κ) =
if x = 0 then false〈κ〉 else evenk (x - 1, bool?p ;; κ)

Additional parameters named κ are for first-class coercions, which are supposed to be applied
– as in false〈κ〉 – to values that are returned in the original function definition. We often
call these coercions continuation coercions. Coercion applications such as true〈bool!〉 and
(oddk (x - 1))〈bool!〉 at tail positions in the original program are translated to coercion
compositions such as true〈bool! ;; κ〉 and oddk (x - 1, bool! ;; κ), respectively. When κ
is bound to a concrete coercion, it will be composed with bool! before it is applied. Similarly
to programs in CPS, function calls pass (composed) coercions.

With these functions in coercion-passing style, the evaluation of oddk (4, idbool) (where
idbool is an identity coercion, which does nothing) proceeds as in the right of Figure 1. Since
tagging followed by untagging (with the same tag) actually does nothing, bool! ;; bool?p

composes to idbool by the (meta-level) coercion composition bool! # bool?p.
Similarly to the λS semantics described above, coercion composition in the argument

takes place before a recursive call, thus the size of coercions stays bounded by the constant
order, overcoming the space efficiency problem. A nice property of our solution is that the
evaluation is standard call-by-value.

One can view the extra parameter κ as an accumulating parameter and continuation
coercions as (delimited) continuations in defunctionalized forms [30]. Unlike simple defunc-
tionalization, however, special composition of two defunctionalized coercions is provided,
preventing the sizes of composed coercions from growing.

Contributions

Since the operational semantics of λS seems nontrivial to implement due to a nonstandard
reduction rule, we investigate implementation of the space-efficient semantics via a translation
into coercion-passing style. Our contributions in this paper are summarized as follows:

In the context of the space-efficiency problem of gradual typing, we develop a new calculus
λS1 of space-efficient first-class coercions.
We formalize a coercion-passing style translation from (a slight variant of) space-efficient
coercion calculus λS [37] to the new calculus λS1.
We prove correctness of the coercion-passing style translation via a simulation property.
We implement the coercion-passing style translation on top of the Grift compiler [24],
and conduct some experiments to show that stack overflow is indeed avoided.

Y. Tsuda, A. Igarashi, and T. Tabuchi 8:5

Outline

The rest of this paper is organized as follows. We review the space-efficient coercion calculus
λS [37] in Section 2. We introduce a new space-efficient coercion calculus with first-class
coercions λS1 in Section 3, formalize a translation into coercion-passing style as a translation
from λS to λS1, and prove correctness of the translation in Section 4. We discuss our
implementation of coercion-passing translation on top of the Grift compiler [24] and show an
experimental result in Section 5. Finally, we discuss related work in Section 6 and conclude
in Section 7. Proofs of the stated properties can be found in the full version.

2 Space-Efficient Coercion Calculus

In this section, we review the space-efficient coercion calculus λS [37], which is the source
calculus of our translation. Our definition differs from the original in a few respects, as
we will explain later. For simplicity, we do not include (mutually) recursive functions and
conditional expressions in the formalization but it is straightforward to add them; in fact,
our implementation includes them.

Main novelties of λS over the original coercion calculus λC [18] are (1) space-efficient
coercions, which are canonical forms of coercions, whose composition can be defined by a
straightforward recursive function, and (2) operational semantics in which a sequence of
coercion applications is collapsed eagerly – even before they are applied to a value [19, 20, 35].

Basic forms of coercions are inherited from λC [18], which provides (1) identity coercions
idA (where A is a type), which do nothing; (2) injections G!, which add a type tag G to
a value to make a value of the dynamic type; (3) projections G?p, which test whether a
value of the dynamic type is tagged with G, remove the tag if the test succeeds, or raise
blame labeled p if it fails; (4) function coercions c1 → c2, which, when they are applied to a
function, coerce an argument to the function by c1 and a value returned from the function by
c2; and (5) sequential compositions c1; c2, which apply c1 and c2 in this order. Space-efficient
coercions restrict the way basic coercions are combined by sequential composition; they can
be roughly expressed by the following regular expression:

(G?p;)?(idι + (s1 → s2))(; G′!)?

(where ι is a base type, s1 and s2 stand for space efficient coercions, (· · ·)? stands for
an optional element, and + for alternatives). As already mentioned, an advantage of
this form is that (meta-level) sequential composition (denoted by s1 # s2) of two space-
efficient coercions results in another space-efficient coercion (if the composition is well
typed), in other words, space-efficient coercions are closed under s1 # s2. For example, the
composition ((G1?p;)?(idι + (s1 → s2)); G2!) # (G3?p′ ; (idι + (s3 → s4))(; G4!)?) will be
((G1?p;)?(idι + ((s3 # s1) → (s2 # s4)))(; G4!)?) if G2 = G3 – that is, tagging with G2 is
immediately followed by inspection whether G2 is present.3 Notice that the resulting coercion
conforms to the regular expression again. (The other case where G2 6= G3 means that the
projection G3?p′ will fail; we will explain such failures later.)

The operational semantics includes the reduction rule F [M 〈s〉〈t〉] −→ F [M 〈s # t〉] where
F is an evaluation context that does not include nested coercion applications and whose
innermost frame is not a coercion application. This rule intuitively means that two consecutive
coercions at the outermost position will be composed even before M is evaluated to a value.
This eager composition avoids a long chain of coercion applications in an evaluation context.

3 Here, we exclude ill-typed coercion compositions such as (s1 → s2) # idι.

ECOOP 2020

8:6 Space-Efficient Gradual Typing in Coercion-Passing Style

Variables x, y Constants a, b Operators op Blame labels p
Base types ι ::= int | bool | . . .

Types A,B,C ::= ? | ι | A→ B
Ground types G,H ::= ι | ?→ ?

Space-efficient coercions s, t ::= id? | G?p; i | i

Intermediate coercions i ::= g; G! | g | ⊥GpH

Ground coercions g, h ::= idA (if A 6= ?) | s → t (if s 6= id or t 6= id)
Delayed coercions d ::= g; G! | s → t (if s 6= id or t 6= id)

Terms L,M ,N ::= V | op(M ,N) | M N | M 〈s〉 | blame p
Values V ,W ::= x | U | U 〈〈d〉〉

Uncoerced values U ::= a | λx.M
Type environments Γ ::= ∅ | Γ, x : A

Figure 2 Syntax of λS.

2.1 Syntax
We show the syntax of λS in Figure 2. The syntax of λS extends that of the simply typed
lambda calculus (written in gray) with the dynamic type and (space-efficient) coercions.

Types, ranged over by A,B,C , include the dynamic type ?, base types ι, and function
types A → B. Base types ι include int (integer type) and bool (Boolean type) and so on.
Ground types, ranged over by G,H , include base types ι and the function type ?→ ?. They
are used for type tags put on values of the dynamic type [43]. Here, the ground type for
functions is always ?→ ?, reflecting the fact that many dynamically typed languages do not
include information on the argument and return types of the function in its type tag.

As we have already discussed, λS restricts coercions to only canonical ones, namely
space-efficient coercions s, whose grammar is defined via ground coercions g and intermediate
coercions i. Ground coercions correspond to the middle part of space-efficient coercions;
unlike the original λS, ground coercions include identity coercions for any function types –
such as idι→ι – and exclude “virtually identity” coercions such as idι → idι. Although these
two coercions are extensionally the same, they reduce in slightly different ways: applying
idι→ι to a function immediately returns the function, whereas applying idι → idι results in
a wrapped function whose argument and return values are monitored by idι, which does
nothing. Adopting idA for any A simplifies our proof that the coercion-passing translation
preserves the semantics. An intermediate coercion adds an optional injection to a ground
coercion. Coercions of the form ⊥GpH trigger blame (labeled p) if applied to a value. They
emerge from coercion composition

((G1?p;)?(idA + (s1 → s2)); G2!) # (G3?p′
; (idA + (s3 → s4))(; G4!)?)

where A 6= ? and G2 6= G3, which means that the projection G3?p′ is bound to fail. The
composition results in (G1?p;)?⊥G1p′G3 , which means that, unless the optional projection
fails – blaming p – it fails with p′. Finally, space-efficient coercions are obtained by adding
optional projection to intermediate coercions. id? is a special coercion that does not conform
to the regular expression above. Strictly speaking, an injection, say int!, has to be written
idint; int! and a projection, say int?p, has to be written int?p; idint. We often omit these
identity coercions in examples.

Y. Tsuda, A. Igarashi, and T. Tabuchi 8:7

Terms, ranged over by L,M ,N , include values V , primitive binary operations op(M ,N),
function applications M N , coercion applications M 〈s〉, and coercion failure blame p. The
term M 〈s〉 coerces the value of M with coercion s at run time. The term blame p denotes a
run-time type error caused by the failure of a coercion (projection) with blame label p.

Values, ranged over by V ,W , include variables x , uncoerced values U , and coerced values
U 〈〈d〉〉. Uncoerced values, ranged over by U , include constants a of base types and lambda
abstractions λx.M . Unlike λC, where values can involve nested coercion applications, there
is at most one coercion in a value – nested coercions will be composed. Coerced values U 〈〈d〉〉
have two forms: injected values U 〈〈g; G!〉〉 and wrapped functions U 〈〈s → t〉〉. The check of
function coercion is delayed until wrapped functions are applied to a value [18, 13, 36]. We
include variables as values for technical convenience in defining translations; for operational
semantics, though, it is not necessary to do so because we consider evaluation of closed terms.

Unlike many other studies on coercion and blame calculi, we syntactically distinguish
coerced values U 〈〈d〉〉 from U 〈d〉 (similarly to Wadler and Findler [43]). This distinction
plays an important role in our correctness proof; roughly speaking, without the distinction,
U 〈d〉〈t〉 would allow two different interpretations: an application of t to a value U 〈d〉 or two
applications of d and t to a value U , which would result in different translation results. We
also note that variables x are considered values, rather than uncoerced values, since they
can be bound to coerced values at function calls. In other words, we ensure that values are
closed under value substitution.

As usual, applications are left-associative and λ extends as far to the right as possible.
We do not commit to a particular choice of precedence between function applications and
coercion applications; we will always use parentheses to disambiguate terms like M N 〈t〉.
The term λx.M binds x in M as usual. The definitions of free variables and α-equivalence of
terms are standard, and thus we omit them. We identify α-equivalent terms.

The metavariable Γ ranges over type environments. A type environment is a sequence of
pairs of a variable and its type.

2.2 Type System
We give the type system of λS, which consists of three judgments for type consistency A ∼ B,
well-formed coercions c : A B, and typing Γ `S M : A. We use c to denote any kind of
coercions. The inference rules (except for A ∼ B) are shown in Figure 3. (We omit the
subscript S on ` in rules, as some of them are reused for λS1.)

The type consistency relation A ∼ B is the least reflexive and symmetric and compatible
relation that contains A ∼ ?. As this is standard [36], we omit inference rules here. (We
have them in the full version.)

The relation c : A B means that coercion c, which ranges over all kinds of coercions,
converts a value from type A to type B. We often call A and B the source and target types
of c, respectively. The rule (CT-Id) is for identity coercion idA. The rule (CT-Inj) is for
injection G!, which converts type G to type ?. The rule (CT-Proj) is for projection G?p,
which converts type ? to type G. The rule (CT-Fun) is for function coercion c1 → c2. If its
argument coercion c1 converts type A′ to type A and its return-value coercion c2 converts
type B to type B′, then function coercion c1 → c2 converts type A→ B to type A′ → B′. In
other words, function coercions are contravariant in their argument coercions and covariant
in return-value coercions. The rule (CT-Fail) is for failure coercion ⊥GpH . Here, the source

ECOOP 2020

8:8 Space-Efficient Gradual Typing in Coercion-Passing Style

Well-formed coercions c : A B

G! : G ?
CT-Inj

G?p : ? G
CT-Proj

c1 : A′ A c2 : B B′

c1 → c2 : A→ B A′ → B′ CT-Fun

idA : A A
CT-Id

c1 : A B c2 : B C
(c1; c2) : A C

CT-Seq
A 6= ? A ∼ G G 6= H

⊥GpH : A B
CT-Fail

Term typing Γ `S M : A

Γ ` a : ty(a)
T-Const

ty(op) = ι1 → ι2 → ι Γ ` M : ι1 Γ ` N : ι2
Γ ` op(M ,N) : ι

T-Op

(x : A) ∈ Γ
Γ ` x : A

T-Var
Γ, x : A ` M : B

Γ ` λx.M : A→ B
T-Abs

Γ ` M : A→ B Γ ` N : A
Γ ` M N : B

T-App

Γ ` M : A s : A B
Γ ` M 〈s〉 : B

T-Crc
∅ ` U : A d : A B

∅ ` U 〈〈d〉〉 : B
T-CrcV

∅ ` blame p : A
T-Blame

Figure 3 Typing rules of λS.

type is not necessarily G but can be any nondynamic type A consistent with G because the
source type of a failure coercion may change during coercion composition. For example, the
following judgments are derivable:

(idint; int!)→ (int?p; idint) : ?→ ? int→ int
⊥?→?pint : int→ bool int

Proposition 1 below, which is about the source and target types of intermediate coercions
and ground coercions, is useful to understand the syntactic structure of space-efficient
coercions. In particular, it states that neither the source nor target type of ground coercions
g is the type ?.

I Proposition 1 (Source and Target Types).
1. If i : A B then A 6= ?.
2. If g : A B, then A 6= ? and B 6= ? and A ∼ G and G ∼ B for some unique G.

The judgment Γ `S M : A means that the λS-term M is given type A under type
environment Γ. When clear from the context, we sometimes write ` for `S with the subscript
S omitted. We adopt similar conventions for other relations (such as 7−→S) introduced later.

The rules (T-Const), (T-Op), (T-Var), (T-Abs), and (T-App) are standard. Here, ty(a)
maps constant a to a base type ι, and ty(op) maps binary operator op to a (first-order)
function type ι1 → ι2 → ι. The rule (T-Crc) states that if M is given type A and space-
efficient coercion s converts type A to B, then coercion application M 〈s〉 is given type B.
The rule (T-CrcV) is similar to (T-Crc), but for coerced values U 〈〈d〉〉. The rule (T-Blame)
allows blame p to have an arbitrary type A. Here, type environments are always empty ∅
in (T-CrcV) and (T-Blame). It is valid because the terms U 〈〈d〉〉 and blame p arise only
during evaluation, which runs a closed term. In other words, these terms are not written by
programmers in the surface language, and also they do not appear as the result of coercion
insertion.

Y. Tsuda, A. Igarashi, and T. Tabuchi 8:9

Coercion composition s # t = s′

id? # t = t CC-IdDynL (G?p; i) # t = G?p; (i # t) CC-ProjL

(g; G!) # id? = g; G! CC-InjId (g; G!) # (G?p; i) = g # i CC-Collapse

⊥GpH # s = ⊥GpH CC-FailL (g; G!) # (H?p; i) = ⊥GpH CC-Conflict
(if G 6= H)

g #⊥GpH = ⊥GpH CC-FailR g # (h; H!) = (g # h); H! CC-InjR

idA # g = g (if A 6= ?) CC-IdL g # idA = g (if A 6= ?, g 6= idA) CC-IdR

(s → t) # (s′ → t′)=

{
idA→B if s′ # s = idA and t # t′ = idB

(s′ # s)→ (t # t′) otherwise
CC-Fun

Figure 4 Coercion composition rules of λS.

Evaluation contexts

E ::= F | F [� 〈s〉] F ::= � | E [op(�,M)] | E [op(V , �)] | E [�M] | E [V �]

Reduction M e−→S N M c−→S N

op(a, b) e−→ δ (op, a, b) R-Op U 〈idA〉 c−→U R-Id

(λx.M) V e−→M [x := V] R-Beta U 〈⊥GpH 〉 c−→ blame p R-Fail
(U 〈〈s → t〉〉) V e−→ (U (V 〈s〉))〈t〉 R-Wrap U 〈d〉 c−→U 〈〈d〉〉 R-Crc

M 〈s〉〈t〉 c−→M 〈s # t〉 R-MergeC
U 〈〈d〉〉〈t〉 c−→U 〈d # t〉 R-MergeV

Evaluation M e7−→S1 N M c7−→S1 N

M e−→N
E [M] e7−→ E [N]

E-CtxE
M c−→N

F [M] c7−→ F [N]
E-CtxC

E 6= �
E [blame p] e7−→ blame p

E-Abort

Figure 5 Reduction/evaluation rules of λS.

2.3 Operational Semantics

2.3.1 Coercion Composition
The coercion composition s # t is a recursive function that takes two space-efficient coercions
and computes another space-efficient coercion corresponding to their sequential composition.
We show the coercion composition rules in Figure 4. The function is defined in such a way
that the form of the first coercion determines which rule to apply.

The rules (CC-IdDynL) and (CC-ProjL) are applied if the first coercion is not an inter-
mediate coercion. The rules (CC-InjId), (CC-Collapse), (CC-Conflict), and (CC-FailL)
are applied if the first one is a (nonground) intermediate coercion, in which case another
intermediate coercion is yielded. The rules (CC-Collapse) and (CC-Conflict) deal with
cases where an injection and a projection meet and perform tag checks. If type tags do not
match, a failure coercion arises.

Failure coercions are necessary for eager coercion composition to preserve the behavior of
λC. The term M 〈G!〉〈H?p〉 (if G 6= H) in λC evaluates to blame p – only after M evaluates
to a value. By contrast, the two coercions G! and H?p in the term M 〈idG; G!〉〈H?p; idH 〉

ECOOP 2020

8:10 Space-Efficient Gradual Typing in Coercion-Passing Style

are eagerly composed in λS. Raising blame p immediately would not match the semantics of
λC because M may evaluate to another blame or even diverge, in which case p is not blamed.
Thus, ⊥GpH must raise blame p only after M evaluates to a value.

The rules (CC-FailR) and (CC-InjR) are applied if a ground coercion and an interme-
diate coercion are composed to another intermediate coercion. The rules (CC-FailL) and
(CC-FailR) represent the propagation of a failure to the context, somewhat similarly to
exceptions. The rule (CC-InjR) represents associativity of sequential compositions but # is
propagated to the inside.

The rules (CC-IdL), (CC-IdR), and (CC-Fun) are applied if two ground coercions are
composed to another ground coercion. They are straightforward except that idA → idB has
to be normalized to idA→B (CC-Fun).

We present a few examples of coercion composition below:

(idbool; bool!) # (bool?p; idbool) = idbool # idbool = idbool

(id?→?; (?→ ?)!) # (int?p; idint) = ⊥?→?pint

((ι?p; idι)→ (idι′ ; ι′!)) # ((idι; ι!)→ id?) = ((idι; ι!) # (ι?p; idι))→ ((idι′ ; ι′!) # id?)
= idι → (idι′ ; ι′!)

These examples involve situations where an injection meets a projection by (CC-Collapse)
or (CC-Conflict). The third example is by (CC-Fun).

(ι?p; idι) # (idι; ι!) = ι?p; (idι # (idι; ι!)) = ι?p; ((idι # idι); ι!) = ι?p; (idι; ι!)
(idι; ι!) # (ι?p; (idι; ι!)) = idι # (idι; ι!) = (idι # idι); ι! = idι; ι!

As the fourth example shows, a projection followed by an injection does not collapse since the
projection might fail. Such a coercion is simplified when it is preceded by another injection
(the fifth example).

The following lemma states that composition is defined for two well-formed coercions
with matching target and source types.

I Lemma 2. If s : A B and t : B C , then (s # t) : A C .

2.3.2 Evaluation
We give a small-step operational semantics to λS consisting of two relations on closed terms:
the reduction relation M −→S N for basic computation, and the evaluation relation M 7−→S N
for computing subterms and raising errors.

We show the reduction rules and the evaluation rules of λS in Figure 5. The reduction/e-
valuation rules are labeled either e or c. The label e is for essential computation, and the
label c is for coercion applications. As we see later, this distinction is important in our
correctness proof. We write −→S for e−→S ∪ c−→S, and 7−→S for e7−→S ∪ c7−→S. We sometimes
call e7−→S and c7−→S e-evaluation and c-evaluation, respectively.

The rule (R-Op) applies to primitive operations. Here, δ is a (partial) function that takes
an operator op and two constants a1, a2, and returns the resulting constant of the primitive
operation. We assume that if ty(op) = ι1 → ι2 → ι and ty(a1) = ι1 and ty(a2) = ι2, then
δ (op, a1, a2) = a and ty(a) = ι for some constant a.

The rule (R-Beta) performs the standard call-by-value β-reduction. We write M [x := V]
for capture-avoiding substitution of V for free occurrences of x in M . The definition of
substitution is standard and thus omitted.

Y. Tsuda, A. Igarashi, and T. Tabuchi 8:11

The rule (R-Wrap) applies to applications of wrapped function U 〈〈s → t〉〉 to value V .
In this case, we first apply coercion s on the argument to V , and get V 〈s〉. We next apply
function U to V 〈s〉, and get U (V 〈s〉). We then apply coercion t on the returned value,
hence (U (V 〈s〉))〈t〉.

The rule (R-Id) represents that identity coercion idA returns the input value U as it is.
The rule (R-Fail) applies to applications of failure coercion ⊥GpH to uncoerced value U ,
which reduces to blame p. The rule (R-Crc) applies to applications U 〈d〉 of delayed coercion
d to uncoerced value U , which reduces to a coerced value U 〈〈d〉〉.

The rules (R-MergeC) and (R-MergeV) apply to two consecutive coercion applications,
and the two coercions are merged by the composition operation. These rules are key to
space efficiency. Thanks to (R-MergeV), we can assume that there is at most one coercion
in a value. Since d # t may or may not be a delayed coercion, the right-hand side has to be
U 〈d # t〉, rather than U 〈〈d # t〉〉. The outermost nested coercion applications are merged by
(R-MergeC).

Now, we explain evaluation contexts, ranged over by E , shown in the top of Figure 5.
Following Siek et al. [37], we define them in the so-called “inside-out” style [11, 9]. Evaluation
contexts represent that function calls in λS are call-by-value and that primitive operations
and function applications are evaluated from left to right. The grammar is mutually recursive
with F , which stands for evaluation contexts whose innermost frames are not a coercion
application, whereas E may contain a coercion application as the innermost frame.4 Careful
inspection will reveal that both E and F contain no consecutive coercion applications. As
usual, we write E [M] for the term obtained by replacing the hole in E with M , similarly for
F [M]. (We omit their definitions.)

We present a few examples of evaluation contexts below:

F1 = � E1 = F1[� 〈s〉] = � 〈s〉
F2 = E1[V �] = (V �)〈s〉 E2 = F2[� 〈t〉] = (V (� 〈t〉))〈s〉
F3 = E2[�M] = (V ((�M)〈t〉))〈s〉

We then come back to evaluation rules: The rules (E-CtxE) and (E-CtxC) enable us to
evaluate the subterm in an evaluation context. Here, (E-CtxC) requires that computation
of coercion applications is only performed under contexts F – otherwise, the innermost
frame may be a coercion application, in which case (R-MergeC) has to be applied first. For
example, U 〈d〉〈t〉 reduces to U 〈d # t〉 rather than U 〈〈d〉〉〈t〉. The rule (E-Abort) halts the
evaluation of a program if it raises blame.

I Example 3. Let U be λx. (x〈int?p〉+ 2)〈int!〉. Term ((U 〈int!→ int?p〉) 3)〈int!〉 evaluates
to 5〈〈int!〉〉 as follows:

((U 〈int!→ int?p〉) 3)〈int!〉
7−→∗ (U (3〈int!〉))〈int?p〉〈int!〉 by (R-Crc), (R-Wrap)

7−→ (U (3〈int!〉))〈int?p; id; int!〉 by (R-MergeC)

7−→∗ (3〈〈int!〉〉〈int?p〉+ 2)〈int!〉〈int?p; id; int!〉 by (R-Crc), (R-Beta)

7−→∗ (3〈id〉+ 2)〈int!〉 by (R-MergeC), (R-MergeV)

7−→∗ 5〈〈int!〉〉 by (R-Id), (R-Op), (R-Crc).

4 F [� 〈s〉] (instead of F [� 〈f 〉]) in the definition of E fixes a problem in Siek et al. [37] that an identity
coercion applied to a nonvalue gets stuck (personal communication).

ECOOP 2020

8:12 Space-Efficient Gradual Typing in Coercion-Passing Style

2.4 Properties
We state a few important properties of λS, including determinacy of the evaluation relation
and type safety via progress and preservation [46]. We write 7−→∗S for the reflexive and
transitive closure of 7−→S, and 7−→+

S for the transitive closure of 7−→S. We say that λS-term
M diverges, denoted by M ⇑S, if there exists an infinite evaluation sequence from M .

Proofs of the stated properties are in the full version.

I Lemma 4 (Determinacy). If M 7−→S N and M 7−→S N ′, then N = N ′.

I Theorem 5 (Progress). If ∅ `S M : A, then one of the following holds: (1) M 7−→S M ′ for
some M ′; (2) M = V for some V ; or (3) M = blame p for some p.

I Theorem 6 (Preservation). If ∅ `S M : A and M 7−→S N , then ∅ `S N : A.

I Corollary 7 (Type Safety). If ∅ `S M : A, then one of the following holds: (1) M 7−→∗S V
and ∅ `S V : A for some V ; (2) M 7−→∗S blame p for some p; or (3) M ⇑S.

3 Space-Efficient First-Class Coercion Calculus

In this section, we introduce λS1, a new space-efficient coercion calculus with first-class
coercions; λS1 serves as the target calculus of the translation into coercion-passing style. The
design of λS1 is tailored to coercion-passing style and, as a result, first-class coercions are
not as general as one might expect: for example, coercions for coercions are restricted to
identity coercions (e.g., idι ι).

Since coercions are first-class in λS1, the use of (space-efficient) coercions s is not limited
to coercion applications M 〈s〉; they can be passed to a function as an argument, for example.
We equip λS with the infix (object-level) operator M ;; N to compute the composition of
two coercions: if M and N evaluate to coercions s and t, respectively, then M ;; N reduces
to their composition s # t, which is another space-efficient coercion. The type of (first-class)
coercions from A to B is written A B.5

In λS1, every function abstraction takes two arguments, one of which is a parameter
for a continuation coercion to be applied to the value returned from this abstraction. For
example, λx. 1 in λS corresponds to λ(x, κ). 1〈κ〉 in λS1– here, κ is a coercion parameter.
Correspondingly, a function application takes the form M (N ,L), which calls function M with
an argument pair (N ,L), in which L is a coercion argument, which is applied to the value
returned from M . For example, (f 3)〈s〉 in λS corresponds to f (3, s) in λS1; (f 3) (without a
coercion application) corresponds to f (3, id).

The type of a function abstraction in λS1 is written A⇒ B, which means that the type
of the first argument is the type A and the source type of the second coercion argument is B.
An abstraction is polymorphic over the target type of the coercion argument; so, if a function
of type A⇒ B is applied to a pair of A and B C , then the type of the application will be
C . Polymorphism is useful – and in fact required – for coercion-passing translation to work
because coercions with different target types may be passed to calls to the same function
in λS. Intuitively, A⇒ B means ∀X .(A× (B X))→ X but we do not introduce ∀-types
explicitly because our use of ∀ is limited to the target-type polymorphism. However, we do
have to introduce type variables for typing function abstractions.

5 In λS, is the symbol used in the three-place judgment form c : A B, whereas is also a type
constructor in λS1.

Y. Tsuda, A. Igarashi, and T. Tabuchi 8:13

Variables x, y, κ Type variables X ,Y
Types A,B,C ::= ? | ι | A B | A⇒ B | X

Ground types G,H ::= ι | ?⇒ ?

Space-efficient coercions s, t ::= id? | G?p; i | i

Intermediate coercions i ::= g; G! | g | ⊥GpH

Ground coercions g, h ::= idA (if A 6= ?) | s ⇒ t (if s 6= id or t 6= id)
Delayed coercions d ::= g; G! | s ⇒ t (if s 6= id or t 6= id)

Terms L,M ,N ::= V | op(M ,N) | L (M ,N) | let x = M in N
| M ;; N | M 〈N 〉 | blame p

Values V ,W ,K ::= x | U | U 〈〈d〉〉
Uncoerced values U ::= a | λ(x, κ).M | s

Type environments Γ ::= ∅ | Γ, x : A

Figure 6 Syntax of λS1.

Following the change to function types, function coercions in λS1 take the form s ⇒ t.
Roughly speaking, its meaning is the same: it coerces an input to a function by s and coerces
an output by t. However, due to the coercion passing semantics, there is slight change in how
t is used at a function call. Consider f 〈〈s ⇒ t〉〉, i.e., coercion-passing function f wrapped
by coercion s ⇒ t. If the wrapped function is applied to (V , t′), V is coerced by s before
passing to f as in λS; instead of coercing the return value by t, however, t is prepended to t′
and passed to f (together with the coerced V) so that the return value is coerced by t and
then t′. In the reduction rule, prepending t to t′ is represented by composition t ;; t′.

3.1 Syntax
We show the syntax of λS1 in Figure 6. We reuse the same metavariables from λS. We also
use κ for variables, and K for values.

We replace A→ B with A⇒ B and add A B and type variables to types. The syntax
for ground types and space-efficient, intermediate, ground, and delayed coercions is the same
except that → is replaced with ⇒, similarly to types. As we have mentioned, we replace
abstractions and applications with two-argument versions. We also add let-expressions
(although they could be introduced as derived forms) and coercion composition M ;; N . The
syntax for coercion applications is now M 〈N 〉, where N is a general term (of type A B).
Uncoerced values now include space-efficient coercions.

The term λ(x, κ).M binds x and κ in M , and the term let x = M in N binds x in N . The
definitions of free variables and α-equivalence of terms are standard, and thus we omit them.
We identify α-equivalent terms.

The definition of type environments, ranged over by Γ, is the same as λS.

3.2 Type System
Figure 7 shows the main typing rules of λS1, which are a straightforward adaption from λS.

The relation c : A B is mostly the same as that of λS. We replace the rule (CT-Fun)
as shown. As in λS, function coercions are contravariant in their argument coercions and
covariant in their return-value coercions.

ECOOP 2020

8:14 Space-Efficient Gradual Typing in Coercion-Passing Style

Well-formed coercions (replacement) c : A B

c1 : A′ A c2 : B B′

c1 ⇒ c2 : A⇒ B A′ ⇒ B′ CT-Fun

Term typing (excerpt) Γ `S1 M : A

s : A B
Γ ` s : A B

T-Crcn
Γ ` M : A B Γ ` N : B C

Γ ` M ;; N : A C
T-Cmp

Γ ` M : A Γ ` N : A B
Γ ` M 〈N 〉 : B

T-Crc
∅ ` U : A ∅ ` d : A B

∅ ` U 〈〈d〉〉 : B
T-CrcV

Γ, x : A, κ : B X ` M : X (X does not appear in Γ,A,B)
Γ ` λ(x, κ).M : A⇒ B

T-Abs

Γ ` M : A Γ, x : A ` N : B
Γ ` let x = M in N : B

T-Let
Γ ` L : A⇒ B Γ ` M : A Γ ` N : B C

Γ ` L (M ,N) : C
T-App

Figure 7 Typing rules of λS1.

The judgment Γ `S1 M : A means that term M of λS1 has type A under type environment
Γ. The rules (T-Const), (T-Op), (T-Var), and (T-Blame) are the same as λS, and so we
omit them. The rule (T-Let) is standard.

The rules (T-Abs) and (T-App) look involved but the intuition that A⇒ B corresponds
to ∀X . (A× (B X))→ X should help to understand them. The rule (T-Abs) assigns type
A ⇒ B to an abstraction λ(x, κ).M if the body is well typed under the assumption that
x is of type A and κ is of type B X for fresh X . The type variable X must not appear
in Γ,A,B so that the target type can be polymorphic at call sites. The rule (T-App) for
applications is already explained.

The rule (T-Crcn) assigns type A B to space-efficient coercion s if it converts a value
from type A to type B. The rules (T-Crc) and (T-CrcV) are similar to the corresponding
rules of λS, but adjusted to first-class coercions.

3.3 Operational Semantics
The composition function s # t is mostly the same as that of λS. We only replace (CC-Fun)
as shown in Figure 8.

Similarly to λS, we give a small-step operational semantics to λS1 consisting of two
relations on closed terms: the reduction relation M −→S1 N and the evaluation relation
M 7−→S1 N . We show the reduction/evaluation rules of λS1 in Figure 8. As in λS, they are
labeled either e or c. We write −→S1 for e−→S1 ∪

c−→S1 , and 7−→S1 for e7−→S1 ∪
c7−→S1 .

The rules (R-Op) and (R-Beta) are standard. Note that (R-Beta) is adjusted for pair
arguments. We write M [x := V , κ := K] for capture-avoiding simultaneous substitution of
V and K for x and κ, respectively, in M .

The rule (R-Wrap) applies to applications of wrapped function U 〈〈s ⇒ t〉〉 to value V .
Since coercion s is for function arguments, it is applied to V , as in λS. Additionally, we
compose coercion t on the return value with continuation coercion W . Thus, V 〈s〉 and t ;; W
are passed to function U . Note that we use a let expression to evaluate the second argument
t ;; W before V 〈s〉. It is a necessary adjustment for the semantics of λS and λS1 to match.

Y. Tsuda, A. Igarashi, and T. Tabuchi 8:15

Coercion composition (replacement) s # t = s′

(s ⇒ t) # (s′ ⇒ t′) =

{
idA⇒B if s′ # s = idA and t # t′ = idB

(s′ # s)⇒ (t # t′) otherwise
CC-Fun

Evaluation contexts

E ::= � | E [� (M ,N)] | E [V (�,N)] | E [V (W ,�)] | E [op(�,M)] | E [op(V , �)]
| E [let x = � in M] | E [� ;; M] | E [V ;;�] | E [� 〈M 〉] | E [V 〈� 〉]

Reduction M e−→S1 N M c−→S1 N

op(a, b) e−→ δ (op, a, b) R-Op
(λ(x, κ).M) (V ,W) e−→M [x := V , κ := W] R-Beta
(U 〈〈s ⇒ t〉〉) (V ,W) e−→ letκ = t ;; W in U (V 〈s〉, κ) R-Wrap

let x = V in M c−→M [x := V] R-Let s ;; t c−→ s # t R-Cmp

U 〈idA〉 c−→U R-Id U 〈⊥GpH 〉 c−→ blame p R-Fail
U 〈d〉 c−→U 〈〈d〉〉 R-Crc U 〈〈d〉〉〈t〉 c−→U 〈d ;; t〉 R-MergeV

Evaluation M e7−→S1 N M c7−→S1 N

M X−→N X ∈ {e, c}
E [M] X7−→ E [N]

E-Ctx
E 6= �

E [blame p] e7−→ blame p
E-Abort

Figure 8 Reduction/evaluation rules of λS1.

The rule (R-Let) is standard; it is labeled as c because we use let-expressions only for
coercion compositions. The rule (R-Cmp) applies to coercion compositions s ;; t, which is
evaluated by meta-level coercion composition function s # t. The rules (R-Id), (R-Fail),
(R-Crc), and (R-MergeV) are the same as λS.

Evaluation contexts, ranged over by E , are defined also in Figure 8. In contrast to λS,
evaluation contexts are standard in λS1. The definition represents that function calls in λS1
are call-by-value, and primitive operations, function applications, coercion compositions, and
coercion applications are all evaluated from left to right.

We then come back to evaluation rules: The evaluation rules (E-Ctx) and (E-Abort) are
the same as λS. (However, evaluation contexts in (E-Ctx) are more straightforward in λS1.)

Finally, we should emphasize that we no longer need (R-MergeC) in λS1. So, λS1 is an
ordinary call-by-value language and its semantics should be easy to implement.

I Example 8. Let U be λ(x, κ). letκ′ = int! ;;κ in (x〈int?p〉+2)〈κ′〉, which corresponds to the
λS-term λx. (x〈int?p〉+2)〈int!〉 in Example 3. In fact, we will obtain this term as a result of our
coercion-passing translation defined in the next section. The term (U 〈int!⇒ int?p〉) (3, int!)
evaluates to 5〈〈int!〉〉 as follows:

ECOOP 2020

8:16 Space-Efficient Gradual Typing in Coercion-Passing Style

(U 〈int!⇒ int?p〉) (3, int!)
7−→∗ letκ′′ = int?p ;; int! in U (3〈int!〉, κ′′) by (R-Crc), (R-Wrap)

7−→ letκ′′ = int?p; id; int! in U (3〈int!〉, κ′′) by (R-Cmp)

7−→∗ U (3〈〈int!〉〉, (int?p; id; int!)) by (R-Let), (R-Crc)

7−→ letκ′ = int! ;; (int?p; id; int!) in (3〈〈int!〉〉〈int?p〉+ 2)〈κ′〉 by (R-Beta)

7−→∗ (3〈〈int!〉〉〈int?p〉+ 2)〈int!〉 by (R-Cmp), (R-Let)

7−→∗ 5〈〈int!〉〉 by (R-MergeV), (R-ID), (R-Op), (R-Crc)

It is easy to see that the steps by (R-MergeC) in Example 3 are simulated by (R-Cmp)
followed by (R-Let).

3.4 Properties
We state a few properties of λS1 below. Their proofs are in the full version.

I Lemma 9 (Determinacy). If M 7−→S1 N and M 7−→S1 N ′, then N = N ′.

I Theorem 10 (Progress). If ∅ `S1 M : A, then one of the following holds: (1) M 7−→S1 M ′
for some M ′; (2) M = V for some V ; or (3) M = blame p for some p.

I Theorem 11 (Preservation). If ∅ `S1 M : A and M 7−→S1 N , then ∅ `S1 N : A.

I Corollary 12 (Type Safety). If ∅ `S1 M : A, then one of the following holds: (1) M 7−→∗S1
V

and ∅ `S1 V : A for some V ; (2) M 7−→∗S1
blame p for some p; or (3) M ⇑S1 .

4 Translation into Coercion-Passing Style

In this section, we formalize a translation into coercion-passing style as a translation from
λS to λS1 and state its correctness. As its name suggests, this translation is similar to
transformations into continuation-passing style (CPS transformations) for the call-by-value
λ-calculus [28].

4.1 Definition of Translation
We give the translation into coercion-passing style by the translation rules presented in
Figure 9. In order to distinguish metavariables of λS and λS1, we often use blue for the
source calculus λS. When we need static type information in translation rules, we write M A

to indicate that term M has type A. Thus, strictly speaking, the translation is defined for
type derivations in λS.

Translations for types Ψ(A) and coercions Ψ(s) are very straightforward, thanks to the
special type/coercion constructor ⇒: they just recursively replace → with ⇒.

Value translation Ψ(V) and term translation K JM KK are defined in a mutually recursive
manner. In K JM KK , M is a λS-term whereas K is a λS1-term, which is either a variable or
a λS1-coercion. K JM KK returns a λS1-term – in coercion-passing style – that applies K to
the value of M .

Value translation Ψ(V) is straightforward: every function λx.M is translated to a λS1-
abstraction that takes as the second argument κ a coercion which is to be applied to the
return value. So, the body is translated by term translation K JM Kκ.

Y. Tsuda, A. Igarashi, and T. Tabuchi 8:17

Type translation Ψ(A) = A′

Ψ(?) = ? Ψ(ι) = ι Ψ(A→ B) = Ψ(A)⇒ Ψ(B)

Coercion translation Ψ(s) = s′

Ψ(idA) = idΨ(A)

Ψ(g; G!) = Ψ(g); Ψ(G)!
Ψ(G?p; i) = Ψ(G)?p; Ψ(i)
Ψ(s → t) = Ψ(s)⇒ Ψ(t)

Ψ(⊥GpH) = ⊥GpH

Value translation Ψ(V) = V ′

Ψ(x) = x
Ψ(a) = a

Ψ(λx.M) = λ(x, κ). (K JM Kκ)
Ψ(U 〈〈d〉〉) = Ψ(U)〈〈Ψ(d)〉〉

Term translation C JM K = M ′ K JM KK = M ′

C JV K = Ψ(V) TrC-Val
C JM 〈s〉K = K JM KΨ(s) TrC-Crc

C JM AK = K JM KidΨ(A) otherwise TrC-Else

K JV KK = Ψ(V)〈K〉 Tr-Val
K Jop(M ,N)KK = op(C JM K,C JN K)〈K〉 Tr-Op

K JM N KK = (C JM K) (C JN K,K) Tr-App
K JM 〈s〉KK = letκ = Ψ(s) ;; K in (K JM Kκ) Tr-Crc

K Jblame pKK = blame p Tr-Blame

Figure 9 Translation into coercion-passing style (from λS to λS1).

We now describe the translation for terms. We write K JM KK for the translation of
λS-term M with continuation coercion K . We first explain the basic transformation scheme
given by the recursive function K ′ defined by the following simpler rules:

K ′JV KK = Ψ(V)〈K 〉 Tr′-Val
K ′Jop(M ι1 ,N ι2)KK = op(K ′JM Kidι1 ,K ′JN Kidι2)〈K 〉 Tr′-Op

K ′JM A→B N AKK = (K ′JM KidΨ(A→B)) (K ′JN KidΨ(A),K) Tr′-App
K ′JM 〈s〉KK = letκ = Ψ(s) ;; K in (K ′JM Kκ) Tr′-Crc

K ′Jblame pKK = blame p Tr′-Blame

(We put a prime on K to distinguish with the final version.)
The rule (Tr′-Val) applies to values V , where we apply coercion K to the result of value

translation Ψ(V).
The rule (Tr′-Op) applies to primitive operations op(M ,N). We translate the arguments

M and N with identity continuation coercions by K ′JM Kid and K ′JN Kid and pass them
to the primitive operation. The given continuation coercion K is applied to the result.
Translating subexpressions with id is one of the main differences from CPS transformation.
While continuations in continuation-passing style capture the whole rest of computation,
continuation coercions in coercion-passing style capture only the coercion applied right after
the current computation. Since neither M nor N is surrounded by a coercion, they are
translated with identity coercions of appropriate types. (Cases where a subexpression itself
is a coercion application will be discussed shortly.) Careful readers may notice at this point
that left-to-right evaluation of arguments is enforced by the semantics (or the definition of

ECOOP 2020

8:18 Space-Efficient Gradual Typing in Coercion-Passing Style

evaluation contexts) of λS, not by the translation. In other words, the correctness of the
translation relies on the fact that λS evaluation is left-to-right and call-by-value. This is
another point that is different from CPS transformation, which dismisses the distinction of
call-by-name and call-by-value.

The rule (Tr′-App) applies to function applications M N . We translate function M and
argument N with identity continuation coercions just like the case for primitive operations.
We then pass the continuation coercion K as the second argument to function K ′JM Kid.

The rule (Tr′-Crc) applies to coercion applications M 〈s〉. We can think of the sequential
composition of Ψ(s) and K as the continuation coercion for M . Thus, we first compute
the composition Ψ(s) ;; K , bind its result to κ, and translate M with continuation κ. The
let-expression is necessary to compose Ψ(s) and K before evaluating K ′JM Kκ. In general,
it is not necessarily the case that K ′JM KK evaluates K first, so if we set K ′JM 〈s〉KK =
(K ′JM K(Ψ(s) ;; K)), then the order of computation would change by the translation and
correctness of translation would be harder to show.

Lastly, the rule (Tr′-Blame) means that continuation K is discarded for blame p.
The translation K ′ seems acceptable but, just as naïve CPS transformation leaves

administrative redexes, it leaves many applications of id, which we call administrative
coercions. We expect M and K ′JM KK to “behave similarly” but administrative redexes
make it hard to show such semantic correspondence. Therefore, we will optimize the
translation so that administrative coercions are eliminated, similarly to CPS transformations
that eliminate administrative redexes [28, 3, 45, 32, 10, 8, 33].

The bottom of Figure 9 shows the optimized translation rules. The idea to eliminate
administrative coercions is close to the colon translation by Plotkin [28]: we avoid translating
values with administrative coercions. So, we introduce an auxiliary translation function
C JM K, which, if M is a value V , returns Ψ(V) – without a coercion application – and, if M
is a coercion application N 〈s〉, returns K JN KΨ(s) – with the trivial composition Ψ(s) # id
optimized away – and returns K JM Kid otherwise. Translation rules for primitive operations
and function applications are adapted so that they use C JM K to translate subexpressions.

In other words, C JM K helps us precisely distinguish between id introduced by the
translation and id that was present in the original term. Whenever we introduce id as an
initial coercion for the translation, we first apply C JM K and then apply K JM Kid only if
necessary. We note that K JM Kid 7−→S1 C JM K holds. We present a few examples of the
translation below:

Ψ(λx. x + 1) = λ(x, κ). (x + 1)〈κ〉
K J(λx. x) 5Kint! = (λ(x, κ). x〈κ〉) (5, int!)

K J((λx. x) 5)〈int!〉Kint?p = letκ = int! ;; int?p in (λ(x, κ). x〈κ〉) (5, κ)

The following example shows the translation of the λS-term in Example 3 will be the
λS1-term in Example 8.

I Example 13. Let U be a λS-term λx. (x〈int?p〉+ 2)〈int!〉.

Ψ(U) = λ(x, κ). (K J(x〈int?p〉+ 2)〈int!〉Kκ)
= λ(x, κ). letκ′ = int! ;; κ in (K J(x〈int?p〉+ 2)Kκ′)
= λ(x, κ). letκ′ = int! ;; κ in (x〈int?p〉+ 2)〈κ′〉

K J((U 〈int!→ int?p〉) 3)Kid = (K J(U 〈int!→ int?p〉)Kid) (K J3Kid, id)
= (K JU K(int!→ int?p)) (3, id)
= (Ψ(U)〈int!⇒ int?p〉) (3, id)

Y. Tsuda, A. Igarashi, and T. Tabuchi 8:19

4.2 Correctness of Translation
Having defined the translation, we now state its correctness properties with auxiliary lemmas.
(Their proofs are in the full version.)

To begin with, the translation preserves typing. Here, we write Ψ(Γ) for the type
environment satisfying: (x : A) ∈ Γ if and only if (x : Ψ(A)) ∈ Ψ(Γ).

I Theorem 14 (Translation Preserves Typing).
1. If Γ `S M : A and s : A B , then Ψ(Γ) `S1 (K JM KΨ(s)) : Ψ(B).
2. If Γ `S V : A, then Ψ(Γ) `S1 Ψ(V) : Ψ(A).

As for the preservation of semantics, we will prove the following theorem that states the
semantics is preserved by the translation:

I Theorem 15 (Translation Preserves Semantics). If ∅ `S M : ι, then (1) M 7−→∗S a iff
C JM K 7−→∗S1

a; (2) M 7−→∗S blame p iff C JM K 7−→∗S1
blame p; and (3) M ⇑S iff C JM K⇑S1 .

To prove this theorem, it suffices to show the left-to-right direction (Theorem 16 below) for
each item because the other direction follows from Theorem 16 together with other properties:
for example, if ∅ `S M : ι and C JM K⇑S1 , then M can neither get stuck (by type soundness
of λS) nor terminate (as it contradicts the left-to-right direction and the fact that 7−→S1 is
deterministic).

I Theorem 16 (Translation Soundness). Suppose Γ `S M : A. (1) If M 7−→∗S V , then
C JM K 7−→∗S1

Ψ(V); (2) if M 7−→∗S blame p, then C JM K 7−→∗S1
blame p; and (3) if M ⇑S, then

C JM K⇑S1 .

A standard proof strategy would be to show that single-step evaluation in the source language
is simulated by multi-step evaluation in the target language. In fact, we prove the following
lemma:

I Lemma 17 (Simulation).
1. If M e7−→S N , then C JM K e7−→S1

c7−→∗S1
C JN K.

2. If M c7−→S N , then C JM K c7−→+
S1

C JN K.
M � e

S
//

C J_K

��

N

C J_K

��
C JM K � e

S1

// � c ∗
S1

// C JN K

M � c
S
//

C J_K

��

N

C J_K

��
C JM K � c +

S1

// C JN K

The straightforward simulation property below follows from Lemma 17.

I Lemma 18. If M 7−→S N , then C JM K 7−→+
S1

C JN K.

As is the case for simulation proofs for CPS translation [28, 3, 45, 32, 10, 8, 33], the
simulation property6 is quite subtle. We discuss this subtlety below.

First, it is important that the translation removes administrative identity coercions by
distinguishing values and nonvalues in C JM K. For example, (λx. x) 5 e7−→ 5 holds in λS,
but the translation K ′J(λx. x) 5KK without removing administrative redexes would yield

6 If we had been interested only in the property that translation preserves term equivalence, we could
have simplified the technical development by, say, removing the distinction between U 〈s〉 and U 〈〈s〉〉.
However, simulation is crucial for showing that divergence is preserved by the translation.

ECOOP 2020

8:20 Space-Efficient Gradual Typing in Coercion-Passing Style

((λ(x, κ). x〈κ〉)〈id〉) (5〈id〉,K), which performs c-evaluation before calling the function. We
avoid such a situation. More formally, we prove the following lemma, which means the redex
in the source is also the redex in the target.

I Lemma 19.
1. For any F , there exists E ′ such that for any M , C JF [M]K = E ′[C JM K].
2. For any F and s, there exists E ′ such that for any M , C JF [M 〈s〉]K = E ′[K JM KΨ(s)].

To prove this lemma, the rule (TrC-Crc) also plays an important role: for example, if
we removed (TrC-Crc), K J(1 + 1)〈int!〉Kid would translate to letκ = int! ;; id in (1 + 1)〈κ〉,
which performs c-evaluation before adding 1 and 1, which is the first thing the original term
(1 + 1)〈int!〉 will do.

Second, optimizing too many (identity) coercions can break simulation. We should
only remove administrative identity coercions, and keep identity coercions that were
present in the original term. Consider M def= (((λx.M1)〈〈idι → ι!〉〉) a)〈ι?p〉 and N def=
((λx.M1) (a〈idι〉))〈ι!〉〈ι?p〉, for which M 7−→S N holds by (R-Wrap). Then,

C JM K = K JM Kid = ((K Jλ(x, κ).M1Kκ)〈〈idι ⇒ ι!〉〉) (a, ι?p)
7−→S1 letκ′ = ι! ;; ι?p in (K Jλ(x, κ).M1Kκ) (a〈idι〉, κ′) = C JN K.

At one point, we defined the translation (let’s call it K ′′) so that applications of identity
coercions would be removed as much as possible, namely,

K ′′JN Kid = letκ′ = ι! ;; ι?p in (K ′′Jλ(x, κ).M1Kκ) (a, κ′)

(notice that 〈idι〉 on a is removed). Although K ′′JM Kid and K ′′JN Kid reduced to the same
term, we did not quite have K ′′JM Kid 7−→+ K ′′JN Kid as we had desired.

Third, the distinction between U 〈s〉 and U 〈〈s〉〉 is crucial for ensuring that substitution
commutes with the translation:

I Lemma 20 (Substitution). If κ /∈ FV (M)∪FV (V), then (K JM Kκ)[x := Ψ(V), κ := K] =
K JM [x := V]KK .

Roughly speaking, if we identified a value U 〈〈s〉〉 and an application U 〈s〉 of s to an uncoerced
value U , then the term U 〈s〉〈t〉 would allow two interpretations: an application of t to a
value U 〈s〉 and applications of s and t to U and committing to either interpretation would
break Lemma 20.

5 Implementation and Evaluation

5.1 Implementation
We have implemented the coercion-passing translation described in Section 4 and the semantics
of λS1 for Grift [24]7, an experimental compiler for gradually typed languages. GTLC+,
the language that the Grift compiler implements, supports integers, floating-point numbers,
Booleans, higher-order functions, local binding by let, (mutually) recursive definitions by
letrec, conditional expressions, iterations, sequencing, mutable references, and vectors
(mutable arrays).

7 The semantics of coercions in Grift is so-called D [35], which is slightly different from that of λS1, which
is UD. Since the main difference is in the coercion composition, our technique can be applied to Grift.

Y. Tsuda, A. Igarashi, and T. Tabuchi 8:21

The Grift compiler compiles a GTLC+ program into the C language where coercions
are represented as values of a struct type, and operations such as coercion application
and coercion composition are C functions. The compiler supports different run-time check
schemes, those based on type-based casts [36] and space-efficient coercions [37]. Note that,
although meta-level composition s1 # s2 is implemented, only nested coercions on values
are composed; in other words, (R-MergeC) was not implemented. Thus, implicit run-time
checks may break tail calls and seemingly tail-recursive functions may cause stack overflow.

We modify the compiler phases for run-time checking based on the space-efficient coercions.
After typechecking a user program, the compiler inserts type-based casts to the program
and converts type-based casts to space-efficient coercions, following the translation from
blame calculus λB to λS [37]. Our implementation performs the coercion-passing translation
after the translation into λS. It is straightforward to extend the translation scheme to
language features that are not present in λS. For example, here is translation for conditional
expressions:

K Jif M then N1 else N2KK = if C JM K then (K JN1KK) else (K JN2KK).

Since coercions are represented as structs, we did not have to do anything special to
make coercions first-class. We modify another compiler phase that generates operations on
coercions such as M ;; N and (R-Wrap). The current implementation, which generates C
code and uses clang8 for compilation to machine code, relies on the C compiler to perform
tail-call optimizations. We have found the original compiler’s handling of recursive types
hampers tail-call optimizations,9 so our implementation does not deal with recursive types.
We leave their implementation for future work.

5.2 Even and Odd Functions
We first inspected the tail-recursive even–odd functions in GTLC+:

(letrec ([even (lambda ([n : A1]) : A3
(if (= 0 n) #t (odd (- n 1))))]

[odd (lambda ([n : A2]) : A4
(if (= 0 n) #f (even (- n 1))))])

(odd n))

where A1 and A2 are either Int or Dyn, and A3 and A4 are either Bool or Dyn. We run this
program with the original and modified compilers for all combinations of A1,A2,A3, and A4.
We call the program compiled by the original compiler Base, the program compiled by the
modified compiler CrcPS.

We have confirmed that, as n increases, 12 of 16 configurations of Base cause stack
overflow.10 In the four configurations that survived, both A3 and A4 are set to Bool. CrcPS
never causes stack overflow for any configuration.

Although we expected that Base would crash if A3 and A4 are different, it is our surprise
that Base causes stack overflow even when A3 = A4 = Dyn. We have found that it is due to
the typing rule of Grift for conditional expressions. In Grift, if one of the branches is given a

8 https://clang.llvm.org/
9 The C function to compose coercions takes a pointer to a stack-allocated object as an argument and
writes into the object when recursive coercions are composed. Although those stack-allocated objects
never escape and tail-call optimization is safe, the C compiler is not powerful enough to see it.

10The size of the run-time stack is 8 MB.

ECOOP 2020

https://clang.llvm.org/

8:22 Space-Efficient Gradual Typing in Coercion-Passing Style

static type, say Bool, and the other is Dyn, the whole if-expression is given the static type
and the compiler put a cast from Dyn on the branch of type Dyn. If both A3 and A4 are
Dyn, the recursive calls in the two else-branches will involve casts bool?p from Dyn to Bool
because the two then-branches are Boolean constants and the if-expressions are given type
Bool. However, since the return types are declared to be Dyn, the whole if-expressions are
cast back to Dyn, inserting injections bool!. Thus, every recursive call involves a projection
immediately followed by an injection, as shown below, eventually causing stack overflow.

(letrec ([even (lambda ([n : Dyn]) : Dyn
(if (= 0 n〈int?p1〉) #t

(odd (- n〈int?p2〉 1))〈bool?p3〉)〈bool!〉)]
[odd (lambda ([n : Dyn) : Dyn
(if (= 0 n〈int?p4〉) #f

(even (- n〈int?p5〉 1))〈bool?p6〉)〈bool!〉))])
(odd n))

5.3 Evaluation
We have conducted some experiments to measure the overhead of the coercion-passing
style translation. The benchmark programs we have used are taken from Kuhlenschmidt
et al. [24]11; we excluded the sieve program because of the use of recursive types. We also
include the even/odd program only for reference, which is relatively small compared to other
programs.

We compare the running time of a benchmark program between Base and CrcPS. To take
many partially typed configurations for each benchmark program into account, we focus on
the so-called fine-grained approach, where everywhere a type is required is given either the
dynamic type Dyn or an appropriate static type.12 In the fine-grained approach, the number
of configurations is 2n where n is the number of type annotations. When this number is
very large, we consider uniformly sampled configurations. We use the sampling algorithm13

from [24].
We describe the (sampled) number of partially typed configurations and main language

features used for each benchmark program below. (Each benchmark program has one
additional type annotation for the return type of the 0-ary main function.) For more detailed
description of benchmark programs, we refer readers to Kuhlenschmidt et al. [24].

name # of configurations description
even–odd all 32 = 25 mutually tail-recursive functions
n-body 300 out of 2136 vectors
tak all 256 = 28 recursive function
ray 300 out of 2280 tuples and iterations
blackscholes 300 out of 2128 vectors and iterations
matmult 300 out of 233 vectors and iterations
quicksort 300 out of 244 vectors
fft 300 out of 267 vectors

11 https://github.com/Gradual-Typing/benchmarks
12The other approach is called coarse-grained, where functions in each module are all statically or all

dynamically typed.
13 https://github.com/Gradual-Typing/Dynamizer

https://github.com/Gradual-Typing/benchmarks
https://github.com/Gradual-Typing/Dynamizer

Y. Tsuda, A. Igarashi, and T. Tabuchi 8:23

Figure 10 A box plot for the running time ratios of CrcPS to Base across (sampled) partially
typed configurations of the benchmark programs. (As is standard, the lower/upper end of a box
indicates the first/third quartile, respectively, and the middle line in a box indicates the median. The
length of each whisker is below 1.5 times of interquartile range, and outliers are plotted individually.)

Our benchmark method is as follows: For each partially typed configuration of a benchmark
program, we measure its running time by taking the average of 5 runs for Base and CrcPS,
and compute the ratio of CrcPS to Base. We use a machine with a 8-core 3.6 GHz Intel Core
i7-7700 and 16 GB memory, and run the benchmark programs within a Docker container
(Docker version 19.03.5) which runs Arch Linux. The generated C code is compiled by clang
version 9.0.0 with -O3 so that tail-call optimization is applied. The size of the run-time stack
is set as unlimited.

Figure 10 shows the result in box plots. (Detailed plots for each benchmark are shown
in the full version.) It shows that, except for tak (and even–odd), practical programs in
CrcPS run up to three times as slow as Base, for most configurations. It is natural because
coercion-passing style translation adds an extra coercion argument to each function. In
fact, tak and even–odd, which have a lot of function calls, have large overhead compared
with other programs. In even–odd, CrcPS performs many coercion composition operations
(and one coercion application) while Base performs many coercion applications (without
any coercion composition).14 Thus, the difference between Base and CrcPS for even–odd is
partially due to the difference of the cost of coercion application and coercion composition.

14An application of a projection coercion to an injected value is always computed by coercion composition
in CrcPS, while the implementation of Base is slightly optimized for first-order types.

ECOOP 2020

8:24 Space-Efficient Gradual Typing in Coercion-Passing Style

The benchmark programs other than tak and even–odd mainly concern vectors and
iterations over them. Vector operations are treated in the translation as primitive operations,
which we consider do not have much overhead by the translation. In fact, our translation
implementation optimizes the rule (Tr-Op) when its continuation is id: K Jop(M ,N)Kid =
op(C JM K,C JN K) without an application of an identity coercion.

There are several configurations in which CrcPS is faster than Base but we have not
figured out why this is the case.

6 Related Work

6.1 Space-Efficient Coercion/Cast Calculi
As we have already mentioned, it is fairly well known that coercions [18] and casts [43]
hamper tail-call optimization and make the space complexity of the execution of a program
worse than the execution under an unchecked semantics. We discuss below a few pieces of
work [19, 20, 35, 38, 14, 37] addressing the problem.

To the best of our knowledge, Herman et al. [19, 20] were the first to observe the space-
efficiency problem of inserted dynamic checks. They developed a variant of Henglein’s
coercion calculus with semantics such that a sequence of coercion applications is eagerly
composed to reduce the size of coercions. However, they identified two coercions (c1; c2); c3
and c1; (c2; c3) (note that c1; c2 is not a meta-level operator but only a formal composition
constructor); thus, an algorithm for computing coercion composition was not very clear.
They did not take blame tracking [13] into account, either.

Later, Siek et al. [35] extended Herman et al. [19, 20] with a few different blame tracking
strategies. The issue of identifying (c1; c2); c3 and c1; (c2; c3) remained. According to their
terminology, our work, which follows previous work [37], adopts the UD semantics, which
allows only ?→ ? as a tag to functional values, as opposed to the D semantics, which allows
any function types to be used as a tag.

Siek and Wadler [38] introduced threesomes to a blame calculus as another solution to
the space-efficiency problem. Threesome casts have a third type (called a mediating type) in
addition to the source and target types; a threesome cast is considered a downcast from the
source type to the mediating, followed by an upcast from the mediating type to the target.
Threesome casts allow a simple recursive algorithm to compose two threesome casts but
blame tracking is rather complicated.

Garcia [14] gave a translation from coercion calculi to threesome calculi and show that
the two solutions to the space-efficiency problem are equivalent in some sense. He introduced
supercoercions and a recursive algorithm to compute composition of supercoercions but they
were complex, too.

Siek et al. [37] proposed yet another space-efficient coercion calculus λS, in which they
succeeded in developing a simple recursive algorithm for coercion composition by restricting
coercions to be in certain canonical forms – what they call space-efficient coercions. They
also gave a translation from blame calculus λB to λS (via Henglein’s coercion calculus λC)
and showed that the translation is fully abstract. As we have discussed already, our λS has
introduced syntax that distinguishes an application U 〈s〉 of a coercion to (uncoerced) values
from U 〈〈d〉〉 for a value wrapped by a delayed coercion. Such distinction, which can be seen
in some blame calculi [43], is not just an aesthetic choice but crucial for proving correctness
of the translation.

All the above-mentioned calculi adopt a nonstandard reduction rule to compose coercions
or casts even before the subject evaluates to a value, together with a nonstandard form
of evaluation contexts, and as a result it has not been clear how to implement them

Y. Tsuda, A. Igarashi, and T. Tabuchi 8:25

efficiently. Herman et al. [19, 20] sketched a few possible implementation strategies, including
coercion passing, but details were not discussed. Siek and Garcia [34] showed an interpreter
which performs coercion composition at tail calls. Although not showing correctness of
the interpreter, their interpreter would give a hint to direct low-level implementation of
space-efficient coercions. Our work addresses the problem of the nonstandard semantics in a
different way – by translating a program into coercion-passing style. The difference, however,
may not be so large as it may appear at first: in Siek and Garcia [34], a state of the abstract
machine includes an evaluation context, which contains the information on a coercion to
be applied to a return value and such a coercion roughly corresponds to our continuation
coercions. More detailed analysis of the relationship between the two implementation schemes
is left for future work.

Kuhlenschmidt et al. [24] built an experimental compiler Grift for gradual typing with
structural types. It supports run-time checking with the space-efficient coercions of λS
but does not support composition of coercions at tail positions. We have implemented our
coercion-passing translation for the Grift compiler.

Greenberg [15] has studied the same space-efficiency problem in the context of manifest
contract calculi [23, 16, 17] and proposed a few semantics for composing casts that involve
contract checking. Feltey et al. [12] recently implemented Greenberg’s eidetic contracts on
top of Typed Racket [41] but, similarly to Kuhlenschmidt et al. [24], composition is limited
to a sequence of contracts applied to values.

There is other recent work for making gradual typing efficient [4, 27, 31, 29] but as far as
we know, none of them addresses the problem caused by run-time checking applied to tail
positions. Additionally, Castagna et al. [5] implemented a virtual machine for space-efficient
gradual typing in presence of set-theoretic types, but without blame tracking. They address
the problem caused by casts applied to tail positions by an approach similar to the one in the
interpreter by Siek and Garcia [34]. They implemented their virtual machine and evaluated
their implementation by benchmarks such as the even–odd functions.

6.2 Continuation-Passing Style
Our coercion-passing style translation is inspired by continuation-passing style translation,
first formalized by Plotkin [28]. However, coercions represent only a part of the rest
of computation and are, in this sense, closer to delimited continuations [7]. Roughly
speaking, translating a subexpression with id corresponds to the reset operation [7] to delimit
continuations. Unlike (delimited) continuations, which are usually expressed by first-class
functions, coercions have compact representations and compactness can be preserved by
composition.

Wallach and Felten [44] proposed security-passing style to implement Java stack inspec-
tion [25]. The idea is indeed similar to ours: each function is augmented by an additional
argument to pass information on run-time security checking.

In CPS, it is crucial to eliminate administrative redexes to achieve a simulation prop-
erty [28, 3, 45, 32, 10, 8, 33], which says that a reduction in the source is simulated by a
sequence of (one-directional) reductions in the translation. Simulation is usually achieved
by applying different translations to an application M N , depending on whether M and N
are values or not. In addition to such value/nonvalue distinction, our coercion-passing style
translation also relies on whether subterms are coercion applications or not.

Continuation-passing style eliminates the difference between call-by-name and call-by-
value but our coercion-passing style translation works only under the call-by-value semantics
of the target language because coercions have to be eagerly composed. It would be interesting
to investigate call-by-name for either the source or the target language, or both.

ECOOP 2020

8:26 Space-Efficient Gradual Typing in Coercion-Passing Style

6.3 First-Class Coercions
The idea of first-class coercions is also found in Cretin and Rémy [6]. Their language Fι
is equipped with abstraction over coercions. However, their coercions are not for gradual
typing but for parametric polymorphism and subtyping polymorphism.

7 Conclusion

We have developed a new coercion calculus λS1 with first-class coercions as a target language
of coercion-passing style translation from λS, an existing space-efficient coercion calculus.
We have proved the translation preserves both typing and semantics. To achieve a simulation
property, it is important to reduce administrative coercions, just as in CPS transformations.
Our coercion-passing style translation solves the difficulty in implementing the semantics
of λS in a faithful manner and, with the help of first-class coercions, makes it possible to
implement in a compiler for a call-by-value language. We have modified an existing compiler
for a gradually typed language and conducted some experiments. We have confirmed that our
implementation successfully overcomes stack overflow caused by coercions at tail positions,
which Kuhlenschmidt at al. [24] did not support. Our experiment has shown that for practical
programs (without heavy use of function calls), the coercion-passing style translation causes
slowdown up to 3 times for most partially typed configurations.

Aside from completing the implementation by adding recursive types, which the original
Grift compiler supports, more efficient implementation is an obvious direction of future work.
Our coercion-passing style translation introduces several identity coercions and optimizing
operations on coercions will be necessary.

From a theoretical point of view, it would be interesting to extend the technique to
gradual typing in the presence of parametric polymorphism [1, 2, 21, 47, 42], for which a
polymorphic coercion calculus has to be studied first – Luo [26] and Kießling and Luo [22],
who study coercive subtyping in polymorphic settings, may be relevant. The present design
of λS1 is geared towards coercion-passing style. For example, in λS1, trivial (namely identity)
coercions for coercion types A B are allowed; passing coercions to dynamically typed code
is prohibited; variables cannot appear as an argument to coercion constructors, like x ⇒ s.
It may be interesting to study more general first-class coercions without such restrictions.

References
1 Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. Blame for all. In

Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, pages 201–214, 2011. doi:
10.1145/1926385.1926409.

2 Amal Ahmed, Dustin Jamner, Jeremy G. Siek, and Philip Wadler. Theorems for free for
free: parametricity, with and without types. PACMPL, 1(ICFP):39:1–39:28, 2017. doi:
10.1145/3110283.

3 Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1992.
4 Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy G. Siek, and Sam Tobin-Hochstadt.

Sound gradual typing: only mostly dead. PACMPL, 1(OOPSLA):54:1–54:24, 2017. doi:
10.1145/3133878.

5 Giuseppe Castagna, Guillaume Duboc, Victor Lanvin, and Jeremy G. Siek. A space-efficient
call-by-value virtual machine for gradual set-theoretic types. In Proceedings of the 31st
Symposium on Implementation and Application of Functional Languages, IFL 2019, Singapore,
September 25-27, 2019, 2019.

https://doi.org/10.1145/1926385.1926409
https://doi.org/10.1145/1926385.1926409
https://doi.org/10.1145/3110283
https://doi.org/10.1145/3110283
https://doi.org/10.1145/3133878
https://doi.org/10.1145/3133878

Y. Tsuda, A. Igarashi, and T. Tabuchi 8:27

6 Julien Cretin and Didier Rémy. On the power of coercion abstraction. In Proceedings of
the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012, pages 361–372, 2012.
doi:10.1145/2103656.2103699.

7 Olivier Danvy and Andrzej Filinski. Abstracting control. In LISP and Functional Programming,
pages 151–160, 1990. doi:10.1145/91556.91622.

8 Olivier Danvy and Andrzej Filinski. Representing control: A study of the CPS transfor-
mation. Mathematical Structures in Computer Science, 2(4):361–391, 1992. doi:10.1017/
S0960129500001535.

9 Olivier Danvy and Lasse R. Nielsen. Syntactic theories in practice. Electr. Notes Theor.
Comput. Sci., 59(4):358–374, 2001. doi:10.1016/S1571-0661(04)00297-X.

10 Olivier Danvy and Lasse R. Nielsen. A first-order one-pass CPS transformation. Theor.
Comput. Sci., 308(1-3):239–257, 2003. doi:10.1016/S0304-3975(02)00733-8.

11 Matthias Felleisen, Mitchell Wand, Daniel P. Friedman, and Bruce F. Duba. Abstract
continuations: A mathematical semantics for handling full jumps. In LISP and Functional
Programming, pages 52–62, 1988. doi:10.1145/62678.62684.

12 Daniel Feltey, Ben Greenman, Christophe Scholliers, Robert Bruce Findler, and Vin-
cent St-Amour. Collapsible contracts: fixing a pathology of gradual typing. PACMPL,
2(OOPSLA):133:1–133:27, 2018. doi:10.1145/3276503.

13 Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In
Proceedings of the Seventh ACM SIGPLAN International Conference on Functional Program-
ming (ICFP ’02), Pittsburgh, Pennsylvania, USA, October 4-6, 2002., pages 48–59, 2002.
doi:10.1145/581478.581484.

14 Ronald Garcia. Calculating threesomes, with blame. In ACM SIGPLAN International
Conference on Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27,
2013, pages 417–428, 2013. doi:10.1145/2500365.2500603.

15 Michael Greenberg. Space-efficient manifest contracts. In Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015,
Mumbai, India, January 15-17, 2015, pages 181–194, 2015. doi:10.1145/2676726.2676967.

16 Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich. Contracts made manifest. In
Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2010, Madrid, Spain, January 17-23, 2010, pages 353–364, 2010. doi:
10.1145/1706299.1706341.

17 Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich. Contracts made manifest. J.
Funct. Program., 22(3):225–274, 2012. doi:10.1017/S0956796812000135.

18 Fritz Henglein. Dynamic typing: Syntax and proof theory. Sci. Comput. Program., 22(3):197–
230, 1994. doi:10.1016/0167-6423(94)00004-2.

19 David Herman, Aaron Tomb, and Cormac Flanagan. Space-efficient gradual typing. In
Proceedings of the Eighth Symposium on Trends in Functional Programming, TFP 2007, New
York City, New York, USA, April 2-4. 2007., pages 1–18, 2007.

20 David Herman, Aaron Tomb, and Cormac Flanagan. Space-efficient gradual typing. Higher-
Order and Symbolic Computation, 23(2):167–189, 2010. doi:10.1007/s10990-011-9066-z.

21 Yuu Igarashi, Taro Sekiyama, and Atsushi Igarashi. On polymorphic gradual typing. PACMPL,
1(ICFP):40:1–40:29, 2017. doi:10.1145/3110284.

22 Robert Kießling and Zhaohui Luo. Coercions in Hindley–Milner systems. In Types for Proofs
and Programs, International Workshop, TYPES 2003, Torino, Italy, April 30 - May 4, 2003,
Revised Selected Papers, pages 259–275, 2003. doi:10.1007/978-3-540-24849-1_17.

23 Kenneth Knowles and Cormac Flanagan. Hybrid type checking. ACM Trans. Program. Lang.
Syst., 32(2):6:1–6:34, 2010. doi:10.1145/1667048.1667051.

24 Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek. Toward efficient
gradual typing for structural types via coercions. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2019, Phoenix, AZ,
USA, June 22-26, 2019, pages 517–532, 2019. doi:10.1145/3314221.3314627.

ECOOP 2020

https://doi.org/10.1145/2103656.2103699
https://doi.org/10.1145/91556.91622
https://doi.org/10.1017/S0960129500001535
https://doi.org/10.1017/S0960129500001535
https://doi.org/10.1016/S1571-0661(04)00297-X
https://doi.org/10.1016/S0304-3975(02)00733-8
https://doi.org/10.1145/62678.62684
https://doi.org/10.1145/3276503
https://doi.org/10.1145/581478.581484
https://doi.org/10.1145/2500365.2500603
https://doi.org/10.1145/2676726.2676967
https://doi.org/10.1145/1706299.1706341
https://doi.org/10.1145/1706299.1706341
https://doi.org/10.1017/S0956796812000135
https://doi.org/10.1016/0167-6423(94)00004-2
https://doi.org/10.1007/s10990-011-9066-z
https://doi.org/10.1145/3110284
https://doi.org/10.1007/978-3-540-24849-1_17
https://doi.org/10.1145/1667048.1667051
https://doi.org/10.1145/3314221.3314627

8:28 Space-Efficient Gradual Typing in Coercion-Passing Style

25 Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-Wesley,
2nd edition, 1999.

26 Zhaohui Luo. Coercions in a polymorphic type system. Mathematical Structures in Computer
Science, 18(4):729–751, 2008. doi:10.1017/S0960129508006804.

27 Fabian Muehlboeck and Ross Tate. Sound gradual typing is nominally alive and well. PACMPL,
1(OOPSLA):56:1–56:30, 2017. doi:10.1145/3133880.

28 Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theor. Comput. Sci.,
1(2):125–159, 1975. doi:10.1016/0304-3975(75)90017-1.

29 Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin M. Bierman, and Panagiotis Vekris. Safe
& efficient gradual typing for TypeScript. In Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India,
January 15-17, 2015, pages 167–180, 2015. doi:10.1145/2676726.2676971.

30 John C. Reynolds. Definitional interpreters for higher-order programming languages. Higher-
Order and Symbolic Computation, 11(4):363–397, December 1998. This paper originally
appeared in the Proceedings of the ACM National Conference, volume 2, August 1972, ACM,
New York, pages 717–740.

31 Gregor Richards, Ellen Arteca, and Alexi Turcotte. The VM already knew that: leveraging
compile-time knowledge to optimize gradual typing. PACMPL, 1(OOPSLA):55:1–55:27, 2017.
doi:10.1145/3133879.

32 Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style.
Lisp and Symbolic Computation, 6(3-4):289–360, 1993.

33 Amr Sabry and Philip Wadler. A reflection on call-by-value. ACM Trans. Program. Lang.
Syst., 19(6):916–941, 1997. doi:10.1145/267959.269968.

34 Jeremy G. Siek and Ronald Garcia. Interpretations of the gradually-typed lambda calculus. In
Proceedings of the 2012 Annual Workshop on Scheme and Functional Programming, Scheme
2012, Copenhagen, Denmark, September 9-15, 2012, pages 68–80, 2012. doi:10.1145/2661103.
2661112.

35 Jeremy G. Siek, Ronald Garcia, and Walid Taha. Exploring the design space of higher-order
casts. In Programming Languages and Systems, 18th European Symposium on Programming,
ESOP 2009, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, pages 17–31, 2009.
doi:10.1007/978-3-642-00590-9_2.

36 Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In Scheme and
Functional Programming Workshop, pages 81–92, 2006.

37 Jeremy G. Siek, Peter Thiemann, and Philip Wadler. Blame and coercion: together again
for the first time. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Portland, OR, USA, June 15-17, 2015, pages 425–435,
2015. doi:10.1145/2737924.2737968.

38 Jeremy G. Siek and Philip Wadler. Threesomes, with and without blame. In Proceedings
of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2010, Madrid, Spain, January 17-23, 2010, pages 365–376, 2010. doi:10.1145/1706299.
1706342.

39 Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias
Felleisen. Is sound gradual typing dead? In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg,
FL, USA, January 20 - 22, 2016, pages 456–468, 2016. doi:10.1145/2837614.2837630.

40 Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage migration: from scripts to
programs. In Proc. of Dynamic Languages Symposium, pages 964–974, 2006. doi:10.1145/
1176617.1176755.

41 Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of Typed
Scheme. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008,
pages 395–406, 2008. doi:10.1145/1328438.1328486.

https://doi.org/10.1017/S0960129508006804
https://doi.org/10.1145/3133880
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1145/2676726.2676971
https://doi.org/10.1145/3133879
https://doi.org/10.1145/267959.269968
https://doi.org/10.1145/2661103.2661112
https://doi.org/10.1145/2661103.2661112
https://doi.org/10.1007/978-3-642-00590-9_2
https://doi.org/10.1145/2737924.2737968
https://doi.org/10.1145/1706299.1706342
https://doi.org/10.1145/1706299.1706342
https://doi.org/10.1145/2837614.2837630
https://doi.org/10.1145/1176617.1176755
https://doi.org/10.1145/1176617.1176755
https://doi.org/10.1145/1328438.1328486

Y. Tsuda, A. Igarashi, and T. Tabuchi 8:29

42 Matías Toro, Elizabeth Labrada, and Éric Tanter. Gradual parametricity, revisited. PACMPL,
3(POPL):17:1–17:30, 2019. doi:10.1145/3290330.

43 Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed. In Program-
ming Languages and Systems, 18th European Symposium on Programming, ESOP 2009, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York,
UK, March 22-29, 2009. Proceedings, pages 1–16, 2009. doi:10.1007/978-3-642-00590-9_1.

44 Dan S. Wallach and Edward W. Felten. Understanding java stack inspection. In Security
and Privacy - 1998 IEEE Symposium on Security and Privacy, Oakland, CA, USA, May 3-6,
1998, Proceedings, pages 52–63, 1998. doi:10.1109/SECPRI.1998.674823.

45 Mitchell Wand. Correctness of procedure representations in higher-order assembly lan-
guage. In Mathematical Foundations of Programming Semantics, 7th International Con-
ference, Pittsburgh, PA, USA, March 25-28, 1991, Proceedings, pages 294–311, 1991.
doi:10.1007/3-540-55511-0_15.

46 Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Information
and Computation, 115(1):38–94, November 1994.

47 Ningning Xie, Xuan Bi, and Bruno C. d. S. Oliveira. Consistent subtyping for all. In
Programming Languages and Systems - 27th European Symposium on Programming, ESOP
2018, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, pages 3–30, 2018. doi:
10.1007/978-3-319-89884-1_1.

ECOOP 2020

https://doi.org/10.1145/3290330
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1109/SECPRI.1998.674823
https://doi.org/10.1007/3-540-55511-0_15
https://doi.org/10.1007/978-3-319-89884-1_1
https://doi.org/10.1007/978-3-319-89884-1_1

Multiparty Session Programming With
Global Protocol Combinators
Keigo Imai1

Gifu University, Japan
keigoi@gifu-u.ac.jp

Rumyana Neykova
Brunel University London, United Kingdom
Rumyana.Neykova@brunel.ac.uk

Nobuko Yoshida
Imperial College London, United Kingdom
n.yoshida@imperial.ac.uk

Shoji Yuen
Nagoya University, Japan
yuen@i.nagoya-u.ac.jp

Abstract
Multiparty Session Types (MPST) is a typing discipline for communication protocols. It ensures
the absence of communication errors and deadlocks for well-typed communicating processes. The
state-of-the-art implementations of the MPST theory rely on (1) runtime linearity checks to ensure
correct usage of communication channels and (2) external domain-specific languages for specifying
and verifying multiparty protocols.

To overcome these limitations, we propose a library for programming with global combinators
– a set of functions for writing and verifying multiparty protocols in OCaml. Local behaviours
for all processes in a protocol are inferred at once from a global combinator. We formalise global
combinators and prove a sound realisability of global combinators – a well-typed global combinator
derives a set of local types, by which typed endpoint programs can ensure type and communication
safety. Our approach enables fully-static verification and implementation of the whole protocol, from
the protocol specification to the process implementations, to happen in the same language.

We compare our implementation to untyped and continuation-passing style implementations,
and demonstrate its expressiveness by implementing a plethora of protocols. We show our library
can interoperate with existing libraries and services, implementing DNS (Domain Name Service)
protocol and the OAuth (Open Authentication) protocol.

2012 ACM Subject Classification Software and its engineering → Concurrent programming struc-
tures; Theory of computation → Type structures; Software and its engineering → Functional
languages; Software and its engineering → Polymorphism

Keywords and phrases Multiparty Session Types, Communication Protocol, Concurrent and Dis-
tributed Programming, OCaml

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.9

Related Version A full version of the paper [25] is available at http://arxiv.org/abs/2005.06333.

Supplementary Material ECOOP 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.2.18.
A source code repository for the accompanying artifact is available at https://github.com/keigoi/
ocaml-mpst/.

1 Corresponding author

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 9; pp. 9:1–9:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1602-8473
mailto:keigoi@gifu-u.ac.jp
https://orcid.org/0000-0002-2755-7728
mailto:Rumyana.Neykova@brunel.ac.uk
https://orcid.org/0000-0002-3925-8557
mailto:n.yoshida@imperial.ac.uk
https://orcid.org/0000-0003-2642-0647
mailto:yuen@i.nagoya-u.ac.jp
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
http://arxiv.org/abs/2005.06333
https://doi.org/10.4230/DARTS.6.2.18
https://github.com/keigoi/ocaml-mpst/
https://github.com/keigoi/ocaml-mpst/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 MPST Programming with Global Protocol Combinators

Funding Our work is partially supported by the first author’s visitor funding to Imperial College
London and Brunel University London supported by Gifu University, VeTSS, JSPS KAKENHI Grant
Numbers JP17H01722, JP17K19969 and JP17K12662, JSPS Short-term Visiting Fellowship S19068,
EPSRC Doctoral Prize Fellowship, and EPSRC EP/K011715/1, EP/K034413/1, EP/L00058X/1,
EP/N027833/1, EP/N028201/1, EP/T006544/1 and EP/T014709/1.

Acknowledgements We thank Jacques Garrigue and Oleg Kiselyov for their comments on an early
version of this paper.

1 Introduction

Multiparty Session Types. Multiparty Session Types (MPST) [20, 11, 21] is a theoret-
ical framework that stipulates how to write, verify and ensure correct implementations
of communication protocols. The methodology of programming with MPST (depicted in
Fig. 1(a)) starts from a communication protocol (a global type) which specifies the behaviour
of a system of interacting processes. The local behaviour (a local type) for each endpoint
process is then algorithmically projected from the protocol. Finally, each endpoint process is
implemented in an endpoint host language and type-checked against its respective local type
by a session typing system. The guarantee of session types is that a system of well-typed
endpoint processes does not go wrong, i.e it does not exhibit communication errors such as
reception errors, orphan messages or deadlocks, and satisfies session fidelity, i.e. the local
behaviour of each process follows the global specification.

The theoretical MPST framework ensures desirable safety properties. In practice, session
types implementations that enforce these properties statically, i.e at compile-time, are
limited to binary (two party protocols) [43, 39, 31, 41]. Extending binary session types
implementations to multiparty interactions, which support static linearity checks (i.e., linear
usage of channels), is non-trivial, and poses two implementation challenges.

(C1) How global types can be specified and verified in a general-purpose
programming language? Checking compatibility of two communicating processes relies
on duality, i.e., when one process performs an action, the other performs a complementary
(dual) action. Checking the compatibility of multiple processes is more complicated, and
relies on the existence of a well-formed global protocol and the syntax-directed procedure
of projection, which derives local types from a global specification. A global protocol is
considered well-formed, if local types can be derived via projection. Since global types
are far from the types of a “mainstream” programming language, state-of-the-art MPST
implementations [22, 36, 47, 9] use external domain-specific protocol description languages
and tools (e.g. the Scribble toolchain [50]) to specify global types and to implement the
verification procedure of projection. The usage of external tools for protocol description and
verification widens the gap between the specification and its implementations and makes it
more difficult to locate protocol violations in the program, i.e. the correspondence between
an error in the program and the protocol is less apparent.

(C2) How to implement safe multiparty communication over binary channels?
The theory of MPST requires processes to communicate over multiparty channels – channels
that carry messages between two or more parties; their types stipulate the precise sequencing
of the communication between multiple processes. Additionally, multiparty channels has
to be used linearly, i.e exactly once. In practice, however, (1) communication channels are
binary, i.e a TCP socket for example connects only two parties, and hence its type can
describe interactions between two entities only; (2) most languages do not support typing
of linear resources. Existing MPST implementations [22, 36, 47, 9] apply two workarounds.

K. Imai, R. Neykova, N. Yoshida, and S. Yuen 9:3

Global Protocol File

Process

Well-formedness checking and Code generation

Type checking and Runtime linearity check

Local type
(Generated code)

Local type
(Generated code)

Local type
(Generated code)

ProcessProcess

Java, Go, F#, Scala…

↓ A single OCaml program code file (.ml)

Global Combinators in OCaml

Process

Type inference

Type checking by OCaml’s compiler

Local type

ProcessProcess

Local type Local type

Figure 1 (a) State-of-the-art MPST implementations and (b) ocaml-mpst methodology.

To preserve the order of interactions when implementing a multiparty protocol over binary
channels, existing works use code generation (e.g. [50]) and generate local types (APIs)
for several (nominal) programming languages. Note that although the interactions order is
preserved, most of these implementations [22, 36, 9] still require type-casts on the underlying
channels, compromising type safety of the host type system. To ensure linear usage of
multiparty channels, runtime checks are inserted to detect if a channel has been used more
than once. This is because the type systems of their respective host languages do not provide
static linearity checking mechanism.

Our approach. This paper presents a library for programming MPST protocols in OCaml
that solves the above challenges. Our library, ocaml-mpst, allows to specify, verify and
implement MPST protocols in a single language, OCaml. Specifically, we address (C1) by
developing global combinators, an embedded DSL (EDSL) for writing global types in OCaml.
We address (C2) by encoding multiparty channels into channel vectors – a data structure,
storing a nested sequence of binary channels. Moreover, ocaml-mpst verifies statically the
linear usage of communication channels, using OCaml’s strong typing system and supports
session delegation.

The key device in our approach is the discovery that in a system with variant and record
types, checking compatibility of local types coincides with existence of least upper bound
w.r.t. subtyping relation. This realisation enables a fully static MPST implementation,
i.e., static checking not only on local but also on global types in a general purpose language.

Programming with ocaml-mpst (Fig. 1(b)) closely follows the “top-down” methodology
of MPST, but differs from the traditional MPST framework in Fig. 1(a). To use our library,
a programmer specifies the global protocol with a set of global combinators. The OCaml
typechecker verifies correctness of the global protocol and infers local types from global
combinators. A developer implements the endpoint processes using our ocaml-mpst API.
Finally, the OCaml type checker verifies that the API is used according to the inferred type.

The benefits of ocaml-mpst are that it is (1) lightweight – it does not depend on any
external code-generation mechanism, verification of global protocols is reduced to typability
of global combinators; (2) fully-static – our embedding integrates with recent techniques for
static checking of binary session types and linearly-typed lists [27, 24], which we adopt to
implement multiparty session channels and session delegation; (3) usable – we can auto-detect
and correct protocol violations in the program, guided by OCaml programming environments
like Merlin [4]; (4) extensible – while most MPST implementations rely on a nominal typing,
we embed session types in OCaml’s structural types, and preserve session subtyping [17]; and
(5) expressive – we can type strictly more processes than [48] (see § 7).

ECOOP 2020

9:4 MPST Programming with Global Protocol Combinators

1 let oAuth = (s -->c) login @@ (c -->a) pwd @@ (a -->s) auth @@ finish (* global protocol*)

2 (* The client process *)
3 let cliThread () =
4 let ch = get_ch c oAuth in
5 let `login(x, ch) = recv ch#role_S in
6 let ch = send ch#role_A#pwd "pass" in
7 close ch
8

9 (* The service process *)
10 let srvThread () =
11 let ch = get_ch s oAuth in
12 let ch = send ch#role_C#login "Hi" in
13 let `auth(_,ch) = recv ch#role_A in
14 close ch
15

16 (* The authenticator process *)
17 let authThread () =
18 let ch = get_ch a oAuth in
19 let `pwd(code,ch) = recv ch#role_C in
20 let ch = send ch#role_S#auth true in
21 close ch
22

23 (* start all processes *)
24 let () =
25 List.iter Thread.join [
26 Thread.create cliThread ();
27 Thread.create srvThread ();
28 Thread.create authThread ()]

Figure 2 Global protocol and local implementations for OAuth protocol 2.

Contributions. Contributions and the outline of the paper are as follows:
§ 2 gives an overview of programming with ocaml-mpst, a library in OCaml for specification,

verification and implementations of communication protocols.
§ 3 formalises global combinators, presents their typing system, and proves a sound realisab-

ility of global combinator, i.e. a set of local types inferred from a global combinator can
type a channel which embeds a set of endpoint behaviours as OCaml data structures.

§ 4 discusses the design and implementation of global combinators.
§ 5 summarises the ocaml-mpst communication library and explains how we utilise advanced

features/libraries in OCaml to enable dynamic/static linearity checking on channels.
§ 6 evaluates ocaml-mpst. We compare ocaml-mpst with several different implementations

and demonstrate the expressiveness of ocaml-mpst by showing implementations of MPST
examples, as well as a variety of real-world protocols. We demonstrate our library can
interoperate with existing libraries and services, namely we implement DNS (Domain
Name Service) and the OAuth (Open Authentication) protocols on top of existing libraries.

We discuss related work in § 7 and conclude with future work in § 8. Full proofs, omitted
definitions and examples can be found in [25]. Our implementation, ocaml-mpst is available
at https://github.com/keigoi/ocaml-mpst including benchmark programs and results.

2 Overview of OCaml Programming with Global Combinators

This section gives an overview of multiparty session programming in ocaml-mpst by examples.
It starts from declaration of global combinators, followed by endpoint implementations. We
also demonstrate how errors can be reported by an OCaml programming environment like
Merlin [4]. In the end of this section, we show the syntax of global combinators and the
constructs of ocaml-mpst API in Fig. 5. The detailed explanation of the implementations of
the constructs is deferred to § 4.

From global combinators to communication programs. We illustrate global combinators
starting from a simple authentication protocol (based on OAuth 2.0 [18]). A full version
of the protocol is implemented and discussed in § 6. Fig. 2 shows the complete OCaml
implementation of the protocol, from the protocol specification (using global combinators) to
the endpoint implementations (using ocaml-mpst API).

https://github.com/keigoi/ocaml-mpst

K. Imai, R. Neykova, N. Yoshida, and S. Yuen 9:5

The protocol consists of three parties, a service s, a client c, and an authenticator a.
The interactions between the parties (hereafter also called roles) proceed as follows: (1) the
service s sends to the client c a login message containing a greeting (of type string); (2)
the client then continues by sending its password (pwd) (of type string) to the authenticator
a; and (3) finally the authenticator a notifies s, by sending an auth message (of type bool),
whether the client access is authorised.

The global protocol oAuth in Line 1 is specified using two global combinators, --> and
finish. The former represents a point-to-point communication between two roles, while
the latter signals the end of a protocol. The operator @@ is a right-associative function
application operator to eliminate parentheses, i.e., (c --> a) pwd @@ exp is equivalent to (c -->
a) pwd (exp), where --> works as a four-ary function which takes roles c and a and label pwd
and continuation exp. We assume that login, pwd and auth are predefined by the user as
label objects with their payload types of string, string and bool, respectively3. Similarly, s,
c and a are predefined role objects. We elaborate on how to define these custom labels and
roles in § 4.

The execution of the oAuth expression returns a tuple of three channel vectors – one for
each role in the global combinator. Each element of the tuple can be extracted using an
index, encoded in role objects (c, s, and a). Intuitively, the role object c stores a functional
pointer that points to the first element of the tuple, s points to the second, and a to the
third element. The types of the extracted channel vectors reflect the local behaviour that
each role, specified in the protocol, should implement. Channel vectors are objects that hide
the actual bare communication channels shared between every two communicating processes.

Lines 3–21 present the implementations for all three processes specified in the global
protocol. We explain the implementation for the client – cliThread (Lines 3–7). Other
processes are similarly implemented. Line 4 extracts the channel vector that encapsulates
the behaviour of the client, i.e the first element of oAuth. This is done by using the function
get_ch (provided by our library) applied to the role object c and the expression oAuth.

Our library provides two main communication primitives, namely send and recv. To
statically check communication structures using types, we exploit OCaml’s structural types
of objects and polymorphic variants (rather than their nominal counterparts of records and
ordinary variants). In Line 5, ch#role_S is an invocation of method role_S on an object ch.
The recv primitive waits on a bare channel returned by the method invocation. The returned
value is matched against a variant tag indicating the input label `login with the pair of the
payload value x and a continuation ch (shadowing the previous usage of ch). Then, on Line 6,
two method calls on ch are performed, e.g ch#role_A#pwd, which extract a communication
channel for sending a password (pwd) to the authenticator. This channel is passed to the
send primitive, along with the payload value "pass". Then, let rebinds the name ch to
the continuation returned by send and on Line 7 the channel is closed. Each operation is
guided by the host OCaml type system, via channel vector type. For example, the client
channel ch extracted in Line 4 has a channel vector type (inferred by OCaml type checker)
<role_S: [`login of string * t] inp> which denote reception (suffixed by inp) from server of
a login label, then continuing to t, where t is <role_A:<pwd:(string,close) out>> denoting
sending (out) to authenticator of a pwd label, followed by closing. Note that the type <f: t>
denotes an OCaml object with a field f of type t; [`m of t] is a (polymorphic) variant type
having a tag m of type t. Finally, in Lines 25–28 all processes are started in new threads.

2 We use a simplified syntax that support the in-built communication transport of Ocaml. For the full
syntax of the library that is parametric on the transport, see the repository.

3 To be precise, the labels are polymorphic on their payload types which are instantiated at the point

ECOOP 2020

https://github.com/keigoi/ocaml-mpst/blob/master/instructions.md#¬e-on-syntax-discrepancies

9:6 MPST Programming with Global Protocol Combinators

1 let oAuth2 () =
2 (choice_at s (to_s login_cancel)
3 (s, oAuth ())
4 (s, (s -->c) cancel @@
5 (c -->a) quit @@
6 finish))

(a) Protocol With Branching.

1 let oAuth3 () =
2 fix (fun repeat ->
3 (choice_at s (to_s oauth2_retry)
4 (s, oAuth2 ()
5 (s, (s -->c) retry @@
6 repeat))

(b) Protocol With Branching & Recursion.

Figure 3 Extended oAuth protocols.

On the expressiveness of well-typed global protocols. Fig. 3 shows two global protocols
that extend oAuth with new behaviours. In Fig. 3a, the global combinator choice_at specifies
a branching behaviour at role s. In the first case (Line 3), the protocol proceeds with protocol
oAuth. In the second case (Line 5) the service sends cancel, to the client, and the client
sends a quit message to the authenticator. The deciding role, s, is explicit in each branch.
The choice combinator requires a user-defined (to_s login_cancel) (Line 2) that specifies
concatenation of two objects for sending in branches. Its implementation is straightforward
(see § 4). The protocol oAuth3 in Fig. 3b reuses oAuth2 and further elaborates its behaviour
by offering a retry option. It demonstrates a recursive specification where the fix combinator
binds the protocol itself to variable repeat.

The implementation of the corresponding client code for Fig. 3a is shown on Fig. 4a.
The code is similar as before, but uses a pattern matching against multiple tags `login and
`cancel to specify an external choice on the client, i.e the client can receive messages of
different types and exhibit different behaviour according to received labels. The behaviour
that a role can send messages of different types, which is often referred to as an internal
choice, is represented as an object with multiple methods.

Our implementation also preserves the subtyping relation in session types [17], i.e the safe
replacement of a channel of more capabilities in a context where a channel of less capabilities
is expected. Session subtyping is important in practice since it ensures backward compatibility
for protocols: a new version of a protocol does not break existing implementations. For
example, the client function in Fig. 4a is typable under both protocols oAuth2 and oAuth3
since the type of the channel stipulating the behaviour for role c in oAuth2 (receiving either
message `login or `cancel) is a subtype of the channel for c in oAuth3 (receiving `login,
`cancel, or `retry).

Static linearity and session delegation. The implementations presented in Fig. 2, as well
as Fig. 4a detect linearity violations at runtime, as common in MPST implementations
[22, 47] in a non-substructural type system. We overcome this dynamic checking issue by
an alternative approach, listed in Fig. 4b. We utilise an extension (let%lin) for linear types
in OCaml [24] that statically enforces linear usage of resources by combining the usage of
parameterised monads [29, 2, 40] and lenses [16]. Our library is parameterised on the chosen
approach, static or dynamic. A few changes are made to avoid explicit handling of linear
resources: (1) ch in Fig. 4b refers to a linear resource and has to be matched against a linear
pattern prefixed by #. (2) Roles and labels are now specified as a selector function of the
form (fun x->x#role#label).

where they are used.

K. Imai, R. Neykova, N. Yoshida, and S. Yuen 9:7

1 match recv ch#role_S with
2 |`login(pass, ch) ->
3 let ch = send ch#role_A#pwd pass
4 in close ch
5 |`cancel(_,ch) ->
6 let ch = send ch#role_A#quit ()
7 in close ch

(a) Dynamic Linearity Checking.

match%lin recv ch (fun x->x#role_S) with
|`login(pass, #ch) ->

let%lin #ch = send ch (fun x->x#role_A#pwd) pass
in close ch

|`cancel(_, #ch) ->
let%lin #ch = send ch (fun x->x#role_A#quit) ()
in close ch

(b) Static Linearity Checking.

Figure 4 Two Modes on Linearity Checking.

Global Combinators to Local Types where ti is a local type at ri in g (1 ≤ i ≤ n)
Global Combinator Synopsis
(ri --> rj) m g Transmission from ri to rj of label m (with a payload).

choice_at ra mrg (ra, g1) (ra, g2) Branch to g1 or g2 guided by ra.

finish Finished session.
fix (fun x -> g) Recursion. Free occurrences of x is equivalent to g itself.
Local Types and Communication Primitives
Communication Primitive Synopsis
send s#role_r#mk e Send to role r label mk with payload e, returning continuation.
let `m(x, s) = receive s#role_r
in e

Receive from r label m with payload x : v and continue
to e with endpoint s : t

match receive s#role_r with
| `m1(x1, s) -> e1 | · · ·
| `mn(xn, s) -> en

Receive from r one of labels {mi} (1 ≤ i ≤ n) where
payload is vi and continue with ti in ei

close s Closes a session

Figure 5 (a) Global Combinators (top) and (b) Communication APIs of ocaml-mpst (bottom).

Our implementation is also the first to support static multiparty sessions delegation (the
capability to pass a channel to another endpoint): our encoding yields it for free, via existing
mechanisms for binary delegation (see § 4).

Errors in global protocol and ocaml-mpst endpoint programs. Our framework ensures
that a well-typed ocaml-mpst program precisely implements the behaviour of its defined
global protocol. Hence, if a program does not conform to its protocol, a compilation error
is reported. Fig. 6 shows the error reported when swapping the order of send and receive
actions (Lines 6 and 5) in the client implementation in Fig. 2. Similarly, errors will also be
reported if we misspell any of the methods pwd, role_A, or role_C.

Similarly, an error is reported if the global protocol is not safe (which corresponds to an
ill-formed MPST protocols [14]) since this may lead to unsafe implementations. Consider
Fig. 6 (b), where we modify oAuth2 such that s sends a cancel message to a. This protocol
(oAuth4) exhibits a race condition: even if all parties adhere to the specified behaviour, c
can send a quit before s sends login, which will lead to a deadlock on s. Our definition of
global combinators prevents such ill-formed protocols, and the OCaml compiler will report
an error. The actual error message reported in OCaml detects the mismatch between a and
c, indicating violation of the active role property in the MPST literature [14] – the sender
must send to the same role.

ECOOP 2020

9:8 MPST Programming with Global Protocol Combinators

3 Formalisms and Typing for Global Combinators

This section formalises global combinators and their typing system, along a formal corres-
pondence between a global combinator and channel vectors. The aim of this section is to
provide a guidance towards descriptions of the implementations presented in § 4,5.

We first give the syntax of global combinators and channel vectors in § 3.1. We then
propose a typing system of global combinators in § 3.2, illustrating that the rules check their
well-formedness. We define derivation of channel vectors from global combinators in § 3.3.
The main theorem (Theorem 3.11) states that a well-typed global combinator always derives
a channel vector which is typable by a corresponding set of local types, i.e. any well-typed
global combinator is soundly realisable by a tuple of well-typed channel vectors.

3.1 Global Combinators and Channel Vector Types
Global combinators. denote a communication protocol which describes the whole conver-
sation scenario of a multiparty session.

I Definition 3.1 (Global combinators and channel vector types). The syntax of global combin-
ators, written g, g′, .., are given as:

g ::= (p → q) m:T g | choice p {gi}i∈I | fixx -> g | x | finish

where the syntax of payload types S, T , . . . (also called channel vector types) is given below:
T , S ::= !T | ?T |]T | T1×···×Tn | 〈li :Ti〉i∈I | [li Ti]i∈I | µt.T | t | •

The formal syntax of global combinators comes from Scribble [50] and corresponds to the
standard global types in MPSTs [37]. We assume a set of participants (R = {p, q, r, · · · }), and
that of alphabets (A = {ok, cancel, · · · }). Communication combinator (p → q) m:T g
states that participant p can send a message of type T with label m to participant q and that
the interaction described in g follows. We require p 6= q to prevent self-sent messages. We
omit the payload type when unit type •, and assume T is closed, i.e. it does not contain free
recursive variables. Choice combinator choice p {gi}i∈I is a branching in a protocol where
p makes a decision (i.e. an output) on which branch the participants will take. Recursion
fixx -> g is for recursive protocols, assuming that variables (x, x′, . . .) are guarded in the
standard way, i.e. they only occur under the communication combinator. Termination
finish represents session termination. We write p ∈ roles(g) (or simply p∈g) iff, for some
q, either p→q or q→p occurs in g.

Figure 6 Type Errors Reported by Visual Studio Code (Powered by Merlin), in (a) Local Type
(left) and (b) Global Combinator (right).

K. Imai, R. Neykova, N. Yoshida, and S. Yuen 9:9

I Example 3.2. The global combinator gAuth below specifies a variant of an authentication
protocol in Fig. 3 where T = string and client sends auth to server, then server replies
with either ok or cancel.
gAuth = (c → s) auth:T

(
choice s {(s → c) ok:T finish, (s → c) cancel:T finish}

)
Channel vector types. abstract behaviours of each participant using standard data structure
and channels. We assume labels l, l′, . . . range over R ∪A. Types !T and ?T denote output
and input channel types, with a value or channel of type T (note that the syntax includes
session delegation).]T is an io-type which is a subtype of both input or output types
[46]. T1×···×Tn is an n-ary tuple type. 〈li :Ti〉i∈I is a record type where each field li
has type Ti for i ∈ I. [li Ti]i∈I is a variant type [46] where each li is a possible tag
(or constructor) of that type and Ti is the argument type of the tag. In both record and
variant types, we assume the fields and tags are distinct (i.e. in 〈li :Ti〉i∈I and [li Ti]i∈I ,
we assume li 6= lj for all i 6= j). The symbol • denotes a unit type. Type t is a variable
for recursion. A recursive type takes an equi-recursive viewpoint, i.e. µt.T is viewed as
T{µt.T/t}. Recursion variables are guarded and payload types are closed.

Channel vectors: Session types as record and variant types. The execution model of
MPST assumes that processes communicate by exchanging messages over input/output (I/O)
channels. Each channel has the capability to communicate with multiple other processes. A
local session type prescribes the local behaviour for a role in a global protocol by assigning
a type to the communication channel utilised by the role. More precisely, a local session
type specifies the exact order and payload types for the communication actions performed on
each channel (see Fig. 1(a)). In practice, processes communicate on a low-level bi-directional
I/O channels (bare channels), which are used for synchronisation of two (but not multiple)
processes. Therefore, to implement local session types in practice, a process should utilise
multiple bare channels, preserving the order, in which such channels should be used. We
encode local session types as channel vector types, which wrap bare channels (represented
in our setting by ?T , !T ,]T types) in record and variant types. This is illustrated in the
following table, with the corresponding local session types for reference.

Behaviour Channel vector type Local session type [49]
Selection (Output choice) 〈q:〈mi:!Si×Ti〉i∈I〉 q⊕i∈Imi(Si).Ti
Branching (Input choice) 〈q:?[mi Si×Ti]i∈I〉 q&i∈Imi(Si).Ti
Recursion µt.T , t µt.T , t
Closing • end

Intuitively, the behaviour of sending a message is represented as a record type, which stores
inside its fields a bare output channel and a continuation; the input channel required when
receiving a message is stored in a variant type. Type 〈q:〈mi:!Si×Ti〉i∈I〉 is read as: to
send label mi to q, (1) the channel vector should be “peeled off” from the nested record
by extracting the field q then mi; then (2) it returns a pair !Si×Ti of an output channel
and a continuation. Type 〈q:?[mi Si×Ti]i∈I〉 says that (1) the process extracts the value
stored in the field q, then reads on the resulting input channel (?) to receive a variant of
type [mi Si×Ti]i∈I ; then, (2) the tag (constructor) mi of the received variant indicates the
label which q has sent, and the former’s argument Si is the payload, and the latter Ti is the
continuation.

ECOOP 2020

9:10 MPST Programming with Global Protocol Combinators

The anti-symmetric structures between output types 〈q:〈mi:!Si×Ti〉i∈I〉 and input types
〈q:?[mi Si×Ti]i∈I〉 (notice the placements of ! and ? symbol in these types) come from the
fact that an output is an internal choice where output labels are proactively chosen via
projection on a record field, while an input is an external choice where input labels are
reactively chosen via pattern-matching among variant constructors.

3.2 Typing Global Combinators

A key finding of our work is that compatibility of local types can be checked using a type
system with record and variant subtyping. Before explaining how each combinator ensures
compatibility of types, we give an intuition of well-formed global protocols following [14].

Well-formedness and choice combinator. A well-formed global protocol ensures that a
protocol can be correctly and safely realised by a system of endpoint processes. Moreover,
a set of processes that follow the prescribed behaviour is deadlock-free. Well-formedness
imposes several restrictions on the protocol structure, notably on choices. This is necessary
because some protocols, such as oAuth4 in Fig. 6(b) (§ 2), are unsafe or inconsistent. More
precisely, a protocol is well-formed if local types can be generated for all of its roles, i.e the
endpoint projection function [14, Def. 3.1][25] is defined for all roles. Our encoding allows the
well-formedness restrictions to be checked statically, by the OCaml typechecker. Below, we
explain the main syntactic restrictions of endpoint projection, which are imposed on choices
and checked statically:
R1 (active role) in each branch of a choice, the first interaction is from the same sender

role (active role) to the same receiver role (directed output).
R2 (deterministic choice) output labels from an active role are pairwise distinct (i.e.,

protocols are deterministic)
R3 (mergeable) the behaviour of a role from all branches should be mergeable, which is

ensured by the following restrictions:
M1 two input choices are merged only if (1) their sender roles are the same (directed

input), and (2) their continuations are recursively mergeable if labels are the same.
M2 two output choices can be merged only if they are the same.

Intuitively, the conditions in R3 ensure that a process is able to determine unambiguously
which branch of the choice has been taken by the active role, otherwise the process should
be choice-agnostic, i.e it should preform the same actions in all branches. Requirement R3 is
known in the MPST literature as recursive full merging [14].

Typing system for global combinators. Deriving channel vector types from a global com-
binator corresponds to the end point projection in multiparty session types [21]. Projection
of global protocols relies on the notion of merging (R3). As a result of the encoding of local
types as channel vectors with record and variants, the merging relation coincides with the
least upper bound (join) in the subtyping relation. This key observation allows us to embed
well-formed global protocols in OCaml, and check them using the OCaml type system.

Next we give the typing system of global combinators, explaining how each of the typing
rules ensures the verification conditions R1-R3. The typing system uses the following
subtyping rules.

K. Imai, R. Neykova, N. Yoshida, and S. Yuen 9:11

I Definition 3.3. The subtyping relation 6 is coinductively defined by the following rules.
[Osub-•]

• 6 •
[Osub-OutCh]

]T 6 !T
[Osub-Out] S 6 T

!T 6 !S
[Osub-RcdDepth] Si 6 Ti i ∈ I
〈li :Si〉i∈I 6 〈li :Ti〉i∈I

[Osub-Var] Si 6 Ti i ∈ I
[li Si]i∈I 6 [li T i]i∈I∪J

[Osub-InpCh]

]T 6 ?T
[Osub-Inp] S 6 T

?S 6 ?T
[Osub-Tup] Si 6 Ti i ∈ I
S1×···×Sn 6 T1×···×Tn

[Osub-µL] S{µt.S/t} 6 T

µt.S 6 T

[Osub-µR] S 6 T{µt.T/t}
S 6 µt.T

Among those, the rules [Osub-µL] and [Osub-µR] realise equi-recursive view of types. The
only non-standard rule is [Osub-RcdDepth] which does not allow fields to be removed in the
super type. This simulates OCaml’s lack of row polymorphism where positive occurrences
of objects are not allowed to drop fields. Note that the negative occurrences of objects in
OCaml, which we use in process implementations, for example, do have row polymorphism,
which correspond to standard record subtyping:

Si 6 Ti i ∈ I
〈li :Si〉i∈I∪J 6 〈li :Ti〉i∈I

. We use standard
record subtyping, when typing processes. Since it permits removal of fields, it precisely
simulates session subtyping on outputs. Typing rules for processes are left to [25].

The typing rules for global combinators (Fig. 7) are defined by the typing judgement of
the form Γ `R g : T where Γ is a type environment for recursion variables (definition follows),
R = p1, . . . , pn is the sequence of roles which participate in g, and T = T1 × · · · × Tn is a
product of channel vector types where each Ti indicates a protocol which the role pi must
obey. We use the product-based encoding to closely model our our implementation and
to avoid fixing the number of roles n of finish combinator by using variable-length tuples
(see [25]).

I Definition 3.4 (Global combinator typing rules). A typing context Γ is defined by the
following grammar: Γ::=∅ | Γ, x:T . The judgement Γ `R g :T is defined by the rules in Fig. 7.
We say g is typable with R if Γ `R g : T for some Γ and T . If Γ is empty, we write `R g : T .

The rule [Otg-Comm] states that pi has an output type 〈pj :〈m:!S×Ti〉〉 to pj with label m, a
payload typed by S and continuation typed by Ti; a dual input type 〈pi:?[m S×Tj]〉 from
pj and continuation typed by Tj ; and the rest of the roles are unchanged.

Rule [Otg-Sub] is the key to obtain full merging using the subtyping relation, and along with
the rule [Otg-Choice], is a key to ensure the protocol is realisable, and free of communication
errors. The rule [Otg-Choice] requires (1) role pa to have an output type to the same destination
role q, which satisfies R1. The output labels {mk}k∈Ki

are mutually disjoint at each branch gi,
and are merged into a single record, which ensures that the choice is deterministic (R2). All
other types stay the same, up to subtyping. Following requirement M1 of R3, a non-directed
external choices are prohibited. This is ensured by encoding the sender role of an input
type as a record field, As the two different destination role labels would result in two record
types with no join, following subtyping rule [Osub-RcdDepth], a non-directed external choices
are safely reported as a type error. Non-directed internal choices are similarly prohibited
(M2). On the other hand, directed external choices are allowed, as stipulated by M1, and
ensured by the subtyping relation on variant types [Osub-Var]. For example, the two input
types 〈q:?[m1 S1×T1]〉 and 〈q:?[m2 S2×T2]〉 can be unified as 〈q:?[mi Si×Ti]i∈1,2〉.

The rest of the rules are standard. Rule [Otg-fix] is for recursion; it assigns the recursion
variable x a sequence of distinct fresh type variables in the continuation which is later looked
up by [Otg-x]. In tfix(t, T), we assign a unit type if the role does not contribute to the
recursion (i.e., T = t′ for any t′), or forms a recursive type µt.T otherwise.

I Example 3.5 (Typing a global combinator). We show that the global combinator gAuth =
(c → s) auth (choice s {(s → c) ok finish, (s → c) cancel finish}) has the following
type under s, c:

ECOOP 2020

9:12 MPST Programming with Global Protocol Combinators

[Otg-Comm] Γ `R g :
(
T1 × ··· × Ti × ··· × Tj × ··· × Tn

)
pi, pj ∈ R

Γ `R (pi → pj) m:S g :
(
T1 × ··· × 〈pj :〈m:!S×Ti〉〉 × ··· × 〈pi:?[m S×Tj]〉 × ··· × Tn

)
[Otg-Choice]

Γ `R gi : T1×···×Ta−1×〈q:〈mk:!Sk×T ′k〉k∈Ki
〉×Ta+1×···×Tn

Kj ∩Kj′ = ∅ for all j 6= j′ ∀i ∈ I pa ∈ R

Γ `R choice pa {gi}i∈I :
(
T1×···×Ta−1×〈q:〈mk:!Sk×T ′k〉k∈

⋃
i∈I

Ki
〉×Ta+1×···×Tn

) [Otg-x]

Γ, x:T `R x : T

[Otg-finish]

Γ `R finish : •×· · ·×•
[Otg-Sub] Γ `R g : S S 6 T

Γ `R g : T
[Otg-fix] Γ, x:tx1×· · ·×txn `R g : T1×· · ·×Tn

Γ `R fixx -> g : tfix(tx1, T1)×· · ·×tfix(txn, Tn)
where R = p1, . . . , pn and, tfix

(
t, t′

)
=• and tfix(t, T)=µt.T otherwise.

Figure 7 The typing rules for global combinators Γ `R g : T .

〈c:?[auth T×〈c:〈ok:!T×•, cancel:!T×•〉〉]〉×〈c:〈auth:!T×〈s:?[ok T×•, cancel T×•]〉〉〉
First, see that g1 = ((s → c) ok finish) has a typing derivation as follows (note that we
omit the payload type T in global combinators):

`s,c finish : • × •
`s,c (s → c) ok finish : 〈c:〈ok:!T×•〉〉 × 〈s:?[ok T×•]〉

For g2 = ((s → c) cancel finish) we have similar derivation. Then, type of role c (the
second of the tuple) is adjusted by [Otg-Sub], 〈s:?[ok T×•]〉 6 〈s:?[ok T×•, cancel T×•]〉 and
〈s:?[cancel T×•]〉 6 〈s:?[ok T×•, cancel T×•]〉, thus we have:

`s,c g1 : 〈c:〈ok:!T×•〉〉×〈s:?[ok T×•, cancel T×•]〉
`s,c g2 : 〈c:〈cancel:!T×•〉〉×〈s:?[ok T×•, cancel T×•]〉

Then, by [Otg-Choice], we have the following derivation:

`s,c g1 : 〈c:〈ok:!T×•〉〉 ×
〈

s:?
[
ok T×•,
cancel T×•

]〉
`s,c g2 : 〈c:〈cancel:!T×•〉〉 ×

〈
s:?
[
ok T×•,
cancel T×•

]〉
`s,c choice s {g1, g2} : 〈c:〈ok:!T×•, cancel:!T×•〉〉 × 〈s:?[ok T×•, cancel T×•]〉

Note that, in the above premises, the first element of the tuple specifying the behaviour of
choosing role s, namely 〈c:〈ok:!T×•〉〉 and 〈c:〈cancel:!T×•〉〉, are disjointly combined into
〈c:〈ok:!T×•, cancel:!T×•〉〉 in the conclusion. Then, by applying [Otg-Comm] again, we get
the type for gAuth presented above.

3.3 Evaluating Global Combinators to Channel Vectors
Channel vectors are data structures which are created from a global combinator at initialisa-
tion, and used for sending/receiving values from/to participants. Channel vectors implement
multiparty communications as nested binary io-typed channels.

I Definition 3.6 (Channel vectors). Channel vectors (c, c′, ...) and wrappers (h, h′, ...) are
defined as:

c, c′::= v, ... | s, s′, ... | (c1, ... , cn) | [l=c] | 〈li=ci〉i∈I | µx.c | [si@hi]i∈I
h, h′::= [] | [l=h] | (c1, ... , hk, ... , cn) | 〈l1=c1, ... , lk=h, ... , ln=cn〉 l::= p | m

Channel vectors c are either base values v or runtime values generated from global
combinators which include names (simply-typed binary channels) s, s′, ..., tuples (c1, ... , cn),
variants [l=c], records 〈li=ci〉i∈I , and recursive values µx.c where x is a bound variable.

We introduce an extra runtime value, wrapped names [si@hi]i∈I , inspired by Concurrent
ML’s wrap and choose functions [45], which are a sequence [...]i∈I of pairs of input name
si and a wrapper hi. A wrapper h contains a single hole []. An input on wrapped names

K. Imai, R. Neykova, N. Yoshida, and S. Yuen 9:13

[Otc-s]

Γ, s:]T ` s :]T
[Otc-x]

Γ, x:T ` x : T
[Otc-()]

Γ ` () : •
[Otc-Sub] Γ`c:S S6T

Γ ` c : T
[Otc-Tup] Γ ` ci : Ti ∀i, 1≤i≤n

Γ ` (c1, ..., cn) : T1×···×Tn
[Otc-Variant] Γ ` c : T

Γ ` [l=c] : [l T]
[Otc-Record] Γ ` ci : Ti ∀i ∈ I

Γ ` 〈li=ci〉i∈I : 〈li :Ti〉i∈I
[Otc-µ] Γ, x:µt.T ` c : T{µt.T/t}

Γ ` µx.c : µt.T
[Otc-WrapInp] Γ ` si : ?Si Γ ` hi : T [Si] ∀i∈I

Γ ` [si@hi]i∈I : ?T
[Otc-Wrapper] Γ, x:T ′ ` c : T c=h[x] x/∈ fv(h)

Γ ` h : T [T ′]

Figure 8 The typing rules for channel vectors and wrappers Γ ` c : T Γ ` h :H .

[si@hi]i∈I is multiplexed over the set of names {si}i∈I . When a sender outputs value c′ on
name sj (j ∈ I), the corresponding input waiting on [si@hi]i∈I yields a value hj [c′] where
the construct h[c] denotes a value obtained by replacing the hole [] in h with c (i.e. applying
function h to c). We write [li=(si,ci)]i∈I for [si@[li=([],ci)]]i∈I .

I Definition 3.7 (Typing rules for channel vectors). Fig. 8 gives the typing rules for channel
vectors and wrappers. The typing judgement for (1) channel vectors has the form Γ ` c : T ;
(2) wrappers has the form Γ ` h :H where the type for wrappers is defined as H::=T [S]; We
assume that all types in Γ are closed.

The rules for channel vectors are standard where the subtyping relation in rule [Otc-Sub]

is defined at Definition 3.3. For wrappers, rule [Otc-WrapInp] types wrapped names where the
payload type S′ of input channel s is the same as the hole’s type, and all wrappers have the
same result type T . Rule [Otc-Wrapper] checks type of a channel vector c = h[x] and replaces
x with the hole [].

Evaluation of global combinators is the key to implement a multiparty protocol to a series
of binary, simply-typed communications based on channel vectors. We define JgKsR where R
is a sequence of roles in g and s is a base name freshly assigned to an initiation expression at
runtime. The generated channels are interconnected to each other and the created channel
vectors are distributed and shared among expressions running in parallel, enabling them to
interact via binary names.

The followings are basic operations on records, tuples and recursive values which are used
to define evaluations of global combinators.

I Definition 3.8 (Operations). (1) The unfolding unfold∗(c) of a recursive value is defined
by the smallest n such that unfoldn(c) = unfoldn+1(c), and unfold(·) is defined as:

unfold(µx.c) = c{µx.c/x} unfold(c) = c otherwise

where fn+1(x) = f(fn(x)) for n ≥ 2 and f1(x) = f(x). (2) c#l denotes the record
projection, which projects on field l of record value c, defined as: 〈li=ci〉i∈I#lk =
unfold∗(ck), where # is left-associative, i.e. c#l1#...#ln = ((...(c#l1)#...)#ln). (3) The
i-th projection on a tuple, c(i) is defined as (c1, ... , cn)(i)=ci for 1 ≤ i ≤ n. (4) fix

(
x, x′

)
=();

otherwise fix(x, c)=µx.c.

I Definition 3.9 (Evaluation of a global combinator). Given R and fresh s, the evaluation
JgKsR of global combinator g is defined in Fig. 9. We write JgKs if R = roles(g).

The evaluation for communication (pj → pk) m:S g connects between pj and pk by the
name s{pj ,pk,m,i} by wrapping j-th and k-th channel vector with an output and an input
structure, respectively. The name s{pj ,pk,m,i} is indexed by two role names pj , pk, label m
and an index i so that (1) it is only shared between two roles pj and pk, (2) communication
only occurs when it tries to communicate a specific label m, and (3) both the sender and

ECOOP 2020

9:14 MPST Programming with Global Protocol Combinators

J(pj → pk) m:S gKsR =(
JgKsR(1), ... , JgKsR(j−1),

〈
pk=

〈
m=(s{pj ,pk,m,i},JgKsR(j))

〉〉
, JgKsR(j+1),

... , JgKsR(k−1),
〈

pj=
[
m=(s{pj ,pk,m,i},JgKsR(k))

]〉
, JgKsR(k+1), ... , JgKsR(n)

)
where i is fresh.

Jchoice pa {gi}i∈IK
s
R =(⊔

i∈I

(
JgiK

s
R(1)

)
, ... ,

⊔
i∈I

(
JgiK

s
R(a−1)

)
, 〈q=〈mk=ck〉k∈K〉,

⊔
i∈I

(
JgiK

s
R(a+1)

)
, ... ,

⊔
i∈I

(
JgiK

s
R(n)

))
where unfold∗

(
JgiK

s
R(a)

)
= 〈q=〈mk=ck〉k∈Ki

〉 and K =
⋃
i∈I Ki

Jfixx -> gKsR =
(
fix(x1, JgKsR(1)), ... ,fix(xn, JgKsR(n))

)
JxKsR =

(
x1, ... , xn

)
JfinishKsR =

(
(), ... , ()

)
Figure 9 Evaluation of global combinators JgKs

R .

the receiver agree on the payload type. Here, the index i is used to distinguish between
names generated from the same label m′ but different payload type m:T and m:T ′, ensuring
consistent typing of generated channel vectors. The choice combinator choice pa {gi}i∈I
extracts the output channel vector (i.e. the nested records of the form 〈q=〈mk=ck〉k∈Ki

〉) at
pa from each branch gi, and merges them into a single output. Channel vectors for the other
roles are merged by c1 t c2 where merging for the outputs is an intersection of branchings
from c1 and c2, while merging of the inputs is their union. We explain merging by example
(Example 3.10) and leave the full definition in [25].

For the recursion combinator, function fix(xi, ci) forms a recursive value for repetitive
session, or voids it as () if it does not contain any names.

I Example 3.10 (Global combinator evaluation). Let s1 = s{c,s,ok,0}, s2 = s{c,s,cancel,0} and
s3 = s{s,c,auth,0}. Then:

JgAuthKs

= J(c → s) auth (choice s {(s → c) ok finish, (s → c) cancel finish})Ks
Here, we have

gL = (c → s) ok finish, gR = (c → s) cancel finish,
JgLKs = 〈〈s=[ok=(s1,())]〉, 〈c=〈ok=(s1,())〉〉〉,
JgRKs = 〈〈s=[cancel=(s2,())]〉, 〈c=〈cancel=(s2,())〉〉〉,

 ,

concatenating
{

unfold∗(JgLKs(2)) = JgLKs(2) = 〈s=〈ok=cL2〉〉, cL2=(s1,()),
unfold∗(JgRKs(2)) = JgRKs(2) = 〈s=〈cancel=cR2〉〉, cR2=(s2,())

}

=
(
〈s=〈auth=(s3,JgLKs(1) t JgRKs(1))〉〉, 〈c=[auth=(s3,〈c=〈ok=cL2,cancel=cR2〉〉)]〉

)
=
(
〈s=〈auth=(s3,〈s=[ok=(s1,()), cancel=(s2,())]〉)〉〉,
〈c=[auth=(s3,〈c=〈ok=(s1,()), cancel=(s2,())〉〉)]〉

)
The following main theorem states that if a global combinator is typable, the generated

channel vectors are well-typed under the corresponding local types.

I Theorem 3.11 (Realisability of global combinators). If `R g : T , then JgKsR = c is defined
and {si :Si}si∈fn(c) ` c : T for some {S̃i}.

This property offers the type soundness and communication safety for ocaml-mpst
endpoint programs: a statically well-typed ocaml-mpst program will satisfy subject reduction
theorem and never performs a non-compliant I/O action w.r.t. the underlying binary channels.
We leave the formal definition of ocaml-mpst endpoint programs, operational semantics,
typing system, and the subject reduction theorem in [25].

K. Imai, R. Neykova, N. Yoshida, and S. Yuen 9:15

Global Combinator Type

finish (close * ··· * close)

(ri --> rj) m g
Given g : (tr1 * ··· * trn),
Return (tr1 * ··· * <rj: <m: ('v * tri) out>> * ··· * <ri: [> `m of 'v * trj] inp> * ··· * trn)

choice_at ra mrg
(ra, g1)
(ra, g2)

Given 1 ≤ a ≤ n,
g1 : (tr1 * ··· * tra−1 * <rb: <mi: (vi, si) out>i∈I> * tra+1 * ··· * trn),
g2 : (tr1 * ··· * tra−1 * <rb: <mj: (vj, sj) out>j∈J > * tra+1 * ··· * trn), and
mrg : a concatenator ensuring the two label sets are mutually disjoint (I ∩ J = ∅),
Return (tr1 * ··· * tra−1 * <rb: <mk: (vk, sk) out>k∈I∪J > * tra+1 * ··· * trn)

fix (fun x -> g)
Given g : (tr1 * ··· * trn under assumption that x : (tr1 * ··· * trn),
x is guarded in g

Return (tr1 * ··· * trn)

closed_at ra g
Given g : (tr1 * ··· * tra−1 * close * tra+1 * ··· * trn) and 1 ≤ a ≤ n,
Return (tr1 * ··· * tra−1 * close * tra+1 * ··· * trn)

Figure 10 Type of Global Combinators in OCaml.

4 Implementing Global Combinators

We give a brief overview on the type manipulation techniques that enable type checking of
global combinators in native OCaml. § 4.1 gives a high-level intuition of our approach, § 4.2
illustrates evaluation of global combinators to channel vectors in pseudo OCaml code, and
§ 4.3 presents the typing of global combinators in OCaml. Furthermore, in [25], we develop
variable-length tuples using state-of-the-art functional programming techniques, e.g., GADT
and polymorphic variants, to improve usability of ocaml-mpst.

4.1 Typing Global Combinators in OCaml: A Summary
In Fig. 10 we illustrate the type signature of each global combinator, which is a transliteration
of the typing rules (Fig. 7) into OCaml. In the figure, OCaml type (tr1 * ··· * trn) corresponds
to a n-tuple of channel vector types tr1 × · · · × trn . The implementation makes use of
variable-length tuples to represent tuples of channel vectors, and therefore the developer does
not have to explicitly specify the number of roles n (see [25]). A few type-manipulation
techniques are expanded later in § 4.3. Henceforth, we only make a few remarks, regarding
some discrepancies with the implementation.

OCaml types Types in § 3
<r:[>`mi of vi*ti]i∈I inp> 〈r:?[mi Si×Ti]i∈I〉
<r:<mi:(vi,ti) out>i∈I> 〈r:〈mi:!Si×Ti〉i∈I〉
close (=unit) •
t as 'x µx.T

Channel vector types in OCaml. The OCaml syntax of channel vector types is given on
the right. The difference with its formal counterparts are minimal. In particular, records
are implemented using OCaml object types, and record fields correspond to object methods,
i.e. role_q is a method. In type [>`mi of ti]i∈I , the symbol > marks an open polymorphic
variant type which can have more tags. The types inp and out stand for an input and output
types with a payload type vi and a continuation ti. Recursive channel vector types are
implemented using OCaml equi-recursive types.

ECOOP 2020

9:16 MPST Programming with Global Protocol Combinators

On branching and compatibility checking. As we explained in § 3.2, branching is the key
to ensure the protocol is realisable, and free of communication errors. To ensure that the
choice is deterministic, it must be verified that the set of labels in each branch are disjoint.
Since OCaml objects do not support concatenation (combining of multiple methods e.g.,
[57, 19]), and cannot automatically verify that the set of labels (encoded as object methods)
are disjoint, the user has to manually write a disjoint merge function mrg that concatenates
two objects with different methods into one (see [25] for examples). This part can be
completely automated by PPX syntactic extension in OCaml. On compatibility checking of
non-choosing roles, external choice <r: [>`m1 of ···] inp> and <r: [>`m2 of ···] inp>, the types
can be recursively merged by OCaml type inference to <r: [>`m1 of ··· |`m2 of ···] inp> thanks
to the row polymorphism on polymorphic variant types (>), while non-directed external
choices and other incompatible combination of types (e.g., input and output, input and
closing, and output and closing) are statically excluded.

On unguarded recursion. The encoding of recursion fix (fun x -> g) has two caveats w.r.t
the typing system: (1) OCaml does not check if a recursion is guarded, thus for example fix
(fun x -> x) is allowed. We cannot use OCaml value recursion, because global combinators
generate channels at run-time. (2) Even if a loop is guarded, Hindley-Milner type inference
may introduce arbitrary local type at some roles. For example, consider the global protocol
fix (fun x -> (ra --> rb) msg x) which specifies an infinite loop for roles /∈ {ra, rb}, and
does not specify any behaviour for any other roles. To prevent undefined behaviour, the
typing rule marks the types of the roles that are not used as closed tfix(t, T). Unfortunately,
in type inference, we do not have such control, and the above protocol will introduce a
polymorphic type 'tri for role ri /∈ {ra, rb}, which can be instantiated by any local type.

Fail-fast policy. We regard the above intricacies on recursion as a fact of life in any
programming language, and provide a few workarounds. For (1), we adopt a “fail-fast” policy:
Our library throws an exception if there is an unguarded occurrence of a recursion variable.
This check is performed when evaluating a global combinator before any communication
is started. As for (2), we require the programmer to adhere to a coding convention when
specifying an infinite protocol. They have to insert additional combinator closed_at ra g,
which consistently instantiates type variable 'tra with close, leaving other roles intact. If the
programmer forgets this insertion, fail-fast approach applies, and our library throws a runtime
exception before the protocol has started. In addition, self-sent messages (r -->r)msg for
any r are reported as an error at runtime.

4.2 Implementing Global Combinator Evaluation
Following § 3.3, in Fig. 11, we illustrate the implementation of the global combinators,
by assuming that method names and variant tags are first class in this pseudo-OCaml.
Communication combinator (-->) is presented in Fig. 11 (a) where the communication
combinator ((ri --> rj)mg) yields two reciprocal channel vectors of type <rj:<m: (v,tri) out>
> and <ri:[>`m of v*trj] inp>.

The implementation starts by extracting the continuations (the channel vectors) at each
role (Line 3). Line 4 creates a fresh new channel s of a polymorphic type 'v channel shared
among two roles, which is a source of type safety regarding payload types. Line 6 creates
an output channel vector. We use a shorthand <m = e> to represent an OCaml object
object method m = e end. Thus, it is bound to cri , by nesting the pair (s,cri) inside two

K. Imai, R. Neykova, N. Yoshida, and S. Yuen 9:17

1 let (-->) ri rj m g =
2 (* extract the continuations *)
3 let (cr1 , cr2 , ... , crn) = g in
4 let s = Event.new_channel () in
5 (* create an output channel vector *)
6 let cri = (<rj = <m = (s,cri)> >) in
7 (* create an input channel vector *)
8 let crj = (<ri =
9 Event.wrap s (fun x -> `m(x,crj)) >) in

10 (cr1 , cr2 , ... , crn)

let choice_at ra mrg g1 g2 =
let (c1r1 , c1r2 , ... , c1rn) = g1 in
let (c2r1 , c2r2 , ... , c2rn) = g2 in
let cra =
(concatenate c1ra and c2ra using mrg) in

let cr1 = merge c1r1 c2r1 in
let cr2 = merge c1r2 c2r2 in
(* .. repeatedly merge each ri 6= ra .. *)
let crn = merge c1rn c2rn in
(cr1 , cr2 , ... , crn)

Figure 11 Implementation of communication combinator and (a) branching combinator (b).

objects, one with a method role, and another with a method label, forming type <rj:<m: ('v
,tri) out>>. Similarly, Line 8 creates an input channel vector crj , by wrapping channel s in a
polymorphic variant using Event.wrap from Concurrent ML and nesting it in an object type,
forming type <ri:[>`m of 'v*trj] inp>. This wrapping relates tag m and continuation tj to
the input side, enabling external choice when merged. Finally, the newly updated tuple of
channel vectors is returned (Line 10).

Fig. 11 (b) illustrates the choice combinator choice_at. Line 6–9 specifies that the channel
vectors at non-choosing roles are merged, using a merge function. Intuitively, merge does
a type-case analysis on the type of channel vectors, as follows: (1) for an input channel
vector, it makes an external choice among (wrapped) input channels, using the Event.choose
function from Concurrent ML; (2) for an output channel vector, the bare channel is unified
label-wise, in the sense that an output on the unified channel can be observed on both input
sides, which is achieved by having channel type around a reference cell; and (3) handling of
channel vector of type close is trivial.

First-class methods. Method names ri, rj and m and the variant tag m occurring in
((ri --> rj)mg) are assumed in § 4.1 to be first-class values. Since such behaviour is not
readily available in vanilla OCaml, we simulate it by introducing the type method_ (Line 2 in
Fig. 12), which creates values that behave like method objects. The type is a record with a
constructor function make_obj and a destructor function call_obj (see example in Lines 3–6).
We use that idea to implement labels and roles as object methods. The encoding of local

1 (* the definition of the type method_*)
2 type ('obj, 'mt) method_ = {make_obj: 'mt -> 'obj; call_obj: 'obj -> 'mt}
3 (* example usage of method_: *)
4 val login_method : (<login : 'mt>, 'mt) method_ (* the type of login_method *)
5 let login_method =
6 {make_obj=(fun v -> object method login = v end); call_obj=(fun obj -> obj#login)}
7

8 (* the definition of the type label*)
9 type ('obj, 'ot, 'var, 'vt) label = {obj: ('obj, 'ot) method_; var: 'vt -> 'var}

10 (* example usage of label *)
11 val login : (<login : 'mt>, 'mt, [> `login of 'vt], 'vt) label
12 let login = {obj=login_method; var=(fun v -> `login(v))}
13

14 (* example usage of role: *)
15 let s = {index=Zero;
16 label={make_obj=(fun v -> object method role_S=v end); call_obj=(fun o -> o#role_S)}}

Figure 12 Implementation of first-class methods and labels.

ECOOP 2020

9:18 MPST Programming with Global Protocol Combinators

types stipulates that labels are object methods (in case of internal choice) and as variant
tags (in case of external choice). Hence, the label type (Line 9 in Fig. 12), is defined as a
pair of a first-class method, i.e using method_, and a variant constructor function. While
object and variant constructor functions are needed to compose a channel vector in (-->),
object destructor functions are used in merge in choice_at, to extract bare channels inside
an object. Variant destructors are not needed, as they are destructed via pattern-matching
and merging is done by Event.choose of Concurrent ML. Roles are defined similarly to labels.
See example in Line 15 (the full definition of role type is available in [25]).

4.3 Typing Global Combinators via Polymorphic Lenses
This section shows one of our main implementation techniques – the use of polymorphic
lenses [16, 42] for index-based updates on tuple types. This is essential to the implementation
of the typing of Fig. 10 in OCaml. To demonstrate our technique, we sketch the type of
the branching combinator, in a simplified form. The types of all combinators, incorporating
first-class methods and variable-length tuples, can be found in [25]. The branching combinator
demonstrates our key observation that merging of local types can be implemented using row
polymorphism in OCaml, which simulates the least upper bound on channel vector types.

Intuitively, a lens is a functional pointer, often utilised to access and modify elements of
a nested data structure. In our implementation, lenses provide a way to update a channel
vector in a tuple (tr1 * ··· * trn). The type of the lens ('g0, 't0, 'g1, 't1) idx itself points to
an element in a specific position in a tuple, by denoting that “an element 't0 is in a tuple
'g0” in a type-parametric way. Furthermore, this polymorphic lens is capable to express
updating the type of an element, from 't0 in tuple 'g0 to 't1, which will update 'g0 itself to
'g1. More precisely, the idx type has two operations:

get: ('g0,'t0,_,_) idx -> 'g0 -> 't0 and put: ('g0,_,'g1,'t1) idx -> 'g0 -> 't1 -> 'g1.
For example, a lens pointing to the first element of a 3-tuple has the type (('x*'a*'b), 'x, (
'y*'a*'b), 'y) idx.

The branching combinator choice_at ra mrg (ra,g1) (ra,g2) is declared in following way:
1 val choice_at : ('g0, close, 'g, 'tlr) idx -> (* the index of the selecting role *)
2 ('tlr, 'tl, 'tr) disj -> (* the type of disjoint merge function *)
3 ('gl, 'tl, 'g0, close) idx * 'gl -> (* the type of the first tuple *)
4 ('gr, 'tr, 'g0, close) idx * 'gr -> (* the type of the second tuple *)
5 'g (* the type of the result tuple *)

The type variables in the above is resolved a la logic programs in Prolog, where several
type variables are unified to compose a tuple type of channel vectors. It requires that both
continuation tuples 'gl and 'gr should be of the same type, except for the position of active
role ra. The two idx types paired with continuations force this unification, by putting close
at ra in 'gl and 'gr. Thus, the result type 'g0 is shared among both lenses, so that it
contains only types of non-choosing roles and close. Each element in 'g0 is then pairwise
merged4. The result type of the combinator 'g is obtained by modifying the merged tuple of
channel vectors 'g0 by updating the type of the active role ra from close to 'tlr, which is
the result type of the object concatenation function mrg. Function mrg takes the channel
vector types for the role ra in g1 and g2, namely 'tl and 'tr, and returns the result type
'tlr. The signature of the combinator also explains the extra occurrence roles paired with
each branch. Since we need lens ra within three different instantiations for different element
types 'tl, 'tr and 'tlr at the position ra, we need three occurrences of the same lens.

4 We have implemented the type-case analysis for merge mentioned in § 4.2 via a wrapper called mergeable
around each channel vector, which bundles a channel vector and its merging strategy.

K. Imai, R. Neykova, N. Yoshida, and S. Yuen 9:19

Dynamic Static

<role_q: <m: ('v,'t) out>>
<role_p: <m: ('v data,'t) out>> lin (base value)
<role_p: <m: ('s lin,'t) out>> lin (delegation)

<role_p:[`m of 'v * 't] inp>
<role_p:[`m of 'v data *'t lin] inp lin> lin (base value)
<role_p:[`m of 's lin *'t lin] inp lin> lin (delegation)

close close lin

Figure 13 Channel Vector Types with (a) Dynamic and (b) Static Linearity Checks.

5 Dynamic and Static Linearity Checks in the Communication API

To ensure that an implementation faithfully implements a well-formed, safe global protocol,
MPST theory requires that all communication channels are used linearly. Similarly, the safety
of our library depends on the linear usage of channels. Our library offers two mechanisms for
checking that a channel is used linearly: static and dynamic. Here, we briefly explain each of
these mechanisms, by comparing their API usages in Fig. 14 and types in Fig. 13, where the
dynamic version stays on the left while the static one is on the right.

Dynamic Linearity Checking. Dynamic checking, where linearity violations are detected
at runtime, is proposed by [55] and [22], and later adopted by [41, 47]. In ocaml-mpst,
dynamic linearity checking is implemented by wrapping the input and output channels, with
a boolean flag that is set to true once the channel has been used. If linearity is violated,
i.e a channel is accessed after the linearity flag has been set to true, then an exception
InvalidEndpoint will be raised. Note that our library correctly handles output channels
between several alternatives being used only once; for example, from a channel vector c
of type <r: <ok: (string,close) out; cancel: (string,close) out>>, the user can extract two
channels c#r#ok and c#r#cancel where an output must take place on either of the two bare
channels, but not both. In addition, our library wraps each bare channel with a fresh linearity
flag on each method invocation, since in recursive protocols, a bare channel is often reused,
as the formalism (§ 3) implies.

Static Linearity Checking with Monads and Lenses. The static checking is built on top
of linocaml [24]: a library implementation of linear types in OCaml which combines the
usage of parameterised monads [2] and polymorphic lenses (see § 4.3), to enable static
type-checking on the linear usage of channels. In particular, we reuse several techniques from
[24, 27]. A parameterised monad, which we model by the type ((pre,post,v) monad), denotes
a computation of type v with a pre- and a post-condition, and they are utilised to track
the creation and consumption of resources at the type level. A well-known restriction of
parameterised monads in the context of session types, is that they support communication
on a single channel only, and hence are incapable of expressing session delegation and/or
interleaving of multiple session channels. To overcome this limitation, the slot monad
proposed in [24, 27] extends the parameterised monad to denote multiple linear resources in
the pre- and post-conditions. The resources are represented as a sequence, and each element
is modified using polymorphic lenses [42].

We incorporate the above-mentioned techniques of linocaml so that, instead of having
a single channel vector in the pre and post conditions, we can have a sequence of channel
vectors, and we use lenses to focus on a channel vector at a particular slot. If we do not
require delegation or interleaving, then the length of the sequence is one and the monadic

ECOOP 2020

9:20 MPST Programming with Global Protocol Combinators

Dynamic Static (monadic)
let s = send s#role_q#m v in e
let s = send s#role_q#m s' in e

let%lin #si = send si (fun x -> x#role_q#m) v in e
let%lin #si = deleg_send si (fun x -> x#role_q#m) sj in e

match receive s#role_p with
|`m1(x,s) -> e1
|`m2(s',s) -> e2

match%lin receive si (fun x->#role_p) with
|`m1(x,#si) -> e1
|`m2(#sj,#si) -> e2 (delegation)

close s close si

Figure 14 OCaml API for MPST with Dynamic (a) and Static (b) linearity checks.

operations always update the first element of the sequence. In particular, as in [27], if a
channel is delegated i.e sent through another channel, that slot (index) of the sequence is
updated to unit, marking it as consumed.

The ocaml-mpst API, for static linearity checking, is given in Fig. 14(b), where si, and sj

in delegation, denote lenses pointing at i-th and j-th slot in the monad. The binary channels
in the channel vector, used within the monadic primitives send and receive, are of the types
given in Fig. 13(b). Functions send and receive both take (1) a lens si pointing to a channel
vector; and (2) a selector function which extracts, from the channel vector at index si, a
channel (('v data, 't1) out for output and 'a inp for input. Type data denotes unrestricted
(non-linear) payload types, whose values are matched against ordinary variables. The result
of the monadic primitives is returned as a value of either type 't lin for output or 'a lin
for input, which is matched by match%lin or let%lin, ensuring the channels (and payloads,
in case of delegation) are used linearly. A lin type must be matched against lens-pattern
prefixed by #. Note that, linocaml overrides the let syntax and # pattern, in the way that
let%lin #si=exp updates the index si, in the sequence of channel vectors, with the value
returned from exp.
To realise session delegation, we have implemented a separate monadic primitive, deleg_send
si (fun x->x#p#l) sj, presented in Fig. 14(b). The primitive extracts the channel vector at
position si and then updates the channel vector at position sj . As a result, the slot for sj is
returned and used in further communication, the slot si is updated to unit. An example
program that uses ocaml-mpst static API is given in Fig. 4(b).

6 Evaluation

We evaluate our framework in terms of run-time performance (§ 6.1) and applications
(§ 6.2, § 6.3). We compare the performance of ocaml-mpst with programs written in a
continuation-passing-style (following the encoding presented in [53]) and untyped implement-
ations (Bare-OCaml) that utilise popular communication libraries. In summary, ocaml-mpst
has negligible overhead in comparison with unsafe implementations (Bare-OCaml), and CPS-
style implementations. We demonstrate the applicability of ocaml-mpst by implementing a
lot of use cases. In § 6.3, we show the implementation of the OAuth protocol, which is the
first application of session types over http.

6.1 Performance

The runtime overhead of ocaml-mpst stems from the implementation of channel vectors,
more specifically: (1) extracting a channel from an OCaml object when performing a
communication action, and (2) either (2.1) dynamic linearity checks or (2.2) more closures
introduced by the usage of a slot monad for static checking.

K. Imai, R. Neykova, N. Yoshida, and S. Yuen 9:21

Our library is parameterised on the underlying communication transport. We evaluate its
performance in case of synchronous, asynchronous and distributed transports. Specifically,
we use the following communication libraries:
(1) ev: OCaml’s standard Event channels which implements channels shared among POSIX-

threads;
(2) lwt: Streams between lightweight-threads [56], which are more efficient for I/O-intensive

application in general, and broadly-accepted by the OCaml communities, and
(3) ipc: UNIX pipes distributed over UNIX processes.
Note that ev is synchronous, while the other two are asynchronous. Also, due to current
OCaml limitation, POSIX-threads in a process cannot run simultaneously in parallel, which
particularly affects the overall performance of (1). As OCaml garbage collector is not a
concurrent GC, only a single OCaml thread is allowed to manipulate the heap, which in
general limits the overall performance of multi-threaded programs written in OCaml. For (3),
we generate a single pipe for each pair of processes, and maintain a mapping between a local
channel and its respective dedicated UNIX pipe. In addition, we also implement an optimised
variant of ocaml-mpst in the case of lwt, denoted as lwt-single in Fig. 15; it reuses a
single stream among different payload types, instead of using different channels for types. In
particular, we cast a payload to its required payload type utilising Obj.magic, as proposed
and examined by [40, 26]. Our benchmarks are generalisable because each microbenchmark
exhibits the worst-case scenario for its potential source of overhead.

We compare implementations, written using (1) ocaml-mpst static API, (2) ocaml-mpst
dynamic API, (3) a Bare-OCaml implementation using untyped channels as provided by
the corresponding transport library, and (4) a CPS implementation, following the encoding
in [47]. We have implemented the encoding manually such that a channel is created at each
communication step, and passed as a continuation. Fig. 15 reports the results on three
microbenchmarks.

Setup. We use the native ocamlopt compiler of OCaml 4.08.0 with Flambda optimiser5.
Our machine configurations are Intel Core i7-7700K CPU (4.20GHz, 4 cores), Ubuntu 17.10,
Linux 4.13.0-46-generic, 16GB. We use Core_bench6, a popular benchmark framework in
OCaml, which uses its built-in linear regression for estimating the reported costs. We repeat
each microbenchmark for 10 seconds of quota where Core_bench takes hundreds of samples,
each consists of up to 246705 runs of the targeted OCaml function, we obtain the average of
execution time with fairly narrow 95% confidence interval.

Ping-pong. Ping-pong benchmark measures the execution time for completing a recursive
protocol between two roles, which are repeatedly exchanging request-response messages of
increasing size (measured in 16 bit integers). The example is communication intensive and
exhibits no other cost apart from the (de)serialisation of values that happens in the ipc
case, hence it demonstrates the pure overhead of channel extraction, dynamic checks and
parameterised monads. In the case of a shared memory transports (ev and lwt), we report
the results of a payload of one integer since the size of the message does not affect the
running time.

The slowdown of ocaml-mpst is negligible (approx. 5% for Dynamic vs Bare-OCaml,
and 13% for Static vs Bare-OCaml) when using either ev, Fig. 15 (a1), or ipc, Fig. 15(a2),
as a transport, since the overhead cost is overshadowed by latency. The shared memory case

5 https://caml.inria.fr/pub/docs/manual-ocaml/flambda.html
6 https://blog.janestreet.com/core_bench-micro-benchmarking-for-ocaml/

ECOOP 2020

https://caml.inria.fr/pub/docs/manual-ocaml/flambda.html
https://blog.janestreet.com/core_bench-micro-benchmarking-for-ocaml/

9:22 MPST Programming with Global Protocol Combinators

1 10 100 1000
Size of payloads

0

2

4

6

8

 se
c

a1) Ping-pong (ipc)

Static
Dynamic
Bare
CPS

ev

a2) ev

lwt0.00

0.25

0.50

0.75

µ
se

cs

a3) lwt

0 200 400 600
Number of states (~Size of channel vectors)

b) N-Ping (lwt & lwt-single)

Static
Dynamic
Sta-single
Dyn-single
Bare

0.00

0.25

0.50

0.75

 se
c

ev lwt0.00

0.05

0.10

0.15

0.20

m
aj

or
 G

C
wo

rd
s

c) Ping-Pong (GC)

0

200

400

m
in

or
 G

C
wo

rd
s

major GC
minor GC

101 102 103
Number of threads

d) Chameleons (ipc & lwt)

10 2

10 1

100

101

m
illi

 se
cs

Sta-ipc
Dyn-ipc
Sta-lwt
Dyn-lwt

Figure 15 Runtime performance vs GC time performance.

using lwt, Fig. 15(a3), represents the worse case scenario for ocaml-mpst since it measures
the pure overhead of the implementation of many interactions purely done on memory with
minimal latency. The slowdown in the static version is expected [27] and reflects the cost
of monadic closures, as the current implementation does not optimise them away. The
linearity monad is implemented via a state monad [24], which incurs considerable overhead.
The OCaml Flambda optimiser could remove more closures if we annotate the program
with inlining specifications. The slowdown (although negligible) in comparison with CPS is
surprising since we pre-generate all channels up-front, while the CPS-style implementation
creates a channel at each interaction step. Our observation is that the compiler is optimised
for handling large amounts of immutable values, while OCaml objects (utilised by the channel
vector abstraction) are less efficient than normal records and variants.

Fig. 15 (c) reports on the memory consumption (in terms of words in the major and minor
heap) for executing the protocol. Channel vectors with dynamic checking have approximately
the same memory footprint as Bare-OCaml, and significantly less footprint when compared
with a CPS implementation.

n-Ping. n-Ping is a protocol of increasing size, nping global combinator forming repeated
composition of the communication combinators defined by gi = (a-->b) ping @@(b-->a)
pong @@gi−1, g0 = t and nping = fix (fun t ->gn), where n corresponds to the number of
ping and pong states. In contrast to Ping-Pong, this example generates a large number of
channels and large channel vector objects, evaluating how well ocaml-mpst scales w.r.t the
size of the channel vector structure. We show the results for transports lwt and lwt-single
in Fig. 15 (b). The static version of lwt-single has a constant overhead from Bare-OCaml.
Although the static checking implementation is in general slower, the relative overhead, in
comparison with dynamic checking, decreases as the protocol length increases.

Chameleons. Chameleons protocol specifies that n roles (“chameleons”) connect to a central
broker, who picks pairs and sends them their respective reference, so they can interact peer-
to-peer. The example tests delegation (central broker sends a reference) and creation of

K. Imai, R. Neykova, N. Yoshida, and S. Yuen 9:23

Example (role) LoC CT(ms) FM
1. 2-Buyer [22] 15 45 X
2. 3-Buyer [22] 21 47 X
3. Fibonacci [22] 8 38 x
4. SAP-Negotiation [22] 17 46 x
5. Supplier Info [22] 50 85 X
6. SH [43, 22] 27 58 X
7. Distributed Calc [22] 12 41 x
8. Travel Agency [22] 16 66 X

Example (role) LoC CT(ms) FM
9. Game [47] 17 49 x
10. MapReduce [28] 5 33 x
11. Nqueen [28] 12 55 x
12. Santa [38, 24] 14 42 x
13. Sleeping Barber [22] 15 43 X
14. SMTP [22] 54 124 x
15. OAuth 26 60 X
16. DNS 11 57 x

Figure 16 Implemented Use cases (LoC: Lines of code, CT: Compiling Time, FM: Full merge).

many concurrent sessions (peer-to-peer interaction of chameleons). The results reported in
Fig. 15 (d) show that the implementation of delegation with static linearity checking scales
as well as its dynamic counterpart. The cost of linearity (monadic closures) is less than the
cost of dynamic checks for many concurrent sessions over lwt transport.

6.2 Use Cases

We demonstrate the expressiveness and applicability of ocaml-mpst by specifying and
implementing protocols for a range of applications, listed in Fig. 16. We draw the examples
from three categories of benchmarks: (1) session benchmarks (examples 1-9), which are
gathered from the session types literature; (2) concurrent algorithms from the Savina
benchmark suit [28] (examples 10-13); and (3) application protocols (examples 14-16), which
focus on well-established protocols that demonstrate interoperability between ocaml-mpst
implemented programs and existing client/servers. For each use case we report on Lines of
Code (LoC) of global combinators and the compilation time (CT reported in milliseconds).
We also report if the example requires full-merge [13] (FM) – a well-formedness condition on
global protocols that is not supported in [47], but supported in ocaml-mpst.

Examples 1-9 are gathered from the official Scribble test suite7 [52], and we have converted
Scribble protocols to global protocol combinators. Examples 10-13 are concurrent algorithms
and are parametric on the number of roles (n). To realise the scatter-gather pattern required
in the examples, we have added two new constructs, scatter and gather, which correspond
to a subset of the parameterised role extension for MPST protocols [9].

To test the applicability of ocaml-mpst to real-world protocols we have specified, using
global combinators, a core subset of three Internet protocols (examples 14-16), namely the
Simple Mail Transfer Protocol (SMTP), the Domain Network System (DNS) protocol and the
OAuth protocol. Using the ocaml-mpst APIs, it was straightforward to implement compliant
clients in OCaml that interoperate with popular servers. In particular, we have implemented
an SMTP client that interoperates with the Microsoft exchange server and sends an e-mail,
an OAuth authorisation service that connects to a Facebook server and authenticates a client,
and a DNS client and a server, which are implemented on top of a popular DNS library in
OCaml (ocaml-dns). Note that DNS has sessions, as the DNS protocol has an ID field to
discriminate sessions; and a request forwarding in the DNS protocol involves more than two
participants (i.e. servers).

7 https://github.com/scribble/scribble-java

ECOOP 2020

https://github.com/scribble/scribble-java

9:24 MPST Programming with Global Protocol Combinators

1 let fb_oauth =
2 (c -!-> s) (get "/start_oauth") @@
3 (s -?-> c) _302 @@ (* 302: HTTP redirect *)
4 (c -!-> a) (get "/login_form") @@
5 (a -?-> c) _200 @@
6 (c -!-> a) (post "/auth") @@
7 choice_at a (to_c success_or_fail)
8 (a,(a -?-> c) (_200_success ...) @@
9 (c -!-> s) (success is_ok "/callback") @@

10 (s -!-> a) (get "/access_token") @@
11 (a -?-> s) _200 @@
12 (s -?-> c) _200 @@
13 finish)
14 (a,(a -?-> c) (_200_fail ...) @@
15 (c -!-> s) (fail is_fail "/callback") @@
16 (s -?-> c) _200 @@
17 finish)

18 let fb_acceptor = H.start_server 8080 "/mpst-oauth"
19 let rec facebook_oauth_consumer () =
20 let ch = get_ch s fb_oauth in
21 let sid = string_of_int (Random.int ()) in
22 let conn = fb_acceptor sid in
23 let `get(_, ch) = receive (ch conn)#role_C in
24 let redir_url = fb_redirect_url sid "/callback" in
25 let ch = send ch#role_C#_302 redir_url in
26 let conn = fb_acceptor sid in
27 let ch = match receive (ch conn)#role_C with
28 | `success(_,ch) ->
29 let conn_p = H.http_connector
30 "https://graph.facebook.com/v2.11/oauth" in
31 let ch = send (ch conn_p)#role_A#get [] in
32 let `_200(auinfo,ch) = receive ch#role_A in
33 send ch#role_C#_200 "auth succeeded"
34 | `fail(_,ch) -> send ch#role_C#_200 "auth failed"
35 in close ch; facebook_oauth_consumer ()

Figure 17 Global Combinators and Local Implementations for OAuth (excerpt).

6.3 Session Types over HTTP: Implementing OAuth

In this section, we discuss more details about ocaml-mpst implementation of OAuth8, which
is an Internet standard for authentication. OAuth is commonly used as a way for Internet
users to grant websites or applications access to their information on other websites but
without giving them the passwords by providing a specific authorisation flow. Fig. 17 shows
the specification of the global combinator, along with an implementation for the authorisation
server. We have specified a subset of the protocol, which includes establishing a secure
connection and conducting the main authentication transaction. Using OAuth as an example,
we also discuss practically motivated extensions, explicit connection handling akin to the one
in [23], to the core global combinators. We present that a common pattern when HTTP is
used as an underlying transport.

Extension for handling stateless protocols. The protocol has a very similar structure to
the oAuth protocol, presented in § 2. However, the original OAuth protocol is realised over a
RESTful API, which means that every session interaction is either an HTTP request or an
HTTP response. To handle HTTP connections, we have implemented a thin wrapper around
an HTTP library, Cohttp9, and we make HTTP actions explicit in the protocol by proposing
two new global combinators, connection establishing combinator (-!->) and disconnection
combinator (-?->). Session types represent the types of the communication channel after a
session (a TCP connection in the general case) has been established. Since RESTful protocols,
realised over HTTP transport, are stateless, a connection is “established” at every HTTP
Request. We explicitly encode this behaviour by replacing the –> combinator that denotes
that one role is sending to another, with two new combinators. The combinator -!-> means
establishing a connection and piggybacking a message, while -?-> denotes piggybacking a
message and disconnect. This simple extension allows us to faithfully encode HTTP Request
and HTTP Response. For example, a-!->b requires that role a connects on an HTTP port
to b and then a sends a message to b, hence implementing HTTP Response; on the other
hand a-?->b specifies an HTTP Response.

8 https://oauth.net/2/
9 https://github.com/mirage/ocaml-cohttp

https://oauth.net/2/
https://github.com/mirage/ocaml-cohttp

K. Imai, R. Neykova, N. Yoshida, and S. Yuen 9:25

Implementation. The global combinator fb_oauth is given in Fig. 17 (a). As before, the
protocol consists of three parties, a service s, a client c, and an authorisation server a. First,
c connects to s via a relative path "/start_oauth" (Line 2). Then s redirects c to a using
HTTP redirect code _302 (Line 3). As a result the client sees a login form at "/login_form"
(Lines 4-5), where they enter their credentials (Line 6). Based on the validity of the credentials
received by c, a sends _200_success (Line 8) or _200_fail. If the credentials are valid, c
proceeds and connects to s on path "/callback" (Line 9), requesting to get access to a secure
page. The service s then retrieves an access token from a on URL "/access_token" (Lines 10-
11), and navigates the client to an authorised page, finishing the session (Lines 12-13). If the
credentials are not valid, the client reports the failure to s (Lines 15-16), and the session
ends (Line 17).

The server role of fb_oauth is faithfully implemented in Lines 18-35 which provides an
OAuth application utilising Facebook’s authentication service. Line 18 starts a thread which
listens on a port 8080 for connections. Essentially it starts a web service at an absolute
URL "/mpst-oauth" (i.e. relative URLs like "/callback" are mapped to "https://.../mpst
-oauth/callback"). The recursive function facebook_oauth_consumer starting from Line 19
is the main event loop for s. Line 20 extracts a channel vector from the global combinator
fb_oauth, of which type is propagated to the rest of the code. Then it generates a session id
via a random number generator (Random.int ()) (Line 21), and waits for an HTTP request
from a client on fb_acceptor (Line 22). When a client connects, the connection is bound
to the variable conn associated with the pre-generated session id. Note that the channel
vector expects a connection since no connection has been set for the client yet. Here, the
connection is supplied to the channel vector via function application (ch conn). On Line 24,
expression (fb_redirect_url sid "/callback") prepares a redirect URL to an authentication
page of a Facebook Provider (https://www.facebook.com/dialog/oauth) After sending
back (HTTP Response) the redirect url to the client with _302 label (Line 25), the connection
is implicitly closed by the library. Note that we do not need to supply a connection to the
channel vector on Line 25; because a connection already exists, we have already received
an HTTP request from the user and Line 25 simply performs HTTP response. The next
lines proceed as expected following the protocol, with the only subtlety that we thread the
connection object in subsequent send/receive calls.

The full source code of the benchmark protocols and applications and the raw data are
available from the project repository.

7 Related Work

We summarise the most closely related works on session-based languages or multiparty
protocol implementations. See [52] for recent surveys on theory and implementations.

The work most closely related to ours is [47], which implements multiparty session
interactions over binary channels in Scala built on an encoding of a multiparty session
calculus to the π-calculus. The encoding relies on linear decomposition of channels, which is
defined in terms of partial projection. Partial projection is restrictive, and rules out many
protocols presented in this paper. For example, it gives an undefined behaviour for role
c and s for protocols oAuth2 and oAuth3 in Fig. 3. Programs in [47] have to be written in
a continuation passing style where a fresh channel is created at each communication step.
In addition, the ordering of communications across separate channels is not preserved in
the implementation, e.g. sending a login and receiving a password in the protocol oAuth
is decomposed to two separate elements which are not causally related. This problem is

ECOOP 2020

9:26 MPST Programming with Global Protocol Combinators

mitigated by providing an external protocol description language, Scribble [50], and its API
generation tool, that links each protocol state using a call-chaining API [22]. The linear
usage of channels is checked at runtime.

An alternative way to realise multiparty session communications over binary channels is
using an orchestrator – an intermediary process that forwards the communication between
interacting parties. The work [6] suggests addition of a medium process to relay the
communication and recover the ordering of communication actions, while the work [7] adds
annotations that permit processes to communicate directly without centralised control,
resembling a proxy process on each side. Both of the above works are purely theoretical.

Among multiparty session types implementations, several works exploit the equivalence
between local session types and communicating automata to generate session types APIs
for mainstream programming languages (e.g., Java [22, 30], Go [9], F# [47]). Each state
from state automata is implemented as a class, or in the case of [30], as a type state. To
ensure safety, state automata have to be derived from the same global specification. All of
the works in this category use the Scribble toolchain to generate the state classes from a
global specification. Unlike our framework, a local type is not inferred automatically and the
subtyping relation is limited since typing is nominal and is constrained by the fixed subclassing
relation between the classes that represent the states. All of these implementations also
detect linearity violations at runtime, and offer no static alternative.

In the setting of binary session types, [27] propose an OCaml library, which uses a
slot monad to manipulate binary session channels. Our encoding of global combinators to
simply-typed binary channels enable the reuse of the techniques presented in [27], e.g. for
delegations and enforcement of linearity of channels.

FuSe [41] is another library for session programming in OCaml. It supports a runtime
mechanism for linearity violations, as well as a monadic API for a single session without
delegation. The implementation of FuSe is based on the encoding of binary session-typed
process into the linear π-calculus, proposed by [12]. The work [48] also implements this
encoding in Scala, and the work [47] extends the encoding and implementations to the
multiparty session types (as discussed in the first paragraph).

Several Haskell-based works [43, 39, 31] exploit its richer typing system to statically
enforce linearity with various expressiveness/usability trade-offs based on their session types
embedding strategy. These works depend on type-level features in Haskell, and are not
directly applicable to OCaml. A detailed overview of the different trade-off between these
implementations in functional languages is given in Orchard and Yoshida’s chapter in [52].
Based on logically-inspired representation of session types, embedding higher-order binary
session processes using contextual monads is studied in [54]. This work is purely theoretical.

Outside the area of session-based programming languages, various works study protocol-
aware verification. Brady et al. [5] describe a discipline of protocol-aware programming
in Idris, in which adherence of an implementation to a protocol is ensured by the host
language dependent type system. Similarly, [51] proposes a programming logic, implemented
in the theorem prover Coq, for reasoning on protocol states. A more lightweight verification
approach is developed in [1] for a set of protocol combinators, capturing patterns for
distributed communication. However, the verification is done only at runtime. The work
[8] presents a global language for describing choreographies and a global execution model
where the program is written in a global language, and then automatically projected using
code generation to executable processes (in the style of BPMN). All of the above works
either develop a new language or are built upon powerful dependently-typed host languages
(Coq, Idris). Our aim is to utilise the MPST framework for specification and verification of
distributed protocols, proposing a type-level treatment of protocols which relies solely on
existing language features.

K. Imai, R. Neykova, N. Yoshida, and S. Yuen 9:27

8 Conclusion and Future Work

In this work, we present a library for programming multiparty protocols in OCaml, which
ensures safe multiparty communication over binary I/O channels. The key ingredient of
our work is the notion of global combinators – a term-level representation of global types,
that automatically derive channel vectors – a data structure of nested binary channels. We
present two APIs for programming with channel vectors, a monadic API that enables static
verification of linearity of channel usage, and one that checks channel usage at runtime.
OCaml is intensively used for system programming among several groups and companies in
both industry and academia [35, 3, 32, 33, 34, 15, 10, 44]. We plan to apply ocaml-mpst to
such real-world applications.

We formalise a type-checking algorithm for global protocols, and a sound derivation of
channel vectors, which, we believe, are applicable beyond OCaml. In particular, TypeScript
is a promising candidate as it is equipped with a structural type system akin to the one
presented in our paper.

To our best knowledge, this is the first work to enable MPST protocols to be written,
verified, and implemented in a single (general-purpose) programming language and the first
implementation framework of statically verified MPST programs. By combining protocol-
based specifications, static linearity checks and structural typing, we allow one to implement
communication programs that are extensible and type safe by design.

References
1 Kristoffer Just Arndal Andersen and Ilya Sergey. Distributed protocol combinators. In

Practical Aspects of Declarative Languages - 21th International Symposium, PADL 2019, Lisbon,
Portugal, January 14-15, 2019, Proceedings, volume 11372 of Lecture Notes in Computer
Science, pages 169–186. Springer, 2019. doi:10.1007/978-3-030-05998-9_11.

2 Robert Atkey. Parameterized Notions of Computation. Journal of Functional Programming,
19(3-4):335–376, 2009. doi:10.1017/S095679680900728X.

3 Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Timothy L. Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In Proceedings
of the 19th ACM Symposium on Operating Systems Principles 2003, SOSP 2003, Bolton
Landing, NY, USA, October 19-22, 2003, pages 164–177, 2003. doi:10.1145/945445.945462.

4 Frédéric Bour, Thomas Refis, and Gabriel Scherer. Merlin: a language server for ocaml
(experience report). PACMPL, 2(ICFP):103:1–103:15, 2018. doi:10.1145/3236798.

5 Edwin Charles Brady. Type driven development of concurrent communicating systems.
Computer Science, 18(3), July 2017. doi:10.7494/csci.2017.18.3.1413.

6 Luís Caires and Jorge A. Pérez. Multiparty session types within a canonical binary theory,
and beyond. In Formal Techniques for Distributed Objects, Components, and Systems - 36th
IFIP WG 6.1 International Conference, FORTE 2016, Held as Part of the 11th International
Federated Conference on Distributed Computing Techniques, DisCoTec 2016, Heraklion, Crete,
Greece, June 6-9, 2016, Proceedings, volume 9688 of Lecture Notes in Computer Science, pages
74–95. Springer, 2016. doi:10.1007/978-3-319-39570-8_6.

7 Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip Wadler.
Coherence generalises duality: A logical explanation of multiparty session types. In 27th
International Conference on Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec
City, Canada, volume 59 of LIPIcs, pages 33:1–33:15. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2016. doi:10.4230/LIPIcs.CONCUR.2016.33.

8 Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: multiparty asynchronous
global programming. In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, pages 263–274.
ACM, 2013. doi:10.1145/2429069.2429101.

ECOOP 2020

https://doi.org/10.1007/978-3-030-05998-9_11
https://doi.org/10.1017/S095679680900728X
https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/3236798
https://doi.org/10.7494/csci.2017.18.3.1413
https://doi.org/10.1007/978-3-319-39570-8_6
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33
https://doi.org/10.1145/2429069.2429101

9:28 MPST Programming with Global Protocol Combinators

9 David Castro, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida. Dis-
tributed Programming Using Role Parametric Session Types in Go. In 46th ACM SIGPLAN
Symposium on Principles of Programming Languages, volume 3, pages 29:1–29:30. ACM, 2019.

10 Patrick Chanezon. Docker for mac and windows beta: the simplest way to use docker on your
laptop, March 2016. URL: https://blog.docker.com/2016/03/docker-for-mac-windows-
beta/.

11 Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. A gentle
introduction to multiparty asynchronous session types. In Formal Methods for Multicore
Programming, volume 9104 of LNCS, pages 146–178. Springer, 2015. doi:10.1007/978-3-
319-18941-3_4.

12 Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session Types Revisited. In PPDP ’12:
Proceedings of the 14th Symposium on Principles and Practice of Declarative Programming,
pages 139–150, New York, NY, USA, 2012. ACM. doi:10.1145/2370776.2370794.

13 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet communicating
automata. In ESOP, volume 7211 of LNCS, pages 194–213. Springer, 2012. doi:10.1007/
978-3-642-28869-2.

14 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in communicating
automata: Characterisation and synthesis of global session types. In ICALP, volume 7966 of
LNCS, pages 174–186. Springer, 2013.

15 Fabrice Le Fessant. MLDonkey, 2002. http://mldonkey.sourceforge.net/.
16 J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan

Schmitt. Combinators for bidirectional tree transformations: A linguistic approach to the
view-update problem. ACM Trans. Program. Lang. Syst., 29(3):17, 2007. doi:10.1145/
1232420.1232424.

17 Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Alceste Scalas, and Nobuko Yoshida.
Precise subtyping for synchronous multiparty sessions. J. Log. Algebr. Meth. Program.,
104:127–173, 2019. doi:10.1016/j.jlamp.2018.12.002.

18 Dick Hardt. The OAuth 2.0 Authorization Framework. RFC 6749, October 2012. doi:
10.17487/RFC6749.

19 Robert Harper and Benjamin C. Pierce. A record calculus based on symmetric concatenation.
In Conference Record of the Eighteenth Annual ACM Symposium on Principles of Programming
Languages, Orlando, Florida, USA, January 21-23, 19x91, pages 131–142, 1991. doi:10.1145/
99583.99603.

20 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In POPL’08, pages 273–284. ACM, 2008.

21 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9:1–9:67, 2016. doi:10.1145/2827695.

22 Raymond Hu and Nobuko Yoshida. Hybrid session verification through endpoint API genera-
tion. In FASE, volume 9633 of LNCS, pages 401–418. Springer, 2016. doi:10.1007/978-3-
662-49665-7_24.

23 Raymond Hu and Nobuko Yoshida. Explicit connection actions in multiparty session types.
In FASE, volume 10202 of LNCS, pages 116–133, 2017. doi:10.1007/978-3-662-54494-5_7.

24 Keigo Imai and Jacques Garrigue. Lightweight linearly-typed programming with lenses and
monads. Journal of Information Processing, 27:431–444, 2019. doi:10.2197/ipsjjip.27.431.

25 Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen. Multiparty session pro-
gramming with global protocol combinators, 2020. arXiv:2005.06333.

26 Keigo Imai, Nobuko Yoshida, and Shoji Yuen. Session-ocaml: A session-based library with
polarities and lenses. In COORDINATION, volume 10319 of LNCS, pages 99–118. Springer,
2017. doi:10.1007/978-3-319-59746-1_6.

27 Keigo Imai, Nobuko Yoshida, and Shoji Yuen. Session-ocaml: a Session-based Library with
Polarities and Lenses. Sci. Comput. Program., 172:135–159, 2018. doi:10.1016/j.scico.
2018.08.005.

https://blog.docker.com/2016/03/docker-for-mac-windows-beta/
https://blog.docker.com/2016/03/docker-for-mac-windows-beta/
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1145/2370776.2370794
https://doi.org/10.1007/978-3-642-28869-2
https://doi.org/10.1007/978-3-642-28869-2
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/10.17487/RFC6749
https://doi.org/10.17487/RFC6749
https://doi.org/10.1145/99583.99603
https://doi.org/10.1145/99583.99603
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.2197/ipsjjip.27.431
http://arxiv.org/abs/2005.06333
https://doi.org/10.1007/978-3-319-59746-1_6
https://doi.org/10.1016/j.scico.2018.08.005
https://doi.org/10.1016/j.scico.2018.08.005

K. Imai, R. Neykova, N. Yoshida, and S. Yuen 9:29

28 Shams Imam and Vivek Sarkar. Savina - An Actor Benchmark Suite: Enabling Empirical
Evaluation of Actor Libraries. In AGERE, pages 67–80. ACM, 2014.

29 Oleg Kiselyov. Simple variable-state monad, December 2006. Mailing list message. http:
//www.haskell.org/pipermail/haskell/2006-December/018917.html.

30 Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. Typechecking protocols
with Mungo and StMungo. In PPDP, pages 146–159, 2016. doi:10.1145/2967973.2968595.

31 Sam Lindley and J. Garrett Morris. Embedding Session Types in Haskell. In Haskell 2016:
Proceedings of the 9th International Symposium on Haskell, pages 133–145. ACM, 2016.
doi:10.1145/2976002.2976018.

32 Anil Madhavapeddy. Xen and the art of OCaml. In Commercial Uses of Functional Program-
ming (CUFP), September 2008.

33 Anil Madhavapeddy and David J. Scott. Unikernels: the rise of the virtual library operating
system. Commun. ACM, 57(1):61–69, 2014. doi:10.1145/2541883.2541895.

34 Dirk Merkel. Docker: Lightweight linux containers for consistent development and deployment.
Linux Journal, 2014(239), March 2014. URL: http://dl.acm.org/citation.cfm?id=2600239.
2600241.

35 Yaron Minsky. OCaml for the Masses. Commun. ACM, 54(11):53–58, 2011. doi:10.1145/
2018396.2018413.

36 Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. A session type
provider: compile-time API generation of distributed protocols with refinements in f#. In
Proceedings of the 27th International Conference on Compiler Construction, CC 2018, February
24-25, 2018, Vienna, Austria, pages 128–138. ACM, 2018. doi:10.1145/3178372.3179495.

37 Rumyana Neykova and Nobuko Yoshida. Featherweight Scribble. In Models, Languages, and
Tools for Concurrent and Distributed Programming - Essays Dedicated to Rocco De Nicola on the
Occasion of His 65th Birthday, pages 236–259, 2019. doi:10.1007/978-3-030-21485-2_14.

38 Nick Benton. Jingle Bells: Solving the Santa Claus Problem in Polyphonic C], 2003. Available at
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/santa.pdf.

39 Dominic Orchard and Nobuko Yoshida. Effects as sessions, sessions as effects. In POPL 2016:
43th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 568–581. ACM, 2016. doi:10.1145/2837614.2837634.

40 Luca Padovani. A Simple Library Implementation of Binary Sessions. Journal of Functional
Programming, 27:e4, 2016.

41 Luca Padovani. Context-free session type inference. ACM Trans. Program. Lang. Syst.,
41(2):9:1–9:37, 2019. doi:10.1145/3229062.

42 Matthew Pickering, Jeremy Gibbons, and Nicolas Wu. Profunctor Optics: Modular Data
Accessors. The Art, Science, and Engineering of Programming, 1(2):Article 7, 2017. doi:
10.22152/programming-journal.org/2017/1/7.

43 Riccardo Pucella and Jesse A. Tov. Haskell session types with (almost) no class. In Haskell’08,
pages 25–36, New York, NY, USA, 2008. ACM. doi:10.1145/1411286.1411290.

44 Gabriel Radanne, Jérôme Vouillon, and Vincent Balat. Eliom: A core ML language for
tierless web programming. In Programming Languages and Systems - 14th Asian Symposium,
APLAS 2016, Hanoi, Vietnam, November 21-23, 2016, Proceedings, pages 377–397, 2016.
doi:10.1007/978-3-319-47958-3_20.

45 John H. Reppy. Concurrent ML: Design, Application and Semantics. In Functional
Programming, Concurrency, Simulation and Automated Reasoning: International Lecture
Series 1991-1992, McMaster University, Hamilton, Ontario, Canada, pages 165–198, 1993.
doi:10.1007/3-540-56883-2_10.

46 Davide Sangiorgi and David Walker. The π-Calculus: a Theory of Mobile Processes. Cambridge
University Press, 2001.

47 Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A Linear Decomposition
of Multiparty Sessions for Safe Distributed Programming. In ECOOP, 2017. doi:10.4230/
LIPIcs.ECOOP.2017.24.

ECOOP 2020

http://www.haskell.org/pipermail/haskell/2006-December/018917.html
http://www.haskell.org/pipermail/haskell/2006-December/018917.html
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1145/2976002.2976018
https://doi.org/10.1145/2541883.2541895
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241
https://doi.org/10.1145/2018396.2018413
https://doi.org/10.1145/2018396.2018413
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1007/978-3-030-21485-2_14
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/santa.pdf
https://doi.org/10.1145/2837614.2837634
https://doi.org/10.1145/3229062
https://doi.org/10.22152/programming-journal.org/2017/1/7
https://doi.org/10.22152/programming-journal.org/2017/1/7
https://doi.org/10.1145/1411286.1411290
https://doi.org/10.1007/978-3-319-47958-3_20
https://doi.org/10.1007/3-540-56883-2_10
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24

9:30 MPST Programming with Global Protocol Combinators

48 Alceste Scalas and Nobuko Yoshida. Lightweight session programming in scala. In ECOOP,
volume 56 of LIPIcs, pages 21:1–21:28, 2016. doi:10.4230/LIPIcs.ECOOP.2016.21.

49 Alceste Scalas and Nobuko Yoshida. Less Is More: Multiparty Session Types Revisited. In
46th ACM SIGPLAN Symposium on Principles of Programming Languages, pages 1–29. ACM,
2019.

50 Scribble home page, 2019. URL: http://www.scribble.org.
51 Ilya Sergey, James R. Wilcox, and Zachary Tatlock. Programming and proving with distributed

protocols. PACMPL, 2(POPL):28:1–28:30, 2018. doi:10.1145/3158116.
52 António Ravara Simon Gay, editor. Behavioural Types: from Theory to Tools. River Publisher,

2017. URL: https://www.riverpublishers.com/research_details.php?book_id=439.
53 The Scala Development Team. The Scala Programming Language, 2004. URL: http://scala.

epfl.ch/index.html.
54 Bernardo Toninho, Luís Caires, and Frank Pfenning. Higher-order processes, functions, and

sessions: A monadic integration. In Programming Languages and Systems - 22nd European
Symposium on Programming, ESOP 2013, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings,
volume 7792 of Lecture Notes in Computer Science, pages 350–369. Springer, 2013. doi:
10.1007/978-3-642-37036-6_20.

55 Jesse A. Tov and Riccardo Pucella. Stateful contracts for affine types. In Andrew D. Gordon,
editor, Programming Languages and Systems, 19th European Symposium on Programming,
ESOP 2010, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, volume 6012 of Lecture Notes
in Computer Science, pages 550–569. Springer, 2010. doi:10.1007/978-3-642-11957-6_29.

56 Jérôme Vouillon. Lwt: a cooperative thread library. In Proceedings of the ACM Workshop on
ML, pages 3–12. ACM, 2008. Available at https://github.com/ocsigen/lwt. doi:10.1145/
1411304.1411307.

57 Mitchell Wand. Type inference for record concatenation and multiple inheritance. Inf. Comput.,
93(1):1–15, 1991. doi:10.1016/0890-5401(91)90050-C.

https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
http://www.scribble.org
https://doi.org/10.1145/3158116
https://www.riverpublishers.com/research_details.php?book_id=439
http://scala.epfl.ch/index.html
http://scala.epfl.ch/index.html
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1007/978-3-642-11957-6_29
https://github.com/ocsigen/lwt
https://doi.org/10.1145/1411304.1411307
https://doi.org/10.1145/1411304.1411307
https://doi.org/10.1016/0890-5401(91)90050-C

Designing with Static Capabilities and Effects:
Use, Mention, and Invariants
Colin S. Gordon
Department of Computer Science, Drexel University, Philadelphia, PA, USA
csgordon@drexel.edu

Abstract
Capabilities (whether object or reference capabilities) are fundamentally tools to restrict effects.
Thus static capabilities (object or reference) and effect systems take different technical machinery to
the same core problem of statically restricting or reasoning about effects in programs. Any time two
approaches can in principle address the same sets of problems, it becomes important to understand
the trade-offs between the approaches, how these trade-offs might interact with the problem at hand.

Experts who have worked in these areas tend to find the trade-offs somewhat obvious, having
considered them in context before. However, this kind of design discussion is often written down only
implicitly as comparison between two approaches for a specific program reasoning problem, rather
than as a discussion of general trade-offs between general classes of techniques. As a result, it is not
uncommon to set out to solve a problem with one technique, only to find the other better-suited.

We discuss the trade-offs between static capabilities (specifically reference capabilities) and effect
systems, articulating the challenges each approach tends to have in isolation, and how these are
sometimes mitigated. We also put our discussion in context, by appealing to examples of how these
trade-offs were considered in the course of developing prior systems in the area. Along the way, we
highlight how seemingly-minor aspects of type systems – weakening/framing and the mere existence
of type contexts – play a subtle role in the efficacy of these systems.

2012 ACM Subject Classification Theory of computation → Type theory; Software and its engin-
eering → Language features

Keywords and phrases Effect systems, reference capabilities, object capabilities

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.10

Category Pearl

Acknowledgements Many thanks are due to the audience at the OCAP 2018 workshop where these
ideas were initially presented, and to the ECOOP 2020 reviewers, for helpful feedback on the ideas,
presentation, and paper itself.

1 Introduction

Capabilities are a classic idea [35, 34] with intuitive appeal: explicitly tie possession of certain
entities to the ability to perform certain actions, so by bounding the flow of those entities one
can restrict the possible actions of a program or program component [45]. Much of the work
in this area centers the notion of object capabilities, where capabilities control access to objects
(in the OO sense), and capabilities are realized as object references: a program fragment
cannot modify or invoke operations of an object it cannot reference. This immediately grants
a way to control mutation of objects, and by tying external calls to specific objects, also
extends to controlling externally-visible behaviors as well. For example, by associating all
file operations with a particular object – not a globally accessible library call – developers
may tightly control which code can access those operations by restricting how widely the file
operations object is distributed. Intuitively, capabilities act as permission to do things, and
the absence of capabilities acts as a lack of permission. It is also possible to delegate partial
access to an object’s operations using proxy objects [8, 61, 60] or through capabilities acting

© Colin S. Gordon;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 10; pp. 10:1–10:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9012-4490
mailto:csgordon@drexel.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2020.10
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Designing with Static Capabilities and Effects: Use, Mention, and Invariants

as handles to trusted mediators [35]. However, doing this kind of reasoning statically is also
appealing, because it incurs no runtime performance overhead when delegating or mediating
access.

As a result, there is now a rich body of work on statically checked capabilities. Once
static reasoning is employed, the kinds of restrictions proxies and mediators permit in object
capability systems may not require new dynamic objects exposing different sets of operations.
One of the most well-developed bodies of work on static capabilities uses reference capabilities,
which associate different permissions1 to individual references in a program, in contrast to
the object capability view that all references to an object are equal and restrictions stem
from using different objects with fewer or modified operations available. Thus, different
references to the same object – distinguished by a type system or static analysis, but not
the runtime system – may permit programs holding them different abilities to affect object
state or invoke certain operations. Most reference capability systems are type systems where
reference types come equipped with a type qualifier [21] corresponding to certain permissions
(and in some cases, invariants or assumptions about aliases). Capability-based reasoning is
supported by checking the types flowing into a given program context.

Different variations of reference capabilities have been employed to solve a wide array
of programming problems. Systems with read-only reference capabilities [59, 66, 16, 49, 11]
restrict some references to read-only access to their referents – even when aliases exist
that can be used to mutate the referent – which is useful for preventing a wide variety
of accidental mutations, from expressing that a method treats its arguments as deeply
read-only to controlling consequences of representation exposure [15]. This can be combined
nicely with object immutability [65], as all references to an immutable object are read-only.
Transitive versions have been used to ensure data race freedom in Microsoft prototypes [29]
and the Pony programming language [12]: if two threads only shared (transitively) read-only
references, no data races can exist between them.2 They have also been used to infer
method purity [33, 32]: if a method accepts only (transitively) read-only inputs (including
the receiver), it has no externally-visible side effects.3 In other contexts, program behavior
can be constrained by building more fine-grained capabilities that grant not only all-or-none
permission to mutate, but can grant permission for only certain kinds of mutation, and can
therefore enforce nuanced invariants by restricting which capabilities can coexist for the same
resource [27, 25, 28, 43, 44, 5, 6].

Each of these systems makes critical use of the original motivation for capabilities: by
restricting what flows into certain parts of the program, one can provide guarantees about
what that part may do – without precisely examining the semantics of its internals.

For the problems mentioned above, there also exist effect systems to statically check
the same high level concepts (e.g., for data race freedom [1], or purity [54]). In contrast to
capability systems which reason externally in terms of what capabilities flow into code, effect
systems are a class of type system extensions that analyze program behavior4 by (to a first

1 Typically reference capabilities are distinguished statically, though a dynamic interpretation is possible.
2 This is simplifying away some of the substructural aspects of these type systems, which all make use of

forms of uniqueness to also support partitioning mutable data between threads, or in Encore’s case [6]
restrict conflicting accesses to atomic synchronization primitives.

3 This sets aside extensionally-observable effects, such as allocating memory or triggering GC.
4 By effect systems, we mean the sort of type system extension that reasons about bounds on program

behavior as part of the type judgment, in the sense of the work on FX that originally coined the term
“effect system” [40, 24]. This stands in contrast to denotational approaches which attempt to assign
meaning to effects, often by way of monads or some extension thereof, following Moggi [46]. Filinksi [20]
offers an excellent discussion of the distinction. Readers familiar with algebraic effects should note that

C. S. Gordon 10:3

approximation) performing a bottom-up analysis of what interesting actions might occur,
based on (typically) a join semilattice of effects: primitive or external actions of interest
are typed as having particular specific effects representing their behavior of interest, and
larger expressions’ effects are computed by taking the least upper bound of subexpressions’
effects. This raises a fundamental question: when considering a static reasoning approach to
a problem, how do we recognize which approach is likely to be better suited? Comparisons
between these systems in the literature tend to focus on the low-level expressive distinctions
between systems for a particular problem domain (e.g., System A accepts this data race
free program rejected by System B), or the relative complexity of the type rules (as a proxy
for usability). While the core trade-offs are there if one looks carefully, the broader issue
of contrasting the trade-offs between these classes of solutions has received little explicit
attention.

In our personal experience, it is not uncommon to set out to build a capability-based
system, only to find effect systems more suitable to the task at hand – and sometimes the
reverse. People experienced with both effect systems and capability systems – whether as
designers, or users – likely find this unsurprising. But to the best of our knowledge, there is
essentially no discussion in the literature on how system designers chose one approach over
the other; systems are presented as complete and finished designs, then evaluated against
other finished designs – the design process is lost. Having a record of these trade-offs and
design questions would be useful, both for shared understanding and especially for newcomers
to static capabilities or effects. Part of this requires identifying and developing terminology
for aspects of these trade-offs.

In this expository paper we articulate some of the core trade-offs between these static
reasoning approaches, and how these trade-offs are moderated in important ways by some
of the most humble of reasoning principles in type systems: weakening and the use of type
contexts. We also explain how the trade-offs have affected the design of several reference
capability systems and effect systems we have worked on. We expect that little of what we
say would be surprising to those who have worked on both static reference capability systems
and type-and-effect systems; we view our contributions as primarily giving clear explicit
exposition to these trade-offs that are generally left implicit in the literature, and putting
those trade-offs in context by providing some extra information on the design evolution of a
couple effect systems and capability systems. Our hope is that newcomers to these areas and
their intersection, or outsiders looking in, will find these distinctions helpful.

2 Capabilities, Use, and Mention

One of the original goals for capability-based design is to reason about the effect of some
code by reasoning about the capabilities it is provided [45, Ch. 8] – a long-standing practice
based on the notion that capabilities essentially grant permission to cause effects, though
until relatively recently [13, 38, 39] the exact relationship between static capabilities and
static effects was left implicit.5 However, the pure form of this approach – that the set of
capabilities provided is used to give an upper bound on an expression’s effect – has limitations
we have not seen crisply articulated in a general way before.

much work on algebraic effects involves both varieties: handlers define the semantics of user-defined
effects, but a restrictive type system of the sort we discuss ensures all effect operations are invoked in
the context of an enclosing handler.

5 This despite being noted as a relevant question (in other terms) much earlier [21].

ECOOP 2020

10:4 Designing with Static Capabilities and Effects: Use, Mention, and Invariants

Before we can precisely articulate the limitations of a kind of reasoning, let us first clarify
exactly what kind of reasoning we mean. We will ground discussion primarily in systems using
read-only references to control side effects [65, 66, 59] to control side effects. We will draw
on a prototype dialect of C# [29] that used these and with context bounding to both control
interference between threads, and also to strengthen typing assumptions. These ideas were
later generalized in Pony [12], so much of our discussion applies fairly directly there as well,
and less precisely to a range of earlier [65, 66, 59], contemporaneous [32, 33], and later [23]
systems. This line of work, focusing on read-only references devoid any meaning besides
mutability restrictions, historically used the term reference immutability to describe the
relevant techniques (as in, an object was immutable through a particular (read-only) reference).
This was partly to distinguish itself from other techniques with read-only references as part of
systems that captured more design intent, like owner-as-modifier ownership types [49, 11, 10]
or universe types [17, 16]. To date, the particular sort of capability-bounding we discuss
below has only been explored for systems in the so-called reference immutability family.

In most of these systems, the specific capability appears as a type qualifier [21] modifying
a basic object (class) type. In the C# dialect we discuss, there were four reference capabilities:
isolated (externally unique [31]), readable (transitively read-only), writable (mutable),
and immutable (transitively immutable, in the sense that the immediate referent and all
objects reachable from it are permanently immutable). readable and immutable may be
used for reading fields, may not be used for mutation, and may not be used to obtain references
usable for mutation. For example, reading a writable-declared field through a readable
reference would produce only a readable reference – e.g., iterating over the elements of a
readable List<writable Foo> would work through a series of readable Foo instances. In the
case of an immutable referent, stronger results appear because everything reachable via an
immutable reference is an immutable object: iterating over a immutable List<writable Foo>
would see immutable Foo instances.

Setting aside some subtleties related to uniqueness, the simplest embodiment of using
context bounds to reason about effects in these systems is the parallel composition type rule
from the C# dialect, present in an analogous form in related systems [12, 23]:

T-Par
NoWritable(Γ1,Γ2) Γ1 ` C1 a Γ′

1 Γ2 ` C2 a Γ′
2

Γ1,Γ2 ` C1||C2 a Γ′
1,Γ′

2

The rule above simply says that as long as two thread bodies (C1 and C2) require no
writable variables in their inputs, it is safe (data-race-free) to run them in parallel (and the
output of the flow-sensitive typing judgment combines per-thread outputs in the obvious way).
This works because in order for a data race to occur, one thread would need write access
to an object the other thread could reach. Prohibiting writable references from entering
either thread guarantees this cannot happen: any object reachable from both threads would
be truly immutable, or both threads would have only readable references to it. Crucially,
this reasoning is sound because the C# dialect – like Pony [12], Encore [6], and L42 [23] –
prohibited global mutable state, providing a form of capability safety [45]: assurance that
reasoning in terms of only capabilities directly entering an expression was sound, because
there were no ambient capabilities (those that can be obtained by any code at any time).
This rule also partitions some mutable state between threads, by splitting up isolated
references.

C. S. Gordon 10:5

Another, slightly less traditional form of effect-bounding is the notion of recovery, first
proposed by Gordon et al. [29], adapted by Clebsch et al. [12] for use in Pony, and later
extended for better flexibility by Giannini et al. [23]. Again, we will demonstrate with the
simplest rule, one of two given for the C# dialect:

T-RecoverImm
IsolatedOrImmutable(Γ) IsolatedOrImmutable(Γ′) Γ ` C a Γ′, x : readable D

Γ ` C a Γ′, x : immutable D

This rule says that if all inputs and all but one output x of a command are isolated
or immutable, and the other output x is readable, then it is safe to recover the stronger
immutable capability for x – stronger because immutable D is a subtype of readable D, making
this a kind of statically safe downcast. Intuitively this handles either the case that x already
points to immutable data, or the case that it points to mutable data that is unreachable
except via x and can therefore be “frozen” to immutable. The restrictions on Γ and Γ′ ensure
x doesn’t alias mutable state, since the lack of ambient capabilities means x must point to an
input (all immutable or isolated– and therefore freezable) or something allocated within
C (which cannot escape via C’s inputs). As with the concurrency rule, the soundness of
this relies fundamentally on the fact that weak permissions on the inputs imposes strong
restrictions on the code’s behavior (plus the prohibition on ambient authority / global
mutable state).

This rule makes it possible to write code that handles some number of immutable or
externally-unique data with code that was not written with strict immutability (as opposed
to readable) in mind:

readable T RandomChoice(readable T a, readable T b) { ... }
...
{x,y:immutable T}
z = RandomChoice(x,y);
{x,y:immutable T,z:readable T}
{x,y,z:immutable T}

The code above passes two immutable references to RandomChoice, which assumes it
simply returns a readable reference. But with the recovery rule above, the result (z) can be
recovered as immutable – it must either be pointer-equal to x or y, or a new T allocated inside
the method, which is therefore not aliased elsewhere, and can be converted to immutable.

In the C# prototype, and now Pony, this kind of reasoning has worked out well. But
why, and where would it break?

2.1 The Gap Between Capability Bounds and Effects: Use-Mention
Distinction

These kinds of reasoning could be done using explicit effect systems [40, 24]. But what
does that gain us? As is known [42, 13], an explicit effect system requires a system that
cares about the details of the code being analyzed, which can require complex types and
effects [1] (we see examples in Section 3). So concretely, what can effect systems offer that
capability-based reasoning struggles with?

The key point of departure between this capability-bound-based reasoning and a general
effect system is what we will refer to as a kind of use-mention distinction. In philosophy and
linguistics, logical fallacies and confusion are known to arise from conflating use of a thing
with mere mention of a thing [47, 14]. Reasoning about an expression’s effect using only

ECOOP 2020

10:6 Designing with Static Capabilities and Effects: Use, Mention, and Invariants

HeapWrite

NoHeapWrite

T-VarAssign
x ∈ Γ y ∈ Γ

Γ ` x = y : unit | NoHeapWrite

T-FieldAssign
Γ(x) = writable C τ f ∈ Fields(C)

Γ ` e : τ | χ
Γ ` x.f := e : unit | HeapWrite

Figure 1 An overly-simple effect system (excerpt) that could parallelize a local assignment of
writable variables.

the capabilities it has access to inherently performs the same kind of conflation: possessing
authority means only that the code has the ability to use it, not that it necessarily does.
This seems to be anecdotally understood among designers of static capability systems, but
rarely discussed. To the best of our knowledge, this paper is the first to explicitly call out
and name this trade-off.

Consider the following in the C# reference immutability dialect:

{x:readable T,y:writable T,z:writable T}
y = z;
/* actual concurrent work with x, but not y or z */
{x:readable T,y:writable T,z:writable T}

The single local variable assignment is enough to prevent parallelization (as the full body of
a thread) via T-Par even though it will never cause a data race in the heap, because y and
z are typed as writable but T-Par forbids writable references in a thread’s initial type
environment. Every sound type system will reject some semantically valid code, but this
example seems particularly innocuous.

Consider for contrast the overly-simple effect system and rules in Figure 1. There are
two effects, NoHeapWrite v HeapWrite. Every primitive expression that is not a heap write
is given effect NoHeapWrite (notably, variable assignments), the expression that performs
a write into the heap has effect HeapWrite, and compound expressions’ effects are simply
the least upper bound of the subexpressions’ effects. This way, any expression containing
any heap write would be given effect HeapWrite. The line of code above would have effect
NoHeapWrite – which implies it could be parallelized without a data race.

Clearly this toy example will not scale up to real imperative programs (it likely won’t
handle the “actual concurrent work” assumed in the example), but it is still instructive
because it already highlights the use-mention distinction: the code above mentions the
writable references, but does not use them in a way relevant to the property of interest (heap
mutation).

Thus the fact that capability-bound-based reasoning does not inspect the internals of
an expression is a strength in that it reduces complexity, but also a weakness because it
inherently loses precision.

It is worth briefly noting that there exist reference capability systems where some
references are usable only for comparing object identity, and not for actually causing effects,
as in Pony’s tag permission [12], or much earlier in Boyland et al.’s unifying framework
for reference capabilities [3]. Such restricted references remain useful for code without
permissions to invoke operations implemented in code with permissions [51]. In Pony, such
references are permitted to enter recover blocks, because they do not affect the capability-
bounded reasoning: they are references that do not act as capabilities (for the mutation
effects addressed by Pony).

C. S. Gordon 10:7

Other kinds of related, but different, distinctions have appeared in the literature on object
capabilities. Miller [45] and later Drossopoulou et al. [18] distinguish permission as direct
access to an object (to invoke its methods), and authority as the ability to cause effects on
an object. Drossopoulou et al. [18] showed that in general such notions of permission do not
imply authority (a direct reference to an object with only pure methods grants permission,
but not authority, over that object), and authority does not imply permission (invoking a
method may cause mutations to an object the caller lacks direct access to). This distinction
is further related to distinguishing permission (or authority) in a given program state from
the permission (or authority) obtainable via further execution, either of a specific program,
of any program adhering to some behavioral specification, or of any possible program. The
use-mention distinction somewhat resembles the distinction between eventual permission (for
a given program) and behavioral permission (roughly, for all programs preserving the typing
discipline, which due to types controlling permissions is also similar to Miller’s notion of a
topology-of-permissions based bound on authority), which also touches upon the distinction
between what a program might actually do based on its code versus what it may have (or
obtain) authority to do ignoring the details of the particular program. We propose the
use-mention distinction not to supplant such analyses of capability systems, but specifically
to distinguish the loss of precision capability-bound reasoning suffers in comparison to effect
systems.

2.2 Working Around Use-Mention Conflation
That the Microsoft C# prototype was used to write an entire operating system kernel [19]
and Pony is used in industry suggest that at least sometimes, this use-mention distinction is
not critical. Certainly, few developers wish to parallelize a local variable assignment alone.

There are also ways to work around this limitation when it otherwise might arise.
Reference capability type systems typically include weakening (or in the C# case, framing)
type rules, that allow variables that are not even mentioned to be temporarily set aside and
ignored, allowing capability-based reasoning to be applied more locally.

T-Weakening
Γ ` e : τ

∆,Γ ` e : τ
T-Frame

Γ ` C a Γ′

∆,Γ ` C a ∆,Γ′

Both rules simply state that if an expression or command is well-typed with certain variables,
then it remains well-typed (with the same type) in the presence of additional variables. Often
this is enough to side-step conflation of use and mention: operations like the problematic
local variable write above can frequently be refactored to a separate part of the program (e.g.,
before or after introducing concurrency), and this is arguably better coding style anyways.

Consider a variation on the recovery example:

{x, y : immutable T, b : writable U}

{x, y : immutable T}
{x, y : immutable T}
z = RandomChoice(x, y);
{x, y : immutable T, z : readable T}
{x, y, z : immutable T}

−

T
-R

ec
ov

er
Im

m

{x, y, z : immutable T, b : writable U}

−

T
-F

ra
m

e

This is the same code as the previous recovery example, but type-checked with an
additional variable b in scope with a writable permission. The initial type environment
would fail the IsolatedOrImmutable check in T-RecoverImm because b is writable. However

ECOOP 2020

10:8 Designing with Static Capabilities and Effects: Use, Mention, and Invariants

framing away the extra writable variable that is not needed in the recovery region (i.e.,
instantiating T-Frame with ∆ = b : writable U) allows recovery to be used with an
environment containing only x and y, both immutable. Thus while context-bounding risks
losing precision due to the inability to distinguish use and mention, this weakness is tempered
in a subtle way by the most humble of type system rules. An under-appreciated aspect of
these rules in type theories is that they imply the “extra” variables in ∆ are definitely not
used by the expression at hand.6

It is known that removing structural rules like weakening leads to very different type
theories (substructural type theories [62]), but we believe we are the first to remark upon this
interplay between weakening and the precision of context-bounded reasoning as a general
phenomenon, rather than simply exploiting it. Unique, linear, and affine capabilities all
typically rely on restricting a different structural rule (contraction) that permits multiple
uses of the same variable (including in the aforementioned read-only reference systems).

Another more unique use of structural constraints and capabilities is the work of Giannini
et al. [23], who extend the expressivity of the C# dialect and Pony’s recovery. Those
languages require strict lexical nesting of recovery blocks, which can make some sophisticated
uses of recovery difficult to write. Giannini et al. modify the structure of contexts to track
multiple sets of variables for recovery simultaneously (keeping them separated), allowing
a typing derivation to switch between active sets for different expressions, without any
particular nesting order. They motivate this extension from a very pragmatic point of view,
but their enhancement is essentially enriching contexts with additional structure typical of a
substructural logic or type system, with their new rules playing the role of novel structural
rules that permute the context to swap active and “inactive” portions. They noticed an
interplay between structural rules and reference capabilities in a particular context, but did
not highlight it as a general issue. Still, the general issue and their result suggest deeper
investigation of the interactions between capabilities and structural rules is warranted.

2.3 The Limits of Workarounds
Ultimately, even with the subtle benefits of weakening, the question of whether the use-
mention distinction is important depends on the specific problem at hand. For safe parallelism
and method purity, the past few years have strongly suggested that the use-mention distinction
is not a serious problem. Since capability-based reasoning about those effects is usually
powerful enough, it is usually preferable to a full effect system due to its comparative
simplicity (we see the alternative in Section 3).

Contrast this against another problem: preventing any thread other than the distinguished
UI event loop thread from directly updating objects representing the UI – considered an error
in most UI frameworks, often resulting in program termination if a program violates this
discipline. In prior work, we proposed an effect system [26] that prevented such errors. Like
the reference capability examples mentioned earlier, this has also seen adoption in industry
(through Stein et al.’s clever extensions [55]), offering some evidence that this was a good
design decision.

A key part of the work was distinguishing which objects had UI-related methods and
which objects did not. This was delineated in the type system using a type qualifier – the
same type of machinery used to manage reference capabilities – but the actual analysis relied

6 This is slightly surprising in contrast to separation logic, where the equivalent framing rule is (rightly)
viewed as a powerful reasoning principle [53].

C. S. Gordon 10:9

1 final @UI JLabel label = ...;
2 new Thread() { // ← Captures label reference
3 public void run() { // ← label reference in scope
4 // do really slow computation
5 Display.asyncExec(new @UI Runnable() { // ← Captures label reference again
6 public void run() {
7 label.setText("Complete!"); // ← Use on UI thread
8 }
9 });

10 }
11 }.run();

Figure 2 UI event handler code spawning a background thread that sends code back to the UI
thread.

on an effect system. Because the qualifiers could be interpreted as capabilities (a thread
cannot access UI elements if it holds no references to UI objects), a plausible alternative to
an effect system would have been to use a context restriction on code that ran on background
threads (those that should not update the UI directly): forbid them access to UI-related
objects, by a rule similar to the safe parallelism rule shown earlier. This work was carried out
shortly after work on the C# dialect, in parallel with a related reference capability system [27]
refining the notion of read-only references. As a result, we considered this approach during
the design of what became an effect system.

But the challenge is this: the details of how background threads notify the UI of completed
work. Consider this typical sequence of steps in a user interface. When the user clicks a
button, an event handler is triggered on the UI event loop thread to handle the input. If the
work to be done is expensive, then rather than blocking the UI thread, the handler offloads
work to a background thread. Running work on the background thread will allow the UI to
respond to other inputs while the work is ongoing. But once the work is done the display
must be updated with the results. Background threads are forbidden from directly updating
the UI themselves, for a variety of reasons discussed elsewhere [26]. So when the work is
completed, the code executing on the background thread must somehow trigger an update to
occur on the UI thread to indicate completion and/or display the results.

In all current UI frameworks, this occurs by permitting the background thread to hold
(mention) a reference to UI elements, and send them in a closure to the UI thread – which
then executes the code, using the reference to update the UI. Figure 2 gives a concrete
example of this. The JLabel on line 1 in Figure 2 is a UI element that should only be used
on the UI thread. But the background thread code (the Thread.run implementation starting
on line 3) holds a reference to the label through the expensive work, which is then passed
back to the UI thread inside a Runnable, whose body (line 7) is then safely invoked from the
UI thread. Preventing the flow of any @UI object references into background threads would
reject this code – and essentially all code written for existing UI libraries. In this case, an
effect system was required to distinguish use and mention.

The use-mention distinction also arises in a second form for this problem: existing code
mixes methods that should run on background threads in the same classes as methods than
must run on the UI thread. Arguably this could be recast as a granularity issue – splitting
capabilities into those granting UI method rights and those not granting UI method rights,
following the compatible aliasing approach we discuss later, could work. But in that case
it leads to capability types that are more complex than the effects – the capabilities would
need to track sets of permitted methods, while there are only two effects in the solution (plus
effect variables for effect polymorphism): @SafeEffect v @UIEffect.

ECOOP 2020

10:10 Designing with Static Capabilities and Effects: Use, Mention, and Invariants

2.3.1 Counterarguments

One possible objection to the above is that the problem above may be avoidable through
use of different abstraction principles, such as defining the Runnable above in a context with
the JLabel in scope, applying some variant of an anti-frame rule [52] – a formalization of
information hiding, in this case encapsulating a capability inside the Runnable – to encapsulate
the reference, and then defining the thread separately such that it cannot even (directly)
mention the JLabel. However, this alone simply inverts the problem with use-mention
distinctions: rather than treating mention as use, it hides both! To ensure the background
thread does not call the run() method that accesses the label, it is necessary to prevent
use (calling). To allow the functionality it is necessary to still allow the thread to pass the
Runnable to Display.asyncExec. To permit one without the other requires another distinction
of use and mention – which we would argue, is an effect system. In addition, such an approach
would also prohibit background thread code from, for example, preparing a list of objects
to update on the UI thread, which inherently requires the ability to mention the UI object
references for storage.

A potentially stronger counterargument might stem from claiming that the difficulty with
context bounding above stems from conflating capabilities with references, as all reference
capability systems do. This conflation means that capabilities can be stored in the heap. In
contrast, static capabilities divorced from data may permit additional separation: the UI
thread might possess a static capability that it keeps, and UI-sensitive operations (methods)
should require (and return) this unique capability. This does make it impossible to invoke
a UI operation on a background thread! However, we would argue that this is essentially
an effect system: @UIEffect can be read as marking methods that require and return the
hypothetical separate capability. We are not alone in this view.

Walker et al. [63] give a translation from the region calculus of Tofte and Talpin [57, 58]
to a calculus of static capabilities (independent from values), and note that for this class
of capabilities the distinction is in some ways a subjective difference between analyzing the
behavior of code (as an effect system or monadic approach might) or dictating up front what
the permissible actions are (the capability view).

More recent work on capability-based effect systems similarly takes the explicit view
that capabilities grant permission to cause effects, leading to systems that restrict effects by
restricting the flow of capabilities. Liu et al. [38, 39] propose distinguishing stoic functions
as those that do not capture capabilities (directly or indirectly), and obtain stoic functions
purely by capability-bounded reasoning: all functions are initially typed as possibly capturing,
and a function that is well-typed in a context with no capabilities (or capability-capturing
closures) can be downcast to a stoic function type (akin to recovery), which means any effects
of the function then appear explicitly in its signature as capability arguments, akin to a
latent effect (taking the capability as an argument does not oblige the function to use it
directly). Careful use of stoic functions could be used to ensure background thread code does
not capture the hypothetical UI capability, making the distinction between the two effects of
interest equivalent to whether or not code accepts the UI capability as an argument. Liu et
al. refer to program changes to pass capabilities instead of capturing them as “making their
effects explicit.” Osvald et al. [50] explicitly equate the capabilities required for a method
with method effects, following Marino and Millstein’s generic effect framework [41] that
explicitly formulates effects as sets of capabilities.

C. S. Gordon 10:11

3 Effects, Naming, and Invariants

Given the fact that effect systems can handle the use-mention distinction, why would we ever
use only capabilities to bound behaviors in a static system? The main technical reason to
choose capabilities is that they permit reasoning about effects for code that is not inspected,
as in precompiled library code when retrofitting a type system, or dynamically loaded code.
But in the case that all code is compiled with a tool performing the same analysis (supporting
separate compilation), this advantage is less important. Why would we choose capabilities
over effects in this case?

The answer is informal and subjective: simplicity. Simplicity when capabilities are
adequate in practice is a compelling answer for many reasonable people. But the previous
section gave an example where an effect system not only handled the use-mention distinction,
but was also simpler than a plausible capability-based approach. It turns out, simplicity
often favors the other direction. Effect systems excel at reasoning about the behavior of
individual sections of code – but not at reasoning about the behavior of all code at the same
time on specific shared objects with many different names. In short, effect systems struggle
to retain simplicity while enforcing invariants, particularly when they must relate multiple
names to multiple entities (which is necessary to ensure multiple uses are similar).

3.1 A Thought Experiment: Replacing Reference Immutability with
Effects

Consider, as we did, designing an effect system that accepts precisely the same programs as
a reference immutability system. For simplicity let us consider ReIm [33], which has only
mutable and transitively read-only references – no uniqueness, and no absolute immutability.
The type rules for this system are fairly straightforward: they extend the standard class-based
object-oriented type system rules to include the qualifiers in the subtyping relation, and
beyond this administrative “plumbing” the main changes are the same one common to all
deep reference immutability type systems:

The rule for type checking field writes requires the reference to the modified object to be
writable.
The rule for field reads ensures that if the base object reference used for a field read is
readable, then so is the result, regardless of the permission in the field declaration.

As a consequence of these rules, for a program to follow a path through the heap to perform
a write, every reference traversed along that path (local variable and field type alike) must
be writable.

An effect system with the same precision in terms of which references are used (transitively)
for mutation is quite complex. Assuming all local variables are let-bound (i.e., final, and
cannot be rebound) for simplicity, indicating that a variable was used directly for writing is
straightforward:

Γ(x) = T τ ∈ Fields(T) Γ ` e : τ | χ
Γ ` x.f := e : U | {wr(x)} ∪ χ

This rule simply takes the type τ and effect χ of the right hand side, and adds to it an effect
indicating the base reference x was used for writing. The challenge arises when reconciling
external and internal variables. Consider:

let x = e1 in e2

ECOOP 2020

10:12 Designing with Static Capabilities and Effects: Use, Mention, and Invariants

If e2 contains a write through x, then e2’s effect should include wr(x), indicating that x is
used as if it were mutable. But outside the body of this let, x is meaningless7 – what it refers
to depends on e1, and in general may refer to one of several objects (e.g., if e1 involves a
conditional or heap dereference). A sound effect system would need to take any effects on x
and conservatively assume they could occur for any of the objects e1 may evaluate to. But
this then requires the effect system to reason about may-alias relationships – possible, but
tricky, since this in turn requires naming sets of objects in the heap in a precise manner.
Essentially, an effect system approach collects aliasing and use information and propagates it
outwards to be reasoned about wholesale. For a transitive reference immutability system
like ReIm, this information would also need to track origin information: it is possible that
x itself may never be used for writing in e2, but some other reference, obtained by reading
through x could be – and in that case, x would need to be indicated as usable for (transitive)
write access as well.

One could consider extending this experiment to more nuanced systems of read-only
references. We considered such an experiment ourselves after working on the UI threading
effect system, trying to build a precise effect system analogue of the C# reference immutability
system; the naming and usage information for an effect system approach to that language
seems to grow even faster than for ReIm. The same extrapolation applies to related systems
like Pony [12] and L42 [23].

In this case using an effect system seems highly undesirable, and prone to significant
complexity. What changed from the UI threading effect system? In this thought experiment,
we considered a system where access paths through the heap are important, and object
identity is important. For the UI threading case, neither of those are true. A diligent
student of the literature on effect systems might point out the similarities between the
considerations for let-binding above and the letregion construct in calculi for region-based
memory management [56, 58]. These calculi have effect systems with similar read and write
effects on a per-region basis, rather than per object, and the effects are read and write
behaviors to specific regions. This separation from naming individual objects or tracking
access paths is a substantial simplification. The case of a region name being limited to a
specific lexical scope also arises for letregion, but there the region that is undefined outside
that scope simply doesn’t exist – nor do any data or types that might depend on it – because
the binding construct is also the (de)allocation construct, and typing rules for letregion
forbid the appearance of the bound (then deallocated) region in the construct’s result type.
Object- and reference capability systems tend to be used for situations involving one or both
of these features that lead to more complex effects – object identity and heap paths.

3.2 Global Invariants via Local Capabilities
Capabilities, on the other hand, allow this kind of reasoning to be handled purely locally,
usually without naming issues or explicit tracking of access paths. Type contexts, along with
the field type look-ups typical in type systems for OO languages excel at identifying sets of
objects used similarly, because they actually force sets of objects to be used similarly – the
type system will statically ensure that all values dynamically bound to a certain variable (or
field) are used at the same type. When absolute similarity is problematic, polymorphism
over types or permissions is possible [16, 29, 36]. This is important because these points of
the system – variable and field types – already conflate types of different objects in standard

7 Or worse, means something else if it was shadowing another x.

C. S. Gordon 10:13

type systems. So tying capabilities to variable and field types essentially enforces a kind
of invariant: it conflates capabilities in the same places a traditional type system already
conflates basic types. As a result, this leads to little additional friction for developers already
using a typed language. Effect systems such as the hypothetical effect version of reference
immutability must somehow reconstruct this sort of conflation that comes for free when the
effects are restricted by the type context.

Static reference capability systems of recent years also all carry a notion of compatibility
between references/capabilities. In many static reference capability systems, each reference
permission comes with not only restrictions on how it is used, but restrictions on how aliases
are used. These systems maintain a global invariant that for any two aliases, the permissions
granted via one reference are a subset of the interference assumed by the other, in both
directions. The early papers on rely-guarantee references [27], rely-guarantee protocols [43],
and Pony [12] give particularly thorough accounts of this. This notion of compatibility
between aliases is imposed any time references are duplicated, and in the case of systems like
Kappa [5], joined as well.

Preserving compatibility between aliases can also be done locally, without name binding
issues. In each case, one type A may be split into two others B and C if:

B and C’s combined capabilities do not exceed A’s original capabilities for modification,
and
B (resp. C) assumes at least as much interference as A assumed
B (resp. C) assumes at least as much interference as C’s (resp. B’s) capabilities provide.

As a concrete example, consider the rely and guarantee components of a rely-guarantee
reference [27, 28], which specify binary relations constraining what modifications that reference
may be used for (the guarantee) and what its aliases may be used for (the rely). A reference
of type ref{N| > 5}[≤,=] refers to a natural number strictly greater than 5, assumes aliases
may increment the number (any time an alias modifies the stored value, the old value
must be ≤ the new value, and typing may rely on this fact), and may only be used for
reading (or non-modifying writes; new values must be = the old value, and the type system
must guarantee uses obey this restriction). This may be split into two copies of itself (it is
reflexively splittable), because none of the three (original and the two split copies) permits
writes, but all would tolerate increments through aliases. Moreover, because the predicate
on the referent (that it is greater than 5) is preserved by the guarantee (equality), this check
on reference splitting ensures the predicate will be preserved by all possible references, with
only point-wise checks every time a new alias is created. In contrast, a reference of type
ref{N| > 5}[=,≤] may be used for incrementing, but assumes all aliases are read-only. So
it may not be duplicated naïvely: each copy would assume it was the only reference that
could be used for increments. This permits some very granular reasoning about side effects,
without a full effect system (though again, not distinguishing mention and use).

As one could imagine, extending our thought experiment of a purely effect system
replacement for ReIm to a system like this would produce very complex effects, adding
constraints from these binary relations into effects dealing with naming and aliasing. By
enforcing this restriction on duplicating references, the type system can ensure the value
stored in that reference remains greater than 5 without explicitly tracking where the aliases
go or when they are used.

In the “reference immutability” family of read-only reference type systems [29, 12, 32,
33, 65, 66, 59], compatibility typically requires no special care – the shape of the permission
subtyping relationships already ensures any duplication preserves compatibility (setting

ECOOP 2020

10:14 Designing with Static Capabilities and Effects: Use, Mention, and Invariants

aside unique references). readable and writable references assume aliases may mutate the
referent, and while immutable references assume no aliases may mutate it, they also do not
grant permission for mutation, so duplication is not problematic.

In other systems, the changes remain relatively local following the general argument
above. Rely-guarantee references [27, 28] use a notion of type splitting, Γ ` τ ≺ τ ′ > τ ′′ to
check that when a value (particularly one containing references) is duplicated, it can be split
into compatible types τ ′ and τ ′′. It generally recursively checks splitting, bottoming out at
the reference splitting rule, which looks somewhat complex but merely formalizes the three
aspects of compatibility above (plus preservation of predicates):

Ref->

Γ ` ref{b | φ′}[R′, G′] Γ ` ref{b | φ′′}[R′′, G′′] ∅ ⊂ JG′K ⊆ JR′′K
∅ ⊂ JG′′K ⊆ JR′K JG′K ∪ JG′′K ⊆ JGK JRK ⊆ JR′K JRK ⊆ JR′′K

Γ ` ref{b | φ}[R,G] ≺ ref{b | φ′}[R′, G′] > ref{b | φ′′}[R′′, G′′]

This formalizes splitting type A into types B and C (Γ ` A ≺ B > C) when all are rely-
guarantee references. Beyond checking that the new types B and C are well-formed, it checks
that B and C’s combined capabilities (guarantees) do not exceed A’s (G′ ∪G′′ ⊆ G), that B
assumes at least as much interference as A (R ⊆ R′), and that B tolerates interference from
C (G′′ ⊆ R′) (plus the symmetric checks on C).

This splitting check is inserted into a couple obvious locations in static reference capability
systems, wherever new aliases may be created – variable reads, memory reads, and parameter
passing. Rely-guarantee protocols [43, 44] do a form of model checking to check compatibility
in the same places. Kappa [5] has a similar notion of packing and unpacking composite
capabilities. Maintaining this compatibility invariant with only local checks means that the
concurrent versions of these systems [44, 5, 28] no longer require explicit bounding checks for
concurrency – simply splitting well-formed type contexts (and certain assumptions about the
granularity of interleaving) is sufficient for safety. And because the combined permissions
of the two new references cannot grant more authority than the original’s permissions, any
invariant enforced by the original is enforced by both new references as well.8 Typestate
managed via permission [48, 22] has analogous checks.

This discussion, however, is abstracted from concrete use cases. And it is worth asking
whether some particular aspects of reference immutability, particularly the transitive variants,
might make the problem worse than it could be (though we didn’t get that far above).

3.3 Invariants for JavaScript, Instead of Effects
We previously encountered the challenges involved in maintaining global invariants with effects
when designing a type system to enable efficient ahead-of-time compilation of JavaScript [7].
The goal was to allow JavaScript to be run on embedded devices, faster than via an interpreter,
but with lower memory footprint than a JavaScript JIT (which in addition to keeping the
compiler in memory, keeps multiple versions of the code). The core idea behind the type
system was to use types to rule out JavaScript behaviors that are especially difficult to
optimize at compile time – those that would seem to require a JIT to execute efficiently – while
permitting some of JavaScript’s (in)famous flexibility that did not seriously interfere with
compilation. JavaScript’s semantics are full of cases that are difficult to compile efficiently
ahead of time, but we will focus on one particularly tricky case that pushed the team towards
capabilities.

8 In systems that permit recombining reference capabilities [5, 6, 44, 43], the new reference may grant
more permissions that the two original pieces, but the system maintains that rejoining previously-split
references never grants more authority than the original.

C. S. Gordon 10:15

function F() {
this.x = 0

}
F.prototype.inc = function() { this.x++; }
F.prototype.count = function() { return this.x; }
F.prototype.incAndCount = function() {

this.inc();
return this.count();

}
/* construct a new F instance, and increment its x field */
var f = new F(); // f.x == 0
f.inc(); // f.x == 1
/* add the field x to F.prototype */
F.prototype.inc();

Figure 3 Violating fixed-object layout.

One aspect of JavaScript that makes it particularly difficult to optimize is the fact that
object layouts are not fixed – fields may be added or removed dynamically. This means
the typical approach to compiling field accesses in a language like Java or C – emitting
a constant-time access to a statically-known offset from the object’s base pointer – does
not work in general. Fortunately, a significant amount of JavaScript code is reasonably
well-behaved and does not add fields once an object is fully initialized. But because normal
JavaScript will silently create fields if a program writes to one that doesn’t exist, it is easy
to do this unintentionally.

Consider the code in Figure 3. F is a (pre-ES6) constructor. Calling new F() allocates a
new object, sets F.prototype as that object’s prototype (source of inherited properties), and
executes the code of the function F with that new object as the receiver. In JavaScript, if a
field is read on an object, but does not exist there, the runtime checks for that field in the
object’s prototype. If it is there, it returns the value from the prototype. Otherwise the
runtime checks the prototype’s prototype, and so on, until the field is found or there are
no more prototypes. A field write, however, always writes to the immediate referent, and
never consults the prototype chain. This makes subtle mistakes possible. The call to f.inc()
increments the field x in f as expected; inc is found in the prototype object, invoked with f
as the receiver, and the write in that method writes to f. The last line of Figure 3 invokes
the method on the prototype, however, which is probably not supposed to have an x field at
all. In standard JavaScript runtimes, this would run without error: reads of undefined fields
return a special undefined value, which is coerced to a number (really, NaN) by addition, and
the increment then writes to f, which will result in the runtime dynamically adding the field.
But F.prototype is intended to be the equivalent of an abstract class – all methods, no data.
For the purposes of ahead-of-time compilation, this would be a problem to avoid.

The heart of the problem above is that the inc method writes to this.x, and therefore
should only be executable on objects that (should) have a field x before the call. The last
line of code should then be rejected because it calls inc on an object missing required fields.
The actual system design included many other issues, but this problem could be viewed as
the defining challenge for the system: if all objects were guaranteed to have fixed object
layout, then a runtime system incapable of dynamic field addition and removal could still
preserve the original program semantics.

ECOOP 2020

10:16 Designing with Static Capabilities and Effects: Use, Mention, and Invariants

Building a type system for a dynamic language essentially always requires structural
types (i.e., record types with width subtyping [4]), which enumerate which fields were present
in each object, leading to types like

{x : number, y : number,m : ()→ number}

indicating two numeric fields and a method returning a number.9 Initial work on the
project [9] also made clear a need to distinguish definitely-local fields (like f.x) that could be
written safely, and possibly-inherited fields (like f.inc) – field accesses to the former can be
compiled more efficiently than the latter. This leads to split object types of the form {r | w},
where r contains the types of readable fields known to be present somewhere (locally or
inherited), and w contains the types of writable fields known to be present on the immediate
referent.

We can explore another thought experiment, which is actually a reproduction of the
original trajectory in designing this as an effect system, prior to correcting to a capability
system. Initially, it appeared10 we should view the problem in terms of which fields of each
object were accessed (in which ways) by each section of code. In hindsight, we can concisely
state that the goal was to ensure each object had a fixed object layout, and that all references
to each object collaboratively maintained that fixed layout as an invariant, as alluded to
in the previous subsection. Both of these are correct points of view, but they lead to very
different system designs.

3.3.1 The Effect System Approach
An early approach to handling the problem in Figure 3 was an effect system tracking which
fields of the receiver were written by each method. In this case, the problematic call above is
rejected by the draft rule T-MCallSketch: F.prototype’s type does not include x, while
inc’s effect would indicate it would write this.x.

T-MCallSketch
Γ ` e : {r | w} | χ

m : (τ1, . . . , τn) χm−−→ τ ∈ (r ∪ w) | χi ∀i ∈ 1..n.Γ ` ei : τi | χi χm ⊆ w

Γ ` e.m(e1 . . . en) : τ | χ ∪
⋃

i∈1..n
(χi)

In particular, the final antecedent (the subset check) would fail.
Going even slightly beyond this example, however, quickly pushes this idea into unwieldy

territory, because this requires tracking not only presence or absence of object modification as
in the previous thought experiment, but also which parts of an object were modified. Objects
also sometimes pass the receiver as an argument to methods of other objects (notice that if
one of the parameters passed in T-MCallSketch is the receiver, this – unsoundly – does
not affect the overall effect). So to track the correct set of receiver field writes for a method
containing foo.bar(this), it becomes necessary to track which fields foo.bar actually writes
to on its (initial) first argument – accounting for subsequent aliasing and transitive calls
within foo.bar as well.

9 In this exposition, we will only consider methods, even though the full system supported functions as
well.

10What follows reflects a personal view of what appeared “obvious” at different points in time, and the
actual design process the present author engaged in; we do not mean to suggest our coauthors were
predisposed to the same mistakes.

C. S. Gordon 10:17

But the trouble does not end there, as it did in the ReIm effect system thought experiment
above. Reference immutability type systems (and reference capability systems in general) only
articulate constraints on interface components – the receiver, method parameters, and return
value – and need not explicitly describe internal behaviors, keeping the types relatively simple.
These effects, however, expose internal implementation details of objects, like “private” field
names. For examples like Figure 3 alone, this abstraction violation is merely uncomfortable.
But it quickly becomes a technical problem.

Notice that instances of Figure 3’s F implement a structural interface with methods to
increment a counter and get its current value. Assuming the split object types outlined
above, f can be given a concise type:

{inc : () x−→ () | x : number}

This type says the object has (possibly-inherited) fields inc and get, and a local field x. If
another object g implements the same interface, but uses internal field name y to store its
count, it would have type:

{inc : () y−→ () | y : number}

Now we have a problem: what are the effects of these methods in the least common supertype
of these types, which we would need to store f and g in the same local variable or pass them
to the same methods? The increment method’s effect mentions x in f’s type, while the effect
of g’s increment method mentions y. The effects are incompatible.

Depth subtyping on mutable records is unsound in general, but the methods are in the
read-only part of the object (since they are inherited), so depth subtyping is sound for them.
This means that for the inc method, using subtyping to over-approximate the actual effect of
each method is sound, so the least upper bound of the incrementing interfaces could then be:

{inc : () x,y−−→ () |}

This combines width subtyping (which drops fields that do not exist in both objects) with
depth subtyping on the read-only fields. This is a meaningful upper bound: the latent effect
over-approximates both implementations’ effects. But x and y do not appear in this type, so
checking that such an object contains all fields mentioned in the method effects in order to
type-check a method invocation would fail – and in fact, neither object has both field x and
field y.

We can resolve this, perhaps, by existentially quantifying over the particular field. But
since this is a general issue of representing internal state, we must also abstract over the
field’s type. And of course, there’s no requirement that two implementations of the same
abstract interface use the same number of fields to store their state, leading to existential
quantification over rows [64] – essentially fragments of object types11:

∃X :: row.∃W :: row. {inc : () wr(X)−−−−→ () |W}

This type essentially says the inc method modifies some set X of receiver fields, and
existentially quantifies over locally-present fields.

11Rows were originally used as an alternative to bounded polymorphism in object or record calculi, such
as ∀X :: row. x 6∈ X ⇒ {x : number, X} × {x : number, X} → {x : number, X} as the type of a function
that takes two objects with common fields including a field x, and returning whichever has the larger
value in the field x. Rows are now also used in effect systems [37] in an analogous way, but this is
orthogonal to our capabilities vs. effects discussion.

ECOOP 2020

10:18 Designing with Static Capabilities and Effects: Use, Mention, and Invariants

But even this is not a complete solution! Now we can again store references to f and g
in the same storage location by making different choices for the existentials, and now no
longer leak information about the names of internal fields. But we haven’t solved the original
problem. We still need to know if the now-existentially-quantified row of fields written by the
method is a subset of the fields actually present in the object in order to invoke the method.
This information is not only lost by width subtyping and the abstraction of the existential,
but the relationship between the row and other fields the object may contain is not captured
by the type.

In the more concrete case of f and g, their common supertype again cannot explicitly
mention the presence of x or y, since neither field is in both objects. This leads to further
existential quantification, and bounding of row variables! To actually invoke inc through the
abstract interface, we must know the written fields are a subset of the present fields. We can
embed this information by using bounded existentially quantified row variables:

∃W :: row.∃X ⊆W{inc : () wr(X)−−−−→ () |W}

But at the cost of some complexity, it seems this does offer a path to solve the original
problem: each method may possibly write different subsets of local fields, and it seems if
enough constraints are added, it should be possible to make the necessary connections to
check that invoked methods only access fields that are actually present on the receiver.

Yet it is still not a complete solution. This path can handle the increment example. But
to solve the original problem, two additional and substantial extensions are still required.
First, there is a parallel problem with methods possibly reading fields that may not be present
in the prototype chain. Without completing this exercise in full detail, note that because
field reads and writes do not obey quite the same restrictions, handling reads effectively
doubles the number of row variables and bounds (for every method signature), though the
bounds for reading are slightly more relaxed than those for writing (since fields may be
local or inherited). Reading from an inherited field is acceptable and is in fact how method
dispatch commonly works in JavaScript. With the code in Figure 3, calling f.incAndCount()
should be permitted, even though the body of that method, inherited from the prototype,
invokes (and therefore reads) two inherited method fields. Extending for method-read sets
results in types like this one, which adds more complex constraints to deal with the fact that
reading writable fields is safe:

∃R,W :: row.∃X ⊆W∃Y ⊆ (R ∪W). {inc : () wr(X)−−−−→ (), get : () rd(Y)−−−→ number, R |W}

Second, we have not addressed the additional complication mentioned earlier: the receiver
may escape a method, so tracking only the receiver fields a method modifies is insufficient!
Consider a method body that registers the receiver for updates:

Foo.prototype.reregister = function() {
this.targetSource.registerListener(this);

}

If the registerListener method modifies its argument (directly or by invoking methods that
do so), those modifications should also be reflected in the effect of the reregister method.
But the only way for this to work is if the type or effect of registerListener reflects the
fields it updates on its arguments, as well as on its receiver (this.targetSource in this case).
This also brings in the aliasing issues discussed in the effect system reconstruction of ReIm.

As presented here, the complexity is clearly significant even before it is carried to its
logical conclusion. But at what point during this design process did it become too complex?
Can we identify a point in this design evolution where it clearly crossed the line? The project

C. S. Gordon 10:19

required structural types for objects from the start, so it’s hard to tell exactly which pieces of
the growth above are truly necessary and which add too much complexity: rows for instance
originated in type inference for record calculi [64], and these kinds of constraints between rows
were known to be necessary to type certain kinds of programs [4]. The project goals included
regular developers using the result, so inference was a requirement, which then implied rows
and row constraints had a role to play. The eventual implementation uses rows, though
row constraints are limited to type inference only and ultimately do not appear in surface
types seen by developers. Many type systems with unpleasant core complexity manage to
tame some of it through convenient short-hands and careful selection of default assumptions.
So while hindsight shows this approach would have led to more complex metatheory and
implementation, and probably significantly worse error reporting, the fact that this approach
had some justification in its relationship to inference, and clearly exposed all of the required
information, made it harder to tell when this route might have crossed the line to being
unacceptably complex.

A fair question to ask at this point is also how much of this complexity stems from the
particular problem at hand – reasoning about the particular interaction of field reads and
writes with JavaScript’s uncommon inheritance model. Greenhouse and Boyland’s work
on an object-oriented analogue [30] of FX [40, 24] (an effect system for reasoning about
non-interference of program expressions) resembles early stages of the development outlined
here. They continued the FX emphasis on regions, and permitted Java classes to declare
abstract regions of fields. Regions existed in a nesting hierarchy (which inspired the same
structure in DPJ [1]), such as a hashtable having nested regions for keys and values to separate
impacts on those parts of the structure. Method effects were then the set of regions read
or written by the method, with field names acting as special (very specific) regions. Effects
could refer to specific object (e.g., the value region of a hashtable taken as a parameter),
which is roughly analagous to the outline we gave for handling the reregister example. As
a result actually checking their effect system requires points-to information [30, 2].

3.3.2 Back to Capabilities for Invariants
Starting from the outline above, how did we simplify the system? We can see several
steps to condense the information from our hypothetical complex effect system down to the
still-sophisticated, but more manageable published system [7]. The first step was to simply
impose a single upper bound on the written receiver fields, shared across all methods on
that object. Thus, object types would (sometimes) contain two kinds of object types: a
physical type describing the local and inherited fields (which fields are actually present, and
which are writable), and a method-required type describing sufficient receiver assumptions to
execute any attached methods. This moves part of the effect information from the methods
to the object type itself (and is a feature of the final system). The published system calls
the method-required portion of the type the method-accessed fields. Because both present
and method-access fields must further split into distinctions between possibly-inherited (and
therefore readable) and definitely-local (and therefore writable), this resulted at one point in
four-part object types

{

Physically present fields︷ ︸︸ ︷
r︸︷︷︸

Readable

| w︸︷︷︸
Writable

|
Method-accessed fields︷ ︸︸ ︷
mr︸︷︷︸

Method-read

| mw︸︷︷︸
Method-written

}

where each variable is a row:

ECOOP 2020

10:20 Designing with Static Capabilities and Effects: Use, Mention, and Invariants

r contains definitely-present, but possibly-inherited fields, which are safe to read.
w contains definitely-present, definitely-local fields, which are safe to write.
mr contains fields that may be read by some method, but are definitely not written by
any method of the object.
mw contains fields that may be written by some method of the object.

The method-access fields are taken to be a single upper bound on the effect of any method
on the object, dualized to describe the capabilities sufficient to execute any method on the
object. The other fields describe the physically present fields of the object, distinguishing
those that are definitely local and can therefore be written without affecting object layout.

Then using the read-write split on physical fields (r and w) then becomes apparent as a
way to summarize how a method uses its arguments – if registerListener above modifies
field foo of its argument, it will be reflected in the required parameter type containing a
writable field foo of the appropriate type, which we can interpret as a reference capability
required by registerListener. Since the types in the system already needed to track which
fields are on the immediate referent (and therefore, safe to write without changing field
layout) and which are possibly-inherited (so safe to read, but not necessarily safe to write),
this actually removes some redundancy: the physical layout information plays double-duty
as both a physical description and a capability granting read-access to present fields and
write-access to local fields. And while it again begins to sacrifice the use-mention distinction,
for this problem the distinction turns out not to be critical.

“Flattening” use information from effects into mention information in reference types
(capabilities) addresses the issue of soundly tracking reads and writes. This leaves us with
two other challenges raised above: reasoning about when it is actually safe to invoke a
method, and abstracting types in a way that we can invoke methods based on interfaces
with different implementations. Turning to the notion of asymmetric compatible capabilities
that collaboratively enforce an invariant, we find another solution. When deciding whether
it is safe to invoke a method, it is not really relevant which particular fields are present, only
that those present include the ones accessed by methods (again, informally blurring some
distinctions between reads and writes).

We can shift our view to maintaining each object as being either an abstract object
(whose methods access fields that are not present, by analogy to an abstract class), or a
concrete object with all the fields required (in the appropriate places) to safely invoke any
of its methods (since there is now only one common bound on the behavior of all methods
on an object). We can view membership in one of these sets as an invariant collaboratively
maintained by all references to an object. Given one of the “double” object types suggested
above, the check is simple: if every field assumed writable or readable by methods (i.e., in
the method-accessed fields) is actually writable or readable on the physical object (i.e., in
the right partition of the physically-present fields), then it is safe to invoke methods on that
object. Moreover, once that check is performed for a given object, since the method-access
field information for the object and the physical layout information should be invariant, the
information about method-accessed fields can be discarded, leaving only the basic physical
object type (r and w) as important.

For example, consider f and g from our earlier example. f would be given (full) type:

{inc : ()→ () | x : number | ∅ | x : number}

and g would receive the analogous type mentioning y:

{inc : ()→ () | y : number | ∅ | y : number}

C. S. Gordon 10:21

Since the method-written set is contained in the physically local writable set for each object,
f can be given the simpler object type {inc : () → () | x : number}NC, where NC tags
the object as concrete, indicating the check was performed when method-accessed fields
were known, and aliases will ensure that check remains true. g can be given the analogous
type mentioning y, and then traditional width subtyping12 lets both be given the common
supertype {inc : ()→ ()|∅}NC. This common supertype only mentions the method of interest,
using standard subtyping to hide the irrelevant differences. But because it is flagged as
concrete, the type system can permit the increment method to be invoked: the NC tag
indicates the referent already satisfies sufficient invariants for any method invocation to be
safe, and restrictions on how aliases are created (essentially, sound treatment of subtyping and
field updates) ensure the invariant is preserved. Most people would agree this is substantially
simpler than the type laden with explicit row quantification and constraints.

The only time the full double object types are required is when handling prototype
objects (e.g., for initialization) or replacing existing methods. In those cases, it is necessary
to check that the method-required half of the object type is (informally) a subtype of the
assumed receiver type of a newly-installed method. Intuitively, that method-accessed sets are
an invariant of the object, and attaching a method ensures the new method preserves that
invariant (i.e., does not install a method that accesses other things). Read as capabilities,
the full object types provide the extra information / permissions required to check method
replacement, which takes the form of unattached methods with assumed receiver types
stating the permissions required by the new method body. Chandra et al. call these full
types prototypal types, and distinguish them from non-prototypal types that carry no method-
accessed fields because they can only be created from prototypal types when the check that
all method-accessed fields are present succeeds. In some cases complete objects may also be
used as prototypes, so some objects may be aliased by references with dual types (prototypal)
and by references with single types (non-prototypal). The non-prototypal concrete (i.e., NC)
types grant the capability to invoke any visible methods. The dual (prototypal) types grant
the capabilities to modify prototype or method members (and carry sufficient information to
actually perform the containment checks between local fields and method assumptions).

While the discussion above focused on reasoning about access to specific fields, it is
worth noting that all structural object types – including those just discussed – form a sort of
reference capability with support for static delegation (but not revocation). If a developer
wishes to pass an object to some code, but limit which methods of the object may be invoked,
using width subtyping one can obtain a reference which does not mention the “restricted”
operations, and a sound type system (and limiting reflection) ensures a callee will not

4 Conclusion

We have outlined what we have found to be the major trade-offs in practice between static
(reference) capabilities and effect systems: choosing between simpler design and abstract
reasoning principles, and handling the use-mention distinction. We have also highlighted
examples of a subtle interplay between reference capabilities and modest aspects of type
systems (weakening rules and type contexts) that results in useful added expressive power in
a way that has not been highlighted previously. Lastly, we have tried to put these in context
by explaining what breaks – functionally, or by introducing unwieldy complexity – when
considering effect system versions of reference capability systems or vice versa, based on our
personal experience facing these trade-offs while designing reference capability systems and

12Tweaked for the read/write split of fields.

ECOOP 2020

10:22 Designing with Static Capabilities and Effects: Use, Mention, and Invariants

effect systems. We hope primarily that this will be useful to others in choosing between
approaches to static reasoning, and helpful to newcomers seeking to better understand the
trade-offs between these approaches.

References
1 Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen Heumann,

Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung, and Mohsen Vakilian.
A Type and Effect System for Deterministic Parallel Java. In OOPSLA, 2009. doi:10.1145/
1640089.1640097.

2 John Boyland and Aaron Greenhouse. Mayequal: A new alias question. In International
Workshop on Aliasing in Object-Oriented Systems (IWAOOS), 1999.

3 John Boyland, James Noble, and William Retert. Capabilities for sharing. In European
Conference on Object-Oriented Programming, pages 2–27. Springer, 2001.

4 Luca Cardelli and John C Mitchell. Operations on records. Mathematical structures in
computer science, 1(01):3–48, 1991.

5 Elias Castegren and Tobias Wrigstad. Reference capabilities for concurrency control. In 30th
European Conference on Object-Oriented Programming, ECOOP 2016, 2016.

6 Elias Castegren and Tobias Wrigstad. Relaxed linear references for lock-free programming. In
31st European Conference on Object-Oriented Programming, ECOOP 2017, 2017.

7 Satish Chandra, Colin S. Gordon, Jean-Baptiste Jeannin, Cole Schlesinger, Manu Sridharan,
Frank Tip, and Young-Il Choi. Type Inference for Static Compilation of JavaScript. In
Proceedings of the 2016 ACM Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA 2016), Amsterdam, The Netherlands, November 2016.
doi:10.1145/2983990.2984017.

8 Jeffrey S. Chase, Henry M. Levy, Edward D. Lazowska, and Miche Baker-Harvey. Lightweight
shared objects in a 64-bit operating system. In Conference Proceedings on Object-oriented
Programming Systems, Languages, and Applications, OOPSLA ’92, pages 397–413, New York,
NY, USA, 1992. ACM. doi:10.1145/141936.141969.

9 Philip Wontae Choi, Satish Chandra, George Necula, and Koushik Sen. SJS: a Typed Subset
of JavaScript with Fixed Object Layout. Technical Report UCB/EECS-2015-13, UC Berkeley,
2015.

10 Dave Clarke, Johan Östlund, Ilya Sergey, and Tobias Wrigstad. Ownership types: A survey.
In Aliasing in Object-Oriented Programming. Types, Analysis and Verification, pages 15–58.
Springer, 2013.

11 David G Clarke, John M Potter, and James Noble. Ownership types for flexible alias protection.
In Proceedings of the 13th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 48–64, 1998.

12 Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil. Deny capabilities
for safe, fast actors. In Proceedings of the 5th International Workshop on Programming Based
on Actors, Agents, and Decentralized Control, pages 1–12. ACM, 2015.

13 Aaron Craig, Alex Potanin, Lindsay Groves, and Jonathan Aldrich. Capabilities: Effects for
Free. In International Conference on Formal Engineering Methods (ICFEM), 2018.

14 Donald Davidson. Quotation. Theory and decision, 11(1):27, 1979.
15 David L. Detlefs, K. Rustan M. Leino, and Greg Nelson. Wrestling with rep exposure.

Technical Report SRC-RR-156, Digital Equipment Corporation, July 1998. URL: https:
//www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-156.html.

16 Werner Dietl, Sophia Drossopoulou, and Peter Müller. Generic Universe Types. In E. Ernst,
editor, ECOOP, volume 4609 of Lecture Notes in Computer Science, pages 28–53, Berlin,
Germany, July 2007. Springer-Verlag.

17 Werner Dietl and Peter Müller. Universes: Lightweight ownership for jml. Journal of Object
Technology, 4(8):5–32, 2005.

https://doi.org/10.1145/1640089.1640097
https://doi.org/10.1145/1640089.1640097
https://doi.org/10.1145/2983990.2984017
https://doi.org/10.1145/141936.141969
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-156.html
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-156.html

C. S. Gordon 10:23

18 Sophia Drossopoulou, James Noble, Mark S Miller, and Toby Murray. Permission and authority
revisited towards a formalisation. In Proceedings of the 18th Workshop on Formal Techniques
for Java-like Programs, pages 1–6, 2016.

19 Joe Duffy. Blogging about Midori, November 2015. URL: http://joeduffyblog.com/2015/
11/03/blogging-about-midori/.

20 Andrzej Filinski. Monads in action. In POPL, 2010.
21 Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. A theory of type qualifiers. In

Proceedings of the ACM SIGPLAN 1999 Conference on Programming Language Design and
Implementation, PLDI ’99, pages 192–203. ACM, 1999. doi:10.1145/301618.301665.

22 Ronald Garcia, Éric Tanter, Roger Wolff, and Jonathan Aldrich. Foundations of typestate-
oriented programming. ACM Trans. Program. Lang. Syst., 36(4):12:1–12:44, October 2014.
doi:10.1145/2629609.

23 Paola Giannini, Marco Servetto, Elena Zucca, and James Cone. Flexible recovery of uniqueness
and immutability. Theoretical Computer Science, 764:145–172, 2019.

24 David K. Gifford and John M. Lucassen. Integrating Functional and Imperative Programming.
In Proceedings of the 1986 ACM Conference on LISP and Functional Programming, LFP ’86,
1986.

25 Colin S. Gordon. Verifying Concurrent Programs by Controlling Alias Interference. PhD
thesis, University of Washington, Seattle, WA, USA, August 2014.
URL: https://digital.lib.washington.edu/researchworks/handle/1773/26020. URL:
https://digital.lib.washington.edu/researchworks/handle/1773/26020.

26 Colin S. Gordon, Werner Dietl, Michael D. Ernst, and Dan Grossman. JavaUI: Effects for
Controlling UI Object Access. In ECOOP, 2013.

27 Colin S. Gordon, Michael D. Ernst, and Dan Grossman. Rely-Guarantee References for
Refinement Types Over Aliased Mutable Data. In PLDI, Seattle, WA, USA, June 2013.
doi:10.1145/2491956.2462160.

28 Colin S. Gordon, Michael D. Ernst, Dan Grossman, and Matthew J. Parkinson. Verifying
Invariants of Lock-free Data Structures with Rely-Guarantee and Refinement Types. ACM
Transactions on Programming Languages and Systems (TOPLAS), 39(3), May 2017. doi:
10.1145/3064850.

29 Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy.
Uniqueness and Reference Immutability for Safe Parallelism. In OOPSLA, Tucson, AZ, USA,
October 2012. doi:10.1145/2384616.2384619.

30 Aaron Greenhouse and John Boyland. An object-oriented effects system. In European
Conference on Object-Oriented Programming, pages 205–229. Springer, 1999.

31 Philipp Haller and Martin Odersky. Capabilities for Uniqueness and Borrowing. In ECOOP,
2010.

32 Wei Huang, Werner Dietl, Ana Milanova, and Michael D. Ernst. Inference and checking of
object ownership. In European Conference on Object-Oriented Programming (ECOOP 2012),
pages 181–206. Springer, 2012.

33 Wei Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst. Reim & reiminfer: Checking
and inference of reference immutability and method purity. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’12, pages 879–896. ACM, 2012.

34 Butler W Lampson. Protection. ACM SIGOPS Operating Systems Review, 8(1):18–24, 1974.
35 Henry M Levy. Capability-based computer systems. Digital Press, 1984. URL: https:

//homes.cs.washington.edu/~levy/capabook/.
36 Paul Liétar. Formalizing Generics for Pony, 2017. Imperial College London Bachelor’s Thesis.
37 Sam Lindley and James Cheney. Row-based effect types for database integration. In Proceedings

of the 8th ACM SIGPLAN workshop on Types in language design and implementation, pages
91–102. ACM, 2012.

ECOOP 2020

http://joeduffyblog.com/2015/11/03/blogging-about-midori/
http://joeduffyblog.com/2015/11/03/blogging-about-midori/
https://doi.org/10.1145/301618.301665
https://doi.org/10.1145/2629609
https://digital.lib.washington.edu/researchworks/handle/1773/26020
https://digital.lib.washington.edu/researchworks/handle/1773/26020
https://doi.org/10.1145/2491956.2462160
https://doi.org/10.1145/3064850
https://doi.org/10.1145/3064850
https://doi.org/10.1145/2384616.2384619
https://homes.cs.washington.edu/~levy/capabook/
https://homes.cs.washington.edu/~levy/capabook/

10:24 Designing with Static Capabilities and Effects: Use, Mention, and Invariants

38 Fengun Liu, Sandro Stucki, Nada Amin, Paolo Giosuè, and Martin Odersky. Stoic: Towards
Disciplined Capabilities. Technical report, École Polytechnique Fédérale de Lausanne, 2020.
URL: https://infoscience.epfl.ch/record/273642.

39 Fengyun Liu. A Study of Capability-Based Effect Systems, 2016. Master of Computer Science
Thesis, École Polytechnique Fédérale de Lausanne. URL: https://infoscience.epfl.ch/
record/219173.

40 J. M. Lucassen and D. K. Gifford. Polymorphic Effect Systems. In POPL, 1988.
41 Daniel Marino and Todd Millstein. A Generic Type-and-Effect System. In TLDI, 2009.

doi:10.1145/1481861.1481868.
42 Darya Melicher, Yangqingwei Shi, Valerie Zhao, Alex Potanin, and Jonathan Aldrich. Using

Object Capabilities and Effects to Build and Authority-Safe Module System. In Workshop on
Object-Capability Languages, Systems, and Applications (OCAP), 2017.

43 Filipe Militão, Jonathan Aldrich, and Luís Caires. Rely-Guarantee Protocols. In 28th European
Conference on Object-Oriented Programming, ECOOP 2014, 2014.

44 Filipe Militão, Jonathan Aldrich, and Luís Caires. Composing interfering abstract protocols.
In 30th European Conference on Object-Oriented Programming, ECOOP 2016, 2016. doi:
10.4230/LIPIcs.ECOOP.2016.16.

45 Mark Samuel Miller. Robust Composition: Towards a Unified Approach to Access Control and
Concurrency Control. PhD thesis, Johns Hopkins University, Baltimore, Maryland, USA, May
2006.

46 Eugenio Moggi. Computational lambda-calculus and monads. In LICS, 1989.
47 AW Moore. How significant is the use/mention distinction? Analysis, 46(4):173–179, 1986.
48 Karl Naden, Robert Bocchino, Jonathan Aldrich, and Kevin Bierhoff. A type system for

borrowing permissions. In Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 557–570, 2012.

49 James Noble, Jan Vitek, and John Potter. Flexible alias protection. In European Conference
on Object-Oriented Programming, pages 158–185. Springer, 1998.

50 Leo Osvald, Grégory Essertel, Xilun Wu, Lilliam I González Alayón, and Tiark Rompf.
Gentrification gone too far? affordable 2nd-class values for fun and (co-) effect. In Proceedings
of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 234–251, 2016.

51 Alex Potanin, Monique Damitio, and James Noble. Are your incoming aliases really necessary?
counting the cost of object ownership. In 2013 35th International Conference on Software
Engineering (ICSE), pages 742–751. IEEE, 2013.

52 François Pottier. Hiding local state in direct style: a higher-order anti-frame rule. In 2008
23rd Annual IEEE Symposium on Logic in Computer Science, pages 331–340. IEEE, 2008.

53 John C Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings
17th Annual IEEE Symposium on Logic in Computer Science, pages 55–74. IEEE, 2002.

54 Lukas Rytz, Nada Amin, and Martin Odersky. A flow-insensitive, modular effect system for
purity. In Proceedings of the 15th Workshop on Formal Techniques for Java-like Programs,
page 4. ACM, 2013.

55 Benno Stein, Lazaro Clapp, Manu Sridharan, and Bor-Yuh Evan Chang. Safe stream-based
programming with refinement types. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE 2018, pages 565–576, New York, NY,
USA, 2018. ACM. doi:10.1145/3238147.3238174.

56 Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and effect inference. Journal
of functional programming, 2(03):245–271, 1992. doi:10.1017/S0956796800000393.

57 Mads Tofte and Jean-Pierre Talpin. Implementation of the Typed Call-by-value λ-calculus
Using a Stack of Regions. In POPL, 1994.

58 Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Information and
computation, 132(2):109–176, 1997.

https://infoscience.epfl.ch/record/273642
https://infoscience.epfl.ch/record/219173
https://infoscience.epfl.ch/record/219173
https://doi.org/10.1145/1481861.1481868
https://doi.org/10.4230/LIPIcs.ECOOP.2016.16
https://doi.org/10.4230/LIPIcs.ECOOP.2016.16
https://doi.org/10.1145/3238147.3238174
https://doi.org/10.1017/S0956796800000393

C. S. Gordon 10:25

59 Matthew S. Tschantz and Michael D. Ernst. Javari: Adding Reference Immutability to Java.
In OOPSLA, 2005. doi:10.1145/1094811.1094828.

60 Tom Van Cutsem and Mark S. Miller. Proxies: Design principles for robust object-oriented
intercession apis. In Proceedings of the 6th Symposium on Dynamic Languages, DLS ’10, pages
59–72, New York, NY, USA, 2010. ACM. doi:10.1145/1869631.1869638.

61 Tom Van Cutsem and Mark S Miller. Trustworthy proxies. In European Conference on
Object-Oriented Programming, pages 154–178. Springer, 2013.

62 David Walker. Substructural type systems. In Advanced topics in types and programming
languages, pages 3–44. The MIT Press, 2005.

63 David Walker, Karl Crary, and Greg Morrisett. Typed memory management via static
capabilities. ACM Trans. Program. Lang. Syst., 22(4):701–771, July 2000. doi:10.1145/
363911.363923.

64 Mitchell Wand. Type inference for record concatenation and multiple inheritance. In Logic in
Computer Science, 1989. LICS’89, Proceedings., Fourth Annual Symposium on, pages 92–97.
IEEE, 1989.

65 Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kiezun, and Michael D. Ernst.
Object and Reference Immutability Using Java Generics. In ESEC-FSE, 2007. doi:10.1145/
1287624.1287637.

66 Yoav Zibin, Alex Potanin, Paley Li, Mahmood Ali, and Michael D. Ernst. Ownership and
Immutability in Generic Java. In OOPSLA, 2010. doi:10.1145/1869459.1869509.

ECOOP 2020

https://doi.org/10.1145/1094811.1094828
https://doi.org/10.1145/1869631.1869638
https://doi.org/10.1145/363911.363923
https://doi.org/10.1145/363911.363923
https://doi.org/10.1145/1287624.1287637
https://doi.org/10.1145/1287624.1287637
https://doi.org/10.1145/1869459.1869509

Owicki-Gries Reasoning for C11 RAR
Sadegh Dalvandi
University of Surrey, United Kingdom
m.dalvandi@surrey.ac.uk

Simon Doherty
University of Sheffield, United Kingdom
s.doherty@sheffield.ac.uk

Brijesh Dongol
University of Surrey, United Kingdom
b.dongol@surrey.ac.uk

Heike Wehrheim
Paderborn University, Germany
wehrheim@upb.de

Abstract
Owicki-Gries reasoning for concurrent programs uses Hoare logic together with an interference
freedom rule for concurrency. In this paper, we develop a new proof calculus for the C11 RAR
memory model (a fragment of C11 with both relaxed and release-acquire accesses) that allows all
Owicki-Gries proof rules for compound statements, including non-interference, to remain unchanged.
Our proof method features novel assertions specifying thread-specific views on the state of programs.
This is combined with a set of Hoare logic rules that describe how these assertions are affected by
atomic program steps. We demonstrate the utility of our proof calculus by verifying a number of
standard C11 litmus tests and Peterson’s algorithm adapted for C11. Our proof calculus and its
application to program verification have been fully mechanised in the theorem prover Isabelle.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Hoare logic; Theory of computation → Concurrency; Theory of computation →
Operational semantics; Theory of computation → Program reasoning

Keywords and phrases C11, Verification, Hoare logic, Owicki-Gries, Isabelle

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.11

Supplementary Material ECOOP 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.2.15.

Funding Sadegh Dalvandi: Supported by EPSRC Grant EP/R032556/1.
Simon Doherty: Supported by EPSRC Grant EP/R032351/1.
Brijesh Dongol: Supported by EPSRC Grant EP/R032556/1.
Heike Wehrheim: Supported by DFG grant WE 2290/12-1.

1 Introduction

In 1976, Susan Owicki and David Gries proposed an extension of Hoare’s axiomatic reasoning
technique [15] to concurrent programs [25]. Their proof calculus allows one to reason about
concurrent programs with shared variables via a number of proof rules, including the rules
for sequential programs as introduced by Hoare plus an additional proof rule for concurrent
composition. This composition rule basically allows for the conjunction of pre- and post-
conditions of the process’ individual proofs, given that their proof outlines are interference
free. Interference freedom requires that an assertion in the proof of one process cannot
be invalidated by a statement in another process, when executed under the statement’s
precondition.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Sadegh Dalvandi, Simon Doherty, Brijesh Dongol, and Heike Wehrheim;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 11; pp. 11:1–11:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8813-780X
mailto:m.dalvandi@surrey.ac.uk
https://orcid.org/0000-0001-8822-1091
mailto:s.doherty@sheffield.ac.uk
https://orcid.org/0000-0003-0446-3507
mailto:b.dongol@surrey.ac.uk
https://orcid.org/0000-0002-2385-7512
mailto:wehrheim@upb.de
https://doi.org/10.4230/LIPIcs.ECOOP.2020.11
https://doi.org/10.4230/DARTS.6.2.15
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Owicki-Gries Reasoning for C11 RAR

Today, concurrent programs are run on multi-core processors. Multi-core processors
come with weak memory models specifying the execution behaviour of concurrent programs.
Reasoning consequently needs to be adapted to the memory model under consideration.
Owicki-Gries reasoning is, however, fixed to the memory model of sequential consistency
(SC) [23], and is unsound for weak memory models. Recent research has thus worked towards
new sound proof calculi for concurrent programs. Most often, such approaches involve
concurrent separation logics (e.g., GPS and RSL [32, 16]). These techniques constitute a
radical departure from the (relatively) small and easy proof calculus of Owicki and Gries,
further extending already complex logics. A proposal for a (rely-guarantee variant of) the
Owicki-Gries proof system has been made by Lahav and Vafeiadis [21], however, requiring a
strengthened non-interference check.

In this paper, we develop a proof method based on the Owicki-Gries proof calculus,
keeping all of the original proof rules including the non-interference check unchanged. Our
technique introduces a set of basic axioms to cope with memory accesses (reads, writes,
read-modify-writes) and simple assertions that describe the current configuration of the weak
memory state. Our proof calculus targets the weak memory model of the C11 programming
language [8]. Here, we deal with the release-acquire-relaxed (RAR) fragment of C11 (thereby
going further than prior work on Owicki-Gries reasoning for C11 [21]).

The key idea of our approach is the usage of novel assertions which enables the specification
of thread-specific views on shared variables. We also include a specific assertion containing
a modality for release-acquire (RA) synchronisation, capturing particularities of C11 RA
message passing. The use of non-standard assertions as a consequence necessitates the
introduction of new rules of assignment, formalising the effect of assignments on assertions.

We build our proof calculus on top of an operational semantics for C11 RAR. The
semantics is a mixture of the operational semantics proposed by Doherty et al. [12] (for RAR)
and Kaiser et al.’s semantics [16] for RA plus non-atomics. Correctness of this novel proposal
is shown by proving it to coincide with the semantics defined by Doherty et al. [12] which in
turn has been proven to coincide with the standard axiomatic semantics of Batty et al. [8].
We have formalised our semantics within the theorem prover Isabelle [26] and mechanically
proved soundness of all of our new rules for C11 assertions. Moreover, we provide mechanical
proofs of several litmus tests from the literature (message passing, load buffering, read-read
coherence) as well as a version of Peterson’s algorithm adapted for C11 memory [12, 34].

Overview. The paper is organised as follows. In the next section we start with an example
explaining the behaviour of concurrent programs on C11, motivating our novel assertions.
Section 3 defines the syntax of C11 RAR programs and Section 4 its semantics. We present
the proof calculus and its novel assertions in Section 5 via proofs of correctness for some
standard litmus tests, and a case study of Peterson’s algorithm in Section 6. Section 7
describes our Isabelle mechanisation, Section 8 discusses related work and the last section
concludes.

2 Deductive Reasoning for Weak Memory

In this section, we illustrate the basic principles of C11 synchronisation and our verification
method by considering the message-passing example (Figures 1 and 2). The two programs
are almost identical and consist of two threads executing in parallel, accessing shared variables.
The assertions in curly brackets at the end specify the programs’ postconditions.

S. Dalvandi, S. Doherty, B. Dongol, and H. Wehrheim 11:3

Init: d := 0; f := 0;
Thread 1 Thread 2
d := 5; do r1←A f

f :=R 1; until r1 = 1;
r2← d;

{r2 = 5}

Figure 1 Message-passing litmus test.

Init: d := 0; f := 0;
Thread 1 Thread 2
d := 5; do r1← f

f := 1; until r1 = 1;
r2← d;

{r2 = 0 ∨ r2 = 5}

Figure 2 Unsynchronised message passing.

The programs comprise two shared variables: d (that stores some data) and f (that stores
a flag). In both programs, both d and f are initially 0. thread 1 updates d to 5, then updates
f to 1. Thread 2 waits for f to be set to 1, then reads from d. Under sequential consistency,
one would expect that the final value of r2 is 5, since the loop in thread 2 only terminates
after f has been updated to 1 in thread 1, which in turn happens after d has been set to 5.
However, the C11 semantics allows the behaviour in Figure 2, where thread 2 may read a
stale value of d, and hence only the weaker postcondition r2 = 0 ∨ r2 = 5 holds. To regain
the expected behaviour, one must introduce additional synchronisation in the program. In
particular, the write to f by thread 1 must be a releasing write (i.e., f :=R 1) and the read
of f in thread 2 must be an acquiring read (i.e., r1 ←A f) as in Figure 1.

In sequential consistency all threads have a single common view of the shared state,
namely all threads see the latest write that occurs for each variable. When a new write is
executed, the views of all threads are updated so that they see this write. In contrast, each
thread in C11 programs has its own view of each variable, which is affected by synchronisation
annotations. Thus, for the program in Figure 2, after initialisation, all threads see the initial
writes (i.e., d = 0, f = 0). The assignments in thread 1 only change thread 1’s view, and
leave thread 2’s view unchanged. Thus, after execution of f := 1, thread 2 has access to two
values for d (i.e., d ∈ {0, 5}) and f (i.e., f ∈ {0, 1}). Even if thread 2 reads f = 1, its view of
d remains unchanged and it continues to have access to both values of d.

The program in Figure 1 has a similar semantics for initialisation and execution of thread 1,
i.e., its execution does not affect the view of thread 2. However, due to the release-acquire
synchronisation on f (notation R and A), after thread 2 reads f = 1, its view for d will be
updated so that the stale value d = 0 is no longer available for it to read. One way to explain
this behaviour is by thinking of thread 1 as passing its knowledge of the write to d to thread
2 via the variable f , which is synchronised using the release-acquire annotations.

This intuition is captured formally using a semantics based on timestamps [16, 13, 17, 27],
which enables one to encode each thread’s view and define how these views are updated. In
this paper, we characterise the release-acquire-relaxed subset of C11 [12] (C11 RAR) using
timestamps, which has a restriction prohibiting the so-called load-buffering litmus test1 [22].

The main contribution of our paper is an assertion language that enables one to reason
about thread views in a Hoare-style proof calculus, resulting in the proof outline given in
Figure 3. As already noted, the key advantage of these assertions is the fact that standard
rules of Hoare and Owicki-Gries logic remain unchanged. For message passing, we require
three main types of assertions (see Section 5):

Possible value. A possible value assertion (denoted x ≈t n) states that thread t can read
value n of global variable x, i.e., there is a write to x with value n beyond or including
the viewfront2 of thread t. Note that there may be more than one such write, and hence

1 Litmus tests are small code snippets with particularly interesting behaviour.
2 We borrow the term viewfront from Popkadaev et al. [27].

ECOOP 2020

11:4 Owicki-Gries Reasoning for C11 RAR

Init: d := 0; f := 0;
{f =1 0 ∧ f =2 0 ∧ d =1 0 ∧ d =2 0}

Thread 1 Thread 2
{f 6≈2 1 ∧ d =1 0} {[f = 1](d =2 5)}
1 : d := 5; 3 : do r1←A f until r1 = 1;
{f 6≈2 1 ∧ d =1 5} {d =2 5}
2 : f :=R 1; 4 : r2← d;
{true} {r2 = 5}

{r2 = 5}

Figure 3 Proof outline for message passing.

there may be several possible values for a given variable. For instance, there might be
one write to x with value v1 in thread t’s viewfront and two more writes to x with values
v2 and v3 beyond the viewfront. Then assertions x ≈t v1, x ≈t v2 and x ≈t v3 all hold.

Definite value. A definite value assertion (denoted x =t n) states that thread t’s viewfront
is up-to-date with the writes to x (i.e., there is a single write to x beyond or including
the viewfront of thread t), and this write updates x’s value to n. Thus, t definitely knows
the variable x to have value n.

Conditional value. A conditional value assertion (denoted [x = n](y =t m)) captures the
message passing idiom for variable y via variable x. It guarantees that when thread t
reads x to be n via an acquiring read, a release-acquire synchronisation is induced and
thereby t learns the definite value of y to be m. In particular, after reading x = n via
an acquiring read, the viewfront for t is updated so that the only write to y beyond or
including this viewfront is a write with value m.

For the example in Figure 3, after initialisation, both threads 1 and 2 have definite value 0
for both d and f . The precondition of d := 5 states that thread 2 cannot possibly observe 1
for f (i.e., f 6≈2 1, needed for interference freedom of proof outlines) and thread 1 definitely
observes 0 for d (i.e., d =1 0). These assertions can be proven locally correct and interference
free since thread 2 neither modifies d nor f . The precondition of f :=R 1 is similar but
with d =1 5 in place of d =1 0. The precondition of the until loop in thread 2 contains a
conditional value assertion, which ensures that if thread 2 reads f = 1 then it will definitely
read d = 5. This conditional value assertion enables one to establish local correctness of the
precondition (i.e., d =2 5) of the statement r2← d, which leads to the postcondition of the
program. Each of the assertions in thread 2 can be proven to be interference free against
thread 1.

3 Program Syntax

We start by defining the syntax of concurrent programs, starting with the structure of
sequential programs (single threads). A thread may use global shared variables (from VarG)
and local registers (from VarL). We let Var = VarG ∪ VarL and assume VarG ∩ VarL = ∅.
Global variables can be accessed in three different synchronisation modes: acquire (A, for
reads), release (R, for writes) and relaxed (no annotation). The annotation RA is employed
for update operations, which read and write to a shared variable in a single atomic step. We
use x, y, z to range over global variables and r1, r2, . . . to range over local variables. We
assume that 	 is a unary operator (e.g., ¬), ⊕ is a binary operator (e.g., ∧, +, =) and n

S. Dalvandi, S. Doherty, B. Dongol, and H. Wehrheim 11:5

is a value (of type Val). Expressions may only involve local variables. For a treatment of
expressions with global variables in the semantics see [12]. The syntax of sequential programs,
Com, is given by the following grammar (with r ∈ VarL, x ∈ VarG):

ExpL ::= Val | r | 	ExpL | ExpL ⊕ ExpL
ACom ::= skip | x.swap(n)RA | r := ExpL | x :=[R] ExpL | r ←[A] x

Com ::= ACom | Com;Com | if B then Com else Com | while B do Com

where we assume B to be an expression of type ExpL that evaluates to a boolean. The
statement x.swap(n)RA atomically reads the variable x (using an acquiring read) and updates
x to value n (using a releasing write) in a single atomic step. Its execution therefore gives
rise to an atomic read-modify-write update event. We have not included a CAS operation
here; it could similarly be implemented by an update event (see e.g. [33]).

The notation [X] denotes that the annotation X is optional, where X ∈ {A,R}, enabling
one to distinguish relaxed, acquiring and releasing accesses. Loops will be used in other
forms, like do-until or do-while, which are straightforward to define in terms of the command
syntax above.

As is standard in Owicki-Gries proofs, we make use of auxiliary variables, which are
variables that do not affect the meaning of a program, but appear in proof assertions. We
require that each auxiliary variable is local to the thread in which it occurs. Auxiliary
variables may only occur in assignments, not in conditional statements, and only in the form
α := E, where E ∈ ExpL and α is an auxiliary variable3. Finally, we require that writes
to auxiliary variables occur atomically in conjunction with another (non-auxiliary) atomic
program step. Such atomic operations are written as 〈A,α := E〉, where A ∈ ACom. This
is more of a technical requirement which could also easily be relaxed. It guarantees that
the programs without and with auxiliary variables have the same number of transitions (no
stuttering steps).

For simplicity, we assume concurrency at the top level only. We let Tid be the set of
all thread identifiers and use a function Prog : Tid → Com to model a program comprising
multiple threads. In examples, we typically write concurrent programs as C1|| . . . ||Cn, where
Ci ∈ Com. We further assume some initialisation of variables. The structure of our programs
thus is Init;

(
C1|| . . . ||Cn

)
.

4 Semantics

The operational semantics for this language is defined in two parts. The program semantics
fixes the steps that the concurrent program can take. This gives rise to transitions (P, lst) −a→t

(P ′, lst′) of a thread t where P and P ′ are programs, lst and lst′ is the state of local variables
and a is an action (possibly the silent action τ , see below). The program semantics is
combined with a memory semantics which reflects the C11 state (denoted by σ), and in
particular the write actions from which a read action can read.

We start by fixing the actions, where x ∈ VarG and m,n ∈ Val:

Act = {rd(x, n), rdA(x, n), wr(x, n), wrR(x, n), updRA(x, n,m)}

containing actions for (releasing) reads, (acquiring) writes and updates (reading value n and
writing m). We furthermore employ a silent τ action and let Actτ = Act∪{τ}. For an action
a ∈ Act, we let var(a) ∈ VarG be the variable read (or written to), rdval(a) ∈ Val be the

3 The locality requirement is the only difference to “normal” Owicki-Gries auxiliary variables.

ECOOP 2020

11:6 Owicki-Gries Reasoning for C11 RAR

r ∈ VarL n = JEKls

(r := E, ls) −τ→ (skip, ls[r := n])
x ∈ VarG a = wr[R](x, JEKls)

(x :=[R] E, ls) −a→ (skip, ls)

a = rd[A](x, n) n ∈ Val
(r ←[A] x, ls) −a→ (skip, ls[r := n])

a = updRA(x,m, n) m ∈ Val
(x.swap(n)RA, ls) −a→ (skip, ls)

(C1, ls) −a→ (C′
1, ls

′)
(C1;C2, ls) −a→ (C′

1;C2, ls′) (skip;C2, ls) −τ→ (C2, ls)

JBKls

(if B then C1 else C2, ls) −τ→ (C1, ls)
¬JBKls

(if B then C1 else C2, ls) −τ→ (C2, ls)

JBKls

(while B do C, ls) −τ→ (C;while B do C, ls)
¬JBKls

(while B do C, ls) −τ→ (skip, ls)

Aux

(A, ls) −a→ (skip, ls′)
(α := E, ls′) −τ→ (skip, ls′′)

(〈A;α := E〉, ls) −a→ (skip, ls′′)
Prog

(P (t), lst(t)) −a→ (C, ls) a ∈ Actτ
(P, lst) −a→t (P [t := C], lst[t := ls])

Figure 4 Program semantics.

value read and wrval(a) ∈ Val be the value written. We let U denote the update actions, and
distinguish the sets WR ⊇ U (write release), RA ⊇ U (read acquire), WX (write relaxed) and
RX (read relaxed). Finally, we define R = RA ∪ RX (all reads) and W = WR ∪WX (all writes).
Typically, we refer to the elements of W as writes, but note that this set also includes update
actions.

4.1 Program Semantics

In the program semantics, we assume a function lst ∈ Tid → (VarL 7→ Val) (7→ being a
partial function), which returns the local state for the given thread. We assume that the
local variables of threads are disjoint, i.e., if t 6= t′, then dom(lst(t)) ∩ dom(lst(t′)) = ∅.
For an expression E over local variables, we write JEKls for the value of E in local state
ls ∈ (VarL 7→ Val); we write ls[r := n] to state that ls remains unchanged except for the
value of local variable r which becomes n.

Figure 4 gives the transition rules of the program semantics. The last rule, Prog, lifts
the transitions of threads to a transition for a concurrent program. The other rules concern
the sequential part of the language. The rules in a sense ignore the fact that the language
allows for global variables; the program semantics just details the values of local variables in
component ls. When global variables are read, the program semantics allows for any possible
value to be read. This is combined with the memory semantics (formalised by a

t) as follows:

(P, lst) −τ→t (P ′, lst′)
(P, lst, σ) =⇒ (P ′, lst′, σ)

(P, lst) −a→t (P ′, lst′) σ a
t σ
′

(P, lst, σ) =⇒ (P ′, lst′, σ′)

The transitions defined by σ a
t σ
′ ensure that read actions only return a value allowed

by the C11 semantics and are defined in Section 4.2. The rules for all imperative program
constructs (sequential composition, if and while) are standard.

S. Dalvandi, S. Doherty, B. Dongol, and H. Wehrheim 11:7

Table 1 Components of a C11 state.

Component Informal meaning Initial value
writes ⊆W × Q The writes which have happened so far writesInit

tviewt ∈ VarG → writes The viewfront of a thread t tviewInit

mvieww ∈ VarG → writes The viewfront of a thread when writing w mviewInit

covered ⊆ writes The covered writes ∅

4.2 Memory Semantics
Next, we detail the memory semantics, which is equivalent to an earlier operational reformu-
lation [12] of the RAR fragment from [22].

C11 State. Table 1 summarises the components of a C11 state. Each global write is
represented by a pair (a, q) ∈W × Q, where a is a write action, and q is a rational number
that we use as a timestamp (c.f., [16, 13, 27]). The timestamps totally order the writes to
each variable; the ordering induced by timestamps is also referred to as the modification
order [22, 12] or coherence order [6]. For each write w = (a, q), we denote w’s timestamp
by tst(w) = q. We also lift the functions var and wrval to timestamped writes, e.g.,
var((a, q)) = var(a). The set of all writes that have occurred in the execution thus far is
recorded in the state component writes ⊆W × Q.

As described in Section 2, each state must record the writes that are observable to each
read. To achieve this, we use two families of functions from global variables to writes, both
of which record the viewfronts (c.f., [27, 17]).

A function tviewt that returns the viewfront of thread t (one for each global variable).
The thread t can read from any write to variable x whose timestamp is not earlier than
tviewt(x). Accordingly, we define, for each state σ, thread t and global variable x, the set
of observable writes:

σ.OW(t, x) = {(a, q) ∈ σ.writes | var(a) = x ∧ tst(σ.tviewt(x)) ≤ q} (1)

A function mvieww that records the viewfront of write w, which is set to be the viewfront
of the thread that executed w at the time of w’s execution. We use mvieww to compute
a new value for tviewt if a thread t synchronizes with w, i.e., if w ∈ WR and another
thread executes an e ∈ RA that reads from w.

Finally, our semantics maintains a variable covered ⊆ writes. In C11 RAR, each update
action occurs in modification order immediately after the write that it reads from [12]. This
property constitutes the atomicity of updates. In order to preserve this property, we must
prevent any newer write from intervening between any update and the write that it reads
from. As we explain below, covered writes are those that are immediately prior to an update
in modification order, and new write actions never interact with a covered write.

Initialisation. Table 1 also states how these components are initialised by Init. If VarG =
{x1, . . . , xn}, VarL = {r1, . . . , rm} and k1, . . . , kn, l1, . . . , lm ∈ Val, we assume Init = x1 :=
k1; . . . , xn := kn; [r1 := l1;] . . . [rm := lm;], where we use the notation [ri := li;] to mean
that the assignment ri := li may optionally appear in Init. Thus each shared variable is
initialised exactly once and each local variable is initialised at most once. The initial values
of the state components are then as follows, where we assume that 0 is the initial timestamp.

ECOOP 2020

11:8 Owicki-Gries Reasoning for C11 RAR

writesInit = {(wr(x1, k1), 0), . . . , (wr(xn, kn), 0)}
tviewInit(xi) = (wr(xi, ki), 0) for each thread xi ∈ VarG

mviewInit = tviewInit

The initial local state component of each thread must also be compatible with Init, i.e., for
each t if ri ∈ dom(lst(t)) we have that (lst(t))(ri) = li provided ri := li appears in Init.

We let lstInit be the local state compatible with Init, let σInit denote the initial state
defined by Init, and define ΓInit = (lstInit, σInit).

Transition semantics. The transition relation of our semantics for global reads and writes
is given in Figure 5. Each transition σ a

t σ
′ is labelled by an action a and thread t. The

premise of each rule must identify the write w that the action interacts with. This is made
more precise below.

Read transition by thread t. Here we assume that
a is either a relaxed or acquiring read to variable x,
(w, q) is a write to x that t can observe (i.e., (w, q) ∈ σ.OW(t, x)), and
the value read by a is the value written by w.

Each read causes the viewfront of t to be updated. This is computed as follows. If the read
synchronises with the write, then the thread’s new view will be a combination of its existing
view, and the view of that write. In particular, for each variable x the new view of x will
be the later of either tviewt(x) or mvieww(x), in timestamp order. To express this, we use
an operation that combines two views v1 and v2, by constructing a new view that takes the
later of the writes at each variable:

(v1 ⊗ v2)(x) =
{
v1(x) if tst(v2(x)) ≤ tst(v1(x))
v2(x) otherwise

If w and a do not synchronise, then tviewt is simply updated to include the new write.
For illustration, consider the picture in Figure 6. The x-axis depicts the timestamps of

the writes, the y-axis the variables x, y and z, which we assume are initialised by writes x0,
y0 and z0, respectively. The orange line shows the view of a thread, say t1, and the blue line
depicts the view of another thread that executes w = (wrR(y, 42), 3). If thread t1 performs
an acquiring read of y and reads from w (i.e., it performs a sychronising read), thread t1’s
view changes to the diagram on the right, whereby its current viewfront is combined with
the viewfront of w.

Write transition by thread t. A write transition must identify the write (w, q) after which
a occurs. This w must be observable and must not be covered – the second condition is
required to preserve the read-modify-write atomicity of updates. We must choose a fresh
timestamp q′ ∈ Q for a, which is formalised by fresh(q, q′):

σ.fresh(q, q′) = q < q′ ∧ ∀w′ ∈ σ.writes. q < tst(w′)⇒ q′ < tst(w′)

The predicate fresh(q, q′) ensures that q′ is a new timestamp for the variable x, such that
(a, q′) occurs immediately after (w, q)4. The new write is added to the set writes. We update
tviewt to include the new write, which means t can no longer observe any writes prior to (a, q′).

4 This does not exclude that later some other write is placed in between q and q′.

S. Dalvandi, S. Doherty, B. Dongol, and H. Wehrheim 11:9

Read

a ∈ {rd(x, n), rdA(x, n)} (w, q) ∈ σ.OW(t, x) wrval(w) = n

tview′
t =

{
σ.tviewt ⊗ σ.mview(w,q) if (w, a) ∈WR × RA

σ.tviewt[x := (w, q)] otherwise

σ a
t σ[tviewt := tview′

t]

Write

a ∈ {wr(x, n), wrR(x, n)} (w, q) ∈ σ.OW(t, x) \ σ.covered σ.fresh(q, q′)
writes′ = σ.writes ∪ {(a, q′)} tview′

t = σ.tviewt[x := (a, q′)]
σ a

t σ[tviewt := tview′
t,mview(a,q′) := tview′

t,writes := writes′]

Update

a = updRA(x,m, n) (w, q) ∈ σ.OW(t, x) \ σ.covered
wrval(w) = m σ.fresh(q, q′)

writes′ = σ.writes ∪ {(a, q′)} covered ′ = σ.covered ∪ {(w, q)}

tview′
t =

{
σ.tviewt[x := (a, q′)]⊗ σ.mview(w,q) if w ∈WR

σ.tviewt[x := (a, q′)] otherwise

σ a
t σ[tviewt := tview′

t,mview(a,q′) := tview′
t,

writes := writes′, covered := covered ′]

Figure 5 Transition relation of the memory semantics.

VarG

Q

z0

y0

x0

(wr(z, 7), 2)

(wrR(y, 42), 3)

(wr(x, 5), 1)

VarG

Q

z0

y0

x0

(wr(z, 7), 2)

(wrR(y, 42), 3)

(wr(x, 5), 1)

Figure 6 Illustration of views and view updates: pre-state (left) and post-state (right) after
executing rdA(y, 42) by thread t1 (orange).

Finally, we set the viewfront of (a, q′) to be the new viewfront of t, i.e., mview(a,q′) := tview′t.
Now, if some other thread synchronises with this new write in some later transition, that
thread’s view will become at least as recent as t’s view at this transition.

Update transition by thread t. These transitions are best understood as a combination of
the read and write transitions. As with a write transition, we must choose a valid fresh q′, and
the state components writes and mview are updated in the same way. As discussed earlier,
in Update transitions it is necessary to record that the write that the update interacts with
is now covered, which is achieved by adding that write to covered. Finally, we must compute
a new thread view, which is similar to a Read transition, except that the thread’s new view
always includes the new write introduced by the update.

4.3 Relationship to the Axiomatic Semantics
We prove that the timestamp-based semantics presented here is equivalent to an earlier
operational semantics [12] that is already known to be equivalent to the C11 RAR fragment.
Here, we just roughly sketch how this proof proceeds.

ECOOP 2020

11:10 Owicki-Gries Reasoning for C11 RAR

The semantics in [12] describes C11 states in the form E = (X, sb, rf,mo), where X is
a set of read and write events (roughly equivalent to actions) and sb, rf and mo describe
the sequenced-before and reads-from relation as well as the modification order of the C11
axiomatic semantics. A number of further relations are derived from these, in particular the
extended coherence order eco and the happens-before order hb. The proof of equivalence
of the semantics shows the two semantics to simulate each other. For this, we need to
define a correspondence between C11 states of form E and of form σ such that: (1) For
σ.writes, we take X ∩ W; (2) For σ.covered, we take the writes w in X ∩ W such that
there is an update u with (w, u) ∈ rf; and (3) For mview and tview, we use a downward
closure operator, cclose, which for a given set of events S determines the set of events prior
to S in the relation eco? ◦ hb? (where R? is the reflexive closure of a relation R). Then
σ.tviewt = maxmo(X.cclose(Xt)) and σ.mvieww = maxmo(X.cclose({w})), where maxmo
selects writes being maximal wrt. mo and Xt are all actions of t in X. In all these cases,
timestamps for writes have to be selected consistent with mo.

Given such a correspondence, the proof proceeds by showing this correspondence is
preserved by the read, write and update transitions.

4.4 Well Formedness
Our proofs in subsequent sections require that the state under consideration is well-formed.
This is formalised by predicate wfs over a C11 state σ, where

wfs(σ) ⇐⇒ ran((
⋃
t σ.tviewt) ∪ (

⋃
w σ.mvieww)) ⊆ σ.writes ∧

finite(σ.writes) ∧ σ.covered ⊆ σ.writes ∧
(∀w. w ∈ σ.writes ⇒ σ.mvieww(var(w)) = w)

The first conjunct ensures that each viewable write is in σ.writes. The second conjunct
ensures there are only a finite number of writes, and the third ensures that every covered
write is an actual write. The final conjunct ensures that for each write in σ.writes, the
viewfront of w for var(w) is w itself.

Well-formedness is invariant for any program, i.e., every initialisation establishes well-
formedness and every program transition preserves well-formedness.

I Lemma 1. For any program C constructed using the syntax described in Section 3, wfs(σ)
is invariant.

Proof. In Isabelle. We show that every initialisation establishes wfs(σ). Furthermore, if
wfs(σ) and σ a

t σ
′, then wfs(σ′) for any action a and thread t. J

5 Hoare Logic and Owicki-Gries Reasoning for C11

In this section, we present a Hoare logic [15] for C11 RAR that enables Owicki-Gries
reasoning [25]. For compound statements (including concurrent composition) we use the
standard rules of Hoare logic as well as the standard interference freedom proof obligations
described by Owicki and Gries. Our contribution is a novel set of high-level predicates
that describe the observations of each thread for a C11 state, together with a set of basic
axioms that describe how these predicates interact with read, write and update transitions.
Soundness of these axioms has been checked using Isabelle.

In Section 5.1, we link our operational semantics to the proof outlines of Hoare logic
and Owicki-Gries’ notion of interference freedom. Section 5.2 provides an overview of our
assertion language and briefly discusses the main categories of assertions, i.e., assertions

S. Dalvandi, S. Doherty, B. Dongol, and H. Wehrheim 11:11

Skip
{p}skip{p}

Seq
{p}C1{r} {r}C2{q}

{p}C1;C2{q}

If
{p ∧B}C1{q} {p ∧ ¬B}C2{q}
{p}if B then C1 else C2{q}

While
{p ∧B}C{p}

{p}while B do C{p ∧ ¬B}

Until
{p}C{r} {r}while ¬B do C{r ∧B}

{p}do C untilB{r ∧B}
Cons

p⇒ p′ {p′}C{q′} q′ ⇒ q

{p}C{q}

Figure 7 Classical proof rules for sequential programs.

describing observability, ordering and occurrences of writes. We present the basic axioms
in stages, using specific litmus tests (in Sections 5.3, 5.4, 5.5) to motivate each group of
assertions. The proof outlines of all litmus tests have been verified using Isabelle.

5.1 Soundness and Classical Verification Rules
We first define the meaning of a Hoare triple under partial correctness and present the
classical proofs rules for compound statements. Unlike Hoare logic, where a state is modelled
by a mapping from variables to values, as we have seen in Section 4.1, states of a C11
program contain two components: a local state lst and a global state σ. We let ΣG

be the set of all possible global state configurations (as described in Table 1) and let
ΣC11 = (VarL → Val)× ΣG be the set of all possible C11 states. Predicates over ΣC11 are
therefore of type ΣC11 → B. This leads to the following definition of a Hoare triple, which we
note is the same as the standard definition – the only difference is that the state component
is of type ΣC11.

I Definition 2. Suppose p, q ∈ ΣC11 → B, P ∈ Prog and E = λt : Tid. skip. The semantics
of a Hoare triple under partial correctness is given by:

{p}Init{q} = q(ΓInit)
{p}P{q} = ∀lst, σ, lst′, σ′. p(lst, σ) ∧ (P, lst, σ) =⇒∗ (E, lst′, σ′)⇒ q(lst′, σ′)

{p}Init;P{q} = ∃r. {p}Init{r} ∧ {r}P{q}

The classical rules of sequential Hoare logic for compound (i.e., non-atomic) statements are
given in Figure 7. Soundness of these proof rules (with respect to Definition 2) holds for
exactly the same reason as soundness of Hoare logic [15].

The sequential part is combined with the Owicki-Gries rule for concurrent composition
in the standard way [25, 7]. First, we construct proof outlines for every component of the
concurrent program in isolation. A proof outline inserts assertions (in { } brackets) into a
program. In a so-called standard proof outline every statement R of the program has exactly
one assertion before it. This assertion is its precondition, pre(R). Next, all assertions in one
component have to be checked for non-interference with all statements in other components.

I Definition 3. A statement R ∈ ACom with precondition pre(R) (in the standard proof
outline) does not interfere with an assertion p if

{p ∧ pre(R)} R {p} .

ECOOP 2020

11:12 Owicki-Gries Reasoning for C11 RAR

Proof outlines of concurrent programs are interference free if no statement in one thread
interferes with an assertion in another thread.

Interference freedom guarantees that proof outlines in each thread are stable under the
execution of other threads. This is formalised in the Owicki-Gries proof rule for concurrent
composition:

Parallel
Proof outlines {pi}Ci{qi} are interference free

{
∧n
i=1 pi} C1|| . . . ||Cn {

∧n
i=1 qi}

We say a proof outline is valid if it is both sequentially valid (or locally correct) and
interference free.

Finally, there is a standard proof rule for auxiliary variables in parallel programs [7]. Let
V be a set of auxiliary variables of a parallel program P and q be a predicate that does not
mention auxiliary variables. Then we can prove that a Hoare triple holds for a program
extended with auxiliary variables and transfer this proof to the original program:

AuxVar
{true} Init;P {q}
{true} Init0;P0 {q}

provided vars(q) ∩ V = ∅

where Init0 is obtained from Init by removing all auxiliary assignments and P0 is obtained
by replacing all statements 〈A, a := E〉 in P (for a ∈ V) by A.

5.2 An Assertion Language
We studied a number of well-known litmus tests and examples and discovered three main
categories of assertions required for specification and verification of a wide range of problems.
These three main categories are dealing with (values of) writes to variables and the order in
which they occur.

Observability. Observability assertions describe if or when a thread may observe or
has encountered a write to a variable. As described in Section 2, these assertions are
thread-specific and deal with the thread’s view. We repeat the main ideas here to simplify
comparison with the other types of assertions. The main observability assertions are as
follows:
1. Possible observation which is denoted by x ≈t u means that thread t may observe

value u for x. The formal definition and an example motivating this assertion is given
in Section 5.4.

2. Definite observation which is denoted by x =t u means that thread t must observe
the value u for x. The formal definition and an example motivating this assertion is
given in Section 5.3.

3. Conditional observation which is denoted by [x = u](y =t v) means that if thread
t synchronises with a write to variable x with value u, it must observe value v for y.
The formal definition and an example motivating this assertion is given in Section 5.4.

4. Encountered value which is denoted by x enc= t v means that thread t has encountered
(had the opportunity to observe) a write to variable x with value v. The formal definition
and three examples motivating this assertion are given in Section 5.5.

Ordering. Ordering assertions specify the order of values written to a variable by
different writes. These assertions are thread-independent and specify an order over the
timestamp of various writes with specific values:

S. Dalvandi, S. Doherty, B. Dongol, and H. Wehrheim 11:13

1. Possible value order which is denoted by m ≺x n means that there exists two writes
w and w′ to variable x where the timestamp of w′ is larger than the timestamp of w
and the value of w and w′ is m and n, respectively.

2. Definite value order which is denoted by m ≺≺x n means that for all writes w and
w′ to x where the value of w is m and the value of w′ is n, the timestamp of w′ is
larger than the timestamp of w and m ≺x n.

Both the above assertions are formally defined in Section 5.5 and examples showing their
usage are provided.
Occurrence. Occurrence assertions specify the occurrence of a write with a specific
value to a variable (regardless of observability). Similar to the previous category, these
assertions are thread-independent:
1. Value occurrence assertions specify the limit of occurrence of writes to a variable

with a specific value. For instance, 0x n means that no write with value n to variable
x has occurred or 1x n means that there is at most one write with value n to x in
the current state. The formal definition and examples of these assertions are given in
Section 5.5.

2. Initial value which is denoted by xInit = n means that the initial value written to x
is n. The formal definition and examples of this assertion are also given in Section 5.5.

3. Covered write assertions, denoted by Cn
x , state that all writes to variable x except

the last write are covered by an update (see Section 4.2), and that the last write to x
has value n. This assertion is formally defined in Section 6 and is used in verification
of Peterson’s mutual exclusion algorithm.

5.3 Load Buffering
Our first example is the load buffering litmus test (see Figure 8), which we can show satisfies
the postcondition r1 = 0 ∨ r2 = 0 since our semantics assumes absence of cycles in the
sequence-before relation combined with reads-from [22, 12]. The assertions about the C11
state capture properties about definite observations (i.e., observability assertions), which we
formalise below.

For a set of writes W and variable x ∈ VarG, let Wx = {w ∈W | var(w) = x} be the set
of writes in W that write to x. We define the last write to x in W as:

last(W,x) = w ⇐⇒ w ∈Wx ∧ (∀w′ ∈Wx. tst(w′) ≤ tst(w))

Moreover, we define the definite observation of a view function, view with respect to a set of
writes as follows:

dview(view,W, x) = n ⇐⇒ view(x) = last(W,x) ∧ wrval(last(W,x)) = n

The first conjunct ensures that the viewfront of view for x is the last write to x in W , and
the second conjunct ensures that the value written by the last write to x in W is n.

Definite observation. For a variable x, thread t and value n, we define:

x =t n = λσ. dview(σ.tviewt, σ.writes, x) = n

Expanding this out, we obtain:

σ.tviewt(x) = last(σ.writes, x) ∧ wrval(last(σ.writes, x)) = n

ECOOP 2020

11:14 Owicki-Gries Reasoning for C11 RAR

Init: x := 0; y := 0; r1 := 0; r2 := 0;
{x =1 0 ∧ y =2 0 ∧ r1 = 0 ∧ r2 = 0}

Thread 1 Thread 2
{y =2 0 ∧ r2 = 0} {x =1 0 ∧ r1 = 0}
1 : r1← x; 3 : r2← y;
{y =2 0 ∧ r2 = 0} {x =1 0 ∧ r1 = 0}
2 : y := 1; 4 : x := 1;
{r1 = 0 ∨ r2 = 0} {r1 = 0 ∨ r2 = 0}

{r1 = 0 ∨ r2 = 0}

Figure 8 Proof outline for load buffering.

The first conjunct ensures that the viewfront of t for x is the last write to x in σ (thus t can
only read this last write to x). The second conjunct ensures that the value written by the
last write is n. The function dview is also used in the definition of conditional observation in
Section 5.4.

The proof of load buffering relies on the basic axioms in the following lemma. We assume
atoms(Init) returns the set of assignments contained within Init.

I Lemma 4. Each of the basic axioms below is sound (as per Definition 2), where the
statements are decorated with the thread identifier of the executing thread.

Init
x := n ∈ atoms(Init)
{true} Init {x =t n}

DOPres-Rd
{x =t′ m} r ←[A]

t y {x =t′ m}

DOPres-Wr
x 6= y

{x =t′ n} y :=t m {x =t′ n}

Proof. In Isabelle. J

Thus by rule Init an assignment x := n in Init ensures that x =t n for all threads t
holds at program start. Note that such an initial assertion for the entire program is not
subject to non-interference checks. The rule DOPres-Rd states that a definite observation
x =t′ m is invariant over a read step executed by thread t. Note that pre/post conditions
for DOPres-Rd refer to thread t′, while the read statement refers to thread t. Also note
that there is no additional restriction on t and t′, thus the rule applies regardless of whether
t = t′, or not. Similarly, there are two global variables x and y mentioned in the rule, but
there are no further restrictions on their values. Rule DOPres-Wr gives a condition for
invariance of a definite observation assertion over a write. It requires that the variable being
observed is different from the variable that is updated.

I Theorem 5. The proof outline for load buffering in Figure 8 is valid.

Proof. The proof has been established in Isabelle. We outline the main steps below as it is
instructive to understand the high-level proof strategy. First we establish local correctness:

The initial condition is established by rule Init, which is in turn used to establish the
initial assertions in both threads.
In thread 1, local correctness of the postcondition of line 1 (precondition of line 2) follows
from rule DOPres-Rd, and the postcondition of line 2 follows by weakening. The proof
of local correctness in thread 2 is symmetric.

We now establish interference freedom. The precondition of line 1 is interference free wrt
line 3 by DOPres-Rd, and wrt line 4 by DOPres-Wr. This argument also applies to the
precondition of line 2. Interference freedom of the postcondition of line 2 is trivial. The
proof of interference freedom of the assertions in thread 2 is symmetric. J

S. Dalvandi, S. Doherty, B. Dongol, and H. Wehrheim 11:15

5.4 Message Passing
Next we return to the message passing example from Section 2. Its verification requires the
usage of the other two observability assertions.

Possible observation. For a variable x, thread t and value n, we define:

x ≈t n = λσ. ∃w ∈ σ.OW(t, x). wrval(w) = n

Thus, there is a write to x that is observable to thread t with a value n.

Conditional observation. For variables x, y, thread t and values m,n, we define:

[x = n](y =t m) = λσ. ∀w ∈ σ.OW(t, x). wrval(w) = n⇒
act(w) ∈WR ∧ dview(σ.mvieww, σ.writes, y) = m

The antecedent assumes that the value read for x is n, and the consequent ensures that w
is a releasing write such that the definite view of this write for variable y returns m. As
we shall see, one useful way of establishing this condition is by falsifying the antecedent by
ensuring that thread t cannot observe n for x (see (4) below).

Some useful relationships between the assertions above are given by the lemma below.

I Lemma 6. For variables x, y ∈ VarG, thread t and values m,n ∈ Val, each of the following
holds:

wfs ∧ x =t n⇒ x ≈t n (2)
wfs ∧ x =t n ∧ x ≈t m⇒ n = m (3)

x 6≈t n⇒ [x = n](y =t m) (4)
x =t n ∧ x =t′ m⇒ n = m (5)

Proof. In Isabelle. J

By (2), given a well-formed state any definite observation implies a possible observation,
and by (3) a definite observation must agree with a possible observation. By (4) if it is
not possible to observe the antecedent of a conditional observation, then the conditional
observation must hold. By (5) any two definite value observations must agree (since they
both observe the last write to x).

The next lemma lists the basic axioms that are used to prove correctness of the message
passing example.

I Lemma 7. Each of the following rules is sound (as per Definition 2), where the statements
are decorated with the thread identifier of the executing thread.

ModLast
{x =t n} x :=t m {x =t m}

ModSome
{true} x :=t m {x ≈t m}

NPOPres
{x 6≈t m} r ←[A]

t′ y {x 6≈t m}
NoOW

x 6= y

{x 6≈t n} y :=t′ m {x 6≈t n}

ReadLast
{x =t m} r ←t x {r = m}

CO-Intro
x 6= y

{y =t m ∧ x 6≈t′ n} x :=R
t n {[x = n](y =t′ m)}

Transfer
{[x = n](y =t m)} r ←A

t x {r = n⇒ y =t m}

ECOOP 2020

11:16 Owicki-Gries Reasoning for C11 RAR

Proof. In Isabelle. J

I Theorem 8. The proof outline of message passing in Figure 3 is valid.

Proof. The proof has been established in Isabelle. We outline the main steps below. First
we show local correctness.

Using Init we establish the precondition f =1 0 ∧ f =2 0 ∧ d =1 0 ∧ d =2 0.
The precondition of the program implies the initial assertions of both threads. In thread 1,
we use (3) to establish f 6≈2 1 since (3) is logically equivalent to

wfs ∧ x =t n ∧ n 6= m⇒ x 6≈t m

In thread 2, we use (3) in combination with (4).
In thread 1, the post condition of line 1 (precondition of line 2) follows by application of
NoOW and ModLast. The post condition of line 2 is trivial.
In thread 2, the postcondition of line 3 follows by application of Transfer, while the
postcondition of line 4 follows by application of ReadLast.

Next we show interference freedom.
The preconditions of lines 1 and 2 can be shown to be interference free by applying
NPOPres to the first conjunct and DOPres-Rd to the second.
The precondition of line 3 is interference free against line 1 due to NoOW using the
existing precondition f 6≈2 1 of line 1. The proof then follows by application of (4).
Interference freedom against line 2, is proved using CO-Intro and the precondition at
line 2.
The precondition of line 4 is interference free against line 1 by (5) (i.e., since the precon-
ditions are of lines 1 and 4 are contradictory). Interference freedom holds against line 2
by rule DOPres-Wr.
The postconditions of lines 2 and 4 are trivially interference free. J

5.5 Read-Read Coherence
Next, we verify three versions of the read-read coherence (RRC) litmus test as given in
Figures 9, 10 and 11. The original RRC litmus test (Figure 10) guarantees that if one thread
sees the writes to x (by threads 1 and 2) in a certain order, then the other thread see the
writes in the same order. Here, the postcondition assumes that thread 3 has observed the
write x := 1, then the write x := 2, while thread 4 has already seen the write x := 2 when
reading x at line 5. It requires that thread 4 does not subsequently see value 1 when it reads
x at line 6. Figure 9 presents a simpler variation where the ordering of writes to x is enforced
by the thread ordering. Figure 11 combines RRC with message passing.

Unlike message passing (which is a litmus test over two different variables), the RRC
examples demonstrate the need for ordering and occurrence assertions which we introduce
next.

Possible value order. For values m,n and variable x, we define:

m ≺x n = λσ. ∃w,w′ ∈ σ.writesx. wrval(w) = m ∧ wrval(w′) = n ∧
tst(w) < tst(w′)

Thus, there are two writes two x with values m and n, where the timestamp of the write
with value m precedes the timestamp of the write with value n. Note that this m ≺x n does
not preclude n ≺x m. E.g., if a thread writes m to x, then n, then m again, both m ≺x n
and n ≺x m will hold. In this scenario, m ≺x m also holds since there are two separate
writes to x with value m.

S. Dalvandi, S. Doherty, B. Dongol, and H. Wehrheim 11:17

Init: x := 0; y := 0;
{xInit = 0 ∧ 0x 1 ∧ 0x 2}

Thread 1 Thread 2
{xInit = 0 ∧ 0x 1 ∧ 0x 2} {true}
1 : x := 1; 3 : a← x;
{0x 2 ∧ 1x 1 ∧ x enc= 1 1} {x enc= 2 a}
2 : x := 2; 4 : b← x;
{1 ≺≺x 2} {a 6= b⇒ a ≺x b}

{a = 2⇒ b 6= 1}

Figure 9 Proof outline for RRC2, where x ∈ VarG and a, b ∈ VarL.

Definite value order. For values m,n and variable x, we define:

m ≺≺x n = λσ. (m ≺x n)(σ) ∧ (∀w,w′ ∈ σ.writesx.
wrval(w) = m ∧ wrval(w′) = n⇒
tst(w) < tst(w′))

Note that this implies m 6= n. Unlike possible value orders if m ≺≺x n holds then n 6≺≺x m.
Note also that our definition allows several writes to x with values m and n provided all
writes with value m occur (in timestamp order) before all writes with value n.

Initial value. For values n and variable x, we define:

xInit = n = λσ. ∃w ∈ σ.writesx. wrval(w) = n ∧
(∀w′ ∈ σ.writesx. w 6= w′ ⇒ tst(w) < tst(w′))

Note that for the construction in this paper, it suffices to return the write to x with timestamp
0 since we assume that writes are initialised with timestamp 0. The definition above however,
is more robust since it also applies to situations where variables are not initialised, or
initialised to an arbitrarily chosen timestamp (as is the case in our Isabelle encoding).

Encountered value. For a variable x, thread t and value n, we define:

x
enc= t n = λσ. ∃w ∈ σ.writesx. tst(w) ≤ tst(σ.tviewt(x)) ∧ wrval(w) = n

That is x enc= t n holds iff there is a write to x with value n whose timestamp is at most the
timestamp of the viewfront of t for x. Note that x enc= t n does not guarantee that t has read
the value n for x. For instance, x enc= t n could hold if there is a write, say w, of x with value
n and t writes to x with a write whose timestamp is greater than tst(w).

Value occurrence. These are straightforward to define in terms of our value order assertions
above. For a variable x, thread t and value n, we define:

0x n = ∃m. xInit = m ∧m 6= n ∧m 6≺x n
1x n = n 6≺x n

Thus, if 0x n holds then there is no write with value n. If 1x n holds, then either there is no
write to x with value n, or if there is a write with value n, this is the only such write.

To understand the interaction between value ordering and write limit assertions, consider
the following lemma. It states that if there is a possible value order on x with m preceeding
n and there is at most one write with these values, then there is a definite value order on x
with m preceeding n.

ECOOP 2020

11:18 Owicki-Gries Reasoning for C11 RAR

Init: x := 0; y := 0;
{0x 1 ∧ 0x 2 ∧ xInit = 0}

Thread 1
{0x 1}
1 : x := 1;
{1x 1}

Thread 2
{0x 2}
2 : x := 2;
{1x 2}

Thread 3
{true}
3 : a← x;
{x enc= 3 a}
4 : b← x;
{a 6= b⇒ a ≺x b}

Thread 4
{true}
5 : c← x;
{x enc= 4 c}
6 : d← x;
{c 6= d⇒ c ≺x d}

{a = 1 ∧ b = 2 ∧ c = 2⇒ d 6= 1}

Figure 10 Proof outline for RRC, where x ∈ VarG and a, b, c, d ∈ VarL.

I Lemma 9. For x ∈ VarG and m,n ∈ Val, we have:

m ≺x n ∧ 1xm ∧ 1x n⇒ m ≺≺x n (6)
m ≺≺x n⇒ n 6≺≺x m (7)

Proof. In Isabelle. J

We discuss the proof of RRC2 in detail. Its proof relies on the following lemma which
captures some basic properties about value assertions.

I Lemma 10. Each of the rules below is sound (as per Definition 2), where the statements
are decorated with the thread identifier of the executing thread.

ZWr
m 6= n

{0xm} y :=[R]
t n {0xm}

DVPres
{m ≺≺x n} r ←[A]

t y {m ≺≺x n}

1Intro
i 6= m{

xInit = i ∧ 0xm
}
x :=[R]

t m {1xm}
EncWr

{true}x :=[R]
t m {x enc= t m}

EncRd
{true} r ←[A]

t x
{
x

enc= t r
} EPO

{x enc= t m} r ←[A]
t x

{
r 6= m⇒ m ≺x r

}
DVIntro

i 6= n

{xInit = i ∧ 0x n ∧ 1xm ∧ x
enc= t m} x :=[R]

t n {m ≺≺x n}

1PresR
{1xm} r ←[A]

t y {1xm}
POrd

{m ≺x n} C {m ≺x n}

Proof. In Isabelle. J

I Theorem 11. The proof outline for RRC2 in Figure 9 is valid.

Proof. This proof has been mechanised in Isabelle. Once again, we describe the proof outline
to give an overview of how our proofs are used. For local correctness we have the following.

The initialisation clearly satisfies the precondition of the program, and this implies the
precondition of thread 1. The precondition of thread 2 is trivial.
Next we consider the postcondition of line 1. The first conjunct holds by ZWr, the
second conjunct holds by 1Intro and the third by rule EncWr.
The postcondition of line 2 holds by rule DVIntro.

S. Dalvandi, S. Doherty, B. Dongol, and H. Wehrheim 11:19

Init: x := 0; y := 0;
{0x 1 ∧ 0x 2 ∧ x =1 0 ∧ y 6≈2 1}

Thread 1{
0x 1 ∧ y 6≈2 1 ∧
(0x 2⇒ x =1 0)

}
1 : x := 1;{

1x 1 ∧ y 6≈2 1 ∧
(0x 2⇒ x =1 1)

}
2 : y :=R 1;
{1x 1}

Thread 2
{1x 1 ∧ 0x 2 ∧ [y = 1](x =2 1)}
3 : r ←A y;
{1x 1 ∧ 0x 2 ∧ (r = 1⇒ x =2 1)}
4 : x := 2;
{1x 2 ∧ (r = 1⇒ 1 ≺≺x 2)}

Thread 3
{true}
5 : a← x;
{x enc= 3 a}
6 : b← x;
{a 6= b⇒ a ≺x b}

{r = 1 ∧ a = 2⇒ b 6= 1}

Figure 11 Proof outline for RRC3, where x, y ∈ VarG and a, b ∈ VarL.

In thread 2, the postcondition of line 3 holds by rule EncRd, and the postcondition of
line 4 holds by rule EPO.

Next we check interference freedom.
The precondition of line 1 is stable with respect to lines 3 and 4 by ZWr.
Next consider the precondition of line 2. The first and second conjuncts are stable with
respect to lines 3 and 4 by ZWr and 1PresR, respectively. The third conjunct is trivially
preserved (see Isabelle).
The postcondition of line 2 holds by DVPres.
The precondition of line 3 is trivial and the postcondition of line 3 holds by POrd. J

Correctness of RRC and RRC3 is established by the following theorem.

I Theorem 12. The proof outlines for RRC and RRC3 in Figure 10 and Figure 11, respect-
ively are valid.

Proof. In Isabelle. J

For RRC (Figure 10), the precondition of line 4 records the fact that thread 3 has
encountered a (whatever the value of a may be). Moreover, it guarantees that there is
at most one write of x with values 1 and 2. The first conjunct (i.e., x enc= 3 a) allows us
to conclude that after x is read at line 4, if a and b are different, then the value for a is
possibly ordered before the value for b. The second and third conditions are used to establish
the postconditions 1x 1 and 1x 2. This argument also applies to the assertions in thread 4.
Finally, we show that the postcondition of the program holds as follows, where we assume
post is the conjunction of the postcondition of each thread.

post⇒ (a = 1 ∧ b = 2 ∧ c = 2⇒ d 6= 1)
⇐⇒ post ∧ a = 1 ∧ b = 2 ∧ c = 2 ∧ d = 1⇒ false (logic)
⇐= 1x 1 ∧ 1x 2 ∧ 1 ≺x 2 ∧ 2 ≺x 1⇒ false (logic)
⇐= 1 ≺≺x 2 ∧ 2 ≺≺x 1⇒ false (6)
⇐= true (7)

The calculation above has been verified with Isabelle, but we recall the proof here as it
provides insight into the interactions between different value assertions.

RRC3 (Figure 11) combines message passing on y with RRC on x. Namely, knowledge
of x := 1 in thread 1 is transferred to thread 2 using a release-acquire synchronisation on
y. Thus, if thread 2 reads 1 for y it must also have encountered 1 for x. Thus, if r = 1,

ECOOP 2020

11:20 Owicki-Gries Reasoning for C11 RAR

then the write on line 4 must have happened after the write on line 1. This means that it
should be impossible for thread 3 to read 2 for x (at line 5) then read 1 for x (at line 6).
Unlike message passing, in RRC3, the “data” variable x is updated both before and after
synchronisation. Thus, the assertions on definite values (e.g., x =1 1) become conditional
on whether line 4 has already been executed. In particular, the antecedent 0x 2 allows us
to assume that line 4 has not yet been executed. As with RRC, we must separately prove
that the conjunction of the postconditions of the threads implies the postcondition of the
program. This proof is mechanised in Isabelle, and is elided here.

6 Case study: Peterson’s algorithm

We turn to our final case study, the verification of the mutual exclusion property of a
version of Peterson’s algorithm. The complexity of this case study is much greater than
our earlier examples. This program contains a loop, features a careful mixture of relaxed
and release/acquire operations to the same variable, and an RMW operation whose precise
semantics is critical to the correctness of the algorithm.

Our version of Peterson’s algorithm5, presented in Figure 12 is a mutual exclusion
algorithm for two threads implemented for C11 using release-acquire annotations [34]. The
purpose of verification is to show that this algorithm actually guarantees mutual exclusion,
i.e., that the two threads can never be in their critical sections (line 6) at the same time. As
with the original algorithm, variable flagi, for i ∈ {1, 2} is used to indicate whether thread i
intends to enter its critical section. In this version of the algorithm, we let flagi range over
{0, 1}, where 0 is used for the boolean value “false”, and 1 is used for the boolean value “true”.
The shared variable turn is used to cause a thread to “give way” when both threads intend
to enter their critical sections at the same time. Our verification uses auxiliary variables
afteri for each thread i (as does the proof for a sequentially consistent setting in [7]), the
purpose of which we describe below.

We describe the algorithm for thread 1; the other thread is symmetric. For now, we
ignore the assertions. The flag variable is set to 1 (line 1) using a relaxed write (which cannot
induce any synchronisation), but is set to 0 (line 7) using a release annotation. The intention
of the latter is to synchronise this write (of 0 to flag1) with the read of flag1 at line 3 in
thread 2. The value of turn is set using a swap command. The swap is implemented using
an C11 RMW operation that has both the release and acquire annotations. When the swap
is executed, as part of the same transition, the auxiliary variable after1 is also set, indicating
that thread 1 is ready to enter the busy wait loop beginning at line 3, and then to enter the
critical section.

The busy wait loop forces thread 0 to wait until either flag2 is 0 (indicating that thread 2
is not trying to enter the critical section) or turn = 1 (indicating that it is thread 1’s turn to
enter the critical section). Note that the read of turn within the guard of the busy wait loop
(line 5) is relaxed.

We turn now to the proof that this version of Peterson’s algorithm has the mutual
exclusion property. We prove mutual exclusion in two steps. First, we show that the given
proof outline is valid, and second, that the conjunction of the precondition of thread 1’s
critical section (line 6) and thread 2’s must be false. Therefore, the two threads cannot
simultaneously be in their critical sections.

5 For simplicity our version of the algorithm does not have an outermost loop.

S. Dalvandi, S. Doherty, B. Dongol, and H. Wehrheim 11:21

Init: flag1 := 0;flag2 := 0; turn := 0 ∧ after1 := false; after2 := false
Thread 1{
¬after1 ∧ flag1 =1 0 ∧ turn 6≈2 2 ∧ (C0

turn ∨ [turn = 1](flag2 =1 1))
∧(after2 ⇒ C1

turn ∧ [turn = 1](flag2 =1 1))

}
1: flag1 := 1 ;{
¬after1 ∧ flag1 =1 1 ∧ turn 6≈2 2 ∧ (after2 ⇒ C1

turn ∧ [turn = 1](flag2 =1 1))
}

2: 〈turn.swap(2)RA ; after1 := true〉{
after1 ∧ (after2 ∧ (flag2 ≈1 0 ∨ turn ≈1 1)⇒ turn =2 1)

}
do

3: r1 ←A flag2{
after1 ∧ (after2 ∧ (r1 = 0 ∨ turn ≈1 1 ∨ flag2 ≈1 0)⇒ turn =2 1)

}
4: r2 ← turn{

after1 ∧ (after2 ∧ (r1 = 0 ∨ r2 = 1 ∨ turn ≈1 1 ∨ flag2 ≈1 0)⇒ turn =2 1)
}

5: until (r1 = 0 ∨ r2 = 1)
{after1 ∧ (after2 ⇒ turn =2 1)}

6: Critical section ;
7: 〈flag1 :=R 0 ; after1 :=false〉

Figure 12 Peterson’s algorithm (adapted from [34]) and its proof outline. Thread 2 (not shown)
is symmetric.

We deal with the second step first by showing that the formula below is false:

after1 ∧ (after2 ⇒ turn =2 1) ∧ after2 ∧ (after1 ⇒ turn =1 2)

It is easy to see that this implies turn =1 2 ∧ turn =2 1. However, by (5) this situation is
impossible.

The first step is more elaborate and we only describe certain aspects. The precondition of
line 3 is also an invariant of the busy wait loop. This assertion ensures that if thread 1 is able
to exit the busy wait loop, then the precondition of the critical section will be satisfied. Note
that thread 1 exits the loop if it reads 0 from flag2 (which is only possible when flag2 ≈1 0)
or it reads 1 from turn (which is only possible when turn ≈1 1). The invariant states that if
one of these conditions holds in a state where thread 2 is waiting to enter the critical section
(that is, after2), we can conclude turn =2 1 as required.

Proving that the precondition of line 3 is satisfied in the post-state of line 2 requires using
a feature of our assertion language, closely related to the semantics of RMW operations,
that we now introduce. Recall from the Update rule in Figure 5 that whenever a write w
is read-from by an RMW operation, w becomes covered, so that no later write (or RMW)
operation can be inserted between w and the RMW. This feature of C11 is critical to the
correctness of Peterson’s algorithm. Observe that the turn variable is only modified by RMW
operations, and therefore every write to turn is covered, except the last. To formally state
this, we need the third occurrence assertion Cn

x , defined as follows.

Cn
x = λσ. ∀w ∈ σ.writesx. w /∈ σ.covered ⇒ wrval(w) = n ∧ w = last(W,x)

So Cn
x means that every write to x except the last is covered and the value written by that

last write is n.
We use the following lemma on covered.

ECOOP 2020

11:22 Owicki-Gries Reasoning for C11 RAR

I Lemma 13.

CVD-Upd
{Cn

x} x.swap(l)RA {Cl
x}

CVD-Wr
x 6= y

{Cn
x} y :=[R] m {Cn

x}

CVD-Rd
{Cn

x} r ←[A] y {Cn
x}

CVD-DObs
{Cn

x} x.swap(l)RA {x =t l}

Rule CVD-Upd states that if Cn
x holds in the pre-state, then after executing x.swap(l)RA,

we obtain a new covered predicate Cl
x. Thus, it is possible to maintain a covered predicate

in a program (with possibly different return values) by ensuring each modifiation to the
covered variable is via a swap. This is a property that is true of Peterson’s algorithm as given
in Figure 12. Rules CVD-Wr and CVD-Rd give preservation properties for the covered
assertion for a read and a write, respectively. Finally, CVD-DObs is used to establish a
definite observation of a covered assertion after a swap command.

The precondition of line 2 asserts that if thread 2 is ready to enter the critical section
(that is, after2) then the RMW to be executed at line 2 must read from the last write which
has value 1 (that is, C1

turn) and when this RMW occurs then thread 1 will definitely see
flag2 set (that is, [turn = 1](flag2 =1 1)). This is enough to show that if after2 then in the
post-state of the RMW, flag2 6≈1 0 which is sufficent to prove the postcondition of line 2.

Of course, the sequential reasoning above must be combined with an interference freedom
check, which is supported by a set of basic lemmas describing how Cn

x is updated. This leads
to the following theorem, which establishes validity of the proof outline.

I Theorem 14. The proof outline of Peterson’s algorithm (Figure 12) is valid.

Proof. In Isabelle. J

We note that Peterson’s algorithm represents a challenge in deductive verification. Unlike
the litmus tests presented above, there is sufficient complexity in the algorithm and the
resulting proof outline so that pen-and-paper proofs cannot be trusted. Using our mech-
anisation, we explored several variations of the proof outline in Figure 12, and discovered
simplifications to our original pen-and-paper proofs.

7 Mechanisation

As already mentioned, the operational semantics as well as all lemmas and theorems presented
in this paper have been mechanised in Isabelle. In this section, we discuss our mechanisation
effort.

To prove the lemmas about basic assertions, we typically prove a more general result
relating to reads and writes, which are then specialised so that they can be used in the
verification of the algorithms. For example, we first prove the lemma in Figure 13, which
describes changes to definite values and applies to any writing transition. This is then
specialised to the corollaries on the right, which are easier for Isabelle to find when performing
the verification of the proof outlines.

The generic lemmas require some amount of interactive work. However, once verified, it is
straightforward to use them to prove the corollaries. For example, d_obs_WrX_set in Figure 13
is verified using “by (metis WrX_def avar.simps(2) d_obs_Wr_set wr_val.simps(1))”,
which is found automatically by Isabelle’s built in sledgehammer tool [10].

Such lemmas and corollaries are in turn used in the proofs of programs. First the program
state (i.e., ΣC11) is encoded as a record type with a special variable that models the C11
state. The programs themselves are encoded as a relation over these records with program

S. Dalvandi, S. Doherty, B. Dongol, and H. Wehrheim 11:23

lemma d_obs_Wr_set:
assumes "wfs σ"

and "wr_val a = Some n"
and "avar a = x"
and "[x =t m] σ"
and "step t a σ σ’"

shows "[x =t n] σ’"

corollary d_obs_WrX_set:
"wfs σ =⇒ [x =t m] σ =⇒ σ [x := n]t σ’ =⇒ [x =t n] σ’"

corollary d_obs_WrR_set :
"wfs σ =⇒ [x =t m] σ =⇒ σ [x :=R n]t σ’ =⇒ [x =t n] σ’"

corollary d_obs_RMW_set :
"wfs σ =⇒ [x =t m] σ =⇒ σ RMW[x,w,n]t σ’ =⇒ [x =t n] σ’"

Figure 13 Isabelle encoding of basic axioms over C11 assertions.

counters modelling control flow. This allows the proof outlines to be encoded as predicates
mapping program counters to the assertions at that control point. We then verify a set
of lemmas that guarantee local correctness and interference freedom, where we decompose
proofs and apply case analysis over the individual program steps (e.g., reads, writes for
each thread). Once a proof has been decomposed, sledgehammer is able to find the relevant
corollaries (e.g., those in Figure 13) to discharge proofs automatically.

8 Related Work

The semantics and verification of programs running on weak memory models has recently
received a lot of attention. Lahav [20] gives a brief survey for C11.

Our timestamp based operational semantics is motivated by ideas in [13] and is similar
to the semantics of Kaiser et al. [16, 17]. We note there are differences in coverage of the
memory models in [13, 16, 17]. Dolan et al. [13] cover a sequentially consistent (SC) and
relaxed accesses for OCAML, where the SC operations behave like Java volatiles. Kaiser et
al [16] covers non-atomics and release-acquire, while Kang et al. [17] support a much larger
fragment of C11, including so-called load-buffering cycles.

Abdulla et al. have shown the reachability problem for release-acquire to be undecidable [1].
A number of works target model checking for weak memory, e.g., by explicitly encoding
architectural structures leading to weak behaviour, like store buffers [31, 4]. Ponce de León
et al. [28, 14] have developed a bounded model checker for weak memory models, taking the
axiomatic description of a memory model as input. (Bounded) model checkers for specific
weak memory models are furthermore the tools CBMC [5] (for TSO), Nidhugg [2] (for TSO
and PSO), RCMC [18] (for C11) and GenMC [19] (again, parametric in memory model).

A (non-automatic) reasoning technique for proving invariants – parameterised by a
weak memory model – has been proposed by Alglave and Cousot [3]. They propose a new
semantics, different from an operational one without any coherence order (or modification
order) constraining the order of writes to memory. Their assertions contain so-called pythia
variables to uniquely identify values of read events, and require a separate communication

ECOOP 2020

11:24 Owicki-Gries Reasoning for C11 RAR

proof (differentiating their method from standard Owicki-Gries reasoning). They say “In
addition to the initialisation, sequential, and non-interference proof, the main difference
with Owicki and Gries [25] (and Lamport 1977) is the use of pythia variables and the
read-from relation in assertions and the communication proof showing that reads-from is
well-formed.” [3]. Our method in contrast only requires the initialisation, sequential, and
non-interference proofs as with the original technique.

Another manual method for the RC11 memory model has been developed by Doherty
et al. [12], who cover the message passing example and Peterson’s algorithm. Our work is
inspired by this existing work, however, there are several differences. They use a classical
model of the C11 state (expressed in terms of a set of relations, e.g., reads-from, sequenced-
before etc), develop assertions over these relations and a small proof calculus for these
assertions. Moreover, their methods are at a lower level of abstraction than the techniques
presented in this paper since the assertions are stated in terms of individual relations that
make up each state. Thus, it is not possible to directly develop a Hoare logic for their
assertions and mechanisation itself is more difficult.

Also close to our work is that of Lahav and Vafeiadis [21] who also develop an Owicki-Gries
style proof calculus. We consider all their examples except RCU – our logic can handle the
RCU example, but this proof has thus far not been mechanised. Moreover, we include several
other case studies such as litmus tests that combine read-read coherence with message passing
and the non-trivial Peterson’s algorithm. There are several additional differences to note. (1)
Lahav and Vafeiadis’ proof calculus is developed in the absence of an operational semantics,
and hence, their definition of a valid Hoare triple is non standard (see [21, Definition 9]). A
consequence of this is that they must be careful about the introduction of auxiliary variables,
resorting to the more restricted notion of a ghost variable. In contrast, we use traditional
auxiliary variables – an auxiliary variable must not affect the control flow of a program nor
be assigned to any program variable. Note however, that to simplify the presentation, we
use auxiliary variables in a more restricted manner (see Section 3). (2) They do not handle
relaxed accesses – as stated in their conclusion: “While OGRA’s non-interference condition
appears to be restrictive, it is unsound for weaker memory models, such as C11’s relaxed
accesses . . . ”. (3) They do not provide a mechanisation.

A frequently employed starting point for program logic is separation logic, for which
a number of extensions to weak memory exist (GPS [32], RSL [16]). Svendsen et al. [30]
propose a separation logic based on the promising semantics of Kang et al. [17]. The principle
of ownership transfer used therein naturally fits to message passing using release acquire.
Prover support for such separation logic based proofs – like ours with Isabelle – has been
developed for the Iris proof system [16]. Tool support has also been developed by Summers
and Müller [29], where the RSL logic has been encoded in the Viper tool, offering a level
of proof automation. Their encoding is proved sound and complete with respect to RSL.
However, such efforts do not provide a clear link between C11 semantics and traditional
reasoning using Hoare logics.

9 Conclusion

In this paper, we have introduced an assertion language for C11 RAR which enables re-use
of the entire Owicki-Gries proof calculus except for the axiom of assignment. The assertion
language is based on an operational semantics for C11 RAR which we have shown to be sound
wrt. standard axiomatic semantics. We have exemplified reasoning on a number of standard
C11 RAR litmus tests as well as a C11 RAR annotated version of Peterson’s algorithm. All

S. Dalvandi, S. Doherty, B. Dongol, and H. Wehrheim 11:25

proofs ranging are mechanised within Isabelle – this includes soundness of the basic axioms
for weak memory reads, writes and updates, and validity of proof outlines for the examples
presented.

We are currently integrating this work [11] into the standard Owicki-Gries library that
is included in the Isabelle distribution [24]. As future work, we aim to tackle fragments
of C11 larger than C11 RAR, e.g., fragments that allow the load buffering example to
terminate with postcondition r1 = 1 ∧ r2 = 1 [8, 17], SC annotations [22], as well as
release sequences and fences [9]. Extending our operational semantics to handle the final
two features is straightforward, but is not considered in this paper as it complicates the
semantics and detracts from our main contribution, i.e., a simple extension to Hoare logic to
enable reasoning about C11 programs. Hoare-style reasoning that incorporates the other two
features is currently being investigated.

References
1 P. A. Abdulla, J. Arora, M. F. Atig, and S. N. Krishna. Verification of programs under the

release-acquire semantics. In K. S. McKinley and K. Fisher, editors, PLDI, pages 1117–1132.
ACM, 2019.

2 P. Aziz Abdulla, S. Aronis, M. Faouzi Atig, B. Jonsson, C. Leonardsson, and K. Sagonas.
Stateless model checking for TSO and PSO. Acta Inf., 54(8):789–818, 2017. doi:10.1007/
s00236-016-0275-0.

3 J. Alglave and P. Cousot. Ogre and Pythia: an invariance proof method for weak consistency
models. In G. Castagna and A. D. Gordon, editors, POPL, pages 3–18. ACM, 2017.

4 J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig. Software verification for weak memory
via program transformation. In M. Felleisen and P. Gardner, editors, ESOP, volume 7792 of
LNCS, pages 512–532. Springer, 2013. doi:10.1007/978-3-642-37036-6_28.

5 J. Alglave, D. Kroening, and M. Tautschnig. Partial orders for efficient bounded model
checking of concurrent software. In N. Sharygina and H. Veith, editors, CAV, volume 8044 of
LNCS, pages 141–157. Springer, 2013. doi:10.1007/978-3-642-39799-8_9.

6 J. Alglave, L. Maranget, and M. Tautschnig. Herding cats: Modelling, simulation, testing,
and data mining for weak memory. ACM Trans. Program. Lang. Syst., 36(2):7:1–7:74, 2014.

7 K. R. Apt, F. S. de Boer, and E.-R. Olderog. Verification of Sequential and Concurrent
Programs. Texts in Computer Science. Springer, 2009. doi:10.1007/978-1-84882-745-5.

8 M. Batty, A. F. Donaldson, and J. Wickerson. Overhauling SC atomics in C11 and OpenCL.
In POPL, pages 634–648. ACM, 2016.

9 M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing C++ concurrency.
In T. Ball and M. Sagiv, editors, POPL, pages 55–66. ACM, 2011. doi:10.1145/1926385.
1926394.

10 S. Böhme and T. Nipkow. Sledgehammer: Judgement day. In IJCAR, volume 6173 of Lecture
Notes in Computer Science, pages 107–121. Springer, 2010.

11 S. Dalvandi, B. Dongol, and S. Doherty. Integrating Owicki-Gries for C11-style memory
models into Isabelle/HOL. CoRR, abs/2004.02983, 2020. arXiv:2004.02983.

12 S. Doherty, B. Dongol, H. Wehrheim, and J. Derrick. Verifying C11 programs operationally.
In J. K. Hollingsworth and I. Keidar, editors, PPoPP, pages 355–365. ACM, 2019. doi:
10.1145/3293883.3295702.

13 S. Dolan, K. C. Sivaramakrishnan, and A. Madhavapeddy. Bounding data races in space and
time. In PLDI, PLDI 2018, pages 242–255, New York, NY, USA, 2018. ACM.

14 N. Gavrilenko, H. Ponce de Le’on, F. Furbach, K. Heljanko, and R. Meyer. BMC for
weak memory models: Relation analysis for compact SMT encodings. In I. Dillig and
S. Tasiran, editors, CAV, volume 11561 of LNCS, pages 355–365. Springer, 2019. doi:
10.1007/978-3-030-25540-4_19.

ECOOP 2020

https://doi.org/10.1007/s00236-016-0275-0
https://doi.org/10.1007/s00236-016-0275-0
https://doi.org/10.1007/978-3-642-37036-6_28
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-1-84882-745-5
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1926385.1926394
http://arxiv.org/abs/2004.02983
https://doi.org/10.1145/3293883.3295702
https://doi.org/10.1145/3293883.3295702
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1007/978-3-030-25540-4_19

11:26 Owicki-Gries Reasoning for C11 RAR

15 C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–
580, 1969. doi:10.1145/363235.363259.

16 J.-O. Kaiser, H.-H. Dang, D. Dreyer, O. Lahav, and V. Vafeiadis. Strong logic for weak
memory: Reasoning about release-acquire consistency in Iris. In P. Müller, editor, ECOOP,
volume 74 of LIPIcs, pages 17:1–17:29. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2017. doi:10.4230/LIPIcs.ECOOP.2017.17.

17 J. Kang, C.-K. Hur, O. Lahav, V. Vafeiadis, and D. Dreyer. A promising semantics for relaxed-
memory concurrency. In G. Castagna and A. D. Gordon, editors, POPL, pages 175–189. ACM,
2017.

18 M. Kokologiannakis, O. Lahav, K. Sagonas, and V. Vafeiadis. Effective stateless model checking
for C/C++ concurrency. PACMPL, 2(POPL):17:1–17:32, 2018. doi:10.1145/3158105.

19 M. Kokologiannakis, A. Raad, and V. Vafeiadis. Model checking for weakly consistent libraries.
In K. S. McKinley and K. Fisher, editors, PLDI, pages 96–110. ACM, 2019.

20 O. Lahav. Verification under causally consistent shared memory. SIGLOG News, 6(2):43–56,
2019. doi:10.1145/3326938.3326942.

21 O. Lahav and V. Vafeiadis. Owicki-Gries reasoning for weak memory models. In M. M.
Halldórsson, K. Iwama, N. Kobayashi, and B. Speckmann, editors, ICALP, volume 9135 of
LNCS, pages 311–323. Springer, 2015. doi:10.1007/978-3-662-47666-6_25.

22 O. Lahav, V. Vafeiadis, J. Kang, C.-K. Hur, and D. Dreyer. Repairing sequential consistency
in C/C++11. In PLDI, pages 618–632. ACM, 2017.

23 L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Computers, 28(9):690–691, 1979. doi:10.1109/TC.1979.1675439.

24 T. Nipkow and L. P. Nieto. Owicki/Gries in Isabelle/HOL. In FASE, volume 1577 of Lecture
Notes in Computer Science, pages 188–203. Springer, 1999.

25 S. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I. Acta Inf.,
6:319–340, 1976. doi:10.1007/BF00268134.

26 L. C. Paulson. Isabelle - A Generic Theorem Prover (with a contribution by T. Nipkow),
volume 828 of LNCS. Springer, 1994. doi:10.1007/BFb0030541.

27 A. Podkopaev, I. Sergey, and A. Nanevski. Operational aspects of C/C++ concurrency. CoRR,
abs/1606.01400, 2016. arXiv:1606.01400.

28 H. Ponce de León, F. Furbach, K. Heljanko, and R. Meyer. BMC with memory models
as modules. In N. Bjørner and A. Gurfinkel, editors, FMCAD, pages 1–9. IEEE, 2018.
doi:10.23919/FMCAD.2018.8603021.

29 A. J. Summers and P. Müller. Automating deductive verification for weak-memory programs.
In D. Beyer and M. Huisman, editors, TACAS, volume 10805 of LNCS, pages 190–209. Springer,
2018. doi:10.1007/978-3-319-89960-2_11.

30 K. Svendsen, J. Pichon-Pharabod, M. Doko, O. Lahav, and V. Vafeiadis. A separation logic
for a promising semantics. In A. Ahmed, editor, ESOP, volume 10801 of LNCS, pages 357–384.
Springer, 2018. doi:10.1007/978-3-319-89884-1_13.

31 O. Travkin, A. Mütze, and H. Wehrheim. SPIN as a linearizability checker under weak memory
models. In V. Bertacco and A. Legay, editors, HVC, volume 8244 of LNCS, pages 311–326.
Springer, 2013. doi:10.1007/978-3-319-03077-7_21.

32 A. Turon, V. Vafeiadis, and D. Dreyer. GPS: navigating weak memory with ghosts, protocols,
and separation. In A. P. Black and T. D. Millstein, editors, OOPSLA, pages 691–707. ACM,
2014. doi:10.1145/2660193.2660243.

33 J. Wickerson, M. Batty, T. Sorensen, and G. A. Constantinides. Automatically comparing
memory consistency models. In G. Castagna and A. D. Gordon, editors, POPL, pages 190–204.
ACM, 2017.

34 A. Williams. https://www.justsoftwaresolutions.co.uk/threading/petersons_lock_
with_C++0x_atomics.html, 2018. Accessed: 2018-06-20.

https://doi.org/10.1145/363235.363259
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3326938.3326942
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1007/BF00268134
https://doi.org/10.1007/BFb0030541
http://arxiv.org/abs/1606.01400
https://doi.org/10.23919/FMCAD.2018.8603021
https://doi.org/10.1007/978-3-319-89960-2_11
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1007/978-3-319-03077-7_21
https://doi.org/10.1145/2660193.2660243
https://www.justsoftwaresolutions.co.uk/threading/petersons_lock_with_C++0x_atomics.html
https://www.justsoftwaresolutions.co.uk/threading/petersons_lock_with_C++0x_atomics.html

A Semantics for the Essence of React
Magnus Madsen
Aarhus University, Denmark
https://www.cs.au.dk/~magnusm/
magnusm@cs.au.dk

Ondřej Lhoták
University of Waterloo, Canada
https://plg.uwaterloo.ca/~olhotak/
olhotak@uwaterloo.ca

Frank Tip
Northeastern University, Boston, MA, USA
https://www.franktip.org
f.tip@northeastern.edu

Abstract
Traditionally, web applications have been written as HTML pages with embedded JavaScript code
that implements dynamic and interactive features by manipulating the Document Object Model
(DOM) through a low-level browser API. However, this unprincipled approach leads to code that
is brittle, difficult to understand, non-modular, and does not facilitate incremental update of
user-interfaces in response to state changes.

React is a popular framework for constructing web applications that aims to overcome these
problems. React applications are written in a declarative and object-oriented style, and consist
of components that are organized in a tree structure. Each component has a set of properties
representing input parameters, a state consisting of values that may vary over time, and a render
method that declaratively specifies the subcomponents of the component. React’s concept of
reconciliation determines the impact of state changes and updates the user-interface incrementally by
selective mounting and unmounting of subcomponents. At designated points, the React framework
invokes lifecycle hooks that enable programmers to perform actions outside the framework such as
acquiring and releasing resources needed by a component.

These mechanisms exhibit considerable complexity, but, to our knowledge, no formal specification
of React’s semantics exists. This paper presents a small-step operational semantics that captures the
essence of React, as a first step towards a long-term goal of developing automatic tools for program
understanding, automatic testing, and bug finding for React web applications. To demonstrate that
key operations such as mounting, unmounting, and reconciliation terminate, we define the notion of
a well-behaved component and prove that well-behavedness is preserved by these operations.

2012 ACM Subject Classification Theory of computation Ñ Operational semantics; Software and
its engineering Ñ Semantics

Keywords and phrases JavaScript, React, operational semantics, lifecycle, reconciliation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.12

Related Version https://cs.uwaterloo.ca/sites/ca.computer-science/files/uploads/files/
cs-2020-03.pdf.

Funding The third author was supported in part by National Science Foundation grant CCF-1715153.
This research was supported by the Natural Sciences and Engineering Research Council of Canada.

Acknowledgements The authors are grateful to the anonymous reviewers for their insightful com-
ments.

© Magnus Madsen, Ondřej Lhoták, and Frank Tip;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 12; pp. 12:1–12:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7510-8724
https://www.cs.au.dk/~magnusm/
mailto:magnusm@cs.au.dk
https://orcid.org/0000-0001-9066-1889
https://plg.uwaterloo.ca/~olhotak/
mailto:olhotak@uwaterloo.ca
https://orcid.org/0000-0002-1862-3498
https://www.franktip.org
mailto:f.tip@northeastern.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2020.12
https://cs.uwaterloo.ca/sites/ca.computer-science/files/uploads/files/cs-2020-03.pdf
https://cs.uwaterloo.ca/sites/ca.computer-science/files/uploads/files/cs-2020-03.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 A Semantics for the Essence of React

1 Introduction

A web application is a program where the user-interface runs in a web browser. Traditionally,
such applications have been written as HTML pages that contain embedded JavaScript
code that implements dynamic and interactive features, such as input validation or data
visualization, by manipulating the Document Object Model (DOM) through a low-level
browser API. Using the DOM, the programmer can add, remove, or mutate HTML elements
directly. While expressive, this unprincipled approach has several disadvantages. First, direct
mutation of the DOM leads to brittle and difficult to understand code. Second, using this
approach, it is difficult to design reusable user-interface components and libraries. Third, this
approach does not easily lend itself to designs where the user-interface of a web application
is updated incrementally in response to user input or new data received from a server. As a
result, traditional web applications are often buggy and difficult to maintain [4, 5, 19, 20, 18].

The React framework [8] was developed to address these concerns. A React application
does not manipulate the DOM directly but instead operates on a “virtual DOM”, by
constructing React components that are rendered incrementally as their properties and state
change. Such components are written in a declarative and object-oriented programming
style, where classes represent components, and reusing a component is as simple as creating
an instance of a class. A React application is structured as a tree, where a root component
represents the top-level element of the user-interface, and where a (possibly dynamically
varying) set of subcomponents correspond to widgets within that page. A React component
has three key constituents: (i) a set of properties representing input parameters needed
to configure the component, (ii) an internal state consisting of values that may vary over
time, and (iii) a render method that specifies how a component is rendered by returning a
subtree composed of a mix of subcomponents and HTML elements. The process of creating
and updating the user-interface of a React application is defined in terms of mounting and
unmounting operations, corresponding to the addition and removal of subcomponents. A
key feature of React is its concept of reconciliation, which entails determining those parts of
a page that are affected by state changes and updating them incrementally by selectively
mounting and unmounting subcomponents. At key points during this process (e.g., when
components are mounted or unmounted), the React framework invokes lifecycle hooks –
callback methods that enable programmers to perform actions, e.g., to fetch data from a
remote server or to store data locally in localStorage.

Today, React is one of the world’s most popular web frameworks. On StackOverflow,
a popular question-and-answer forum for programmers, more than 181,554 questions are
tagged reactjs. In comparison, the reactjs tag is more popular than the perl, scala, swing, or
typescript tags. On GitHub, React is the fourth most starred repository, with more than
142,000 stars. On NPM, the package manager for Node.js, React has more than 20,000,000
downloads per month.

While React helps programmers structure their web application as a collection of modular
components, it comes with its own set of challenges and bug patterns that new programmers
must learn to avoid. For example, the intricate control- and dataflow can make it exceedingly
difficult to understand how state changes in one component affect other components. As
another example, the complex interplay between the component lifecycle methods and the
reconciliation algorithm can be difficult to understand.

To enable the construction of tools for reasoning about the behavior of React applications,
for automatic testing, and for bug finding, a precise understanding of the semantics of React
is required. This paper establishes such an understanding, in the form of a formal semantics
that captures the essence of React. Our semantics is based on λjs [10], and precisely models
the key aspects of React:

M. Madsen, O. Lhoták, and F. Tip 12:3

(i) mounting and unmounting of components,
(ii) reconciliation of component descriptors and mounted components, and
(iii) the semantics of state changes.

To demonstrate that key operations such as mounting, unmounting, and reconciliation
terminate, we define the notion of a well-behaved component by imposing a ranking function on
components, and requiring that the render method of a component only returns components
of strictly smaller rank. We then prove that well-behavedness is preserved by these operations.

In this paper, we focus on the core of React version 16.x. In the 16.x series, React has
undergone some changes in the supported lifecycle methods, but those are mostly orthogonal
to our work. React 16.8 introduced React hooks, a new, optional mechanism for state
management in a functional style that avoids the use of classes. To our knowledge, there is
no plan to change or remove the current mechanism for state management, and is is unclear
to what extent the community will be adopting React hooks. In the paper, we focus on
traditional state management as used in current React applications.

The remainder of this paper is organized as follows. Section 2 uses a small React
application as an example to illustrate the key concepts and terminology associated with
React. Section 3 presents a small-step operational semantics for the essence of React.
Section 4 defines a well-behavedness property for components and demonstrates that well-
behavedness is preserved by the key operations. Section 5 discusses how lifecycle hooks can
be modeled. Related work is discussed in Section 6. Finally, Section 7 presents conclusions
and directions for future work.

2 React

We will review the key concepts and terminology of React using a small React application
that illustrates some of the typical requirements that a modern web developer must deal with.
This includes fetching data and periodically receiving updates from the server, updating the
browser’s Document Object Model (DOM) to reflect the latest data, and filtering data based
on user input. In pure JavaScript these steps can be difficult to manage, but React makes
these steps easy to express.

Our example application receives RSS feeds from several news sites and, for each feed,
displays the title of each news article. Clicking on the title will navigate the user to the
full article on newspaper website. To focus on a specific news topic, the user may enter a
keyword in the box at the top of the window to remove from the view any news items that
do not contain the specified keyword. Figure 1 shows a screenshot of the application after
the user has typed the word “brexit” in the box. The news feeds are polled every 5 seconds
and the display is updated when existing news items disappear, and when additional news
items appear. Note that such updates are performed incrementally, i.e., only the changed
parts of the web page’s DOM representation are updated and re-rendered.

In general, a React application is organized as as a tree of React components, each of which
is self-contained UI widget that may be composed of subcomponents. React components are
either instances of classes or they are HTML elements such as buttons or text fields. Our
example application consists of a root component App that has 4 subcomponents: a text field
and one subcomponent for each news feed, which is an instance of the RssFeed class. Each
React component has three central constituents: A set of properties, an internal state, and a
render method. The properties are a form of input parameters typically used to configure
the component. The state holds time-varying values, e.g., the values of input fields. The
render method is used to draw the component by returning a subtree composed of a mix of

ECOOP 2020

12:4 A Semantics for the Essence of React

Figure 1 Screenshot of our example React application. The screenshot shows the set of articles
from news feeds from The Guardian, Reuters, and BBC World News after the user has entered the
search term “Brexit”.

subcomponents and HTML elements. In the case of our example application, the number of
subcomponents is fixed because it depends on the number of news feeds being monitored,
which is fixed. However, in general the component tree is not static, as a render method can
vary the tree returned based on a component’s properties and state. For example, one can
easily imagine adding a feature that would allow the user to subscribe to additional news
feeds, so that the number of components would vary dynamically as well.

The process of creating and updating the user-interface of a React application is defined
in terms of mounting and unmounting operations. Here, mounting an application involves
instantiating the class corresponding to its root component, rendering it by calling its render
method, and recursively mounting its subcomponents. The React framework automatically
takes care of all of this. To do so, React must be informed explicitly when state changes
occur, by invoking the setState method with an object that specifies the state changes.
When state changes occur, React will invoke the render method of the affected components
to update the user-interface appropriately. However, changes are applied incrementally:
React’s reconciliation mechanism ensures that state changes do not require recomputation
and re-rendering of the entire component tree, but only of those components affected by
the state change. If a state change has the effect of removing a subcomponent, such a
subcomponent is unmounted, i.e., the subcomponent is removed from its parent, and cleanup
actions are performed as necessary. At designated points in the execution of a React
application (e.g., prior to and upon completion of mounting and unmounting operations and
when state changes occur), so-called lifecycle methods are invoked by the React framework.
Lifecycle methods are declared in classes corresponding to React components and can perform
any programmer-specified action. Typically, lifecycle methods are used to initiate network
requests to fetch data or initialize resources when a component is mounted, and to free
resources when a component is unmounted.

M. Madsen, O. Lhoták, and F. Tip 12:5

1 import React, {Component} from ’react’;
2 import ’./App.css’;
3
4 let Parser = require(’rss-parser’);
5 let parser = new Parser();
6
7 class App extends Component {
8 constructor() {
9 super();
10 this.state = {filter: ""};
11 }
12 feeds = [
13 { title: "The Guardian", url: "https://www.theguardian.com/world/zimbabwe/rss" },
14 { title: "Reuters", url: "http://feeds.reuters.com/Reuters/worldNews"},
15 { title: "BBC World News", url: "http://feeds.bbci.co.uk/news/world/rss.xml"}
16];
17 render = () => {
18 return <div>
19 <input type="text" onChange={this.notifyChange}/>
20 { this.feeds.
21 map((feed) => <RssFeed title={feed.title} url={feed.url} filter={this.state.filter}/>)}
22 </div>
23 }
24 notifyChange = (e) => {
25 this.setState({filter: e.target.value});
26 }
27 }
28 class RssFeed extends Component {
29 constructor() {
30 super();
31 this.state = {items: []};
32 }
33 componentWillMount = () => {
34 this.doUpdate()
35 this.timer = setInterval(this.doUpdate, 5000)
36 }
37 componentWillUnmount = () => {
38 clearInterval(this.timer)
39 }
40 doUpdate = () => { // use "cors-anywhere" proxy to add CORS headers to the proxied request
41 (async () => {
42 let url = "https://cors-anywhere.herokuapp.com/" + this.props.url
43 let feed = await parser.parseURL(url);
44 this.setState({items: feed.items});
45 })();
46 }
47 matchesKeyword = (newsItem) =>
48 (this.props.filter === "") || newsItem.title.includes(this.props.filter);
49 render = () => {
50 return (
51 <div className="feed">
52 <h1>{this.props.title}</h1>
53
54 {this.state.items.filter(this.matchesKeyword).
55 map(item => {item.title})}
56
57 </div>
58);
59 }
60 }
61 export default App;

Figure 2 Example of a React web application.

Figure 2 shows the complete source code for the React application shown in Figure 1. The
application consists of two classes: App (lines 7–27) and RSSFeed (lines 28–60). Each React
class has a constructor method that is responsible for initializing the component’s state. The
state of the root component App includes a field1 filter that will be used to determine which
items should be selected from the newsfeeds. The constructor of the root component App
(line 8–11) initializes the filter field to the empty string, reflecting that, by default, no news

1 In this paper, we will use the term “field” to refer to object fields and the term “property” to refer to
the inputs provided to React components.

ECOOP 2020

12:6 A Semantics for the Essence of React

items should be filtered out. Next, on lines 12–16, a field feeds is initialized with an array
that contains the URLs for the news feeds. Lines 17–23 show the render method for class
App. In general, a render method of a React class produces a component descriptor, i.e., a
declarative description of the component’s subcomponents that are to be mounted/reconciled
by React. Here, the render method returns a <div> tag containing a text field (line 19),
and a sequence of RSSFeed components (lines 20–21). Line 19 specifies that entering or
changing the text in the text field will cause the method notifyChange (lines 24–26) to be
invoked with the current text as an argument. Lines 20–21 map a function over the feeds
array to create an array of RSSFeed components, passing each field’s URL and title, and the
current value of the filter property. The notifyChange method on lines 24–26 specifies that
React’s setState function should be invoked, passing in an object with a property filter
that is bound to the current value of the filter. This illustrates how React merges a form
of declarative and object-oriented programming: The render methods return a declarative
description of subcomponents that React then instantiates and maintains as objects.

The state of an RSSFeed component consists of a field items that represents the current
items of the corresponding news feed, and the constructor (lines 29–32) initializes this field
with an empty array. Next, the lifecycle methods componentWillMount (lines 33–36) and
componentWillUnmount (lines 37–39) are defined. The former specifies that, when an RSSFeed
component mounts, the doUpdate method should be invoked (line 34) immediately, and then
invoked periodically (line 35) every 5 seconds. The latter specifies that, upon unmounting an
RSSFeed component, the timer should be cleared (line 38). The doUpdate method (lines 40–46)
asynchronously requests content from an RSS feed on line 42, using a proxy to enable
cross-origin requests that would otherwise be disallowed due to browser’s same-origin policy.
The contents of the feed are parsed on line 43, and the RSSFeed component’s state is updated
on line 44 by invoking setState to set the items property to the news items in the feed’s
contents. The RSSFeed component’s render method (lines 49–59) makes use of an auxiliary
method matchesKeyword (lines 47–48) to determine if a given newsfeed item matches the filter
if a filter is specified (if no filter is specified, all items match). The render method returns
a div element (line 51) containing a title (line 52) and a list of news items extracted from
the feed (line 55). The latter is constructed by filtering the items using the matchesKeyword
function and creating an li (list item) tag for each item containing a hyperlink that is created
using the title and URL obtained from the news feed.

We conclude from this example that React enables the construction of sophisticated
interactive web applications, for which the user-interface is modular and incrementally
maintained in response to property and state changes. React applications are remarkably
concise due to a powerful combination of declarative and object-oriented programming. While
the behavior of React applications can be understood in terms of a small number of key
operations, thus far these operations have only been defined informally. To our knowledge,
our paper presents the first approach that places the essence of React on a formal foundation.

3 Semantics

We now present a small-step operational semantics, named λreact, that captures the essence
of React. We formulate the semantics as an extension of the λjs calculus [10]. Using λjs
as a foundation allows us to focus on the core issues without being distracted by complex
JavaScript features such as prototype-based inheritance, dynamic property access, implicit
coercions, and so on, which are handled by λjs.

M. Madsen, O. Lhoták, and F. Tip 12:7

The calculus aims to capture three central aspects of React:
(i) the mounting and unmounting of components,
(ii) the reconciliation of component descriptors and mounted components, and
(iii) the semantics of state changes.

3.1 Design Decisions
We briefly outline the major design choices we made in the formulation of the semantics.

React is a huge framework and our aim to distill it down to its essence. We want to
describe the primary concepts of React in as little formalism as possible. It is not our
goal to provide a complete formal specification of the entire React framework.
React relies on classes, which are supported in EcmaScript 6, but λjs is based on an
earlier version of EcmaScript. We believe that λjs could be extended with classes, but
that is beyond the scope of the current paper. In the λreact semantics, we side-step this
issue by direct modeling of the React constructs.
We extend the syntax of λjs with explicit terms for mounting, unmounting, and reconcili-
ation of components. In React, the programmer cannot use these terms directly; they are
part of the internals.
We model the registration of event listeners since they are the main driver of execution
once a React application has started. We simulate the execution of these event listeners
in a non-deterministic fashion with a special “‚” term that represents the event loop.
React places a strong emphasis on performance. For the most part, we ignore such
considerations, however our specification of object equivalence and merging does reflect
these underlying concerns.
We omit lifecycle hooks from the λreact semantics. Although they play an important role
in any realistic React application they are not particularly interesting from a semantic
point of view, and adding them would be straightforward, if tedious. Nevertheless, in
Section 5 we give some ideas of how to incorporate lifecycle hooks into the semantics.

3.2 Components, Component Descriptors, and Mounted Components
A React component is a class that extends the React.Component class. Each React component
has a set of properties and an internal state. The properties are a form of input parameters
used to configure the component, whereas the state holds time-varying values.

Every component has a render method that returns fragments that are either React
component descriptors or HTML elements. This tree fragment represents the “view” of the
component and is used by React to “draw” the component in the DOM. For example, a com-
ponent could return the HTML element <h1>Hello</h1>, which React would simply display.
On the other hand, it could also return a component descriptor <RssFeed title="..."
url="..." /> whose view would depend on the render method inside RssFeed.

Component Descriptors and Mounted Components

In React terminology, the process of creating a React component is called mounting. A
mounted component is an object that is currently part of the virtual (and real DOM). When
a component is taken out of the virtual DOM (and real DOM) it is unmounted and eventually
garbage-collected. A component descriptor is tag-like structure that carries a name of a class
and optionally several properties. A component descriptor can be turned into a mounted
component. To illustrate these concepts, consider the following render method:

ECOOP 2020

12:8 A Semantics for the Essence of React

62 class App extends React.Component {
63 render() {
64 if (this.state.progress < 100) {
65 return <ProgressBar value={this.state.progress} />
66 } else {
67 return <Game />
68 }
69 }
70 ...
71 }

Here the render method consists of an if-then-else statement. If the current progress,
kept in the internal state of the App component, is less than 100 then the method returns
the component descriptor <ProgressBar value=... /> passing the current progress as a
property. Otherwise, the method returns the <Game /> component descriptor.

When the App component is mounted, its initial progress is zero. Hence the render method
returns the <ProgressBar /> descriptor. React then mounts and displays this component.
Over time, the progress might change, as assets for the game are downloaded. When this
happens, React will re-invoke the render method. Let us say that the progress changes from
0% to 20%. Before the change, React knows that the last component descriptor it mounted
underneath App was:

<ProgressBar value=0 />

when the progress is changed, render returns the component descriptor:

<ProgressBar value=20 />

At this point, React observes that the two component descriptors are of the same type
(ProgressBar and ProgressBar), but that one of the properties has changed. Since the com-
ponents are the same, React simply updates the property value in the mounted component
ProgressBar and calls its render method. This is called reconciliation.

Now, let us consider what happens when the progress reaches 100%. React knows that
the last component descriptor it mounted underneath App was:

<ProgressBar value=20 />

when the progress is changed to 100%, render returns the component descriptor:

<Game />

At this point, React observes that the two component descriptors are not of the same type
(ProgressBar and Game), hence it unmounts ProgressBar (destroying it) and then it mounts
Game in its place and calls its render method.

In summary, a component descriptor is a value that is a static description of a component
that can be turned into a mounted component React. The goal of React is to ensure that
whatever component descriptors are returned by render, they are kept consistent with the
currently mounted components, and that render is invoked whenever a change happens that
might change its output.

3.3 Component State and Properties
Each React component has a set of properties and an internal state. The properties are
accessed through the this.props field inside the component, whereas the state is accessed
through this.state. Importantly, neither field should be changed directly! The properties

M. Madsen, O. Lhoták, and F. Tip 12:9

of a component are always derived from the properties described in a component descriptor,
e.g., <ProgressBar value=20 />. To change the state of a component, the programmer
must explicitly call setState on the component. These two patterns ensure that React
always knows when changes occur to the properties or state of a mounted component. If
properties or state were to be changed through other means, the component might become
out of sync with its visual representation in the virtual DOM (and real DOM).

In React, the data flow of properties and state can be quite complex. In general, the
state of a component can be passed as a property to another component. However, it is also
possible, to use a property as part of a component’s own internal state (e.g., by passing it
to setState), or to derive state from a property. For example, in the motivating example,
the filter is a part of the state of the App component, but it is passed as a property to the
RssFeed component.

3.4 Render and Child Components
The render method is at the heart of each React component. It determines the subcompon-
ents of a component by returning component descriptors. A small, but important detail is that
it only determines one level of components. For an example, consider the following program:

72 class Component extends React.Component {
73 render() {
74 return (
75 <Subcomponent>
76 <Button>Click Me</Button>
77 </Subcomponent>
78);
79 }
80 }
81 class Subcomponent extends React.Component {
82 render() {
83 return (<h1>Hello World!</h1>);
84 }
85 }

Here, the render method of the Component class returns a
<Subcomponent>...</Subcomponent> descriptor with a Button component descriptor
inside it. Our intuition tells us that Subcomponent should have a button somewhere
inside it, but this is not necessarily so. In fact, there is no guarantee that the Button
component descriptor is ever mounted. To understand why, consider the render method
of the Subcomponent. This method unconditionally returns an h1 tag. Hence if we were
to render Component all we would see would be a h1 tag. In React, nested component
descriptors are simply treated as a special property called children. A component must
explicitly refer to this property to use any component descriptors that may be nested within
it. For example, we could change the subcomponent to:

86 class Subcomponent extends React.Component {
87 render() {
88 return (
89 <div>
90 <h1>Goodbye World!</h1>
91 {this.props.children}
92 </div>
93);
94 }
95 }

In this case, the subcomponent would also mount the Button component descriptor passed
by its parent component. Hence, in the semantics we will write component descriptors as
<C props.../> ignoring any nested component descriptors, as these are simply passed as a
special property called children.

ECOOP 2020

12:10 A Semantics for the Essence of React

c P Cst “ bool | num | str | null | undef [constant]

v P Val “ c [literal]
| a [address]
| tstr : v ¨ ¨ ¨ u [object]
| λ px ¨ ¨ ¨ q e [function]

e P Exp “ v [value]
| x [variable]
| e ; e [sequence]
| e “ e [assignment]
| let px “ eq e [binding]
| e pe ¨ ¨ ¨ q [call]
| e.f [field load]
| e.f “ e [field store]
| ref e [address of]
| deref e [value at]

x P Var “ is a finite set of variable names.
f P Fld “ is a finite set of field names.

a P Addr “ is an infinite set of memory addresses.
λ P Lam “ is the set of all lambda expressions.

Figure 3 Syntax of λjs.

3.5 Syntax of λreact

We are now ready to present the syntax of λreact. We assume a base language with support
for objects and references such as λjs [10], shown in Figure 3.

Values

We extend the values of λjs with two new central concepts: component descriptors and
mounted components. Figure 4 and Figure 5 show the extended grammar of values in λreact.
A component descriptor is written as <C props /> where C is an identifier and props is an
object literal, i.e., a set of key-value pairs. In React, C is a class, but for our purposes it is
sufficient that C is an identifier. A mounted component is written as <C@a props/> and is
similar to a component descriptor, except that it is associated with an object in the heap
stored at address a. A component descriptor is just that; a “dead” description, whereas a
mounted component is a “live” object. We will write π to refer to component descriptors and
Π to refer to mounted components. The mnemonic is that mounting a component descriptor
changes it from π to Π.

Expressions

We extend the syntax of λjs with React constructs for mounting, unmounting, and reconcili-
ation of components. Figure 6 shows the grammar of the new constructs. We briefly explain
each new expression; their semantics are explained in-depth in the following subsection.

M. Madsen, O. Lhoták, and F. Tip 12:11

π P Component Descriptor “ <C props />

Π P Mounted Component “ <C@aprops/>

props “ tk1 “ v1, ¨ ¨ ¨ , kn “ vnu

C “ is a set of identifiers.

Figure 4 Component Descriptors and Mounted Components.

v P Val “ ¨ ¨ ¨ | π | Π

Figure 5 Values of λreact.

Mountpeq is used to mount a component descriptor. Unmountpeq is used to unmount a
mounted component. MountSeqpeq and UnmountSeqpeq are variants of these that operate
on sequences of component descriptors and mounted components, respectively. Mountedpeq
and Unmountedpeq are used to perform cleanup after a mount or unmount operation has
completed. Reconcilepe, eq is used to reconcile a component descriptor with a mounted
component. Reconciliation, as will be explained, is the process of updating a mounted com-
ponent with new data; either through an incremental re-render of the affected subcomponents
or through unmounting/mounting. ReconcileSeqpe, eq is similar, but reconciles a sequence
of component descriptors with a sequence of mounted components. Finally, the ‚ expression
represents the event-loop, which marks when an event listener can be executed.

Evaluation Context

We extend λreact with the evaluation contexts shown in Figure 7.

Notation

We will write a for a sequence of addresses, π for a sequence of component descriptors, and
Π for a sequence of mounted components. We will write the empty sequence as Nil. We use
pattern matching π :: π to deconstruct a sequence into its head (π) and its tail (π). Given
a partial map f : A ãÑ B, we write f ´ a for the same map, but with the binding for a
removed. We write the empty map as H.

e P Exp “ ¨ ¨ ¨

| SetStatepe, eq | Renderpeq | ReRenderpeq
| Mountpeq | MountSeqpeq | Mountedpe, eq
| Unmountpeq | UnmountSeqpeq | Unmountedpeq
| Reconcilepe, eq | ReconcileSeqpe, eq
| ‚

Figure 6 Syntax of λreact.

ECOOP 2020

12:12 A Semantics for the Essence of React

E “ ˝

| SetStatepE, eq | SetStatepv,Eq | RenderpEq | ReRenderpEq
| MountpEq | MountSeqpEq | MountedpE, eq | Mountedpv,Eq
| UnmountpEq | UnmountSeqpEq | UnmountedpE, eq | Unmountedpv,Eq
| ReconcilepE, eq | Reconcilepv,Eq | ReconcileSeqpE, eq | ReconcileSeqpv,Eq

Figure 7 Evaluation Contexts for λreact.

σ P Heap “ Addr ãÑ Val
δ P ComponentState “ Addr ãÑ Obj
ζ P ComponentShape “ Addr ãÑ Mounted Componentˆ pAddressq‹

` P Listeners “ Addr ãÑ PpLamq
χ P Configuration “ Heapˆ ComponentStateˆ ComponentShapeˆ Listenersˆ Exp

Figure 8 Runtime of λreact.

3.6 Runtime of λreact

The runtime of λreact is conceptually similar to λjs, but extended with several additional
aspects to keep track of React components. Figure 8 shows the runtime of λreact. A
configuration χ P Configuration is a 5-tuple xσ, δ, ζ, `, ey consisting of the heap σ, the
component state map δ, the component shape map ζ, the listener map `, and an expression
e. A heap σ is a partial map from addresses to values. A component state map δ is a
partial map from (component) addresses to objects. The component state map does not hold
the current state of a component, but rather its next state which will become the current
state through the process of reconciliation. (The current state of a component is always
available through the state field on the component object.) A component shape map ζ is a
partial map from (component) addresses to pairs of a mounted component and a sequence of
addresses. The component shape map records the current “shape” of a mounted component
along with its currently mounted subcomponents. Intuitively, the component shape map can
be thought of as the “Virtual DOM”; what the browser is currently displaying. A listener
map ` is a partial map from (component) addresses to a set of lambda expressions. The map
holds the currently registered event listeners associated with a mounted component. Finally,
every configuration has an expression e.

3.7 Initial State
A λreact program consists of a single root component descriptor π (e.g., <App props />).
We define a function, inject, to insert the component descriptor into an empty, initial
configuration:

injectpπq “ xH,H,H,H,Mountpπq; ‚y

The initial configuration starts with an empty heap (σ “ H), an empty component state map
(δ “ H), an empty component shape map (ζ “ H), and an empty map of listeners (` “ H).
The initial expression is Mountpπq; ‚ which will trigger a mount of the root component
descriptor, recursively mounting its subcomponents, and registering event listeners on all
mounted components. Once the root component is mounted, the expression enters the event
loop, and begins to execute event listeners non-deterministically.

M. Madsen, O. Lhoták, and F. Tip 12:13

keyspo1q “ keyspo2q

@k P keyspo1q. o1pkq is primitiveñ o1pkq ““ o2pkq

@k P keyspo1q. o1pkq is referenceñ o1pkq === o2pkq

o1 ” o2
[”-Props]

Figure 9 React Object Equivalence.

@ki P keyspo1q. o1pkiq “ vi

@k1i P pkeyspo2q ´ keyspo1qq. o2pk
1
iq “ v1i

o3 “ tk1 : v1, ¨ ¨ ¨ , kn : vn, k
1
1 : v11, ¨ ¨ ¨ , k1n : v1nu

o1 b o2 “ o3
[b-State]

Figure 10 The State Merge Operator b.

3.8 Semantics of Object Equality
A key React operation is to determine when two objects are equal. React uses this to
determine when property- and state objects are unchanged during reconciliation, as discussed
later. Figure 9 defines two objects to be equal if
(i) they share the same keys,
(ii) the values of primitive types are compared by equality, and
(iii) the references are compared using reference equality.
For example,

ta : 21, b : 42u ” ta : 21, b : 42u

and

ta : 21, b : `u ” ta : 21, b : `u

where ` is some address in the heap.
This shallow notion of equality can be checked efficiently, since we never have to recursively

descend into the object structure.

3.9 Semantics of State Merges
Another key React operation is to merge two objects. Like equivalence, merging is also a
shallow operation. Specifically, two objects are merged in a left-biased manner where the
returned object is obtained by taking all keys and values from the left object and adding
those keys and values from the right object that did not appear in the left object. Figure 10
captures this notion.

For example,

ta : 21, b : 42u b tb : 84u “ ta : 21, b : 42u

and

ta : 21, b : 42u b tc : 84u “ ta : 21, b : 42, c : 84u

ECOOP 2020

12:14 A Semantics for the Essence of React

π “ <C props /> a R dompσq
σ1
“ σra ÞÑ tprops : propsus δ1

“ δra ÞÑ tus `1
“ `ra ÞÑ listenersOfppropsqs

xσ, δ, ζ, `,Mountpπqy Ñ xσ1, δ1, ζ, `1,Mountedp<C@a props/>,MountSeqpRenderpπqqqy
(E-Mount)

ζ1
“ ζra ÞÑ p<C@a props/>, aqs

xσ, δ, ζ, `,Mountedp<C@a props/>, aqy Ñ xσ, δ, ζ1, `, ay
(E-Mounted)

xσ, δ, ζ, `,MountSeqpNilqy Ñ xσ, δ, ζ, `,Nily
(E-Mount-Seq-1)

xσ, δ, ζ, `,MountSeqpπ :: πqy Ñ xσ, δ, ζ, `,Mountpπq :: MountSeqpπqy
(E-Mount-Seq-2)

ζpaq “ p<C@a props/>, aq

xσ, δ, ζ, `,Unmountpaqy Ñ xσ, δ, ζ, `,UnmountSeqpaq; Unmountedpaqy
(E-Unmount)

`1
“ `´ a

xσ, δ, ζ, `,Unmountedpaqy Ñ xσ, δ, ζ, `1,Nily
(E-Unmounted)

xσ, δ, ζ, `,UnmountSeqpNilqy Ñ xσ, δ, ζ, `,Nilqy
(E-Unmount-Seq-1)

xσ, δ, ζ, `,UnmountSeqpa :: aqy Ñ xσ, δ, ζ, `,Unmountpaq ; UnmountSeqpaqy
(E-Unmount-Seq-2)

Figure 11 Semantics of mounting and unmounting components.

Note that the procedure is not recursive:

to : ta : 21uu b to : tb : 42uu “ to : ta : 21uu

which is common source of bugs.

Both object equality and merging play vital roles in the reconciliation of components.

3.10 Semantics of Mounting and Unmounting
We now discuss the process of mounting and unmounting components. A component is
mounted when a λreact application starts and it may cause subcomponents to be mounted, and
so on recursively. Components are also mounted and unmounted as part of the reconciliation
process, which will be described later. Figure 11 shows the semantics of mounting and
unmounting components. We now discuss each evaluation rule in greater detail:

[E-Mount]

The rule states that to mount a component descriptor π “ <C props /> the following steps
are taken: A fresh address a R dompσq is chosen. An object is stored at that address in the
heap with a copy of the props object. The component state map δ is updated with a binding
for a, binding it to the empty object (since the next pending state is currently empty). The
event listeners are extracted from the props object and registered in the event listener map `.
These steps are sufficient to mount the component, but we must also recursively mount its
subcomponents as determined by its render method.

We achieve this by having the mount expression reduce to:

Mountedp<C@aprops/>,MountSeqpRenderpπqqq

which can be understood as follows: The inner Renderpπq will reduce to a sequence of
subcomponent descriptors. We will then mount each of these in turn. This will reduce to

M. Madsen, O. Lhoták, and F. Tip 12:15

a sequence of mounted component addresses a. Finally, the Mountedp<C@aprops/>, aq
expression will register that the mounted components addresses a are subcomponents of the
current component a.

[E-Mounted]

The rule states that the expression Mountedp<C@aprops/>, aq reduces to the address a
of the mounted component <C@a props/> with the component shape map ζ updated to
reflect the current shape of the component a and that a are the current subcomponents of a.
Intuitively, once the Mounted expression is evaluated, the component a and its subcomponents
have been fully mounted, and we have recorded their shape so that, in the future when
we re-render the component, we are able to compare the current shape to the component
descriptors returned by render.

[E-Mount-Seq-1]

The rule states that mounting the empty sequence of component descriptors results in the
empty sequence of mounted component addresses.

[E-Mount-Seq-2]

The rule states that to mount a sequence of component descriptors π :: π we mount the
first component π and then we mount the remaining component descriptors π. Mounting a
component descriptor π returns a mounted component address a and since our goal is to
produce a sequence of mounted component addresses, we prepend the result of mounting π
with the result of mounting the remaining component descriptors π. Thus, MountSeq always
reduces to a sequence of mounted component addresses.

For example, if we mount the two component descriptors:

xσ, δ, ζ, `,MountSeqp<TextField props1 /> :: <Button props2 /> :: Nilqy

we obtain a new configuration with the two mounted components:

xσ1, δ1, ζ 1, `1, a1 :: a2 :: Nily

where

ζ 1pa1q “ <TextField@a1 props1/> and ζ 1pa2q “ <Button@a2 props2/>

[E-Unmount]

The rule states that to unmount a mounted component address a, we must first unmount its
subcomponents, which are known from the component shape map ζ, and afterwards we can
consider the component Π to be unmounted.

[E-Unmounted]

The rule states that once the subcomponents of a component a have been unmounted, all
listeners are removed from the event listener map `. We do not remove the address a from
the heap σ since there could still be a reference to the component object somewhere nor do
we remove it from the component shape map ζ. A garbage collector can be used to clean
these maps, if desired.

ECOOP 2020

12:16 A Semantics for the Essence of React

xσ, δ, ζ, `,ReconcileSeqpNil,Nilqy Ñ xσ, δ, ζ, `,Nily
(RC-Empty)

xσ, δ, ζ, `,ReconcileSeqpπ,Nilqy Ñ xσ, δ, ζ, `,MountSeqpπqy
(RC-Extend)

xσ, δ, ζ, `,ReconcileSeqpNil, aqy Ñ xσ, δ, ζ, `,UnmountSeqpaqy
(RC-Truncate)

xσ, δ, ζ, `,ReconcileSeqpπ :: π, a :: aqy Ñ xσ, δ, ζ, `,Reconcilepπ, aq :: ReconcileSeqpπ, aqy
(RC-Sequence)

π “ <C1 nextProps /> ζpaq “ p<C2@a prevProps/>,_q C1 ‰ C2

xσ, δ, ζ, `,Reconcilepπ, aqy Ñ xσ, δ, ζ, `,Unmountpaq ; Mountpπqy
(RC-Diff-Root)

π “ <C nextProps /> ζpaq “ p<C@a prevProps/>, aq nextState “ δpaq

o “ σpaq o1
“ orprops ÞÑ nextPropssrstate ÞÑ nextStates σ1

“ σra ÞÑ o1
s

xσ, δ, ζ, `,Reconcilepπ, aqy Ñ
xσ1, δ, ζ, `,Reconciledp<C@a nextProps/>,ReconcileSeqpReRenderpaq, aqqy

(RC-Same-Root)

ζ1
“ ζra ÞÑ p<C@a props/>, aqs

xσ, δ, ζ, `,Reconciledp<C@a props/>, aqy Ñ xσ, δ, ζ1, `, ay
(RC-Reconciled)

Figure 12 Semantics of reconciliation.

[E-Unmount-Seq-1]

The rule states that unmounting the empty sequence of mounted component addresses results
in the empty sequence.

[E-Unmount-Seq-2]

The rule states that to unmount a sequence of mounted component addresses a :: a we must
unmount the first component a and then we can unmount the remaining components a.

It is easy to see how the structure of the [E-Mount], [E-Mounted], [E-Mount-Seq-
1], and [E-Mount-Seq-2] mirror the structure of [E-Unmount], [E-Unmounted], [E-
Unmount-Seq-1], and [E-Unmount-Seq-2]. Mounting is essentially a recursive traversal
of a tree that is gradually being computed by the render methods. Unmounting is the
reverse process, using the component shape map to recursively remove subcomponents.

3.11 Semantics of Reconciliation
The purpose of reconciliation is to merge a component descriptor (or sequence of component
descriptors) with a mounted component (or sequence of mounted components). At a high
level, there are two broad cases to consider: (i) a mounted component is updated with new
properties and state, and (ii) a mounted component is replaced by another component. We
introduce two expressions: Reconcilepe, eq and ReconcileSeqpe, eq to model reconciliation.
The former reconciles a component descriptor with a mounted component address, whereas
the latter deals with sequences of component descriptors and mounted component addresses.
Figure 12 shows the semantics of reconciliation. We now discuss each rule in greater detail:

[RC-Empty]

The rule states that reconciliation of the empty sequence of component descriptors with the
empty sequence of mounted component addresses simply results in the empty sequence of
mounted component addresses.

M. Madsen, O. Lhoták, and F. Tip 12:17

[RC-Extend]

The rule states that reconciliation of a sequence of component descriptors π with the empty
sequence of mounted component addresses Nil results in each of the π component descriptors
being mounted. For example, if we were to reconcile the component descriptors:

<RssFeed title="..."/> :: <RssFeed title="..."/>

with the empty sequence of mounted component addresses then we would simply mount the
two <RssFeed>s. This is a common occurrence when the render method of a component
returns additional component descriptors. The rule is called extend because it extends a
sequence of subcomponents with additional components.

[RC-Truncate]

The rule states that reconciliation of the empty sequence of component descriptors with a
sequence of a of mounted component addresses results in each of the a components being
unmounted. For example, if we were to reconcile the empty sequence of component descriptors
with the sequence of mounted component addresses:

a1 :: a2 :: Nil

where

ζpa1q “ <a1@RssFeed title="..."/> ζpa2q “ <a2@RssFeed title="..."/>

then the mounted components a1 and a2 would be unmounted. The rule is called truncate
because its truncates a sequence of subcomponents. Intuitively, this is the dual of the
[RC-Extend] rule.

[RC-Sequence]

The rule states that reconciliation of a sequence of component descriptors π :: π with a
sequence of mounted component addresses a :: a requires pairwise reconciliation, i.e., we
have to reconcile π with a and then reconcile the rest of the two sequences π and a. For
example, if we were to reconcile the sequence of component descriptors:

<RssFeed title="The Guardian"/> :: <RssFeed title="Reuters"/>

with the sequence of mounted component addresses:

a1 :: a2 :: Nil

where

ζpa1q “ <a1@RssFeed title="BBC World"/> ζpa2q “ <a2@RssFeed title="Reuters"/>

the first component descriptor would be reconciled with the first mounted component a1 and
similarly the second component descriptor would be reconciled with the second mounted
component a2. In this case, the first component a1 would be re-rendered and recursively
reconciled since one of its properties changed.

We now turn to the more interesting question of how to reconcile a single component
descriptor with a single mounted component. As stated previously, there are two cases to
consider: (i) a mounted component is being updated with new properties and state, or (ii) a
mounted component is being replaced by another component. We begin with the latter.

ECOOP 2020

12:18 A Semantics for the Essence of React

[RC-Diff-Root]

The rule states that reconciliation of a component descriptor π “ <C1 nextProps /> with a
mounted component address a where ζpaq “ <a@C2 prevProps/> and where the descriptor
and the mounted components have different kinds, i.e., C1 ‰ C2, is a two-step process. First,
the currently mounted component C2 is unmounted, which as we have seen, will recursively
unmount its subcomponents. Second, the C1 component descriptor is mounted.

For example, if we were to reconcile the component descriptor:

<Alert color="secondary">Submitted!</Alert>

with the mounted component address a where:

ζpaq “ <a@Button color="primary">Submit</Button>

The mounted Button component would be unmounted, and the Alert component descriptor
would be mounted in its place. One component being replaced by another component is a
common occurence in the implementation of form dialogs and page navigation.

[RC-Same-Root]

This rule states that reconciliation of a component descriptor π “ <C nextProps /> with
a mounted component address a where ζpaq “ <C@a prevProps/> and the descriptor and
mounted component have the same kind requires multiple steps: The props field of the
component object is updated to nextProps. Similarly, the state field is updated to the value
of the next state as specified by the component state map δ. Finally, the expression reduces
to the expression:

ReconciledpΠ,ReconcileSeqpReRenderpaq, aqq

since we must re-render the component and reconcile the returned component descriptors
(which could have changed) with the currently mounted subcomponents a. Once this is done,
we must update the component shape map of a to store its newly mounted / reconciled
subcomponents, hence we wrap the result in Reconciled which is similar to Mounted
and Unmounted.

A variant of the [RC-Same-Root] rule, closer to React semantics, would use React’s
object equivalence to determine whether the prevProps and nextProps are equivalent, and
whether nextState and the current state are equivalent. If all were found to be equivalent
then there is no need to do anything, and we could simply skip the updates and re-rendering.
This is a performance consideration, hence we have omitted it from the rules.

[Rc-Reconciled]

The rule states that once reconciliation is complete for the mounted component address a
with (possibly new) subcomponents a then we update the component shape map ζ to store
the subcomponents and then return the component address a itself.

3.12 Semantics of Rendering
The semantics of rendering, shown in Figure 13, are straightforward. As mentioned earlier,
there are two types of rendering: rendering a component descriptor for the first time and
re-rendering an already mounted component.

M. Madsen, O. Lhoták, and F. Tip 12:19

π “ <C props /> xσ, δ, ζ, `, props.renderpqy Ñ xσ, δ, ζ, `, πy

xσ, δ, ζ, `,Renderpπqy Ñ xσ, δ, ζ, `, πy
(E-Render)

ζpaq “ p<C@aprops/>,_q xσ, δ, ζ, `, props.renderpqy Ñ xσ, δ, ζ, `, πy

xσ, δ, ζ, `,ReRenderpaqy Ñ xσ, δ, ζ, `, πy
(E-ReRender)

Figure 13 Semantics of Rendering and Re-Rendering.

nextState “ δpaq δ
1
“ δra ÞÑ newStateb nextStates ζpaq “ p<C@a props/>, aq

xσ, δ, ζ, `, SetStatepa, newStateqy Ñ xσ, δ
1
, ζ, `,Reconciledpa,ReconcileSeqpRenderpaq, aqqy

[E-Set-State]

Figure 14 Semantics of Set-State.

[E-Render] and [E-ReRender]

The [E-Render] rule states that to render a component descriptor we invoke the render
method of the props object. We assume that such a method always exists on props. The
[E-ReRender] is similar but for a mounted component where we use the address a to
retrieve the component from the component shape map ζ and then we call its render method
of its props object.

An interesting observation about [E-Render] and [E-ReRender] is that, once a com-
ponent has been mounted, overwriting its props.render will not have any effect, since the
props object itself is stored in the component shape map ζ. While this may seem overly
complicated (and to some extent it is), it (i) is consistent with actual React semantics, and
(ii) it allows us to prove key properties of λreact. Specifically, in these proofs, we need to
know that the render method is not suddenly changed underneath us. Note that calling
render by itself has no effect in our semantics; it is only when it is called from within e.g.,
MountSeq and ReconcileSeq that mounting or reconciliation is triggered.

As mentioned earlier, the render method must return a sequence of component descriptors.
Each component descriptor carries its own properties with a render method inside it. For
this process to terminate, at some point a component will not have any subcomponents and
simply return the empty sequence of component descriptors.

3.13 Semantics of State Changes
The semantics of state changes, shown in Figure 14, are also straightforward:

[E-Set-State]

The rule states that if the mounted component a is passed an object newState with some
new state then we must retrieve the nextState from the δ map and merge the current next
state with the new state. Finally, we must trigger a reconciliation wrapped in a Reconciled
since changing the state of a component could change what is returned by its render.

3.14 Semantics of Events
As mentioned earlier, the properties of a component descriptor may contain fields that
correspond to various event listeners. For example, if there is a field onClick then it should
be registered as an event listener when the component descriptor is mounted (and unregistered

ECOOP 2020

12:20 A Semantics for the Essence of React

a P Addr λ P `paq

xσ, δ, ζ, `, ‚y Ñ xσ, δ, ζ, `, λpaq; ‚y
[E-Loop]

Figure 15 Semantics of Events.

when the component is unmounted). In a real React application, such event listeners are
executed in response to user events. In the λreact semantics, we add a rule, shown in Figure 15,
which states that once we are in the event loop ‚ then we may select any (component) address
a and pick any of its event listeners λ P `paq, execute it, and then return to the event loop.

In the semantics, as well as in real React applications, execution of an event listener
may invoke setState which in turn may cause a component to re-render and trigger the
process of reconciliation. Thus, at a high-level, the execution of a React application can be
understood as an initial mount (as defined by the inject function) followed by a sequence of
reconciliations caused by calls to setState from event listeners.

4 Properties of λreact

We want to show that mounting, unmounting, and reconciliation terminate. However, in
general, these processes may not terminate if the user-defined render function is badly
behaved. Trivially, if render does not terminate then mounting a component descriptor
will not terminate. But even if we assume that render terminates, it could return a list of
“recursive” component descriptors. That is, the render function of a component descriptor
<C props /> could return a list that includes C itself. This would cause an execution where
an infinite tree of component descriptors is mounted (which obviously never terminates).

To overcome these issues, we define the notion of a well-behaved component. Simply put,
the render function of a well-behaved component must always return a list of component
descriptors where each comment descriptor is strictly “smaller” than the component itself.
Under the assumption that components are well-behaved, we can prove properties about
mounting, unmounting, and reconciliation.

We now formalize the notions of rank and well-behavedness:

4.1 Definitions

I Definition 1 (Rank). A ranking function rank : IdentifierÑ Nat is a map from identifiers
(component names) to natural numbers.

I Definition 2 (k-Well-Behaved Expressions). An expression e is k well-behaved if it evaluates
to a list of component descriptors π such that for each component descriptor πi “ <C props />
in the list it is the case that rankpCq ă k. If k “ 0 then e must evaluate to the empty list.

I Definition 3 (k-Well-Behaved Component Descriptors). A component descriptor π “

<C props /> is k well-behaved if rankpCq “ k and the render function props.render is k
well-behaved.

That is to say, the render function can only return component descriptors with a strictly
lower rank than the rank of the component.

M. Madsen, O. Lhoták, and F. Tip 12:21

I Definition 4 (k-Well-Behaved Mounted Components). A mounted component Π “

<C@a props/> is k well-behaved if rankpCq “ k and the render function props.render is
k well-behaved.

That is to say, the render function can only return component descriptors with a strictly
lower rank than the rank of the mounted component.

I Definition 5 (Well-Behaved Component Shape Maps). A component shape map ζ is well-
behaved if:

For every a P dompζq where ζpaq “ pΠ, aq, Π is k well-behaved for some k and for every
address ai P a, ζpaiq “ pΠ1,_q, Π1 is k1 well-behaved for some k1 where k1 ă k. That is
to say, every mounted component is well-behaved, its children are well-behaved, and they
have strictly lower rank.
For every pair of addresses a1 and a2 with a1 ‰ a2 it is the case that if ζpa1q “ p_, a1q

and ζpaq “ p_, a2q then the two lists a1 and a2 have disjoint elements. That is to say,
every mounted component has exactly one parent.

As before, if k “ 0 then the children a of a mounted component must be the empty list.

4.2 Theorems
We can now state the main theoretical results of the paper.

I Theorem 6 (Mount Preserves Well-Behavedness). If π is a k well-behaved component
descriptor and ζ is a well-behaved component shape map then:

xσ, δ, ζ, `, ErMountpπqsy Ñ‹ xσ1, δ1, ζ 1, `1, Erasy

and:
ζ 1 is a well-behaved component shape map,
ζ 1paq is k well-behaved mounted component, and
a is not the child of any mounted component, i.e. there does not exist an address a2 such
that ζpa2q “ p_, a2q where a P a2.

I Corollary 7 (Inject is Well-Behaved). If π is a k well-behaved component then:

injectpπq Ñ‹ xσ, δ, ζ, `, ‚y

where ζ is well-behaved.

I Theorem 8 (Unmount Preserves Well-Behavedness). If a is an address in dompζq and ζ is
a well-behaved component shape map then:

xσ, δ, ζ, `, ErUnmountpaqsy Ñ‹ xσ, δ, ζ, `1, ErNilsy

I Theorem 9 (Reconciliation Preserves Well-Behavedness). If π is a k well-behaved component
descriptor, ζ is a well-behaved component shape map, a P dompζq, ζpaq “ pΠ,_q, Π is k1
well-behaved then

xσ, δ, ζ, `, ErReconcilepπ, aqsy Ñ‹ xσ1, δ1, ζ 1, `1, Era1sy

and ζ 1 is well-behaved and ζ 1pa1q is k well-behaved.

ECOOP 2020

12:22 A Semantics for the Essence of React

Table 1 Summary of React Lifecycle Hooks. (‹ only under certain conditions.)

Lifecycle Hook Use setState? Deprecated?

constructor(props) No No
componentDidMount() Yes No
componentDidUpdate(prevProps, prevState, snapshot) Yes‹ No
componentWillReceiveProps(nextProps) Yes Yes
componentWillMount() Yes Yes
componentWillUnmount() No No
componentWillUpdate(nextProps, prevProps) No Yes
shouldComponentUpdate() - No
getDerivedStateFromProps() n/a No
getSnapshotBeforeUpdate(prevProps, prevState) - No

I Lemma 10 (ReconcileSeq Preserves Well-Behavedness). If ζ is a well-behaved component
shape map, π “ π1, ¨ ¨ ¨ , πn, each πi is ki well-behaved, a “ a1, ¨ ¨ ¨ , am, and each ai P dompζq
then

xσ, δ, ζ, `, ErReconcileSeqpπ, aqsy Ñ‹ xσ1, δ1, ζ 1, `1, Era11, ¨ ¨ ¨ , a
1
nsy

and ζ 1 is well-behaved and every ζ 1pa1iq is ki well-behaved.

The detailed proofs of these properties are available in a separate technical report [15].
In summary, we have proved that as long as the render functions terminate and the

component descriptors form a hierarchy that rules out infinite component trees, then the
processes of mounting, unmounting, and reconciling components all terminate. The theorems
show that these restrictions expressed in terms of React programs are reflected in the runtime
state of these programs, and are preserved in the runtime state by all the operations. The
theorems also show that these restrictions are sufficient to ensure termination of each of the
operations that manipulate components.

5 Lifecycle Hooks

Lifecycle hooks are an important part of React. A lifecycle hook is a callback executed by
React in response to changes to a component’s properties and state, and when it is mounted
or unmounted. Lifecycle hooks are frequently used to acquire (and release) resources, to
retrieve data over the internet, and so on. Table 1 shows an overview of the lifecycle hooks
available in React. As the figure shows, the design of lifecycle hooks has gone through
several iterations, and some lifecycle hooks are now deprecated. Another important aspect
of lifecycle hooks is whether they are allowed to call setState. This turns out to be quite
tricky, because it is easy to accidentally construct infinite loops where a lifecycle hook calls
setState which in turn triggers a lifecycle hook, and so on. This is source of bugs in React.

The semantics of λreact does not include lifecycles, but we can extend it to accommodate
them. For example:

The componentWillMount() method is invoked immediately before a component is moun-
ted. In the semantics, this corresponds to the [E-Mount] rule, which we could update
to trigger a call to componentWillMount().

M. Madsen, O. Lhoták, and F. Tip 12:23

The componentDidMount() method is invoked immediately after a component has been
mounted. In the semantics, this corresponds the [E-Mounted] rule, which we could
update to trigger a call to componentDidMount() immediately before returning the
mounted component.
The componentWillUnmount() method is invoked immediately before a component is
unmounted. In the semantics, this corresponds to the [E-Unmount] rule, which we
could update to trigger a call to componentWillUnmount(). There is no correspond-
ing componentDidUnmount() because changes should not be made to an unmounted
component.
The componentDidUpdate() method is invoked immediately after a component has been
updated. In the semantics, this corresponds approximately to the [Rc-Same-Root]
reconciliation rule, which we could update to trigger a call to componentDidUpdate().

Note that many of the lifecycle hooks receive the previous properties, the previous state,
the new properties, and/or the new state. Since the λreact semantics meticulously models
properties and state, these objects are readily available.

6 Related Work

We are not aware of any prior work on formally defining the semantics of React. In this
related work section, we focus on previous research on formally specifying the semantics of
JavaScript, and on related frameworks for defining user-interfaces declaratively.

Semantics of JavaScript

Many proposals have been made for a formal semantics of JavaScript. Herman and
Flanagan [11] presented an implementation of an interpreter for EcmaScript 4 written
in ML. Being an interpreter, the specification was executable. However, EcmaScript 4 was
never adopted as a standard. Maffeis et al. [17] presented the first small-step operational
semantics for JavaScript as a basis for formalization of security properties in web applications.

Guha et al. [10] presented λjs, a minimal semantics for JavaScript. A key aspect of their
work is to formalize a semantics that is as small as possible, while still being expressive
enough to allow compilation of all JavaScript constructs into it. In this way, λjs supports all
ugly features of JavaScript, such as prototype-based inheritance, dynamic property access,
and implicit coercions.

Gardner et al. [9] presented a program logic based on separation logic for reasoning
about a large subset of the ECMAScript 3 language. The subset under consideration
includes features such as prototype inheritance and the with construct, which interacts with
JavaScript’s scoping rules in intricate ways.

Park et al. [21] presented KJS, a complete formalization of ECMAScript 5.1 implemented
in the K Framework [21]. Being specified in the K framework, the semantics is executable
and has been tested against all 2,782 tests in the ECMAScript 5.1 conformance test suite.
By specifying all of JavaScript, and executing all test cases, the authors were able to find
evaluation rules not covered by any existing test, add tests for these rules, and then running
them on different browsers, which ultimately revealed several implementation bugs.

Bodin et al. [6], presented JSCert, a formal semantics for the ECMAScript 5 version
of JavaScript that is formalized and proven correct using the Coq proof assistant. Their
work also includes a reference interpreter, JSRef, that can be used to execute test cases and
compare results against standard JavaScript interpreters. As is typical in formalizations,
JSCert excludes a number of pragmatic details such as certain native library functions, and

ECOOP 2020

12:24 A Semantics for the Essence of React

relies on an external parser to implement eval. Also, the for-in construct has not been
formalized because the standard defines it very loosely. Bodin’s dissertation [7] explored the
challenges associated with the formalization in greater detail.

The semantics of asynchronous JavaScript has been tackled by several authors. Madsen
et al. [16] proposed an extension of λjs that models events, event listeners, and the event
loop. Based on this semantics, the authors developed a static analysis to discover simple
bugs in event-driven JavaScript programs. Loring et al. [13] and Madsen et al. both [14]
proposed semantics to specify the behavior of JavaScript promises. Later work by Alimadadi
et al. [3] presented a tool for finding bugs in promise-based JavaScript code based on [14].

Other Frameworks

A discussion about the design of React and how it evolved can be found in CACM [22]. Since
the introduction of React, many other framework have appeared that emulate its declarative
and object-oriented programming style. React Native [12] lets programmers write native
mobile applications using JavaScript and React. React Native uses the React model, but with
the UI components of the underlying OS, e.g. iOS or Android. Preact [1] is a light-weight
“close to the metal” React-style library with a focus on performance. Preact aims to provide
the thinnest possible “virtual DOM” on top of the real DOM. Vue.js [2] is another React-like
library with a focus on the view-layer and on easy integration with other existing libraries.

We believe our semantics offers a solid foundation for understanding and potentially
modeling these React-inspired libraries. We think that the popularity of React and the
adoption of the “React model” by many other frameworks is a sign of its importance for the
future of web development.

7 Conclusions and Future Work

React is a framework that enables programmers to write web applications in a declarative
and object-oriented style that facilitates reuse. Each component of a React application
has a set of properties representing input parameters, a state consisting of values that may
vary over time, and a render method that specifies its subcomponents. When state changes
occur, React’s reconciliation mechanism determines their impact and updates the user-
interface incrementally by mounting, unmounting, or reconciling subcomponents selectively.
At designated points in this process, the React framework invokes lifecycle methods that
enable programmers to perform actions outside the framework such as acquiring and releasing
resources. Since these mechanisms exhibit considerable complexity, programmers would
benefit from program analyses and tools that can reason precisely about React programs.

It is our long-term goal to develop program understanding and bug finding tools for
React applications. To our knowledge, this paper presents the first formal specification of a
semantics that captures the essence of React, thus establishing a foundation for such tools.
Our small-step operational semantics extends the λjs calculus [10] and models three key
concepts of React:
(i) mounting and unmounting of components,
(ii) reconciliation of component descriptors and mounted components, and
(iii) the semantics of state changes.
To demonstrate that key operations such as mounting, unmounting, and reconciliation ter-
minate, we define the notion of a well-behaved component by imposing a ranking function on
components, and requiring that the render method of a component only returns components
of strictly smaller rank. We then prove that well-behavedness is preserved by these operations.

M. Madsen, O. Lhoták, and F. Tip 12:25

For future work, we plan to conduct a case study to identify and classify common bug
patterns in React web applications. Then, with a formal semantics of React in place, we
will develop static analysis techniques to detect instances of these bug patterns in React
applications. Another avenue for future work is the development of a type system that is
sufficiently expressive to capture the lifecycle of React components and ensure that properties
and state are not accessed or modified incorrectly.

References
1 Preact: Fast 3kB alternative to React with the same modern API. https://preactjs.com/,

2019. Accessed: 2019-12-19.
2 Vue.js: The progressive JavaScript framework. https://vuejs.org/, 2019. Accessed: 2019-

12-19.
3 Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip. Finding broken promises

in asynchronous JavaScript programs. PACMPL, 2(OOPSLA):162:1–162:26, 2018. doi:
10.1145/3276532.

4 Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Danny Dig, Amit M. Paradkar, and
Michael D. Ernst. Finding bugs in web applications using dynamic test generation and
explicit-state model checking. IEEE Trans. Software Eng., 36(4):474–494, 2010. doi:10.1109/
TSE.2010.31.

5 SungGyeong Bae, Hyunghun Cho, Inho Lim, and Sukyoung Ryu. SAFEWAPI: Web API
misuse detector for web applications. In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, pages 507–517, New York,
NY, USA, 2014. ACM. doi:10.1145/2635868.2635916.

6 Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio Maffeis,
Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. A trusted mechanised JavaScript
specification. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pages 87–100,
2014. doi:10.1145/2535838.2535876.

7 Michel Bodin. Certified semantics and analysis of JavaScript. PhD thesis, Université de
Rennes, 2017.

8 Facebook, Inc. React: A JavaScript library for building user interfaces. https://www.reactjs.
org/, 2019. Accessed: 2019-12-19.

9 Philippa Gardner, Sergio Maffeis, and Gareth David Smith. Towards a program logic for
JavaScript. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012,
pages 31–44, 2012. doi:10.1145/2103656.2103663.

10 Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The essence of JavaScript. In Theo
D’Hondt, editor, ECOOP 2010 - Object-Oriented Programming, 24th European Conference,
Maribor, Slovenia, June 21-25, 2010. Proceedings, volume 6183 of Lecture Notes in Computer
Science, pages 126–150. Springer, 2010. doi:10.1007/978-3-642-14107-2_7.

11 David Herman and Cormac Flanagan. Status report: specifying JavaScript with ML. In
Proceedings of the 2007 workshop on Workshop on ML, pages 47–52. ACM, 2007.

12 Facebook Inc. React native: Learn once, write anywhere. https://facebook.github.io/
react-native/, 2019. Accessed: 2019-12-19.

13 Matthew C. Loring, Mark Marron, and Daan Leijen. Semantics of asynchronous JavaScript. In
Proceedings of the 13th ACM SIGPLAN International Symposium on on Dynamic Languages,
Vancouver, BC, Canada, October 23 - 27, 2017, pages 51–62, 2017. doi:10.1145/3133841.
3133846.

14 Magnus Madsen, Ondrej Lhoták, and Frank Tip. A model for reasoning about JavaScript
promises. PACMPL, 1(OOPSLA):86:1–86:24, 2017. doi:10.1145/3133910.

ECOOP 2020

https://preactjs.com/
https://vuejs.org/
https://doi.org/10.1145/3276532
https://doi.org/10.1145/3276532
https://doi.org/10.1109/TSE.2010.31
https://doi.org/10.1109/TSE.2010.31
https://doi.org/10.1145/2635868.2635916
https://doi.org/10.1145/2535838.2535876
https://www.reactjs.org/
https://www.reactjs.org/
https://doi.org/10.1145/2103656.2103663
https://doi.org/10.1007/978-3-642-14107-2_7
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://doi.org/10.1145/3133841.3133846
https://doi.org/10.1145/3133841.3133846
https://doi.org/10.1145/3133910

12:26 A Semantics for the Essence of React

15 Magnus Madsen, Ondřej Lhoták, and Frank Tip. A semantics for the essence of react. Technical
Report CS-2020-03, University of Waterloo, 2020. URL: https://cs.uwaterloo.ca/sites/
ca.computer-science/files/uploads/files/cs-2020-03.pdf.

16 Magnus Madsen, Frank Tip, and Ondrej Lhoták. Static analysis of event-driven Node.js
JavaScript applications. In Proceedings of the 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015,
part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, pages 505–519, 2015.
doi:10.1145/2814270.2814272.

17 Sergio Maffeis, John C. Mitchell, and Ankur Taly. An operational semantics for JavaScript. In
G. Ramalingam, editor, Programming Languages and Systems, 6th Asian Symposium, APLAS
2008, Bangalore, India, December 9-11, 2008. Proceedings, volume 5356 of Lecture Notes in
Computer Science, pages 307–325. Springer, 2008. doi:10.1007/978-3-540-89330-1_22.

18 Frolin S. Ocariza Jr., Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. A study of causes
and consequences of client-side JavaScript bugs. IEEE Trans. Software Eng., 43(2):128–144,
2017. doi:10.1109/TSE.2016.2586066.

19 Frolin S. Ocariza Jr., Karthik Pattabiraman, and Ali Mesbah. Detecting inconsistencies in
JavaScript MVC applications. In 37th IEEE/ACM International Conference on Software
Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1, pages 325–335, 2015.
doi:10.1109/ICSE.2015.52.

20 Frolin S. Ocariza Jr., Karthik Pattabiraman, and Ali Mesbah. Detecting unknown inconsisten-
cies in web applications. In Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03,
2017, pages 566–577, 2017. doi:10.1109/ASE.2017.8115667.

21 Daejun Park, Andrei Stefanescu, and Grigore Rosu. KJS: a complete formal semantics of
JavaScript. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, Portland, OR, USA, June 15-17, 2015, pages 346–356, 2015.
doi:10.1145/2737924.2737991.

22 CACM Staff. React: Facebook’s functional turn on writing JavaScript. Commun. ACM,
59(12):56–62, 2016. doi:10.1145/2980991.

https://cs.uwaterloo.ca/sites/ca.computer-science/files/uploads/files/cs-2020-03.pdf
https://cs.uwaterloo.ca/sites/ca.computer-science/files/uploads/files/cs-2020-03.pdf
https://doi.org/10.1145/2814270.2814272
https://doi.org/10.1007/978-3-540-89330-1_22
https://doi.org/10.1109/TSE.2016.2586066
https://doi.org/10.1109/ICSE.2015.52
https://doi.org/10.1109/ASE.2017.8115667
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1145/2980991

Test-Case Reduction via Test-Case Generation:
Insights from the Hypothesis Reducer
David R. MacIver
Imperial College London, United Kingdom
david@drmaciver.com

Alastair F. Donaldson
Imperial College London, United Kingdom
alastair.donaldson@imperial.ac.uk

Abstract
We describe internal test-case reduction, the method of test-case reduction employed by Hypothesis, a
widely-used property-based testing library for Python. The key idea of internal test-case reduction is
that instead of applying test-case reduction externally to generated test cases, we apply it internally,
to the sequence of random choices made during generation, so that a test case is reduced by
continually re-generating smaller and simpler test cases that continue to trigger some property of
interest (e.g. a bug in the system under test). This allows for fully generic test-case reduction without
any user intervention and without the need to write a specific test-case reducer for a particular
application domain. It also significantly mitigates the impact of the test-case validity problem,
by ensuring that any reduced test case is one that could in principle have been generated. We
describe the rationale behind this approach, explain its implementation in Hypothesis, and present
an extensive evaluation comparing its effectiveness with that of several other test-case reducers,
including C-Reduce and delta debugging, on applications including Python auto-formatting, C
compilers, and the SymPy symbolic math library. Our hope is that these insights into the reduction
mechanism employed by Hypothesis will be useful to researchers interested in randomized testing
and test-case reduction, as the crux of the approach is fully generic and should be applicable to any
random generator of test cases.

2012 ACM Subject Classification Software and its engineering → Software testing and debugging

Keywords and phrases Software testing, test-case reduction

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.13

Category Tool Insights Paper

1 Introduction

When generating test cases to discover bugs in a system under test (SUT), it is common to
use test-case reduction [12, 23], where large and difficult to read test cases are transformed
into smaller and more readable versions, as an aid to debugging the problems discovered.
Tools for automating this process are called test-case reducers, or reducers for short. Test-
case reducers are especially important when using random test-case generation (henceforth
“random generation”), which often produces large and messy initial test cases [2, 23].

This presents a particular problem for property-based testing libraries [2, 1] which augment
unit tests with randomly generated test cases, as each type of generated test case typically
requires its own test-case reducer. When generating domain-specific types with no predefined
test-case reducer, users who want test-case reduction must either write their own or use
one of various approaches to generic test-case reduction which attempt to derive a suitable
reducer automatically.

We present an alternative approach that we call internal test-case reduction (henceforth
“internal reduction”), which allows one to build reduction into the generation process itself.
Our presentation is based on the implementation of internal reduction in Hypothesis [18], a

© David R. MacIver and Alastair F. Donaldson;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 13; pp. 13:1–13:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8635-3223
mailto:david@drmaciver.com
https://orcid.org/0000-0002-7448-7961
mailto:alastair.donaldson@imperial.ac.uk
https://doi.org/10.4230/LIPIcs.ECOOP.2020.13
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Test-Case Reduction via Test-Case Generation

widely1 used Python library for property-based testing. Internal reduction has been the only
supported method of test-case reduction in Hypothesis since early 2016, so we consider it to
be a mature and well-established technology, but it has not previously been described in the
literature and does not appear to be widely known. The aim of this paper is to explain the
idea of internal reduction in detail to the research community, provide insights into how it is
used within Hypothesis, and illustrate the practical pros and cons of the approach via an
experimental comparison with various other test-case reducers.

The key idea of internal reduction is to manipulate the underlying source of randomness
consumed by a random generator, in order to cause the generator to produce smaller test
cases automatically. The final reduced test case is constructed as if the generator had been
implausibly lucky and produced a small and readable test case by chance.

The advantages of internal reduction over other approaches are twofold. First, given an
existing internal reducer, every test-case generator comes with test-case reduction for free,
without the need to write an external reducer. Second, because internal reduction works by
re-generating test cases, any reduced test case is one that could have been generated. If the
generator has been carefully engineered to guarantee that all generated tests satisfy certain
properties, these properties will be satisfied automatically by the reduced test case. This
helps users avoid the test-case validity problem [23], where reduced test-cases fail to satisfy
necessary preconditions for the test. As a result, users hardly need to know that test-case
reduction exists, and can just take the fact that test cases are presented in a reduced form as
a given. Users must of course still ensure that their generators only produce valid test cases,
but this is a problem they must solve anyway, and in practice it is often easier to construct a
valid test case than it is to verify whether an arbitrary test case is valid.

Note that reduction quality or performance are not included among the major advantages
of internal reduction. Anecdotally, and as we will provide evidence for in Section 4.3, test-
case reduction in Hypothesis produces moderately better results than that found in other
property-based testing libraries, but can be a fair bit slower. Based on extensive conversations
with users of Hypothesis and other property-based testing libraries, we consider the user
experience benefits to be worth the performance cost (and the slightly better results to be a
nice bonus on top of that), but we cannot present any particularly compelling argument for
this trade off beyond that experience.

Our main contributions are:
The key idea of internal reduction, which we cast as a shortlex optimization problem over
the choices made during generation (Section 2).
A description of its implementation in Hypothesis (Section 3).
A large evaluation demonstrating that Hypothesis’s internal reduction is reasonably
competitive with other test-case reducers, based on bugs found in the clang and gcc
compilers by Csmith [25] (a generator of C programs), differential testing of two Python
autoformatters, a set of experiments testing SymPy2 (a symbolic algebra library) using
TSTL (a domain-specific language for testing [10]), and a reimplementation of a set of
synthetic benchmarks for QuickCheck’s reduction that were proposed in [22] (Section 4).

We also discuss threats to the validity of our results (Section 5), related work (Section 6)
and present our conclusions and future goals (Section 7).

1 Usage is difficult to measure precisely, but it is used in thousands of open source projects and has over
100,000 downloads per week. See [18] for more details of usage.

2 https://www.sympy.org

https://www.sympy.org

D.R. MacIver and A. F. Donaldson 13:3

2 Foundations of Internal Reduction

In this section we present the key idea of internal reduction. We start with a brief account of
test-case reduction more broadly (Section 2.1), then discuss how these ideas can be applied to
the decisions made during generation to implicitly reduce a generated test case (Section 2.2),
then finish with a worked example showing how a generated test case is transformed in the
course of reduction (Section 2.3).

2.1 Test-Case Reduction Fundamentals
The starting point of test-case reduction is that we have some user-specified interestingness
test that takes a test case and determines whether it is in some sense “interesting” – generally
whether it triggers a specific bug in some system under test – and some known interesting
test case. The goal is to find an interesting test case which is “more readable” than the
initial one, which is typically quite large and complicated.

Exactly what counts as more readable is fairly under-defined. The ultimate goal is to
improve the user’s debugging experience, but this is hard to quantify. Past work on test-case
reduction has identified three key features that seem generally helpful: 1) Smaller test cases
are better [12, 23], 2) Users should be able to predict what features of a test case the reducer
can remove, as this allows them to infer that any remaining features in the reduced test
case are important [1], and 3) Test-case reducers should ideally normalize their input to a
canonical interesting test case for each interestingness test [9].3

In support of these goals, we find it useful to think of any given test-case reducer as
having a reduction order : a total order over all test cases ordering them from best to worst.
The goal of reduction is then to find the reduction-order-minimal interesting test case.

A normalizing reducer would always find this minimal test case, but this requires brute
force enumeration, which is typically infeasible. Reducers used in practice are instead only
local minimizers, making small transformations to an interesting test case and checking if
the transformed version is still interesting. Typically these transformations are organized
into “reduction passes” and the reducer runs until it finds an interesting test case that no
pass is able to reduce further.

2.2 Internal Reduction as Shortlex Optimization
Internal test-case reduction works by manipulating the underlying “random” behaviour in
random generation, so we first discuss the structure of a random generator.

A random generator can be thought of as a true random variable taking values in
some domain, but in practical implementations they are otherwise-deterministic functions
that take a pseudo-random number generator (PRNG) and return some value. A PRNG
provides an interface that the generator requests bits from, with each bit corresponding
to a nondeterministic binary decision (a “coin flip”). As the PRNG is the only source of
nondeterminism, any generated test case can be deterministically recreated from these binary
decisions that led to it.4 We call these sequences of binary decisions choice sequences, and
view random generators as parsers of choice sequences, with the PRNG as a stream interface
for reading the next bits from some underlying choice sequence.

3 In practice no test-case reducers satisfy this condition in general, and the goal is only to approximate it
in common cases.

4 This is essentially a variant on the widely known observation that you can recreate the generated value
from the seed that produced it.

ECOOP 2020

13:4 Test-Case Reduction via Test-Case Generation

A PRNG can produce infinitely many choices, but we can turn a generator into a parser
of finite choice sequences by raising an exception when the generator reads too many bits,
treating a too-short choice sequence as a parse error in the language defined by considering
the generator as a parser. A generator must terminate after having made only finitely many
choices, so any generated test case is the result of parsing some finite choice sequence.

Internal reduction works by performing test-case reduction not on the generated test case,
but on the choice sequence that lead to it, with the hope that the test case corresponding to
the reduced choice sequence is an improvement on the original. Although we cannot expect
this to be true in every case, in this section we argue why, given a suitable reduction order,
it is plausible that it would work for most “natural” random generators.

In our implementation of internal reduction in Hypothesis, the reduction order is the
well-known shortlex order [24]: For choice sequences s and t, s is shortlex-smaller than t if
|s| < |t| or if |s| = |t| and s is lexicographically smaller than t. Thus, internal reduction is
shortlex optimization over the choice sequences leading to interesting generated test cases.

We now outline why this choice of shortlex order is a natural one.

0 200 400 600 800
Choice Sequence Size (kB)

0

100

200

300

400

500

600

Ou
tp

ut
 S

ize
 (k

B)

Figure 1 Input size vs output size for Csmith.

First, we justify that reducing the length of a choice sequence will typically reduce the size
of the corresponding generated test case. This is fairly intuitive: Any part of the generated
test case has to be constructed by the generator, and this will usually involve a series of
nondeterministic choices, so parts of the test case that contribute to its size will correspond
to regions of the choice sequence where they were generated. In the other direction, regions
of the choice sequence correspond to decisions made during generation, so will usually appear
as some part of the generated test case.

To see an example of this in practice, in Figure 1 we show the relationship between choice
sequence length and generated program size in bytes for Csmith [25], a widely used generator
of C programs. Here, the Pearson’s correlation coefficient between choice sequence and test
case size is 0.73, i.e. the length of the choice sequence is a strong but not perfect predictor of
the test case size.

The relationship between choice sequence and test case size can break down for a number
of reasons. For example, it is common to use rejection sampling during generation. In
rejection sampling, one retries generating some value until it satisfies some predicate. For

D.R. MacIver and A. F. Donaldson 13:5

example to generate a number between 0 and 9 one might generate a 4 bit integer (which
will be between 0 and 15) and discard the generated integer and try again if it is greater
than 9. This rejection process may in principle be repeated many times, which can result in
many choice sequences of different sizes, all producing the same value.

An additional common example where choice sequence size is not reflected by output size
is that integers will typically be generated as a fixed number of bits. We might, reasonably
enough, want reduction to reduce integers towards zero (and doing so will reduce the size of
their text representation), but all possible values have the same size of underlying choice
sequence, so this reduction cannot be made by reducing the number of bits drawn, only by
changing their contents.

This example informs what our reduction order should be between two choice sequences
of the same length. If we want fixed width integers to reduce towards zero then, depending
on whether we draw these integers in big or little endian order, choice sequences that differ
only in regions corresponding to a single integer should be ordered based on either the
lexicographic or co-lexicographic (i.e. lexicographic from right to left) order for that region.

It is natural to extend this to the whole choice sequence, suggesting that among choice se-
quences of the same length we should prefer either the lexicographically or co-lexicographically
smaller of the two. The choice between the two is fairly arbitrary, but we picked the lexico-
graphic ordering in Hypothesis because it corresponds with the “time ordering” of random
generation, by prioritizing decisions made earlier in the generation process, as they potentially
have more impact on the generated test case.

2.3 Shortlex Optimization by Example
We now show a worked example of how the generated test case might change as the underlying
choice sequence is reduced through a series of local shortlex optimization. The transformations
we will show in this section do come from an actual run of Hypothesis, but we defer discussion
of how these specific transformations might have been chosen to Section 3.

Our example is as follows: Suppose we have a system under test (SUT) that takes binary
trees as inputs, and that it crashes when given a height imbalanced tree (i.e. some branch of
the tree has two children whose heights differ by more than one).

We could test this SUT using the Python code of Figure 2 to randomly generate inputs
to it. After running the SUT against several generated inputs, we might discover the tree
shown along with its associated choice sequence at the top-left of Figure 3.

1 class Tree(Generator):
2 def do_draw(self, source):
3 if source.getbits(1):
4 return Branch(source.draw(self), source.draw(self))
5 else:
6 return Leaf()

Figure 2 A simple binary tree generator. This code assumes Branch and Leaf classes for internal
and leaf nodes. For ease of presentation, this generator has expected infinite size; a better one would
be slightly leaf-biased.

This initial tree is moderately complicated, so we wish to find a smaller, simpler, tree,
that will help us understand this bug. Rather than using external reduction, operating on
the trees themselves, our internal reducer instead transforms the choice sequences producing
them. We show the these choice sequences in Figure 3, along with the corresponding trees
produced when running the generator of Figure 2 on them.

ECOOP 2020

13:6 Test-Case Reduction via Test-Case Generation

1101101100001101101001000

1

101101101001000

2

1010100

4

1011000

3

Figure 3 Successive reductions of choice sequences leading to unbalanced trees.

These transformations proceed as follows: Starting from our initial randomly gener-
ated choice sequence, labeled 1, the reducer performs the transformations 1 → 2 → 3
by replacing long sequences of bits with shorter sequences of zero bits, first transforming
“1101101100001. . . ” to “101. . . ”, then “101101101001000” into “10110000”. These transform-
ations correspond to collapsing a subtree into a single leaf node, but we emphasize that
the transformations operate on the underlying choice sequences, without reference to gener-
ated data. Finally, in the transformation 3→ 4, the reducer swaps two bits, transforming
“10110000” into “10101000”. This swaps two subtrees, but once again is performed without
any knowledge of the SUT’s data domain.

In this case, the reducer in fact finds the shortlex minimal choice sequence leading to an
unbalanced tree, which can be seen in quadrant 4 of Figure 3, although in general the result
will only be locally minimal.

In the course of finding these transformations, the reducer will have tried many other
“failed reductions” – choice sequences that did not yield interesting test cases, either due to
generating balanced trees or providing too few bits for generation of a complete test case to
succeed (the left and right examples of Figure 4 respectively).

3 The Design of the Hypothesis Reducer

In this section we outline some interesting details of the Hypothesis reducer, and the rationale
behind them. It will likely be of greatest interest to readers who want to learn about the
intricate details of implementing a test-case reducer.5 Readers who care more about our high
level claims may wish, at least initially, to simply regard the Hypothesis reducer as a black
box and to skip to Section 4 for our evaluation of its effectiveness.

5 The very interested reader may also wish to consult the source code, which is self-contained
and reasonably well documented. https://github.com/HypothesisWorks/hypothesis/blob/master/
hypothesis-python/src/hypothesis/internal/conjecture/shrinker.py

https://github.com/HypothesisWorks/hypothesis/blob/master/hypothesis-python/src/hypothesis/internal/conjecture/shrinker.py
https://github.com/HypothesisWorks/hypothesis/blob/master/hypothesis-python/src/hypothesis/internal/conjecture/shrinker.py

D.R. MacIver and A. F. Donaldson 13:7

110010100 1011100

Figure 4 Some failed choice sequences arising during the reductions in Figure 3. The dashed
lines represent branches that could not be generated due too short choice sequences.

3.1 A Summary of Reduction Passes
The Hypothesis reducer follows the common pattern of dividing reduction into different
passes, each of which perform different classes of transformation designed to reduce interesting
test cases in the shortlex order. We now provide a brief summary of these passes.

In Hypothesis 5.15.1 (which was recent at the time of this writing), the reducer contains
15 passes consisting of:

1. Six passes that delete contiguous regions of the choice sequence.
2. A pass that replaces a contiguous region of the choice sequence with a sub-region.
3. A pass for replacing a contiguous region of the choice sequence with a, possibly shorter,

zeroed sequence of choices.
4. Four passes for pure lexicographic reduction.
5. Three passes for common patterns that require simultaneously lexicographically reducing

some parts of the choice sequence while deleting others.

These passes tend to accumulate organically over time, based on examples we encounter
that we feel the reducer should be able to handle and can’t. Several of them are quite specific,
but most are generic, and the combination seems to produce good results on most generators
we encounter. The most specific of these by far is that one of the lexicographic passes is
entirely a special case for Hypothesis’s floating point generator. We discuss this further in
Section 3.3.

3.2 Generator-directed Reduction
One of the biggest obstacles with test-case reduction on sequences (e.g. choice sequences for
internal reduction, or file-based external test case reducers) is finding transformations that
preserve some sense of syntactic validity, as syntactically invalid test cases will rarely be
interesting. A classic technique here is hierarchical delta debugging (HDD) [19], which uses
a grammar to find regions to delete.

In comparison to formats designed for human consumption, the choice sequence format is
relatively forgiving – the only way a choice sequence can be invalid is for it to be too short.6
This gives the reducer a reasonable amount of leeway in making changes, and often allows it
to find valid reductions by accident when some change at the choice sequence level makes
essentially arbitrary changes to the generated test case.

6 In Hypothesis a generator may also explicitly declare a choice sequence to be invalid. We have omitted
details of this for clarity of presentation.

ECOOP 2020

13:8 Test-Case Reduction via Test-Case Generation

1 class Generator(object):
2 def do_draw(self, context):
3 raise NotImplementedError()
4
5
6 class Source(object):
7 def __init__(self, prefix=()):
8 """A Source object such that the i’th
9 call to getbits returns prefix[i] (possibly
10 truncated) and after that is random."""
11 self.prefix = prefix
12
13 # Records the bits drawn
14 self.record = []
15 self.draw_stack = []
16 # Records (start, end) positions for draws
17 self.draws = []
18
19 def getbits(self, n):
20 """Returns an n-bit integer."""
21 i = len(self.record)
22 if i < len(self.prefix):
23 result = self.prefix[i] & ((1 << n) - 1)
24 else:
25 result = random.getrandbits(n)
26 self.record.append(result)
27 return result
28
29 def draw(self, gen):
30 """Returns the result of gen.do_draw(self)"""
31 self.draw_stack.append(len(self.record))
32 result = gen.do_draw(self)
33 self.draws.append((
34 self.draw_stack.pop(), len(self.record)))
35 return result

Figure 5 A simplified implementation of the Hypothesis API.

Set against this, many transformations that make perfect sense at the level of the generated
test case may be highly non-obvious at the level of the choice sequence without additional
information about how it will be used. As we saw in the binary tree example of Section 2.3,
we might be able to collapse a subtree into a single leaf by replacing some sequence of bits
with a single zero bit. However, there are O(n2) possible contiguous subsequences of the
choice sequence, and if we don’t know how long a sequence of 0 bits to use this adds an
additional O(n) possibilities, giving O(n3) transformations to consider for what we would be
O(n) in the size of the tree for an external reducer!

If the reducer had structural information about what regions of the choice sequence
corresponded to a subtree, it could similarly restrict its attention to only O(n) suitable
regions of the choice sequence. The key observation that Hypothesis uses to get access to
this boundary information is that although we do not have a grammar for the language,
we do have a parser – the generator itself – and by instrumenting the API it uses we can
implement something akin to HDD, allowing us to discover transformations of the choice
sequence that would be difficult to discover otherwise.

We outline this instrumented API in Figure 5. Generators are constructed as an instance
of a Generator class, which are passed to a draw method on a Source object. The Generator
object records the results of getbits calls and how these correspond to draw calls, which

D.R. MacIver and A. F. Donaldson 13:9

1 def zero_draw(source):
2 """Attempt to replace regions corresponding to draw calls with
3 sequence of all zero bits, if doing so would not increase the length."""
4
5 i = 0
6 while i < len(source.draws):
7 u, v = source.draws[i]
8 prefix = source.record[:u]
9 suffix = source.record[v:]

10
11 # Attempt to replace the draw with a zero sequence of the same length
12 attempt = Source(prefix + [0] * (v - u) + suffix)
13 if is_interesting(attempt) and len(attempt.record) <= len(source.record):
14 source = attempt
15 else:
16 # If the number of bits was wrong, try again with the right number.
17 u2, v2 = attempt.draws[i]
18 if v2 < v:
19 attempt = test_function(prefix + [0] * (v2 - u2) + suffix)
20 if (
21 is_interesting(attempt) and
22 len(attempt.record) <= len(source.record)
23):
24 source = attempt
25 i += 1
26 return source

Figure 6 Replacing a draw with all zero bits.

can be used to suggest modifications to the choice sequence. In particular, for our recursive
generator of Figure 2, each subtree corresponds to a single draw call whose start and end
points are recorded on the Source.

A useful analogy is to consider the draw calls as defining the grammatical structure of the
choice sequence format, while the getbits calls define the lexical structure. This structure
often allows us to make transformations at the choice sequence level that naturally mirror
the ones that a dedicated external reducer would have made to the generated test cases,
without knowing any further details about what those generated test cases are.

In Figure 6 we present Python pseudo-code that shows how a reduction pass might try
to replace all draw calls with a (possibly shorter) sequence of zero bits, one of the passes we
mention in Section 3.1. Unlike the brute force O(n3) approach, running this pass attempts
only O(n) possible transformations7.

In our worked example in Section 2.3, the pass of Figure 6 is what allows us to re-
place any subtree with a leaf: e.g. First it might try transforming “1101101100001. . . ” to
“1000000000001. . . ”, which would produce a valid but uninteresting choice sequence, and
then it would observe that fewer choices were made in the target draw than expected, so
it would try again with the single zero bit that was used, leading to the sequence “101. . . ”
that we saw in Figure 4.

7 This assumes that every draw call contains at least one getbits call, but where this is not the case the
results can be cached, a detail we omit here.

ECOOP 2020

13:10 Test-Case Reduction via Test-Case Generation

3.3 Generator / Reducer Co-design

There is a certain amount of co-design between Hypothesis’s library of generators and its
reducer. We show in Section 4.1.2 that this co-design isn’t strictly necessary, in that the
Hypothesis reducer produces reasonable results without it, but we have nevertheless found it
useful.

The co-design occurs when we encounter an example that reduces poorly, requiring us
to modify one or both of the generator or the reducer. Typically, when the example is
user provided we will modify the reducer, and when it is part of the Hypothesis library of
generators, we will modify the generator to be more “reduction friendly”, but in some cases
it is still better handled by modifying the reducer.

In particular, as we mention in Section 3.1, there is a special case for our floating point
generator. This generator is designed so that lexicographic reduction will produce “visually
simpler” floating point numbers. This is important because if a float was generated as its
IEEE representation it would instead reduce towards 0.0, which tends to produce reduced
test cases that look pathological. e.g The most reduced non-zero double precision float would
be 5e-324, when ideally we would like to reduce non-zero floats to 1.0.

This results in certain transformations that look very natural to a human reader but are
quite complicated at the choice sequence level. e.g. 9.0 is represented as a 64-bit integer value
of 9 in our internal float encoding, but 9.1 is represented as 9237896145653045656. Although
going from the latter to the former is an obvious reduction to a human reader, and is a
lexicographic reduction at the choice sequence level, it would be quite hard for the reducer
to discover on its own. As a result, it was worth adding a special case to our implementation
to make it aware of transformations that were obvious at the floating point level but not at
the underlying choice sequence level.

The floating point generator is the only case we’ve encountered that required this level of
special casing, and this was largely only needed due to the relative complexity of the floating
point format. Additionally, it was only worth it because it is such a foundational generator:
If it had not been part of our core library, it would likely not have been worth investing
much time in it, and so it would have been left with the default behaviour which, while
suboptimal, was still relatively adequate.

More commonly, it is worth designing core generators to aid the performance of test-case
reduction, because some designs make it easier to find relevant reductions. Users are not
expected to need to do this, but the cost-benefit trade off is different for the core Hypothesis
library of generators, as they are more widely used and we have greater expertise in the
behaviour of the reducer.

To illustrate this, in Figure 7 we show an example of how one might8 generate lists
using Hypothesis. This generator arranges matters so that an element of the list can be
deleted by deleting a contiguous region of the choice sequence, corresponding to the getbits
call followed by a subsequent draw. Deleting the region corresponding to these two calls
effectively causes the loop to skip over the iteration where the generated element would
previously have been added.

In contrast, if we generated lists by first drawing a length parameter and then drawing
that many elements, deleting an element of the list would require first lowering that length
parameter and then deleting a later part of the choice sequence. Identifying all such pairs
would require O(n2) transformations.

8 For simplicity, this generator elides details which control the expected size of the list. The real version
also contains a hint to the reducer about what regions are worth deleting.

D.R. MacIver and A. F. Donaldson 13:11

1 class ListGenerator(Generator):
2 def __init__(self, elements):
3 self.elements = elements
4
5 def do_draw(self, data):
6 results = []
7 while True:
8 more = data.getbits(1)
9 if more:

10 results.append(data.draw(self.elements))
11 if not more:
12 break
13 return results

Figure 7 A simplified list generator.

Hypothesis does in fact have a reduction pass that does this, because such patterns are
common in user code, but its performance is comparatively poor due to the large number of
transformations to be tried, and so we have used the implementation that allows for more
efficient reduction.

An additional benefit of this is that, because it is relatively easy to transform the choice
sequence in ways that preserve the structure of the generated list, other reductions become
possible. For example, due to trying to delete short subsequences of the choice sequence,
when generating lists of lists, Hypothesis will try merging adjacent lists (e.g. transforming
[[1, 2], [3, 4]] into [1, 2, 3, 4]), because this corresponds to deleting the choices in two adjacent
calls to getbits.

4 Case Studies and Experiments

In this section we present data on internal reduction in Hypothesis, comparing the cost of
reduction and final size of reduced test cases to those of existing external reducers.

Our goal is not to show that internal reduction is especially impressive on these metrics.
As we discuss in Section 1, the primary benefits of internal reduction are not its performance
or the quality of the end results, but that it provides adequate reduction for any generated
test case, while avoiding the test-case validity problem. As such our evaluation is mostly
intended to be descriptive, and to increase the plausibility of our claim of adequacy.

We structure our evaluation around the following research questions:
1. How does the size of the final test case obtained through internal reduction compare to

that obtained through external reduction? (RQ1)
2. How expensive is internal reduction compared to external? (RQ2)
3. How much overhead does the process of going through the generator introduce? (RQ3)

In addressing these research questions we primarily focus on future-proof metrics that
are independent of our particular experimental setup: the number of SUT and generator
invocations. Unlike the metrics, wall clock time is sensitive to specific implementation choices
in Hypothesis and the tools against which we compare, and other engineering issues such
as the choice of implementation language. Furthermore, to make our large study feasible,
experiments were performed in parallel on a multi-core machine, with associated impact on
wall clock time variance.

Our main three evaluations use Hypothesis to find and reduce real bugs in three classes
of real world software:

ECOOP 2020

13:12 Test-Case Reduction via Test-Case Generation

We used a modified version of Csmith to allow Hypothesis to generate C programs, which
we used to trigger bugs in old versions of the open source C compilers, gcc and clang
(Section 4.1);
We wrote a custom generator of Python programs and used it to perform differential
testing of yapf [7] and black [17], two open source Python autoformatters (also Section 4.1);
We implemented a Hypothesis-based test harness to trigger bugs in SymPy, an open
source symbolic algebra library (Section 4.2).

For completeness, we also compared Hypothesis on a series of synthetic benchmarks
used in [22] to evaluate SmartCheck, a proposed generic test-case reducer for QuickCheck
(Section 4.3).

We note that while we have been able to apply Hypothesis to this relatively diverse range
of applications, in order to compare with a number of different test-case reduction tools, no
one of the tools that we compare with could be easily applied to all of these case studies.
This is an important selling point for internal reduction: it works at the level of choice
sequences, and any randomized generator can be relatively easily adapted to consume a
choice sequence instead of using a pseudo-random number generator, thus internal reduction
has wide applicability.

We have made the code for reproducing the data for these experimental results available
at https://github.com/mc-imperial/hypothesis-ecoop-2020-artifact.

4.1 Evaluation on Generated Programs

We designed a system for running controlled reduction experiments on Hypothesis-generated
examples and used it to run tests on real world bugs found by two different program
generators:
1. A patched version of Csmith,9 which uses Hypothesis as its source of entropy, where any

calls to methods named make_random were wrapped in a macro so as to show up as if
they were a generator passed to draw.

2. A generator of syntactically valid Python programs that we wrote ourselves using Hypo-
thesis’s library of generators.

For each of these generators we wrote interestingness tests that would use the generated
test cases to look for bugs in some real world software. For Csmith-generated programs,
these were crashes or wrong code bugs in old versions of gcc and clang. For Python programs
produced by our generator, we used them to test a Python autoformatter, yapf, and checked
its output for style violations.

For each of these generators and their corresponding interestingness test, we built a corpus
of 200 choice sequences that resulted in interesting test cases. We then ran reduction for
each of these starting points using each of: 1) Internal reduction provided by Hypothesis; 2)
C-Reduce [23], a test-case reducer primarily designed for C programs but suitable for any text
format; 3) Picire [13], a modern implementation of the classic delta-debugging algorithm.

We explain this experimental setup in more detail in Section 4.1.1, and then present the
results in Section 4.1.2

9 https://github.com/HypothesisWorks/csmith

https://github.com/mc-imperial/hypothesis-ecoop-2020-artifact
https://github.com/HypothesisWorks/csmith

D.R. MacIver and A. F. Donaldson 13:13

4.1.1 Experiment Design
For each experiment we defined a class of bugs we were looking for, with precise interestingness
tests for identifying each possible bug.

For the generator of Python programs, we used it to perform differential testing of yapf, a
Python source code autoformatter developed at Google, against black, a more recent and more
widely used autoformatter. The test we performed was that we ran black on the generated
source, followed by pycodestyle,10 a style checker for conformance to PEP8, the official
Python style guide. If there were no style errors, we then ran yapf on the black-formatted
source. Any style errors introduced constituted a bug in yapf, as it had taken source code
that it was possible to format correctly and introduced a style violation.

For Csmith, we ran a large number of old versions of gcc and clang,11 at four different
optimization levels (-O0, -O1, -O2, -Os). This could produce three distinct types of bug:
The compiler could crash, the compiled binary could crash when run, or there could be a
miscompilation, determined when the output differed from that on gcc 8.3.0 (the latest of
the compilers tested) compiled at -O0. Whenever an example triggered multiple bugs we
associated it with the bug it triggered in the latest compiler, at the lowest optimization level
for that compiler, as this seemed like a reasonable proxy for how interesting the bug was.

The need for a validity oracle for C-Reduce and Picire. Csmith guarantees generating
C programs that are free from undefined behaviour by construction [25]. When we drive
Csmith via Hypothesis, test-case reduction involves using Csmith to generate successively
simpler programs, each of which is thus free from undefined behaviour by construction. In
contrast, neither C-Reduce nor Picire provides such a guarantee. In order to use these
reducers we had to define a validity oracle that detected if the program was likely to be free
from undefined behavior. The validity oracle that we used compiled the program with clang
and GCC and checked for warnings likely to indicate undefined behavior, as recommended in
the C-Reduce documentation,12 and in addition ran the generated binary under UBSan13 to
look for non-trivial undefined behavior that was only detectable at run time. We did not
apply the validity oracle when reducing compiler crash bugs, as the execution result of the
program is not relevant in such cases.

We generated a corpus for each experiment by sampling choice sequences of length up to
8KB (Hypothesis’s default maximum size) until we had 200 choice sequences that triggered
bugs for each experiment. For the Python generator, this small buffer size was not a problem,
but for Csmith this was a significant restriction – when generating a corpus without this size
restriction we found only about 2% of choice sequences corresponding to programs triggering
bugs were under 8KB. This is corroborates previous observations in [25] that Csmith is most
effective when generating large programs. We attempted to run the Csmith experiment with
a larger buffer size, but unfortunately Hypothesis is not currently well designed for larger
sizes and we hit some memory limitations, so we decided to restrict ourselves to examples
within Hypothesis’s normal operational parameters.

For each corpus member and each reducer, we ran the reduction to completion, instru-
mented so as to record SUT calls and report on successful reductions.

10 https://pycodestyle.pycqa.org/en/latest/
11All of those installed by https://github.com/mattgodbolt/compiler-explorer-image/blob/master/

update_compilers/install_compilers.sh. This included gcc versions ranging from 4.1.2 to 8.3.0 and
clang versions ranging from 3.9.1 to 7.0.0, but not every patch release in that range.

12 https://embed.cs.utah.edu/creduce/using/wrong1/test1.sh
13 https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

ECOOP 2020

https://pycodestyle.pycqa.org/en/latest/
https://github.com/mattgodbolt/compiler-explorer-image/blob/master/update_compilers/install_compilers.sh
https://github.com/mattgodbolt/compiler-explorer-image/blob/master/update_compilers/install_compilers.sh
https://embed.cs.utah.edu/creduce/using/wrong1/test1.sh
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

13:14 Test-Case Reduction via Test-Case Generation

Csmith Python
No Reduction 1963.9 (1750.3–2230.2) 417.2 (365.8–483.0)
C-Reduce 120.0 (114.2–126.2) 70.9 (64.5–76.8)
Hypothesis 812.3 (786.8–843.1) 71.8 (64.7–78.8)

Picire 345.09 (321.3–375.5) 75.7 (68.8–82.4)

Figure 8 Mean sizes, measured as number of bytes after formatting, of final examples for each
reducer.

4.1.2 Experimental Analysis
In order to answer RQ1, we have to define a suitable notion of size. The number of bytes
is the obvious choice, but one subtlety to consider is that many size reductions are both
impossible in internal reduction, and also undesirable! For example, removing whitespace
is often a valid reduction in size that reduces readability. In order to offset this, instead of
raw size we consider formatted size. For each experiment we used a standard automatic
formatter, clang-format14 for C programs and black for Python programs, and consider the
size of the formatted result. We also strip comments from the C programs.

We justify this as a reasonable metric by observing that the purpose of test-case reduction
is not actually to reduce size, but rather to ease debugging. A formatter is designed to
improve the readability of the code (and it is often worth formatting reduced test cases to
understand them better), and a human reader is unlikely to pay attention to the comments
unless they are an aid to understanding, so this is a truer representation of the size a human
reader sees.

We calculated the size of the reduced test case for each test case and reducer, and report
the mean size in Figure 8 alongside 95% bootstrap confidence intervals. A permutation test
for difference of means shows that the differences between these means are significant for
all three reducers on the Csmith experiment (p < 10−5 for C-Reduce vs each of the others,
p ≈ 0.0003 for Hypothesis vs Picire), and non-significant at a threshold of 0.05 for all pairs
on the formatting example.

We discuss RQ1 separately in the context of the Python formatting experiments and the
Csmith experiments, as the findings are substantially different.

Python formatting results for RQ1. Figure 8 shows that, for the Python formatting case
study, Hypothesis, Picire and C-Reduce perform comparably well (with overlapping confidence
intervals regarding reduced test case size, and nonsignificant differences in means). As we
discuss above, our claim is that internal reduction should work well enough to be useful, not
that it should out-perform other reduction approaches, and these results support that claim.

Csmith results for RQ1. The results of Figure 8 show that C-Reduce and Picire are able
to achieve substantially smaller reduced programs than Hypothesis on average. Regarding
our aim that internal reduction should be good enough to be useful: the reduction factors
associated with Hypothesis in Figure 8 would certainly be worth having for debugging
purposes if no other reducer were readily available, and the fact that test cases retain the
Csmith guarantee of validity when reduced using Hypothesis is a potentially important bonus
(especially for wrong code bugs) that the size results of Figure 8 do not show.

14 https://clang.llvm.org/docs/ClangFormat.html

https://clang.llvm.org/docs/ClangFormat.html

D.R. MacIver and A. F. Donaldson 13:15

1 #include "csmith.h"
2 static long __undefined;
3 static int8_t func_1(void);
4 static int8_t func_1(void) {
5 int8_t l_2 = 0L;
6 return l_2;
7 }
8 int main(int argc, char *argv[]) {
9 int print_hash_value = 0;

10 if (argc == 2 && strcmp(argv[1], "1") == 0)
11 print_hash_value = 1;
12 platform_main_begin();
13 crc32_gentab();
14 func_1();
15 platform_main_end(crc32_context ^ 0xFFFFFFFFUL, print_hash_value);
16 return 0;
17 }

Figure 9 The minimal size Csmith program that Hypothesis could find, which is essentially the
smallest program that Csmith can generate.

Nevertheless, Hypothesis does produce substantially larger reduced test cases than the
external reducers, and the reasons for this provide various insights into the limitations of
internal reduction.

The first reason to note is that Csmith-generated C programs have a certain amount of
“necessary size”, due to boiler plate that every Csmith program contains. Because internal
reduction reduces test cases by re-generating them, the minimum size of the reduced test
cannot be lower than the smallest test the generator can produce.

Effectively, Hypothesis is reducing against a harder validity oracle: It has to produce an
interesting test case that Csmith could have generated, while C-Reduce and Picire merely
have to produce an interesting test case that is a valid C program which appears free of
undefined behaviour. For most uses of Hypothesis in property-based testing, this sort of
constraint is mild and perhaps actively desirable, but in this case it results in a significantly
larger final test case. In particular, it is impossible for Hypothesis to prevent Csmith from
generating its standard boiler plate code, so there is a certain baseline difference between
Hypothesis and an external reducer that it can never do better than.

In order to determine this baseline, we ran Hypothesis on each starting example, reducing
the choice sequence subject only to the constraint that it successfully generates a program.
The smallest program found by Hypothesis during these reductions is shown in Figure 9,
which we know (from familiarity with how Csmith works) is essentially the smallest program
Csmith is capable of generating. This gives us a baseline minimum size for Hypothesis
reduced programs of 410 bytes. In contrast, C-Reduce and Picire are perfectly capable of
producing an empty file, or a trivial 14-byte main function definition if we require that the
file can produce an executable (which we do for wrong code bugs). This already accounts
for a sizable proportion of the difference in size. Adjusting for these baselines, Hypothesis
generates a mean final size of around 402 bytes, and Picire of around 331 bytes. This
difference is still statistically significant, but much more reasonable.

In order to understand the size difference above and beyond this baseline, we ran C-Reduce
on the Hypothesis final example for the smallest examples of a crashing bug and a wrong
code bug respectively. We show examples of these in Figure 10 and 11.

ECOOP 2020

13:16 Test-Case Reduction via Test-Case Generation

The difference on the crash bug, where C-Reduce is less constrained, largely comes from
the larger baseline we discuss above, while the difference on the wrong code bug demonstrates
a number of other issues: Csmith will always pre-declare union definitions, and uses long
identifiers, both of which C-Reduce is able to fix.

We also see an advantage of Hypothesis in this example: In Figure 11, C-Reduce has
produced a call to printf with too many arguments. This is defined behavior, as the extra
arguments are ignored, but is suspicious and likely to be distracting when debugging. In
contrast, the reduced program produced by Hypothesis is Csmith-generated, and has no such
issues.

Hypothesis reduced:
1 #include "csmith.h"
2 static long __undefined;
3 static const volatile int32_t g_2 = (-1L);
4 static const int8_t func_1(void);
5 static const int8_t func_1(void) {
6 volatile int8_t l_3 = (-1L);
7 l_3 = g_2;
8 return g_2;
9 }
10 int main(int argc, char *argv[]) {
11 int print_hash_value = 0;
12 if (argc == 2 && strcmp(argv[1], "1") == 0)
13 print_hash_value = 1;
14 platform_main_begin();
15 crc32_gentab();
16 func_1();
17 transparent_crc(g_2, "g_2", print_hash_value);
18 platform_main_end(crc32_context ^ 0xFFFFFFFFUL, print_hash_value);
19 return 0;
20 }

C-Reduce run on the Hypothesis output:
1 #include "csmith.h"
2 const volatile a;
3 b() { volatile int8_t c = a; }

Figure 10 The smallest Hypothesis reduced crash bug.

To emphasise the above discussion regarding Csmith boiler plate: in both of these
examples we can see that Hypothesis is quite close to being constrained by a fundamental
limitation of this approach. The limitation is not its ability to reduce further (although
in Figure 11 we do see what is likely a missed reduction at the choice sequence level – the
third field of the union is successfully removed by C-Reduce but not by Hypothesis even
though it plausibly could be), but the fact that it guarantees that reduced examples are ones
that could be generated means that the reduced examples must include certain features that
Csmith will always generate: e.g. variables will always be initialized, functions will always be
pre-declared, and union types are always declared separately from their usage.

These larger sizes are certainly a minor downside of internal reduction, in that for ease of
debugging a smaller program is usually more useful. That said, in the case of Csmith, being
limited to reducing to programs that Csmith can generate means that even reduced tests will
be executable programs that follow a well-known structure and are guaranteed to be free
from undefined behaviour, which might make them ideal as end-to-end tests for addition to
a compiler regression test suite (rather than e.g. tests that simply check whether a compiler
crashes, but that are otherwise meaningless). It is also arguable that since most of the extra
size is easy-to-understand boiler plate, its presence has little practical significance.

D.R. MacIver and A. F. Donaldson 13:17

Hypothesis reduced:
1 #include "csmith.h"
2 static long __undefined;
3 union U1 {
4 const int32_t f0;
5 const unsigned f1 : 17;
6 const volatile signed : 0;
7 };
8 static const union U1 g_2 = {-1L};
9 static const union U1 func_1(void);

10 static const union U1 func_1(void) { return g_2; }
11 int main(int argc, char *argv[]) {
12 int print_hash_value = 0;
13 if (argc == 2 && strcmp(argv[1], "1") == 0)
14 print_hash_value = 1;
15 platform_main_begin();
16 crc32_gentab();
17 func_1();
18 transparent_crc(g_2.f0, "g_2.f0", print_hash_value);
19 transparent_crc(g_2.f1, "g_2.f1", print_hash_value);
20 platform_main_end(crc32_context ^ 0xFFFFFFFFUL, print_hash_value);
21 return 0;
22 }

C-Reduce run on the Hypothesis output:
1 #include "csmith.h"
2 union {
3 int32_t a;
4 unsigned b : 17;
5 } c = {-1L};
6 int main() {
7 printf("%d\n", c.a, c.b);
8 return 0;
9 }

Figure 11 The smallest Hypothesis reduced wrong code bug, with additional reduction provided
by C-Reduce.

Either way, RQ1 has a clear answer on the Csmith experiments: Hypothesis produces
examples in the same order of magnitude as, but still substantially larger than, those produced
by specialized reducers such as C-Reduce that are well-adapted to the problem domain, but
produces of examples of comparable but slightly larger size to those found by more generic
reducers.

To evaluate RQ2, we recorded the number of SUT evaluations made during the run of
these experiments. We show the results of this in Figure 12

Here all differences are statistically significant at p < 10−5. Hypothesis is thus about
four times faster15 than Picire on the Csmith experiment, and about 50% slower on the
formatting example. We haven’t investigated this in detail but expect that the latter is
because Hypothesis makes a number of lexicographic transformations to the choice sequence
that don’t impact the final size of the generated test case, but result in e.g ensuring generated
string literals contain only zeroes.

15 In terms of SUT calls that is. In terms of wall clock time it was actually slower due to the high cost of
how we invoked Csmith.

ECOOP 2020

13:18 Test-Case Reduction via Test-Case Generation

Csmith Python
C-Reduce 3968.0 (3731.8–3216.7) 863.3 (797.5–937.0)
Hypothesis 762.0 (701.8–829.6) 1284.565 (1106.56 1556.175)

Picire 3138.9 (2970.9–3348.9) 529.23 (483.61, 579.205)

Figure 12 Number of SUT invocations for each reducer.

To answer RQ3, we also recorded the number of generator evaluations, and for each
experiment calculated the ratio of generator evaluations to SUT calls (every generator
evaluation leads to an SUT call, so the former is always larger than the latter). We calculated
a 95% bootstrap confidence interval for the geometric mean of these ratios (the geometric
mean being chosen as the appropriate mean to use for comparing ratios). For the Csmith
experiment this gave us a confidence interval of 2.78−2.94, and for the formatting experiment
the interval was 1.21−1.30. i.e. for Csmith we performed nearly three times as many generator
invocations as SUT invocations, while for Python we performed up to about 30% more. The
difference is likely accounted for by the fact that the Python generator was built on top of
Hypothesis’s core library of generators which as we describe in Section 3.3, are designed to
behave well with lexicographic reduction in general and Hypothesis’s reducer in particular.

How much overhead this corresponds to in practice depends significantly on the generators
and SUTs in question. Our interface to Csmith was quite slow, so there generation time
probably dominated even without any overhead, but for most cases we would expect the
generator to be significantly faster than the SUT.

4.2 Case Study: SymPy
TSTL [11] is a domain specific language defined for testing APIs written in Python. Actions
using the API are described using the TSTL language, and it builds tests as sequences
of actions, expressed as fragments of Python code that are evaluated against a model of
the SUT.

Reduction in TSTL consists of attempting to find shorter sequences of actions that can
trigger the same bug. Previously work on TSTL’s reducer [11] tested SymPy, a symbolic
algebra library for Python, and we adapted these tests to use Hypothesis in order to evaluate
internal reduction for this use case.

One downside of comparing with TSTL is that a TSTL test is always valid – any action
which should not be run is simply ignored – so the benefit of guaranteed validity associated
with internal reduction is not relevant, but it is still a reasonable point of comparison for
reducer effectiveness.

4.2.1 Experiment Design
We implemented a backend that takes a TSTL-generated harness and runs it with Hypothesis,
which we used to run the TSTL tests for SymPy from its examples directory. We ran these
tests against version 1.1.1 of SymPy, which is slightly older than the latest version, as we
knew that the test harness was capable of finding many bugs in this older version, providing
us with a variety of example bugs on which to evaluate reduction.

This backend does not implement TSTL’s checks, which run a number of equivalence
checks on the generated SymPy programs to assert that various expressions that are expected
to give the same result do in fact do so. These checks were minimally useful for SymPy [8],
and were prohibitively slow, thus they would have limited the amount of data we could have
collected.

D.R. MacIver and A. F. Donaldson 13:19

As a point of comparison, we used a custom implementation of delta debugging which we
adapted to take advantage of two structural features of TSTL: It would automatically discard
any actions that were no longer able to run, and prune all steps after the failing one. We did
not compare to the TSTL reducer due to wanting to ensure we matched the slightly different
semantics of our backend implementation, and for convenience when instrumenting it, but
believe this modified delta debugging should work similarly well to its standard reducer. We
did not however implement anything equivalent to its test-case normalization features [9].

To enable us to gather a large corpus of data, we aggressively pruned slow tests by removing
test cases where an individual step took more than two seconds to run. This implicitly
removed a large class of errors, as it appears to be very easy to trigger RecursionError
bugs in SymPy which, for some reason (possibly a high cost associated with each recursive
call), always resulted in the triggering step exceeding this timeout. This potentially impacts
the generality of our results, but there were sufficiently many other errors in SymPy that it
seemed unproblematic to exclude them.

Additionally, we found a number of the SymPy test cases were flaky – that is, they did
not reliably produce the same exception when run with different random or hash seeds. We
don’t entirely understand why this would be the case (we expect it is something internal to
SymPy’s implementation) but we didn’t spend a great deal of time investigating . We know
from experience that flaky test cases tend to lead to poor performance in most test-case
reducers, and we wished to avoid these dominating the results, so we attempted to remove
any test cases where reduction passed through a flaky test case. We removed test cases
where any of the original generated test case or either of the internally or externally reduced
final test cases were flaky, but flakiness checking was fairly expensive so we did not check all
intermediate results.

Starting from an initial generated corpus of 3000 distinct failing test cases, removing flaky
tests left us with 2930 interesting test cases. These were spread across 33 distinct errors,
which we distinguished based on error type and line number, and had a mean length of 64.5
(which gave a 95% confidence interval for the population mean of 63.6 – 65.4). Notably, this
is somewhat larger than the mean size of 44.7 reported in [11]. While we did not investigate
the cause of this in detail, there were a number of small differences in our experimental
setup which could account for it, such as the exclusion of the relatively easy to trigger
RecursionError bugs.

For each of these initial test cases, we ran both the Hypothesis reducer and our delta
debugging implementation for TSTL, subject to the interestingness test that an exception
was raised with the original exception type and line number. We recorded the number of
SUT calls made by each, and the final size of the reduced test cases.

4.2.2 Experimental Analysis
On average (geometric mean), Hypothesis made 20.6 (95% confidence 20.3 – 21) times as
many SUT calls as delta debugging, resulting in tests that were 83% (95% confidence 82% –
84%) of the size produced by delta debugging.

This is relatively expensive for a marginal gain. However, that seems to be less a feature
of internal reduction and more one of the problem domain: As part of the work on test-case
normalization in [9], they implemented normalization passes which performed similar external
transformations to those enabled by Hypothesis’s lexicographic internal reduction, and when
these normalization passes were enabled reduction took about thirty times as long and
obtained test cases that were about 55% of the size of those obtained without normalization.

ECOOP 2020

13:20 Test-Case Reduction via Test-Case Generation

We think it likely that the performance of Hypothesis could be substantially improved
on this experiment, but resisted the urge to optimize for this use case for now, letting the
experimental results stand as they are. Brief investigation suggested that Hypothesis’s
heuristics for reduction pass ordering do not work very well on these examples, which lead to
it doing a significant amount of lexicographic reduction when it could still have usefully been
trying to reduce the size of the choice sequence.

4.3 Evaluation against QuickCheck and SmartCheck
The only previous evaluation of test-case reduction in QuickCheck we are aware of comes
from [22], which defined SmartCheck, a generic reducer for algebraic data types, and
introduced a set of five synthetic benchmarks to compare it to QuickCheck. Each of these
benchmarks consists of some data type to generate to test some code that has a known
(deliberately inserted) bug in it. We have reimplemented these benchmarks in Python
to evaluate Hypothesis on them and compare its behavior to that of QuickCheck and
SmartCheck.

The five benchmarks are “bound5”, “binheap”, “calculator”, “parser”, and “reverse”. We
updated these from the originals to improve QuickCheck’s behavior, mainly by replacing
some ineffective custom reducers with QuickCheck’s genericShrink. We also changed the
“binheap” benchmark to add a precondition that prohibited invalid heaps, as we noticed that
much of SmartCheck’s performance on that benchmark came from very rapidly reducing to
small but invalid heaps (an instance of the test-case validity problem).

Experiment Hypothesis QuickCheck SmartCheck
binheap 9.02 (9.01–9.03) 9.00 (9.00–9.00) 9.42 (9.37–9.48)
bound5 2.08 (2.07–2.10) 11.30 (10.91–11.76) 6.02 (5.79–6.29)
calculator 5.00 (5.00–5.00) 5.11 (5.07–5.15) 5.00 (5.00–5.01)
parser 3.31 (3.28–3.34) 3.99 (3.98–4.01) 4.08 (4.01–4.14)
reverse 2.00 (2.00–2.00) 2.00 (2.00–2.00) 2.00 (2.00–2.00)

Figure 13 Mean size of reduced examples on synthetic benchmarks. Each data type has a
different notion of size associated with it, but it typically means something like number of nodes in
the tree.

Experiment Hypothesis QuickCheck
binheap 170.31 (166.14–174.76) 88.22 (86.90–89.55)
bound5 95.13 (93.57–96.91) 1438.89 (1282.34–1811.64)
calculator 72.41 (70.57–74.32) 30.97 (29.92–32.37)
parser 126.50 (124.11–128.90) 34.23 (33.63–34.81)
reverse 50.84 (50.40–51.29) 17.68 (17.27–18.10)

Figure 14 Mean number of test cases tried while reducing synthetic benchmarks.

We ran each benchmark 1000 times for each library. We present the mean sizes of
the reduced examples in Figure 13, and the mean number of SUT evaluations made in
Figure 14. We ran into some technical difficulties obtaining the number of SUT evaluations
made by SmartCheck and, as it omits many classes of transformation that both Hypothesis
and QuickCheck consider (e.g. reducing the value of generated integers) and did not do
particularly well on the size evaluation besides, didn’t feel it was especially useful to invest
more time on the problem.

D.R. MacIver and A. F. Donaldson 13:21

By a permutation test, all differences in mean SUT invocations are significant at p < 10−5.
For sizes, differences were significant at p < 10−4, with the following exceptions:

All implementations reliably produced the minimal size example for “reverse” so there
was no difference in means.
Hypothesis and SmartCheck on the “calculator” example (p ≈ 0.5)
Hypothesis and SmartCheck on the “parser” (p ≈ 0.02).
Hypothesis and QuickCheck on the “binheap” benchmark (p ≈ 0.003).

To account for multiple testing we set a significance threshold at p < 0.05
30 ≈ 0.0017

(by applying the Bonferonni correction – there are three pairs of comparisons for each
benchmark, for each of size and SUT count, so thirty tests), so these should all be considered
nonsignificant.

The only case where Hypothesis produced worse average results than QuickCheck (signific-
ant or not) was the “binheap” benchmark, where it did very slightly worse than QuickCheck
(9.02 vs 9.0). We haven’t investigated why but suspect it’s due to difference in the distribution
of initial test cases (Hypothesis tends to produce larger examples) rather than the reducer.
Whatever the reason, the difference, though statistically significant, is tiny.

We note that the behaviour of QuickCheck on the “bound5” example is pathologically bad,
both in size and performance, in large part because it was constructed to be so. Hypothesis
fares well on this example without modification, showing one of the advantages of having a
more sophisticated reducer by default.

Thus on RQ1 Hypothesis fares well compared to QuickCheck, generally producing similar
or better results. On RQ2, Hypothesis proves more expensive than QuickCheck by a factor
of 2–3, depending on the benchmark.

5 Threats to Validity

The main empirical claims of our paper are that our model of internal reduction through
shortlex optimization is viable, and in particular that it provides results that are competitive
with alternative reducers that might be used in its place.

As we have been using it in the context of a widely deployed testing library for more
than four years, we are quite confident of its viability, at least within our application domain,
and our empirical results in Section 4 support the claim that it performs reasonably with
respect to alternatives.

The main threat to validity is how well these results generalize. Although we have
presented four reasonably diverse case studies, three of which were on their own larger than
most previous evaluations of test-case reduction, the range of software and generators used
in practice is naturally larger yet. It is plausible that there are reduction problems that we
have simply never run into that present their own challenges.

A common factor in all of our experiments is that the starting points were not especially
large – Hypothesis by default only considers choice sequences of at most 8KB, and we retained
that restriction in our analysis. As we discuss in Section 4.1.1, this was a particularly notable
restriction in the case of Csmith.

Our intuition, which is backed by a certain amount of anecdotal evidence, is that most
test-case reducers experience problems at larger scales that they do not see at smaller ones,
because larger test cases offer more opportunities to get stuck in local minima. Additionally,
often large test cases trigger bugs in SUTs that were difficult to trigger at smaller scales
– either because they are intrinsically connected to test case size (a scenario that tends to
reduce very poorly in general) or because they simply happen with too low probability at
small sizes. Between these two factors, we expect interesting new difficulties to arise at larger
scales, requiring more work on Hypothesis’s reducer.

ECOOP 2020

13:22 Test-Case Reduction via Test-Case Generation

This also points to the other major limitation of our results: Although our claim is that
internal reduction as a general model is viable, our empirical results are restricted to its
implementation in Hypothesis. This suffices as an existence proof, but the Hypothesis reducer
has been the subject of considerable engineering effort, and our results do not determine how
much of the viability of internal reduction is only because of that engineering effort.

However, part of why the Hypothesis reducer is so sophisticated is because internal
reduction rewards that: Because one reducer can serve many different types of test case, it
was worth investing that effort into it, and the reducer can in principle be used in many
different contexts, so even if it turns out that internal reduction is only viable with this
engineering work, we don’t consider that to be a major point against it.

6 Related Work

There are several categories of work related to ours, which we now describe: Test-case
reduction in general (Section 6.1), test-case reduction in property-based testing (Section 6.2),
use of the choice sequence model to improve generation (Section 6.3), and finally other users
of internal reduction (Section 6.4).

6.1 Test-Case Reduction

Our work on internal reduction naturally builds on prior work on test-case reduction.
Test-case reduction was first described in the original papers on delta debugging [12, 26].

Most subsequent research has been focused on continuing delta debugging’s goal of reducing
the size of the test case, with other reductions such as our lexicographic passes being treated
as of secondary interest.

This work on reducing size has generally focused on taking advantage of the structure of
particular input formats. The major examples of this in the literature include hierarchical
delta debugging (HDD) [19], which makes use of a grammar for the test-case format, and
C-Reduce [23], which is extensively specialized to features common in C and C-like languages.

As we discuss in Section 3, the Hypothesis reducer is a similarly specialized reducer
designed for the class of languages parsed by generators, and its design has been inspired by
this prior work. In particular, the approach we describe in Section 3.2 of marking out regions
of the choice sequence corresponding to parts of the test case very strongly resembles HDD’s
use of a grammar to do the same, and the pass-based approach we describe in Section 3.1
strongly resembles the architecture of C-Reduce.

One exception to the prior focus on reducing size is [9], which introduced the notion of
test-case normalization as an important property of reducer. Additionally, although this was
not made explicit, the normalization passes suggested in [9] can be regarded as optimizing
for the lexicographic ordering, which makes their approach another example of our suggested
goal of shortlex optimization. However, this was in the context of an external reducer, not
an internal one.

6.2 Test-Case Reduction in Property-Based Testing

Test-case reduction has been an important feature in property-based testing since the early
work on QuickCheck [2]. In property-based testing, test-case reduction is usually called
shrinking, but for consistency we will continue to use the term test-case reduction.

D.R. MacIver and A. F. Donaldson 13:23

In the original QuickCheck, and other property-based testing libraries closely based on it,
test-case reduction follows the external reduction model, with reducers run on the generated
test cases once an interesting one has been discovered, with an appropriate reducer selected
based on the type of the generated data or provided by a user.

Originally these reducers were hand-written ones. However, most users do not particularly
want to write their own test-case reducers, so this lead to the introduction of generic test-case
reducers. These are particularly popular in Haskell, where most data is represented with
algebraic data types, and good generic programming libraries allow for automatically deriving
reducers for most data types that are “good enough” (any test-case reduction will tend to
improve the utility of property-based testing, and to be worth the effort, hand-writing a
reducer has to be less work than the debugging effort it saves). Indeed, the derivation of such
reducers has been used to motivate the development of some of these generic programming
libraries [14]. Generic reduction was also explored in [22], but the suggested approach does
not appear to have been widely adopted.

However both manual and generic approaches to test-case reduction suffer a variant of
the test-case validity problem: After reduction has been performed, the final reduced test
case may be one that could not have been generated. This tends to be counterintuitive to
users, who consider it a bug or missing feature.16 There is no straightforward way to derive
an oracle for whether something could be generated, so this problem is essentially insoluble
without a different approach.

In aid of this, several property-based testing libraries have introduced what is called
integrated shrinking,17 where test-case reduction is “bundled” with the generators, so that
every generator contains information about how to reduce its generated test cases. In this
sense, the internal reduction model we describe in this paper can be thought of as a form of
integrated shrinking.

There is however another more widely used implementation of integrated shrinking,
the rose tree18 method [4, 5] This approach works by having generators generate a (lazily
evaluated) tree consisting of an initial value and possible reductions of it, so that generated
values can be reduced by walking the tree. The rose tree method has been implemented in
test.check (Clojure)19 and Hedgehog (Haskell)20 among others.

Such generators can easily be implemented by pairing a normal random generator of
test cases with a test-case reducer, but they save implementation effort by allowing for
composition with user defined functions. In particular by supporting the monadic [20] bind
operator to chain generators together, one can in principle generate anything, as monadic
bind can be used to express arbitrary computation. Unfortunately in practice the rose
tree approach produces poor reductions when bind is used,21 so generally this approach to
integrated shrinking only works well with a relatively restricted set of generators.

Because monadic bind can be used to express arbitrary computation, the question of
whether internal reduction can work well in these scenarios is essentially equivalent to the
question of whether it can work well with arbitrary generators, to which the answer is that
it depends. It is certainly possible to construct generators that Hypothesis finds difficult

16 https://github.com/typelevel/scalacheck/issues/129
17 https://hypothesis.works/articles/integrated-shrinking/
18A rose tree is a tree where each branch node can have any number of children.
19 https://github.com/clojure/test.check
20 https://hedgehog.qa/
21 https://github.com/clojure/test.check/blob/master/doc/growth-and-shrinking.md#

unnecessary-bind

ECOOP 2020

https://github.com/typelevel/scalacheck/issues/129
https://hypothesis.works/articles/integrated-shrinking/
https://github.com/clojure/test.check
https://hedgehog.qa/
https://github.com/clojure/test.check/blob/master/doc/growth-and-shrinking.md#unnecessary-bind
https://github.com/clojure/test.check/blob/master/doc/growth-and-shrinking.md#unnecessary-bind

13:24 Test-Case Reduction via Test-Case Generation

to reduce, but as we saw in Section 4.1 it tends to work well with even large and complex
generators written without internal reduction in mind. Also, a key difference is that when
Hypothesis has difficulty reducing a generator, typically this is a limitation of its reducer
rather than the model: Generally there is some shortlex smaller sequence that would reduce
the generated value, but the reducer is unable to find it. Such situations can often be resolved
by improving the reducer with no modifications to user code. In contrast, the rose tree model
offers no alternative but to add a custom external reducer.

Nevertheless, at present the rose tree model is significantly more widely used than internal
reduction. Partly this is just because it predates the internal reduction model, but it is also
significantly simpler to implement and easier to understand. Nevertheless, we believe that
the benefits of internal reduction are worth the increased implementation complexity, and
hope this paper will aid readers’ understanding of its model.

6.3 Choice Sequences to Improve Generation
We have introduced the term choice sequence to refer to the binary decisions made during
random generation, which we use to regard random generators as deterministic parsers of
sequences of bits. Similar approaches have been used elsewhere. Most other usage has focused
not on test-case reduction but instead on improving the quality of generated test cases by
using coverage guided fuzzing. For example, crowbar [3] is an OCaml library for providing
property-based testing built on top of the AFL Fuzzer22 using this approach. DeepState [6] is
a unit testing library for C++ which supports either symbolic execution or coverage guided
fuzzing. These effectively use a choice sequence, encoded as a sequence of bytes provided by
the fuzzer, to make nondeterministic decisions.

Recent work in Zest [21] also uses a choice sequence model to improve the quality of
generated test case, but uses the term “parameters” to refer to the individual bits. We prefer
our “choice sequence” terminology, as the interpretation of a given bit can change during
reduction (e.g. a bit that once chose whether to terminate a list might become part of a
generated value) so we find thinking of them as parameters a little misleading.

6.4 Other Uses of Internal Reduction
The idea of internal reduction as shortlex optimization originates with Hypothesis, but the
idea of manipulating a generator to produce smaller results predates it. The main prior
art of which we are aware is Seq-Reduce [23], a Csmith mode that attempts to reduce the
length of the choice sequence by regenerating parts of it. Seq-Reduce was only designed to
work with Csmith, and was abandoned due to disappointing results, while we have shown
that with internal reduction is both broadly applicable and can work well with Csmith in
particular. We have not investigated why we see such a substantial difference between the
two approaches, but think it likely that its approach of randomly regenerating parts of the
test case was unlikely to work without more structural information such as we describe in
Section 3.2.

In addition, there are two significant production implementations of internal reduction
that have appeared subsequent to Hypothesis, in both cases explicitly based on its approach.
These are DeepState, which we also mention in Section 6.3, and theft23, a property-based
testing library for C. Both share our approach of internal reduction as shortlex optimization,
but have their own reducer implementations.

22 https://github.com/google/AFL
23 https://github.com/silentbicycle/theft

https://github.com/google/AFL
https://github.com/silentbicycle/theft

D.R. MacIver and A. F. Donaldson 13:25

7 Conclusion and Future Work

We have presented internal reduction, an approach that performs test-case reduction on
generated test cases by manipulating the behavior of the generator that produced them.

The key advantages of internal reduction over conventional, external, reduction are that,
by operating solely on the behavior of the generator, it a) provides “free” reduction for
arbitrary generators, saving the need to write a new reducer, and b) ensures that reduced
test cases are ones that could have been generated, avoiding the test-case validity problem.

As demonstrated by our experimental results, the size of the reduced test cases found
by internal reduction is competitive with that found by general purpose reducers such as
delta debugging or the reducers typically found in property-based testing libraries, at a
moderate increase in reduction cost. Unsurprisingly, there is still a large size gap between
its results and those of more specialized reducers such as C-Reduce. We expect that this
will continue to be the case, and do not suggest internal reduction as the best model when
it is worth investing significant engineering effort in a specialized reducer for a particular
test-case format.

Nevertheless, by providing good quality test-case reduction “for free”, internal reduction
has significantly improved the user experience of property-based testing in Hypothesis, and
the other testing tools we mention in Section 6.4, and is likely to be useful to other users of
random generation, especially those not currently using test-case reduction.

Internal test-case reduction has been used in Hypothesis for over four years now, and we
consider it a mature and proven technology. Future work on the Hypothesis reducer will
seek to improve its performance, and likely will see the development of further reduction
passes and heuristics that expand the set of generators it works well for. We’re particularly
interested in exploring whether we can improve its performance on larger initial choice
sequences, and hope to do further work based on attempting to lift the 8KB buffer size
restriction we saw in our experiments with Csmith-generated programs in Section 4.1.

Another exciting line of research is the use of the choice sequence model to implement
other functionality. As we discuss in Section 6.3, there are a number of implementations
that use this idea to provide coverage-guided fuzzing. Hypothesis has some limited support
for this, which we are intending to expand further in future. Additionally, Hypothesis has
an implementation of targeted property-based testing [15], which guides generation towards
test cases maximizing or minimizing some objective function. The advantages of the choice
sequence model for targeted property-based testing are much the same as that for test-case
reduction: It provides a fully generic mechanism that requires no user intervention, and
ensures that all provided test cases are ones that could have been generated, significantly
easing the validity problem. In contrast, prior attempts at fully automating targeted property-
based testing (that is, implementing it without requiring user provided mutation functions)
in [16] required a great deal of care to ensure valid test cases were produced.

In general, the choice sequence model has proven flexible and powerful, allowing us to
implement advanced features with minimal negative impact on users, and without requiring
any user expertise in the subject. This makes Hypothesis a powerful tool for creating
production implementations of software testing research ideas. We intend to continue using
it as such, and encourage other researchers to do the same.

ECOOP 2020

13:26 Test-Case Reduction via Test-Case Generation

References
1 Thomas Arts, John Hughes, Joakim Johansson, and Ulf T. Wiger. Testing telecoms software

with quviq quickcheck. In Marc Feeley and Philip W. Trinder, editors, Proceedings of the 2006
ACM SIGPLAN Workshop on Erlang, Portland, Oregon, USA, September 16, 2006, pages
2–10. ACM, 2006. doi:10.1145/1159789.1159792.

2 Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random testing of
haskell programs. In Martin Odersky and Philip Wadler, editors, Proceedings of the Fifth
ACM SIGPLAN International Conference on Functional Programming (ICFP ’00), Montreal,
Canada, September 18-21, 2000., pages 268–279. ACM, 2000. doi:10.1145/351240.351266.

3 Stephen Dolan and Mindy Preston. Testing with crowbar. In Proceedings of the OCaml Users
and Developers Workshop, September 2017. URL: https://ocaml.org/meetings/ocaml/2017/
extended-abstract__2017__stephen-dolan_mindy-preston__testing-with-crowbar.pdf.

4 Reid Draper. Proposal: free shrinking with quickcheck. https://mail.haskell.org/
pipermail/libraries/2013-November/021674.html, 2013. Accessed: 2020-05-25.

5 Reid Draper. Writing simple-check. http://reiddraper.com/writing-simple-check/, 2013.
Accessed: 2020-05-25.

6 Peter Goodman and Alex Groce. DeepState: Symbolic unit testing for C and C++. In NDSS
Workshop on Binary Analysis Research, 2018.

7 Google. yapf: Yet another python formatter, 2018. URL: https://github.com/google/yapf.
8 Alex Groce. private correspondence.
9 Alex Groce, Josie Holmes, and Kevin Kellar. One test to rule them all. In Tevfik Bultan

and Koushik Sen, editors, Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis, Santa Barbara, CA, USA, July 10 - 14, 2017, pages 1–11.
ACM, 2017. doi:10.1145/3092703.3092704.

10 Alex Groce and Jervis Pinto. A little language for testing. In Klaus Havelund, Gerard J.
Holzmann, and Rajeev Joshi, editors, NASA Formal Methods - 7th International Symposium,
NFM 2015, Pasadena, CA, USA, April 27-29, 2015, Proceedings, volume 9058 of Lecture Notes
in Computer Science, pages 204–218. Springer, 2015. doi:10.1007/978-3-319-17524-9_15.

11 Alex Groce, Jervis Pinto, Pooria Azimi, and Pranjal Mittal. TSTL: a language and tool for
testing (demo). In Michal Young and Tao Xie, editors, Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ISSTA 2015, Baltimore, MD, USA, July 12-17,
2015, pages 414–417. ACM, 2015. doi:10.1145/2771783.2784769.

12 Ralf Hildebrandt and Andreas Zeller. Simplifying failure-inducing input. In Debra J. Richardson
and Mary Jean Harold, editors, Proceedings of the International Symposium on Software Testing
and Analysis, ISSTA 2000, Portland, OR, USA, August 21-24, 2000, pages 135–145. ACM,
2000. doi:10.1145/347324.348938.

13 Renáta Hodován and Ákos Kiss. Practical improvements to the minimizing delta debugging
algorithm. In Leszek A. Maciaszek, Jorge S. Cardoso, André Ludwig, Marten van Sinderen, and
Enrique Cabello, editors, Proceedings of the 11th International Joint Conference on Software
Technologies (ICSOFT 2016) - Volume 1: ICSOFT-EA, Lisbon, Portugal, July 24 - 26, 2016.,
pages 241–248. SciTePress, 2016. doi:10.5220/0005988602410248.

14 Ralf Lämmel and Simon L. Peyton Jones. Scrap your boilerplate with class: extensible generic
functions. In Olivier Danvy and Benjamin C. Pierce, editors, Proceedings of the 10th ACM
SIGPLAN International Conference on Functional Programming, ICFP 2005, Tallinn, Estonia,
September 26-28, 2005, pages 204–215. ACM, 2005. doi:10.1145/1086365.1086391.

15 Andreas Löscher and Konstantinos Sagonas. Targeted property-based testing. In Tevfik Bultan
and Koushik Sen, editors, Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis, Santa Barbara, CA, USA, July 10 - 14, 2017, pages 46–56.
ACM, 2017. doi:10.1145/3092703.3092711.

16 Andreas Löscher and Konstantinos Sagonas. Automating targeted property-based testing.
In 11th IEEE International Conference on Software Testing, Verification and Validation,
ICST 2018, Västerås, Sweden, April 9-13, 2018, pages 70–80. IEEE Computer Society, 2018.
doi:10.1109/ICST.2018.00017.

https://doi.org/10.1145/1159789.1159792
https://doi.org/10.1145/351240.351266
https://ocaml.org/meetings/ocaml/2017/extended-abstract__2017__stephen-dolan_mindy-preston__testing-with-crowbar.pdf
https://ocaml.org/meetings/ocaml/2017/extended-abstract__2017__stephen-dolan_mindy-preston__testing-with-crowbar.pdf
https://mail.haskell.org/pipermail/libraries/2013-November/021674.html
https://mail.haskell.org/pipermail/libraries/2013-November/021674.html
http://reiddraper.com/writing-simple-check/
https://github.com/google/yapf
https://doi.org/10.1145/3092703.3092704
https://doi.org/10.1007/978-3-319-17524-9_15
https://doi.org/10.1145/2771783.2784769
https://doi.org/10.1145/347324.348938
https://doi.org/10.5220/0005988602410248
https://doi.org/10.1145/1086365.1086391
https://doi.org/10.1145/3092703.3092711
https://doi.org/10.1109/ICST.2018.00017

D.R. MacIver and A. F. Donaldson 13:27

17 Lukasz Langa. black: The uncompromising code formatter, 2018. URL: https://github.
com/ambv/black.

18 David MacIver, Zac Hatfield-Dodds, and Many Contributors. Hypothesis: A new approach
to property-based testing. Journal of Open Source Software, 4(43):1891, November 2019.
doi:10.21105/joss.01891.

19 Ghassan Misherghi and Zhendong Su. HDD: hierarchical delta debugging. In Leon J. Osterweil,
H. Dieter Rombach, and Mary Lou Soffa, editors, 28th International Conference on Software
Engineering (ICSE 2006), Shanghai, China, May 20-28, 2006, pages 142–151. ACM, 2006.
doi:10.1145/1134307.

20 Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, 1991.
doi:10.1016/0890-5401(91)90052-4.

21 Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves Le Traon. Semantic
fuzzing with zest. In Dongmei Zhang and Anders Møller, editors, Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2019, Beijing,
China, July 15-19, 2019, pages 329–340. ACM, 2019. doi:10.1145/3293882.3330576.

22 Lee Pike. Smartcheck: automatic and efficient counterexample reduction and generalization.
In Wouter Swierstra, editor, Proceedings of the 2014 ACM SIGPLAN symposium on Haskell,
Gothenburg, Sweden, September 4-5, 2014, pages 53–64. ACM, 2014. doi:10.1145/2633357.
2633365.

23 John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang. Test-case
reduction for C compiler bugs. In Jan Vitek, Haibo Lin, and Frank Tip, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’12, Beijing, China
- June 11 - 16, 2012, pages 335–346. ACM, 2012. doi:10.1145/2254064.2254104.

24 Wikipedia contributors. Shortlex order, 2020. [Online; accessed 10-January-2020]. URL:
https://en.wikipedia.org/wiki/Shortlex_order.

25 Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs in
C compilers. In Mary W. Hall and David A. Padua, editors, Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011, San
Jose, CA, USA, June 4-8, 2011, pages 283–294. ACM, 2011. doi:10.1145/1993498.1993532.

26 Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing input. IEEE
Trans. Software Eng., 28(2):183–200, 2002. doi:10.1109/32.988498.

ECOOP 2020

https://github.com/ambv/black
https://github.com/ambv/black
https://doi.org/10.21105/joss.01891
https://doi.org/10.1145/1134307
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1145/3293882.3330576
https://doi.org/10.1145/2633357.2633365
https://doi.org/10.1145/2633357.2633365
https://doi.org/10.1145/2254064.2254104
https://en.wikipedia.org/wiki/Shortlex_order
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1109/32.988498

Model-View-Update-Communicate: Session Types
Meet the Elm Architecture
Simon Fowler1

University of Edinburgh, United Kingdom
simon.fowler@glasgow.ac.uk

Abstract
Session types are a type discipline for communication channel endpoints which allow conformance to
protocols to be checked statically. Safely implementing session types requires linearity, usually in the
form of a linear type system. Unfortunately, linear typing is difficult to integrate with graphical user
interfaces (GUIs), and to date most programs using session types are command line applications.

In this paper, we propose the first principled integration of session typing and GUI development
by building upon the Model-View-Update (MVU) architecture, pioneered by the Elm programming
language. We introduce λMVU, the first formal model of the MVU architecture, and prove it sound.
By extending λMVU with commands as found in Elm, along with linearity and model transitions,
we show the first formal integration of session typing and GUI programming. We implement our
approach in the Links web programming language, and show examples including a two-factor
authentication workflow and multi-room chat server.

2012 ACM Subject Classification Software and its engineering → Concurrent programming lan-
guages

Keywords and phrases Session types, concurrent programming, Model-View-Update

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.14

Related Version An extended version of the paper is available on arXiv (https://arxiv.org/abs/
1910.11108).

Supplementary Material ECOOP 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.2.13.

Funding This work was supported by ERC Consolidator Grant Skye (grant no. 682315) and an ISCF
Metrology Fellowship grant provided by the UK government’s Department for Business, Energy and
Industrial Strategy (BEIS).

Acknowledgements I thank Jake Browning for sparking my interest in Elm and for his help with
an early prototype of the Links MVU library; Sára Decova for a previous version of the multi-room
chat server example; Sam Lindley for many useful discussions and suggestions; and James Cheney,
April Gonçalves, and the anonymous ECOOP PC and AEC reviewers for detailed comments.

1 Introduction

Modern applications are necessarily concurrent and distributed. Along with concurrency
and distribution naturally comes communication, but communication protocols are typically
informally described, resulting in costly runtime failures and code maintainability issues.

Session types [23, 24] are a type discipline for communication channel endpoints which
allow conformance to a protocol to checked statically rather than after an application is
deployed. Many distributed GUI applications, such as chat applications or multiplayer
games, would benefit from session-typed communication with a server. Unfortunately, safely
implementing session types requires a require a linear type system, but safely integrating
linear resources and GUIs is nontrivial. As a consequence, to date most programs using
session types are batch-style applications run on the command line.

1 now at University of Glasgow, United Kingdom

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Simon Fowler;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 14; pp. 14:1–14:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5143-5475
mailto:simon.fowler@glasgow.ac.uk
https://doi.org/10.4230/LIPIcs.ECOOP.2020.14
https://arxiv.org/abs/1910.11108
https://arxiv.org/abs/1910.11108
https://doi.org/10.4230/DARTS.6.2.13
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Model-View-Update-Communicate

The lack of a principled integration of GUI applications and session types is a significant
barrier to their adoption. In this paper, we bridge this gap by extending the Model-View-
Update (MVU) architecture, pioneered by the Elm programming language, to support linear
resources. We present λMVU, a core formalism of the MVU architecture, and an extended
version of λMVU which supports session-typed communication. Informed by the formal
development, we provide a practical implementation in the Links programming language [10].

Session types by example. Let us consider a two-factor authentication workflow, introduced
by Fowler et al. [20]. A user first enters their credentials. If correct, the server can then
either grant access, or send a challenge key. If challenged, the user enters the challenge code
into a hardware token, which generates a response to be entered into the web page. The
server then either authenticates the user or denies access.

We can describe the two-factor authentication example as a session type as follows:

TwoFactorServer ,
?(Username,Password).⊕{

Authenticated : ServerBody,
Challenge : !ChallengeKey.?Response.
⊕{Authenticated : ServerBody,

AccessDenied : End},
AccessDenied : End}

TwoFactorClient ,
!(Username,Password).&{

Authenticated : ClientBody,
Challenge : ?ChallengeKey.!Response.

&{Authenticated : ClientBody,
AccessDenied : End},

AccessDenied : End}
The TwoFactorServer type shows the session type for the server, which firstly receives (?)

the credentials from the client, and then chooses (⊕) whether to authenticate, deny access,
or issue a challenge. If the server issues a challenge, it sends (!) the challenge string, awaits
the response, and then chooses whether to accept or reject the request. The ServerBody
type abstracts over the actions performed in the remainder of the application, for example
taking out a loan. The TwoFactorClient type is the dual of the TwoFactorServer type: where
the server sends, the client receives, and where the client sends, the server receives. The
& construct denotes offering a choice of branches. Suppose we have constructs for sending
along, receiving from, and closing an endpoint:

send : (A× !A.S)→ S receive : ?A.S → (A× S) close : End→ 1
Let us also suppose we have constructs for selecting and offering a choice:

select `j M : Sj where M has session type ⊕{`i : Si}i∈I , and j ∈ I
offerM {`i(xi) 7→ Ni}i∈I : A where M has session type &{`i : Si}i∈I , each xi binds an

endpoint with session type Si, and each Ni has type A
We can write a server implementation as follows:

twoFactorServer : TwoFactorServer→ 1
twoFactorServer(s) , let ((username, password), s) = receive s in

if checkDetails(username, password) then
let s = select Authenticated s in serverBody(s)

else let s = select AccessDenied s in close s
To implement session-typed communication safely, we require a linear type system [44] to
ensure each communication endpoint is used exactly once: as an example, without linearity
it would be possible to attempt to receive the credentials twice.

Linearity and GUIs. We can also write a client application:

twoFactorClient : (Username× Password× TwoFactorClient)→ 1
twoFactorClient(username, password, s) ,
let s = send ((username, password), s) in
offer s {Authenticated(s) 7→ clientBody(s)

Challenge(s) 7→ let (key, s) = receive s in
let s = send (generateResponse(key), s) in
offer s {Authenticated(s) 7→ clientBody(s)

AccessDenied(s) 7→ close s; loginFailed}
AccessDenied(s) 7→ close s; loginFailed}

S. Fowler 14:3

However, such a client is of little use, as it sends only a pre-defined set of credentials,
and the step where a user enters the response to the challenge is replaced by a function
generateResponse. Ideally, we would like the credentials to be entered into a GUI, and for a
button press to trigger the session communication with the server.

Let us attempt to write a GUI for the first stage of the two-factor authentication example;
as HTML is well-understood, we concentrate on web pages in the remainder of the paper.

render(c) ,
<html>

<body>
<input id = "username"></input>
<input id = "password"></input>
<button onClick = login(c)>Submit</button>

</body>
</html>

login(c) , λ().
let user = getContents("username") in
let pass = getContents("password") in
let c = send ((user, pass), c) in
handleResponse(c)

Given a channel c of type TwoFactorClient, the render function generates a web page with
input boxes for the username and password, and a button to submit the credentials. The
login function, triggered when the button is clicked, retrieves the username and password
from the two input boxes, and sends the credentials along c. The handleResponse function,
which we omit, receives the response from the server and updates the web page.

On first inspection, this implementation seems sound since the endpoint c is used linearly.
However, the above attempt is unsound due to the asynchronous nature of GUI programming:
there is nothing stopping the user pressing the button twice and sending the credentials
twice along c, in contravention of the session type. As a further complication, suppose we
augmented the protocol with a “forgotten password” branch, triggered by another button.
This would require two instances of c in the GUI, again violating linearity:

<button onClick = login(c)>Submit</button>
<button onClick = reset(c)>Reset password</button>

It is clear that directly embedding linear resources into a GUI is a non-starter. A more
successful approach involves spawning a separate process which contains the linear resource,
and which receives non-linear messages from the GUI. Upon receiving a GUI message, the
process can then perform the session communication, while ignoring duplicate GUI messages:

render(c) ,
let pid = spawn handler(c) in
<html>

<body>
<input id = "username"></input>
<input id = "password"></input>
<button onClick = login(pid)>Submit</button>

</body>
</html>

login(pid) , λ().
let user = getContents("username") in
let pass = getContents("password") in
pid ! SubmitLogin(user, pass)

handler(c) ,
case (get ()) {

SubmitLogin(user, pass) 7→
let c = send ((user, pass), c) in
handleResponse(c)

}

The render function begins by spawning handler(c) as a separate process with an incoming
message queue (or mailbox), returning the process ID pid. As before, the login function is
triggered by pressing the button, and retrieves the credentials from the web page. Instead
of communicating on the channel directly, it sends a SubmitLogin message containing the
credentials to the process ID of handler process, written pid ! SubmitLogin(user, pass). The
handler process retrieves the message from its mailbox (get ()), and can then communicate
with the server over the linear endpoint. Such an approach also scales to the “forgotten
password” extension, by adding another GUI message.

The above approach is used by Fowler et al. [20], who provide the first integration of
session types and web application development, including the ability to gracefully handle
failures such as the user closing their browser mid-session. Unfortunately, the approach is

ECOOP 2020

14:4 Model-View-Update-Communicate

brittle and ad-hoc. All interaction with the web page occurs using imperative operations such
as getContents and setContents; contrary to best practices such as the Model-View-Controller
(MVC) [30] pattern, the state of the web page is not derived directly from the data contained
by the application. Furthermore, there is no connection between the state of the handler
process and what is displayed on the web page: this can easily lead to mismatches between
the possible GUI messages which can be sent and which can be handled.

Model-View-Update. This paper is about doing better. Our approach is to formalise
Model-View-Update, an architectural pattern for GUI development popularised by the Elm
programming language [1], and extend it to support linear resources. MVU is an appealing
starting point as it is particularly suited to functional programming. Furthermore, MVU has
directly inspired popular technologies such as Redux [5] and the Flux architecture [4], which
are used with the popular React [2] frontend web framework for JavaScript.

The Elm programming language [1] is a functional programming language designed for
writing web applications. Elm was originally designed to use functional reactive programming
(FRP) [14], where time-varying signals can be used to construct reactive web applications. A
paper describing Elm, and its core formal semantics, was published at PLDI 2013 [12].

For many languages, that would be the end of the story. But unusually for a research
language, Elm gained a user community, and a standard architectural pattern known as The
Elm Architecture grew organically to such a point that Elm abandoned FRP altogether [11].
At its core, The Elm Architecture is a descendant of MVC where a model contains the state
of the application; a view function renders the model; and the rendered model produces
messages which are handled by an update function to produce a new model. More generally,
this pattern has been referred to as Model-View-Update, or MVU for short [3, 40].

Consider the following web application, where a user enters text into a text box, and the
application displays the text, reversed:

We can write this example using MVU as follows:

Model , (contents : String)
Message , UpdateBox(String)

model : Model
model , (contents = "")

update : (Message×Model)→ Model
update , λ(UpdateBox(str),m).(contents = str)

view : Model→ Html(Message)
view , λmodel.html

<input type = “text” value = {model.contents}
onInput = {λstr.UpdateBox(str)}></input>

<div>
{htmlText (reverseString (model.contents))}

</div>

(model, view, update)
We define two type aliases: the Model captures the state of the application and is defined
as a record with a single String field, contents. Messages are produced as a result of user
interaction. The Message type is defined as a singleton variant type with constructor
UpdateBox, containing the updated value of the text box.

The view function renders a model. It has the type Model→ Html(Message), which is a
function taking a Model as its argument, and returning HTML which may produce messages
of type Message. The value = {model.contents} attribute of the input box states that the
contents of the text box should reflect the contents field of the model. The onInput attribute
is an event handler : its body is a function taking the current value of the input box (str) and
producing an UpdateBox message containing the updated contents of the box. The contents
of the div tag are derived from the reversed contents.

S. Fowler 14:5

Syntax

Types A,B,C ::= 1 | A→ B | A×B | A+B | String | Int
| Html(A) | Attr(A)

String literals s

Integers n

Terms L,M,N ::= x | λx.M | rec f(x) . M | M N | () | s | n
| (M,N) | let (x, y) = M inN
| inl x | inr x | case L {inl x 7→M ; inr y 7→ N}
| htmlTag tM N | htmlTextM | htmlEmpty
| attr ak M | attrEmpty | M ?N

Tag names t Attribute keys ak ::= at | h
Attribute names at Event handler names h

Typing rules for terms Γ `M : A

T-HtmlTag
Γ `M : Attr(A) Γ ` N : Html(A)

Γ ` htmlTag tM N : Html(A)

T-HtmlText
Γ `M : String

Γ ` htmlTextM : Html(A)

T-HtmlEmpty
Γ ` htmlEmpty : Html(A)

T-Attr
Γ `M : String

Γ ` attr at M : Attr(A)

T-EvtAttr
Γ `M : ty(h)→ A

Γ ` attr hM : Attr(A)

T-AttrEmpty
Γ ` attrEmpty : Attr(A)

T-HtmlAppend
Γ `M : Html(A) Γ ` N : Html(A)

Γ `M ?N : Html(A)

T-AttrAppend
Γ `M : Attr(A) Γ ` N : Attr(A)

Γ `M ?N : Attr(A)

Figure 1 Syntax and typing rules for λMVU terms.

The update function takes a message and previous model as its arguments, and produces a
new model. In this case, the update function constructs a new model where the contents field
is set to the payload of the UpdateBox message. Finally, the program is a 3-tuple containing
the initial model, and the view and update functions.

To achieve our goal of a formal integration of session typing and GUI programming,
we first formalise MVU, and then generalise the architecture to support linear models and
messages. Supporting linearity poses some challenges, as we will see in §3.

1.1 Contributions

The overarching contribution of this paper is the first principled integration of session-typed
communication with a GUI framework. Concretely, we make three contributions:

1. We introduce the first formal model of the MVU architecture, λMVU (§2). We prove (§2.3)
that λMVU satisfies preservation and event progress properties.

2. We extend λMVU with commands, linearity, and model transitions (§3), which allow λMVU
to support GUIs incorporating session-typed communication, and we prove the soundness
of the extended calculus.

3. We implement the architecture in the Links web programming language. We show an
extended example of a chat application where client code uses the linear MVU framework,
and where client-server communication happens over session-typed channels (§4).
The implementation and examples are available in the paper’s companion artifact.

ECOOP 2020

14:6 Model-View-Update-Communicate

Event name ev Event Handler h
(handler(ev))

Payload type
(ty(ev), ty(h))

Payload Description

click onClick 1 Unit value
input onInput String Updated contents of a text field
keyUp onKeyUp Int Key code

keyDown onKeyDown Int Key code

Figure 2 Example event signatures.

2 Model-View-Update, Formally

In this section, we formalise MVU as a core calculus, λMVU, an extension of the simply-typed
λ-calculus with products, sums, HTML, and event handling. Even without extensions, λMVU
is expressive enough to support many common applications such as form handling.

2.1 Syntax
Types. Figure 1 shows the syntax and typing rules for λMVU. Types are ranged over by
A,B,C, and consist of the unit type 1, functions A→ B, products A×B, sums A+B, and
string and integer types. Types Html(A) and Attr(A) are the type of HTML elements and
attributes which can produce messages of type A.

Terms. Terms, ranged over by L,M,N , include variables, λ abstractions, anonymous
recursive functions, function application, the unit value, string literals, integers, and sum
and pair introduction and elimination. The remaining terms encode HTML elements and
attributes. The htmlTag tM N construct denotes an HTML element with tag name t (for
example, div), attributes M , and children N ; the htmlTextM construct describes a text
node with text M ; and htmlEmpty defines an empty HTML node.

The attr ak M construct describes an attribute with key ak and body M , where the key
ak is either an attribute name at or an event handler name h. The attrEmpty construct
defines an empty attribute.

The M ? N operator appends two HTML elements or attributes. Since both HTML
elements and attributes support a unit element (htmlEmpty and attrEmpty respectively),
elements and attributes together with ? form two monoids.

Events. We model interaction with the Document Object Model (DOM) through events,
which model those dispatched by a browser. An event signature is a 3-tuple (ev, h, A)
consisting of an event name ev, handler name h, and payload type A. We require a bijective
mapping between event and handler names. Figure 2 describes example event signatures
used in the remainder of the paper. We consider four primitive events: click, which is fired
when an element is clicked; input, which is fired when the contents of a text field are changed;
and keyUp and keyDown, which are fired when a key is pressed while focused on an element.

Event handlers are attached to elements as attributes, and generate a message in response
to an event. We write handler(ev) to refer to the handler for ev: for example, handler(click) =
onClick. We write ty(ev) to refer to the payload type of ev and write ty(h) for the payload
type of an event handled by h. As an example, both ty(click) = 1 and ty(onClick) = 1.

Term typing. Term typing rules for λ-calculus constructs are standard, so are omitted.
Rule T-HtmlTag states that htmlTag tM N can be given type Html(A) if its attributes M
have type Attr(A) and children have type Html(A). Text nodes htmlTextM do not produce
any messages, and so have type Html(A) if M has type String (T-HtmlText); similarly,
htmlEmpty has type Html(A) (T-HtmlEmpty).

S. Fowler 14:7

Values U, V,W ::= λx.M | rec f(x) . M | () | (V,W) | inl V | inr V | s | n
| htmlTag t V W | htmlEmpty | htmlText V
| attr ak V | attrEmpty | V ?W

Events e ::= ev(V)
DOM Pages D ::= domTag(−→e) t V D | domText V | domEmpty | D ?D′

Active thread T ::= idle Vm | M
Function state F ::= (Vv, Vu)
Processes P,Q ::= runM | 〈T | F 〉 | ((M)) | P ‖ Q
Configurations C ::= P # D

Process contexts P ::= [] | P ‖ P
DOM contexts D ::= [] | domTag(−→e) t V D | D ? D | D ?D
Thread contexts T ::= run E | 〈E | F 〉 | ((E))

Figure 3 Runtime syntax for λMVU.

Rule T-Attr assigns attributes attr at M type Attr(A) for any A if M has type String.
Rule T-EvtAttr types event handler attributes attr hM : if the event handler M has type
ty(h)→ A (i.e., it produces messages of type A), then the attribute can be given type Attr(A).
Finally, T-AttrEmpty states that the empty attribute attrEmpty has type Attr(A) for
any type A. We overload the ? operator to append both HTML elements and attributes
(T-HtmlAppend and T-AttrAppend).

Syntactic sugar. We assume the usual encodings of records as pairs and variant types as
binary sums, and use pattern matching notation. It is useful to be able to write HTML using
XML-like notation, where an antiquoted expression {M} allows a term M to be embedded
within an HTML tree. The view function from the introduction desugars to:

λmodel.
(htmlTag input

((attr type “text”) ? (attr value model.contents)?
(attr onInput (λstr.UpdateBox(str)))) htmlEmpty) ?

htmlTag div attrEmpty (htmlText reverseString (model.contents))

The formal definitions and desugaring translations are unsurprising; the details can be found
in the extended version [18].

2.2 Operational Semantics
We can now provide λMVU with a small-step operational semantics.

2.2.1 Runtime Syntax
Figure 3 describes the runtime syntax of λMVU. Values, ranged over by U, V,W , are standard.
An event ev(V) consists of event name ev and payload V . We write ε for an empty meta-level
sequence, and use · for sequence concatenation. DOM pages, ranged over by D, are the
runtime representation of HTML, where tags domTag(−→e) t V D contain an event queue −→e
of events dispatched to the element.

Concurrency. Concurrency is vital when modelling GUI applications as event handling
is asynchronous: computation triggered by a user interaction should not block the UI.
Concurrency is also essential when considering session-typed communication. We therefore
formulate the calculus as a concurrent λ-calculus in the style of Niehren et al. [36], by
augmenting the simply-typed λ-calculus with processes and concurrent reduction.

ECOOP 2020

14:8 Model-View-Update-Communicate

Meta-level definitions

handle(m, (v, u),msg) ,
letm′ = u (msg,m) in
(m′, v m′)

handlers(ev, attrEmpty) = ε
handlers(ev, V ? W) = handlers(ev, V) · handlers(ev,W)

handlers(ev, attr at V) = ε

handlers(ev, attr h V) =
{
V if handler(ev) = h

ε otherwise

Process reduction P −→ P ′

EP-Handle 〈idle Vm | F 〉 ‖ ((V)) −→ 〈handle(Vm, F, V) | F 〉
EP-Par P1 ‖ P2 −→ P ′1 ‖ P2 if P1 −→ P ′1
EP-LiftT T [M] −→ T [N] if M −→M N

Configuration reduction C −→ C′

E-Run P[run (Vm, Vv, Vu)] # D −→ P[〈(Vm, Vv Vm) | (Vv, Vu)〉] # D
E-Update P[〈(Vm, U) | F 〉] # D −→ P[〈idle Vm | F 〉] # D′ where diff(U,D) = D′

E-Interact P # D[domTag(−→e) t U D] −→ P # D[domTag(−→e · ev(V)) t U D]
for some ev, V such that ` ev(V)

E-Evt
P # D[domTag(ev(W) · −→e) t U D] −→ P ‖ ((V1 W)) ‖ · · · ‖ ((VnW)) # D[domTag(−→e) t U D]

where handlers(ev, U) = −→V
E-Struct C −→ C′ if C ≡ C1, C1 −→ C2, and C2 ≡ C′

E-LiftP P # D −→ P ′ # D if P −→ P ′

Figure 4 Reduction rules for λMVU terms and configurations.

Processes. An initialisation process runM evaluates the initial system state written by a
user, where M is a 3-tuple containing the initial model, view function, and update function.
An event loop process 〈T | F 〉 consists of an active thread T and function state F comprising
the view and update functions. The thread can either be idle Vm, meaning the process has
current model Vm and is waiting for another message to process, or evaluating a term M .
An event handler process ((M)) is spawned to generate a message in response to an event.

Configurations. Concurrent and event-driven reduction happens in the context of a system
configuration P # D, where P is the concurrent fragment of the system and D is the current
DOM page. An MVU program as written by a user is a term M specifying the initial model,
view function, and update function, of type (A × (A → Html(B)) × ((B × A) → A)). A
program is evaluated in the context of an initial configuration:

I Definition 1 (Initial configuration). An initial configuration for a term M is of the form
runM # domEmpty.

Evaluation contexts. Term evaluation contexts E (omitted) are set up for call-by-value,
left-to-right evaluation. Process contexts P allow reduction under parallel composition.
Thread contexts T allow reduction inside threads. DOM contexts D allow us to focus on
each element of a DOM forest; note that they deliberately allow non-unique decomposition
in order to support nondeterministic reduction.

2.2.2 Reduction Rules
Figure 4 shows the reduction rules for λMVU processes and configurations; reduction on terms
is standard β-reduction. Reduction on configurations is defined modulo the associativity and
commutativity of parallel composition.

S. Fowler 14:9

Diffing. As DOM pages include event queues, they contain strictly more information than
HTML. To avoid losing pending events, we require a diffing operation. Define erase(D) as the
operation erase(domTag(−→e) t U D) = htmlTag t U (erase(D)), with the other cases defined
recursively. DOM pages can be modified by adding a node with an empty queue, removing a
node, or updating a node’s attributes. We define operation diff(U,D) = D′ if erase(D′) = U ,
and D′ is obtained from D by the minimum number of insertions and deletions.

Semantics by example. Let us return to our original example from §1: a box and a text node
displaying the reversed box contents. We reuse the view and update functions and let Vm =
(contents = “”), Vv = view, and Vu = update. We extend the HTML syntactic sugar to pages,
letting J−K be a desugaring function and J<t−→a @−→e >

−→
DH</t>K = domTag(−→e) t J−→a K J−→DHK.

We write R+ for the transitive closure of a relation R. We begin by supplying the model,
view, and update parameters to an initial configuration. By E-Run, we get an event loop
process, and then term Vv Vm reduces to the initial rendered HTML. By diffing against the
empty page, we display the initial DOM page (E-Update).

run (Vm, Vv, Vu) # domEmpty
−→ (E-Run) 〈(Vm, Vv Vm) | (Vv, Vu)〉 # domEmpty
−→+

M

〈(Vm,
<input type = “text” value = “”

onInput = {λstr.UpdateBox(str)}></input>
<div></div>

) | (Vv, Vu)〉 # domEmpty

−→ (E-Update)

〈idle Vm | (Vv, Vu)〉 #
<input type = “text” value = “”

onInput = {λstr.UpdateBox(str)}@ ε></input>
<div @ ε></div>

The system now does not reduce until a user interacts with the text box and presses the k
key, modelled by E-Interact. At this point, the event queue for the input box receives four
events: click, keyDown, keyUp, and input, which are are processed by rule E-Evt. The input
element does not have handlers for the click, keyDown, and keyUp events, so no processes are
spawned, but does contain an onInput handler, which handles the input event by spawning
((UpdateBox(“k”))).

−→+ (E-Interact)

〈idle Vm | (Vv, Vu)〉 #
<input type = “text” value = “”

onInput = {λstr.UpdateBox(str)}@ click(())·
keyDown(75) · keyUp(75) · input(“k”)></input>

<div @ ε></div>
−→+ (E-Evt)

〈idle Vm | (Vv, Vu)〉 #
<input type = “text” value = “”

onInput = {λstr.UpdateBox(str)}@ input(“k”)>
</input>
<div @ ε></div>

−→ (E-Evt)

〈idle Vm | (Vv, Vu)〉 ‖ ((UpdateBox(“k”))) #
<input type = “text” value = “”

onInput = {λstr.UpdateBox(str)}
@ ε></input>
<div @ ε></div>

Since UpdateBox("k") is already a value and the event loop process is idle, we can process
the message (E-Handle). The handle meta-function calculates a new model m′ by applying
the update function to a pair of the previous model and the message, calculates a new HTML
value v′ by applying the view function to m′, and returns the pair (m′, v′). Finally, the page
is diffed against the previous DOM page to generate a new DOM page D′, and the event
loop process reverts to being idle:

ECOOP 2020

14:10 Model-View-Update-Communicate

Typing rules for events ` e

TE-Evt
· ` V : ty(ev)
` ev(V)

Typing rules for active threads ` T : EvtLoop(A,B)

TS-Idle
· ` Vm : A

` idle Vm : EvtLoop(A,B)

TS-Processing
· `M : (A× Html(B))
`M : EvtLoop(A,B)

Typing rules for processes and configurations `φ P :A ` C

TP-Run
· `M : (A× (A→ Html(B))× ((B ×A)→ A))

`• runM : B

TP-EventLoop
` T :EvtLoop(A,B)

· ` Vv:A→Html(B) · ` Vu:(B ×A)→ A

`• 〈T | (Vv, Vu)〉 : B

TP-Thread
· `M :A
`◦ ((M)):A

TP-Par
`φ1 P1:A `φ2 P2:A
`φ1+φ2 P1 ‖ P2:A

TC-System
`• P : A ` D : Page(A)

` P # D

Combination of flags φ1 + φ2

◦+ ◦ = ◦ ◦+• = • ◦+• = • •+ • undefined

Figure 5 Runtime typing for λMVU.

−→ (EP-Handle)

〈handle(Vm, (Vv, Vu),UpdateBox(“k”)) | (Vv, Vu)〉 #
<input type = “text” value = “”

onInput = {λstr.UpdateBox(str)}
@ ε></input>
<div @ ε></div>

−→+
M

〈(

(contents = “k”),
<input type = “text” value = “k”

onInput = {λstr.UpdateBox(str)}>
</input>
<div>k</div>

) | (Vv, Vu)〉 #
<input type = “text” value = “”

onInput = {λstr.UpdateBox(str)}
@ ε></input>
<div @ ε></div>

−→ (E-Update)

〈idle (contents = “k”) | (Vv, Vu)〉 #
<input type = “text” value = “k”

onInput = {λstr.UpdateBox(str)}@ ε></input>
<div @ ε>k</div>

2.3 Metatheory
Runtime typing. To reason about the metatheory, we require runtime typing rules, shown
in Figure 5. Judgement ` e states that the payload of an event e has the payload type
specified by its signature. Judgement ` T : EvtLoop(A,B) can be read “Active thread T
has model type A and message type B”. An idle thread idle Vm has type EvtLoop(A,B) if
Vm has type A (TS-Idle). An active thread M currently processing a message has type
EvtLoop(A,B) if M has type (A×Html(B)), i.e., computes a pair of a new model with type
A and HTML which produces messages of type B (TS-Processing).

Judgement `φ P : A states that process P is well typed and produces or consumes
messages of type A. The parallel composition of two processes P1 ‖ P2 has message type
A if both P1 and P2 have message type A (TP-Par). An event handler process ((M)) has
message type A if term M has type A (TP-Thread).

An initialisation process runM is well-typed ifM is a product type where each component
has the correct model, view, and update types. An event loop process 〈T | (Vv, Vv)〉 has
message type B if its active thread T has model type A and message type B; its view function

S. Fowler 14:11

Vv has type A→ Html(B); and its update function has type (B×A)→ A (TP-EventLoop).
Thread flags φ ensure that there is precisely one initialisation process or event loop process
in a process typeable under flag •.

Judgement ` C states that configuration C is well-typed: a system configuration P # D is
well-typed if process P has precisely one event loop process with message type A and page D
has type Page(A). The omitted typing rules for pages (of shape ` D : Page(A)) are similar
to those for terms of type Html(A).

Note that we consider only closed configurations and processes since it makes little sense
for DOM pages D to contain free variables, and because processes do not bind variables.

We are now well-placed to state some formal results. We omit proofs in the main body of
the paper; full proofs can be found in the extended version [18].

Preservation. Reduction preserves typing.

I Theorem 2 (Preservation). If ` C and C −→ C′, then ` C′.

Progress. The system vacuously satisfies a progress property as it can always reduce by
E-Interact due to user input. It is more interesting to consider the event progress property
enjoyed by the system without E-Interact: either there are no events to process and the
system is idle, or the system can reduce. Functional reduction satisfies progress.

I Lemma 3 (Progress (Terms)). If · `M : A, then either M is a value, or there exists some
N such that M −→M N .

Let −→E be the relation −→ without rule E-Interact. The concurrent fragment of the
language will reduce until all event handler threads have finished evaluating, and there are
no more messages to process. By appeal to Lemma 3, we can show event progress.

I Theorem 4 (Event Progress). If ` C, either:
1. there exists some C′ such that C −→E C′; or
2. C = 〈idle Vm | (Vv, Vu)〉 # D where D cannot be written D[domTag(−→e) t V W] for some

non-empty −→e .

3 λMVU with Session Types

In this section, we extend λMVU to support session types. We require three extensions:
commands, to perform side-effects; linearity, to implement session types safely; and transitions,
to allow multiple model and message types. We begin by showing each extension by example,
and show the extended formalism in §3.4.

3.1 Commands

Real-world applications require side-effects. To this end, Elm supports commands which
describe side-effects to be performed in the event loop. Although commands in Elm are more
general, for our purposes, it is particularly useful to be able to spawn a process which will
run concurrently and eventually return a message. As an example, we may want to await the
result of an expensive computation, and display the result when the computation completes.
Letting naïveFib(x) be the naïve Fibonacci function and assuming an intToString function,
we can write:

ECOOP 2020

14:12 Model-View-Update-Communicate

Model , Maybe(Int) Message , StartComputation | Result(Int)
view : Model→ Html(Message)
view = λmodel.html

<html>
<body>
{casemodel {

Just(result) 7→ htmlText intToString(result);
Nothing 7→ htmlText “Waiting ...” } }

<button onClick = {λ().StartComputation}>Start!</button>
</body>

</html>

update : (Message×Model)→ (Model,Cmd(Message))
update = λ(message,model).
casemessage {

StartComputation 7→ (Nothing, cmdSpawn Result(naïveFib(1000)))
Result(x) 7→ (Just(x), cmdEmpty)

}
The model is of type Maybe(Int), with value Just(V) for some integer value V if the result
has been computed, or Nothing if the application is awaiting the result. The Message type is
a variant type consisting of StartComputation which is sent to start the computation, and
Result(Int), which is sent to return a result. The view function renders either the result, or
“Waiting...” if no result is available.

The type of the update function is changed to return a pair of an updated model and
a command. In our case, the StartComputation message results in a pair of Nothing and
cmdSpawn Result(naïveFib(1000)), which spawns Result(naïveFib(1000)) to evaluate in a
separate thread. When the function (eventually) completes, the thread will have evaluated
to a Result message, which can be processed by the update function to update the model and
display the result.

3.2 Linearity
As we showed in §1, safely implementing session types requires linearity: we therefore require
linear model and message types. Linearity would also prove useful for other linear resources
such as functional arrays with in-place update [44]. Unfortunately, λMVU as defined so far
does not support linearity. Consider handle:

handle(m, (v, u),msg) , letm′ = u (msg,m) in (m′, v m′)

The updated model, m′, is used non-linearly as it is returned for use in subsequent requests,
and also used to render the model as HTML.

Extraction. Linear resources are needed only when updating the model – not when rendering
the webpage – as we will not need to communicate on session channels when rendering. If
the developer implements a function:

extract : A→ (A×B)

where A is the type of a model, and B is the unrestricted fragment of the model, we can
restore linear usage of the model (letting e be the extraction function):

handle(m, (v, u, e),msg) , letm′ = u (msg,m) in
let (m′, unrM) = e m′ in (m′, v unrM)

An alternative approach would be to assign the view function type A → (A × Html(B)),
returning the linear model and allowing it to be re-bound. We would need to modify handle:

handle(m, (v, u),msg) , letm′ = u (m,msg) in v m′

S. Fowler 14:13

Model , (Bool× Chan(Ping)× Chan(Pong)) Message , Click | Ponged

view : Model→ Html(Message)
view , λ(pinging,_,_).
let attr =
if pinging then
attrEmpty

else
attr “disabled” “true” in

html
<html>

<body>
<button {attr} onClick = {λ().Click}>
Send Ping!

</button>
</body>

</html>

update : (Message×Model)→ Model
update , λ(msg, (_, pingCh, pongCh)).
casemsg {

Click 7→
let cmd =
cmdSpawn (send (Ping, pingCh);

let Pong = receive pongCh in
Ponged) in

((false, pingCh, pongCh), cmd)
Ponged 7→ ((true, pingCh, pongCh), cmdEmpty)

}

server : (Chan(Ping)× Chan(Pong))→ (1→ A)
server , λ(pingCh, pongCh).

(rec f() .
let Ping = receive pingCh in
send (Pong, pongCh); f ())

Figure 6 PingPong application using simply-typed channels.

A key disadvantage of this approach is that rendering is no longer a read-only operation,
breaking an important abstraction barrier.

Example. We can now write our first session-typed λMVU application. Our web client
consists of a button which, when clicked, triggers the sending of a Ping message to the server.
Once clicked, the button is disabled. The server then receives the Ping message and responds
with a Pong message; upon receiving the response, the client then re-enables the button.

Pinging: Waiting:

Simply-typed channels. Before considering a session-typed version of the application, it
is instructive to consider a version without session typing, shown in Figure 6. Let Chan(A)
be the type of a simply-typed channel over which one can send and receive values of type
A. The model is a 3-tuple containing a Boolean value which is true when waiting for the
user to click the “Send Ping!” button, and false when waiting for a response; a channel for
Ping messages; and a channel for Pong messages. There are two types of UI message: Click
denotes that the button has been clicked, and Ponged denotes that a Pong message has been
received along the Pong channel.

The view function displays the page, adding the disabled attribute to the button if we
are waiting for a Pong message. The update function case-splits on the UI message: in the
case of a Click message raised by the button, the model is updated to set the pinging flag
to false, and the function creates a command to send a Ping message along pingCh, receive
a Pong message from pongCh, and return a Ponged UI message. In the case of a Ponged
message, the model is updated to set the pinging flag to true, enabling the button again.
The server function models a server thread, which repeatedly receives Ping messages from
pingCh and sends Pong messages to pongCh.

Even in this simple example, it is very easy to communicate incorrectly: if the client
neglected to send a Ping message before trying to receiving a Pong message along pongCh,
then the command would hang forever and the GUI would never re-enable the button. A
similar situation would arise if the server received the Ping message but failed to respond.

ECOOP 2020

14:14 Model-View-Update-Communicate

PingPong , µt.!Ping.?Pong.t Model , Pinging(PingPong) | Waiting
UModel , UPinging | UWaiting Message , Click | Ponged(PingPong)

view : UModel→ Html(Message)
view , λuModel.
let attr =
case uModel {

UPinging 7→ attrEmpty
UWaiting 7→ attr “disabled” “true”
} in

html
<html>

<body>
<button {attr} onClick = {λ().Click}>
Send Ping!

</button>
</body>

</html>

handleClick(model) ,
casemodel {

Pinging(c) 7→
let cmd =
cmdSpawn (let c = send (Ping, c) in

let (pong, c) = receive c in
Ponged(c)) in

(Waiting, cmd)
Waiting 7→ (Waiting, cmdEmpty)

}

update : (Message×Model)→
(Model× Cmd(Message))

update , λ(msg,model).
casemsg {

Click 7→
handleClick(model)

Ponged(c) 7→
handlePonged(model, c)

}

extract : Model→ (Model× UModel)
extract , λmodel.
casemodel {

Pinging(c) 7→ (Pinging(c),UPinging)
Waiting 7→ (Waiting,UWaiting)
}

handlePonged(model, c) ,
casemodel {

Pinging(c′) 7→
cancel c′;
(Pinging(c), cmdEmpty)

Waiting 7→
(Pinging(c), cmdEmpty)

}

Figure 7 PingPong application.

Session types. Session types S range over output !A.S, input ?A.S, the completed session
End, recursive session types µt.S, and (possibly dualised) recursive type variables t. We take
an equi-recursive treatment of recursive session types, identifying a recursive session type
with its unfolding. We omit types and constructs for branching and selection as they can
be encoded [28, 13]. The send constant sends a value of type A over an endpoint of type
!A.S and returns the continuation of the session, S. The close constant closes a completed
session endpoint. The receive constant takes an endpoint of type ?A.S and receives a pair
of a value of type A and endpoint of type S. The cancel constant allows an endpoint to be
discarded safely [35, 20].

Session types S ::= !A.S | ?A.S | µt.S | t | t | End

send : (A× !A.S)→ S receive : ?A.S → (A× S) close : End→ 1 cancel : S → 1

Figure 7 shows the PingPong client written in λMVU. We can encode the PingPong
protocol as a session type, µt.!Ping.?Pong.t. The Model type encodes the two states of the
application: Pinging(c) is the state where the “Send Ping!” button is enabled and the user
can send a Ping message along session channel c, whereas Waiting is the state where the
button is disabled and awaiting a Pong message from the other party. The UModel type is
the unrestricted model type which does not include the session channel. Again, the Message
type encodes the UI messages in the application: the Click UI message is produced when
the button is pressed, whereas the Ponged(PingPong) UI message is produced when a Pong
session message has been received. Note that the Ponged UI message now contains a session
channel of type PingPong as a parameter.

S. Fowler 14:15

Pinging state
PModel , Pinging(PingPong)
PUModel , 1
PMessage , Click
pView : PUModel→ Html(PMessage)
pView , λ(). html

<html>
<body>

<button onClick = {λ().Click}>
Send Ping!

</button>
</body>

</html>
pUpdate : (PMessage× PModel)→

Transition(PModel,PMessage)
pUpdate , λ(Click,Pinging(c)).
let cmd =
cmdSpawn (let c = send (Ping, c) in

let (pong, c) = receive c in
Ponged(c)) in

transition Waiting wView wUpdate wExtract cmd
pExtract : PModel→ (PModel× PUModel)
pExtract , λx.(x, ())

Waiting state
WModel , Waiting
WUModel , 1
WMessage , Ponged(c)

wView : WUModel→ Html(WMessage)
wView , λ(). html

<html>
<body>

<button disabled = “true”>
Send Ping!

</button>
</body>

</html>

wUpdate : (WMessage×WModel)→
Transition(WModel,WMessage)

wUpdate , λ(Ponged(c),Waiting).
transition Pinging(c) pView

pUpdate pExtract cmdEmpty

wExtract : WModel→
(WModel×WUModel)

wExtract , λx.(x, ())

Figure 8 PingPong application using model transitions.

The view function takes an unrestricted model and displays a button, which is disabled
in the Waiting state but enabled in the Pinging state. The extract function pairs the linear
model with the associated unrestricted model.

The update function case-splits on the message. The handleClick function handles the
Click message, and case-splits on the model. If the model is in the Pinging(c) state, then
the function creates a command to spawn a process which will send a Ping message along c,
receive a Pong message along c, and generate a Ponged UI message when the Pong message
is received. The function finally updates the model to the Waiting state. If the model is in
the Waiting state – which should not occur, since the button is disabled – then the model
remains the same and no command is created.

The handlePonged function handles a Ponged(c) message. Again, we must case split on
the model. If the model is in the Waiting state, then we can change to the Pinging state,
given endpoint c. However, if the model is in the Pinging(c′) state and a Ponged message is
received – which should not occur, since according to the session type, there is no way for the
peer to send a Pong message while we are waiting to send a Ping – we now have two linear
resources. We choose to discard c′ using cancel, and change the model to Pinging(c′), but
this is an arbitrary choice to satisfy a code path that must exist, but should never be used.

3.3 Model transitions

Our proposal is still not quite satisfactory: as we saw with the PingPong example, we need
to include cases in the update function which cannot arise. We highlight these in red. This
is even more pronounced when dealing with linear resources, such as needing to handle a
Ponged message when waiting to send a Ping.

The problem is that we are encoding the Model type using a sum type, whereas in fact
we require multiple model types, and a way to transition between them.

ECOOP 2020

14:16 Model-View-Update-Communicate

Kinds κ ::= L | U
Types A,B,C ::= 1 | A→κ B | A×B | A+B | String | Int | S

| Html(A) | Attr(A) | Cmd(A) | Transition(A,B)
Session types S ::= !A.S | ?A.S | µt.S | t | t | End

Terms L,M,N ::= x | λx.M | M N | K M | () | s | n
| (M,N) | let (x, y) = M inN
| inl x | inr x | case L {inl x 7→M ; inr y 7→ N}
| htmlTag tM N | htmlTextM
| attr ak M | attrEmpty
| cmdSpawnM | cmdEmpty | M ?N
| transitionMmMv MuMeMc | noTransitionMmMc

| raise | try L as x inM otherwiseN
Constants K ::= send | receive | new | cancel | close

Figure 9 Syntax of extended calculus.

Example. Figure 8 shows how we can modify PingPong to use multiple model types. The
left-hand side of the figure shows the Pinging state: the model type consists of the singleton
variant tag Pinging(PingPong) containing an endpoint of type PingPong, the unrestricted
model is the unit type, and the only message that the Pinging state can receive is Click. The
pView function is similar to before, and the pExtract function returns a pair of the current
state and the unit value. The pUpdate function is more interesting. Given the current
state and a Click message, the function constructs a command which will send the Ping
session message, receive the Pong session message, and then generate a Ponged(c) UI message
containing the session channel. The function transitions into the Waiting state using the
transition primitive, which allows the developer to specify new model, view, update, extract
functions, and a command to evaluate. The functions for the Waiting state follow a similar
pattern. Session types rule out the communication errors besetting the example in Figure 6,
and model transitions eliminate the redundant code paths arising due to illegal states.

3.4 λMVU with Commands, Linearity, and Transitions
Commands, linearity, and transitions are the three key ingredients needed to extend MVU to
support models which include session-typed channels. In this section, we introduce a calculus
which combines all three extensions, and prove that the extended calculus is sound.

3.4.1 Syntax and Typing
Figure 9 shows the syntax of λMVU extended with commands, linearity, and transitions.

Types and kinds. To support linearity, types are assigned kinds, ranged over by κ. Types
can either be linear (L) or unrestricted (U). A value of linear type must be used precisely
once, whereas a value of unrestricted type can be used many times.

We modify function types to include a kind annotation: linear functions may close over
linear variables and so must be used once. To support commands, we introduce type Cmd(A)
which is the type of a command which produces messages of type A. To support transitions,
we introduce type Transition(A,B) which is parameterised by the current model type A and
message type B. Finally, we extend types to include session types S as described in §3.2.

Terms. Term cmdSpawnM is a command which can spawn term M as a thread, and is
monoidally composable using ? and cmdEmpty.

S. Fowler 14:17

Context splitting Γ = Γ1 + Γ2

· = ·+ ·
A :: U

Γ, x : A =
(Γ1, x : A) + (Γ2, x : A)

Γ1 + Γ2, x : A =
(Γ1, x : A) + Γ2

Γ1 + Γ2, x : A =
Γ1 + (Γ2, x : A)

Modified typing rules for terms Γ `M : A

T-Var
Γ :: U

Γ, x :A ` x :A

T-Abs
Γ, x :A `M :B Γ :: κ

Γ ` λx.M :A→κ B

T-AppK
Σ(K) = A→U B Γ `M :A

Γ ` K M :B

T-Cmd
Γ `M :A

Γ ` cmdSpawnM :Cmd(A)

T-CmdEmpty
Γ :: U

Γ ` cmdEmpty:Cmd(A)

T-CmdAppend
Γ1 `M :Cmd(A) Γ2 ` N :Cmd(A)

Γ1 + Γ2 `M ?N :Cmd(A)

T-Transition
Γ1 `Mm : A Γ2 `Mv : A→U Html(B) Γ3 `Mu : (B ×A)→U Transition(A,B)

Γ4 `Me : A→U (A× C) Γ5 `Mc : Cmd(A) C :: U
Γ1 + . . .+ Γ5 ` transitionMmMv MuMeMc : Transition(A′, B′)

T-EvtAttr
Γ `M : ty(h)→U A

Γ ` attr hM : Attr(A)

T-NoTransition
Γ1 `M :A Γ2 ` N :Cmd(B)

Γ1 + Γ2 ` noTransitionM N :Transition(A,B)

T-Try
Γ1 ` L:A

Γ2, x:A `M :B Γ2 ` N :B
Γ1 + Γ2 ` try L as x inM otherwiseN :B

T-Raise
Γ :: U

Γ ` raise:A
(other rules modified to split contexts)

Typing of constants Σ(c)

Σ(send) = (A× !A.S)→U S
Σ(receive) = ?A.S →U (A× S)

Σ(new) = 1→U (S × S)
Σ(cancel) = S →U 1 Σ(close) = End→U 1

Duality S

!A.S = ?A.S ?A.S = !A.S

µt.S = µt.S{t/t} t = t End = End

Figure 10 Term typing for extended calculus.

There are two terms for transitions: the noTransitionMm Mc term denotes that no
transition is to occur, and that the model should be updated to Mm and command Mc

should be evaluated; and transitionMmMvMuMeMc denotes that a transition should occur,
with new model Mm, view function Mv, update function Mu, extraction function Me, and
command Mc to be run once the transition has taken place.

To support session typing, we introduce session typing constants, ranged over by K, as
described in §3.2. We also introduce an application form for constants, K M .

Finally, as discussed in §3.2, it is useful to be able to explicitly discard (or cancel) a
session channel. In particular, cancellation is crucial in order to handle the interplay between
linearity and transitions, as all unprocessed messages (which may contain linear resources)
must be safely discarded when a transition occurs.

Following Mostrous and Vasconcelos [35] and Exceptional GV (EGV) by Fowler et al.
[20], if a thread tries to receive from an endpoint whose peer has been cancelled, an exception
is raised (raise). Exceptions can be handled using the tryL as x inM otherwiseN construct,
which tries to evaluate term L, and binds the result to x in M if the term evaluates to a
value, and evaluates N if the term raises an exception.

ECOOP 2020

14:18 Model-View-Update-Communicate

Kinding and subkinding. The kinding relation A :: κ assigns kind κ to type A; our
formulation is inspired by that of Padovani [38]. Base types and HTML and attribute types
are unrestricted. The kind of a function type is determined by its kind annotation. Session
types are linear. The kinds of product, sum, command and transition types are determined
by the kinds of their type parameters. The reflexive subkinding rule U ≤ L combined with
the kinding subsumption rule states that if a value can be used many times, then it can also
be treated as only being used once. We write Γ :: κ if A :: κ for each x : A ∈ Γ.

I Definition 5 (Kinding and subkinding). We define the subkinding relation as the reflexive
relation on kinds ≤ such that U ≤ L. We define the kinding relation A :: κ as the largest
relation between types and kinds such that:

A :: κ′ if A :: κ and κ ≤ κ′

S :: L
A :: U if A ∈ {1,String, Int,Html(B),Attr(B)}
A→κ B :: κ
Cmd(A) :: κ if A :: κ
C :: κ if C ∈ {A×B,A+B,Transition(A,B)} and both A :: κ and B :: κ

Term typing. Figure 10 shows the typing rules for the extended calculus. The splitting
relation Γ = Γ1 + Γ2 [8] splits a typing context Γ into two subcontexts which may share only
unrestricted variables. We support linearity by changing T-Var to only type a variable in
an unrestricted context, and by using the context splitting judgement when typing subterms.
The adaptation of the remaining rules to use context splitting is standard, so we omit them.

The constant application rule T-AppK types term KM and makes use of the type schema
function Σ(K) to ensure that the argument M is of the correct type. Rule T-CmdSpawn
assigns term cmdSpawnM type Cmd(A) if term M has type A, and rules T-CmdEmpty
and T-CmdAppend allow commands to be composed monoidally.

Rule T-Transition types a transition term. The typing rule ensures that the types
of the new model, and view, update and extract functions are compatible. Note that the
type parameters of the Transition(A′, B′) need not match the types of the new model and
functions. Rule T-NoTransition assigns term noTransitionM N type Transition(A,B) if
new model M has type A, and N is a command of type Cmd(B). Note that in this way, the
noTransitionM N term replaces the standard result of the update function.

Rule T-Try types an exception handler: the continuations share a typing environment,
but the success continuation is augmented with the a variable of the type of the possibly-failing
continuation. Finally, raise can have any type as is it does not return (T-Raise).

The type and kinding system ensures that the kind of type A determines the kind of the
typing environment needed to type a term of type A.

I Lemma 6. If Γ `M : A and A :: κ, then Γ :: κ.

Duality. The duality relation for session types is standard: output types are dual to input
types; we use a self-dual End type; and we use the formulation of the duality of recursive
session types advocated by Lindley and Morris [32].

3.4.2 Operational Semantics
Runtime syntax. Figure 11 shows the runtime syntax for the combined calculus. We
introduce runtime names c, d which identify session channel endpoints.

S. Fowler 14:19

Runtime syntax

Runtime names c, d

Values U, V,W ::= · · · | c | cmdSpawnM | noTransition V W

| transition Vm Vv Vu Ve Vc
Active thread T ::= idle Vm | updatingM | extracting[Vc]M

| extractingT[F, Vc]M | rendering[Vm, Vc]M
| transitioning[Vm, F, Vc]M

Versions ι

Processes P,Q ::= runM | 〈T | F 〉ι | ((M))ι | P ‖ Q
| (νcd)P | bMc | c | halt

Function state F ::= (Vv, Vu, Ve)
Configurations C ::= P # D

Process contexts P ::= [] | P ‖ P | (νcd)P
Evaluation contexts E ::= · · · | K E | noTransition E M | noTransition V E

| transition E Mv MuMeMc | · · · | transition Vm Vv Vu Ve E
| try E as x inM otherwiseN

Pure contexts EP ::= (as E, but without exception handling frames)
Active thread contexts TA ::= updating E | rendering[Vm, Vc] E | extracting[Vc] E

| extractingT[Vc, F ′] E | transitioning[Vm, F ′, Vc] E
Pure active thread contexts TP ::= (as TA, but for pure contexts)
Thread contexts T ::= run E | 〈TA | F 〉ι | ((E))ι | bEc

Active thread state machine

idle updating

extracting rendering

extractingT transitioning

(No model transition)

(Model transition)

Figure 11 Runtime syntax for extended calculus.

The biggest departure is that we require a richer structure on active threads, which form
a state machine based on whether a model transition occurs. The idle state is as before, and
the updating state evaluates the update function. If there is no model transition, then the
thread moves to the extracting state to extract the unrestricted model, and the rendering
state to render the new HTML. If there is a model transition, then the thread moves to
the extractingT state followed by the transitioning state to calculate the new HTML to be
displayed after the transition. Each state records values which are required in later states:
for example, the rendering[Vm, Vc]M state records the new model Vm and the command to
be executed upon updating the page Vc.

We introduce four new types of process. To model client-server communication, we in-
troduce server processes bMc to model a process M running on the server; the thread
to spawn is given as an argument to run. As an example, we could write a Ponger
server process for the PingPong example, which immediately responds with a Pong message:

let (c, s) = new () in
(Pinging(c), pView, pUpdate, pExtract,
cmdEmpty, ponger(s))

ponger(s) , λ().
(rec f(s) .
let (Ping, s) = receive s in
let s = send (Pong, s) in f s) s

A name restriction (νcd)P binds runtime names c and d in process P , following the
double-binder formulation due to Vasconcelos [43]. A zapper thread c denotes an endpoint c
that has been cancelled and cannot be used in future communications; we write V to mean
 c1 ‖ · · · ‖ cn for ci ∈ fn(V), where fn(V) enumerates the free runtime names in a value V ,
and extend this sugar to evaluation contexts. The halt process denotes that the event loop
process has terminated due to an unhandled exception.

ECOOP 2020

14:20 Model-View-Update-Communicate

Additional term reduction rule M −→M N

E-Try
try V as x inM otherwiseN −→M M{V/x}

Additional meta-level definitions
procs(cmdEmpty) = ε

procs(cmdSpawnM) = M
procs(V ?W) = procs(V) · procs(W)

Equivalence of processes P ≡ P ′

(νcd)(νc′d′)P ≡ (νc′d′)(νcd)P P ‖ ((νcd)Q) ≡ (νcd)(P ‖ Q) if c, d 6∈ fn(P) (νcd)P ≡ (νdc)P

P1 ‖ P2 ≡ P2 ‖ P1 P1 ‖ (P2 ‖ P3) ≡ (P1 ‖ P2) ‖ P3 (νcd)(c ‖ d) ‖ P ≡ P b()c ‖ P ≡ P

Reduction of processes P −→ P ′

MVU reduction rules
E-Discard 〈T | F 〉ι ‖ ((V))ι′ −→ 〈T | F 〉ι ‖ V if ι 6= ι′

E-DiscardHalt halt ‖ ((V))ι −→ halt ‖ V
E-Handle 〈idle Vm | (Vv, Vu, Ve)〉ι ‖ ((V))ι −→ 〈updating Vu (V, Vm) | (Vv, Vu, Ve)〉ι
E-Extract 〈updating (noTransition Vm Vc) | F 〉ι −→ 〈extracting[Vc] (Ve Vm) | F 〉ι

where F = (Vv, Vu, Ve)
E-ExtractT

〈updating (transition Vm Vv Vu Ve Vc) | F 〉ι −→ 〈extractingT[(Vv, Vu, Ve), Vc] (Ve Vm) | F 〉ι
E-Render 〈extracting[Vc] (Vm, Vum) | F 〉ι −→ 〈rendering[Vm, Vc] (Vv Vum) | F 〉ι

where F = (Vv, Vu, Ve)
E-RenderT 〈extractingT[F ′, Vc] (Vm, Vum) | F 〉ι −→ 〈transitioning[Vm, F ′, Vc] (Vv Vum) | F 〉ι

where F ′ = (Vv, Vu, Ve)
Session reduction rules

E-New T [new()] −→ (νcd)(T [(c, d)]) where c, d fresh
E-Comm (νcd)(T [send (V, c)] ‖ T ′[receive d]) −→ (νcd)(T [c] ‖ T ′[(V, d)])
E-Close (νcd)(T [close c] ‖ T ′[close d]) −→ T [()] ‖ T ′[()]
E-Cancel T [cancel c] −→ T [()] ‖ c
E-SendZap (νcd)(T [send (V, c)] ‖ d) −→ (νcd)(T [raise] ‖ c ‖ V ‖ d)
E-RecvZap (νcd)(T [receive c] ‖ d) −→ (νcd)(T [raise] ‖ c ‖ d)
E-CloseZap (νcd)(T [close c] ‖ d) −→ (νcd)(T [raise] ‖ c ‖ d)

Exception reduction rules

E-RaiseH T [try EP[raise] as x inM otherwiseN] −→ T [N] ‖ EP
E-RaiseURun run (EP[raise]) −→ halt ‖ EP
E-RaiseUMain 〈TP[raise] | F 〉ι −→ halt ‖ TP
E-RaiseUThread ((EP[raise]))ι −→ EP
E-RaiseUServer bEP[raise]c −→ EP

Administrative reduction rules
E-LiftT T [M] −→ T [N] if M −→M N
E-Nu (νab)P −→ (νab)P ′ if P −→ P ′

E-Par P1 ‖ P2 −→ P ′1 ‖ P2 if P1 −→ P ′1

Figure 12 Reduction rules for extended calculus (1).

We extend evaluation contexts in the standard way, and introduce a class of pure contexts
EP, which are evaluation contexts which do not contain any exception handling frames.

Versions. Versions ι ensure that threads spawned in a previous state do not deliver incom-
patible messages. We annotate event loop processes and event handler threads with versions:
given an event loop 〈T | F 〉ι, a thread ((M))ι′ where ι 6= ι′ can be of arbitrary type as it will
be discarded. We write version(P) = ι if P contains a subprocess 〈T | F 〉ι.

Reduction. Figures 12 and 13 show the extended process equivalence and reduction rules.
Rule E-Try handles evaluation of the success continuation of an exception handler, and
the procs meta-definition returns a sequence of processes to be spawned by a command.
Process equivalence is extended to allow commutativity of name restrictions, reordering
of names in a binder, and scope extrusion. The final “garbage collection” equivalences
(νcd)(c ‖ d) ‖ P ≡ P and b()c ‖ P ≡ P allow us to discard a channel where both endpoints
have been cancelled, and a completed server thread, respectively.

Figure 12 details the extended MVU process reduction rules.

S. Fowler 14:21

Reduction of configurations C −→ C′

E-Run
P[run (Vm, Vv, Vu, Ve, Vc, λ().M)] # D −→ 〈extracting[Vc] (Ve Vm) | (Vv, Vu, Ve)〉0 ‖ bMc # D

E-Update
P[〈rendering[V ′m, Vc] U | F 〉ι] # D −→ P[〈idle V ′m | F 〉ι ‖ ((M1))ι ‖ · · · ‖ ((Mn))ι] # D′

where diff(U,D) = D′ and procs(Vc) = −→M
E-Transition
P[〈transitioning[Vm, F ′, Vc] U | F 〉ι] # D −→ P[〈idle Vm | F ′〉ι′ ‖ ((M1))ι′ ‖ · · · ‖ ((Mn))ι′] # D′

where ι′ = ι+ 1, diff(U,D) = D′

and procs(Vc) = −→M
E-Evt

P # D[domTag(ev(W) · −→e) t U D] −→ P ‖ ((V1 W))ι ‖ · · · ‖ ((VnW))ι # D[domTag(−→e) t U D]
where handlers(ev, U) = −→V and version(P) = ι

(E-Interact, E-Struct, E-LiftP unchanged) Cancellation of pure active thread contexts TP

 updatingEP = EP rendering[Vm, Vc]EP = Vm ‖ Vc ‖ EP extracting[Vc]EP = Vc ‖ EP

 extractingT[Vc, F] EP = Vc ‖ EP transitioning[Vm, F, Vc] EP = Vm ‖ Vc ‖ EP

Figure 13 Reduction rules for extended calculus (2).

MVU reduction. MVU reduction rules are specific to MVU. Central to safely integrating
linearity and transitions are rules E-Discard, E-DiscardHalt, and E-Handle. Rule
E-Handle is modified so that the event loop process only handles a message if the message
has the same version. If the versions do not match, then E-Discard safely discards any
channel endpoints in the discarded message by generating zapper threads. Rules E-Extract,
E-ExtractT, E-Render, and E-RenderT handle the state machine transitions described
in Figure 11 and are used to calculate the new model and HTML.

Session reduction. Session reduction rules encode session-typed communication and are
mostly standard: E-New generates a name restriction and returns two fresh endpoints;
E-Comm handles synchronous communication; and E-Close discards the endpoints of a
completed session. The remaining session communication rules handle session cancellation,
and are a synchronous variant of Exceptional GV described by Fowler et al. [20]. Rule
E-Cancel discards an endpoint. Rules E-SendZap, E-RecvZap, and E-CloseZap raise
an exception if a thread tries to communicate along an endpoint whose peer is cancelled,
ensuring resources are discarded safely.

Exception reduction. Rule E-RaiseH describes exception handling: as raise occurs in a
pure context, the exception is handled by the innermost handler; the rule evaluates the failure
continuation and discards all linear resources in the aborted context. Rules E-RaiseURun
and E-RaiseUMain apply to unhandled exceptions in a main thread, generating the
halt configuration and cancelling any linear resources in the aborted context. Rules E-
RaiseUThread and E-RaiseUServer apply to unhandled exceptions in event loop thread
and server threads respectively, by cancelling any channels in the aborted continuation.

Configuration reduction. Figure 13 shows the modified configuration reduction rules. We
modify E-Run to take into account the new arguments, and spawn the given server thread.
We modify E-Update to spawn threads described by the returned command; E-Transition
is similar but changes the function state and increments the version. We modify E-Evt to
tag each spawned event handler thread with the version of the event handler process.

ECOOP 2020

14:22 Model-View-Update-Communicate

Typing rules for names, events, and function state Γ `M : A ` e Ψ ` F : State(A,B,C)

T-Name
Γ :: U

Γ, c : S ` c : S

TE-Evt
` V : ty(ev)
ty(ev) :: U
` ev(V)

TF-State
Ψ1 ` Vv : A→U Html(B) Ψ2 ` Vu : (B ×A)→U Transition(A,B)

Ψ3 ` Ve : A→U (A× C) C :: U
Ψ1,Ψ2,Ψ3 ` (Vm, Vv, Vu) : State(A,B,C)

Typing rules for active threads Ψ ` T : EvtLoop(A,B,C)
TT-Idle

Ψ ` Vm:A
Ψ ` idle Vm:EvtLoop(A,B,C)

TT-Updating
Ψ `M :Transition(A,B)

Ψ ` updatingM :EvtLoop(A,B,C)

TT-Rendering
Ψ1 ` Vm:A Ψ2 ` Vc:Cmd(B) Ψ3 `M :Html(B)
Ψ1,Ψ2,Ψ3 ` rendering[Vm, Vc]M :EvtLoop(A,B,C)

TT-Extracting
Ψ1 ` Vc:Cmd(B) Ψ2 `M :(A× C)

Ψ1,Ψ2 ` extracting[Vc]M :EvtLoop(A,B,C)

TT-ExtractingT
Ψ1 ` F :State(A,B,C) Ψ2 ` Vc:Cmd(B) Ψ3 `M :(A× C)

Ψ1,Ψ2,Ψ3 ` extractingT[F, Vc]M :EvtLoop(A′, B′, C′)

TT-Transitioning
Ψ1 ` Vm:A Ψ2 ` F :State(A,B,C) Ψ3 ` Vc:Cmd(B) Ψ4 `M :Html(B)

Ψ1, . . . ,Ψ4 ` transitioning[Vm, F, Vc]M :EvtLoop(A′, B′, C′)

Typing rules for processes Ψ `φι P : A
TP-Run
Ψ `M : (A× (A→U Html(B))× ((B ×A)→U Transition(A,B))×

(A→U (A× C))× Cmd(B)× (1→L 1))
C :: U

Ψ `•ι runM : B

TP-EventLoop
Ψ1 ` T : EvtLoop(A,B,C)

Ψ2 ` F : State(A,B,C)
Ψ1,Ψ2 `•ι 〈T | F 〉ι : B

TP-Thread
Ψ `M : A

Ψ `◦ι ((M))ι : A

TP-OldThread
Ψ `M : B ι 6= ι′

Ψ `◦ι ((M))ι′ : A

TP-ServerThread
Ψ `M : 1

Ψ `◦ι bMc : A

TP-Par
Ψ1 `φ1

ι P1 : A Ψ2 `φ2
ι P2 : A

Ψ1,Ψ2 `φ1+φ2
ι P1 ‖ P2 : A

TP-Zap

c : S `◦ι c : A

TP-Halt

· `•ι halt : A

TP-Nu
Ψ, c : S, d : S `φι P : A

Ψ `φι (νcd)P : A

Figure 14 Runtime typing for extended calculus.

3.4.3 Metatheory

Runtime typing. Figure 14 shows the runtime typing rules for the extended calculus. Rule
T-Name types channel endpoints, and rule TE-Evt mandates that event payload types are
unrestricted. The rules for active threads ensure that the types of the terms being evaluated
correspond to the state in the state machine (for example, that the updating state returns a
term of type Transition(A,B)), and that any recorded values have the correct types.

Let Ψ range over environments containing only runtime names: Ψ ::= · | Ψ, c : S. We
write Ψ1,Ψ2 for the disjoint union of environments Ψ1 and Ψ2.

We modify the shape of the process typing judgement to Ψ `φι P : A, which can be
read “under typing environment Ψ and thread flag φ, process P has type A and version ι”.
We modify rule TP-EventLoop to include the extraction function, and mandate that the
unrestricted model type C has kind U. We modify rule T-Thread to state that type of an
event handler thread ((M))ι has type A if term M has type A and the version matches that
of the event handler process. Rule TP-OldThread allows a thread to have a mismatching

S. Fowler 14:23

type to the event handler process if the versions are incompatible. Finally, TP-Zap and
TP-Halt type zapper threads and the halt thread, and TP-Nu types a name restriction
(νcd)P by adding c and d with dual session types into the typing environment.

Properties. The extended calculus satisfies preservation.

I Theorem 7 (Preservation). If ` C and C −→ C′, then ` C′.

Although session types rule out deadlock within a single session, without imposing a
tree-like structure on processes [45, 31] (which is too inflexible for our purposes) or using
techniques such as channel priorities [37, 39, 29], it is not possible to rule out deadlocks when
considering multiple sessions. Since communication over multiple sessions can introduce
deadlocks, we begin by proving an error-freedom property, similar to that of Gay and
Vasconcelos [21]. An error process involves a communication mismatch.

I Definition 8 (Error process). A process P is an error process it contains one of the following
processes as a subprocess:
1. (νcd)(T [send (V, c)] ‖ T ′[send (W,d)])
2. (νcd)(T [send (V, c)] ‖ T ′[close d])
3. (νcd)(T [receive c] ‖ T ′[receive d])
4. (νcd)(T [receive c] ‖ T ′[close d])

Configuration typing ensures error-freedom.

I Theorem 9 (Error-freedom). If Ψ `φι P : A, then P is not an error process.

Error-freedom shows that session typing ensures the absence of communication mismatches.
What remains is to show that, apart from the possibility of deadlock, the additional features
do not interfere with the progress property enjoyed by λMVU. We begin by classifying the
notion of a blocked thread, which is a thread blocked on a communication action.

IDefinition 10 (Blocked thread). We say a thread T [M] is blocked if eitherM = send(V,W),
M = receive V , or M = close V .

Let us refer to halt, 〈T | F 〉ι, and runM as main threads, and ((M))ι, bMc, and c as
auxiliary threads. Each well-typed configuration has precisely one main thread.

We can now classify the notion of progress enjoyed by the extended calculus. Either the
configuration can reduce; is waiting for an event; has halted due to an unhandled exception;
or is deadlocked. Again, let −→E be the −→ relation without E-Interact.

I Theorem 11 (Weak Event Progress). Suppose ` C. Either there exists some C′ such that
C −→ C′, or there exists some C′ such that C ≡ C′ and:

1. D cannot be written D[domTag(−→e) t V D] for a non-empty −→e .
2. If the main thread of C′ is halt, then all auxiliary threads are blocked or zapper threads.
3. If the main thread of C′ is runM , then M is blocked, and all auxiliary threads are either

blocked, values, or zapper threads.
4. If the main thread of C′ is 〈T | F 〉ι, then:

a. if T = idle Vm, then each auxiliary thread is either blocked or a zapper thread; or
b. if T = TA[L] then L is blocked, and each auxiliary thread is either blocked, a value, or

a zapper thread.

ECOOP 2020

14:24 Model-View-Update-Communicate

(a) Login (b) Chat

Client session types

typename ClientConnect = ?([RoomName]).ClientSelect;
typename ClientSelect = !(RoomName, Nickname).
[&| JoinedOK: ?(Topic, [Nickname], ClientReceive) . ClientSend,

JoinedOKAsModerator: ?(Topic, [Nickname], ClientReceive, ModeratorSend). ClientSend,
Nope: ?ConnectError.End |&];

typename ClientReceive = [&|
IncomingChatMessage:
?(Nickname, Message). ClientReceive,

NewUser: ?(Nickname). ClientReceive,
NewTopic: ?(Topic). ClientReceive,
UserLeft: ?(Nickname). ClientReceive,
UserMuted: ?(Nickname). ClientReceive,
UserUnmuted: ?(Nickname). ClientReceive,
BecomeModerator: ?ModeratorSend. ClientReceive,
Kick: End |&];

typename ClientSend = [+|
ChatMessage: !(Message).ClientSend,
ChangeTopic: !(Topic).ClientSend,
Leaving: End |+];

typename ModeratorSend = [+|
KickUser: !(Nickname).ModeratorSend,
MuteUser: !(Nickname).ModeratorSend,
MakeModerator: !(Nickname).ModeratorSend

|+];

Figure 15 Chat server application.

4 Implementation and Example Application

We have implemented an MVU library for the Links tierless web programming language,
which includes all extensions in the paper; Links already has a linear type system and
distributed session types, so is an ideal fit.

We now describe a chat application, extending the application presented by Fowler et al.
[20]. The application (Figure 15) has two main stages shown to the user: on the first, the
user is presented with a list of rooms, and enters a username and selects a room. If a user
with the given nickname is not already in the selected room, then the user joins the room,
receiving the current topic, a list of other nicknames, and a channel used to receive messages
from the server. The user can then send chat messages, change the topic, and leave the
room. If the user is the first user in the room, then they join as a moderator and receive an
additional channel which can be used to kick, mute, or promote other users to moderators.
Users can receive incoming chat messages, and system messages detailing changes such as a
new topic or a user joining the room.

We can encode these interaction patterns using session types. Links session type notation
for offering a choice is [&|...|&], and making a choice is [+|...|+]. Type ClientConnect
describes the client receiving the room list. Type ClientSelect describes the client sending
the room name and nickname, and receiving the response from the server: either joining
as a regular user (JoinedOK); joining as a moderator (JoinedOKAsModerator); or an error
(Nope). Types ClientSend and ClientReceive detail the messages that the client can send to,
and receive from the server, respectively. Type ModeratorSend details privileged moderator
actions.

S. Fowler 14:25

Although the original version of Links [10] ran as a CGI script, modern Links applications
run as a persistent webserver. Upon execution, the chat application creates an access point for
sessions of type ClientConnect, which supports session establishment, and spawns an acceptor
thread to accept incoming requests on the access point. Each chat room is represented
as a process on the server. When an HTTP request is made, the response contains the
MVU application and the access point ID which can be used to establish a session of type
ClientConnect. After the initial HTTP response, further communication between the client
and server happens over a WebSocket [16].

The application has three states: connection, chatting, and a “waiting” state shown while
waiting for a response. For the purposes of the paper, we consider the connection state.
typename SelectedRoom =
[| NewRoom | SelectedRoom: String |];

typename NotConnectedModel =
(nickname: String, rooms: [RoomName],
selectedRoom: SelectedRoom,
newRoomText: RoomName, error: Maybe(Error));

typename NCModel =
(ClientSelect, NotConnectedModel);

typename NCMessage = [|
[| UpdateNickname: Nickname
| UpdateSelectedRoom: SelectedRoom
| UpdateNewRoom: RoomName | SubmitJoinRoom |];

The NotConnectedModel is the unrestricted part of the model, and contains the current
nickname (nickname), list of rooms (rooms), selected room (selectedRoom), value of the “new
room” text box (newRoomText), and an optional error message to display (error). The model,
NCModel, is a pair of a session endpoint of type ClientSelect and a NotConnectedModel. The
UI messages are described by the NCMessage type: for example, the UpdateNickname message
is generated by the onInput event of the nickname input box.

Upon receiving the SubmitJoinRoom UI message when the form is submitted, the application
can send the nickname and selected room along the ClientSelect channel, all of which are
contained in the model, without requiring ad-hoc messaging or imperative updates.

5 Related work

Flapjax [34] was the first web programming language to use functional reactive programming
(FRP) [14] in the setting of web applications. Flapjax provides behaviours, which are
variables whose contents change over time, and event streams, which are an infinite stream of
discrete events which change a behaviour. ScalaLoci [46] is a multi-tier reactive programming
framework written in Scala, where changes in reactive signals are propagated across tiers,
rather than using explicit message passing. Ur/Web [9] and WebSharper UI [19] store data
in mutable variables, and allow views of the data to be combined using monadic combinators.

Felleisen et al. [15] describe an earlier approach similar to MVU written in the
DrScheme [17] system. Similar to the MVU update function, events such as key presses
and mouse movements are handled using functions of type (Model× Event)→ Model. The
approach handles “environment” events rather than events dispatched by individual elements,
and the approach is not formalised. Environment events can be handled using subscriptions
in Elm, which can be added to λMVU (see the extended version of the paper [18]).

React [2] is a popular JavaScript UI framework. In React, a user defines data models
and rendering functions, and similar to Elm, updates are propagated to the DOM by
diffing. Differently to MVU, there is no notion of a message, and a page consists of multiple
components rather than being derived from a single model. We expect some technical
machinery from λMVU (e.g., event queues, DOM contexts, and diffing) could be reused when
formalising React. Redux [5] is a state container for JavaScript applications: to modify the
state, one dispatches an action, and a function takes the previous state and an action and
produces a new state. In combination with React, the approach strongly resembles MVU.

ECOOP 2020

14:26 Model-View-Update-Communicate

Hop.js [41] is a multi-tier web framework written in JavaScript. Hop.js services al-
low remote function invocation, and the framework supports client-side message-passing
concurrency using Web Workers [22], but there is no cross-tier message-passing concurrency.

Session types were introduced by Honda [23] and were first considered in a linear functional
language by Gay and Vasconcelos [21]; Wadler [45] later introduced a session-typed functional
language GV and a logically-grounded session-typed calculus CP (following Caires and
Pfenning [7]), and translated GV into CP. Lindley and Morris [31] introduced an operational
semantics for GV, and showed type- and semantics-preserving translations between GV and
CP. GV inspires FST [33], which is the core calculus for Links’ treatment of session typing.

Fowler et al. [20] extend GV with failure handling, and extend Links with cross-tier
session-typed communication. They do not formally consider GUI development, and their
approach to frontend web programming using session types (described in Section 1) leads to
a disconnect between the state of the page and the application logic. We build upon their
approach to session-typed web programming, while also allowing idiomatic GUI development.

King et al. [27] present a toolchain for writing web applications which respect multiparty
session types [25]. Protocols are compiled to PureScript [42] using a parameterised monad [6]
to guarantee linearity, and the authors integrate their encoding of session types with the
Concur UI framework [26]. Each application may only have a single session connecting
the client and server, whereas in our system there may be multiple; our approach supports
first-class linearity and cross-tier typechecking; our approach is formalised; and our approach
supports failure handling. Links does not yet support multiparty session types.

6 Conclusion

Session types allow conformance to protocols to be checked statically. The last few years
have seen a flurry of activity in implementing session types in a multitude of programming
languages, but linearity – a vital prerequisite for implementing session types safely – is
difficult to reconcile with the asynchronous nature of graphical user interfaces. Consequently,
the vast majority of implementations using session types are command line applications,
and the few implementations which do integrate session types and GUIs do so in an ad-hoc
manner.

In this paper, we have addressed this problem by extending the Model-View-Update
architecture, pioneered by the Elm programming language. We have presented the first formal
study of MVU by introducing a core calculus, λMVU. Leveraging our formal characterisation
of MVU, we have introduced three extensions: commands, linearity, and model transitions,
enabling us to present the first formal integration of session-typed communication with a
GUI framework. Informed by our formal model, we have implemented our approach in Links.
As future work, we will investigate how to encode allowed transitions as a behavioural type.

References
1 Elm: A delightful language for reliable webapps, 2019. Accessed on 2019-07-04. URL:

http://www.elm-lang.org.
2 React – a JavaScript library for building user interfaces, 2019. Accessed on 2019-09-02. URL:

http://www.reactjs.org.
3 WebSharper.Mvu, 2019. Accessed on 2019-07-04. URL: https://github.com/

dotnet-websharper/mvu.
4 Flux, 2020. Accessed on 2020-01-08. URL: https://facebook.github.io/flux/.
5 Redux - a predictable state container for JavaScript apps, 2020. Accessed on 2020-01-08. URL:

https://redux.js.org/.

http://www.elm-lang.org
http://www.reactjs.org
https://github.com/dotnet-websharper/mvu
https://github.com/dotnet-websharper/mvu
https://facebook.github.io/flux/
https://redux.js.org/

S. Fowler 14:27

6 Robert Atkey. Parameterised notions of computation. J. Funct. Program., 19(3-4):335–376,
2009.

7 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In CONCUR,
volume 6269 of Lecture Notes in Computer Science, pages 222–236. Springer, 2010.

8 Iliano Cervesato and Frank Pfenning. A linear logical framework. In LICS, pages 264–275.
IEEE Computer Society, 1996.

9 Adam Chlipala. Ur/Web: A simple model for programming the web. In POPL, pages 153–165.
ACM, 2015.

10 Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web programming
without tiers. In FMCO, volume 4709 of Lecture Notes in Computer Science, pages 266–296.
Springer, 2006.

11 Evan Czaplicki. Farewell to FRP, 2016. Accessed on 2019-09-02. URL: https://elm-lang.
org/news/farewell-to-frp.

12 Evan Czaplicki and Stephen Chong. Asynchronous functional reactive programming for GUIs.
In Hans-Juergen Boehm and Cormac Flanagan, editors, ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19,
2013, pages 411–422. ACM, 2013. doi:10.1145/2491956.2462161.

13 Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. Inf. Comput.,
256:253–286, 2017.

14 Conal Elliott and Paul Hudak. Functional reactive animation. In ICFP, pages 263–273. ACM,
1997.

15 Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi. A
functional I/O system or, fun for freshman kids. In ICFP, pages 47–58. ACM, 2009.

16 Ian Fette and Alexey Melnikov. The WebSocket protocol, 2011.
17 Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram Krishna-

murthi, Paul Steckler, and Matthias Felleisen. DrScheme: a programming environment for
Scheme. J. Funct. Program., 12(2):159–182, 2002.

18 Simon Fowler. Model-View-Update-Communicate: Session types meet the Elm architecture
(Extended version), 2019. arXiv:1910.11108.

19 Simon Fowler, Loïc Denuzière, and Adam Granicz. Reactive single-page applications with
dynamic dataflow. In PADL, volume 9131 of Lecture Notes in Computer Science, pages 58–73.
Springer, 2015.

20 Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Exceptional asynchronous
session types: session types without tiers. PACMPL, 3(POPL):28:1–28:29, 2019. doi:10.
1145/3290341.

21 Simon J. Gay and Vasco Thudichum Vasconcelos. Linear type theory for asynchronous session
types. J. Funct. Program., 20(1):19–50, 2010.

22 Ido Green. Web Workers - Multithreaded Programs in JavaScript. O’Reilly, 2012.
23 Kohei Honda. Types for dyadic interaction. In CONCUR, volume 715 of Lecture Notes in

Computer Science, pages 509–523. Springer, 1993.
24 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and

type discipline for structured communication-based programming. In ESOP, volume 1381 of
Lecture Notes in Computer Science, pages 122–138. Springer, 1998.

25 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9:1–9:67, 2016.

26 Anupam Jain. Concur, 2019. Accessed on 2019-09-02. URL: https://ajnsit.github.io/
concur.

27 Jonathan King, Nicholas Ng, and Nobuko Yoshida. Multiparty session type-safe web de-
velopment with static linearity. In PLACES@ETAPS, volume 291 of EPTCS, pages 35–46,
2019.

28 Naoki Kobayashi. Type systems for concurrent programs. In 10th Anniversary Colloquium of
UNU/IIST, volume 2757 of Lecture Notes in Computer Science, pages 439–453. Springer, 2002.

ECOOP 2020

https://elm-lang.org/news/farewell-to-frp
https://elm-lang.org/news/farewell-to-frp
https://doi.org/10.1145/2491956.2462161
http://arxiv.org/abs/1910.11108
https://doi.org/10.1145/3290341
https://doi.org/10.1145/3290341
https://ajnsit.github.io/concur
https://ajnsit.github.io/concur

14:28 Model-View-Update-Communicate

29 Naoki Kobayashi. A new type system for deadlock-free processes. In CONCUR, volume 4137
of Lecture Notes in Computer Science, pages 233–247. Springer, 2006.

30 Glenn E. Krasner and Stephen T. Pope. A Cookbook for using the Model-view Controller user
interface paradigm in Smalltalk-80. J. Object Oriented Program., 1(3):26–49, August 1988.
URL: http://dl.acm.org/citation.cfm?id=50757.50759.

31 Sam Lindley and J. Garrett Morris. A semantics for propositions as sessions. In ESOP, volume
9032 of Lecture Notes in Computer Science, pages 560–584. Springer, 2015.

32 Sam Lindley and J. Garrett Morris. Talking bananas: structural recursion for session types.
In ICFP, pages 434–447. ACM, 2016.

33 Sam Lindley and J Garrett Morris. Lightweight functional session types. Behavioural Types:
from Theory to Tools. River Publishers, pages 265–286, 2017.

34 Leo A. Meyerovich, Arjun Guha, Jacob P. Baskin, Gregory H. Cooper, Michael Greenberg,
Aleks Bromfield, and Shriram Krishnamurthi. Flapjax: a programming language for Ajax
applications. In OOPSLA, pages 1–20. ACM, 2009.

35 Dimitris Mostrous and Vasco T. Vasconcelos. Affine sessions. Logical Methods in Computer
Science, 14(4), 2018. doi:10.23638/LMCS-14(4:14)2018.

36 Joachim Niehren, Jan Schwinghammer, and Gert Smolka. A concurrent lambda calculus with
futures. Theor. Comput. Sci., 364(3):338–356, 2006.

37 Luca Padovani. Deadlock and lock freedom in the linear π-calculus. In CSL-LICS, pages
72:1–72:10. ACM, 2014.

38 Luca Padovani. Context-free session type inference. In ESOP, volume 10201 of Lecture Notes
in Computer Science, pages 804–830. Springer, 2017.

39 Luca Padovani and Luca Novara. Types for deadlock-free higher-order programs. In FORTE,
volume 9039 of Lecture Notes in Computer Science, pages 3–18. Springer, 2015.

40 Adam Pedley. Functional Model-View-Update Architecture for Flut-
ter, 2019. Accessed on 2019-09-24. URL: https://buildflutter.com/
functional-model-view-update-architecture-for-flutter/.

41 Manuel Serrano and Vincent Prunet. A glimpse of Hopjs. In ICFP, pages 180–192. ACM,
2016.

42 The PureScript Contributors. PureScript, 2019. Accessed on 2019-09-02. URL: http:
//www.purescript.org/.

43 Vasco T. Vasconcelos. Fundamentals of session types. Inf. Comput., 217:52–70, 2012.
44 Philip Wadler. Linear types can change the world! In Programming Concepts and Methods,

page 561. North-Holland, 1990.
45 Philip Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):384–418, 2014. doi:

10.1017/S095679681400001X.
46 Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. Distributed system development

with ScalaLoci. PACMPL, 2(OOPSLA):129:1–129:30, 2018.

http://dl.acm.org/citation.cfm?id=50757.50759
https://doi.org/10.23638/LMCS-14(4:14)2018
https://buildflutter.com/functional-model-view-update-architecture-for-flutter/
https://buildflutter.com/functional-model-view-update-architecture-for-flutter/
http://www.purescript.org/
http://www.purescript.org/
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1017/S095679681400001X

Static Analysis of Shape in TensorFlow Programs
Sifis Lagouvardos
University of Athens, Greece
sifis.lag@di.uoa.gr

Julian Dolby
IBM Research, Yorktown Heights, NY, USA
dolby@us.ibm.com

Neville Grech
University of Athens, Greece
me@nevillegrech.com

Anastasios Antoniadis
University of Athens, Greece
anantoni@di.uoa.gr

Yannis Smaragdakis
University of Athens, Greece
smaragd@di.uoa.gr

Abstract
Machine learning has been widely adopted in diverse science and engineering domains, aided by
reusable libraries and quick development patterns. The TensorFlow library is probably the best-
known representative of this trend and most users employ the Python API to its powerful back-end.
TensorFlow programs are susceptible to several systematic errors, especially in the dynamic typing
setting of Python. We present Pythia, a static analysis that tracks the shapes of tensors across
Python library calls and warns of several possible mismatches. The key technical aspects are a close
modeling of library semantics with respect to tensor shape, and an identification of violations and
error-prone patterns. Pythia is powerful enough to statically detect (with 84.62% precision) 11 of
the 14 shape-related TensorFlow bugs in the recent Zhang et al. empirical study – an independent
slice of real-world bugs.

2012 ACM Subject Classification Theory of computation → Program analysis; Software and its
engineering → Compilers; Software and its engineering → General programming languages

Keywords and phrases Python, TensorFlow, static analysis, Doop, Wala

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.15

Supplementary Material ECOOP 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.2.6.

Funding We gratefully acknowledge funding by the European Research Council, grant 790340
(PARSE), and by the Hellenic Foundation for Research and Innovation (project DEAN-BLOCK).

1 Introduction

Machine learning has seen widespread use in recent years, for an enormous variety of
application domains, from vision to language processing to programming tasks [3, 23, 39] and
well beyond, into mainstream science and engineering. The TensorFlow library [1], originally
developed by the Google Brain Team, is the dominant open-source framework for modern
machine learning applications. TensorFlow has received significant attention and impressive
adoption, continually extending its dominance over other frameworks. Current statistics (as

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Sifis Lagouvardos, Julian Dolby, Neville Grech, Anastasios Antoniadis, and
Yannis Smaragdakis;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 15; pp. 15:1–15:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sifis.lag@di.uoa.gr
mailto:dolby@us.ibm.com
mailto:me@nevillegrech.com
mailto:anantoni@di.uoa.gr
mailto:smaragd@di.uoa.gr
https://doi.org/10.4230/LIPIcs.ECOOP.2020.15
https://doi.org/10.4230/DARTS.6.2.6
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Static Analysis of Shape in TensorFlow Programs

of Jan.08, 2020) show the TensorFlow GitHub repository with over 140K stars and 79.4K
forks, with other popular open-source frameworks for machine learning lagging far behind
(PyTorch [37] at 35.2K stars and 8.8K forks, Theano [2] at 9K stars and 2.5K forks).

As might be expected, TensorFlow programs are not free of defects (“bugs”). In high-level
code, such as TensorFlow clients, bugs are commonly due to misunderstandings of the
guarantees offered and obligations imposed by increasingly layered software. At the same
time, such bugs have increasing real-world importance, as machine learning makes advances
in widespread adoption. In a recent empirical survey, Zhang et al. [58] collect and classify
a variety of TensorFlow program bugs from StackOverflow QA page and GitHub projects,
by examining documentation, informal posts, commit and pull-request messages, and issue
discussions. Many of these bugs are semantic in nature: they can only be ascertained by
inspecting the outcome or the performance of the underlying computation. Others are
bugs that may admit automatic detection: they signify API misuse, often (but not always)
triggering assertions during execution.

TensorFlow, as many other popular machine learning frameworks, is mostly used from
Python: a dynamic language that offers significant flexibility and ease of adoption. The
dynamic nature of Python implies that there is no static tracking of types that can be used to
ensure compatibility of values and operations. Furthermore, the static analysis tools available
for Python are less advanced than those in statically-typed languages, focusing more on local
code issues rather than whole-program properties. One reason for this has been a lack of
underlying general analysis frameworks (analogous, e.g., to WALA [50], Soot [52], or Doop [9]
in the Java world) that deploy whole-program technology and support Python. (For instance,
we have failed to find a publicly available library for points-to analysis of Python programs.)

In this work, we focus on a class of TensorFlow bugs that relate to the shape of tensors,
i.e., the number of their dimensions and the dimensions’ sizes. Checking that the shape of
tensor arguments is compatible with the expectations of library operators is a key validation
technique. Shape checking can prevent a large and important class of real-world TensorFlow
programming errors, including the 14 shape-related bugs identified in StackOverflow questions
by Zhang et al. [58].

Our approach tracks the shape of tensors using static analysis of the Python program and
appropriate modeling of the TensorFlow API. In addition to the dynamism of the Python
language, static analysis or type checking of TensorFlow code is also hindered by the inherent
dynamism of the library itself. The design philosophy of the library (much in line with its
common use from a dynamic language) is that of being very resilient to incomplete data.
The API exhibits multiple instances of dynamic padding, reshaping, unknown dimensions,
partially-known shapes (to be filled in dynamically), and more. Our analysis follows the
flexibility of the library operators and attempts to closely model what is a permitted and
expected behavior vs. what will produce a run-time error or is very likely a logical error and
should induce a warning.

The work offers both application-level and technical-level contributions:

We define Pythia, a state-of-the-art static analysis for the modeling of tensor shape
through TensorFlow API calls. The analysis combines several elements: a relatively
complete front-end translating Python source code into the IR of the WALA framework;
a translation of the WALA IR into a relational representation for defining analyses using
declarative Datalog rules; a whole-program context-sensitive value-flow and points-to
analysis for Python; and a shape analysis of tensor values that carefully captures the
flexibility of library operators.

S. Lagouvardos, J. Dolby, N. Grech, A. Antoniadis, and Y. Smaragdakis 15:3

We provide the first concrete demonstration of the applicability of static analysis in the
TensorFlow domain, by showing that our tool can find real bugs in real TensorFlow
programs. We validate the effectiveness of the analysis by applying it to the 14 shape-
related bug examples (and their fixed versions) in the [58] study. Pythia correctly finds
11 of these bugs with a precision of 84.62% and recall of 78.6%. (Importantly, of the
missed bugs, all but one are undetectable with static information alone.)
We present insights on the design of static shape checking for Python/TensorFlow
programs. In particular, we argue that an effective such analysis is best classified as a
static analysis and not a type checker, due to its desired features (extensional, non-modular
behavior, context sensitivity).

2 Background

We next present background useful in later sections, on TensorFlow and Datalog program
structure.

TensorFlow

TensorFlow is the most widely-adopted open-source machine learning library. The library
performs computations using symbolic data-flow graphs. Operators form the vertices of
the graph and tensors are flowing along the edges. TensorFlow invocation from Python
code typically follows a two-stage pattern.1 Initially the data-flow graph representing the
computations is constructed. The entire graph is in place before dynamic data have been
read. This graph or a number of its sub-graphs can then be executed multiple times with
different input data.

During the construction phase of the graph the information about each tensor’s shape
may vary. It may range from fully-known or concrete, to partially-known (where one or more
dimensions is unknown, represented as None) to completely unknown. The static analysis
we describe is based on retrieving as much shape information as possible from the program
text, and propagating it through TensorFlow operators, which require careful modeling with
respect to their shape transformations. Therefore, the analysis is crucially based on common
TensorFlow programming patterns. These encourage encoding known shape information in
the program text, while leaving unknown (dynamic) shape information undefined.

Datalog in Program Analysis

The Datalog language has been often used to declaratively specify static analysis algorithms [8,
18,20,25,27,30,33,36,46,53,54,57]. We use Datalog in our analysis, both in the high-level
description and in its implementation, in order to seamlessly combine the results of several
separate analyses (constant-flow, points-to, tensor-shape), with each one appealing to others.

A Datalog program is a set of logical inference rules, operating over initial facts and
producing more inferences until fixpoint. A rule “C(z,x) ← A(x,y), B(y,z).” means that
if A(x,y) and B(y,z) are both true, then C(z,x) can be inferred. We shall use syntactic
shorthands in the rules, such as multiple rule heads (“H1(. . .), H2(. . .) ← . . . ”), which are
equivalent to repeating the rule for each head, and disjunction (operator “;”) in the rule
body, which is equivalent to replicating the body for each disjunct.

1 This description, as well as all of our work and presentation, applies to TensorFlow v.1.X, the most
widely deployed version of the framework. TensorFlow v.2 was released in late 2019 and includes
a radical (and incompatible) reworking of the programming model. Both our core analysis and the
engineering scaffolding need to be reworked to apply to TensorFlow v.2, which will likely give rise to
related but not identical kinds of bugs. This is a potentially promising future work direction.

ECOOP 2020

15:4 Static Analysis of Shape in TensorFlow Programs

3 Illustration: TensorFlow Shape Tracking

The concept of a tensor’s shape is straightforward and mostly well-understood: every tensor
has a list of dimensions, each with a size. Tensor operations are well-defined when the
arguments’ dimensions match the operator’s expectations. We shall see in Section 4 a more
complete mathematical modeling of tensor shapes, but a simple, well-known example is the
2-dimensional tensor (matrix) multiplication operator (Tensor i j represents a tensor of
shape i× j):

mul2d : Tensor i j → Tensor j k → Tensor i k

The complexity of modeling tensor shape in practice is much greater, however. The issue is
precisely the dynamism that the TensorFlow library (as well as the Python language) affords.
Our analysis seeks to capture this flexibility while closely modeling shape transformations
through the TensorFlow API. We next consider several examples that illustrate a) how
placeholder tensors, reshaping operations, implicit padding, and subtle semantic differences
affect shape reasoning; b) which behaviors cause crashes and which can be reasonably
considered likely bugs, and should, therefore, also elicit a warning; c) what flavor an analysis
should adopt to capture such bugs in realistic programs.

Example 1: Placeholders

A first example helps demonstrate “placeholder” tensors.

import tensorflow as tf
import numpy as np
data1 = np.random.normal(0, 0.1, [20, 50])
data2 = np.random.normal(0, 0.1, [50])
a = tf.placeholder("float", shape=[None, 50])
b = tf.placeholder("float")
y = tf.matmul(a,b)
with tf.Session() as sess:

print(sess.run(y, feed_dict={a:data1,b:data2}))

A placeholder tensor is a tensor that will be fed data at runtime. At instantiation of a
placeholder tensor, some dimensions (or the whole shape) can be set to None, as in tensors
a and b in our example. Feeding data to a placeholder can be done using the feed_dict
optional argument to Session.run(), Tensor.eval(), or Operation.run(). When one or more
dimensions are set to None, the data fed to this tensor has to match the shape of the
placeholder, meaning that the number of dimensions has to be the same and the sizes of all
explicit-sized dimensions should be equal.

The most common pattern is to set a dimension that represents the “batch number” of
the data to None, to support placeholder tensors with a variable batch size: the structure
of each instance is known, but the total number of instances is a run-time variable. In the
code snippets we will be showcasing throughout the paper, the arguments of TensorFlow
and NumPy2 operations that affect the output shape will be highlighted in red. Such is
the case in our example, where the call to np.random.normal() results in data1 pointing to
a NumPy array object with shape [20,50]. Consequently, feeding data1 to the placeholder
a with shape [None,50] is successful. In our static analysis, this placeholder operation will
produce two different modeled result values: [None,50] and [20,50].

2 NumPy is the dominant Python scientific computing package. Our modeling also covers parts of NumPy
that are particularly relevant to TensorFlow operations.

S. Lagouvardos, J. Dolby, N. Grech, A. Antoniadis, and Y. Smaragdakis 15:5

Placeholder tensors with no initial shape can be fed data of any shape, as long as the
types are compatible. To model these, we take advantage of the shape of the data fed to
the placeholder whenever it is available. In our example, the b placeholder tensor gets the
shape of data2 which is [50]. The call to tf.matmul() will fail with an error due to the
two argument tensors having different number of dimensions. Our static analysis will issue
an error, since no combination of the modeled abstract values for tensors a and b yields a
compatible pair.

Example 2: Reshaping

Not all tensorflow bugs will result in run-time exceptions/assertion failures, yet strong
evidence may exist that the code contains an error. An example is below, also illustrating
the tf.reshape() operator.

import tensorflow as tf
import numpy as np
a = tf.placeholder(tf.float32, [None,784])
data = np.random.normal(0, 0.1, [36, 784])
b = tf.reshape(a, [-1,24,24,1])
with tf.Session() as sess:

print(sess.run(b,feed_dict={a:data}).shape)

The tf.reshape() function attempts to reshape a tensor, given as input the dimensions
specified by its second (shape) argument. In order for it to succeed, the product of the
elements of the shape list of the input tensor (pin) and the product of the elements of the
shape list of the output tensor (pout) should be equal. A very common special case concerns
argument shape lists with a single allowed -1 dimension, as in the reshape call of the example.
The size of that dimension is then computed so that the reshape operation succeeds, provided
that the product of explicit (i.e., not -1) dimensions of the shape argument is a divisor of pin.

In the above example, just as in the earlier Example 1, the placeholder tensor a has
originally one None dimension, corresponding to the batch size. The tensor, with shape
[None,784], is fed data with shape [36,784]. Dynamically, this value is compatible with
the reshape operation, with attempted shape [-1,24,24,1]: the resulting shape of tensor
b is [49,24,24,1], since 49 × 24 × 24 × 1 = 36 × 784. However, there is already a strong
hint that the reshaping should only affect the second dimension, with size 784 (i.e., that
the programmer expects that 784 should be divisible by 24): the batch size is a volatile
attribute of the current input and not an inherent part of the tensor structure, as the explicit
[None,784] shape suggests.

Our analysis keeps both abstract values, [None,784] and [36,784], for tensor a and, since
one of them is incompatible with the reshape operation, it emits a warning. Generally,
when the input tensor of a reshape has one None dimension, we compute the products of the
elements of the two shape lists excluding None and -1 and if they are not equal we report a
warning.

Example 3: Padding in Broadcast Operations

The distinction between analysis-reported errors and warnings is more generally meaningful
for operations that are probably valid, yet likely to have surprising semantics. The most
common such case is the “broadcasting” semantics of NumPy arrays. We discuss the behavior
in Section 5 but the example below illustrates briefly.

ECOOP 2020

15:6 Static Analysis of Shape in TensorFlow Programs

import tensorflow as tf
x = tf.constant([[1.0, 1.0], [1.0, 2.0],

[1.0, 3.0]], dtype=tf.float64)
y_ = tf.constant([1.0, 2.0, 3.0], dtype=tf.float64)
w = tf.truncated_normal(shape=[2,1], stddev=0.1, dtype=tf.float64)
y = tf.matmul(x, w)
diff = y - y_
error = tf.reduce_mean(tf.square(diff))

In this example, tensor x has a shape of [3,2] and tensor w has a shape of [2,1]. Their
product, tensor y has a shape of [3,1]. Tensor y_ has a shape of [3]. The difference
of y ([3,1]) and y_ ([3]) has a shape of [3,3], which is highly surprising to many users!
(Broadcasting semantics copy leading dimensions of the higher-rank argument3 and match the
rest one-to-one, expanding any dimension with size 1 to the size of the matching dimension
from the other argument.)

Pythia models and correctly propagates the effect of broadcasting on shape. However, it
produces a warning when array broadcasting results in the expansion of the dimensions of a
tensor. This can help prevent errors caused by mechanics that can easily confuse a user.

4 Basic Tensor Shape Modeling

Practical analysis applications that yield realistic benefits need to devote considerable model-
ing effort to support the idiosyncrasies of different environments – in our case, TensorFlow’s
operations. Much of the complexity of this modeling is due to technicalities employed for
usability, to the sheer number of operators, or to the way data values are introduced from
the host language. There is, however, a core set of operations that are representative of many
more and whose basic shape modeling can be cleanly expressed in closed-form mathematical
formulas, much as the reader might expect. We discuss the “clean” modeling of such operators
in this section, and postpone discussing the more operational aspects of our analysis until
Section 5. Therefore, this section is purposely simplifying, in order to ensure that the core
model is clear to the reader. For instance, we omit tensors of partially-known shape (with
None dimensions), special (-1) dimensions in reshaping, modeling of broadcasting, and other
such complexities.

Every tensor operation is modeled mainly in terms of the output shape in relation to the
inputs supplied to its formal parameters, and of the data type of individual tensor elements.
Complexity mostly arises out of the former, so our design is influenced by this consideration.
Tensor operations broadly consist of (i) shape pass-through functions, e.g., identity ; (ii)
convolution and pooling functions ; (iii) conversions and reshapings from tensors or tensor-like
objects (e.g., NumPy arrays).

Shape types of tensors are modeled using the following vocabulary for tensor types and
tensor shapes.

τ, υ ∈ TensorType ::= Tensor T

T,U ∈ DimensionType ::= T i

| nil
i, j ∈ N

3 The “rank” of a shape is its number of dimensions.

S. Lagouvardos, J. Dolby, N. Grech, A. Antoniadis, and Y. Smaragdakis 15:7

We typically omit nil for conciseness. Hence an example of a two dimensional tensor
shape type is Tensor i j, i.e., a tensor of shape i× j.

Note that the variables in the above syntax are meta-variables, used for conceptual
modeling. In concrete instances, inside our analysis, all shapes and their dimensions are
concrete (i.e., sequences of integers or single integers, respectively). Conceptually, however,
the logic of the analysis does use such meta-variables, since it handles any concrete numbers
found in the program text. For instance, we can model the understanding of the analysis
regarding the core TensorFlow operator mul as follows.

mul : Tensor U i j → Tensor U j k → Tensor U i k

mul generalizes standard two-dimensional tensor (matrix) multiplication, by adding
arbitrary (but identical, in both arguments and in the result) leading dimensions.

Similarly, the core operator identity takes a tensor of any shape and returns a copy of
it with the same shape.

identity : Tensor T → Tensor T

reshape is another core TensorFlow operator. It takes a tensor of any shape T and tries
to return a tensor of another shape U , supplied as argument.

reshape : Tensor T → U → Tensor U

The reshape operation succeeds if the product of all elements in T is equal to the
product of all elements in U :∏

i

Ti =
∏

i

Ui

To get a glimpse of more complex and versatile shape modeling, still easy to express in a
closed-form formula, we can consider the conv2d operator – a core operator for convolution.
Convolution is often used to create complex neural networks that can extract intermediate
features (typically from an image), as part of an intermediate layer. Convolution takes a
4d input tensor, where the middle 2 dimensions represent the data, a filter tensor, and
a strides shape. Furthermore, there are two padding strategies for convolution: same and
valid. Essentially, the former pads the tensor with off-boundary data so that the convolution
filter is still applicable on the edges, while the latter avoids padding and applies only up to
the point where the filter still retrieves data from the input tensor. If the padding strategy is
same the shape type of conv2d is defined as:

conv2d : Tensor ∗ i j ∗ → Tensor ∗ k l ∗ → ∗ s1 s2 ∗ → Tensor d i
s1
e d j

s2
e

(The stars denote any, ignored, integer values.)
Otherwise, if the padding strategy is valid, the convolution shape type is defined as:

conv2d : Tensor ∗ i j ∗ → Tensor ∗ k l ∗ → ∗ s1 s2 ∗ → Tensor d i−k+1
s1
ed j−l+1

s2
e

5 Analysis Structure

Our analysis emphasis is on shape modeling, which is the main element of this work. However,
given the dearth of static analysis infrastructure for Python, our analysis had to develop
several techniques and combine them in a coherent whole: a Python front-end (parser, IR

ECOOP 2020

15:8 Static Analysis of Shape in TensorFlow Programs

generator) that produces intermediate code using the WALA framework [50], a generator
of relational tables for declarative program analysis in the Doop framework [9], a points-to,
constant-flow and call-graph analysis for Python.

We start our presentation from these underlying analyses, and proceed with representative
fragments of the declarative modeling of shape transformations through TensorFlow operators.

5.1 Substrate: WALA and Declarative Value-Flow Analysis
Pythia is expressed declaratively, as Datalog rules for both value-flow and tensor-shape
reasoning. For Python support, we extended the parser and intermediate-representation
generator of the Ariadne system [12], which produces WALA IR statements from Python
source. The past WALA front-end for Python was largely a proof-of-concept implementation,
therefore several elements needed to be added to tackle realistic programs, for example:

correct handling of the global scope of Python programs
complete modeling of collections
complete modeling of list comprehensions
modeling of list slicing
modeling of parameter initial values
handling of constant values.

The resulting intermediate representation using WALA data structures is used to output
tables for relational processing by Datalog-based analyses. We integrate the input relations
generation and subsequent analysis with the Doop framework [9], which already features a
WALA front-end and a declarative analysis scaffolding. Doop is a framework for analysis of
Java bytecode – to add Python support, we implement a whole-program, context-sensitive
value-flow analysis on the Python IR.

The form of this analysis is largely conventional, expressed using a standard declarative
approach (e.g., [49]) over an SSA intermediate language (for flow sensitivity on local variables).
The analysis propagates constants and object values inter-procedurally, maintaining precision
using call-site sensitivity [47, 48]. (In the default setting, a 1-call-site-sensitive analysis with
a context-sensitive heap is used, after experimentation with options to balance performance
and precision.) A call-graph is inferred based on the values of receiver objects at method
calls. The analysis is complete for the static features of Python, but several dynamic features
(e.g., decorators, non-trivial list comprehensions, eval/input, getattr) will interrupt the
propagation of values.

5.2 Declarative Modeling of Shape Transformations
The main analysis logic is expressed as rules that appeal to the substrate analysis of value-flow
throughout the Python program. In general, the declarative model of the analysis helps in
having simple, independent rules, mutually recursive with other sub-analyses. We illustrate
two sample sets of rules, next, capturing shape reasoning for broadcast operations and
reshape operations. As hinted in earlier examples, much of the complexity is due to the close
modeling of the flexibility afforded by TensorFlow operators.

5.2.1 Broadcast Reasoning
Example 3 in Section 3 discussed array/tensor broadcasting. Array/tensor broadcasting is
a mechanism to allow element-wise operations between arrays of different shapes. Under
some restrictions, the smaller array is “broadcast” across the larger one, provided that

S. Lagouvardos, J. Dolby, N. Grech, A. Antoniadis, and Y. Smaragdakis 15:9

their dimensions match. Broadcasting operations can either be overloaded arithmetic
binary operations, or calls to tensorflow functions (for example tf.add(), tf.multiply() or
tf.equal()).

Consider an example to illustrate different cases:

import tensorflow as tf
op1 = tf.ones(shape=[4,3,1])
op2 = tf.ones(shape=[3,2])
res = tf.add(op1, op2)

The shape of the resulting tensor will be [4,3,2]: leading dimensions are “inherited”
from the higher-rank tensor, and dimensions equal to 1 for either argument are expanded to
the size of the corresponding dimension for the other argument.

Our analysis logic first creates a new value for a broadcasting operation, encoding (as a
3-tuple) the instruction and tensor argument values. We choose to have the operand with the
higher rank as the first operand. The difference of the ranks is computed as the operation’s
offset. In our example, the operation’s offset will be 1.

BroadcastingOp(bcastOp, offset)←
Invocation(insn, fun),
BroadcastingFunction(fun),
ActualParamValue(insn, "x", tensor1),
ActualParamValue(insn, "y", tensor2),
TensorRank(tensor1, rank1),
TensorRank(tensor2, rank2),
rank1 >= rank2, offset = rank1 - rank2,
bcastOp = [insn, tensor1, tensor2].
The rule checks the preconditions of broadcasting and packages all relevant information

for further processing. The relations in the rule body are produced by syntactic processing
of the program text or by the global value-flow/points-to analysis: Invocation(insn, fun)
recognizes a call to fun in instruction insn (such invocation resolution requires global value-
flow reasoning); BroadcastingFunction matches TensorFlow API functions that support
broadcasting, such as add in our example; ActualParamValue(insn, var, val) computes the
(abstract) value for the actual parameter (var, identified by name) of a call at instruction
insn; TensorRank retrieves the rank of a tensor value (i.e., number of dimensions in its
shape).

In words, the rule says that if two tensor values, tensor1 and tensor2, are used as
arguments of a broadcasting call, the call instruction, the tensor values, and the offset to be
used to match the tensors’ dimensions are packaged in predicate BroadcastingOp.

Armed with the above, we can encode the different cases of shape propagation through
broadcasting operators. The ResultShapeDimension predicate represents the contents of the
shape list for each dimension of a broadcasting operation’s result.

For dimensions only in the higher-rank argument (i.e., below “offset”) the result inherits
the size of the higher-rank argument’s dimension:

ResultShapeDimension(bcastOp, index, dim)←
BroadcastingOp(bcastOp, offset),
bcastOp = [_, tensor1, _],
index < offset,
TensorShape(tensor1, tensorShape1),
ShapeDimension(tensorShape1, index, dim).

ECOOP 2020

15:10 Static Analysis of Shape in TensorFlow Programs

Predicate TensorShape holds the shape of a tensor value, while ShapeDimen-
sion(shape, i, dim) holds the size, dim, of the i-th dimension of the shape value.

In our example, the above rule will produce the dimension with size 4 in the result.
In order to attempt a match of dimension sizes that are expected to match during a

broadcasting operation, we introduce a convenience predicate, ArgumentsShapeDimensions
that recalls both sizes at positions at least equal to offset:

ArgumentsShapeDimensions(bcastOp, index, dim1, dim2)←
BroadcastingOp(bcastOp, offset),
bcastOp = [_, tensor1, tensor2],
index >= offset,
TensorShape(tensor1, tensorShape1),
ShapeDimension(tensorShape1, index, dim1),
TensorShape(tensor2, tensorShape2),
ShapeDimension(tensorShape2, index - offset, dim2).

For fully matching argument dimensions, the common size becomes the size of the output
dimension, as well (as in the second dimension of the output in our example):

ResultShapeDimension(bcastOp, index, dim)←
ArgumentsShapeDimensions(bcastOp, index, dim, dim).

There are two more cases and they elicit a warning or an error report: The first computes
an output shape of the resulting tensor for dimensions that are not equal but can match
due to broadcasting. For two different dimensions to match in this way, at least one would
need to be 1. This rule produces the result of the third dimension of our earlier example. In
this case we also produce a warning, detecting the use of broadcasting mechanics that could
confuse the user.

Warning(bcastOp),
ResultShapeDimension(bcastOp, index, dim)←

ArgumentsShapeDimensions(bcastOp, index, dim1, dim2),
dim1 != dim2,
((dim1 = 1, dim = dim2) ; (dim2 = 1, dim = dim1)).

The final rule produces an error in the case of dimensions that cannot match, i.e., they
are not equal and neither of them is 1.

Error(bcastOp)←
ArgumentsShapeDimensions(bcastOp, index, dim1, dim2),
dim1 != dim2, dim1 != 1, dim2 != 1.

5.2.2 Reshape Reasoning

Example 2 in Section 3 discussed the complexity of modeling the reshape operator in a
realistic setting, unlike the core, closed-form modeling of Section 4. Tensors of partially-
known shape (with None dimensions) and special reshape dimensions (of size -1) need to be
accounted for in an analysis that aims to be useful for real-world bug detection. The Datalog
rules we present next reflect these considerations.

First, as in broadcast operations, we identify calls to reshape and encode each instance
of the operation as a new value, consisting of a 3-tuple of the instruction, tensor, and shape
arguments:

S. Lagouvardos, J. Dolby, N. Grech, A. Antoniadis, and Y. Smaragdakis 15:11

ReshapeOperation(rshpOp)←
Invocation(insn, "reshape"),
ActualParamValue(insn, "tensor", tensorVal),
ActualParamValue(insn, "shape", dimListVal),
rshpOp = [insn, tensorVal, dimListVal].

We also store the products of dimension sizes for the tensor and the shape argument
(with the result of the multiplication over all indexes computed separately – from rules not
shown – into DimensionsProduct):

ProductsOfShapes(rshpOp, tensorProd, dimListProd)←
ReshapeOperation(rshpOp),
rshpOp = [_, tensorVal, dimListVal],
TensorShape(tensorVal, tensorShapeVal),
DimensionsProduct(tensorShapeVal, tensorProd),
DimensionsProduct(dimListVal, dimListProd).

We can then distinguish different cases of reshapings. A concrete-dimension tensor (i.e.,
with no None dimensions) reshaped into a concrete shape (i.e., with no -1 dimensions) will
succeed if the products of dimension sizes are equal and will produce an error otherwise.
Predicate ReshapeConcreteToConcrete is used to cache intermediate results for use in the
two later rules. “!” designates negation in a rule and in this case is used to establish the two
shape concreteness conditions.

ReshapeConcreteToConcrete(rshpOp, tensorProd, dimListProd)←
ProductsOfShapes(rshpOp, tensorProd, dimListProd),
rshpOp = [_, tensorVal, dimListVal],
TensorShape(tensorVal, tensorShapeVal),
!ShapeDimension(tensorShapeVal, _, "None"),
!ShapeDimension(dimListVal, _, -1).

TensorOperationProducesOutput(rshpOp)←
ReshapeConcreteToConcrete(rshpOp, tensorProd, tensorProd).

Error(rshpOp)←
ReshapeConcreteToConcrete(rshpOp, tensorProd, dimListProd),
tensorProd != dimListProd.

Accordingly, we can handle the case of a concrete tensor resized to a special shape – i.e.,
one that has a -1 dimension. (Other rules, omitted, enforce that there can be at most one
-1 dimension.) We first collect the products of sizes into a convenience predicate that also
enforces the rest of the preconditions:

ReshapeConcreteToSpecial(rshpOp, tensorProd, dimListProd)←
ProductsOfShapes(rshpOp, tensorProd, dimListProd),
rshpOp = [_, tensorVal, dimListVal],
TensorShape(tensorVal, tensorShapeVal),
!ShapeDimension(tensorShapeVal, _, "None"),
ShapeDimension(dimListVal, _, -1).

Subsequently, we distinguish the case of a correct reshaping, when the two dimension-
size-products are divisible, from the error case, when they are not:

ECOOP 2020

15:12 Static Analysis of Shape in TensorFlow Programs

TensorOperationProducesOutput(rshpOp)←
ReshapeConcreteToSpecial(rshpOp, tensorProd, dimListProd),
quot = tensorProd/dimListProd,
tensorProd = quot * dimListProd.

Error(rshpOp)←
ReshapeConcreteToSpecial(rshpOp, tensorProd, dimListProd),
tensorProd % dimListProd != 0.
In a largely similar fashion, we need to handle the case of a tensor of partially-known

shape (with a None dimension) being reshaped to a shape with a special (-1) dimension. We
first compute the products of concrete dimension sizes:

ReshapePartialToSpecial(rshpOp, tensorProd, dimListProd)←
ProductsOfShapes(rshpOp, tensorProd, dimListProd),
rshpOp = [_, tensorVal, dimListVal],
TensorShape(tensorVal, tensorShapeVal),
ShapeDimension(tensorShapeVal, _, "None"),
ShapeDimension(dimListVal, _, -1).
Then, we distinguish the case of a correct reshaping, when both products match vs.

one that elicits a warning, when they do not. This is the case of the earlier Example 2,
commonly corresponding to a programming error. In the example, our analysis correctly
infers the product of the input tensor to be 784 and that of the given shape argument to be
576, successfully reporting the appropriate warning. Remember that, for both shapes, their
products are the products of the explicit dimensions (i.e. no None and -1 dimensions).

TensorOperationProducesOutput(rshpOp)←
ReshapePartialToSpecial(rshpOp, tensorProd, tensorProd).

Warning(rshpOp),
TensorOperationProducesOutput(rshpOp)←

ReshapePartialToSpecial(rshpOp, tensorProd, dimListProd),
tensorProd != dimListProd.
The final case is that of a tensor of partially-known shape reshaped into a concrete shape

list, with no special dimensions. We again enforce the preconditions and cache the products
of dimension sizes in a convenience predicate:

ReshapePartialToConcrete(rshpOp, tensorProd, dimListProd)←
ProductsOfShapes(rshpOp, tensorProd, dimListProd),
rshpOp = [_, tensorVal, dimListVal],
TensorShape(tensorVal, tensorShapeVal),
ShapeDimension(tensorShapeVal, _, "None"),
!ShapeDimension(dimListVal, _, -1).
Subsequently, we distinguish the case of a correct reshaping from that of an error:

TensorOperationProducesOutput(rshpOp)←
ReshapePartialToConcrete(rshpOp, tensorProd, dimListProd),
dimListProd % tensorProd = 0.

Error(rshpOp)←
ReshapePartialToConcrete(rshpOp, tensorProd, dimListProd),
dimListProd % tensorProd != 0.

S. Lagouvardos, J. Dolby, N. Grech, A. Antoniadis, and Y. Smaragdakis 15:13

5.3 Tensor Value Representation
The presentation of the analysis so far has ignored the exact nature of abstract values that
arise for tensors. In our previous rules, abstract tensor values are treated as black-box
representations that have at least a type and a shape (a list of constants), which the rest of
the analysis looks up. The exact abstraction of values, however, has significant implications
on precision and performance (even up to non-termination, as Section 5.4 discusses). Our
full analysis features two different configurations for tensor value creation: one very coarse
and one highly precise.

The coarse value abstraction, which we term simple-tensor-precision, creates a single value
for each function invocation instruction that resolves to a modeled tensor operation. The
problem of this approach is that it can exacerbate the – sometimes unavoidable – imprecision
of a static analysis. The snippet below provides a minimal example.

import tensorflow as tf
if(CONDITION):

reshapeTo = [-1,28,28,1]
else:

reshapeTo = [-1,14,14,4]
a = tf.placeholder(tf.int32, [None, 784])
a = tf.reshape(a, reshapeTo)

After the reshape operation, variable a points to one tensor value with one corresponding
shape value. However, having a single value (for all dynamic instances of the operation)
entails having a single shape list. This shape list has two possible values for each dimension
except the 0th, combining the possible dimension values of the two run-time shape lists to a
total of 8 possible shapes.

In contrast, the precise value abstraction of Pythia, which we call full-tensor-precision,
represents each tensor value as the concatenation of all the values of arguments of the operation
that creates it and the function invocation instruction that resolves to the operation.

For the above example, after the reshape operation, variable a points to two tensor values
– one for each possible value of reshapeTo – but each with definite shape: the full shapes
([-1,28,28,1] vs. [-1,14,14,4]) of the reshapeTo arguments are kept in the two abstract
values representing the operation’s results.

As discussed next, it is easy to switch between the two abstractions to implement
interesting hybrid algorithms that give a balance of precision and scalability.

5.4 Analysis Termination
Termination is an interesting question regarding our analysis. There are new tensor shapes
produced for several TensorFlow operators, e.g., by replacing -1 dimension sizes with positive
integers in the reshape operation. Also, even though the analysis deals with concrete
dimensions, it remains a static analysis: a single variable can have many potential abstract
values. These do not necessarily reflect dynamic values – they could arise due to control-flow
or data-flow imprecision, i.e., because of an over-approximation. Therefore a program with
no threat of non-termination can still possibly give rise to a non-terminating static analysis.

To ensure termination of our analysis, we first need to bound the new shapes that can
be created. Doing so immediately establishes that our analysis will always terminate when
running under the simple-tensor-precision value abstraction. We then show how a run of
our analysis in the simple-tensor-precision configuration can ensure the termination of our
analysis with the full-tensor-precision value abstraction for the same input program.

ECOOP 2020

15:14 Static Analysis of Shape in TensorFlow Programs

5.4.1 Finite shapes

The first challenge for establishing the finiteness of shapes is to show that the integer constants
that arise (for each shape dimension independently) are finite.

Conveniently, tensor operations by themselves (without arithmetic in the Python program)
cannot create an infinite number of dimension sizes. The dimension sizes for a new shape are
either sizes of an existing tensor shape’s dimension (as in the case of tensor multiplication),
or smaller dimension sizes (as in the case of convolution or reshaping operations, which take
quotients of existing shape sizes).

Still, the above observation does not help bound the overall dimension sizes due to Python
arithmetic. The finiteness property is actually one that the analysis needs to artificially
enforce, since we propagate integer constants (corresponding to tensor dimension sizes)
through arbitrary arithmetic operations. For instance, a tensor operation such as:

n_input = train_X.shape[1]

means that the number of inputs (which will later be used as the dimension size of a
tensor) comes from the dimensions of another tensor. With arithmetic over the n_input
variable and a looping construct, the potential dimension sizes become infinite. Therefore,
we artificially bound the “complexity” (i.e., number of intermediate arithmetic operations)
of the computed integer constants. (For instance, in our implementation, this bound is a
generous 50.)

We additionally need to bound the maximum number of dimensions of a tensor, since
operations such as tf.expand_dims can increase the number of dimensions.

5.4.2 Termination for Different Value Abstractions and Maximizing
Precision

Based on the finiteness of integer dimensions in shapes, the analysis will always terminate
for the simple-tensor-precision value abstraction: there is a finite number of values, each (by
definition) has a single shape list, the shape list has a finite number of dimensions, and each
dimension can have a finite set of values for its potential size.

The case for the full-tensor-precision value abstraction is more complicated. In principle,
this abstraction is not finite: new tensor values can keep arising, even if they have the
same shape. As an example, consider a transpose(x, [0, 2, 1]) operation – permuting
the dimensions of tensor argument x according to the list given as the second argument
– with the output of the operation feeding back to the input tensor (due to a loop or
recursion). In the full-tensor-precision abstraction, with output values of tensor operations
being represented by the concatenation of all their input values, this would result in the
creation of a transpose(x, [0, 2, 1]) value feeding back to the argument of the operation,
resulting in a transpose(transpose(x, [0, 2, 1]), [0, 2, 1]) value, and so on.

Therefore, we employ the full-tensor-precision abstraction in our analysis only over tensor
operations with no cyclic dependencies (on themselves). Concretely, Pythia first runs under a
simple-tensor-precision abstraction, while also propagating values to detect circularity in the
inference. For each tensor operation we compute the set of tensor values that flow to it and
the corresponding operations that created them. In this way, we can detect the existence of
cyclic dependencies. The simple-tensor-precision abstraction is less (i.e., at most as) precise
than full-tensor-precision, therefore any cycles arising in the latter will definitely arise in the
former.

S. Lagouvardos, J. Dolby, N. Grech, A. Antoniadis, and Y. Smaragdakis 15:15

Subsequently, we enable an analysis with full-tensor-precision only when no evaluation
cycles have arisen. In this way, we can leverage higher precision in the common case of
TensorFlow programs that do not employ recursion or looping at the Python level, instead
delegating complex computation to library operators.

6 Discussion

Tensor shapes are reminiscent of types. It is, therefore, interesting to consider the relationship
between our analysis and type checking, as well as the overall potential for a static type
system for TensorFlow functionality.

Although the boundary between static analysis and type checking is not always clear,
our static checker is best classified as a static analysis. Key factors in this classification are
the whole-program and extensional nature of the analysis, as well as the intended soundness
in reasoning.

Extensional Representation

The analysis represents value sets extensionally, i.e., by listing all their contents, instead of
trying to abstract over them. For instance, if a tensor variable t is inferred to hold possible
shapes [4, 3, 3, 2], [None, 45], and [30], the analysis will maintain the three different
shape values explicitly, instead of trying to unify them in a single, more abstract, shape.
This is a property more commonly found in static analyses than in type systems – the
latter typically summarize values, at least at the level of program modules (e.g., functions).
Static analyses also employ abstraction, but only do so based on the properties of the values
themselves (e.g., when two values join in an abstract lattice).

Modular vs. Whole-Program

A type system typically emphasizes modular reasoning, forcing the summarization of values
at the function boundary. In contrast, a context-sensitive whole-program static analysis will
re-analyze a function under its different calling contexts. To maintain precision for different
clients of a function, a type system employs polymorphism instead of context sensitivity: it
expresses the type of a function in terms that may employ type variables, i.e., symbolic types
that may assume multiple type values, instead of constants.

Sound vs. Best-Effort Reasoning

A static type system aims for soundness in certifying correct code, i.e., guarantees no false
negatives. This implies that a type system has to be conservative in certifying correct code,
yielding many false positive warnings. In contrast, a static analysis can strike any balance
between true/false positive and true/false negative warnings as it deems appropriate for
maximum usefulness.

TensorFlow Analysis

With the above factors in mind, it is interesting to consider the static checking of TensorFlow
programs longer than toy examples. The example in Figure 1 is a slightly simplified version
of one of the programs in the Zhang et al. [58] study. There is a bug in the last line of the
program (the reshaping of h_pool2) which our analysis correctly warns about, but the main
difficulty is in tracking shapes precisely in earlier program statements.

ECOOP 2020

15:16 Static Analysis of Shape in TensorFlow Programs

import tensorflow as tf
def weight_variable(shape):

initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)

def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)

def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding=’VALID’)

def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=’SAME’)

x = tf.placeholder(tf.float32, shape=[None, 784])

W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1, 28, 28, 1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
...

Figure 1 Short but realistic example of the need for context sensitivity: program Unaligned-
Tensor-1 (UT-1).

Context-sensitive reasoning is essential for this example. Functions conv2d (line 8) and
max_pool_2x2 (line 10) are each called twice (lines 18, 23, and 19, 24, respectively), each time
with different shapes. (Pooling can be thought of as an operator analogous to convolution in
terms of shape transformation.) Even for a small example such as this, a context-insensitive
analysis would produce a highly imprecise result, with many false positives and negatives.
A context-sensitive analysis considers, e.g., function conv2d twice, once for each argument
shape, and can reason highly precisely about the effects of convolution on shape when all
arguments (x, W, strides, as well as the padding strategy, VALID) have known values.

Conversely, consider what type signature (to capture shape) one might assign to function
conv2d modularly, i.e., without knowing its arguments, x and W. Precise treatment of this
function would require a polymorphic type system with considerable expressive power
(e.g., integer arithmetic), as the modeling of Section 4 shows. This would more likely
employ dependent typing, requiring significant human guidance for deciding interesting
properties. It is interesting to further consider possible type signatures for a) the library
method tensorflow.nn.conv2d, which has different shape behavior depending on the padding
strategy; and b) library operations that employ broadcast. The current flexibility of these
TensorFlow operators seems to require full algorithmic expressiveness (e.g., see our Datalog
rules of Section 5.2.1) to capture well.

We conclude that the shape transformation of current TensorFlow operations requires
a highly-expressive vocabulary, unlikely to be supported by a fully automatic type system.
A statically-typed TensorFlow-like system would either require significant programmer
assistance for sound reasoning, or curtail the flexibility of operators, to permit assigning
them closed-form types.

S. Lagouvardos, J. Dolby, N. Grech, A. Antoniadis, and Y. Smaragdakis 15:17

7 Evaluation

Pythia runs at interactive speeds and has a Language Server Protocol integration with
most popular IDEs. Therefore, although the analysis is applicable for development at any
granularity, it mostly targets interactive feedback at development time. Our evaluation is set
up accordingly.

Specifically, we evaluate the analysis against complete pre-existing programs from the
recent study by Zhang et al. [58] on TensorFlow bugs. This gives us a curated dataset,
collected independently, from real-world settings, and with ground truth relative to both the
presence and the absence of bugs.4

The Zhang et al. study collects bugs from StackOverflow questions, and categorizes them
based on their root causes and symptoms. One of the root cause categories is Unaligned
Tensor (UT), which maps exactly to shape violations detected by our analysis. There are 76
bugs that Zhang et al. manage to reproduce from StackOverflow questions5. Importantly,
these 76 bugs map the entire, broad space of all TensorFlow bugs, most of which are out
of the scope of our shape analysis. For instance, this includes low-accuracy computations,
low-performance behavior, bugs related to API changes, and more.

There are 14 Unaligned Tensor (i.e., shape-related) bugs in the Zhang et al. study, and
the study also provides fixed versions of the same programs, for a total of 28 test subjects,
which form the universe set of our evaluation.

Executive Summary

With an 1-call-site-sensitive analysis and the full-tensor-precision option enabled, the analysis
successfully detects 11 out of 14 bugs, with a single false positive repeated twice in the buggy
and fixed version of UT5, for a precision of 84.62% (91.67% if repeat bugs are counted once)
and recall of 78.6%. The average analysis time per program is under 1sec. Unless specified,
the above analysis configuration is used. The effect of different analysis configurations on
analysis precision is discussed in Section 7.3.

7.1 Classification of bugs
Table 1 summarizes the number of bugs reported. The bugs can be classified in the following
categories:

Operation Error: Tensor operation would throw a run-time error due to incompatible
arguments provided.
Incompatible fed data Error: Data fed to a placeholder tensor do not match the shape of
the tensor.
Broadcast/Reshape/Other Warning: Possibly confusing tensor operation behavior that
would not cause a run-time error, as described in Section 5.

Table 2 serves as a detailed reference for each input program (including code URLs).

4 Links to all input programs can be found in Table 2. Pythia is part of the Doop repository (https:
//bitbucket.org/yanniss/doop/). A snapshot is contained in the artifact that accompanies this paper,
together with detailed instructions for setting up and running Pythia.

5 The Zhang et al. study also collected a second dataset: 75 bugs from GitHub commits. We did not
consider that dataset for reasons of engineering: a large number of these full Github programs use
several external libraries, in addition to TensorFlow, as well as the full TensorFlow API. Modeling all of
the required functionality, so that the potential of the approach is accurately evaluated, would require
much more manpower than that of a research project. In contrast, the StackOverflow Zhang et al.
benchmarks are well-isolated TensorFlow code patterns, which fit well the local, incremental nature of
our approach and its implementation inside IDEs.

ECOOP 2020

https://bitbucket.org/yanniss/doop/
https://bitbucket.org/yanniss/doop/

15:18 Static Analysis of Shape in TensorFlow Programs

Table 1 Detected bugs.

Bug type Number of bugs

Operation Error 5
Incompatible fed data Error 2

Broadcast/Reshape/Other Warning 4

Total 11

7.2 Effectiveness and Efficiency
Overall, among the 14 input programs containing bugs, we successfully identify the bug in 11
programs. Our analysis produces a false positive in both the buggy and fixed versions of
UT5 achieving 84.62% (11 of 13) overall precision – 100% for errors and 66.6% for warnings.
The false positive appearing in both versions of UT5 is a warning for a reshape operation of
a tensor with partially known shape into a shape with a special (-1) dimension, as described
in section 5.2.2. In this case, the use of the reshape operation in a way we consider possibly
confusing does not result in a bug.

The 3 false negatives produced by the analysis are a result of either API calls that we
have not modeled or reliance on dynamic information to identify these bugs, leading to 78.6%
recall. Of the 3 bugs our analysis could not detect, two (UT5 and UT10) are not detectable
with static information alone. In both of them, the dataset is produced from information
read from an external file. The code itself does not provide any hints about the shape of the
dataset after it is read. As a result, the analysis cannot identify the incompatibility between
the shape of the dataset and the tensor that will hold that data at run-time.

The analysis is compiled by the Soufflé [24] Datalog engine into an optimized C++
program and binary executable. The analysis code comprises several hundred non-trivial
Datalog rules, therefore optimizing compilation is time-consuming, at 680sec. (All timings
are from a single thread of a laptop with an Intel Core i7-3612QM 2.10GHz CPU, with 16GB
of RAM.) Compilation is only performed once per analysis configuration, however, and the
resulting analysis is highly efficient. For the input programs, the average analysis running
time is just 0.26sec (median: 0.18sec, max: 0.49sec for UT4).

7.3 Precision
Pythia contains many precision enhancements – e.g., levels of context sensitivity, and a more
detailed value abstraction. We already saw earlier, in Figure 1 an example of the impact of
precision enhancements. We demonstrate the effect on the input programs of the evaluation
set in Figure 2.

The figure shows seven input programs whose analysis precision changes for different
configurations. (Input programs not shown either show no imprecision for any configuration
or are the 3 for which our analysis misses the bug.) Precision is captured in three metrics:
instances of imprecise tensor arguments (compared to the full achievable precision), false
positives in analysis warnings, and instances of imprecise shapes. A check mark in the
figure implies no imprecision for any metric. The four configurations of the analysis for each
benchmark are:

Configuration 1: context-insensitive (insens)
Configuration 2: 1-call-site-sensitive (1call)
Configuration 3: 1-call-site-sensitive + context-sensitive heap (1callH)
Configuration 4: 1callH + full-tensor-precision.

S. Lagouvardos, J. Dolby, N. Grech, A. Antoniadis, and Y. Smaragdakis 15:19

Table 2 “Unaligned Tensor (UT)” input programs (each entry corresponds to 2 programs: a fixed
and a buggy version) and analysis reports. No UT14 exists in the input set. For the analyses reports,
“—” designates an analysis terminating but reporting no bugs, “X” designates an analysis not
terminating due to an exception. The URLs to access the programs are obtained by concatenating
the following URL prefixes with the suffix for each program shown in the table’s second column.
Github: https://github.com/ForeverZyh/TensorFlow-Program-Bugs/blob/master/StackOverflow/
StackOverflow: https://stackoverflow.com/q/

Case
Study URLs Description Pythia

Report
Ariadne
Report

UT1
GitHub: UT-1/38167455-buggy/

mnist.py
StackOverflow: 38167455

Reshape Operation Warning X

UT2
GitHub: UT-2/43067338-buggy/

multiplication.py
StackOverflow: 43067338

matmul Incompatible Dimensions Error —

UT3
GitHub: UT-3/35451948-buggy/

image_set_shape.py
StackOverflow: 35451948

Invalid call to set_shape Error —

UT4
GitHub: UT-4/44124668-buggy/

experiment.py
StackOverflow: 44124668

Fed data don’t match shape Error X

UT5
GitHub: UT-5/43676638-buggy/

mnist.py
StackOverflow: 43676638

Fed data don’t match shape — X

UT6
GitHub: UT-6/35295191-buggy/

word_representation.py
StackOverflow: 35295191

matmul Incompatible Dimensions Error —

UT7
GitHub: UT-7/34079787-buggy/

playing.py
StackOverflow: 34079787

Variable’s initial_value
has unspecified shape — —

UT8
GitHub: UT-8/34908033-buggy/

multiply.py
StackOverflow: 34079787

matmul Incompatible Dimensions Error X

UT9
GitHub: UT-9/40574552-buggy/

neural.py
StackOverflow: 34908033

Incorrect operand shapes in
softmax_cross_entropy_with_logits

Error X

UT10
GitHub: UT-10/36343542-buggy/

tflin.py
StackOverflow: 36343542

Fed data don’t match shape — X

UT11
GitHub: UT-11/41192992-buggy/

image.py
StackOverflow: 41192992

Fed data don’t match shape Error —

UT12
GitHub: UT-12/43285733-buggy/

mnist.py
StackOverflow: 43285733

Reshape Operation Warning X

UT13
GitHub: UT-12/42191656-buggy/

linear.py
StackOverflow: 42191656

Misuse of argmax operation Warning —

UT15
GitHub: UT-15/38447935-buggy/

fitting.py
StackOverflow: 38447935

Broadcasting operation Warning —

ECOOP 2020

https://github.com/ForeverZyh/TensorFlow-Program-Bugs/blob/master/StackOverflow/UT-1/38167455-buggy/
https://stackoverflow.com/q/38167455
https://github.com/ForeverZyh/TensorFlow-Program-Bugs/blob/master/StackOverflow/UT-2/43067338-buggy/
https://stackoverflow.com/q/43067338
https://github.com/ForeverZyh/TensorFlow-Program-Bugs/blob/master/StackOverflow/UT-3/35451948-buggy/
https://stackoverflow.com/q/35451948
https://github.com/ForeverZyh/TensorFlow-Program-Bugs/blob/master/StackOverflow/UT-4/44124668-buggy/
https://stackoverflow.com/q/44124668
https://github.com/ForeverZyh/TensorFlow-Program-Bugs/blob/master/StackOverflow/UT-5/43676638-buggy/
https://stackoverflow.com/q/43676638
https://github.com/ForeverZyh/TensorFlow-Program-Bugs/blob/master/StackOverflow/UT-6/35295191-buggy/
https://stackoverflow.com/q/35295191
https://github.com/ForeverZyh/TensorFlow-Program-Bugs/blob/master/StackOverflow/UT-7/34079787-buggy/
https://stackoverflow.com/q/34079787
https://github.com/ForeverZyh/TensorFlow-Program-Bugs/blob/master/StackOverflow/UT-8/34908033-buggy/
https://stackoverflow.com/q/34079787
https://github.com/ForeverZyh/TensorFlow-Program-Bugs/blob/master/StackOverflow/UT-9/40574552-buggy/
https://stackoverflow.com/q/34908033
https://github.com/ForeverZyh/TensorFlow-Program-Bugs/blob/master/StackOverflow/UT-10/36343542-buggy/
https://stackoverflow.com/q/36343542
https://github.com/ForeverZyh/TensorFlow-Program-Bugs/blob/master/StackOverflow/UT-11/41192992-buggy/
https://stackoverflow.com/q/41192992
https://github.com/ForeverZyh/TensorFlow-Program-Bugs/blob/master/StackOverflow/UT-12/43285733-buggy/
https://stackoverflow.com/q/43285733
https://github.com/ForeverZyh/TensorFlow-Program-Bugs/blob/master/StackOverflow/UT-12/42191656-buggy/
https://stackoverflow.com/q/42191656
https://github.com/ForeverZyh/TensorFlow-Program-Bugs/blob/master/StackOverflow/UT-15/38447935-buggy/
https://stackoverflow.com/q/38447935

15:20 Static Analysis of Shape in TensorFlow Programs

U
T

1
-1

U
T

1
-2

U
T

1
-3

U
T

1
-4

U
T

3
-1

U
T

3
-2

U
T

3
-3

U
T

3
-4

U
T

4
-1

U
T

4
-2

U
T

4
-3

U
T

4
-4

U
T

6
-1

U
T

6
-2

U
T

6
-3

U
T

6
-4

U
T

9
-1

U
T

9
-2

U
T

9
-3

U
T

9
-4

U
T

1
2

-1

U
T

1
2

-2

U
T

1
2

-3

U
T

1
2

-4

U
T

1
3

-1

U
T

1
3

-2

U
T

1
3

-3

U
T

1
3

-4

0

5

10

15

20

25

30

35

40

45

50

Imprecise Tensor Operation Arg

False Positives

Imprecise Tensor Shape Contents

Input - Analysis Configuration

Im
pr

ec
is

io
n

S
co

re

Figure 2 Chart: Imprecision metrics under different configurations. Lower is better, check mark
is perfect precision. The y axis shows cumulative instances of three imprecision metrics: instances of
imprecise tensor arguments, false positives in analysis warnings, and instances of imprecise shapes.

Among the programs presented in the chart we notice similar behavior for programs
UT-3, UT-6, UT-9 and UT-13. For these and for the first 3 configurations, we notice minor
imprecision but still no false positives. This is because the programs do not feature any calls
to user-defined functions, but imprecision is introduced by other features, such as the use of
set_shape. The introduction of full-tensor-precision removes any imprecisions.

The 3 remaining programs present large imprecision when using our less precise analysis
configurations, resulting in many false positives. This is because, similar to the bug featured
in Figure 1, the neural network is built using user-defined wrapper-functions, making context
sensitivity necessary in order to achieve a highly-precise analysis. (These are also among the
longest programs at around 100 or more lines.)

For instance, in UT-4,6 Pythia can correctly deduce the shapes of the tensors generated
by two separate calls to function generate_unit_test, shown below: (This also showcases the
analysis support for list comprehensions.)

def generate_unit_test(length):
return [np.random.normal(0, 0.1, [56, 56, 3])

for _ in range(length)],
[random.randint(0, 9) for _ in range(length)]

In this input program, a false positive warning persists until the full-tensor-precision
value abstraction is employed.

6 https://github.com/ForeverZyh/TensorFlow-Program-Bugs/blob/master/StackOverflow/UT-4/
44124668-buggy/experiment.py

https://github.com/ForeverZyh/TensorFlow-Program-Bugs/blob/master/StackOverflow/UT-4/44124668-buggy/experiment.py
https://github.com/ForeverZyh/TensorFlow-Program-Bugs/blob/master/StackOverflow/UT-4/44124668-buggy/experiment.py

S. Lagouvardos, J. Dolby, N. Grech, A. Antoniadis, and Y. Smaragdakis 15:21

7.4 Other bugs found and missed
We next discuss selected cases of bugs reported or missed in the input dataset. Several
interesting cases are already represented in our earlier examples, so we will not discuss them
further. Namely, the reshape operation warning in case study UT1 has already been covered
by the example of Section 6. The broadcasting operation warning in case study UT15 is
analogous to Example 3 in Section 3. The incompatible dimensions error in matmul, appearing
in case studies UT2, UT6 and UT8, is captured by Example 1 in Section 3.

Case Study UT3

Invalid call to set_shape.

import tensorflow as tf
import numpy as np

x = tf.placeholder(tf.float32, [None])
x.set_shape([1028178])
y = tf.identity(x)
y.set_shape([478, 717, 3])
X = np.random.normal(0, 0.1, 1028178)

The set_shape operation is used to provide additional, more concrete information about
the shape of a tensor. In UT3, initially the shape of x is [None]. The first call to set_shape
succeeds and establishes that the shape of x is [1028178]. The call to identity produces a
tensor of the same shape as x and assigns it to y. The next call to set_shape is erroneous for
two reasons. First, it attempts to specify an already established concrete shape. Secondly,
even if the shape of y had not been already established by the first call to set_shape, the
call would still fail since the dimensions of [None] and [487, 717, 3] are incompatible.

Case Study UT9

Incorrect operand shapes in softmax_cross_entropy_with_logits call.

import tensorflow as tf
import numpy as np
import random

n_feature = 10
n_data = 500
data = np.random.normal(0, 0.1, [n_data, n_feature])
label = [[random.randint(0, 1) for _ in range(n_data)]]

sizeOfRow = len(data[0])
x = tf.placeholder("float", shape=[None, sizeOfRow])
y = tf.placeholder("float")

prediction = neuralNetworkModel(x)
using softmax function, normalize values to range(0,1)
error = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(

logits=prediction, labels=y))
...

ECOOP 2020

15:22 Static Analysis of Shape in TensorFlow Programs

In UT9 softmax_cross_entropy_with_logits is applied, which performs two operations.
First, it applies the softmax function to denormalized log probabilities, i.e, the logits tensor,
of shape [batch_size, number_of_labels], to produce linear probabilities normalized to 1.
It then computes the cross-entropy error of discrete classification based on the results of
softmax and the ground truth classification of the training set that is held in the labels
tensor, which is expected to have the same dimensions as logits. In this case, the shape of
logits is [500, 2], since there are 500 entries in the dataset and 2 labels (1 and 0), while
the shape of labels is [1,500].

Case Study UT7

Variable’s initial value has unspecified shape. The bug in UT7 is representative of con-
fusion regarding the TensorFlow execution model. It is also one that our analysis fails to
capture, due to lack of modeling of the corresponding calls.

import tensorflow as tf
import random
import numpy as np

class Play:
def __init__(self, input_data, labels):

the input shape is (batch_size, input_size)
input_size = tf.shape(input_data)[1]

labels in one-hot format have shape (batch_size, num_classes)
num_classes = tf.shape(labels)[1]
stddev = 1.0 / tf.cast(input_size, tf.float32)

w_shape = tf.stack([input_size, num_classes])
normal_dist = tf.truncated_normal(w_shape, stddev=stddev, name=’normaldist’)
self.w = tf.Variable(normal_dist, name=’weights’)
print(self.w)

n_feature = 10
n_classes = 7
play = Play(tf.placeholder(tf.float32, [None, n_feature]),

tf.placeholder(tf.int32, [None, n_classes]))

Recall from Section 2 that TensorFlow programs work by first setting up a data-flow
pipeline of operators, and then executing it by feeding data. The Python code effectively
generates a TensorFlow pipeline, before evaluating it. In case study UT7, the programmer
incorrectly uses tf.shape(input_data) and tf.shape(labels), while probably intending to
use input_data.get_shape() and labels.get_shape().

That is, the programmer intends to retrieve the shape of the dynamic data that will
be fed into the TensorFlow pipeline. Instead, the erroneous calls retrieve the shape of
the yet-unpopulated variables input_data and labels. The Python dynamic typing and
TensorFlow tolerance conspire to propagate this error until it results in a shape mismatch
later: each of the two erroneous calls returns an unevaluated one-dimensional tensor, which
when dereferenced (via [1]) returns a to-be-evaluated integer. This integer is considered to
be a zero-dimension tensor ([]), which becomes the value of input_size (and similarly for
num_classes). TensorFlow then deduces that shape w_shape has value [None, None] as it is

S. Lagouvardos, J. Dolby, N. Grech, A. Antoniadis, and Y. Smaragdakis 15:23

the result of a tf.stack operation on two zero-dimension tensors, producing a 1-dimension
tensor with shape [2]. However, the tf.Variable operation does not allow an unspecified
shape as input, thus causing a crash.

Case Study UT11

Fed data don’t match shape. The next input program indicates the handling of other
operators (namely, transpose) as well as the ease with which a programmer can lose track of
tensor shapes.

from tensorflow.contrib.keras.api.keras.preprocessing import image
import tensorflow as tf
import numpy as np

x = image.load_img(img_path, target_size=(250, 250))

x = image.img_to_array(x)
x_expanded = np.expand_dims(x, axis=0)
x_expanded_trans = np.transpose(x_expanded, [0, 3, 1, 2])

X = tf.placeholder(tf.float32, [None, 250, 250, 3])
sess = tf.Session()
sess.run(tf.global_variables_initializer())
print(sess.run(X, feed_dict={X: x_expanded_trans}))

In UT11, initially x is an image of shape [250, 250, 3] (because an image has 3 color
channels). It is then converted to a NumPy array of the same shape, which is subsequently
expanded to an array of shape [1, 250, 250, 3], essentially creating a fake batch_size
dimension. The array is then transposed to an array of shape [1, 3, 250, 250]. Finally, the
code feeds the transposed array to a placeholder tensor of a different incompatible shape,
[None, 250, 250, 3], thus causing an error.

Case Study UT13

Misuse of argmax operation. Input program UT13 provides another example of a warning
by our analysis that does not correspond to a run-time error, yet is highly likely to be a bug
(as it is, in this case).

import tensorflow as tf

Y = tf.placeholder(tf.float32, shape=[4, 1], name=’y’)
...
Z = tf.argmax(Y, axis=1)
...

In UT13 argmax is applied to a tensor with shape [4, 1]. The argmax operation returns
the index with the largest value along the specified axis. However, the second dimension
of tensor Y is 1. In this case argmax returns a tensor with shape [4] with all 4 values being
0, since the dimension size in 1 is just 1. This is likely not the intended use of the argmax
operation so we issue a warning, predicting that this promotion of values is not what the
user aimed to accomplish.

ECOOP 2020

15:24 Static Analysis of Shape in TensorFlow Programs

7.5 Comparison with the state-of-the-art
The recent Ariadne tool [12] is, to our knowledge, the only static analysis tool that attempts
to find shape bugs in TensorFlow code. We ran the latest version of Ariadne7 on our setup
using the Language Server Protocol client for the Sublime text editor.

Table 2 shows the results of both tools for our dataset. The Ariadne tool reports 0 bugs.
Furthermore, for half of the programs in our dataset, the Ariadne analysis ends with an
exception, while for the other half it terminates successfully, reporting other information
using the LSP protocol (such as call-site information) but no warning. These results can be
explained by Ariadne’s limited support for tensor operations and by its not performing whole-
program value-flow reasoning. For instance, Ariadne supports operators reshape, set_shape,
convolution, and “node”, of which only reshape works fully. Pythia supports many more
operations, such as equal, add, multiply, matmul, argmax/argmin, transpose, expand_dims,
several pooling operations, and many shape pass-through operations. In Ariadne, tensors can
be created using the tf.placeholder function. We also support tf.constant, tf.Variable,
tf.ones, etc.

7.6 Threats to Validity
The largest threat is to external validity. Our findings may not generalize to other TensorFlow
programs, especially of larger size. However, the benchmarks we examined are a prior and
independently-identified set, collected from real-world reports. The programs are already
large enough for context sensitivity and heap modeling to matter (as shown in Section 7.3).

8 Related Work

The space of checkers for machine learning programs is mostly populated by testing tech-
niques [38,51,55]. Other approaches aid in the debugging and validation of machine learning
programs. PALM [26] produces simplified decision-tree based meta models to facilitate the
mapping of failed predictions to subsets of the training data. On the other hand LAMP [31]
produces quantitative measurements that maps the impact of each input to each output in
graph machine learning algorithms in an efficient way using partial derivatives. MODE [32]
applies similar techniques for measuring the impact of each feature in Neural Networks.

The recent Ariadne tool [12] demonstrates an application of static analysis technology to
TensorFlow, but neither models many TensorFlow operators, nor performs whole-program
value-flow reasoning. This limits Ariadne’s applicability to artificial examples, with manually-
planted bugs, and to Python input programs of very limited form – e.g., as discussed in
Section 7.5 and shown in table 2, the system cannot run or produce useful results on any of
our input benchmarks.

General program analysis tools for Python have been developed. These mostly aim
to find type errors. Invariably, such frameworks restrict the features of Python, since the
language is highly dynamic and its full static analysis with good precision is impossible. For
instance, even determining which file is imported when an import statement is executed can
be undecidable. RPython [5] is a statically typed subset of the Python language designed
for writing partially evaluated interpreters. All metaprogramming features (including eval
and metaclasses) may be used during the initialization of the Python classes. RPython
is best compared with a statically typed version of Python. Retrofitting type systems to
dynamic languages is a fairly common strategy, and examples include preemptive type

7 Downloaded from the official site: https://wala.github.io/IDE/.

https://wala.github.io/IDE/

S. Lagouvardos, J. Dolby, N. Grech, A. Antoniadis, and Y. Smaragdakis 15:25

checking for Python [16], DRuby for Ruby [14] or a type system for Erlang [34]. JavaScript
has probably attracted the most attention in this space and there are many more examples
of type systems for it [10, 11, 19, 22, 29]. These systems are used either for speeding up
JavaScript implementations or for type checking during development. Due to the complexity
of the underlying problem, many authors (including ourselves) have found it more fruitful
to concentrate on type checking or bug finding for specific domains. Related examples in
the wild include a system [4] for Ruby on Rails or the work of [28] for static detection of
JQuery errors in JavaScript by identifying inconsistencies between the actual page structure
and query expectations.

The space of static analysis tools for Python is relatively sparse. Python Taint [45]
is a static analysis tool for detecting security vulnerabilities. It uses standard data-flow
techniques, and can do some interprocedural analysis. However, its interprocedural reasoning
is limited: it looks for a definition of a function for a call using its name, rather than handling
function pointers and object semantics, as needed even for simple realistic examples.

Gorbovitski et al. [15] developed a context-sensitive, flow-sensitive alias analysis for
Python for program optimization. They offer several significant insights on the precision
needed for dynamic languages. The analysis appears sophisticated but we have not found an
available implementation for reuse.

Other tools are shallow code quality checkers or lint tools; examples are Pylint [44],
pycodestyle [41], pyflakes [43], Flake8 [13], pydocstyle [42], jedi [21], bandit [7] and mccabe [35].
Prospector [40] combines several of these tools. These tools are all local analyses, for instance,
mccabe focuses on the syntactic code complexity of single functions and others focus on code
style issues.

Another bug detection approach includes analyses that are dynamic, yet generalize from
concrete executions. Xu et al. [56] developed such a predictive analysis for Python, detecting
more general bugs, such as Attribute Errors and Type Errors, and Unicode Encode/Decode
Errors which are specific to web applications.

Finally, although the work we describe is applied to TensorFlow, the principles described
may apply to other scientific computing languages and extensions such as SAC [17] or
LAPACK [6].

9 Conclusions

We presented a static analysis approach for detecting shape bugs in TensorFlow programs.
The analysis models value-flow in Python programs and closely tracks the rich shape-
transformation semantics of TensorFlow operators. The result is the first concrete demon-
stration of the applicability of static analysis for detecting realistic bugs in the TensorFlow
domain. The analysis is highly efficient and very effective over an independently-collected
set of input programs that sample the universe of real-world TensorFlow bugs.

References
1 Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-
low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org. URL: https://www.tensorflow.org/.

ECOOP 2020

https://www.tensorflow.org/

15:26 Static Analysis of Shape in TensorFlow Programs

2 Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller, Dzmitry Bahdanau,
Nicolas Ballas, Frederic Bastien, Justin Bayer, Anatoly Belikov, and others . Theano: A
python framework for fast computation of mathematical expressions. arXiv preprint, January
2016. arXiv:1605.02688.

3 Miltiadis Allamanis, Earl Barr, Premkumar Devanbu, and Charles Sutton. A survey of
machine learning for big code and naturalness. ACM Computing Surveys, 51, September 2017.
doi:10.1145/3212695.

4 Jong-hoon An, Avik Chaudhuri, and Jeffrey S. Foster. Static Typing for Ruby on Rails. In
Proceedings of ASE, pages 590–594, November 2009. doi:10.1109/ASE.2009.80.

5 Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D. Matsakis. Rpython: A step
towards reconciling dynamically and statically typed oo languages. In Proceedings of the 2007
Symposium on Dynamic Languages, DLS ’07, pages 53–64, New York, NY, USA, 2007. ACM.
doi:10.1145/1297081.1297091.

6 Ed Anderson, Zhaojun Bai, Jack Dongarra, A. Greenbaum, A. McKenney, Jeremy Du Croz,
Sven Hammarling, James Demmel, Christian Bischof, and Danny C. Sorensen. Lapack: A
portable linear algebra library for high-performance computers. In Proceedings of the 1990
ACM/IEEE Conference on Supercomputing, Supercomputing ’90, pages 2–11, Washington,
DC, USA, 1990. IEEE Computer Society Press.

7 bandit. https://github.com/openstack/bandit. Accessed: 2020-01-06.
8 Martin Bravenboer and Yannis Smaragdakis. Exception analysis and points-to analysis: Better

together. In Proc. of the 18th International Symp. on Software Testing and Analysis, ISSTA
’09, pages 1–12, New York, NY, USA, 2009. ACM. doi:10.1145/1572272.1572274.

9 Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophisticated
points-to analyses. In Proc. of the 24th Annual ACM SIGPLAN Conf. on Object Oriented
Programming, Systems, Languages, and Applications, OOPSLA ’09, New York, NY, USA,
2009. ACM.

10 Satish Chandra, Colin S. Gordon, Jean-Baptiste Jeannin, Cole Schlesinger, Manu Sridharan,
Frank Tip, and Youngil Choi. Type inference for static compilation of JavaScript. SIGPLAN
Not., 51(10):410–429, October 2016. doi:10.1145/3022671.2984017.

11 Wontae Choi, Satish Chandra, George C. Necula, and Koushik Sen. Sjs: A type system for
JavaScript with fixed object layout. In Sandrine Blazy and Thomas Jensen, editors, SAS,
volume 9291 of Lecture Notes in Computer Science, pages 181–198. Springer, 2015. URL:
http://dblp.uni-trier.de/db/conf/sas/sas2015.html#ChoiCNS15.

12 Julian Dolby, Avraham Shinnar, Allison Allain, and Jenna Reinen. Ariadne: Analysis for
machine learning programs. In Proceedings of the 2Nd ACM SIGPLAN International Workshop
on Machine Learning and Programming Languages, MAPL 2018, pages 1–10, New York, NY,
USA, 2018. ACM. doi:10.1145/3211346.3211349.

13 Flake8. https://github.com/PyCQA/flake8. Accessed: 2020-01-06.
14 Michael Furr, Jong-hoon (David) An, and Jeffrey S. Foster. Profile-guided static typing

for dynamic scripting languages. In Proceedings of OOPSLA, pages 283–300, 2009. doi:
10.1145/1639949.1640110.

15 Michael Gorbovitski, Yanhong A. Liu, Scott D. Stoller, Tom Rothamel, and Tuncay K.
Tekle. Alias analysis for optimization of dynamic languages. In Proceedings of the 6th
Symposium on Dynamic Languages, DLS ’10, pages 27–42, New York, NY, USA, 2010. ACM.
doi:10.1145/1869631.1869635.

16 Neville Grech, Bernd Fischer, and Julian Rathke. Preemptive type checking. Journal of
Logical and Algebraic Methods in Programming, 101:151–181, 2018. doi:10.1016/j.jlamp.
2018.08.003.

17 Clemens Grelck and Sven-Bodo Scholz. SAC – a functional array language for efficient multi-
threaded execution. International Journal of Parallel Programming, 34(4):383–427, August
2006. doi:10.1007/s10766-006-0018-x.

http://arxiv.org/abs/1605.02688
https://doi.org/10.1145/3212695
https://doi.org/10.1109/ASE.2009.80
https://doi.org/10.1145/1297081.1297091
https://github.com/openstack/bandit
https://doi.org/10.1145/1572272.1572274
https://doi.org/10.1145/3022671.2984017
http://dblp.uni-trier.de/db/conf/sas/sas2015.html#ChoiCNS15
https://doi.org/10.1145/3211346.3211349
https://github.com/PyCQA/flake8
https://doi.org/10.1145/1639949.1640110
https://doi.org/10.1145/1639949.1640110
https://doi.org/10.1145/1869631.1869635
https://doi.org/10.1016/j.jlamp.2018.08.003
https://doi.org/10.1016/j.jlamp.2018.08.003
https://doi.org/10.1007/s10766-006-0018-x

S. Lagouvardos, J. Dolby, N. Grech, A. Antoniadis, and Y. Smaragdakis 15:27

18 Salvatore Guarnieri and Benjamin Livshits. GateKeeper: mostly static enforcement of
security and reliability policies for Javascript code. In Proc. of the 18th USENIX Security
Symposium, SSYM’ 09, pages 151–168, Berkeley, CA, USA, 2009. USENIX Association. URL:
http://dl.acm.org/citation.cfm?id=1855768.1855778.

19 Brian Hackett and Shu-yu Guo. Fast and precise hybrid type inference for JavaScript.
In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’12, pages 239–250, New York, NY, USA, 2012. ACM. doi:
10.1145/2254064.2254094.

20 Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. CodeQuest: Scalable source code queries
with Datalog. In Proc. of the 20th European Conf. on Object-Oriented Programming, ECOOP
’06, pages 2–27. Springer, 2006.

21 jedi. https://github.com/davidhalter/jedi. Accessed: 2020-01-06.
22 Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for JavaScript. In

Proceedings of the 16th International Symposium on Static Analysis, SAS ’09, pages 238–255,
Berlin, Heidelberg, 2009. Springer-Verlag. doi:10.1007/978-3-642-03237-0_17.

23 Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen,
Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, Macduff Hughes, and
Jeffrey Dean. Google’s multilingual neural machine translation system: Enabling zero-shot
translation. Transactions of the Association for Computational Linguistics, 5:339–351, 2017.
URL: https://transacl.org/ojs/index.php/tacl/article/view/1081.

24 Herbert Jordan, Bernhard Scholz, and Pavle Subotić. Soufflé: On synthesis of program
analyzers. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer Aided Verification,
pages 422–430, Cham, 2016. Springer International Publishing.

25 George Kastrinis and Yannis Smaragdakis. Hybrid context-sensitivity for points-to analysis. In
Proc. of the 2013 ACM SIGPLAN Conf. on Programming Language Design and Implementation,
PLDI ’13, New York, NY, USA, 2013. ACM.

26 Sanjay Krishnan and Eugene Wu. Palm: Machine learning explanations for iterative debugging.
In Proceedings of the 2Nd Workshop on Human-In-the-Loop Data Analytics, HILDA’17, pages
4:1–4:6, New York, NY, USA, 2017. ACM. doi:10.1145/3077257.3077271.

27 Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C. Martin, Dzintars Avots,
Michael Carbin, and Christopher Unkel. Context-sensitive program analysis as database
queries. In Proc. of the 24th Symp. on Principles of Database Systems, PODS ’05, pages 1–12,
New York, NY, USA, 2005. ACM. doi:10.1145/1065167.1065169.

28 Benjamin S. Lerner, Liam Elberty, Jincheng Li, and Shriram Krishnamurthi. Combining
form and function: Static types for jquery programs. In Proceedings of the 27th European
Conference on Object-Oriented Programming, ECOOP’13, pages 79–103, Berlin, Heidelberg,
2013. Springer-Verlag. doi:10.1007/978-3-642-39038-8_4.

29 Benjamin S. Lerner, Joe Gibbs Politz, Arjun Guha, and Shriram Krishnamurthi. Tejas:
Retrofitting type systems for JavaScript. SIGPLAN Not., 49(2):1–16, October 2013. doi:
10.1145/2578856.2508170.

30 Percy Liang and Mayur Naik. Scaling abstraction refinement via pruning. In Proc. of the
2011 ACM SIGPLAN Conf. on Programming Language Design and Implementation, PLDI
’11, pages 590–601, New York, NY, USA, 2011. ACM. doi:10.1145/1993498.1993567.

31 Shiqing Ma, Yousra Aafer, Zhaogui Xu, Wen-Chuan Lee, Juan Zhai, Yingqi Liu, and Xiangyu
Zhang. Lamp: Data provenance for graph based machine learning algorithms through
derivative computation. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, pages 786–797, New York, NY, USA, 2017. ACM.
doi:10.1145/3106237.3106291.

32 Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama. Mode:
Automated neural network model debugging via state differential analysis and input selection.
In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2018,
pages 175–186, New York, NY, USA, 2018. ACM. doi:10.1145/3236024.3236082.

ECOOP 2020

http://dl.acm.org/citation.cfm?id=1855768.1855778
https://doi.org/10.1145/2254064.2254094
https://doi.org/10.1145/2254064.2254094
https://github.com/davidhalter/jedi
https://doi.org/10.1007/978-3-642-03237-0_17
https://transacl.org/ojs/index.php/tacl/article/view/1081
https://doi.org/10.1145/3077257.3077271
https://doi.org/10.1145/1065167.1065169
https://doi.org/10.1007/978-3-642-39038-8_4
https://doi.org/10.1145/2578856.2508170
https://doi.org/10.1145/2578856.2508170
https://doi.org/10.1145/1993498.1993567
https://doi.org/10.1145/3106237.3106291
https://doi.org/10.1145/3236024.3236082

15:28 Static Analysis of Shape in TensorFlow Programs

33 Magnus Madsen, Benjamin Livshits, and Michael Fanning. Practical static analysis of
JavaScript applications in the presence of frameworks and libraries. In Proc. of the ACM
SIGSOFT International Symp. on the Foundations of Software Engineering, FSE ’13, pages
499–509. ACM, 2013. doi:10.1145/2491411.2491417.

34 Simon Marlow and Philip Wadler. A practical subtyping system for Erlang. In Proceedings of
ICFP, pages 136–149, August 1997. doi:10.1145/258949.258962.

35 mccabe. https://pypi.python.org/pypi/mccabe. Accessed: 2020-01-06.
36 Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for java. In Proc.

of the 2006 ACM SIGPLAN Conf. on Programming Language Design and Implementation,
PLDI ’06, pages 308–319, New York, NY, USA, 2006. ACM. doi:10.1145/1133981.1134018.

37 Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

38 Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore: Automated whitebox
testing of deep learning systems. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, pages 1–18, New York, NY, USA, 2017. ACM. doi:10.1145/3132747.
3132785.

39 Simon J. D. Prince. Computer Vision: Models, Learning, and Inference. Cambridge University
Press, New York, NY, USA, 1st edition, 2012.

40 Prospector. https://prospector.readthedocs.io/en/master/. Accessed: 2020-01-06.
41 pycodestyle. http://pep8.readthedocs.org/en/latest/. Accessed: 2020-01-06.
42 pydocstyle. https://github.com/PyCQA/pydocstyle. Accessed: 2020-01-06.
43 pyflakes. https://launchpad.net/pyflakes. Accessed: 2020-01-06.
44 Pylint. http://www.pylint.org/. Accessed: 2020-01-06.
45 Python Taint. https://github.com/python-security/pyt. Accessed: 2020-01-06.
46 Thomas W. Reps. Demand interprocedural program analysis using logic databases. In

R. Ramakrishnan, editor, Applications of Logic Databases, pages 163–196. Kluwer Academic
Publishers, 1994.

47 Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis. In
Steven S. Muchnick and Neil D. Jones, editors, Program flow analysis: theory and applications,
chapter 7, pages 189–233. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.

48 Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie Mellon
University, may 1991.

49 Yannis Smaragdakis and George Balatsouras. Pointer analysis. Foundations and Trends in
Programming Languages, 2(1):1–69, 2015. doi:10.1561/2500000014.

50 Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and Eran Yahav. Alias
analysis for object-oriented programs. In Dave Clarke, James Noble, and Tobias Wrigstad,
editors, Aliasing in Object-Oriented Programming. Types, Analysis and Verification, volume
7850 of Lecture Notes in Computer Science, pages 196–232. Springer Berlin Heidelberg, 2013.
doi:10.1007/978-3-642-36946-9_8.

51 Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest: Automated testing
of deep-neural-network-driven autonomous cars. In Proceedings of the 40th International
Conference on Software Engineering, ICSE ’18, pages 303–314, New York, NY, USA, 2018.
ACM. doi:10.1145/3180155.3180220.

52 Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, and Vijay
Sundaresan. Soot - a Java bytecode optimization framework. In Proc. of the 1999 Conf. of
the Centre for Advanced Studies on Collaborative research, CASCON ’99, pages 125–135. IBM
Press, 1999. URL: http://dl.acm.org/citation.cfm?id=781995.782008.

53 John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. Using Datalog with binary
decision diagrams for program analysis. In Proc. of the 3rd Asian Symp. on Programming
Languages and Systems, pages 97–118. Springer, 2005. doi:10.1007/11575467_8.

https://doi.org/10.1145/2491411.2491417
https://doi.org/10.1145/258949.258962
https://pypi.python.org/pypi/mccabe
https://doi.org/10.1145/1133981.1134018
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3132747.3132785
https://prospector.readthedocs.io/en/master/
http://pep8.readthedocs.org/en/latest/
https://github.com/PyCQA/pydocstyle
https://launchpad.net/pyflakes
http://www.pylint.org/
https://github.com/python-security/pyt
https://doi.org/10.1561/2500000014
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1145/3180155.3180220
http://dl.acm.org/citation.cfm?id=781995.782008
https://doi.org/10.1007/11575467_8

S. Lagouvardos, J. Dolby, N. Grech, A. Antoniadis, and Y. Smaragdakis 15:29

54 John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer alias analysis
using binary decision diagrams. In Proc. of the 2004 ACM SIGPLAN Conf. on Programming
Language Design and Implementation, PLDI ’04, pages 131–144, New York, NY, USA, 2004.
ACM. doi:10.1145/996841.996859.

55 Xiaoyuan Xie, Joshua W. K. Ho, Christian Murphy, Gail Kaiser, Baowen Xu, and Tsong Yueh
Chen. Testing and validating machine learning classifiers by metamorphic testing. J. Syst.
Softw., 84(4):544–558, April 2011. doi:10.1016/j.jss.2010.11.920.

56 Zhaogui Xu, Peng Liu, Xiangyu Zhang, and Baowen Xu. Python predictive analysis for
bug detection. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016, pages 121–132, New York, NY, USA, 2016.
ACM. doi:10.1145/2950290.2950357.

57 Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. On abstraction
refinement for program analyses in Datalog. In Proc. of the 2014 ACM SIGPLAN Conf. on
Programming Language Design and Implementation, PLDI ’14, pages 239–248, New York, NY,
USA, 2014. ACM. doi:10.1145/2594291.2594327.

58 Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. An empirical
study on tensorflow program bugs. In Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2018, pages 129–140, New York, NY,
USA, 2018. ACM. doi:10.1145/3213846.3213866.

ECOOP 2020

https://doi.org/10.1145/996841.996859
https://doi.org/10.1016/j.jss.2010.11.920
https://doi.org/10.1145/2950290.2950357
https://doi.org/10.1145/2594291.2594327
https://doi.org/10.1145/3213846.3213866

Value Partitioning: A Lightweight Approach to
Relational Static Analysis for JavaScript
Benjamin Barslev Nielsen
Aarhus University, Denmark
barslev@cs.au.dk

Anders Møller
Aarhus University, Denmark
amoeller@cs.au.dk

Abstract
In static analysis of modern JavaScript libraries, relational analysis at key locations is critical to
provide sound and useful results. Prior work addresses this challenge by the use of various forms of
trace partitioning and syntactic patterns, which is fragile and does not scale well, or by incorporating
complex backwards analysis. In this paper, we propose a new lightweight variant of trace partitioning
named value partitioning that refines individual abstract values instead of entire abstract states.
We describe how this approach can effectively capture important relational properties involving
dynamic property accesses, functions with free variables, and predicate functions. Furthermore, we
extend an existing JavaScript analyzer with value partitioning and demonstrate experimentally that
it is a simple, precise, and efficient alternative to the existing approaches for analyzing widely used
JavaScript libraries.

2012 ACM Subject Classification Theory of computation → Program analysis

Keywords and phrases JavaScript, dataflow analysis, abstract interpretation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.16

Funding This work was supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement No 647544).

1 Introduction

JavaScript programs are challenging to analyze statically due to the dynamic nature of the
language. One of the main obstacles is the presence of dynamic property access operations
that allow objects to be manipulated using object property names that are dynamically
computed strings. A typical pattern that has received much attention is correlated read/write
pairs [25], a simple variant of which looks as follows:

t = x[p]; . . . y[p] = t;

At run-time, this code copies a property whose name is the value of p from the x object to the y
object. If the static analysis does not know precisely the string value of p, then the properties
of x will be mixed together in y. Experience with analyzers such as WALA [25, 24, 28],
SAFE [17, 22], JSAI [13], and TAJS [11, 2, 26] has shown that when analyzing real-world
JavaScript code, including jQuery, Lodash, Underscore and other widely used libraries, such
situations often cause an avalanche of spurious dataflow that makes the analysis results
useless. If, for example, x is the object {m1: f1, m2: f2, ..., m10: f10} where f1, f2,
. . . , f10 are functions, then any subsequent function call, for example y.m3(...), will be
treated by the analysis as a call to any of the 10 functions.

Several analysis techniques have been proposed to address this challenge. The techniques
based on correlation tracking [25], static/dynamic determinacy [24, 2], and loop sensitivity [22]
aim to increase precision by the use of context sensitivity or loop unrolling to ensure that

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Benjamin Barslev Nielsen and Anders Møller;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 16; pp. 16:1–16:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:barslev@cs.au.dk
https://orcid.org/0000-0003-1333-2314
mailto:amoeller@cs.au.dk
https://doi.org/10.4230/LIPIcs.ECOOP.2020.16
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Value Partitioning

the analysis has precise information about p in the example above. Although this approach
works well in many cases, the aggressive use of context sensitivity or loop unrolling can be
expensive on analysis time. Even more importantly, it falls short when p is not determinate
(i.e., when its value is not fixed even when the call context is known).

An important step forward is the approach used in the CompAbs analyzer, which is built
on SAFE [16]: Even if p is imprecise, the loss of precision at the property write operation
can be avoided by applying trace partitioning [23] at the property read operation, based on
which properties exist on x. Intuitively, it is often not necessary to have precise information
about p; instead we can refine the current abstract state into a collection of more precise
partitions, one for each of the 10 properties of x (plus one extra for the case where p is none
of those strings, but let us ignore that for now), and after the property write operation merge
them again. (The same idea was used earlier in TAJS, but only at for-in loops, not at
dynamic property reads [2].) This approach, however, also has drawbacks. Trace partitioning
is expensive, so it must be used scarcely: in the example, the code between the dynamic
property read and the dynamic property write is essentially analyzed 10 times. For this
reason, CompAbs relies on a syntactic pre-analysis to recognize different kinds of correlated
read/write pairs for guiding the creation and merging of partitions.

Recent work [26] has shown that the syntactic pre-analysis approach of CompAbs is too
fragile, for example, it is incapable of analyzing the Lodash library (see Section 2), and
demand-driven value refinement has been proposed as an alternative. Instead of relying on
context sensitivity, loop unrolling, or trace partitioning, that approach applies, during the
analysis when encountering a dynamic property write operation with an imprecise property
name, a separate backwards analysis to regain the relation between the property name and
the value to be written. Although demand-driven value refinement has been shown to work
quite well in practice, building a backwards analysis for the full JavaScript language and its
standard library is a major endeavor, so developing simpler alternatives is desirable.

Our approach builds upon the observation from CompAbs that sufficient precision can be
obtained using trace partitioning based on the properties of the object being read. Our key
insight is that we do not need to partition the entire abstract state as done by CompAbs: It
suffices to only partition the abstract values for the property name p and the value being
read x[p] in the above example. This means that instead of analyzing the code 10 times,
we only analyze it once, but using partitioned abstract values that retain the correlation
between p and x[p]. The partitioned abstract values are introduced at t = x[p] and used
at y[p] = t by means of specialized transfer functions. We refer to this variant of trace
partitioning as value partitioning. Since partitioning individual abstract values does not
increase the analysis complexity as much as partitioning entire states, it becomes feasible
to apply value partitioning more extensively, at every dynamic property read where the
property name is imprecise, thereby obviating the need for the syntactic pre-analysis.

In this paper we present a theoretical framework for value partitioning, together with
three instantiations: property-name partitioning (which is the one used in the example
above), free-variable partitioning (to improve precision for free variables of closures), and
type partitioning (to improve precision for predicate functions). Additionally, we extend
the static analyzer TAJS with all three kinds of value partitioning and demonstrate that
the approach is effective for analyzing popular JavaScript libraries. Value partitioning is
a lightweight alternative to the existing approaches to relational analysis for JavaScript:
Compared to CompAbs-style trace partitioning it avoids many redundant computations
caused by similarities between different partitions, and compared to demand-driven value
refinement it avoids the need for creating a separate backwards analysis.

B.B. Nielsen and A. Møller 16:3

1 function mixin(object, source) {
2 baseFor(source, function (func, methodName) {

3 if (!isFunction(func))

4 return;

5 object[methodName] = func;

6 if (isFunction(object))

7 object.prototype[methodName] = function() {

8 ...

9 func.apply(...);

10 }

11 });

12 }
13
14 function baseFor(source, iteratee) {
15 Object.keys(source).forEach(function (key) {

16 iteratee(source[key], key);

17 });

18 }
19
20 // usage of mixin during initialization
21 mixin(lodash, lodash);

Figure 1 Motivating example based on code from the Lodash library.

In summary our contributions are:
Value partitioning: a general static analysis technique that is capable of reasoning about
relations between abstract values.
Three instantiations of value partitioning, which tackle different challenges in static
analysis for JavaScript, each involving relational properties:

property-name partitioning: relations between dynamically computed object property
names and values;
free-variable partitioning: relations between functions and their free variables; and
type partitioning: relations between arguments and return values of predicate functions.

Experimental results: We show that value partitioning makes TAJS more precise than
CompAbs [16] for several real-world JavaScript libraries, including Lodash, which is
the most widely used library. The resulting precision is comparable to (and in case of
the Lodash4 benchmark group substantially higher than) that of demand-driven value
refinement [26], without the need for a separate backwards analysis.

2 Motivating Example and Overview

Figure 1 shows a small code example based on Lodash (version 4.17.10), which is the most
depended-upon of all npm packages.1 Lines 1–12 define the function mixin, which copies all
function properties from source to object. If object is a function, a new function (which

1 Lodash (https://lodash.com/) has more than 115 000 dependents in npm and more than 27 million
weekly downloads as of May 2020.

ECOOP 2020

https://lodash.com/

16:4 Value Partitioning

on invocation calls the function to be copied) is also copied to object.prototype, such that
instantiations of object (using the keyword new) also will have these functions. In line 21,
which is executed during the initialization of Lodash, mixin is called with the library object
as both arguments. The function mixin uses a helper function baseFor defined in lines 14–
18. It is called with source and a callback function defined in lines 2–11. The baseFor
function then gets all the object property names from the source object using Object.keys,
and the callback function is called (line 16) for each property name and corresponding
property value. Line 3 checks whether func is a function. If so, the function is copied to
object[methodName] in line 5. Note that func actually is the value source[methodName].
Line 6 checks whether object is also a function and if so, a new function is declared and
written to object.prototype[methodName] in line 7. When invoked, that new function
calls func using func.apply(...) in line 9.

Such complex code is not unusual in modern JavaScript libraries. For a static analysis
reasoning about the dataflow in this code, the correlation between methodName and func is
critical. An analysis that loses track of this correlation will mix together all the properties of
the library object lodash when analyzing the call mixin(lodash, lodash) in line 21. As a
consequence, if the program being analyzed contains a call to, for example, lodash.map, that
will be treated by the analysis as a call to any of Lodash’s more than 100 different functions,
not only the actual map function, thereby triggering an avalanche of spurious dataflow.

Existing approaches

Existing JavaScript analyzers do not have precise information about the value of key in
line 16, for various different reasons. (Most importantly, Object.keys produces an array
of property names in unspecified order.) Previous work has suggested two approaches to
analyze such code precisely even when key is imprecise. The CompAbs [16] approach uses
trace partitioning guided by syntactic patterns. If trace partitioning is used at the dynamic
property read operation in line 16, the abstract state is partitioned into a set of refined
abstract states corresponding to the properties of the source object. This way the value
of key is precise in each of those states, and the call in line 16 is analyzed separately for
each of them. Trace partitioning, however, is expensive, so CompAbs limits the use of
trace partitioning according to certain syntactic patterns. At this specific dynamic property
operation, CompAbs chooses not to apply trace partitioning and fails to detect that the
relation between methodName and func is important.

The second approach is demand-driven value refinement [26], which can analyze the
example code with sufficient precision to avoid mixing together the Lodash functions. With
this approach, the analysis detects imprecision at the dynamic property write in line 5:
methodName is an imprecise string and func can be many different functions. It then queries
a backwards abstract interpreter asking for the possible value of methodName for each of
the functions. The backwards analysis returns a precise property name for each function
and thereby enables the dynamic property write operation to be modeled precisely. For the
dynamic property write in line 7, the function defined in lines 7–10 is written to all properties
of object.prototype, but the abstract value being written is augmented, such that the
value of methodName remains precise. When reading func in line 9, the backwards analysis
is queried to get the value of func relative to the value of methodName, thereby retrieving
a precise value for func. This ensures the desired precision, but the approach requires a
complicated backwards analysis.

B.B. Nielsen and A. Møller 16:5

Value partitioning

We will now informally explain how value partitioning can provide similar precision as
demand-driven value refinement, but without the need for a backwards abstract interpreter.
With traditional trace partitioning, as used by, for example, CompAbs, the analysis can
track multiple abstract states for each program point, such that the different abstract states
cover different assumptions about the execution paths that lead to that point. (Correlation
tracking [25], determinacy-based analysis [24, 2], and loop sensitivity [22] can also be viewed
as variations of trace partitioning.) The key idea behind value partitioning is that we can
obtain a similar effect as trace partitioning by instead performing the partitioning at the
level of individual abstract values. In principle, the resulting abstract domain is isomorphic
to a traditional trace partitioning domain, but this approach provides more flexibility for
using different kinds of partitioning for different parts of the abstract states. This general
idea can be instantiated in multiple ways to track different kinds of relational properties. We
next describe three instantiations that enable precise analysis of challenging JavaScript code,
including the Lodash example.

Property name partitioning

One instantiation is property name partitioning, which performs partitioning at dynamic
property reads, similar to the CompAbs technique, but on abstract values instead of abstract
states. To illustrate this mechanism by example, consider the read operation in line 16
and the correlated write operation in line 5. Assume for simplicity that the source ob-
ject has only two properties, {map: f1, trim: f2} where f1 and f2 are functions, and
methodName is an abstract value that overapproximates all valid property names. When read-
ing source[methodName], an analysis without value partitioning will read all the properties of
source. When using value partitioning, we instead partition this value according to the prop-
erty names of source, meaning that we obtain a value [t1 7→ f1, t2 7→ f2, t3 7→ undefined]
where t1, t2, and t3 represent different partitions.2 Intuitively, t1 represents the execution
traces where the property name being read is map, t2 similarly represents traces where the
property name being read is trim, and t3 represents all other traces. We similarly write the
partitioned value [t1 7→ "map", t2 7→ "trim", t3 7→ AnyString] to methodName.3 In this way,
the resulting abstract state retains the correlation between the values of methodName and
source[methodName].

Later the analysis reaches the write operation object[methodName] = func, with an
abstract state where methodName is [t1 7→ "map", t2 7→ "trim", t3 7→ AnyString] and func is
[t1 7→ f1, t2 7→ f2, t3 7→ undefined]. Since the property name and the value to be written
have the same partitions, we can perform the dynamic property write separately for each
partition, meaning that f1 is written to the map property, and analogously for the other two
partitions, thereby avoiding mixing together the properties.

Since the partitioning is performed at the value level, unlike traditional trace partitioning
we do not need any extra call contexts to the callback function defined in line 2, so the
overhead of value partitioning is negligible, even when the correlated read/write pairs span
multiple functions. For this reason, we can apply property name partitioning at all dynamic
property reads where the property name is imprecise, without the use of syntactic patterns.

2 In JavaScript, reading an absent property yields the special value undefined.
3 AnyString is an abstract value that represents any string. In practice we instead use a slightly more

precise abstract value representing AnyString\{"map", "trim"}.

ECOOP 2020

16:6 Value Partitioning

Free variable partitioning

A second instantiation of value partitioning is for handling free variables more precisely.
In the example, this is useful for func in line 9, which is a free variable in the function
defined in lines 7–10. At that function definition, we partition both the resulting abstract
function value ` and the abstract value of func according to the existing partitioning of func,
intuitively to be able to distinguish functions created with different values of the free variable.
This means that the function value being written at the dynamic property write in line 7 is
[t1 7→ `t′

1
, t2 7→ `t′

2
, t3 7→ `t′

3
] where `t′

1
represents the function created at a point where func

is f1 (i.e., that point is at the end of a t1 trace), and similarly for the other partitions. At
the same time, the value of func becomes [t1 7→ f1, t2 7→ f2, t3 7→ undefined, t′1 7→ f1, t′2 7→
f2, t′3 7→ undefined] where the three new partitions t′1, t′2, and t′3 denote the new partitioning
we have made (one abstract value can thus have multiple partitionings simultaneously). Using
the property name partitioning mechanism described above, at the dynamic property write
in line 7, `t′

1
is written to the map property of object.prototype, and similarly for the other

properties.
We can exploit the free variable partitioning information when the function is later

called. Assume the analysis encounters a call to the map method. The abstract value of
lodash.prototype.map is then `t′

1
. We now use t′1 as a context in ordinary context sensitive

analysis of the function, so that when reaching func in line 9, it suffices to consider only
the t′1 partition of func, which yields the precise value f1, so again, we successfully avoided
mixing together the properties.

Type partitioning

The above two uses of value partitioning are sufficient for analyzing the motivating example
without critical precision losses, but we can make the analysis even more precise using a
third variant. The function named isFunction used in the branch condition in line 6 is a
typical example of a predicate function, i.e., a one-parameter function that returns a boolean,
in this case testing whether the value passed in is a function. Assume the abstract value of
the argument object is fun1|obj2, meaning that it represents either a function fun1 or a
non-function object obj2. With a simple analysis, the abstract return value and hence the
branch condition is Bool representing any boolean value, so the analysis does not know that
object cannot be obj2 inside the branch. This causes the analysis to spuriously raise a type
error when writing to object.prototype in line 7.

Type partitioning avoids that imprecision as follows. Type partitioning is triggered at
any call to a function with one argument, and partitions that argument according to its
types. In this case, the value of object is partitioned into [a 7→ fun1, b 7→ obj2]. The
result value from isFunction then becomes [a 7→ true, b 7→ false], which we can exploit using
ordinary control sensitivity [10] (also called type refinement [14]) at the “true” branch such
that object in line 7 will only be fun1 and not obj2.

Overview

In Section 3 we give a brief introduction to the analysis domain of TAJS. Section 4 explains
the general value partitioning mechanism, and Section 5 details the three instantiations:
property name partitioning, free variable partitioning, and type partitioning. Section 6
describes our experimental evaluation, and Section 7 discusses related work.

B.B. Nielsen and A. Møller 16:7

r1[r2]← r3: Writes r3 to the property named r2 of the object r1

r1 ← r2[r3]: Reads the property named r3 of the object r2 to r1

r1 ← x: Reads the value of the variable x to r1

x← r1: Writes r1 to the variable x

r1 ← c: Assigns the constant c to r1

r1 ← function(x){· · · }: Creates a closure for the function and stores it in r1

if(r1): Conditionally propagates dataflow (to model if and while)

r1 ← r2(r3): Calls the function r2 with argument r3 and stores the result in r1

r1 ← r2 ⊕ r3: Computes the binary operation r2 ⊕ r3 and stores the result in r1

Figure 2 The main flow graph instructions in TAJS.

n ∈ N : Nodes
c ∈ C : Contexts
p ∈ P : Property names

` ∈ L = N × C : Locations

X ∈ AnalysisLattice = L→ State
σ ∈ State = (L→ Obj)× Registers
o ∈ Obj = P → Value

r ∈ Registers = R→ Value
v ∈ Value = Prim × P(L)

Figure 3 Simplified abstract domain.

3 Background: The TAJS Analyzer

In this section we give a brief introduction to a heavily simplified version of the analysis
domain and program representation used in TAJS [11, 2], which lays the foundation for our
extensions in the following sections.

TAJS is an open-source dataflow analysis tool for JavaScript built as a monotone frame-
work [12]. A JavaScript program is represented as a control flow graph for each function,
with nodes representing primitive instructions of the different kinds listed in Figure 2. Each
instruction operates on registers, which can be thought of as special local variables. For
simplicity, we ignore this and receiver objects at calls, and we assume all functions have only
one parameter. As an example, the single JavaScript statement y[p] = x[p] is represented
as six flow graph nodes as shown in Figure 4.

The components of the abstract domain are summarized in Figure 3. A location is a pair of
a node and a context. The contexts allow for context sensitivity (using the context-sensitivity
strategy described by Andreasen and Møller [2]). The main abstract domain, AnalysisLattice,
is a lattice that maps locations to abstract states, where each state contains abstract values
of object properties and registers. Objects are modeled using context-sensitive allocation-site
abstraction [6, 20], so abstract object addresses are simply locations.4 Functions are special
kinds of objects. Abstract values are modeled using a product of a constant-propagation
lattice [15] named Prim of primitive values (strings, numbers, etc.) and a powerset lattice of
object addresses.

The analysis is control sensitive by pruning infeasible dataflow at if nodes. This includes
not only eliminating flow along unreachable branches, for example when a branch condition
is definitely false [27], but also filtering abstract values based on the branch condition [10, 14].

4 TAJS models absence/presence of object properties and uses two artificial properties DefaultNumeric
and DefaultOther to model properties with unknown numeric/non-numeric names; we ignore that
here.

ECOOP 2020

16:8 Value Partitioning

r1 ← yn1:

r2 ← pn2:

r3 ← xn3:

r4 ← pn4:

r5 ← r3[r4]n5:

r1[r2]← r5n6:

Figure 4 Fragment of a control flow graph, for the single statement y[p] = x[p].

As an example, the JavaScript code if(z) is represented by two primitive instructions,
r6 ← z and if(r6). In the “true” branch, not only r6 but also z must have the value true.5
To track the connection between r6 and z, a simple intraprocedural must-equals analysis is
performed alongside the main dataflow analysis. We leverage this mechanism in Section 5,
for example to obtain the information that r2, r4, and p must have the same value at the
property read operation in Figure 4 (unless a property accessor changes p). To keep Figure 3
simple, we omit the must-equals information in the description of the State lattice.

In the following sections, with a slight abuse of notation we let σ(r) denote the value of
register r in state σ, and similarly, σ(x) denotes the value of variable x. Also, we use the
notation σ(r) := . . . to describe the operation of writing a given value to register r and also
to the variables and registers that are equal to r according to the must-equals information.
If ` ∈ L is a location representing an object address, we sometimes write ` for the abstract
value (⊥, {`}) ∈ Value. Similarly, for abstract values that represent primitive values only, we
omit the location sets, for example, "foo" denotes the abstract value ("foo", ∅) ∈ Value.

We omit many details of TAJS, including the definitions of the concretizations of the
lattice elements, the definitions of the transfer functions for the different instructions, how
values of variables are being stored in special activation objects, and how a call graph is
built during the analysis. Analyzing full JavaScript also requires reasoning about prototypes,
scope chains, implicit type conversions, exceptions, the standard library, property accessors
(getters and setters), and much more. It suffices to know that the resulting abstract states
soundly overapproximate the possible program behavior [7].

A trace is a concrete execution of the program expressed as a finite sequence of pairs
(`, γ) where ` is a location and γ is a concrete state, starting at the program entry point with
the initial call context in an empty state. The semantics of a program is defined as a set
of traces. The collecting semantics is the program semantics projected onto the program
locations: Given a location `, the collecting semantics for `, denoted J`K, is the set of states
that appear at ` in the set of traces defined by the program semantics. The analysis result is
thus a lattice element X ∈ AnalysisLattice such that J`K is a subset of the concretization of
X(`) for all locations ` ∈ L.

5 In actual JavaScript, the value must be truthy, which also includes nonempty strings, nonzero numbers,
and objects.

B.B. Nielsen and A. Møller 16:9

t ∈ T : Partition tokens
o ∈ Obj = P → PartitionedValue

r ∈ Registers = R→ PartitionedValue
pv ∈ PartitionedValue = T ↪→ Value

Figure 5 Extension of the abstract domain for value partitioning.

4 Value Partitioning

To prepare the analysis for value partitioning, we introduce a set T of partition tokens
and replace occurrences of Value by PartitionedValue in the abstract domain, as shown in
Figure 5. A partitioned value is a partial map from partition tokens to ordinary values. We
use the notation [t1 7→ v1, . . . , tk 7→ vk] (or set-builder notation like [ti 7→ vi | i = 1, . . . , k])
to denote the partitioned value that maps ti to vi for each i = 1, . . . , k and is undefined for
all other partition tokens.

The partition tokens play a similar role as in trace partitioning [23], but at the level
of abstract values. (We explain the differences between value partitioning and traditional
trace partitioning in more detail in Section 7.) A partition token intuitively represents a set
of execution traces. The special token any represents all traces, so the partitioned value
[any 7→ v] has the same meaning as the ordinary value v in the original abstract domain.
As an invariant, all partitioned values we use are defined for the token any.6 We extend
partitioned values to be total functions pv : T → Value by defining pv(t) = pv(any) when
t /∈ dom(pv).7

Assume X ∈ AnalysisLattice is the result of analyzing a given program, σ = X(`) is the
abstract state at some location `, and [. . . , t 7→ v, . . .] = σ(r) is the partitioned value of some
register r. The meaning of such a partitioned value is that for any trace that ends at ` and
is in the set of traces represented by t, the concrete value of r is in the concretization of the
abstract value v.

A covering8 at a location ` is a set of partition tokens where the union of the sets of
traces they represent is the set of all traces that lead to `. This means that if σ(x) =
[. . . , t1 7→ v1, ..., tk 7→ vk, . . .] where σ = X(`) for some program variable x at location `

where {t1, . . . , tk} is a covering, then for every concrete state in J`K, the value of x is in the
concretization of at least one of the abstract values v1, . . . , vk. For the initial abstract state
at the program entry, all partitioned values use the trivial covering {any}.

Now that we have generalized the abstract domain, it is easy to adjust all transfer functions
for the different kinds of nodes to operate on partitioned values instead of ordinary values. As
an example, the original transfer function for r1 ← r2⊕r3 updates a given abstract state σ by
σ(r1) := σ(r2)⊕σ(r3) (where ⊕ applied to abstract values works as in constant propagation).9

6 When we define a partitioned value [ti 7→ vi | i = 1, . . . , k] without an any token, an any partition is
implicitly created with value v1 t · · · t vk.

7 In trace partitioning terminology, this use of any corresponds to a simple pre-ordering of partition
tokens.

8 For formal definitions of the notions of traces and coverings, see Rival and Mauborgne [23]. Basing
our approach on partitions instead of coverings (a partition is a covering where all the trace sets are
disjoint) could improve precision but would complicate the analysis without much practical benefit.

9 The actual TAJS analysis also models implicit type conversions.

ECOOP 2020

16:10 Value Partitioning

T :: = any (Section 4)
| val〈N,R,Value〉 (Section 5.1)
| fun〈F,C, T 〉 (Section 5.2)
| type〈N,R,Types〉 (Section 5.3)

Types :: = undefined | null | number | string | boolean
| object | array | function | regexp

Figure 6 Partition tokens used by property name partitioning, free variable partitioning, and
type partitioning.

When switching to the domain with partitioned values, we simply replace σ(r2)⊕ σ(r3) by
[t 7→ pv2(t) ⊕ pv3(t) | t ∈ dom(pv2) ∪ dom(pv3) where pv2 = σ(r2) and pv3 = σ(r3)]. The
other transfer functions and least-upper-bound are adapted similarly.

A small example can illustrate how partitioning can make the analysis relational. Assume
the binary operation is equality, r1 ← r2 == r3, and that we have two partitions, t1 and t2,
where both registers r2 and r3 have the value 42 in partition t1, and both have the value
"foo" in partition t2. With partitioning, the value of r1 becomes [t1 7→ true, t2 7→ true]
(i.e., definitely true), whereas without partitioning, r2 and r3 both have the value 42|"foo",
so the value of r1 becomes AnyBool (i.e., true or false).

To get any advantage of the new abstract domain, we of course need to modify specific
transfer functions to selectively introduce partition tokens and further exploit the extra
information available regarding relational properties between values. We show how that
can be accomplished in Section 5. Those mechanisms rely on some general operations for
manipulating the partitions in partitioned values. Most importantly, we use an operation]
when introducing new coverings: pv1] pv2 where pv1, pv2 ∈ PartitionedValue denotes the
combined partitioned value. For each token that is only present in one of pv1 or pv2, the
new value will be the value for that token, and for each token shared by pv1 and pv2, the
new value will be the join of the two respective values.

5 Three Instantiations of Value Partitioning

We now present three instantiations of the value partitioning framework. Each of them
targets a category of relational properties that are relevant to analysis of JavaScript libraries.
Each instantiation introduces a family of partition tokens, as shown in Figure 6, along with
some modification of the analysis transfer functions. Each partition token represents a set of
traces, as explained in the following.

5.1 Property Name Partitioning
The first use of value partitioning is for improving precision at correlated object property
read/write operations as in the motivating example.

Partition tokens for property name partitioning

We introduce a family of partition tokens, val〈n, r, v〉, where n ∈ N , r ∈ R, and v ∈ Value.
Such a token represents the set of traces where at the last occurrence of n, the value of
register r is v. In all val〈n, r, v〉 tokens we use in property name partitioning, the node n

B.B. Nielsen and A. Møller 16:11

σ(r3) :=

σ(r3)] [val〈n, r3, p〉 7→ p | p ∈ propNames(σ(r2))]

] [val〈n, r3,other〉 7→ AnyString] if σ(r3)(any) = AnyString
σ(r3) otherwise

σ(r1) :=

[val〈n, r3, p〉 7→ readProp(σ(r2)(any), p) | p ∈ propNames(σ(r2))]

] [val〈n, r3,other〉 7→ undefined] if σ(r3)(any) = AnyString
[any 7→ readProp(σ(r2)(any), σ(r3)(any))] otherwise

Figure 7 Introduction of partitioned values at a dynamic property read node n of the form
r1 ← r2[r3].

is a property read node (i.e., of the form r1 ← r2[r3]), the register r is the one holding the
property name in that instruction (i.e., r3 in r1 ← r2[r3]), and the value v is a property
name (i.e., an element of P).10

As an example, assume the code from Figure 4 appears inside a loop, and consider the
following two traces that both end at n6:

τa = · · · (n1, γ1a)(n2, γ2a)(n3, γ3a)(n4, γ4a)(n5, γ5a)(n6, γ6a)

and

τb = · · · (n1, γ1b)(n2, γ2b)(n3, γ3b)(n4, γ4b)(n5, γ5b)(n6, γ6b)

where each “· · · ” is a trace prefix leading from the program entry point to this part of the
code, γ1a, . . . , γ6b are concrete states, and τa is a prefix of τb. The last occurrence of n5 (which
is the instruction r5 ← r3[r4]) is emphasized in each of the traces. Also assume that the
value of the register r4 is "foo" in γ5a and "bar" in γ5b. Note that r4 is the register holding
the property name at the n5 instruction. In this situation, the token val〈n5, r4, "foo"〉
represents τa but not τb.

Dynamic property reads

Figure 7 shows the modified transfer function for read-property nodes, r1 ← r2[r3]. The
function readProp(v1, v2) looks up the abstract value of properties named v2 in the abstract
objects pointed to by v1 in the current state σ.11 Property name partitioning is triggered if
the property name is not precise (here modeled as AnyString), so in that case we partition the
property name r3 with respect to the properties that appear in the abstract objects pointed
to by r2 (expressed as propNames(σ(r2))), and perform the property read for each partition
to obtain a partitioned value for r1. We use the artificial abstract value other ∈ Value to
represent all other properties; for that partition, the result value becomes undefined.12 If

10 In JavaScript, property names are either strings, which we model in the sub-lattice Prim, or symbols,
which can be modeled as special heap locations.

11Reading an object property is a nontrivial operation in JavaScript because of prototypes, getters,
and implicit type conversions. Importantly, the value partitioning mechanism is orthogonal to such
JavaScript technicalities.

12 In our implementation we use a more precise string lattice, which allows us to express more precisely
that σ(r3) for the val〈n, r3,other〉 partition is AnyString\propNames(σ(r2)), i.e., any string except
for the property names that are covered by other partitions. See also footnote 3.

ECOOP 2020

16:12 Value Partitioning

for each t ∈ chooseCommonCovering(σ(r2), σ(r3)):
writeProp

(
σ(r1)(any), σ(r2)(t), σ(r3)(t)

)
Figure 8 Exploiting partitioned values at a dynamic property write node, r1[r2]← r3.

the property name r3 is already precise (corresponding to the “otherwise” cases), there is no
need to introduce new partitions, so in that case r3 is unmodified and the result value r1 is
obtained directly using readProp and the any partition token.

Recall that a val〈n, r, p〉 token represents the set of traces where at the last occurrence
of n, the value of register r is v. To respect this property we need to remove all existing
val〈n,_,_〉 tokens from the abstract state before applying the transfer function for dynamic
property reads. (This is safe because every abstract value still has other coverings, in
particular {any}.)

Notice that for both r3 and r1, the new partitions use the partition tokens val〈n, r3, p〉
where n is the read-property node. Evidently, the new partition tokens form a covering. Also,
this new transfer function respects the interpretation of the newly added val〈n, r, p〉 tokens,
and due to the partitioning, the resulting abstract states maintain the relation between the
involved object property names and values.

Dynamic property writes

Next, we modify the transfer function for dynamic property writes, r1[r2]← r3, as shown in
Figure 8, to take advantage of the partitionings introduced at dynamic property reads. The
function writeProp(v1, v2, v3) writes v3 to the properties named v2 in the objects referred
to by v1.13 The function chooseCommonCovering finds a covering shared by the property
name σ(r2) and the value to be written σ(r3). (An example is given below.) If multiple
such coverings exist, a largest one (i.e., one with the largest number of partition tokens) is
selected.14 Recall that the two values always share the {any} covering, which will be used
if no other covering exist. When a covering has been chosen, the value is written to the
appropriate object property for each partition, thereby exploiting the relational information.
In case the {any} covering is chosen, the transfer function behaves as the original version
without value partitioning.

Example

To better understand property name partitioning, we now explain the mechanism in more
detail on the example given in Figure 4. Let us assume that σ(p) = [any 7→ AnyString],
σ(x) = [any 7→ obj2] and σ(y) = [any 7→ obj1] where in state σ, obj1 is the location of an
empty abstract object and obj2 is the location of an abstract object with two properties,
{foo: 1, bar: 2}. This means when analyzing the read property node r5 ← r3[r4] we
have σ(r3) = [any 7→ obj2] and σ(r4) = [any 7→ AnyString]. Since the property name r4 is

13We omit the details of how the implementation of writeProp in TAJS handles strong/weak updates,
setters, and implicit type conversions. Importantly, the value partitioning mechanism is orthogonal to
such JavaScript technicalities.

14Multiple coverings can arise if, for example, the same property name is used at two different property
read operations. We choose the largest covering based on the heuristic that fine-grained coverings lead
to higher precision than coarse-grained coverings. The most important consequence of this heuristic is
that we avoid the {any} covering if others are available. In case of multiple largest ones, an arbitrary
one is selected among them.

B.B. Nielsen and A. Møller 16:13

pv ∈ PartitionedValue = T ↪→ FPValue
fv ∈ FPValue = FunctionPartitions ×Value

fp ∈ FunctionPartitions = P(T)
AnalysisLattice = C ′ ×N → State

c ∈ C ′ = FunctionPartitions × C

Figure 9 Extensions of the abstract domain for free variable partitioning.

imprecise, the first case in each definition in Figure 7 applies, meaning that value partitioning is
triggered. Since propNames(σ(r2)) = {"foo", "bar"}, we update r4 such that σ(r4) equals
[val〈n, r4, "foo"〉 7→ "foo",val〈n, r4, "bar"〉 7→ "bar",val〈n, r4,other〉 7→ AnyString],
where n is the read property node. Recall from Section 3 that the operation σ(r4) := . . .

does not only modify r4 but also the must-equals variables and registers, meaning that this
partitioned value is also written to r2 and p. The value being read gets the same partitions,
such that σ(r5) becomes [val〈n, r4, "foo"〉 7→ 1,val〈n, r4, "bar"〉 7→ 2,val〈n, r4,other〉 7→
undefined].

When reaching the property write operation r1[r2] ← r5, the state σ contains σ(r2) =
[val〈n, r4, "foo"〉 7→ "foo",val〈n, r4, "bar"〉 7→ "bar",val〈n, r4,other〉 7→ AnyString]
and σ(r5)=[val〈n, r4, "foo"〉 7→ 1,val〈n, r4, "bar"〉 7→ 2,val〈n, r4,other〉 7→ undefined].
We now apply the transfer function from Figure 8. The two values σ(r2) and σ(r5) share two
coverings: {any} and {val〈n, r4, "foo"〉,val〈n, r4, "bar"〉,val〈n, r4,other〉}. Since the
second covering is largest, that one is picked by chooseCommonCovering(σ(r2), σ(r5)).
We therefore perform three writes corresponding to the abstract assignments obj1["foo"]=1,
obj1["bar"]=2, and obj1[AnyString]=undefined; notably, the properties foo and bar are
not mixed together.

5.2 Free Variable Partitioning
We now explain how to leverage value partitioning to gain precision for free variables, such
as func in line 9 in the motivating example from Figure 1.

Extending the abstract domain

The first step is to extend the abstract domain as shown in Figure 9. The Value component in
PartitionedValue is replaced by FPValue, which is a product of FunctionPartitions and Value.
The component FunctionPartitions is a set of partition tokens, which we use for tracking
which partitions the functions described in the Value component may have been declared in.
(For instance, for the motivating example from Figure 1, the function declared in lines 7–10 was
created in the partitions t′1, t′2, and t′3 so the corresponding abstract values become15 ({t′1}, `),
({t′2}, `), and ({t′3}, `), where ` denotes the location for the created closure.) To preserve this
information when analyzing calls to such functions, we also augment the set of contexts to
include this information (replacing C by C ′ in AnalysisLattice). The FunctionPartitions set
is empty for values and contexts that do not use free variable partitioning.

15These three abstract values are denoted `t′
1
, `t′

2
, and `t′

3
, respectively, in the motivating example in

Section 2.

ECOOP 2020

16:14 Value Partitioning

pv(t) =

pv(t) if t ∈ dom(pv)
⊥ otherwise if t = fun〈f, c, t′〉 ∧

∃c′, t′′ : c 6= c′ ∧ fun〈f, c′, t′′〉 ∈ dom(pv)
pv(any) otherwise

Figure 10 Redefining how partitioned values are extended to total functions, exploiting free
variable partitioning.

Next, we introduce a new kind of partition tokens, and we then describe how elements of
FunctionPartitions are created at function expressions and used at read variable nodes.

Partition tokens for free variable partitioning

We introduce a new kind of partition tokens, fun〈f, c, t〉, where f is a function, c ∈ C ′ is a
context, and t ∈ T is a partition token. A trace is represented by such a token if (1) the trace
ends at a program location that belongs to a closure that was created when the trace up to
that point was a t trace, and (2) that point in the trace is in function f in context c. (For
instance, in the motivating example, a trace ending in line 9 where the currently executed
closure was created in line 7 at the end of a t1 trace can be represented by fun〈f, c, t1〉,
where f is the function at lines 2–11 and c is the context for the call to that function.) We
only allow such partition tokens to appear in abstract values of variables that are declared in
f . Intuitively, we use these partition tokens to obtain a form of heap specialization (also
called heap cloning or context sensitive heap) [20] for the activation objects of f .16

An important property is that if the abstract value of a variable x declared in a function
f contains partition token fun〈f, c′, t′′〉 for some c′, t′′ but not fun〈f, c, t′〉 for any c, t′ where
c 6= c′, then f has not been invoked with context c in any trace represented by fun〈f, c, t′〉.
This means that it is safe to redefine how partitioned values are extended to total functions
as shown in Figure 10. The only difference between the new and the original definition from
Section 4 is the second case, where ⊥ is returned to indicate that the set of traces for the
given partition is empty due to the above mentioned property being satisfied.

Function definitions

Assume the analysis reaches a function definition node, r1 ← function(· · ·){· · · }, while
analyzing a function f in context c, and that the function being defined has free variables
x1, . . . , xn that are declared in f (i.e., as parameters or local variables). Note that f is
the function containing the function definition node being analyzed, not the function being
defined. Let ` denote the location of the newly created closure according to the original
transfer function without free variable partitioning. We now partition both the resulting
function value of register r1 and the values of x1, . . . , xn as shown in Figure 11.

First, we use a function chooseCovering that finds a largest covering, denoted LC ,
among the values of x1, . . . , xn. (If multiple such coverings exist, an arbitrary one is selected
among them, as before.)

16Local variables and arguments are stored as properties on activation objects, which are created on each
invocation.

B.B. Nielsen and A. Møller 16:15

LC = chooseCovering(σ(x1), . . . , σ(xn))

σ(xi) :=
{
σ(xi)] [fun〈f, c, t〉 7→ σ(xi)(t) | t ∈ LC] if LC ⊆ dom(σ(xi))
σ(xi) otherwise

σ(r1) :=
{

[t 7→ ({fun〈f, c, t〉} ∪ fp, `) | t ∈ LC] if LC ⊆ dom(σ(xi)) for some xi

[any 7→ (∅, `)] otherwise

Figure 11 Introduction of partitioned values at a function definition node r1 ← function(· · ·){· · · }.

For each xi for i = 1, . . . , n, if the current value of xi contains the covering LC , we
add fun〈f, c, t〉 7→ σ(xi)(t) to the value of xi for each t ∈ LC . (This evidently respects
the meaning of fun〈f, c, t〉 tokens informally described in the beginning of the section.)
Otherwise, if the current value of xi does not contain LC , we leave xi unmodified.

For the result register r1, we augment the function location ` by the same partition
tokens. If at least one free variable has been partitioned (i.e., LC ⊆ dom(σ(xi)) for some xi),
then for each of the partition tokens t ∈ LC , the value of r1 becomes the augmented value
({fun〈f, c, t〉} ∪ fp, `) where fp is the set of function partitions in the current context c. By
augmenting the value using the fun〈f, c, t〉 token, the information about the partitioning
is available when ` is later invoked, which is explained below. (The function partitions fp
of the current context describe how the current function was declared in an outer scope,
so by inheriting those, the partitioning also works for multiple layers of nested functions.)
Otherwise, if none of the free variables have been partitioned, register r1 is assigned the
partitioned value [any 7→ (∅, `)], which is equivalent to the original transfer function without
free variable partitioning.

Function calls

At a function call r1 ← r2(r3) where σ(r2) is an augmented function value (fp, v) (i.e., fp
is a set of partition tokens introduced at function definitions and v refers to the set of
closures that may be invoked), we use fp to augment the context for each callee. (The set of
augmented contexts C ′ contains the FunctionPartitions component exactly for this purpose.)
Assume for simplicity that v refers to a single closure location so we only have one callee. By
augmenting the context, when analyzing the body of the callee we retain the information
about the partitions where the callee closure was created, which we can exploit when reading
its free variables as explained next.

Variable reads

Figure 12 shows the updated transfer function for read variable nodes r1 ← x, where we read
a variable x in a calling context with function partitions fp. The set of function partitions fp
tells us which partitions the current closure may have been created in. For this reason, if the
abstract value of x contains partition tokens that are also in fp, we can obtain a covering for
x by considering only those partition tokens. If there is no such partition token, we just read
the value of x as in the original transfer function.

ECOOP 2020

16:16 Value Partitioning

σ(r1) :=
{[

any 7→
⊔
{σ(x)(t) | t ∈ dom(σ(x)) ∩ fp}

]
if dom(σ(x)) ∩ fp 6= ∅

σ(x) otherwise

Figure 12 Exploiting partitioned values at a read variable node, r1 ← x.

22 function f(v) {
23 return function g() {

24 return v;

25 }

26 }
27
28 var foo = f("foo");
29 var bar = f("bar");
30
31 assert(bar() != "foo");

Figure 13 Free variable partitioning
example with different contexts.

32 var o1 = {x: 1, y: 2};
33 var o2 = {};
34 Object.keys(o1).forEach(
35 function h(p) {

36 var v = o1[p];

37 o2[p] = function j() {

38 return v;

39 }

40 }

41);
42 assert(o2.y() != 1);

Figure 14 Free variable partitioning
example with partitioned argument.

As an example, assume σ(x) = [fun〈f, c, t〉 7→ 1, fun〈f, c′, t′〉 7→ 2, . . .] and fp =
{fun〈f, c, t〉}. The value of x tells us that x must be a local variable in function f which may
have been called in contexts c and context c′, and that x’s value is 1 or 2, respectively. Since
fp = {fun〈f, c, t〉}, we know that the current function is defined inside the lexical scope of f
in context c, meaning that the value of x must be 1.

Examples

To better understand free variable partitioning, we provide two examples. The first example
(Figure 13) shows how free variable partitioning can preserve precision when a function is
called in multiple contexts, in a way that resembles traditional heap specialization [20]. The
second example (Figure 14) shows how free variable partitioning can preserve the precision
of free variables partitioned with property name partitioning.

In Figure 13, lines 22–26 define a function f that returns a closure, which on invocation
returns the argument passed to f. Lines 28 and 29 call f with the arguments "foo" and
"bar" and store the returned closures in the variables foo and bar, respectively. Line 31
calls the closure stored in bar and asserts that the resulting value is not the string "foo".
The two calls to f are analyzed in different contexts c and c′ (due to the context sensitivity
mechanism mentioned in Section 3, as "foo" and "bar" are determinate values). For the
invocation bar(), the resulting value is the value of the free variable v in the closure stored
in bar. If not using heap specialization, the two concrete activation objects at the two calls
to f would be modeled by a single abstract object, so the free variable v would have the
imprecise abstract value AnyString. To reason precisely about the assertion in line 31, the
analysis has to distinguish the value of v at the two calls. The baseline TAJS analyzer
accomplishes this by the use of heap specialization [2], which provides two different abstract
activation objects for the calls to f, so the two values "foo" and "bar" are kept separate.

B.B. Nielsen and A. Møller 16:17

With free variable partitioning we obtain the same degree of precision as with heap
specialization in this situation. Since v is a free variable in the closure created in line 23, we
apply the top cases in the transfer functions shown in Figure 11 with LC = {any}. This means
that v after the call to f("foo") will have the value [any 7→ "foo", fun〈f, c,any〉 7→ "foo"]
and the value written to the foo variable is ({fun〈f, c,any〉}, `g) where `g is the location of
the closure created in line 23. For the call to f("bar"), the value for v will similarly be [any 7→
"bar", fun〈f, c′,any〉 7→ "bar"] and the value written to bar is ({fun〈f, c′,any〉}, `g). Note
the difference in the context part of the fun token (c at the "foo" call and c′ at the "bar"
call), since the calls to f are in those two different contexts. The value of v then becomes
[any 7→ AnyString, fun〈f, c,any〉 7→ "foo", fun〈f, c′,any〉 7→ "bar"], so that the fun
partitions preserve the precise values.

Now when analyzing bar(), bar has the value ({fun〈f, c′,any〉}, `g), which means
the calling context to the function g is augmented with the set of function partitions
{fun〈f, c′,any〉} as described above. When reading the free variable v in line 24, we
use the first case in the transfer function defined in Figure 12, since dom(σ(x)) ∩ fp is
{fun〈f, c′,any〉}. This means that the resulting value from the variable read is the value
[any 7→ "bar"], so we obtain the same precision as with heap specialization.

This first example shows how the free variable partitioning mechanism works and how
it relates to heap specialization, but it does not demonstrate any precision improvements
compared to the existing TAJS analyzer, which does apply heap specialization. The second
example, Figure 14, illustrates a simplified version of how free variable partitioning was used
in the motivating example in combination with property name partitioning, which leads to
a precision improvement of TAJS. Line 32 defines the object o1 with two properties, and
line 33 defines o2 as an empty object. Lines 34–41 iterate over the properties of o1. For each
property, it writes a function returning the value of o1[p] to the p property of o2. To prove
that the assertion at line 42 always holds, it is critical that the values of v are not mixed
together in the iterations.

Using property name partitioning at line 36, the value of v becomes [val〈n, r, "x"〉 7→ 1,
val〈n, r, "y"〉 7→ 2] and the value of p becomes [val〈n, r, "x"〉 7→ "x",val〈n, r, "y"〉 7→ "y"],
where n is the read property node and r is the register storing the property name. (For
clarity we ignore the other partition in this example.) When analyzing the closure creation
at line 37, we use the top rules in Figure 11 with LC = {val〈n, r, "x"〉,val〈n, r, "y"〉}. This
means that v is augmented with the additional partitions [fun〈h, c,val〈n, r, "x"〉〉 7→ 1,
fun〈h, c,val〈n, r, "y"〉〉 7→ 2], and the value being written to o2[p] is [val〈n, r, "x"〉 7→
({fun〈h, c,val〈n, r, "x"〉〉}, `j),val〈n, r, "y"〉 7→ ({fun〈h, c,val〈n, r, "y"〉〉}, `j)]. Here, `j

denotes the location of the closure created in line 37. At the dynamic property write, the
property name and value to be written share the covering {val〈n, r, "x"〉,val〈n, r, "y"〉},
meaning that the write happens as described in Figure 8, so that o2.x becomes
({fun〈h, c,val〈n, r, "x"〉〉}, `j) and o2.y becomes ({fun〈h, c,val〈n, r, "y"〉〉}, `j). Now when
o2.y is called in line 42, the call to j is augmented with the the set of function partitions
{fun〈h, c,val〈n, r, "y"〉〉}. Therefore when reading the value v in line 38, according to
Figure 12 we only read the fun〈h, c,val〈n, r, "y"〉〉 partition. The result of reading v is then
[any 7→ 2], so the analysis is precise enough to prove that the assertion at line 42 holds.

5.3 Type Partitioning
Value partitioning can also be useful for partitioning values based on their types. Since
JavaScript does not have function overloading, it is common to reflectively find the type of
an argument, and based on the type run different pieces of code (as in line 3 in Figure 1).

ECOOP 2020

16:18 Value Partitioning

σ(r3) :=

σ(r3)] [type〈n, r3, ty〉 7→ filter(σ(r3), ty) | ty ∈ types(σ(r3))]

if |types(σ(r3))| > 1
σ(r3) otherwise

Figure 15 Addition to the transfer function for a call node with one argument, r1 ← r2(r3).
filter restricts a partitioned value to represent only values that match the given type, and types
returns the possible types of the given partitioned value.

This is often done through the use of predicate functions, which are one-parameter functions
that return a boolean value. By partitioning the arguments at calls to predicate functions,
the analysis becomes able to track the relations between the arguments and the return values,
and thereby boost the control sensitivity mechanism (see Section 3) at branches that involve
such calls. Since the analysis does not know in advance whether a function returns boolean
values, we simply perform this partitioning at all function calls with one argument, without
considering what values the function may return.

Partition tokens for type partitioning

We introduce type partitioning tokens of the form type〈n, r, ty〉, where n ∈ N is a call node
r1 ← r2(r3), r ∈ R is the argument register in n (in this case r3), and ty ∈ Types using the
set of types shown in Figure 6. Such a token represents the set of traces where the type of r
is ty at the last occurrence of n. For example, the traces that reach line 7 in Figure 1 are
represented by the token type〈n, r, function〉 where n is the call to isFunction in line 6 and
r is the argument register of that call node.

Function calls

Figure 15 shows an addition to the transfer function for call nodes, r1 ← r2(r3), to partition
the argument value before the call takes place. The first case applies if the argument σ(r3)
abstractly represents values of multiple types (i.e., |types(σ(r3))| > 1, where types returns
the set of all the types the given abstract value may have). In this case we introduce a
partition type〈n, r3, ty〉 for each ty ∈ types(σ(r3)), such that the value in that partition is
filter(σ(r3), ty), where filter restricts σ(r3) to only represent values of type ty. Since all
the possible types are represented, the new partitions together form a covering.

Recall that a type〈n, r, ty〉 token only represents information about the last occurrence
of n in a given trace. To ensure this property we always remove all existing type〈n,_,_〉
tokens from the abstract state immediately before applying the modified transfer function
for call node n.

Example

As an example consider the code in Figure 16, and assume x has the abstract value fun1|obj2
(representing either the function fun1 or the object obj2). Without type partitioning, the
result of analyzing the isObj(x) call is the abstract value AnyBool (representing true or false),
so both branches are analyzed with x being fun1|obj2; however, in a concrete execution,
fun1 will never flow to the “true” branch, and obj2 will never flow to the “false” branch.

B.B. Nielsen and A. Møller 16:19

43 function isObj(arg) {
44 return typeof arg == ’object’;

45 }
46 if (isObj(x)) { ... } else { ... }

Figure 16 Type partitioning example.

47 function isObj(arg) {
48 if (typeof arg == ’object’)

49 return true;

50 else

51 return false;

52 }
53 if (isObj(x)) { ... } else { ... }

Figure 17 Type partitioning example with
control dependent relations.

By using type partitioning, we partition x before calling the predicate function. In
this example let n be the call node and let r be its argument register. Then x be-
comes [type〈n, r, function〉 7→ fun1,type〈n, r, object〉 7→ obj2]. Now when analyzing the
body of isObj, the expression typeof arg == ’object’ evaluates to the partitioned value
[type〈n, r, function〉 7→ false,type〈n, r, object〉 7→true]. When reaching the if branch, con-
trol sensitivity ensures that only the object partition flows to the “true” branch (i.e., x’s value
becomes [type〈n, r, function〉 7→ ⊥,type〈n, r, object〉 7→ obj2] in that branch), and only the
function partition flows to the “false” branch (i.e., x’s value becomes [type〈n, r, function〉 7→
fun1,type〈n, r, object〉 7→ ⊥] in that branch).

Control dependent relations

Predicate functions are sometimes implemented with control dependent relations between
the argument and the result, as in the example in Figure 17. The example is contrived but it
is not uncommon in predicate functions that the result values appear as the literals true or
false in branches. With the type partitioning mechanism described above, the returned
values will not be partitioned in this situation, since the partitions in arg do not propagate
to the values true and false.

To mitigate this issue, we augment the abstract states as shown in Figure 18 to keep track
of partitions that must be dead or may be live (represented by the two P(T) components,
respectively). A partition is dead if the set of traces it represents is empty, and it is live
otherwise. (We only keep track of the live partitions in coverings where there are any
dead partitions.) Since the branch condition typeof arg == ’object’ is analyzed with
a partitioned value for arg, by control sensitivity we know that the only traces that can
reach the “true” branch are those represented by the object partition, so we record that
type〈n, r, object〉 is live and type〈n, r, function〉 is dead in that branch, and conversely in the
other branch. To exploit this information, we also update the transfer function for constants,
r1 ← c, as shown in Figure 19. Basically, it assigns ⊥ to all dead partitions and the constant
c to all live partitions. If there are no dead partitions, it behaves as usual, where the constant
is written to the any partition. When the analysis reaches true (line 49), we obtain the
partitioned value [type〈n, r, function〉 7→ ⊥,type〈n, r, object〉 7→ true], and similarly when
analyzing false (line 51) we get [type〈n, r, function〉 7→ false,type〈n, r, object〉 7→ ⊥]. The
join of these two values is [type〈n, r, function〉 7→ false,type〈n, r, object〉 7→ true], which
becomes the result of isObj(x). Due to the control sensitivity mechanism, only obj2 then
flows to the “true” branch, and only fun1 flows to the “false” branch in line 53.

ECOOP 2020

16:20 Value Partitioning

State′ = State × P(T)× P(T)

Figure 18 Abstract states updated to keep track of dead and live partitions.

σ(r1) :=

[t 7→ c | t ∈ livePartitions(σ)]] [t 7→ ⊥ | t ∈ deadPartitions(σ)]

if deadPartitions(σ) 6= ∅
[any 7→ c] otherwise

Figure 19 Updated transfer function for constant nodes, r1 ← c, for improved type partitioning.

6 Evaluation

We have implemented the value partitioning framework (Section 4) and the three instantiations
(Section 5) on top of TAJS v0.24. Implementing the general framework in TAJS required
900 lines of code, however most of this is boilerplate code for lifting operations on ordinary
abstract values to also work on partitioned values. With the general framework in place,
instantiations are easy to implement: property name partitioning (Section 5.1), free variable
partitioning (Section 5.2), and type partitioning (Section 5.3) required only around 230,
250, and 60 lines of code, respectively. We disable TAJS’s for-in specialization technique,
since it is subsumed by property name partitioning.17 We refer to our new analysis tool
as TAJSValPar.18 Using this tool we evaluate our techniques by answering the following
research questions:

RQ1 How does TAJSValPar compare to existing state-of-the-art analyses for JavaScript?
RQ2 What are the effects of the three different instantiations of value partitioning?

All our experiments are conducted on an Ubuntu machine with a 2.6 GHz Intel Xeon
E5-2697A CPU running a JVM with 10 GB RAM.

6.1 RQ1: Comparison with State-Of-The-Art Analyses
We start by comparing TAJSValPar against the current state-of-the-art analyses for JavaScript:
the baseline TAJS analyzer with static determinacy [2], TAJSVR [26] with demand-driven
value refinement, and the CompAbs analyzer [16] based on the SAFE analyzer [17]. We use
the same benchmarks as those used in the evaluation of TAJSVR, which is the most recent
related work.

Micro benchmarks

We first evaluate TAJSValPar against a small collection of micro benchmarks that capture
some of the main challenges that appear in analysis of modern JavaScript libraries and are
used in previous work [16, 26]. The benchmarks all contain dynamic read/write pairs that

17The motivation for introducing for-in specialization in [2] was to reason about correlated read/write
pairs inside for-in loops. This relational information is now provided by property name partitioning.

18TAJSValPar: TAJS with Value Partitioning

B.B. Nielsen and A. Møller 16:21

Table 1 Micro-benchmarks that check how state-of-the-art analyses handle various dynamic
read/write pairs that represent typical challenges in JavaScript library code. A 7 indicates that the
analysis mixes together the properties of the object being manipulated, while a XXX indicates that
it is sufficiently precise to keep them distinct. The CF, CG, AF, and AG benchmarks are drawn
directly from [16], while M1, M2, and M3 are drawn directly from [26].

Benchmark TAJS CompAbs TAJSVR TAJSValPar

CF XXX XXX XXX XXX

CG XXX XXX XXX XXX

AF 7 XXX XXX XXX

AG 7 XXX XXX XXX

M1 7 7 XXX XXX

M2 7 7 XXX XXX

M3 7 7 XXX XXX

are variations of the pattern shown in the introduction and the motivating example. The
results of the comparison are shown in Table 1. For these benchmarks, a test succeeds if it
avoids mixing together properties in the dynamic read/write pairs.

The first two examples, CF and CG, are loops where the static analyses have enough
information to be able to unroll all the iterations and thereby analyze the read/write patterns
with precise property names. For CF, property name partitioning in TAJSValPar gives the
same degree of precision without loop unrolling.

AF and AG are loops where the static analyses are incapable of obtaining a precise value
for the property name used in the dynamic read/write pairs. TAJS fails to analyze these, but
CompAbs detects the pattern syntactically and therefore applies trace partitioning to analyze
the code precisely. TAJSVR also succeeds on these tests, because its backwards abstract
interpreter is capable of providing the necessary relational information. In comparison,
TAJSValPar can reason about the relational information on its own.

Both TAJS and CompAbs fail on the last three tests (M1, M2, and M3). CompAbs
fails on M1 and M3 because it does not apply partitioning due to the fragility of syntactic
patterns, and it fails on M2 because the partitioning does not provide the necessary precision
about free variables. Again, TAJSVR can analyze them all, since the backwards abstract
interpreter is powerful enough to reason about all the cases, whereas TAJSValPar successfully
preserves the relational properties by the use of value partitioning.

These results demonstrate that for these benchmarks, TAJSValPar is capable of providing
comparable precision to the demand-driven value refinement technique without the need for
a complicated backwards analysis, and provides better precision than the other analyses.

Library benchmarks

The next set of benchmarks is taken from the evaluation of TAJSVR and consists of small
test cases for popular real-world libraries. The libraries include the widely used functional
utility library Underscore (which has more than 20 000 dependents in npm) v1.8.3 with 1 548
LoC and the most depended-upon package Lodash (more than 115 000 dependents). We
analyze both Lodash3 (v3.0.0, 10 785 LoC) and Lodash4 (v4.17.10, 17 105 LoC), since their
code bases are substantially different and therefore pose distinct challenges for static analysis.

ECOOP 2020

16:22 Value Partitioning

Table 2 Analysis results for real-world benchmarks (from [26]). For each group of benchmarks
and for each of the four analyzers, we show the number of tests that are analyzed successfully and
(in parentheses) the average analysis time per successful test.

Benchmark group TAJS CompAbs TAJSVR TAJSValPar

Underscore (182 tests) 0 (-) 0 (-) 173 (2.9s) 173 (2.7s)
Lodash3 (176 tests) 7 (2.4s) 0 (-) 172 (5.5s) 173 (5.3s)
Lodash4 (306 tests) 0 (-) 0 (-) 266 (24.7s) 289 (26.3s)
Prototype (6 tests) 0 (-) 2 (23.1s) 5 (97.7s) 5 (34.1s)
Scriptaculous (1 tests) 0 (-) 1 (62.0s) 1 (236.9s) 1 (55.2s)
jQuery (71 tests) 3 (16.0s) 0 (-) 3 (13.5s) 3 (20.4s)

The other libraries, Prototype v1.7.2, Scriptaculous v1.9.0, and jQuery v1.10,19 are popular
libraries for client-side web programming.

The analysis results are shown in Table 2. We classify an analysis of a benchmark as
successful if it terminates within 5 minutes and the analysis result to our knowledge is sound.
In particular, an analysis run is considered a failure if the analysis result does not have
dataflow to the ordinary exit of the program. (All the tests pass in normal execution, so
an analysis result is obviously unsound if there is no dataflow to the ordinary exit.) To
increase confidence in the soundness of the analysis results for TAJSValPar, we apply thorough
soundness testing as described at the end of this section. Increasing the time budget does
not help for these benchmarks: as reported previously for JavaScript analysis tools, critical
precision losses tend to cause a proliferation of spurious dataflow that drastically increases
analysis time and renders the analysis results useless [26, 11, 22, 16].

The results for TAJSValPar are comparable to those of TAJSVR, which outperforms
the other analyzers. TAJSValPar succeeds in analyzing all the benchmarks that TAJSVR
can handle, plus 24 more (one Lodash3 test and 23 Lodash4 tests). Note the substantial
improvement for the Lodash4 tests: the number of Lodash4 tests that are not analyzed
successfully is reduced from 40 to 17. None of the analyzers do well on the jQuery benchmarks;
a preliminary manual study shows that the reasons are unrelated to relational analysis. The
results are as expected, since property name partitioning and free variable partitioning are
alternative techniques to provide the relational information that TAJSVR obtains from its
demand-driven value refinement. Furthermore, value partitioning is triggered more often
during the analysis, which means that the precision improvements are not limited to the few
critical cases where value refinement is triggered. On top of this, type partitioning provides
some additional precision beyond the capabilities of TAJSVR.

Comparing the performance between TAJSValPar and TAJSVR, the most significant
differences are for the Prototype and Scriptaculous benchmarks. TAJSValPar is around 3–4
times faster than TAJSVR, which is mainly because property name partitioning makes the
for-in specialization technique in TAJS obsolete. For Underscore and Lodash3, TAJSValPar
is slightly faster than TAJSVR. This is encouraging, because analyzing dynamic property
writes as the one in line 7 in Figure 1 is more expensive in TAJSValPar than in TAJSVR.
In TAJSVR such an operation is handled as a single imprecise write (since the precision
is recovered on demand), whereas TAJSValPar performs the write for each property that
is copied. To soundly handle setters, all the writes happen in different states that are

19This is the version of jQuery used in [2]. Note that [16] used the older v1.4.4.

B.B. Nielsen and A. Møller 16:23

subsequently joined together, which causes TAJSValPar to spend some extra time at such
writes. Since the analysis time is nevertheless similar, we can conclude that value partitioning
is cheaper for analyzing other parts of the libraries. For Lodash4 and jQuery, TAJSVR is
slightly faster than TAJSValPar. For Lodash4, the main reason is the handling of dynamic
property writes, and for the jQuery benchmarks, type partitioning adds little performance
overhead as seen in Table 3.

Precision

Previous work [2, 22, 26] established that type analysis and call-graph construction are
useful metrics for measuring the precision of an analysis for JavaScript, and therefore we
use these metrics to evaluate the analysis precision of TAJSValPar. All locations are treated
context-sensitively in these measurements, meaning that we count the same location once for
each reachable context. We count the number of possible types for the resulting value in
each variable or property read and find that in 99.19% of the reads, a single unique type is
read, with the average number of types being 1.02. For measuring precision of the call-graph
construction, we measure the number of call-sites with unique callees, and find this number
to be 99.95% of all call-sites. These numbers show that when the analysis succeeds, it does
so with very high precision.

Soundness

Formally proving soundness of the three variants of value partitioning is out of scope of this
paper, however, we will informally justify that the general approach is sound. Since general
trace partitioning is known to be sound, it suffices to argue that the precision gained by value
partitioning is equivalent to that obtained through trace partitioning. The key reason why
this holds for property name partitioning and type partitioning is that the partition tokens
represent the last occurrence of some node, meaning that if two values share partitions,
they represent information about the same execution traces. This means that we could
(if ignoring performance) instead have applied traditional trace partitioning, with exactly
the same partition tokens and at the same nodes, resulting in the same precision. (For
further discussion about the connection between value partitioning and trace partitioning,
see Section 7.) Similarly for free variable partitioning, since the partitions are only allowed
on activation objects, the precision is never higher than what would be obtained using heap
specialization (where each partition would be represented by a distinct abstract activation
object), and therefore soundness follows from soundness of heap specialization.

Furthermore, to increase confidence in the soundness of our implementation, all the
TAJSValPar results have been thoroughly soundness tested [3]. This means that the analysis
results overapproximate all the dataflow facts that have been observed during concrete
executions of the analyzed benchmarks. For every variable and property read observed
concretely, we have checked that the concrete value is in the concretization of the corresponding
abstract value in the analysis results, and similarly for property writes and function calls.
All our benchmarks except one pass in total more than 7.6 million soundness tests. The
one benchmark that fails is a Lodash4 test, which uses ES6 iterators in combination with
Arrays.from, which is not fully supported in the latest version of TAJS and is unrelated to
the use of value partitioning.

ECOOP 2020

16:24 Value Partitioning

Table 3 Analysis results for real-world benchmarks (from [26]) using different instantiations of
value partitioning. “None” is without value partitioning, “P” is with property name partitioning, “P
+ FV” is with property name and free variable partitioning, and “F + PV + T” is with property
name, free variable, and type partitioning.

Benchmark group None P P + FV P + FV + T

Underscore (182 tests) 0 (-) 149 (2.0s) 173 (2.5s) 173 (2.7s)
Lodash3 (176 tests) 7 (2.4s) 167 (4.7s) 173 (5.1s) 173 (5.3s)
Lodash4 (306 tests) 0 (-) 268 (16.8s) 274 (27.7s) 289 (26.3s)
Prototype (6 tests) 0 (-) 0 (-) 5 (32.7s) 5 (34.1s)
Scriptaculous (1 tests) 0 (-) 0 (-) 1 (53.1s) 1 (55.2s)
jQuery (71 tests) 3 (16.0s) 3 (15.2s) 3 (16.5s) 3 (20.4s)

6.2 RQ2: Effects of the Three Instantiations

We now investigate how much each of the three uses of value partitioning contributes to
the results reported in the previous section. The results from running our analysis with
only some instantiations enabled can be seen in Table 3. The column “P” is with only
property name partitioning enabled; we see that it is sufficient for analyzing many of the
Underscore and Lodash test cases, but not for any of the Prototype or Scriptaculous test
cases. (Without property name partitioning but with the other two instantiations enabled,
the analysis is not able to analyze more benchmarks than TAJS.) The column “P + FV” uses
both property name partitioning and free variable partitioning. Also enabling free variable
partitioning makes the analysis capable of analyzing many additional benchmarks: more
Underscore and Lodash test cases, as well as some Prototype and Scriptaculous test cases.
Compared to only property name partitioning, the analysis times are higher (for the reason
discussed above regarding additional state joins). The last column “P + FV + T” is with
all instantiations enabled and therefore contains the same numbers as shown in Table 2.
We see that type partitioning enables the analysis of 15 additional Lodash4 tests, without
significantly increasing the analysis time.

We conclude that all three instantiations contribute to the results, where property name
partitioning is the most important one, followed by free variable partitioning and then
type partitioning. (TAJS already performs filtering at branches, as mentioned in Section 3;
without that feature the effect of type partitioning would likely be larger.)

7 Related Work

Trace partitioning

Value partitioning can be viewed as a variant of trace partitioning [23] as explained in
Sections 1, 2 and 4, but there are some important differences. Changing the original abstract
domain in Section 4 to support traditional trace partitioning can be done by replacing
L→ State by L→ T → State, so that an abstract state is maintained for each partition, at
every location. Thus, different locations can partition the abstract states differently. Value
partitioning instead has only one abstract state per location but partitions the individual
abstract values, which adds an additional degree of flexibility: different parts of each abstract
state can be partitioned differently. In particular, for the large parts of the states where we

B.B. Nielsen and A. Møller 16:25

are not interested in relational information, we can use the {any} partitioning,20 while for the
important registers and object properties, we can have nontrivial partitions. With traditional
trace partitioning, the normal transfer functions are applied for each partition, which causes
redundant computations because of the similarities between the different partitions21; with
value partitioning, we only pay a price for partitioning at operations that involve abstract
values with nontrivial partitions. This is the main reason for the low overhead of the
technique.

Another difference is that the partition tokens in traditional trace partitioning are actually
lists of “directives” (the language of directives used by Rival and Mauborgne [23] is similar
to our language of tokens in Figure 6), which can lead to a combinatorial explosion. By
partitioning at the level of values and allowing multiple coverings in each partitioned value,
we avoid the need to maintain such combinations.

Relational analysis

Traditional techniques for achieving relational analysis, as exemplified by the octagon abstract
domain [19], focus on numeric relations, such as, linear inequalities. To reduce the cost of this
approach, a syntactic pre-analysis called variable packing is typically used for partitioning
the set of program variables, and one octagon is then used for each pack instead of tracking
all possible combinations of inequalities. This kind of partitioning is reminiscent of value
partitioning, but with the important difference that variable packing and octagons operate
on sets of program variables whereas value partitioning works on individual abstract values.
In our work with analysis of JavaScript libraries, we have not encountered a critical need for
tracking numeric relations.

The well-known analyzer Astrée [4] applies not only trace partitioning and octagons, but
also a decision tree abstract domain that is used for tracking relations between booleans
and numerical variables that affect control flow. That technique has some similarities with
our type partitioning mechanism but relies on variable packing to avoid combinatorial
explosions, whereas type partitioning uses the more lightweight value partitioning technique
in combination with the existing control sensitivity mechanism of TAJS.

The main purpose of value partitioning is to be able to reason about relations between
different parts of the abstract state (i.e., program variables and registers) at the various
program points. Some literature uses the term relational analysis with a slightly different
meaning: to relate information across program points, typically relations between the entry
and exits of functions [8, 5].

Static analysis for JavaScript

Through the last decade, several static analyzers for JavaScript have been developed, including
WALA [25, 24, 28], SAFE [17, 22], JSAI [13], and TAJS [11, 2, 26]. Although we focus on
TAJS, the designs of SAFE and JSAI are reasonably similar, so we believe value partitioning
could also be incorporated into those tools with little effort.

As discussed in the introduction, much work has been put into improving precision of the
analyses through different kinds of context sensitivity and elaborate abstract domains. The
techniques include parameter sensitivity and heap context sensitivity [2], loop unrolling [22],

20 In our experiments, 99.4% of all abstract values have the trivial {any} partitioning.
21This was shown experimentally in the work on TAJSVR [26, Section 7.1].

ECOOP 2020

16:26 Value Partitioning

and syntactic patterns for detecting correlated read/write pairs and guiding context sensi-
tivity [25]. Other works have explored more expressive string abstractions to reason more
precisely about property names in dynamic property accesses [18, 1, 21]. Our abstract domain
extension for value partitioning has few assumptions about the underlying abstract domain,
so most of these techniques can be combined with value partitioning.

Despite such precision improvement techniques, imprecision is inevitable, and only a few
techniques have been designed to handle dynamic property accesses with imprecise property
names, most importantly, CompAbs-style trace partitioning [16] and demand-driven value
refinement [26]. Previous work has shown that demand-driven value refinement enables
analysis of many more challenging benchmarks than CompAbs-style trace partitioning (as
also discussed in Section 6), and that the trace partitioning approach causes a large amount
of redundant computation [26, Section 7.1]. The fundamental drawback of demand-driven
value refinement is that it requires a separate backwards abstract interpreter for not only the
entire JavaScript language but also the standard library. The backwards abstract interpreter
of TAJSVR is not simply the dual of TAJS but works goal-directed and with its own abstract
domain based on intuitionistic separation logic. In contrast, value partitioning directly
leverages the existing forward analyzer and thereby supports both the JavaScript language
and the standard library essentially for free, which makes this approach substantially easier
to develop and maintain. Furthermore, value partitioning is more general (for example, it
enables type partitioning), and the three instantiations we have presented lead to better
precision (for the Lodash4 tests).

The HOO (heap with open objects) abstract domain [9] is a relational abstraction that is
designed to reason more precisely about abstract objects whose properties cannot be known
statically. That approach is highly expressive but not scalable to real-world JavaScript
libraries as those considered in Section 6.

8 Conclusion

We have presented value partitioning, a static analysis technique for reasoning about relational
properties. It is a lightweight alternative to traditional trace partitioning techniques that
allows relational information to be incorporated into the abstract values instead of requiring
separate abstract states for the partitions. We have proposed three instantiations of value
partitioning in JavaScript analysis: property name partitioning, free variable partitioning,
and type partitioning, which enable precise reasoning for dynamic read/write pairs, free
variables, and predicate functions, respectively.

The experimental results show that extending the TAJS analyzer with the three variants
of value partitioning enables precise and efficient analysis of complex JavaScript libraries
including Lodash and Underscore, thereby outperforming a state-of-the-art technique that
relies on trace partitioning and without requiring a complicated backwards analysis. For the
libraries considered in this study, property name partitioning has the largest effect among
the proposed variants.

An interesting direction for future research is to investigate whether some of the traditional
context sensitivity strategies used in TAJS and other JavaScript analyzers can be reformulated
as new value partitioning instantiations, to make analysis faster while retaining precision.

B.B. Nielsen and A. Møller 16:27

References
1 Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter Schachte,

Harald Søndergaard, Peter J. Stuckey, and Chenyi Zhang. Combining string abstract domains
for JavaScript analysis: An evaluation. In Tools and Algorithms for the Construction and
Analysis of Systems - 23rd International Conference, TACAS 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings, Part I, volume 10205 of Lecture Notes in Computer
Science, pages 41–57, 2017.

2 Esben Andreasen and Anders Møller. Determinacy in static analysis for jQuery. In Proc. ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
pages 17–31, 2014.

3 Esben Sparre Andreasen, Anders Møller, and Benjamin Barslev Nielsen. Systematic approaches
for increasing soundness and precision of static analyzers. In Proceedings of the 6th ACM
SIGPLAN International Workshop on State Of the Art in Program Analysis, SOAP@PLDI
2017, Barcelona, Spain, June 18, 2017, pages 31–36, 2017.

4 Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine
Miné, David Monniaux, and Xavier Rival. A static analyzer for large safety-critical software.
In Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation 2003, San Diego, California, USA, June 9-11, 2003, pages 196–207. ACM,
2003.

5 Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Compositional
shape analysis by means of bi-abduction. J. ACM, 58(6):26:1–26:66, 2011.

6 David R. Chase, Mark N. Wegman, and F. Kenneth Zadeck. Analysis of pointers and structures.
In Proceedings of the ACM SIGPLAN’90 Conference on Programming Language Design and
Implementation (PLDI), White Plains, New York, USA, June 20-22, 1990, pages 296–310.
ACM, 1990.

7 Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of the 4th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL ’77,
pages 238–252, New York, NY, USA, 1977. ACM.

8 Patrick Cousot and Radhia Cousot. Modular static program analysis. In Compiler Construction,
11th International Conference, CC 2002, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2002, Grenoble, France, April 8-12, 2002, Proceedings,
volume 2304 of Lecture Notes in Computer Science, pages 159–178. Springer, 2002.

9 Arlen Cox, Bor-Yuh Evan Chang, and Xavier Rival. Automatic analysis of open objects in
dynamic language programs. In Static Analysis - 21st International Symposium, SAS 2014,
Munich, Germany, September 11-13, 2014. Proceedings, pages 134–150, 2014.

10 Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. Typing local control and state
using flow analysis. In Programming Languages and Systems - 20th European Symposium
on Programming, ESOP 2011, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011.
Proceedings, volume 6602 of Lecture Notes in Computer Science, pages 256–275. Springer,
2011.

11 Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for JavaScript. In
Proc. 16th International Static Analysis Symposium, pages 238–255, 2009.

12 John B. Kam and Jeffrey D. Ullman. Monotone data flow analysis frameworks. Acta Inf.,
7(3):305–317, September 1977.

13 Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons, John
Sarracino, Ben Wiedermann, and Ben Hardekopf. JSAI: a static analysis platform for
JavaScript. In Proc. 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 121–132, 2014.

ECOOP 2020

16:28 Value Partitioning

14 Vineeth Kashyap, John Sarracino, John Wagner, Ben Wiedermann, and Ben Hardekopf. Type
refinement for static analysis of JavaScript. In DLS’13, Proceedings of the 9th Symposium
on Dynamic Languages, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013,
pages 17–26. ACM, 2013.

15 Gary A. Kildall. A unified approach to global program optimization. In Conference Record of
the ACM Symposium on Principles of Programming Languages, Boston, Massachusetts, USA,
October 1973, pages 194–206. ACM Press, 1973.

16 Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. Weakly sensitive analysis for JavaScript
object-manipulating programs. Softw., Pract. Exper., 49(5):840–884, 2019.

17 Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung Ryu. SAFE: formal
specification and implementation of a scalable analysis framework for ECMAScript. In Proc.
International Workshop on Foundations of Object Oriented Languages, 2012.

18 Magnus Madsen and Esben Andreasen. String analysis for dynamic field access. In Proc.
23rd International Conference on Compiler Construction, volume 8409 of Lecture Notes in
Computer Science. Springer, 2014.

19 Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,
19(1):31–100, 2006.

20 Erik M. Nystrom, Hong-Seok Kim, and Wen-mei W. Hwu. Importance of heap specialization in
pointer analysis. In Proceedings of the 2004 ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis For Software Tools and Engineering, PASTE’04, Washington, DC, USA, June 7-8,
2004, pages 43–48. ACM, 2004.

21 Changhee Park, Hyeonseung Im, and Sukyoung Ryu. Precise and scalable static analysis of
jquery using a regular expression domain. In Proceedings of the 12th Symposium on Dynamic
Languages, DLS 2016, pages 25–36, New York, NY, USA, 2016. ACM.

22 Changhee Park and Sukyoung Ryu. Scalable and precise static analysis of JavaScript applica-
tions via loop-sensitivity. In Proc. 29th European Conference on Object-Oriented Programming,
pages 735–756, 2015.

23 Xavier Rival and Laurent Mauborgne. The trace partitioning abstract domain. ACM Trans.
Program. Lang. Syst., 29(5), August 2007.

24 Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. Dynamic determinacy analysis.
In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’13, Seattle, WA, USA, June 16-19, 2013, pages 165–174. ACM, 2013.

25 Manu Sridharan, Julian Dolby, Satish Chandra, Max Schäfer, and Frank Tip. Correlation
tracking for points-to analysis of JavaScript. In Proc. 26th European Conference on Object-
Oriented Programming, 2012.

26 Benno Stein, Benjamin Barslev Nielsen, Bor-Yuh Evan Chang, and Anders Møller. Static
analysis with demand-driven value refinement. Proceedings of the ACM on Programming
Languages (PACMPL), 3:140:1–140:29, 2019.

27 Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional branches.
ACM Trans. Program. Lang. Syst., 13(2):181–210, 1991.

28 Shiyi Wei, Omer Tripp, Barbara G. Ryder, and Julian Dolby. Revamping JavaScript static
analysis via localization and remediation of root causes of imprecision. In Proceedings of the
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2016, Seattle, WA, USA, November 13-18, 2016, pages 487–498. ACM, 2016.

Static Type Analysis by Abstract Interpretation of
Python Programs
Raphaël Monat
Sorbonne Université, CNRS, LIP6, Paris, France
raphael.monat@lip6.fr

Abdelraouf Ouadjaout
Sorbonne Université, CNRS, LIP6, Paris, France
abdelraouf.ouadjaout@lip6.fr

Antoine Miné
Sorbonne Université, CNRS, LIP6, Paris, France
Institut Universitaire de France, Paris, France
antoine.mine@lip6.fr

Abstract

Python is an increasingly popular dynamic programming language, particularly used in the scientific
community and well-known for its powerful and permissive high-level syntax. Our work aims at
detecting statically and automatically type errors. As these type errors are exceptions that can
be caught later on, we precisely track all exceptions (raised or caught). We designed a static
analysis by abstract interpretation able to infer the possible types of variables, taking into account
the full control-flow. It handles both typing paradigms used in Python, nominal and structural,
supports Python’s object model, introspection operators allowing dynamic type testing, dynamic
attribute addition, as well as exception handling. We present a flow- and context-sensitive analysis
with special domains to support containers (such as lists) and infer type equalities (allowing it to
express parametric polymorphism). The analysis is soundly derived by abstract interpretation from
a concrete semantics of Python developed by Fromherz et al. Our analysis is designed in a modular
way as a set of domains abstracting a concrete collecting semantics. It has been implemented into
the MOPSA analysis framework, and leverages external type annotations from the Typeshed project
to support the vast standard library. We show that it scales to benchmarks a few thousand lines
long, and preliminary results show it is able to analyze a small real-life command-line utility called
PathPicker. Compared to previous work, it is sound, while it keeps similar efficiency and precision.

2012 ACM Subject Classification Theory of computation → Program analysis; Software and its
engineering → Semantics

Keywords and phrases Formal Methods, Static Analysis, Abstract Interpretation, Type Analysis,
Dynamic Programming Language, Python Semantics

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.17

Supplementary Material ECOOP 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.2.11.

Funding This work is partially supported by the European Research Council under Consolidator
Grant Agreement 681393 – Mopsa.

Acknowledgements We thank the anonymous reviewers for their valuable comments and feedback.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 17; pp. 17:1–17:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8487-0326
mailto:raphael.monat@lip6.fr
https://orcid.org/0000-0001-7248-5914
mailto:abdelraouf.ouadjaout@lip6.fr
https://orcid.org/0000-0002-6375-3179
mailto:antoine.mine@lip6.fr
https://doi.org/10.4230/LIPIcs.ECOOP.2020.17
https://doi.org/10.4230/DARTS.6.2.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Static Type Analysis by Abstract Interpretation of Python Programs

1 Introduction

Sound static analyses for static languages, such as C and Java, are now widespread [5, 25,
11, 10, 33]. They have been particularly successful in the verification of critical embedded
software, which use a subset of C and preclude complex control flow and dynamic memory
allocation. The sound, efficient, and precise analysis of more dynamic languages and program
traits remains a challenge.

Dynamic programming languages, such as JavaScript and Python, have become in-
creasingly popular over the last years. Python currently ranks as the second most used
programming language on Github.1 It is appreciated for its powerful and permissive high-level
syntax, e.g., it allows programmers to redefine all operators (addition, field access, etc.) in
custom classes, and comes equipped with a vast standard library. Python is a highly dynamic
language. It notably features:
1. Dynamic typing: variables in Python are neither statically declared nor typed. Any

variable can hold a value of any type, and the type of the value held may change during
program execution.

2. Introspection: programs can inspect the type of variables at run-time to alter their
execution. Operators exist to support both nominal and structural types. Firstly,
isinstance(o, cls) checks whether o has been instantiated from class cls, or a
class inheriting from cls. For example, isinstance("a", str) returns True, while
isinstance(object(), str) returns False. Secondly, hasattr(o, attr) checks whe-
ther o (or its class, or one of its parent class) has an attribute with name equal to the
attr string. For instance, hasattr(42, "__add__") returns True because int, the class
of 42, has an addition method, named "__add__". This kind of structural typing is
so-called “duck typing”. Python classes are first-class objects and can be stored into
variables.

3. Self-modification: the structure of Python objects can be altered at run-time. For instance,
it is possible to add attributes to an object or class at run-time, or remove them. It is
also possible to create new classes at run-time.

4. Eval: it is possible to evaluate arbitrary string expressions as Python code at run-time
with eval statements.

Due to dynamic typing (point 1), type errors are detected at run-time and cause TypeError
exceptions, whereas such errors would be caught at compile time in a statically typed
language. In this article, we propose a static analysis to infer type information, and use this
information to detect all exceptions that can be raised and not caught. Our type analysis
is flow-sensitive, to take into account the fact that variable types evolve during program
execution and, conversely, run-time type information is used to alter the control-flow of the
program, either through introspection or method and operator overloading (points 2 and
3). Moreover, it is context-sensitive as, without any type information on method entry, it is
not possible to infer its control flow at all. However, handling eval is left as future work
(possibly leveraging ideas proposed by [17] on JavaScript).

Motivating Example. Consider the code from Fig. 1 (where * stands for a non-deterministic
boolean). It defines a function fspath, taken from the standard library, with a parameter
p as input. If p is an object instantiated from a class inheriting from str or bytes, it is
returned. Otherwise, the function searches for an attribute called fspath, and calls it as a

1 https://octoverse.github.com/#top-languages

https://octoverse.github.com/#top-languages

R. Monat, A. Ouadjaout, and A. Miné 17:3

1 def fspath(p):
2 sb = (str, bytes)
3 if isinstance(p, sb):
4 return p
5 if hasattr(p, "fspath"):
6 r = p.fspath()
7 if isinstance(r, sb):
8 return r
9 else: raise TypeError

10 else: raise TypeError
11

12 class Path:
13 def fspath(self):
14 return 42
15

16 if *: p = "/dev"
17 else: p = Path()
18 r = fspath(p)

Figure 1 Motivating example.

method. If the return type is not an instance of str or bytes, an exception is raised. Thus,
when fspath does not raise an error, it takes as input an instance of str or bytes, or an
object having a method fspath returning either a string or a bytes-based string. In all cases,
the return type of fspath is either str or bytes.

We model correct and erroneous calls to fspath in lines 12 to 18. In particular, we define
a Path class, having a method fspath returning an integer, hence, a call to function fspath
on an instance of Path would raise a TypeError. Our analysis is able to infer that, at the
end of line 16, p is a string, and that at line 17, p is an instance of the Path class, which has
a field fspath that can be called. It finds that, either r is a string, or a TypeError is raised.

As it is part of the standard library, the fspath function is particularly well-behaved:
it does not make many implicit assumptions on the argument type (only that p.fspath is
callable), but instead uses type information to handle different cases in different program
branches. Nevertheless, the context is important to infer whether a specific call to fspath
can raise a TypeError or not. A more typical Python programmer might replace lines 5 to
10 with a call to return p.fspath(), leaving implicit the fact that p should have a method
fspath returning str or bytes chains. This is summarized in one of Python motos: “easier
to ask for forgiveness than permission”. Our analysis would correctly infer that invalid calls
to that modified function would raise an AttributeError exception.

Static Analysis of Python. The sound analysis of Python programs is particularly challen-
ging as it is a large and complex language. Python is not defined by a standard (formal or
informal), but by its reference implementation, CPython. Fromherz et al. [13] introduced
formally a concrete collecting semantics defined by structural induction on programs as
a function manipulating reachable program states. We rely on a slight extension of this
semantics. We then build a computable static analysis by abstract interpretation [9]. While
[13] presented a value-analysis (employing in particular numeric domains), we introduce
a more abstract analysis that only reasons on Python types. Similarly to [13], it tracks
precisely the control-flow, including the flows of exceptions. We believe (and our preliminary
experiments support) that flow-sensitive, context-sensitive type analysis for Python achieves
a sweet-spot in term of efficiency versus usefulness. We believe that this level of precision is
both necessary and, in practice, sufficient to infer the type-directed control flow (such as
type testing or method dispatch) and infer exception propagation. Although our abstract
domain tracks types precisely (including nominal types and attributes), it is nevertheless
more scalable than a value analysis.

ECOOP 2020

17:4 Static Type Analysis by Abstract Interpretation of Python Programs

Relationship with Typing. It is worth comparing our approach with classic typing. Statically
typed languages ensure the absence of type-related errors through static type checking,
possibly augmented with automatic type inference. However, while static typing rejects
untypable programs, our analysis gives a semantics to such programs by propagating type
errors as exceptions. This is important in order to support programs that perform run-time
type errors and catch them afterwards, which is common-place in Python. Indeed, our goal
is not to enforce a stricter, easier to check, way to program in Python,2 but rather to check
as-is programs with no uncaught exceptions. Secondly, static type checking is generally
flow-insensitive and context-insensitive, trying to associate a unique type to each variable
throughout program executions, while we use a flow- and context-sensitive analysis. Following
classic abstract interpreters [5], our analysis is performed by structural induction on the
syntax, starting from a main entry point. It is thus unable to analyze functions in isolation.
While this kind of modularity is a highlight of typing algorithms, we believe that it is not well
suited to Python. Consider, for instance, that a call to a function can alter the value, and so
the type, of a global variable, which is difficult to express in a type system. Moreover, even a
simple function, such as def f(a, b): return a + b, has an unpredictable effect as the
+ operator can be overloaded to an arbitrary method by the programmer. We view type
analysis as an instance of abstract interpretation, one which is slightly more abstract than
classic value analysis. This view is not novel: [8] reconstructs Hindley-Milner typing rules
as an abstract interpretation of the concrete semantics of the lambda calculus. One benefit
of this unified view is the possibility to incorporate, in future work, some amount of value
analysis through reduction. For instance, our analysis currently considers, to be sound, that
any division can raise a ZeroDivError, which could be ruled out by a simple integer analysis.
Finally, the correctness proof of our analysis is derived through a soundness theorem linking
the concrete and the abstract semantics, in classic abstract interpretation form, and not by
subject reduction. Both our analysis and type systems are conservative, but we replace the
motto “well-typed programs cannot go wrong” with a guaranteed over-approximation of the
possible (correct and incorrect) behaviors of the program.

Contributions. Our contributions are as follow:
We present a sound static type analysis by abstract interpretation that handles most
of Python constructions. Compared to classic analyses targetting static languages, we
believe the uniqueness and precision lies in the combination of domains, allowing the
analyzer to soundly know both nominal and structural types of manipulated objects, as
well as the raised exceptions.
Our analysis is based on several abstract domains that are combined together in a reduced
product. A first, non-relational domain tracks for each variable the set of its possible
types. A second domain infers type equalities between variables, which can achieve a
form of parametric polymorphism. A third domain analyzes containers (such as lists).
We provide concretization functions for our domains as well as selected transfer functions
(for the sake of concision). We use the concretization-only setting of abstract interpretation
to define how our analysis is sound with respect to a concrete semantics based on [13].
Compared to previous work on dynamic languages, the formalization of the concretization
functions parameterized by the recency abstraction is novel.

2 In practice, we are nevertheless limited to programs that do not use eval.

R. Monat, A. Ouadjaout, and A. Miné 17:5

We have implemented our analysis modularly within the Mopsa framework [20], and
showed that it can analyze real-world benchmarks with few false alarms and reasonable
efficiency, using the non-relational analysis. Moreover, we have shown that it performs
better than existing Python type analyses, and can handle soundly program traits that
they cannot, including introspection and exception handling.
In order for our analysis to scale, our analyzer is able to read stub files containing Pythonic
type annotations. We reused the Typeshed project [37], containing annotations of the
standard library. We analyze a small (3kLOC) real-life utility called PathPicker [43] using
more than 12 modules from the standard library.

Limitations. The two current limitations to the scalability of our approach are the standard
library support, and the interprocedural analysis. The standard library is huge, and while
some parts are written in Python others are written in C. We currently leverage the
type annotations from Typeshed to support the standard library. We support most, but
currently not all these annotations, and we add new Typeshed stub files when needed. The
interprocedural analysis is based on inlining, which is costly but precise. It is improved with
a cache in Section 6.2, and a more efficient interprocedural analysis is left as future work.
The smashing-based abstraction of containers, combined with no information on the length of
those containers creates spurious alarms. For example, in order to be sound, each list access
raises an invalid access exception IndexError. The language support is wide enough to scale
to programs a few thousand lines long, but still not complete. The analyzer does not support
recursive functions for now, but the implementation would not be technically difficult (as
loops and dynamic allocation are supported, respectively using a usual accelerated fixpoint
computation – see Fig. 6 in [13] – and a recency abstraction [3]). It however detects recursive
calls and stops at that point. Recursion is not used a lot in Python. In particular, there is no
tail-call optimization, and the default recursion stack has depth 1000. Similarly, metaclasses
are not supported but should not be technically difficult to implement. The super class and
arbitrary code evaluation using eval are not supported. The latter feature is less used than
in JavaScript (we never encountered it in our benchmarks), and solutions exist [17]. We
could reuse [13] to handle generators. Asynchronous operators are not supported either [32].

Outline. Section 2 starts by recalling and slightly improving on the formalization of Python
semantics from Fromherz et al. [13]. Section 3 then presents a non-relational static type
analysis. A relational type equality domain refines the previous analysis in Section 4.
Section 5 presents the analysis of containers, with the example of lists. Section 6 discusses
our implementation and presents experimental results. Section 7 discusses related works and
Section 8 concludes.

2 Concrete Semantics of Python

We first discuss the concrete semantics of Python, as our static analysis is stated as a sound
abstract interpretation of this semantics. This semantics is the implementation of Python’s
official interpreter, CPython (we focus on Python 3.7). It is thus not standardized nor
formally defined. We rely on the reference manual and use CPython’s behavior and source
code as an oracle in case of doubt. We use a slight evolution of the semantics proposed in
[13], where we have adapted the semantics to get closer to the real Python language: while
builtin objects, such as integers, were considered as primitive values, they are now objects
allocated on the heap, which allows the creation of classes inheriting from builtin classes.
We start by defining the memory state on which a Python program acts, and then describe a
few parts of the concrete semantics of Python.

ECOOP 2020

17:6 Static Type Analysis by Abstract Interpretation of Python Programs

Id ⊆ string

E def= Id ⇀ Addr ∪ LocalErr

H def= Addr ⇀ ObjN×ObjS

F def= { cur , ret, brk,
cont, exn a, a ∈ Addr }

Addr def= Location× N

ObjN def= int(a ∈ Addr, i ∈ Z) ∪ bool(b)
∪ string(a, s ∈ string) ∪ None ∪ NotImpl
∪ List(a, ls), ls ∈ Addr∗ ∪Method(a, f)
∪ Fun(f) ∪Class(c) ∪ Instance(a ∈ Addr)

ObjS def= string ⇀ Addr

Figure 2 Concrete semantic domains.

2.1 Concrete Semantic Domain

The memory state consists in two parts: the environment E and the heap H, defined in Fig.
2. The environment E is a partial, finite map from variable identifiers Id to addresses Addr.
The set Addr of heap addresses is infinite. To simplify the definition of our semantics and its
abstraction, we assume that, up to isomorphism, Addr has the form Location× N where
Location is the set of program locations (in the following, a line number). We use the
notation @(l, n) ∈ Addr to designate unambiguously the n-th address allocated at program
location l. Due to scoping rules in Python, local variables may be locally undefined. We
denote this using an additional value for local variables, called LocalErr, as using such
undefined variables results in an UnboundLocalError exception. The heap H maps addresses
to objects defined by their nominal and structural information. The nominal part gives
the class and the value of the object, while the structural one gives for each attribute its
allocation address.

Although everything is object in Python, we distinguish builtin objects from the other
ones. Primitive objects include integers, strings, booleans, None, NotImpl and lists (storing
the addresses of each of its elements). Other containers such as dictionaries, sets, and tuples
are handled similarly. These builtin objects are kept separate from the user-defined classes
as their implementation uses low-level fields only accessible by CPython, which are hidden
by the semantics. Some builtin objects (integers, strings, and lists only) depend on an
address, being the class from which they are instantiated. This allows to handle classes
inheriting from builtins: for example, if A inherits from the int class, A(10) is represented
as int(@, 10), where @ points to the class of A. This behavior was not expressible in the
previous concrete semantics [13]. In the following, the notation int(10) denotes int(@, 10),
where @ points to the class of integers (which happen in most cases), and similarly for other
builtin objects. Methods bind an instance address and a function. Instances are defined by
the address of the class from which they are instantiated. Classes and functions are also
objects (we do not detail their inner structure). Concerning the structural part, a finite
number of attributes may be added to classes, functions, and instances, so we additionally
keep a map from attribute names to addresses for those objects.

Environment and Heap Example. Consider the code of Fig. 3. We start from an initial,
empty state (∅, ∅), and show how the state of the environment e and heap h are extended
after each step in Fig. 4. After the class declaration at lines 1 to 5, the identifier A refers to
the eponymous class, which is allocated at line 1, and is the first allocated object there, hence
it has the address @(1, 0). The instance of A created at line 6 has an attribute val being

R. Monat, A. Ouadjaout, and A. Miné 17:7

1 class A:
2 def __init__(self):
3 self.update(0)
4 def update(self, x):
5 self.val = x * 2

6 x = A()
7 y = x.val
8 z = x
9 z.update('a')

10 if *: x.atr= 'b'

Figure 3 Mutating objects: an example.

Line e ∈ E h ∈ H
5 A 7→ @(1, 0) @(1, 0) 7→ (Class A, {__init__ 7→ @(2, 0), update 7→ @(4, 0) })

@(2, 0) 7→ (Fun(__init__), ∅),@(4, 0) 7→ (Fun(__update__), ∅)
6 x 7→ @(6, 0) @(6, 0) 7→ (Instance @(1, 0), val 7→ @(5, 0))

@(5, 0) 7→ (int 0, ∅)
7 y 7→ @(5, 0)
8 z 7→ @(6, 0)
9 @(6, 0) 7→ (Instance @(1, 0),val 7→ @(5, 1))

@(5, 1) 7→ (string ′aa′, ∅)
10 Two possible heaps: either the heap from line 9, or:

@(6, 0) 7→ (Instance @(1, 0), val 7→ @(5, 1), atr 7→ @(10, 0))
@(10, 0) 7→ (string ′b′, ∅)

Figure 4 Mutating objects example: state evolution.

the integer 0; it is created during the initialization of the class. After line 8, y maps to the
integer stored in the field x of the instance of A. As z points to the same instance of A as x,
we only need to add a binding between z and the instance’s address. At line 9, the instance
is updated using a method call, and the field val now maps to the string ’aa’. After line 10,
we have two possible heaps, depending on the non-deterministic choice *: either the previous
heap, or a heap extended to add atr to the instance of A.

Flow tokens. Following [13], we present our semantic as a function from a set of states in
precondition to a set of states in postcondition by induction on the program syntax. To
provide a semantics for operations that do not return immediately, such as raise, we use
continuations: we label states using flow tokens (elements of F), so the states we consider are
in P(F × E ×H). Flow token cur represents the current flow on which all instructions that
do not disrupt the control flow operate (e.g., assignments, but not raise or return). ret
collects the set of states given by a return statement, while brk, cont, exn perform similar
collections for the break, continue, raise statements, respectively. Each exception will be
kept in a separate flow, so exn is indexed by the address of the exception object.

2.2 Semantics of Expressions and Statements
We denote by EJ e K the semantics of expression e. This semantics has the following signature:
EJ e K : F × E × H → F × E × H × (Addr ∪ {⊥}), so EJ e K returns the address where
the object associated with e is stored in the heap (or ⊥ if an exception is raised and
no address is returned). The semantics of statements is written SJ s K and has signature:
F × E ×H → F × E ×H. We do not describe the whole semantics of Python: we cover a
few cases that are of interest for the upcoming type analysis; some other cases are described
in [13] (the addition operator, conditionals, while loops and generators).

ECOOP 2020

17:8 Static Type Analysis by Abstract Interpretation of Python Programs

EJ id K (f, e, h) def=
if f 6= cur then (f, e, h),⊥ else
if id 6∈ dom e then SJ raise NameError K (f, e, h),⊥ else
if e(id) = LocalErr then SJ raise UnboundLocalError K (f, e, h),⊥ else
(f, e, h), e(id)

SJ id = e K (f, e, h) def=
let (f, e, h),@ = EJ e K (f, e, h) in
if f 6= cur then (f, e, h) else (cur , e[id 7→ @], h)

Figure 5 Concrete semantics of variable evaluation and assignment.

Variable Evaluation and Assignment. We define the semantics of variable evaluation and
assignment in Fig. 5. To evaluate a variable identifier given an input state, we first check that
the flow token is cur : otherwise, the state is returned with ⊥ instead of an address. Then,
two errors may happen: if the variable is not defined in the program at all, a NameError
is raised. If the variable is not defined in the current scope but defined somewhere else in
the program, an UnboundLocalError is raised. Otherwise, the variable is evaluated into an
address, and both the state and the address are returned.

To assign e to id, Python first starts by evaluating e: if other flows are created – for
example if an exception is raised during the evaluation – they are just returned, and the
assignment takes place only in the current flow. As most of the time, we want to update only
the current flow, we introduce the following notation “letcur (f, e, h),@ = e1 in e2” which
unfolds into “let (f, e, h),@ = e1 in if f 6= cur then (f, e, h),@ else e2”.

Semantics of Attribute Accesses. We show how to access attribute s of expression e

in Fig. 6. This is a formalization of one of Python’s complex behaviors, shown here to
illustrate the complexity of the language. e.s dispatches the attribute access to a method
being either __getattribute__ or __getattr__. The first method call usually ends up
being object.__getattribute__. It can be overloaded by any class, which is suppor-
ted in our implementation, but not very common, so we describe only the semantics of
object.__getattribute__.

To evaluate object.__getattribute__(e, s), we start by evaluating both e and s, which
return object addresses: respectively @e and @s. If s is not a string, a type error is raised.
Then, we search for s in the parents class3 of the allocated object h(@e) using the function
mrosearch (which takes as input a class and a string, and returns a parent class of the input,
or ⊥ if the search is unsuccessful). The function type returns the class from which the object
given in argument has been instantiated. If no class is found, we search for the attribute in
the object only, using the low-level has_field and get_field operators. get_field is a low-level
version of attribute access: it searches for the field locally, in the object structure, but it will
not recursively search in the object’s class (nor its parents). It takes as input an object and

3 Actually, we search for s in the MRO of h(@e). The MRO of a class c is a list of classes from which c
inherits, starting from its closest parents, to its most ancient one (usually, object). Even if multiple
inheritances induce a direct acyclic graph, the inheritance relationship is linearized (using the algorithm
described in [4]).

R. Monat, A. Ouadjaout, and A. Miné 17:9

EJ object.__getattribute__(e, s) K (f, e, h) def=
letcur (f, e, h),@e = EJ e K (f, e, h) in
letcur (f, e, h),@s = EJ s K (f, e, h) in
if isinstance(h(@s), str) then
let string s = h(@s) in
let c = mrosearch(type(h(@e)), s) in
if c 6= ⊥ then

let cs = h(get_field(c, s)) in
if has_field(cs, ”__get__”) ∧ has_field(cs, ”__set__”) then

EJ get_field(cs, ”__get__”)(cs, h(@e), type(h(@e))) K (f, e, h)
else if has_field(h(@e), s) then EJ get_field(h(@e), s) K (f, e, h)
else EJ get_field(c, s) K (f, e, h)

else if has_field(h(@e), s) then EJ get_field(h(@e), s) K (f, e, h)
else SJ raise AttributeError K (f, e, h),⊥

else SJ raise TypeError K (f, e, h),⊥

Figure 6 Concrete semantics of attribute access.

a string and returns the address of the field defined by its arguments. Similarly, has_field
checks for the presence of a field at the object structure only (contrary to hasattr). If a
class c is found, let us denote by cs the object corresponding to the access of s in c. If cs is a
data descriptor (meaning it has fields __get__ and __set__), the result is the evaluation of
cs’s __get__ method. Otherwise, we return the attribute at e’s level (if it exists), or at c’s
level otherwise.

Semantics of Exceptions. Finally, we showcase the use of multiple flows by defining the
semantics of exceptions in Fig. 7. To raise an expression e, we evaluate e and check that it
is an instance of the BaseException class. In that case, we change the flow token to exn,
parameterized by the evaluation of e, and return the environment and heap. If not, we
raise a type error. Now, let us consider the exception-catching mechanism. It behaves as
follow: tbody is evaluated; if no exception is raised the evaluation is finished. Otherwise, if
an exception (stored at address @raised) is raised during this evaluation, we evaluate exn: if
it is an exception (i.e, if it inherits from BaseException), and if the raised exception is an
instance of exn, we evaluate texc, where the variable v is now bound to the raised exception
(until the end of the evaluation of texc). Otherwise, we let the exception escape this control
block.

3 A Non-relational Static Type Analysis

We present a non-relational type abstraction of Python semantics. The abstraction can infer
the nominal and structural types of Python values in a flow-sensitive way, i.e., the types of a
variable can vary from one program location to another. It is context-sensitive, supports
object mutability and aliasing. For concision, we limit here the presentation to atomic types,
such as numbers, strings and instances of user-defined classes. This abstraction will be
completed with a type relation analysis in Section 4, and extended to containers in Section 5.

ECOOP 2020

17:10 Static Type Analysis by Abstract Interpretation of Python Programs

SJ raise e K (f, e, h) =
letcur (f, e, h,@) = EJ e() K (f, e, h) in
if isinstance(h(@), BaseException) then (exn @, e, h)
else SJ raise TypeError K (f, e, h)

SJ try : tbody except exn as v : texc K (f, e, h) =
let (f, e, h) = SJ tbody K (f, e, h) in
if f 6= exn _ then (f, e, h)
else let exn @raised = f in

letcur (f, e, h),@exn = EJ exn K (cur , e, h) in
if ¬issubclass(h(@exn), BaseException) then

SJ raise TypeError K (cur , e, h)
else if isinstance(h(@raised), h(@exn)) then
let (f, e, h) = SJ texc K (cur , e[v 7→ @raised], h) in (f, e \ { v }, h)

else (f, e, h)

Figure 7 Concrete semantics of exceptions.

3.1 Abstract Domain
The structure of the abstract domain D] is defined in Fig. 8, along with the concretization
functions, giving concrete meaning to the abstract states in Fig. 9. It is decomposed into
three parts: a recency abstraction of allocated addresses, an environment abstraction, and a
heap abstraction, all explained below. The example from the concrete semantics section is
revisited in Sec. 3.2.

Recency Abstraction. To over-approximate a set of concrete addresses, we use a recency
abstraction, as introduced in [3]. This abstraction maintains two kinds of information
about allocated addresses. Firstly, the allocation site is preserved in order to distinguish
between allocations at different program locations. Secondly, allocations at a same location
l ∈ Location are partitioned into two abstract addresses via a recency criterion: the most
recent allocation is represented with the abstract address @](l, r), while all the previous
ones are abstracted by a unique abstract address @](l,o). The concretization function
γrecency takes as input the set of abstract addresses currently defined (ρ ∈ P(Addr])), and
yields a set of address abstraction functions, giving concrete meaning to abstract addresses,
satisfying the conditions mentioned above. As addresses play an important part in every part
of the abstract states, the other concretization operators are parameterized by an address
abstraction αAddr; we denote this parameterization with the following notation: γ[αAddr].

The allocation of a new abstract address is handled by the auxiliary function alloc_addr:

E#J alloc_addr(l) K (ϕ, ρ ∈ P(Addr]), ε, η) =

if @](l, r) ∈ ρ then @](l, r),S#J @](l,o) weak= @](l, r) K(ϕ, ρ, ε, η)
else @](l, r), (ϕ, ρ ∪ {@](l, r) }, ε, η)

R. Monat, A. Ouadjaout, and A. Miné 17:11

Addr] def= Location× { r,o }

F] def= { cur , ret, brk, cont, exn @],

@] ∈ Addr] }

E] def= Id ⇀ P(Addr] ∪ { LocalErr })

H] def= Addr] ⇀ P(ObjN] ×ObjS])

D] def= F] ⇀ (P(Addr])× E] ×H])

ObjN] def= AInt(a) ∪AStr(a)
∪AMethod(a, f)
∪AClass(c) ∪AFun(f)
∪AInst(a), a ∈ Addr]

ObjS] def= {>} ∪(
P(string)× (string ⇀ Addr])

)
Figure 8 Definition of abstract states.

γrecency(ρ ∈ P(Addr])) = {αAddr : Addr ⇀ Addr] |(
@](l, o) ∈ ρ =⇒ ∃m ∈ N,∀i ≤ m,αAddr(@(l, i)) = @](l, o)

)
∧(

@](l, r) ∈ ρ =⇒ ∃n ∈ N,
(
α−1

Addr(@](l, r)) = {@(l, n) }
∧ n = 1 + max{ i | αAddr(@(l, i)) = @](l, o) }

))
}

γE [αAddr](ε ∈ E]) = { e ∈ E | ∀v ∈ dom ε, αAddr(e(v)) ∈ ε(v)
∨ LocalErr ∈ ε(v) =⇒ e(id) = LocalErr }

γObjN[αAddr](AInt(@])) = { int(@, i) | i ∈ Z, αAddr(@) = @] }
γObjN[αAddr](AStr(@])) = { string(@, s) | s ∈ P(str), αAddr(@) = @] }
γObjN[αAddr](AMethod(@], f)) = {Method(@, f) | αAddr(@) = @] }
γObjN[αAddr](AClass(c)) = {Class(c) }
γObjN[αAddr](AFun(f)) = {Fun(f) }
γObjN[αAddr](AInst(@])) = { Instance(@) | αAddr(@) = @] }

γObjS[αAddr](µ ∈ P(string), f] ∈ string ⇀ Addr]) = { f ∈ ObjS = string ⇀ Addr |
µ ⊆ dom f ⊆ dom f] ∧ ∀s ∈ dom f, αAddr(f(s)) = f](s) }

γObjS[αAddr](>) = ObjS

γH[αAddr](η ∈ H]) = {h ∈ H | ∀@ ∈ dom αAddr, h(@) = (n, s)
∧
(
∃(n], s]) ∈ η(αAddr(@)), n ∈ γObjN[αAddr](n]) ∧ s ∈ γObjS[αAddr](s])

)
}

γF [αAddr](exn @]) = { exn @ | αAddr(@) = @] }
γF [αAddr](f ∈ F], f 6= exn _) = { f }

γ(ϕ ∈ F], (ρ ∈ P(Addr]), ε ∈ E], η ∈ H])) = { (f, e, h) ∈ F × E ×H |
αAddr ∈ γrecency(ρ) ∧ f ∈ γF [αAddr](ϕ) ∧ e ∈ γE [αAddr](ε) ∧ h ∈ γH[αAddr](η) }

γD(δ ∈ D]) =
⋃

ϕ∈dom δ

γ(ϕ, δ(ϕ))

Figure 9 Concretization of the abstract states.

ECOOP 2020

17:12 Static Type Analysis by Abstract Interpretation of Python Programs

The semantics of alloc_addr is as follows. Given an allocation site l ∈ Location, the
function searches for the most recent allocation at the same location. If such an address
@](l, r) exists, it should be moved to the pool of old addresses by copying its contents to the
address @](l,o), which is done using a weak update S#J @](l,o) weak= @](l, r) K. Otherwise,
the state is extended with the new address @](l, r). In both cases, the newly allocated
abstract address is @](l, r).

Environment Abstraction. The domain of abstract environments E] maintains a non-
relational map binding identifiers to a set of abstract addresses, with concretization γE [αAddr].
To support Python scoping, variables can also point to LocalErr to represent variables that
can be locally undefined.

Heap Abstraction. The domain of abstract heapsH] provides the Python objects associated
to the addresses of the environment. Python objects are approximated by a nominal type
abstraction ObjN] and a structural type abstraction ObjS].

The nominal part keeps only the class information of the object and forgets about its
value. The concretization γObjN[αAddr] maps abstract addresses to concrete ones. In
particular, abstract instances of built-in values (integers, strings, booleans, None, NotImpl)
are concretized into the set of corresponding built-in values (along with the class from which
they were instantiated, for strings and integers, to support inheriting from these builtin
classes). For instance: γObjN[αAddr](AInt(@]

Class int)) = { int(@Class int, i) | i ∈ Z },
where the addresses subscripted by Class int represent the address of the built-in integer
class. Similarly to the concrete, AInt implicitly means AInt(@]

Class int). None and NotImpl
are abstracted as instances of their respective classes. The body of functions, methods and
classes is not abstracted.

The structural part stores a map over-approximating the addresses referenced by the
attributes of the object. Attributes may be added in some execution traces and not in
others, hence, the map actually maintains the set of attributes that may exist at a given
program point for all possible executions. We complement this map with a finite set under-
approximating the set of attributes that are definitely present. This information is important
to avoid raising spurious AttributeError exceptions for attributes that are definitely present.
These properties are formally defined by the concretization γObjS[αAddr]. The structural
type abstraction may also be approximated as > by the widening, in order to avoid having
an infinite number of attributes being added to an instance.

Then, the concretization γH[αAddr] of an abstract heap η is the set of heaps h such
that each address @ is bound to an object (n, s) where: n is a concretization of n], and s a
concretization of s], and the abstract object (n], s]) is in the abstract heap at the abstract
address αAddr(@). Note that the domain of the heap is defined by the recency abstraction,
i.e. dom η = ρ.

Full State Abstraction. Flow tokens are also abstracted: only the exception token exn
changes between the concrete and the abstract, to store an abstract address instead of a
concrete one. This is formally described in the concretization γF [αAddr]. A whole abstract
state maps flow tokens to abstract environments and heaps. To concretize a whole abstract
state δ ∈ D] using γD, we concretize each image of δ separately and join the resulting
concrete states. To concretize an element δ(ϕ) = (ρ, ε, η) using γ, we first fix an address
abstraction αAddr using the concretization of the recency abstraction ρ. Then, each part
(flow token ϕ, environment ε, heap η) is concretized separately.

R. Monat, A. Ouadjaout, and A. Miné 17:13

Line ε ∈ E] η ∈ H]

5 A 7→ { @](1, r) } @](1, r) 7→ {AClass A, {__init__, update },__init__ 7→ @](2, r)
∧ update 7→ @](4, r)};

@](2, r) 7→ { AFun(__init__), ∅, ∅ }; @](4, r) 7→ { AFun(update), ∅, ∅ }
6 x 7→ { @](6, r) } @](6, r) 7→ {AInst @](1, r), {val}, val 7→ @](5, r)}

@](5, r) 7→ {AInt, ∅, ∅}
7 y 7→ { @](5, r) }
8 z 7→ { @](6, r) }
9 y 7→ { @](5,o) } @](5, r) 7→ {AStr, ∅, ∅}

@](5,o) 7→ {AInt, ∅, ∅}
10 @](6, r) 7→ {AInst @](1, r), {val}, val 7→ @](5, r) ∧ atr 7→ @](10, r)}

@](10, r) 7→ {AStr, ∅, ∅}

Figure 10 Evolution of the abstract states of the example from Fig. 3.

3.2 Example

To illustrate our abstraction, let us consider the example shown previously in Fig. 3. We
summarize the evolution of the abstract state in Fig. 10, for the current flow cur . After
the declaration of the class A, the variable x is assigned the address @](6, r), representing
the instance of A allocated at line 6 and having a unique attribute val. This attribute
points to the address @](5, r), representing the integer result of the multiplication at line 5.
After assigning the addresses @](5, r) and @](6, r) to y and z respectively (which changes
the environment only), the call to z.update(′a′) leads to two changes. Firstly, during the
evaluation of x * 2 at line 5, a new address is allocated for the resulting string. Since the
address @](5, r) already exists, it is renamed to @](5,o) to denote that it is no longer the
most recent allocation. Consequently, the variable y now points to @](5,o) and the object
pointed by this address remains an integer AInt. The second change affects the heap to
ensure that the most recent allocation @](5, r) points now to a string object AStr. After
line 10, a new string is allocated and assigned to the attribute atr belonging to the address
@](6, r). Since this change is performed in only one branch of the if statement, atr is not
added to the under-approximation of attributes.

We illustrate our concretization by linking the final abstract state, at line 10 in Fig. 10,
to the concrete one in Fig. 4. In the abstract, ρ = {@](1, r),@](5,o),@](5, r),@](6, r),
@](10, r) }. Let us define αexAddr = @(1, 0) 7→ @](1, r); @(6, 0) 7→ @](6, r); @(5, 0) 7→ @](5,o);
@(5, 1) 7→ @](5, r); @(10, 0) 7→ @](10, r). We can check that αexAddr is one of the ab-
straction functions defined in γrecency(ρ). In addition, it is the abstraction function whose
domain is the set of addresses defined in the concrete example (Fig. 4). The concretiza-
tion of the environment is unambiguous as the abstract addresses always represent only
one concrete address (adding another call to update in the example would mean that two
concrete addresses would be mapped to @](5,o) at the end). Continuing the example,
we get that γObjN[αexAddr](AInst(@](1, r))) = { Instance@(1, 0) }. The structural type
concretization concerning the attributes of the instance of A yields two different cases:
γObjS[αexAddr]({ val }, val 7→ @](5, r) ∧ atr 7→ @](10, r)) = { f1, f2 }, with f1 = val 7→ @(5, 1),
and f2 = f1[atr 7→ @(10, 0)] (depending on the addition of atr to the instance). The concrete
heaps mentioned in Fig. 4 are part of the concretization of the abstract heap.

ECOOP 2020

17:14 Static Type Analysis by Abstract Interpretation of Python Programs

3.3 Abstract Transfer Functions
The abstract evaluation of expressions and statements is very close to the concrete one. We
show in Fig. 11 the transfer functions of the assignment, object instantiation, and attribute
addition. The signature of the abstract evaluation E#J e K is (F] × P(Addr])× E] ×H])→
(F]×P(Addr])×E]×H])× (Addr] ∪ {⊥}), so E#J e K returns the abstract address where
the object associated with e is stored, along with the updated abstract state. The semantics
of statements has a similar signature except that it only returns the updated abstract state.
Similarly to the lift from γ to γD, both semantics can be implicitly lifted to D], in the case
of disjunctive evaluations or of multiple flow tokens (when an expression is evaluated into
different types, or nondeterministically raises an exception).4

To perform an assignment x = e, we evaluate e in the abstract, and change the abstract
environment ε accordingly. The evaluation of e may be disjunctive (if the expression may
evaluate in multiple abstract addresses, or raises an exception in some cases) and in this case,
states are merged by their flow tokens.

object.__new__ is the function used to instantiate most classes. To analyze this call, we
evaluate e. If it is a class, we call the recency abstraction to allocate an instance, and return
the result of this evaluation, where the abstract heap η is extended with this new address.
Otherwise, a type error is raised.

object.__setattr__ is the function usually called for an attribute update: x.attr =
e. It is similar in its complexity and shape to the concrete attribute access (Fig. 6). The
complexity is due to the notion of data descriptors, stored in a parent class of an instance:
they can preempt attribute addition and process it as a call to their own __set__ method.
In most cases, however, the set_field] function will be called. In this case, we take the
evaluation of x as an address @]

x; we then fetch the attribute abstraction for this address.
We update the abstraction map and store it as f ′x. Then, if the address is recent, we know
that it represents only one address in the concrete. Thus, the attribute will be always defined
in the object, and we can add it to the underapproximation of the attributes. If the address
is old, it may summarize multiple concrete addresses, and the attribute will only be modified
in fx by the execution of the assignment. Note that Python also supports attribute update
through the setattr function. Contrary to the assignment x.attr = e where Python’s
syntax ensures that attr is a constant string, setattr can take into argument an arbitrary
string, which would result in the structural abstraction of the targeted object to be put to
top. In that case, we can enable a constant string abstraction to refine the abstract value of
the attribute name and help regain precision.

Join Operator and Widening. Going back to the abstract state definition (Fig. 8), we
notice that only ObjS] can be infinite. We thus define a widening operator lifting the
structural type abstraction to > if too many attributes are added. The set of addresses is
finite due to the finite number of program locations. Joining two abstract states is done
pointwise: by merging states having the same flow tokens, joining the sets for the recency
abstraction and the maps for the abstract environment and for the abstract heap.

Analysis of Functions. The analysis of functions is performed in a context-sensitive fashion,
by inlining: when a function call is reached, we substitute the call by the body of the function
and analyze it. This schemes supports easily dynamic dispatch as well as calling anonymous
functions defined using lambda.

4 i.e, S#J stmt K(δ ∈ D]) = ∪ϕ∈dom δ,(ρ,ε,η)∈δ(ϕ) S#J stmt K (ϕ, ρ, ε, η)

R. Monat, A. Ouadjaout, and A. Miné 17:15

S#Jx = e K (ϕ, ρ, ε, η) def=
letcur (ϕ, ρ, ε, η),@] = E#J e K (ϕ, ρ, ε, η) in ϕ, ρ, ε[x 7→ {@] }], η

E#J object.__new__(e)loc K (ϕ, ρ, ε, η) def=
letcur (ϕ, ρ, ε, η),@]

e = E#J e K (ϕ, ρ, ε, η) in
if (fst ◦ η)(@]

e) = AClass c then
letcur (ϕ, ρ, ε, η),@] = E#J alloc_addr(loc) K (ϕ, ρ, ε, η) in (ϕ, ρ, ε, η[@] 7→ ∅]),@]

else S#J raise TypeError K (ϕ, ρ, ε, η),⊥

E#J object.__setattr__(x, attr ∈ string, e) K (ϕ, ρ, ε, η) def=
letcur (ϕ, ρ, ε, η),@]

x = E#Jx K (ϕ, ρ, ε, η) in
let c = mrosearch](type](@]

x), attr) in
if c 6= ⊥ then let f = get_field](type](@]

x), attr) in
if has_field](f, ”__get__”) ∧ has_field](f, ”__set__”) then

E#J (get_field](f, ”__set__”))(c,@]
x, e) K

else E#J set_field](@]
x, attr, e) K (ϕ, ρ, ε, η)

else E#J set_field](@]
x, attr, e) K (ϕ, ρ, ε, η)

E#J set_field](@]
x, attr, e) K (ϕ, ρ, ε, η) def=

letcur (ϕ, ε, η),@]
e = E#J e K (ϕ, ρ, ε, η) in let (tx, (ux, fx)) = η(@]

x) in
let f ′x = fx[attr 7→ @e] in
if recent_addr @]

x then (ϕ, ρ, ε, η[@]
x 7→ (tx, (ux ∪ { attr }, f ′x))])

else (ϕ, ρ, ε, η[@]
x 7→ (tx, (ux, f ′x))])

Figure 11 Examples of abstract transfer functions.

I Theorem 1. Our analysis is sound: the abstract states computed by our abstract transfer
functions over-approximate the concrete states reachable during any program execution. More
formally, for any Python statement s: ∀δ ∈ D],SJ s K ◦ γD(δ) ⊆ γD ◦ S#J s K(δ)

This theorem is proved by mutual structural induction on the structure of Python statements
and expressions. The proof is not detailed due to space constraints. The abstract transfer
functions of statements and expressions are close to the concrete ones, which makes the proof
simple. For example, the semantics of object.__getattribute__ is the same in the concrete
and in the abstract, up to the low-level operators get_field, has_field, type, isinstance.

4 Relational Analysis using Parametric Polymorphism

The analysis presented in Sec. 3 is polymorphic, as a variable may be abstracted as a set
of addresses of different types. However, bounded parametric polymorphism à la ML is
impossible to express in this abstraction as we cannot infer that two variables pointing to
multiple addresses have the same type. From an abstract interpretation point of view, we
lack a relational domain.

ECOOP 2020

17:16 Static Type Analysis by Abstract Interpretation of Python Programs

Example. Consider the following program:

1 if *: x, y = 1, 2
2 else: x, y = 'a', 'b'
3 z = x + y

Our non-relational analysis can infer after line 2 that both x and y have type int or str.
However, it cannot show that x and y are either both int or both str, and thus it raises a
false TypeError alarm when evaluating x + y.

Type Equality Abstract Domain. We introduce an abstract domain Q] def= Id ⇀ N to
track type equalities between variables. It is defined as a partitioning of program identifiers
Id into equivalence classes of equally typed variables. Given κ ∈ Q], we ensure that two
variables x and y verifying κ(x) = κ(y) will have the same nominal type. More precisely, we
define an abstract equivalence relation ≡]

η∈H]⊆ ObjN] ×ObjN] between nominal types:

≡]η
def= { (AInt(@]

1),AInt(@]
2)) | (fst ◦η)(@]

1) ≡]η (fst ◦η)(@]
2) }

∪ { (AStr(@]
1),AStr(@]

2)) | (fst ◦η)(@]
1) ≡]η (fst ◦η)(@]

2) }
∪ { (AFun −,AFun −) } ∪ { (AClass c,AClass c) }

∪ { (AMethod(@]
1,−),AMethod(@]

2,−)) | (fst ◦η)(@]
1) ≡]η (fst ◦η)(@]

2) }

∪ { (AInst(@]
1),AInst(@]

2)) | (fst ◦η)(@]
1) ≡]η (fst ◦η)(@]

2) }

The concretization function γQ ∈ Q] → P(F × E × H) gives the set of concrete states
verifying the equality constraints of an abstract element in Q]:

γQ(κ) def= { (f, e, h) | ∀x, y ∈ dom κ : κ(x) = κ(y) =⇒ (fst ◦h ◦ e)(x) ≡h (fst ◦h ◦ e)(y) }

where ≡h⊆ ObjN×ObjN is the concrete equivalence relation between nominal types in
h ∈ H, derived from ≡]η as:

n1 ≡h n2 ⇔ ∃n]1, n
]
2 ∈ ObjN],∃η ∈ H],∃αAddr ∈ γrecency(dom η) : n]1 ≡]η n

]
2 ∧

n1 ∈ γObjN[αAddr](n]1) ∧ n2 ∈ γObjN[αAddr](n]2) ∧ h ∈ γH[αAddr](η)

Reduced Product. In order to perform a type analysis with bounded parametric polymorph-
ism, we construct a reduced product D]P of the equality domain Q] and the non-relational
domains E] and H] of Sec. 3 as follows:

D]P
def= F] → (P(Addr])× E] ×H] ×Q])

γP (δp ∈ D]P) =
⋃

ϕ∈dom δp

δp(ϕ)=(ρ,ε,η,κ)

γ(f, (ρ, ε, η)) ∩ γQ(κ)

Two reduction operators ψ↑, ψ↓ ∈ (P(Addr])×E]×H]×Q])→ (P(Addr])×E]×H]×Q])
are proposed to refine product states by propagating information between domains (they are
extended pointwise so that ψ̇↓, ψ̇↑ ∈ D]P → D

]
P):

1. The reduction ψ↑ enriches κ with new type equalities. It searches for variables x and y
such that both of them point to singleton objects with equivalent nominal types:

ε(x) = {@]
x }

ε(y) = {@]
y }

∧
η(@]

x) = { (nx,_) }
η(@]

y) = { (ny,_) }
∧ nx ≡]η ny

In such case, we add the type equality κ(x) = κ(y).

R. Monat, A. Ouadjaout, and A. Miné 17:17

Before reduction After reduction
ε = x 7→ @](1,o) ∧ y 7→ @](1, r), ε

η = @](1,o) 7→ { AInt, ∅, ∅ } ∧ @](1, r) 7→ { AInt, ∅, ∅ }, η

κ = ⊥ κ = x 7→ 0, y 7→ 0

Figure 12 Example of ψ↓ reduction.

2. The reduction operator ψ↓ refines the non-relational heap η whenever two variables x
and y are equally typed in κ and the type of x is more precise. We do so by pruning away
the objects referenced by y that are not equivalent to any object pointed by x.

I Theorem 2. The reduced product is sound, meaning that the reduction operators do not
affect the global product concretization: ∀δ ∈ D]P , γP (δ) = γP (ψ̇↑(δ)) = γP (ψ̇↓(δ))

Example. Let us consider again the previous motivating example. After the assignment x,
y = 1, 2, both x and y point to singleton integer objects, which allows us to apply ψ↑ in
order to infer the type equality of x and y (the state is shown in Fig. 12). The same reasoning
is applied after the assignment x, y = ’a’, ’b’ in the else branch. Consequently, the
equality is preserved after joining the two abstract states at line 3. When evaluating x in the
addition expression, a disjunction with two cases is created, one for each referenced abstract
object. In each case, the reduction operator ψ↓ is applied to refine the type of y according
to the type of x. Therefore, at the end of the program, we infer that no TypeError is raised.
Moreover, the reduction ψ↑ will find that x, y, and z have the same type.

Bounded Parametric Polymorphism. In the motivating example, our analysis morally
infers that x, y, z have type α ∈ { int, str }. We believe this is close to bounded parametric
polymorphism. In future work, we want to combine relationality with partial function
summaries to deduce that f has type α→ α, α ∈ { int, str } in the program below.

1 def f(x, y): return x + y
2 f(1, 2)
3 f('a', 'b')

5 Independent Container Abstractions

Containers are abstracted independently from the rest of the analysis. We show the example of
a smashing abstraction [6] for lists. The analysis of dictionaries is implemented similarly: their
keys and their values are smashed separately. We have also implemented an expansion-based
analysis for tuples.

The smashing abstraction summarizes all the list elements into one “content” variable.
Hence, we can infer whether an abstract address is a list, and we can moreover infer the
type of list elements using the content variable. As the content variable can have arbitrary
abstract values, the abstraction can represent heterogeneous as well as nested lists, which
are supported in Python.

Abstract Domain. We add a new nominal type for lists in ObjN], denoted as AList(@] ∈
Addr]), the address representing the class from which the list is instantiated, to handle
classes inheriting from lists (AList implicitly means AList(@]

Class list)). We also extend
the set of identifiers into Id+, adding a new kind of identifiers, List @], to denote content
variables (@] is the address of the list).

ECOOP 2020

17:18 Static Type Analysis by Abstract Interpretation of Python Programs

E#J [e1, . . . , en]l K (f, ρ, ε, η) =
letcur (ϕ, ρ, ε, η),@] = E#J alloc_addr(l) K (ϕ, ρ, ε, η) in
letcur (ϕ, ρ, ε, η) = S#JList @] = e1 K (ϕ, ρ, ε, η) in

letcur (ϕ, ρ, ε, η) = S#JList @] weak= e2 K (ϕ, ρ, ε, η) in
. . .

letcur (ϕ, ρ, ε, η) = S#JList @] weak= en K (ϕ, ρ, ε, η) in (f, ρ, ε, η),@]

E#J list.append(l, e) K (f, ρ, ε, η) =

letcur (ϕ, ρ, ε, η),@]
l = E#J l K (ϕ, ρ, ε, η) in

letcur (ϕ, ρ, ε, η),@]
e = E#J e K (ϕ, ρ, ε, η) in

if fst ◦η(@]
l) = AList(−) then

E#J None K ◦ S#JList @]
l

weak= e K (ϕ, ρ, ε, η)
else S#J raise TypeError K (ϕ, ρ, ε, η),⊥

γlists(ϕ, ρ, ε, η) = { (f, e, h) | αAddr ∈ γrecency(ρ) ∧ (f ′, e′, h′) ∈ γ[αAddr](ϕ, (ρ, ε, η))(
∀v ∈ dom e′, e(v) = e′(v)

)
∧
(
∀@ ∈ dom h′, h(@) = h′(@)

)
∧ ∀v ∈ dom ε,(

@](l,m) ∈ ε(v) ∧ (AList(@]
c), ∅, ∅) ∈ η(@](l,m))

)
=⇒

(
αAddr(e(v)) = @](l,m)

∧ ∃n ∈ N, h(e(v)) = (List(@c, (@1, . . . ,@n)), ∅)∧
αAddr(@c) = @]

c ∧ ∀1 ≤ i ≤ n, αAddr(@i) ∈ ε(List @](l,m))
)
}

Figure 13 List transfer functions & extended concretization.

Transfer Functions. Fig. 13 presents the abstract semantics of list allocation. We start by
allocating the address of the list through the recency abstraction. Then, we assign, using
weak updates, each element of the list to the content variable, and return the address of
the list. Adding an element el to the list l using the function list.append(l, el) is also
simple. First, we evaluate l into an object and check that it is a list. From the evaluation of
l, we get the address location @](l,m), letting us access the content variable List @](l,m).
Then, we perform a weak update with the element el.

We emphasize that these transfer functions are independent from most of the analysis:
they only need an abstract domain handling address allocation, and another handling
assignments. It could for example be reused in the case of a value analysis, or with another
allocation-site abstraction.

Concretization. We extend the concretization γ from Fig. 9 into a concretization γlists
taking the list abstraction into account, presented in Fig. 13. To simplify the presentation,
γlists(ϕ, ρ, ε, η) employs a variant of γ where the address abstraction αAddr is fixed, denoted
as γ[αAddr]. Given an address abstraction αAddr ∈ γrecency(ρ), γ[αAddr] provides partially
concretized states (f ′, e′, h′) that ignore content identifiers as well as the AList nominal
type. We then extend the (e′, h′) states into concrete states (e, h): identifiers v that may be
lists are added to the environment, the list defined in v is allocated in the concrete heap h at
address e(v) with an arbitrary size, and its element addresses are constrained to match with
content of the abstract environment of the content variable.

R. Monat, A. Ouadjaout, and A. Miné 17:19

Example. Consider the program l = [’a’l1, ’b’l2, ’c’l3]. We use labels li to denote
the program location of each string (program location are actually line numbers and column
ranges). In the current flow cur , we get the following abstract environment and heap:

ε(l) = {@](1, r) }
η(@](1, r)) = (AList, ∅, ∅)

ε(List @](1, r)) = {@](l1, r),@](l2, r),@](l3, r) }
η(@](li, r)) = (AStr, ∅, ∅), 1 ≤ i ≤ 3

ε(l) is bound to the abstract list address, allocated at location 1 and being a recent address.
The list variable List @](1, r) may now point to three strong addresses, each representing
one of the strings.

Nested Lists. Our encoding also works for nested lists. In the case of two nested lists, the
outermost list variable would point to the address of the innermost list abstract address.
These two abstract addresses would also be different because their program locations are
different. For example, l = [1l1, [2.3l2]i]o yields the following abstract state (l1, l2 are
program locations for the numbers, while i, o are program locations from the inner and the
outer list respectively). The variable corresponding to the outer list List @](o, r) maps to
two addresses, including the one of the inner list @](i, r).

ε(l) = {@](o, r) }
ε(List @](o, r)) = {@](l1, r),@](i, r) }
ε(List @](i, r)) = {@](l2, r) }

η(@](o, r)) = (AList, ∅, ∅)
η(@](i, r)) = (AList, ∅, ∅)
η(@](l1, r)) = (AInt, ∅, ∅)
η(@](l2, r)) = (AFloat, ∅, ∅)

This also works for arbitrary nesting. For example, let us consider the following program:

1 x = 1
2 for i in range(10): x = [x]

With the usual accelerated fixpoint computation, we reach an overapproximation of the
concrete state, where x is (an integer or) a nested list containing only integers, but we lose
the nest level.

ε(x) = {@](1, r),@](2, r) }
ε(List @](2, r)) = {@](1, r),@](2,o) }
ε(List @](2,o)) = {@](1, r),@](2,o) }

η(@](1, r)) = (AInt, ∅, ∅)
η(@](2, r)) = (AList, ∅, ∅)
η(@](2,o)) = (AList, ∅, ∅)

Containers & Polymorphism. The content variables of each container have a name defined
by their abstract address, depending on the allocation site. This means that if a variable l is
assigned different lists in two different conditional branches (as in the example below), two
different element variables will be created, and no polymorphic relationship will be inferred.
To counter this issue, we start by unifying both abstract states before performing the join,
renaming both element variables into a single one. Our analysis is then able to infer that x
has the same type as the element of the list l, which is either integers or strings:

1 if *: l = [1,2,3]
2 else: l = ['a', 'b', 'c']
3 x = l[0]

ECOOP 2020

17:20 Static Type Analysis by Abstract Interpretation of Python Programs

6 Implementation and Experimental Evaluation

6.1 Modular Implementation into Mopsa
We have implemented our analysis into Mopsa, a framework aiming at easing the development
of static analyses by abstract interpretation [20, 24]. Mopsa currently supports the analysis
of subsets of the C and Python programming languages. It is written in OCaml. The
framework uses domain modules with a uniform signature to describe abstract domains,
control-flow iterators, etc. This ensures that the domains are loosely coupled; they can be
easily combined and reused. In addition, domains can rewrite expressions and statements
dynamically, which makes it easier to reuse existing abstractions defined over a different
syntax or semantics. For instance, Python loops are first rewritten into a canonical shape,
while the fixpoint computation is handled by another more generic module, used to handle C
loops as well. More details about Mopsa can be found in [20]. The type analysis consists in
2000 lines of OCaml code, the container abstraction consists in 1600 lines of OCaml, and
there are 5000 lines of OCaml code defining the iterators and data model of Python.

6.2 Optimizations & Extensions
During our initial testing of our analysis, we noticed that it was slowed down by two factors:
the number of exceptions that were raised (creating a large number of abstract states to
store), and the analysis of function calls (where the same functions were analyzed many
times). This lead us to two optimizations described below. We then explain how we use
Python type annotations to analyze more programs.

Exception Abstraction. When an exception is raised, we store the current abstract state
with the exception flow token for the rest of the analysis, in order to reuse it if this exception
is caught later on. However, unprecise analyses may raise exceptions frequently. For example,
the smashing abstraction handling the list analysis needs (in order to be sound) to raise a
potential IndexError at each list access, as the analysis does not keep track of the list size.
This created many different exceptions stored in the analysis state, but most were never used.
To solve the problem, we abstracted sets of such exceptions for which the analysis is deemed
a priori unprecise (which can be parameterized by the user) into a single abstract exception,
joining the corresponding abstract states into one. By default, the exceptions abstracted are
IndexError, KeyError and ValueError.

Towards a Partially Modular Function Analysis. We have implemented a partially modular
function analysis, which keeps the abstract input state, the abstract output state and the
result of function calls in a cache. When analyzing a function call, the cache is checked: if
this function has already been analyzed with the same abstract input state, the analysis
result is taken directly from the cache. Otherwise, the function is inlined, and the analysis
result cached afterwards. In particular, using this cache does not reduce the precision of the
analysis, but greatly improves its running times. The experiments displayed in Table 16 show
that this cache, combined with the exception abstraction can provide a 32x speedup over
the inlining-based analysis (regex_v8.py), while the memory usage increased by 15%. In
some cases, the inlining-based analysis and the cache-based analysis have the same running
times: this may be due to a program having less user-defined functions to analyze, or the
cache not being hit because the calling contexts are too different. We believe this cache is
particularly efficient because we compute types rather than values: while the abstract state
would change a lot during a value analysis (e.g, as loop indexes increase), the abstract state
in the case of a type analysis is more stable.

R. Monat, A. Ouadjaout, and A. Miné 17:21

We can also reuse the cache when the current input state is less than the input state
kept in the cache. This is actually used in our implementation. In the benchmarks below,
choosing this relaxed version improves the running times by 40% in one case (choose.py),
but introduces imprecision in another case (22 out of the 25 alarms detected in hexiom.py).

Note that we keep analyzing functions on demand, at each call-site, knowing their calling
context. We believe that performing a sound, context-free function call analysis, as done in
most type systems, would not be practical for Python programs, as functions rely on implicit
assumptions and may have side effects on their arguments or other variables not defined
in the function scope. The cache-based analysis could still be improved to keep only the
relevant parts of the whole abstract input and output states, such as the parts that may
be read or changed by the function. This extension, which would help reuse more of the
analysis results kept in the cache, is left as future work.

Using Type Annotations. As the Python standard library is huge, and partly written in C,
we needed a way to support the C-written part without too much manual work. We decided
to leverage the work from the Typeshed project [37], which offers type annotations for a
substantial part of the standard library. This project uses the standard type annotations
recently introduced by the PEP 484 into Python [36]. These type annotations are quite
powerful (they feature possibly bounded polymorphism using TypeVar, structural subtyping
support with Protocol, disjunctive function signatures with the @overload decorator, ...).
For example, they can completely specify the signature of the fspath function described in
the introduction:

T = TypeVar('T', str, bytes)
class PathL(Protocol[T]):

def fspath(self) -> T: ...
@overload
def fspath(path: PathL[T]) -> T: ...

@overload
def fspath(path: str) -> str: ...
@overload
def fspath(path: bytes) -> bytes: ...

These annotations remain less expressive than our analysis, as side-effects (such as raised
exceptions, aliasing) cannot be expressed yet, but a type-and-effect system [23] could be used.
When a stubbed module is imported, our analyzer parses the corresponding annotated file
and stores its functions (similarly for classes and variables). Then, when a stubbed function
is called, we check that the arguments match the function signature. In that case, we assume
that the function has no side effects and returns an object of the annotated return type,
which we convert into an abstract object. Note that the use of these annotations changes
the soundness of our analyzer: exceptions raised by concrete functions where we used their
annotated counterpart will not be reported.

6.3 Experimental Evaluation
In this part, we evaluate our implementation on several benchmarks. We compare our
analysis with four tools aiming at detecting incorrect programs potentially reaching runtime
errors: the abstract-interpretation-based value analysis of Python [13], and three other tools
having close goals: a tool by Fritz & Hage [12], Typpete [16] and Pytype [42]. We also
include the static analysis part of RPython [2] in our comparison, whose goal is to compile a
restricted subset of Python into more efficient programs. [12, 16, 42] try to infer a static type
that ensures the absence of dynamic typing errors, while we go further and check whether
dynamic typing errors can occur and result in exceptions that stop the program (hence, we

ECOOP 2020

17:22 Static Type Analysis by Abstract Interpretation of Python Programs

can successfully analyze correct programs that are not typable but are nevertheless correct
as they recover from dynamic type errors). Both [13] and our analyzer generate as output
the set of exceptions that may escape to the toplevel, with detailed exception messages
close to those given by Python. While this naturally includes type-related exceptions, we
also take into account that even type errors can be caught and handled by the program, in
which case they are not reported as errors. Contrary to [12, 16, 42], we also detect other
errors (such as out of bound list accesses), in order to have a sound analysis (though we are
unprecise in most cases). We also show the performance gain of the optimizations described
in Section 6.2.

Competing Tools. The tool developed by Fritz and Hage performs a data-flow analysis,
computing the type of each variable. While the original paper [12] experiments various
tradeoffs between performance and precision (using different widenings, flow-sensitivity,
context-sensitivity, . . .), we used the default arguments of the provided artifact. As mentioned
in their paper, this tool does not handle exceptions nor generators. Its output is a dump of
the data-flow map, associating to each program point the type of each variable. A program
is untypable for this tool when the analyzer puts reachable variables to the bottom type.

Typpete encodes type inference of Python programs into a MaxSMT problem, and passes
it to Z3 to solve it. If Z3 yields unsat, the program is untypable. Otherwise, the output of
Typpete is a type annotation of the input program. It comes with around 40 examples on
which we were able to test our analyzer. Typpete restricts its input to Python programs where
variables have a single type in a program (but it handles subtyping: a variable having both
types int and str will have type object) and dynamic attribute addition is not supported.
When there is a type error, Z3 finds the inference problem to be unsatisfiable and Typpete
shows a line in relationship with the type error. As the structure of the program is lost
during the MaxSMT encoding, the line shown by Typpete is not always the line where the
error will occur at runtime. Typpete supports the basics of the PEP 484 type annotations,
and uses them for its stubs, or to guide the analysis on an input program.

Pytype is a tool developed by Google and actively used to maintain their codebase, hence
it is more mature than the other tools. It performs an analysis that is not described formally,
but it has a wide language and library support (it also uses Typeshed), allowing it to scale to
large codebases. It outputs the last type of each variable when the typing is successful, and
can produce a type annotation of the input program. It also produces clear error messages
looking like the exceptions raised by Python when it detects an erroneous program.

We obtained the analyzer developed by Fromherz et al. [13]. It performs a value analysis
by abstract interpretation. Its output is a set of potentially uncaught exceptions.

RPython performs a data-flow analysis to check that a program is part of the subset it
can efficiently compile. It outputs the control-flow graph with the inferred types.

We compare the analysis of these five tools to two different configurations of our analyzer:
Conf. 1 using inlining and no exception smashing of the alarms;
Conf. 2 using partially modular analysis and exception smashing in alarms (see Sec. 6.2).

We have not noticed any improvement using the relational domain in the benchmarks, so the
results below use the non-relational analysis. The relational analysis increases the analyses
times by a factor 5 at most.

Benchmarks. We chose 5 of the biggest benchmarks from Typpete’s unit tests (prefixed
with in Table 16). We also took 12 benchmarks from Python’s reference interpreter [39]
(prefixed with in the table). Out of the 44 benchmarks currently available, we chose 12

R. Monat, A. Ouadjaout, and A. Miné 17:23

with no external dependencies and few standard library module dependencies, so that most
tools are able to analyze them. We argue that while the benchmarks are not very long,
these Python programs are realistic and may call a lot of functions. For example, calling
Python profiler cProfile on chaos.py shows more than 469,000 function calls. We also add
three small tests focusing on characteristics we believe are paramount to performing a sound
analysis of Python programs: taking into account object mutation and aliasing, as shown
in Fig. 3 (file mutation.py); being able to precisely analyze introspection operators such
as isinstance and hasattr, in order to analyze precisely a program calling the function
fspath from Fig. 1 for example (file isinstance.py, Fig. 14); and analyzing precisely
exception-related control-flow operators in order to have a precise analysis and avoid raising
type errors later caught by an except TypeError statement for example (file exception.py,
Fig. 15). Finally, we analyze the two main parts (processInput.py, choose.py) of a
real-world command-line utility from Facebook, called PathPicker (prefixed with ; the
LOC for these files consists in the size of the file and all the PathPicker files imported by this
one). These two parts are multifile projects depending on other modules from PathPicker
(which are inlined and analyzed by our tool), as well as some standard library modules,
including re, subprocess, json, curses, posixpath, argparse, configparser, os,
stat, locale, bz2, lzma respectively handling regular expressions, external process calls,
json files, curses command-line interfaces, file-related functions, argument parsing, config-
uration file parsing, operating-system and file status, internationalization of output and
compression algorithms. As all these modules are at least partially written in C, we used
the annotations from Typeshed [37] to support them. All program constructs used in the
benchmarks are supported by our tool, meaning our analysis is sound on them.

Performance and Precision Evaluation. We test the language support, the performance
and the precision of each tool. An analyzer may crash due to an unsupported construction
(), or may timeout after one hour of analysis (/). We measured the analysis time five
times for each benchmark and tool, and the mean is displayed. All tools are deterministic. In
the evaluation of our tool in its most efficient configuration (Conf. 2), the column o displays
the number of false alarms raised (the precision is identical in Conf. 1), with the smashed
exceptions (corresponding to the unprecise exceptions raised by the list and dictionary
abstractions) separated. The results are displayed in Table 16.

We notice that our analysis is able to scale to benchmarks a few thousand lines long,
within a reasonable analysis time. Some benchmarks take longer to analyze: for example
hexiom.py has a lot of nested loops, and functions are called multiple times, so the analyzer
has a lot of fixpoint computations and inlining to perform (it performs 1770 analyses of
5-levels nested loops). It seems that the other type analyzers [12, 16, 42] do not perform
fixpoint computations over loops (which at least for the case of Typpete seems sound as
it infers more abstract types). Similarly, Typpete is able to perform an efficient analysis,
although it lacks library support to analyze some Python benchmarks, and is unable to
analyze programs where a variable is initiliazed in a (potentially unexecuted) loop. The

1 if isinstance(x, int): y = 4
2 else: y = 'a'
3 z = 2 + y

Figure 14 isinstance.py.

1 try: z = 2 + 'a'
2 except: z = 3.14
3 a = z+1

Figure 15 exception.py.

ECOOP 2020

17:24 Static Type Analysis by Abstract Interpretation of Python Programs

Table 16 Analysis of Python benchmarks.

Name LOC Conf. 1 Conf. 2 o [12] Pytype Typpete [13] RPython
isinstance.py 3 42ms 40ms 0 1.2s 0.78s 0.67s 10ms 4.9s
exception.py 3 37ms 34ms 0 1.3s 0.70s 0.57s 9ms

mutation.py 12 34ms 34ms 0 1.3s 0.75s 0.68s 11ms

disjoint_sets.py 45 70ms 59ms 0† 0.92s 0.91s 1.2s 8.8s
functions.py 58 41ms 39ms 0†¤ 1.2s 0.84s 1.1s 8.0s
fannkuch.py 59 76ms 69ms 0† 1.2s 0.80s 0.31s

bellman_ford.py 61 0.17s 0.24s 0† 1.4s 0.99s 1.4s 2.4m 7.1s
float.py 63 0.13s 82ms 0† 1.7s 0.92s 1.3s 0.84s 5.6s
coop_concat.py 64 45ms 43ms 0† 1.8s 0.81s 1.3s 20ms

spectral_norm.py 74 0.32s 0.19s 1 1.6s 0.98s

crafting.py 132 0.48s 0.41s 0†¤ 1.6s 0.97 1.7s

nbody.py 157 1.4s 0.80s 1†¤� 1.7s 1.3s

chaos.py 324 8.9s 2.3s 0†� 13s 11s

raytrace.py 411 3.5s 1.5s 7� 36s 2.8s

scimark.py 416 0.85s 0.55s 2† 8.5s 4.4s

richards.py 426 11s 5.0s 2†� 38s 2.4s 7.8s
unpack_seq.py 458 13s 4.2s 0� 1.1s 7.4s 2.7s 14s

go.py 461 4.0m 15s 32†� 8.5s 3.4s

hexiom.py 674 6.9m 22s 25†¤� 4.2s

regex_v8.py 1792 8.2m 15s 0† 4.9s / 1.7m

processInput.py 1417 6.1s 4.8s 7†¤� 2.4s 11s

choose.py 2562 8.6m 46s 17¤†� 1.7s 15s

 unsupported by the analyzer (crash) / timeout (after 1h)
Smashed Exceptions: KeyError ¤, IndexError †, ValueError �

tool from Fritz and Hage is quite fast (the running times are measured by running a docker
container due to the software dating from 2011), but we will see later that it is unsound
in most cases. It fails on hexiom.py due to a parsing error. Pytype is a more mature
analyzer, and it does not fail on any of the benchmarks, but times out in the regex_v8.py
benchmark (after reaching out to Google, it appears to be a performance bug from Pytype
in its analysis of big dictionaries). The value analysis [13] is unable to support the standard
library functions needed for most benchmarks (supporting new library functions in the value
analysis is more time-consuming, as it requires to include the effect of this function on the
abstract values). On the benchmarks it is able to pass, our analysis is in average 8.5× faster
than the value analysis; it also scales to benchmarks 5× longer. RPython is able to type 6
out of 22 benchmarks. In the 16 other cases, 5 seem to be due to internal bugs, while the
11 last cases are due to constructs unsupported by RPython. Compared to RPython, our
analysis is able to fully analyze invalid programs (it will not stop at the first type exception,
which can be caught later on).

Our analysis raises a few alarms (as all programs are correct, all alarms are false alarms
here). As the programs did not mix types implicitly, our analysis was sufficiently precise to
avoid raising false alarms over type and attribute errors. However, the smashing abstraction of
the lists and the dictionaries creates some false alarms: dictionary values having different types
(and heterogeneously-typed lists) are smashed into content variables, triggering imprecision
over the types in the rest of the analysis. In addition,the smashing abstraction currently does

https://github.com/caterinaurban/Typpete/blob/master/typpete/unittests/inference/disjoint_sets.py
https://github.com/caterinaurban/Typpete/blob/master/typpete/unittests/inference/functions.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_fannkuch.py
https://github.com/caterinaurban/Typpete/blob/master/typpete/unittests/inference/bellman_ford.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_float.py
https://github.com/caterinaurban/Typpete/blob/master/typpete/unittests/inference/coop_concatenate.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_spectral_norm.py
https://github.com/caterinaurban/Typpete/blob/master/typpete/unittests/inference/crafting_challenge.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_nbody.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_chaos.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_raytrace.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_scimark.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_richards.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_unpack_sequence.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_go.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_hexiom.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_regex_v8.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/processInput.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/choose.py

R. Monat, A. Ouadjaout, and A. Miné 17:25

not keep track of the (potential) emptiness of lists: this creates a few alarms, as variables
initially defined during a loop iteration over a list may be undefined in the rest of the
program if the list is empty (raising Unboundlocalerror in spectral_norm.py, nbody.py,
bm_raytrace.py, bm_scimark.py and 22 in hexiom.py). More generally, the absence of
information on the length of the list means that each list access should raise a potential
IndexError (we could reduce the number of false alarms by adding a small domain keeping
track of the abstract length of lists; this is left as future work). Similarly, KeyError are
raised upon each dictionary access, and ValueError may be raised during list unpacking.
The spurious IndexError are not raised by the value analysis [13], which is able to track the
length of lists. The alarms are not raised by the three other analyzers, as they focus on type
errors only, and not on finding which exceptions may be raised. As each analyzer has its own
output, we were unable to compare their precision in all cases, and only study the precision
on the first three small examples. In the isinstance.py example, both our tool, [13] and
Pytype are precise, but the others are unprecise ([12] yields an unsound result, Typpete
declares the program incorrect). For exception.py, [12] does not support exceptions; while
[13], Pytype and Typpete declare the program incorrect; our tool does not raise any alarm.
Concerning mutation.py, both Pytype, [13] and our tool are precise. Typpete is unprecise
(it declares some integers and strings to be of object type), and [12] infers a variable holding
a string as an integer.

Soundness Evaluation. We experimentally check the soundness of the analyzers. We believe
soundness is important in order to detect all potential errors. As each benchmark file was a
correct Python program, we created erroneous variants having one type error (by introducing
a string into an integer variable), in order to check the soundness of each analyzer (similarly
to the evaluation of Typpete). We then ran each analyzer on those files (the correct and the
erroneous one each time), and checked whether the inferred types and alarms were matching
the behavior of the program: either the analysis seemed sound as the types and alarms
were correctly raised, or the analysis was unsound (no error was detected in the erroneous
variant). The injection of type errors to evaluate the soundness is simplistic, as our goal was
to quickly test the soundness of the other tools. Our analyzer is sound by construction but
may include implementation bugs, and it would be interesting to automate error injection to
experimentally check the soundness more thoroughly.

We find that our analysis catches the errors in all erroneous variants and is thus sound –
as expected – in these cases. Typpete is sound over the programs it can analyze. The tool
from Fromherz et al. is unsound in the case of unpack_seq.py due to an implementation
error. The artifact from [12] is unable to detect errors in all cases except fannkuch.py. Py-
type is not sound in a few cases (bellman_ford.py, crafting_challenge.py, float.py,
richards.py, spectral_norm.py, unpack_seq.py).

Evaluation Summary. Our analysis is sound, it reports a few false alarms. Preliminary
results indicate that our analyzer is able to scale, at least on programs a few thousand lines
long. The soundness evaluation showed that even simple errors such as replacing an integer
with a string may go unnoticed for unsound analyzers.

Comparatively, Pytype is the most advanced tool: it is able to scale and seems to support
most of the standard library. It is however unsound in some cases. Both Typpete and [13]
perform a sound analysis, but they lack some language or library support in the bigger
benchmarks. The tool from Fritz and Hage is able to analyze programs very quickly, and
supports most benchmarks, but it is unsound in most cases. RPython has a different goal,
as it focuses on compiling a more static subset of Python efficiently. Most of the benchmarks
use constructs too dynamic for RPython to compile them efficiently.

ECOOP 2020

17:26 Static Type Analysis by Abstract Interpretation of Python Programs

7 Related Work

In this section, we discuss related work, focusing on formal analyses for the two most popular
dynamic programming languages: JavaScript and Python.

JavaScript. JavaScript is defined by a standard, and has been formalized in Coq [7] and in
K [26]. [18] presents the first static analysis by abstract interpretation for JavaScript, and
provides an implementation called TAJS. [19] builds upon TAJS to define a more efficient
interprocedural analysis. As strings play a wide role in the semantics of JavaScript, precise
string abstractions are studied in [1, 22]. [21] uses a static type analysis to optimize numerical
computations datatypes. [17] proposes a method to soundly translate some eval statements
into code, in order to improve the precision of their analysis. An analysis of asynchronous
JavaScript built upon TAJS is presented in [32].

Python. In [28], the authors define a mechanized semantics for a restricted subset of Python,
consisting in basic values (integers, booleans) and control structures (loops, conditionals),
but not taking objects into account. [31] proposes a semantics of Python 2.5 under the form
of a Haskell interpreter. [27] defines a small-step semantics for a core Python language, λπ,
as well as a compiler from Python to λπ, and a λπ interpreter written in Racket. [15] shows
a rewriting semantics for Python using the K framework [29]. [13] defines an interpreter-like
semantics on which the concrete semantics presented in Section 2 is based.

Pyannotate [40] and MonkeyType [38] are tools performing a dynamic analysis: they
collect the types of a Python program during its execution. Contrary to static analyses
where an abstraction of the set of program traces is computed, dynamic analyses only run
on one trace, meaning that non-determinism due to inputs or random choices will not be
taken into account. While this approach helps developers move to type-annotated Python
codes, the collected types correspond to one execution only, and are thus not sound.

A middle-end between dynamic and static type analysis is gradual typing [30, 14]. In that
case, the programmer annotates parts of the program, which can then be typechecked. The
unannotated parts of the program have an unknown type called top, from which any static
type can be cast to and from. The soundness theorem of gradual typing then guarantees
that if a program gradually typechecks, the only type errors that may occur at runtime are
casts concerning variables having type top. Gradual typecheckers for Python include Mypy
[35] and Pyre [41]. Both tools restrict the input language, as annotated variables can have
only one type during the program execution (this type can be a union of types). By contrast,
our type analysis is more permissive as it does not restrict the dynamic typing features of
Python. We also do not require any annotation to run our analysis.

The closest approaches to our work [12, 42, 16, 2] have been described in the experimental
evaluation (Sec. 6.3). It should be noted that Fritz & Hage [12] test many different parameter
instantiations of their data-flow analysis. We believe that in the context of formal verification,
a precise, context-sensitive, sound type analysis is useful. The flow-sensitivity is needed to
precisely analyze exception catching statements, but neither have we tested this hypothesis
on a larger scale nor have we tried selective flow-sensitivity, contrary to [12]. [34] presents
a predictive analysis based on symbolic execution for Python. It consistently finds bugs
and scales to projects of thousands of lines of codes, but it does not cover all executions,
and is thus not sound. [13] performs a static value analysis by abstract interpretation. It
uses abstract values similar to the ones presented in [18]. This analysis is not strictly more
expressive than ours: while it focuses on values, it is relational over numerical datatypes,

R. Monat, A. Ouadjaout, and A. Miné 17:27

but not over types. Our type analysis is more scalable in its implementation, as supporting
new constructs consists in providing a type signature (and knowing the side effects of this
function, including the potentially raised exceptions). To scale more quickly, we can also
reuse Typeshed and its type annotations to support most of the standard library (though
we will lose any side effect of the annotated function in that case). The type analysis also
uses less memory and is quicker: we store type information rather than abstract values, and
the fixpoint computations during the analysis of loops converge more quickly (types vary
less than values, for example during loop iterations). The experiments of this value analysis
consisted in some of Python’s unit tests and some of Python’s benchmarks. As the unit
tests consist mostly in equality assertions over values, our type analyzer is unable to verify
these. However, the running times for the type analysis on those tests are similar to the ones
described in [13]. The benchmarks were shown in Table 16.

8 Conclusion

We have developed a static type analysis of Python programs by abstract interpretation,
which collects uncaught exceptions that may be raised during a program execution. This
analysis is sound, and its modular implementation scales to benchmarks a few thousand lines
long. In addition, we found that compared to other type analyses, we uniquely take into
account dynamic Python features such as object mutability, introspection operators, and
exception-based control-flow statements.

Future work includes: speeding-up the inlining-based analysis with an efficient, summary-
based function analysis; exploring the abstraction-precision trade-offs of the analysis (e.g,
using an expansion-based container abstraction); analyzing bigger programs; combining this
analysis with a value analysis (e.g, to keep track of the abstract length of summarized lists,
in order to remove IndexError-based false alarms); finally, we will consider using the type
information inferred by the analysis to optimize the execution of Python programs.

References

1 Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier, Peter Schachte,
Harald Søndergaard, Peter J. Stuckey, and Chenyi Zhang. Combining string abstract domains
for JavaScript analysis: An evaluation. In TACAS (1), volume 10205 of LNCS, pages 41–57,
2017.

2 Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D. Matsakis. Rpython: a step
towards reconciling dynamically and statically typed OO languages. In DLS, pages 53–64.
ACM, 2007.

3 Gogul Balakrishnan and Thomas W. Reps. Recency-abstraction for heap-allocated storage. In
SAS, volume 4134 of LNCS, pages 221–239. Springer, 2006.

4 Kim Barrett, Bob Cassels, Paul Haahr, David A. Moon, Keith Playford, and P. Tucker
Withington. A monotonic superclass linearization for dylan. In OOPSLA, pages 69–82. ACM,
1996.

5 Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine
Miné, and Xavier Rival. Static analysis and verification of aerospace software by abstract
interpretation. Foundations and Trends in Programming Languages, 2(2-3):71–190, 2015.

6 Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine
Miné, David Monniaux, and Xavier Rival. Design and implementation of a special-purpose
static program analyzer for safety-critical real-time embedded software. In The Essence of
Computation, volume 2566 of LNCS, pages 85–108. Springer, 2002.

ECOOP 2020

17:28 Static Type Analysis by Abstract Interpretation of Python Programs

7 Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio Maffeis, Daiva
Naudziuniene, Alan Schmitt, and Gareth Smith. A trusted mechanised JavaScript specification.
In POPL, pages 87–100. ACM, 2014.

8 Patrick Cousot. Types as abstract interpretations. In POPL, pages 316–331. ACM Press,
1997.

9 Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, pages 238–252.
ACM, 1977.

10 Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. Frama-C - A software analysis perspective. In SEFM, volume 7504 of LNCS,
pages 233–247. Springer, 2012.

11 David Delmas, Eric Goubault, Sylvie Putot, Jean Souyris, Karim Tekkal, and Franck Védrine.
Towards an industrial use of FLUCTUAT on safety-critical avionics software. In FMICS,
volume 5825 of LNCS, pages 53–69. Springer, 2009.

12 Levin Fritz and Jurriaan Hage. Cost versus precision for approximate typing for Python. In
PEPM, pages 89–98. ACM, 2017.

13 Aymeric Fromherz, Abdelraouf Ouadjaout, and Antoine Miné. Static value analysis of Python
programs by abstract interpretation. In NFM, volume 10811 of LNCS, pages 185–202. Springer,
2018.

14 Ronald Garcia, Alison M. Clark, and Éric Tanter. Abstracting gradual typing. In POPL,
pages 429–442. ACM, 2016.

15 Dwight Guth. A formal semantics of Python 3.3. Technical report, University of Illinois,
2013. URL: https://www.ideals.illinois.edu/bitstream/handle/2142/45275/Dwight_
Guth.pdf?sequence=1&isAllowed=y.

16 Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Müller. MaxSMT-based type
inference for Python 3. In CAV (2), volume 10982 of LNCS, pages 12–19. Springer, 2018.

17 Simon Holm Jensen, Peter A. Jonsson, and Anders Møller. Remedying the eval that men do.
In ISSTA, pages 34–44. ACM, 2012.

18 Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for JavaScript. In
SAS, volume 5673 of LNCS, pages 238–255. Springer, 2009.

19 Simon Holm Jensen, Anders Møller, and Peter Thiemann. Interprocedural analysis with lazy
propagation. In SAS, volume 6337 of LNCS, pages 320–339. Springer, 2010.

20 M. Journault, A. Miné, R. Monat, and A. Ouadjaout. Combinations of reusable abstract
domains for a multilingual static analyzer. In Proc. of the 11th Working Conference on Verified
Software: Theories, Tools, and Experiments (VSTTE19), pages 1–17, July 2019.

21 Francesco Logozzo and Herman Venter. RATA: Rapid atomic type analysis by abstract
interpretation - application to JavaScript optimization. In CC, volume 6011 of LNCS, pages
66–83. Springer, 2010.

22 Magnus Madsen and Esben Andreasen. String analysis for dynamic field access. In CC, volume
8409 of LNCS, pages 197–217. Springer, 2014.

23 Daniel Marino and Todd D. Millstein. A generic type-and-effect system. In TLDI, pages 39–50.
ACM, 2009.

24 A. Miné, A. Ouadjaout, and M. Journault. Design of a modular platform for static analysis. In
Proc. of 9h Workshop on Tools for Automatic Program Analysis (TAPAS’18), LNCS, page 4,
28 August 2018.

25 Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and Kwangkeun Yi. Design and
implementation of sparse global analyses for C-like languages. In PLDI, pages 229–238. ACM,
2012.

26 Daejun Park, Andrei Stefanescu, and Grigore Rosu. KJS: A complete formal semantics of
JavaScript. In PLDI, pages 346–356. ACM, 2015.

https://www.ideals.illinois.edu/bitstream/handle/2142/45275/Dwight_Guth.pdf?sequence=1&isAllowed=y
https://www.ideals.illinois.edu/bitstream/handle/2142/45275/Dwight_Guth.pdf?sequence=1&isAllowed=y

R. Monat, A. Ouadjaout, and A. Miné 17:29

27 Joe Gibbs Politz, Alejandro Martinez, Matthew Milano, Sumner Warren, Daniel Patterson,
Junsong Li, Anand Chitipothu, and Shriram Krishnamurthi. Python: The full monty. In
OOPSLA, pages 217–232. ACM, 2013.

28 Ranson, Hamilton, and Fong. A semantics of Python in Isabelle/HOL. Technical report, Uni-
versity of Regina, 2008. URL: http://www.cs.uregina.ca/Research/Techreports/2008-04.
pdf.

29 Grigore Rosu and Traian-Florin Serbanuta. An overview of the K semantic framework. J. Log.
Algebr. Program., 79(6):397–434, 2010.

30 Jeremy G. Siek and Walid Taha. Gradual typing for objects. In ECOOP, volume 4609 of
LNCS, pages 2–27. Springer, 2007.

31 Gideon Joachim Smeding. An executable operational semantics for Python. Universiteit
Utrecht, 2009. URL: http://gideon.smdng.nl/wp-content/uploads/thesis.pdf.

32 Thodoris Sotiropoulos and Benjamin Livshits. Static analysis for asynchronous JavaScript
programs. In ECOOP, volume 134 of LIPIcs, pages 8:1–8:30. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2019.

33 Fausto Spoto. The julia static analyzer for Java. In SAS, volume 9837 of LNCS, pages 39–57.
Springer, 2016.

34 Zhaogui Xu, Peng Liu, Xiangyu Zhang, and Baowen Xu. Python predictive analysis for bug
detection. In SIGSOFT FSE, pages 121–132. ACM, 2016.

35 Mypy. http://mypy-lang.org/, 2018. Accessed: 2018-07-22.
36 Python enhancement proposal 484, about type hints. https://www.python.org/dev/peps/

pep-0484/, 2018. Accessed: 2018-07-23.
37 Typeshed. https://github.com/python/typeshed/, 2018. Accessed: 2018-07-22.
38 Monkeytype. https://github.com/Instagram/MonkeyType, 2019. Accessed: 2019-10-22.
39 Performance benchmarks from Python’s reference interpreter. https://github.com/python/

pyperformance/, 2019. Accessed: 2019-10-22.
40 Pyannotate. https://github.com/dropbox/pyannotate, 2019. Accessed: 2019-10-22.
41 Pyre-check. https://github.com/facebook/pyre-check, 2019. Accessed: 2019-10-22.
42 Pytype. https://github.com/google/pytype, 2019. Accessed: 2019-10-22.
43 Pathpicker. https://github.com/facebook/pathpicker/, 2020. Accessed: 2020-01-03.

ECOOP 2020

http://www.cs.uregina.ca/Research/Techreports/2008-04.pdf
http://www.cs.uregina.ca/Research/Techreports/2008-04.pdf
http://gideon.smdng.nl/wp-content/uploads/thesis.pdf
http://mypy-lang.org/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://github.com/python/typeshed/
https://github.com/Instagram/MonkeyType
https://github.com/python/pyperformance/
https://github.com/python/pyperformance/
https://github.com/dropbox/pyannotate
https://github.com/facebook/pyre-check
https://github.com/google/pytype
https://github.com/facebook/pathpicker/

Reference Mutability for DOT
Vlastimil Dort
Charles University, Prague, Czech Republic
dort@d3s.mff.cuni.cz

Ondřej Lhoták
University of Waterloo, Canada
olhotak@uwaterloo.ca

Abstract
Reference mutability is a type-based technique for controlling mutation that has been thoroughly
studied in Java. We explore how reference mutability interacts with the features of Scala by adding
it to the Dependent Object Types (DOT) calculus. Our extension shows how reference mutability
can be encoded using existing Scala features such as path-dependent, intersection, and union types.
We prove type soundness and the immutability guarantee provided by our calculus.

2012 ACM Subject Classification Software and its engineering → Formal language definitions;
Software and its engineering → Object oriented languages

Keywords and phrases Reference Mutability, Read-only References, DOT Calculus

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.18

Funding This work was partially supported by the Czech Science Foundation project 18-17403S,
partially supported by the Mobility Fund of Charles University, and partially supported by the
Charles University institutional funding project SVV 260588. This research was supported by the
Natural Sciences and Engineering Research Council of Canada.

1 Introduction

The Scala programming language integrates functional and object-oriented programming,
making available many of the benefits of both paradigms. One important benefit of purely
functional programming is referential transparency, which makes reasoning about program
behaviour easier, both for human programmers and for automated optimizers and verifiers.
Nevertheless, Scala does not provide any verifiable way to specify which parts of a program
are purely functional. Purity is an absence of all side effects; in this paper, we focus on
mutation of objects in the heap as one specific but important side effect.

Reference mutability, also called reference immutability [19, 10], has been studied especially
in Java as a way to control mutation. References to objects are classified as either read-write
or read-only, and writes to fields through a read-only reference are forbidden. This applies
transitively: when a reference is read from the field of an object through a read-only reference,
the newly-read reference is made read-only as well. As a result, if all parameters of a function
are read-only (and if there are no accesses to global variables), the function must be pure
in the sense that it cannot modify any state in the heap that existed before it was called,
although it does have the ability to allocate and mutate new objects.

As in related work [19, 20], we distinguish reference mutability from the stronger guarantee
of object immutability: a reference mutability system like ours ensures that an object is not
mutated through a read-only reference, but it is still possible for the object to change if it
is aliased by other, read-write references. For the same reason, we avoid calling references
mutable or immutable, since it is not the reference that can be mutated, but the object that
it refers to, and even the referent of a read-only reference is not necessarily immutable. By
the same reasoning, it would be more accurate to speak of the read-only-ness of a reference
rather than of its mutability, but we use the latter term because the former is awkward.

© Vlastimil Dort and Ondřej Lhoták;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 18; pp. 18:1–18:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0213-7524
mailto:dort@d3s.mff.cuni.cz
https://orcid.org/0000-0001-9066-1889
mailto:olhotak@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.ECOOP.2020.18
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Reference Mutability for DOT

Our goal is to bring read-only references to Scala. An empirical study [8] showed that
about 35 to 70 percent of classes in large Scala codebases are either deeply or shallowly
immutable. One challenge is the complexity of Scala and its type system relative to Java,
and the interaction of reference mutability with Scala language features. In particular, Scala
programs frequently use nested functions that have access to variables in outer scopes. A
second challenge is that for maintainability and ease of adoption, we seek a system that
integrates well with Scala’s existing type system. Reference mutability implementations
for Java add entirely new type systems on top of Java’s type system. Since Scala’s type
system already provides powerful and expressive features, it ought to be possible to use those
features to implement at least parts of a reference mutability system, and we explore the
feasibility of such an approach. By reusing existing features as much as possible, we aim for
an implementation that would require few changes to an existing Scala compiler so that it
could be easily maintained as the compiler evolves.

When we began this project, we explored designs by prototyping them in the Dotty
compiler for Scala 3. The subtle conceptual errors that we encountered revealed the need for
a more principled approach. Our contribution in this paper is a formalization of our design
as an extension of the Dependent Object Types (DOT) calculus [2, 16, 14], a core calculus
modelling the essence of Scala. We prove type soundness and the immutability property
guaranteed by our extended DOT calculus, which we call roDOT. roDOT can serve as a
foundation for a correct implementation of reference mutability for the full Scala language.

The rest of the paper is organized as follows. In Section 2, we present a baseline DOT
calculus that we will extend with reference mutability. We overview our approach in Section 3:
we identify the requirements needed from a type system to implement a useful reference
mutability system, discuss how the features of DOT can partially satisfy the requirements,
and introduce the changes that we make to DOT to fulfill the requirements. In Section 4, we
present roDOT, the formal DOT calculus extended with reference mutability. In Section 5,
we define properties of roDOT, namely type soundness and the immutability guarantee, and
discuss their proofs. We survey related work in Section 6 and conclude in Section 7.

2 Baseline DOT

In this section, we present a baseline DOT calculus that we will later extend with reference
mutability. There are multiple variants of DOT calculi in the literature. Our baseline is
close to kDOT [12], which in turn is based Wadlerfest DOT [2], with the following main
differences. In Wadlerfest DOT, objects are immutable. The semantics operates on plain
program terms, with objects in the heap represented by let-binding terms. In kDOT, objects
have mutable fields, which can be re-assigned to hold a reference to another object on the
heap. The semantics of kDOT operates on configurations with an explicit heap, a program
term being reduced, and a stack of continuations. We adopt these features of kDOT in our
baseline DOT. In addition, kDOT defines constructors to model the gradual initialization of
the fields of each object, like in Scala. We omit constructors from our baseline DOT because
they are not necessary to model reference mutability. Thus, our baseline DOT is a variant of
kDOT without constructors.

The syntax of the baseline DOT is in Figure 1. As in WadlerFest DOT and kDOT, the
literals are objects and lambda abstractions. An object has a self parameter s (modelling the
this keyword in Scala) and a sequence d of member definitions. Object members are either
fields, which store a term that is reduced after each read of the field, or type members. As in
kDOT, a literal can only appear in a let-binding of the form let z = l in t, which ensures that
every literal can be referred to by some variable z.

V. Dort and O. Lhoták 18:3

x ::= Variable
| z local
| s self
| y location
d ::= Definition
| {a = t} field
| {A = T} type
| d1 ∧ d2 aggregate
Γ ::= Context
| empty
| Γ, x : T binding

l ::= Literal
| ν(s : T)d object
| λ(z : T)t lambda
t ::= Term
| vx var
| let z = t1 in t2 let
| let z = l in t let-lit
| x1.a := x2 write
| x.a read
| x1x2 apply

T ::= Type
| > top
| ⊥ bottom
| ∀(z : T1)T2 function
| µ(s : T) recursive
| {a : T1..T2} field decl
| {A : T1..T2} type decl
| x.A projection
| T1 ∧ T2 intersection

Figure 1 Baseline DOT syntax.

Σ ::= Heap
| · empty heap
| Σ, y → l heap object
σ ::= Stack
| · empty stack
| let z = � in t :: σ let frame
F ::= Inert context
| empty
| F, y : S binding

c ::= Configuration
| 〈t;σ; Σ〉
Q ::= Member type
| {a : T..T} tight field decl
| {A : T..T} tight type decl
R ::= Record type
| Q member
| R1 ∧R2 intersection
S ::= Inert type
| ∀(z : T1)T2 function
| µ(s : R) object

Figure 2 Baseline DOT runtime syntax.

In the baseline DOT, we distinguish between local variables z that are bound by let terms
and lambdas, self variables s that are bound by object literals, and heap locations y that
represent addresses in the runtime heap. Heap locations cannot appear in the surface syntax;
they are created only in runtime configurations in the operational semantics.

A program is expressed as a term, which, if correctly typed, reduces to a location of a
single item on the heap. The meanings of the terms are standard. We use the notation vx
to make it explicit when a variable is used as a term. A let term evaluates one term and
substitutes the result into another term. Terms in DOT are in A-normal form (ANF), in
that subterms of a term are generally variables, not arbitrary terms. Thus, every non-trivial
term must be evaluated and assigned to a variable in a let binding before it can be used in a
later term. A write term changes the value of a field of an object on the heap. A read term
returns the last value written to a field, or the term value given to the field when the object
was created. An apply term applies a lambda by substituting the argument into its body.

Types must be explicitly specified in lambda abstractions and object literals. Lambdas
have a function type, which allows them to be applied in an apply term. Objects have a
recursive type containing an intersection of field or type declaration types corresponding to
the definitions forming the object. The recursive type allows the declarations to refer to
other members of the object. An intersection type is a common subtype of two types. As in
kDOT, a field declaration type specifies two types for a field, a setter and a getter type. The

ECOOP 2020

18:4 Reference Mutability for DOT

getter type is given to a read term that reads the field, while the setter is the type a variable
must have so that it can be written to the field. A type declaration type specifies the lower
and upper bounds for a type member, which can be referred to by type selection. The top
type is a supertype of every type; the bottom type is a subtype of every type.

Evaluation of a program is described as reduction of an initial configuration, which
consists of a term, an empty stack, and empty heap. The heap binds locations y to literals
l. The heap is modified by creating a new object using the let-lit term, or by changing the
value of a field using the write term. In a final configuration, the stack is empty and the
term is in normal form – a location of a single item on the heap.

In a typed configuration, heap correspondence ensures that for each location in the context,
the heap contains a function or an object of the specified type. For objects it means that if
Γ(y) = µ(s : R), then Σ(y) = ν(s : R)d, where Γ ` d : [y/s]R. The type R is syntactically
the same in Γ and Σ.

Type soundness ensures that evaluation of a typed term either progresses indefinitely or
reaches a final configuration. A key ingredient of the type soundness proof is the definition
of inert typing contexts. A concrete object in the heap holds a specific term in each field and
a specific type in each type member, so it is possible to type such an object with a type in
which all member types are tight: each type declaration type {A : T..T} has equal upper
and lower bounds T and each field declaration type {a : T..T} has equal getter and setter
types T . Such types with tight bounds are called inert, and many theorems about DOT
calculi hold only in typing contexts containing only inert types [14]. A progress theorem
proves that if a configuration can be typed in a typing context that gives an inert type for
each object in the heap, then it is in a normal form or steps to another configuration. A
preservation theorem proves that the resulting configuration after the step can still be given
the same type in an inert context that corresponds to the possibly updated heap.

3 Overview

In this section, we examine how the baseline DOT system can be extended to support
read-only references and overview the path to roDOT.

3.1 Requirements
A type system for reference mutability should satisfy the following requirements:
Keeping expressiveness. The type system should admit programs that do not use the new

features similarly to the baseline DOT.
Mutability constraints. Additionally, the type system should provide a way to distinguish

between read-write and read-only references. Read-write references should be convertible
to read-only references, but not the other way. In a reference mutability type system, the
distinction can be achieved by making each type read-write or read-only, with read-write
a subtype of read-only.

Integration with type system features. The extensions should use existing features of the
DOT type system where possible, and not interfere with them.

Type soundness. The extensions should not make the type system unsound - as in kDOT,
each typed program should reduce to an answer or run indefinitely.

Guarantee of immutability. The type system should guarantee that only read-write refer-
ences are used to mutate objects. This guarantee should be transitive: starting from a
read-only reference, the system should prevent mutation of any other objects reached by
any sequence of field reads. To achieve this, if a read term reads from a field of an object

V. Dort and O. Lhoták 18:5

through a read-only reference, the result of the read should be given a read-only type,
even if the field contains a read-write reference. This change in the type of the reference
is called viewpoint adaptation [10].

Mutability polymorphism. Previous work [19, 10] demonstrated the importance of methods
that are polymorphic in the mutability of the receiver. Consider a getter method that
reads a field of an object. When called on a read-only reference, the method can obtain
only a read-only reference from the field due to viewpoint adaptation, and thus its return
type must be read-only. But, when the same method is called on a read-write receiver, it
can read a read-write reference from the field, and its return type should reflect this.

3.2 Example
As an example, we will encode an object with a field a and getter and setter methods mg
and ms for that field. In Scala, such an object would be created by instantiating a class:

class C {
var a: T = _
def m_s(z: T): Unit = {a = z}
def m_g: T = a

}

In the baseline DOT, such an object can be created by a let statement:
let z = ν(s : To){a = x} ∧ {ms = let z1 = λ(z : T)s.a := z in z1} ∧ {mg = s.a} in t, where
To , µ(s : {a : T} ∧ {ms : ∀(z : T)>} ∧ {mg : T}) and x is an initial value of type T .

The ms method mutates the contents, so a reference mutability type system should
prevent calling it on a read-only reference. The mg method should be polymorphic in the
mutability of the receiver. After we present the roDOT calculus, we will show how this
example can be encoded in it in Section 4.5.

3.3 Changes to the Calculus
We now summarize the changes to the baseline DOT to support read-only references. We
motivate each change briefly here, but defer a detailed justification to Section 4.

3.3.1 Mutability Types
First, we must decide how to distinguish read-write and read-only types. A straightforward
way is to define some special marker type M to designate read-write references. Any type
can be made read-write by intersecting it with M . This satisfies our requirement that a
read-write type should be a subtype of the read-only version of the same type.

We can test whether a type is read-write by testing whether it is a subtype of M . For a
reference x, we define an operation Γ ` isrw x as a typing judgment Γ ` x : M . To make a
read-write version of an existing type T , we define an operation rw(T) ≡ T ∧M .

3.3.2 Dependent Mutability
Second, we need some mechanism to implement mutability polymorphism. We will use a
dependent mutability type, defined to have the same mutability as some specified reference.

We can achieve this with a careful choice of the read-write marker type: we reserve a
type member name M for mutability, and choose M ≡ {M : ⊥..⊥}. This choice makes it
possible for a type to depend on the mutability of a reference x using the type selection x.M.
The type {M : ⊥..x.M} is read-write (in the sense of being a subtype of {M : ⊥..⊥}) if (and
in an inert context only if) the reference x is read-write (has type {M : ⊥..⊥}).

ECOOP 2020

18:6 Reference Mutability for DOT

3.3.3 Viewpoint Adaptation
Third, the type system requires an operation Γ ` x . T → T ′ that performs the viewpoint
adaptation described above. Given a reference x and a type T of a field, it returns T if x
is a read-write reference, but a read-only version of T if x is a read-only reference. This
operation could also be composed from two simpler operations: making a read-only version
of T and combining the mutability of T and x.

While a read-write version of a given type can be made with a simple intersection, the
opposite of making a read-only version cannot be done using any of the type operations in
the baseline DOT. If it is already the case that T <: {M : ⊥..⊥}, none of the operations
removes this subtyping relationship while otherwise keeping T unchanged. Therefore we need
a new relation ro that makes a read-only version of a type. We will define Γ ` T roT ′ by
recursion on the syntax of T , so that T ′ is a supertype of T , but not a subtype of {M : ⊥..⊥}.

We also need to combine the mutabilities of x and T . The mutability of x can be expressed
using the type selection x.M, but to determine the mutability of T , we need to define another
relation mu similar to ro. In Γ ` T muT ′, the type T ′ is a lower bound for the special type
member M given by T . We will define the ro and mu relations in detail in Section 4.2.

Using these new type operators, we can define viewpoint adaptation as Γ ` x . T →
Tr ∧ {M : ⊥..Tm ∨ x.M}, where Γ ` T roTr and Γ ` T muTm. Notice that the upper bound
Tm ∨ x.M is a union type. To implement viewpoint adaptation, we therefore need to extend
DOT with union types. Union types are a feature of Scala 3 and were studied in some
variants of DOT [16, 3], but not in kDOT, from which our baseline DOT is derived.

Note that even with union types added, ro cannot be implemented by a simple union
T ∨ notM of T with some fixed read-only type notM , because the set of members of such a
union type is the intersection of the members of T and notM , so the union type would not
have all the members of T .

3.3.4 Recursive Types
If we were to allow the self type T in a recursive type µ(s : T) to be read-write, an object
of such a type would be inherently mutable, i.e., viewpoint adaption would not be able to
create a read-only reference to it. This is because the read-write type µ(s : T ∧ {M : ⊥..⊥})
is not a subtype of the read-only variant µ(s : T), for there is no subtyping between recursive
types in DOT.

This means that the mutability of an object must be expressed outside the recursive type
as µ(s : T) ∧ {M : ⊥..⊥}, as opposed to inside as as µ(s : T ∧ {M : ⊥..⊥}).

We also require the self type T to not refer to s.M, the mutability of the self variable.
Otherwise, the mutability could be stored in a type member such as {A : s.M..⊥}, from
which we could infer s.M <: ⊥, which would again make the object inherently mutable.

3.3.5 Methods
In a type of a mutability-polymorphic method, such as the getter mg from the example, we
want to specify its return type to be dependent on the mutability of the receiver. When the
method is called on a read-write receiver reference, the type of the return value will become
read-write as well, because of the mutability-dependent return type.

In the baseline DOT, a method is encoded as a function value stored in a field of an object.
Given that the declaration of a field is typed with a self-variable s in scope, it would seem
natural to use s.M for defining methods with return types polymorphic in the mutability of

V. Dort and O. Lhoták 18:7

the receiver. For example, {m : ∀(z : >)({a : >} ∧ {M : ⊥..s.M})} would be a method that
returns a read-write referenece to an object with field a when called on a read-write receiver,
but returns a read-only reference to the same object when called on a read-only receiver.

The problem with this encoding is that the dependent mutability s.M in the return
type would refer to the mutability of the object that the method is contained in, not to the
mutability of the reference to that object through which the method is called. Distinguishing
these two concepts requires a rather complicated example, which we will present in Section 4.1.

To distinguish these concepts in roDOT, we introduce a new kind of variable r to represent
the receiver reference and write it as an explicit additional parameter of each method. The
type given to this parameter decides its mutability. In polymorphic methods, we type it as
read-only, so that the method can be called on either a read-write or a read-only receiver.

Furthermore, the baseline DOT splits the typing of a method invocation into two steps:
the first step reads the function value from the field and the second step applies the function
to an argument. This two-step process separates the receiver reference, which is present only
in the first step, from the function application in the second step. Thus, the mutability of
the result can no longer polymorphically depend on the mutability of the receiver reference.

To overcome this problem, we need to unify method selection and method invocation into
one step, so that the type of the method invocation can depend on the type of the receiver.
We extend the baseline DOT with an explicit method construct. A method is called in a
single step using a term of the form x1.mx2, which selects the method from the receiver x1
and applies it to an argument x2. A method type then has the form {m(z : T1, r : T3) : T2}.

Visibility

If a method captures a variable from its surrounding environment, it can write to the object
that the variable refers to even if it is called on a read-only receiver and with a read-only
argument. To prevent this, we hide variables other than the receiver and method parameter
in the typing context when typing the body of a method, so the method cannot capture
them. Despite this restriction, it is still possible to encode a method that captures variables
as follows: the captured variables are copied into fields of the containing object. This
workaround ensures that viewpoint adaptation is applied when the captured variable is read
out of the field of the object.

3.3.6 Reference Variables

In the baseline DOT, a reference value is a location y, the unique identifier of some item in the
heap. To state and prove roDOT immutability guarantee, we need to distinguish read-only
and read-write references to the same object in a runtime configuration. We therefore extend
the calculus with references w. Two references w,w′ may designate the same location y, but
can have different mutabilities in the typing context Γ. Runtime configurations are extended
with an environment ρ that maps each reference w to the location y that it designates.

In summary, the baseline DOT distinguishes three kinds of variables: local variables and
method parameters z, recursive self variables s, and heap locations y. To these three, roDOT
adds receiver variables r and reference variables w.

ECOOP 2020

18:8 Reference Mutability for DOT

4 Type System

In this section, we present the formal definition of roDOT.

4.1 Syntax
The syntax of roDOT is defined in Figure 3. Changes from the baseline DOT are highlighted
using shading.

Terms are formed by the same syntax as in the baseline DOT, except that the function
application syntax is replaced by a method call syntax and lambda literals are replaced
by method definitions with the ordinary parameter z and receiver parameter r. Since the
calculus no longer needs lambda literals, all literals are objects, so we inline them into the
let-lit term. Furthermore, the values of fields are variables x rather than arbitrary terms t.
Terms were needed in the baseline DOT to allow fields to hold lambdas to encode methods.

Variables x are classified as either abstract variables u, which are bound in terms and
definitions in the initial program, or global variables v, which are generated during reduction
and are used in the heap and the runtime environment. They are not expected to be used in
the initial term. Abstract variables are either general local variables z, object self variables s,
or method call receivers r. Global variables are either heap locations y or references to heap
locations w. A typing context Γ can give a type to variables of any kind.

To support viewpoint adaptation, we add union types. They are dual to intersection types
and make it possible to define a distributive subtyping rule for intersections of type member
types (ST-TypAnd in Figure 4), which makes it possible to combine multiple mutability
declarations into one. A new type N is a read-only version of ⊥.

x ::= Variable
| u abstract
| v global
u ::= Abstract
| z local
| s self
| r receiver
v ::= Global
| y location
| w reference
t ::= Term
| vx var
| let z = t1 in t2 let
| let z = ν(s : T)d in t let-lit
| x1.a := x2 write
| x.a read
| x1.mx2 call
B ::= Type name
| A type member
| M mutability

Γ ::= Context
| empty
| Γ, x : T binding
| Γ, ! hide
d ::= Definition
| {a = x} field
| {m(z, r) = t} method
| {A(r) = T} type
| d1 ∧ d2 aggregate
T ::= Type
| > top
| ⊥ bottom
| µ(s : T) recursive
| {a : T1..T2} field decl
| {m(z : T1, r : T3) : T2}method decl
| {B(r) : T1..T2} type decl
| x1.B(x2) projection
| T1 ∧ T2 intersection
| T1 ∨ T2 union
| N read-only ⊥

Figure 3 Syntax.

V. Dort and O. Lhoták 18:9

4.1.1 Methods
Method declarations bind the parameter variable z and the receiver variable r. In the
corresponding definition, we omit the types, because they are not needed. Each method has
only one parameter other than the receiver. Multiple values can be passed to a method by
wrapping them in an object and passing a reference to the object as the argument.

To motivate the dedicated syntax for methods, consider an object that contains a method
a that returns a reference with the same mutability s.M as the receiver that it is called on. In
the syntax of the baseline DOT, this object could have the type T , µ(s : {a : ∀(z : T ′){M :
⊥..s.M}}). Suppose x1 is a read-write reference to such an object; it has type T ∧{M : ⊥..⊥}.
Now suppose x1 is copied to another reference x2 that is read-only. The reference can be
made read-only in various ways: one way is to store x1 into a field of some other object y,
and then read it back into x2 through a read-only reference to y, so viewpoint adaptation
will make the type of x2 read-only. But, even though x2 is read-only (i.e., x2.M is not a
subtype of ⊥), x2 still has the same field types copied from x1. In particular, x1 has the type
T ∧ {M : ⊥..⊥}, the type T , the type {a : ∀(z : T ′){M : ⊥..x1.M}} (by VT-RecE), and the
type {a : ∀(z : T ′){M : ⊥..⊥}} (by ST-SelU). Even though x2 is read-only, it still also has
the latter field types. Thus, the expression x2.a can be typed as a function with a read-write
return type, even though the receiver x2 is read-only.

If we introduced methods, but without the receiver variable r, the type of the object would
be T , µ(s : {m(z : T ′) : {M : ⊥..s.M}}). Suppose again that x1 is a read-write reference to
the object, which is copied to x2 and made read-only. As before, the VT-RecE rule can be
applied to the type of x1 before it is made read-only, so x1 has the type T ∧ {M : ⊥..⊥}, the
type T , the type {m(z : T ′) : {M : ⊥..x1.M}}, and the type {m(z : T ′) : {M : ⊥..⊥}}. Even
though x2 is a read-only reference, it still also has the latter method types, and thus the
method can return a read-write reference even when called on the read-only receiver x2.

To avoid these problems, we prohibit references to the mutability s.M of the self object
reference s in all definitions; the return type can only refer to the mutability of r, the receiver
reference on which the method will be called.

One may wonder whether we could have achieved the same thing without changing the
baseline DOT syntax by encoding a method with receiver r and parameter z using currying
as {a = λ(r : T3)λ(z : T1)t}. The method would then be called on receiver r with argument
x as (r.a r) x, i.e., the receiver r would have to be repeated. The problem with this encoding
is that in the type of an object, we have to write the types of the object’s methods, and those
method types contain the type for the receiver, which should be the type of the object itself.
Thus, the type of an object would have to recursively include itself, and thus the structure of
the type would be infinite. On the other hand, with the explicit syntax for method types
({m(z : T1, r : T3) : T2}), we can resolve this issue in the typing rule for method definitions:
when we add the receiver r to the typing context for typing the method body, we add it not
just with the specified type T3, but with an intersection of T3 with the self type of the object
containing the method. This removes the need to recursively repeat that self type inside T3.

4.1.2 Type Members
Type members can have either an ordinary name A, or the special mutability member name
M, which cannot be defined in an object literal. We write B in places where both A and
M can be used. In the formal syntax, all type members have a receiver parameter r with
no type specified: the general form is {B(r) : T1..T2}. In a type selection, an argument for
this parameter must be provided, and is substituted into the bounds T1 and T2. To reduce
clutter, we omit writing the receiver parameter when it is not used in the bounds.

ECOOP 2020

18:10 Reference Mutability for DOT

The M is a special member used as the mutability marker. A type {M : ⊥..T} is read-write
if T <: ⊥ and read-only otherwise. Only the upper bound of M is significant for mutability
because the lower bound is always ⊥. A dual encoding would be equally possible, in which
the lower bound would be significant and the upper bound would always be >, so a read-write
type would be expressed by {M : >..>}.

The receiver parameter r allows making a generic method type, where the mutability
of the result is determined by a type member of the containing object. For example, the
mutability of the return type of the method in µ(s : {m(z : >, r : >) : s.A(r)}) depends on
A. It is read-write if the object defines {A(r) = {M : ⊥..⊥}}, read-only if the object defines
{A(r) = {M : ⊥..>}}, and polymorphic if the object defines {A(r) = {M : ⊥..r.M}}.

4.2 Typing

The typing and subtyping rules are shown in Figures 4 to 6. The rules are obtained from the
baseline DOT by applying the syntactic changes and by adding additional rules. As in the
baseline DOT, typing rules for variables are separated from typing rules for terms.

The typing rules apply both to determine which initial terms are valid programs and to
give types to intermediate terms during reduction in order to prove type safety. When used
for this second purpose, the terms may contain type selections on reference variables such
as w.A. For two references w and w′ to the same location y, types w.A, w′.A and y.A are
considered equivalent. In order to achieve this, subtyping and typing statements have the
environment ρ on the left-hand side. The environment is passed around in all the typing
rules, but only used in ST-Eq, which states that if two types only differ in references, then
they are subtypes. It has no effect on typing of initial program terms, because those do not
contain references w and are typed with empty ρ.

4.2.1 Subtyping Rules

The ST-Refl and ST-Trans rules ensure that subtyping is a preorder, and the ST-Top and
ST-Bot rules establish > and ⊥ as the maximum and minimum elements. The ST-Or* and
ST-And* rules define the usual properties of unions and intersections. ST-Dist makes them
distribute and ST-TypAnd allows merging bounds of type members in intersections.

The ST-Typ, ST-Met and ST-Fld rules allow subtyping between declaration types. In
ST-Met, the parameter is in the typing context for subtyping of the receiver types, and both
the parameter and receiver are in the context for subtyping of the result types. In ST-Typ,
the r parameters do not have bounds and are not added to the typing context for subtyping.
It is important for the proofs that in the tight-subtyping variant of this rule, the typing
contexts remain inert.

The ST-Met rule is a counterpart of a subtyping rule for function types in DOT, which
plays a major role in DOT being conjectured to be undecidable [9]. Correspondingly, in
roDOT, this rule makes it difficult to test whether a particular type is read-write or read-only.

The ST-Sel* rules give bounds to type selections. They substitute the provided argument
for the receiver parameter.

The ST-N-M rule makes ⊥ the greatest lower bound of N and {M : ⊥..⊥}, expressing
that nothing can be both read-write and read-only. The other ST-N-* rules establish N as
a lower bound of read-only types. As in the baseline DOT, there is no subtyping between
different recursive types.

V. Dort and O. Lhoták 18:11

Γ;ρ ` T <: T (ST-Refl)

Γ;ρ ` T1 <: T2
Γ;ρ ` T2 <: T3

Γ;ρ ` T1 <: T3
(ST-Trans)

Γ;ρ ` T <: >(ST-Top)

Γ;ρ ` ⊥ <: T (ST-Bot)

ρ ` T1 ≈ T2

Γ;ρ ` T1 <: T2
(ST-Eq)

Γ;ρ ` T1 <: T1 ∨ T2
(ST-Or1)

Γ;ρ ` T2 <: T1 ∨ T2
(ST-Or2)

Γ;ρ ` T1 <: T3
Γ;ρ ` T2 <: T3

Γ;ρ ` T1 ∨ T2 <: T3
(ST-Or)

Γ;ρ ` T1 <: T2
Γ;ρ ` T1 <: T3

Γ;ρ ` T1 <: T2 ∧ T3
(ST-And)

Γ;ρ ` T1 ∧ T2 <: T1
(ST-And1)

Γ;ρ ` T1 ∧ T2 <: T2
(ST-And2)

Γ;ρ ` x : {B(r) : T1..T2}
Γ;ρ ` [x2/r]T1 <: x.B(x2)

(ST-SelL)

Γ;ρ ` x : {B(r) : T1..T2}
Γ;ρ ` x.B(x2) <: [x2/r]T2

(ST-SelU)

Γ;ρ ` T3 <: T1 Γ;ρ ` T2 <: T4

Γ;ρ ` {B(r) : T1..T2} <: {B(r) : T3..T4}
(ST-Typ)

Γ;ρ ` T3 <: T1 Γ;ρ ` T2 <: T4

Γ;ρ ` {a : T1..T2} <: {a : T3..T4}
(ST-Fld)

Γ;ρ ` N ∧ {M(r) : ⊥..⊥} <: ⊥(ST-N-M)

Γ;ρ ` N <: µ(s : T)(ST-N-Rec)

Γ;ρ ` N <: {a : T1..T2}(ST-N-Fld)

Γ;ρ ` N <: {A(r) : T1..T2}(ST-N-Typ)

Γ;ρ ` T3 <: T1 Γ, z : T3;ρ ` T6 <: T5
Γ, z : T3, r : T6;ρ ` T2 <: T4

Γ;ρ ` {m(z : T1, r : T5) : T2} <: {m(z : T3, r : T6) : T4}
(ST-Met)

Γ;ρ ` N <: {m(z : T1, r : T3) : T2}(ST-N-Met)

Γ;ρ ` {B(r) : T1..T2} ∧ {B(r) : T3..T4} <: {B(r) : T1 ∨ T3..T2 ∧ T4}(ST-TypAnd)

Γ;ρ ` T1 ∧ (T2 ∨ T3) <: (T1 ∧ T2) ∨ (T1 ∧ T3)(ST-Dist)

Figure 4 Subtyping.

4.2.2 Variable Typing Rules

The VT-Var rule gives variables the type assigned by the typing context, VT-Sub adds
subsumption and VT-AndI gives variables intersection types.

The typing rules VT-RecE and VT-RecI allow opening and closing recursive types. Both
rules require that the inner type T is independent of the mutability s.M of s, written
T indep s. The introduction rule additionally requires the inner type to be read-only by
requiring that the ro operation does not change the original type.

ECOOP 2020

18:12 Reference Mutability for DOT

To ensure that the type selection x.M is valid for every variable x, we add the axiom
VT-MutTop, which gives every variable the type {M : ⊥..>}.

4.2.3 Term Typing Rules
Typing of terms requires that all variables occurring free in a term, but not as a part of a
type (we call them t-free), are visible, as discussed in Section 3.3. For each such occurrence,
there is a premise Γ visx in the corresponding rule. By Vis-Var, only the variables after the
! are visible for term typing. Variables in the context before the ! can still be used for type
selection. This separation makes use of our explicit notation for a variable used as a term,
written vx, and typed using only the part of the context after the !. A plain variable x that
appears in a type selection x.A is typed using the full typing context.

The TT-Var rule gives types given by variable typing to visible variables. TT-Sub adds
subsumption for term types. TT-Let types let terms as in the baseline DOT.

! /∈ Γ2

Γ1, x : T,Γ2 vis x
(Vis-Var)

Γ = Γ1, x : T,Γ2

Γ;ρ ` x : T
(VT-Var)

Γ;ρ ` x : T1 Γ;ρ ` T1 <: T2

Γ;ρ ` x : T2
(VT-Sub)

Γ;ρ ` x : T1 Γ;ρ ` x : T2

Γ;ρ ` x : T1 ∧ T2
(VT-AndI)

Γ;ρ ` x : µ(s : T)
T indep s

Γ;ρ ` x : [x/s]T
(VT-RecE)

Γ;ρ ` x : [x/s]T
T indep s

Γ;ρ ` [x/s]T ro [x/s]T
Γ;ρ ` x : µ(s : T)

(VT-RecI)

Γ;ρ ` x : T
Γ;ρ ` x : {M(r0) : ⊥..>}

(VT-MutTop)

Γ;ρ ` x : T Γ vis x
Γ;ρ ` vx : T

(TT-Var)

Γ;ρ ` t : T1 Γ;ρ ` T1 <: T2

Γ;ρ ` t : T2
(TT-Sub)

Γ;ρ ` t1 : T1 z /∈ fv T2
Γ, z : T1;ρ ` t2 : T2

Γ;ρ ` let z = t1 in t2 : T2
(TT-Let)

Γ;ρ ` x1 : {m(z : T1, r : T3) : T2}
Γ;ρ ` x2 : T1 Γ vis x2

Γ;ρ ` x1 : [x2/z]T3 Γ vis x1

Γ;ρ ` x1.mx2 : [x1/r][x2/z]T2
(TT-Apply)

Γ;ρ ` x1 : T1 Γ vis x1
Γ;ρ ` x : {a : T1..T2} Γ vis x

Γ;ρ ` x : {M(r) : ⊥..⊥}
Γ;ρ ` x.a := x1 : T2

(TT-Write)

Γ, s : T1;ρ ` d : T1 z /∈ fv T2 T1 indep s

Γ, z : µ(s : T1) ∧ {M(r) : ⊥..⊥};ρ ` t : T2

Γ;ρ ` let z = ν(s : T1)d in t : T2
(TT-New)

Γ;ρ ` x : {a : T1..T2} Γ vis x
Γ;ρ ` T2 ro T3 Γ;ρ ` T2 mu(r) T4

Γ;ρ ` x.a : T3 ∧ {M(r) : ⊥..(T4 ∨ x.M(r))}
(TT-Read)

Figure 5 Typing.

V. Dort and O. Lhoták 18:13

Γ, s : T4;ρ ` {A(r) = T} : {A(r) : T..T}(DT-Typ)

Γ, s : T4;ρ ` {A(r) = T} : {A(r) : ⊥..T}(DT-TypB)

Γ, s : T4;ρ ` x : T Γ, s : T4 vis x
Γ, s : T4;ρ ` {a = x} : {a : T..T}

(DT-Fld)

Γ, s : T4;ρ ` d1 : T1 Γ, s : T4;ρ ` d2 : T2
d1 and d2 have distinct member names

Γ, s : T4;ρ ` d1 ∧ d2 : T1 ∧ T2
(DT-And)

z /∈ fv T1 ∪ fv T4, r /∈ fv T3 ∪ fv T1 ∪ fv T4
Γ, s : T4, !, z : T1, r : T4 ∧ [r/s]T4 ∧ T3;ρ ` t : T2

Γ, s : T4;ρ ` {m(z, r) = t} : {m(z : T1, r : T3) : T2}
(DT-Met)

Figure 6 Definition typing.

The TT-New rule should give a read-write type to every constructed object. Therefore,
the type of z in the context for typing t in let z = ν(s : T1) in t is changed to rw(µ(s : T1)).
The type T1 written for s must correspond to the definitions and cannot refer to s.M. Because
objects are given a recursive type, this corresponds to the requirement that recursive types
must always be read-only.

The TT-Apply rule for method calls substitutes both the parameter and the receiver into
the result type. The type declared for r restricts the type of the receiver. The typing rule
for method application checks that both the receiver and the argument have the expected
type. For example, if the receiver parameter type is declared to have a read-write type, the
method can be called only on read-write references.

In TT-Write, we add a premise to ensure that the reference whose field we are mutating
is read-write: x : {M : ⊥..⊥}.

Finally, in TT-Read, we need to viewpoint-adapt the type T2 of the field with the
mutability of the reference x through which we are reading the field. For x : {a : T1..T2}, we
change the type of x.a from T2 to T5, and add a premise Γ ` x . T2 → T5.

Viewpoint Adaptation

In Section 3.3, we described how viewpoint adaptation can be expressed in terms of two new
type relations Γ ` T roTr and Γ ` T muTm. The relations are defined together in Figure 7.
The operation Γ ` T roTr means that Tr is a supertype of T that is definitely read-only.
The ro relation extracts the parts of a type other than mutability. Thus, the relation maps
the mutability type member type {M : T..T ′} to >. The relation is the identity on the >
type, field and method declarations, and type declarations other than M. Because we want
T <: Tr whenever Γ ` T roTr, the relation must also be the identity on recursive object
types, because they do not participate in any subtyping relationships other than reflexivity
and subtyping with ⊥ and >. To enforce this, the typing rule for recursion introduction
needs to ensure that the self type T is read-only.

ECOOP 2020

18:14 Reference Mutability for DOT

Γ;ρ ` > ro >
Γ;ρ ` >mu(r) >

(TS-Top)

Γ;ρ ` ⊥ ro N
Γ;ρ ` ⊥mu(r) ⊥

(TS-Bot)

T = {A(r) : T1..T2}
Γ;ρ ` T ro T

Γ;ρ ` T mu(r0) >

(TS-Typ)

T = {m(z : T1, r : T3) : T2}
Γ;ρ ` T ro T

Γ;ρ ` T mu(r0) >

(TS-Met)

T = {a : T1..T2}
Γ;ρ ` T ro T

Γ;ρ ` T mu(r) >

(TS-Fld)

Γ;ρ ` x : {B(r) : T1..T2}
Γ;ρ ` [x2/r]T2 ro T3

Γ;ρ ` [x2/r]T2 mu(r0) T4

Γ;ρ ` x.B(x2) ro T3
Γ;ρ ` x.B(x2) mu(r0) T4

(TS-Sel)

Γ;ρ ` {M(r) : T1..T2} ro >
Γ;ρ ` {M(r) : T1..T2}mu(r) T2

(TS-M)

T = µ(s : T1)
Γ;ρ ` T ro T

Γ;ρ ` T mu(r) >

(TS-Rec)

Γ;ρ ` T1 ro T2
Γ;ρ ` T3 ro T4

Γ;ρ ` T1 ∧ T3 ro T2 ∧ T4
(TS-AndR)

Γ;ρ ` T1 mu(r) T2
Γ;ρ ` T3 mu(r) T4

Γ;ρ ` T1 ∧ T3 mu(r) T2 ∧ T4
(TS-AndM)

Γ;ρ ` T1 ro T2
Γ;ρ ` T3 ro T4

Γ;ρ ` T1 ∨ T3 ro T2 ∨ T4
(TS-OrR)

Γ;ρ ` T1 mu(r) T2
Γ;ρ ` T3 mu(r) T4

Γ;ρ ` T1 ∨ T3 mu(r) T2 ∨ T4
(TS-OrM)

Figure 7 Splitting relations.

On intersection and union types, the ro relation is defined recursively on the two parts
of the type. For a type selection x.B(x2), ro is applied recursively to the upper bound of
B in the type of x. For the bottom type ⊥, ro cannot simply return ⊥ itself because ⊥ is
read-write since ⊥ <: {M : ⊥..⊥}. We make N a subtype only of types that are definitely
known to be read-only, including declaration types other than M and all recursive types.

The mu relation is defined to return T2 for {M(r) : ⊥..T2}, to recurse on intersection
and union types and into the upper bound of a type selection, and to return > for all
other (read-only) types. Because in TS-M, the type T2 may refer to the receiver r, the mu
relation is parameterized by a variable that binds to this receiver. This variable is used in
the declaration of M in the viewpoint-adapted type in TT-Read.

4.2.4 Definition Typing
Definition typing, shown in Figure 6 (DT-*), is only used in the context of the TT-New rule,
where the self reference s is the last variable in the typing context. Singling out this variable
from the rest of the typing context is important for the DT-Met rule, in order to give r a
type derived from the type of the object.

Typing of field definitions DT-Fld allows using s as the value of the field. It requires the
value of the field to be visible, and gives the field a type with tight bounds. Typing type
members allows tight bounds, but we also allow fixing just the upper bound and leaving the
lower bound to be ⊥. This allows declarations of ordinary type members to be similar to the
declarations of the mutability member M, which always have ⊥ as the lower bound.

V. Dort and O. Lhoták 18:15

In DT-Met, z is given the parameter type specified in the method declaration, but the
type for r is formed by intersecting the declared type with the type T4 given to s in TT-New.
The rule looks up the type of s in the context and gives the same type to r. Additionally, a
version of T4 with s replaced by r is added to the intersection, allowing deriving the recursive
type µ(s : T4) for r.

Variables other than the parameter and the receiver are hidden from the context and not
allowed to be used as a value in the method. That is achieved in DT-Met by splitting the
typing context for the method body into two parts separated with an ! symbol.

4.3 Runtime Configuration
The syntax of runtime configurations is shown in Figure 8. A machine configuration c consists
of a focus of execution t, stack s, runtime environment ρ and heap Σ. Each frame of the stack
is a let term with a hole � into which the reduced focus of execution will be substituted.
The runtime environment ρ is a new part of a configuration, which maps references w to the
locations y to which they refer.

Because the only items in the heap are objects, we omit the header ν(s : R) and store
only the definition d, which is an intersection of field, method and type member definitions.
The values of fields of heap objects are restricted to only locations y by heap correspondence.
Since each object in the heap is at a known location y, we substitute this location y for any
occurrences of the self variable s in the member definitions.

Valid configurations are given a type under an inert context F. The rules for typing
configurations are given in Figure 9. Stack typing assigns to each stack a pair of types, an
input type T1 and an output type T3, indicating that if the focus of execution reduces to a
value of type T1, then the entire stack will reduce to a value of type T3. The environment ρ
must correspond to the typing context, meaning that each reference w corresponding to a
location y under ρ must appear after y in F and have the same type except for mutability.
The heap must correspond to F, which requires that for every location y in F, an object
has to exist on the heap, and the object must have the correct type with y substituted for
s. Finally, to type a configuration, the CT-Corr rule checks environment correspondence
and heap correspondence, then types the focus of execution t and the stack σ, checks that
the type of the focus of execution matches the input type of the stack, and finally gives the
output type of the stack to the entire configuration.

Σ ::= Heap
| · empty heap
| Σ, y → d heap object
σ ::= Stack
| · empty stack
| let z = � in t :: σ let frame
ρ ::= Environment
| · empty environment
| ρ, w → y assignment
c ::= Configuration
| 〈t;σ; ρ; Σ〉
Γh ::= Heap Context
| Γ, y/s : R

Q ::= Member type
| {a : T..T} tight field
| {m(z : T1, r : T3) : T2} method
| {A(r) : T..T} tight type
| {A(r) : ⊥..T} upper-bounded type
R ::= Record type
| Q member
| R1 ∧R2 intersection
S ::= Inert type
| µ(s : R) ∧ {M(r) : ⊥..T} object
F ::= Inert context
| empty
| F, y : S binding

Figure 8 Runtime.

ECOOP 2020

18:16 Reference Mutability for DOT

F;ρ ` T1 <: T2

F;ρ ` · : T1, T2
(CT-EmptyS)

F;ρ `∼ ·(CT-EmptyH)

Γ ∼ ·(CT-EmptyE)

F, z : T1;ρ ` t : T2
z /∈ fv T2 F;ρ ` σ : T2, T3

F;ρ ` let z = � in t :: σ : T1, T3
(CT-LetS)

F1;ρ ` F2 ∼ Σ
F1;ρ ` F2, w : T ∼ Σ

(CT-RefH)

F1, y/s : R;ρ ` d : [y/s]R F1;ρ ` F2 ∼ Σ R indep s

F1;ρ ` F2, y : µ(s : R) ∧ {M(r) : ⊥..⊥} ∼ Σ, y → d
(CT-ObjH)

Γ = Γ1, w : µ(s : R) ∧ {M(r) : ⊥..T},Γ2 Γ1 ∼ ρ
Γ1 = Γ3, y : µ(s : R) ∧ {M(r) : ⊥..⊥},Γ4

Γ ∼ ρ, w → y
(CT-RefE)

F;ρ ` F ∼ Σ
all fields in Σ are locations

F;ρ ∼ Σ
(CT-CorrH)

F ∼ ρ F;ρ ∼ Σ
F;ρ ` t : T1 F;ρ ` σ : T1, T2

no locations in t and σ
F ` 〈t;σ; ρ; Σ〉 : T2

(CT-Corr)

z /∈ fv T1 ∪ fv T4, r /∈ fv T3 ∪ fv T1 ∪ fv T4
Γ, !, z : T1, r : [y/s]T4 ∧ [r/s]T4 ∧ T3;ρ ` t : T2

Γ, y/s : T4;ρ ` {m(z, r) = t} : {m(z : T1, r : T3) : T2}
(HT-Met)

Figure 9 Configuration typing and correspondence.

4.3.1 Environment
When a new object is created, both a fresh location y and a fresh reference w are created,
with the same read-write type. The location y is put on the heap, the reference w is put
into the focus of execution, and w is connected to y by the environment ρ. When writing
a reference w to a field, the corresponding location y is stored on the heap. Its mutability
is determined by the type of the field. When reading the value of field a from a reference
w1, a new reference w2 is created for the location y2 stored in the field of the object stored
at location y1 = ρ(w1) on the heap. The new reference w2 is given the type of y2 with the
mutability changed by viewpoint adaptation to be an upper bound of the mutability of the
field and of the reference w1.

4.3.2 Heap Correspondence
The heap correspondence relation checks that the type of each location y in the typing
context corresponds to the object stored at y in the heap.

The type of y in the context is the read-write version of the type specified when creating the
object. That is, when a literal ν(s : T)d leads to creating y on the heap, then Σ(y) = [y/s]d
and F(y) = µ(s : T) ∧ {M : ⊥..⊥}.

To check that the definition of the object corresponds to its type, we define a modified
definition typing. The baseline DOT uses the same rules for typing object literals in let
statements and typing heap items in heap correspondence. In roDOT, to preserve typing

V. Dort and O. Lhoták 18:17

after the substitution, the type of r in the context for method bodies must be changed to
use y instead of s in T4. Because of that, we have a set of definition typing rules for heap
items HT-*, similar to the set of definition typing rules DT-* in Figure 6. They give types to
definitions on the heap in a heap context with the special syntax Γ, y/s : T4. We show only
the HT-Met rule which differs from DT-Met in that it removes s from the typing context
and substitutes y for s in T4. The reason for this is so that in the HT-Met rule shown in
Figure 6, r can be given the types [y/s]T4 and [r/s]T4. Other HT-* rules not shown here are
similar to the DT-* rules, except that HT-Fld does not put s into the context for typing x.

4.4 Reduction

Reduction is defined in Figure 10. There is a reduction step for each kind of term, which
produces the next configuration. We change the reduction from the baseline DOT to use
reference variables w to represent references in runtime configurations, rather than directly
using the locations y. Rules that access the heap have additional premises that relate the
references with the corresponding locations in the environment. If the term is a single
variable and the stack is empty, then no step can be taken and the evaluation ends in a final
configuration. The R-LetPush and R-LetLoc rules work with the stack in the same way as
in the baseline DOT. The R-Write rule overwrites the value of a field on the heap. In a
R-Read step, a new reference to an object is created in the focus for a location that was
stored in a field. The R-Apply rule is changed to apply a method of an object instead of a
function value. It substitutes both the parameter and the receiver into the method body
and proceeds to reduce it. In a R-LetNew step, the heap is extended with a new object y
and the environment is extended with a new reference w with the same read-write type.
The definition of the object on the heap is constructed from the provided object literal by
replacing all references by corresponding locations and replacing the self variable by y.

y1 → . . .1 {a = y2} . . .2 ∈ Σ w1 → y1 ∈ ρ1 ρ2 = ρ1, w2 → y2 (w2 fresh)
〈w1.a;σ; ρ1; Σ〉 7−→ 〈vw2;σ; ρ2; Σ〉

(R-Read)

w1 → y1 ∈ ρ y1 → . . .1 {a = y2} . . .2 ∈ Σ1
w3 → y3 ∈ ρ Σ2 = Σ1[y1 → . . .1 {a = y3} . . .2]
〈w1.a := w3;σ; ρ; Σ1〉 7−→ 〈vw3;σ; ρ; Σ2〉

(R-Write)

w1 → y1 ∈ ρ y1 → . . .1 {m(z, r) = t} . . .2 ∈ Σ
〈w1.mw2;σ; ρ; Σ〉 7−→ 〈[w1/r][w2/z]t;σ; ρ; Σ〉

(R-Apply)

ρ2 = ρ1, w → y Σ2 = Σ1, y → [y/s][ρ1]d (y, w fresh)
〈let z = ν(s : T)d in t;σ; ρ1; Σ1〉 7−→ 〈[w/z]t;σ; ρ2; Σ2〉

(R-LetNew)

〈let z = t1 in t2;σ; ρ; Σ〉 7−→ 〈t1; let z = � in t2 :: σ; ρ; Σ〉(R-LetPush)

〈vw; let z = � in t :: σ; ρ; Σ〉 7−→ 〈[w/z]t;σ; ρ; Σ〉(R-LetLoc)

Figure 10 Reduction.

ECOOP 2020

18:18 Reference Mutability for DOT

F ` 〈t;σ; ρ; Σ〉mreach y1
y1 → . . .1 {a = y2} . . .2 ∈ Σ

F;ρ ` y1 : {a : ⊥..{M(r) : ⊥..⊥}}
F ` 〈t;σ; ρ; Σ〉mreach y2

(Rea-Fld)

t tfree w ∨ σ tfree w
w → y ∈ ρ

F;ρ ` w : {M(r) : ⊥..⊥}
F ` 〈t;σ; ρ; Σ〉mreach y

(Rea-Term)

Figure 11 Mutable reachability.

4.5 Example
In roDOT, we can rewrite the example from Section 3.2 with the intended mutability types.

Assume that T is a read-only type in the sense that Γ ` T roT . Then we can let the field
have a read-write type by adding the mutability marker. By using the mutability marker as
the type of r in ms, we can express that the setter can only be called on read-write references.
By adding {M(r0) : ⊥..r.M} to the result type of mg, we ensure that the getter only returns
a read-write reference if called on a read-write reference. The type of the object will be
To1 , µ(s : {a : T ∧ {M : ⊥..⊥}} ∧ {ms(z : T ∧ {M : ⊥..⊥}, r : {M : ⊥..⊥}) : >} ∧ {mg(z :
>, r : >) : T ∧{M(r0) : ⊥..r.M(r0)}}). Given an initial value x of type T ∧{M : ⊥..⊥}, it can
be instantiated in let z = ν(s : To1){a = x} ∧ {ms(r, z) = r.a := z} ∧ {mg(r, z) = r.a} in t.

To allow storing read-only values in the a field as well, we can parameterize the mutability
of the field using a type member A. The type of the object will then be: To2 , µ(s : {A :
⊥..>} ∧ {a : T ∧ {M(r0) : ⊥..s.A(r0)}} ∧ {ms(z : T ∧ {M(r0) : ⊥..s.A(r0)}, r : {M : ⊥..⊥}) :
>} ∧ {mg(z : >, r : >) : T ∧ {M(r0) : ⊥..r.M(r0) ∨ s.A(r)}}).

5 Properties and their Proofs

In this section we state and prove type soundness of roDOT and the immutability guarantee.

5.1 Immutability Guarantee
We define the immutability guarantee that roDOT provides as follows: an object on the
heap Σ in a configuration c = 〈t;σ; ρ; Σ〉 typed under F can be modified in an execution
starting from c only if it is mutably reachable, i.e., reachable from the configuration using
only read-write references. Mutable reachability is formally defined in Figure 11. By the
Rea-Term rule, y is mutably reachable if a read-write reference to it occurs in the focus of
execution t or the stack σ in a position other than in type selection (the reference is t-free
in t or σ). By the Rea-Fld rule, y2 is mutably reachable if its location is stored in the field
of some mutably reachable object y1 and this field has read-write type. The immutability
guarantee does not say anything about objects which are yet to be created; these may be
modified. We will prove that if an object y on the heap Σ in the initial configuration c is
not mutably reachable, then it will not appear on the left-hand side of a write term in any
execution starting from c.

5.2 Proofs
Figure 12 summarizes the overall structure of groups of properties that we have proved about
the type system and their major dependencies. The full statements of all lemmata and their
proofs are in a supplementary technical report [6]. We discuss the most significant properties
in the rest of this section; they are identified by numbers in Figure 12.

V. Dort and O. Lhoták 18:19

Type soundness
theorems 6, 7, 8

Mutability
guarantee 9

Typed
reduction
equivalence

Progress
lemmata 1

Preservation
lemmata 2

Type splitting
lemmata 3 Mreach preservation

lemmata 11, 12

Typing inversion
lemmata

Substitution
and weakening
lemmata 4, 5

Tight
typing

equivalence

Mutability
lemmata 13–19

Figure 12 Overview of properties and dependencies within proofs of the main theorems.

t0 = w1.a F ` 〈t0;σ1; ρ1; Σ1〉 : T0 F;ρ1 ` w1 : {a : T4..T3} w1 → y1 ∈ ρ1
y1 → . . .1 {a = y2} . . .2 ∈ Σ1 F;ρ1 ` T3 mu(r) T7

F = F3, y2 : µ(s1 : R1) ∧ {M(r0) : ⊥..⊥},F4
T2 = µ(s1 : R1) ∧ {M(r) : ⊥..(T7 ∨ w1.M(r))} ρ2 = ρ1, w2 → y2

F ` 〈t0;σ1; ρ1; Σ1〉 : T0 7−→ F, w2 : T2 ` 〈vw2;σ1; ρ2; Σ1〉
(TR-Read)

t0 = let z = ν(s : R)d in t F ` 〈t0;σ1; ρ1; Σ1〉 : T0 ρ2 = ρ1, w1 → y1
T = µ(s : R) ∧ {M(r0) : ⊥..⊥} Σ2 = Σ1, y1 → [y1/s][ρ1]d

F ` 〈t0;σ1; ρ1; Σ1〉 : T0 7−→ F, y1 : T,w1 : T ` 〈[w1/z]t;σ1; ρ2; Σ2〉
(TR-LetNew)

Figure 13 Typed reduction.

5.2.1 Proof of Type Soundness

Type soundness ensures that evaluation of a typed term does not get stuck in a non-final
configuration where no reduction rule can be applied. Similarly to kDOT, it is shown using
two properties of reduction: Progress means that unless a typed configuration is final, a step
can be taken. Preservation means that the step retains the type of the configuration.

We state the properties differently than kDOT. Typing a configuration requires a typing
context, which after taking a step such as creating a new object, might have to be extended
to give a type to the newly created location. The usual reduction rules do not specify how
the typing context should change. For the proofs, we define a typed variant of reduction. It
transforms configurations in the same way as the rules in Figure 10. Additionally, it requires
the configuration to have a type, and also produces a typing context for the next configuration.
This makes type preservation easier to state because the typing context is fixed, and makes
it possible to state a similar preservation property for proving the immutability guarantee.

The typed reduction rules for the two interesting cases are shown in Figure 13. In
TR-Read, a type for a new reference variable is constructed. This type must be precise
enough so that the resulting term keeps the expected type, but at the same time, it must
be read-only if either the field or the reference to the containing object was read-only. We
construct the type by taking the recursive part of the heap type of the object and changing
the mutability. The new mutability is an upper bound of the mutability of the containing
object, expressed by w1.M, and the mutability of the field type given by mu.

ECOOP 2020

18:20 Reference Mutability for DOT

In TR-LetNew, both the new location y1 and the reference w1 are given a read-write type
based on the object literal. The other typed reduction rules (not shown) are straightforward
because the typing context does not change.

We state progress and preservation for each of these 6 typed reduction rules, which each
handle one syntactic form of a term. Progress states that if a configuration with such a term
in the focus of execution has a type, then a typed rule can be applied. Preservation states
that the context produced by the rule gives the new configuration the same type. Lemmata 1
and 2 are examples of progress and preservation for the TR-Read rule.

I Lemma 1 (PgRead). If F ` 〈w1.a;σ1; ρ1; Σ1〉 : T0, then there exist w2, T2 and ρ2, such
that F ` 〈w1.a;σ1; ρ1; Σ1〉 : T0 7−→ F, w2 : T2 ` 〈vw2;σ1; ρ2; Σ1〉.

I Lemma 2 (TPRead). If F ` 〈w1.a;σ1; ρ1; Σ1〉 : T0 7−→ F, w2 : T2 ` 〈vw2;σ1; ρ2; Σ1〉, then
F, w2 : T2 ` 〈vw2;σ1; ρ2; Σ1〉 : T0.

Note that these lemmata also imply progress and preservation of the untyped reduction
rules. For progress, since the premises of each typed reduction rule contain all the premises
of the corresponding untyped reduction rule, if progress ensures that some typed reduction
rule applies to a configuration, then the corresponding untyped reduction rule also applies.
Preservation for untyped reduction rules requires that there exist some extended typing
context in which the next configuration has the same type, and the typed reduction rules
explicitly provide this context.

The proofs of these lemmata follow the recipe from [12] and [14]. We define precise, tight
and invertible variants of typing for variables, and a tight variant of subtyping. Invertible
typing together with heap correspondence ensures that objects used in Read, Write or Apply
terms have the member needed for progress, and preservation. In an inert context, typing
and invertible typing are equivalent.

Notable differences from the baseline DOT are in the TR-Read and TR-LetNew cases.
In Lemma 2, it must be shown that the new reference variable w2 has the expected

viewpoint-adapted type as defined by the TT-Read typing rule. This type T2 is formed by
an intersection of a read-only part and a mutability member declaration. To show that the
reference has the read-only part of the type, we use Lemma 3 , which states that a reference
w corresponding to a location y has the read-only version of the type of y.

I Lemma 3 (RefT). If F;ρ ` y : T1, and F;ρ ` T1 ro T2, and F ∼ ρ, and w → y ∈ ρ, then F;
ρ ` w : T2.

Showing the same for the mutability part of the type is easy, because it is formed in the
same way as in the TT-Read term typing rule.

The rule also changes the runtime environment ρ. Correspondence of ρ with the typing
context is ensured because w is given the same type as y except for mutability.

In the TR-LetNew rule, it must be shown that heap correspondence is preserved. That
is, the object on the heap has the type given to the new location y added to F. First, we
show that definitions keep their type if references are replaced by locations, by Lemma 4.
Then, we use a variant of a substitution Lemma 5 to show that if the definitions d of the
object had type T1 given by the DT-* definition typing rules, then under substitution of the
location y for the self variable s, the definition will get the type by the HT-* typing rules.
Preservation of ρ correspondence is ensured by giving w1 the same type as y1.

I Lemma 4 (DeD). If F, s : T2;ρ ` d : T1, and F ∼ ρ, then F, s : T2;ρ ` [ρ]d : T1.

I Lemma 5 (SubD). If Γ, s : T3;ρ ` d : T1, and s /∈ Γ and Γ vis y and Γ;ρ ` y : [y/s]T3,
then Γ, y/s : T3;ρ ` [y/s]d : [y/s]T1.

V. Dort and O. Lhoták 18:21

Finally, weakening lemmata state that adding variables to the typing context preserves
typing derivations.

With progress and preservation lemmata proven for individual cases, we can state a
common progress and preservation Theorem 6.

I Theorem 6 (TPP). If F1 ` 〈t1;σ1; ρ1; Σ1〉 : T , then either 〈t1;σ1; ρ1; Σ1〉 = 〈vw1; ·; ρ1; Σ1〉,
or there exist t2, σ2, Σ2, ρ2, F2, such that F1 ` 〈t1;σ1; ρ1; Σ1〉 : T 7−→ F1,F2 ` 〈t2;σ2; ρ2; Σ2〉,
and F1,F2 ` 〈t2;σ2; ρ2; Σ2〉 : T .

By induction on the number of steps, type soundness of typed reduction follows – The-
orem 7. Because typed reduction affects typed configurations in the same way as untyped
reduction, we can easily show the final type soundness for untyped reduction Theorem 8.

I Theorem 7 (TyS). If ` t0 : T , then either ∃w, j,Σ, ρ,F:` 〈t0; ·; ·; ·〉 : T 7−→j F `
〈vw; ·; ρ; Σ〉 or ∀j:∃tj , σj ,Σj , ρj ,Fj :` 〈t0; ·; ·; ·〉 : T 7−→j Fj ` 〈tj ;σj ; ρj ; Σj〉.

I Theorem 8 (S). If ` t0 : T , then either ∃w, j,Σ, ρ: 〈t0; ·; ·; ·〉 7−→j 〈vw; ·; ρ; Σ〉 or ∀j:
∃tj , σj ,Σj , ρj : 〈t0; ·; ·; ·〉 7−→j 〈tj ;σj ; ρj ; Σj〉.

5.2.2 Proof of the Immutability Guarantee
A new essential property of the type system is the immutability guarantee, expressed by
Theorem 9. It says that if an object exists in a typed configuration c1, then either it is
mutably reachable by mreach (and therefore can change), or it stays the same after any
number of execution steps (never changes).

I Theorem 9 (IG). If y → d ∈ Σ1, and F1 ` 〈t1;σ1; ρ1; Σ1〉 : T , and 〈t1;σ1; ρ1; Σ1〉 7−→k

〈t2;σ2; ρ2; Σ2〉, then either y → d ∈ Σ2 or F1 ` 〈t1;σ1; ρ1; Σ1〉mreach y.

For the proof, we again make use of the typed reduction rules from Figure 13. We show
two properties of mreach: First, Lemma 10 states that if an object is mutated in a reduction
step, then it was mutably reachable before the step. Second, Theorem 11 states that mreach
is preserved by typed reduction, that is, an existing object that is not mreach will never
become mreach in the future. This has to be shown for each of the reduction rules.

I Lemma 10 (MMR). If F1 ` 〈t1;σ1; ρ1; Σ1〉 : T 7−→ F2 ` 〈t2;σ2; ρ2; Σ2〉, and y → d ∈ Σ1,
then either y → d ∈ Σ2 or F1 ` 〈t1;σ1; ρ1; Σ1〉mreach y.

I Theorem 11 (MP). If F1 ` 〈t1;σ1; ρ1; Σ1〉 : T 7−→ F2 ` 〈t2;σ2; ρ2; Σ2〉, y → d ∈ Σ1, and
F2 ` 〈t2;σ2; ρ2; Σ2〉mreach y, then F1 ` 〈t1;σ1; ρ1; Σ1〉mreach y.

The proof of Lemma 10 is straightforward from the reduction and typing rules, because
only the TR-Write rule modifies existing objects on the heap and the typing rule for write
terms requires the object reference to have a read-write type.

The rest of this section is about proving Theorem 11. For each of the 6 reduction rules, we
look at the changes in the configuration and typing context that affect the mreach relation.

In the TR-LetPush and TR-LetLoc rules, the only difference in the configuration relevant
to mreach is that t-free object references are moved between the focus and the stack. No
new references are introduced, and the heap, environment and context do not change. These
cases are handled by Lemma 12, which states that under these conditions, no object becomes
mutably reachable.

I Lemma 12 (MPres). If F ` 〈t2;σ2; ρ; Σ〉 mreach y, and ∀x: (t2 tfree x ∨ σ2 tfree x)⇒
(t1 tfree x ∨ σ1 tfree x), then F ` 〈t1;σ1; ρ; Σ〉mreach y.

ECOOP 2020

18:22 Reference Mutability for DOT

For TR-Apply, Lemma 12 also applies, because the HT-Met rule ensures that variables
other than the receiver and the argument are not visible, and therefore cannot be t-free in
the body of the method.

In TR-Write, a location may be stored on the heap as a new value of a read-write field.
The typing of write terms ensures that if the field is read-write, then the reference w3 that
provided the value was read-write, so the location y3 was mutably reachable from the focus
of execution.

A TR-LetNew step creates a new mutably reachable object. New objects are not covered
by the immutability guarantee, but the new object may contain read-write fields referring
to existing objects. Similarly to the Write case, the typing of field definitions in the object
literal ensures that if the fields have read-write type, then the references in the literal must
have been read-write.

The TR-LetNew rule also adds a new location and reference to the typing context. The
preservation of mreach depends on an essential property of how mutability is defined:
existing read-only references and fields cannot be made read-write by creating new objects
and references. Lemma 13 states that if a variable v1 is read-write in an inert context F with
a new location y2 added, then it was already read-write in the context F without y2. (In
other words, it keeps its mutability if the last location y2 is removed from the context.) We
state Lemma 14 for mutability of fields and similar Lemmata 15 and 16 for adding a new
reference w2 to F and ρ.

I Lemma 13 (StnMLoc). If v1 6= y2, and F2 = F1, y2 : T , and F2;ρ ` v1 : {M : ⊥..⊥}, then
F1;ρ ` v1 : {M : ⊥..⊥}.

I Lemma 14 (StnMFLoc). If y1 6= y2, and F2 = F1, y2 : T , and F2;ρ ` y1 : {a : ⊥..{M :
⊥..⊥}}, then F1;ρ ` y1 : {a : ⊥..{M : ⊥..⊥}}.

I Lemma 15 (StnMRef). If v1 6= w2, and F2 = F1, w2 : T , and ρ2 = ρ1, w2 → y2, and
F2 ∼ ρ2, and F2;ρ2 ` v1 : {M : ⊥..⊥}, then F1;ρ1 ` v1 : {M : ⊥..⊥}.

I Lemma 16 (StnMFRef). If y1 6= w2, and F2 = F1, w2 : T , and ρ2 = ρ1, w2 → y2, and
F2 ∼ ρ2, and F2;ρ2 ` y1 : {a : ⊥..{M : ⊥..⊥}}, then F1;ρ1 ` y1 : {a : ⊥..{M : ⊥..⊥}}.

The case of adding a new reference to an existing location has a quite straightforward
proof: in the typing derivation that gives a read-write type in the new context, we can replace
the new reference by the corresponding location.

The case of adding a new location y2 is more complicated, because the location has a
type that may not be present anywhere else in the context. We can use the infrastructure of
invertible typing to show that the mutability of a reference w1, location y1, or its field a can
be derived from the type specified for w1 or y1 in F by tight subtyping. That is sufficient
to prove Lemma 13, but in Lemma 14, we still need to show that the upper bound given
to y1.a in the typing context is a tight subtype of {M : ⊥..⊥}. It is not possible to show
that for subtyping of arbitrary types, even if both types do not reference the variable y2. In
particular, this is caused by subtyping of method types, where subtyping of the result type
may be in a typing context that is not inert. Fortunately, we need this property only for
the special case when the right-hand side of the subtyping is the simple type {M : ⊥..⊥}, as
stated by Lemma 17. The premise T2 nosel y2 means that T2 does not contain type selections
involving y2. The # sign indicates the use of tight subtyping.

I Lemma 17 (StnSub). If F2 = F1, y2 : T1, and F2;ρ `# T2 <: {M : ⊥..⊥}, and T2 nosel y2,
then F1;ρ ` T2 <: {M : ⊥..⊥}.

V. Dort and O. Lhoták 18:23

Proof sketch of Lemma 17. We want to show that the subtyping derivation never needs
to use y2, that is, that we can derive the same subtyping without invoking the ST#-SelL
or ST#-SelU rules on selections from y2. There are 3 ways in which the original derivation
may involve y2: using the ST#-SelL or ST#-SelU selection rules, using subtyping of method
types, or using rules such as ST-Top or ST-And1, where one of the types may be chosen
freely. The proof proceeds in 3 steps, where in each step, we eliminate one of these issues by
simplifying the types on both sides of the subtyping, and showing that the simplified types
are related by a restricted version of subtyping.

For the first step, we define a reduction relation 7−→s. Because in an inert context, bounds
are either tight or have a lower bound of ⊥, using the ST#-Sel* rules does not add anything
that could not be derived by other subtyping rules. Therefore, we can get rid of unnecessary
uses of ST#-Sel* in the subtyping derivation by replacing type selections by their bounds.
The reduction has two variants, 7−→s

⊕ and 7−→s
	, that replace a type selection by its upper

(respectively lower) bound. The restricted version of subtyping allows using the selection
rules only in the direction from the selection to the bound, not vice versa.

In the second step, we show that subtyping of method types is not needed using a
reduction relation 7−→m that replaces all method types by > or ⊥. The restricted version of
subtyping does not have the ST-Met rule.

In the last step, we show that y2 never has to appear in the types involved in the derivation
of the subtyping taken from left to right. The reduction 7−→e replaces the remaining selections
on y2 by > or ⊥.

In each of these steps, the type on the left-hand side, starting with T2, is simplified to a
supertype, and the {M : ⊥..⊥} on the right hand side is not affected by the simplification.
Therefore after all the steps, we get F1;ρ ` T2 <: {M : ⊥..⊥}. J

Finally, in the TR-Read rule, a new reference is added to the context. The effect of
adding the reference to the typing context is handled by Lemmata 15 and 16. A final piece
in the proof of mreach preservation is mutability of the new reference w2 created in a
TR-Read step. It is created for a location that was stored in a field and is put into the
focus of execution. We must ensure that the reference is read-write only if the field was
read-write. Because the mutability of w2 is a union of the field mutability and the mutability
of the source reference w1, we first show that if w2 is read-write, then both the field and
the source are read-write. For the field, we use Lemma 18 to show that the field has type
{a : ⊥..{M : ⊥..T7}}, and then by Lemma 16, it must have had the same type before.

I Lemma 18 (MUSub). If Γ;ρ ` T1 mu(r) T2, then Γ;ρ ` > <: T2 or Γ;ρ ` T1 <: {M(r) :
⊥..T2}.

For the object, we need Lemma 19 to show that if the upper bound of w1.M in the new
context is ⊥, then w1 was a read-write reference in the old context F.

I Lemma 19 (WMu). If w1 6= w2, and F, w2 : T2;ρ2 `# w1.M(r) <: ⊥, and ρ2 = ρ1, w2 → y2,
and F, w2 : T2 ∼ ρ2, then F;ρ1 ` w1 : {M(r2) : ⊥..⊥}.

We use the 7−→s
⊕ relation from the proof of Lemma 17 above to show this. It simplifies

w1.M(r) to its bound: F, w2 : T2 ` w1.M(r) 7−→s
⊕ T1. Then, by further simplifying both

sides of the subtyping, we find a type which is a supertype of T1 and subtype of ⊥ in F.

ECOOP 2020

18:24 Reference Mutability for DOT

6 Related Work

6.1 Reference Mutability
Scala is influenced by Java, which has seen several extensions for reference mutability.

Javari [19] extends the Java syntax with reference mutability qualifiers. An unqualified
reference type T is by default a read-write reference, while readonly T is a read-only
reference. Javari comes with both a formal system based on Featherweight Java [11], and an
implementation in the Checker Framework [13], using type annotations. The type system
provides a transitive immutability guarantee, but allows opting out of that by declaring fields
as always assignable, even through read-only references, or as always read-write, meaning
viewpoint adaptation does not apply to them. (Non-transitive immutability could be achieved
in the framework of our type system by removing the viewpoint adaptation in the typing rule
for read terms and changing the definition of mutable reachability.) Qualifiers can be applied
to any type in the program. Qualifier polymorphism is limited to the romaybe qualifier,
which acts as a variable qualifier which can be instantiated at use locations by mutable or
readonly – all romaybe qualifiers in a method declaration by the same qualifier. This allows
Javari to express the first example To1 from Section 4.5:

class C {
T a;
void m_set(T z) {a = z;}
romaybe T m_get () romaybe { return a;}

}

The field is by default this-mutable and the m_set method is by default mutable with a
mutable parameter. Javari allows mutability to be part of a type argument, so we could
make the field a mutability-polymorphic like in the second example To2, but we would not
be able to express the full example because Javari has no way to combine the mutability of
the field with the mutability of the receiver of m_get.

The type system of ReIm [10] is simpler than that of Javari to enable fast and scalable
inference of qualifiers. It has only 3 qualifiers, mutable, readonly and polyread. The
polyread qualifier expresses simple qualifier polymorphism and viewpoint adaptation, similar
to romaybe in Javari. Fields are either readonly or polyread; always-read-write fields are
not supported. Usage of qualifiers is limited – they can be applied to any type, but not to
type arguments of generic types. The first example To1 can be expressed in ReIm as follows:

class C {
polyread T a;
void m_set(mutable C this , mutable T z) {a = z;}
polyread T m_get(polyread C this) { return a;}

}

The second example To2 cannot be expressed due to the lack of qualifiers on type arguments.
Immutable Generic Java (IGJ) [20] encodes mutability qualifiers in Java generics. It

defines the first parameter of a class or interface to specify its mutability: the type T<Mutable>
is read-write and the type T<ReadOnly> is read-only. This approach agrees with our desire
to use features of the underlying type system to specify reference mutability. IGJ does not
have viewpoint adaptation. Transitivity has to be opted into by declaring fields with a “this-
mutable” type, using the mutability parameter of the containing class. As in Javari, fields

V. Dort and O. Lhoták 18:25

may be declared always assignable. IGJ also supports object immutability by distinguishing
ReadOnly references and Immutable references. The latter guarantee that the object will not
be modified through any reference. Our first example To1 can be expressed in IGJ as follows
by explicitly specifying viewpoint adaptation in the return type of the getter method:

class C<I extends ReadOnly > {
T<Mutable > a;
@Mutable void m_set(T<Mutable > z) {a = z;}
@ReadOnly T<I> m_get () { return a;}

}

The second example To2 cannot be fully expressed for the same reason as in Javari.
Glacier [5] has a system based on class immutability. It has only two qualifiers that apply

to classes. An @Immutable class must only have immutable subclasses and all fields must
have immutable types. All other classes are @MaybeMutable. Class types other than the
top class Object cannot be qualified when used and always have the mutability declared by
the class.

The type systems above were implemented in the Checker Framework. This framework
expresses type qualifiers using Java annotations, so that the Java syntax does not have to
be modified. Qualifiers that apply to the receiver of a method are written by annotating
the explicit this parameter. We achieve the same result in our approach using the explicit
receiver parameter to a method. Explicit this parameters are not supported in Scala.

The type systems above share the limitations of Java generics and of Java; in particular,
they do not support type intersections and unions.

The reference mutability system for the C# language [7] is the most flexible. As in the
systems above, a type is composed of a qualifier and a normal type. In this type system, a
generic class can be parameterized by both normal types and type qualifiers, but separately,
by declaring a second qualifier parameter list after the type parameter list. Therefore, a
class may have any number of qualifier parameters, which can be used to individually specify
mutability of fields, method parameters and result types, or be passed as qualifier arguments
to the types used at those places. Qualifiers can be combined by the special type operator
 , which viewpoint adapts the second qualifier by the first one. This makes it possible to
express a class similar to our second example To2 from Section 4.5 as follows:

class C<PT > {
PT T a;
void Ms(PT T z) writable {a = z;}
PC PT T Mg <_><PC >() PC { return a;}

}

Other supported features include object immutablity and uniqueness in a multi-threaded
context for safe parallelism.

6.2 DOT
In traditional DOT calculi, such as WadlerFest DOT, objects are immutable and their fields
cannot be changed. A heap is not needed because object literals can be used directly as
values in terms.

Mutable WadlerFest DOT [15] introduced mutability by means of mutable cells, which
are allocated to hold a single variable and can be reassigned to other variables. In this
scheme, an equivalent of a mutable field can be achieved by having a field which contains a
mutable cell. Although the field itself cannot be reassigned, writing a value to this cell and
reading the value of the cell behaves as writing and reading a value from a mutable field.

ECOOP 2020

18:26 Reference Mutability for DOT

A move towards a more direct definition of mutable fields has been made in kDOT [12],
where all objects are stored on the heap and referred to by object locations, and field
assignments through such locations directly modify the object on the heap. This approach is
closer to how object mutation works in Scala. With slight modifications, we used it as the
baseline for our type system.

6.3 Programming Languages with Reference Mutability

Some programming languages have reference mutability as a part of their type system.
The const-qualified pointers and methods in the C++ programming language disallow

mutation of the object pointed to [18]. However, const is not transitive, so it does not
correspond to our definition of immutability. There is no concept of a viewpoint-adapted
field. Qualifier polymorphism is not supported, but can be achieved using templates, or by
directly duplicating the definitions in source code.

The D language has transitive const and immutable type qualifiers, which express
reference and object immutability [1]. Like in the Java-based systems, D does not have
intersection, union and dependent types, and objects have class types. Qualifier polymorphism
is limited to templates combined with D’s advanced support for support of metaprogramming
and compile-time evaluation.

The Pony programming language defines reference capabilities, which qualify the type
of every reference [4, 17]. The system is defined in the context of multiple simultaneously
running actors, and by allowing only one actor to have a read-write reference or multiple
actors to have read-only references to an object, it ensures that no race conditions can occur
when modifying an object. The qualifiers not only specify whether the reference can be used
to mutate an object, but also limit which other references to the same object may exist
within the same or a different actor. Qualifiers corresponding to read-write and read-only
references as used in this paper would be ref and box. Pony also has viewpoint adaptation
applied to types of fields, and it can be also used from source code by writing arrow types,
which allow viewpoint adapting a type by a type parameter, this, or box.

In Rust, mutability is tied to ownership. There can only be one mutable reference to an
object. Read-only references are transitive. Although a reference can be qualified by lifetime
parameters, its mutability is fixed, so there is no mutability polymorphism.

7 Conclusion

We have extended the DOT calculus with support for reference mutability. Our calculus,
roDOT, supports a transitive immutability guarantee using viewpoint adaptation. Unlike
most existing reference mutability systems that have been proposed for Java, which are
expressed as a separate type system in parallel to the Java type system, our system is encoded
using existing features of the DOT type system. Specifically, the mutability of an object is
encoded using a type member, which makes it possible to refer to it in other types using a
path-dependent type. An important and necessary enhancement to DOT is a separate notion
of a reference as opposed to just a heap location, which makes it possible to distinguish
mutable and read-only references to the same location. We have proven type soundness of
roDOT, as well as the immutability guarantee that it provides. The calculus can serve as a
formal foundation for future work on a principled implementation of reference mutability in
a Scala compiler.

V. Dort and O. Lhoták 18:27

References
1 Andrei Alexandrescu. The D programming language. Addison-Wesley, Upper Saddle River,

N.J, 2009.
2 Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. The essence

of dependent object types. In Sam Lindley, Conor McBride, Philip W. Trinder, and Donald
Sannella, editors, A List of Successes That Can Change the World - Essays Dedicated to Philip
Wadler on the Occasion of His 60th Birthday, volume 9600 of Lecture Notes in Computer
Science, pages 249–272. Springer, 2016. doi:10.1007/978-3-319-30936-1_14.

3 Nada Amin, Tiark Rompf, and Martin Odersky. Foundations of path-dependent types. In
Andrew P. Black and Todd D. Millstein, editors, Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA
2014, part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014, pages 233–249. ACM,
2014. doi:10.1145/2660193.2660216.

4 Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil. Deny capabilities
for safe, fast actors. In Elisa Gonzalez Boix, Philipp Haller, Alessandro Ricci, and Carlos
Varela, editors, Proceedings of the 5th International Workshop on Programming Based on
Actors, Agents, and Decentralized Control, AGERE! 2015, Pittsburgh, PA, USA, October 26,
2015, pages 1–12. ACM, 2015. doi:10.1145/2824815.2824816.

5 Michael J. Coblenz, Whitney Nelson, Jonathan Aldrich, Brad A. Myers, and Joshua Sunshine.
Glacier: transitive class immutability for java. In Sebastián Uchitel, Alessandro Orso, and
Martin P. Robillard, editors, Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, pages 496–506. IEEE /
ACM, 2017. doi:10.1109/ICSE.2017.52.

6 Vlastimil Dort and Ondřej Lhoták. Reference mutability for DOT - roDOT definitions and
proofs. Technical Report D3S-TR-2020-01, Dep. of Distributed and Dependable Systems,
Charles University, 2020.

7 Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy.
Uniqueness and reference immutability for safe parallelism. In Proceedings of the 27th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012,
pages 21–40, 2012. doi:10.1145/2384616.2384619.

8 Philipp Haller and Ludvig Axelsson. Quantifying and explaining immutability in scala. In
Proceedings Tenth Workshop on Programming Language Approaches to Concurrency- and
Communication-cEntric Software, PLACES@ETAPS 2017, Uppsala, Sweden, 29th April 2017,
pages 21–27, 2017. doi:10.4204/EPTCS.246.5.

9 Jason Z. S. Hu and Ondřej Lhoták. Undecidability of D<: and its decidable fragments.
PACMPL, 4(POPL):9:1–9:30, 2020. doi:10.1145/3371077.

10 Wei Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst. ReIm & ReImInfer: checking
and inference of reference immutability and method purity. In Proceedings of the 27th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012,
pages 879–896, 2012. doi:10.1145/2384616.2384680.

11 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal
core calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.
doi:10.1145/503502.503505.

12 Ifaz Kabir and Ondřej Lhoták. κDOT: scaling DOT with mutation and constructors. In
Proceedings of the 9th ACM SIGPLAN International Symposium on Scala, SCALA@ICFP 2018,
St. Louis, MO, USA, September 28, 2018, pages 40–50, 2018. doi:10.1145/3241653.3241659.

13 Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and Michael D.
Ernst. Practical pluggable types for Java. In Barbara G. Ryder and Andreas Zeller, editors,
Proceedings of the ACM/SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2008, Seattle, WA, USA, July 20-24, 2008, pages 201–212. ACM, 2008. doi:10.1145/
1390630.1390656.

ECOOP 2020

https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1145/2660193.2660216
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1109/ICSE.2017.52
https://doi.org/10.1145/2384616.2384619
https://doi.org/10.4204/EPTCS.246.5
https://doi.org/10.1145/3371077
https://doi.org/10.1145/2384616.2384680
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/3241653.3241659
https://doi.org/10.1145/1390630.1390656
https://doi.org/10.1145/1390630.1390656

18:28 Reference Mutability for DOT

14 Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták. A simple soundness proof for
dependent object types. PACMPL, 1(OOPSLA):46:1–46:27, 2017. doi:10.1145/3133870.

15 Marianna Rapoport and Ondřej Lhoták. Mutable WadlerFest DOT. In Proceedings of the
19th Workshop on Formal Techniques for Java-like Programs, Barcelona , Spain, June 20,
2017, pages 7:1–7:6, 2017. doi:10.1145/3103111.3104036.

16 Tiark Rompf and Nada Amin. Type soundness for dependent object types (DOT). In Eelco
Visser and Yannis Smaragdakis, editors, Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2016, part of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November 4, 2016,
pages 624–641. ACM, 2016. doi:10.1145/2983990.2984008.

17 George Steed. A principled design of capabilities in Pony. https://www.ponylang.io/media/
papers/a_prinicipled_design_of_capabilities_in_pony.pdf.

18 Bjarne Stroustrup. The C++ programming language. Addison-Wesley, Upper Saddle River,
NJ, 2013.

19 Matthew S. Tschantz and Michael D. Ernst. Javari: adding reference immutability to Java. In
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2005, October 16-20, 2005, San Diego, CA,
USA, pages 211–230, 2005. doi:10.1145/1094811.1094828.

20 Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kiezun, and Michael D. Ernst.
Object and reference immutability using Java generics. In Proceedings of the 6th joint meeting
of the European Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2007, Dubrovnik, Croatia, September
3-7, 2007, pages 75–84, 2007. doi:10.1145/1287624.1287637.

https://doi.org/10.1145/3133870
https://doi.org/10.1145/3103111.3104036
https://doi.org/10.1145/2983990.2984008
https://www.ponylang.io/media/papers/a_prinicipled_design_of_capabilities_in_pony.pdf
https://www.ponylang.io/media/papers/a_prinicipled_design_of_capabilities_in_pony.pdf
https://doi.org/10.1145/1094811.1094828
https://doi.org/10.1145/1287624.1287637

Tackling the Awkward Squad for Reactive
Programming: The Actor-Reactor Model
Sam Van den Vonder
Software Languages Lab, Vrije Universiteit Brussel, Belgium

Thierry Renaux
Software Languages Lab, Vrije Universiteit Brussel, Belgium

Bjarno Oeyen
Software Languages Lab, Vrije Universiteit Brussel, Belgium

Joeri De Koster
Software Languages Lab, Vrije Universiteit Brussel, Belgium

Wolfgang De Meuter
Software Languages Lab, Vrije Universiteit Brussel, Belgium

Abstract
Reactive programming is a programming paradigm whereby programs are internally represented by
a dependency graph, which is used to automatically (re)compute parts of a program whenever its
input changes. In practice reactive programming can only be used for some parts of an application:
a reactive program is usually embedded in an application that is still written in ordinary imperative
languages such as JavaScript or Scala. In this paper we investigate this embedding and we distill “the
awkward squad for reactive programming” as 3 concerns that are essential for real-world software
development, but that do not fit within reactive programming. They are related to long lasting
computations, side-effects, and the coordination between imperative and reactive code. To solve
these issues we design a new programming model called the Actor-Reactor Model in which programs
are split up in a number of actors and reactors. Actors and reactors enforce a strict separation of
imperative and reactive code, and they can be composed via a number of composition operators that
make use of data streams. We demonstrate the model via our own implementation in a language
called Stella.

2012 ACM Subject Classification Software and its engineering → Data flow languages; Software
and its engineering → Multiparadigm languages

Keywords and phrases functional reactive programming, reactive programming, reactive streams,
actors, reactors

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.19

Supplementary Material ECOOP 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.2.7 and https://doi.org/10.5281/zenodo.3862954.

Funding Sam Van den Vonder : Research Foundation – Flanders (FWO) grant No. 1S95318N
Thierry Renaux: Flanders Innovation & Entrepreneurship (VLAIO) “Cybersecurity Initiative
Flanders” program
Bjarno Oeyen: Research Foundation – Flanders (FWO) grant No. 1S93820N

1 Introduction

Reactive programming is a programming paradigm that revolves around automatically
changing the state of a program based on perpetually incoming values. Historically, it was
conceived as a solution to the problems of inversion of control and callback hell which occur
when programming event-driven programs [3]. Reactive programming languages such as
FrTime [12], Flapjax [34], Elm [15] and REScala [46] propose increasingly rich abstraction

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Sam Van den Vonder, Thierry Renaux, Bjarno Oeyen, Joeri De Koster, and
Wolfgang De Meuter;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 19; pp. 19:1–19:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9241-1098
https://orcid.org/0000-0002-9301-2187
https://orcid.org/0000-0002-2100-4559
https://orcid.org/0000-0002-2932-8208
https://orcid.org/0000-0002-5229-5627
https://doi.org/10.4230/LIPIcs.ECOOP.2020.19
https://doi.org/10.4230/DARTS.6.2.7
https://doi.org/10.5281/zenodo.3862954
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Tackling the Awkward Squad for Reactive Programming

C *	9/5 +	32 FData flow

Source Node Sink NodeInternal Nodes

Figure 1 Compiled structure of a reactive program to a DAG. Data flow is usually depicted from
top to bottom, but depicted here from left to right.

mechanisms to represent and compose so-called “time-varying values” or signals, which are
values that can change over time. The “Hello World!” of reactive programming converts
measurements of a Celsius thermometer to Fahrenheit. Given a signal C that represents a
changing temperature in Celsius, the expression F = (C * 9/5) + 32 declares a new signal
F that represents the temperature in Fahrenheit. Changes to the value of C automatically
give rise to a recomputation of F. This is typically realised by compiling the reactive program
into a directed acyclic graph (DAG), as exemplified in Figure 1.

There are many incarnations of reactive languages and libraries built with various
mainstream languages. In academia, reactive languages include FrTime [12] (Racket),
Scala.React [33] (Scala), REScala [46] (Scala) and Flapjax [34] (JavaScript). In industry,
large companies such as Facebook develop and maintain frameworks such as ReactJS [28] and
React Native [21] for reactive Graphical User Interfaces (GUIs), ReactiveX is a specification
for reactive streams implemented in over 18 languages [40] some of which are developed
or maintained by companies such as Microsoft and Netflix, and an implementation of the
“Reactive Streams” specification has been included in Java since version 9 [29, 13]. Results
from an empirical study on program comprehension suggest favourable results for reactive
programming when compared to the Observer pattern in object-oriented programming [47].

In the rest of the paper we will abstract over the details of particular reactive programming
languages and talk about them in terms of their role in the canonical DAG model for reactive
programming. Source nodes correspond to the “input” signals of the reactive program. Their
values are typically provided by code that is external to the reactive program. Internal nodes
are composed signals that constitute the reactive program. Sink nodes correspond to the
“output” signals of the reactive program that constitute the program output.

Reactive programming languages and frameworks focus on the design and concepts of
the internal part of a reactive program. Explained in terms of the DAG, they focus on
language features and abstractions whereby programmers can express DAGs as easily and as
declaratively as possible. Reactive programs also have 2 other parts: an input part provides
input to the reactive program by modifying its source nodes, and another (possibly different)
output part processes the output of the reactive program. For example, in the temperature
converter of Figure 1, the source C may be connected to an input field in the GUI, and the
result F may be displayed in the same GUI. In another application, C may be connected to a
distributed web-based data stream whereby the input of the reactive program is produced by
an entirely different machine (e.g. a weather station).

One cannot help but observe that reactive programming is only used to implement the
internal part of a reactive program, and that it is usually embedded in an application that
is still written in ordinary imperative languages such as JavaScript or Scala. The main
problem tackled in this paper is that the parts of existing reactive programming languages
and frameworks that are responsible for input and output are ill-defined: They use ad-hoc
mechanisms that can violate the invariants of reactive programs. This is especially problematic
for long lasting computations that block the reactive program [7], and computations with

S. Van den Vonder, T. Renaux, B. Oeyen, J. De Koster, and W. De Meuter 19:3

Listing 1 REScala reactive program that matches a regular expression with an input string.
1 val userInputSignal = Var("") // initial signal value is ""
2 val matches = Signal { "(A+)*B".r.findFirstMatchIn(userInputSignal()) }

side-effects (e.g. modifying or rendering a GUI) [19, 33]. Mechanisms to embed reactive code
between the imperative input and output parts of applications are poorly investigated in
literature. To this end, we have 2 main contributions.

1. In analogy with the “awkward squad” for functional programming which are a set of
application concerns that are essential for real-world software development, but that do
not fit within the purely functional programming paradigm [37], in Section 2 we identify
the “awkward squad for reactive programming”. They are (1) long lasting computations,
(2) embedding imperative code in reactive code, and (3) embedding reactive code in
imperative code.

2. Just like functional programming solves the problem by evacuating the awkward squad
to a different location (i.e. monadic) of the program, we propose a programming model
that solves these issues. First, in Section 3 we define a class-based object-oriented data
model that will guarantee that reactive programs cannot execute imperative code and
long lasting computations. Second, in Section 4 we introduce the Actor-Reactor Model
whereby the imperative input & output parts of reactive programs must be modelled as
actors, and the internal parts of reactive programs are modelled as reactors. Together,
actors and reactors enforce that imperative and reactive code remains separated, but can
still co-exist within the same application. To clearly demonstrate the concepts of this
model we have designed and implemented an experimental language called Stella.

2 Identifying the Awkward Squad for Reactive Programming

In this section we analyse the problems that may occur when embedding a reactive program-
ming model in an imperative programming language, or when allowing the internal nodes of
a reactive program to be programmed with the full power of a Turing-complete language.

2.1 Long Lasting Computations
Responsiveness is 1 of the 4 key properties of reactive systems outlined in the so-called
Reactive Manifesto [7], [31, Chapter 1]: “Responsive systems focus on providing rapid and
consistent response times, establishing reliable upper bounds so they deliver a consistent
quality of service.” [7] However, reactive languages and frameworks often impose little to no
restrictions on the types of expressions that can be used within a reactive program. It is often
easy to write code that accidentally makes the program no longer reactive. For example,
consider the reactive program in Listing 1 (written in REScala) that checks whether user-
provided input strings match a regular expression. Line 1 defines a new source node called
userInputSignal, and Line 2 defines an internal node called matches that is derived from
the source node. Whenever the value of userInputSignal changes, the value of matches
reflects whether the new string matches the regular expression (A+)*B (e.g. AB and AAAB, but
not AAA). This program has a worst-case complexity of O(2n) with n the size of the input
string. Matching the string AAAAA fails after 112 steps, and matching 50 A’s fails only after ~3
quadrillion steps [44]. This program clearly cannot be called reactive in the aforementioned
sense. While this specific example may be a contrived case of catastrophic backtracking in

ECOOP 2020

19:4 Tackling the Awkward Squad for Reactive Programming

regular expressions, a developer can easily and accidentally introduce computations into
reactive programs that (occasionally) have unintended consequences for their execution time.
We call this the Reactive Thread Hijacking Problem, because long lasting computations
can “hijack” the thread of execution of a reactive program, thereby stopping the reactive
program from being able to react to new input.

The language design problem that needs to be solved is how to ensure that a “reliable
upper bound” can be imposed on long lasting computations within reactive programs.

The Reactive Manifesto is intentionally vague about how to achieve this. We identified 3
levels of reactivity that provide different program termination guarantees.

2.1.1 Weak Reactivity
The set of programs that we call weakly reactive are those for which there are no guarantees
with respect to how long they will take to execute. This is usually because reactive programs
can be programmed with the full power of a Turing-complete language. Programs written
in reactive languages such as FrTime [12], Flapjax [34], Elm [15], REScala [46] and Ambi-
entTalk/R [9], or frameworks such as ReactJS [28], ReactiveX [40] and Akka Streams [45,
Chapter 13] all fall into this category.

2.1.2 Eventual Reactivity
The set of programs that we call eventually reactive are those for which it can be proven
that the program will eventually terminate. There are both static and dynamic approaches
to enforce program termination, each with varying levels of restrictions that they impose
on the underlying program. Static enforcement includes work such as total functional
programming [51], primitive recursion [8, Chapter 3], and model checkers such as TERMIN-
ATOR [11]. Techniques that dynamically enforce program termination can make use of both
static information and run-time values, such as size-change termination [35].

2.1.3 Strong Reactivity
The set of programs that we call strongly reactive are those for which the execution time of
the reactive program does not depend on the size of its input. In other words, the asymptotic
worst-case complexity of the reactive program is guaranteed to be in O(1). Reactive programs
that are strongly reactive will never be unexpectedly slow because of certain types of input.
We consider this to be the strongest form of reactivity, but the trade-off is that the types of
programs that can be written is severely restricted.

Synchronous programming languages such as Esterel [5], Lustre [25], Céu [48] and
Signal [23] apply reactive programming to real-time systems [4]. They rely on the assumption
of the synchronous hypothesis, where the output of the program is conceptually synchronous
with its input and “instantaneous” [17]. In contrast with strong reactivity this is not
a constraint on program complexity or execution time, but on the correctness of event
processing whereby 1 event must be completely processed by the reactive program before
the next event is considered. Constant-time (non-reactive) programming languages such as
FaCT [10] and Jasmin [2] are concerned with bounding execution times of certain instruction
to prevent leaking secret information (encryption keys) based on execution time. Constant-
time programming is not a restriction of program complexity, but a restriction on the
execution time of specific instructions, which may not vary in function of sensitive run-time

S. Van den Vonder, T. Renaux, B. Oeyen, J. De Koster, and W. De Meuter 19:5

Weakly reactive

Eventually reactive

Strongly reactive

Dynamic termination enforcement
Static termination enforcement

Reduced language operations
Special type systems

Turing machines least restrictive

most restrictive

Figure 2 Termination guarantees for different levels of reactivity.

Listing 2 REScala reactive program with side-effects.
1 val counter = Var(0) // initial source value is 0
2 Signal { print("A" + counter() + " ") }
3 Signal { print("B" + counter() + " ") }

information. ActiveSheets [54] is a reactive language where programs consist of Microsoft
Excel spreadsheets. While many spreadsheet operations are strongly reactive (e.g. arithmetic),
there are exceptions such as SEARCH and REPLACE for searching and replacing substrings.
Finally, the RT-FRP language [56] is a statically typed reactive programming language where
the time and space (in memory) cost for each execution step is statically bound. To the best
of our knowledge this language is strongly reactive.

2.1.4 Summary
Expressions in existing reactive languages and frameworks can accidentally or unintentionally
cause long lasting computations that block the reactive program, thus turning the program
no longer reactive. We identified 3 different levels of reactivity that are summarised in
Figure 2, together with the possible techniques on how to enforce them. Stricter enforcement
of program termination will result in reactive programs that have stronger guarantees with
respect to the processing of their input, i.e. a more reliable upper bound can be placed
on their execution time. However, the trade-off is that the types of programs that can be
written is also reduced with stricter enforcement. It is up to developers to choose a reactive
language or framework that can enforce a particular level of reactivity that is appropriate for
the application at hand, i.e. eventually reactive or strongly reactive.

2.2 Embedding Imperative Code in Reactive Code
Effectful computations are extremely tricky to understand and debug when they are embedded
within the nodes of a dependency graph [19, 33]. Consider the reactive program (written in
REScala) in Listing 2. Line 1 defines a new source node called counter, and Lines 2 and 3
define two internal nodes that print either A or B to the console, followed by the value of the
counter. When this program is executed, the initial value of counter is propagated through
the program, and “A0 B0” is printed to the console in the order of evaluation (from top
to bottom). However, when the value of counter is updated to 1, approximately 50% of
the time the program output is reversed and “B1 A1” is printed. We call this problem the
Reactive Update Order Leak, because effectful computations leak information about the
update order of subexpressions within reactive programs, and their correct execution may
even rely on a specific order.

The update order of the DAG is usually not part of the semantics of a reactive program.
Reactive programming languages such as FrTime [12], Flapjax [34] and REScala [46] prevent
glitches (temporary inconsistencies in the program [12]) by specifying that updates should be
executed in a topological order of the dependency graph. Some implementations parallelise

ECOOP 2020

19:6 Tackling the Awkward Squad for Reactive Programming

the execution of certain regions of the DAG, such as the conceptual propagation model of
Elm [15] and a parallel version of the REScala update algorithm [18]. Streaming frameworks
such as ReactiveX [40] and Akka Streams [45, Chapter 13] do not feature such an algorithm,
and instead only specify that parent nodes should be updated before their child nodes.

All of the aforementioned technologies allow multiple valid update orders to be used for
a given program. This is good for language implementers, because it gives them a lot of
freedom to tweak and optimise (e.g. parallelise) how values propagate through the reactive
program. However, for application developers this means that the concrete update order
can vary across different implementations or versions of the same language or framework.
The order can even change at run-time, which is the case in our experiments with the code
snippet of Listing 2, where the execution of the program yields nondeterministic results.

The root of the problem are unconstrained side-effects in interactive applications. Not
only can side-effects cause bugs that are difficult to find and reproduce because of an unlucky
ordering in some propagations through the DAG, but they are also very difficult to coordinate
and have a detrimental effect on behavioural composition [20]. Recognising these issues,
most reactive programming languages and frameworks already forbid side-effects within the
DAG of a reactive program, either through language design or via programmer guidelines
(e.g. REScala guidelines [41, 1.5.3]). However, as we will discuss in Section 2.3, they are
rarely successful in banishing side-effects completely.

The language design problem that needs to be be solved is how to allow the coexistence
of effectful computations that react to values arriving at a certain internal node of the
dependency graph without accidentally or nondeterministically affecting the behaviour
of effectful computations that reside in other nodes of the dependency graph.

2.3 Embedding Reactive Code in Imperative Code
Programs written in existing reactive programming languages and frameworks are not subject
to the Reactive Update Order Leak (Section 2.2) when their code is purely functional.
However, we observe that this requirement is not met in practice, because parts of real-
world programs often depend on long lasting computations and effectful computations. For
instance, input can come from a GUI or be streamed in from another computer over a network
connection, and output may be used to modify a GUI or to push a notification to a user. A
complete solution must therefore be able to bridge what we call the Reactive/Imperative
Impedance Mismatch, in analogy with the Object-Relational Impedance Mismatch for
object-oriented programming.

Because the embedding of reactive code within imperative code is unavoidable in real-world
reactive applications, existing reactive languages and frameworks all tackle the Reactive/Im-
perative Impedance Mismatch to some degree. We argue that their solutions either have
limited applicability, or are ad hoc solutions with unclear semantics. What follows is a
non-exhaustive list of mechanisms that we could identify in related work.

Domain specific features are special language features tailored to a specific domain, usually
involving GUIs. For instance, Flapjax [34], Elm [15], and ReactJS [28] provide a DSL
for building GUIs whereby source nodes are automatically created and updated by GUI
components, and the GUI automatically integrates with sink nodes. Such languages
typically also feature built-in domain specific signals with narrow applicability, such as
Elm’s Mouse.position signal [15].

S. Van den Vonder, T. Renaux, B. Oeyen, J. De Koster, and W. De Meuter 19:7

Special forms are built-in language constructs with special evaluation rules. Reactive
languages often offer special forms to provide operators that cannot be implemented from
within the language itself. For example, Elm [15] offers a built-in syncGet operation to
execute synchronous HTTP requests. To prevent this computation from blocking the
reactive program, Elm also offers an async special form to execute operations in the
background.

Metaprogramming involves mechanisms to manually construct or modify parts of the
reactive program. For example, FrTime and REScala offer built-in primitives to create
and (destructively) modify source nodes of the reactive program. The semantics of
manual assignments to source nodes are often unclear, especially when multiple threads
of execution are involved. Streaming frameworks such as ReactiveX [40] and Akka
Streams [45, Chapter 13] offer built-in operators to define new streams ex nihilo, reducing
their dependence on special forms. Still, if there is no built-in support for a specific data
source, a programmer has to open up the implementation of operators to carefully craft a
new one.

Hidden concurrency involves mechanisms whereby multiple threads of execution are used,
but where the concurrent nature of the operations is hidden from the programmer. For
example, in FrTime a dedicated thread manages the execution of the reactive program
behind the scenes, while the Racket Read-Eval-Print Loop continues running on the main
thread. From the REPL, a Scheme program can “send” input values to the reactive
thread. Conversely, the output of FrTime programs can be reactively displayed in the
output of the REPL. However, multi-threading and concurrency-control are not part of
the FrTime programming model.

Periodic polling enables embedding by periodically updating the source values of a reactive
program from some computational process that is external to the reactive program. The
quintessential example of this approach is the seconds behaviour as found in FrTime [12].
The seconds behaviour is a free variable in the reactive program that is automagically
updated to the current Unix time. Typically, dependents of the seconds behaviour use
the timestamp only to determine whether they should imperatively poll an application-
specific data source. Such code lets the reactive runtime schedule imperative code, giving
rise to Reactive Update Order Leaks.

The language design problem that needs to be solved is how to design a reactive
programming language that supports the features of the awkward squad, but without
introducing the Reactive Thread Hijacking Problem and the Reactive Update Order
Leak.

In other words, it is important that imperative code and reactive code can coexist
within the same application in such a way that the imperative code cannot accidentally
violate the invariants of the reactive code. The mechanisms employed by existing languages
and frameworks are often highly specialised, have unclear semantics with regards to their
interactions with the reactive program, and they do not solve these problems.

2.4 Solution: General Idea
The idea is to embrace that reactive applications always consist of both imperative and
reactive parts. Both are desired, and they complement each other [19]. We give each their
own thread and effect-set, and design simple composition operators to link them together.

ECOOP 2020

19:8 Tackling the Awkward Squad for Reactive Programming

Listing 3 A “Hello World!” program in Stella.
1 (actor Main
2 (def-constructor (start)
3 (println "Hello World!")))

The result is called the Actor-Reactor Model, which can be summarised as follows.
Actors are used to represent the imperative input and output parts of reactive programs.
They imperatively manage their own state and input-output, and are solely responsible
for executing long lasting computations and effectful computations.
Reactors are used to encapsulate reactive programs, each with their own DAG and update
thread. By construction it is impossible for reactors to perform long lasting computations
and side-effects.
Coordination of actors and reactors happens via the data streams which they consume
and produce. We define a set of composition operators whereby the streams defined by
actors can be linked to the source nodes of reactors and vice-versa how actors can act on
changes to the sink nodes of reactors.

We have implemented the Actor-Reactor Model in an experimental language called Stella,
which can be roughly divided into two levels. First, an object-oriented base language is used
to restrict reactors from producing side-effects and performing long lasting computations
(Section 3). Second, actors and reactors are used to strictly separate the imperative and
reactive parts of programs (Section 4). We have written a prototypical Continuation-Passing
Style interpreter for Stella in TypeScript (in the style of [22, Chapter 5]).

3 Base Language: OOP with Effect and Termination Guarantees

In this section we will focus on the object-oriented base language of Stella. Throughout all
code examples we will consistently syntax highlight special forms (expressions with special
evaluation rules) in blue. Strings are surrounded by double quotes and are highlighted in
green. Symbols start with a single quote and are highlighted in red.

Stella is a dynamically typed language where all run-time values are objects. Its native
objects are booleans, numbers, strings, symbols and the value #undefined, which are
instances of the classes Boolean, Number, String, Symbol and Undefined respectively. A
program in Stella consists of 3 sets of top-level definitions: a set of classes, a set of actor
behaviours (“the class of an actor”), and a set of reactor behaviours (“the class of a reactor”).

3.1 Basic Expressions and “Hello World!”
Each Stella program must contain an actor behaviour called Main. This actor behaviour
must have a constructor named start. To start a Stella program, the Stella runtime spawns
an instance of the Main actor behaviour and invokes the start constructor. Consider the
“Hello World!” program in Listing 3 that defines such a behaviour. The body of its start
constructor contains a single println statement in operator prefix notation (Polish Notation).
This can be seen as synchronously sending a println message with no arguments to the
“Hello World!” object of class String. Similarly, (+ 1 2) can be seen as sending a +
message to the object representation of the number 1 with one argument which is the object
corresponding to number 2. In the rest of this paper we will use the terminology of “calling”
or “invoking” a method rather than sending synchronous messages (cf. SmallTalk [24]).

S. Van den Vonder, T. Renaux, B. Oeyen, J. De Koster, and W. De Meuter 19:9

Listing 4 Examples of basic expressions in Stella
1 (def hello "Hey")
2 (set! hello "... from the other side")
3 (if (equal? hello "Hey") (println "yes") (println "no")) // console prints "no"

Expressions that may be used in the body of constructors and methods follow S-expression
syntax [1, Chapter 1] and are shown in Listing 4. Local variables are introduced via the
def special form (similar to define in Scheme), assignments use the set! special form,
conditionals use the if and cond special forms. Two methods to test for equality are
implemented by the superclass of all classes (Object): equal? tests for object equality, eq?
for object reference equality. All values are #true except for #false and #undefined.

3.2 Abstract Data Types
Code in Stella can be either imperative or reactive. Both kinds of code can operate on the
same data, but the allowed sets of operations differ. Whereas imperative code may use the
full power of a Turing-complete language, reactive code is restricted to operations that are
guaranteed to terminate and that are free from side-effects. To this end, abstract data types
in Stella are represented by classes which may define local fields, constructors, methods, as
well as routines. Routines are special kinds of methods whose expressive power is a strict
subset of that of methods. Routines have the following properties.

1. Routines have no side-effects.
2. Routines always terminate.
3. Routines can only invoke other routines.

To explain how we can enforce those properties, consider the Pair class defined in
Listing 5 which can be used to represent linked lists. Local fields of the class are declared
on Line 2. Line 4 defines a constructor called initialize-with with 2 formal parameters
called initial-car and initial-cdr that will initialize the fields of a new pair. Lines 8–9
define two routines called first and second with no arguments which are “getters” for the
car and cdr field, and correspondingly, Lines 10 and 11 define two methods set-first!
and set-second! which are setters for these fields. Line 13 defines a routine called length
that will compute the length of a linked list by calling length on the cdr field as long as it
is also a pair1. We can enforce the properties of routines as follows.

Routines that contain expressions with side-effects are rejected by the interpreter. In our
case they are set! and a couple of other special forms2. Together with property #3, which
is upheld using a run-time check, this ensures that routines will never have side-effects. This
must be checked at run-time because Stella is a dynamic language. A run-time error occurs
when a routine calls a method, for example println which performs IO.

Our current implementation of Stella uses size-change termination (SCT) for higher-order
programs [35] to ensure at run-time that routines terminate. In a nutshell, this form of SCT
dynamically constructs a size-change graph based on the argument values of a routine call

1 Note that the type-of invocation in Listing 5 Line 15 returns a symbol that represents the name of
the class. This is because classes are not reified as objects in our language (such as in SmallTalk [24,
Chapter 5]). They cannot be referenced directly except via the new special form to create an instance.

2 The special forms forbidden in reactors and routines are set!, spawn-actor, spawn-reactor, send,
emit, monitor, and react-to.

ECOOP 2020

19:10 Tackling the Awkward Squad for Reactive Programming

Listing 5 The Pair class which has 2 kinds of operations, methods and routines.
1 (class Pair
2 (def-fields car cdr)
3

4 (def-constructor (initialize-with initial-car initial-cdr)
5 (set! car initial-car)
6 (set! cdr initial-cdr))
7

8 (def-routine (first) car)
9 (def-routine (second) cdr)

10 (def-method (set-first! new-car) (set! car new-car))
11 (def-method (set-second! new-cdr) (set! cdr new-cdr))
12

13 (def-routine (length)
14 (cond ((eq? cdr #undefined) 1)
15 ((eq? (type-of cdr) 'Pair) (+ 1 (length cdr)))
16 (else 2))))

Listing 6 Creating a circular data structure with Pair of Listing 5.
1 (def p1 (new Pair 'initialize-with 1 2))
2 (set-second! p1 p1)
3 (length p1) // successfully rejected via a run-time error

every time a routine is called. Before entering a new routine call, the size-change termination
principle is used to compare the argument values to those of earlier calls to that routine
(of the same class) higher on the call stack. If the new argument list is not decreasing in
size, a run-time exception is thrown. Note that the algorithm assumes a well-founded partial
order on values, for example, for numbers this is defined as |x| < |y|. In this case a recursive
routine such as factorial is permitted as long as recursion stops when the value of its
argument has decreased to 0.

As an example, consider the excerpt of Stella code in Listing 6 that uses the Pair class of
Listing 5. Here, a Pair is made to point to itself, creating a circular linked list. A subsequent
call to length on the Pair gives rise to a recursive call to length on the same class. SCT
rejects this call, since the argument values have not decreased since previous invocations.

While [35] report that the overhead of their SCT analysis can be as high as a factor 100
(e.g. for merge-sort), it is negligible for applications that perform a lot of work in between
recursive calls (they give a factorial function as an example). In any case, overhead remains
constant with respect to the size of the input of the program. Crucially, it works for high-level
programming languages such as Stella, and – unlike other approaches such as specialized type
systems – SCT requires no programmer assistance. Stella is not coupled to any specific SCT
algorithm, or even to SCT itself. What is part of the semantics of Stella, is that long-lasting
computations are illegal, and that termination of routines must be enforced by the Stella
runtime.

4 The Actor-Reactor Model

With the base language defined, we can now describe how Stella tackles the problem
described in Section 2.3. We sketched the general idea in Section 2.4. The Actor-Reactor
Model separates programs into actors and reactors. Actors handle the parts of a program
that involve long-lasting computations or side-effects, whereas reactors handle the parts that
are inherently reactive, or that are more easily expressed using reactive programming.

S. Van den Vonder, T. Renaux, B. Oeyen, J. De Koster, and W. De Meuter 19:11

Wind speed Turbine info Power output

Figure 3 Diagram of data flow in a wind turbine simulator consisting of a wind, a turbine, a
turbine power calculator, and a console to print the result.

Coordination between actors and reactors is achieved using data streams that are produced
by actors and reactors. Stella defines a number of composition operators to statically and
dynamically manage how data can flow to and from actors and reactors. In the following
sections we first introduce actors and data streams. In Section 4.3 we introduce reactors and
how to compose them with actors.

4.1 Running Example: Wind Turbine Simulator
Consider a wind turbine simulator that calculates the real-time power output of a wind
turbine. A simple simulator can be defined using the 4 components depicted in Figure 3.
From left to right: a blowing wind, a wind turbine, a power calculator, and a console to
print the output. Simulating wind can involve complex wind patterns and how they affect a
turbine, or it can be a simple process that generates random values corresponding to the
current wind speed. Even the simple version is challenging because it involves a process
“a wind” that is continuously running and always changing. It also requires reactive processes:
A blowing wind impacts the rotation of the wind turbine, which then impacts the power
output. Important to note is that eliminating long lasting computations within reactive
programs by itself is not enough to prevent them from blocking reactive programs. It is
equally important that reactive processes cannot be accidentally blocked by long lasting
computations in other parts of the program, for example the simulation of wind patterns.

We model wind as an actor because it is inherently an active process that is always
running and changing independently. The console is also an actor because it performs IO.
We opt to model a turbine and the power calculator as reactors: a turbine reacts to a wind,
and a power calculator reacts to changes in the turbine.

4.2 Actors and Data Streams
Actors are typically defined in terms of a behaviour and a mailbox [30]. The behaviour of an
actor describes its internal state and the messages that can be processed. Messages that are
sent to an actor are inserted into its mailbox (e.g. a FIFO queue), and the actor continuously
dequeues messages from its mailbox to process them one-by-one. Actors in Stella are based
on the Active Objects model [57, 30, 16], where actor behaviours are defined similar to classes
in object-oriented programming. In addition to receiving and processing messages, actors
can be used to implement zero or more data streams to which they can emit (publish) values.
The following sections explain the different parts of actor behaviours using the wind from
our running example. We explain how actor behaviours are defined, how data streams can
be implemented using actors, and how actors can monitor data streams.

4.2.1 Actor Behaviours
Listing 7 defines the Wind actor behaviour. An actor behaviour has a number of local fields,
in this case 1 field called rng (Line 3). A constructor called init is defined on Line 5, which
initializes the rng field with a new random number generator (an object). A method called

ECOOP 2020

19:12 Tackling the Awkward Squad for Reactive Programming

Listing 7 The Wind actor behaviour to implement a stream that represents wind speed.
1 (actor Wind
2 (def-stream speed 1)
3 (def-fields rng)
4

5 (def-constructor (init) (set! rng (new Random)))
6

7 (def-method (blow)
8 (emit speed (integer-between rng 0 30))
9 (sleep 10000)

10 (send #self 'blow)))

blow without arguments is defined on Line 7, whose implementation we will explain later
when we define data streams. A Wind actor is thus capable of processing blow messages that
are inserted into its mailbox, which amounts to invoking the corresponding blow method.

The special form spawn-actor is used to spawn new actors, in this case to create new
winds. The following expression spawns an instance of Wind, which could be used to
represent the mistral wind. A reference is returned to the new actor, which is an object of
type ActorReference. To initialize the actor, spawn-actor takes the name of a constructor
(as a symbol) and any arguments it requires. Constructors are special kinds of methods that
may only be invoked once, and only as the very first message an actor processes. The act
of spawning an actor via a constructor is semantically equivalent to spawning an actor and
inserting a message in its empty mailbox that will initialize the actor.

1 (def mistral (spawn-actor Wind 'init))

Actors communicate via asynchronous message passing via the send special form that
inserts a new message in the mailbox of the designated actor. The following expression sends
a blow message to mistral, which is expected to be an actor reference. While in this case
blow does not expect any arguments, they would be provided after the ’blow symbol. The
message payload between actors (and reactors) is always passed by (deep) copy, and actors
can send messages to themselves by sending them to #self, which represents a reference to
the current actor.

1 (send mistral 'blow)

4.2.2 Declaring Data Streams
Every actor can export data streams. The behaviour of an actor determines which data
streams an actor implements via def-stream as seen on Line 2 of Listing 7. This expression
takes two arguments: the name of the stream and its arity. The name is used to uniquely
identify a particular stream that belongs to a given actor, and the arity of a stream specifies
the number of elements that must be emitted to the stream in one “emit step”. In our
example a Wind actor exports a single stream called speed with arity 1.

Stream arity is used to emit new values that are intrinsically connected, and must
therefore always change simultaneously. For example, an actor might export a stream called
location of arity 2 that represents coordinates in the form of latitude and longitude.
Since they describe the real-time location of some real-world moving object, latitude and
longitude should always change simultaneously. Otherwise, a consumer of the stream might
first update the entire application (e.g. some world map) with a new value for latitude, and
only after some time with the corresponding value for longitude. After the first update the

S. Van den Vonder, T. Renaux, B. Oeyen, J. De Koster, and W. De Meuter 19:13

Listing 8 Monitoring data streams with actors
1 (actor Main
2 (def-constructor (start)
3 (def sirocco (spawn-actor Wind 'init))
4 (monitor sirocco.speed 'print-wind))
5

6 (def-method (print-wind wind-speed)
7 (println "the new wind speed is: " wind-speed)))

application would be in an inconsistent state, similar to a glitch in reactive programming [12].
An alternative approach is to emit location as a single object. However, we will use stream
arity to facilitate the composition of actors and reactors in Section 4.3.

4.2.3 Publishing to Data Streams

Actors can emit values to their own data streams by using the emit special form. Emitting a
value amounts to sending the new value to all subscribers of the stream. Consider the blow
method in Listing 7. Whenever a Wind actor processes a blow message, on Line 8 the actor
will emit a new value to the speed stream, which in this case is a random number between
0 and 30 representing the wind speed in meters/second. Now, a special type of message
(a publication) is added to the mailbox of subscribers, which are other actors or reactors.
Because the speed stream is defined with arity 1, emit only requires 1 argument. The actor
then sleeps for 10000ms (Line 9), and afterwards sends itself a new blow message to emit
another value (Line 10).

4.2.4 Qualifying and Monitoring Data Streams

Two mechanisms are required to create a subscription on a data stream: qualification and
monitoring. Both are explained using the Main behaviour in Listing 8 which can be seen as
the console from our running example, but instead of monitoring and printing power output,
it monitors and prints the wind speed. When the start constructor is executed, Line 3 first
spawns an instance of the Wind behaviour, and Line 4 exemplifies both qualification and
monitoring.

Qualification is the act of designating a reference to a particular stream exported by
a particular actor (or reactor). On Line 4, the expression sirocco.speed evaluates to an
object of class Stream that represents a reference to the speed stream exported by the
sirocco actor. Data will only start flowing once a consumer (an actor or reactor) subscribes
to the stream, in which case data flows directly from the producer to the consumer.

Actors subscribe to data streams by monitoring them. This is exemplified by Line 4,
where the sirocco.speed stream is monitored for changes. Whenever this stream emits a
new value, a ’print-wind message will enter the mailbox of the actor, which is processed
by the corresponding print-wind method on Line 6. This method requires exactly 1 formal
parameter because the speed stream has an arity of 1. We will see in Section 4.3 that reactors
do not explicitly monitor data streams like actors, and instead they will automatically react
to values that are emitted to data streams.

ECOOP 2020

19:14 Tackling the Awkward Squad for Reactive Programming

4.3 Reactors
Reactive languages rely on 2 fundamental mechanisms. First, at compile-time, the program
text is compiled to a DAG that consists of source nodes that represent the input of the
reactive program, sink nodes represent the output of the reactive program, and internal nodes
represent all computations that occur between the sources and sinks. Second, at run-time, a
reactive engine is responsible for propagating new values through the DAG, such that the
calculation that makes up the output remains consistent with the values of the input. The
reactive engine is smart enough to prevent glitches [12].

In the following sections we gradually explain Stella’s reactors by implementing a simple
reactive wind turbine and power calculator. Stella features 2 different ways to statically
compose reactor behaviours: via point-wise and point-free composition, named after function
composition in Haskell [32, Chapter 5]. In Section 4.3.6 we explain the run-time semantics of
reactors and how they manage dependencies on data streams.

4.3.1 Definitions
A reactor consists of 3 layers.
Layer 1: Reactor Behaviour. A reactor behaviour describes the static properties of a reactive

program, represented by a DAG that is constructed at “DAG compile-time” (a pre-
processing step of our interpreter). The DAG is constructed from the program text, for
example the reactor behaviour of Listing 9 which we will explain in Section 4.3.2. It
describes the source nodes, sink nodes, and internal nodes of the reactive program, and
all of the dependencies between them. We may refer to an actor or reactor behaviour as
simply “behaviour” if it is clear from context to which one we are referring.

Layer 2: Reactor Deployment. Reactive languages usually store the run-time information
of a reactive program (e.g. node values and local state) directly in the nodes of the DAG.
However, in our case reactor behaviours can be composed and reused by multiple reactors,
and every use of a DAG can be in a different state depending on the values that were
propagated. Therefore, a reactor deployment represents a specific instance of a reactor
behaviour. In other words, a reactor deployment stores all run-time information pertinent
to a specific instance of a DAG that is used by a specific reactor.

Layer 3: Reactor. A reactor is process with a mailbox and a vat (collection) of reactor
deployments. It is the driving force behind a reactive program: a reactor continuously
dequeues values from its mailbox and propagates them through the destined deployment
via a built-in reactive engine. Similar to how actors are spawned from actor behaviours,
a reactor is spawned from a reactor behaviour (that represents a DAG). At spawn-time,
the reactor creates an initial deployment for this DAG, which we call the root deployment.
A reactor has exactly 1 output stream of arity n, where n corresponds to the number of
sinks of the root deployment. Every time the root deployment updates, its sink values
are emitted on the output stream of the reactor. Our definition of reactors intentionally
covers deployments that give rise to other deployments within the same vat, but we will
not discuss those features in this paper. Reactors will therefore always contain exactly 1
deployment (namely the root deployment).

4.3.2 Basic Reactor Behaviours
A reactor behaviour is the textual representation of the DAG of a reactive program: it has a
name, at least 1 source, at least 1 sink, and any number of internal nodes that describe the
computations between the sources and sinks. An example of a computation is the theoretical

S. Van den Vonder, T. Renaux, B. Oeyen, J. De Koster, and W. De Meuter 19:15

Listing 9 The WindPower behaviour calculates the maximum theoretical power output of a turbine.
1 (reactor (WindPower blade-length air-density wind-speed)
2 (def swept-area (* #Pi (expt blade-length 2)))
3 (out (* 0.5 swept-area air-density (expt wind-speed 3))))

blade-length

Sources

Sinks
sink	#1

air-density wind-speed

const:	#Pi const:	3apply:	expt

apply:	* const:	0.5apply:	*

apply:	expt

const:	2

(a) WindPower

blade-length

Sources

Sinks
sink	#1

efficiency wind-speed

apply:	expt

const:	2

const:	#Pi

apply:	* apply:	*

const:	1.225
apply:	*

const:	3apply:	expt

const:	0.5

(b) PowerOutput

Figure 4 Side-by-side comparison for the DAGs of WindPower and PowerOutput of Listing 9
and 10. Nodes and dependencies introduced by PowerOutput are highlighted in red.

power output of a wind turbine (in Watt) which is based on the area swept by its blades, the
air density surrounding the turbine, and the velocity of the wind [43]. It can be calculated
as follows:

Power (W) = 0.5× Swept Area (m2)×Air Density (kg/m3)× V elocity3 (m/s)

This formula is implemented in Listing 9 in a reactor behaviour called WindPower with
3 source nodes and 1 sink node. Its 3 sources are called blade-length, air-density, and
wind-speed. There is one local variable called swept-area, and one sink node that is
immediately linked to the result of a multiplication. The DAG of this behaviour is depicted in
Figure 4a. Every invocation of a routine is depicted by an “apply” node, and all expressions
without dependencies are wrapped in a “const” node that will be computed when the DAG
is compiled. Since the run-time values that are propagated through the DAG are regular
objects, reactors can only invoke routines on those objects, and the invocation of regular
methods will result in a run-time error.

4.3.3 Point-wise Graph Composition
While the WindPower behaviour computes the theoretical power output of a turbine, a more
accurate calculation takes into account turbine efficiency (typically between 10–30% [42]).
To this end, Listing 10 defines a behaviour called PowerOutput that shows how reactor
behaviours can be composed in a point-wise manner. It has 3 sources called blade-length,
efficiency and wind-speed. They correspond to the 3 pieces of information that a wind

Listing 10 Point-wise composition of reactor behaviours.
1 (reactor (PowerOutput blade-length efficiency wind-speed)
2 (def wind-power (tick WindPower blade-length 1.225 wind-speed))
3 (out (* efficiency wind-power)))

ECOOP 2020

19:16 Tackling the Awkward Squad for Reactive Programming

Listing 11 The Turbine behaviour implements a simple wind turbine.
1 (reactor (Turbine blade-length efficiency wind)
2 (out blade-length efficiency wind.speed))

turbine is expected to produce to be able to calculate its power output. Line 2 performs a
point-wise composition of reactor behaviours via the tick special form. This can be thought
of as a function application but for reactor behaviours, of which the result is bound to
the wind-power variable. Line 3 then scales the theoretical output by the efficiency of the
turbine.

A tick operation is resolved at compile-time as the inlining of a DAG. First, the
source nodes of the composed behaviour (WindPower) are connected to the corresponding
arguments of tick. Second, the sink node of the composed behaviour is connected back into
the composer, in this case to all nodes in PowerOutput that use the wind-power variable
(multiple sinks would be defined via a def-values special form). The resulting graph
is depicted in Figure 4b, where the nodes and dependencies introduced by PowerOutput
are highlighted in red. For brevity, in the tick expression we assume a default value of
1.225kg/m3 (the air density at 15◦C at sea level).

While it is not part of our goals, the structure of the DAG can be optimised when it is
compiled. In this case the source and sink nodes of the inlined WindPower behaviour were
automatically eliminated because they are redundant, and because (by definition) sources
and sinks can only exist at the boundaries of a DAG. For example, the constant value 1.225
provided by the composer in Listing 10 is represented by a constant node in Figure 4b
(depicted in the bottom right). This node is directly connected to the apply node because
the original air-density source node (which it replaces) was eliminated.

4.3.4 Behaviour Stream Composition
From the PowerOutput behaviour we know that a wind turbine should provide its blade length,
efficiency, and the current wind speed affecting it. The simplest possible implementation
of a turbine that we can think of is defined in Listing 11. This reactor behaviour has 3
sources: blade-length is a number usually between 20 and 80 (meters), efficiency is a
number between 0.1 and 0.3 (10-30%), and wind should be a reference to an actor. The
output of Turbine is a stream of arity 3 that echoes the blade length and efficiency, and the
qualification “wind.speed” will echo the contents of the speed stream.

A qualification in the body of a reactor behaviour represents a dependency to a stream.
However, handling such dependencies can be quite tricky since there are potentially two kinds
of changing values. First, the exporting actor of a stream may change, for instance when
a new actor reference is propagated for the wind source node (e.g. sirocco or mistral).
Second, the speed stream is continuously emitting new values. A reader may recognise this
as a higher-order stream [34]. The source node is conceptually a stream of values, and every
value is an actor (or reactor) that exports streams.

Inspired by the compilation of the async expression in Elm [15], every qualification is
compiled to 2 graph nodes. First, an internal node manages the dependency on the referenced
stream. Second, an implicit source node is responsible for processing the values emitted by
the stream. The resulting graph for Turbine is depicted in Figure 5. When the source node
wind changes to a different actor (e.g. another wind) then this new value is propagated to
the special qualification node. This node unsubscribes from its current stream (if present)

S. Van den Vonder, T. Renaux, B. Oeyen, J. De Koster, and W. De Meuter 19:17

blade-length

Sources

efficiency wind

Implicit	Sources

wind.speed

sink	#1

Sinks

sink	#2 sink	#3

wind.speed

Logical connection

Figure 5 DAG of the Turbine behaviour.

Listing 12 Point-free composition of reactor behaviours.
1 (reactor TurbinePowerOutput (ror PowerOutput Turbine))

and subscribes to the newly referenced speed stream. The value of the implicit source is
immediately changed to the most recent value emitted by the newly referenced stream. From
that point onwards, whenever publications of the new stream enter the mailbox of the reactor,
the reactor will process them by changing the value of the corresponding implicit source
node.

4.3.5 Point-free Graph Composition

There are two ways to implement a wind turbine that is linked to a power calculator. Either
a new reactor is spawned for each of them and their input/output streams are subsequently
linked together, or the 2 reactor behaviours are composed and spawned as a single reactor.
Both approaches are valid, and which one is more desirable depends on the application. We
take the second approach by composing the 2 behaviours via point-free graph composition.

In Haskell, new functions can be defined point-free via a function composition operator.
The composition f ◦ g (“f after g”) is a function that first applies g to its argument, then f
to the value returned by g; (f . g) x = f(g(x)). Similarly, the ror operator composes
reactor behaviours: r1 ◦ r2 constructs a new behaviour where data is first propagated
through r2 and then through r1. The DAG of this behaviour is the composition of r1 and
r2, where the sinks of r2 are connected to the sources of r1.

As an example, Listing 12 defines a new behaviour called TurbinePowerOutput that
combines the behaviours of Turbine and PowerOutput. We designed those behaviours such
that they can be easily composed, i.e. the sinks of Turbine directly match the sources of
PowerOutput. If the behaviours would not directly fit together, intermediate behaviours can
take care of reordering sources and sinks, or transforming data.

The ror operator is capable of connecting multiple “input” behaviours to 1 “output”
behaviour. The following expression defines a new behaviour R that is the composition of an
output behaviour Rout with input behaviours R1 to Rn.

1 (reactor R (ror Rout R1 R2 . . . Rn))

Behaviour R can be compiled as long as the number of sinks of all input behaviours
matches the number of sources in Rout. If this is the case, they will be connected in order
from left to right to construct the behaviour R. The sources of R will be the same as the
sources of the inputs, ordered from left to right.

sources(R) := sources(R1) + sources(R2) + . . . + sources(Rn)

ECOOP 2020

19:18 Tackling the Awkward Squad for Reactive Programming

The sinks of R are the same as the sinks of Rout.

sinks(R) := sinks(Rout)

Additional point-free graph composition operators with different semantics are conceivable,
such as the parallel and parallel* operators in [36].

4.3.6 Run-time Semantics of Reactors: Spawning and Linking

We now complete the running example of Section 4.1 by showing how the program is started,
and how actors and reactors are linked together. We will focus on the composition of actors
and reactors rather than the internal semantics of reactors. Internally, it suffices to know that
every reactor has a reactive engine that is responsible for propagating values from sources
to sinks. Similar to Flapjax [34] and REScala [46], we based our propagation algorithm on
that of FrTime [12], but without the complexity of a dynamic dependency graph. It ensures
that only the parts of a DAG that are affected by a change will be recomputed, and that
computations produce no glitches when multiple nodes change simultaneously.

Listing 13 implements the Main program for the running example. Its purpose is to
spawn an actor representing a wind, spawn a reactor representing a wind turbine and its
power output calculation, and to print this power output to the console. This functionality
is implemented by the start constructor. Most of the expressions have been discussed
previously. Line 3 spawns an instance of the Wind actor behaviour and Line 4 sends it a
blow message. The wind will now start periodically emitting values.

The spawn-reactor expression on Line 5 spawns a new reactor that is now waiting for
data on its sources. Remember that a reactor is defined as a vat of reactor deployments, and
in this case TurbinePowerOutput will be the root deployment, as well as the only deployment
for this reactor throughout its lifetime.

Reactors are linked to actors (or other reactors) via the react-to special form that will
change the values of source nodes. If the new value of a source node is an object of type
Stream, instead of changing the value of the source node, the reactor will automatically
create a subscription on the stream (possibly replacing an existing subscription). Then,
whenever new values are emitted by this stream, they enter the mailbox of the reactor which
will process them by modifying the value of the corresponding source node. In Listing 13 the
sources of turbine are changed on Line 6 to 80, 0.3, and sirocco. In the context of our
application, this means that this is a reactor that represents a turbine with a blade length
of 80 meters, an efficiency of 30%, which is influenced by the sirocco wind. To print the
output of the turbine the console, on Line 7 the main actor monitors the turbine for changes.
Reactors export exactly 1 output stream called out.

Reactors are aware of stream arity, and the react-to composition operator can be used
to react to streams with an arity greater than 1. In this case, the reactor requires exactly as
many source nodes as the arity of the input streams. For example, a reactor that is made to
react (via react-to) to a stream of arity 2 will require exactly 2 source nodes. Whenever the
input stream emits new values they will enter the mailbox as a single publication, but (in this
case) the value of the 2 source nodes of the reactor will change simultaneously. The react-to
composition operator ensures that there is a one-to-one mapping between its arguments and
the source nodes of the reactor.

S. Van den Vonder, T. Renaux, B. Oeyen, J. De Koster, and W. De Meuter 19:19

Listing 13 The Main program for the wind turbine simulator of Section 4.1.
1 (actor Main
2 (def-constructor (start)
3 (def sirocco (spawn-actor Wind 'init))
4 (send sirocco 'blow)
5 (def turbine (spawn-reactor TurbinePowerOutput))
6 (react-to turbine 80 0.3 sirocco)
7 (monitor turbine.out 'print))
8

9 (def-method (print watt)
10 (println "turbine produced: " (round (/ watt 1000000)) " MW")))

5 Evaluating the Awkward Squad for Reactive Programming

We introduced the awkward squad for reactive programming as a set of issues that are essential
for real-world software development, but that do not fit within reactive programming. In
this section we investigate the extent to which these issues can be present in existing reactive
languages and frameworks. We find that it is indeed the case that existing languages and
frameworks expose operations or mechanisms to developers that fall within one or all issues
of the awkward squad. In many cases these operations and mechanisms will be unavoidable
for developers, either because they are an inherent part of the language or framework, or
because otherwise it would be impossible to write certain applications, e.g. applications
with a GUI. In this paper we do not investigate the extent to which possibly issue-causing
operations are used in real applications, and if they are present, which bugs they can possibly
cause in those specific applications.

Table 1 lists a number of reactive languages and frameworks that we consider to be rep-
resentative for the state-of-the-art. They are FrTime [12] (Racket), Flapjax [34] (JavaScript),
REScala [46] (Scala), ReactJS [28] (JavaScript), Akka Streams [45, Chapter 13] (Scala), and
RxJS [49] (JavaScript). We used them to implement our running example of Section 4.13.
Below the double horizontal line we list 3 other reactive languages which we did not use
to implement the application (for technical reasons) but which we classified according to
their respective papers. They will be discussed in Section 5.8. Based on our findings we
categorised these languages and frameworks as follows.

Reactive Thread Hijacking Problem (RTHP). Does the language or framework solve the
Reactive Thread Hijacking Problem? In other words, does the language or framework
prevent infinite computations from blocking the reactive program? We make no distinction
between eventual reactivity and strong reactivity. If not, we discuss the features that can
be used to block the reactive program.

Reactive Update Order Leak (RUOL). Does the language or framework solve the Reactive
Update Order Leak? In other words, does the language or framework disallow side-effects
in internal nodes of the DAG? If not, we will highlight the features where side-effects can
be executed inside the DAG.

Reactive/Imperative Impedance Mismatch (RIIM). In Section 2.3 we listed a number of
different mechanisms used by reactive languages to be able to embed reactive code within
imperative code. We discuss, to the best of our knowledge, which of the listed mechanisms
are used.

3 All code from this paper and the implementations used to guide our evaluation of the different languages
and frameworks are available in an artefact. To download this artefact, see the supplementary material
on the first page of this paper.

ECOOP 2020

19:20 Tackling the Awkward Squad for Reactive Programming

Table 1 Categorisation of reactive languages and frameworks.

RTHP RUOL RIIM
FrTime × × Periodic polling, hidden concurrency, domain spe-

cific features, metaprogramming
Flapjax × × Metaprogramming, domain specific features
REScala × × Metaprogramming
ReactJS × × Metaprogramming, domain specific features
Akka Streams × × X

RxJS × × Metaprogramming
Stella X X X

Elm × × Domain specific features, special forms
ActiveSheets X X X

Coherence × X X

5.1 FrTime
FrTime is a functional reactive programming language built in Racket that can be interacted
with via the Racket Read-Eval-Print Loop [12].

RTHP. The execution time of expressions in FrTime is unrestricted. While there exists
a limited set of built-in functions (e.g. arithmetic) that always terminate, the built-
in lift-strict primitive is used to integrate any (possibly infinitely looping) Racket
function with the DAG. The implementation of FrTime exposes multiple threads of
execution to developers: one thread is responsible for updating the reactive program, and
another thread is responsible for the REPL. To implement an infinite loop that represents
a wind, we blocked one thread of execution to continuously modify a source node of the
dependency graph.

RUOL. Any Racket function may be used in internal nodes of the DAG via the aforementioned
lift-strict function. Additionally, FrTime offers abstractions for “event streams” that
can be mapped and filtered (via map-e and filter-e respectively) using using regular
Racket functions.

RIIM. We have identified 4 mechanisms that are used to embed reactive code within
imperative code. Firstly, there are 2 built-in signals called seconds and milliseconds
that are updated automagically by the runtime, which can be used for periodic polling.
Secondly, multiple threads of execution are exposed to developers. While the Racket
REPL thread can be used to send and receive values to and from the reactive program,
the semantics of their interaction is not part of the language definition. Thirdly, FrTime
has domain specific features in the form of a wrapper around the Racket GUI toolkit [26],
which automatically integrates with the DAG. Lastly, source nodes of the DAG can
be manually defined via cells and event-receivers, and they can be assigned to via
set-cell! and send-event respectively. The semantics of modifying a source node is
unspecified, especially when assignments to the same sources occur in multiple threads.

5.2 Flapjax
Flapjax is a reactive programming language based on JavaScript [34].

RTHP. Nodes in the dependency graph consist of arbitrary JavaScript functions, which
are unrestricted in their execution time. To create an infinite loop that implements a
wind without blocking the browser, we implemented a non-blocking loop by wrapping

S. Van den Vonder, T. Renaux, B. Oeyen, J. De Koster, and W. De Meuter 19:21

JavaScript’s setTimeout to asynchronously schedule an event in the JavaScript event-loop.
Some built-in operations can unintentionally block the reactive program. For example,
the evalForeignScriptValE operation is applied to a reactive value that contains a
URL. It retrieves and evaluates the (foreign) JavaScript file on the URL, and publishes
its return value as a new reactive value [50].

RUOL. Flapjax programs consist of arbitrary JavaScript expressions that may involve
arbitrary side-effects inside the DAG. Some built-in operations execute side-effects in
the DAG, such as the GUI modification operators insertDomB and insertDomE to insert
a reactive value in the browser DOM, operations such as getWebServiceObjectE to
perform XMLHttpRequests, or the aforementioned evalForeignScriptValE to evaluate
an arbitrary JavaScript file.

RIIM. To embed reactive code within imperative JavaScript code, Flapjax has 2 mechanisms.
Source nodes of the DAG can be manually created from the GUI via operations such as
extractValueB and extractValueE which are updated automatically by the runtime,
and ex nihilo via receiverE (to create a new event stream) and sendEvent (to modify
an event stream). Flapjax also offers special features to construct GUI elements that
automatically integrate with reactive values.

5.3 REScala
REScala is a reactive programming library in Scala that unifies the concepts of functional
reactive programming with object-oriented programming [46].

RTHP. REScala imposes no restrictions on the execution time of expressions inside the DAG
of a reactive program. Since it is built as a library, regular Scala functions are used to
perform computations on reactive values. To model a wind from our running example
without blocking the reactive program, we manually constructed a new Scala thread with
an infinite loop that non-reactively modifies a source node of the reactive program.

RUOL. Since REScala is conceived as a library, the Scala functions used in nodes of the DAG
may perform arbitrary side-effects. As a design guideline, the REScala documentation
explicitly mentions that functions inside the DAG must be pure [41, 1.5.3].

RIIM. To embed reactive code within imperative code, REScala offers special features to
manually create new source nodes of the DAG (Vars) and to modify them via assignment.
Conversely, callbacks can be installed on sink nodes of the DAG to act on their changes.

5.4 ReactJS
ReactJS is a JavaScript reactive GUI framework developed by Facebook [28], which is used
to develop reactive web applications and mobile applications [21].

RTHP. The types of expressions that constitute a ReactJS program are regular JavaScript
expressions, and are unrestricted in their computation time. To implement a wind
without blocking the browser, we used JavaScript’s setInterval that calls a function on
a repeated interval.

RUOL. There are no restrictions on side-effects inside a ReactJS dependency graph. The
documentation mentions that reactive components should be pure only with respect
to their “props” object, which is a framework-provided object that is used to create
dependencies between reactive components [27].

ECOOP 2020

19:22 Tackling the Awkward Squad for Reactive Programming

RIIM. The state of a reactive component is manually modified via a special setState
method that triggers a new propagation cycle. ReactJS offers domain specific features
(via JSX templates) to construct user interfaces that automatically display the values of
sink nodes of the dependency graph.

5.5 Akka Streams
Akka Streams is a streaming library in Scala based on the Akka actor library [45, Chapter 13].
We had some difficulties reproducing the semantics of our running example in Akka Streams
because we found it to be very difficult to create dependency graphs that are not linear
(multiple sources or sinks) and which have similar update semantics.

RTHP. There are no restrictions on performing long lasting computations inside the DAG,
e.g. via the stream operator map to apply a regular Scala function to a stream, or zipWith
to combine 2 or more streams via a regular Scala function.

RUOL. Many built-in streaming operators are designed to be without side-effects. While we
could not find explicit programmer guidelines discussing side-effects in the Akka Streams
documentation, we believe that stream operators are intended to be pure, including
those that accept arbitrary Scala functions (e.g. map or zipWith). We found at least
some interest by users of the Akka project on GitHub for stream operators that execute
side-effects. In one instance a user requested a novel operator to execute side-effects
without performing a value transformation, noting that the only way to achieve the
desired effect was via the map operator (which, in the experience of the user, lead to code
duplication) [52]. In response to this issue a new wireTap stream operator was added to
Akka version 2.5.13. A new variant of this operator (with different semantics) is currently
being requested by a different user [53]. This anecdotal evidence is at least an indication
that functional purity is not always upheld by the users of Akka. Some operators with
side-effects are built-in, for example, the log operator logs the elements flowing through
a stream, and the ask operator sends an asynchronous message to an actor. Sink nodes
also perform side-effects to act on the elements of a data stream, e.g. to print results to
the console via a forEach operator.

RIIM. As far as we know, Akka Streams has a clean separation between the code that
is responsible for supplying values to the reactive program (which are actors) and the
code that is responsible for the reactive program itself (which are actors that run data
streams). Note that this is not always the case, since there exist many operators to
create new source nodes ex nihilo whereby the reactive program (an actor running data
streams) is itself responsible for collecting/retrieving its input data. For example, the
FiloIO.fromPath operator that creates a source node to read the contents of a file.

5.6 RxJS
RxJS [49] is a streaming library for JavaScript based on the ReactiveX specification [40],
which has currently been implemented in 18 languages.

RTHP. There are no restrictions on the execution time of the expressions that constitute a
stream, and long lasting computations will block the entire program. Implementations of
ReactiveX in other languages may support Schedulers which are designed to introduce
multithreaded processing to streams, but this can cause other issues, especially when
used in combination with side-effects.

S. Van den Vonder, T. Renaux, B. Oeyen, J. De Koster, and W. De Meuter 19:23

RUOL. Many built-in streaming operators are designed to be without side-effects, and the
documentation of RxJS describes operators in general as “pure functions” [39]. We
believe that operators that rely on arbitrary JavaScript functions (e.g. map or zipWith)
are intended to be functionally pure as well (but which cannot be enforced). In some cases
side-effects are unavoidable, for example when defining a type of source node called a
Subject, which is manually updated to start the propagation of new values. Frameworks
in the family of ReactiveX (such as RxJS) also offer a whole range of “Do” operators
that are specifically designed to execute side-effects within a reactive program without
performing a value transformation [38].

RIIM. Programmers in RxJS can manually create and update new source nodes (a Subject)
of the DAG, and they can manually create new streaming operators using metaprogram-
ming to read from unsupported data sources. Callbacks are registered on sink nodes
of the program to imperatively act upon their changes (e.g. by modifying the GUI, or
printing to the console).

5.7 Stella
RTHP. Stella solves the Reactive Thread Hijacking Problem by eliminating infinite compu-

tations from reactive programs. Whether our implementation also solves the problem of
responsiveness in general depends on the expectations of the application developer. We
believe there is no one-size-fits-all solution to ensure that an application remains “reactive”
or “responsive”, since their meaning is likely to change depending on the application
requirements or domain. The Actor-Reactor Model facilitates restricting certain parts of
the application (the reactive parts) to provide extra guarantees with respect to respons-
iveness or computational complexity without introducing the problems that we identify
in this paper. The design choice that we made in Stella is to enforce eventual reactivity
via size-change termination. Thus, Stella ensures that reactors must eventually terminate,
and that the execution thread of a reactor is not accidentally hijacked by computations
in other parts of the program (other actors or reactors). In different application domains
with stronger memory or timing requirements (e.g. safety systems, robotics, . . .) it would
be conceivable to further restrict reactors, for example by imposing strong reactivity and
bounded-size mailboxes.

RUOL. Stella solves the Reactive Update Order Leak by ensuring that effectful computations
cannot be part of the dependency graph of a reactive program. This is realised by routines
in the object-oriented base language. However, using methods and routines may be a
burden for programmers, since they must make an effort to correctly program a piece of
functionality as a regular method or as a routine. When using built-in classes or libraries
they must also know whether functionality is offered as a method or as a routine.

RIIM. Stella solves the Reactive/Imperative Impedance Mismatch. It ensures that the
embedding of reactive code within imperative code does not introduce the Reactive
Thread Hijacking Problem and the Reactive Update Order Leak, and that the semantics
of embedded reactive code are clear. There are 2 composition operators available to
actors: react-to and monitor. To imperatively change the source nodes of a reactive
program, actors must use react-to with clearly defined semantics: a message is sent to
the reactor that, when processed, changes its source nodes. To imperatively act on the
changes of reactive programs, actors must use monitor: whenever the monitored stream
produces a new result, a new message is enqueued in the mailbox of the actor. Reactors
have no imperative operators to “send” or “receive” values, or to manually react to the
changes of values (e.g. via callbacks). In the true spirit of reactive programming, they
can only declaratively express dependencies on data sources via their source nodes and
qualifications.

ECOOP 2020

19:24 Tackling the Awkward Squad for Reactive Programming

5.8 Additional Mentions

There are some reactive languages and frameworks that require a special mention. When
possible we list them in Table 1 below the double horizontal line.

Elm [15] is a reactive programming language that compiles to JavaScript. We were
unable to build our running example in Elm because its current distribution is no longer
reactive [14]. Expressions inside the DAG in Elm may perform infinite computations that
block the reactive program. An interesting observation is that Elm is presented as a purely
functional reactive programming language, but its paper describes a syncGet operation to
execute a web request (e.g. to fetch an image from a URL), which is clearly a side-effect. The
reason why this operation (among others) is built-in is because it is necessary for building
web applications, but introducing this operation in the reactive language also causes the
problems of the awkward squad. This is exactly the essence of the awkward squad.

ActiveSheets [54] is a reactive language based on Microsoft Excel where the DAG consists
of regular spreadsheet operations. ActiveSheets adds features to Excel to automatically insert
values into cells based on external data streams, and, like a regular spreadsheet, updates to
cells automatically propagate throughout the program. The core language of ActiveSheets
is formalised and used to prove that, for any given update of a cell, computation time and
memory usage are bound. Furthermore, as far as we know there are no spreadsheet operations
that have side-effects on other cells, so there can be no side-effects in internal nodes of the
DAG. However, ActiveSheets is not a general purpose programming language. Conceptually
an ActiveSheets program can be represented by 1 reactor that implements the spreadsheet
logic.

In the Coherence language, code is divided in derivations and reactions [19]. Derivation is
used to automatically compute the program output by deriving values from input via purely
functional computations. Side-effects are isolated to different parts of the code, namely
reactions, that are responsible for imperatively keeping the application state consistent with
derived values. This stems from the insight that derivation and reaction need each other, but
that coordinating side-effects in an event-based application is extremely difficult. A reactive
program constructed via derivations is guaranteed to be free of side-effects, and is thus not
subject to the Reactive Update Order Leak. The Coherent Reaction programming model
offers no mechanisms to solve the Reactive Thread Hijacking Problem.

HipHop is a synchronous reactive programming language inspired by Esterel with an
implementation in Scheme [6] and JavaScript [55]. HipHop is not classified in Table 1
because the programming style and evaluation model of synchronous reactive programming
languages makes them difficult to compare with the approaches in Table 1. However, there
are interesting parallels between some aspects of the HipHop language and the Actor-Reactor
Model. HipHop is embedded as a DSL within the Hop language, and Hop code interfaces
with HipHop code via reactive machines that conceptually fulfil the same role as reactors.
Hop code sends input events to a reactive machine and manually triggers a propagation
cycle. Output events produced by the HipHop machine can be observed by Hop code via
event handlers. Interestingly, one of the core language statements called atom& is used within
HipHop to execute Hop code, which may contain side-effects and recursive functions. While
side-effects in synchronous reactive programs are arguably not subject to the issues discussed
in Section 2.2, the authors make a note that the “execution time [of atom statements] should
be kept negligible in practice” [6, 3.4].

S. Van den Vonder, T. Renaux, B. Oeyen, J. De Koster, and W. De Meuter 19:25

6 Conclusion

To conclude this paper we reflect on our 2 largest contributions, namely identifying the
awkward squad for reactive programming and the Actor-Reactor Model. We believe that
there is no panacea to write both imperative and reactive programs within a single unified
language that exposes the same concepts and operations in both types of programs. Instead,
we believe that imperative and reactive programs are fundamentally different, and that
they should be programmed whilst guaranteeing their own invariants. To this end the
Actor-Reactor Model serves as a new mental model to classify and design reactive systems.

As a secondary contribution, our definition of reactors may prove to be valuable to the
field of reactive programming in two ways. First, we define distinct terminology for the
different stages of a reactive program: a reactor behaviour represents a dependency graph that
is constructed from code, a deployment is a specific instance of a graph that keeps track of all
run-time information and state, and a reactor contains the reactive engine that propagates
values through one or more deployments. Conceptually, the reactive programs in many
existing reactive programming languages are analogous to 1 reactor with 1 deployment. By
using our definitions, we open the door for modularity and composition of reactive programs
both statically (e.g. via point-wise and point-free composition operators) and dynamically by
composing data streams. Second, we conjecture that reactors together with the mechanism
of qualification is an alternative, but equally powerful, way to construct higher-order reactive
programs. Reactors may provide more insights or clarities with respect to the run-time
semantics and resource usage of higher order reactive programs.

The Actor-Reactor Model may inspire designers of reactive languages, framework de-
velopers, and researchers to be strict about what can and cannot be programmed within
a reactive program, and it may help them to define precisely the rules by which reactive
programs interact with their environment. Additionally, the Actor-Reactor Model may be
especially useful in application domains where certain parts of a program must be reactive,
for example, with specific memory or timing constraints (e.g. robotics and safety systems).
Operations that might not fit this model, but which are necessary for program development,
are evacuated into actors which are complementary to the reactive program, but which do
not violate the invariants of the reactive programming model.

References

1 Harold Abelson and Gerald J. Sussman. Structure and Interpretation of Computer Programs,
Second Edition. MIT Press, 1996.

2 José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire, Vincent
Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and Pierre-Yves Strub. Jasmin:
High-assurance and high-speed cryptography. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017, pages 1807–1823. ACM, 2017. doi:10.1145/3133956.3134078.

3 Engineer Bainomugisha, Andoni Lombide Carreton, Tom Van Cutsem, Stijn Mostinckx,
and Wolfgang De Meuter. A survey on reactive programming. ACM Computing Surveys,
45(4):52:1–52:34, 2013. doi:10.1145/2501654.2501666.

4 Gérard Berry. Real time programming: Special purpose or general purpose languages. In
Gerhard Ritter, editor, Information Processing 89, Proceedings of the IFIP 11th World
Computer Congress, San Francisco, USA, August 28 - September 1, 1989., pages 11–17.
North-Holland/IFIP, 1989.

ECOOP 2020

https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1145/2501654.2501666

19:26 Tackling the Awkward Squad for Reactive Programming

5 Gérard Berry and Georges Gonthier. The esterel synchronous programming language: Design,
semantics, implementation. Science of Computer Programming, 19(2):87–152, 1992. doi:
10.1016/0167-6423(92)90005-V.

6 Gérard Berry and Manuel Serrano. Hop and hiphop: Multitier web orchestration. In
Raja Natarajan, editor, Distributed Computing and Internet Technology - 10th International
Conference, ICDCIT 2014, Bhubaneswar, India, February 6-9, 2014. Proceedings, volume
8337 of Lecture Notes in Computer Science, pages 1–13. Springer, 2014. doi:10.1007/
978-3-319-04483-5_1.

7 Jonas Bonér, Dave Farley, Roland Kuhn, and Martin Thompson. The reactive mani-
festo. https://web.archive.org/web/20191210084324/https://www.reactivemanifesto.
org/. Accessed: 2019-12-10.

8 Walter S Brainerd and Lawrence H Landweber. Theory of computation. John Wiley & Sons,
Inc., 1974. URL: https://archive.org/details/theoryofcomputat00brai.

9 Andoni Lombide Carreton, Stijn Mostinckx, Tom Van Cutsem, and Wolfgang De Meuter.
Loosely-coupled distributed reactive programming in mobile ad hoc networks. In Jan Vitek,
editor, Objects, Models, Components, Patterns, 48th International Conference, TOOLS 2010,
Málaga, Spain, June 28 - July 2, 2010. Proceedings, volume 6141 of Lecture Notes in Computer
Science, pages 41–60. Springer, 2010. doi:10.1007/978-3-642-13953-6_3.

10 Sunjay Cauligi, Gary Soeller, Fraser Brown, Brian Johannesmeyer, Yunlu Huang, Ranjit
Jhala, and Deian Stefan. Fact: A flexible, constant-time programming language. In IEEE
Cybersecurity Development, SecDev 2017, Cambridge, MA, USA, September 24-26, 2017, pages
69–76. IEEE Computer Society, 2017. doi:10.1109/SecDev.2017.24.

11 Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs for systems code.
In Michael I. Schwartzbach and Thomas Ball, editors, Proceedings of the ACM SIGPLAN
2006 Conference on Programming Language Design and Implementation, Ottawa, Ontario,
Canada, June 11-14, 2006, pages 415–426. ACM, 2006. doi:10.1145/1133981.1134029.

12 Gregory H. Cooper and Shriram Krishnamurthi. Embedding dynamic dataflow in a call-by-
value language. In Peter Sestoft, editor, Programming Languages and Systems, 15th European
Symposium on Programming, ESOP 2006, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2006, Vienna, Austria, March 27-28, 2006,
Proceedings, volume 3924 of Lecture Notes in Computer Science, pages 294–308. Springer,
2006. doi:10.1007/11693024_20.

13 Oracle Corporation. JEP 266: More concurrency updates. https://web.archive.org/web/
20191009093608/https://openjdk.java.net/jeps/266. Accessed: 2019-10-09.

14 Evan Czaplicki. A farewell to frp. https://web.archive.org/web/20191208051242/https:
//elm-lang.org/news/farewell-to-frp. Accessed: 2019-12-30.

15 Evan Czaplicki and Stephen Chong. Asynchronous functional reactive programming for GUIs.
In Hans-Juergen Boehm and Cormac Flanagan, editors, ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19,
2013, pages 411–422. ACM, 2013. doi:10.1145/2491956.2462161.

16 Frank S. de Boer, Vlad Serbanescu, Reiner Hähnle, Ludovic Henrio, Justine Rochas, Crys-
tal Chang Din, Einar Broch Johnsen, Marjan Sirjani, Ehsan Khamespanah, Kiko Fernandez-
Reyes, and Albert Mingkun Yang. A survey of active object languages. ACM Computing
Surveys, 50(5):76:1–76:39, 2017. doi:10.1145/3122848.

17 Robert de Simone, Jean-Pierre Talpin, and Dumitru Potop-Butucaru. The synchronous
hypothesis and synchronous languages. In Richard Zurawski, editor, Embedded Systems
Handbook. CRC Press, 2005. doi:10.1201/9781420038163.ch8.

18 Joscha Drechsler, Ragnar Mogk, Guido Salvaneschi, and Mira Mezini. Thread-safe reactive
programming. Proceedings of the ACM on Programming Languages, 2(OOPSLA):107:1–107:30,
2018. doi:10.1145/3276477.

https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1007/978-3-319-04483-5_1
https://doi.org/10.1007/978-3-319-04483-5_1
https://web.archive.org/web/20191210084324/https://www.reactivemanifesto.org/
https://web.archive.org/web/20191210084324/https://www.reactivemanifesto.org/
https://archive.org/details/theoryofcomputat00brai
https://doi.org/10.1007/978-3-642-13953-6_3
https://doi.org/10.1109/SecDev.2017.24
https://doi.org/10.1145/1133981.1134029
https://doi.org/10.1007/11693024_20
https://web.archive.org/web/20191009093608/https://openjdk.java.net/jeps/266
https://web.archive.org/web/20191009093608/https://openjdk.java.net/jeps/266
https://web.archive.org/web/20191208051242/https://elm-lang.org/news/farewell-to-frp
https://web.archive.org/web/20191208051242/https://elm-lang.org/news/farewell-to-frp
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/3122848
https://doi.org/10.1201/9781420038163.ch8
https://doi.org/10.1145/3276477

S. Van den Vonder, T. Renaux, B. Oeyen, J. De Koster, and W. De Meuter 19:27

19 Jonathan Edwards. Coherent reaction. In Shail Arora and Gary T. Leavens, editors, Companion
to the 24th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA,
pages 925–932. ACM, 2009. doi:10.1145/1639950.1640058.

20 Jonathan Edwards. Coherent reaction. Technical Report MIT-CSAIL-TR-2009-
024, Massachusetts Institute of Technology, Computer Science and Artificial In-
telligence Laboratory, Cambridge, 02139 Massachusetts, USA, June 2009. URL:
http://web.archive.org/web/20181103183154/http://dspace.mit.edu/bitstream/
handle/1721.1/45563/MIT-CSAIL-TR-2009-024.pdf?sequence=1.

21 Bonnie Eisenman. Learning React Native: Building Native Mobile Apps with JavaScript.
O’Reilly Media, Inc., 2 edition, 2017.

22 Daniel P. Friedman and Mitchell Wand. Essentials of programming languages (3. ed.). MIT
Press, 2008.

23 Thierry Gautier and Paul Le Guernic. SIGNAL: A declarative language for synchronous
programming of real-time systems. In Gilles Kahn, editor, Functional Programming Languages
and Computer Architecture, Portland, Oregon, USA, September 14-16, 1987, Proceedings,
volume 274 of Lecture Notes in Computer Science, pages 257–277. Springer, 1987. doi:
10.1007/3-540-18317-5_15.

24 Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, 1983.

25 Nicolas Halbwachs, Fabienne Lagnier, and Christophe Ratel. Programming and verifying real-
time systems by means of the synchronous data-flow language LUSTRE. IEEE Transactions
on Software Engineering, 18(9):785–793, 1992. doi:10.1109/32.159839.

26 Daniel Ignatoff, Gregory H. Cooper, and Shriram Krishnamurthi. Crossing state lines: Adapting
object-oriented frameworks to functional reactive languages. In Masami Hagiya and Philip
Wadler, editors, Functional and Logic Programming, 8th International Symposium, FLOPS
2006, Fuji-Susono, Japan, April 24-26, 2006, Proceedings, volume 3945 of Lecture Notes in
Computer Science, pages 259–276. Springer, 2006. doi:10.1007/11737414_18.

27 Facebook Inc. Components and props. https://web.archive.org/web/20191126131226/
http://reactjs.org/docs/components-and-props.html. Accessed: 2019-11-26.

28 Facebook Inc. React: A javascript library for building user interfaces. https://web.archive.
org/web/20191009084855/http://reactjs.org/. Accessed: 2019-10-09.

29 Reactive Streams Initiative. Reactive streams. https://web.archive.org/web/
20191009093755/https://www.reactive-streams.org/. Accessed: 2019-10-09.

30 Joeri De Koster, Tom Van Cutsem, and Wolfgang De Meuter. 43 years of actors: a taxonomy
of actor models and their key properties. In Sylvan Clebsch, Travis Desell, Philipp Haller, and
Alessandro Ricci, editors, Proceedings of the 6th International Workshop on Programming Based
on Actors, Agents, and Decentralized Control, AGERE 2016, Amsterdam, The Netherlands,
October 30, 2016, pages 31–40. ACM, 2016. doi:10.1145/3001886.3001890.

31 Roland Kuhn, Brian Hanafee, and Jamie Allen. Reactive Design Patterns. Manning Publica-
tions Co., Greenwich, CT, USA, 1st edition, 2017.

32 Miran Lipovaca. Learn You a Haskell for Great Good!: A Beginner’s Guide. No Starch Press,
San Francisco, CA, USA, 1st edition, 2011.

33 Ingo Maier and Martin Odersky. Deprecating the observer pattern with scala.react. Tech-
nical Report EPFL-REPORT-176887, École Polytechnique Fédérale de Lausanne, EPFL IC
IINFCOM LAMP, Station 14, 1015 Lausanne, 2012. URL: http://web.archive.org/web/
20200522141109/https://infoscience.epfl.ch/record/176887.

34 Leo A. Meyerovich, Arjun Guha, Jacob P. Baskin, Gregory H. Cooper, Michael Greenberg,
Aleks Bromfield, and Shriram Krishnamurthi. Flapjax: a programming language for ajax
applications. In Shail Arora and Gary T. Leavens, editors, Proceedings of the 24th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA, pages 1–20. ACM,
2009. doi:10.1145/1640089.1640091.

ECOOP 2020

https://doi.org/10.1145/1639950.1640058
http://web.archive.org/web/20181103183154/http://dspace.mit.edu/bitstream/handle/1721.1/45563/MIT-CSAIL-TR-2009-024.pdf?sequence=1
http://web.archive.org/web/20181103183154/http://dspace.mit.edu/bitstream/handle/1721.1/45563/MIT-CSAIL-TR-2009-024.pdf?sequence=1
https://doi.org/10.1007/3-540-18317-5_15
https://doi.org/10.1007/3-540-18317-5_15
https://doi.org/10.1109/32.159839
https://doi.org/10.1007/11737414_18
https://web.archive.org/web/20191126131226/http://reactjs.org/docs/components-and-props.html
https://web.archive.org/web/20191126131226/http://reactjs.org/docs/components-and-props.html
https://web.archive.org/web/20191009084855/http://reactjs.org/
https://web.archive.org/web/20191009084855/http://reactjs.org/
https://web.archive.org/web/20191009093755/https://www.reactive-streams.org/
https://web.archive.org/web/20191009093755/https://www.reactive-streams.org/
https://doi.org/10.1145/3001886.3001890
http://web.archive.org/web/20200522141109/https://infoscience.epfl.ch/record/176887
http://web.archive.org/web/20200522141109/https://infoscience.epfl.ch/record/176887
https://doi.org/10.1145/1640089.1640091

19:28 Tackling the Awkward Squad for Reactive Programming

35 Phuc C. Nguyen, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn. Size-change
termination as a contract: dynamically and statically enforcing termination for higher-order
programs. In Kathryn S. McKinley and Kathleen Fisher, editors, Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2019,
Phoenix, AZ, USA, June 22-26, 2019., pages 845–859. ACM, 2019. doi:10.1145/3314221.
3314643.

36 Bjarno Oeyen, Humberto Rodríguez-Avila, Sam Van den Vonder, and Wolfgang De Meuter.
Composable higher-order reactors as the basis for a live reactive programming environment.
In Guido Salvaneschi, Wolfgang De Meuter, Patrick Eugster, Lukasz Ziarek, and Francisco
Sant’Anna, editors, Proceedings of the 5th ACM SIGPLAN International Workshop on Re-
active and Event-Based Languages and Systems, REBLS@SPLASH 2018, Boston, MA, USA,
November 4, 2018, pages 51–60. ACM, 2018. doi:10.1145/3281278.3281284.

37 Simon Peyton Jones. Tackling the awkward squad: monadic input/output, concurrency,
exceptions, and foreign-language calls in haskell. Engineering Theories of Software Construction,
180:47–96, January 2001. IOS Press.

38 ReactiveX. Do. https://web.archive.org/web/20200415125833/http://reactivex.io/
documentation/operators/do.html. Accessed: 2020-04-15.

39 ReactiveX. Introduction. https://web.archive.org/web/20200415132837/http://
reactivex.io/rxjs/manual/overview.html. Accessed: 2020-04-15.

40 ReactiveX. ReactiveX: An api for asynchronous programming with observable streams.
https://web.archive.org/web/20191009085652/http://reactivex.io/. Accessed: 2019-
10-09.

41 REScala. REScala manual. https://web.archive.org/web/20191126124033/http://www.
rescala-lang.com/manual/. Accessed: 2019-11-26.

42 REUK. Betz limit. https://web.archive.org/web/20191025112828/http://www.reuk.co.
uk/wordpress/wind/calculation-of-wind-power/. Accessed: 2019-10-25.

43 REUK. Calculation of wind power. https://web.archive.org/web/20191025113431/http:
//www.reuk.co.uk/wordpress/wind/betz-limit/. Accessed: 2019-10-25.

44 RexEgg. The explosive quantifier trap. https://web.archive.org/web/20191223155226/
https://www.rexegg.com/regex-explosive-quantifiers.html. Accessed: 2019-12-23.

45 Raymond Roestenburg, Rob Bakker, and Rob Williams. Akka in action. Manning Publications
Co., 1 edition, 2016.

46 Guido Salvaneschi, Gerold Hintz, and Mira Mezini. Rescala: bridging between object-
oriented and functional style in reactive applications. In Walter Binder, Erik Ernst, Achille
Peternier, and Robert Hirschfeld, editors, 13th International Conference on Modularity,
MODULARITY ’14, Lugano, Switzerland, April 22-26, 2014, pages 25–36. ACM, 2014.
doi:10.1145/2577080.2577083.

47 Guido Salvaneschi, Sebastian Proksch, Sven Amann, Sarah Nadi, and Mira Mezini. On
the positive effect of reactive programming on software comprehension: An empirical study.
IEEE Transactions on Software Engineering, 43(12):1125–1143, 2017. doi:10.1109/TSE.2017.
2655524.

48 Francisco Sant’Anna, Roberto Ierusalimschy, Noemi de La Rocque Rodriguez, Silvana Rossetto,
and Adriano Branco. The design and implementation of the synchronous language CÉU. ACM
Trans. Embedded Comput. Syst., 16(4):98:1–98:26, 2017. doi:10.1145/3035544.

49 RxJS Team. RxJS: Reactive extensions library for javascript. https://web.archive.org/
web/20191125123104/https://rxjs.dev/. Accessed: 2019-11-25.

50 The Flapjax Team. Flapjax framework api documentation. https://web.archive.org/web/
20191128081915/https://www.flapjax-lang.org/docs/. Accessed: 2019-11-28.

51 D. A. Turner. Total functional programming. Journal of Universal Computer Science,
10(7):751–768, 2004. doi:10.3217/jucs-010-07-0751.

https://doi.org/10.1145/3314221.3314643
https://doi.org/10.1145/3314221.3314643
https://doi.org/10.1145/3281278.3281284
https://web.archive.org/web/20200415125833/http://reactivex.io/documentation/operators/do.html
https://web.archive.org/web/20200415125833/http://reactivex.io/documentation/operators/do.html
https://web.archive.org/web/20200415132837/http://reactivex.io/rxjs/manual/overview.html
https://web.archive.org/web/20200415132837/http://reactivex.io/rxjs/manual/overview.html
https://web.archive.org/web/20191009085652/http://reactivex.io/
https://web.archive.org/web/20191126124033/http://www.rescala-lang.com/manual/
https://web.archive.org/web/20191126124033/http://www.rescala-lang.com/manual/
https://web.archive.org/web/20191025112828/http://www.reuk.co.uk/wordpress/wind/calculation-of-wind-power/
https://web.archive.org/web/20191025112828/http://www.reuk.co.uk/wordpress/wind/calculation-of-wind-power/
https://web.archive.org/web/20191025113431/http://www.reuk.co.uk/wordpress/wind/betz-limit/
https://web.archive.org/web/20191025113431/http://www.reuk.co.uk/wordpress/wind/betz-limit/
https://web.archive.org/web/20191223155226/https://www.rexegg.com/regex-explosive-quantifiers.html
https://web.archive.org/web/20191223155226/https://www.rexegg.com/regex-explosive-quantifiers.html
https://doi.org/10.1145/2577080.2577083
https://doi.org/10.1109/TSE.2017.2655524
https://doi.org/10.1109/TSE.2017.2655524
https://doi.org/10.1145/3035544
https://web.archive.org/web/20191125123104/https://rxjs.dev/
https://web.archive.org/web/20191125123104/https://rxjs.dev/
https://web.archive.org/web/20191128081915/https://www.flapjax-lang.org/docs/
https://web.archive.org/web/20191128081915/https://www.flapjax-lang.org/docs/
https://doi.org/10.3217/jucs-010-07-0751

S. Van den Vonder, T. Renaux, B. Oeyen, J. De Koster, and W. De Meuter 19:29

52 GitHub user “htimur”. Akka Streams: Utility function for side effects #23512. https://web.
archive.org/web/20200415164156/https://github.com/akka/akka/issues/23512. Ac-
cessed: 2020-04-15.

53 GitHub user “otto-dev”. Request: Overloaded version of .alsoTo that takes a func-
tion #28524. https://web.archive.org/web/20200415154306/https://github.com/akka/
akka/issues/28524. Accessed: 2020-04-15.

54 Mandana Vaziri, Olivier Tardieu, Rodric Rabbah, Philippe Suter, and Martin Hirzel. Stream
processing with a spreadsheet. In Richard E. Jones, editor, ECOOP 2014 - Object-Oriented
Programming - 28th European Conference, Uppsala, Sweden, July 28 - August 1, 2014.
Proceedings, volume 8586 of Lecture Notes in Computer Science, pages 360–384. Springer,
2014. doi:10.1007/978-3-662-44202-9_15.

55 Colin Vidal, Gérard Berry, and Manuel Serrano. Hiphop.js: a language to orchestrate web
applications. In Hisham M. Haddad, Roger L. Wainwright, and Richard Chbeir, editors,
Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC 2018, Pau,
France, April 09-13, 2018, pages 2193–2195. ACM, 2018. doi:10.1145/3167132.3167440.

56 Zhanyong Wan, Walid Taha, and Paul Hudak. Real-time FRP. In Benjamin C. Pierce,
editor, Proceedings of the Sixth ACM SIGPLAN International Conference on Functional
Programming (ICFP ’01), Firenze (Florence), Italy, September 3-5, 2001, pages 146–156.
ACM, 2001. doi:10.1145/507635.507654.

57 Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-oriented concurrent
programming in ABCL/1. In Norman K. Meyrowitz, editor, Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’86), Portland, Oregon, USA,
Proceedings., pages 258–268. ACM, 1986. doi:10.1145/28697.28722.

ECOOP 2020

https://web.archive.org/web/20200415164156/https://github.com/akka/akka/issues/23512
https://web.archive.org/web/20200415164156/https://github.com/akka/akka/issues/23512
https://web.archive.org/web/20200415154306/https://github.com/akka/akka/issues/28524
https://web.archive.org/web/20200415154306/https://github.com/akka/akka/issues/28524
https://doi.org/10.1007/978-3-662-44202-9_15
https://doi.org/10.1145/3167132.3167440
https://doi.org/10.1145/507635.507654
https://doi.org/10.1145/28697.28722

A Framework for Resource Dependent EDSLs in a
Dependently Typed Language
Jan de Muijnck-Hughes
University of Glasgow, United Kingdom
Jan.deMuijnck-Hughes@glasgow.ac.uk

Edwin Brady
University of St Andrews, United Kingdom
ecb10@st-andrews.ac.uk

Wim Vanderbauwhede
University of Glasgow, United Kingdom
Wim.Vanderbauwhede@glasgow.ac.uk

Abstract
Idris’ Effects library demonstrates how to embed resource dependent algebraic effect handlers into a
dependently typed host language, providing run-time and compile-time based reasoning on type-level
resources. Building upon this work, Resources is a framework for realising Embedded Domain
Specific Languages (EDSLs) with type systems that contain domain specific substructural properties.
Differing from Effects, Resources allows a language’s substructural properties to be encoded
within type-level resources that are associated with language variables. Such an association allows
for multiple effect instances to be reasoned about autonomically and without explicit type-level
declaration. Type-level predicates are used as proof that the language’s substructural properties
hold. Several exemplar EDSLs are presented that illustrates our framework’s operation and how
dependent types provide correctness-by-construction guarantees that substructural properties of
written programs hold.

2012 ACM Subject Classification Software and its engineering → General programming languages;
Software and its engineering → Language features; Software and its engineering → Domain specific
languages; Software and its engineering → System modeling languages

Keywords and phrases Dependent Types, Algebraic Effect Handlers, Domain-Specific Languages,
Embedded Domain Specific Languages, Idris, Substructural Type-Systems

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.20

Category Pearl

Supplementary Material ECOOP 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.2.2.

Funding This work was funded by EPSRC projects: Border Patrol: Improving Smart Device
Security through Type-Aware Systems Design (EP/N028201/1); and Type-Driven Verification of
Communicating Systems – EP/N024222/1.

Acknowledgements The authors would like to thank the anonymous reviewers for their excellent
reviews that served to better the work.

1 Introduction

Substructural Type-Systems allow type-systems to reason about abstract resources associ-
ated with the type-system’s domain of operation [65]. For general purpose programming
languages these resources typically capture, and reason quantitatively about, memory access,
variable usage, and erasure of non-essential terms. However, not all languages are general
purpose, nor are their abstract resources quantitative in nature cf.Linear Typing with Session

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Jan de Muijnck-Hughes, Edwin Brady, and Wim Vanderbauwhede;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 20; pp. 20:1–20:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2185-8543
mailto:Jan.deMuijnck-Hughes@glasgow.ac.uk
https://orcid.org/0000-0002-9734-367X
mailto:ecb10@st-andrews.ac.uk
https://orcid.org/0000-0001-6768-0037
mailto:Wim.Vanderbauwhede@glasgow.ac.uk
https://doi.org/10.4230/LIPIcs.ECOOP.2020.20
https://doi.org/10.4230/DARTS.6.2.2
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/N028201/1
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/N024222/1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

Types [30]. Domain Specific Languages (DSLs) are special purpose languages tailored to a
specific application domain [26]. Embedded Domain Specific Languages (EDSLs) are DSLs
that have been embedded within a host language to capitalise upon the host language’s
functionality. Implementing an EDSL with a substructural type-system, however, requires an
implementation language that not only supports substructural typing but supports reasoning
about domain specific substructural properties.

Algebraic effect handlers support reasoning about a program’s side-effects [50] and several
programming languages such as OCaml and Haskell have been extended with them [33, 46].
Effects [11] is a general purpose resource dependent algebraic effect handler library for the
dependently typed programming language Idris [10]. Through Effects, developers can realise
EDSLs with substructural type-systems.

Effects has been realised as Resource Dependent EDSLs in which the EDSL is specified
as an algebraic data type whose type captures resources that are each associated with an
abstract state machine [11]. The EDSL’s type forms a Hoare monad [1, 7] and sequencing
of expressions captures valid transitions between individual states of these resources. Such
EDSL construction is a common design pattern seen within dependently typed programming
languages. For example, there are EDSLs for reasoning about: communicating systems [13,
Chp. 15]; communication protocols [19]; and hardware component interfaces [20].

Effects requires, however, that domain specific effects operate within a general purpose
effectful context, and effect management is not an autonomic aspect of the program and
is the responsibility of the programmer. That is, effect instances describe a single effect
within the program, and multiple same effect instances must be explicitly labelled. Figure 1
illustrates these issues with a simple copy function that opens two file handles and writes a
single line from one file to another1. Within the function’s body each same effect instance
must be labelled at both the value and type-level. Use of Effects is not ideal when designing
EDSLs with domain specific effect systems in which multiple same effect instances can occur,
nor does the Effects library support autonomic effect management.

copy : (o, n : String) -> Eff (Maybe FileError) [A ::: FILE (), B ::: FILE (), STDIO]
copy o n = do
Success <- A :- open o Read | FError e => do {printLn e; pure (Just e)}
Result s <- A :- readLine | FError e => do {printLn e; A :- close; pure (Just e)}
A :- close
Success <- B :- open n WriteTruncate | FError e => do {printLn e; pure (Just e)}
res <- B :- writeString s
case res of

Success => do {B :- close; pure Nothing}
FError e => do {printLn e; B :- close; pure (Just e)}

Figure 1 Example of labelled effects using Idris’ Effects library.

1.1 Contributions
We build on previous work in designing algebraic effect handlers in Idris [11, 10]. Rather
than associating an effect’s abstract resource with the program itself we associate it with
a bound variable within the EDSL. Further, the list of possible effects is now constrained
to an a priori set of domain specific effects. Such an association and restriction leads to
greater reasoning and manipulation of the effects within a Resource-Dependent EDSLs, thus
enabling autonomic effect management and reasoning about the state of an effect’s resource.
Given this principal idea, our contributions are:

1 Idris’ pattern match & bind notation reduces the number of case expressions required [11]. This notation
supports binding to a value and presentation of the remaining cases on the right.

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:3

1. Resources, a general purpose framework for constructing Resource Dependent EDSLs
that have a domain specific substructural type-systems. Further, we illustrate using
effect handlers how EDSLs created using Resources can be operated on in a variety of
different evaluation contexts.

2. A collection of exemplar EDSLs demonstrating the ability of Resources to create
EDSLs. Files reasons about multiple concurrent File IO (Section 4.1); Wireless reasons
about domain specific bigraph construction (Section 4.2); and Sessions captures value
dependent global session descriptions – Section 4.3.

Resources is a step forward for developers and presents a new general framework
for realising domain specific substructural type-systems for resource dependent EDSLs.
Thus, supporting the exploration of novel type-systems similar to those seen in existing
systems [47, 28, 17, 32].

1.2 Outline
Section 2 discusses how dependent types support type-level abstract state machines, and
reasoning about such machines. Section 3 presents the framework itself, and exemplar EDSLs
appear in Section 4. Sections 2 and 3 describes how data types modelled after De Bruijn
indices [18] provide type-level assertions that certain substructural properties hold.

I Remark. Although not essential, before reading about our work we encourage readers not
familiar with Idris to learn more about the language, its syntactic constructs, auto-implicit
arguments, and semantic highlighting2.

2 Type-Level State Tracking and Reasoning

This section introduces the underlying technique for type-level reasoning about abstract
resources, through implementation of an EDSL that captures high-level file interactions.

Within our EDSL files are either: closed; open for reading; or open for writing. We
encapsulate these operations using the following four operations, and a helper function for
displaying showable data: Open – which opens a file for reading or writing; Read – which
reads a string from a file opened for reading; Write – which writes a string to a file opened
for writing; Close – which closes an already open file; and PrintLn – which prints showable
data.

Parameterised monads allow for language expressions to be associated with a type-level
state which we refer to as a resource [1]. Hoare monads allow for state transitions to be
presented at the type-level [7]. The type of each expression describes how the expressions
affects the abstract state. An operation and its type give a Hoare Triple [29]. Definition of
state machines within such a monadic construct ensures that any sequence of operations
which type checks is a valid sequence of operations. For our example, this means that any
operation on a file must respect the type-level state machine we define. Thus, attempting to
write to a file opened for reading should present itself as a type error.

Figure 2 presents an implementation of the EDSL within a Hoare monad. FileIO is
parameterised by the state of the file before and after each operation. The arguments to
FileIO are: a Type, which represents the return type of the operation; and two FileState

2 Differing from Idris’ existing colouring scheme, we use a more printer friendly set: Data constructors;
Type constructors; Bound variables; named Function; Idris Keywords; and Implicitly bound variables.
Agda style highlighting is used for typed holes .

ECOOP 2020

20:4 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

instances, which represent the input state (the precondition) and the output state – the
postcondition. These invariants ensure that read and write operations only work when
the state of the file is correct: Open for their particular mode of operation. The PrintLn
operation should not affect the program’s abstract state. The type of Bind explains how
sequencing changes the file’s state based on a previous expression. Pure returns a pure
value. Thus, if a sequence of FileIO expressions type checks, then it is a valid sequence
of operations according to the stated protocol. Rather than use Bind and Pure directly,
do-notation is realised by overloading (»=) and pure, with Bind and Pure.

data Mode = R | W

data State = Open Mode | Closed

data FileIO : (type : Type) -> (pre : State) -> (post : State) -> Type where
Bind : FileIO a stA stB -> a -> FileIO b stB stC -> FileIO b stA stC
Pure : a -> FileIO a before after

Open : (fname : String) -> (m : Mode) -> FileIO () Closed (Open m)
Read : FileIO String (Open R) (Open R)
Write : (value : String) -> FileIO () (Open W) (Open W)
Close : FileIO () (Open m) Closed
PrintLn : Show a => a -> FileIO () curr curr

Figure 2 An EDSL for interacting with a single file.

Figure 3 presents a sample program written in FileIO. The program’s abstract state is
initialised to Closed. Each expression transitions the state according to the rules embedded
in the type of our EDSL. If an incorrect sequence of expressions were to be given, for example
opening two files or reading to a file opened for writing, then the program would fail to
type-check.

toFile : (fname : String) -> (contents : String) -> FileIO () Closed Closed
toFile fname str = do { Open fname W; Write str; Close}

Figure 3 An example program for interacting with a single file.

2.1 Files with Errors

The definition for FileIO is not sufficiently expressive: Operations on file handles are
naturally impure; FileIO is pure. The EDSL does not capture potential errors that occur
when interacting with a file. For example, being unable to open a file handle, or an error
occurring during a read/write operation.

Figure 4a illustrates how the type of FileIO can be redefined to address run-time errors.
The post-condition is now a function that computes the resulting state dependent on the
value returned by the expression. For example, Open changes the state to Closed in the
result of an error, otherwise the state remains the same. The remaining constructors for
FileIOE can be redefined accordingly. Figure 4b shows Figure 3 rewritten using FileIOE. If
the result of Open or Write is not checked, the subsequent interactions will not type check.
The next state would be unknown.

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:5

data FileIOE : (type : Type) -> (pre : State) -> (post : type -> State) -> Type where
Open : (fname : String)

-> (m : Mode)
-> FileIOE (Maybe FileError)

Closed
(\res => case res of {Nothing => Open m; Just err => Closed})

...
(a) Partial redefinition of FileIO.
toFile : String -> String -> FileIOE (Maybe FileError) Closed (const Closed)
toFile fname str = do

Nothing <- Open fname W | Just err => do {PrintLn err; pure err}
Nothing <- Write fh "A string" | Just err => do {PrintLn err; Close fh; pure err}
Close fh
pure Nothing

(b) Figure 3 rewritten as an FileIOE instance.

Figure 4 Redefining FileIO to include type-level enforcement of error handling.

This pattern of state-aware EDSL construction allows reasoning about the abstract state
of an EDSL at compile-time, based on data obtained at run-time. However, FileIOE is not
expressive enough to reason about, nor interact with, multiple files.

2.2 Modelling Multiple File Access with Errors
Figure 5 extends the definition of FilesIOE with a list of abstract state machines: one per
open file.

data FilesIOE : (ty : Type) -> (old : List Item) -> (new : ty -> List Item) -> Type where
Pure : (val : a) -> FilesIOE a (st val) st

Bind : FilesIOE a first snd_fn
-> ((x : a) -> FilesIOE b (snd_fn x) third_fn)
-> FilesIOE b first third_fn

Open : (fname : String) -> (m : FMode)
-> FilesIOE (Either FileError Handle) old

(\res => case res of {Right hdl => MkItem hdl (Open m)::old; Left _=> old})

Read : (hdl : Handle) -> (prf : Any (IsOpenFor hdl R) item old)
-> FilesIOE (Either FileHandle String) old

(\res => case res of {Right _ => old; Left _ => update (closeHandle) old prf})

Write : (hdl : Handle) -> (str : String) -> (prf : Any (IsOpenFor hdl W) item old)
-> FilesIOE (Maybe FileError) old

(\res => case res of {Nothing => old; Just _ => update (closeHandle) old prf})

Close : (hdl : Handle) -> (prf : Any (IsHandle hdl) item old)
-> FilesIOE () old (const $ drop old prf)

PrintLn : Show a => (msg : a) -> FilesIOE () old (const old)

Figure 5 An EDSL to model multiple concurrent file interactions.

To help with reasoning about multiple files we introduce two helper data structures.

data Handle = MkHandle data Item = MkItem Handle FileState

Handle represents file handles at both the value and type level, and Item associates a
type-level file state with a particular handle. File handles are bound to names using the Bind
constructor. Although, we could use a nameless representation based on De Bruijn indicies

ECOOP 2020

20:6 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

we can take advantage of Idris’ elaborator to distinguish between different instances of Handle
based on their bounded names and type-level values. During the type checking process Idris’
elaborator translates high level Idris code to the internal type theory representation [9] by
expanding high level language constructs such as case blocks and where clauses, and inferring
values for implicit arguments by unification and search. Further, by replacing the original
state that parameterises FileIOE with a list of these Item instances, the state of each open
file handle in our EDSL can be tracked.

Figure 6 presents two type-level predicates for reasoning about individual items in our
type-level context. IsOpenFor declares that the given file handle has been opened for reading
or writing; and IsHandle declares that the given file handle exists. To aid reasoning about
multiple file handles, i.e. any item in the program’s context, the list quantifier Any is used.
The Any represents existential quantification that the given predicate holds on a list item.

With Idris’ do-notation let-bindings are provided, however, let-bindings do not interact
with the type-level context. We can use the Any list quantifier in conjunction with Idris’
elaborator to ensure that aliased variables cannot be used. If an operation with an aliased
handle were to be used then proof (witness) cannot be given of the handle’s existence in
the type-level context as Idris’ elaborator will fail to associate the aliased named with an
abstract state.

data IsOpenFor : (hdl : Handle) -> (mode : FMode) -> (item : Item) -> Type where
FileIsOpenFor : (m : FMode) -> IsOpenFor hdl m (MkItem hdl (Open m))

(a) Predicate for reasoning about file handle mode.
data IsHandle : (hdl : Handle) -> (item : Item) -> Type where

FileExists : (hdl : Handle) -> IsHandle hdl (MkItem hdl st)

(b) Predicates for linking file handle to instance of Handle.

Figure 6 Predicates.

Figure 7 presents the type signatures for two helper functions that manipulate the type-
level context based on an expression’s associated predicates. The first function, update,
updates specific elements in our context dependent upon the supplied Any proof. Further,
the update function f facilitates access to the predicate that holds over the item we are
updating. The drop function removes an item from the context using the supplied Any proof
about the item.

update : (f : (i : Item)
-> (prf : p i)
-> Item)

-> (context : List Item)
-> (index : Any p item context)
-> List Item

(a) Updating an Item instance.

drop : (context : List Item)
-> (index : Any p item context)
-> List Item

(b) Removing an Item instance.

Figure 7 Functions for manipulating the type-level context.

With these extra data structures, and predicates, type-level operations on individual file
handles in FilesIOE becomes autonomic. Files are opened using Open which extends the
context with the new file handle, its initial state. The old context is retained if the operation
fails. Reading a file, using Read, requires proof that the file is already open for reading. We
do so using IsOpenFor and Any. If the read is successful then the old context is retained. If
the read is unsuccessful then the state of the file is updated to IsClosed. The definition of
Write is analogous to Read. Closing a file (Close) removes the file’s state from the context.
For a close operation to be allowed, evidence must be presented that the file is in the closed
state. With this evidence the file’s associated state can be removed.

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:7

Figure 8a presents an example of a program written using FilesIOE. For each language
expression that requires a predicate a proof must also be given. With this approach value
level expressions become incredibly verbose. This is too verbose. Users should not be
expected to write such proofs by hand. Idris supports auto-implicit arguments, in which the
values for implicit arguments to a function can be automatically constructed using a greedy
constructor-based search to find a value that matches the arguments type. By wrapping each
language expression in a function that uses auto implicits we can automatically construct
the proofs.

copy : (old, new : String) -> FilesIOE (Maybe FileError) Nil (const Nil)
copy old new = do

Right fh <- Open old R | Left err => do {PrintLn err; Pure (Just err)}
Right str <- Read fh (H $ FileIsOpenFor R) | Left err => do

PrintLn err
Close fh (H $ FileExists fh)
Pure (Just err)

Close fh (H $ FileExists fh)
Right fh1 <- Open new W | Left err => do {PrintLn err; Pure (Just err)}
res <- Write fh1 str (H $ FileIsOpenFor W)
case res of

Nothing => do {Close fh1 (H $ FileExists fh); Pure (Nothing)}
Just err => do {PrintLn err; Close fh1 (H $ FileExists fh1); Pure (Just err)}

(a) With Proofs.
copy : (old, new : String) -> FilesIOE (Maybe FileError) Nil (const Nil)
copy old new = do

Right fh <- open old R | Left err => do {printLn err; pure (Just err)}
Right str <- read fh | Left err => do

printLn err
close fh
pure (Just err)

close fh
Right fh1 <- open new W | Left err => do {printLn err; pure (Just err)}
res <- write fh1 str
case res of

Nothing => do {close fh1; pure (Nothing)}
Just err => do {printLn err; close fh1; pure (Just err)}

(b) With Proofs calculated using auto-implicit arguments.

Figure 8 Figure 3 rewritten using FilesIOE.

For example, the wrapper function for Close would be written as:

close : (h : Handle) -> {auto idx : Any (IsHandle h) i o}
-> FileIOE () o (const (drop o idx))

close h {idx} = Close h idx

By convention, the function that calculates an auto-implicit argument is named using lower
case variants of the constructor name. Figure 8b presents the “cleaned” version of Figure 8a.

Notice that for each branch in our case-splits, and bind operations, we must close open
file handles. Here the type-level state requires us to exit functions with an empty context.
This ensures that all file handles are closed when we exit our program. To ensure that our
programs start and end with the correct states the type-synonym FilesIOE is defined to
ensure that the end state of the program must be empty, implying that all file handles that
were open, were also closed.

FileIO : Type -> Type
FileIO ty = FilesIOE ty Nil (const Nil)

ECOOP 2020

20:8 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

3 The Framework

The definition of FilesIOE follows a pattern of EDSL construction seen in existing work [13,
19, 20]. This section describes the implementation of Resources that encapsulates the
common structures and definition common to these EDSLs.

3.1 Capturing Abstract State

Central to the framework’s operation is associating variables with an abstract state that
is reasoned about at the type-level. Figure 9 presents the definitions for variables, their
associated state, and an EDSLs’ context. The relationship between a variable and a state
is captured by indexing the type for variables (Var) and state items (StateItem) with a
data type that acts as a meta-type representing the type of the variable’s associated state.
Following from the Well-Typed Interpreter [3], the type of StateItem is further indexed by a
function to compute the concrete type associated with the type-level value. The definition
of StateItem associates an instance of Var with a specific instance of state. As we saw in
Section 2.2, Idris’ elaborator allows us to distinguish between different instances of Var. The
list of state items captured at the type level, the EDSLs context, is collected in a bespoke
data type Context.

data Var : (Ty : Type) -> (ty : Ty) -> Type where
MkVar : Var type value

data StateItem : (ty : Type) -> (calcSTy : ty -> Type) -> (value : ty) -> Type where
MkStateItem : (value : type)

-> (label : Var type value)
-> (state : calcSTy value)
-> StateItem type calcSTy value

data Context : (type : Type) -> (calcSTy : type -> Type) -> Type where
Nil : Context type calcSTy
(::) : (item : StateItem type calcSTy value)

-> (rest : Context type calcSTy)
-> Context type calcSTy

Figure 9 Definitions for variables, state items, and type-level context.

3.2 Sequencing Language Expressions

Figure 10 presents the parameterised data type that captures state transitions between
different abstract states. A type-synonym ensures that all languages defined using the
framework use the same signature. A language expression has an expression type (exprTy),
an existing Context instance pre, and a function postK to compute the new context from
the expression’s value. Lang is a function that constructs an instance of this type signature
with the meta-type and a function to compute concrete states indexing the signature.

Lang : (type : Type) -> (type -> Type) -> Type
Lang type calcSTy = (exprTy : Type)

-> (pre : Context type calcSTy)
-> (postK : exprTy -> Context type calcSTy)
-> Type

Figure 10 The type for all EDSLs.

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:9

Figure 11 presents LANG, a single data type, to collate the: meta-type – (type); interpreter
(calcSTy); and Lang instance together.

data LANG : Type -> (type : Type) -> (calcSTy : type -> Type) -> Type where
MkLang : (type : Type)

-> (calcSTy : type -> Type)
-> Lang type calcSTy
-> LANG type calcSTy

Figure 11 Data Structure and accessors to hold EDSL Specifications.

Figure 12 presents LangM, the data structure that captures, generically, the sequencing
of EDSL language expressions. The data type LangM removes the need for each EDSL to
provide the same definitions for sequencing expressions. The constructor Value returns a
pure value. Let provides sequencing of expressions and insertion of computed values into
subsequent expressions. Expr provides embedding of EDSL language expressions into LangM.
The type of LangM is indexed by: m – a monadic context; exprTy – the type associated with
an expression; spec – the language specification that is being sequenced; pre – the original
context; and postK – the computed context.

data LangM : (m : Type -> Type)
-> (exprTy : Type)
-> (spec : LANG type calcSTy)
-> (pre : Context type calcSTy)
-> (postK : exprTy -> Context type calcSTy)
-> Type where

Value : (value : a) -> LangM m a spec (postK value) postK

Let : LangM m a spec old oldK
-> ((val : a) -> LangM m b spec (oldK val) postK)
-> LangM m b spec old postK

Expr : {eSig : Lang type calcSTy}
-> (expr : eSig a pre postK)
-> LangM m a (MkLang type calcSTy eSig) pre postK

Figure 12 Definition of LangM.

3.3 Reasoning About Abstract State
Within dependently typed languages, list quantifiers such as All and Any are based on De
Bruijn indices and reasoning about all or specific elements within a standard list using
a provided predicate [18]. Figure 13 presents similar predicated quantifiers that can be
constructed for Context. The AllContext predicate mirrors All and allows one to present
a predicate that applies to all state items. Mirroring Any, InContext constructs a proof that
there is an element (searching from the head of the list) satisfying the provided predicate.

data AllContext : (p : (value : type) -> (item : StateItem type calcSTy value) -> Type)
-> (c : Context type calcSTy)
-> Type where

data InContext : (value : type)
-> (p : StateItem type calcSTy value -> Type)
-> (c : Context type calcSTy)
-> Type where

Figure 13 Quantifiers for reasoning about elements in Context.

ECOOP 2020

20:10 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

Generic functions can be constructed using these quantifiers to operate on Context
instances. Specifically, instances of InContext provide type-safe transformations on specific
elements. Figure 14 presents the definition of several of these functions. The first function,
update, updates specific elements in our context dependent upon the supplied InContext
proof. Here, the update function f facilitates access to the predicate that holds over the item
being updated. The function drop removes an item from the context using the InContext
proof about the item. A third function setState allows the state to be replaced.

update : (context : Context type calcSTy)
-> (index : InContext value predicate context)
-> (f : (item : StateItem type calcSTy value)

-> (prf : predicate item)
-> StateItem type calcSTy value)

-> Context type calcSTy

drop : {predicate : StateItem type calcSTy value -> Type}
-> (context : Context type calcSTy)
-> (index : InContext value predicate context)
-> Context type calcSTy

setState : {predicate : StateItem type calcSTy value -> Type}
-> (context : Context type calcSTy)
-> (index : InContext value predicate context)
-> (item’ : calcSTy value)
-> Context type calcSTy

Figure 14 Functions acting on Context instances.

3.4 Language Evaluation
The Effects library uses Idris interfaces to link effect specifications (descriptions) to im-
plementation handlers that realise the specification for a specific implementation context.
This is the Handler interface. Figure 15 presents a similarly named interface to describe
EDSL evaluation and effect handling, together with a secondary interface, RealVar that
details how variables in an EDSL are to be translated to concrete types. Within Resources
our individual effect specifications will be subterms in our EDSL and their handlers the
corresponding body in the implementation.

The Handler interface is indexed by: the meta-type type; the meta-type interpreter; a
language expression specification; an accumulator; and a specific evaluation context. Similarly
to the Effects handler interface, instances of Handler detail how to evaluate EDSL expressions
in a specific evaluation context, and how the domain specific effects are to be handled. The
function handle takes an evaluation environment, the expression to be considered, an
accumulator, and a continuation to pass on the updated environment and accumulator.

Figure 16 presents the definition (Env) for evaluation environments to keep track of
variables and their abstract state. The type of Env is indexed by an evaluation context m
and the current state of the EDSL (ctxt) during evaluation. This ensures that the items in
the environment grows and shrinks as the type-level context (ctxt) grows and shrinks. The
data type Tag is a container for holding concrete variable representations. The function of
the RealVar interface computes the concrete type from the language’s meta-type.

Section 3.3 presented predicates for reasoning about state items in instances of Context.
These same predicates are used to provide operations on our computation environments; Env
is indexed by a context. Figure 17 presents the function definitions for lookup, update, and
drop that mirror the functions presented in Section 3.3. When specifying how EDSLs are
evaluated, type-level operations on the context must be mirrored at the value level for the
environment.

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:11

interface RealVar (type : Type) where
CalcRealType : type -> Type

interface RealVar type
=> Handler (type : Type) (eSig : Lang type) (calc : type -> Type)

(tyAcc : Type) (m : Type -> Type) | type
where

handle : (env : Env m type pre)
-> (expr : eSig tyExpr pre postK)
-> (acc : tyAcc)
-> (cont : (value : tyExpr)

-> (env’ : Env m type (postK value))
-> (acc’ : tyAcc)
-> m tyRes)

-> m tyRes

Figure 15 Interfaces for evaluation.

data Tag : (type : Type) -> (value : type) -> Type where
MkTag : RealVar type => (real : CalcRealType value) -> Tag type value

data Env : (m : Type -> Type) -> (ty : Type) -> (ctxt : Context ty calcSTy) -> Type where
Nil : Env m type Nil
(::) : RealVar type

=> {item : StateItem type calcSTy value}
-> (tag : Tag type value)
-> (rest : Env m type items)
-> Env m type (item::items)

Figure 16 Evaluation environment definition.

lookup : RealVar ty
=> (env : Env m ty context)
-> {p : (item : StateItem ty calcSTy value) -> Type}
-> (idx : InContext value p context)
-> Tag ty value

(a) Lookup items from environment.
update : RealVar ty

=> (env : Env m ty ctxt)
-> (idx : InContext value p ctxt)
-> (up : (i : StateItem ty calcSTy value)

-> p i
-> StateItem ty calcSTy value)

-> Env m ty (update ctxt

(b) Update items from environment.

drop : (env : Env m ty ctxt)
-> (idx : InContext value p ctxt)
-> Env m ty (drop ctxt idx)

(c) Remove items from environment.

Figure 17 Functions operating over an execution environment.

Figure 18 presents the generic function run that evaluates languages defined in Resources.
As arguments the function run takes: a closed LangM program (prog); and an initial seed for
the accumulator – init. On successful evaluation the function returns the result of evaluating
prog and the final state of the accumulator. The type of the function has been further
constrained with Applicative to return the result of the evaluation within the context of
the environment m. For pure evaluation contexts, i.e. identity, a separate runPure function
can be defined that need not be constrained by Applicative.

ECOOP 2020

20:12 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

run : (Applicative m, Handler type lang tyAcc m)
=> (init : tyAcc)
-> (prog : LangM m tyExpr lang c Nil (const Nil))
-> m (Pair tyExpr tyAcc)

Figure 18 Run function.

4 Exemplar Uses of Resources

This section explores use of Resources through the construction of three separate EDSLs.
For each EDSL presented we only present salient aspects of the construction. The complete
definitions are available in the accompanying artefact.

The first, Files, replicates the running example from Section 2 demonstrating how
to build the EDSL and specify a handler for the IO computation context. The second,
Wireless presents a EDSL for describing wireless connections between mobile devices, and
details a Handler instance for constructing a BiGraph representation. The last EDSL,
Sessions replicates salient aspects from, and extends the functionality, of Sessions an
EDSL for describing communication protocols [19], and shows a simpler construction using
Resources.

4.1 Exemplar 1: Reasoning About Multiple File Handles
This section demonstrates how to use Resources to re-implement the FilesIOE EDSL from
Section 2.1.

4.1.1 EDSL Definition
Figure 19 presents the type-level definitions required by the EDSL. Like FilesIOE, there
is a single state machine captured within the EDSL’s type. The type FH is a singleton
type acting as a meta-type for the state machine, and the type synonym FileHandle acts a
convenient wrapper when referring to file handles. FHStateType is the function that calculates
the state type based on FH, and FileStateItem is the type synonym for representing the
EDSLs abstract states. While this construction is cumbersome for single state-machine
EDSLs, Section 4.2 demonstrates how this construction can support multiple type-level state
machines.

data FH = MkFH

(a) EDSL Metatype.
FileHandle : Type
FileHandle = Var FH MkFH
(b) Alias to represent file handles.

FHStateType : FH -> Type
FHStateType _ = FileState

(c) Interpreter to compute state type.
FileStateItem : Type
FileStateItem = StateItem FH FHStateType MkFH

(d) Type synonym to represent state items.

Figure 19 Preliminary definitions and example predicate.

Figure 20 presents the algebraic data type (Files) that captures the language’s expressions.
Notice how the definitions mirror that of FilesIOE from Section 2.1. Rather than use explicit
case statements in anonymous functions, named functions are provided that compute the
state transitions. As an example we present the function definition for readTrans:

readTrans : Either FileError String
-> (old : Context FH FHStateType)

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:13

data Files : Lang FH FHStateType where
Open : (fname : String)

-> (fm : FMode)
-> Files (Either FileError (FileHandle) old (\res => openTrans res fm old)

Read : (hdl : FileHandle)
-> (prf : InContext MkFH (IsOpenFor hdl R) old)
-> Files (Either FileError String) old (\res => readTrans res old prf)

Write : (hdl : FileHandle)
-> (msg : String)
-> (prf : InContext MkFH (IsOpenFor hdl W) old)
-> Files (Maybe FileError) old (\res => writeTrans res old prf)

Close : (hdl : FileHandle)
-> (prf : InContext MkFH (IsHandle hdl) old)
-> Files () old (const $ drop old prf)

PrintLn : Show a => a -> Files () old (const old)

Figure 20 Definition for Files.

-> InContext MkFH (IsOpenFor hdl R) old
-> Context FH FHStateType

readTrans (Right _) old _ = old
readTrans (Left _) old prf = update old prf (\i,p => closeHandle i p)

Files uses two predicates to reason about a file handle’s abstract state: IsOpenFor and
IsHandle. Their definition mirrors that to those provided in Figure 6. As an example, we
present only the new definition for IsOpenFor:

data IsOpenFor : FileHandle -> FMode -> FileStateItem -> Type where
FileIsOpenFor : (m : FMode)

-> IsOpenFor hdl m (MkStateItem MkFH hdl (Open m))

The language definition for Files is thus:

FILES : LANG FH FHStateType
FILES = MkLang FH FHStateType Files

The generic computation context LangM uses LANG instances to ensure correct embedding of
EDSL expressions. Expressions can then be embedded within LangM using expr as follows:

openFile : (fname : String) -> (fm : FMode)
-> LangM m (Either FileError (FileHandle)) FILES old

(\res => openTrans res fm old)
openFile fname fm = expr $ Open fname fm

4.1.2 Handler for the Files EDSL
Figure 21 presents the handler definition for the IO computation context. An implementation
of RealVar maps the singleton type FH to a real file handle. The accumulator has the unit
type as this implementation of Handler only evaluates File expressions. The accumulator
is not required. Each of the expression handlers realises the requisite file operations, and
follows that of the FILE effect [10]. Within our implementation, however, our environment
(env) keeps track of the open file handles.

ECOOP 2020

20:14 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

RealVar FH where
CalcRealType MkFH = File

Handler FH FHStateType Files () IO where
handle env (Open fname fm) acc cont = do

let m = case fm of {R => Read; W => WriteTruncate}
res <- openFile fname m
case res of

Left err => cont (Left err) env acc
Right fh => cont (Right MkVar) (MkTag fh::env) acc

handle env (Read hdl prf) acc cont = do
let MkTag fh = lookup env prf
res <- fGetLine fh
case res of

Left err => cont (Left err) (update env prf (\i,p => closeHandle i p)) acc
Right str => cont (Right str) env acc

handle env (Write hdl str prf) acc cont = do
let MkTag fh = lookup env prf
res <- fPutStrLn fh str
case res of

Left err => cont (Just err) (update env prf (\i,p => closeHandle i p)) acc
Right _ => cont Nothing env acc

handle env (Close hdl prf) acc cont = do
let MkTag fh = lookup env prf
closeFile fh
cont () (drop env prf) acc

handle env (PrintLn a) acc cont = do
printLn a
cont () env acc

Figure 21 Handler instance for Files.

4.1.3 Example Programs
Figure 22 presents two example programs written using Files. The first (Figure 22a)
replicates the running example presented in Figures 1 and 8. The second example (Figure 22b)
demonstrates an incomplete program, indicated by the typed-hole, that will fail to type
check. This is because the file has been opened for reading and we are attempting to write
to the file. The typed hole is required in this example to ensure that the example can begin
to type-check. Resources ensures that the substructural checks are performed at compile
time.

4.2 Exemplar 2: Constructing Domain Specific Bigraphs
This next example examines bigraphs, a mathematical model for representing the communica-
tion made between entities and said entities physical placement [40]. A bigraph comprises of
a place graph that denotes the spatial relations between entities, and a link graph that denotes
the communication relations. Each entity within a bigraph is typed with a domain specific
construct that dictates the entity’s: arity – number of links; and atomicity – containment
of other entities. Existing bigraph constructions make their bigraphs abstract (entities are
identifier-free) and refer to entities using singleton types [53].

Figure 23 presents a commonly used algebraic notation for bigraph specification. The
standard algebraic bigraph definition embeds the link graph within an entities definition in
which the type of the entity dictates the arity. The number of links K possesses is determined

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:15

copy : (a,b : String) -> Files m (Maybe FileError)
copy a b = do

Right fh <- openFile a R | Left err => do {printLn err; pure (Just err)}
Right s <- readString fh | Left err => do {printLn err; closeFile fh; pure (Just err)}
closeFile fh
Right fh1 <- openFile b W | Left err => do {printLn err; pure (Just err)}
res <- writeString fh1 s
case res of

Nothing => do {closeFile fh1; pure Nothing}
Just err => do {printLn err; closeFile fh1; pure (Just err)}

(a) Example from Figures 1 and 8.
copy : (a,b : String) -> Files m (Maybe FileError)
copy a b = do

Right fh <- openFile a R | Left err => do {printLn err; pure (Just err)}
Right s <- readString fh | Left err => do {printLn err; closeFile fh; pure (Just err)}

writeString fh s
?remainder

(b) A failing example.

Figure 22 Example instances of Files.

by its arity. Bigraphs can be nested, situated beside each other using a merge product, or
associated together using parellel product. The internal structure of a bigraph entity can
be abstracted away using id. Closure of names allows one to define internal links between
entities, and free names represent external connections. Bigraphs also enjoy an expressive
graphical notation which we do not detail here.

P ·Q Nesting (1)
P | Q Merge product (2)
P || Q Parallel product (3)

id Identity (4)
Kx,y An entity of type K with names x, y (5)
/x P Closure of name x in P (6)

Figure 23 Algebraic Definition for Bigraphs.

The algebraic structure of bigraphs are general purpose and restrictions on the bigraph’s
shape is guided by a system of sorts. These sorts presents a series of side conditions on the
link and place graph. Application of this system is often left as an aside from the bigraph
itself. Using Resources we can show how to build an EDSL that encapsulates the system
of sorts and when interpreted produces a bigraph instance.

4.2.1 Domain Model
Existing work has introduce a bigraph model for representing Wireless Sensor Networks
(WSNs) [54]. In their model they use the place graph of bigraphs to model the physical
deployment of nodes, together with their configuration, and applications running on said
nodes. The link graph connects data, applications, and nodes together. In this example we
take a reduced version of their system of sorts to describe sending of messages between mobile
devices and laptops that are connected over a wireless network. For simplicity, we restrict
number of concurrent connects laptops have to ten, and mobile devices to two. Devices are
located in rooms that are within buildings.

ECOOP 2020

20:16 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

Table 1 presents the description of our example’s types and sorts. Buildings can only
contain rooms and cannot be linked over for communication. Similarly, rooms can only
contain devices. Devices contain only messages, and laptops and mobiles have an arity
respective to their max number of connections. Messages cannot contain other entities.

Table 1 Types and Sorts for representing entities in Wireless.

Entity Arity Usage Restrictions

Building 0 Complex for Rooms only.
Room 0 Complex for Devices only.
Device Laptop 10 Complex for Messages only.
Device Mobile 2 Complex for Messages only.
Messages 0 Atomic

Figure 24 presents an example bigraph instance using the system from Table 1. We
situate two buildings that contain potentially many rooms next to each other, and describe
some rooms within them. Within one room in the first building, a laptop is situated that is
connected to another laptop in the other building, together with a mobile device (with a
message) that is connected to a laptop in an adjacent room in the same building.

/m/n (Building · (Room · (Laptop{n} | (Mobile{m} ·Message)) | (Room · (Laptop{m})) | id)

||(Building · (Room · Laptop{n} | id)))

Figure 24 Example Bigraph instance using algebraic notation.

4.2.2 EDSL Definition
Figure 25a presents a realisation for Table 1 using standard Idris constructs. Types are
presented as an enumerated type, in which we coalesce the definition for devices. For rooms
and messages we keep track of their allocation into entities, and for devices we keep track of
their allocation and number of free connections. Buildings do not have an associated abstract
state. The function maxConn calculates a devices arity, this function is used in secondary
function defState (not defined) that constructs StateD instances.

data DTy = MOBILE | LAPTOP

data Ty = ROOM | BLDG | MSG
| DEVICE DTy

(a) Metatypes.

maxConn : DTy -> Nat
maxConn MOBILE = 2
maxConn LAPTOP = 10
(b) Function to compute device arity.

data StateD : DTy -> Type where
MkD : Bool -> Nat -> StateD ty

(c) State for devices.

CalcStateType : Ty -> Type
CalcStateType ROOM = Bool
CalcStateType BLDG = ()
CalcStateType (DEVICE ty) = StateD ty
CalcStateType MSG = Bool

(d) Function to compute state types.

Figure 25 Preliminary definitions.

Figure 26 presents the language definition for Wireless. Introduction of entities extend
the abstract state: buildings have no state; rooms and messages are initially unassigned; and
devices are initialised not allocated and connection free.

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:17

data Wireless : Lang Ty CalcStateType where
NewBuilding : Wireless (Var Ty BLDG) old (\lbl => MkStateItem BLDG lbl () :: old)

NewRoom : Wireless (Var Ty ROOM) old (\lbl => MkStateItem ROOM lbl False :: old)

NewDevice : (type : DTy)
-> Wireless (Var Ty (DEVICE type)) old

(\lbl => MkStateItem (DEVICE type) lbl (defState type) :: old)

NewMessage : Wireless (Var Ty MSG) old (\lbl => MkStateItem MSG lbl False :: old)

Insert : (varX : Var Ty x)
-> (varY : Var Ty y)
-> (prfValid : ValidAssign y x)
-> (prfFree : InContext x (Unassigned x varX) old)
-> (prfInsert : InContext y (CanAssign y varY) (update old prfFree Use))
-> Wireless () old (const $ update (update old prfFree Use)

prfInsert (Assign varX prfValid))

Link : (varX : Var Ty (DEVICE typeX))
-> (varY : Var Ty (DEVICE typeY))
-> (prfSpaceX : InContext (DEVICE typeX) (CanConnect varX) old)
-> (prfSpaceY : InContext (DEVICE typeY)

(CanConnect varY)
(update old prfSpaceX Connect))

-> Wireless () old
(const $ update (update old prfSpaceX Connect) prfSpaceY Connect)

End : Wireless () old (const Nil)

Figure 26 Definition for Wireless.

The constructor Insert is a generic expression that supports: insertion of rooms into
buildings; devices into rooms; and messages into devices. For insertion of entity varX into
varY to take place several checks are performed. First we check to see if the entities of type
x and y are valid assertions using ValidAssign defined in Figure 27b. We then check to see
if the child entity (varX) has already been inserted. The predicate Unassigned (Figure 28a)
attests to this, and the function Use (Figure 28b) updates the context accordingly. The
final check is to see if the parent entity (varY) can be assigned to. By design, the predicate
CanAssign (Figure 27a) uses type level pattern matching to reason about abstract states
that can contain other entities, and for a device that there is at least one free connection left.
The function Assign (Figure 27c) updates the context accordingly.

data CanAssign : (thisValue : Ty)
-> (thisVar : Var Ty valueThis)
-> (item : StateItem Ty CalcStateType valueThis)
-> Type where

ToABuilding : CanAssign BLDG bld (MkStateItem BLDG bld ())
ToARoom : CanAssign ROOM rm (MkStateItem ROOM rm True)
ToADevice : CanAssign (DEVICE ty) dev (MkStateItem (DEVICE ty) dev (MkD True (S n)))

(a) Predicate.
data ValidAssign : Ty -> Ty -> Type where

ValidBR : ValidAssign BLDG ROOM
ValidRD : ValidAssign ROOM (DEVICE ty)
ValidDM : ValidAssign (DEVICE ty) MSG

(b) Side-Condition.

Assign : Var Ty x
-> ValidAssign v x
-> (i : StateItem Ty CalcStateType v)
-> CanAssign value lbl i
-> StateItem Ty CalcStateType v

(c) Update Function.

Figure 27 Predicates and update function for reasoning about association of nodes.

ECOOP 2020

20:18 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

data Unassigned : (value : Ty) -> (lbl : Var Ty value)
-> (item : StateItem Ty CalcStateType value) -> Type where

URoom : Unassigned ROOM rm (MkStateItem ROOM rm False)
UDevice : Unassigned (DEVICE ty) dev (MkStateItem (DEVICE ty) dev (MkD False c))
UMessage : Unassigned MSG msg (MkStateItem MSG msg False)

(a) Predicate.
Use : (item : StateItem Ty CalcStateType value)

-> (prf : Unassigned value lbl item)
-> StateItem Ty CalcStateType value

(b) Update Function.

Figure 28 Predicate and Function for Assigning Variables.

data CanConnect : (to : Var Ty (DEVICE type))
-> (item : StateItem Ty CalcStateType (DEVICE type))
-> Type where

HasSpace : CanConnect dev (MkStateItem (DEVICE type) lbl (MkD True (S n)))

(a) Predicate.
Connect : (item : StateItem Ty CalcStateType (DEVICE type))

-> (prf : CanConnect to item)
-> StateItem Ty CalcStateType (DEVICE type)

(b) Update Function.

Figure 29 Predicates and update function for reasoning about connection of devices.

Notice for Insert we have had to update the context twice. Once for prfInsert, and
again in the function to calculate the new context. For each assumption we make in the
type about the context we must ensure it holds for subsequent steps. Unfortunately, this can
result in verbose type signatures.

Devices are linked together using Link. For devices to be connected we must assert, using
CanConnect (Figure 29a), that they have free connections left to make. Like Insert we
must also update the context for each assertion we make about each devices state. With this
definition of Link we make no restrictions on linking devices to themselves.

4.2.3 Handler for the Bigraph EDSL
Given the algebraic notation for bigraphs their representation as an algebraic data type
naturally follows. Figure 30 presents our bigraph implementation. Entities are a simple data
structure capturing the arity of the entity and a unique identifier. Entity is parameterised by
the sort type as a value. Although, we can use the arity of an entity to inform the length of a
Vect instance to capture the link graph we must remember that bigraph’s are constructed by
interpretation of an instance of Wireless. Interpretation must ensure that the construction
of the place graph correctly matches the description from the specification, and that the
entities used in the place graph are embedded correctly within the final version of the link
graph. The final state of the link and place graphs will not be known until we end the
specification. Therefore we must delay construction of the bigraph model until then. Thus,
interpretation of Wireless specifications will return an intermediate bigraph representation
used for constructing the algebraic bigraph representation. This is the representation
presented in Figure 30.

The type, Bigraph, is indexed by the concrete type describing the bigraph’s “types” and
specification of the place graph follows the algebraic bigraph definition. Entity arity nor the
link graph are described within the Node constructor. Borrowing from existing algebraic
graph definitions [41] links and external names are represented using Connect and Outside.
Overlay describes the union of two bigraph descriptions into a single bigraph. Construction
of a more compact algebraic bigraph model from Bigraph is not described here.

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:19

data Entity : (type : Type) -> (value : type) -> Type where
MkEntity : (n : Nat) -> (arity : Nat) -> Entity type value

data BiGraph a = Identity | Node (Entity a value)
| Nest (BiGraph a) (BiGraph a) | Merge (BiGraph a) (BiGraph a)
| Par (BiGraph a) (BiGraph a)
| Connect (BiGraph a) (BiGraph a) | Outside String
| Overlay (BiGraph a) (BiGraph a)

Figure 30 Naïve Algebraic Representation of a Bigraph.

Figure 31 presents the complete instance of Handler for Wireless. We use the accumula-
tor of Handler to capture the bigraph instance being constructed, and a counter to generate
fresh identifiers. An instance of RealVar translates variables into Entity instances, the
type Ty has been reused for entity types. Variables are turned into entities and extend the
environment for each new variable definition. Insertion of entities creates a Nest instruction
and each variable definition is inserted into a Node constructor. Although the definition of
the handler for Insert looks repetitive, dependent pattern matching on the side-condition
(prfValid) is required to ensure that the correct proofs are considered at the type level [38].
Each lookup and proof used for each case have different types. Further, for each operation
that updates the context we must also update the environment accordingly. With the updates
to the environment mirroring the updates made at the type level. The Overlay instruction
combines the existing bigraph (acc) with a new nesting of parent and child. Interpretation
of Link follows that for Insert by updating the environment for each change in the context,
and appends to the accumulated bigraph using Overlay, a new edge in the link graph using
Connect.

4.2.4 Example Bigraph Instances
Figure 32 illustrates how several example bigraphs can be specified using Wireless. The type-
synonym WirelessDesc sets the expected initial and end states – cf. Files in Section 4.1.
Figure 32a replicates the example from Figure 24. Figure 32b presents a failing example that
will not type-check as the domain model specifies that models only support two connections.
The final link expression will fail to type-check as the abstract state for mobileA will have
decremented the number of free connections to zero.

4.3 Exemplar 3: Global Session Descriptions
Multi-Party Session Types (MPST) are a typing discipline that allows formal protocol
narrations to dictate the type checking process such that implementations of the protocol are
known to adhere to a given formal narration [30]. Global session types present an overview
of the interactions made between entities, and entities have local types that describes their
known interactions. Existing work has seen to extend MPST implementation and theory
to support reasoning on message values [30, 61, 6]. When looking to realise global session
types in a dependently typed language care must be taken that values introduced in the
description are used by roles that know about the value.

Sessions is an EDSL for describing global session descriptions [19]. Figure 33 illustrates
how Sessions can be written using Resources as Sessions, and Figure 34 details accom-
panying data types and functions. For brevity, we have not included the creation of value
dependent messages. We have, however, extended the EDSL with expressions to reason
explicitly about channels, that borrows from existing work [31]. The type of Sessions is

ECOOP 2020

20:20 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

RealVar Ty where
CalcRealType ROOM = Entity Ty ROOM
CalcRealType BLDG = Entity Ty BLDG
CalcRealType (DEVICE x) = Entity Ty (DEVICE x)
CalcRealType MSG = Entity Ty MSG

Handler Ty CalcStateType Wireless (Nat, BiGraph Ty) (Basics.id) where
handle env NewBuilding (ctr,g) cont =

cont MkVar (MkTag (MkEntity ctr Z)::env) (S ctr,g)
handle env NewRoom (ctr,g) cont = cont MkVar (MkTag (MkEntity ctr Z)::env) (S ctr,g)
handle env (NewDevice ty) (ctr,g) cont =

cont MkVar (MkTag (MkEntity ctr (maxConn ty))::env) (S ctr,g)
handle env NewMessage (ctr,g) cont = cont MkVar (MkTag (MkEntity ctr Z)::env) (S ctr,g)

handle env (Insert varX varY prfValid prfFree prfInsert) (ctr,g) cont with (prfValid)
handle env (Insert varX varY prfValid prfFree prfInsert) (ctr,g) cont | ValidBR = do

let MkTag rm = lookup env prfFree
let env’ = (update env prfFree Use)
let MkTag bld = lookup env’ prfInsert
let env’’ = update env’ prfInsert (Assign varX ValidBR)
cont () env’’ (ctr,Overlay (Nest (Node bld) (Node rm)) g)

handle env (Insert varX varY prfValid prfFree prfInsert) (ctr,g) cont | ValidRD = do
let MkTag dev = lookup env prfFree
let env’ = (update env prfFree Use)
let MkTag rm = lookup env’ prfInsert
let env’’ = update env’ prfInsert (Assign varX ValidRD)
cont () env’’ (ctr,Overlay (Nest (Node rm) (Node dev)) g)

handle env (Insert varX varY prfValid prfFree prfInsert) (ctr,g) cont | ValidDM = do
let MkTag msg = lookup env prfFree
let env’ = (update env prfFree Use)
let MkTag dev = lookup env’ prfInsert
let env’’ = update env’ prfInsert (Assign varX ValidDM)
cont () env’’ (ctr,Overlay (Nest (Node dev) (Node msg)) g)

handle env (Link varX varY prfSpaceX prfSpaceY) (ctr,g) cont = do
let MkTag x = lookup env prfSpaceX
let env’ = update env prfSpaceX Connect
let MkTag y = lookup env’ prfSpaceY
let env’’ = update env’ prfSpaceY Connect
cont () env’’ (ctr,Overlay (Connect (Node x) (Node y)) g)

handle env End (ctr,g) cont = cont () Nil (ctr,g)

Figure 31 Handler instance for Wireless.

further parameterised by a list of participants in the protocol, allowing the EDSL to utilise
this information for each expression. Sessions expression’s include message creation, channel
construction and destruction, sending of messages, allowing access to message values, and
termination of session descriptions.

Central to the operation of Sessions is reasoning about the abstract state associated
with messages and communication channels. Messages have metatype DATA capturing the
type of the message, and an associated state listing the actors aware of the message. Channels
have metatype CHAN capturing the involved actors, and an associated state denoting the
connection state: Bound or Free. The function CalcStateType maps meta types to concrete
state types.

The construction of Sessions follows that of Sessions but in a more general framework.
Message creation extends the list of state with a new abstract state asserting that the creator a
knows of the message, and the expression’s use is restricted to actors listed in the descriptions
type. Similarly channel creation extends the list of states with a new abstract state asserting
the channel is Bound, and restricts channel creation to actors listed in the description’s type.

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:21

example : WirelessDesc m
example = do

buildingA <- newBuilding
buildingB <- newBuilding

roomA <- newRoom
roomB <- newRoom
roomC <- newRoom

laptopA <- newDevice LAPTOP
laptopB <- newDevice LAPTOP
laptopC <- newDevice LAPTOP
mobile <- newDevice MOBILE

msg <- newMessage

insert roomA buildingA
insert laptopA roomA
insert mobile roomA
insert msg mobile
insert roomB buildingA
insert laptopB roomB
insert roomC buildingB
insert laptopC roomC

link laptopA laptopC
link mobile laptopB

end
(a) Example Bigraph from Figure 24.

example : WirelessDesc m
example = do

buildingA <- newBuilding
roomA <- newRoom

insert roomA buildingA

mobileA <- newDevice MOBILE
mobileB <- newDevice MOBILE
mobileC <- newDevice MOBILE
mobileD <- newDevice MOBILE

insert mobileA roomA
insert mobileB roomA
insert mobileC roomA
insert mobileD roomA

link mobileA mobileB
link mobileA mobileC
link mobileA mobileD
end

(b) Example Failing Bigraph.

Figure 32 Example Specifications using Wireless.

This specification implies that we are free to make connections between any two actors in ps.
We could add a predicate to Sessions that restricts channel creation to specific pairings of
actors. Closing a channel changes the channel’s abstract state to Free. Sending messages
along a channel requires an active channel guaranteed by the predicate ChannelHasState,
and proof (using KnowsData) that the sender (s) knows about the message. Once a message
has been sent the abstract state of the message is updated to reflect that the receiver is now
aware of the message.

Figure 35 presents the definition for these and other predicates used in Sessions. The
expression ReadMsg facilitates reasoning using message values that are known to all par-
ticipants. Session descriptions conclude if all abstract states are in a valid end state. For
messages, this is immaterial and for connections they must have been closed.

It is reasonable to assume that we can define a projection function as an instance of
Handler. The type for handle, however, requires that we build a continuation that can
be applied to a value associated with the expression. When projecting global types in a
multi-party session some expressions are irrelevant if the role being projected for is not
involved [14]. The type for handle is too constrained for Sessions implementation. Future
work will be to investigate how a projection function for Sessions can be constructed.

Figure 36 present several example session descriptions. The function Session is a type-
synonym to restrict the starting and ending type-level context to Nil. Figure 36a models
the salient aspects of the TCP handshake [51]. Here Alice and Bob establish a channel,
and Alice sends to Bob a sequence number (x) that Bob must return incremented by one.
Similarly, Bob sends Alice a sequence (y) that Alice must return incremented by one. In our
description we use dependent pairs to reason about the message contents.

ECOOP 2020

20:22 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

data Sessions : (participants : List Actor) -> Lang Ty CalcStateType where

NewData : (a : Actor) -> (type : Type) -> (prf : Elem a ps)
-> Sessions ps (Var Ty (DATA type)) old

(\lbl => MkStateItem (DATA type) lbl (MkDataState [a] type) :: old)

NewConnection : (a,b : Actor) -> (prfS : Elem a ps) -> (prfR : Elem b ps)
-> Sessions ps (Var Ty (CHAN (a,b))) old

(\lbl => MkStateItem (CHAN (a,b)) lbl (MkChanState Bound) :: old)

EndConnection : (chan : Var Ty (CHAN (a,b)))
-> (prf : InContext (CHAN (a,b)) (ChannelHasState Bound chan) old)
-> Sessions ps () old (const $ update old prf (SetChannelState Free))

SendLeft : (chan : Var Ty (CHAN (s,r)))
-> (msg : Var Ty (DATA type))
-> (prfActive : InContext (CHAN (s,r)) (ChannelHasState Bound chan) old)
-> (prfKnows : InContext (DATA type) (KnowsData s msg) old)
-> Sessions ps () old (const $ update old prfKnows (ExpandWhoKnows r))

SendRight : (chan : Var Ty (CHAN (s,r)))
-> (msg : Var Ty (DATA type))
-> (prfActive : InContext (CHAN (s,r)) (ChannelHasState Bound chan) old)
-> (prfKnows : InContext (DATA type) (KnowsData r msg) old)
-> Sessions ps () old (const $ update old prfKnows (ExpandWhoKnows s))

ReadMsg : (msg : Var Ty (DATA type))
-> (prf : InContext (DATA type) (AllKnow ps msg) old)
-> Sessions ps type old (const old)

StopSession : AllContext EndState old -> Sessions ps () old (const Nil)

Figure 33 An EDSL for describing Global Multi-Party Session Types.

data Actor = MkActor String
data Usage = Free | Bound

data Ty = CHAN (Actor, Actor) | DATA Type

(a) Actors,Usage, and Metatypes.

data ChanState = MkChanState Usage
data DataState =

MkDataState (List Actor) Type

(b) Abstract States.

CalcStateType : Ty -> Type
CalcStateType (CHAN _) = ChanState
CalcStateType (DATA _) = DataState

(c) Function to compute state types.

Figure 34 Core accompanying data types and functions.

Figures 36b and 36c present two examples that fail to type-check. The first Figure 36b
demonstrates how sending on the wrong channel will result in a type error. Here Alice is not
involved in the communication between Bob and Charlie. The second example Figure 36c
shows an example that will fail as the message (m) is not yet known by all participants.

5 Related Work

The implementation of Resources builds upon existing techniques developed for Effects [11]
that realise well studied theoretical models [1, 43, 50]. These models were realised in a
dependently typed language using straightforward idiomatic constructs: Hoare monads as a
parameterised data type; and algebraic effect handlers using interfaces.

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:23

data ChannelHasState : (assumedState : Usage)
-> (chan : Var Ty (CHAN (s,r)))
-> (actual : StateItem Ty CalcStateType (CHAN (s,r)))
-> Type where

ChanHasState : ChannelHasState st ch (MkStateItem (CHAN (s,r)) ch (MkChanState st))

(a) Asserting Channel State.
data AllKnow : (as : List Actor)

-> (var : Var Ty (DATA type))
-> (item : StateItem Ty CalcStateType (DATA ty))
-> Type where

NilKnows : (prf : Elem x as)
-> AllKnow [x] msg (MkStateItem (DATA ty) msg (MkDataState as ty))

ConsKnows : (prf : Elem x as)
-> (later : AllKnow xs msg (MkStateItem (DATA type) msg (MkDataState as ty)))
-> AllKnow (x::xs) msg (MkStateItem (DATA type) msg (MkDataState as ty))

(b) Asserting that all participants know a value.
data KnowsData : (actor : Actor)

-> (var : Var Ty (DATA type))
-> (item : StateItem Ty CalcStateType (DATA type))
-> Type where

DoesKnow : (prf : x = y) -> (prfE : Elem x actors)
-> KnowsData y var (MkStateItem (DATA type) var (MkDataState actors type))

(c) Asserting that a participant know a value.
data EndState : (ty : Ty) -> StateItem Ty CalcStateType ty -> Type where

EndData : EndState (DATA type) state
EndConn : EndState (CHAN (s,r)) (MkStateItem (CHAN (s,r)) lbl (MkChanState Free))

(d) Asserting final end states.

Figure 35 Predicates used in Sessions.

5.1 Theoretical-Oriented Approaches

First we examine other theoretical approaches to realising substructural type-systems for
EDSLs that use expressive logics as a base formalism.

Hoare Type Theory. Hoare Type Theory [43] has been used to describe programs with
substructural type systems [7]. Here types are associated with Hoare triples that are translated
to refinement types [23, 27] to ensure triple satisfaction. Ynot is an extension of the Coq
proof assistant to provide reasoning about programs using Hoare Type Theory [42]. Similar
work has presented a variant of the State Monad that provides Hoare style reasoning on
the captured state [60]. Our approach also utilises Hoare triples but not to reason about
individual types per se, but rather about the entire type-level state of our program. This is
much similar to existing work [8, 7] in which the authors were restricted to reasoning about
the program’s state, described as a state monad, in its entirety. Use of quantifiers over our
abstract state allows us to reason about specific aspects of a program’s state.

Typestates. Typestates [56, 22, 5] have been shown to provide a formal basis for building
substructural type-systems [39]. Using their approach the authors also show how to incorpo-
rate behavioural typing [16] as well. Here each type in their formalism is associated with
a type-level state and value level operations apply, at the type level, state transitions to
the modelled state. This is a more formal treatment compared to our approach, however,
we acknowledge the similarity in associating types with a type-level state. Rather than use
typestates as a base formalism we utilise parameterised monads.

ECOOP 2020

20:24 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

TCPHandshake : Session m [Alice, Bob]
TCPHandshake = do

chan <- setup Alice Bob

m1 <- msg Alice (Packet, Nat)
sendLeft chan m1

(p,x) <- read m1
m2 <- msg Bob

(Packet, (x’ ** x’ = S x),
Nat)

sendRight chan m2

(p,xplus,y) <- read m2

m3 <- msg Alice
(Packet, (x’ ** x’ = S x),

(y’ ** y’ = S y))
sendLeft chan m3
destroy chan
end

(a) TCP Handshake.

WrongChan : Session m [Alice,Bob,Charlie]
WrongChan = do

chan <- setup Alice Bob
net <- setup Bob Charlie

m <- msg Alice String
sendRight net m
?end

(b) Sending on a wrong channel.
UnableToRead : Session m

[Alice,Bob,Charlie]
UnableToRead = do

chan <- setup Alice Bob

m <- msg Alice String
sendLeft chan m

val <- read m
?end

(c) Invalid Read Access.

Figure 36 Example Global Session Descriptions.

Seperation Logics. Separation logic [45] has been used to provide another formal treatment
towards customising standard substructural type-systems with custom resources [34]. This
work supports customisation of resources, and controls on said resource to be specified on a
per-module or per-library basis. Similarly, the authors use state-transition systems by way of
commutative monoids, to reason about substructural properties.

Very recent work has investigated the use of separation logics to build intrinsically-typed
definitional interpreters for linear/session-typed languages [52]. Developed in Agda [44] the
authors present a collection of reusable and composable abstractions to support interpreter
construction. Our approach differs in that we ground our work in hoare logic and provide a
singular unified framework to capture common language expressions common to all EDSLs,
and integrated support for reasoning on abstract program state. We will carefully study the
use of separation logics and see how Resources can be bettered. Of interest will be the
ability of the author’s approach to realise global MPST.

Quantitative Type-Systems. Substructural Type-Systems [65] support various different
styles of reasoning about variable usage at the type level. Linear typing providing exactly once
semantics [64, 63], and Affine systems at most once [62, 15]. Generally speaking, Quantitative
Type-Theory (QTT) [2] provides a more general framework to reason about resource usage.
However it is not clear how state-based substructural properties (cf. nesting for Bigraphs
– Section 4.2.1) can be modelled within QTT. Their substructural properties are not all
about quantitative usage. Regardless, QTT is a promising direction for reasoning about
quantitative resource usage.

5.2 Practical-Oriented Approaches
Resources is highly dependent on Idris specific features such as interfaces and proof search,
as well as dependent types. Realising Resources in disimilar languages would require more
complicated work arounds to realise a similar framework, or require direct modification
to the compiler. Like Effects, Resources is a plain-old-library that does not require any

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:25

language extensions, and leverages a language in which dependent types were not retrofitted.
This gives us static compile time guarantees that our framework, and thus our EDSLs,
are well-typed. We now examine other practical approaches that involve expressive host
languages which support construction of bespoke substructural type-systems within the host
language itself.

Substructural Type-Systems. There exist several general purpose languages that provide
full or experimental support for substructural type-systems. Linear typing has been realised
for ATS [55]. Clean has implemented uniqueness typing [21] that influenced Rust’s ownership
types [35, 36]. An extension is being developed for Haskell that leverages linearity for correct
variable usage [4]. Interestingly, this extension also uses a parameterised type to replicate
typestates when reasoning about a socket example. Idris itself has experimental support for
linear typing [37], and Clean’s Uniqueness types [14]. Future iterations of Idris3, however,
will support Quantitative Type-Theory [2]. As we described in Section 5.1, it is not clear
how we can use these quantitative systems to describe state-based substructural properties.

Expressive Type-Systems. Construction of domain specific substructural type systems for
EDSLs can be achieved using other as expressive non-dependently typed host languages.
Racket is a general purpose language that supports EDSL creation through fine-grained
control over the language’s type-system [25]. The original version of F ? was a general
purpose language with value-dependent types [57, 58]. Whereas Idris provides full-spectrum
dependent types, F ? provides value-dependencies using refinement types. F ? was extended
to provide better support for dependently typed and effectful programming [59]. Such
languages provide novel, alternate, environment in which to construct “value-dependently-
typed” programs. How the approach behind Resources is transferable to these languages is
worth investigating.

Dependent-Type Systems. Although, the framework has been realised using Idris the
techniques presented are agnostic to dependently typed languages. Any other dependently
typed language that supports full-spectrum dependent types, such as Agda [44], will be
suitable for implementing the ideas. It has been shown how Dependent Haskell [66] can realise
Idris’ Effects library [24, § 3.2.3]. Existing work has investigated embedding linear type-
systems for EDSLs into Haskell [49]. In their implementation the author’s make extensive use
of Haskell’s typeclass mechanism, a Higher Order Abstract Syntax embedding, and Dependent
Haskell [48].

ST is an improvement upon Effects by not only associating resources with variables, but
facilitating vertical and horizontal effect composition [12]. ST is a resource dependent EDSL,
and makes extensive use of Idris’ Interface mechanism for effect definition. Resources sits
in between these two implementations, borrowing the algebraic language definition from
Effects and associating abstract state with variables from ST. We position Resources as
a framework for defining EDSLs with domain specific substructural type-systems. ST and
Effects are general purpose.

3 https://github.com/edwinb/idris2

ECOOP 2020

https://github.com/edwinb/idris2

20:26 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

6 Future Work

Resources is a promising framework for constructing EDSLs with interesting type-systems.
However, there are a few limitations to our current approach.

Each EDSL requires that the complete set of resource types to be used be known at EDSL
design time. Our EDSL are closed worlds. This impacts upon the composability of resources
between EDSL instances. For example, state resources have to be created per EDSL. This
limitations originate from the framework’s design. It was not designed for resource reuse in
mind. A promising direction will be to look at how Idris’ interfaces can look to better the
specification and use of resources in EDSLs.

Similarly, our type-level state holds too much information. If we were to call out to
sub-programs we must be careful about the effect that the resulting state (of the callee
program) has on the caller program. We see this in the design of Files (Section 4.1)
when passing around file handles we need to ensure that closed files remain closed. While
one can state that sub-programs are closed it will be interesting to investigate how to deal
with interactions of states between programs. When looking at program composition, and
resource reuse between EDSLs, how we interact with type-level state is important. Our use
of Hoare logics prohibits the inspection, individually, of resources in isolation. By basing
the framework on separation logics rather than Hoare triples, we can look to address these
limitations.

Updating the type-level context multiple times in a type signature, can lead to a more
verbose style of type-level programming. For example, consider the type-signatures for Link
and Insert for Wireless in Section 4.2.2. The limitation here is Idris’ own syntax: type
signatures are not equivalent to a function body. Future work will be to see how we can
reason better about the transformations made to the abstract state within a type signature.

7 Conclusions

Resources has been developed to explore construction of EDSLs with substructural type-
systems supporting autonomic management of domain specific abstract resources and type-
level reasoning on such resources. Idris’ support for auto-implicit arguments allows languages
to be presented cleanly, where proofs that properties hold are hidden but present during
type-checking. Resources and their state need not be listed explicitly at the type-level.

We have demonstrated the use of Resources through construction of several exemplar
EDSLs. Type-level predicates provided compile time guarantees over various substructural
properties. Providing static compile time checks that correct EDSL instances are constructed.
We have demonstrated how Handler instances can: run interactive programs – Section 4.1.2;
and construct data types – Section 4.2.3. When we construct data structures, however, the
correctness-by-construction guarantees are not necessarily carried over. It will be interesting
to see how we can use Resources to do so. This would be useful for our Bigraph example.
This is future work. Further, we have seen when the Handler interface was not enough
for our needs (Section 4.3), and noted limitations on program and resource composition –
Section 6.

We are using Resources to develop EDSLs for reasoning about the structural and
behavioural aspects of System-on-a-Chip Designs. Within these languages a substructural
type-system allows one to constrain expressions using type-level resources derived from finite
sources and behavioural specifications. Ensuring, for example, that ports can be connected
to only once, and that interfaces and connections are well-formed respective to a given
specification. Resources helps by providing a common framework to explore different model
designs without specifying the same boilerplate again and again.

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:27

References
1 Robert Atkey. Parameterised notions of computation. J. Funct. Program., 19(3-4):335–376,

2009. doi:10.1017/S095679680900728X.
2 Robert Atkey. Syntax and semantics of quantitative type theory. In Anuj Dawar and

Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 56–65. ACM, 2018.
doi:10.1145/3209108.3209189.

3 Lennart Augustsson and Magnus Carlsson. An Exercise in Dependent Types: A Well-Typed
Interpreter. In In Workshop on Dependent Types in Programming, Gothenburg, 1999.

4 Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones, and
Arnaud Spiwack. Linear haskell: practical linearity in a higher-order polymorphic language.
PACMPL, 2(POPL):5:1–5:29, 2018. doi:10.1145/3158093.

5 Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased objects. In
Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy L. Steele Jr., editors,
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec,
Canada, pages 301–320. ACM, 2007. doi:10.1145/1297027.1297050.

6 Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A theory of design-by-
contract for distributed multiparty interactions. In CONCUR 2010 - Concurrency Theory,
21th International Conference, CONCUR 2010, Paris, France, August 31-September 3, 2010.
Proceedings, pages 162–176, 2010. doi:10.1007/978-3-642-15375-4_12.

7 Johannes Borgström, Juan Chen, and Nikhil Swamy. Verifying stateful programs with substruc-
tural state and hoare types. In Ranjit Jhala and Wouter Swierstra, editors, Proceedings of the
5th ACM Workshop Programming Languages meets Program Verification, PLPV 2011, Austin,
TX, USA, January 29, 2011, pages 15–26. ACM, 2011. doi:10.1145/1929529.1929532.

8 Johannes Borgström, Andrew D. Gordon, and Riccardo Pucella. Roles, stacks, histories: A
triple for hoare. J. Funct. Program., 21(2):159–207, 2011. doi:10.1017/S0956796810000134.

9 Edwin Brady. Idris, a general-purpose dependently typed programming language: Design and
implementation. J. Funct. Program., 23(5):552–593, 2013. doi:10.1017/S095679681300018X.

10 Edwin Brady. Programming and reasoning with algebraic effects and dependent types. In
Greg Morrisett and Tarmo Uustalu, editors, ACM SIGPLAN International Conference on
Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013, pages
133–144. ACM, 2013. doi:10.1145/2500365.2500581.

11 Edwin Brady. Resource-dependent algebraic effects. In Jurriaan Hage and Jay McCarthy,
editors, Trends in Functional Programming - 15th International Symposium, TFP 2014,
Soesterberg, The Netherlands, May 26-28, 2014. Revised Selected Papers, volume 8843 of Lecture
Notes in Computer Science, pages 18–33. Springer, 2014. doi:10.1007/978-3-319-14675-1_2.

12 Edwin Brady. State Machines All The Way Down: An Architecture for Dependently Typed
Applications. Unpublished Draft., 2016.

13 Edwin Brady. Type-Driven Devlopment with Idris. Manning, 1st edition, 2016.
14 Edwin Brady. Type-driven development of concurrent communicating systems. Computer

Science (AGH), 18(3), 2017. doi:10.7494/csci.2017.18.3.1413.
15 Michele Bugliesi, Stefano Calzavara, Fabienne Eigner, and Matteo Maffei. Affine refinement

types for secure distributed programming. ACM Trans. Program. Lang. Syst., 37(4):11:1–11:66,
2015. doi:10.1145/2743018.

16 Luís Caires and João Costa Seco. The type discipline of behavioral separation. In Roberto
Giacobazzi and Radhia Cousot, editors, The 40th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013,
pages 275–286. ACM, 2013. doi:10.1145/2429069.2429103.

17 Elias Castegren and Tobias Wrigstad. Reference capabilities for concurrency control. In
Shriram Krishnamurthi and Benjamin S. Lerner, editors, 30th European Conference on
Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy, volume 56
of LIPIcs, pages 5:1–5:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.ECOOP.2016.5.

ECOOP 2020

https://doi.org/10.1017/S095679680900728X
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3158093
https://doi.org/10.1145/1297027.1297050
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1145/1929529.1929532
https://doi.org/10.1017/S0956796810000134
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1145/2500365.2500581
https://doi.org/10.1007/978-3-319-14675-1_2
https://doi.org/10.7494/csci.2017.18.3.1413
https://doi.org/10.1145/2743018
https://doi.org/10.1145/2429069.2429103
https://doi.org/10.4230/LIPIcs.ECOOP.2016.5
https://doi.org/10.4230/LIPIcs.ECOOP.2016.5

20:28 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

18 N.G de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the church-rosser theorem. Indagationes Mathematicae
(Proceedings), 75(5):381–392, 1972.

19 Jan de Muijnck-Hughes, Edwin Brady, and Wim Vanderbauwhede. Value-dependent session
design in a dependently typed language. In Francisco Martins and Dominic Orchard, editors,
Proceedings Programming Language Approaches to Concurrency- and Communication-cEntric
Software, PLACES@ETAPS 2019, Prague, Czech Republic, 7th April 2019, volume 291 of
EPTCS, pages 47–59, 2019. doi:10.4204/EPTCS.291.5.

20 Jan de Muijnck-Hughes and Wim Vanderbauwhede. A typing discipline for hardware interfaces.
In Alastair F. Donaldson, editor, 33rd European Conference on Object-Oriented Programming,
ECOOP 2019, July 15-19, 2019, London, United Kingdom, volume 134 of LIPIcs, pages
6:1–6:27. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
ECOOP.2019.6.

21 Edsko de Vries, Rinus Plasmeijer, and David M. Abrahamson. Uniqueness typing simplified.
In Olaf Chitil, Zoltán Horváth, and Viktória Zsók, editors, Implementation and Application of
Functional Languages, 19th International Workshop, IFL 2007, Freiburg, Germany, September
27-29, 2007. Revised Selected Papers, volume 5083 of Lecture Notes in Computer Science,
pages 201–218. Springer, 2007. doi:10.1007/978-3-540-85373-2_12.

22 Robert DeLine and Manuel Fähndrich. Typestates for objects. In Martin Odersky, editor,
ECOOP 2004 - Object-Oriented Programming, 18th European Conference, Oslo, Norway, June
14-18, 2004, Proceedings, volume 3086 of Lecture Notes in Computer Science, pages 465–490.
Springer, 2004. doi:10.1007/978-3-540-24851-4_21.

23 Ewen Denney. Refinement types for specification. In David Gries and Willem P. de Roever,
editors, Programming Concepts and Methods, IFIP TC2/WG2.2,2.3 International Conference
on Programming Concepts and Methods (PROCOMET ’98) 8-12 June 1998, Shelter Island,
New York, USA, volume 125 of IFIP Conference Proceedings, pages 148–166. Chapman &
Hall, 1998.

24 Richard A. Eisenberg. Dependent types in haskell: Theory and practice. CoRR, abs/1610.07978,
2016. arXiv:1610.07978.

25 Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzilay,
Jay A. McCarthy, and Sam Tobin-Hochstadt. A programmable programming language.
Commun. ACM, 61(3):62–71, 2018. doi:10.1145/3127323.

26 Martin Fowler. Domain-Specific Languages. Addison-Wesley Signature Series. Addison-Wesley
Professional, 1 edition, October 2010.

27 Timothy S. Freeman and Frank Pfenning. Refinement types for ML. In David S. Wise, editor,
Proceedings of the ACM SIGPLAN’91 Conference on Programming Language Design and
Implementation (PLDI), Toronto, Ontario, Canada, June 26-28, 1991, pages 268–277. ACM,
1991. doi:10.1145/113445.113468.

28 Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy.
Uniqueness and reference immutability for safe parallelism. In Gary T. Leavens and Matthew B.
Dwyer, editors, Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2012, part of SPLASH 2012,
Tucson, AZ, USA, October 21-25, 2012, pages 21–40. ACM, 2012. doi:10.1145/2384616.
2384619.

29 C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–
580, 1969. doi:10.1145/363235.363259.

30 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9:1–9:67, 2016. doi:10.1145/2827695.

31 Raymond Hu and Nobuko Yoshida. Explicit connection actions in multiparty session types.
In Fundamental Approaches to Software Engineering - 20th International Conference, FASE
2017, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, pages 116–133, 2017. doi:
10.1007/978-3-662-54494-5_7.

https://doi.org/10.4204/EPTCS.291.5
https://doi.org/10.4230/LIPIcs.ECOOP.2019.6
https://doi.org/10.4230/LIPIcs.ECOOP.2019.6
https://doi.org/10.1007/978-3-540-85373-2_12
https://doi.org/10.1007/978-3-540-24851-4_21
http://arxiv.org/abs/1610.07978
https://doi.org/10.1145/3127323
https://doi.org/10.1145/113445.113468
https://doi.org/10.1145/2384616.2384619
https://doi.org/10.1145/2384616.2384619
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1007/978-3-662-54494-5_7

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:29

32 Wei Huang, Werner Dietl, Ana Milanova, and Michael D. Ernst. Inference and checking of
object ownership. In James Noble, editor, ECOOP 2012 – Object-Oriented Programming – 26th
European Conference, Beijing, China, June 11-16, 2012. Proceedings, volume 7313 of Lecture
Notes in Computer Science, pages 181–206. Springer, 2012. doi:10.1007/978-3-642-31057-7_
9.

33 Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. In Greg Morrisett and
Tarmo Uustalu, editors, ACM SIGPLAN International Conference on Functional Programming,
ICFP’13, Boston, MA, USA - September 25 - 27, 2013, pages 145–158. ACM, 2013. doi:
10.1145/2500365.2500590.

34 Neelakantan R. Krishnaswami, Aaron Turon, Derek Dreyer, and Deepak Garg. Superfi-
cially substructural types. In Peter Thiemann and Robby Bruce Findler, editors, ACM
SIGPLAN International Conference on Functional Programming, ICFP’12, Copenhagen,
Denmark, September 9-15, 2012, pages 41–54. ACM, 2012. doi:10.1145/2364527.2364536.

35 Amit A. Levy, Michael P. Andersen, Bradford Campbell, David E. Culler, Prabal Dutta,
Branden Ghena, Philip Levis, and Pat Pannuto. Ownership is theft: experiences building an
embedded OS in rust. In Shan Lu, editor, Proceedings of the 8th Workshop on Programming
Languages and Operating Systems, PLOS 2015, Monterey, California, USA, October 4, 2015,
pages 21–26. ACM, 2015. doi:10.1145/2818302.2818306.

36 Nicholas D. Matsakis and Felix S. Klock II. The rust language. In Michael Feldman and
S. Tucker Taft, editors, Proceedings of the 2014 ACM SIGAda annual conference on High
integrity language technology, HILT 2014, Portland, Oregon, USA, October 18-21, 2014, pages
103–104. ACM, 2014. doi:10.1145/2663171.2663188.

37 Conor McBride. I got plenty o’ nuttin’. In Sam Lindley, Conor McBride, Philip W. Trinder,
and Donald Sannella, editors, A List of Successes That Can Change the World - Essays
Dedicated to Philip Wadler on the Occasion of His 60th Birthday, volume 9600 of Lecture Notes
in Computer Science, pages 207–233. Springer, 2016. doi:10.1007/978-3-319-30936-1_12.

38 Conor McBride and James McKinna. The view from the left. J. Funct. Program., 14(1):69–111,
2004. doi:10.1017/S0956796803004829.

39 Filipe Militão, Jonathan Aldrich, and Luís Caires. Substructural typestates. In Nils Anders
Danielsson and Bart Jacobs, editors, Proceedings of the 2014 ACM SIGPLAN Workshop
on Programming Languages meets Program Verification, PLPV 2014, January 21, 2014,
San Diego, California, USA, Co-located with POPL ’14, pages 15–26. ACM, 2014. doi:
10.1145/2541568.2541574.

40 Robin Milner. The Space and Motion of Communicating Agents. Cambridge University Press,
2009.

41 Andrey Mokhov. Algebraic graphs with class (functional pearl). In Proceedings of the 10th
ACM SIGPLAN International Symposium on Haskell, Oxford, United Kingdom, September
7-8, 2017, pages 2–13, 2017. doi:10.1145/3122955.3122956.

42 Aleksandar Nanevski, Greg Morrisett, Avraham Shinnar, Paul Govereau, and Lars Birkedal.
Ynot: dependent types for imperative programs. In Proceeding of the 13th ACM SIGPLAN
international conference on Functional programming, ICFP 2008, Victoria, BC, Canada,
September 20-28, 2008, pages 229–240, 2008. doi:10.1145/1411204.1411237.

43 Aleksandar Nanevski, J. Gregory Morrisett, and Lars Birkedal. Hoare type theory, poly-
morphism and separation. J. Funct. Program., 18(5-6):865–911, 2008. doi:10.1017/
S0956796808006953.

44 Ulf Norell. Dependently typed programming in agda. In Andrew Kennedy and Amal Ahmed,
editors, Proceedings of TLDI’09: 2009 ACM SIGPLAN International Workshop on Types in
Languages Design and Implementation, Savannah, GA, USA, January 24, 2009, pages 1–2.
ACM, 2009. doi:10.1145/1481861.1481862.

45 Peter W. O’Hearn. Separation logic. Commun. ACM, 62(2):86–95, 2019. doi:10.1145/
3211968.

ECOOP 2020

https://doi.org/10.1007/978-3-642-31057-7_9
https://doi.org/10.1007/978-3-642-31057-7_9
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/2364527.2364536
https://doi.org/10.1145/2818302.2818306
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1017/S0956796803004829
https://doi.org/10.1145/2541568.2541574
https://doi.org/10.1145/2541568.2541574
https://doi.org/10.1145/3122955.3122956
https://doi.org/10.1145/1411204.1411237
https://doi.org/10.1017/S0956796808006953
https://doi.org/10.1017/S0956796808006953
https://doi.org/10.1145/1481861.1481862
https://doi.org/10.1145/3211968
https://doi.org/10.1145/3211968

20:30 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

46 Dominic A. Orchard and Tomas Petricek. Embedding effect systems in haskell. In Wouter
Swierstra, editor, Proceedings of the 2014 ACM SIGPLAN symposium on Haskell, Gothenburg,
Sweden, September 4-5, 2014, pages 13–24. ACM, 2014. doi:10.1145/2633357.2633368.

47 Johan Östlund and Tobias Wrigstad. Multiple aggregate entry points for ownership types. In
James Noble, editor, ECOOP 2012 - Object-Oriented Programming - 26th European Conference,
Beijing, China, June 11-16, 2012. Proceedings, volume 7313 of Lecture Notes in Computer
Science, pages 156–180. Springer, 2012. doi:10.1007/978-3-642-31057-7_8.

48 Jennifer Paykin. Linear/non-Linear Types for Embedded Domain-Specific Languages. PhD
thesis, University of Pennsylvania, 2018. Publicly Accessible Penn Dissertations. 2752. URL:
https://repository.upenn.edu/edissertations/2752.

49 Jennifer Paykin and Steve Zdancewic. The linearity monad. In Proceedings of the 10th ACM
SIGPLAN International Symposium on Haskell, Oxford, United Kingdom, September 7-8,
2017, pages 117–132, 2017. doi:10.1145/3122955.3122965.

50 Gordon D. Plotkin and Matija Pretnar. Handlers of algebraic effects. In Giuseppe Castagna,
editor, Programming Languages and Systems, 18th European Symposium on Programming,
ESOP 2009, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, volume 5502 of Lecture
Notes in Computer Science, pages 80–94. Springer, 2009. doi:10.1007/978-3-642-00590-9_7.

51 Jon Postel. Transmission control protocol. RFC, 793:1–91, 1981. doi:10.17487/RFC0793.
52 Arjen Rouvoet, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser. Intrinsically-typed

definitional interpreters for linear, session-typed languages. In Jasmin Blanchette and Catalin
Hritcu, editors, Proceedings of the 9th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, pages 284–298.
ACM, 2020. doi:10.1145/3372885.3373818.

53 Michele Sevegnani and Muffy Calder. Bigrapher: Rewriting and analysis engine for bi-
graphs. In Computer Aided Verification - 28th International Conference, CAV 2016,
Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II, pages 494–501, 2016. doi:
10.1007/978-3-319-41540-6_27.

54 Michele Sevegnani, Milan Kabác, Muffy Calder, and Julie A. McCann. Modelling and
verification of large-scale sensor network infrastructures. In 23rd International Conference on
Engineering of Complex Computer Systems, ICECCS 2018, Melbourne, Australia, December
12-14, 2018, pages 71–81, 2018. doi:10.1109/ICECCS2018.2018.00016.

55 Rui Shi and Hongwei Xi. A linear type system for multicore programming in ATS. Sci.
Comput. Program., 78(8):1176–1192, 2013. doi:10.1016/j.scico.2012.09.005.

56 Robert E. Strom. Mechanisms for compile-time enforcement of security. In Conference Record
of the Tenth Annual ACM Symposium on Principles of Programming Languages, Austin, Texas,
USA, January 1983, pages 276–284, 1983. doi:10.1145/567067.567093.

57 Nikhil Swamy, Juan Chen, and Ravi Chugh. Enforcing stateful authorization and information
flow policies in fine. In Andrew D. Gordon, editor, Programming Languages and Systems,
19th European Symposium on Programming, ESOP 2010, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28,
2010. Proceedings, volume 6012 of Lecture Notes in Computer Science, pages 529–549. Springer,
2010. doi:10.1007/978-3-642-11957-6_28.

58 Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and
Jean Yang. Secure distributed programming with value-dependent types. J. Funct. Program.,
23(4):402–451, 2013. doi:10.1017/S0956796813000142.

59 Nikhil Swamy, Joel Weinberger, Cole Schlesinger, Juan Chen, and Benjamin Livshits. Ver-
ifying higher-order programs with the dijkstra monad. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19,
2013, pages 387–398, 2013. doi:10.1145/2491956.2491978.

https://doi.org/10.1145/2633357.2633368
https://doi.org/10.1007/978-3-642-31057-7_8
https://repository.upenn.edu/edissertations/2752
https://doi.org/10.1145/3122955.3122965
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.17487/RFC0793
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1007/978-3-319-41540-6_27
https://doi.org/10.1007/978-3-319-41540-6_27
https://doi.org/10.1109/ICECCS2018.2018.00016
https://doi.org/10.1016/j.scico.2012.09.005
https://doi.org/10.1145/567067.567093
https://doi.org/10.1007/978-3-642-11957-6_28
https://doi.org/10.1017/S0956796813000142
https://doi.org/10.1145/2491956.2491978

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:31

60 Wouter Swierstra. A hoare logic for the state monad. In Theorem Proving in Higher Order
Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009.
Proceedings, pages 440–451, 2009. doi:10.1007/978-3-642-03359-9_30.

61 Bernardo Toninho and Nobuko Yoshida. Certifying data in multiparty session types. J. Log.
Algebraic Methods Program., 90:61–83, 2017. doi:10.1016/j.jlamp.2016.11.005.

62 Jesse A. Tov and Riccardo Pucella. Practical affine types. In Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin,
TX, USA, January 26-28, 2011, pages 447–458, 2011. doi:10.1145/1926385.1926436.

63 Philip Wadler. Linear types can change the world! In Manfred Broy, editor, Programming
concepts and methods: Proceedings of the IFIP Working Group 2.2, 2.3 Working Conference
on Programming Concepts and Methods, Sea of Galilee, Israel, 2-5 April, 1990, page 561.
North-Holland, 1990.

64 Philip Wadler. Is there a use for linear logic? In Charles Consel and Olivier Danvy,
editors, Proceedings of the Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, PEPM’91, Yale University, New Haven, Connecticut, USA, June 17-19, 1991,
pages 255–273. ACM, 1991. doi:10.1145/115865.115894.

65 David Walker. Advanced Topic in Types and Programming Languages, chapter Substructural
Type Systems, pages 3–43. The MIT Press, 2004.

66 Stephanie Weirich, Antoine Voizard, Pedro Henrique Avezedo de Amorim, and Richard A.
Eisenberg. A specification for dependent types in haskell. PACMPL, 1(ICFP):31:1–31:29,
2017. doi:10.1145/3110275.

ECOOP 2020

https://doi.org/10.1007/978-3-642-03359-9_30
https://doi.org/10.1016/j.jlamp.2016.11.005
https://doi.org/10.1145/1926385.1926436
https://doi.org/10.1145/115865.115894
https://doi.org/10.1145/3110275

Data Consistency in Transactional Storage
Systems: A Centralised Semantics
Shale Xiong1

Department of Computing, Imperial College London, United Kingdom
shale.xiong14@ic.ac.uk

Andrea Cerone2

Department of Computing, Imperial College London, United Kingdom
andrea.cerone@ic.ac.uk

Azalea Raad
MPI-SWS, Kaiserslautern, Germany
azalea@mpi-sws.org

Philippa Gardner
Department of Computing, Imperial College London, United Kingdom
p.gardner@ic.ac.uk

Abstract
We introduce an interleaving operational semantics for describing the client-observable behaviour
of atomic transactions on distributed key-value stores. Our semantics builds on abstract states
comprising centralised, global key-value stores and partial client views. Using our abstract states,
we present operational definitions of well-known consistency models in the literature, and prove
them to be equivalent to their existing declarative definitions using abstract executions. We explore
two applications of our operational framework:
1. verifying that the COPS replicated database and the Clock-SI partitioned database satisfy their

consistency models using trace refinement, and
2. proving invariant properties of client programs.

2012 ACM Subject Classification Theory of computation → Operational semantics

Keywords and phrases Operational Semantics, Consistency Models, Transactions, Distributed
Key-value Stores

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.21

Funding Shale Xiong: The Department of Computing, Imperial College London, and EPSRC
Fellowship VeTSpec: Verified Trustworthy Software Specification (EP/R034567/1)
Andrea Cerone: EPSRC Programme Grant REMS: Rigorous Engineering for Mainstream Systems
(EP/K008528/1), and EPSRC Fellowship VeTSpec: Verified Trustworthy Software Specification
(EP/R034567/1)
Azalea Raad: ERC Horizon 2020 Consolidator Grant “RustBelt” (grant agreement no. 683289)
Philippa Gardner : EPSRC Programme Grant REMS: Rigorous Engineering for Mainstream Systems
(EP/K008528/1), and EPSRC Fellowship VeTSpec: Verified Trustworthy Software Specification
(EP/R034567/1)

1 Introduction

Transactions are the de facto synchronisation mechanism in modern distributed databases.
To achieve scalability and performance, distributed databases often use weak transactional
consistency guarantees known as consistency models. Many consistency models were originally

1 Shale Xiong has moved to Arm Research, shale.xiong@arm.com.
2 Andrea Cerone has moved to Football Radar, andrea.cerone@footballradar.com.

© Shale Xiong, Andrea Cerone, Azalea Raad, and Philippa Gardner;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 21; pp. 21:1–21:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shale.xiong14@ic.ac.uk
mailto:andrea.cerone@ic.ac.uk
mailto:azalea@mpi-sws.org
mailto:p.gardner@ic.ac.uk
https://doi.org/10.4230/LIPIcs.ECOOP.2020.21
shale.xiong@arm.com
andrea.cerone@footballradar.com
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Data Consistency in Transactional Storage Systems: A Centralised Semantics

invented by engineers using (some quite informal) definitions specific to particular real-world
reference implementations, e.g. [3, 4, 6, 8, 21, 33, 38, 42]. More recently, general definitions
of consistency model have been defined independently of particular implementations, either
declaratively using execution graphs [1, 9] or operationally using abstract states or execution
graphs [16, 27, 35]. Our challenge is to define a general semantics for weak consistency
models with which we can both verify reference implementations and analyse the behaviour
of client programs with respect to a particular consistency model.

The declarative approach for defining consistency models using execution graphs has
been substantially studied [1, 9, 11, 12, 14]. In such graphs, nodes describe the read-write
sets of atomic transactions and edges describe the known dependencies between transactions.
They capture different consistency models by:
1. constructing candidate executions of the whole program comprising transactions in which

reads may contain arbitrary values; and
2. applying the consistency-model axioms to rule out candidate executions deemed invalid

by the axioms.
Such axioms may state, for example, that every read is validated by a write that has written
the read value. The most well-known execution graphs are dependency graphs [1] and abstract
executions [9, 11]. Dependency graphs tend to be used to analyse client programs, e.g. Fekete
et al. [23] derived a static analysis checker for a particular weak consistency model called
snapshot isolation; Bernardi and Gotsman [7] developed a static analysis checker for several
weak consistency models assuming the so-called snapshot property3; and Beillahi et al. [5]
developed a tool based on Lipton’s reduction theory [31] for checking robustness4 properties
against snapshot isolation. Abstract executions, on the other hand, tend to be used to verify
implementation protocols, e.g. abstract executions are the standard by which many system
engineers demonstrate that their protocols satisfy certain consistency models [3, 33, 42].
Execution graphs provide little information about how the state evolves throughout the
execution of a program, and therefore seem unsuitable for invariant-based program analysis
of client programs.

The operational approach for defining weak consistency models has been much less
studied. Crooks et al. [16] introduced a trace semantics over abstract centralised kv-stores,
abstracting the behaviour of the underlying concrete distributed kv-stores, in order to
capture the consistency models associated with ANSI/SQL isolation levels. They describe
the equivalence of several implementation-specific definitions of consistency model in the
literature, but their reliance on the total transaction order suggests that it will be difficult to
adapt their work to reason about client programs. Kaki et al. [27] provide an operational
semantics over an abstract centralised store, again focusing on ANSI/SQL isolation levels.
They develop a program logic and prototype tool for reasoning about client programs, but
cannot express fundamental weak consistency models. Nagar and Jagannathan [35] introduce
an operational semantics based on abstract-execution graphs, focussing on consistency models
for distributed transactions. They provide robustness results for client programs using model
checking, but their analysis is indirect in that they move back and forth between abstract
executions and dependency graphs. All these approaches have their merits. However, none
provide a direct state-based operational semantics for distributed atomic transactions with
which to verify distributed implementations and analyse client programs using the usual
weak consistency models; see Section 1.1 for further details on this related work.

3 The snapshot property, also known as atomic visibility, states that transactional reads appear to read
from an atomic snapshot of the database and transactional writes appear to commit atomically, i.e.
intermediate transactional states are not observable by clients, even if the underlying distributed protocol
has a more fine-grained behaviour.

4 A particular program (or set of programs) behaves as if the consistency model is serialisability

S. Xiong, A. Cerone, A. Raad, and P. Gardner 21:3

We introduce an interleaving operational semantics for describing the client-observable
behaviour of atomic transactions updating distributed key-value stores (Section 3). Our
semantics is based on a notion of abstract states comprising a centralised key-value store
(kv-store) with multi-versioning and a client view. Kv-stores are global in that they record all
versions of a key; by contrast, client views are partial in that a client may see only a subset
of the versions. Our client views are partly inspired by the views in the “promising” C11
semantics [28]. An execution step depends simply on the abstract state, the read-write set
of the atomic transaction, and an execution test, determining if a client with a given view
can commit a transaction. Different execution tests give rise to different consistency models,
which we show to be equivalent to well-known declarative definitions of consistency models
based on abstract executions (reported here and proven in [46]) and thus those based on
dependency graphs [14]. Our execution tests are analogous to the commit tests in [16], except
that [16] requires analysing the whole trace rather than just the current abstract state.

As in [16, 27, 35], we assume that transactions satisfy the last-write-wins resolution policy,
a policy widely used in many real-world distributed kv-stores. This means that when a
transaction observes several updates to a key, the atomic snapshot contains the value written
by the last update. We also assume that our transactions satisfy the snapshot property. This
is a common assumption in distributed transactional databases, e.g. in online shopping
applications, a client only sees one snapshot of the database and only has knowledge that
their transaction has successfully committed. The work in [35] also assumes the snapshot
property, whereas [16] and [27] do not as their focus is on ANSI/SQL isolation levels [6]. Our
execution tests uniformly capture many well-known consistency models (Section 4) including
causal consistency (CC) [9, 33, 40], parallel snapshot isolation (PSI) [3, 42], snapshot isolation
(SI) [6] and serialisability (SER) [37]. The work in [35] is as expressive as our work here; by
contrast, [16] is more expressive, capturing e.g. the read committed consistency model [6],
while [27] is less expressive, capturing SI but not PSI.

Using our operational semantics, we verify that database protocols satisfy their expected
consistency models and prove invariant properties of client programs under such consistency
models (Section 5). Specifically, we prove the correctness of two database protocols using our
general definitions: the COPS protocol for fully replicated kv-stores [33] which satisfies CC
(reported in Section 5.1 and proved in [46]), and the Clock-SI protocol for partitioned kv-stores
[21] which satisfies SI (given in [46]). These results had been previously shown for specific
consistency definitions devised for the specific reference implementations under consideration.
We also prove invariant properties of library clients (Section 5.2): the robustness of the
single-counter library against PSI, the robustness of the multi-counter library and the banking
library [2] against SI, and the mutual exclusion of a lock library against PSI. We believe our
robustness results are the first to take into account client sessions: with sessions, we show
that multiple counters are not robust against PSI. Interestingly, without sessions, Bernardi
and Gotsman [7] show that multiple counters are robust against PSI using static-analysis
techniques which are known not to be applicable to sessions. These results indicate that
our operational semantics provides an interesting abstract interface between distributed
databases and clients. This was an important goal for us, resonating with recent work that
does just this for standard shared-memory concurrency [17, 19, 25, 36].

1.1 Related Work
Operational semantics for defining weak consistency models for distributed atomic trans-
actions have hardly been studied. To our knowledge, the key papers are [16, 35, 27]. We
also mention the log-based semantics of Koskinen and Parkinson [29], which only focuses on
serialisability but has some resonance with our work.

ECOOP 2020

21:4 Data Consistency in Transactional Storage Systems: A Centralised Semantics

Crooks et al. [16] proposed a state-based trace semantics for describing weak consistency
models that employs concepts similar to our client views and execution tests, called read states
and commit tests respectively. In their semantics, a one-step trace reduction is determined
by the entire previous history of the trace. By contrast, our reduction step only depends on
the current kv-store and client view. They capture more consistency models than us, e.g.
read committed, because they do not assume the snapshot property due to their focus on
ANSI/SQL isolation levels. They use their semantics to demonstrate that several definitions
of snapshot isolation given in the literature [6, 18, 22] in fact collapse into one. They do not
verify protocol implementations and do not prove invariant properties of client programs.
We believe [16] can be used to verify implementations. We believe it might be difficult to
use [16] to prove invariant properties of client programs since their commit tests use total
traces. In contrast, our execution tests use partial client views.

Nagar and Jagannathan [35] proposed a fine-grained interleaving operational semantics
on abstract executions, and provide robustness results for client programs using a prototype
model-checking tool. They do this by converting abstract executions to dependency graphs
and checking the violation of robustness on the dependency graphs. We have two concerns
with this approach. First, despite assuming atomic visibility of transactions, they present a
fine-grained semantics at the level of the individual transactional operations rather than whole
transactions, in order to capture eventual consistency [9]. In contrast, our semantics is coarse-
grained in that the interleaving is at the level of whole transactions, and we instead capture
read atomic [4], a variant of eventual consistency [9] for atomic transactions. Second, all the
literature that performs client analysis on abstract executions [7, 12, 13, 14, 35], including
the approach of Nagar and Jagannathan, achieves this indirectly by over-approximating the
consistency-model specifications using dependency graphs. It is unknown how to do this
precisely [14]. In contrast, we prove robustness results directly by analysing the structure
of kv-stores, without over-approximation. We also give precise reasoning about the mutual
exclusion of locks, which we believe will be difficult to prove using abstract executions.

Kaki et al. [27] proposed an operational semantics for SQL transactions over an abstract,
centralised, single-version store, with consistency models given by the standard ANSI/SQL
isolation levels [6]. They develop a program logic and prototype tool for reasoning about client
programs, and so can capture invariant properties of the state. They can express SI, but they
do not capture the weaker consistency models such as PSI which is an important consistency
model for distributed databases. Kaki et al. have explored these weaker consistency models
in follow-on work [26], but they focus on an axiomatic semantics for abstract executions over
CRDTs not an operational semantics over kv-stores.

Finally, Koskinen and Parkinson [29] proposed a log-based semantics for verifying imple-
mentations that satisfy serialisability, based not only on kv-stores but also on other ADTs.
Their work comprises a centralised global log and partial client-local logs, similar to our
kv-stores and views. Their model focuses on serialisability. There is no evidence that it can
be easily extended to tackle weaker consistency models.

2 Overview

We introduce our centralised operational semantics for describing the client-observable beha-
viours of atomic transactions updating distributed kv-stores. We show that our interleaving
semantics provides an abstract interface for both verifying distributed protocols and proving
invariant properties of client programs.

S. Xiong, A. Cerone, A. Raad, and P. Gardner 21:5

k 7→ 0
t0

∅

(a) Initial kv-
store.

k 7→ 0
t0

{t1}
1

t1

∅

(b) the kv-store
after t1.

k 7→ 0
t0

{t1}
1

t1

∅

(c) A view of cl2
with the initial-
isation version.

k 7→ 0
t0

{t1}
1

t1

∅

(d) A view of
cl2 with both ver-
sions.

k 7→ 0
t0

{t1, t2}
1

t1

∅
1

t2

∅

(e) lost update: given
the view in Figure 1c,
the kv-store after t2.

Figure 1 Lost update anomaly: single counter.

Example. We use a simple transactional library, Counter(k), to introduce our operational
semantics. Clients of this library can manipulate the value of counter k via two transactional
operations: Inc (k) , [x := [k] ; [k] := x+1] and Read (k) , [x := [k]]. The x := [k] reads the
value of k in local variable x; and [k] := x+1 writes x+1 to k. The code of each operation is
wrapped in square brackets, denoting a transaction that executes atomically.

Consider a replicated database where a client only interacts with one replica. For such
a database, the behaviour of the atomic transactions is subtle, depending heavily on the
particular consistency model under consideration. Consider the client program PLU below:

PLU , cl1 : Inc (k) || cl2 : Inc (k)

where we assume that clients cl1 and cl2 work on different replicas and, for simplicity,
each replica has a kv-store with just one key k. Initially, key k holds value 0 in all replicas.
Intuitively, as transactions are executed atomically, after both calls to Inc (k) have terminated,
the counter should hold value 2. Indeed, this is the only outcome allowed under the
serialisability (SER) consistency model, where transactions appear to execute in a sequential
order, one after another. The implementation of SER in distributed kv-stores is known
to come at a significant performance cost. Implementers are, therefore, content with
weaker consistency models [3, 6, 8, 21, 32, 33, 38, 42]. For example, if replicas provide no
synchronisation mechanism for transactions, it is possible for both clients to read the same
initial value 0 for k at their distinct replicas, update it to 1, and eventually propagate their
updates of k to other replicas. Thus, both replicas remain unchanged with value 1 for k.
This weak behaviour is known as the lost update anomaly, which is allowed under causal
consistency (CC), but not under parallel snapshot isolation (PSI) and snapshot isolation (SI).

Centralised Operational Semantics. Our operational semantics provides transitions over
abstract states, comprising a centralised, multi-versioned kv-store, which is global in that
it records all the versions written by all its clients, and a client view, which is partial in
that it records only those versions in the kv-store observed by a client. Each transition
of our operational semantics either updates a client-local variable stack using a primitive
command, or updates the kv-store and client view using an atomic transaction. The atomic
transactions are subject to an execution test, which analyses the state to determine if the
associated update is allowed under the given consistency model.

We show how the lost update anomaly in PLU is modelled in our operational semantics. A
centralised kv-store provides an abstraction of the real-world replicated key-value store of our
example. It is a function mapping keys to a version list, recording all the values written to
the key together with information about the transactions that accessed it. The total order of
versions on a key k is always known due to the resolution policy of the distributed database,
for example last-write-wins. In the PLU example, our initial centralised kv-store comprises a
single key k with one initialisation version (0, t0, ∅). This version represents the initialisations

ECOOP 2020

21:6 Data Consistency in Transactional Storage Systems: A Centralised Semantics

in both replicas where k holds value 0, the version writer is the initialising transaction t0
(this version was written by t0), and the version reader set is empty (no transaction has read
this version). Figure 1a depicts this initial centralised kv-store, with the version represented
as a box sub-divided in three sections: the value 0, the writer t0, and the reader set ∅.

Suppose that cl1 first invokes Inc (k) on Figure 1a. It does this by choosing a fresh
transaction identifier t1, then reading the initial version of k with value 0 and writing a new
value 1 for k. The resulting kv-store is depicted in Figure 1b, where the initial version of
k has been updated to reflect that it has been read by t1 and a new version with value 1
is installed at the end of the list. Now suppose that client cl2 invokes Inc (k) on Figure 1b.
As there are now two versions available for k, we must determine the version from which
cl2 fetches its value. This is where the partial client view comes into play. Intuitively, a
view of client cl2 comprises those versions in the kv-store that are visible to cl2, i.e. those
that can be read by cl2. If more than one version is visible, then the newest (right-most)
version is selected, modelling the last-write-wins resolution policy used by many distributed
key-value stores. In our example, there are two candidate views for cl2 when running Inc (k)
on Figure 1b: one containing only the initial version of k as depicted in Figure 1c, and
the other containing both versions of k as depicted in Figure 1d5. Given the cl2 view in
Figure 1c, client cl2 chooses a fresh transaction identifier t2, reads the initial value 0 and
writes a new version with value 1, as depicted in Figure 1e. Such a kv-store does not contain
a version with value 2, despite two increments on k, producing the lost update anomaly. Had
we used the the cl2 view in Figure 1d instead, client cl2 would have read the newest value 1
and written a new version with value 2.

The lost update anomaly is allowed under the CC consistency model, and disallowed under
SER, SI and PSI. To distinguish these cases, we use an execution test which directly restricts
the updates that are possible at the point where the transaction commits. A simple way of
doing this is to require that a client writing a transaction to k have a view containing all
versions of k available in the global state. This prevents the situation where the view of cl2
is that given in Figure 1c. This execution test corresponds to what is known in the literature
as write-conflict freedom [11], which ensures that at most one concurrent transaction can
write to a key at any one time.

The situation becomes more complicated when the library contains multiple counters
where each client can read and increment several counters in one session. For instance,
consider the following client program:

PLF , cl1 :
[
x := [k1] ; [k1] := x + 1

]
;
[
y := [k2] ; [k2] := y + 1

]
|| cl2 :

[
x := [k1] ; y := [k2]

]
|| cl3 :

[
x := [k1] ; y := [k2]

]
.

where, for simplicity, the kv-store has just the keys k1 and k2 (Figure 2a). Suppose that cl1
executes both transactions first, writing 1 to k1 and k2 using fresh transaction identifiers t1
and t′1, respectively. This results in k1 and k2 having two versions with values 0 and 1 each,
as illustrated in Figure 2b. Client cl2 next executes its transaction, identified by t2, using a
view that contains both versions of k1 but only the initial version of k2. This means that cl2
reads 1 for k1 and 0 for k2, i.e. cl2 observes the increment of k1 happening before that of k2.
Symmetrically, cl3 executes its transaction, identified by t3, using a view that contains both
versions for k2 but only the initial version of k1. As such, cl3 reads 0 for k1 and 1 for k2, i.e.
cl3 observes the increment of k2 happening before that of k1. This behaviour is known as
the long fork anomaly (Figure 2b).

5 As we explain in Section 3.1, we always require the client view to include the initial version of each key.

S. Xiong, A. Cerone, A. Raad, and P. Gardner 21:7

k1 7→ 0
t0

∅
k2 7→ 0

t0

∅

(a) Initial kv-store.

k1 7→ 0
t0

{t1, t3}
1

t1

{t2}
k2 7→ 0

t0

{t′1, t2}
1

t′1

{t3}

(b) Transactions t2 and t3 observe the update to k1 and k2
in different order (long fork anomaly).

t0

t1

t3

(c) An illustration of dependencies between transactions with respect to the time line of the starts and
commits of these transactions (the dashed lines can be stretched).

Figure 2 Long fork anomaly: multiple counters.

The long fork anomaly is disallowed under strong models such as SER and SI, but is
allowed under weaker models such as PSI and CC. To capture such consistency models and
disallow the long fork anomaly of PLF, we must strengthen the execution test associated with
the kv-store. For SER, we simply strengthen the execution test by ensuring that a client can
execute a transaction only if its view contains all versions available in the global state. For
SI, the execution test is more subtle, requiring that a client view be a set of versions, i.e.
closed with respect to the commit order of transactions. This means that if a client view
includes a version written by a transaction t, then it must include all versions written by
transactions that committed before t. Our kv-stores do not contain all the information about
the commit order. However, we have enough information to determine the following commit
order between transactions:
1. if a transaction, e.g. t3 in Figure 2, reads a version written by another transaction, e.g.

t0, then it must start after the commit of the transaction that wrote the version, e.g. t3
must start after the commit of t0 (Figure 2c);

2. if a transaction writes a newer version of a key, e.g. t1 for k1, then it must commit after
the transactions that wrote the previous versions of the key,e.g. t0 (Figure 2c); and

3. if a transaction reads an older version of a key, e.g. t3 for k1, it must start before the
commit of all transactions that write the newer versions of k, e.g. t1 (Figure 2c).

In Section 4, we formally define the execution tests associated with several consistency
models on kv-stores and client views. In [46], we show the equivalence of our operational
definitions of consistency models and the existing declarative definitions based on abstract
executions [11], and hence those based on dependency graphs [1].

Verifying Implementation Protocols. The first application of our operational semantics
is to show that implementation protocols of distributed key-value stores satisfy certain
consistency models. We do this by representing the implementation protocol using our
centralised operational semantics: our abstract states provide a faithful abstraction of
replicated and partitioned databases, and our execution tests provide a faithful abstraction of
the synchronisation mechanisms enforced by these databases when committing a transaction.
We verify the correctness of our representation using trace refinement. Thus, a distributed
protocol satisfies the particular consistency model associated with the particular execution
test of our representation. We demonstrate that the COPS protocol [33] for implementing
a replicated database satisfies our definition of CC (reported in Section 5.1 and proved in
[46]), and the Clock-SI protocol [21] for implementing a partitioned database satisfies our
definition of SI (given in [46]). Since our definitions of consistency model are equivalent

ECOOP 2020

21:8 Data Consistency in Transactional Storage Systems: A Centralised Semantics

to those in the literature [46], we have demonstrated that COPS and Clock-SI satisfy the
accepted general definitions of the respective consistency models. This contrasts with the
previous results in [33] and [21] which demonstrated that these protocols satisfy specific
consistency models defined for those particular implementations.

Proving Invariant Properties of Client Programs. The second application of our opera-
tional semantics is to prove invariant properties for transactional libraries (Section 5.2). One
well-known property is robustness. A library is robust against a (weak) consistency model M if,
for all its client programs P and all kv-stores K, if K is obtained by executing P under M, then
K can also be obtained under SER, i.e. library clients have no observable weak behaviours.
We prove the robustness of the single counter library against PSI, and the robustness of
a multi-counter library and the banking library of [2] against SI. We prove robustness
against SI by proving general invariants that guarantee robustness against a new model we
propose, WSI, which lies between PSI and SI. As we discuss in Section 5.2, although existing
techniques [35, 12, 7] in the literature can verify such robustness properties, they typically do
so by examining full traces. By contrast, we establish invariant properties at each execution
step of our operational semantics, thus allowing a simpler, more compositional proof.

We also demonstrate the use of our operational semantics to prove library-specific invariant
properties. In particular, we show that a lock library is correct against PSI, in that it satisfies
the mutual exclusion guarantee, even though it is not robust against PSI. To do this, we
encode this guarantee as an invariant of the lock library, establishing the invariant at each
transition step of the operational semantics. By contrast, establishing such library-specific
properties using the existing techniques is more difficult. This is because existing techniques
[35, 12] do not directly record the library state; rather, they record full execution traces,
making them less amenable for reasoning about such properties.

3 Operational Model

We define an interleaving operational semantics for atomic transactions (Section 3.2) on
abstract states comprising global kv-stores and partial client views (Section 3.1). Our
semantics is parametrised by an execution test which induces a consistency model (Section 4).

3.1 Abstract States: Key-Value Stores and Client Views
The abstract states of our operational semantics comprise a global, centralised kv-store and
a partial client view. A kv-store comprises key-indexed lists of versions which record the
history of the key with values and meta-data of the transactions that accessed it: the writer
and readers.

We assume a countably infinite set of client identifiers6, ClientID 3 cl. The set of
transaction identifiers, TxID 3 t, is defined by TxID , {t0}] {tncl | cl ∈ ClientID ∧ n ≥ 0},
where t0 denotes the initialisation transaction and tncl identifies a transaction committed
by client cl with n determining the client session order: SO , {(t, t′) | ∃cl, n,m. t = tncl ∧
t′ = tmcl ∧n < m}. Subsets of TxID are ranged over by T, T ′, · · ·. We let TxID0 , TxID\{t0}.

I Definition 1 (Kv-stores). Assume a countably infinite set of keys, Key 3 k, and a countably
infinite set of values, Value 3 v, which includes the keys and an initialisation value v0. The
set of versions, Version 3 ν, is Version , Value × TxID × P(TxID0). A kv-store is a
function K : Key→ List (Version), where List (Version) 3 V is the set of lists of versions.

6 We use the notation A 3 a to denote that elements of A are ranged over by a and its variants a′, a1, · · ·.

S. Xiong, A. Cerone, A. Raad, and P. Gardner 21:9

Each version has the form ν=(v, t, T), where v is a value, the writer t identifies the
transaction that wrote v, and the reader set T identifies the transactions that read v. We
write val(ν), w(ν) and rs(ν) to project the components of ν. Given a kv-store K and a
transaction t, we write t ∈ K if t is either the writer or one of the readers of a version in K;
we write |K (k)| for the length of the version list K (k), and K (k, i) for the ith version of k in
kv-store K.

We assume that the version list of each key has an initialisation version carrying the
initialisation value v0, written by the initialisation transaction t0 with an initial empty reader
set. We focus on kv-stores whose consistency model satisfies the snapshot property, ensuring
that a transaction reads and writes at most one version for each key:

∀k, i, j. (rs(K (k, i)) ∩ rs(K (k, j)) 6= ∅ ∨ w(K (k, i)) = w(K (k, j)))⇒ i = j (snapshot)

This is a standard assumption for distributed databases, e.g. in [3, 4, 6, 8, 21, 33, 38, 42].
Finally, we assume that the kv-store agrees with the session order of clients, in that a client
cannot read a version of a key that has been written by a future transaction within the same
session, and the order in which versions are written by a client must agree with its session
order, i.e. for any k, i, j, t, t′:

t = w(K (k, i)) ∧ t′ ∈ rs(K (k, i))⇒ (t′, t) /∈ SO ? (wr-so)
t = w(K (k, i)) ∧ t′ = w(K (k, j)) ∧ i < j ⇒ (t′, t) /∈ SO ? (ww-so)

A kv-store is well-formed if it satisfies these assumptions. Henceforth, we assume kv-stores
are well-formed, and let KVS denote the set of well-formed kv-stores.

A global kv-store provides an abstract centralised description of updates associated with
distributed kv-stores that is complete in that no update has been lost in the description. By
contrast, in both replicated and partitioned distributed databases, a client may have incom-
plete information about updates distributed between machines. We model this incomplete
information by defining a client view, or just view, of the kv-store which provides a partial
record of the updates observed by a client. We require that a client view be atomic in that
it can see either all or none of the updates of a transaction. This client view was partly
inspired by the views of the “promising” C11 operational semantics [28].

I Definition 2 (Views). A view of a kv-store K ∈ KVS is a function u ∈ Views (K) ,
Key→ P(N) such that, for all i, i′, k, k′:

0 ∈ u (k) ∧ (i ∈ u (k)⇒ 0 ≤ i < |K (k)|) (in-range)
i ∈ u (k) ∧ w(K (k, i))=w(K (k′, i′))⇒ i′ ∈ u (k′) (atomic)

Given two views u, u′ ∈ Views (K), the order between them is defined by u v u′ def⇔ ∀k ∈
dom(K). u (k) ⊆ u′(k). The set of views is Views ,

⋃
K∈KVS Views (K). The initial view,

u0, is defined by u0(k) = {0} for every k ∈ Key.

Our operational semantics updates configurations, which are pairs comprising a kv-store
and a function describing the views of a finite set of clients.

I Definition 3 (Configurations). A configuration, Γ ∈ Conf, is a pair (K,U) with K ∈ KVS

and U : ClientID fin−⇀ Views (K). The set of initial configurations, Conf0 ⊆ Conf, contains
configurations of the form (K0,U0), where K0 is the initial kv-store defined by K0(k) ,
(v0, t0, ∅) for all k ∈ Key.

ECOOP 2020

21:10 Data Consistency in Transactional Storage Systems: A Centralised Semantics

Given a configuration (K,U) and a client cl, if u = U (cl) is defined then, for each k,
the configuration determines the sub-list of versions in K that cl sees. If i, j ∈ u (k) and
i < j, then cl sees the values carried by versions K (k, i) and K (k, j), and it also sees that
the version K (k, j) is more up-to-date than K (k, i). It is therefore possible to associate a
snapshot with the view u, which identifies, for each key k, the last version included in the
view. This definition assumes that the database satisfies the last-write-wins resolution policy,
employed by many distributed key-value stores. However, our formalism can be adapted
straightforwardly to capture other resolution policies.

I Definition 4 (View Snapshots). Given K ∈ KVS and u ∈ Views (K), the view snapshot of
u in K is a function, snapshot (K, u) : Key→ Value, defined by:

snapshot (K, u) , λk. val(K (k,max<(u (k))))

where max<(u (k)) is the maximum element in u (k) under the natural order < on N.

When clear from the context, we simply refer to a view snapshot as a snapshot.

3.2 Operational Semantics
Core Programming Language. We assume a language of expressions built from values v
and program variables x, defined by: E ::= v | x | E+E | · · ·. The evaluation JEKs of expression
E is parametric in the client-local stack s: JvKs , v JxKs , s(x) JE1+E2Ks , JE1Ks+JE2Ks · · ·.
A program P comprises a finite number of clients, where each client is associated with a
unique identifier cl ∈ ClientID, and executes a sequential command C, defined by:

C ::= skip |Cp |
[
T
]
|C ; C |C + C |C ∗ Cp ::= x := E |assume (E)

T ::= skip |Tp |T ; T |T + T |T ∗ Tp ::= Cp |x := [E] | [E] := E

Sequential commands (C) comprise skip, primitive commands (Cp), atomic transactions
(
[
T
]
), and standard compound constructs: sequential composition (;), non-deterministic

choice (+) and iteration (∗). Primitive commands include variable assignment (x := E) and
assume statements (assume (E)) which can be used to encode conditionals. They are used for
computations based on client-local variables and can hence be invoked without restriction.
Transactional commands (T) comprises skip, primitive transactional commands (Tp), and
the standard compound constructs. Primitive transactional commands comprise primitive
commands as well as lookup (x := [E]) and mutation ([E] := E) used, respectively, to read
and write a single key to a kv-store, and can only be invoked within an atomic transaction.

A program P is a finite partial function from client identifiers to sequential commands.
For clarity, we often write C1 ‖ . . . ‖ Cn for a program with n clients identified by cl1 . . . cln,
with each client cli executing Ci. Each client cli is associated with a client-local stack,
si ∈ Stack , Var→ Value, mapping program variables (ranged over by x, y, · · ·) to values.

Transactional Semantics. In our operational semantics, transactions are executed atom-
ically. It is still possible for an implementation, e.g. COPS [33], to update the underlying
distributed kv-stores while the transaction is in progress. It just means that, given the
abstractions captured by our global kv-stores and partial client views, such an update is
modelled as an instantaneous atomic update. Intuitively, given a configuration Γ=(K,U),
when a client cl executes a transaction

[
T
]
, it performs the following steps:

S. Xiong, A. Cerone, A. Raad, and P. Gardner 21:11

TPrimitive
(s, σ)

Tp (s′, σ′) o = op (s, σ, Tp)
(s, σ,F), Tp (s′, σ′,F <C o), skip

F <C (R, k, v) ,

{
F ∪ {(R, k, v)} if ∀l, v′. (l, k, v′) /∈F
F otherwise

F <C (W, k, v) , (F\{(W, k, v′) | v′ ∈ Value})∪{(W, k, v)}
F <C ε , F

(s, σ) x:=E (s [x 7→ JEKs] , σ) (s, σ) assume(E) (s, σ) where JEKs 6= 0

(s, σ) x:=[E] (s [x 7→ σ (JEKs)] , σ) (s, σ) [E1]:=E2 (s, σ [JE1Ks 7→ JE2Ks])

op (s, σ, x := E) , ε op (s, σ, assume (E)) , ε
op (s, σ, x := [E]) , (R, JEKs, σ (JEKs)) op (s, σ, [E1] := E2) , (W, JE1Ks, JE2Ks)

Figure 3 The semantics of transactional commands.

1. it constructs an initial snapshot σ of K using its view U (cl) as described in Definition 4;
2. it executes T in isolation over σ accumulating the effects (the reads and writes) of executing

T; and
3. it commits T by incorporating these effects into K.

I Definition 5 (Transactional snapshots). A transactional snapshot, σ ∈ Snapshot , Key→
Value, is a function from keys to values.

When clear from the context, we simply refer to a transactional snapshot as a snapshot.
The rules for transactional commands (Figure 3) are defined using an arbitrary transac-

tional snapshot. The rules for sequential commands and programs (Figure 4) are defined
using a transactional snapshot given by a view snapshot. To capture the effects of executing
a transaction T on a snapshot σ of kv-store K, we identify a fingerprint of T on σ which
captures the first values T reads from σ, and the last values T writes to σ and intends to
commit to K. Execution of a transaction in a given configuration and variable stack may
result in more than one fingerprint due to non-determinism (non-deterministic choice).

I Definition 6 (Fingerprints). Let Op denote the set of read (R) and write (W) operations
defined by Op , {(l, k, v) | l ∈ {R, W} ∧ k ∈ Key ∧ v ∈ Value}. A fingerprint F is a set of
operations, F ⊆ Op, such that: ∀k ∈ Key, l ∈ {R, W} . (l, k, v1), (l, k, v2) ∈ F ⇒ v1 = v2.

A fingerprint contains at most one read operation and at most one write operation for a
given key. This reflects our assumption regarding transactions that satisfy the snapshot
property: reads are taken from a single snapshot of the kv-store; and only the last write of a
transaction to each key is committed to the kv-store.

The rule for primitive transactional commands, TPrimitive, is given in Figure 3. The
rules for the compound constructs are straightforward and given in [46]. The TPrimitive
rule updates the snapshot and the fingerprint of a transaction: the premise (s, σ)

Tp (s′, σ′)
describes how executing Tp affects the local state (the client stack and the snapshot) of
a transaction; and the premise o = op (s, σ, Tp) identifies the operation on the kv-store
associated with Tp, where the empty operation ε is used for those primitive commands that
do not contribute to the fingerprint.

The conclusion of TPrimitive uses the combination operator <C : P(Op)× (Op]{ε})→
P(Op), defined in Figure 3, to extend the fingerprint F accumulated with operation o

associated with Tp, as appropriate: it adds a read from k if F contains no entry for k, and it
always updates the write for k to F , removing previous writes to k.

ECOOP 2020

21:12 Data Consistency in Transactional Storage Systems: A Centralised Semantics

CPrimitive
s

Cp
s′

cl ` (K, u, s), Cp
(cl,ι)−−−→ET (K, u, s′), skip

s x:=E s [x 7→ JEKs]

s
assume(E)

s where JEKs 6= 0

CAtomicTrans
u v u′′ σ = snapshot (K, u′′) (s, σ, ∅), T ∗ (s′,_,F), skip canCommitET (K, u′′,F)

t ∈ NextTxID (cl,K) K′ = UpdateKV (K, u′′,F , t) vShiftET (K, u′′,K′, u′)

cl ` (K, u, s),
[
T
] (cl,u′′,F)−−−−−−→ET (K′, u′, s′), skip

PProg
u = U (cl) s = E (cl) C = P (cl) cl ` (K, u, s), C λ−→ET (K′, u′, s′), C′

` (K,U , E), P λ−→ET (K′,U [cl 7→ u′] , E [cl 7→ s′]), P [cl 7→ C′])

Figure 4 The semantics of sequential commands and programs.

Command and Program Semantics. We give the operational semantics of commands
and programs in Figure 4. The command semantics describes transitions of the form
cl ` (K, u, s), C λ−→ET (K′, u′, s′), C′ stating that, given the kv-store K, client view u and
stack s, a client cl may execute command C for one step, updating the kv-store to K′, the
stack to s′, the view to u′ and the command to its continuation C′. The label λ is either
of the form (cl, ι) denoting that cl executed a primitive command that required no access
to K, or (cl, u′′,F) denoting that cl committed an atomic transaction with final fingerprint
F under the view u′′. The semantics is parametric in the choice of the execution test ET,
which is used to generate the consistency model under which a transaction can execute. In
Section 4, we give several examples of execution tests for well-known consistency models. In
[46], we prove that the consistency models generated by our execution tests are equivalent to
their corresponding existing definitions using abstract executions.

The rules for compound constructs are straightforward and given in [46]. The rule for
primitive commands, CPrimitive, depends on the transition system

Cp ⊆ Stack× Stack
which describes how the primitive command Cp affects the stack. The CAtomicTrans rule
describes the execution of an atomic transaction under the execution test ET.

We explain the CAtomicTrans rule in detail. The first premise states that the current
view u of the executing command may be advanced to a newer view u′′ (see Definition 2).
Given the new view u′′, the transaction obtains a snapshot σ of the kv-store K, and executes
T locally to completion (skip), updating the stack to s′, while accumulating the fingerprint F ,
as described by the second and third premises of CAtomicTrans. Note that the resulting
snapshot is ignored as the effect of the transaction is recorded in the fingerprint F . The
canCommitET (K, u′′,F) premise ensures that, under the execution test ET, the final fingerprint
F of the transaction is compatible with the (original) kv-store K and the client view u′′,
and thus the transaction can commit. Observe that the canCommit check is parametric in
the execution test ET. This is because the conditions checked upon committing depend on
the consistency model under which the transaction is to commit. In Section 4, we define
canCommit for several execution tests associated with well-known consistency models.

Client cl is now ready to commit the transaction resulting in the kv-store K′ with the
client view u′′ shifting to a new view u′ and proceeds as follows:
1. it picks a fresh transaction identifier t ∈ NextTxID (cl,K);
2. computes the new kv-store K′ = UpdateKV(K, u′′,F , t; and
3. checks if the view shift is permitted under ET using vShiftET (K, u′′,K′, u′).

S. Xiong, A. Cerone, A. Raad, and P. Gardner 21:13

Note that as with canCommit, the vShift check is parametric in the execution test ET. This
is because the conditions checked for shifting the client view depend on the consistency
model. In Section 4 we define vShift for several execution tests associated with well-known
consistency models. The set NextTxID (cl,K) is given by: {tncl | ∀m. tmcl ∈ K ⇒ m < n}.
The function UpdateKV (K, u,F , t) describes how the fingerprint F of transaction t executed
under view u updates kv-store K: for each read (R, k, v) ∈ F , it adds t to the reader set of
the last version of k in u; for each write (W, k, v), it appends a new version (v, t, ∅) to K (k).
The function UpdateKV is well-formed, because a fingerprint contains at most one write
operation and one read operation for a given key (see [46] for the full details).

I Definition 7 (Transactional update). The function UpdateKV (K, u,F , t) is defined as:

UpdateKV (K, u, ∅, t) , K

UpdateKV (K, u, {(R, k, v)}] F , t) , let i = max<(u (k)) and (v, t′, T) = K (k, i) in
UpdateKV

(
K
[
k 7→ K (k)

[
i 7→ (v, t′, T] {t})

]]
, u,F , t

)
UpdateKV (K, u, {(W, k, v)}] F , t) , let K′ = K [k 7→ K (k) :: (v, t, ∅)] in UpdateKV

(
K′, u,F , t

)
where V [i 7→ ν] , ν0 :: · · · :: νi−1 :: ν :: νi+1 :: · · · :: νn for all version lists V = ν0 :: · · · :: νn and indexes
i : 0 ≤ i ≤ n.

The last rule, PProg (Figure 4), captures the execution of a program step using a client
environment, E ∈ CEnv, which is a function from client identifiers to stacks associating each
client with its stack. We assume that the domain of a client environment contains the domain
of the program throughout the execution: dom(P) ⊆ dom(E). Program transitions are simply
defined in terms of the transitions of their constituent client commands. This yields an
interleaving semantics for transactions of different clients: a client executes a transaction in
an atomic step without interference from the other clients.

4 Consistency Models Using Execution Tests on Kv-stores

We define what it means for a kv-store to be in a consistent state. Many different consistency
models for distributed databases have been proposed in the literature, e.g. [3, 6, 8, 21, 32, 33,
38, 42], which capture different trade-offs between performance and application correctness.
Example consistency models range from serialisability, a strong model which only allows kv-
stores obtained from a serial execution of transactions with inevitable performance drawbacks,
to eventual consistency, a weak model which imposes few conditions on the structure of
kv-stores, leading to good performance but anomalous behaviours. We define consistency
models for our kv-stores, by introducing the notion of an execution test, specifying whether a
client is allowed to commit a transaction in a given kv-store. An execution test ET induces a
consistency model as the set of kv-stores obtained by having clients non-deterministically
commit transactions, so long as the constraints imposed by ET are satisfied. We explore a
range of execution tests associated with well-known consistency models in the literature. In
[46], we demonstrate that our operational definitions of consistency models over kv-stores
using execution tests are equivalent to the established declarative definitions of consistency
models over abstract executions [9, 11].

IDefinition 8 (Execution tests). An execution test, ET, is a set of tuples, ET ⊆ KVS×Views×
Fp×KVS×Views, such that for all (K, u,F ,K′, u′)∈ET:
1. u∈Views (K) and u′∈Views (K′);
2. canCommitET (K, u,F);
3. vShiftET (K, u,K′, u′); and
4. for all k∈K and v∈Value, if (R, k, v)∈F then K (k,max<(u (k))) =v.

ECOOP 2020

21:14 Data Consistency in Transactional Storage Systems: A Centralised Semantics

Intuitively, (K, u,F ,K′, u′) ∈ ET means that, under the execution test ET, a client with
initial view u over kv-store K can commit a transaction with fingerprint F to obtain the
resulting kv-store K′ (given by Definition 7) while shifting its view to u′. Note that the last
condition in Definition 8 enforces the last-write-wins policy [45]: a transaction always reads
the most recent writes from the initial view u.

I Definition 9 (Consistency models). The consistency model induced by an execution test
ET is defined as: CM(ET) ,

{
K
∣∣ ∃K0,U0, E , P. (K0,U0, E), P _−→∗ET (K,_,_),_

}
.

The largest execution test is denoted by ET>, where for all K,K′, u, u,F :

canCommitET> (K, u,F) def⇔ true and vShiftET> (K, u,K′, u′) def⇔ true

The consistency model induced by ET> corresponds to the Read Atomic model [4], a
variant of Eventual Consistency [9] for atomic transactions.

We present several examples of execution tests which give rise to consistency models on
kv-stores. Recall that the snapshot property and the last-write-wins policy are hard-wired
in our framework. As such, we can only define consistency models that satisfy these two
constraints. Although this prohibits interesting consistency models such as Read Committed,
we can express a large number of consistency models employed by distributed kv-stores.

Notation. Given relations r, r′ ⊆ A×A, we write: r ?, r+ and r∗ for the reflexive, transitive
and reflexive-transitive closures of r, respectively; r−1 for the inverse of r; a1

r−→ a2 for
(a1, a2) ∈ r; and r; r′ for {(a1, a2) | ∃a. (a1, a) ∈ r ∧ (a, a2) ∈ r′}.

Recall that an execution test ET is a tuple (K, u,F ,K′, u′) such that canCommitET (K, u,F)
and vShiftET (K, u,K′, u′) hold (Definition 8). We proceed with several auxiliary definitions
that allow us to define canCommit and vShift for several consistency models.

Prefix Closure. The set of visible transactions of a kv-store K and a view u is: visTx (K, u) ,
{w (K (k, i)) | i ∈ u (k)}. Given a relation on transactions, R ⊆ TxID × TxID, a view u is
closed with respect to a kv-store K and R, written closed (K, u,R), if and only if:

visTx (K, u) =
(
(R∗)−1 (visTx (K, u))

)
\ {t | ∀k ∈ K, i. t 6= w (K (k, i))}

That is, if transaction t is visible in u (t ∈ visTx (K, u)), then all transactions t′ that are
R∗-before t (t′ ∈ (R∗)−1 (t)) and are not read-only t′ /∈ {t′′ | ∀k, i. t′′ 6= w (K (k, i))} are also
visible in u (t′ ∈ visTx (K, u)).

Dependency Relations. We next define transactional dependency relations for kv-stores.
Figure 7a illustrates an example kv-store and its transactional dependency relations. Given
a kv-store K, a key k and indexes i, j such that 0 ≤ i < j < |K (k)|, if there exists ti, Ti, t
such that K (k, i) =(_, ti, Ti), K (k, j) =(_, tj ,_) and t ∈ Ti, then for every key k:

1. there is a Write-Read dependency from ti to t, written (ti, t) ∈WRK (k), which intuitively
means that ti commits before t starts, as depicted in Figure 5;

2. there is a Write-Write dependency from ti to tj , written (ti, tj) ∈ WWK (k), which
intuitively means that ti commits before tj commits, as depicted in Figure 5; and

3. if t6=tj , then there is a Read-Write anti-dependency from t to tj , written (t, tj)∈RWK (k),
which intuitively means that t starts before tj commits, as depicted in Figure 5.

S. Xiong, A. Cerone, A. Raad, and P. Gardner 21:15

ti

tj

t

WR

WW
RW

Figure 5 An example of dependencies between transactions with respect to the time line of the
starts and commits of these transactions (dashed line being able to stretched).

ET canCommitET (K, u,F) , closed(K, u, RET) vShiftET (K, u,K′, u′)
MR true u v u′

RYW true ∀t ∈ K′ \ K. ∀k, i. (w(K′(k, i)), t) ∈ SO ? ⇒ i∈u′(k)
CC RCC , SO ∪WRK vShiftMR∩RYW (K, u,K′, u′)
UA RUA ,

⋃
(W,k,_)∈FWW−1

K (k) true
PSI RPSI , RUA ∪RCC ∪WWK vShiftMR∩RYW (K, u,K′, u′)
CP RCP , SO; RW?

K ∪WRK; RW?
K ∪WWK vShiftMR∩RYW (K, u,K′, u′)

SI RSI , RUA ∪RCP ∪ (WWK; RWK) vShiftMR∩RYW (K, u,K′, u′)
SER RSER ,WW−1

K true

Figure 6 Execution tests of consistency models defined by canCommit and vShift predicates,
where SO is as given in Section 3.1.

In centralised databases, where there is a global notion of time, these dependency relations
can be determined by the start and commit time of transaction as in Figure 5. However,
in general, there is no global notion of time in distributed databases. In such settings, the
write-read dependency WR is induced when a transaction reads from another transaction; the
write-write dependency WW is given by the last-write-wins resolution policy, ordering the
transactions that write to the same key; and the read-write anti-dependency RW is derived
from WR and WW: if (t, t′) ∈ WR and (t, t′′) ∈ WW, then (t′, t′′) ∈ RW. We adopt the
same names as the dependency relations of dependency graphs [1] to underline the similarity.
However, our relations here do not depend on those relations in dependency graphs.

We give several definitions of execution tests using vShift and canCommit in Figure 6.

Monotonic Reads (MR). This consistency model states that, when committing, a client
cannot lose information in that it can only see increasingly more up-to-date versions from a
kv-store. This prevents, for example, the kv-store of Figure 7b, since client cl first reads the
latest version of k in t1cl, and then reads the older, initial version of k in t2cl. As such, the
vShiftMR predicate in Figure 6 ensures that clients can only extend their views. When this is
the case, clients can always commit their transactions, and thus canCommitMR is simply true.

Read Your Writes (RYW). This consistency model states that a client must always see all the
versions written by the client itself. The vShiftRYW predicate thus states that after executing
a transaction, a client contains all the versions it wrote in its view. This ensures that such
versions will be included in the view of the client when committing future transactions. Note
that under RYW the kv-store in Figure 7c is prohibited as the initial version of k holds value
v0 and client cl tries to update the value of k twice. For its first transaction t1cl, it reads the
initial value v0 and then writes a new version with value v1. For its second transaction t2cl,
it reads the initial value v0 again and writes a new version with value v1. The vShiftRYW

predicate rules out this example by requiring the client view after committing t1cl to include
the version it wrote. When this is the case, clients can always commit their transactions,
and thus canCommitRYW is simply true.

ECOOP 2020

21:16 Data Consistency in Transactional Storage Systems: A Centralised Semantics

k1 7→
t0

{t1}

t2

∅
WR

WW

RW

(a) Dependencies of kv-stores.

k1 7→ v0
t0{
t2cl
} v1

t1{
t1cl
}

(b) Disallowed by MR.

k1 7→ v0
t0{
t1cl, t

2
cl

} v1
t1cl

∅
v1

t2cl

∅

(c) Disallowed by RYW.

k 7→ v0
t0

{t, t′}
v1

t

∅
v1

t′

∅

(d) Disallowed by UA.

k1 7→ v0
t0

{t}
v1

t1cl

∅
k2 7→ v0

t0

∅
v2

t2cl

{t1cl′}
k3 7→ v0

t0

∅
v3

t2cl′

{t}

(e) Disallowed by CC.

k1 7→ v0
t0

∅
v1

t1cl

∅
v2

t1cl′

{t}
k2 7→ v0

t0

{t}
v3

t1cl

∅

(f) Allowed by CC and UA but not PSI.

k1 7→ v0
t0{
t2cl2
} v1

t{
t1cl1
} k2 7→ v0

t0{
t2cl1
} v1

t′{
t1cl2
}

(g) Long fork, disallowed by CP.

k1 7→ v0
t0

{t4}
v1

t1

∅
v2

t2

∅
k2 7→ v0

t0

{t2}
v3

t3

{t4}
v4

t4

∅

(h) Allowed by UA and CP but not SI.

k1 7→ v0
t0

{t2}
v1

t1

∅
k2 7→ v0

t0

{t1}
v2

t2

∅

(i) Write skew, disallowed by SER.

Figure 7 Behaviours disallowed under different consistency models. Figure 7a shows the depend-
encies of transactions in kv-stores (values omitted).

The MR and RYW models, together with the monotonic writes (MW) and write follows reads
(WFR) models, are collectively known as session guarantees. Due to space constraints, the
definitions associated with MW and WFR are given in [46].

We now give the definitions of well-known consistency models in distributed data-
bases, including CC [9, 33, 40], PSI [3, 42], SI [6] and SER [37]. The vShift relation
for these consistency models, given in Figure 6, is simply vShiftMR∩RYW(K, u.K′, u′) =
vShiftMR(K, u.K′, u′) ∩ vShiftRYW(K, u.K′, u′). The canCommitET (K, u,F) relation is defined
by canCommitET (K, u,F) , closed(K, u,RET) where RET is given for each exection test in
Figure 6 as a combination of SO and the dependency relations. We use two less-known
consistency models, update atomic (UA) and consistent prefix (CP). In [7, 10, 11], the definition
of SI on abstract executions can be separated into the conjunction of UA and CP. Similarly,
the definition of PSI on abstract executions can be separated into the conjunction of UA and
CC [11]. Interestingly, this is not quite the case for the consistency definitions presented here.

Causal Consistency (CC). This model states that, if a client view includes a version ν

written by t prior to committing a transaction, then it must also include the versions which
t observes. Clearly, t observes all versions that t reads. Moreover, t observes all previous
transactions from the same client. This is captured by canCommitCC in Figure 6, defined as
closed(K, u,RCC) with RCC , SO∪WRK. For example, the kv-store of Figure 7e is disallowed
by CC: the k3 version with value v3 depends on the k1 version with value v1. However, t
must have been committed by a client whose view included v3 of k3, but not v1 of k1.

Update Atomic (UA). This consistency model has been proposed in [11] and implemented
in [32]. UA disallows concurrent transactions writing to the same key, a property known
as write-conflict freedom: when two transactions write to the same key, one must see the
version written by the other. Write-conflict freedom is enforced by canCommitUA which allows

S. Xiong, A. Cerone, A. Raad, and P. Gardner 21:17

a client to write to key k only if its view includes all versions of k, i.e. its view is closed with
respect to the WW−1 (k) relation for all keys k written in the fingerprint F . This prevents
the kv-store of Figure 7d, as t and t′ concurrently increment the initial version of k by 1. As
client views must include the initial versions, once t commits a new version ν with value v1
to k, then t′ must include ν in its view as there is a WW edge from the initial version to ν.
As such, when t′ increments k, it must read from ν and not the initial version.

Parallel Snapshot Isolation (PSI). This consistency model states that:
1. if a client view includes a version ν written by t prior to committing a transaction, then

it must also include the versions that t observes; and
2. there are no write-conflicts.

On abstract executions, where there is a total order over transactions, PSI can be formally
defined as the composition of CC and UA [11]. By contrast, it is not possible to define
canCommitPSI as the conjunction of the canCommitCC and canCommitUA relations. This is for
two reasons. First, the conjunction would only mandate that u be closed with respect to
RCC and RUA individually, but not with respect to their union. Recall that closure is defined
in terms of the transitive closure of a given relation and thus the closure of RCC and RUA

is smaller than the closure of RCC ∪ RUA. As such, we define canCommitPSI as closure with
respect to RPSI which includes RCC ∪ RUA. Second, recall that CC requires that if a client
view includes a version ν written by t′ prior to committing a transaction, then it must also
include the versions which t′ observes. For example, the view of the client of transaction t in
Figure 7f must include versions written by t0 and t1cl′ , satisfying canCommitCC. Also, recall
that UA requires that if a transaction writes to a key k then it must observe all previous
versions of k. For example, the client cl′ that writes the third version of k1 in Figure 7f must
observe t1cl, satisfying canCommitUA. However, although the client of transaction t observes
t1cl′ , it is not able to observe t1cl using the combination of CC and UA. This is fixed by including
the the write-write dependency relation WWK (e.g. (t1cl, t1cl′) ∈ WWK) in RPSI. Note that
Figure 7f shows an example kv-store that satisfies canCommitCC and canCommitUA, but not
canCommitPSI. Under PSI, the view of the client of t should include the versions written by
t1cl, and therefore read v3 for key k2.

Consistent Prefix (CP). If the total order in which transactions commit is known, then
CP can be described as a strengthening of CC [14]: if a client sees the versions written by a
transaction t, then it must also see all versions written by transactions that commit before t.
Although kv-stores only provide partial information about the order of transaction commits,
this is sufficient to formalise CP.

We can approximate the order in which transactions commit using WRK,WWK,RWK and
SO. This approximation is perhaps best understood in terms of an idealised implementation
of CP on a centralised system, where the snapshot of a transaction is determined at its
start point and its effects are made visible to future transactions at its commit point. In
this implementation, if (t, t′) ∈WR, then t must commit before t′ starts, and hence before
t′ commits. Similarly, if (t, t′) ∈ SO, then t commits before t′ starts, and thus before t′
commits. Recall that, if (t′′, t′) ∈ RW, then t′′ reads a version that is later overwritten by
t′, i.e. t′′ cannot see the write of t′, and thus t′′ must start before t′ commits. As such, if
t commits before t′′ starts ((t, t′′) ∈ WR or (t, t′′) ∈ SO), and (t′′, t′) ∈ RW, then t must
commit before t′ commits. In other words, if (t, t′) ∈ WR; RW or (t, t′) ∈ SO; RW, then t
commits before t′. Finally, if (t, t′) ∈ WW, then t must commit before t′. We therefore

ECOOP 2020

21:18 Data Consistency in Transactional Storage Systems: A Centralised Semantics

define RCP , (WRK; RW?
K ∪ SO; RW?

K ∪WW), approximating the order in which transactions
commit. As shown in [14], the set (R+

CP)−1(t) contains all transactions that must be observed
by t under CP. We thus define canCommitCP by requiring closure with respect to RCP.

The CP model disallows the long fork anomaly in Figure 7g, where cl1 and cl2 observe
the updates to k1 and k2 in different orders. Assuming without loss of generality that
t2cl1 commits before t2cl2 , then cl2 sees the k1 version with value v0 before committing t2cl2 .
However, as tWRK−−−→t1cl1

SO−→t2cl1
RW−−→t′WR−−→t1cl2 and t2cl2 must see the versions written by t1cl2 before

committing, then t2cl2 must also see the k1 version with value v2, leading to a contradiction.

Snapshot Isolation (SI). On abstract executions, where there is a total order over transac-
tions, SI can be defined as the composition of CP and UA. However, as with PSI, we cannot
define canCommitSI as the conjunction of their associated canCommit predicates. Rather,
we define canCommitSI as closure with respect to RSI which includes RCP ∪ RUA. Observe
that Figure 7h shows an example kv-store that satisfies canCommitUA and canCommitCP, but
not canCommitSI. Additionally, we include WW; RW in RSI. This is because, when the
centralised CP implementation (discussed before) is strengthened with write-conflict freedom,
then a write-write dependency between transactions t and t′ does not only mandate that t
commit before t′ commits, but also before t′ starts. Consequently, if (t, t′) ∈WW; RW, then
t must commit before t′ does.

(Strict) serialisability (SER). Serialisability is the strongest consistency model in settings
that abstract from aborted transactions, requiring that transactions execute in a total
sequential order. The canCommitSER thus allows clients to commit transactions only when
their view of the kv-store is complete, i.e. the client view is closed with respect to WW−1.
This requirement prevents the kv-store in Figure 7i: if, without loss of generality, t1 commits
before t2, then the client committing t2 must see the k1 version written by t1, and thus
cannot read the outdated value v0 for k1.

Weak Snapshot Isolation (WSI): A New Consistency Model. Kv-stores and execution
tests are useful for investigating new consistency models. One example is the consistency
model induced by combining CP and UA, which we refer to as Weak Snapshot Isolation (WSI).
Because WSI is stronger than CP and UA by definition, it forbids all the anomalies forbidden
by these consistency models, e.g. the long fork (Figure 7g) and the lost update (Figure 7d).
Moreover, WSI is strictly weaker than SI. As such, WSI allows all SI anomalies, e.g. the
write skew (Figure 7i), and further allows behaviours not allowed under SI such as that
in Figure 7h. The kv-store K is reachable by executing transactions t1, t2, t3 and t4 in
order. In particular, t4 is executed using u={k1 7→ {0}, k2 7→ {0, 1}}. However, K is not
reachable under ETSI. This is because t4 cannot be executed using u under SI: t4 reads the
k2 version written by t3; but as (t2, t3) ∈ RW and (t1, t2) ∈WW, then u should contain the
k1 version written by t1, contradicting the fact that t4 reads the initial version of k1. The
two consistency models are very similar in that many applications that are correct under SI
are also correct under WSI. We give examples of such applications in Section 5.2.

Correctness of ET. Our definitions of consistency models over kv-stores and client views
are equivalent to well-known definitions of consistency models over abstract executions [11],
and hence over dependency graphs [14]. Given a model M in Figure 6, let CM(ETM) denote
the consistency model induced by execution test ETM of M . For example, when M = CC,
then CM(ETCC) denotes the consistency model induced by execution test ETCC of CC. Also, let

S. Xiong, A. Cerone, A. Raad, and P. Gardner 21:19

CM(AM) denote the consistency model of M defined on abstract excutions, induced by the
set of axioms AM [11]. For example, when M = CC, then CM(ACC) denotes the consistency
mode of CC induced by the CC axioms on abstract executions.

I Theorem 10. For all consistency models M in Figure 6, CM(ETM) = CM(AM).

The full proof is given in [46], where we define an intermediate operational semantics
on abstract executions parametrised by axioms, and each step corresponds to an atomic
transaction. This is in contrast to [35] which defines a more fine-grained operational semantics.

5 Applications

We use our operational semantics to verify distributed protocols (Section 5.1) and prove
invariants of transactional libraries (Section 5.2).

5.1 Application: Verifying Database Protocols
Kv-stores and client views faithfully abstract the state of geo-replicated and partitioned data-
bases, and execution tests provide a powerful abstraction of the synchronisation mechanisms
enforced by these databases when committing a transaction. This makes it possible to use
our semantics to verify the correctness of distributed database protocols. We demonstrate
this by showing that the replicated database, COPS [33], satisfies CC. We refer the reader to
[46] for the full details. In [46], we also apply the same method to verify that Clock-SI [21],
a partitioned database, satisfiesSI.

COPS Protocol. COPS is a fully replicated database, with each replica storing multiple
versions of each key as shown in Figure 8a. Each COPS version ν such as (k1, v1, (t1, r1), ∅)
in Figure 8a, contains a key (k1), a value (v1), a unique time-stamp (t1, r1) denoting when a
client first wrote the version to the replica, and a set of dependencies (∅), written deps (ν).
The time-stamp associated with a version ν has the form (t, r), where r identifies the replica
that committed ν, and t denotes the local time when r committed ν. Each dependency in
deps (ν) comprises a key and the time-stamp of the versions on which ν directly depends. We
define the DEP relation, (t, r) DEP−−−→(t′, r′), to denote that the version with time-stamp (t, r)
is included in the dependency set of the version with time-stamp (t′, r′). COPS assumes a
total order over replica identifiers. As such, versions can be totally ordered lexicographically.

The COPS API provides two operations:
1. put (k, v) for writing to a single key k; and
2. read (K) for atomically reading from a set of keys K.
Operations from a client are processed by a single replica. Each client maintains a context,
which is a set of dependencies tracking the versions the client observes.

We demonstrate how a COPS client cl interacts with a replica through the following
example: Pcops , cl : put (k1, v1) ; read ([k1, k2]). For brevity, we assume that there are two
keys, k1 and k2, and two replicas, r1 and r2, where r1 < r2 (Figure 8a). Initially, client cl
connects to replica r1 and initialises its local context as ctx=∅. To execute its first single-write
transaction, cl requests to write v1 to k1 by sending the message (k1, v1, ctx) to its associated
replica r1 and awaits a reply. Upon receiving the message, r1 produces a monotonically
increasing local time t1, and uses it to install a new version ν=(k1, v1, (t1, r1), ctx), as shown
in Figure 8a. Note that the dependency set of ν is the cl context (ctx=∅). Replica r1 then
sends the time-stamp (t1, r1) back to cl1, and cl1 in turn incorporates (k1, t1, r1) in its local

ECOOP 2020

21:20 Data Consistency in Transactional Storage Systems: A Centralised Semantics

(k1, v0, (t0, r0), ∅) (k2, v0, (t0, r0), ∅)

(k1, v1, (t1, r1), ∅)

r1
(k1, v0, (t0, r0), ∅) (k2, v0, (t0, r0), ∅)

(k1, v
′
1, (t1, r2), ∅) (k2, v

′
2, (t2, r2), {(k1, t1, r2)})

r2

(a) Client cl1 commits a new version of k1 with value v1 to replica r1; other clients commit versions to r2.
The new versions in r1 and r2 have not yet been synchronised.

(k1, v0, (t0, r0), ∅) (k2, v0, (t0, r0), ∅)

(k1, v1, (t1, r1), ∅) (k1, v
′
1, (t1, r2), ∅)

(k2, v
′
2, (t2, r2), {(k1, t1, r2)})

r1

(b) Replica r1 optimistically reads the newest versions for
k1, k2, one by one, during which time it receives synchron-
isation messages from r2.

(k1, v0, (t0, r0), ∅) (k2, v0, (t0, r0), ∅)

(k1, v1, (t1, r1), ∅) (k1, v
′
1, (t1, r2), ∅)

(k2, v
′
2, (t2, r2), {(k1, t1, r2)})

r1

(c) Replica r1 re-fetches a causally consist-
ent snapshot for k1, k2 using the dependency
sets.

Figure 8 COPS protocol.

context, i.e. cl observes its own write. Finally, r1 propagates the written version to other
replicas asynchronously by sending a synchronisation message using causal delivery: when
a replica r′ receives a version ν′ from another replica r, it waits for all ν′ dependencies to
arrive at r′, and then accepts ν′. As such, the set of versions contained in each replica is
closed with respect to the DEP relation. In the example above, when other replicas receive ν
from r1, they can immediately accept ν as deps (ν) =∅. Note that replicas may accept new
versions from different clients in parallel.

To execute its second multi-read transaction, client cl requests to read from the k1, k2
keys by sending the message {k1, k2} to replica r1 and awaits a reply. Upon receiving this
message, r1 builds a DEP-closed snapshot (a mapping from {k1, k2} to values) in two phases
as follows. First, r1 optimistically reads the most recent versions for k1 and k2, one at a
time. This process may be interleaved with other writes and synchronisation messages. For
instance, Figure 8b depicts a scenario where r1:
1. first reads (k1, v1, (t1, r1), ∅) for k1 (highlighted);
2. then receives two synchronisation messages from r2, containing versions (k1, v

′
1, (t1, r2), ∅)

and (k2, v
′
2, (t2, r2), {(k1, t1, r2)}); and

3. finally reads (k2, v
′
2, (t2, r2), {(k1, t1, r2)}) for k2 (highlighted).

As such, the current snapshot for {k1, k2} are not DEP-closed: (k2, v
′
2, (t2, r2), {(k1, t1, r2)})

depends on a k1 version with time-stamp (t1, r2) which is bigger than (t1, r1) for k1. To
remedy this, after the first phase of optimistic reads, r1 combines (unions) all dependency
sets of the versions from the first phase as a re-fetch set, and uses it to re-fetch the most
recent version of each key with the biggest time-stamp from the union of the re-fetch set
and the versions from the first phase. For instance, in Figure 8c, replica r1 re-fetches the
newer version (k1, v

′
1, (t1, r2), ∅) for k1. Finally, the snapshot obtained after the second phase

is sent to the client, where it is added to the client context. For their specific setting, Lloyd
et al. [33] informally argue that the snapshot sent to the client is causally consistent. By
contrast, in what follows we verify the COPS protocol with our general definition of CC.

COPS Verification. We define an operational semantics for the COPS protocol, which uses
fine-grained single reads and writes of a key. Using our semantics, we then show that COPS
traces can be refined to traces in our semantics using ETCC in three steps:

S. Xiong, A. Cerone, A. Raad, and P. Gardner 21:21

Θ0
cl,r1:(W,k1,(t1,r1))−−−−−−−−−−−−→ Θ1

cl,r1:s−−−−→ Θ2
cl,r1:(R,k1,(t1,r1))−−−−−−−−−−−−→ Θ3

r1:sync−−−−→ Θ4
cl,r1:(R,k2,(t2,r2))−−−−−−−−−−−−→

Θ5
cl,r1:p−−−−→ Θ6

ι−→ Θ7
cl,r1:(R,k1,(t1,r2))−−−−−−−−−−−−→ Θ8

ι′−→ Θ9
cl,r1:(R,k2,(t2,r2))−−−−−−−−−−−−→ Θ10

cl,r1:e−−−−→ · · ·

(a) The COPS trace that produces Figures 8b and 8c.

Θ′5
ι−→ Θ′6

ι′−→ Θ′7
cl,r1:p−−−−→ Θ′8

cl,r1:(R,k1,(t1,r2))−−−−−−−−−−−−→ Θ′9
cl,r1:(R,k2,(t2,r2))−−−−−−−−−−−−→ Θ′10

cl,r1:e−−−−→ · · ·

(b) The normalised COPS trace.

k1 7→ v0
(t0, r0)

_
v1

(t1, r1)

_
v′1

(t1, r2)

_
k2 7→ v0

(t0, r0)

_
v′2

(t2, r2)

_

cl, u : {k1 7→ {0, 1, 2}, k2 7→ {0, 1}},
F :
{(

R, k1, v
′
1

)
,
(

R, k2, v
′
2

)}
−−−−−−−−−−−−−−−−−−−−−−→

k1 7→ v0
(t0, r0)

_
v1

(t1, r1)

_
v′1

(t1, r2)

_ ∪ {trd}
k2 7→ v0

(t0, r0)

_
v′2

(t2, r2)

_ ∪ {trd}

(c) The step encoding the multi-read transaction depicted above: the kv-store before update encodes
Figure 8a, and the views (highlighted) encoding of the client contexts before and after the update.

Figure 9 COPS traces and trace refinement.

1. every COPS trace can be transferred to an equivalent normalised COPS trace, in which
multiple reads of a transaction are not interleaved by other transactions; and

2. the normalised COPS trace can be refined to a trace in our semantics, in which
3. each step satisfies ETCC.

The COPS operational semantics describes transitions over abstract states Θ comprising
a set of replicas, a set of client contexts and a program. For instance, the COPS trace that
produces Figures 8b and 8c is depicted in Figure 9a, stating that given client cl and replica
r1,
1. cl writes version (W, k1, (t1, r1)) to r1;
2. cl starts a multi-read transaction (s);
3. cl reads (R, k1, (t1, r1)) from r1;
4. r1 receives synchronisation messages (sync);
5. cl reads (R, k2, (t2, r2)) from r1;
6. cl enters the second re-fetch phase of the multi-read transaction (p);
7. an arbitrary step ι interferes;
8. cl re-fetches version (R, k1, (t1, r2)) from r2 and puts it in the snapshot;
9. an arbitrary step ι′ interferes;
10. cl puts the version (R, k2, (t2, r2)) in the snapshot; and
11. cl reads the values in the snapshot and commits the transaction (e).

Recall that a multi-read transaction does not execute atomically in the replica, as captured
by multiple read transitions in the trace. For example, steps ι and ι′ in Figure 9a interleave
the multi-read transaction of cl. Note that the optimistic reads are not observable by the
client and thus it suffices to show that the reads from the second re-fetch phase are atomic.
To show this, we normalise the trace as follows. For each multi-read transaction, we move
the reads in the re-fetch phase to the right towards the return step e, so that they are no
longer interleaved by others. An example of a normalised trace is given in Figure 9b. In each

ECOOP 2020

21:22 Data Consistency in Transactional Storage Systems: A Centralised Semantics

multi-read transaction, the re-fetch phase can only read a version committed before the p
step. For example, in Figure 9a (top) the multi-read transaction of cl can only read versions
in Θ5 and before. As such, normalising does not alter the returned versions of transactions.
After normalisation, transactions in the resulting trace appear to execute atomically.

We next show that a normalised COPS trace can be refined to a trace in our operational
semantics. To do this, we encode an abstract COPS state Θ as a configuration in our
semantics (Figure 9c). We map all the COPS replicas to a single kv-store. The writer of
a version in the kv-store is uniquely determined by the time-stamp of the corresponding
COPS version, while the reader set is given by creating new transaction identifiers for the
read-only transactions such as the identifier trd in Figure 9c. For example, the COPS state in
Figure 8a can be encoded as the kv-store depicted in Figure 9c. Since the context of a client
cl identifies the set of COPS versions that cl sees, we can project COPS client contexts to
our client views over kv-stores. For example, the contexts of cl before and after committing
its second multi-read transaction in PCOPS is encoded as the client views depicted in Figure 9c.

We finally show that every step in the kv-store trace satisfies ETCC. Note that existing
verification techniques [11, 16] require examining the entire sequence of operations of a
protocol to show that it implements a consistency model. By contrast, we only need to look
at how the state evolves after a single transaction is executed. In particular, we check the
client views over the kv-store. Intuitively, we observe that when a COPS client cl executes a
transaction then:
1. the cl context grows, and thus we obtain a more up-to-date view of the associated kv-store,

i.e. vShiftMR holds;
2. the cl context always includes the time-stamp of the versions written by itself, and thus

the corresponding client view always includes the versions cl has written, i.e. vShiftRYW

holds and
3. the cl context is always closed to the relation DEP, which contains the relation SO∪WRK,

i.e. closed (K, u,RCC) holds.
We have thus demonstrated that COPS satisfies CC (see [46] for the full details).

5.2 Application: Invariant Properties of Transactional Libraries
With our operational semantics, we are able to prove invariant properties of kv-stores, such
as: the robustness of the single counter library against PSI; the robustness of a multi-counter
library (Section 2) and the well-known banking library [2] against SI; and the correctness of
a lock library against UA and hence PSI, even though the lock library is not robust for these
consistency models. The robustness of the multi-counter and banking library follow from a
general proof of the robustness of the so-called WSI-safe libraries against WSI, and hence SI.
Our robustness results are the first to be proved for client sessions, in contrast with static
analysis techniques for checking robustness [7, 12, 14, 35] that did not support client sessions.

Single-counter Library: Robustness. A transactional library is a set of transactional oper-
ations, e.g. the counter library, Counter (k) , {Inc (k), Read (k)}, given in Section 2. Client
programs of the transactional library can access the underlying kv-store using only the
operations of the library. A transactional library is robust against an execution test ET if, for
all client programs P of the library, the kv-stores K obtained under ET can also be obtained
under SER, i.e. given initial kv-store K0, initial view environment U0 and an arbitrary client
environment E , for any reachable kv-store K such that (K0,U0, E) , P _−→∗ET (K,_,_) ,_, then
K∈CM(SER). Our robustness results use the following theorem (Theorem 11) that a kv-stores
obtained under a trace satisfies serialisability if and only if it contains no cycles.

S. Xiong, A. Cerone, A. Raad, and P. Gardner 21:23

I Theorem 11. A kv-store K∈CM(SER) iff (SO∪WRK∪WWK∪RWK)+ ∩ Id = ∅.

I Theorem 12. The single counter library, Counter (k) , {Inc (k), Read (k)} given in
Section 2, is robust against PSI.

Proof (sketch). In the single-counter library, Counter (k), a client reads from k by calling
Read (k), and writes to k by calling Inc (k) which first reads the value of k and subsequently
increments it by one. As PSI enforces write-conflict freedom (UA), we know that if a
transaction t updates k (via Inc (k)) and writes version ν to k, then it must have read the
version of k immediately preceding ν: ∀t, i > 0. t=w(K (k, i))⇒ t ∈ rs(K (k, i−1)). Moreover,
as PSI enforces monotonic reads (MR), the order in which clients observe the versions of k (via
Read (k)) is consistent with the order of versions in K (k). As such, the invariant illustrated
below always holds (i.e. the kv-store is always has the depicted shape), where {ti}ni=1 and⋃n
i=0 Ti denote disjoint sets of transactions calling Inc (k) and Read (k), respectively:

(0, t0, T0 ∪ {t1}) :: (1, t1, T1 ∪ {t2}) :: · · ·
:: (n−1, tn−1, Tn−1 ∪ {tn}) :: (n, tn, Tn)

k 7→ 0
t0

T0] {t1}
1

t1

T1] {t2}
· · ·
· · ·

· · ·
n− 1

tn−1

Tn−1] {tn}
n

tn

Tn

We define the 99K relation depicted above by extending the relation R , SO ∪ {(t, t′) |
∃i. (t=ti ∧ (t′=ti+1 ∨ t′∈ Ti)) ∨ (t ∈ Ti ∧ t′=ti+1)} to a strict total order (i.e. a total, irre-
flexive and transitive relation). Note that 99K contains SO ∪ WRK ∪ WWK ∪ RWK and
thus (SO ∪WRK ∪WWK ∪ RWK)+ is irreflexive, i.e. Counter (k) is robust against PSI. By
contrast, a multi-counter library on a set of keys K, Counters(K) ,

⋃
k∈K Counter (k), is

not robust against PSI. Recall from Section 2 that unlike in SER and SI, clients of the
multi-counter library under PSI can observe the increments on different keys in different
orders (see Figure 7g). Hence, the multi-counter library is not robust against PSI. J

WSI-safe Libraries: Robustness. Our next task is to show that the multi-counter library
and the banking library from [2] are robust against SI. We do this by defining the notion
of WSI-safe transactional libraries, and proving a general robustness result for such libraries
against WSI, and thus SI. The proof of this general result uses the following two acyclic
properties of kv-stores, where ET> is the most permissive execution test (Definition 9).

I Theorem 13. Any kv-store K ∈ CM(ET>) satisfies (SO∪WRK)+ ∩ Id = ∅.

Proof (sketch). From the definition of CM (Definition 9) we know a kv-store K ∈ CM(ET>)
must be reachable with a given program. This means that Theorem 13 can be seen as an
invariant property. We prove it by induction on the length of a trace. For the base case, the
initial kv-store K0 trivially contains no cycles. For the inductive case, since local computation
steps do not rely on the kv-store, let us focus on the case where the last transaction step
has the form: (K,U , E) , P (cl,u,F)−−−−−→ET (K′,U ′, E ′) , P′, where K contains no R , (SO∪WRK)
cycles by the inductive hypothesis. Let t be the new transaction in K′. We then proceed by
contradiction and assume that K′ has a R cycle. As K contains no R cycles, this cycle must
involve t, i.e. t R−→ t1

R−→ · · · R−→ tn
R−→ t, where t1, · · · , tn are distinct. As t is the last

transaction and t /∈ K, we cannot have t SO−−→ t1. Similarly, all versions written by t have
empty reader sets, and . thus we cannot have t WRK′−−−−→ t1. This then leads to a contradiction
as t SO∪WRK′−−−−−−→ t1. Therefore, the new kv-store K′ satisfies (SO∪WRK′)+ ∩ Id = ∅. J

I Theorem 14. Any kv-store K ∈ CM(ETCP) satisfies ((SO∪WRK); RW?
K)+ ∩ Id = ∅.

ECOOP 2020

21:24 Data Consistency in Transactional Storage Systems: A Centralised Semantics

Proof (sketch). We proceed as in the proof of Theorem 13. For the inductive case, consider
(K,U , E) , P (cl,u,F)−−−−−→ET (K′,U ′, E ′) , P′, where K contains no R , ((SO∪WRK); RW?

K) cycles
by the inductive hypothesis. Let us then assume K′ has a R cycle which must include the
new transaction t. There are then two cases as follows where t1, · · · , tn are distinct:
1. t R−→ t1

R−→ · · · R−→ tn
R−→ t

This cycle cannot exist as t is the last transaction in K′. More concretely, as in Theorem 13
we know we cannot have t SO−−→ t1 or t WRK′−−−−→ t1. For analogous reasons, we cannot have
t

SO−−→ t′
RWK′−−−−→ t1 or t WRK′−−−−→ t′

RWK′−−−−→ t1, for some transaction t′ ∈ K.
2. t1

R−→ · · · R−→ tn
(SO∪WRK′)−−−−−−−→ t

RWK′−−−−→ t1
From ETCP the view u of t must contains all versions written by t1, · · · , tn. As such, we
cannot have t RWK′−−−−→ t1 as by RWK′ we know u is behind the versions written by t1. J

Specific libraries [2, 5, 7] have been shown to be robust against SI by individually checking
all final results of all their client programs. By contrast, we identify the notion of a WSI-safe
library and prove that such a library is robust against WSI, and hence SI, by showing that
the acyclic invariant given in Theorem 11 is preserved by each transition step.

I Definition 15 (WSI-safe). A library is WSI-safe if and only if, for all its client programs P
and all kv-stores K, if K is obtained by executing P under WSI7, then for all t, k, i, i′:

t ∈ rs (K (k, i)) ∧ t 6= w (K (k, i′))⇒ ∀k′, j. t 6= w (K (k′, j)) , (1)
t 6= t0 ∧ t = w (K (k, i))⇒ ∃j. t ∈ rs (K (k, j)) , (2)
t 6= t0 ∧ t = w (K (k, i)) ∧ ∃k′, j, j′. t ∈ rs (K (k′, j))⇒ t = w (K (k′, j′)) . (3)

That is, (1) if a transaction t reads from k but does not write to it, then t must be a
read-only transaction; (2) if t writes to k, then it must also read from it, a property known
as no-blind writes8; and (3) if t writes to k, then it must also write to all keys it reads from.
The read-only transactions, satisfying (1), can be reordered to be next to the write that they
are reading. Their behaviour is, thus, serialisable in that the write they are reading is current.
Under WSI and SI, transactions satisfying strict no-blind writes (i.e. (2) and (3)) enforce a
total order over transactions on a key, which is enough to obtain serialisable behaviour.

It is straightforward to see that the multi-counter library given in Section 2 is WSI-safe;
we will show that the banking example in [2] is WSI-safe. The example in [7] is WSI-safe.
In [5], there are many examples of libraries that are shown to be robust against SI: the
smaller examples are WSI-safe; the larger examples have not been checked.

I Theorem 16 (WSI robustness). A WSI-safe library is robust against WSI.

Proof (sketch). Pick a WSI-safe library L, a client program P of L and a kv-store K obtained
from executing P under WSI, i.e. (K0,U0, E) , P _−→∗ETWSI

(K,_,_) ,_. From Theorem 11 it
suffices to prove that (SO ∪WRK ∪WWK ∪ RWK)+ is acyclic. We proceed by contradiction.
Let us assume there exists t1 such that t1

(SO∪WRK∪WWK∪RWK)+

−−−−−−−−−−−−−−−−→ t1. From Theorem 13 we
know (SO ∪ WRK)+ is acyclic. Moreover, thanks to no-blind-writes in (2) and UA, any
WWK (k) edge on a key k can be replaced by WR+

K(k)), as illustrated in Figure 10a. As

7 That is, for initial kv-store K0, initial view environment U0 and arbitrary client environment E ,
(K0,U0, E) , P _−→∗ETWSI (K,_,_) ,_).

8 From UA, it is immediate that j = i− 1.

S. Xiong, A. Cerone, A. Raad, and P. Gardner 21:25

k 7→ · · ·
· · ·

· · ·
_

t

T
· · ·
· · ·

· · ·
_

t′

T ′] {t′′}
_

t′′

_

(a) t
WR∗
−−−→ t′′ replaces t

WW−−→ t′′.

k1 7→ · · ·
· · ·

· · ·
_

_

T ∪ {t}
· · ·
· · ·

· · ·
_

t′

_
k2 7→ · · ·

· · ·

· · ·
_

t

_
· · ·
· · ·

· · ·

(b) t
WW−−→ t′ replaces t

RW−−→ t′ where t has a write.

Figure 10 WSI-safety.

such, (SO ∪WRK)+ ∪WWK is acyclic and thus this cycle is of the form: t1
R∗−→RW−→R∗−→ · · · R

∗

−→
RW−→R∗−→ t1, where R , SO ∪ WR ∪ WW. From (3) we know an RWK (k1) edge on a key
k1 starting from a writing transaction t can be replaced by a WW edge, as illustrated in
Figure 10b. Moreover, from (2) we know we can replace WW edges by WR+. We thus have:

t1
R′∗−→RW−→R′+−→ · · · R

′+

−→RW−→R′∗−→ t1, where R′ , SO ∪WR, i.e. t1
(R′;RW?)∗−−−−−−−→ t1. This, however,

leads to a contradiction by Theorem 14. J

Using Theorem 16, we can prove the robustness of the banking library in [2] against
WSI, and hence SI. Alomari et al. [2] informally showed that this example is robust: they
identified a notion of dangerous dependency between transactions which, they argued, can
lead to violation of robustness of SI; and they argued that this banking example contains
no such dangerous dependencies. The original banking example worked with a relational
database with three tables account, saving and checking. The account table maps customer
names to customer IDs (Account(Name, CID)); the saving table maps customer IDs to their
saving balances (Saving(CID, Balance)); and the checking table maps customer IDs to their
checking balances (Checking(CID, Balance)). The balance of a saving account must be
non-negative, but a checking account may have a negative balance.

For simplicity, we encode the saving and checking tables as a single kv-store, and omit
the account table as it is an immutable lookup table. We model a customer ID as an integer
n ∈ N, and assume that the balances are integer values. We then define the key associated
with customer n in the checking table as nc , 2n, and define the key associated with n in the
saving table as ns , 2n+1, i.e. Key ,

⋃
n∈N {nc, ns}. Moreover, if n identifies a customer

with (_, n)∈Account(Name, CID), then (n, val (K (ns, |K (ns)| −1)))∈Saving(CID, Balance)
and (n, val (K (nc, |K (nc)| −1))) ∈ Checking(CID, Balance).

The banking library provides five transactional operations:

balance(n) , [x := [nc] ; y := [ns] ; ret := x + y]
depositCheck(n, v) , [if (v ≥ 0){x := [nc] ; [nc] := x + v }]

transactSaving(n, v) , [x := [ns] ; if (v + x ≥ 0){ [ns] := x + v }]

amalgamate(n, n′) ,
[
x := [ns] ; y := [nc] ; z := [n′c] ;
[ns] := 0; [nc] := 0; [n′c] := x + y + z

]

writeCheck(n, v) ,

x := [ns] ; y := [nc] ;
if(v > 0 && x + y < v){ [nc] := y− v− 1 }
else{ [nc] := y− v } [ns] := x

The balance(n) operation returns the total balance of customer n in ret. The depositCheck
(n, v) deposits v to the checking account of customer n when v is non-negative, otherwise it
leaves the checking account unchanged. When v ≥ 0, transactSaving(n, v) deposits v to
the saving account of n. When v < 0, transactSaving(n, v) withdraws v from the saving
account of n only if the resulting balance is non-negative, otherwise the saving account
remains unchanged. The amalgamate(n, n′) operation moves the combined checking and

ECOOP 2020

21:26 Data Consistency in Transactional Storage Systems: A Centralised Semantics

saving balance of costumer n to the checking account of customer n′. Lastly, writeCheck(n, v)
cashes a cheque of customer n in the amount v by deducting v from its checking account. If
n does not hold sufficient funds (i.e. the combined checking and saving balance is less than
v), customer n is penalised by deducting one additional pound. In [2], the authors argue that
to make this library robust against SI, the writeCheck(n, v) operation must be strengthened
by writing back the saving account balance (via [ns] := x), even though this is unchanged.

The banking library is more complex than the multi-counter library. Nevertheless, all
banking transactions are either read-only or satisfy the no-blind writes property. Hence, the
banking library is WSI-safe, and so robust against WSI and SI.

Lock Library: Mutual-exclusion Guarantee. Finally, we demonstrate that, although a
distributed lock library is not robust against UA, we can nevertheless prove an invariant
property stating that only one client can hold the lock at a given time, thus establishing a
mutual exclusion guarantee. The distributed lock library provides the following operations
on a key k:

tryLock (k) , [x := [k] ; if (x=0){ [k] := ClientID; m := true }else{ m := false }]
lock (k) , do{ tryLock (k) }until(m=false) unlock (k) , [[k] := 0]

The tryLock operation reads the k value; if the value is zero (i.e. the lock is available), then
it sets it to the client ID and returns true; otherwise it leaves it unchanged and returns
false. The lock operation calls tryLock until it successfully acquires the lock. The unlock
operation simply set the k value to zero.

Consider the program PLK where clients cl and cl′ compete to acquire the lock k:

PLK , (cl : (lock (k) ; ...; unlock (k))∗ ‖ cl′ : (lock (k) ; ...; unlock (k))∗)

The locking program in PLK is correct, in that only one client can hold the lock at a time,
when executed under serialisability. Since all the operations are trivially WSI-safe, PLK is
robust and hence correct under WSI as well as stronger models such as SI. However, PLK

is not robust under UA or PSI: lock may read an old value of key k until it reads its most
up-to-date value and acquires it. Nevertheless, we show that PLK is correct under UA (and
hence PSI) in that it satisfies a mutual exclusion guarantee where only one client can hold
the lock at a time. We capture this guarantee by the following invariant, stating that for all
positive i (i > 0):

val(K (k, i)) 6= 0⇔ val(K (k, i− 1)) = 0 (4)
val(K (k, i)) = 0⇒ w(K (k, i)) = w(K (k, i− 1)) (5)

It is straightforward to show that, under UA, only one client can hold the lock (4), and the
same client releases the lock (5). Assume a kv-store K satisfies this invariant. Given the lock
program in PLK, if the latest value of k is 0, then all clients are competing to acquire k, and
thanks to UA only a client cl with full view of k can install a new version with its unique
client ID. This will stop other clients from acquiring k as the latest value is now non-zero.
Subsequently, when cl executes its next transaction, i.e. unlock (k), it releases the lock and
installs a new version with value zero.

Invariants vs. Execution Graphs. We have demonstrated how invariant properties of
transactional libraries can be used to prove their robustness, as well as library-specific
guarantees such as mutual exclusion. Although existing work can establish the robustness of

S. Xiong, A. Cerone, A. Raad, and P. Gardner 21:27

a library using execution graphs (e.g. dependency graphs of [1]), they typically do this by
checking the final results of all its client programs. By contrast, thanks to our operational
model, we achieve this by establishing an invariant property at each execution step, thus
allowing a simpler, more compositional proof. Moreover, whilst it is straightforward for us to
prove library-specific guarantees (e.g. mutual exclusion for locks) by simply encoding them
as an invariant of the library, establishing such properties using execution graphs is much
more difficult. This is because execution graphs do not directly record the library state and
merely record the execution shape, thus making it harder to reason about such guarantees.

6 Conclusions and Future Work

We have introduced an interleaving operational semantics for describing the client-observable
behaviour of atomic transactions over distributed kv-stores, using abstract states comprising
global, centralised kv-stores, partial client views, and transition steps parametrised by an
execution test which directly captures when a transaction is able to commit on a state.
Using these execution tests, we provide a general definition of consistency model and provide
example instantiations including CC, PSI, SI and SER. In [46], we prove that our definitions
are equivalent to the existing definitions in the literature that use execution graphs [11].

We have used our semantics to verify that protocols of real-world distributed databases
satisfy particular consistency models, e.g. that the replicated database COPS [33] satisfies
CC, and the partitioned database Clock-SI [21] satisfies SI. These results contrast with
those of [21, 33], which justify the correctness of implementations using consistency model
definitions that are specific to the implementations. We have also proved several invariant
properties for clients, showing that the clients of several libraries (single-counter, multi-
counter and banking libraries) are robust against the appropriate models, and showing that
certain clients of a lock library satisfy a mutual exclusion property under PSI, even though
they are not robust against PSI. We thus believe that our semantics provides an interesting
abstract interface between distributed implementations and clients. We plan to validate
further the usefulness of our semantics by verifying other well-known protocols of distributed
databases [4, 30, 34, 43], exploring robustness results for OLTP workloads such as TPC-C
[44] and RUBiS [39], and exploring other program analysis techniques such as transaction
chopping [13, 41], invariant checking [24, 47] and program logics [27]. We also plan to develop
tools to generate litmus tests for implementations and to analyse client programs.

Our work assumes the snapshot property and the last-write-wins policy, common assump-
tions in real-world distributed databases. Under these assumptions, we are not aware of
a consistency model that we cannot express using our semantics. There are consistency
models that do not satisfy these assumptions, e.g. read committed [4] captured in [16]. In
future, we will explore whether it is possible to weaken our assumptions to express such weak
consistency models. This might be possible by introducing “promises” in the style of [28].

There are many resonances between the high-level behaviour of distributed systems and
the low-level behaviour of weak memory. Indeed, our partial client views were inspired by
the views of the “promising” C11 semantics in [28]. In future, we plan to explore whether our
semantics of atomic transactions can be loosened to describe the more fine-grained behaviour
of transactions on weak memory [38, 15]. We are also interested in the work of Doherty
et al. [20], describing an operational semantics and a program logic for the release-acquire
(RA) fragment of C11, which, interestingly, is based on dependency graphs. We believe that
we can adapt our semantics to model the RA fragment, using simple read-write primitives
rather than atomic transactions and a variant of our definition of causal consistency.

ECOOP 2020

21:28 Data Consistency in Transactional Storage Systems: A Centralised Semantics

References
1 Atul Adya. Weak Consistency: A Generalized Theory and Optimistic Implementations for

Distributed Transactions. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1999. URL: http://pmg.csail.mit.edu/papers/adya-phd.pdf.

2 M. Alomari, M. Cahill, A. Fekete, and U. Rohm. The cost of serializability on platforms that
use snapshot isolation. In 2008 IEEE 24th International Conference on Data Engineering,
pages 576–585, April 2008. doi:10.1109/ICDE.2008.4497466.

3 Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. Non-monotonic snapshot isolation:
Scalable and strong consistency for geo-replicated transactional systems. In Proceedings of the
2013 IEEE 32nd International Symposium on Reliable Distributed Systems, SRDS ’13, page
163–172, USA, 2013. IEEE Computer Society. doi:10.1109/SRDS.2013.25.

4 Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Scalable
atomic visibility with ramp transactions. ACM Trans. Database Syst., 41(3), July 2016.
doi:10.1145/2909870.

5 Sidi Mohamed Beillahi, Ahmed Bouajjani, and Constantin Enea. Checking robustness against
snapshot isolation. CoRR, abs/1905.08406, 2019. arXiv:1905.08406.

6 Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil. A
Critique of ANSI SQL Isolation Levels. In Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, SIGMOD’95, pages 1–10. ACM, 1995. doi:10.1145/
223784.223785.

7 Giovanni Bernardi and Alexey Gotsman. Robustness against Consistency Models with Atomic
Visibility. In Proceedings of the 27th International Conference on Concurrency Theory, pages
7:1–7:15, 2016. doi:10.4230/LIPIcs.CONCUR.2016.7.

8 Carsten Binnig, Stefan Hildenbrand, Franz Färber, Donald Kossmann, Juchang Lee, and
Norman May. Distributed Snapshot Isolation: Global Transactions Pay Globally, Local
Transactions Pay Locally. The VLDB Journal, 23(6):987–1011, December 2014. doi:10.1007/
s00778-014-0359-9.

9 Sebastian Burckhardt, Manuel Fahndrich, Daan Leijen, and Mooly Sagiv. Eventually Consistent
Transactions. In Proceedings of the 21nd European Symposium on Programming. Springer,
March 2012. doi:10.1007/978-3-642-28869-2_4.

10 Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich. Global
sequence protocol: A robust abstraction for replicated shared state. In 29th European
Conference on Object-Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech
Republic, pages 568–590, 2015. doi:10.4230/LIPIcs.ECOOP.2015.568.

11 Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. A Framework for Transactional
Consistency Models with Atomic Visibility. In Luca Aceto and David de Frutos Escrig, editors,
26th International Conference on Concurrency Theory (CONCUR 2015), volume 42 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 58–71, Dagstuhl, Germany, 2015.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CONCUR.2015.58.

12 Andrea Cerone and Alexey Gotsman. Analysing Snapshot Isolation. In Proceedings of the
2016 ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC’16,
pages 55–64. ACM, 2016. doi:10.1145/2933057.2933096.

13 Andrea Cerone, Alexey Gotsman, and Hongseok Yang. Transaction chopping for parallel
snapshot isolation. In Proceedings of the 29th International Symposium on Distributed Com-
puting - Volume 9363, DISC 2015, page 388–404, Berlin, Heidelberg, 2015. Springer-Verlag.
doi:10.1007/978-3-662-48653-5_26.

14 Andrea Cerone, Alexey Gotsman, and Hongseok Yang. Algebraic Laws for Weak Consistency.
In Roland Meyer and Uwe Nestmann, editors, Proceedings of the 27th International Conference
on Concurrency Theory, volume 85 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 26:1–26:18, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.CONCUR.2017.26.

http://pmg.csail.mit.edu/papers/adya-phd.pdf
https://doi.org/10.1109/ICDE.2008.4497466
https://doi.org/10.1109/SRDS.2013.25
https://doi.org/10.1145/2909870
http://arxiv.org/abs/1905.08406
https://doi.org/10.1145/223784.223785
https://doi.org/10.1145/223784.223785
https://doi.org/10.4230/LIPIcs.CONCUR.2016.7
https://doi.org/10.1007/s00778-014-0359-9
https://doi.org/10.1007/s00778-014-0359-9
https://doi.org/10.1007/978-3-642-28869-2_4
https://doi.org/10.4230/LIPIcs.ECOOP.2015.568
https://doi.org/10.4230/LIPIcs.CONCUR.2015.58
https://doi.org/10.1145/2933057.2933096
https://doi.org/10.1007/978-3-662-48653-5_26
https://doi.org/10.4230/LIPIcs.CONCUR.2017.26

S. Xiong, A. Cerone, A. Raad, and P. Gardner 21:29

15 Nathan Chong, Tyler Sorensen, and John Wickerson. The semantics of transactions and
weak memory in x86, power, arm, and C++. In Jeffrey S. Foster and Dan Grossman, editors,
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, pages 211–225. ACM,
2018. doi:10.1145/3192366.3192373.

16 Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. Seeing is Believing: A Client-
Centric Specification of Database Isolation. In Proceedings of the 2017 ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, PODC’17, pages 73–82, New York, NY,
USA, 2017. ACM. doi:10.1145/3087801.3087802.

17 Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. TaDA: A Logic for
Time and Data Abstraction. In Richard E. Jones, editor, Proceedings of the 28th European
Conference on Object-Oriented Programming, volume 8586 of Lecture Notes in Computer
Science, pages 207–231. Springer, July 2014. doi:10.1007/978-3-662-44202-9_9.

18 Khuzaima Daudjee and Kenneth Salem. Lazy database replication with snapshot isolation. In
Proceedings of the 32nd International Conference on Very Large Data Bases, VLDB ’06, page
715–726. VLDB Endowment, 2006. doi:10.5555/1182635.1164189.

19 Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor
Vafeiadis. Concurrent Abstract Predicates. In Proceedings of the 24th European Conference
on Object-Oriented Programming, ECOOP’10, pages 504–528. Springer-Verlag, 2010. doi:
10.1007/978-3-642-14107-2_24.

20 Simon Doherty, Brijesh Dongol, Heike Wehrheim, and John Derrick. Verifying C11 programs
operationally. In Proceedings of the 24th Symposium on Principles and Practice of Parallel
Programming, PPoPP ’19, pages 355–365, New York, NY, USA, 2019. ACM. doi:10.1145/
3293883.3295702.

21 Jiaqing Du, Sameh Elnikety, and Willy Zwaenepoel. Clock-SI: Snapshot Isolation for Parti-
tioned Data Stores Using Loosely Synchronized Clocks. In Proceedings of the 32nd Leibniz
International Proceedings in Informatics (LIPIcs), SRDS’13, pages 173–184, Washington, DC,
USA, 2013. IEEE Computer Society. doi:10.1109/SRDS.2013.26.

22 Sameh Elnikety, Willy Zwaenepoel, and Fernando Pedone. Database replication using
generalized snapshot isolation. In Proceedings of the 24th IEEE Symposium on Reli-
able Distributed Systems, SRDS ’05, page 73–84, USA, 2005. IEEE Computer Society.
doi:10.1109/RELDIS.2005.14.

23 Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis Shasha.
Making Snapshot Isolation Serializable. ACM Transactions on Database Systems, 30(2):492–
528, June 2005. doi:10.1145/1071610.1071615.

24 Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. ’cause
i’m strong enough: Reasoning about consistency choices in distributed systems. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’16, page 371–384, New York, NY, USA, 2016. Association for Computing
Machinery. doi:10.1145/2837614.2837625.

25 Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent
Reasoning. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL’15, pages 637–650. ACM, 2015. doi:10.1145/
2676726.2676980.

26 Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh Jagannathan. Safe replic-
ation through bounded concurrency verification. Proc. ACM Program. Lang., 2(OOPSLA),
October 2018. doi:10.1145/3276534.

27 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan. Alone Together:
Compositional Reasoning and Inference for Weak Isolation. Proceedings of the ACM on
Programming Languages, 2(POPL):27:1–27:34, December 2017. doi:10.1145/3158115.

ECOOP 2020

https://doi.org/10.1145/3192366.3192373
https://doi.org/10.1145/3087801.3087802
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.5555/1182635.1164189
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1145/3293883.3295702
https://doi.org/10.1145/3293883.3295702
https://doi.org/10.1109/SRDS.2013.26
https://doi.org/10.1109/RELDIS.2005.14
https://doi.org/10.1145/1071610.1071615
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3276534
https://doi.org/10.1145/3158115

21:30 Data Consistency in Transactional Storage Systems: A Centralised Semantics

28 Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. A Prom-
ising Semantics for Relaxed-memory Concurrency. In Proceedings of the 44th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL’17, pages
175–189, New York, NY, USA, 2017. ACM. doi:10.1145/3009837.3009850.

29 Eric Koskinen and Matthew Parkinson. The push/pull model of transactions. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’15, page 186–195, New York, NY, USA, 2015. Association for Computing Machinery.
doi:10.1145/2737924.2737995.

30 Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Rodrigo
Rodrigues. Making geo-replicated systems fast as possible, consistent when necessary. In
Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation,
OSDI’12, page 265–278, USA, 2012. USENIX Association. URL: http://www.cs.otago.ac.
nz/cosc440/readings/osdi12-final-162.pdf.

31 Richard J. Lipton. Reduction: A method of proving properties of parallel programs. Commun.
ACM, 18(12):717–721, December 1975. doi:10.1145/361227.361234.

32 Si Liu, Peter Csaba Ölveczky, Keshav Santhanam, Qi Wang, Indranil Gupta, and José
Meseguer. ROLA: A New Distributed Transaction Protocol and Its Formal Analysis. In
Alessandra Russo and Andy Schürr, editors, Fundamental Approaches to Software Engineering,
pages 77–93, Cham, 2018. Springer. doi:10.1007/978-3-319-89363-1_5.

33 Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t settle
for eventual: Scalable causal consistency for wide-area storage with cops. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11, page 401–416, New
York, NY, USA, 2011. Association for Computing Machinery. doi:10.1145/2043556.2043593.

34 Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Stronger
Semantics for Low-Latency Geo-Replicated Storage. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation, pages 313–328, Lombard, IL,
2013. USENIX. URL: https://www.usenix.org/conference/nsdi13/technical-sessions/
presentation/lloyd.

35 Kartik Nagar and Suresh Jagannathan. Automated Detection of Serializability Violations
Under Weak Consistency. In Proceedings of the 29th International Conference on Concurrency
Theory, pages 41:1–41:18, 2018. doi:10.4230/LIPIcs.CONCUR.2018.41.

36 Aleksandar Nanevski, Yuy Ley-wild, Ilya Sergey, and Germán Andrés Delbianco. Communic-
ating State Transition Systems for fine-grained concurrent resources, pages 290–310. Lecture
Notes in Computer Science. springer-verlag, 2014. doi:10.1007/978-3-642-54833-8_16.

37 Christos H. Papadimitriou. The serializability of concurrent database updates. J. ACM,
26(4):631–653, October 1979. doi:10.1145/322154.322158.

38 Azalea Raad, Ori Lahav, and Viktor Vafeiadis. On Parallel Snapshot Isolation and Re-
lease/Acquire Consistency. In Amal Ahmed, editor, Proceedings of the 27th European Sym-
posium on Programming, pages 940–967, Cham, 2018. Lecture Notes in Computer Science.
doi:10.1007/978-3-319-89884-1_33.

39 The RUBiS benchmark, 2008. URL: https://rubis.ow2.org/index.html.
40 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replicated

data types. In Proceedings of the 13th International Conference on Stabilization, Safety, and
Security of Distributed Systems, SSS’11, page 386–400, Berlin, Heidelberg, 2011. Springer-
Verlag. doi:10.1007/978-3-642-24550-3_29.

41 Dennis Shasha, Francois Llirbat, Eric Simon, and Patrick Valduriez. Transaction Chopping:
Algorithms and Performance Studies. ACM Transactions on Database Systems, 20(3):325–363,
September 1995. doi:10.1145/211414.211427.

42 Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional Storage for
Geo-replicated Systems. In Proceedings of the 23rd ACM Symposium on Operating Systems
Principles, SOSP’11, pages 385–400, New York, NY, USA, 2011. ACM. doi:10.1145/2043556.
2043592.

https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/2737924.2737995
http://www.cs.otago.ac.nz/cosc440/readings/osdi12-final-162.pdf
http://www.cs.otago.ac.nz/cosc440/readings/osdi12-final-162.pdf
https://doi.org/10.1145/361227.361234
https://doi.org/10.1007/978-3-319-89363-1_5
https://doi.org/10.1145/2043556.2043593
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/lloyd
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/lloyd
https://doi.org/10.4230/LIPIcs.CONCUR.2018.41
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1145/322154.322158
https://doi.org/10.1007/978-3-319-89884-1_33
https://rubis.ow2.org/index.html
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1145/211414.211427
https://doi.org/10.1145/2043556.2043592
https://doi.org/10.1145/2043556.2043592

S. Xiong, A. Cerone, A. Raad, and P. Gardner 21:31

43 Kristina Spirovska, Diego Didona, and Willy Zwaenepoel. Wren: Nonblocking Reads in a
Partitioned Transactional Causally Consistent Data Store. In Proceedings of the 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN’18, pages
1–12, 2018. doi:10.1109/DSN.2018.00014.

44 The TPC-C benchmark, 1992. URL: http://www.tpc.org/tpcc/.
45 Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, January 2009. doi:

10.1145/1435417.1435432.
46 Shale Xiong. Parametric Operational Semantics for Consistency Models. PhD thesis, Imperial

College London, April 2021. URL: http://www.shalexiong.com/thesis.pdf.
47 Peter Zeller. Testing properties of weakly consistent programs with repliss. In Proceedings of

the 3rd International Workshop on Principles and Practice of Consistency for Distributed Data,
PaPoC’17, pages 3:1–3:5, New York, NY, USA, 2017. ACM. doi:10.1145/3064889.3064893.

ECOOP 2020

https://doi.org/10.1109/DSN.2018.00014
http://www.tpc.org/tpcc/
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/1435417.1435432
http://www.shalexiong.com/thesis.pdf
https://doi.org/10.1145/3064889.3064893

Putting Randomized Compiler Testing into
Production
Alastair F. Donaldson
Google, London, United Kingdom
Imperial College London, United Kingdom
afdx@google.com

Hugues Evrard
Google, London, United Kingdom
hevrard@google.com

Paul Thomson
Google, London, United Kingdom
paulthomson@google.com

Abstract
We describe our experience over the last 18 months on a compiler testing technology transfer project:
taking the GraphicsFuzz research project on randomized metamorphic testing of graphics shader
compilers, and building the necessary tooling around it to provide a highly automated process
for improving the Khronos Vulkan Conformance Test Suite (CTS) with test cases that expose
fuzzer-found compiler bugs, or that plug gaps in test coverage. We present this tooling for test
automation – gfauto – in detail, as well as our use of differential coverage and test case reduction
as a method for automatically synthesizing tests that fill coverage gaps. We explain the value
that GraphicsFuzz has provided in automatically testing the ecosystem of tools for transforming,
optimizing and validating Vulkan shaders, and the challenges faced when testing a tool ecosystem
rather than a single tool. We discuss practical issues associated with putting automated metamorphic
testing into production, related to test case validity, bug de-duplication and floating-point precision,
and provide illustrative examples of bugs found during our work.

2012 ACM Subject Classification Software and its engineering → Compilers; Software and its
engineering → Software testing and debugging

Keywords and phrases Compilers, metamorphic testing, 3D graphics, experience report

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.22

Category Experience Report

Supplementary Material ECOOP 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.2.3.

Acknowledgements We are grateful to David Neto and to the anonymous ECOOP 2020 reviewers
for their feedback on an earlier draft of this work.

1 Introduction

Graphics processing units (GPUs) provide hardware-accelerated graphics in many scenarios,
such as 3D and 2D games, applications, web browsers, and operating system user interfaces.
To utilize GPUs, developers must use a graphics programming API, such as OpenGL,
Direct3D, Metal or Vulkan, and write shader programs that execute on the GPU in an
embarrassingly-parallel manner. Shaders are written in a shading language such as GLSL,
HLSL, MetalSL, or SPIR-V (associated with the OpenGL, Direct3D, Metal and Vulkan
APIs, respectively), and are usually portable enough to run on many different GPU models.
A graphics driver contains one or more shader compilers to translate shaders from portable
shading languages to machine code specific to the system’s GPU.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Alastair F. Donaldson, Hugues Evrard, and Paul Thomson;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 22; pp. 22:1–22:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7448-7961
mailto:afdx@google.com
mailto:hevrard@google.com
mailto:paulthomson@google.com
https://doi.org/10.4230/LIPIcs.ECOOP.2020.22
https://doi.org/10.4230/DARTS.6.2.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Putting Randomized Compiler Testing into Production

Functional defects in graphics shader compilers can have serious consequences. Clearly,
as with any bug in any application, it is undesirable if a mis-compiled graphics shader causes
unintended visual effects. Furthermore, since shaders are compiled at runtime (because
the GPU and driver that will be present when an application executes is not known at the
application’s compile time), a shader compiler crash can lead to an overall application crash.
Additionally, developers cannot feasibly test for or workaround these issues, as the driver
version that crashes may not have even been written at the time of application development.
Worse still, because the graphics driver usually drives the whole system’s display, if a shader
compiler defect leads to the state of the driver being corrupted, the entire system may become
unstable. This can lead to device freezes and reboots, display corruption and information
leakage; see [15] for a discussion of some examples, including information leak bugs in iOS [2]
(CVE-2017-2424) and Chrome [5] caused by GPU driver bugs, and an NVIDIA machine
freeze [38] (CVE-2017-6259).

One way to provide a degree of graphics driver quality – and shader compiler quality in
particular – is via standardized test suites. An example is the Khronos Vulkan Conformance
Test Suite (Vulkan CTS, or just CTS for short) [25]. This is a large set of functional
tests for implementations of the Vulkan graphics API. The Khronos Group, who define
various standards and APIs including Vulkan, requires a Vulkan implementation (such as a
GPU driver and its associated GPU hardware) to demonstrate that they pass the Vulkan
CTS tests in order for the vendor to use the official Vulkan branding. Google’s Android
Compatibility Test Suite incorporates the Vulkan CTS, so that Android devices that provide
Vulkan capabilities must include drivers that pass the Vulkan CTS. Improving the quality
and thoroughness of the Vulkan CTS is thus an indirect method for improving the quality of
Vulkan graphics drivers in general, and on Android in particular.

GraphicsFuzz (originally called GLFuzz) [16, 15] is a technique and tool chain for auto-
matically finding crash and miscompilation bugs in shader compilers using metamorphic
testing [9, 42]. Whenever GraphicsFuzz synthesizes a test that exposes a bug in a conformant
Vulkan driver, this demonstrates a gap in the Vulkan CTS: the driver has passed the con-
formance test suite despite exhibiting this bug. If GraphicsFuzz synthesizes a test that covers
a part of a conformant driver’s source code, but the driver does not crash, and the code is
not covered by any existing CTS tests, then this also exposes a CTS gap (albeit arguably a
less severe one): it demonstrates that part of the driver’s source code can be covered but is
not covered by the CTS; bugs that creep into such code in the future would not be caught.

In this experience report we describe our activities at Google over the last 18 months put-
ting the GraphicsFuzz tool chain into production, with the aim of improving implementations
of the Vulkan API. We have set up a process whereby the randomized metamorphic testing
capabilities of GraphicsFuzz are used to find tests that expose driver bugs or CTS coverage
gaps, shrink such tests down to small examples that are simple enough for humans to read
and debug, and package the resulting tests into a form whereby they are almost completely
ready to be added to the Vulkan CTS. So far, this has led to 122 tests that exposed driver
and tooling bugs and 113 that exposed driver coverage gaps being added to CTS. The bugs
affect a range of mobile and desktop drivers, as well as tools in the SPIR-V ecosystem. Our
contribution of CTS tests that expose them means that future conformant Vulkan drivers
cannot exhibit them (at least not in a form that causes these tests to fail).

We start by presenting relevant background on graphics programming APIs, shader
processing tools, the Vulkan CTS, and the GraphicsFuzz testing approach (§2). We then
describe how we set up a pathway for incorporating tests that expose bugs found by
GraphicsFuzz into the CTS, and various practical issues we had to solve to ensure valid

A. F. Donaldson, H. Evrard, and P. Thomson 22:3

tests (§3). With this pathway in place we were empowered to build a fuzzing framework, gfauto,
for running GraphicsFuzz against a range of drivers and shader processing tools, automatically
shrinking tests that find bugs and getting them into a near-CTS-ready form (§4). To aid in
finding coverage gaps, we have built tooling for differential coverage analysis; we describe
how – by treating coverage gaps as bugs – gfauto can be used to synthesize tests that expose
such gaps in a highly automatic fashion (§5). A strength of GraphicsFuzz is that it facilitates
testing not only vendor graphics drivers, but also a variety of translation, optimization and
validation tools that are part of the Vulkan ecosystem. We explain how this also presents a
challenge: it can be difficult to determine which component of the ecosystem is responsible
for a bug (§6). Throughout, we provide illustrative examples of noteworthy bugs and tests
found and generated by our approach, including bugs that affect core infrastructure (such as
LLVM), bugs that affect multiple tools simultaneously, and bugs for which the responsible
tool is non-trivial to identify. We conclude by discussing related (§7) and future (§8) work.

Main takeaways. We hope this report is simply interesting for researchers and practitioners
to read as an example of successful technology transfer of research ideas to industrial practice.
In addition, we believe the following aspects could provide inspiration for follow-on research:

The pros and cons of fuzzing a low level language via a program generator for a higher
level language and a suite of translation and optimization tools, including the problem of
how to determine where in a tool chain a fault has occurred (§3.1 and §6);
The need for image differencing algorithms that are well-suited to tolerating the degree
of variation we expect from graphics shaders due to floating-point precision (§3.4);
Threats to test validity caused by undefined behavior, long-running loops and floating-
point precision, where more advanced program analyses have the potential to be ap-
plied (§3.5);
The difficulty of correctly maintaining a test case generator and a corresponding test case
reducer, especially when test case reduction needs to be semantics-preserving (also §3.5)
The challenge of de-duplicating bugs that do not exhibit distinguished characteristics,
such as wrong image bugs and message-free compile and link errors (§4.2);
The idea of using differential coverage analysis and test case reduction to fill coverage
gaps (§5), and the challenge of going beyond synthesizing tests that trivially cover new
code to tests that are also equipped with meaningful oracles (§5.4 specifically).

Open sourcing. Our extensions to the GraphicsFuzz tool, the new gfauto tool, and our
infrastructure for differential code coverage, are open source.1 The tests we have contributed
to Vulkan CTS are also open source.2

2 Background

2.1 The GLSL and SPIR-V Shading Languages
GLSL. The OpenGL Shading Language (GLSL) [22] is the main shading language in the
OpenGL graphics API [41] (analogous to HLSL and the Direct3D API). It is used for
rendering hardware-accelerated 2D and 3D graphics. OpenGL ES [32], and its associated

1 https://github.com/google/graphicsfuzz
2 https://github.com/KhronosGroup/VK-GL-CTS/tree/master/external/vulkancts/data/vulkan/

amber/graphicsfuzz

ECOOP 2020

https://github.com/google/graphicsfuzz
https://github.com/KhronosGroup/VK-GL-CTS/tree/master/external/vulkancts/data/vulkan/amber/graphicsfuzz
https://github.com/KhronosGroup/VK-GL-CTS/tree/master/external/vulkancts/data/vulkan/amber/graphicsfuzz

22:4 Putting Randomized Compiler Testing into Production

1 precision highp float ;
2
3 layout (location = 0) out vec4 _GLF_color ;
4
5 void main ()
6 {
7 vec2 a = vec2 (1.0);
8 vec4 b = vec4 (1.0);
9 pow(vec4(a, vec2 (1.0)) , b);

10 // Added manually to ensure that the shader writes red
11 _GLF_color = vec4 (1.0 , 0.0, 0.0, 1.0);
12 }

Figure 1 A reduced GLSL ES fragment shader that, after translation to SPIR-V, triggered a
bug leading to a crash in the GPU shader compiler for a popular Android device.

shading language GLSL ES [43], is a subset of the OpenGL API supported by mobile devices,
including Android devices.3 We focus on the GLSL ES shading language version 3.10 and
later, and henceforth drop the ES suffix and version number for brevity. Figure 1 shows an
example of a GLSL fragment shader (also known as a pixel shader in Direct3D). The code
is C-like, but with some additional features useful for graphics programming. The code in
main is conceptually executed n times on the GPU for each of the n pixels rendered into a
framebuffer (which stores the image) using the shader. The precision highp float; line
causes all subsequent floating-point values to be represented with 32 bits of precision by
default (lower precision can be specified via the mediump and lowp qualifiers on a per-variable
basis). Note that main has no parameters and a void return type; in GLSL, inputs and
outputs to the shader are instead expressed using special global variables. Global variable
_GLF_color4 is an output variable into which the fragment shader writes the RGBA colour
value that will be rendered at the pixel coordinate for which the shader is running. The vec2
and vec4 types are built-in float vector types (with 2 and 4 float components respectively).
The vector constructor form that takes one floating-point value (e.g. vec2(1.0)) creates a
vector with all components set to that value. A vector constructor can also take a combination
of vectors and/or scalars (e.g. vec4(a, vec2 (1.0))) to construct a vector made up of each
component in order, as long as the total number of components matches the vector type.
The pow(x,y) function yields an approximation of xy, and is an example of one of the many
built-in math functions provided in GLSL. The example of Figure 1 was minimized with
the aim of reproducing a shader compiler crash bug (discussed further as Example 1 below),
and is not representative of a practically useful graphics shader: the main function performs
some redundant computation and then writes the colour red (vec4(1.0, 0.0, 0.0, 1.0))
to the output colour variable. Thus, every pixel rendered by this shader will be red.

Shaders can also define uniform global variables (not shown in the example), using the
uniform keyword. These are shader inputs that yield the same value for every pixel
being shaded during a single shader invocation. For example, a uniform declaration
uniform float time; could be used to pass a representation of the current time into
a shader, allowing it to produce a time-varying visual effect.

3 Strictly, OpenGL ES is not quite a subset of OpenGL: over time it has evolved with some features that
have been deemed specifically important for mobile platforms.

4 The _GLF prefix comes from the fact that the tool was originally called GLFuzz. This prefix is used as a
default for any special variable, function or macro names used by GraphicsFuzz.

A. F. Donaldson, H. Evrard, and P. Thomson 22:5

SPIR-V (bin)

SwiftShader

spirv-crossglslang

spirv-dis spirv-opt

dxc

SPIR-V (txt)

GLSL HLSL
High-Level

IR

Driver

spirv-valspirv-as Yes/
No

GPU vendor A GPU vendor B

Figure 2 Diagram showing the various tools in the SPIR-V ecosystem and how they interact.

SPIR-V. In comparison to OpenGL, Vulkan [20] is a newer, lower-level graphics API. It is
widely supported by modern desktop GPUs, as well as being available on newer Android
devices. Standard, Portable Intermediate Representation - V (SPIR-V; the “V” does not
stand for anything) is the Vulkan shading language [23]. Unlike GLSL, SPIR-V was designed
as an intermediate representation to be stored in a binary form, and thus is not usually written
directly by programmers. Instead, programmers write their shaders in a higher-level language
like GLSL or HLSL, and use a tool to compile the shaders into SPIR-V. SPIR-V modules
use static single assignment (SSA) form [12], including the use of Phi instructions [12], and
functions contain blocks with branches.

2.2 The SPIR-V Tooling Ecosystem
Figure 2 summarizes various open source tools for analyzing and transforming SPIR-V
shaders, and translating to and from SPIR-V.

As mentioned in §2.1, most shaders are written in high level languages such as GLSL
and HLSL and translated to SPIR-V. For example, glslang [24] and DXC [37] can compile
GLSL and HLSL, respectively, to SPIR-V. A binary SPIR-V shader can be loaded by the
Vulkan API and executed as part of a graphics pipeline on a GPU device. Google provides
a software implementation of Vulkan, SwiftShader [18], which allows Vulkan applications
(including their SPIR-V shaders) to be executed in the absence of Vulkan-capable hardware.
This is useful to bring Vulkan support to old devices, as a fall-back renderer if a GPU driver
goes into an unstable state, and as a “second opinion” for GPU driver writers.

The code generated by front-ends such as glslang and DXC is not typically optimized. In
fact glslang deliberately performs as straightforward a syntax-directed translation of a GLSL
shader as possible. The spirv-opt tool, part of the Khronos SPIRV-Tools framework [27],
implements many target-agnostic optimizations as SPIRV-V-to-SPIR-V passes.

The philosophy of the Vulkan API is to allow drivers to assume that the Vulkan workloads
with which they are presented are valid, pushing the onus of validation to the application. In
support of this, the spirv-val tool (also part of the SPIR-V tools framework), checks whether
a SPIR-V shader obeys the (many) rules mandated by the SPIR-V specification [23]. The
spirv-dis and spirv-as disassembler and assembler (again, part of SPIRV-Tools) allow a shader
to be translated into text format and back, which is useful for debugging.

Finally, the spirv-cross tool [28] allows SPIR-V to be translated into various shading
languages including GLSL, HLSL and Apple’s Metal shading language (MetalSL, not shown
in the figure). Translation to these higher-level languages can help in understanding the

ECOOP 2020

22:6 Putting Randomized Compiler Testing into Production

intended behavior of a SPIR-V shader, and the SPIR-V-to-MetalSL pathway is used by the
MoltenVK project, which provides an implementation of most of Vulkan on top of Apple’s
Metal graphics API [26].

2.3 The Vulkan Conformance Test Suite
The Khronos Vulkan Conformance Test Suite (Vulkan CTS) [25] is a set of tests for the Vulkan
API. In theory, every part of the Vulkan specification should have one or more corresponding
tests in the Vulkan CTS. Each test should invoke the relevant Vulkan API functions to check
that a Vulkan implementation conforms to the Vulkan specification. Indeed, the Vulkan
CTS mostly consists of a set of functional tests (there are over 550,000 Vulkan CTS tests at
the time of writing) that attempt to test features in isolation. The Vulkan CTS is part of
the larger Khronos Conformance Test Suite called dEQP (drawElements Quality Program5)
that additionally contains tests for OpenGL ES and EGL.

Any implementation of Vulkan (including any Vulkan graphics driver with its associated
GPUs) must pass the Vulkan CTS (and upload the results to Khronos for peer review) before
the Vulkan name or logo can be used in association with the implementation. Thus, the
Vulkan CTS sets a minimum quality standard for every conformant Vulkan implementation.
Of course, the test suite is also extremely useful during development of a Vulkan driver; as
with most test suites, it can be used to identify bugs and regressions, and to measure progress
towards becoming a conformant implementation. The OpenGL ES and EGL test suite is
similarly used as part of the conformance process for those APIs, and as a useful aid during
driver development. The dEQP test suite is included in the Android Compatibility Test Suite
(Android CTS), which is an even larger test suite for Android devices. Original equipment
manufacturers (OEMs) will typically customize the Android OS for a given device, but
these Android implementations must still pass the Android CTS to be deemed “compatible”.
Thus, the Vulkan CTS also sets a minimum quality standard for Vulkan on every compatible
Android device, which can have a large impact on the Android ecosystem.

Vulkan CTS development is mostly done by Khronos members, although anybody can
contribute. New tests are reviewed by GPU vendors before being accepted. Tests need to be
deterministic, and clear enough to allow debugging of Vulkan implementations if a test fails.

2.4 Metamorphic Compiler Testing Using GraphicsFuzz
The GraphicsFuzz tool originated from a research project at Imperial College London, and
formed the basis of a spin-out company, GraphicsFuzz Ltd., founded by the authors of this
paper, which Google acquired during 2018.

Figure 3 gives an overview of the GraphicsFuzz approach to testing shader compilers. It
starts with an existing reference shader which, after being compiled by the shader compiler
embedded in the GPU driver and executed on the GPU hardware, leads to a given reference
image. A classic way to test a GPU driver would be to compare this resulting image to what
a reference implementation of the graphics API would produce. However, graphics API are
purposefully relaxed to let GPU vendors reach very high performance through aggressive
optimizations, such that there are various images that can be deemed acceptable. It is
currently not possible, and not desirable for GPU vendors, to agree on a strict reference
implementation that would serve as a test oracle.

5 dEQP was a commercial product developed by the drawElements company. Google acquired drawEle-
ments in 2014 and donated the dEQP test suite to Khronos, where it is now open source.

A. F. Donaldson, H. Evrard, and P. Thomson 22:7

GPU

reference
shader

variant
shader

GPU driver (shader compiler)

semantics
preserving

transformations

bug

bug
bug

crash

Figure 3 Illustration of the metamorphic testing approach used by GraphicsFuzz.

Inspired by the equivalence modulo inputs method for testing C compilers [31], GraphicsFuzz
works around this lack of oracle by using metamorphic testing [9, 42]: here the GPU input
(shader) is transformed in a way that should not change its output (image). In practice, the
glsl-fuzz tool applies semantics-preserving transformations to the reference shader source code
to obtain a family of variant shaders. As a very simple example, one can add zero to an existing
integer operation, int x = y + 0: this source code change should not impact the program
behavior. The glsl-fuzz tool contains many such semantics-preserving transformations [15],
including: arithmetic operations (such as adding zero, multiplying by one, etc), boolean
operations (e.g. bool b = x && true), dead code injection (adding valid yet unreachable
code, e.g. wrapped inside an if (false) { ... }), live code injection (adding code that
will be executed while making sure to save and restore all variables affected by it, e.g.
{t = x; x = foo(x); x = t;}), control flow wrapping (e.g. wrapping existing code in a
single-iteration loop do { ... } while(false)), packing scalar data into composite data
types (such as structs and vectors), and outlining expressions into functions. Some of the
values used in these transformations, such as zero, one, true and false, are obtained via
program inputs whose value is guaranteed at execution time, but unknown at compilation
time. This is to make sure compilers cannot trivially remove some transformations, e.g. by
statically detecting dead code injections to be unreachable.

Care is required when applying these transformations to ensure that program semantics
are preserved. For instance, one cannot wrap some code in a single-iteration loop if this code
contains a top-level break statement: the break would now apply to the newly-introduced
loop, rather than to the original loop or switch statement in which it originally appeared.

Each variant shader is syntactically distinct from the reference, yet has the same semantics
(modulo floating-point error). It may thus exercise a different path in the shader compiler but
should still lead to a visually similar image being rendered, so long as the reference shader
is sufficiently numerically stable. This is illustrated by the top, blue variant shader line in
Figure 3. However, some variants may lead to significantly different images, or a driver crash,
which are symptoms of bugs, most likely in the shader compiler but also potentially in other
parts of the driver or GPU hardware. These are illustrated by the lower two orange variant
shader lines in Figure 3. For a given GPU, we cannot know what to expect as a reference
image, but we do expect variants to lead to an extremely similar image.

Semantics-preserving transformations are used in other contexts, e.g. compiler optim-
izations and code obfuscation tools modifying a program representation while keeping the
same behavior. Code refactoring, when understood as improving the program structure
while keeping the same functional features, can also be considered as a semantics-preserving

ECOOP 2020

22:8 Putting Randomized Compiler Testing into Production

donor.glsldonor.glsl

reference.glsl

glsl-fuzz

variant.glsl

spirv-opt

reference(.opt).spv

variant(.opt).spvglslang

glslang

donor.glsl
GPU driver
under test

Figure 4 Targeting SPIR-V shader compilers from GLSL.

transformation at a bigger scale than the transformations used in glsl-fuzz. For our testing
purpose, we are interested in any kind of semantics-preserving transformation that may
potentially have interesting effects on how the shader is processed by the GPU.

Although a bug-inducing variant can be used as a starting point for debugging, its source
code is often barely understandable by a human because of the hundreds of transformations
that have been applied to it. To ease debugging, the glsl-reduce tool progressively shrinks
the variant source code while making sure that the bug is still triggered.

There are two reduction modes:

Semantics-preserving reduction. For shader miscompilation bugs leading to wrong images,
glsl-reduce performs semantics-preserving reduction by removing the glsl-fuzz transformations
in a way that still preserves semantics. This typically leads to a variant that differs from its
reference only by a handful of transformations necessary to trigger the wrong image bug.
The pair of semantically identical shaders is useful as a debugging starting point.

Semantics-changing reduction. For bugs leading to a driver crash, glsl-reduce performs
semantics-changing reduction by removing source code, the only requirement being to keep
it statically valid (which includes being syntactically valid and well-typed). No valid shader
should not cause a driver crash, so there is no need to keep a semantic equivalence with
the reference shader. Semantics-changing reductions can lead to very short crash-inducing
shaders (e.g. Figure 1), which are useful for debugging and as regression test cases.

3 Integrating GraphicsFuzz Tests With Vulkan CTS

As described in §2.4, the GraphicsFuzz tool was originally designed to find bugs in OpenGL
and OpenGL ES drivers by transforming shaders written in the GLSL shading language.
However, our interest is in making shader compilers for the more modern Vulkan API as
reliable as possible by improving the Vulkan CTS, and Vulkan uses SPIR-V as its shading
language (see §2.1). We explain the process we used to allow GLSL-based fuzzing of SPIR-V
shader compilers via translation (§3.1). We explain why we did not opt for embedding the
fuzzer inside CTS, or directly contributing large numbers of fuzzer-generated tests, instead
preferring to add tests that are known to expose shader compiler bugs (§3.2). We then
describe how we paved the way for tests that expose crash and wrong image bugs to be
added to CTS (§3.3 and §3.4, respectively).

A. F. Donaldson, H. Evrard, and P. Thomson 22:9

3.1 Fuzzing SPIR-V Compilers via GLSL Shaders
In order to target SPIR-V shader compilers with a tool that operates on GLSL, we leverage
the glslang translator, which takes GLSL as input and has a SPIR-V back-end. By design,
glslang performs a very straightforward translation from GLSL to SPIR-V, performing no
optimization beyond some basic constant folding and elimination of functions that are never
invoked. As a result, the SPIR-V that glslang emits is rather basic (e.g. it rarely exhibits uses
of Phi instructions). While it is vital that SPIR-V shader compilers correctly handle this
“vanilla” SPIR-V, we are also interested in testing their support for more interesting SPIR-V
features. Towards this aim, we optionally invoke the spirv-opt tool on the SPIR-V that glslang
generates, with its -O flag (optimize for speed), its -Os flag (optimize for size), or a random
selection of its finer-grained flags (which include things like --ssa-rewrite, which changes
variable uses to register uses, and can add Phi instructions, and --eliminate-dead-inserts,
which avoids unnecessary insertions of data into composite structures).

This use of glslang and spirv-opt allows us to perform metamorphic fuzzing at the GLSL
level to generate a variant from a reference, send both the variant and reference through
glslang to turn them into SPIR-V, and then (optionally, and at random) transform the variant
using a configuration of spirv-opt. The resulting SPIR-V shaders can then be compiled and
executed on a Vulkan driver, and the results they compute can be compared. This process is
illustrated graphically in Figure 4. This translation-based approach allows us to also find
bugs in glslang and spirv-opt, which benefits the Vulkan ecosystem. However, as discussed
further in §6, it can be hard to determine – in the case of wrong image bugs – which of these
tools or the driver’s shader compiler has miscompiled.

Making shaders “Vulkan-friendly”. Unlike in GLSL, where a global variable of almost
any type can be declared as uniform (see §2.1), SPIR-V requires that every uniform is
declared as a field of a structure called a uniform block, with the whole structure being
declared to be uniform. The number of uniform blocks allowed in a SPIR-V module is
implementation-dependent. GLSL has been updated with “Vulkan-friendly features” to
allow uniforms to be presented in this way, and glslang will only compile Vulkan-friendly
shaders into SPIR-V. We thus wrote a simple pass to turn a standard GLSL shader into
Vulkan-friendly form. For simplicity of implementation we approached this by placing each
original uniform variable in its own (single-field) uniform block. Our pass limits the number
of such blocks to 10, as we have not encountered a Vulkan implementation that supports
fewer than 10 uniform blocks, and none of the reference shaders we currently use for testing
feature more than 10 uniforms. When glsl-fuzz generates a variant shader with more than 10
uniforms (due to injecting code from other shaders), our Vulkan preparation pass demotes
superfluous uniforms to standard global variables initialized to concrete values.

3.2 Argument for Not Running Fuzzing in CTS
We briefly considered pitching to Khronos the idea of running GraphicsFuzz as part of
running CTS, so that to pass CTS a driver would have to pass all of the regular tests, and
additionally survive running a certain number of GraphicsFuzz-generated tests unscathed.
We quickly dismissed this idea because it is important to GPU driver makers that qualifying
as Vulkan-conformant involves passing a fixed number of tests that run in a deterministic
fashion. However much enthusiasm driver makers have for randomized testing as a way to
discover bugs, it is understandable that there is little appetite for a conformance test suite
that exhibits randomization.

ECOOP 2020

22:10 Putting Randomized Compiler Testing into Production

Another issue with embedding GraphicsFuzz in CTS is that inevitable defects in Graphic-
sFuzz (such as generating a variant shader that turns out not to be semantically equivalent
to the reference shader) would manifest as a driver failing to pass CTS.

An alternative to actually running GraphicsFuzz in CTS would be to generate a reasonably
large set of shaders – e.g. 1000 shaders – and contribute them as CTS tests. We also quickly
decided against this strategy for a few reasons. First, the intended behavior of a CTS test
should be feasible for a Vulkan expert to understand. The generated variant shaders are
large (in order to maximize the probability of finding a bug), and not feasible for humans
to realistically comprehend in isolation; the reducer, glsl-reduce, is essential in shrinking a
bug-inducing variant to a comprehensible form. Furthermore, 1000 large randomized shaders
would be a substantial addition to CTS in terms of the test suite’s runtime, but is not a large
enough number of tests to run with the expectation of thoroughly testing a shader compiler.

We opted instead for setting up a continuous fuzzing process whereby we could use
GraphicsFuzz to find bugs that affect current shader compilers, use glsl-reduce to shrink
the associated tests down to small examples that reproduce said bugs, and contribute the
resulting tests. We now explain the format we settled on for adding crash and wrong image
tests to CTS. We detail our tooling for continuous fuzzing in §4.

3.3 Supporting Crash Tests
Around the same time we commenced our plan to add tests exposing shader compiler crash
bugs to CTS, a new tool called Amber was launched [17]. Amber provides a simple domain-
specific language, AmberScript, in which some aspects of a Vulkan graphics pipeline can be
specified, including the SPIR-V shaders that should be executed, and input and output data
(including uniform blocks and framebuffers) on which the shaders should operate. It also
allows querying the results of running a shader, e.g. probing pixels in the output framebuffer.
The motivation for Amber was to make it easy to write stand-alone shader compiler tests,
hiding the (very substantial amount of) Vulkan API boilerplate required for even a simple
graphics pipeline. Since early 2019, Amber has been integrated into Vulkan CTS and is now
the preferred method for writing shader compiler tests.

We wrote a script that takes a reduced GLSL shader known to trigger a SPIR-V shader
compiler crash (after translation to SPIR-V and possibly optimization using some specific
spirv-opt flags) and produces an Amber test comprised of:

A brief comment, supplied as an argument to the script, to describe the test and the
reason why it should be expected to pass;
A comment showing the original GLSL code for the reduced shader; this is useful because
GLSL is much easier to read compared with SPIR-V;
Assembly code for the SPIR-V fragment shader that was obtained from this GLSL by
translation using glslang and (optional) optimization using spirv-opt;
A comment listing the spirv-opt arguments that were applied (if any);
Commands to create the target framebuffer and to populate the shader uniforms;
A command, supplied as an argument to the script, to check some property of the image
finally obtained in the framebuffer.

Figure 5 illustrates the process of Amber test creation following test case reduction.

I Example 1. The GLSL shader of Figure 1, which we used to illustrate the GLSL language
in §2.1, triggered a SPIR-V shader compiler crash in the GPU driver of a popular Android
device, after translation to SPIR-V (and without requiring any use of spirv-opt). This shader
was reduced from a much larger variant shader generated by GraphicsFuzz, which we edited

A. F. Donaldson, H. Evrard, and P. Thomson 22:11

glsl-reduce

variant.glsl glslang (+spirv-opt) GPU

reduced-variant.glsl

glslang (+spirv-opt)

AmberScript CTS test

hand-written
short description

GLSL as a comment

spirv code

boilerplate

reduction: shrink variant as long as it triggers a bug

Figure 5 Overview of the reduction process and the creation of a CTS test in AmberScript.

by making the variable names simpler, and by adding the final line of executable code, which
ensures that the colour red is written to the framebuffer. We believe the shader compiler
crash was due to an assertion failing in the lowering of the pow intrinsic to LLVM bytecode.
This is somewhat surprising given that the result of pow is not used, but was presumably
due to dead code elimination being executed after lowering.

An abbreviated version of the Amber test corresponding to this shader is shown in
Figure 6 (we omit some of the SPIR-V assembly). The test and its intent are described on
lines 1–6; line 8 indicates that a standard trivial vertex shader (not otherwise relevant in
this experience report) should be used in the test pipeline; lines 10-24 show the GLSL code
for the fragment shader, and match Figure 1; the corresponding SPIR-V shader (emitted
by glslang) is shown on lines 26–52 as SPIR-V assembly (notice the invocation of the Pow
intrinsic on line 49); line 55 declares a framebuffer, and lines 57–62 define a graphics pipeline
based on the vertex and fragment shaders, with the framebuffer attached; line 63 sets the
back buffer to black (so that any pixels not rendered to would remain black); lines 65-66 run
the pipeline, and line 68 asserts that the framebuffer ends up red at every pixel.

The purpose of adding this test to CTS was to expose the driver bug that it triggered,
so that future drivers cannot be Vulkan conformant unless the underlying bug is (at least
partially) fixed. We write red to the framebuffer and assert that the framebuffer indeed
ends up being red so that the test has at least some runtime oracle; it does a little more
than just checking that shader compilation succeeds. The test would be better if the shader
stored values into one or more components of _GLF_color using the result of the call to pow,
and then asserted a suitable framebuffer colour; as it stands the test would pass even if pow
were compiled incorrectly but without a compiler crash. We occasionally work to contribute
higher quality test oracles, but do not agonize over this since the main motivation for adding
these tests is to force the elimination of compiler crash bugs from conformant drivers.

I Example 2. Figure 7 shows a reduced shader that triggered a bug in AMD’s LLVM-Based
Pipeline Compiler (LLPC) [19]: an assertion failed during constant folding:
amdllpc: external/llvm/lib/Support/APFloat.cpp:1521: llvm::lostFraction llvm::detail::IEEEFloat::
addOrSubtractSignificand(const llvm::detail::IEEEFloat &, bool): Assertion ‘!carry’ failed.

We reported this bug,6 and the LLPC compiler developers traced its root cause to a bug
in LLVM’s floating-point emulation code related to handling of subnormal numbers, which
was promptly fixed.7 This demonstrates that shader compiler fuzzing can have positive
impact on common infrastructure (LLVM in this case) that is used by many compilers for
C-family languages. We contributed a Vulkan CTS test based on this bug, with a structure
similar to the example of Figure 6.8

6 https://github.com/GPUOpen-Drivers/llpc/issues/211
7 https://reviews.llvm.org/D69772
8 https://github.com/KhronosGroup/VK-GL-CTS/blob/master/external/vulkancts/data/vulkan/

amber/graphicsfuzz/mix-floor-add.amber

ECOOP 2020

https://github.com/GPUOpen-Drivers/llpc/issues/211
https://reviews.llvm.org/D69772
https://github.com/KhronosGroup/VK-GL-CTS/blob/master/external/vulkancts/data/vulkan/amber/graphicsfuzz/mix-floor-add.amber
https://github.com/KhronosGroup/VK-GL-CTS/blob/master/external/vulkancts/data/vulkan/amber/graphicsfuzz/mix-floor-add.amber

22:12 Putting Randomized Compiler Testing into Production

1 # A test for a bug found by GraphicsFuzz .
2
3 # Short description : A fragment shader that uses pow
4
5 # We check that all pixels are red. The test passes because main does
6 # some computation and then writes red to _GLF_color .
7
8 SHADER vertex variant_vertex_shader PASSTHROUGH
9

10 # variant_fragment_shader is derived from the following GLSL:
11 # # version 310 es
12 #
13 # precision highp float ;
14 # precision highp int;
15 #
16 # layout (location = 0) out vec4 _GLF_color ;
17 #
18 # void main ()
19 # {
20 # vec2 a = vec2 (1.0);
21 # vec4 b = vec4 (1.0);
22 # pow(vec4(a, vec2 (1.0)) , b);
23 # _GLF_color = vec4 (1.0 , 0.0 , 0.0 , 1.0);
24 # }
25 SHADER fragment variant_fragment_shader SPIRV -ASM
26 ; SPIR -V
27 ; Version : 1.0
28 ; Generator : Khronos Glslang Reference Front End; 7
29 ; Bound : 28
30 ; Schema : 0
31 OpCapability Shader
32 %1 = OpExtInstImport "GLSL.std .450"
33 OpMemoryModel Logical GLSL450
34 OpEntryPoint Fragment %main "main" % _GLF_color
35 OpExecutionMode %main OriginUpperLeft
36 OpSource ESSL 310
37 OpName %main "main"
38 OpName %a "a"
39 OpName %b "b"
40 OpName % _GLF_color " _GLF_color "
41 OpDecorate % _GLF_color Location 0
42 % void = OpTypeVoid
43 %3 = OpTypeFunction % void
44 % float = OpTypeFloat 32
45 % v2float = OpTypeVector % float 2
46 ...
47 %21 = OpCompositeConstruct % v4float %17 %18 %19 %20
48 %22 = OpLoad % v4float %b
49 %23 = OpExtInst % v4float %1 Pow %21 %22
50 OpStore % _GLF_color %27
51 OpReturn
52 OpFunctionEnd
53 END
54
55 BUFFER variant_framebuffer FORMAT B8G8R8A8_UNORM
56
57 PIPELINE graphics variant_pipeline
58 ATTACH variant_vertex_shader
59 ATTACH variant_fragment_shader
60 FRAMEBUFFER_SIZE 256 256
61 BIND BUFFER variant_framebuffer AS color LOCATION 0
62 END
63 CLEAR_COLOR variant_pipeline 0 0 0 255
64
65 CLEAR variant_pipeline
66 RUN variant_pipeline DRAW_RECT POS 0 0 SIZE 256 256
67
68 EXPECT variant_framebuffer IDX 0 0 SIZE 256 256 EQ_RGBA 255 0 0 255

Figure 6 CTS test that exposed a shader compiler crash bug, in AmberScript form. Some of the
SPIR-V assembly has been omitted.

A. F. Donaldson, H. Evrard, and P. Thomson 22:13

1 # version 310 es
2 precision highp float ;
3
4 layout (location = 0) out vec4 _GLF_color ;
5
6 vec3 GLF_live6mand ()
7 {
8 return mix(uintBitsToFloat (uvec3 (38730u, 63193u, 63173u)),
9 floor(vec3 (463.499 , 4.7, 0.7)) , vec3 (1.0) + vec3 (1.0));

10 }
11 void main ()
12 {
13 GLF_live6mand ();
14 _GLF_color = vec4 (1.0 , 0.0, 0.0, 1.0);
15 }

Figure 7 Reduced shader that triggered a floating-point constant folding bug in LLVM.

3.4 Supporting Wrong Image Tests

Recall from §2.4 and Figure 3 that GraphicsFuzz finds miscompilation bugs via a variant
shader that renders a significantly different image compared to the image rendered by the
associated reference shader. In this case glsl-reduce reverses as many of the transformations
that were applied to the variant shader as possible while the difference persists. To create
Vulkan CTS tests suitable for exposing such bugs we worked with the Amber developers to
add AmberScript features related to comparing the outputs of multiple graphics pipelines. In
particular, we added the ability to compare framebuffers in a fuzzy manner. This allows us
to turn a GraphicsFuzz reference and reduced-variant shader pair into a single AmberScript
file that (a) creates and runs a separate pipeline for each shader, rendering to distinct
framebuffers, and (b) asserts fuzzy equality between these framebuffers.

A challenge associated with this is the selection of a suitable fuzzy comparison metric
for our purpose. We collected a corpus of image pairs that – based on our shader compiler
fuzzing experience – we would like to be deemed similar, and a set of pairs that we would like
to be deemed different. The corpus includes image pairs produced by graphics drivers during
our testing efforts, plus a few manually crafted image pairs that we believe could occur in
theory and that we thought may prove challenging for certain comparison algorithms. We
experimented with various image comparison algorithms provided by the scikit-image [47]
Python library, including MSE, NRMSE, SSIM, and PSNR. We also tried several custom
image comparison algorithms based on obtaining and comparing image histograms. We
found that image histogram comparison was very effective at correctly classifying image pairs
in our corpus, except for some manually crafted image pairs where one image was a rotation
or mirror of the other. Indeed, the key weakness of image histogram comparison is that all
spatial information is lost. A key advantage is it is very resilient to minor differences that
other algorithms flag as important, but which we would typically like to be ignored. We
chose to initially proceed with an image histogram comparison algorithm for the following
reasons: it correctly classifies image pairs in our corpus as well as or better than most other
algorithms; it is very simple to understand and implement (which is important because
we don’t want GPU vendors to struggle to understand why a Vulkan CTS test has failed
and have to debug the image comparison algorithm itself); it has fairly low performance

ECOOP 2020

22:14 Putting Randomized Compiler Testing into Production

requirements;9 with a high tolerance value, it is fairly forgiving of minor differences, and –
to achieve a low false alarm rate – we would prefer to incorrectly classify an image pair as
similar than incorrectly classify the pair as different (most image differences we encounter in
practice are easily detected with a forgiving algorithm/tolerance).

We implemented our image comparison algorithm, Histogram EMD (where EMD stands
for Earth Mover’s Distance [29]), in the Amber code base, and added a command to
AmberScript of the form:

EXPECT buffer_1 EQ_HISTOGRAM_EMD_BUFFER buffer_2 TOLERANCE value
where buffer_1 and buffer_2 are framebuffers containing the images we wish to compare
and value is the tolerance value. The test fails if the difference value returned by the
algorithm exceeds the tolerance value.

These extensions to Amber provide a pathway for landing tests that expose wrong image
bugs in CTS, and we have implemented the necessary scripts to directly generate such tests.
We recently put several such tests up for Vulkan CTS code review, and a reviewer quickly
found that the validity of one of the tests was questionable due to floating-point precision
issues. We discuss this as Example 3 in §3.5. To err on the side of caution, we retracted the
other wrong image tests we had put forward and manually simplified each one to double-check
that it really did correspond to a driver bug rather than a floating-point precision issue.
After sufficient manual simplification, we were able to add an Amber test for each of these
bugs, consisting of a single shader (and a single pipeline) with a straightforward assertion to
check that the single output image is red.

In order to be able to add wrong image tests with a pair of shaders to CTS with confidence,
we are working on a corpus of reference shaders that are highly numerically stable.

3.5 Avoiding Invalid Tests
We are anxious not to waste Vulkan CTS reviewer time by proposing tests that turn out
to be invalid and get rejected, or – worse – that get accepted (due to the invalidity being
subtle, and not leading to failures on current drivers) and subsequently found to be invalid
(necessitating their removal from every CTS release they have made it into). We discuss our
main concerns related to possible invalid tests.

Preserving semantics during generation and reduction. As explained in §2.4, GraphicsFuzz
produces a variant shader by having glsl-fuzz repeatedly apply semantics-preserving trans-
formations to a reference, and upon finding a potential wrong image bug, invokes glsl-reduce
to reduce the test case by repeatedly attempting to reverse or simplify transformations. For
wrong image bugs, it is critical that all transformations preserve semantics both when applied
and reversed/simplified. The way GraphicsFuzz has been designed, all information about
the transformations that have been applied is recorded by glsl-fuzz via syntactic markers in
the generated shaders. Examples of syntactic markers include using special preprocessor
macros, and giving variables and functions special names or name prefixes. The glsl-reduce
tool then needs to understand these markers and use them to reverse and simplify certain
transformations without spoiling the syntactic markers that represent other transformations.

9 When running the Vulkan CTS on Android, the image comparison is done on the Android device using
the CPU, which has some overhead, especially when using a simulated (software) CPU, as is commonly
done when testing next-generation hardware.

A. F. Donaldson, H. Evrard, and P. Thomson 22:15

In practice we have encountered several hard-to-diagnose bugs where glsl-reduce has erro-
neously changed the semantics of a shader, usually due to reversal of one transformation
having messed up the syntactic markers associated with another transformation, which as a
result gets incorrectly reversed.10

We guard against this in practice via a degree of manual inspection of the final reduced
shader emitted by glsl-reduce, and as glsl-fuzz and glsl-reduce continue to become more stable
this issue becomes less relevant. However, based on our experience, we regard having a
separate generator and reducer that must understand one another in an intricate manner
to be a serious pitfall of the GraphicsFuzz approach. Recent research on internal test case
reduction has the potential to avoid the need for a separate generator and reducer [34], and
could thus be useful in our domain.

Loop limiters. Recall that the live code injection transformation performed by glsl-fuzz
(see §2.4) injects code from a donor shader into the shader under transformation in a manner
such that the injected code really gets executed at runtime. A problem here is that the
injected code may contain loops, and these loops may run for potentially large numbers of
iterations. In particular, if the declarations of variables that control loop execution are not
themselves injected, glsl-fuzz creates declarations for such variables and initializes them to
randomized expressions, which can lead to infinite loops. Programs that risk containing
infinite loops are used for compiler testing by tools such as Csmith [50], with the philosophy
that it is better to accept that some programs will not terminate, and to use a timeout to
bound the runtime of any individual test, than to put in place draconian measures to ensure
that all loops terminate. Unfortunately, in the world of GPU shader compilers, long-running
shaders cause display freezes, leading to the operating system’s GPU watchdog killing the
executing shader. This can lead to the shader rendering what appears to be an incorrect
image when in fact the image was simply incomplete.

We found that this problem confounded our test results, requiring significant manual
inspection of final shaders to check for long-running loops. To overcome this we decided to
go ahead and put a relatively draconian measure in place: every loop in every live-injected
shader is truncated via a loop limiter. This is an additional counter variable specific to a
loop. It is initialized to zero immediately before the loop. A conditional statement at the
start of the loop body breaks from the loop if the counter exceeds a small positive value
(randomly chosen at generation time), and increments the counter otherwise.

With reference to our discussion above about keeping the generator and reducer in
sync: loop limiters are given special names when inserted by glsl-fuzz, and when simplifying
live-injected code glsl-reduce checks for these names and takes care not to remove loop limiters
unless removing the entire associated loop. Again, this coupling between generator and
reducer is fragile and can be hard to maintain.

When reducing a compiler crash bug glsl-reduce aggressively shrinks a shader. In this case
we allow it to remove loop limiters, which can mean that finally-reduced shaders may contain
infinite loops. While the resulting shaders are good enough to reproduce a compiler crash,
they are not suitable for addition to CTS, as all CTS tests should be runnable. We therefore
inspect shaders manually and edit them to avoid any infinite loops – while preserving the
compiler crash – before submitting them for CTS review.

10See https://github.com/google/graphicsfuzz/pull/599 as an example pull request that fixes such
an issue.

ECOOP 2020

https://github.com/google/graphicsfuzz/pull/599

22:16 Putting Randomized Compiler Testing into Production

Array bounds clamping. Live-injected code may also contain access into arrays and vec-
tor/matrix types, which have the potential to be out-of-bounds if their indexing expressions
depend on variables that glsl-fuzz initializes to randomized expressions. SPIR-V for Vulkan
requires that all accesses are in-bounds. Fortunately, array and vector/matrix sizes are
always known statically in GLSL and there are no pointers in the language. We therefore
rewrite every array index expression e that appears in live-injected code as clamp(e, 0, N −1),
where N is the size of the array or vector/matrix being accessed, and clamp(a, b, c) is the
GLSL built-in that clamps a into the range [b, c]. An exception to this is when e is a literal
that is already in-bounds. As with loop limiters, glsl-reduce is responsible for preserving
these in-bounds clamping expressions during test case reduction.

Floating-point stability. We use an example to illustrate the risk of submitting invalid CTS
tests posed by floating-point instability.

I Example 3. A transformation that GraphicsFuzz may try to apply is to replace a floating-
point expression e with an expression e/ONE , where ONE is an expression guaranteed to
evaluate to 1.0 at runtime. GraphicsFuzz has many possible ways of synthesizing an expression
that is expected to evaluate to 1.0, one method being to generate an expression of the form
length(normalize(v)), where v is some non-zero vector. The normalize GLSL built-in
yields a unit vector (when applied to a non-zero vector), and length yields the length of a
vector, so the expression intuitively should evaluate to 1.0. However, it turns out that the
floating-point precision requirements on SPIR-V instructions mean that the result might not
quite evaluate to 1.0; some round-off error is allowed [20, pp. 1754–1759].

We thought we had found a wrong image bug in SwiftShader upon finding a major image
difference to be caused by transforming the following code snippet:

1 // ’ref ’ and ’s’ are ’float ’ variables ; ’ref ’ has value 32.0 at runtime
2 for (int i = 1; i < 800; i++) {
3 // ’mod ’ is the floating -point modulus operation
4 if (mod(float(i), ref) <= 0.01) {
5 s += 0.2;
6 }
7 ...
8 }

This code snippet causes s to increase by 0.2 every time i is a multiple of 32, since this is
the only scenario where mod(float(i), ref) will be sufficiently small for the if condition to
evaluate to true. GraphicsFuzz replaced ref with ref / length(normalize(vec3(...))),
where the ... is a placeholder for a non-trivial but sensible expression that evaluates to 1.0
(so that the resulting vector is (1.0, 1.0, 1.0)).

What we assumed was a bug in SwiftShader turned out to be a false alarm. After some
manual analysis we found that the divisor length(normalize(vec3(...))) evaluated to a
value slightly larger than 1.0, so that the second argument to the floating-point mod built-in
was slightly smaller than 32.0 (due to ref being exactly 32.0). As a result, the statement
s += 0.2 became unreachable, even for loop iterations where i is a multiple of 32 since the
modulus of a multiple of 32 with a value v slightly smaller than 32.0 leads to the value v.

Floating-point precision issues like this hammer home the importance of using numerically
stable shaders when searching for wrong image bugs using GraphicsFuzz – the code snippet
in Example 3 demonstrates that the shader in question was not numerically stable. It
is also important to maximize the extent to which the transformations that GraphicsFuzz
applies actually preserve floating-point semantics. The deliberately ambiguous approach that
graphics shading languages take to floating-point (in order to accommodate many disparate

A. F. Donaldson, H. Evrard, and P. Thomson 22:17

GPUs) means that we can never be certain that a program transformation will completely
preserve semantics (since it can affect the optimizations the shader compiler performs, and
those optimizations are permitted to have small effects on floating-point results). However,
where possible we try to take measures to avoid floating-point error; for instance we have
changed the representation of 1.0 discussed in Example 3 from length(normalize(v)) to
round(length(normalize(v))), where the round GLSL built-in rounds its floating-point
argument to the nearest integer value; this ensures that the result will indeed be 1.0.

4 gfauto

gfauto (short for GraphicsFuzz auto) is a set of tools for using GraphicsFuzz in a “push-button”
fashion with minimal interaction, geared towards generation of tests that can be added to
CTS using the pathways described in §3. Pre-gfauto, performing a fuzzing run required
manually generating a set of variant shaders offline from a set of reference shaders, followed
by a number of manual steps to run the reference and variant shaders on target devices,
waiting for the shaders to finish, and then manually triggering reductions of interesting
variant shaders. This approach is unnecessarily inefficient when the main objective is to
find as many interesting variants (i.e. those that expose bugs) for a given device as possible
within a fuzzing run. In contrast, the high-level, automatic workflow of gfauto is: generate
a variant shader from a reference shader; run the shaders on the target device; reduce the
variant if it is interesting, otherwise discard it; repeat. This process can run continuously for
long periods of time, without interaction, which maximizes the number of interesting variant
shaders, and thus the potential number of new CTS tests. Using gfauto greatly decreases
the length of time needed to perform a fuzzing run and submit a number of CTS tests from
that run; we estimate the time period has gone from about 1-2 days (pre-gfauto) down to 1-2
hours (when using gfauto).

We detail three key features of gfauto: creation and replay of self-contained tests (§4.1),
bug de-duplication and prioritization (§4.2), and automatic Vulkan CTS test export (§4.3).

4.1 Creation and replay of self-contained tests
Pre-gfauto, the output of a fuzzing run was a directory of images and log files from running
reference and variant shaders; the reference and variant shaders themselves were stored
in a different directory. Collecting the shaders and output files needed to reproduce and
investigate a bug required copying files from different directories, and these files were stored
in an ad-hoc format. Furthermore, the versions of the tools required in order to run the
test (such as glslang and spirv-opt) were not captured. Details about the target device were
available but were again outputted in yet another directory and were typically archived in
an ad-hoc format, if at all. Thus, reproducing and investigating a bug was difficult and
time-consuming, and useful information was often lost.

gfauto generates a self-contained test from the start. The generated test directory contains
a test.json metadata file and the reference and variant GLSL shaders. The metadata file
contains all information needed to run the test, including a list of required tools and their
versions (which are downloaded on-the-fly), an error signature for the test (described below,
and initially empty until a crash or wrong image is observed), details of the device on which
the test should be run (including the driver version), and the steps needed to run the test
(e.g. running spirv-opt with a given series of optimization passes). In particular, gfauto runs
the test for the first time using the test metadata file, and is restricted to the tools specified
in the metadata; this ensures that no tool dependency can be missed. A test directory can

ECOOP 2020

22:18 Putting Randomized Compiler Testing into Production

thus be replayed with a single command. In the case of Android, the test.json file even
captures the Android device serial number so that the test can be automatically replayed on
the target device, with no interaction, as long as it is connected to the host machine.

4.2 Bug de-duplication and prioritization
A fuzzing run pre-gfauto would often find a large number of crash-inducing variant shaders,
but upon inspection of crash stack traces it would become apparent that many variants
were exposing the same bug. Clearly, we would like to prioritize the unique bugs found. We
wrote several ad-hoc scripts to classify variants that caused crashes into unique “buckets”,
so that each bucket represents a unique bug (based on the top function name in the stack
trace). However, this process was still tedious (as it involved several manual steps) and
unreliable (as the scripts were typically hand-tuned for a given fuzzing run). Furthermore,
this classification was never made permanent, so the information would typically be absent
in future fuzzing runs. Thus, we would often re-find bugs that had already been found in
previous runs and we would have to manually avoid investigating these.

In gfauto, generated tests that expose bugs are stored in buckets in the file system, where
a bucket is a directory named using the “signature” (usually the top function name in the
stack trace). This makes it trivial to identify tests that expose unique bugs (pick one test
from each bucket). The signature is also stored in the test metadata, ensuring the information
is never lost, even if the test is moved. A Python function get_signature takes the log
contents as its only input and outputs the signature string; we update this function as needed
to get an accurate bug signature in a number of scenarios. For example, if a stack trace
is present (in one of several different formats), the top function name of the stack trace is
used, if available, falling back to the hex offset of the function otherwise. Alternatively, if
a recognized error message or assertion failure pattern is seen, the error message itself can
be used as the signature. This approach ensures we reliably classify tests in most cases.
A configurable threshold ensures only a small number of tests are stored in each bucket;
subsequent tests are discarded and, crucially, do not need to be reduced, which is expensive.
Additionally, gfauto supports downloading and running our Vulkan CTS tests on the target
device, capturing the signatures (if an error occurs), and ignoring these signatures during the
next fuzzing run. This allows gfauto to ignore bugs that can already be found by existing
tests, even if the signatures change between fuzzing runs; this might happen due to a graphics
driver update on the target device or due to changes in gfauto’s get_signature function. In
particular this allows unfixed bugs found in previous fuzzing runs to be ignored, assuming
appropriate CTS tests were created.

Bug de-duplication challenges. The above approach works well most of the time, but some
issues remain. Some bugs are nondeterministic in nature. In particular, some of our tests
appear to trigger memory leaks in certain shader compilers, which can cause an abort to
occur at arbitrary places. Our glsl-reduce tool runs the test up to five times initially (before
commencing reduction) in order to validate that the the originally-observed crash signature
can be reproduced. Highly nondeterministic tests will often fail this validation step, as the
signature will be different every time.

Another issue is when a driver returns a “shader compile error” or “shader link error”
message, even though the provided shaders are valid. The driver often provides no additional
information, and so there is no way to further distinguish the shader compiler bug. Thus, if
we find hundreds of “shader compile error” bugs, we may have found hundreds of distinct
compiler bugs, or just one, or any number in between. The same issue applies for tests that
expose wrong image bugs, which are simply given a signature of “wrong_image”. In future

A. F. Donaldson, H. Evrard, and P. Thomson 22:19

work, we hope to identify tests that likely expose distinct wrong image bugs by comparing the
semantics-preserving transformations that remain in the fully-reduced variant shaders. Tests
that contain very distinct transformations are perhaps more likely to be triggering different
shader compiler bugs than tests that contain similar transformations. For compile/link
errors (where reduction need not be semantics-preserving) we may be able to use a similarity
measure on fully-reduced shaders for de-duplication purposes, drawing on ideas for “taming”
compiler fuzzers [10].

4.3 Vulkan CTS test export
Creating a Vulkan CTS test from a bug found by GraphicsFuzz (using gfauto or otherwise)
requires some manual iteration on the test. As explained in §4.1, reproducing and investigating
a bug pre-gfauto was time-consuming, and information was liable to be lost. The self-contained
nature of a gfauto test greatly improves the experience. Iterating on a CTS test typically
requires tweaking the original GLSL shaders and re-generating the SPIR-V (using the correct
versions of glslang and spirv-opt) again and again. As already stated above, we believe this
has greatly decreased the time needed to get from a fuzzing run to a number of submitted
CTS tests, from about 1-2 days (pre-gfauto) down to 1-2 hours (when using gfauto).

We took the push-button nature of gfauto further by automating the end-to-end process
of adding a Vulkan CTS test (after manually tweaking the GLSL shaders). Alongside each
gfauto test, we store a Python script that generates the final .amber file for the Vulkan
CTS test. The .amber file is similar to the one generated when running the test, but with a
copyright header and, as illustrated in Figure 6, a short description and a comment explaining
why the test passes; note that the short description and comment are manually written by
us. The Python script includes the name of the output .amber file, the contents of these
comments, and some optional tweaks, such as additional AmberScript commands that we
might want to add to provide an oracle for the test. Another utility tool then takes this
.amber file and inserts it into the Vulkan CTS source tree, taking care of updating various
index files based on the .amber file name and the short description comment. This yields a
patch that can be directly put up for Vulkan CTS code review.

5 Finding Test Coverage Gaps Using GraphicsFuzz and gfauto

5.1 Absolute Code Coverage and its Limitations
Line coverage is a widely-used metric for assessing the adequacy of a test suite at a basic
level. While many more thorough notions of coverage have been proposed [1], line coverage
is appealing because it is both simple to compute and actionable [4] – a lack of line coverage
can typically be addressed by crafting appropriate tests. A simple idea for growing Vulkan
CTS is therefore to run CTS on an open source Vulkan driver and then attempt to write
tests to cover parts of the driver that are not reached.

This simple idea suffers from two key problems:
1. It might be inappropriate for a Vulkan CTS test to reach certain driver code;
2. For code that could be covered in principle, it is likely very labour-intensive to manually

write tests that cover it in practice.

To illustrate problem 1, a recent run of Vulkan CTS on the open source Mesa driver with
an AMD back-end [11] identified much uncovered code, but a lot of this code turned out to
be (a) debug code (such as routines for dumping data structures in text format), (b) code
specific to APIs other than Vulkan (such as OpenCL), and (c) code specific to non-AMD
GPUs. It is perfectly legitimate for this code to remain uncovered.

ECOOP 2020

22:20 Putting Randomized Compiler Testing into Production

GPU driver source code

Code covered by
a Vulkan CTS run

Code covered by
a 24h gfauto run

Unknown whether this
code can be covered
by Vulkan workloads

Achievable coverage
that is currently
missing from CTS

Figure 8 Illustration of differential code coverage. Driver code covered during a gfauto run but
not during a CTS run is code that can be exercised but for which CTS test coverage is lacking. The
tests that gfauto generated to achieve such coverage provide a basis for new CTS tests.

5.2 Differential Code Coverage
To partially solve problem 1 of §5.1 we appeal to differential code coverage. Suppose we
know which lines of an open source Vulkan driver are covered during a CTS run; call these
lines A. Suppose further that we know which lines of the driver are covered by running some
other valid Vulkan workload, such as a Vulkan-based game, or a 24-hour run of gfauto; call
these lines B. For any line l ∈ B \ A, we know that l can be exercised by valid use of the
Vulkan API, so the fact that a CTS run does not exercise l demonstrates a coverage gap in
CTS that can certainly be plugged in principle.11

The idea of using gfauto and differential coverage to identify code that CTS could in
principle cover is illustrated in Figure 8. One might also imagine that differential coverage
analysis could be used to drive improvements in GraphicsFuzz: code that CTS can cover but
that gfauto cannot might indicate that gfauto should be seeded with a richer set of reference
shaders, or that GraphicsFuzz should implement more adventurous transformations. However,
the scope of GraphicsFuzz is limited to shader compilers, while CTS tests the whole of the
Vulkan API, so some knowledge of which parts of the driver relate to shader compilation
specifically would be required.

Although the idea of differential coverage analysis is not new (e.g., continuous integration
systems often provide facilities for visualizing the coverage trajectory of a project), we could
not find a suitable open source project that provides it, so we implemented our own tooling
for differential coverage, which we describe in §5.5.

5.3 Using Test Case Reduction to Synthesize Small Tests
While differential coverage helps with problem 1 of §5.1, it does not help directly with
problem 2: just knowing that a line is coverable in principle does not yield a suitable CTS
test that covers the line. If workload B (see §5.2) were an interactive game, it might be very
difficult to reverse-engineer a stand-alone test that provides coverage of a particular line.

However, if workload B is a gfauto run, we can at least obtain a number of GraphicsFuzz-
generated variant shaders that provide new coverage. Adding these tests to CTS would serve
to fill the coverage gap, but recall from §3.2 that generated tests are very large, and virtually
impossible for humans to understand in practice, thus unsuitable for direct addition to CTS.

To overcome this problem, we appeal to test case reduction in the following manner.
Having performed a gfauto run for, say, 24 hours, and identified a set of driver source code
lines B \A that were reached by gfauto but not by CTS, we manually choose one such line

11 It is theoretically possible that, e.g. due to concurrency, reachability of line l might be nondeterministic,
but we have not encountered this in practice.

A. F. Donaldson, H. Evrard, and P. Thomson 22:21

and prefix it with assert(false) – i.e., we pretend that it is erroneous to reach the line.
We recompile the driver without coverage instrumentation and run gfauto again using the
same parameters (random seed and corpus of shaders) as in the original run. gfauto will,
once again, reach the line, this time leading to an assertion failure. gfauto will treat the
assertion failure as a shader compiler crash and invoke glsl-reduce to shrink the shader to a
minimal form that still covers the line. The minimized shader is an excellent candidate for
being added to CTS since it is small enough to be human-readable. The process is repeated
by choosing another line from B \A, avoiding lines that we believe are likely to already be
covered by the candidate CTS tests found so far. We periodically re-run CTS after adding
the new tests to update workload A, thus ensuring we don’t miss any coverage gaps.

At present we have been adopting this approach by collecting differential line coverage of
SwiftShader, which incorporates spirv-opt and large parts of LLVM internally. The fact that
SwiftShader is open source simplifies the process considerably, although it should be possible
to apply a similar process to closed-source binary drivers using instruction coverage instead
of line coverage, and by overwriting an instruction with an interrupt instruction (or some
invalid instruction) instead of prefixing a line with assert(false).

Custom interestingness test. Like many reducers, glsl-reduce supports a custom “interest-
ingness test” script that signals to the reducer whether the shader that is being reduced is
still “interesting” (e.g. still crashes the driver). Thus, instead of modifying the driver source
code, we could simply provide an interestingness test that runs the shader using the driver
with coverage instrumentation, processes the coverage data, and checks if the line of interest
was covered. Unfortunately, processing the coverage data is slow, and thus usually done
offline. glsl-reduce will typically run the interestingness test hundreds or thousands of times
before finding a minimal shader. Thus, making the driver crash via an assertion failure is
a much faster approach and, conveniently, already triggers a reduction in gfauto without
requiring a customized interestingness test.

Less coverage after reduction. A potential downside of our approach is that, after reduc-
tion, a shader may cover fewer lines of interest than before. For example, an unreduced
shader might cover three seemingly unrelated functions, f, g, and h, that are all not covered
by CTS, while the reduced shader might cover just one of the functions, f, because we only
added an assertion in f and thus the reducer did not try to preserve coverage of g and h.
Although this may seem undesirable, focusing on just one function at a time typically allows
the reducer to go further (potentially much further) in minimizing the shader. We would
much rather have three simple and small CTS tests, each covering a different function, than
one complex and large CTS test that covers all three functions.

5.4 Manually Tweaking Tests to Improve Oracles
Although the reduced tests could be added to the CTS directly, this is almost never appro-
priate. As with crash bugs, we need to add an oracle to the test, else a driver that does
nothing could pass the test. Again as with crash bugs, we typically add code to the shader
to make it render the colour red and add a check to the test to ensure all rendered pixels are
indeed red. However, the test can be made much more useful if the newly covered lines affect
the output colour value so that if a bug was introduced in the newly covered lines, the test
would fail. Also note that a coverage gap test will fill a coverage gap for the Vulkan driver
that we were running (e.g. SwiftShader), but the hope is that it may also be a meaningful
test for other drivers, especially if it relates to a feature for which test coverage is generally
lacking. The test should be written with this in mind, as we will see below.

ECOOP 2020

22:22 Putting Randomized Compiler Testing into Production

I Example 4. The following is a generated, reduced fragment shader that covers constant
folding code in SwiftShader that replaces a dot product call with zero if one of the operands
is a vector of zeros:

1 void main () {
2 if (1.0 >= dot(vec2 (1.0 , 0.0) , vec2 (0.0 , 0.0))) {
3 _GLF_color = vec4 (1.0);
4 }
5 }

To transform the shader into a form suitable for the Vulkan CTS, we could simply add
code to the end of main that assigns the colour red to _GLF_color, but this has two key
disadvantages: (1) any driver that incorrectly constant folds the dot function call will still
always pass the test, and; (2) a driver might eliminate everything above our final write to
_GLF_color, and thus, on this hypothetical driver, the test would not even cover code related
to the dot product operation. A simple fix is to use the output of the dot function call in the
output colour value, as follows:

1 void main () {
2 float zero = dot(vec2 (1.0 , 0.0) , vec2 (0.0));
3 _GLF_color = vec4 (1.0 , zero , 0.0, 1.0); // we expect red
4 }

However, even this is not ideal; if a driver incorrectly replaced the dot call with a negative
float value, the output colour would still be red, as the output colour components are clamped
by the driver to be between 0 and 1, as required by the Vulkan specification. In our final
version of the test,12 we check that the result of the dot call is exactly 0, and we only output
red in this case:

1 void main () {
2 if(dot(vec2 (1.0 , 0.0) , vec2 (0.0)) == 0.0) // precise check
3 _GLF_color = vec4 (1.0 , 0.0, 0.0, 1.0); // we expect red
4 else
5 _GLF_color = vec4 (0.0);
6 }

The process of manually changing the test to be useful is non-trivial and probably cannot
be automated as it requires some creativity, but the reduced test synthesized by gfauto is an
excellent starting point and is usually not that different to the final version of the test.

5.5 Implementing Differential Code Coverage
The GCC compiler supports compiling an application with coverage instrumentation, causing
coverage data to be output when the application runs, which can then be processed with the
gcov tool. For example, to capture line coverage of SwiftShader when running the Vulkan
CTS, we could perform the following steps:

Compile SwiftShader with GCC, adding the --coverage flag. This builds the
SwiftShader Vulkan library with coverage instrumentation. For each .o file that was
written, the compiler also writes a .gcno file at the same location. The .gcno (gcov
notes) files describe the control flow graph of the corresponding .o files, and include
mappings to source code file paths and line numbers.

12 https://github.com/KhronosGroup/VK-GL-CTS/blob/master/external/vulkancts/data/vulkan/
amber/graphicsfuzz/cov-const-folding-dot-determinant.amber

https://github.com/KhronosGroup/VK-GL-CTS/blob/master/external/vulkancts/data/vulkan/amber/graphicsfuzz/cov-const-folding-dot-determinant.amber
https://github.com/KhronosGroup/VK-GL-CTS/blob/master/external/vulkancts/data/vulkan/amber/graphicsfuzz/cov-const-folding-dot-determinant.amber

A. F. Donaldson, H. Evrard, and P. Thomson 22:23

Run the Vulkan CTS using SwiftShader. Due to the coverage instrumentation in
the SwiftShader library, .gcda files are output alongside the corresponding .o and .gcno
files. The .gcda (gcov data) files contain the control flow graph block and edge execution
counts (i.e. the number of times each block and edge was executed).
Run gcov to process the .gcno and .gcda files to get line coverage information.
Manually executing gcov on every .gcno file from the required directory (or directories)
while avoiding output filename clashes is a tedious process. Additionally, the line coverage
output from gcov is fairly primitive. Thus, there are third-party tools, such as lcov and
gcovr, that invoke gcov automatically, yielding information in an intermediate data format,
and then further process this data to generate, say, an HTML report that shows every
source file annotated with the execution count of each line.

Unfortunately, we could not find any tools capable of obtaining differential line coverage
as described in §5.2. Thus, we created our own set of tools13 that are similar in spirit to lcov
and gcovr, but support obtaining differential line coverage.

cov_from_gcov processes .gcno and .gcda files into a single .cov output file that contains
the set of source file lines that were executed. The .gcno and .gcda files are processed by
invoking gcov in each required directory to output intermediate data files that are then
processed further to produce the .cov output file.

cov_new takes A.cov and B.cov as inputs, and outputs the differential coverage to
new.cov. The new.cov file is simply A.cov minus B.cov (i.e. A \B from §5.2).

cov_to_source takes new.cov as its input, and outputs two parallel directory structures
zero/ and new/. Both directories contain copies of the original source files with a prefix
added to every line: the zero/ directory has a “0” prefix added to every line; the new/
directory has a “1” prefix added to every line present in new.cov, and a “0” prefix for every
other line. The two directory structures can be compared using a diff tool; lines that are
different are the lines of interest (i.e. the lines in A \B from §5.2), and will be highlighted.
The approach of generating parallel directory structures means we avoid generating large
HTML reports, which can be slow to open and navigate, and instead allows the use of any
existing diff tool that is already optimized for this type of task.

6 Fuzzing the SPIR-V Tooling Ecosystem

Recall the rich ecosystem of SPIR-V-related tools shown in Figure 2. Because gfauto uses
many of these tools during a fuzzing run, we have the potential to find bugs in them as
well as finding bugs in vendor shader compilers. Furthermore we have also conducted some
fuzzing runs that include the spirv-cross tool (not part of the default gfauto workflow).

We illustrate, via examples, both the strength of being able to find bugs in multiple tools
and the challenge associated with determining which tool is to blame when a problem arises.

I Example 5. Running spirv-opt on a shader generated by gfauto led to a non-zero exit code.
We reported this bug to the SPIRV-Tools project,14 assuming it to be a bug in spirv-opt.
The spirv-opt authors investigated and determined that in fact the shader contained invalid
SPIR-V that spirv-val (which gfauto runs at every transformation stage) had missed. This
identified a validator bug (in the form of a validator omission) but raised the question of
what had created the invalid SPIR-V. It turned out that gfauto had run spirv-opt as part of

13 https://github.com/google/graphicsfuzz/blob/master/gfauto/docs/coverage.md
14 https://github.com/KhronosGroup/SPIRV-Tools/issues/3031

ECOOP 2020

https://github.com/google/graphicsfuzz/blob/master/gfauto/docs/coverage.md
https://github.com/KhronosGroup/SPIRV-Tools/issues/3031

22:24 Putting Randomized Compiler Testing into Production

reference.glsl
glsl-fuzz variant.glsl

spirv-opt

variant(.opt).spvglslangdonor.glsl
Metal GPU

driverSPIRV-Cross variant.mtl

Figure 9 Fuzzing Metal drivers from GLSL.

generating the shader, and its block merging pass had been too aggressive: loops in SPIR-V
assembly have designated merge and continue blocks, the merge block denoting the loop’s
exit, and the continue block denoting the start of a region of code that must be traversed in
order to return to the loop head. The block merging pass was allowing the merge block of
one loop and the continue block of another loop to be merged. This turned out to be illegal
according to the SPIR-V specification, though the wording of the specification did not spell
the rule out very clearly. The SPIRV-Tools team enhanced spirv-val to detect this kind of
invalidity, and fixed the bug in spirv-opt’s block merging pass.15

This resolved the combined validator and optimizer bug that we had found with gfauto.
Unfortunately, it turned out that 55 existing Vulkan CTS tests contained SPIR-V that was
invalid for the same reason – in many cases the SPIR-V in question had been processed by
spirv-opt’s previously buggy block merging pass. This necessitated fixing these tests in the
master branch of CTS, as well as in multiple release branches.

The SPIR-V working group are discussing how to clarify the specification with respect to
its rules about the structure of loops and other control flow constructs, in part due to this
(and other) reports from our fuzzing efforts.

I Example 6. An early assertion failure that we triggered in spirv-opt,16 by fuzzing using a
random combination of optimizer flags, turned out to be due to a “merge return” optimization
pass being applied to a SPIR-V control flow graph that it was known not to be able to handle.
The SPIRV-Tools team hardened spirv-opt by having the “merge return” pass explicitly
check for unsupported control flow graph idioms and, on encountering an unsupported idiom,
gracefully exit with an error informing the user that they should run the “eliminate dead
code” pass first.

Subsequently, we ensured that gfauto only generates lists of spirv-opt optimization passes
in which “merge return” (if present) runs after “eliminate dead code”.

I Example 7. We ran some experiments testing MoltenVK [26], an implementation of most of
Vulkan on top of Apple’s Metal graphics API, on a MacBook Pro. MoltenVK uses spirv-cross
to translate SPIR-V to the Metal shading language (MetalSL) so it can be sent to the Metal
shader compiler within the Metal driver on a Mac or iOS device. The full translation pipeline
is illustrated in Figure 9. When a wrong image is produced in this setup, the bug could be
in the Metal driver or in any of the tools that come before (shown as rounded-rectangles
in Figure 9). Differential testing can come to the rescue here: if the bad image is also
produced by the variant shader in a “vanilla” setup, e.g. by using glslang and rendering the
resulting SPIR-V using some other Vulkan driver, the bug is very likely in glsl-fuzz or glslang.
Otherwise, if the bug manifests only when adding the same spirv-opt passes (before running
on this other Vulkan driver), the problem is likely in spirv-opt. Otherwise, the bug is likely
in spirv-cross or the Metal driver.

15 https://github.com/KhronosGroup/SPIRV-Tools/pull/3068
16 https://github.com/KhronosGroup/SPIRV-Tools/issues/1962

https://github.com/KhronosGroup/SPIRV-Tools/pull/3068
https://github.com/KhronosGroup/SPIRV-Tools/issues/1962

A. F. Donaldson, H. Evrard, and P. Thomson 22:25

We found such a wrong image bug in our testing, and used differential testing to conclude
that the bug was likely in spirv-cross or the Metal driver. After inspecting the MetalSL code,
we found it to be incorrect and so ascertained that the bug was in spirv-cross. We submitted
a bug report17 and the bug was promptly fixed.

7 Related Work

Randomized and metamorphic compiler testing techniques. Randomized testing of com-
pilers has a long history; see e.g. [21] for a very early example, and multiple surveys [8, 3, 30].
Random differential testing (RDT) of C compilers was investigated to some extent by McK-
eeman [36], and the Csmith project from the University of Utah [50] has triggered a lot
of interest in the topic over the last decade. An early approach to metamorphic compiler
testing involved generating equivalent programs from scratch [46]. More recent work on
equivalence modulo inputs testing (EMI) [31, 44], a form of metamorphic testing, showed
that approaches based on transforming programs in a manner that preserves semantics at
least for certain inputs can be an effective way of triggering wrong code bugs. The RDT
and EMI approaches have been extended to allow testing of OpenCL compilers [33], and
the EMI approach was the inspiration for the approach to metamorphic testing employed
by GraphicsFuzz [16, 15], on which the work described in this experience report was built.
Randomized differential testing has also been applied to other program processing tools,
such as refactoring engines [14] and static analyzers [13], and there is scope for applying
techniques from compiler testing to program analyzers more generally [6].

Experience reports related to compiler testing. A short report on work at the UK’s
National Physical Laboratory describes some experiences testing compilers for Pascal, Ada
and Haskell using random program generators, mainly focusing on the relative difficulty
of constructing program generators for each of these languages [48]. McKeeman’s seminal
paper on differential testing includes a section on randomized compiler testing that is written
in the style of an experience report [36]. In comparison to our paper, these reports do
not discuss the challenges of setting up a pathway from randomly-generated test cases to
test cases suitable for incorporation into a standard compiler test suite. An edited volume
on validation of Pascal compilers provides a number of experience reports related to the
testing and validation process [49]. These reports discuss issues related to constructing
compiler conformance tests, but do not mention randomized testing. Furthermore, none of
the aforementioned experience reports discuss the challenges of testing graphics compilers.

Empirical studies related to compiler bugs and compiler testing. There have been three
recent empirical studies related to compiler bugs and randomized compiler testing: a study
on the relative effectiveness of compiler testing based on RDT vs. EMI testing [7], a study
on the characteristics of bugs in the GCC and LLVM compilers (not specifically focusing on
bugs found via randomized testing) [45], and a study that aims to assess the relative impact
on end-user software of fuzzer-found compiler bugs compared with compiler bugs encountered
and reported “in the wild” by users [35]. Unlike our work these studies all focus on C/C++
compilers, not compilers for graphics shading languages. A main finding from [35] – that
bugs found by fuzzers appear to have at least as much practical impact as bugs reported by
users – supports our belief that adding fuzzer-found compiler bugs to compiler regression
test suites is a worthwhile endeavour.

17 https://github.com/KhronosGroup/SPIRV-Cross/issues/1091

ECOOP 2020

https://github.com/KhronosGroup/SPIRV-Cross/issues/1091

22:26 Putting Randomized Compiler Testing into Production

Compiler test case reduction and bug de-duplication. The semantics-changing reduction
mode of glsl-reduce is similar in nature to the approach taken by the C-Reduce tool [40],
following the well-known delta debugging method [51]. A difference between glsl-reduce and
C-Reduce is that glsl-reduce exclusively uses valid abstract syntax tree transformations to
reduce a shader, whereas C-Reduce uses a combination of methods, including language-aware
transformations built on top of the Clang framework, language-agnostic transformations
based on line and token deletion, and methods in-between that assume only basic language
properties, such as that the language is block-structured, with blocks delimited by braces.
As a result, C-Reduce can be applied to programs from a variety of languages (e.g. it has
been successfully applied to OpenCL C [39]), while glsl-reduce is specific to GLSL. It would
be interesting to investigate how well C-Reduce works for the reduction of GLSL programs
that induce shader compiler crashes.

The semantics-preserving mode of glsl-reduce is intimately tied to the semantics-preserving
transformations applied during metamorphic testing. As discussed in §3.5, the tight coupling
between glsl-fuzz and glsl-reduce related to this mode has made it hard to maintain the pair
of tools. Recent work proposes leveraging a test-case generator to provide test case reduction
“for free”, by repeatedly re-generation to search for smaller tests that still trigger a bug [34].
An approach along these lines may be effective in avoiding the need for a tightly coupled
generator and reducer in our domain.

Work on automated ranking of compiler bug reports proposes several metrics that can
be used to order bug-inducing tests, with the aim of presenting a diverse selection of test
cases exposing distinct bugs first [10]. Our de-duplication of crash bugs based on crash
signatures (see §4.2) has not yet required this level of sophistication, but we believe such
techniques could be brought to bear for de-duplication of wrong image bugs for which there
is no analogue to a crash signature.

8 Conclusions and Future Work

We have described our experience rolling out graphics shader compiler fuzzing, based on
the GraphicsFuzz tool chain, in a production environment with the goal of improving the
Vulkan Conformance Test Suite via new tests that expose shader compiler bugs or provide
additional coverage of shader processing tools. We hope the various insights in this report
will be useful to researchers interested in testing programming language implementations.

We identify several directions for future practical work in this area.

Direct fuzzing for SPIR-V. We have gotten significant mileage from testing SPIR-V shader
compilers via GLSL shaders, but the SPIR-V features this flow will exercise are inevitably
limited, motivating the need for a fuzzer that works at the SPIR-V level.

Stability tests. We discuss the avoidance of invalid tests in §3.5. However, unintentionally
invalid tests (due to bugs in the GraphicsFuzz tooling) have sometimes led to the discovery of
serious driver stability issues, e.g. Android devices rebooting after accessing invalid memory,
or failing to gracefully recover from long-running shaders [15]. It would be valuable to put in
place a suite of tests, distinct from Vulkan CTS, to check that invalid shaders cannot derail
an operating system.

Higher confidence in wrong image bugs. As discussed in §3.4 we are presently exercising
caution regarding adding wrong image tests to CTS. A corpus of highly numerically stable
shaders would allow us to proceed with greater confidence here, as would a more detailed
analysis of the possible floating-point effects of the transformations that glsl-fuzz employs.

A. F. Donaldson, H. Evrard, and P. Thomson 22:27

References
1 Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge University Press,

2 edition, 2017.
2 Apple. About the security content of ios 10.3, 2017. see “Processing maliciously crafted web

content may result in the disclosure of process memory”. URL: https://support.apple.com/
en-gb/HT207617.

3 Abdulazeez S. Boujarwah and Kassem Saleh. Compiler test case generation methods: a
survey and assessment. Information & Software Technology, 39(9):617–625, 1997. doi:
10.1016/S0950-5849(97)00017-7.

4 Arkady Bron, Eitan Farchi, Yonit Magid, Yarden Nir, and Shmuel Ur. Applications of
synchronization coverage. In Keshav Pingali, Katherine A. Yelick, and Andrew S. Grimshaw,
editors, Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPOPP 2005, June 15-17, 2005, Chicago, IL, USA, pages 206–212. ACM, 2005.
doi:10.1145/1065944.1065972.

5 bugs.chromium.org. Issue 675658: Security: Malicious WebGL page can capture and up-
load contents of other tabs, 2016. URL: https://bugs.chromium.org/p/chromium/issues/
detail?id=675658.

6 Cristian Cadar and Alastair F. Donaldson. Analysing the program analyser. In Laura K. Dillon,
Willem Visser, and Laurie Williams, editors, Proceedings of the 38th International Conference
on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016 - Companion
Volume, pages 765–768. ACM, 2016. doi:10.1145/2889160.2889206.

7 Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang, and Bing Xie.
An empirical comparison of compiler testing techniques. In Laura K. Dillon, Willem Visser,
and Laurie Williams, editors, Proceedings of the 38th International Conference on Software
Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, pages 180–190. ACM, 2016.
doi:10.1145/2884781.2884878.

8 Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan Hao, and
Lu Zhang. A survey of compiler testing techniques. ACM Computing Surveys, 2020. To
appear.

9 T.Y. Chen, S.C. Cheung, and S.M. Yiu. Metamorphic testing: a new approach for generating
next test cases. Technical Report HKUST-CS98-01, Department of Computer Science, The
Hong Kong University of Science and Technology, 1998.

10 Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Z. Fern, Eric Eide,
and John Regehr. Taming compiler fuzzers. In Hans-Juergen Boehm and Cormac Flanagan,
editors, ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 197–208. ACM, 2013. doi:10.1145/
2491956.2462173.

11 Igalia / codecov.io. Coverage report for vulkan cts on open source mesa driver with amd
bck-end, 2020. URL: https://codecov.io/gh/Igalia/mesa/.

12 Keith Cooper and Linda Torczon. Engineering a Compiler. Morgan Kaufmann, 2002.
13 Pascal Cuoq, Benjamin Monate, Anne Pacalet, Virgile Prevosto, John Regehr, Boris Yakobow-

ski, and Xuejun Yang. Testing static analyzers with randomly generated programs. In Alwyn
Goodloe and Suzette Person, editors, NASA Formal Methods - 4th International Symposium,
NFM 2012, Norfolk, VA, USA, April 3-5, 2012. Proceedings, volume 7226 of Lecture Notes in
Computer Science, pages 120–125. Springer, 2012. doi:10.1007/978-3-642-28891-3_12.

14 Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. Automated testing of refactoring
engines. In Ivica Crnkovic and Antonia Bertolino, editors, Proceedings of the 6th joint meeting
of the European Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2007, Dubrovnik, Croatia, September
3-7, 2007, pages 185–194. ACM, 2007. doi:10.1145/1287624.1287651.

15 Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. Automated testing
of graphics shader compilers. PACMPL, 1(OOPSLA):93:1–93:29, 2017. doi:10.1145/3133917.

ECOOP 2020

https://support.apple.com/en-gb/HT207617
https://support.apple.com/en-gb/HT207617
https://doi.org/10.1016/S0950-5849(97)00017-7
https://doi.org/10.1016/S0950-5849(97)00017-7
https://doi.org/10.1145/1065944.1065972
https://bugs.chromium.org/p/chromium/issues/detail?id=675658
https://bugs.chromium.org/p/chromium/issues/detail?id=675658
https://doi.org/10.1145/2889160.2889206
https://doi.org/10.1145/2884781.2884878
https://doi.org/10.1145/2491956.2462173
https://doi.org/10.1145/2491956.2462173
https://codecov.io/gh/Igalia/mesa/
https://doi.org/10.1007/978-3-642-28891-3_12
https://doi.org/10.1145/1287624.1287651
https://doi.org/10.1145/3133917

22:28 Putting Randomized Compiler Testing into Production

16 Alastair F. Donaldson and Andrei Lascu. Metamorphic testing for (graphics) compilers. In
Proceedings of the 1st International Workshop on Metamorphic Testing, MET@ICSE 2016,
Austin, Texas, USA, May 16, 2016, pages 44–47. ACM, 2016. doi:10.1145/2896971.2896978.

17 Google. Amber GitHub repository, 2020. URL: https://github.com/google/amber.
18 Google. SwiftShader GitHub repository, 2020. URL: https://github.com/google/

SwiftShader.
19 GPUOpen Drivers. LLVM-based pipeline compiler GitHub repository, 2020. URL: https:

//github.com/GPUOpen-Drivers/llpc.
20 The Khronos Vulkan Working Group. Vulkan 1.1.141 - A Specification (with all registered

Vulkan extensions). The Khronos Group, 2019. URL: https://www.khronos.org/registry/
vulkan/specs/1.1-extensions/pdf/vkspec.pdf.

21 K. V. Hanford. Automatic generation of test cases. IBM Systems Journal, 9:242–257, 1970.
22 John Kessenich, editor. The OpenGL Shading Language Version 4.60.7. The Khronos

Group, 2019. URL: https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.
60.pdf.

23 John Kessenich, Boaz Ouriel, and Raun Krisch, editors. SPIR-V Specification, Version 1.5,
Revision 2, Unified. The Khronos Group, 2019. URL: https://www.khronos.org/registry/
spir-v/specs/unified1/SPIRV.pdf.

24 Khronos Group. glslang GitHub repository, 2020. URL: https://github.com/KhronosGroup/
glslang.

25 Khronos Group. Khronos Vulkan, OpenGL, and OpenGL ES conformance tests GitHub
repository, 2020. URL: https://github.com/KhronosGroup/VK-GL-CTS.

26 Khronos Group. MoltenVk GitHub repository, 2020. URL: https://github.com/
KhronosGroup/MoltenVK.

27 Khronos Group. SPIR-V Tools GitHub repository, 2020. URL: https://github.com/
KhronosGroup/SPIRV-Tools.

28 Khronos Group. SPIRV-Cross GitHub repository, 2020. URL: https://github.com/
KhronosGroup/SPIRV-Cross.

29 Jeffery Kline. Properties of the d-dimensional earth mover’s problem. Discrete Applied
Mathematics, 265:128–141, 2019. doi:10.1016/j.dam.2019.02.042.

30 Alexander S. Kossatchev and Mikhail Posypkin. Survey of compiler testing methods. Pro-
gramming and Computer Software, 31(1):10–19, 2005. doi:10.1007/s11086-005-0008-6.

31 Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via equivalence modulo
inputs. In Michael F. P. O’Boyle and Keshav Pingali, editors, ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom -
June 09 - 11, 2014, pages 216–226. ACM, 2014. doi:10.1145/2594291.2594334.

32 Jon Leech, editor. OpenGL ES Version 3.2. The Khronos Group, 2019. URL: https:
//www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf.

33 Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson. Many-core
compiler fuzzing. In David Grove and Steve Blackburn, editors, Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR,
USA, June 15-17, 2015, pages 65–76. ACM, 2015. doi:10.1145/2737924.2737986.

34 David R. MacIver and Alastair F. Donaldson. Test-case reduction via test-case generation:
Insights from the hypothesis reducer. In 34th European Conference on Object-Oriented
Programming, ECOOP 2020, volume 166 of LIPIcs, pages 13:1–13:28. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

35 Michaël Marcozzi, Qiyi Tang, Alastair F. Donaldson, and Cristian Cadar. Compiler fuzzing:
how much does it matter? PACMPL, 3(OOPSLA):155:1–155:29, 2019. doi:10.1145/3360581.

36 William M. McKeeman. Differential testing for software. Digital Technical Journal, 10(1):100–
107, 1998. URL: http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf.

37 Microsoft. DirectX shader compiler GitHub repository, 2020. URL: https://github.com/
microsoft/DirectXShaderCompiler.

https://doi.org/10.1145/2896971.2896978
https://github.com/google/amber
https://github.com/google/SwiftShader
https://github.com/google/SwiftShader
https://github.com/GPUOpen-Drivers/llpc
https://github.com/GPUOpen-Drivers/llpc
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/pdf/vkspec.pdf
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/pdf/vkspec.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.pdf
https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.pdf
https://github.com/KhronosGroup/glslang
https://github.com/KhronosGroup/glslang
https://github.com/KhronosGroup/VK-GL-CTS
https://github.com/KhronosGroup/MoltenVK
https://github.com/KhronosGroup/MoltenVK
https://github.com/KhronosGroup/SPIRV-Tools
https://github.com/KhronosGroup/SPIRV-Tools
https://github.com/KhronosGroup/SPIRV-Cross
https://github.com/KhronosGroup/SPIRV-Cross
https://doi.org/10.1016/j.dam.2019.02.042
https://doi.org/10.1007/s11086-005-0008-6
https://doi.org/10.1145/2594291.2594334
https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf
https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/3360581
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://github.com/microsoft/DirectXShaderCompiler
https://github.com/microsoft/DirectXShaderCompiler

A. F. Donaldson, H. Evrard, and P. Thomson 22:29

38 NVIDIA. Security bulletin: Nvidia gpu display driver contains multiple vulnerabilities
in the kernel mode layer handler, 2018. , see “NVIDIA GPU Display Driver contains a
vulnerability in the kernel mode layer handler where an incorrect detection and recovery from
an invalid state produced by specific user actions may lead to a denial of service”. URL:
https://nvidia.custhelp.com/app/answers/detail/a_id/4525/.

39 Moritz Pflanzer, Alastair F. Donaldson, and Andrei Lascu. Automatic test case reduction for
opencl. In Proceedings of the 4th International Workshop on OpenCL, IWOCL 2016, Vienna,
Austria, April 19-21, 2016, pages 1:1–1:12. ACM, 2016. doi:10.1145/2909437.2909439.

40 John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang. Test-case
reduction for C compiler bugs. In Jan Vitek, Haibo Lin, and Frank Tip, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’12, Beijing, China
- June 11 - 16, 2012, pages 335–346. ACM, 2012. doi:10.1145/2254064.2254104.

41 Mark Segal and Kurt Akeley, editors. The OpenGL Graphics System: A Specification Version
4.6 (Core Profile). The Khronos Group, 2019. URL: https://www.khronos.org/registry/
OpenGL/specs/gl/glspec46.core.pdf.

42 Sergio Segura, Gordon Fraser, Ana B. Sánchez, and Antonio Ruiz Cortés. A survey on
metamorphic testing. IEEE Trans. Software Eng., 42(9):805–824, 2016. doi:10.1109/TSE.
2016.2532875.

43 Robert J. Simpson and John Kessenich, editors. The OpenGL ES Shading Language Version
3.20.6. The Khronos Group, 2019. URL: https://www.khronos.org/registry/OpenGL/
specs/es/3.2/GLSL_ES_Specification_3.20.pdf.

44 Chengnian Sun, Vu Le, and Zhendong Su. Finding compiler bugs via live code mutation. In
Eelco Visser and Yannis Smaragdakis, editors, Proceedings of the 2016 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November
4, 2016, pages 849–863. ACM, 2016. doi:10.1145/2983990.2984038.

45 Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. Toward understanding compiler bugs
in GCC and LLVM. In Andreas Zeller and Abhik Roychoudhury, editors, Proceedings of the
25th International Symposium on Software Testing and Analysis, ISSTA 2016, Saarbrücken,
Germany, July 18-20, 2016, pages 294–305. ACM, 2016. doi:10.1145/2931037.2931074.

46 Qiuming Tao, Wei Wu, Chen Zhao, and Wuwei Shen. An automatic testing approach
for compiler based on metamorphic testing technique. In Jun Han and Tran Dan Thu,
editors, 17th Asia Pacific Software Engineering Conference, APSEC 2010, Sydney, Australia,
November 30 - December 3, 2010, pages 270–279. IEEE Computer Society, 2010. doi:
10.1109/APSEC.2010.39.

47 Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-Iglesias, François Boulogne,
Joshua D. Warner, Neil Yager, Emmanuelle Gouillart, Tony Yu, and the scikit-image
contributors. scikit-image: image processing in Python. PeerJ, 2:e453, June 2014. doi:
10.7717/peerj.453.

48 Brian A. Wichmann. Some remarks about random testing, 1998. Available online at https:
//www.semanticscholar.org/paper/Some-Remarks-about-Random-Testing-Wichmann/
2ad3c4c2e1b0b5867a1aa3e7c2de4a17d9facead.

49 Brian A. Wichmann and Z. J. Ciechanowicz, editors. Pascal Compiler Validation. John Wiley
& Sons, Inc., 1983.

50 Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs in
C compilers. In Mary W. Hall and David A. Padua, editors, Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011, San
Jose, CA, USA, June 4-8, 2011, pages 283–294. ACM, 2011. doi:10.1145/1993498.1993532.

51 Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing input. IEEE
Trans. Software Eng., 28(2):183–200, 2002. doi:10.1109/32.988498.

ECOOP 2020

https://nvidia.custhelp.com/app/answers/detail/a_id/4525/
https://doi.org/10.1145/2909437.2909439
https://doi.org/10.1145/2254064.2254104
https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
https://doi.org/10.1109/TSE.2016.2532875
https://doi.org/10.1109/TSE.2016.2532875
https://www.khronos.org/registry/OpenGL/specs/es/3.2/GLSL_ES_Specification_3.20.pdf
https://www.khronos.org/registry/OpenGL/specs/es/3.2/GLSL_ES_Specification_3.20.pdf
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/2931037.2931074
https://doi.org/10.1109/APSEC.2010.39
https://doi.org/10.1109/APSEC.2010.39
https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
https://www.semanticscholar.org/paper/Some-Remarks-about-Random-Testing-Wichmann/2ad3c4c2e1b0b5867a1aa3e7c2de4a17d9facead
https://www.semanticscholar.org/paper/Some-Remarks-about-Random-Testing-Wichmann/2ad3c4c2e1b0b5867a1aa3e7c2de4a17d9facead
https://www.semanticscholar.org/paper/Some-Remarks-about-Random-Testing-Wichmann/2ad3c4c2e1b0b5867a1aa3e7c2de4a17d9facead
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1109/32.988498

Lifting Sequential Effects to Control Operators
Colin S. Gordon
Drexel University, Philadelphia, PA, USA
https://cs.drexel.edu/~csgordon
csgordon@drexel.edu

Abstract
Sequential effect systems are a class of effect system that exploits information about program order,
rather than discarding it as traditional commutative effect systems do. This extra expressive power
allows effect systems to reason about behavior over time, capturing properties such as atomicity,
unstructured lock ownership, or even general safety properties. While we now understand the
essential denotational (categorical) models fairly well, application of these ideas to real software
is hampered by the variety of source level control flow constructs and control operators in real
languages.

We address this new problem by appeal to a classic idea: macro-expression of commonly-used
programming constructs in terms of control operators. We give an effect system for a subset of
Racket’s tagged delimited control operators, as a lifting of an effect system for a language without
direct control operators. This gives the first account of sequential effects in the presence of general
control operators. Using this system, we also re-derive the sequential effect system rules for control
flow constructs previously shown sound directly, and derive sequential effect rules for new constructs
not previously studied in the context of source-level sequential effect systems. This offers a way to
directly extend source-level support for sequential effect systems to real programming languages.

2012 ACM Subject Classification Theory of computation → Semantics and reasoning; Theory of
computation → Type structures

Keywords and phrases Type systems, effect systems, quantales, control operators, delimited con-
tinuations

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.23

Related Version An extended version of this paper containing full proofs is available [32] on arXiv
at https://arxiv.org/abs/1811.12285.

1 Introduction

Effect systems extend type systems to reason about not only the shape of data, and available
operations – roughly, what a computation produces given certain inputs – but to also reason
about how the computation produces its result. Examples include ensuring data race freedom
by reasoning about what locks a computation assumes held during its execution [1, 23, 11, 10],
restricting sensitive actions (like UI updates) to dedicated threads [33], ensuring deadlock
freedom [24, 34, 1, 69], checking safe region-based memory management [72, 50], or most
commonly checking that a computation handles (or at least indicates) all errors it may
encounter – Java’s checked exceptions [35] are the most widely used effect system.

Most effect systems discard information about program order: the same join operation
on a join semilattice of effects is used to overapproximate different branches of a conditional
or different subexpressions executed in sequence. Despite this simplicity, these traditional
commutative effect systems (where the combination of effects is always a commutative
operation) are powerful. Still, many program properties of interest are sensitive to evaluation
order. For example, commutative effect systems handle scoped synchronized blocks as in Java
with ease: the effect of (the set of locks required by) the synchronized’s body is permitted
to contain the synchronized lock, in addition to the locks required by the overall construct.

© Colin S. Gordon;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 23; pp. 23:1–23:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9012-4490
https://cs.drexel.edu/~csgordon
mailto:csgordon@drexel.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2020.23
https://arxiv.org/abs/1811.12285
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Lifting Sequential Effects to Control Operators

But to support explicit lock acquisition and release operations that are not block-structured,
an effect system must track whether a given expression acquires and/or releases locks, and
must distinguish their ordering: releasing and then acquiring a given lock is not the same as
acquiring before releasing. To this end, sequential effect systems (so named by Tate [70])
reason about effects with knowledge of the program’s evaluation order.

Sequential effect systems are much more powerful than commutative effect systems,
with examples extending through generic reasoning about program traces [68, 67] and
even propagation of liveness properties from oracles [45] – well beyond what most type
systems support. The literature includes sequential effect systems for deadlock freedom [34,
69, 1, 10], atomicity [25, 26], trace-based security properties [68, 67], safety of concurrent
communication [4, 57], general linear temporal properties with a liveness oracle [45], and more.
Yet for all the power of this approach, for years each of the many examples of sequential effect
systems in the literature individually rederived much structure common to all sequential
effect systems. Recent years have seen efforts to unify understanding of sequential effect
systems with general frameworks, first denotationally [70, 42, 55, 6], and recently as an
extension to the join semilattice model [30]. These frameworks can describe the structure of
established sequential effect systems from the literature.

However, these generic frameworks stop short of what is necessary to apply sequential
effect systems to real languages: they lack generic treatments of critical features of real
languages that interact with evaluation order – control operators, including established
features like exceptions and increasingly common features like generators [14].. And with the
exception of the effect systems used to track correct return types with delimited continuations
(answer type modification [16, 5, 44]), there are no sequential effect systems that consider
the interaction of control and sequential effects. This means promising sequential effect
systems [68, 67, 45, 25, 34, 4, 57, 69, 10] cannot currently be applied directly to real languages
like Java [35], Racket, C# [52], Python [71], or JavaScript [54].

Control operators effectively reorder, drop, or duplicate portions of a program’s execution
at runtime, changing evaluation order. In order to reason precisely about flexible rearrange-
ment of evaluation order, a sequential effect system must reason about control operators.
The classic example is again Java’s try-catch: if the body of a try block both acquires and
releases a lock this is good, but if an exception is thrown mid-block the release may need to
be handled in the corresponding catch. Clearly, applying sequential effect systems to real
software requires support for exceptions in a sequential effect system. Working out just those
rules is tempting, but exceptions interact with loops. The effect before a throw inside a loop –
which a catch block may need to “complete” (e.g., by releasing a lock) – depends on whether
the throw occurs on the first or nth iteration. Many languages include more than simply
try-catch, for example with the generators (a form of coroutine) now found in C# [52],
Python [71], and JavaScript [54]. These interact with exceptions and loops. Treating each
new control operator individually seems inefficient.

An alternative to studying all possible combinations of individual control constructs in
common languages is to study more general constructs, such as the very general delimited
continuations [22, 19] present in Racket. These are useful in their own right (for Racket, or
the project to add them to Java [36]), and can macro-express many control flow constructs
and control operators of interest, including loops, exceptions [27], coroutines [39, 40], gener-
ators [14], and more [15]. Then general principles can be derived for the general constructs,
which can then be applied to or specialized for the constructs of interest. This both solves
the open question of how to treat general control operators with sequential effect systems,
and leads to a basis for more compositional treatment of loops, exceptions, generators, and
future additions to languages. This is the avenue we pursue in this paper.

C. S. Gordon 23:3

Delimited continuations solve the generality problem, but introduce new challenges since
sequential effect systems can track evaluation order [68, 67, 31, 45]. The effect of an expression
that aborts out of a prompt depends on what was executed before the abort, but not after.
The body of a continuation capture (call/cc) must be typed knowing the effect of the
enclosing context – the code executing after, but not before (up to the enclosing prompt).
We lay the groundwork for handling modern control operators in a sequential effect system:

We give the first generic characterization of sequential effects for continuations, by
giving a generic lifting of a control-unaware sequential effect system into one that can
support tagged delimited continuations. The construction we describe provides a way to
automatically extend existing systems with support for these constructs, and likewise
will permit future sequential effect system designers to ignore control operations initially
and add support later for free (by applying our construction). As a consequence, we can
transfer prior sequential effect systems designed without control operators to a setting
with control operators.
We give sequential effect system rules for while loops, try-catch, and generators by
deriving them from their macro-expression [20] in terms of more primitive operators. The
loop characterization was previously known (and technically a control flow construct, not
a general control operator), but was given as primitive. The others are new to our work,
and necessary developments in order to apply sequential effect systems to most modern
programming languages. The derivation approach we describe can be applied to other
control operators that are not explicitly treated in the paper.
We demonstrate how prior work’s notion of an iteration operator [30, 31] derived from
a closure operator on the underlying effect lattice is not specific to loops, but rather
provides a general tool for solving recursive constraints in sequential effect systems.
We prove syntactic type safety for a type system using our sequential control effect
transformation with any underlying effect system.

2 Background

We briefly recall the details of sequential type-and-effect systems, and tagged delimited
continuations. We emphasize the view of effect systems in terms of a control flow algebra [55]
– an algebraic structure with operations corresponding to the ways an effect system might
combine the effects from subexpressions in a program.

2.1 Sequential Effect Systems
Traditional type-and-effect systems extend the typing judgment Γ ` e : τ for an additional
component. The extended judgment form Γ ` e : τ | χ is read “under local variable
assumptions Γ, the expression e evaluates to a value of type τ (or diverges), with effect χ
during evaluation.” The last clause of that reading is vague, but carries specific meanings for
specific effect systems. For checked exceptions, it could be replaced by “possibly throwing
exceptions χ during evaluation” where χ would be a set of checked exceptions. For a data
race freedom type system reasoning about lock ownership, it could be replaced by “and is
data race free if executed while locks χ are held.”

The join semilattice structure of standard effect systems is well-known, as are the
corresponding denotational analogues (e.g., indexed monads [74]). The limitation common
to all of these systems, however, is that they discard program order, using the (commutative)
join for any combination of effects. In contrast, there is growing work on sequential [70]
effect systems, which capture a wide array of order-sensitive phenomena. This includes

ECOOP 2020

23:4 Lifting Sequential Effects to Control Operators

effect systems for atomicity [25, 26], deadlock freedom [69, 34, 10, 1], race freedom with
explicit lock acquisition and release [69, 30], message passing concurrency safety [57, 4],
security checks [68], and (with the aid of an oracle for liveness properties) general linear-time
properties [45]. Tate labels these systems sequential effect systems [70], as their distinguishing
feature is the use of an additional sequencing operator to join effects where one is known to
be evaluated before another. Consider the sequential rules for functions, function application,
conditionals, and while loops:

T-App
Γ ` e1 : τ χ→ σ | χ1 Γ ` e2 : τ | χ2

Γ ` e1 e2 : σ | χ1 B χ2 B χ

T-While
Γ ` ec : boolean | χc Γ ` eb : τ | χb
Γ ` while ec eb : unit | χc B (χb B χc)∗

T-Lambda
Γ, x : τ ` e : σ | χ

Γ ` (λx. e) : τ χ→ σ | I

T-If
Γ ` ec : bool | χc Γ ` et : τ | χt Γ ` ef : τ | χf

Γ ` if ec et ef : τ | χc B (χt t χf)

The sequencing operator B is associative but not (necessarily) commutative. Thus the effect
in the new T-App reflects left-to-right evaluation order: first the function position is reduced
to a value, then the argument, and then the function body is executed. The conditional
rule reflects the execution of the condition followed by either (via commutative join) the
true or false branch. The while loop uses an iteration operator (−)∗ to represent 0 or more
repetitions of its argument; we will return to its details later. The effect of T-While reflects
the fact that the condition will always be executed, followed by 0 or more repetitions of the
loop body and checking the loop condition again. The rule for typing lambda expressions
switches from a bottom element, to a general unit effect: identity for sequential composition.

To formalize the intuition above, Gordon [30] proposed effect quantales as a model that
captures prior effect systems’ structure:

I Definition 1 (Effect Quantale). An effect quantale is a join-semilattice-ordered monoid
with nilpotent top. That is, it is a structure (E,t,>,B, I) where:

(E,t,>) is an upper-bounded join semilattice
(E,B, I) is a monoid
> is nilpotent for sequencing (∀x. xB> = > = >B x)
B distributes over t on both sides: aB(btc) = (aBb)t(aBc) and (atb)Bc = (aBc)t(bBc)

The structure extends a join semilattice with a sequencing operator, a designated error
element to model possibly-undefined combinations, and laws specifying how the operators
interact. Top (>) is used as an indication of a type error, for modeling partial join or sequence
operators: expressions with effect > are rejected. t is used to model non-deterministic joins
(e.g., for branches) as in the commutative systems, and B is used for sequencing. The default
effect of “uninteresting” program expressions (including values) becomes the unit I rather
than a bottom element (which need not exist). As a consequence of the distributivity laws,
it follows that B is also monotone in both arguments, for the standard partial order derived
from a join semilattice: x v y ≡ x t y = y.

Gordon [30] also showed how to exploit closure operators [8, 9, 29] to impose a well-behaved
notion of iteration (the (−)∗ operator from T-While) that coincides with manually-derived
versions for the effect quantales modeling prior work for many effect quantales. Gordon [31]
recently generalized the construction, and showed that large general classes of effect quantales
meet the criteria to have such an iteration operator. The effect quantales for which the
generalized iteration is defined are called laxly iterable. An effect quantale is laxly iterable if
for every element x, the set of subidempotent elements ({s | sB s v s}) greater than both x
and I has a least element. This is true of all known effect quantales corresponding to systems
in the literature.

C. S. Gordon 23:5

The iteration operator for an iterable effect quantale takes each effect x to the least
subidempotent effect greater than or equal to x t I (which exists, by the definition of laxly
iterable). This iteration operator satisfies 5 essential properties for any notion of iteration [31],
which we will find useful when deriving rules for loops. Iteration operators are extensive
(∀e. e v e∗), idempotent (∀e. (e∗)∗ = e∗), monotone (∀e, f. e v f ⇒ e∗ v f∗), foldable
(∀e. eB e∗ v e∗ and e∗ B e v e∗), and possibly-empty (∀e. I v e∗). Another useful property
of iteration that we will sometimes use is that ∀x, y. x∗ t y∗ v (x t y)∗. Gordon [30, 31]
gives more details on closure operators and the derivation of iteration. We merely require its
existence and properties.

For our intended goal of giving a transformation of any arbitrary sequential effect
system into one that can use tagged delimited continuations, we require some abstract
characterization. We choose effect quantales as the abstraction for lifting for several reasons.
First, they characterize the structure of a range of concrete systems from prior work [30, 31],
while other proposals omit structure that is important to these concrete systems. Second,
while effect quantales are not maximally general, they remain very general: the motivating
example for Tate’s work [70] (which is maximally general) can be modeled as an effect quantale.
Third, we would like to check whether our derived rules are sensible; effect quantales are the
only abstract characterization for which imperative loops have been investigated, offering
appropriate points of comparison. Finally, the iteration construction on effect quantales
offers a natural approach to solving recursive constraints on effects, which we will use in
deriving closed-form derived rules for macro-expressed control flow constructs and control
operators.

As a running example throughout the paper, we will use a simplification of various trace
or history effect systems [68, 67, 45]. For a set (alphabet) of events Σ, consider the non-empty
subsets of Σ∗ – the set of possibly-empty strings of letters drawn from Σ (the strings, not the
subsets, may be empty). This gives an effect quantale T (Σ) whose elements are these subsets
or an additional top-most error element Err. Join is simply set union lifted to propagate Err.
Sequencing is the double-lifting of concatenation, first to sets (A ·B = {xy | x ∈ A∧ y ∈ B}),
then again to propagate Err. The unit for sequencing is the singleton set of the empty string,
{ε}. If Σ is a set of events of interest – e.g., security events – then effects drawn from
this effect quantale represent sets of possible finite event sequences executed by a program.
Effects drawn from this effect quantale show the possible sequences of operations code may
execute, which will allow us to show explicitly how fragments of program execution are
rearranged when using control operators. For our examples, we will assume a family of
language primitives event[α] with effect (∅, ∅, {α}) (similar to Koskinen and Terauchi [45]),
where α is drawn from a set Σ of possible events. The key challenge we face in this paper
is, viewed through the lens of T (Σ), to ensure that when continuations are used, the effect
system does not lose track of events of interest or falsely claim a critical event occurs where
it may not.

2.2 Tagged Delimited Continuations
Control operators have a long and rich history, reaching far beyond what we discuss here.
Many different control operators exist, and many are macro-expressible [20] in terms of
each other (i.e., can be translated by direct syntactic transformation into another operator),
though some of these translations require the assumption of mutable state, for example. But
a priori there is no single most general construct to study which obviously yields insight
on the source-level effect typing of other constructs. A suitable starting place, then, is to
target a highly expressive set of operators that see use in a real language. If the operators

ECOOP 2020

23:6 Lifting Sequential Effects to Control Operators

E ::= • | (E e) | (v E) | (% t E v) | (call/cc t E) | (call/comp t E) | (abort t e)

σ; e q→ σ; e
E-App

σ; ((λx. e) v) I→ σ; e[v/x]
E-PromptVal

σ; (% ` v h) I=⇒ σ; v

σ; e q⇒ σ; e
E-Context

σ; e q→ σ′; e′

σ;E[e] q⇒ σ′;E[e′]
E-Abort

E′ contains no prompts for `

σ;E[(% ` E′[(abort ` v)] h)] I=⇒ σ;E[h v]

E-CallCC
E′ contains no prompts for `

σ;E[(% ` E′[(call/cc ` k)] h)] I=⇒ σ;E[(% ` E′[(k (cont ` E′))] h)]

E-InvokeCC
E′ contains no prompts for `

σ;E[(% ` E′[((cont ` E′′) v)] h)] I=⇒ σ;E[(% ` E′′[v] h)]

Figure 1 Operational semantics.

are sufficiently expressive, this provides not only a sequential type system for an expressive
source language directly, but also supports deriving type rules for other languages’ control
constructs, based on their macro-expression in terms of the studied control operators.

We study a subset of the tagged delimited control operators [22, 19, 64, 65, 66] present
in Racket [27], shown in Figure 1. The semantics include both local (→) and global (⇒)
reductions on configurations consisting of a state σ and expression e. All continuations in
Racket are delimited, and tagged. There is a form of prompt that limits the scope of any
continuation capture: (% tag e e2) is a tagged prompt with tag tag, body e, and abort
handler e2. Without tags, different uses of continuations – e.g., error handling or concurrency
abstractions – can interfere with each other [64]; as a small example, if loops and exceptions
were both implemented with undelimited continuations, throwing an exception from inside
a loop inside a try-catch would jump to the loop boundary, not the catch. Thus prompts,
the continuation-capturing primitives call/cc and call/comp, and the abort primitive all
specify a tag, and only prompts with the specified tag are used to interpret continuation and
abort boundaries. This permits jumping over unrelated prompts (e.g., so exceptions find the
nearest catch, not merely the nearest control construct). In most presentations of delimited
continuations, tags are ignored (equivalently, all tags are equal), while most implementations
retain them for the reasons above. Here the tags are essential to the theory as well: an abort
that “skips” a different prompt must be handled differently by our type-and-effect system.

call/cc tag f is the standard (delimited) call-with-current-continuation: f is invoked
with a delimited continuation representing the current continuation up to the nearest prompt
with tag tag (E-CallCC). Invoking that continuation (E-InvokeCC) replaces the context
up to the nearest dynamically enclosing prompt with the same tag, leaving the delimiting
prompt in place. Both capture and replacement are bounded by the nearest enclosing prompt
for the specified tag. The surrounding captured or replaced context (E′ in both rules) may
contain prompts for other tags, but not the specified tag. Racket also includes (abort t e)
(absent in many formalizations of continuations), which evaluates e to a value, then replaces
the enclosing prompt (of the specified tag t) with an invocation of the handler applied to
that value (E-Abort). Racket’s rules differ from some uses of abort in the literature. Figure
1’s rules are Flatt et al.’s rules [27] without continuation marks and dynamic-wind. Flatt et al.
formalized Racket’s control operators in Redex [21, 43], including showing they passed the
Racket implementation tests for those features. We have verified the rules above continue to
pass the relevant tests in Redex (see supplementary material [32]).

C. S. Gordon 23:7

We chose this set of primitives, over related control operators [63] such as shift/reset
or shift0/reset0 which can simulate these primitives, for several reasons. First, they are
general enough to use for deriving rules for higher-level constructs like generators from their
macro-expansion. Second, the control operators we study are implemented as primitives in a
real, mature language implementation (Racket), used in real software [46]. And finally, it
is known [27] how these control operators interact with other useful control operators like
dynamic-wind [38] (relevant to finally or synchronized blocks) and continuation marks [13].
Thus our Racket subset is a suitable basis for future extension, while we are unaware
of established extensions of shift/reset, shift0/reset0, etc. with continuation marks or
dynamic-wind.

The operators we study can express loops, exceptions, coroutines [39, 40], and gener-
ators [14]. Racket also includes compositional continuations, whose application extends
the current context rather than discarding it, giving completeness with respect to some
denotational models [66], and alleviating space problems when using call/cc to simulate
other families of control operators (it is known to macro-express another popular form of
delimited continuations, the combination of shift and reset [27]). Our technical report [32]
extends our development to include compositional continuations as well.

One final point about the semantics worth noting is the presence of effect annotations on
the reduction arrows. These semantics are further adapted from Flatt et al. [27] to “emit”
the primitive effect of the reduction, which is typical of syntactic type safety proofs for effect
systems, including ours (Section 6). They do not influence evaluation, but only mark a
relationship between the reduction rules and static effects. Non-unit (non-I effects) arise
from a choice of primitives that depends on the particular effect system studied.

3 Growing Sequential Effects: Control, Prophecies, and Blocking

To build intuition for our eventual technical solution, we motivate its components through a
series of progressively more sophisticated use cases. We will use T (Σ) in all of our examples,
because we find traces to be an effective way of explaining the difficulties the effect system
must address related to program fragments (i.e., events) being repeated, skipped, or reordered.
A reader may choose to impart security-specific meanings to these events (as Skalka et al. [68]
do) or as any other protocol of personal interest (e.g., lock acquisition and release). However,
our development in Section 4 is not specific to this effect quantale, but instead parameterized
over an arbitrary effect quantale. Our goal is to develop a sequential effect system based on
transforming an underlying base effect quantale Q into a structure we will call C(Q) with
sequencing and join operations, and a unit effect. This ensures our transformation works for
any valid effect quantale, which includes all sequential effect systems we are aware of [30, 31].

I Use Case 1 (Control-Free Programs). Since programs are not required to use control
operators, our solution must include a restriction equivalent to the class of underlying effects
to reason about. For example, if event[α] has effect {α} ∈ T (Σ) and event[β] has effect
{β} ∈ T (Σ), we should expect the effect of event[α]; event[β] to be somehow equivalent
to sequencing those underlying effects – {α}B {β} = {αβ}. This suggests underlying effects
should be at least a component of continuation-aware effects.

I Use Case 2 (Aborting Effects). The simplest control behavior we can use is to abort to a
handler, and this interacts with both sequencing and conditionals. Consider:

(% t ((if c (event[α]) (abort t 3)); event[β]) (λn. event[γ]))

ECOOP 2020

23:8 Lifting Sequential Effects to Control Operators

Assuming c is a variable (i.e., pure), there are two paths through this term:
If c is true, the code will emit events α and β (in order), and not execute the handler
If c is false, the code will abort to the handler, which will emit event γ.

So intuitively, the effect for this term should contain those traces; ideally the effect would
be {αβ, γ}, containing only those traces. For an effect system to validate this effect for this
term, it must not only track ordinary underlying effects, but also two aspects of the abort
operation’s behavior: it causes some code to be discarded (the event[β]), and it causes the
handler to run. We can track this information by making effects pairs of two components:
a set of behaviors up to an abort (which we will call the control effect set, since it tracks
effects due to non-local control transfer), and an underlying effect for when no abort occurs.
We could then give the body of the prompt the effect ({abort({ε})}, {αβ}) to indicate that
it either executes normally producing a trace αβ, or it aborts to the nearest handler after
doing nothing (more precisely, after performing actions with the unit effect for T (Σ)). The
type rule for prompts can then recognize the body may abort, and for each possible prefix of
an aborting execution, add into the overall (underlying) effect of the prompt the result of
sequencing that prefix with the handler ’s effect: here, ({ε}B {γ}) t {αβ} = {αβ, γ}.

Above the body effect was given as a whole from intuition, but in general this must be
built compositionally from subexpression effects, motivating further questions. First, what is
the effect of the subterm abort t 3? In particular, what is its underlying effect? One sound
choice would be I ({ε} for T (Σ)), but this would introduce imprecision: it would produce
effects suggesting it was possible to execute only event β (since the conditional’s underlying
effect would include both α and the empty trace ε, sequenced with β). Instead, we will make
the underlying component optional, writing ⊥ when it is absent. We will continue to use
metavariables Q to indicate a definitely present element of the underlying effect quantale,
but will use the convention of underlining metavariables (e.g., Q) when they may be ⊥. This
permits the conditional’s underlying effect to only contain the trace α, because joining the
branches’ effects can simply ignore the missing underlying effect from the aborting branch.

Second, we should consider how the sequencing and join operations interact with abort
effects. While component-wise union/join is a natural (and working) starting point, sequencing
is less obvious. Prefixing the last example’s body with an extra event is instructive:

(% t (event[δ]; (if c (event[α]) (abort t 3)); event[β]) (λn. event[γ]))

Execution could generate two traces: δαβ and δγ. So both traces in the effect for the last
body should gain this δ prefix: not only the underlying effect component, but also the portion
related to the abort. This suggests the following definition of sequencing:

(C1, Q1)B (C2, Q2) = (C1 ∪ (Q1 B C2), Q1 BQ2)

Assuming there is a lifting (given later) of the underlying sequencing to possibly-absent
underlying effects (Q1 B Q2), this reflects the natural ways of combining paths through
these terms: the control effect set collecting abort behaviors should include both the abort
behaviors from C1 (an execution corresponding to one of those behaviors means nothing
from the second effect will execute), as well as the result of first executing normal behaviors
of the first effect (e.g., {δ}) before the aborting behaviors of the second – Q1 B C2. So
the effect of this new example’s prompt body should be the join of the two branches
(({abort({ε})},⊥) t (∅, {α}) = ({abort({ε})}, {α})), sequenced between the effects of event
δ and event β: (∅, {δ})B ({abort({ε})}, {α})B (∅, {β}) = (∅, {δ})B ({abort({ε})}, {αβ}) =
({abort({δ})}, {δαβ}). Repeating our informal prompt handling above gives us the new
expected underlying effect {δαβ, δγ}. We refer to the way the control effect set accumulates
prefixes on the left as left-accumulation of effects. This definition is associative, and distributes

C. S. Gordon 23:9

over the component-wise union/join. For now we continue with the simplifying assumption
that all tags are t (equivalent to untagged continuations), and consider issues with multiple
tags in Use Case 6. A final detail deferred to Section 4 is that the value thrown by an abort
must be of the type expected by the corresponding handler.

This is already part-way to our goal of deriving type rules for common control operators
from delimited continuations: the work so far supports basic checked exceptions:

Jtry e catch C ⇒ ecK = (% C JeK JecK) JthrowCeK = (abort tC JeK)

The formal rules for prompts and aborts will directly dictate the rules for these macro-
expressions of checked exceptions, just as the informal discussion here transfers directly to
these macro-expressed checked exceptions.
I Use Case 3 (Invoking Simple Continuations). Operationally, invoking an existing continuation
is similar to using abort in that it discards the surrounding context up to the nearest prompt.
But unlike uses of abort, invoking a continuation does not cause handler execution – instead
(by E-InvokeCC) the prompt and handler remain in place. For the type rule for prompts
to treat this additional mechanism, effects must indicate that invocation may occur. We
can do this by extending effects slightly: instead of C in the effect (C,Q) only containing
prefixes of aborting computations, it should also include prefixes of continuation invocations
– this is why elements of C were labeled abort(−) in the previous example, and we can now
include effects tagged by replace(−) to indicate control behaviors that replace the current
continuation with a new one. Considering a term invoking a continuation k:

(% t (event[δ]; (if c (event[α]) (k ())); event[β]) (λn. event[γ]))

As in the previous example, one possible trace of this program is δαβ when c is true. When c
is false, however, this program will emit event δ, then invoke k, replacing the rest of the body
with k’s captured continuation (with unit in its hole). Thus typing this requires also knowing
additional information about k, not required in the abort case. We require continuations to
carry a latent effect similar to functions: while the latent effect of a function (λx.e) describes
the effect of the term obtained by substituting an appropriately-typed value v into e – the
effect of e[v/x] – the latent effect of a continuation (contτ ` E) describes the effect of plugging
an appropriately-typed value v into E’s hole – the effect of E[v].

Assuming k has only underlying effects – e.g., if k = (contunit t (•; event[η])), then we
should expect the type rule for invocation to take that underlying effect from k’s latent effect
and move it to the control effect set, under replace(−). So if k’s latent effect is (∅, {η}), the
effect of (k ()) should be ({replace({η})},⊥). Sequential composition should be extended
to treat replace control effects similar to abort control effects, by accumulating on the left.
With that adjustment, we can conclude the body above has effect ({replace({δη})}, {δαβ}).
The type rule for prompts can treat these similarly to abort control effects, but without
sequencing them with the handler (which doesn’t execute in this case), producing an overall
effect (∅, {δαβ, δη}). Notice that this is slightly different from abort(−) control effects: those
track only the prefix effect before the abort, but the approach just outlined would have
replace(−) control effects include prefix effects before invoking the continuation and the
underlying effect of behaviors after the control operation. This corresponds to the location
of the behavior that executes after the control operation – remote for aborts (the handler is
non-local) and local for continuation invocation (the continuation is at the call site).
I Use Case 4 (Invoking Continuations that Abort or Invoke Other Continuations). The example
above assumed k had only underlying effects, but in general k’s body might use abort or
invoke other continuations. In such cases, k’s latent effect would be some pair (C,Q) for

ECOOP 2020

23:10 Lifting Sequential Effects to Control Operators

non-empty control effect set C. It turns out simply treating those naïvely – including them
into the control effect set for invoking k – is adequate for now (we revisit this when considering
multiple tags). If k = (contunit t (•; event[η]; abort t 3)) in the previous example, then the
latent effect will be ({abort({η})},⊥), and simply making the effect of (k ()) be the same
(dropping the absent underlying latent effect since the continuation can only return via
control operators, but making the application’s underlying effect ⊥ because by definition it
does not return directly) gets the expected result at the prompt, including the trace δηγ
from emitting δ, invoking k, emitting η (from k’s restored body) and aborting to the handler.
Because the latent control effects from k’s body already includes the prefixes from the start
of k’s body to the abort, the existing left accumulation in our definition of B correctly
accumulates prefixes from the site of continuation invocation, into the continuation, to its
uses of control operations. In general (for a single tag), invoking a continuation with latent
effect (C,Q) has effect (C ∪ {replace(Q)},⊥), though this assumes a non-empty underlying
effect for the continuation – an assumption the final type rules will need to relax, along with
extension for multiple tags, and issues with the continuation’s argument and result type.

I Use Case 5 (Capturing Continuations). Typing uses of call/cc is the most complex problem
this effect system must address. For a term (call/cc t (λk. e)), the rule must type the
body function, which means choosing a type for the variable k that will be bound to the
continuation. We defer continuation argument and result types for now. The latent effect of
the continuation parameter depends on the effect of the code in the captured context – code
that is (at runtime) “between” the call/cc and the (dynamically) nearest prompt. Consider
applying a purely local type rule for call/cc to this simple example:

(% t ((call/cc t (λk. e)); (foo 3)) ...)

Here the context captured will clearly be (•; (foo 3)). This is awkward when typing the
subterm (call/cc t (λk. e)), because that context is not a subterm of what is being typed.

We will take a “guess and check” approach1 to typing call/cc, assuming a certain latent
effect and ensuring it can be checked elsewhere when additional information is available
(in our case, in the type rule for prompts), essentially a form of prophecy [2, 3]. We track
prophecies in a third (final) component, the prophecy set, resulting in three-component
effects (P,C,Q). We call these three-part effects continuation effects, using metavariable
χ. An individual prophecy records the assumed latent effect of a continuation. Since that
continuation may capture further continuations, the prophecy must predict a full continuation
effect, making prophecies and continuation effects mutually recursive.

Prophecies alone are only local guesses about non-local phenomena; the effect system
requires a way to validate them. Intuitively, a prophecy that a call/cc captures a continuation
with latent effect (P,C,Q) is valid if in any dynamic context the call/cc is evaluated, the
effect of the program text “between” the capture and the nearest prompt has an effect less than
(P,C,Q) in the partial order (to be defined). Checking this statically is non-trivial. While
the full context captured is visible in (% t ((call/cc t (λk. e)); event[α]) (λn. ...)),
enclosing the call/cc in a function makes it non-local, and that function may be invoked
in multiple contexts. Minor changes to the context may also (need to) break typability: if
this call/cc’s body requires that the context has only underlying effect {α}, then adding an
additional event to the end of the prompt’s body must make the expression untypable.

1 In the sense that a human constructing a typing derivation involving call/cc would need to informally
guess a prophecy, then use the type rules to check that it was a sound guess.

C. S. Gordon 23:11

We can again turn to the idea of accumulation, but to the right. Thus we write indi-
vidual prophecies (again, ignoring tags and argument and result types of continuations) as
prophecy χ obs χ′ – indicating that for a certain call/cc, an effect of χ was prophecized,
meaning that the term whose effect contains this prophecy assumed a latent effect χ for the
continuation, and the effect of the term fragment between the call/cc and the boundary of
the term has effect χ′, which we call the observation. We will extend sequential composition
to accumulate effects to the right into the observation. When type checking a prompt, there
is no more to accumulate because the prompt is the boundary of the continuation capture:
at that point, the observation reflects the actual effect of the code statically on control flow
paths between call/cc and the prompt, so the prophecy was sound if the observed effect is
less than the prophecy effect.

With this prophecy-and-observation approach, let us consider:
(% t (((call/cc t (λk. e)); event[α]); event[β]) (λn. ...))

The type rule for call/cc can assume a surrounding context effect of (∅, ∅, {αβ}). Let us
assume for simplicity the inner body of the call/cc is pure (unit effect). Then the effect of
the call/cc term can be ({prophecy (∅, ∅, {αβ}) obs (∅, ∅, I)}, ∅, I) (writing the unit effect
as simply I for readability). Then the effect of sequencing that with the event[α] (i.e.,
(∅, ∅, {α})) should both update the underlying effect and the observation of the prophecy:
({prophecy (∅, ∅, {αβ}) obs (∅, ∅, {α})}, ∅, {α}). Repeating this for the next event, we would
get ({prophecy (∅, ∅, {αβ}) obs (∅, ∅, {αβ})}, ∅, {αβ}). At that point, this has typed the
entire body of the prompt, and the type rule for the prompt can check that the observed
effect is no greater than the prophecized effect – in this case trivially since they are equal.

I Use Case 6 (Trouble with Tags). Work with delimited continuations typically formalizes work
without tags, but then adds them to the implementation as a “straightforward” extension.
There are, however, several ways in which handling multiple tags is non-trivial in this context,
warranting an explicit treatment. First, nested continuations result in more subtlety when
handling control effect sets in the prompt rule. An obvious change is for a prompt tagged t
to ignore aborts and continuation invocations (elements of the control effect set) that target a
different tag (which requires tracking the target tag for each replace or abort effect). However,
this is insufficient. A continuation k that restores up to tag t may include a latent abort to
tag t2 – but if the nearest prompt is tagged t2, this is subtle. Consider the continuation
k = (contunit t (•; abort t2 3)) in the context of:

(% t2 (% t (% t2 ((k ()); event[α]) ...) ...) (λn. event[β]))

k is invoked nested inside multiple prompts of different tags: when k is restored, it will
discard and replace the inner t2 prompt (white background) entirely. This is important:
after context restoration, the abort inside k will be executed, passing 3 to the outermost
handler and emitting event β: the innermost t2 prompt contains an abort to t2, yet the
innermost handler will not execute; the outermost handler will.
(% t2 (% t ((); abort t2 3) ...) (λn. event[β])) ⇒∗ (λn. event[β]) 3

Our initial effect for invoking continuations with further control effects (Use Case 4) would
have the inner prompt’s body effect contain abort t2 {ε}, which our suggested prompt
handling would then join into the innermost prompt due to the matching tag. This has two
problems: it spuriously suggests the innermost prompt’s handler could execute, introducing a
kind of imprecision; and because that abort effect would no longer be present in the effect of
the outermost prompt’s body, it would be missed that the outer handler could run, making
the approach unsound. We must refine our approach for these “jumps.”

ECOOP 2020

23:12 Lifting Sequential Effects to Control Operators

c ∈ ControlEffect ::= replace ` : Q τ Invoked continuation up to `, with prefix &
underlying effect Q, continuation result type
τ

| abort ` Q τ Abort up to ` after effects Q, throwing value
of type τ

| c ` Blocked control effect, frozen until nearest
prompt for ` (triggered inside restored con-
tinuation targeting `)

p ∈ Prophecy ::= prophecy ` χ τ obs χ′ Prophecy of latent continuation effect χ, effect
χ′ observed since point of prophecy (call/cc)

| p
`

Prophecy blocked until `
χ ∈ ContinuationEffect = set Prophecy × set ControlEffect× option UnderlyingEffect

Figure 2 Grammar of continuation effects over an existing effect quantale Q ∈ UnderlyingEffect.

We resolve this by adding one final nuance to control effect sets. We allow control effects
to be either basic (the replace or abort effects we have already seen, with target tags) or
blocked c t for a control effect c. A blocked control effect c t is ignored by prompts (left in the
control effect set) until a prompt tagged t is reached – that prompt will unblock the effect,
leaving c in the control effect set of the prompt. When invoking a continuation, instead
of simply including the latent control effects in the effect of the invocation, the type rule
will include the latent control effects blocked until the target tag of the continuation. So
in the example above, the inner prompt’s body effect would instead include abort t2 {ε}

t
.

This would be ignored (propagated) by the inner prompt’s typing (so the inner handler
would not be spuriously considered), unblocked by the middle prompt’s typing, and finally
resolved in the outer prompt’s typing (which would trigger consideration of the outer handler).
Because the overall effect of any execution path that triggers such blocked control effects
must still execute code along the way to the continuation invocation, blocked control effects
still accumulate on the left.

Prophecies raise similar issues that lead to similar introduction of blocked prophecies: if
k above instead captured a continuation up to a prompt tagged t2 , the white-background
portion of the term discarded when k was invoked would not be part of the captured
continuation, so it should not be incorporated into the observation part of a prophecy.
Because of this, blocked prophecies must not accumulate while blocked. The difference is this:
blocked control effects continue to accumulate on the left because control operations do not
discard code that occurs on the way to a control effect, while blocked prophecies must “skip
over” the code discarded by control operations, which always appears to the right (later in
source program order).

4 Continuation Effects

This section makes the outlines of the previous section precise, and fills in missing details
(such as coordinating the type of a value thrown with the argument type of a handler). Figure
2 defines the effects of C(Q) derived from the examples above, for underlying effect quantale Q.
Continuation-aware effects of an underlying effect quantaleQ are effects χ of three components:
a prophecy set P , a control effect set C, and an optional underlying effect Q. Basic control
effects include effects representing aborts to a tagged prompt (abort ` Q τ) or invoking
continuations that replace the context up the nearest tagged prompt (replace ` : Q τ), as
suggested by Use Cases 2 and 3. These versions are additionally tagged with the specific
prompt tag they target (`), and each carries a type τ – for replacement this is the result

C. S. Gordon 23:13

type of the restored continuation, and for aborts this is the type of the value thrown (each
intuitively a kind of result type for each control behavior). Both control effects and prophecies
may also be blocked until a prompt with a certain tag if they originate inside a continuation
that was invoked (per Use Case 6). Note that blocking constructors may nest arbitrarily
deeply, because one restored continuation may restore another continuation which may
restore another. . . and so on. For a term with effect (P,C,Q):

The prophecy set P contains prophecies for all uses of call/cc within the term (some
possibly blocked if introduced by restoring a continuation).
The control effect set C describes all possible exits of the term via control operations
(abort or continuation invocation). For aborts of continuation invocation that occur
directly, C will contain basic control effects. For aborts or continuation invocation that
may occur in the body of a restored continuation, there will be blocked control effects.
The underlying effect Q describes (an upper bound on) the underlying effect of any
execution of the term that does not exit via control operator.

To define sequencing and join formally, we must first lift the underlying effect quantale’s
operators to deal with missing effects:

Q1 BQ2 =

> if Q1 = > ∨Q2 = >
⊥ if Q1 = ⊥ ∨Q2 = ⊥
Q1 BQ2 otherwise

Q1 tQ2 =

> if Q1 = > ∨Q2 = >
Q1 if Q2 = ⊥
Q2 if Q1 = ⊥
Q1 tQ2 otherwise

We also require a way to prefix control effects with an underlying effect, to implement left
accumulation (recursively), extending the ideas of Use Cases 2, 3, and 6 to the final definition:

QB c ` = QB c
`

QB replace ` : Q′ τ = replace ` : (QBQ′) τ

QB abort ` Q′ τ = abort ` (QBQ′) τ

and we will lift this to operate on control effect sets and possibly-absent underlying effects:

QB C = if (Q = ⊥) then ∅ else (map (QB_) C)

Likewise, we must define a means of right-accumulating in prophecies:

prophecy ` (P,C,Q) τ obs (P ′, C ′, Q′)
`′
I χ′′ = prophecy ` (P,C,Q) τ obs (P ′, C ′, Q′)

`′

prophecy ` (P,C,Q) τ obs (P ′, C ′, Q′) I (P ′′, C ′′, Q′′)
= prophecy ` (P,C,Q) τ obs ((P ′ I (P ′′, C ′′, Q′′)) ∪ P ′′, C ′ ∪ (Q′ B C ′′), Q′ BQ′′)

which we also lift to operate on prophecy sets (not shown, but analogous to the lifting of
left-accumulation). Finally, this is enough to define sequencing and join:

(P1, C1, Q1) t (P2, C2, Q2) = (P1 ∪ P2, C1 ∪ C2, Q1 tQ2)
(P1, C1, Q1)B (P2, C2, Q2) = ((P1 I (P2, C2, Q2)) ∪ P2, C1 ∪ (Q1 B C2), Q1 BQ2)

Joins are implemented component-wise, using set union on prophecy or control effect sets,
and the (option-lifted) join from the underlying effect quantale. The sequencing operator,
and its relation to the accumulation on prophecies, is a bit complex and warrants some
further explanation. The sequence operator B is defined according to the ideas driven by
Use Cases 2, 3, and 5. Underlying effects are sequenced by reusing the underlying effect
quantale. Control effects are handled by left-accumulating. In fact, in the case where there
are no prophecies (call/ccs) involved, the handling of the control effect sets and underlying
effects is exactly as in Use Case 2, just extended for the additional control effects. Deferring

ECOOP 2020

23:14 Lifting Sequential Effects to Control Operators

the right-accumulation I for one further moment, the full sequencing operator produces a
resulting prophecy set as the union of prophecies from the second effect (which are unaffected
by the first) with the result of the first effect’s prophecies accumulating effects from the
right, since that effect will (in the type rules) correspond to behavior that will be part of the
captured continuation. The right accumulation for prophecies implemented by I essentially
just implements sequential composition of the observation with the accumulated effect –
the recursive use of I could equivalently just be B, but direct recursion is easier to prove
things about than mutual recursion. As suggested by Use Case 6, blocked prophecies do
not accumulate. It is easy to confirm that the unit element for B is (∅, ∅, I), where I is the
identity of the underlying effect quantale.
I Remark 2 (Sets of Underlying Effects). We have described most of the structure of lifting an
effect quantale to support delimited control: sequencing and join operators that distribute
over each other, along with a unit for sequencing. We have not yet stated whether the result
C(Q) of the lifting is an effect quantale. As described so far, it is not quite an effect quantale:
there is no single distinguished top in the partial order induced by t: for any effect (P,C,Q),
a larger effect can be obtained by adding new control effects or prophecies. And because the
underlying > can appear in multiple ways, conceptually many different incomparable effects
should be considered erroneous. Introducing a distinguished top element Err, and wrapping
the sequencing and join definitions above with an additional operation producing Err any
time the operations above produce effects containing underlying top. This would produce an
effect quantale, but we take an alternative approach that also enhances flexibility, without
adding special cases for > throughout the system.

Using sets of structures containing underlying effects can lead to the extra set structure
being “too picky” in distinguishing effects, in the sense of distinguishing intuitively equivalent
effects. Consider the following join:

(∅, {abort ` {α}},⊥) t (∅, {abort ` {β}},⊥) = (∅, {abort ` {α}, abort ` {β}},⊥)

which could be the effect of if c (event[α]; abort ` 3) (event[β]; abort ` 3). Their join
is not the very similar (∅, {abort ` {α, β}}), which also indicates an abort after one of the
two same underlying effects, and is the effect of a minor rewrite of the last expression:
(if c (event[α]) (event[β])); abort ` 3. Both effects indicate executing α or β before
aborting, and replacing one with the other inside a prompt body will not change the prompt’s
effect (per Use Cases 2 and 3): the prompt will sequence each with the handler effect, and
join them together). Yet because t is defined using set union, they are incomparable in
the induced partial order x v y ↔ x t y = y, because joining them yields a third effect:
(∅, {abort ` {α}, abort ` {β}, abort ` {α, β}},⊥). This is not a valuable distinction. We would
like at least (∅, {abort ` {α}, abort ` {β}},⊥) v (∅, {abort ` {α, β}}) because every abort
prefix on the left is over-approximated by an abort prefix on the right.2 One way to achieve
this would be to replace the set union of control effect sets or prophecy sets in the sequencing
and join operators with operators that also recursively joined the underlying effects of all
aborts to the same tag, joined the underlying effects of all replacements to the same tag, and
joined the observed effects of all prophecies to the same tag with the same prediction (plus
joining types). The partial order induced by this modification would establish this desirable
order.

Directly extending t and B as given to both recursively join when combining sets and
lift underlying > to a special Err would yield a proper effect quantale, but add significant
complexity that is orthogonal to the key ideas of our approach. Instead, we make two

2 While in this T (Σ) example the effects are equivalent, examples in other effect quantales only justify v.

C. S. Gordon 23:15

C1 v C2 =
∧{

∀`,Q, τ. replace ` : Q τ ∈ C1 ⇒ ∃Q′. replace ` : Q′ τ ∈ C2 ∧Q v Q′
∀`,Q, τ. abort ` Q τ ∈ C1 ⇒ ∃Q′. abort ` Q′ τ ∈ C2 ∧Q v Q′

P1 v P2 =
(∀`, χ, χ′, τ. prophecy ` χ τ obs χ′ ∈ P1 ⇒ ∃χ′′. prophecy ` χ τ obs χ′′ ∈ P2 ∧ χ′ v χ′′)∧
(∀`, `′, χ, χ′, τ. prophecy ` χ τ obs χ′

`′
∈ P1 ⇒ ∃χ′′. prophecy ` χ τ obs χ′′

`′
∈ P2 ∧ χ′ v χ′′)

(P,C,Q) v (P ′, C′, Q′)↔ P v P ′ ∧ C v C′ ∧Q v Q′

χ ≈ χ′ = (NoUnderlyingTop(χ, χ′) ∧ χ v χ′ ∧ χ′ v χ) ∨ (UnderlyingTop(χ) ∧ UnderlyingTop(χ′))

Figure 3 Direct partial order and equivalence on continuation effects.

adjustments. First, we define a direct partial order on continuation effects in Figure 3,
where an effect χ is less than another effect χ′ if every prophecy observation, abort effect,
replacement effect, or underlying effect in χ is over-approximated by some corresponding
component in χ′. This captures the intuition behind the desirable ordering outlined above.
We also define a corresponding equivalence relation ≈ on continuation effects, which equates
all continuation effects containing an underlying > (anywhere in the effect) and otherwise
uses the partial order to induce equivalence. In the type rules considered in Section 4, this
is the notion of subeffecting used (rather than the traditional partial order derived from a
join), and all effects are considered modulo the equivalence relation. Quotienting C(Q) by
the equivalence ≈ yields a proper effect quantale, equivalent to the direct but verbose version
outlined above. See our technical report [32]) for further details.

We consider a type-and-effect system for a language with the constructs from Figure 1.
Our extended technical report [32] extends these results for composable continuations. Our
expressions and types are:

Expressions e ::= p | λx. e | (e e) | (% ` E v) | (call/cc ` e) | (abort ` e) | (cont ` E) | if e e e
Values v ::= (λx. e) | cont ` E | vp
Types τ, γ ::= unit | bool | τ χ−→ τ | (cont ` τ χ τ) | µX. τ

p and vp are parameters of the system following Gordon’s work [30, 31]: primitives (which
can include operations such as locking primitives or event[α]) and primitive values (e.g., for
encoding locations). Gordon’s soundness framework also parameterizes operational semantics
by an abstract notion of state, and semantics for primitives manipulating state; we assume
(and later use) a similar framework, which admits a range of concrete examples.

Types include common primitive types, function types with latent effects, equirecursive
types (needed for typing loops), as well as a type for continuation values that we discuss with
the type rule for invoking continuations. The type rules for lambda abstraction, function
application, and conditionals are as in Section 2 (though using continuation effects), so
we do not discuss them further. Typing uses of primitives requires additional rules and
parameters to define the additional types (e.g., lock or location types) and their relationship
to operational primitives, following Gordon [30, 31]. For intuition, readers may assume p
is simply the event[_] primitive from our running example. We include subtyping (<:),
including the standard type-and-effect subsumption rule, and function subtyping that is
covariant in the body’s latent effect. Figure 4 gives central type rules for this paper, for
prompts, aborts, continuation capture, and continuation invocation.

We will discuss the type rules in relation to the Use Cases from Section 3.
T-Abort handles Use Case 2. As suggested in that discussion, the effect of an abort is to

introduce a control effect signifying an abort to the targeted label, with an absent underlying
effect. The initial prefix of the abort is “empty” – the underlying unit effect I – and the

ECOOP 2020

23:16 Lifting Sequential Effects to Control Operators

V-Effects

∀τ ′, Q. (abort ` Q τ ′) ∈ C ` ⇒ τ ′ <: σ ∀Q, τ ′. (replace ` : Q τ ′) ∈ C ` ⇒ τ ′ <: τ(
∀χproph, τ ′, Pp, Cp, Qp. prophecy ` χproph τ ′ obs (Pp, Cp, Qp) ∈ P ` ⇒

Pp
`
v Pproph

`
∧ Cp

`
v Cproph

`
∧Qp v Qproph ∧ τ <: τ ′

)
validEffects(P,C,Q, `, τ, σ)

T-Prompt
Γ ` e : τ | (P,C,Q) Γ ` h : σ (∅,∅,Qh)−−−−−→ τ | I validEffects(P,C,Q, `, τ, σ)

Γ ` (% ` e h) : τ | (P ` \
Qh `, C ` \ `,Q t

(⊔
C `|

Qh
`

)
)

T-CallCont
NonTrivial(χk) Γ ` e : (cont ` τ χk γ) χ→ τ | χe

Γ ` (call/cc ` e) : τ | (χe B χ)B ({prophecy ` χk γ obs (∅, ∅, I)}, ∅, I)

T-AppCont
Γ ` k : cont ` τ ′ (P,C,Q) τ ′′ | χk Γ ` e : τ ′ | χe

Γ ` (k e) : τ | χk B χe B (P `, C ` ∪ (QB {replace ` : I τ ′′)},⊥)

T-Abort
Γ ` e : τ | χe

Γ ` abort ` e : σ | χe B (∅, {abort ` I τ},⊥)

Figure 4 Typing control operators with continuation effects.

control effect tracks the type of the thrown value. The overall effect of an abort expression
sequences this after the effect of reducing e to a value, since this occurs earlier in evaluation
order than the abort operation itself. A subtlety worth noting, is that this also ensures a
call/cc inside e will correctly accumulate the pending abort in the captured context.

T-AppCont handles Use Cases 3 and 4. First consider the basic case where the invoked
continuation has only simple underlying effects (i.e., P and C in the continuation’s latent
effect are both ∅). As with T-Abort, subterms are reduced to values before the control
behavior occurs, so those effects are sequenced before the control behavior itself. With that
taken care of, we may temporarily assume both k and e are already syntactic values to
simplify discussion of effect. In this case the rule simplifies to exactly what the example in
Use Case 3 suggested: the underlying effect is absent (because the term does not return
normally, but via a control behavior), and a control effect is introduced reflecting that a
continuation with underlying effect Q is invoked. A subtlety here is that we cannot simply
write replace ` : Q τ ′′, because Q may be ⊥, which would make that control effect invalid.
Instead we (ab)use the left-accumulation operator on control effects: prefixing the unit-effect
replacement effect with Q will give the expected result when Q is present, and otherwise
result in the empty set. The replacement effect also records the result type of the invoked
continuation, and the rule also ensures the argument provided to the continuation is the
expected type.

T-AppCont also handles Use Case 4, adjusted per Use Case 6: the latent control effects of
the continuation are included, but blocked until `, to ensure no prompt rule (discussed shortly)
resolves those behaviors before the behaviors escape a prompt tagged `. Unlike the discussion
in Section 3, this finished rule also supports the case where the restored continuation contains
(possibly-nested) uses of call/cc, blocking the latent prophecies as well.

The conclusion of T-AppCont critically overloads the syntax for constructing blocked
prophecies and control effects, to block prophecy sets and control effect sets. This overload
almost maps the appropriate blocking constructor over each set – however, it first checks
that this will not result in a control effect of the form c ` ` for some tag ` (similarly for
prophecies). Such a control effect would represent a control effect that should propagate
directly through two prompts tagged `, but this is dynamically impossible: any number of
nested restorations of continuations to the same tag remains within the same prompt, e.g.:

C. S. Gordon 23:17

(% ` ((cont ` (•; ((cont ` (•; abort ` 5)) 4))) 3) h)
⇒ (% ` (3; ((cont ` (•; abort ` 5)) 4)) h) ⇒ (% ` ((cont ` (•; abort ` 5)) 4) h)
⇒ (% ` (4; abort ` 5) h) ⇒ (% ` (abort ` 5) h) ⇒ (h 5)

Naïvely mapping the blocking constructor would yield the control effect set
{ abort ` I nat ` `} for the body; our discussion with Use Case 6 about each prompt
removing one layer of blocking (which we will see does inform T-Prompt) would then
not pair the abort with the local handler that is invoked. With the modified mapping,
the simplification of the control effect set is instead {abort ` I nat `} (only one layer of
blocking), which will match the abort to the correct handler.

T-CallCont is a bit more subtle. Standard for any type rule for call/cc, the rule
ensures the result type of the expression itself (τ) is also the return type of the body function
(for executions that return normally) and the argument type assumed for the continuation
(since the location of the call/cc becomes the hole the argument replaces at invocation). As
suggested in the discussion of Use Case 5, the effect arising from the use of call/cc itself is a
prophecy effect, recording the assumed latent effect of the captured continuation and the
assumed result type of the captured continuation – both of which make their way into the
assumed type of the argument to the call/cc body. The initial observation is empty, because
this effect corresponds intuitively to the point in the execution from which the prediction
begins – but this point is the heart of another key subtlety. As with other rules, the subterm
e must be reduced before anything else, so its effect is sequenced before others. But naïvely
ordering the body’s (latent) effect would place it after the prophecy, as dynamically the
continuation is captured before the body is evaluated (since the continuation becomes the
argument in E-CallCC). However, this would result in the prophecy effect observing the
body of the call/cc – which is incorrect, as that behavior will not be part of the captured
continuation. Thus we place the prophecy after the body’s latent effect.

For a small variation on Use Case 5’s first example, this gives us:

(% t (
χeB({prophecy t (∅,∅,{α} obs (∅,∅,I))},∅,I)︷ ︸︸ ︷

(call/cc t (λk.e)) ;
(∅,∅,{α})︷ ︸︸ ︷
event[α])︸ ︷︷ ︸

χeB({prophecy t (∅,∅,{α} obs (∅,∅,{α}))},∅,{α})

...)

The individual effects of the call/cc and event expressions (given above the term) simplify
to the effect below the term. The prophecy from the call/cc observes the event that would
be captured in its context. Because e’s effect χe is to the left of the resulting prophecy, e’s
non-captured behavior is not observed, and the prophecy under the term will appear in the
prophecy set of the overall prompt’s body.

T-CallCont has one extra antecedent, constraining the prophecy to predict a non-trivial
effect, to avoid degeneracy. The simplest problematic prediction would be to predict an
effect of (∅, ∅,⊥). Consider the effect of the code event[α]; (k ()). The effect would be
(∅, ∅, {α})B (∅, ∅,⊥) = (∅, ∅,⊥). This is problematic: the term does have a behavior, but the
effect reflects no behavior. This could be introduced by a circularity:

(% t (let k = (call/cc t (λk. k)) in (event[α]; (k ()))) ...)

This term is in fact the macro-expansion for an infinite loop that executes the event forever.
Assuming the degenerate latent effect in the call/cc gives k the degenerate effect, which
gives the body of the the let-expression – the context captured by call/cc – a degenerate
effect, allowing the observed effect to match the prophecy (both degenerate). Requiring
a non-empty control effect set or underlying effect avoids this collapse. (This is not a
termination-sensitivity issue; a terminating while loop has the same challenge, but a larger
term.)

ECOOP 2020

23:18 Lifting Sequential Effects to Control Operators

P \Q ` = {p \Q ` | p ∈ P ∧ OuterTag(p) 6= `} C \ ` = {c ∈ C | OuterTag(c) 6= `}
C|Q` = {Q′ BQ | abort ` Q′ _ ∈ C} ∪ {Q′ | replace ` : Q′ _ ∈ C}

prophecy `′ (P,C,Q) τ obs (P ′, C′, Q′)
`

= prophecy `′ (P,C,Q) τ obs (P ′ `, C
′

`, Q
′)

prophecy `′ (P,C,Q) τ obs (P ′, C′, Q′)
` `

= prophecy `′ (P,C,Q) τ obs (P ′ `, C
′

`, Q
′)

prophecy `′ (P,C,Q) τ obs (P ′, C′, Q′)
`′′ `

= prophecy `′ (P,C,Q) τ obs (P ′, C′, Q′)
`′′

(if ` 6= `′′)

(prophecy `′ χ τ obs (P ′, C′, Q′)) \Q ` = prophecy `′ χ τ obs (P ′ \Q `, C′ \ `,Q′ t (C′|Q
`

))
(prophecy `′ χ τ obs (P ′, C′, Q′)

`
) \Q ` = prophecy `′ χ τ obs (P ′ \Q `, C′ \ `,Q′ t (C′|Q

`
))

(prophecy `′ χ τ obs (P ′, C′, Q′) until `′′) \Q ` = prophecy `′ χ τ obs (P ′, C′, Q′)) until `′′ (if ` 6= `′′)

Figure 5 Auxilliary definitions used by type rules.

T-Prompt is the most complex type rule in the system, because it serves many roles. In
addition to giving an overall type and effect to the prompt, it must check that:

Any abort to this handler throws values whose type is a subtype of the handler’s argument.
Any continuation invoked in the body that will restore up to this prompt has a result
type that is a subtype of the prompt’s own result type.
Any call/cc that captures a continuation delimited by this prompt was typed assuming
the result was a supertype of the prompt’s actual result type.
Any call/cc that captures a continuation delimited by this prompt was typed assuming
a valid latent effect for that continuation (i.e., that prophecies targeting that tag are
upper-bounds on the observations).

The first three checks are handled by the subtyping constraints in the auxiliary judgment
V-Effects. Notice that the antecedents of V-Effects quantify over elements of unblocked
control effect sets and prophecy sets. Unblocking, written − ` is defined for prophecies in
Figure 5: it maps a corresponding per-element unblocking operation, which is a no-op on
elements that were not blocked, a no-op on elements blocked until a different tag, and strips
off a block constructor for ` if that is the outermost constructor. Unblocking for control
effect sets is defined analogously. Intuitively, this corresponds to the fact that any control
effect or prophecy blocked until a prompt for ` has now reached a prompt for `.

The last of the checks above is handled by the prophecy-related antecedent of V-Effects,
which nearly checks that the observations for a given prophecy are a subeffect of what
was predicted – that would be (Pp, Cp, Qp) v χproph, which would be sound but overly
conservative. Instead, the comparison of the prophecy and observation, compares the
unblocked versions of prophecy and control effect sets: Pp ` v Pproph ` and Cp ` v Pproph `.
This is useful because if a context captured by call/cc contains an invocation of itself, the
prophecy arising from T-CallCont will observe a blocked version of its own prophecy (from
T-AppCont), making the naive subeffect check too conservative: no prophecy can predict
a blocked version of itself. Rather than being an esoteric concern, this is actually quite
practical: encodings of loops using delimited continuations do exactly this. Unblocking for
the prompt’s tag in V-Effects resolves this: just like the quantifications unblock because
those sets have now reached the corresponding prompt, the prophecy validation must reflect
that the observation has now “reached” the corresponding prompt.

Let us revisit the example of Use Case 5 discussed above with T-CallCont. The
prophecy in that derivation contains no blocked prophecies, so T-Prompt will effectively
check that the observation is less than the prophecy – that (∅, ∅, {α}) v (∅, ∅, {α}), which
trivially succeeds because the prophecy predicted its context’s behavior exactly.

C. S. Gordon 23:19

We can see the role of unblocking more clearly by revisiting the motivating example for
requiring prophecized effects to be non-trivial (eliding types for brevity).

(% t (let k =
({prophecy t (∅,{replace t α∗},⊥) obs (∅,∅,I))},∅,I)︷ ︸︸ ︷

(call/cc t (λk. k)) in (
(∅,∅,{α})︷ ︸︸ ︷
event[α]; (

(∅,{ replace t α∗
t
},⊥)︷︸︸︷

k ())))...)

The effect of the prompt’s body is the sequencing (with B) of the three individual subterm
effects written above the term fragments, writing α∗ for the set of all finite traces consisting
of only α. Simplifying the sequencing of the two right-most effects first will result in a control
effect set { replace t ({α}B α∗)

t
} (invoke the continuation after an α event, with aggregate

behavior of some non-zero finite number of α events). Simplifying again, the prophecy will
observe this, and T-Prompt will check (via V-Effects) that { replace t ({α}B α∗)

t
}
t
v

{replace t α∗}
t
, which is equivalent to checking {replace t ({α}B α∗)} v {replace t α∗},

which is true because {α}B α∗ v α∗ in T (Σ) (the set of non-empty finite traces containing
only α is a subset of the set of possibly-empty finite traces containing only α).

Finally, T-Prompt must give a type and effect to the prompt expression itself. The
underlying effect must include (1) the body’s underlying effect, (2) the effect of any possible
paths through the body that abort to the local handler and execute it (including those
resulting from invoking continuations up to this prompt prior to aborting), and (3) the effect
of any possible paths through the body that invoke one or more continuations up to this
prompt before returning normally. (1) is simply Q. (2) is the result of sequencing any abort
prefix for ` in the (unblocked) control effect set (which will incorporate aborts resulting
from continuation invocation as well). (3) is simply the set of replacement effects in the
(unblocked) C. (2) and (3) are computed via a projection operator −|Qh

` applied to the
unblocked control effect set, defined in Figure 5. The superscript on the operator is the
underlying effect of the handler (constrained to have no control effects), and the subscript is
the choice of relevant prompt tag. The resulting set of underlying effects is joined together
with the body’s underlying effect.

The prophecy and control effect sets of the overall prompt should propagate prophecies
and control effects targeting other prompts, and remove those targeting the prompt at hand.
To this end, the conclusion of T-Prompt unblocks both sets and then removes (1) prophecies
related to this prompt (which have now been validated) and (2) control effects related to
this prompt (which have been incorporated into the prompt’s underlying effect, because
they address control behaviors scoped to this prompt). The (unblocked) control effects are
simply filtered with − \ ` (Figure 5), which retains only basic control effects targeting other
tags and control effects still blocked until other tags. (Thus, the nested control effect from
Use Case 6 appears blocked in the effect of the innermost prompt.) The prophecy set is
filtered similarly, but the filtered results are also transformed – the remaining observations
must be adapted to model the changes to effects from going “through” this prompt. Thus
the filtering operation − \Q ` on prophecy sets (Figure 5) selects those prophecies related
to other prompts, then recursively transforms their observations – recursively filtering (and
transforming) the observed prophecy and control effect sets, and joining transformations of
their content into the observations’ underlying effect, just as in the conclusion of T-Prompt
itself. This is important due to interactions between tags: a prophecy to an outer prompt
may observe in its context aborts to an inner prompt: − \Q ` joins such abort prefixes with
the handler that would run, and joins that into the underlying effect of the prophecy.

ECOOP 2020

23:20 Lifting Sequential Effects to Control Operators

5 Iterating Continuation Effects

Prior work on effect quantales [30, 31] introduced the notion of lax iterability to introduce
a loop iteration operator, as outlined in Section 2. We would like to reuse this operator
construction for two reasons. First, we would like to check that if we macro-express loop
constructs and derive rules for them as we proposed earlier, that they are consistent with
manually-derived rules from prior work, which use the iteration operator. Second, the
iteration operator has properties that make it useful for solving recursive constraints over
effects, such as those that arise in building derived rules for control flow constructs and
control operators later in the paper. Of course, lax iterability and the construction are
defined on standard effect quantales,3 so do not apply directly to C(Q). Fortunately, one can
apply the construction to C(Q) quotiented by ≈ (a standard effect quantale), and since those
elements are equivalence classes, simply use the behavior on elements to iterate in C(Q):

I Theorem 3 (Lax Iterability with Continuations). For a laxly iterable underlying effect
quantale Q, the effect quantale C(Q)/ ≈ is also laxly iterable, with the closure operator given
by lifting the following operator from elements of C(Q) to the corresponding equivalence class.

(P,C,Q)∗ = (
⋃
i∈N

P I (P,C,Q)i, Q∗ B C,Q∗)

Notice that when P = ∅ and C = ∅, this specializes to the intuitive embedding of
the (⊥-extended) underlying iteration: (∅, ∅, Q∗). When only P = ∅ this specializes to
(∅, Q∗ B C,Q∗), intuitively reflecting that any control exits occur after repeating Q some
number of times first. While these examples “merely” drop certain components of Theorem 3,
it helps to work from the simplest case up to the more complex versions, since the examples
above correspond intuitively to various execution paths. The infinite union in the prophecy
set is the most subtle part of the operation to explain. Consider an expression with the
structure while c (. . . (call/cc t . . .) . . .): Assume the tag t for the continuation captured
inside the loop does not occur elsewhere inside the loop – in particular, that the captured
continuation would extend outside the loop. Considering the runtime execution, in some sense
the prophecy captured by the first loop iteration must predict not only the regular execution
and exceptional executions of future iterations, but even the need for more prophecies to be
generated by the call/ccs in future iterations as well! This is why the set of prophecies must
still be sequenced with some form of themselves, rather than just some subset. During static
typechecking, we must therefore conservatively overapproximate the number of iterations
following a prophecy. It may be 0, 1, 2, . . . or any number. So the approximation must
consider all of those possibilities, hence the infinite union of finite repetitions following the
prophecies. This requires prophecy sets to be possibly-infinite, but only countably so.

6 Type Safety

We have proven syntactic type soundness for the type system presented in Section 4. We
summarize the proof here; see the technical report for full details [32]. We continue to reuse
Gordon’s parameterization for soundness [30, 31], making the proof generic over a choice
of abstract states (ranged over by σ) and related parameters subject to some restrictions.

3 Lax iterability is defined for a version of effect quantales using partial operators [31] instead of the
distinguished > used here to simulate partiality. But the definitions simplify to those used here when
given total operations and using side-conditions to reject effects containing >.

C. S. Gordon 23:21

Progress is uninteresting (if primitives satisfy progress), in the sense that effects play no
essential role (they are merely “pushed around” and the proof looks otherwise like standard
progress proofs). Preservation is similar to the common formulation for syntactic type
soundness results of sequential effect systems [34, 30, 68, 67]. It follows from single-step
preservation: informally, for a well-typed runtime state σ and term e, if σ; e q−→ σ′; e′, then
σ′ and e′ are also well-typed, and moreover if the static effects of e and e′ are χ and χ′

respectively, then (∅, ∅, q)B χ′ v χ – that is, sequencing the actual effect of the reduction
with the residual effect of the reduced expression is soundly bounded by the effect of the
original expression. This is the typical form of syntactic type safety proofs for sequential
effect systems [34, 25].

Explaining the formal statement requires explaining the full details of parameterization.
For brevity and lack of space, we offer the formal statement of single-step preservation
specialized for our running example of T (Σ) and event[−] with trivial (i.e., unit) state4 for
which many of the conditions simplify to True:

I Corollary 4 (Single-Step Preservation for T (Σ)). If Γ ` e : τ | χ and (); e q=⇒ (); e′, then
there exists a τ ′ <: τ and a χ′ such that Γ ` e′ : τ ′ | χ′ and q B χ′ v χ.

A key lemma for soundness of the rule for call/cc precisely relates prophecy observations
to typing continuations. Informally, we prove that for a term E[e], if the effect of e contains
a prophecy prophecy ` χ τ ; obs (∅, ∅, I) and E contains no prompts for tag `, then (1) the
effect of E[e] contains a prophecy prophecy ` χ τ obs χ′ (accumulating some observation),
and (2) plugging an appropriately-typed value v into E produces a term E[v] with static
effect χ′ (exactly matching the observation). The assumptions of the lemma are exactly the
conditions when considering E-CallCC in the preservation proof: E[e] is the body of the
delimiting prompt and e is a use of call/cc, so by T-CallCont an appropriate prophecy
exists in e’s effect ensuring the prophecy is gives sound latent effect for typing the captured
continuation.
I Remark 5 (Syntactic vs. Semantic Soundness). Our proof imparts no semantic meaning to
effects beyond syntactically relating the dynamic and static effects – it does not check that a
certain effect enforces what it is meant to (e.g., deadlock freedom), unless like some finite
trace effects [68, 45] the relation between static and dynamic effects is already the intent.
This is common to any syntactic type safety approach for generic effects [51]. Gordon [31]
has extended his proof approach for semantic pre- and post-condition type properties, such as
ensuring locking effects accurately describe lock acquisition and release, but limited to safety
properties; in principle this should be adaptable to our setting. Denotational approaches
to abstract effect systems [42, 55, 70, 6] inherently give actual semantics, and therefore can
ensure liveness properties.

7 Deriving Sequential Effect Rules

Section 4 developed the core type rules which give sequential effects to programs making
direct use of tagged delimited control. As we have discussed, most programs do not use the
full power of delimited control, and instead use only control flow constructs or weaker control
operators. This section uses the new type type-and-effect rules to derive sequential effect
rules for a range of control flow constructs and weaker control operators macro-expressed in
terms of prompts.

4 Meaningful loops obviously require more meaningful state.

ECOOP 2020

23:22 Lifting Sequential Effects to Control Operators

Our examples fall into two groups. First, we consider checking consistency of derived
rules for typical control flow constructs with those hand-designed in prior work – for infinite
loops and while loops. Second, we consider derived rules for constructs never before addressed
in sequential effect systems: exceptions and generators.

In each case, we give a derived type rule for the construct of interest. While we are most
explicit in Section 7.1, in each case our process for deriving the rule is the following:
1. Assume closed typing derivations for subexpressions (e.g., loop bodies)
2. Apply the type rules from Section 4 to give a closed-form rule for the macro’s expansion

to be well-typed under the assumed subexpression types. Typically these have several
undetermined choices for metavariables representing effects, with non-trivial constraints
to close the typing derivation.

3. Simplify the type rule by giving solutions to the constrained-but-undetermined metav-
ariables in terms of the subexpressions’ effects. This gives type rules that are simpler,
and possibly less general, but given entirely in terms of the subexpressions’ effects. The
simplifications are typically involve rewriting by the laws satisfied by C(Q), and using the
iteration operator from prior work [30, 31] to solve recursive constraints on undetermined
effects.

Due to space constraints, we show detailed derivations only for simple infinite loops (Section
7.1), giving only final results for others. The calculations for the remaining examples are
done in the same way, and are available in the accompanying technical report [32].

7.1 Infinite Loops
Consider a simple definition of an infinite loop using the constructs we have derived here:

Jloop eK = (% ` (let cc = (call/cc ` (λk. k)) in (JeK; cc cc)) (λ_. tt))

The term above executes e repeatedly, forever (assuming e does not abort). Thus, its effect
ought to indicate that e’s effect, which we take to be (∅, ∅, Qe),5 is repeated arbitrarily
many times. We take this expansion as the body of a macro Jloop eK. This program can be
well-typed in our system, with an appropriate effect (assuming the underlying effect quantale
is laxly iterable per Section 2). The body of the call/cc is pure, but for the expression to be
well-typed, the call/cc’s own effect must prophecize some effect (∅, Cp, Qp) of the enclosing
continuation up to the prompt for ` (because no call/cc occurs in the continuation of another,
the prophecy set can be empty).

The right-accumulator of the prophecy effect, initially (∅, ∅, I), eventually accumulates
a control set (Qe B Cp `) ∪ ((Qe B Qp) B {replace ` : I unit}) and underlying effect
⊥, because between capturing the continuation and the prompt, the program evaluates
e (underlying effect Qe) and then invokes the captured continuation (prophecized effect
(∅, Cp, Qp), underlying effect ⊥). This is also the resulting control effect set for the body; we
will refer to it as C. The type rule for the prompt itself removes all `-related prophecies and
control effects, leaving both empty (since we assume no control effects escape e, Cp should
only contain `-related effects, while the prophecy set contains the single prophecy from the
call/cc). For the underlying effect, T-Prompt joins the immediate underlying effect Qe
(from the overall judgment, not the prophecy) with all `-related behaviors in C – e has no
escaping control effects, and the macro-expanded loop contains no aborts, so Cp ought to
have only replace effects, meaning C contains only replace effects, and Qe t

⊔
C `|I` will join

5 Note the non-⊥ underlying effect; well-typed expressions do not have degenerate effects.

C. S. Gordon 23:23

the underlying effect of all continuations invoked by the body. T-Prompt also performs
some checking of result types (which all hold trivially since all types involved are unit), and
prophecy validity checks that yield constraints we can solve to derive a closed-form type rule
for the loop.

Completing a typing derivation with final underlying effect Q` = Qe t
⊔
C `|I` is possible

given the solutions to the effect-related constraints imposed by validEffects: ⊥ v Qp, and
(Qe B Cp `) ∪ ((Qe BQp)B {replace ` : I unit}) v Cp. These could be read off a hypothet-
ical derivation (see appendices in the technical report [32]) yielding the derived rule

Γ ` e : τ | (∅, ∅, Qe) ⊥ v Qp (Qe B Cp `) ∪ ((Qe BQp)B {replace ` : I unit}) v Cp
Γ ` Jloop eK : unit | (∅, ∅, Qe t

⊔
C `|I`)

However, this rule is more complex than we would like for a simple infinite loop (note
we have not expanded C = (Qe B Cp `) ∪ ((Qe B Qp) B {replace ` : I unit})), and also
exposes details of the continuation-aware effects – which is undesirable if the goal is to derive
closed rules for using the loop by itself, without developer access to full continuations, and
there is an additional requirement that the prophecy used in the derivation is non-trivial
(from T-Prompt). These constraints can be satisfied by Qp = Q∗e (thus not ⊥, ensuring a
non-trivial prophecy), with Cp = {replace ` : Q∗e unit} (so Cp ` = Cp). The choice for Cp
ensures than any “unrolling” of the loop to include any number of Qe prefixes (as generated
by the left operand of the union in the last constraint) is in fact less than the replacement
effect (QeBQ∗e v Q∗e). This then implies that Qe t

⊔
C `|I` v Qe t (Q∗e) v Q∗e, by properties

of Gordon’s iteration operator [30, 31] (Section 2). Assuming cc 6∈ Γ (or hygienic macros)
and applying subsumption, this leads us to the pleasingly simple derived rule:

D-InfLoop
Γ ` e : τ | (∅, ∅, Qe)

Γ ` Jloop eK : unit | (∅, ∅, Q∗e)

7.2 Other Derived Rules
We have similarly macro-expressed traditional while loops, exceptions (try-catch and throw),
and generators [14] (a form of coroutine now common in C#, Python, and JavaScript), and
derived rules for each. Figure 6 gives derived rules for these constructs under a variety of
conditions, each derived following a similar process to D-InfLoop.

Loops do not require the use of control operators to express, of course. However, they are
an important consistency check. Notably, D-While recovers, via the approach above, exactly
the rule for while loops that was hand-crafted in prior work [25, 26] and only recently given
general treatment [30, 31]. D-AbortingWhile is a limited generalization of D-While, for
the case where the condition or body by use abort (e.g., throw exceptions). The underlying
effect – for when the loop completes normally – is as in D-While. The control effect reflects
the various times an abort may be thrown, based on the assumptions about aborts in c

and e: during the initial execution of the condition, the initial execution of the body, or by
subsequent executions of the condition or body. The derived rules for try-catch and throw
reflect their simple expression in terms of prompts and abort.

The generator rule is more complex, requiring a bit of careful thought about the well-
formedness condition GenProphs, but still following the general approach taken for D-Loop.
Recall that generators are a construct for producing some sequence of values asynchronously:
a generator is an object that may be queried repeatedly, and each query either produces a new
value or indicates there are no more values. This is similar to an iterator, except generators
are written in direct style. A language or library typically exposes a yield construct to

ECOOP 2020

23:24 Lifting Sequential Effects to Control Operators

D-While
Γ ` e : (∅, ∅, Qe) Γ ` c : (∅, ∅, Qc)

Γ ` Jwhile c eK : unit | (∅, ∅, Qc B (Qe BQc)∗)

D-FullInfLoop
Γ ` e : τe | χe

Γ ` Jloop eK : unit | χ∗e
D-AbortingWhile

l 6∈ Cc l 6∈ Ce AbortsOnly(Cc ∪ Ce) Γ ` c : (∅, Cc, Qc) Γ ` e : (∅, Ce, Qe)

Γ ` Jwhile` c eK : unit | (∅,
⋃{

Cc ∪ (Qc BQe B Cc) ∪ (Qc B (Qe BQc)∗ B Ce),
(Qc B (Qe BQc)∗ BQe B Cc)

}
, Qc B (Qe BQc)∗)

D-TryCatch
Γ ` e : τ | (∅, {abort `C Q C}, Qe)

Γ ` h : C (∅,∅,Qh)−−−−−→ τ | (∅, ∅, I)
Γ ` Jtry e catch C ⇒ hK : τ | (∅, ∅, Qe t (QBQh))

D-Throw
Γ ` e : C | (∅, ∅, Qe)

Γ ` JthrowC eK : τ | (∅, {abort `C Qe C}, I)

GenProphs(P, `, E) =

∀`′, P ′, C′, Q′, P ′′, C′′, Q′′, τ.
prophecy `′ (P ′, C′, Q′) τ obs (P ′′, C′′, Q′′) ∈ P ⇒
`′ = ` ∧ τ = bool ∧ GenProphs(P ′, `, E) ∧ C′ v {abort ` E∗ (option τ)}
∧Q′ v E∗ ∧ P ′′ ` v P ′ ` ∧ C′′ v C′ ∧Q′′ v Q′

D-Iterate

Γ ` f :

(
(τ

({prophecy gen (Pp,Cp,E
∗) (option τ) obs (∅,∅,I)},{abort gen I (option τ)},⊥)

−−→ unit) I−→
(unit (∅,{abort gen I (option τ)},⊥)−−−−−−−−−−−−−−−−−−−→ unit) (P,C,E∗)−−−−−−→ unit

)
| (∅, ∅, I)

C v {abort gen (E∗) (option τ)} GenProphs(P, gen, E)

Γ ` Jiterate init gen fK : unit (∅,∅,E∗)−−−−−→ option τ | (∅, ∅, I)

Figure 6 A collection of derived rules.

produce a value for the client. (This now describes Python, C#, F#, and JavaScript,
among other languages.) After the client consumes each value and queries the generator
again, control resumes immediately after the last-executed yield, continuing until another
value is yielded or generation is complete. Consider a simple client of Coyle and Crogono’s
implementation using Scheme macros and call/cc [14] (see our technical report for Racket
code [32]):
(define next (iterate (λ (yield done) (yield "a") (yield "b") (done))))

the iterator body takes two arguments, yield and done for yielding a value, and indicating
generation is complete respectively. next is the result of building a generator from this
function; iterate (the generator implementation) supplies functions for yield and done
(described below).

Our macro iterate init gen f (init and gen are tags) expands to a heap-storage-based
generator encoding similar to Coyle and Crogono’s [14] (and also given explicitly with type
annotations in our technical report [32]). A prompt is used to delimit the scope of the
generator body. Yielding a value captures the current continuation up to that prompt, stores
it in a heap cell, then uses abort to throw the yielded value. The rule D-Iterate assumes
f is a function of two arguments as above: the first is a function playing the role of yield,
the second a function that marks the iterator as complete (done). The macro returns a
function which, when invoked, returns an option containing either the next element produced
by the generator, or a failure. When invoked, this function introduces a new prompt for
tag gen, and invokes the stored continuation to produce the next element (via the yield
parameter) or a completion. The rule assumes the activity “between” successive yields
can be over-approximated by an underlying effect E, and stores the continuations with
underlying effect E∗. Because uses of the first parameter, yield, capture continuations, a
prophecy choice must be made (Pp) for that particular generator, for the yield to predict

C. S. Gordon 23:25

the appropriate remainder of the generator body. D-Iterate is specialized here to the
assumption that all prophecies and aborts in the generator body are related to the tag gen
only, which allows us to lift the requirements of prophecy validation into the GenProphs
predicate. A complete rule permitting at least exceptions to escape a generator is possible,
but would be very complex (so much so that C# strongly restricts their interactions [53]).

8 Related Work

Recent years have seen great progress on semantic models for sequential effect systems [70,
42, 55], centering on what are now known as graded monads: monads indexed by some kind
of monoid (to model sequential composition), commonly a partially-ordered monoid following
Katsumata [42]. Gordon [30] focused on capturing common structure for prior concrete
effect systems, leading to the first abstract characterization of sequential effect systems with
singleton effects, effect polymorphism, and iteration of sequential effects.

To the best of our knowledge we are the first to use the term “accumulator” as we do to
identify this as a reusable technique. However accumulators have appeared before. Koskinen
and Terauchi’s effect system [45] uses left-accumulators for safety and liveness properties
(requiring an oracle for liveness). Effects in their system are a pair of sets, one a set of finite
traces (for terminating executions) and the other a set of infinite traces (for non-terminating
executions). The infinite traces left-accumulate: code that comes after a non-terminating
expression in program-order never runs. On the other hand, finite executions from code
before an infinite execution extend the prefix of the infinite executions. Earlier, Neamtiu et
al. [56] defined contextual effects to track what (otherwise order-unaware) effects occurred
before or after an expression, to ensure key correctness properties for code using dynamic
software updates.

Effect systems treating continuations are nearly as old as effect systems themselves [41].
To the best of our knowledge, we are the first to integrate sequential effects with exceptions,
generators, or general delimited continuations – or any control flow construct beyond while
loops, including any form of continuation, tagged or otherwise. As mentioned in Section
2, the original motivation for tags was to prevent encodings of separate control operators
from interfering with each other [64], which is critical for our goals, strictly more expressive
than untagged continuations, and motivates important elements of the theory (blocking).
The only other work we know of focusing on effects with tagged delimited continuations is
Pretnar and Bauer’s variant [62] of algebraic effects and handlers [62] where operations may
be handled by outer handle constructs (not just the closest construct as in other algebraic
effects work). Their commutative effects ensures all algebraic operations are handled by
some enclosing handler.

Tov and Pucella [73] examined the interaction of untagged delimited continuations with
substructural types (a coeffect [58]). Delbianco and Nanevski adapted Hoare Type Theory
for untagged algebraic continuations [17], which include prompts and handlers, but place
handlers at the site of an abort rather than at the prompt in order to satisfy some useful
computational equalities (see below). As a consequence, encoding non-trivial control flow
constructs in their system becomes significantly more complex; for example, simulating
the standard semantics of throwing exceptions to the nearest enclosing catch block for the
exception type would require catching, dispatching, and re-throwing at every prompt. This
and lack of tagging would make compositional study of multiple control flow constructs /
control operators difficult, and as our work shows the treatment of multiple tags is not a trivial
extension of untagged semantics. Atkey [6] considered denotational semantics for (untagged)

ECOOP 2020

23:26 Lifting Sequential Effects to Control Operators

composable continuations in his parameterized monad framework for (denotational) sequential
effect systems, essentially giving a denotation of a type-and-effect system for answer type
modification [5, 16] – a kind of sequential effect which can be used to allow continuations to
temporarily change the result type of a continuation, as long as it is known (via the effects)
that it will be changed back. Thus Atkey considered answer type modification effects as
an instance of a sequential effect specific to using control operators, rather than having an
application-domain-focused effect (like exceptions or traces) work with continuations or giving
an account of general sequential effects for control operators. Readers familiar with answer
type modification may wonder about directly supporting it in our generic core language.
We have not yet considered this deeply, but note that (i) directly ascribing answer type
modifications to control operations would require assigning specific answer type modification
effects to the control operations, not just effects derived from primitives, but (ii) Kobori et
al. [44] showed that tagged shift/reset can express answer type modification in a type system
that does not track answer types explicitly, so such an extension may provide no additional
power (treating convenience as another matter).

Algebraic effects with handlers [60] are a means to describe the semantics of effects in
terms of a set of operations (the effectful operations) along with handlers that interpret those
operations as actions on some resource. The combination yields an algebra characterizing
equality of different effectful program expressions, hence the term “algebraic”. Languages
with algebraic effects include an effect system to reason about which effects a computation
uses, to ensure they are handled. Some implementations even use Lindley and Cheney’s
effect adaptation [49] of row polymorphism [75] to support effect inference [47]. Handlers for
algebraic effects receive both the action to interpret and the continuation of the program
following the effectful action. Thus they can implement many control operators, including
generators and cooperative multithreading [48], as with the delimited continuations we
study. In an untyped setting without tagging, algebraic handlers can simulate (via macro
translation) shift0/reset0 [28], which can simulate prompts and handlers [63] (with correct
space complexity, not only extensionally-correct behavior); with those limitations, handlers
are as powerful as the constructs we study. For the common commutative effect system for
handlers that ensures all operations are handled, Forster et al. [28] prove that the translation
from handlers to prompts (shift0) is not type-and-effect preserving, and conjecture the
reverse translation also fails to preserve types. They conjectured that adding polymorphism
to each system would enable a type-and-effect preserving translation (again, without tagging,
for a commutative effect system), which was recently confirmed by Piróg et al. [59] for a
class of commutative effect systems.

The effect systems considered for algebraic effects thus far have only limited support
for reasoning about sequential effects. The types given for individual algebraic effects do
support reasoning about the existence of a certain type of resource before and after the
computation [12, 7]. However, the way this is done corresponds to a parameterized monad [6],
which Tate showed [70] crisply do not include all meaningful sequential effect systems. His
examples that cannot be modeled as parameterized monads include examples that can be
modeled as effect quantales [31], such as the non-reentrant locking effect system Tate uses to
motivate aspects of his approach.

General considerations of sequential effect systems have not yet been explored for algebraic
effects. When it is considered, it seems likely ideas from our development (particularly
prophecies) will be useful. For example, Dolan et al. [18] offer two reasons for dynamically
enforcing linearity of continuations in their handlers: performance, but also avoiding the
sorts of errors prevented by sequential effect systems, such as closing a file twice by reusing a
continuation.

C. S. Gordon 23:27

It also seems plausible that our approach could be adapted to algebraic effects and
handlers. With an effectively-tagged version of handlers [62], a similar macro-expression of
control flow constructs and control operators is likely feasible, in particular adapting our
notion of prophecy and observation to handlers: in this case, the continuations themselves are
seen by handlers that are direct subexpressions of the handling construct itself, so prophecies
might observe “outside-in” rather than our system’s “inside-out” accumulation.

The approach we take to deriving type rules for control flow constructs and control
operators is reminiscent of work done in parallel with ours by Pombrio and Krishnamurthi [61].
They address the problem of producing useful type rules when a language semantics and
type rules are defined directly for a simpler core language, and a full source language is
defined using syntactic sugar (i.e., macros) that expand into core language expressions with
the intended semantics, such as the approach taken by λJS [37]. There the issue is that type
errors given in terms of the elaborated core terms are difficult to understand for developers
writing in the unelaborated source language. Pombrio and Krishnamurthi offer an approach
to automatically lift core language type rules through the desugaring process to the source
language, providing sensible source-level type errors. Their work focuses on type systems
without effects, but including such notions as subtyping and existential types. They do
not consider control operators (delimited continuations) or effects (neither commutative nor
sequential). Extending their approach to support the language features and types (effects)
we consider would make our approach more useful to effect system designers, though this is
non-trivial due to the many ways to combine sequential effects.

9 Conclusions

We have given the first general approach to integrating arbitrary sequential effect systems
with tagged delimited control operators, which allows lifting existing sequential effect systems
without knowledge of control operators to automatically support tagged delimited control.
We have used this characterization to derive sequential effect system rules for standard
control flow structures macro-expressed via continuations, including deriving known forms
(loops) and giving the first characterization of exceptions and generators in sequential effect
systems.

References
1 Martin Abadi, Cormac Flanagan, and Stephen N. Freund. Types for safe locking: Static race

detection for java. ACM Trans. Program. Lang. Syst., 28(2, //month = mar), 2006.
2 Martín Abadi and Leslie Lamport. The existence of refinement mappings. In LICS, 1988.
3 Martín Abadi and Leslie Lamport. The existence of refinement mappings. Theoretical Computer

Science, 82(2):253–284, 1991.
4 Torben Amtoft, Flemming Nielson, and Hanne Riis Nielson. Type and Effect Systems:

Behaviours for Concurrency. Imperial College Press, London, UK, 1999.
5 Kenichi Asai and Yukiyoshi Kameyama. Polymorphic delimited continuations. In APLAS,

pages 239–254, 2007.
6 Robert Atkey. Parameterised Notions of Computation. Journal of Functional Programming,

19:335–376, July 2009.
7 Andrej Bauer and Matija Pretnar. An effect system for algebraic effects and handlers. In

International Conference on Algebra and Coalgebra in Computer Science, pages 1–16. Springer,
2013.

8 Garrett Birkhoff. Lattice theory, volume 25 of Colloquium Publications. American Mathematical
Soc., 1940. Third edition, eighth printing with corrections, 1995.

ECOOP 2020

23:28 Lifting Sequential Effects to Control Operators

9 Thomas Scott Blyth. Lattices and ordered algebraic structures. Springer Science & Business
Media, 2006.

10 Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership Types for Safe Pro-
gramming: Preventing Data Races and Deadlocks. In OOPSLA, 2002.

11 Chandrasekhar Boyapati and Martin Rinard. A Parameterized Type System for Race-Free
Java Programs. In OOPSLA, 2001.

12 Edwin Brady. Programming and reasoning with algebraic effects and dependent types. In
Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming,
ICFP ’13, pages 133–144. ACM, 2013. doi:10.1145/2500365.2500581.

13 John Clements, Matthew Flatt, and Matthias Felleisen. Modeling an algebraic stepper. In
European symposium on programming, pages 320–334. Springer, 2001.

14 Christopher Coyle and Peter Crogono. Building abstract iterators using continuations. SIG-
PLAN Not., 26(2):17–24, January 1991. doi:10.1145/122179.122181.

15 Olivier Danvy. An analytical approach to program as data objects, 2006. DSc thesis,
Department of Computer Science, Aarhus University.

16 Olivier Danvy and Andrzej Filinski. A functional abstraction of typed contexts. Technical
report, DIKU — Computer Science Department, University of Copenhagen, July 1989.

17 Germán Andrés Delbianco and Aleksandar Nanevski. Hoare-style reasoning with (algebraic)
continuations. In ICFP, 2013.

18 Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Madhavapeddy, K. C. Sivara-
makrishnan, and Leo White. Concurrent system programming with effect handlers. In Meng
Wang and Scott Owens, editors, Trends in Functional Programming, pages 98–117, Cham,
2018. Springer International Publishing.

19 Matthias Felleisen. The theory and practice of first-class prompts. In Conference Record of
the Fifteenth Annual ACM Symposium on Principles of Programming Languages, San Diego,
California, USA, January 10-13, 1988, pages 180–190, 1988. doi:10.1145/73560.73576.

20 Matthias Felleisen. On the expressive power of programming languages. Science of computer
programming, 17(1-3):35–75, 1991.

21 Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics engineering with
PLT Redex. Mit Press, 2009.

22 Matthias Felleisen and Daniel P. Friedman. A reduction semantics for imperative higher-order
languages. In PARLE, Parallel Architectures and Languages Europe, Volume II: Parallel
Languages, Eindhoven, The Netherlands, June 15-19, 1987, Proceedings, pages 206–223, 1987.
doi:10.1007/3-540-17945-3_12.

23 Cormac Flanagan and Martín Abadi. Object Types against Races. In CONCUR, 1999.
24 Cormac Flanagan and Martín Abadi. Types for Safe Locking. In ESOP, 1999.
25 Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In PLDI, 2003.
26 Cormac Flanagan and Shaz Qadeer. Types for atomicity. In TLDI, 2003.
27 Matthew Flatt, Gang Yu, Robert Bruce Findler, and Matthias Felleisen. Adding delimited

and composable control to a production programming environment. In ICFP, 2007.
28 Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. On the expressive power

of user-defined effects: Effect handlers, monadic reflection, delimited control. Proc. ACM
Program. Lang., 1(ICFP):13:1–13:29, August 2017. doi:10.1145/3110257.

29 Laszlo Fuchs. Partially ordered algebraic systems, volume 28 of International Series of
Monographs on Pure and Applied Mathematics. Dover Publications, 2011. Reprint of 1963
Pergamon Press version.

30 Colin S. Gordon. A Generic Approach to Flow-Sensitive Polymorphic Effects. In ECOOP,
2017.

31 Colin S. Gordon. Polymorphic Iterable Sequential Effect Systems. Technical Report arXiv
cs.PL/cs.LO 1808.02010, Computing Research Repository (Corr), August 2018. In Submission..
arXiv:1808.02010.

https://doi.org/10.1145/2500365.2500581
https://doi.org/10.1145/122179.122181
https://doi.org/10.1145/73560.73576
https://doi.org/10.1007/3-540-17945-3_12
https://doi.org/10.1145/3110257
http://arxiv.org/abs/1808.02010

C. S. Gordon 23:29

32 Colin S. Gordon. Sequential Effect Systems with Control Operators. Technical Report
arXiv cs.PL 1811.12285, Computing Research Repository (CoRR), December 2018. arXiv:
1811.12285.

33 Colin S. Gordon, Werner Dietl, Michael D. Ernst, and Dan Grossman. JavaUI: Effects for
Controlling UI Object Access. In ECOOP, 2013.

34 Colin S. Gordon, Michael D. Ernst, and Dan Grossman. Static Lock Capabilities for Deadlock
Freedom. In TLDI, 2012.

35 James Gosling, Bill Joy, Guy L Steele, Gilad Bracha, and Alex Buckley. The Java Language
Specification: Java SE 8 Edition. Pearson Education, 2014.

36 OpenJDK HotSpot Group. OpenJDK Project Loom: Fibers and Continuations, 2019. URL:
https://wiki.openjdk.java.net/display/loom/Main.

37 Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The Essence of JavaScript. In
ECOOP, 2010.

38 Christopher T. Haynes and Daniel P. Friedman. Embedding continuations in procedural objects.
ACM Trans. Program. Lang. Syst., 9(4):582–598, October 1987. doi:10.1145/29873.30392.

39 Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. Continuations and coroutines.
In LISP and Functional Programming, pages 293–298, 1984.

40 Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. Obtaining coroutines with
continuations. Comput. Lang., 11(3/4):143–153, 1986. doi:10.1016/0096-0551(86)90007-X.

41 P. Jouvelot and D. K. Gifford. Reasoning about continuations with control effects. In PLDI,
1989.

42 Shin-ya Katsumata. Parametric effect monads and semantics of effect systems. In POPL,
2014.

43 Casey Klein, John Clements, Christos Dimoulas, Carl Eastlund, Matthias Felleisen, Matthew
Flatt, Jay A. McCarthy, Jon Rafkind, Sam Tobin-Hochstadt, and Robert Bruce Findler. Run
your research: On the effectiveness of lightweight mechanization. In Proceedings of the 39th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’12, pages 285–296, New York, NY, USA, 2012. ACM. doi:10.1145/2103656.2103691.

44 Ikuo Kobori, Yukiyoshi Kameyama, and Oleg Kiselyov. Answer-type modification without tears:
Prompt-passing style translation for typed delimited-control operators. In Olivier Danvy and
Ugo de’Liguoro, editors, Proceedings of the Workshop on Continuations, WoC 2016, London,
UK, April 12th 2015, volume 212 of EPTCS, pages 36–52, 2015. doi:10.4204/EPTCS.212.3.

45 Eric Koskinen and Tachio Terauchi. Local temporal reasoning. In CSL/LICS, 2014.
46 Shriram Krishnamurthi, Peter Walton Hopkins, Jay A. McCarthy, Paul T. Graunke, Greg Petty-

john, and Matthias Felleisen. Implementation and use of the PLT scheme web server. Higher-
Order and Symbolic Computation, 20(4):431–460, 2007. doi:10.1007/s10990-007-9008-y.

47 Daan Leijen. Koka: Programming with Row Polymorphic Effect Types. In Proceedings 5th
Workshop on Mathematically Structured Functional Programming (MSFP), 2014.

48 Daan Leijen. Structured asynchrony with algebraic effects. In Proceedings of the 2nd ACM
SIGPLAN International Workshop on Type-Driven Development, TyDe 2017, pages 16–29,
New York, NY, USA, 2017. ACM. doi:10.1145/3122975.3122977.

49 Sam Lindley and James Cheney. Row-based effect types for database integration. In Proceedings
of the 8th ACM SIGPLAN workshop on Types in language design and implementation, pages
91–102. ACM, 2012.

50 J. M. Lucassen and D. K. Gifford. Polymorphic Effect Systems. In POPL, 1988.
51 Daniel Marino and Todd Millstein. A Generic Type-and-Effect System. In TLDI, 2009.

doi:10.1145/1481861.1481868.
52 Microsoft. C# Language Specification: Enumerable Objects, 2018. URL: https://github.

com/dotnet/csharplang/blob/master/spec/classes.md#enumerable-objects.
53 Microsoft. C# Reference: yield Exception Handling, 2018. URL: https://docs.microsoft.

com/en-us/dotnet/csharp/language-reference/keywords/yield#exception-handling.

ECOOP 2020

http://arxiv.org/abs/1811.12285
http://arxiv.org/abs/1811.12285
https://wiki.openjdk.java.net/display/loom/Main
https://doi.org/10.1145/29873.30392
https://doi.org/10.1016/0096-0551(86)90007-X
https://doi.org/10.1145/2103656.2103691
https://doi.org/10.4204/EPTCS.212.3
https://doi.org/10.1007/s10990-007-9008-y
https://doi.org/10.1145/3122975.3122977
https://doi.org/10.1145/1481861.1481868
https://github.com/dotnet/csharplang/blob/master/spec/classes.md#enumerable-objects
https://github.com/dotnet/csharplang/blob/master/spec/classes.md#enumerable-objects
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/yield#exception-handling
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/yield#exception-handling

23:30 Lifting Sequential Effects to Control Operators

54 Mozilla. Mozilla Developer Network Documentation: function*, 2018. URL: https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*.

55 Alan Mycroft, Dominic Orchard, and Tomas Petricek. Effect systems revisited — control-flow
algebra and semantics. In Semantics, Logics, and Calculi. Springer, 2016.

56 Iulian Neamtiu, Michael Hicks, Jeffrey S Foster, and Polyvios Pratikakis. Contextual effects
for version-consistent dynamic software updating and safe concurrent programming. In POPL,
pages 37–49, 2008.

57 Flemming Nielson and Hanne Riis Nielson. From cml to process algebras. In CONCUR, 1993.
58 Tomas Petricek, Dominic Orchard, and Alan Mycroft. Coeffects: A calculus of context-

dependent computation. In ICFP, 2014.
59 Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Typed equivalence of effect handlers and

delimited control. In 4th International Conference on Formal Structures for Computation and
Deduction (FSCD 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

60 Gordon Plotkin and Matija Pretnar. Handlers of algebraic effects. In European Symposium on
Programming, pages 80–94. Springer, 2009.

61 Justin Pombrio and Shriram Krishnamurthi. Inferring type rules for syntactic sugar. In
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2018, pages 812–825, New York, NY, USA, 2018. ACM. doi:10.1145/
3192366.3192398.

62 Matija Pretnar and Andrej Bauer. An effect system for algebraic effects and handlers. Logical
Methods in Computer Science, 10, 2014.

63 Chung-chieh Shan. A static simulation of dynamic delimited control. Higher-Order and
Symbolic Computation, 20(4):371–401, 2007.

64 Dorai Sitaram. Handling control. In PLDI, 1993.
65 Dorai Sitaram and Matthias Felleisen. Control delimiters and their hierarchies. Lisp and

Symbolic Computation, 3(1):67–99, 1990.
66 Dorai Sitaram and Matthias Felleisen. Reasoning with continuations II: full abstraction

for models of control. In LISP and Functional Programming, pages 161–175, 1990. doi:
10.1145/91556.91626.

67 Christian Skalka. Types and trace effects for object orientation. Higher-Order and Symbolic
Computation, 21(3):239–282, 2008.

68 Christian Skalka, Scott Smith, and David Van Horn. Types and trace effects of higher order
programs. Journal of Functional Programming, 18(2), 2008.

69 Kohei Suenaga. Type-based deadlock-freedom verification for non-block-structured lock
primitives and mutable references. In APLAS, 2008.

70 Ross Tate. The sequential semantics of producer effect systems. In POPL, 2013.
71 Python Development Team. Python Enhancement Proposal 255: Simple Generators, 2001.

URL: https://www.python.org/dev/peps/pep-0255/.
72 Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Information and

computation, 132(2):109–176, 1997.
73 Jesse A. Tov and Riccardo Pucella. A theory of substructural types and control. In OOPSLA,

2011.
74 Philip Wadler and Peter Thiemann. The Marriage of Effects and Monads. Transactions on

Computational Logic (TOCL), 4:1–32, 2003.
75 Mitchell Wand. Type inference for record concatenation and multiple inheritance. In Logic in

Computer Science, 1989. LICS’89, Proceedings., Fourth Annual Symposium on, pages 92–97.
IEEE, 1989.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*
https://doi.org/10.1145/3192366.3192398
https://doi.org/10.1145/3192366.3192398
https://doi.org/10.1145/91556.91626
https://doi.org/10.1145/91556.91626
https://www.python.org/dev/peps/pep-0255/

Flow-Sensitive Type-Based Heap Cloning
Mohamad Barbar
University of Technology Sydney, Australia
CSIRO’s Data61, Sydney, Australia

Yulei Sui1

University of Technology Sydney, Australia

Shiping Chen
CSIRO’s Data61, Sydney, Australia

Abstract
By respecting program control-flow, flow-sensitive pointer analysis promises more precise results than
its flow-insensitive counterpart. However, existing heap abstractions for C and C++ flow-sensitive
pointer analyses model the heap by creating a single abstract heap object for each memory allocation.
Two runtime heap objects which originate from the same allocation site are imprecisely modelled
using one abstract object, which makes them share the same imprecise points-to sets and thus reduces
the benefit of analysing heap objects flow-sensitively. On the other hand, equipping flow-sensitive
analysis with context-sensitivity, whereby an abstract heap object would be created (cloned) per
calling context, can yield a more precise heap model, but at the cost of uncontrollable analysis
overhead when analysing larger programs.

This paper presents TypeClone, a new type-based heap model for flow-sensitive analysis. Our
key insight is to differentiate concrete heap objects lazily using type information at use sites within
the program control-flow (e.g., when accessed via pointer dereferencing) for programs which conform
to the strict aliasing rules set out by the C and C++ standards. The novelty of TypeClone lies
in its lazy heap cloning: an untyped abstract heap object created at an allocation site is killed
and replaced with a new object (i.e. a clone), uniquely identified by the type information at its
use site, for flow-sensitive points-to propagation. Thus, heap cloning can be performed within a
flow-sensitive analysis without the need for context-sensitivity. Moreover, TypeClone supports
new kinds of strong updates for flow-sensitive analysis where heap objects are filtered out from
imprecise points-to relations at object use sites according to the strict aliasing rules. Our method is
neither strictly superior nor inferior to context-sensitive heap cloning, but rather, represents a new
dimension that achieves a sweet spot between precision and efficiency. We evaluate our analysis by
comparing TypeClone with state-of-the-art sparse flow-sensitive points-to analysis using the 12
largest programs in GNU Coreutils. Our experimental results also confirm that TypeClone is more
precise than flow-sensitive pointer analysis and is able to, on average, answer over 15% more alias
queries with a no-alias result.

2012 ACM Subject Classification Software and its engineering → Automated static analysis

Keywords and phrases Heap cloning, type-based analysis, flow-sensitivity

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.24

Supplementary Material ECOOP 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.2.1.
https://github.com/SVF-tools/SVF/wiki/TypeClone

Funding This research is supported by Australian Research Grant DP200101328.
Mohamad Barbar : supported by a PhD scholarship funded by CSIRO’s Data61.

Acknowledgements We would like to thank the anonymous reviewers for their helpful comments.

1 Corresponding author

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Mohamad Barbar, Yulei Sui, and Shiping Chen;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 24; pp. 24:1–24:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECOOP.2020.24
https://doi.org/10.4230/DARTS.6.2.1
https://github.com/SVF-tools/SVF/wiki/TypeClone
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Flow-Sensitive Type-Based Heap Cloning

1 Introduction

Pointer analysis aims to determine the objects which a pointer may point to at runtime. It is
an enabling technology which forms a basis for other program analysis tasks such as compiler
optimisation [28, 13], program slicing [42, 43], enforcing control-flow integrity [23, 16], and
software security analysis [38, 32].

1.1 Background
Flow-sensitivity is an essential precision dimension of pointer analysis. Unlike flow-insensitive
analysis which considers instructions to be unordered, flow-sensitive analysis accounts for
program execution order to better approximate runtime behaviour and achieve a more
precise result. Traditional flow-sensitive points-to analysis computes and maintains points-to
relations at each program point. These points-to relations are propagated along the program’s
control-flow graph (CFG) by solving an iterative data-flow problem until a fixed point is
reached.

In recent years, there have been significant advances in making flow-sensitive analysis for
C and C++ programs more efficient. Rather than propagating all relations to/from each
program point on the CFG, Sparse analysis [19, 20], a flow-sensitive and context-insensitive
analysis, pre-computes over-approximated value-flows (def-use chains) to produce a value-
flow graph upon which the main phase analysis can propagate points-to relations sparsely.
This reduces both time and space overhead while maintaining precision. Selective flow-
sensitive analysis [30] performs strong updates for stack and global variables at stores where
flow-sensitive singleton points-to sets are available, but falls back to flow-insensitive results
otherwise, making a trade between efficiency and precision. Sparse analysis incorporates
these strong updates. As an alternative to whole-program analysis, demand-driven flow-
sensitive analysis [39] aims to answer points-to queries flow-sensitively by only analysing
specific parts of a program with CFL-reachability on the pre-computed value-flow graph.

1.2 Motivation and insights
Most recent advances in C/C++ flow-sensitive pointer analysis focus on improving efficiency.
Apart from those which employ expensive context-sensitivity, existing solutions exclusively
use an allocation-site-based heap abstraction where an abstract object is created per memory
allocation site to represent the set of concrete objects created at that allocation site during
runtime. This is especially coarse for heap-intensive programs when allocation sites are
contained within allocation wrapper functions [7] since any pointers pointing to objects
originating from such wrapper functions will be regarded as having a may-alias relation
despite originating in different contexts at runtime. Thus the heap abstraction significantly
reduces the benefit of flow-sensitivity by restricting most of the precision improvement to
stack and global variables only. For example, given two concrete heap objects o1 and o2 which
originate from the same allocation wrapper and are accessed along two different control-flow
branches, the flow-sensitive points-to results of the heap objects, and of any pointers which
point to them, would be as (im)precise as flow-insensitive results since the heap abstraction
would treat both concrete objects as a single abstract object. Whenever a single allocation
wrapper is used exclusively, the heap abstraction is as precise as having one abstract object
represent all concrete heap objects allocated by the program.

Developing a precise and efficient flow-sensitive heap abstraction is challenging since
the infinite-sized heap needs to be partitioned into a finite a number of abstract objects.
A straightforward solution is to equip flow-sensitive analysis with context-sensitivity. A

M. Barbar, Y. Sui, and S. Chen 24:3

context-sensitive analysis performs heap cloning based on calling contexts: a new heap object
(a clone) is created for each calling context reaching the object’s allocation site. However,
given the billions of calling contexts in large programs [44], adding context-sensitivity to
flow-sensitive analysis incurs uncontrollable overhead even with k-limiting enabled [3].

Rather than heap cloning according to calling context, we would like to investigate the
use of type information and the initialisation of an object’s type (e.g. through dereferencing a
pointer to that object) to perform heap cloning. Our key insight is based on the strict aliasing
rules laid out by the C [2, §6.5 ¶7] and C++ [1, §6.10 ¶8] standards whereby a pointer
may only access an object with a compatible type (or else, the program exhibits undefined
behaviour). For example, reading an object of type float through a pointer of type int *
is undefined behaviour. Thus, a pointer of type int * and a pointer of type float *, for
example, cannot be referring to the same object when being dereferenced. We can then use
such type information to “separate” concrete objects from within an abstract object (of the
allocation-site-based abstraction) into multiple abstract objects, each used for accesses of a
specific type. More concretely, an untyped heap object o can be cloned into multiple typed
objects based upon the accesses (or dereferences) of o. Therefore, type-based heap cloning
could more precisely distinguish heap objects while avoiding expensive context-sensitive heap
modeling.

1.3 Existing efforts and limitations

Type-based heap modelling [24, 26, 37] has been used in strongly typed languages, such as
Java, to produce a cost-effective heap abstraction for context-sensitive but flow-insensitive
pointer analysis. However, there are very few attempts at type-based pointer analysis for C
and C++ [5, 7, 13]. C and C++ introduce new challenges:

C and C++ are weakly typed so reasoning about the types of objects, especially heap
objects, is difficult.
High-level C/C++ type information is not preserved in the intermediate representation
(IR) of modern compilers, like Clang/LLVM [14], upon which static analyses typically
operate on.
C and C++ allow for the address of fields to be taken and for pointer arithmetic within
an object, which means fields’ types must too be resolved during the analysis.

It is hard to design a fully sound pointer analysis, incorporating types, for non-conforming
programs which violate the strict aliasing rules. Generally, a fully sound analysis would be
unscalable or imprecise almost to the point of uselessness on its own [31]. Type-based alias
analysis (TBAA) [13] made the initial attempt at exploiting the strict aliasing assumption
(or its equivalent in Modula-3) to produce a fast alias analysis. The almost stateless nature
of TBAA makes it especially useful in resolving alias queries that would otherwise require
inter-proecedural analysis to non-trivially answer. Modern compilers like LLVM and GCC
implement TBAA behind the -fstrict-aliasing flag (enabled by default). In reality,
programs which wish to safely benefit from optimisations enabled by TBAA must conform
to the strict aliasing rules. Programs which fail to do so either risk miscompilation (since
the program exhibits undefined behaviour the compiler assumes is not present) or must
notify the compiler that the program violates the strict aliasing rules and do without those
optimisations. Violating these rules (or invoking any other undefined behaviour) is typically
strongly discouraged, particularly where safety is a factor, as in the MISRA C and C++
coding standards, for example.

ECOOP 2020

24:4 Flow-Sensitive Type-Based Heap Cloning

Recently, structure-sensitive analysis [7] (hereon referred to as cclyzer-ss) presented
a type-based flow-insensitive points-to analysis that enhances the precision of Andersen’s
analysis [4]. cclyzer-ss lazily infers the types of heap objects by leveraging LLVM type casts
to filter out spurious field derivations (i.e., field derivations introduced by static imprecision
that can never happen during runtime).

1.4 Our solution
Inspired by TBAA and cclyzer-ss, the scope of this work is to produce a more precise
flow-sensitive heap model for C and C++ programs which follow the strict aliasing rules.
We propose TypeClone, a flow- (and field-) sensitive analysis with a new type-based heap
abstraction which yields better precision than a traditional flow-sensitive analysis. We aim
to perform lazy heap cloning by incorporating lightweight type information within standard
flow-sensitive pointer analysis. Rather than performing heap cloning per calling context for
each allocation, for untyped memory object o allocated at program point `, we lazily clone
to create typed object ot at each of its type initialisation points `′ where the object o has
a type t assumed. To maintain soundness, each clone ot is back-propagated to any pointer
that may have actually been accessing the concrete objects now represented by ot through o.

Intuitively, the type initialisation point is treated as the real allocation site during our
lazy heap cloning, thus distinguishing different sets of concrete objects where necessary in
a lazy rather than eager manner. From the type initialisation point `′ forward, we only
propagate the clone object ot rather than the untyped object o. Not only are untyped objects
prevented from propagating past type initialisation points like `′, but any object of type
t accessed by a pointer with incompatible element type t′ will be strongly updated (i.e.
killed, filtered) because such a points-to relation is impossible in a program which adheres
to the strict aliasing rules and must be a result of static imprecision. This reduces the
number of spurious objects in points-to sets during points-to resolution, especially when
a killed object would have otherwise created spurious field sub-objects via field-sensitivity.
This gives us a flow-sensitive analysis that is still scalable yet more precise than that which
uses standard heap abstractions. We see our work more as an addition to flow-sensitive
analysis rather than as competition to other heap cloning techniques like context-sensitivity.
Our technique is neither strictly superior nor inferior to context-sensitive analysis and can
work with context-sensitivity to achieve a more precise result. Our key contributions are
summarised as follows:

We present TypeClone, a flow-sensitive pointer analysis which can perform lazy heap
cloning using types without context-sensitivity for C and C++ programs which do not
violate the strict aliasing rules.
We present new forms of strong updates, namely type-based semi-strong updates and
type-based strong updates, which improve precision.
We have implemented TypeClone and compared it to sparse flow-sensitive analysis.
We have found that TypeClone can answer over 15% more alias queries with a no-alias
result, on average, than Sparse.

2 A motivating example

Figure 1a gives an example of a common heap allocation wrapper extracted from GNU
Coreutils [18] and usage of that wrapper. This example aims to demonstrate the key idea
of TypeClone and compare it with existing C and C++ points-to analyses: a recent
flow-insensitive analysis (cclyzer-ss) and a flow-sensitive and context-insensitive analysis

M. Barbar, Y. Sui, and S. Chen 24:5

1 int main(void) {
2 int *p = (int *)xmalloc(4);
3 *p = 1;
4 float *q = (float *)xmalloc(4);
5 *q = 1.0;
6 // Alias(p, q)?
7 }
8

9 void *xmalloc(size_t n) {
10 void *x = malloc(n);
11 if (!x && n != 0) xalloc_die();
12 return x;
13 }

(a) Usage of GNU Coreutils malloc wrapper.

Analysis Points-to relations `6: Alias(p,q)

cclyzer-ss
{o, oint, ofloat}∈ pt(p)

True
{o, oint, ofloat}∈ pt(q)

Sparse
{o} ∈ pt(`2–, p)

True
{o} ∈ pt(`4–, q)

TypeClone

{o, oint, ofloat}∈ pt(`2, p)

False
{oint} ∈ pt(`3–, p)
{o, oint, ofloat}∈ pt(`4, q)
{ofloat} ∈ pt(`5–, q)

(b) Points-to relations.

Figure 1 A motivating example.

(Sparse). Points-to results are shown in Figure 1b. Flow-sensitive analyses maintain
different points-to information for the same pointer at different program points, so pt takes
an extra argument indicating the program point (`– means ` onwards). The results show
that TypeClone is more precise than cclyzer-ss and Sparse when performing an alias
query on p and q at line 6 and maintains only one object at lines 3 and 5 onward.

cclyzer-ss performs heap cloning at cast instructions, i.e., p = (t) q, such that the
untyped object o that q points to is cloned to create a new object ot with type t. The ot

is then propagated back to the allocation site of o in order to maintain soundness since
some preceding program points may have become aliases of q, through points-to relations
with the untyped object, before the clone was created. cclyzer-ss’s main goal is to enable
more precise field-sensitivity through these typed heap objects. Given a field constraint, i.e.,
p = &q→f , a new field is derived only when (1) q points to a typed object ot, and (2) the
type of q is t∗. This prevents the generation of spurious field objects. cclyzer-ss can only
improve precision by preventing the generation of spurious field objects since every clone
is back-propagated to its original allocation site which causes every object which originally
pointed to the untyped object from that allocation site to point to every typed clone. For
example, the clone object oint, created at line 2, is back-propagated to line 10, which makes
pointer q, soundly but imprecisely, also point to oint at every program point.

Sparse [20] performs flow-sensitive points-to analysis using allocation-site-based heap
modeling. Therefore, the program only has one heap object o which is then pointed to by
both pointers, p and q, at line 6.

TypeClone clones heap objects lazily only at the type initialisation point in a flow-
sensitive manner. A type initialisation point is any program point in which an object must
be of a certain type (or one of a set of types) for the program to be legal (i.e., not exhibit
undefined behaviour). In this example, the pointer dereferences at lines 3 and 5 must be
referring to objects of type int and float, respectively, for the program to avoid undefined
behaviour. This is in contrast to cclyzer-ss which clones at cast instructions eagerly. The
cloned objects are then propagated back to their allocation sites for the same reason that
cclyzer-ss does and so x at line 10 would then point to the two cloned objects (as well as
the original untyped object). When the clone objects oint and ofloat are re-propagated to
line 3 following the control-flow, ofloat will be filtered by TypeClone’s type-based strong
updates since our analysis only expects an int-typed object (oint) to be accessed by the

ECOOP 2020

24:6 Flow-Sensitive Type-Based Heap Cloning

Table 1 Domains and LLVM-like instructions used by our pointer analysis.

Analysis domains LLVM-like instruction set
` ∈ L instruction labels
t, • ∈ T types
k ∈ C constants
i ∈ S stack virtual registers
g ∈ G global variables
p, q, r, x, y ∈ P = S ∪ G top-level variables
ȯ ∈ O abstract objects
o.fk ∈ F abstract field objects
a, o ∈ A = O ∪ F address-taken variables
v ∈ V = P ∪A program variables

Stk/Glob p = &o
Heap p = malloco

Phi p = φ(q, r)
Field p = &q→fk

Cast p = (t) q
Load p = ∗q
Store ∗p = q

Call p = q(r1, . . . , rn)
FunEntry fun(r1, . . . , rn)
FunExit retfun p

dereference *p. Similarly, a type-based strong update is also performed at line 5 to kill the
incompatible typed object oint. Thus, TypeClone is able to more precisely answer the alias
query at line 6 than both Sparse and cclyzer-ss.

3 Program representation and type model

This section describes the program representation, our type model (based on the C and C++
standards), and the value-flow representation used for our flow-sensitive analysis.

3.1 Program representation

Like [7, 20, 30, 39], we perform our pointer analysis on top of the LLVM IR of a program.
The instructions relevant to our analysis and the domains are given in Table 1. The set of
all variables V is separated into two subsets: A = O ∪F which contains all possible abstract
objects and their fields (i.e., address-taken variables of a pointer), and P which contains
top-level variables, including stack virtual registers (symbols starting with % in LLVM) and
global variables (symbols starting with @). Top-level variables in P are explicit and directly
accessed, and address-taken variables in A are implicit and indirectly accessed at LLVM
Load or Store instructions through top-level variables. Since our analysis is type-based, we
require types: t ∈ T . • ∈ T is the undefined type which is necessary because heap objects
can be untyped before being initialised.

After SSA (static single assignment) conversion, given that p, q, r1, . . . , rn ∈ P and o ∈ A,
a program is represented by ten types of instructions: (1) eight types of instructions which
appear in the body of a function: p = &o (allocates memory for a stack or global object),
p = malloco (allocates memory for a heap object), p = φ(q, r) (selects the value of a variable
at the joint point of branching control-flow), p = &q→fk (retrieves a pointer pointing to
the field of a struct object), p = ∗q (reads the value of an object), ∗p = q (writes the value
of an object), p = (t) q (casts a pointer to type t), and p = q(r1, . . . , rn) (calls function q
with arguments r1, . . . , rn), and, (2) a FunEntry instruction fun(r1, . . . , rn) containing the
parameters of fun, and a FunExit instruction retfun p representing the unique return of
fun. LLVM pass UnifyFunctionExitNodes is executed before pointer analysis to ensure
that every function has only one FunExit instruction. Top-level variables are put directly
in SSA form, while address-taken variables are only accessed indirectly via Load or Store
instructions. Parameter passing and returning are treated as Copys.

M. Barbar, Y. Sui, and S. Chen 24:7

1 p = &a;
2 a = &b;
3

4

5 q = malloc(...);
6 *q = &c;
7

8

9 *p = *q;
10

(a) C code fragment.

1 p = &a;
2 x1 = &b;
3 *p = x1;
4

5 q = malloc(...);
6 x2 = &c;
7 *q = x2;
8

9 x3 = *q;
10 *p = x3;

(b) Corresponding LLVM IR.

Figure 2 C code and its corresponding LLVM IR.

 q = malloc(...); // o

p = &a;

x1 = &b;

*p = x1;

x2 = *q;

*p = x2;

ℓ1:
ℓ2:
ℓ3:

ℓ4:

ℓ7:
ℓ8:

a1 = !(a0)

a2 = !(a1)

"(o2)

*q = x2;
x2 = &c;

o2 = !(o1)

ℓ5:
ℓ6: [a]

[o]

Andersen's points-to information
pts(p) = {a}
pts(q) = {o}

(a) An intra-procedural value-flow example.

bar() {
 p = malloc(...); // o

 !(o1)
 foo(p);
 o2 = "(o1)

 !(o2)
 z = *p;
}

foo(x) {

}
 !(o2)

ℓ1:

ℓ2:

ℓ3: ℓ7:

ℓ4:

ℓ6:

 o1 = "(o0)

 o2 = "(o1)[a]

Indirect Value-flow

y = malloc(..); // o'ℓ5:
 *x = y;

[a]

[a]

[a]

[a]

Andersen's points-to information
pts(p) = pts(x) = {o}

(b) An inter-procedural value-flow example.

Figure 3 Intra-procedural and inter-procedural value-flow graph examples.

C++ object allocation, like S *x = new S(), is generally translated into two instructions:
an allocation instruction, like x = malloco, which returns an untyped object, and a call to a
constructor, like S(x), which calls S’s constructor to initialise the newly allocated object.
For pointer arithmetic, as in q = p+ j, if p points to an object o, we conservatively assume
that q can point anywhere within o. This is based on the assumption that pointer arithmetic
cannot cross the boundary of an object. A pointer pointing to an object produced through
an integer cast aliases every other pointer (i.e. it points to every object). We treat arrays
monolithically such that accessing any element of an array is the same as accessing the entire
array object meaning our analysis is array-insensitive. This is an orthogonal dimension of
precision.

Given p, q, x1, x2, x3 ∈ P and a, b, c ∈ A, Figure 2 shows a code fragment and its
corresponding LLVM partial SSA form. Note that address-taken variable a can only be
indirectly accessed by introducing a top level pointer, for example through x1 in store *p = x1.
Complex statements like *q = &c and *p = *q are decomposed into basic instructions by
introducing top-level pointers like x2 and x3.

3.2 Value-flow representation for flow-sensitive analysis
Unlike a flow-insensitive analysis which ignores program execution order, a flow-sensitive
analysis accounts for the program’s control flow. Traditional flow-sensitive points-to analysis
computes and maintains data-flow facts (points-to relations) at each program point. These

ECOOP 2020

24:8 Flow-Sensitive Type-Based Heap Cloning

data-flow facts are propagated along the program’s inter-procedural control-flow graph
(ICFG) until a fixed point is reached [12, 30]. However, in time and space, computing and
propagating the points-to information on the ICFG is costly.

To accelerate performance, the analysis is run on top of a sparse value-flow graph (VFG)
instead of the ICFG [20, 33, 36, 39]. Intuitively, the VFG is a sparse def-use graph where each
node represents a program statement and edges represent a def-use chain (i.e. value-flow) of
a program variable. The notion of sparsity comes from the omission of statements irrelevant
to the value-flow of a variable such that an edge acts as a “jump” directly from the definition
of a variable to its use thus reducing redundant points-to propagation along the control-flow.

The value-flow of a top-level variable (which has a unique definition in the partial SSA
form) is directly available without pointer analysis. Such value-flows are called direct value-
flows. A directed edge from node x to node y represents a value-flow relation: a variable
defined at node x is used at node y. On the other hand, value-flows of address-taken
variables (which are not in partial SSA form) are obtained by building the memory SSA
form following [11, 20] because their uses, at loads for example, could be defined indirectly
at multiple stores

Figure 3 shows an intra- and an inter-procedural example based on the code in Figure 2.
For both, a fast and imprecise flow-insensitive Andersen’s analysis [4] is used to annotate
indirect memory accesses at program points like loads, stores, and callsites. The results
of that Andersen’s analysis are shown in the two boxes in Figures 3a and 3b. Now, let us
consider the intra-procedural example in Figure 3a specifically. Firstly, we annotate store
instructions like ∗p = x1 with a function a = χ(a) for each variable a ∈ A which may be
pointed to by p. This represents a potential value-flow (i.e., def and use of a) at the store. If
a can be strongly updated, then a receives the value on the right-hand side of the store (x1)
and the old contents in a are killed. Otherwise, a weak update takes place by adding the
right-hand side to a’s old contents [30]. Secondly, we annotate load instructions like x2 = ∗q
with a function µ(o) for each variable o ∈ A that may be pointed to by q to represent a
potential use of o at the load. Thirdly, we convert all address-taken variables into SSA form,
treating each µ(o) as a use of o and each o = χ(o) as both a def and a use of o. Finally, we
obtain the indirect value-flows for o ∈ A: for a use of o, identified as on (where n represents
the version), at load or store instruction `, with its unique definition at store `′, `′ o−→ `

represents the potentially indirect value-flow of o from `′ to `. This is exemplified by `3
a−→ `8

and `6
o−→ `7 in Figure 3a.

Figure 3b shows an inter-procedural value-flow example. In addition to what is done
in the intra-procedural case, we compute the side-effects of a function call by applying a
lightweight inter-procedural mod-ref analysis [41, §4.2.1]. A given callsite, `, is annotated
with µ(a), or a = χ(a), if a may be read, or modified, respectively, inside the callees of ` as
discovered by Andersen’s pointer analysis. Additionally, appropriate χ and µ operators are
also added to the FunEntry and FunExit instructions of these callees in order to mimic
parameter passing and returning of address-taken variables.

To handle read side-effects within a function, we add a µ call before appropriate callsites
to represent potential uses of µ’s argument. The corresponding FunEntry instruction
is annotated with an appropriate χ call. For example, to represent potential uses of o in
foo in Figure 3b, µ(o) is added before the callsite at `2, and foo’s FunEntry instruction
at `4 is annotated with o = χ(o) to receive the values of o passed from `2. Similarly, for
modification side-effects within a function, a call to χ is added after appropriate callsites to
receive potentially modified values, and the corresponding functions’ FunExit instructions
are annotated with a µ call. In Figure 3b, o = χ(o) is added after the callsite at `2 to handle

M. Barbar, Y. Sui, and S. Chen 24:9

1 struct S {
2 int i;
3 void *v;
4 };
5 class C : public S {
6 float f;
7 virtual void foo(void) { }
8 };
9 union U {

10 long l;
11 int i;
12 };

(a) C++ code fragment of type declarations.

S

int

char

C

U

long float void *

(b) Corresponding type graph.

Figure 4 A type graph and the corresponding C++ code it was generated from. The open
triangle arrow represents an inheritance relation, the dashed arrow represents a first-field relation,
and the solid arrow represents relations derived from the strict aliasing rules of C and C++.

potential modification of o in foo, and foo’s FunExit instruction at `7 is annotated with
µ(o). Finally, as in the intra-procedural example, all variables in µ and χ are renamed and
converted into memory SSA form when connecting their def-use relations.

3.3 Type model
The types of stack and global objects are static and are determined at their allocation sites
whereas dynamically allocated heap objects (e.g., through malloc or C++’s new) are untyped.
Primarily, the type of a heap object is manifested when accessed through the dereferencing
of a pointer.

Before introducing the type model for our analysis, we first define the subtyping relations
that may appear in a program. We use a type graph to represent subtyping relations between
different types in a program. The type graph is a directed acyclic graph where each node
represents a type in the target program and each edge from t′ to t represents one of three
subtyping relations: (1) t′ inherits from t, (2) the first field of struct type t′ has type t, and (3)
subtyping relations derived from the strict aliasing rules of C and C++. All types appearing
in the program are placed into the type graph, but we treat arrays and pointers as equivalent
for this purpose and, in conformance with the strict aliasing rules, ignore signedness and
qualifiers (e.g., int is deemed equivalent to const unsigned int).

Figure 4 illustrates the three subtyping relations on an example type graph (Figure 4b)
generated from the code in Figure 4a. Class C inherits from struct S which has an int as its
first field. Unions treat all their members as their first field, as is the case with U and its int
and long members. Finally, all types which do not have any outgoing edges are connected
to the char type in line with the strict aliasing rules which allow any object to be accessed
by dereferencing a pointer to a char. Finally, we say that t′ is a subtype of t, denoted as
t ≺ t′, if t is reachable from t′ in the type graph.

Our analysis expects target programs to conform to our type model. We define the type
model of our analysis with the following rules R1–R5, adopted from the provenance and
strict aliasing rules of C18 [2] and C++17 [1].

ECOOP 2020

24:10 Flow-Sensitive Type-Based Heap Cloning

R1. An abstract heap object’s initial type is undefined (•) until a non-void type is potentially
assigned.

R2. Any pointer may point to any object regardless of its type (through pointer casting, for
example). However, through a pointer of type t∗ only objects whose type is t′, such that
t ≺ t′, may be read.

R3. For pointer arithmetic q = p+ j, q will either point within the object pointed to by p,
or at one past the last element of the object if it is an array object.

R4. An object may not access any of its virtual methods until it is passed to the corresponding
constructor.

R5. An object’s type can be changed to a type that is not a transitive base (i.e., reuse).

R1–R4 are easy to understand. R5 describes object reuse in C and C++. An example use
case is to reuse an already allocated object rather than freeing that object and performing
a new allocation. This is commonly done using placement new in C++. Another use case
would be custom allocators in C++ using a statically allocated pool of memory, e.g., given a
static buffer (or allocated otherwise), char buf[100], a placement new operation, new(buf)
T(), would not allocate new memory, but would call T’s constructor with buf as the this
argument to initialise the underlying object with type T. In C, placement new is unavailable.
Outside well know patterns like pool allocators, object reuse is an uncommon feature that is
error-prone since it may make pointers illegal to dereference, unless strict conditions are met.
This is similar to introducing dangling pointers through deallocation except that deallocation
is usually more explicit (e.g., through the presence of free and delete) and more commonly
understood by the programmer than the possible ways of performing reuse. We discuss
object reuse in more detail in Section 4.2.

4 TypeClone approach

We present a base analysis in Section 4.1 that will achieve our goals of typing heap objects
and performing flow-sensitive heap cloning without context-sensitivity. The base analysis
assumes no direct object reuse. We then extend the base analysis to support direct object
reuse in Section 4.2.

4.1 Base analysis
This section introduces our base analysis. Central to our analysis is typing the usually
untyped abstract objects. We use the notation ot to indicate that the type of object o is t and
we use o without the type subscript when the type is irrelevant. For stack and global objects,
the type is assigned at allocation, whereas for heap objects, the type is undefined (denoted
as •) at allocation. According to our type model in Section 3.3, pointers with element type t
can only read from objects whose underlying type t′ satisfies t ≺ t′. Therefore, such pointer
accesses are an indication of the type of an object and we can use this information for heap
cloning. Writes to an object are another indication of the type of an object: an object written
to through a pointer with element type t is assigned type t. Figure 5 presents the inference
rules for the base analysis and an explanation of each of the rules follows.

4.1.1 Memory allocation ([HEAP] [STACK/GLOBAL])
The [HEAP] and [STACK/GLOBAL] rules handle the allocation of heap, stack and global
objects. Allocation is handled as in standard flow-sensitive pointer analysis except that we
associate a type with the newly allocated objects. At allocation time, the type of a heap

M. Barbar, Y. Sui, and S. Chen 24:11

[STACK/GLOBAL]

` : p = &o t = T (p)

ot̃ ∈ pt(`, p)

[HEAP]

` : p = malloco

o• ∈ pt(`, p)

[LOAD]

` : p = ∗q `′′
q−→ ` `′

o−→ `

ot ∈ pt(`′′, q) o′ = init(T (q), ot)

pt(`′, o′) ⊆ pt(`, p)

[STORE]

` : ∗p = q `′
o−→ ` `′′

p−→ ` `′′′
q−→ `

ot ∈ pt(`′′, p) o′ = init(T (p), ot)

pt(`′′′, q) ⊆ pt(`, o′)

init(t, ot′) =

ot̃ if t′ ≡ • [INITIALISE]

ot′ if t̃ ≺ t′ [TBWU]

ot̃ if t′ ≺ t̃ ∧ t′ 6≡ t̃ ∧ h(ot′) [TBSSU]

∅ otherwise [TBSU]

[BACK-PROPAGATE]

` : p = malloco ot newly cloned

ot ∈ pt(`, p)

[SU/WU]

` : ∗p = _ `′
o−→ `

o ∈ A \ kill(`, p)

pt(`′, o) ⊆ pt(`, o)

kill(`, p) =

{o′} if pt(`, p) ≡ {o′} ∧ o′ ∈ singletons
A if pt(`, p) ≡ ∅
∅ otherwise

[FIELD]

` : p = &q→fk `′
q−→ ` o ∈ pt(`′, q)

o′ = init(T (q), o) t = type of t::fk

(o′.fk)t ∈ pt(`, p)

[FF-NOT-IN-PT]

o ∼̇ o′ o ∈ pt(`, v)

o′ ∈ pt(`, v)

[FF-EQ-PT]

o′ ∼̇ o′′ o ∈ pt(`, o′)

o ∈ pt(`, o′′)

[PHI]

` : p = φ(q, r) `′
q−→ ` `′′

r−→ `

pt(`′, q) ∪ pt(`′′, r) ⊆ pt(`, p)

[CAST]

` : p = (t) q `′
q−→ ` o ∈ pt(`′, q)

o ∈ pt(`, p)

[CALL]

` : _ = q(. . . , r, . . .) µ(o) `′ : fun(. . . , r′, . . .) o=χ(o)
ofun ∈ pt(`′′, q) `′′

q−→ ` `∗
r−→ ` `? o−→ `

pt(`∗, r) ⊆ pt(`′, r′) pt(`?, o) ⊆ pt(`′, o)

[RET]

` : p = q(. . .) o=χ(o) `′ : retfun p′ µ(o)

ofun ∈ pt(`′′, q) `′′
q−→ ` `∗

p′
−→ ` `? o−→ `

pt(`∗, p′) ⊆ pt(`, p) pt(`?, o) ⊆ pt(`, o)

T (v) : V 7→ T v’s type.
pt(`, v) : L × V 7→ 2A v’s points-to set after `.
`

v−→ `′ : L × V × L v’s value flow.
h(o) : A 7→ Bool o is a heap object.

t̃ : T 7→ T The element (pointee) type of t.
t ≺ t′ : T × T t′ is a transitive subtype of t.
• : T The undefined type.

Figure 5 Inference rules for the base analysis. We use a box to indicate that a new cloned
object is created if it does not already exist.

ECOOP 2020

24:12 Flow-Sensitive Type-Based Heap Cloning

object is unknown and will be determined later through usage of the object. Thus an untyped
object o• is propagated. The types of stack and global objects, however, are known, so a
type (t in ot) is immediately assigned.

4.1.2 Direct and indirect propagation ([PHI] [CAST] [CALL] [RET])

Rules [PHI] and [CAST] act as copies, performing trivial direct propagation. Both simply
propagate the points-to information of the pointer on the right hand side of an assignment
to the pointer on the left hand side. In the case of rule [PHI], the points-to sets of q and r
are added to that of p. In the case of rule [CAST], the points-to set of q is added to that of p
as a Cast instruction acts like a copy. Despite the type-based nature of our analysis type
casting has no effect on actual points-to relations since any pointer can point to any object
except when that pointer is used in certain ways (recall R2 of our type model).

Direct inter-procedural points-to propagation is done via the [CALL] and [RET] rules.
Function targets are resolved on-the-fly during points-to analysis to more precisely discover
callee functions at indirect callsites. Points-to values from the actual arguments at the callsite
are then propagated to the corresponding formal parameters of each callee. The points-to
information of an address-taken variable o is propagated via indirect value-flows (Section 3.2)
with the χ and µ annotations shown in the two rules.

Indirect propagation is the propagation of address-taken variables (objects in A) in
the VFG. Indirect edges are labelled with address-taken variables, as determined by the
pre-analysis, which are then propagated along those edges. Since the Andersen’s analysis
used to construct the VFG has no notion of typed objects, the edges are labelled with
objects according to the allocation-site-based heap model (i.e. the original untyped objects).
To remedy this, on the fly, when an indirect edge is labelled o, we propagate points-to
information for all clones of o defined at the source of the indirect edge through the indirect
propagation of o. For example, the propagation of the points-to information of both ot and
ot′ from ` and `′ would be through the indirect edge labelled with o, i.e. ` o−→ `′. Another
way to resolve this is to augment the pre-analysis with type-based heap cloning and then
indirect edges would be labelled with the appropriate typed objects. We forego this method
for brevity and generality.

4.1.3 Loads and stores ([LOAD] [STORE] [SU/WU])

Load and Store instructions, through the [LOAD] and [STORE] rules, are handled in the
same way as in a standard sparse flow-sensitive analysis [20] except that object initialisation
(via init, described in Sections 4.1.4 and 4.1.5) is performed on the objects pointed to by the
dereferenced pointers. The return value of the init function is then operated on rather than
the object in the dereferenced pointer’s points-to set (which was passed in to init).

The [SU/WU] rule performs standard singleton-based strong and weak updates [20, 30]
for object o, pointed to by p, at Store instruction ∗p = q. A weak update merges the
points-to set of o with that of q and propagates that result onward. When o is a singleton, a
strong update is performed. Strong updates discard o’s old pointees, making its points-to set
equivalent to that of q [30]. Singleton-based strong updates cannot take place upon local
variables within recursion, arrays (treated monolithically), and heap objects. In addition to
these singleton-based strong updates, TypeClone performs type-based semi-strong updates
(Section 4.1.5.2) and type-based strong updates (Section 4.1.5.3) by leveraging our typing of
abstract objects.

M. Barbar, Y. Sui, and S. Chen 24:13

1 class S { ... };
2 class T : public S { int f; };
3 S *smalloc(size_t size) {
4 return (S*)malloc(size);
5 }
6 int main(void) {
7 T *t = (T*)smalloc(sizeof(T));
8 t->f = ...;
9 }

Figure 6 An example where object cloning would be performed by cclyzer-ss but not by
TypeClone.

4.1.4 Object cloning
Object initialisation occurs whenever pointer access to an object makes an assumption
regarding that object’s type. The Load, Store, and Field instructions make assumptions
about the type of the object being accessed. The init function used by rules [LOAD], [STORE],
and [FIELD] handles object cloning through four different cases: [INITIALISE], [TBWU],
[TBSSU], and [TBSU]. It takes two arguments: the type t of the pointer pointing to the
object of interest and the object ot′ being accessed by the pointer. init may produce new
objects if they do not already exist (i.e., it may clone objects). The potential to create a new
object is denoted by a box and the˜operator, as in t̃, returns the element type of a pointer
such that it would return int * when applied to int **, for example.

4.1.4.1 Object initialisation ([INITIALISE])

In the [INITIALISE] case, an untyped object (t′ = •) is accessed by a pointer of type t.
TypeClone will initialise the type of the heap object to be t̃ based on the assumption that
the underlying type of the object is of type t̃ or a subtype of t̃. We can then propagate the t̃
typed object and stop propagating the untyped object thus differentiating it from objects of
different types originating at the same allocation site. In C and C++, for example, code
snippet int *i = (int *)malloc(4); *i = 1; makes an assumption about the type of
the object returned by malloc–that it is of type int or a subtype of int–because pointer i
cannot be accessing an object of any other type per our model.

Our approach to object cloning differs from that of cclyzer-ss in that it is less eager.
When a pointer is cast to a pointer to another type, but never dereferenced as that pointer
type, our approach would not perform object cloning whereas cclyzer-ss would. For
example, consider Figure 6 where T is a derivative type of S. Despite a pointer to the
allocated object o being cast to type S *, it is never dereferenced as such, and so we do not
need to clone to create oS.

4.1.4.2 Back propagation ([BACK-PROPAGATE])

In the [INITIALISE] case, a new object is created and solely returned by init, causing the
caller to stop propagating the original object, and to only propagate the clone. This ignores
aliases made before the object was initialised and assigned a type. Figure 7 exemplifies this
where pointer a is assigned pointer i before the pointed-to heap object is initialised at line
3. At lines 1 and 2, i would point to the untyped object o•, a would also point to o• at
lines 2 and 3, and i would correctly point (only) to the typed object oint at line 3 but would
simultaneously share an incorrect no-alias relation with a.

ECOOP 2020

24:14 Flow-Sensitive Type-Based Heap Cloning

1 int *i = (int *)malloc(...);
2 void *a = i;
3 *i = 1;

Figure 7 An example of an alias being made before initialisation occurs.

The [BACK-PROPAGATE] rule ensures that pre-initialisation aliases, like a in Figure 7,
also point to the clone by back-propagating the newly created clone to the original object’s
allocation site, like [6, 7]. This is a cause of imprecision, since more than just pre-initialisation
aliases will now point to the clone. Some precision is then recouped by subsequent typed-based
strong and semi-strong updates.

4.1.5 Type-based weak, semi-strong, and strong updates
The init function acts upon types, hence we say it performs type-based updates. These
updates are divided into type-based weak updates, type-based semi-strong updates, and
type-based strong updates.

4.1.5.1 Type-based weak updates ([TBWU])

The [TBWU] case represents the basic case, type-based weak updates, or TBWUs. In this case,
either the object’s type exactly matches the pointer’s element type (t̃ ≡ t′), or the object’s
type is a derived type of the pointer’s element type (an upcast took place). Both situations
are covered by the statement t̃ ≺ t′. Since this access asserts the legality of such a pointer
accessing such an object and makes no new assumptions about the object’s type, it is simply
propagated onward like a standard flow-sensitive analysis would and no cloning occurs.

4.1.5.2 Type-based semi-strong updates ([TBSSU])

The first case, [INITIALISE], results in a type-based semi-strong update, or TBSSU. It is
type-based since the mechanism by which it occurs relies on type information, and it is
semi-strong in that it kills one object and replaces it with another.

The [TBSSU] case, which models access after a downcast occurs, also results in a type-
based semi-strong update. TypeClone assumes that any pointer access resulting from a
downcast (i.e., p = (t) q where ˜T (p) ≺ ˜T (q)) is legal since we consider all input programs to
conform to the strict aliasing rules of C and C++ (as implied by our type model). Regardless
of whether an analysis accepts illegal programs or not, this is also the more conservative way
of handling access after a downcast (with respect to soundness). From another point of view,
we cannot know if the original type we assigned is the actual type of the object, and that
the original type initialisation was actually an access through an upcast. We test that ot′ is
a heap object (h(ot′)) because non-heap objects have a declared type and cannot be changed
(until we discuss reuse in Section 4.2).

Like the [INITIALISATION] case, we create a new object of type t̃ since an assumption
about the type of the object is being made (that its real type is t̃ or a derivative of t̃, both of
which being derived types of t′). It is tempting to change the object’s type instead of cloning
but this can cause unsoundness as the abstract object ot′ may have been representing both
concrete objects of type t′ and concrete objects of type t̃ or other derivatives.

Handling downcasts explicitly gives a more accurate representation of an object’s type
which is necessary for virtual method resolution, and allows for better strong updates. To
illustrate the latter, consider the C code in Figure 8, which implements a rudimentary form of

M. Barbar, Y. Sui, and S. Chen 24:15

1 typedef struct { int i; } S;
2 typedef struct { struct S s; long l; } T1;
3 typedef struct { struct S s; float f; } T2;
4 void *smalloc(size_t size) {
5 S *base = (S *)malloc(size);
6 base->i = 1;
7 return base;
8 }
9 int main(void) {

10 T1 *p = (T1 *)smalloc(sizeof(T1));
11 p->l = 2;
12 T2 *q = (T2 *)tmalloc(sizeof(T2));
13 q->f = 3.0;
14 }

Figure 8 An example of an abstract object being initialised as two different “derivative” types,
T1 and T2, after it has been initialised as the “base” type S.

inheritance. Within wrapper function smalloc, all allocated objects are initialised to “base”
type S. Callers of smalloc can then access the returned object as a “derivative” type T1 or
T2. If the programmer allocates the correct size, then this is legal since S ≺ T1/T2. Since we
see this as a downcast, the initialisation at line 11, for pointer p, would create a new object
with type T1, stop propagating the object of type S, and back-propagate the new object.
This would similarly occur at line 13 for pointer q. p and q at lines 11 and 13 would then
not alias since they would perform a type-based strong update (discussed in the following
section) on the back-propagated object which does not match their type, and neither would
point to the S typed object any longer from the type-based semi-strong update to an object
of type T1/T2. In essence, we have split an abstract object into more abstract objects, each
of which representing a smaller set of concrete objects than the original abstract object.

4.1.5.3 Type-based strong updates ([TBSU])

When an object is typed and there is no relation between the object’s type and the pointer’s
element type, we know that the pointer is pointing to an object which would be impossible
during execution (i.e., a spurious object). A conforming program cannot, for example, read
an object through an unrelated pointer. In the [TBSU] case, we return nothing, which is, in
effect, a strong update; the pointer will not regard the killed object as in its points-to set. A
type-based strong update (TBSU) differs from a typical strong update in that it applies to
any potential initialisation points, uses type information to perform it, and can occur to all
forms of abstract objects.

4.1.6 Field-sensitivity ([FIELD] [FF-NOT-IN-PT] [FF-EQ-PT])
Taking the address of a field of an aggregate object is handled by the [FIELD] rule. The
[FIELD] rule is the same as that in a standard flow-sensitive analysis, except that (1)
initialisation is performed on the objects which q points to since assumptions about the
aggregate objects in question are being made, and (2) the type of the new field object is
assigned by looking up the aggregate type of the object having its field taken. The [TBSU]
case occurring on pointees of q has a similar effect to the filtering that cclyzer-ss performs
where no field object is created for a spurious aggregate object [6, 7].

ECOOP 2020

24:16 Flow-Sensitive Type-Based Heap Cloning

1 int s;
2 int *i = &s;
3 *i = 1;
4 float *f = new(i) float{2.0};
5 *f = 2.0;
6 // It is now undefined behaviour to load i.

Figure 9 An example of object reuse.

Though not represented in the rules (for simplicity), rather than further deriving a field
object from a field object, we add the field index to the existing field object. For example,
rather than deriving field object o.fk.fj , we would derive o.fk+j . Only dealing with field
objects derived from aggregate objects makes reasoning about the analysis easier.

Struct objects in C and standard-layout objects in C++ share the same memory address
as that of their first field. Our analysis must ensure there is an equivalence between the
points-to sets of such objects and their first field. A non-standard-layout object in C++ does
not have to alias its first programmer-defined field in C++. This is often the case in practice,
as in Clang and GCC, due to the implementation placing a virtual table pointer at the start
of some objects for example. However, for the purpose of a pointer analysis, the first field of
an object is tracked, regardless of whether it is programmer-defined or not, so this “first-field
aliasing” needs to be applied to all struct and class objects.

We follow [6] where changes involving an object or the first field of an object trigger
changes in the other through rules [FF-NOT-IN-PT] and [FF-EQ-PT]. They both use the
first-field alias relation, defined as follows, similar to [6],

I Definition 1. First-field alias relation. The first-field alias relation is defined as the
equivalence relation ∼̇ : A×A such that o, o′ ∈ A, o ∼̇ o′ if and only if:

o′ = o.f0

The [FF-NOT-IN-PT] rule ensures that when an object o belongs to some points-to set,
then so does its first field o.f0, if it exists, and vice versa. The [FF-EQ-PT] rule ensures that
when an object o is in the points-to set of an object o′, then it is also in the points-to set of
its first-field o′.f0, and vice versa. This keeps both points-to sets equivalent.

4.2 Object reuse
The base analysis presents a simple overview of our approach. This section extends

our base analysis by considering object reuse, a special language feature in C and C++,
to make the analysis handle programs making use of this feature. In C, writing to a heap
object through a pointer of type t∗ changes that object’s type to type t; reads through a
pointer of type t∗ are now legal, and reads through pointers of type t′∗ where t′ ⊀ t result
in undefined behaviour. This would be only permitted if t fits in the space allocated for
the object. Furthermore, in C, the type of an object (referred to as the “effective type” in
the C standard) can be changed through functions memcpy and memmove or by being copied
as a character array, thus not requiring a store through a pointer to the new type. Reuse
is also possible in C++ with the addition that this may be achieved through placement
new and that placement new can be used on stack and global objects. Though necessary to
achieve better soundness, we have excluded reuse from the base analysis as it introduces a

M. Barbar, Y. Sui, and S. Chen 24:17

1 char *pool;
2 void *palloc(size_t s) {
3 // Find index appropriate for s...
4 return pool + n;
5 }
6 void *pfree(char *m) {
7 // Return m to pool...
8 }
9 int main(void) {

10 pool = malloc(512);
11 int *i = palloc(sizeof(int));
12 *i = 1;
13 pfree(i);
14 float *f = palloc(sizeof(float));
15 *f = 2.0;
16 }

Figure 10 An example of pool allocator.

performance penalty, slight imprecision, is not often used in many C/C++ programs, and
can be error-prone outside common patterns like pool allocators (which our analysis can
handle when the pool is from the heap). An example of reuse is shown in Figure 9.

The form of reuse shown in Figure 9 cannot generally be soundly handled by our base
analysis. A pool allocator, like in Figure 10, on the other hand, can be handled soundly by
our base analysis, despite it relying on reuse. In Figure 10 the memory given to f can be the
same as that given to i. The difference from Figure 9 is that the memory object is assigned
from the main pool, similar to how an object may flow from any allocation wrapper (around
malloc). The untyped object from the pool would then be initialised. The base analysis
cannot handle pool allocators where the pool is a stack or global object since such an object
would not be untyped (and thus cannot be initialised).

The incompatibility between reuse and the base analysis stems from the init function.
Typically, reuse would not be possible through a Load, nor a Field not being stored to.
However, if we limit reuse to stores, the analysis may be unsound since the case of changing
the type of an object through memcpy/memmove or copying as an char array would need to
be specially handled. Thus, we allow for reuse at Load, Store, and Field instructions.
The init functions is changed to that in Figure 11.

The new case in the init function, [REUSE], checks for an incompatibility between the
object’s type and the pointer’s element type. If the types are incompatible, a clone is returned
with the new type, that is, the object is being reused with the new type. This is a semi-strong
update similar to the [TBSSU] and [INITIALISATION] cases since the previous object is no
longer propagated and another is instead. We also remove the h(ot′) condition from the
[TBSSU] case to conservatively implement C++’s allowance of reuse of stack and global
objects, as a stack or global object may be accessed through a pointer to a derived type (i.e.,
through downcasting) with placement new. It is not necessary to specially handle placement
new since the object will eventually be written to as the new type, or read from as such. The
[TBSU] will no longer be triggered as all cases are now covered with the introduction of the
[REUSE] case. Fortunately, the [REUSE] case is a TBSSU rather than a TBWU.

ECOOP 2020

24:18 Flow-Sensitive Type-Based Heap Cloning

init(t, ot′) =

ot̃ if t′ ≡ •[INITIALISE]

ot′ if t̃ ≺ t′[TBWU]

ot̃ if t′ ≺ t̃ ∧ t′ 6= t̃[TBSSU]

ot̃ if t′ ⊀ t̃ ∧ t̃ ⊀ t′[REUSE]

∅ otherwise[TBSU]

Figure 11 Modifications to the init function to account for reuse.

[BACK-PROPAGATE-SG]

` : p = &o ot newly cloned

ot ∈ pt(`, p)

[BACK-PROPAGATE-FIELD]

` : p = &q→fk `′
q−→ ` o ∈ pt(`′, q)

o′ = init(T (q), o) (o′.fk)t newly cloned

(o′.fk)t ∈ pt(`, p)

Figure 12 Extensions to the analysis to implement back-propagation for stack, global, and field
objects.

In the base analysis, back-propagation was only done for heap objects because stack and
global objects had one unchanging type (hence they are never cloned). Since C++ allows for
reuse of stack and global objects, we need to back-propagate them when they are cloned.
[BACK-PROPAGATE-SG] implements this in Figure 12 like the [BACK-PROPAGATE] rule.

Furthermore, we need to account for reuse of field objects. Back-propagation for field
objects is less obvious since field objects can be generated at multiple locations depending
on the solver’s worklist order. Since fields do not have an allocation site to back-propagate
to, field clones are retrieved at any Field instruction which had retrieved the original field
object, as in the [BACK-PROPAGATE-FIELD] rule. [BACK-PROPAGATE-FIELD] implements this
as a second [FIELD] rule operating solely on the clones. Figure 12 also shows this rule.

4.3 Soundness and the heap cloning upper bound
For a C or C++ program conforming to our type model, our analysis is as sound as Sparse.
To soundly analyse programs conforming to our type model, object reuse must be enforced
even though doing so incurs a performance and precision penalty. The typical allocation-
site-based model bounds the number of objects of a program by the number of allocation
sites. Context-sensitive analyses bound the number of context-sensitive heap objects by the
number of calling contexts [37]. For real-world scenarios, this is too large, so the context
depth is often limited by a small number to make analyses scalable. When the maximum
calling context depth is capped at 3 (or more), context-sensitive analysis is usually unscalable
for larger programs [37]. The number of heap objects in our analysis is bounded by the
number of allocation sites, the number of types on the generated type graph, and the number
of fields in the largest structure type. Thus, in the worst case, the number of objects in our
analysis would be the product of those three values, which would usually be far fewer than
the number of objects created when cloning according to calling contexts.

M. Barbar, Y. Sui, and S. Chen 24:19

Table 2 Statistics about the benchmarks. The first column of data represents the lines of code,
the second column represents the size of the compiled program’s bitcode, the fourth, fifth, and sixth
columns represent the number of different instructions in the bitcode with the number of those
instructions which are annotated by ctir in parentheses, the seventh column represents the number
of canonical types with the number of those which are structs in parentheses, and the final column
shows the number of fields in the largest struct in the program.

Bench. LOC Size Instructions (ctir annotated) # Canon.
types

(structs)

Largest
structLoads Stores GEPs

du 22212 1372 KiB 14742 (2879) 5781 (907) 5384 (4928) 565 (79) 37
date 10002 1132 KiB 12185 (4430) 2860 (912) 7395 (6925) 182 (21) 30
touch 9820 1056 KiB 11416 (4392) 2502 (907) 7304 (6878) 178 (20) 30
ptx 16247 1056 KiB 11787 (2362) 4395 (714) 4546 (4180) 339 (43) 31
csplit 14565 936 KiB 10609 (2020) 3930 (563) 3887 (3628) 347 (49) 31
expr 14070 912 KiB 10336 (2028) 3807 (544) 4000 (3728) 315 (38) 31
tac 13888 876 KiB 10067 (1908) 3678 (491) 3710 (3457) 295 (34) 31
nl 13420 868 KiB 9960 (1924) 3629 (500) 3678 (3469) 293 (34) 31
mv 15962 844 KiB 7713 (1291) 3500 (544) 2437 (2136) 454 (59) 39
ls 14471 804 KiB 7050 (834) 3576 (334) 1655 (1233) 375 (50) 29
ginstall 14968 772 KiB 6843 (944) 3266 (376) 1800 (1521) 416 (53) 39
sort 12000 744 KiB 7743 (945) 3312 (422) 2262 (1802) 391 (58) 42

5 Evaluation

The aim of our evaluation is to compare the performance and precision (through alias testing)
of TypeClone and Sparse. We first describe our implementation of TypeClone, and
all required components, in Section 5.1 and then present the results of our experiments and
discuss them in Section 5.2.

5.1 Implementation
Our implementation of the analysis is comprised of two major components: a custom Clang
frontend to produce annotated LLVM IR with C/C++ type information and the TypeClone
implementation built upon LLVM and SVF [40]. We use version 9.0 of both Clang and
LLVM.

LLVM’s type system is different to that of C/C++. In the LLVM IR produced, Clang
does not maintain any type information from C/C++ except through TBAA metadata. Due
to the basic nature of TBAA metadata, and that Clang does not annotate all instructions that
we are interested in with TBAA metadata (GEP instructions, for example), we implement
our own type metadata system called ctir which, like EffectiveSan’s customised Clang [14],
tags instructions of interest with DWARF debug information which can be read and operated
upon by SVF.

During code generation, Clang introduces loads, stores, and other instructions which do
not directly map to high-level code. This can, for example, be a byproduct of the nature of
partial SSA form, or implementation-defined details like using virtual tables to implement
virtual calls. Like TBAA, the instructions and declarations which correspond to C/C++
features of interest are annotated. In the absence of type information, our analysis falls back
to standard flow-sensitive pointer analysis methods, not updating upon the type, i.e. not
using init.

ECOOP 2020

24:20 Flow-Sensitive Type-Based Heap Cloning

The following are annotated by ctir:

Allocations corresponding to stack and global declarations (the allocated object’s type).
Load and store instructions which correspond to pointer dereferences and C++ reference
accesses (the dereferenced pointer’s element type).
GEP instructions which correspond to field and array accesses (the base pointer’s element
type).
Virtual calls (the base pointers’s element type).
Virtual tables (the owning class).

Since DWARF types correspond exactly to C/C++ types, in SVF, we reduce all types
to “canonical types” which are types stripped of their signedness, constness, typedefs, and
other auxiliary data. The type graph is built from these canonical types and the analysis
then only operates on canonical types (converting types obtained from ctir annotations as
necessary).

A virtual call like p→ foo() is translated into four LLVM instructions: (1) a Load
instruction, vtptr = ∗p, which retrieves virtual table pointer vtptr by dereferencing pointer p,
(2) a Field instruction, vfn = &vtptr→k, which retrieves the entry (i.e., target function) in
the virtual table at offset k, (3) a Load instruction, fp = ∗vfn, which retrieves the address
of the target, and finally (4) a Call instruction, fp(p). For calls to external functions
where code is unavailable to analyse, a list of commonly used functions is maintained which
summarise their side-effects (like memcpy, _Znwm for C++’s new, mmap, strcpy, and others)
following [19, 35].

Within SVF, Andersen’s analysis, optimised with wave propagation [34, 29] for better
performance, is used to build the value-flow graph of the input program. Our analysis is then
implemented on top of the built value-flow graph following the rules described in Section 4.
We compare TypeClone (with and without reuse taken into consideration) with a sparse
flow-sensitive and context-insensitive analysis (Sparse) [20] available in SVF [39]. To the
best of our knowledge, this is the only publicly available implementation of a whole-program
sparse flow-sensitive and context-insensitive C/C++ pointer analysis for LLVM. We also
do not know of a publicly available implementation of a whole-program flow- and context-
sensitive (FSCS) C/C++ pointer analysis for LLVM. According to a study using commercial
tools [3], existing FSCS algorithms for C “do not scale even for an order of magnitude smaller
size programs than those analyzed [with Andersen’s analysis]” in their study. As shown
in our evaluation, for annotated pointer accesses, TypeClone can achieve more precise
results than Sparse, thus leaving limited room for benefit in this case by modelling the heap
context-sensitively.

5.2 Experiments
We compare the performance and precision of our analysis, with and without reuse considered,
with Sparse. We use the 12 largest programs, per LLVM bitcode size, in GNU Coreutils
8.31 (excluding dir and vdir since they are almost identical to ls). Coreutils was chosen
because the included programs use various memory allocation wrappers to perform allocation.
Table 2 shows the size (in LOC and of the generated bitcode), number of instructions, number
of canonical types and how many of those are structs, and the largest struct by number of
fields (after flattening) for each benchmark. All experiments were carried out on a machine
running 64-bit Ubuntu 18.04.2 LTS with an Intel Xeon Gold 6132 processor at 2.60GHz and
128GB of memory.

To test the performance, we ran Sparse and TypeClone (without and with reuse)
ten times and averaged the total running time of the analyses (constraint solving upon the
VFG, excluding the pre-analyses to build the VFG and other auxiliary data structures like

M. Barbar, Y. Sui, and S. Chen 24:21

Table 3 Running times and object counts of Sparse and TypeClone (with and without reuse).
The first column of data represents the running time of Sparse and the second column represents
the number of objects in the analysis. The third and fourth columns represent the running time of
TypeClone (without reuse) and its slowdown from Sparse, and the fifth column represents the
total number of objects in the analysis with the number of clones created in parentheses. The same
is repeated for TypeClone with reuse in the final 3 columns. The final row shows the geometric
mean of slowdown.

Bench. Sparse TypeClone TypeClone (reuse)

Time Obj. Time Diff. Obj.
(clones) Time Diff. Obj.

(clones)

du 15.83s 4295 92.81s 5.86× 5283 (991) 2829.37s 178.73× 7436 (3144)
date 0.34s 1924 1.02s 3.00× 2003 (80) 1.24s 3.65× 2051 (128)
touch 0.33s 1730 0.97s 2.94× 1817 (87) 1.20s 3.64× 1866 (136)
ptx 5.19s 3245 282.76s 54.48× 4242 (997) 378.30s 72.89× 4538 (1292)
csplit 3.45s 2885 4.98s 1.44× 3147 (263) 265.83s 77.05× 3919 (1035)
expr 2.17s 2750 50.40s 23.23× 3358 (609) 80.91s 37.29× 3603 (854)
tac 2.59s 2700 58.84s 22.72× 3383 (684) 78.63s 30.36× 3462 (763)
nl 2.93s 2663 101.69s 34.71× 3342 (680) 118.65s 40.49× 3424 (762)
mv 0.75s 3441 43.90s 58.53× 4403 (961) 67.04s 89.39× 4615 (1173)
ls 0.48s 2975 4.49s 9.35× 3278 (307) 4.58s 9.54× 3302 (331)
ginstall 0.30s 3332 1.75s 5.83× 3712 (378) 2.29s 7.63× 3779 (446)
sort 0.77s 2657 11.93s 15.49× 2994 (339) 12.36s 16.40× 3034 (379)

Average 11.14× 25.19×

the type graph). The results are presented in Table 3. The “Diff.” columns represent how
many times slower an analysis was compared to Sparse, and the “Obj.” and “Obj. (clones)”
columns represent the total number of objects in an analysis, with the number of clones
created mentioned separately, where relevant. Generally, we expect running time to increase
in TypeClone because of the introduction of new objects, which means larger points-to
sets and thus extra propagation time, and back-propagation, which means VFG nodes are
processed more often. For TypeClone without reuse, all slowdown presented is in a general
range of acceptability of 1.45×–35× except for when analysing benchmarks mv and ptx. Both
benchmarks created the largest number of clone objects relative to original objects. Overall,
the slowdown is usually affordable and the (geometric) mean slowdown is a little over 11×
when not considering reuse.

Modelling reuse in TypeClone slows down the analysis. Too many opportunities
for TBSUs, which would reduce the number of objects created (and prevent some back-
propagation) and reduce the size of points-to sets, become TBSSUs with the [REUSE] rule.
Stack and global objects also become a source of clones. This is seen in the number of clones
created. Benchmarks which were many times slower than TypeClone without reuse, like du
and csplit, had many more clones created, and those that remained close in running time
had a more modest growth in the number of extra clones created. We see a (geometric) mean
slowdown of a little over 25× when considering reuse, more than twice as much compared to
the base analysis.

To test the precision, we performed an alias query between all top level pointers of interest
within a function (those pointers accessed at an instruction annotated with a C/C++ type
with ctir) against each other. Two pointers are considered aliases if their points-to sets

ECOOP 2020

24:22 Flow-Sensitive Type-Based Heap Cloning

Table 4 The number of alias queries performed (between ctir-annotated instructions), the
number of those alias queries returning a no-alias relation for Sparse and TypeClone (with and
without reuse considered), and the improvement to the number of alias queries returning a no-alias
relation presented by TypeClone (with and without reuse considered) against Sparse.

Bench. Queries Sparse TypeClone TypeClone (reuse)

No-alias
results

No-alias
results Improv. No-alias

results Improv.

du 76291490 55553836 74384866 33.90% 72825202 31.09%
date 151400720 111391680 141377516 26.92% 138450386 24.29%
touch 149194010 109198398 139183292 27.46% 136253192 24.78%
ptx 52845630 43771886 50867888 16.21% 50655276 15.73%
csplit 38719506 30450964 37758260 24.00% 36824196 20.93%
expr 39835032 33654030 38228618 13.59% 38017650 12.97%
tac 34427556 27745100 32782666 18.16% 32654250 17.69%
nl 34863120 27895764 33204888 19.03% 33065830 18.53%
mv 15940056 12655806 14978588 18.35% 14894140 17.69%
ls 6167772 5242862 5869944 11.96% 5817110 10.95%
ginstall 8193906 7755314 7959676 2.64% 7920014 2.12%
sort 10198442 8189034 9583680 17.03% 9499016 16.00%

Average 16.64% 15.36%

intersect, or if one pointer contains a field object generated from an object in the other
pointer’s points-to set. A no-alias result is always more desirable than a may-alias result as it
paves the way for more optimisations, for example. The number of alias queries, the number
of queries returning a no-alias relation (the remainder return a may-alias relations), and the
improvement TypeClone presents in the number of no-alias relations returned compared
to Sparse are presented in Table 4. We find that for Sparse, in all benchmarks except
ginstall, 72%–85% of alias queries return a no-alias result. ginstall is an outlier with
almost 95% of alias queries returning a no-alias result. For TypeClone, 93% to over 97% of
alias queries result in a no-alias relation (91% to over 96% when reuse is taken into account).
Excluding ginstall, TypeClone (without considering reuse) sees an increase in almost
12% to almost 34% in the number of no-alias results against Sparse. The improvement
for ginstall is much less at 2.64%. The results produced by Sparse for ginstall were
already strong and TypeClone had little room to improve. Overall, the (geometric) mean
improvement sits at over 16% when not taking reuse into consideration. When taking reuse
into account, results are still strong albeit weaker than when not taking reuse into account.
Excluding ginstall again, we see an increase in almost 11% to over 31% in the number of
no-alias results against Sparse. For ginstall, the improvement is 2.12%, and the overall
(geometric) mean improvement is over 15%.

Overall, TypeClone is successful at differentiating points-to sets when objects appear
from the same allocation site, as is the case with allocation wrappers, which Coreutils makes
use of. We also notice that the imprecision introduced by handling reuse is very slight. Even
though handling object reuse eliminates many opportunities for TBSUs, instead creating
more clones, the [REUSE] case in init is a TBSSU and thus does not cause as much precision
loss as it would have if it was a TBWU, even if it may adversely affect performance.

M. Barbar, Y. Sui, and S. Chen 24:23

6 Related work

Whole-program flow-sensitive pointer analysis for C and C++ has been studied extensively
in the literature. The approaches in [8] and [15] provide the formulations for an iterative
data-flow framework [25]. The work presented in [45] considered both flow- and context-
sensitivity by representing procedure summaries with partial transfer functions. To eliminate
unnecessary propagation of points-to information during the iterative data-flow analysis,
sparse analysis propagates points-to facts sparsely across pre-computed def-use chains [20, 33].
Initially, sparsity was achieved through a Sparse Evaluation Graph [9, 21, 22], a refined CFG
with irrelevant nodes removed. Further progress was made through various SSA forms like
factored SSA [10], HSSA [11] and partial SSA [27]. The def-use chains of top-level pointers,
once put in SSA form, can be explicitly and precisely identified, giving rise to a semi-sparse
flow-sensitive analysis [19]. Then, by leveraging the idea of staged analyses [17, 20] where a
fast, imprecise analysis bootstraps a more precise analysis, flow-sensitive analysis was made
fully sparse, with the first stages identifying def-use chains of both top-level and address-taken
pointers [20, 39]. Despite these achievements, most flow-sensitive analyses model the heap
with one abstract object per allocation site. Most analyses which provide a more precise
heap model do so by employing context-sensitivity.

On the other hand, structure-sensitive analysis (cclyzer-ss) [7] improves the allocation-
site-based heap model and presents a field-sensitive Andersen’s analysis that lazily infers the
types of heap objects through the casting of pointers to those objects to eventually filter out
redundant field derivations. When a pointer to a heap object is cast, that object is considered
to potentially be of the element type of the pointer it is cast to and so a new object is
created with the pointer’s element type, and back-propagated to the allocation site to ensure
soundness. Type-based alias analysis (TBAA) [13] uses Modula-3’s type system to (almost)
statelessly determine aliasing relations. TBAA is implemented in Clang/LLVM and GCC for
C, C++, and Objective-C, and works because of the strict aliasing rules defined by those
languages. Inspired by TBAA and cclyzer-ss, this paper proposes a new flow-sensitive
type-based heap cloning model to improve the precision of sparse points-to analysis for C
and C++ programs which conform to the strict aliasing rules.

7 Conclusion

This paper presents a new flow-sensitive points-to analysis with type-based heap cloning and
no context-sensitivity. The novelty of our approach lies in its lazy heap cloning. An untyped
abstract heap object created at an allocation site is killed and replaced with a new (clone)
object uniquely identified by the type information at its use site for flow-sensitive points-to
propagation. This yields more precise points-to relations at different program points without
incurring the high costs of context-sensitivity. Our approach also explores a new form of
strong updates based on types for flow-sensitive modelling. The resulting analysis improves
upon state-of-the-art sparse flow-sensitive analysis answering, on average, over 15% more
alias queries with a no-alias result.

References
1 ISO/IEC 14882:2017. Programming languages – C++. Standard, International Organization

for Standardization, 2017.
2 ISO/IEC 9899:2018. Information technology – programming languages – C. Standard,

International Organization for Standardization, 2018.

ECOOP 2020

24:24 Flow-Sensitive Type-Based Heap Cloning

3 Mithun Acharya and Brian Robinson. Practical change impact analysis based on static program
slicing for industrial software systems. In 2011 33rd International Conference on Software
Engineering (ICSE), pages 746–755. IEEE, 2011. doi:10.1145/1985793.1985898.

4 Lars Ole Andersen. Program analysis and specialization for the C programming language. PhD
thesis, University of Cophenhagen, 1994.

5 Dzintars Avots, Michael Dalton, V Benjamin Livshits, and Monica S Lam. Improving software
security with a C pointer analysis. In Proceedings of the 27th International Conference on
Software Engineering (ICSE), pages 332–341. ACM, 2005. doi:10.1145/1062455.1062520.

6 George Balatsouras. Recovering Structural Information for Better Static Analysis. PhD thesis,
National and Kapodistrian University of Athens, 2017.

7 George Balatsouras and Yannis Smaragdakis. Structure-sensitive points-to analysis for C
and C++. In International Static Analysis Symposium (SAS), pages 84–104. Springer, 2016.
doi:10.1007/978-3-662-53413-7_5.

8 Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-sensitive interprocedural
computation of pointer-induced aliases and side effects. In Proceedings of the 20th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages (POPL), pages 232–
245. ACM, 1993. doi:10.1145/158511.158639.

9 Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. Automatic construction of sparse data
flow evaluation graphs. In Proceedings of the 18th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages 55–66. ACM, 1991. doi:10.1145/99583.
99594.

10 Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. On the efficient engineering of ambitious
program analysis. IEEE Transactions on Software Engineering, 20(2):105–114, 1994. doi:
10.1109/32.265631.

11 Fred Chow, Sun Chan, Shin-Ming Liu, Raymond Lo, and Mark Streich. Effective representation
of aliases and indirect memory operations in SSA form. In International Conference on Compiler
Construction (CC), pages 253–267. Springer, 1996. doi:10.1007/3-540-61053-7_66.

12 Arnab De and Deepak D’Souza. Scalable flow-sensitive pointer analysis for Java with strong
updates. In European Conference on Object-Oriented Programming (ECOOP), pages 665–687.
Springer, 2012. doi:10.1007/978-3-642-31057-7_29.

13 Amer Diwan, Kathryn S McKinley, and J Eliot B Moss. Type-based alias analysis. In
Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language Design and
Implementation (PLDI), page 106–117. ACM, 1998. doi:10.1145/277650.277670.

14 Gregory J Duck and Roland HC Yap. EffectiveSan: type and memory error detection
using dynamically typed C/C++. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages 181–195. ACM, 2018.
doi:10.1145/3192366.3192388.

15 Maryam Emami, Rakesh Ghiya, and Laurie J Hendren. Context-sensitive interprocedural
points-to analysis in the presence of function pointers. ACM SIGPLAN Notices, 29(6):242–256,
1994. doi:10.1145/773473.178264.

16 Xiaokang Fan, Yulei Sui, Xiangke Liao, and Jingling Xue. Boosting the precision of virtual
call integrity protection with partial pointer analysis for C++. In Proceedings of the 26th
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA), pages
329–340. ACM, 2017. doi:10.1145/3092703.3092729.

17 Stephen J Fink, Eran Yahav, Nurit Dor, G Ramalingam, and Emmanuel Geay. Effective
typestate verification in the presence of aliasing. ACM Transactions on Software Engineering
and Methodology (TOSEM), 17(2):1–34, 2008. doi:10.1145/1348250.1348255.

18 Coreutils - GNU core utilities. URL: https://www.gnu.org/software/coreutils/.
19 Ben Hardekopf and Calvin Lin. Semi-sparse flow-sensitive pointer analysis. In Proceedings

of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), page 226–238. ACM, 2009. doi:10.1145/1594834.1480911.

https://doi.org/10.1145/1985793.1985898
https://doi.org/10.1145/1062455.1062520
https://doi.org/10.1007/978-3-662-53413-7_5
https://doi.org/10.1145/158511.158639
https://doi.org/10.1145/99583.99594
https://doi.org/10.1145/99583.99594
https://doi.org/10.1109/32.265631
https://doi.org/10.1109/32.265631
https://doi.org/10.1007/3-540-61053-7_66
https://doi.org/10.1007/978-3-642-31057-7_29
https://doi.org/10.1145/277650.277670
https://doi.org/10.1145/3192366.3192388
https://doi.org/10.1145/773473.178264
https://doi.org/10.1145/3092703.3092729
https://doi.org/10.1145/1348250.1348255
https://www.gnu.org/software/coreutils/
https://doi.org/10.1145/1594834.1480911

M. Barbar, Y. Sui, and S. Chen 24:25

20 Ben Hardekopf and Calvin Lin. Flow-sensitive pointer analysis for millions of lines of code.
In International Symposium on Code Generation and Optimization (CGO), pages 289–298.
IEEE, 2011. doi:10.1109/CGO.2011.5764696.

21 Michael Hind, Michael Burke, Paul Carini, and Jong-Deok Choi. Interprocedural pointer
alias analysis. ACM Transactions on Programming Languages and Systems (TOPLAS),
21(4):848–894, 1999. doi:10.1145/325478.325519.

22 Michael Hind and Anthony Pioli. Assessing the effects of flow-sensitivity on pointer alias
analyses. In International Static Analysis Symposium (SAS), pages 57–81. Springer, 1998.
doi:10.1007/3-540-49727-7_4.

23 Yuseok Jeon, Priyam Biswas, Scott Carr, Byoungyoung Lee, and Mathias Payer. HexType:
Efficient detection of type confusion errors for C++. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS), pages 2373–2387. ACM, 2017.
doi:10.1145/3133956.3134062.

24 Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh. Data-driven context-sensitivity
for points-to analysis. Proceedings of the ACM on Programming Languages, 1(OOPSLA):100,
2017. doi:10.1145/3133924.

25 John B Kam and Jeffrey D Ullman. Monotone data flow analysis frameworks. Acta Informatica,
7(3):305–317, 1977. doi:10.1007/BF00290339.

26 George Kastrinis and Yannis Smaragdakis. Hybrid context-sensitivity for points-to analysis.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), page 423–434. ACM, 2013. doi:10.1145/2499370.2462191.

27 Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program analysis
& transformation. In International Symposium on Code Generation and Optimization (CGO),
pages 75–86. IEEE, 2004. doi:10.1109/CGO.2004.1281665.

28 Anatole Le, Ondřej Lhoták, and Laurie Hendren. Using inter-procedural side-effect information
in JIT optimizations. In International Conference on Compiler Construction (CC), pages
287–304. Springer, 2005. doi:10.1007/11406921_22.

29 Yuxiang Lei and Yulei Sui. Fast and precise handling of positive weight cycles for field-sensitive
pointer analysis. In International Static Analysis Symposium (SAS), pages 27–47. Springer,
2019. doi:10.1007/978-3-030-32304-2_3.

30 Ondrej Lhoták and Kwok-Chiang Andrew Chung. Points-to analysis with efficient strong
updates. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), pages 3–16. ACM, 2011. doi:10.1145/1926385.1926389.

31 Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J Nelson Amaral,
Bor-Yuh Evan Chang, Samuel Z Guyer, Uday P Khedker, Anders Møller, and Dimitrios
Vardoulakis. In defense of soundiness: A manifesto. Communications of the ACM, 58(2):44–46,
2015. doi:10.1145/2644805.

32 V Benjamin Livshits and Monica S Lam. Tracking pointers with path and context sensitivity
for bug detection in C programs. In Proceedings of the 9th European Software Engineering
Conference held jointly with 11th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE), pages 317–326. ACM, 2003. doi:10.1145/940071.940114.

33 Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and Kwangkeun Yi. Design and
implementation of sparse global analyses for C-like languages. In Proceedings of the 33rd ACM
SIGPLAN conference on Programming Language Design and Implementation (PLDI), pages
229–238. ACM, 2012. doi:10.1145/2345156.2254092.

34 Fernando Magno Quintao Pereira and Daniel Berlin. Wave propagation and deep propagation
for pointer analysis. In 2009 International Symposium on Code Generation and Optimization
(CGO), pages 126–135. IEEE, 2009. doi:10.1109/CGO.2009.9.

35 Rajiv Ravindran Rick Hank, Loreena Lee. Implementing next generation points-to in
Open64. In Open64 Developers Forum, 2010. URL: http://www.affinic.com/documents/
open64workshop/2010/.

ECOOP 2020

https://doi.org/10.1109/CGO.2011.5764696
https://doi.org/10.1145/325478.325519
https://doi.org/10.1007/3-540-49727-7_4
https://doi.org/10.1145/3133956.3134062
https://doi.org/10.1145/3133924
https://doi.org/10.1007/BF00290339
https://doi.org/10.1145/2499370.2462191
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/11406921_22
https://doi.org/10.1007/978-3-030-32304-2_3
https://doi.org/10.1145/1926385.1926389
https://doi.org/10.1145/2644805
https://doi.org/10.1145/940071.940114
https://doi.org/10.1145/2345156.2254092
https://doi.org/10.1109/CGO.2009.9
http://www.affinic.com/documents/open64workshop/2010/
http://www.affinic.com/documents/open64workshop/2010/

24:26 Flow-Sensitive Type-Based Heap Cloning

36 Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles Zhang. Pinpoint:
Fast and precise sparse value flow analysis for million lines of code. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI),
pages 693–706. ACM, 2018. doi:10.1145/3192366.3192418.

37 Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts well:
understanding object-sensitivity. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL), pages 17–30. ACM, 2011. doi:
10.1145/1925844.1926390.

38 Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. Boomerang: Demand-
driven flow- and context-sensitive pointer analysis for Java. In 30th European Conference on
Object-Oriented Programming (ECOOP). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2016. doi:10.4230/LIPIcs.ECOOP.2016.22.

39 Yulei Sui and Jingling Xue. On-demand strong update analysis via value-flow refinement. In
ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), pages 460–473. ACM, 2016. doi:10.1145/2950290.
2950296.

40 Yulei Sui and Jingling Xue. SVF: interprocedural static value-flow analysis in LLVM. In
Proceedings of the 25th International Conference on Compiler Construction (CC), pages
265–266. ACM, 2016. doi:10.1145/2892208.2892235.

41 Yulei Sui, Ding Ye, and Jingling Xue. Detecting memory leaks statically with full-sparse
value-flow analysis. IEEE Transactions on Software Engineering, 40(2):107–122, 2014. doi:
10.1109/TSE.2014.2302311.

42 Frank Tip. A survey of program slicing techniques. Centrum voor Wiskunde en Informatica
Amsterdam, 1994.

43 Mark Weiser. Program slicing. In Proceedings of the 5th International Conference on Software
Engineering (ICSE), page 439–449. IEEE, 1981. doi:10.1109/TSE.1984.5010248.

44 John Whaley and Monica S Lam. Cloning-based context-sensitive pointer alias analysis
using binary decision diagrams. In Proceedings of the ACM SIGPLAN 2004 Conference
on Programming Language Design and Implementation (PLDI), pages 131–144. ACM, 2004.
doi:10.1145/996841.996859.

45 Robert P Wilson and Monica S Lam. Efficient context-sensitive pointer analysis for C programs.
ACM Sigplan Notices, 30(6):1–12, 1995. doi:10.1145/223428.207111.

https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1145/1925844.1926390
https://doi.org/10.1145/1925844.1926390
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.1145/2950290.2950296
https://doi.org/10.1145/2950290.2950296
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1109/TSE.2014.2302311
https://doi.org/10.1109/TSE.2014.2302311
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1145/996841.996859
https://doi.org/10.1145/223428.207111

Scala with Explicit Nulls
Abel Nieto
University of Waterloo, Canada
anietoro@uwaterloo.ca

Yaoyu Zhao
University of Waterloo, Canada
y437zhao@edu.uwaterloo.ca

Ondřej Lhoták
University of Waterloo, Canada
olhotak@uwaterloo.ca

Angela Chang
University of Waterloo, Canada
yue.chang@edu.uwaterloo.ca

Justin Pu
University of Waterloo, Canada
justin.pu@edu.uwaterloo.ca

Abstract
The Scala programming language makes all reference types implicitly nullable. This is a problem,
because null references do not support most operations that do make sense on regular objects,
leading to runtime errors. In this paper, we present a modification to the Scala type system that
makes nullability explicit in the types. Specifically, we make reference types non-nullable by default,
while still allowing for nullable types via union types. We have implemented this design for explicit
nulls as a fork of the Dotty (Scala 3) compiler. We evaluate our scheme by migrating a number of
Scala libraries to use explicit nulls. Finally, we give a denotational semantics of type nullification,
the interoperability layer between Java and Scala with explicit nulls. We show a soundness theorem
stating that, for variants of System Fω that model Java and Scala, nullification preserves values of
types.

2012 ACM Subject Classification Software and its engineering → General programming languages;
Theory of computation → Denotational semantics; Theory of computation → Type theory; Software
and its engineering → Interoperability

Keywords and phrases Scala, Java, nullability, language interoperability, type systems

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.25

Supplementary Material ECOOP 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.2.14.

Funding This research was supported by the Natural Sciences and Engineering Research Council of
Canada and by the Waterloo-Huawei Joint Innovation Lab.

Acknowledgements We would like to thank Sébastien Doeraene, Fengyun Liu, Guillaume Martres,
and Martin Odersky for their feedback on our explicit nulls design.

1 Introduction

Scala inherited elements of good design from Java, but it also inherited at least one misfeature:
the null reference. In Scala, like in many other object-oriented programming languages, the
null reference can be typed with any reference type. This leads to runtime errors, because

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Abel Nieto, Yaoyu Zhao, Ondřej Lhoták, Angela Chang, and Justin Pu;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 25; pp. 25:1–25:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2741-8119
mailto:anietoro@uwaterloo.ca
mailto:y437zhao@edu.uwaterloo.ca
https://orcid.org/0000-0001-9066-1889
mailto:olhotak@uwaterloo.ca
mailto:yue.chang@edu.uwaterloo.ca
mailto:justin.pu@edu.uwaterloo.ca
https://doi.org/10.4230/LIPIcs.ECOOP.2020.25
https://doi.org/10.4230/DARTS.6.2.14
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Scala with Explicit Nulls

null does not (and cannot) support almost any operations. For example, the program below
tries to read the length field of a string, only to find out that the underlying reference is
null. The program then terminates with the infamous NullPointerException1.

val s : String = null // ok: String is a nullable type
println (s"s has length " + s.length) // throws a NullPointerException

Errors of this kind are very common, and can sometimes lead to security vulnerabilit-
ies. Indeed, “Null Pointer Dereference” appears in position 14 of the 2019 CWE Top 25
Most Dangerous Software Errors, a list of vulnerability classes maintained by the MITRE
Corporation [21]. As of November 2019, a search for “null pointer dereference” in MITRE’s
vulnerability database2 returned 1429 entries.

The root of the problem lies in the way that Scala structures its type hierarchy. The
null reference has type Null, and Null is considered to be a subtype of any reference type.
In the example above, Null is a subtype of String, and so the initializer val s: String
= null is allowed. We could say that in Scala, (reference) types are implicitly nullable.
The alternative is to have a language where nullability has to be explicitly indicated. For
example, we can re-imagine the previous example in a system with explicit nulls (the notation
String|Null stands for the union type “String or Null”):

val s : String = null // error : Null is not a subtype of String
val s : String |Null = null // ok: s is explicitly marked as nullable
println ("s has length " + s.length) // error : String |Null does not have a ‘ length ’ field
if (s != null) println ("s has length " + s.length) // ok: we checked that s is not null

In a world with explicit nulls, the type system can keep track of which variables are
potentially null, turning runtime errors into compile-time errors.

Our contributions, implemented on top of the Dotty (Scala 3) compiler and currently
under consideration for inclusion in Scala 3, are as follows:

We retrofitted Scala’s type system with a mechanism for tracking nullability, using union
types. To improve usability of nullable values in Scala code, we also added a simple form
of flow typing to Scala.
So that Scala programs can interoperate with Java code, where nulls remain implicit,
we present a type nullification function that turns Java types into equivalent Scala types.
We evaluate the design by migrating multiple Scala libraries to explicit nulls. The main
findings are that most of the effort in migrating Scala code to explicit nulls comes from
Java interoperability, and that the effort is significant for some libraries.
Finally, we formalize type nullification using variants of System Fω that have been
augmented to model implicit and explicit nulls. Using denotational semantics, we prove a
soundness theorem for nullification, saying that nullification preserves values of types.

2 A New Type Hierarchy

To understand the special status of the Null type, we can inspect the current Scala type
hierarchy, shown in Figure 1. Roughly, Scala types can be divided into value types (subtypes
of AnyVal) and reference types (subtypes of AnyRef). The type Any then stands at the top
of the hierarchy, and is a supertype of both AnyVal and AnyRef (in fact, a supertype of

1 https://docs.oracle.com/javase/8/docs/api/java/lang/NullPointerException.html
2 https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=NULL+Pointer+Dereference

https://docs.oracle.com/javase/8/docs/api/java/lang/NullPointerException.html
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=NULL+Pointer+Dereference

A. Nieto, Y. Zhao, O. Lhoták, A. Chang, and J. Pu 25:3

Implicit nulls
Any

AnyVal

Boolean ...

AnyRef

String

Null

Nothing

...

Explicit nulls
Any

AnyVal

Boolean ...
Null

AnyRef

String

Nothing

...

Figure 1 Alternative Scala type hierarchies with implicit and (our design) explicit nulls.

every other type). Conversely, Nothing is a subtype of all types. Finally, Null occupies an
intermediate position: it is a subtype of all reference types, but not of the value types. This
justifies the following typing judgments:
val s : String = null // ok: String is a reference type
val i : Int = null // error : Int is a value type

This is what makes nulls in Scala implicit. In order to make nulls explicit, we need to
dislodge the Null type from its special position, so that it is no longer a subtype of all
reference types. We achieve this by making Null a direct subtype of Any. This new type
hierarchy, which underlies our design, is also shown in Figure 1. With the new type hierarchy
we get new typing judgments:
val s : String = null // error : reference types like String are no longer nullable
val i : Int = null // error : Int is a value type
val sn: String |Null = null // ok: Null <: String|Null

String|Null is a union type. In general, the union type A|B (read “A or B”) contains all
values of both A and B, as indicated by the subtyping judgements A <: A|B and B <: A|B.
Union types are a new feature present in Dotty but not in Scala 2 and, as the example shows,
they allows us to encode nullability.

The explicit nulls hierarchy is still unsound in the presence of uninitialized values:
1 class Person {
2 val name: String = getName()
3 def getName(): String = "Person" + name.length // ‘name’ is null here
4 }
5 val p = new Person() // throws a NullPointerException

Because, after allocation, the fields of Scala classes are initialized to their “default” values,
and the default value for reference types is null, when we try to access name.length
in line 3, name is null. This produces a NullPointerException. While ensuring sound
initialization is an interesting challenge, it is not one we tackle in this paper. Developing a
sound initialization scheme for Scala, while balancing soundness with expressivity, remains
future work. We review some of the existing approaches in Section 7.

ECOOP 2020

25:4 Scala with Explicit Nulls

2.1 Fixing a Soundness Hole
Even though explicit nulls do not make the Scala type system sound (e.g. there remain
null-related soundness holes related to incomplete initialization of class fields), they do
remove the specific source of unsoundness identified by Amin and Tate [3]. This class of
bugs, reported in 2016 and still present in Scala and Dotty, happens due to a combination of
implicit nullability and type members with arbitrary lower and upper bounds. For example,
the example presented by Amin and Tate [3] crucially relies on being able to construct a term
t that has both type e.g. LowerBound[Int] and UpperBound[String], two type applications
unrelated by subtyping. Because of implicit nullability, null has both types, which makes
the unsoundness possible. With our explicit nulls design, the typing above is no longer
possible, so the runtime error becomes a compile-time error.

3 Java Interoperability

One of Scala’s strengths is its ability to seamlessly use Java libraries. Because both languages
are compiled down to Java Virtual Machine (JVM) bytecode [18], Java libraries appear to
Scala code as any other Scala library would. The interaction can also happen in the opposite
direction: Java code can use Scala libraries.

Because reference types remain implicitly nullable in Java, we need a way to “interpret”
Java types as Scala types, where nullability is explicit. For example, if a Java method returns
a String, then the Java type system will allow null as a return value. If we use said method
from Scala, we need to interpret the method’s type as String|Null.

In the opposite direction, when Java code uses Scala libraries, the problem is simpler
because Java types are less precise than Scala types. In particular, both the Scala types
String and String|Null can be interpreted as the Java type String, which includes the
null value.

3.1 Type Nullification
Type nullification is the process of translating Java types to their Scala equivalents, in the
presence of explicit nulls. By equivalent, we mean that if type nullification sends type A to
type B, the values of A and B must be the same. Below are two examples of the behaviour
we want from nullification:

The values of the StringJava type3 are all finite-length strings (e.g. ”hello world”
and ””), plus the value null. By contrast, the values of StringScala are just all finite-
length strings (but not null). This means that nullification must map StringJava to
StringScala|Null.
Similarly, we can think of a Java method with signature
StringJava getName(StringJava s)
as representing a function from StringJava to StringJava (i.e. getName: StringJava →
StringJava). Suppose that f ∈ StringJava → StringJava. Notice that f can take null
as an argument, and return null as a result. This means that nullification should return
StringScala|Null→ StringScala|Null in this case.

Here is why “preserves values of a type” is a useful correctness criterion for nullification.
Suppose that nullification instead underapproximated a type’s values. For example, we
could turn StringJava into StringScala. We might then call e.g. the length method on the

3 We write TJava and TScala for Java’s and Scala’s view of the same type T, respectively.

A. Nieto, Y. Zhao, O. Lhoták, A. Chang, and J. Pu 25:5

Fnull(R) = R|Null if R is a reference type (FN-Ref)
Fnull(R) = R if R is a value type (FN-Val)
Fnull(T) = T |Null if T is a type parameter (FN-Par)

Fnull(C<R>) = C<Anull(R)>|Null if C is Java-defined (FN-JG)
Fnull(C<R>) = C<Fnull(R)>|Null if C is Scala-defined (FN-SG)
Fnull(A&B) = (Anull(A)&Anull(B))|Null (FN-And)

Anull(R) = R if R is a reference type (AN-Ref)
Anull(T) = T if T is a type parameter (AN-Par)

Anull(C<R>) = C<Anull(R)> if C is Java-defined (AN-JG)
Anull(C<R>) = C<Fnull(R)> if C is Scala-defined (AN-SG)

Anull(R) = Fnull(R) otherwise (AN-FN)

Fnull is applied to the types of fields, and argument and return types of methods of every
Java-defined class. We try the rules in top-to-bottom order, until one matches.

Figure 2 Type nullification functions.

StringScala, only to find out that the underlying reference was null. Another way of saying
this is that underapproximations are unsound for reads. Similarly, consider what would
happen were nullification to overapproximate types. For example, we could map StringJava
to Scala’s Any. This is sound for reads, because we cannot call length on an Any. However,
if the Java type were to appear contravariantly, e.g. as a method argument, then the Scala
code could pass an Any (a value of any type), where the Java code expects a StringJava,
leading to runtime errors. That is, overapproximations are unsound for writes. This leads us
back to our desired goal of preserving values of types. For now, we only argue informally
that nullification preserves values of types. Section 6 formalizes this idea using denotational
semantics and proves soundness of the rules on a core calculus.

Nullification can be described with a pair of mutually-recursive functions (Fnull, Anull)
that map Java types to Scala types. The functions are defined in Figure 2 and described
below. But first, a word about how nullification is applied. The Dotty compiler can load
Java classes in two ways: from source or from bytecode. In either case, when a Java class is
loaded, we apply Fnull to the types of fields and the argument and result type of methods.
The resulting class with modified fields and methods is then made accessible to the Scala
code. Below is some intuition and example for the different nullification rules.

Case (FN-Ref and FN-Val) These two rules are easy: we nullify reference types but
not value types, because only reference types are nullable in Java. Here is an example Java
class and its translation (given in Java syntax enhanced with union types and a Null type):

// Java class
class C {

String s ;
int x;

}

// After nullification
class C {

String |Null s ;
int x;

}

Case (FN-Par) Since type parameters are always nullable in Java, we need to nullify
them as well.

ECOOP 2020

25:6 Scala with Explicit Nulls

// Java class
class C<T> {

T foo() {...}
}

// After nullification
class C<T> {

T|Null foo() {...}
}

For example, if we have c: C<Boolean>, then c.foo() now returns a Boolean|Null, as
opposed to just Boolean like it used to.

Case (FN-JG) This rule handles generics C<T>, where C is a class defined in Java
(Java-defined). The rule is designed to reduce the number of redundant nullable types we
need to add. Let us look at an example:

// Java
class Box<T> { T get(); }
class BoxFactory<T> {

Box<T> makeBox();
}

// After nullification
class Box<T> { T|Null get(); }
class BoxFactory<T> {

Box<T>|Null makeBox();
}

Suppose we have a BoxFactory<String>. Notice that calling makeBox on it returns a
Box<String>|Null, not a Box<String|Null>|Null, because of FN-JG. This seems at first
glance unsound, because the box itself could contain null. However, it is sound because
calling get on a Box<String> returns a String|Null.

Generalizing from the example, we can see that it is enough to nullify the type application
C<T> as C<T>|Null. That is, it is enough to mark the type as nullable only at the top level,
since uses of T in the body of C will be nullified as well, if C is Java-defined. Notice that the
correctness argument relies on our ability to patch all Java-defined classes that transitively
appear in the argument or return type of a field or method accessible from the Scala code
being compiled. All such classes must be visible to the Scala compiler in any case, and will
thus be nullified, so this requirement is satisfied by the implementation.

In fact, the rule is a bit more complicated than we have explained so far. The full rule is
Fnull(C<R>) = C<Anull(R)>|Null. Notice that in fact we do transform the type argument,
but do so using Anull instead of Fnull. Anull is a version of Fnull that does not add |Null
at the top level. Anull is needed for cases where we have nested type applications, and it
is explained in more detail below. Here is a sample application of Fnull to a nested type
application, assuming that C, D, and String are all Java-defined:

Fnull(C<D<String>>) = C<Anull(D<String>)>|Null

= C<D<Anull(String)>>|Null

= C<D<String>>|Null

Notice how we only add |Null at the outermost level. This minimizes the number of changes
required to migrate existing Scala code with Java dependencies.

Case (FN-SG) This rule handles the mirror case, where the Java code refers to a generic
C<T> in which C is a class defined in Scala (Scala-defined). For example, assuming that Box
is Scala-defined, we get:

// Java code that refers to Scala class Box
class BoxFactory<T> {

Box<T> makeBox();
}

// After nullification
class BoxFactory<T> {

Box<T|Null>|Null makeBox();
}

Notice that unlike the previous rule, FN-SG adds |Null to the type argument, and not
just to the top level. This is needed because nullification is only applied to Java classes, and
not to Scala classes. We then need a way to indicate that, in the example, the returned Box
may contain null.

A. Nieto, Y. Zhao, O. Lhoták, A. Chang, and J. Pu 25:7

Case (FN-And) This rule just recurses structurally on the components of the type.
Even though Java does not have intersection types, we sometimes encounter them during
nullification, because the Scala compiler desugars some Java types using intersections. For
example, the Java type Array[T], where T has no supertype, is represented in Scala as
Array[T & Object].

As previously mentioned, Anull is a helper function that behaves mostly like Fnull, but
never nullifies types at the top level. Anull is useful because we want to avoid adding
superfluous |Null unions whenever possible.

4 Flow Typing

To improve usability of nullable types, we added a simple form of flow-sensitive type inference
to Scala [15]. The general idea is that sometimes, by looking at the control flow, we can infer
that a value previously thought to be nullable (due to its type) is no longer so.

4.1 Supported Cases
Below we list the cases supported by flow typing. In the examples, the notation ??? stands
for an unspecified expression of the appropriate type4:

Branches of an if-expression. If an if-expression has a condition s != null, where s
satisfies some restrictions (see below), then in the then branch we can assume that s is
non-nullable.

val s : String |Null = ???
if (s != null) {
val l = s.length // ok: s has type String in the ‘then’ branch

}
val l = s.length // error : s has type String |Null

We can reason similarly about the else branch if the test is p == null.
Logical operators. We also support the logical operators &&, ||, and ! in conditions: e.g.
given a condition if (s != null && s2 != null), we infer that both s and s2 are
non-null in the then branch.
Propagation within conditions. We support type specialization within a condition, taking
into account that && and || are short-circuiting: e.g. in the condition s != null &&
s.length > 0, the test s.length is type correct because the right-hand side of the
condition will only be evaluated if s is non-null.
Nested conditions. Our inference works in the presence of arbitrarily-nested conditions:
given the condition !(a = null || b = null) && (c != null), we infer that all of a,
b, and c are non-null in the then branch.
Early exit from blocks. If a statement conditionally performs an early exit from a block
based on whether a value is null, we can soundly assume that the value is non-null from
that point on. This is the case for both return statements and exceptions:

if (s == null) return 0
return s . length // ok: s inferred to have type String from this point on

In general, if we have a block s1, . . . , si, si+1, . . . , sn, where the si are statements, and
si is of the form if (cond) exp, where exp has type Nothing, then depending on cond,
we might be able to infer additional nullability facts for statements si+1, . . . , sn. Here,

4 ??? is actually valid Scala code, and is simply a method with return type Nothing.

ECOOP 2020

25:8 Scala with Explicit Nulls

the condition cond can contain nested conditions such as those discussed in the previous
point. The reason is that type Nothing has no values, so an expression of type Nothing
cannot terminate normally (it either throws or loops). It is then safe to assume that
statement si+1 executes only if cond is false.
There is one extra complication here, which is that Scala allows forward references to
method definitions, which combined with nested methods can lead to non-intuitive control
flow. In our implementation, we have logic for detecting forward references and disabling
flow typing in such cases to preserve soundness. In the presence of forward references, we
discard the more precise type inferred for a specific program point by flow typing and
fall back to the flow-insensitive declared type that is conservatively sound at all program
points.

4.1.1 Stable Paths
Scala has four kinds of definitions: vals, lazy vals, vars, and defs. vals are eagerly
evaluated and immutable. lazy vals are like vals, but lazily evaluated and then memoized.
vars are eagerly evaluated and mutable. Finally, defs are lazily evaluated, but not memoized,
so they are used to define methods.

We use flow typing on vals and lazy vals, but not on vars or defs. Using naive flow
typing on a var would be unsound, because the underlying value might change between the
moment it is tested (where it might be non-null) and the later use of the var (where it might
be again null). Similarly, flow typing on defs would be problematic, because a def is not
guaranteed to return the same value after every invocation.

In general, given a path p = v.s1.s2.sn, where v is a local or global symbol, and
the si are selectors, it is safe to do flow inference on p only if p is stable. That is, all of
v, s1, . . . , sn need to be vals or lazy vals. If p is stable, then we know that p is immutable
and so the results of a check against null are persistent and can be trusted.

4.2 Inferring Flow Facts
The goal of flow typing is to discover nullability facts about stable paths that are in scope.
A fact is an assertion that a specific path is non-null at a given program point.

At the core of flow typing, we have a function N : Exp × Bool → P(Path). N takes a
Scala expression e (where e evaluates to a boolean) and a boolean b, and returns a set of
paths known to be non-nullable if e evaluates to b. That is, N (e, true) returns the set of
paths that are non-null if e evaluates to true, and N (e, false) returns the set of paths
known to be non-null if e evaluates to false. N is defined in Figure 3.

We can use N to support the flow typing scenarios we previously outlined:
Given an if expression if (cond) e1 else e2, we compute F then = N (cond, true) and
Felse = N (cond, false). The former gives us a set of paths that are known to be non-null
if cond is true. This means that we can use Fthen when typing e1. Similarly, we can use
Felse when typing e2.
To reason about nullability within a condition e1 && e2, notice that e2 is evaluated
only if e1 is true. This means that we can use the facts in N (e1, true) when typing e2.
Similarly, in a condition e1 || e2, we only evaluate e2 if e1 is false. Therefore, we can
use N (e1, false) when typing e2.
Given a block with statements if (cond) e; s, where e has type Nothing, or a block
of the form if (cond) return; s, we know that s will only execute if cond is false.
Therefore, we can use N (cond, false) when typing s.

A. Nieto, Y. Zhao, O. Lhoták, A. Chang, and J. Pu 25:9

N (p == null, true) = {}
N (p == null, false) = {p} if p is stable
N (p != null, true) = {p} if p is stable
N (p != null, false) = {}

N (A && B, true) = N (A, true) ∪N (B, true)
N (A && B, false) = N (A, false) ∩N (B, false)
N (A || B, true) = N (A, true) ∩N (B, true)
N (A || B, false) = N (A, false) ∪N (B, false)

N (!A, true) = N (A, false)
N (!A, false) = N (A, true)

N ({s1; ...; sn; cond}, b) = N (cond, b)
N (e, b) = {} otherwise

Figure 3 Flow facts inference. Correctness follows from De Morgan’s laws.

4.3 Asserting Non-Nullability
For cases where flow typing is not powerful enough to infer non-nullability, we added a .nn
(“assert non-nullable”) method to cast away nullability from any term.

var s : String |Null = ???
val l = s.nn.length // ok: .nn method casts away nullability

In general, if e is an expression with type T|Null, then e.nn has type T. The nn method is
defined as an extension method. This is a kind of implicit definition that makes nn available
for any receiver of type T|Null. nn does a checked cast, so e.nn fails with an exception if
the receiver e evaluates to null.

5 Evaluation

In this section, we empirically evaluate the expressiveness of the explicit nulls system and
the effort required to migrate existing Scala programs to it. We test the popular belief that
Scala programs tend not to use null references much themselves except for interaction with
Java code. The explicit nulls system requires a program to explicitly specify what is to be
done if a null reference arises at each program location where it is not ruled out statically;
we quantify how many such locations there are in typical Scala programs.

We perform our evaluation on the programs in the Dotty community build,5 a suite of
Scala programs that have been ported from Scala 2 to compile with the Dotty compiler
(without explicit nulls), and are regularly tested as part of the Dotty regression tests. The
community build programs are summarized in Table 1.

We divide our evaluation into three parts. First, in Section 5.1, we evaluate null references
possibly coming from interaction with Java code. Second, in Section 5.2, we evaluate the
effectiveness of flow-sensitive typing in ruling out the possibility of null references. Third, in
Section 5.3, we examine other causes of null-related compilation errors that are not related
to interaction with Java and are not ruled out by flow typing.

5 https://github.com/lampepfl/dotty/tree/master/community-build/test/scala/dotty/
communitybuild

ECOOP 2020

https://github.com/lampepfl/dotty/tree/master/community-build/test/scala/dotty/communitybuild
https://github.com/lampepfl/dotty/tree/master/community-build/test/scala/dotty/communitybuild

25:10 Scala with Explicit Nulls

Table 1 Community build libraries.

Name Description Size (LOC) Files
scala-pb Scala protocols buffer compiler 37,029 275
squants DSL for quantities 14,367 222
fastparse Parser combinators 13,701 80
effpi Verified message passing 5,760 60
betterfiles IO library 3,321 29
algebra Algebraic type classes 3,032 75
scopt Command-line options parsing 3,445 28
shapeless Type-level generic programming 2,328 18
scalap Class file decoder 2,210 22
semanticdb Data model for semantic information 2,154 49
intent Test framework 1,866 48
minitest Test framework 1,171 32
xml-interpolator XML string interpolator 993 20
stdLib213 Scala standard library 31,723 588
scala-xml XML support 6,989 115
scalactic Utility library 3,952 53
Total 134,041 1,714

5.1 Evaluation of Java interaction
We evaluate the interaction with Java code by counting the number of compilation errors in
several variants of the explicit nulls system. The error counts per thousand lines of code for
each program and each variant are shown in Table 2.

The Baseline column shows the error counts for the explicit nulls system as described
in this paper so far. There is significant variance between the different programs, from two
or fewer errors per thousand lines of code in more abstract, Scala-like programs, to tens of
errors per thousand lines of code in more low-level programs, particularly those that interact
significantly with Java. We conjecture that interaction with Java is the main cause of the
errors, and evaluate several variations of the system to test this conjecture.

Our first attempt to reduce the number of errors is with nullness annotations in Java code.
The Annotations column shows the error counts when the Scala programs are compiled
with a variant of the Java standard library with annotations specifying that the return
values of certain methods cannot be null. The annotations are taken from the Checker
Framework Project [23], which publishes an annotated version of the Java standard library,
with nullness annotations on 4414 methods and 1712 fields in 847 classes. There are many
different standards for annotating Java code with nullability; our implementation supports
reading 12 such annotation formats and additional formats can be added easily. On some of
the programs with high error counts, the annotations reduce the error count significantly,
by up to half on scalap, but on others, they make little difference, such as on ScalaPB.
One reason for this is that some programs interact with Java code other than the standard
library, and the other Java libraries are not annotated. Another reason is that although
the Checker Framework provides thousands of annotations, it still leaves a large part of
the standard library unannotated, and the Scala programs interact with these unannotated
methods. Annotating the entire standard library would be a huge effort, and even then, more
annotations would be needed for any other Java libraries that a Scala program interacts
with.

A. Nieto, Y. Zhao, O. Lhoták, A. Chang, and J. Pu 25:11

Table 2 Error frequency by configuration in errors per thousand LOC. The mean is weighted by
the number of LOC in each program. The Baseline column reflects the configuration described in
this paper so far. The Annotations column adds annotations to the Java standard library to specify
methods that do not return null. The JavaNull column reflects a configuration in which method
selections are (unsoundly) allowed on possibly null references returned by Java methods. The
Non-null Ret. column reflects a configuration in which all calls of Java methods are (unsoundly)
assumed to never return a null reference. The Ann. No Flow column reflects a configuration like
the Annotations column, except with the flow typing discussed in Section 4 disabled.

Baseline Annotations JavaNull Non-null Ret. Ann. No Flow
scalactic 72.37 57.19 57.19 3.04 57.19
betterfiles 43.36 38.54 37.04 7.23 38.54
stdLib213 37.26 34.01 33.54 17.24 34.36
ScalaPB 24.98 24.76 24.76 1.38 24.76
minitest 18.79 13.66 12.81 6.83 13.66
scalap 15.84 7.69 7.24 1.81 7.69
scala-xml 13.59 11.45 11.30 9.30 11.88
semanticdb 12.07 7.43 6.04 1.39 7.43
intent 8.57 6.97 6.97 0.54 6.97
scopt 5.52 4.93 4.64 2.32 4.93
xml-interpolator 2.01 2.01 2.01 2.01 2.01
shapeless 1.72 0.00 0.00 0.00 0.00
fastparse 1.61 1.53 1.53 1.46 1.53
effpi 1.39 1.39 1.04 0.00 1.56
algebra 0.33 0.33 0.33 0.00 0.33
squants 0.00 0.00 0.00 0.00 0.00
Mean 20.79 18.96 18.74 5.56 19.07

Another conjecture is that it is common to chain calls to Java methods. For example, if s
is of type String, we may call s.trim.toUppercase, where trim is a Java method on strings
that returns another string, on which we wish to call the Java method toUppercase. Such a
pattern is rejected by the explicit nulls system if trim can return a null reference, since a null
reference does not have a toUppercase method, but if this pattern is common, it may be
pragmatic to allow it, even if it is potentially unsound. We evaluate a variant of the explicit
nulls system that adds a special JavaNull annotation to mark Null types returned from
Java methods. The Dotty type system treats these annotated Null types the same as any
other Null types, with the exception that a method in a class C can be called on a receiver of
type C | Null if the Null has the special annotation. This variant permits the sequence of
calls s.trim.toUppercase, since the nullable return type of trim has the special JavaNull
annotation. Note that this pragmatic design decision sacrifices soundness. The error counts
for this variant of the explicit nulls system, together with the standard library annotations
from the Checker Framework, are shown in the JavaNull column. Although the JavaNull
annotation does reduce error counts for some programs, the reduction is small. This suggests
that there are important things other than method selections that Scala programs do with
the values returned from Java methods, and thus the JavaNull annotation to enable method
selections is not sufficient to significantly reduce error counts.

Finally, we measure an upper bound on the reduction in error count that can be achieved
by annotating Java methods that return non-null values. We evaluate a configuration of
the explicit nulls system that assumes that every call to a Java method returns a non-null

ECOOP 2020

25:12 Scala with Explicit Nulls

value. This is equivalent to annotating every possible Java method with a non-null return
type annotation. It is also equivalent to an extreme case of the special JavaNull annotation,
which exceptionally allows method selection on nullable values returned from Java methods:
if we were to allow JavaNull types in all places that currently require non-null types, rather
than only in method selections, this would be equivalent to assuming that return values of
Java methods cannot be null.

The resulting error counts are shown in the Non-null Ret. column. The impact of
this configuration is very large: it causes a major reduction in error counts in all of the
programs that still have large numbers of compilation errors. The scalactic library, which
had over 72 errors per thousand lines of code in the baseline configuration, has only just over
3 errors per thousand lines of code. The mean error count goes from about 21 in the Baseline
configuration and about 19 in the Annotations and JavaNull configurations down to 6 in
the Non-null Ret. configuration. These results show that the conservative assumption that
Java methods might return null is by far the most frequent cause of compilation errors in
the explicit nulls system. Furthermore, once these errors are removed, fewer than ten errors
per thousand lines of code remain in all programs except the Scala standard library. This is
quite a small number, and we consider it reasonable to expect that Scala programmers can
fix the remaining errors by hand.

5.2 Evaluation of Flow-sensitive typing
In this section, we evaluate the usefulness of the flow-sensitive typing design that was
described in Section 4. We have turned off flow-sensitive typing, so that each variable has a
single type everywhere it is in scope, independent of any nullness tests, and again count the
number of compilation errors. The error frequency with flow-sensitive typing turned off is
shown in the last column of Table 2, Ann. No Flow. The configuration uses the annotations
from the Checker Framework to specify which methods in the Java standard library return
non-null values; therefore, this column is directly comparable to the Annotations column.
The Annotations configuration was selected as the most precise variant of typing calls to
Java methods that is still sound (assuming the Checker Framework annotations are correct).

Flow-sensitive typing makes a difference in three of the benchmarks, stdLib213, scala-
xml, and effpi, and even there, the difference is small relative to the total number of
errors. One possible reason that flow-sensitive typing has such a small impact could be
that our specific flow-sensitive analysis is not sufficiently precise, so compilation errors are
reported even in code that tests that references are not null; however, we will see in the
next section that this is not the case. Examining the code of the community build programs,
we observe that Scala programs rarely expect to encounter null references and thus rarely
test for them, and when they do, they often use a different idiom than a test of the form
if(x != null) Specifically, many of the programs pass possibly null values to the
constructor of the Option class, which turns a null value into the None object and a non-null
value into an instance of Some. This common idiom does not require flow-sensitive typing to
ensure safety.

5.3 Evaluation of other causes of nullness errors
The error counts in the Non-null Ret. column, where we assume that Java methods
never return null, are low enough that it is quite feasible to manually fix the programs to
remove the compilation errors. We have done this for all the programs except stdLib213
and classified the individual causes of each compilation error. We exclude stdLib213 not

A. Nieto, Y. Zhao, O. Lhoták, A. Chang, and J. Pu 25:13

Table 3 Error classification. Libraries were migrated under Non-null Ret. configuration.
Normalized count is in errors per thousand LOC.

Error Category Total Count Count per 1000 LOC
Declaration of nullable field or local symbol 74 0.81
Use of nullable field or local symbol (.nn) 52 0.57
Overriding error due to nullability 46 0.5
Generic received from Java with nullable inner type 19 0.6
Generic passed to Java requires nullable inner type 6 0.07
Incorrect Scala standard library definition 4 0.04
Limitation of flow typing 1 0.01
Total 202 2.21

Modified Total %
LOC 484 91,337 0.53
Files 88 958 9.19

only because it has the highest error rate per thousand lines of code, but also because with
31,723 lines of code, it also has a high absolute number of errors. This analysis enables us to
determine the common causes of the remaining compilation errors.

The number of errors in each category is shown in Table 3. We now explain the categories.
Declaration of nullable field or local symbol. These are cases where the Scala code declares
a var or val (as a field, or locally within a method) that is provably nullable because
the code explicitly assigns null to it. For example, we might have a class field that is
immediately initialized to null. The fix for this error is to change the type to a nullable
type to reflect that the variable does (sometimes) contain a null reference.
Use of nullable field or local symbol (.nn). This is the dual of the previous category. After
we change the type of a variable that is sometimes null to a nullable type, all uses of that
variable become nullable. Each existing use of that variable in a context that requires a
non-null value then results in a compilation error, since the variable could be null. The
fix for this error is to dynamically check and cast away the nullability using .nn.
Overriding error due to nullability. This error happens when a Scala class overrides a
Java-defined method that takes a reference type as an argument. Because nullification
makes the argument types of the overridden method nullable, the argument types in the
overriding method must also be made nullable to match the signature of the overridden
method.
Generic received from Java with nullable inner type. Sometimes we encounter a Java
method that returns a generic with a nullified inner type. The common example are
Java methods returning arrays of reference types. For example, the split method of the
String class returns an Array[String], which is nullified to Array[String|Null]|Null.
This, in turn, leads to errors in Scala code that reads elements of this array and expects
them to be non-null.
Generic passed to Java requires nullable inner type. This happens when a Java method
expects as argument a generic of some reference type (usually an Array). We fix these
errors using asInstanceOf casts. An improvement to the type inference algorithm that
was added to the Dotty compiler after our evaluation fixes most of these errors.6

6 https://github.com/lampepfl/dotty/pull/8635

ECOOP 2020

https://github.com/lampepfl/dotty/pull/8635

25:14 Scala with Explicit Nulls

Incorrect Scala standard library definition. This class contains type errors that could
be prevented by modifying some definition in the Scala standard library to use a more
precise type. For example, the Option.apply method is parameterized by a type T, takes
an argument of type T, and returns a value of type Option[T]. If the argument is null, it
returns None; otherwise, it returns the argument wrapped in Some, but it never returns
Some(null). When this method is called on a nullable argument, for example of type
String|Null, its return type is Option[String|Null], but a more precise return type
would be Option[String]. These errors could be fixed by future versions of the Scala
standard library.
Limitation of flow typing. These are cases where our implementation of flow-sensitive
typing is not precise enough to model the null checks that occur in the program and
prove that a value cannot be null. We only found one error in this class, which is due to
an undiagnosed bug in our implementation that is not yet fixed.

5.4 Summary
Our results confirm the common belief that null references are used rarely in Scala code
except for interaction with Java. For the uses of null that are unrelated to Java, our system
reports very few compilation errors, and few changes were needed to make the community
build programs compile with the explicit nulls system.

However, a large number of nullness errors are caused by values returned from calls to
Java methods. Scala programmers have several options for handling these return values.
The first option is to harden Scala programs to always expect and handle possible null
references returned from Java methods. The second option is to annotate Java methods
known to never return null references. Both these options require a significant effort. On
the other hand, a third option, which requires minimal effort, is the optimistic assumption
that most Java method calls will not return null. This option is the status quo, the state
of the existing Scala code, which is not required by the compiler to explicitly consider the
possibility of null values. There is no free lunch: there are many places in Scala code where
a Java method could return null; one either makes the considerable effort to check and
annotate or harden each such place, or one accepts the risk of a null reference occurring at
one of those places at run time.

6 Denotational Semantics of Nullification

Type nullification is the key component that interfaces Java’s type system, where null is
implicit, and Scala’s type system, where null is explicit. In this section, we give a theoretical
foundation for nullification using denotational semantics. Specifically, we present λj and λs,
two type systems based on a variant of System Fω restricted to second-order type operators.
In λj , nullability is implicit, as in Java. By contrast, in λs nullability is explicit, like in
Scala. Nullification can then be formalized as a function that maps λj types to λs types.
Following a denotational approach, we give a set-theoretic model of λj and λs. We then prove
a soundness theorem stating that the meaning of types is largely unchanged by nullification.

We choose System Fω as the basis for our formalization, rather than object-oriented
calculi such as DOT [2, 27, 25] or Featherweight Generic Java [16], because type application
is the challenging case for nullification. Since nullification turns Java types into Scala types,
it does not need to handle many Scala-specific types (e.g. path-dependent types), so DOT is
not needed for the formalization. Similarly, Featherweight Generic Java has features like
inheritance that do not interact with nullification.

A. Nieto, Y. Zhao, O. Lhoták, A. Chang, and J. Pu 25:15

S, T ::= λj Types
intj int

Stringj string
S ×j T product
S →j T function

Πj(X :: ∗n).S generic
Appj(S, T) type application

X type variable

σ, τ ::= λs Types
Null null
ints int

Strings string
σ + τ union
σ ×s τ product
σ →s τ function

Πs(X:: *).σ generic
Apps(σ, τ) type application

X type variable

Figure 4 Types of λj and λs. Differences are highlighted.

6.1 System Fω, λj, and λs
We will model the Java and Scala type systems as variants of System Fω [14, 26], the higher-
order polymorphic lambda calculus. System Fω supports universal quantification on types:
e.g. we can type the (polymorphic) identity function as ΠX.X → X. The variant that we use
has second-order type operators, which means that in the type operator ΠX.S, X ranges over
all types that are not themselves type operators. By contrast, in the unrestricted version of
the calculus, X can range over other type operators. By restricting type operators, we incur
a loss of expressivity: notably, we can no longer typecheck recursive data structures (which
are ubiquitous in both Java and Scala). On the other hand, giving a denotational semantics
for the restricted variant is much easier, because one can use a naive set-based model. More
importantly, the main difficulty in designing nullification was handling Java generics. Given
a generic such as List<T>, Java only allows instantiations of List with a reference type that
is not itself generic. For example, List<String> is a valid type application, but List<List>
is not. This is precisely the kind of restriction imposed by our version of System Fω.

That said, System Fω is too spartan: it does not distinguish between value and reference
types, does not have records (present in both Java and Scala), and does not have union types
(needed for explicit nulls). To remedy this we can come up with slight variations of System Fω
that have the above-mentioned features. We call these λj (“lambda j”) and λs (“lambda s”),
and they are intended to stand for the Java and Scala type systems, respectively. Figure 4
shows the types of these two calculi. From now on we will focus solely on the types and will
forget about terms, because nullification is a function from types to types.

λj extends System Fω with integers, strings, and products (which stand in for objects).
Type applications are written Appj(S, T).

λs differs from λj by adding a Null type, type unions (written σ + τ), and by making
types be explicitly nullable, just like our version of Scala. Explicit nullability is indicated via
kinds, as explained below.

6.1.1 Kinding Rules
In subsequent sections, we will assign meaning to types. However, we can only interpret
types that are well-kinded. Intuitively, we need a way to differentiate between a type like
Πj(X :: ∗n).X, where all variables are bound, from Πj(X :: ∗n).Y , where Y is free and so
cannot be assigned a meaning.

The kinding rules in Figure 5 fulfill precisely this purpose. The judgment Γ `j T :: K (resp.
Γ `s σ :: K) establishes that type T has kind K under context Γ, and is thus well-kinded in
λj (resp. λs). The different kinds K describe: nullable types (∗n), non-nullable types (∗v),

ECOOP 2020

25:16 Scala with Explicit Nulls

Γ `j S :: K

Γ `j intj :: ∗v (KJ-Int)

Γ `j Stringj :: ∗n (KJ-String)

Γ `j S :: ∗ Γ `j T :: ∗
Γ `j S ×j T :: ∗n

(KJ-Prod)

Γ `j S :: ∗ Γ `j T :: ∗
Γ `j S →j T :: ∗v

(KJ-Fun)

Γ, X :: ∗n `j S :: K
Γ `j Πj(X :: ∗n).S :: ∗n ⇒ K

(KJ-Pi)

Γ `j S :: ∗n ⇒ K Γ `j T :: ∗n
Γ `j Appj(S, T) :: K

(KJ-App)

Γ(X) = ∗n
Γ `j X :: ∗n

(KJ-Var)

Γ `j S :: ∗n
Γ `j S :: ∗
(KJ-Null)

Γ `j S :: ∗v
Γ `j S :: ∗

(KJ-NonNull)

K ::= Kinds
∗n kind of nullable types
∗v kind of non-nullable types
∗ kind of proper types

∗n ⇒ K kind of type operators (λj)
* ⇒ K kind of type operators (λs)

Γ ::= Contexts
∅ empty context

Γ, X :: ∗n nullable type binding

Γ `s σ :: K

Γ `s ints :: ∗v (KS-Int)

Γ `s Strings :: ∗v (KS-String)

Γ `s Null :: ∗n (KS-NullType)

Γ `s σ :: K1
Γ `s τ :: K2

K1,K2 ∈ {∗n, ∗v, ∗}
Γ `s σ + τ :: K1 ⊕K2

(KS-Union)

whereK⊕K = K,K1⊕K2 = K2⊕K1,K⊕∗n = ∗n,
and ∗v ⊕ ∗ = ∗

Γ `s σ :: ∗ Γ `s τ :: ∗
Γ `s σ ×s τ :: ∗v

(KS-Prod)

Γ `s σ :: ∗ Γ `s τ :: ∗
Γ `s σ →s τ :: ∗v

(KS-Fun)

Γ, X :: ∗ `s σ :: K
Γ `s Πs(X :: ∗).σ :: ∗ ⇒ K

(KS-Pi)

Γ `s σ :: ∗ ⇒ K Γ `s τ :: ∗
Γ `s Apps(σ, τ) :: K

(KS-App)

Γ(X) = ∗
Γ `s X :: ∗

(KS-Var)

Γ `s σ :: ∗n
Γ `s σ :: ∗
(KS-Null)

Γ `s σ :: ∗v
Γ `s σ :: ∗

(KS-NonNull)

.

Figure 5 Kinding rules of λj and λs. Differences are highlighted.

proper (non-generic) types (∗), and type operators (generics). In λj , type operators have
kinds of the form ∗n ⇒ K, modelling the fact that type arguments in Java must be reference
types (e.g. List<boolean> is not well-kinded). By contrast, in λs (and in Scala), generics
can also take value types as arguments (e.g. List[Boolean]), so type operators have kinds
of the form ∗ ⇒ K.

The second role of the kind system is to track the nullability of types. Here, the difference
between λj and λs is witnessed, for instance, by the KS-String rule: while in λj , strings are
nullable (`j Stringj :: ∗n), strings in λs are non-nullable (`s Strings :: ∗v). In λs, like in
Scala, nullability can be recovered via type unions: e.g. `s Strings + Null :: ∗n.

The rule KS-Union computes the kind of type unions. If either σ or τ contains the null
value, then their union σ + τ also contains the null value, so K ⊕ ∗n = ∗n. If one of σ or τ
definitely does not contain the null value (i.e., is of kind ∗v) and the other may or may not
contain the null value (i.e., is of kind ∗), then their union σ + τ also may or may not contain
the null value, so ∗v ⊕ ∗ = ∗.

A. Nieto, Y. Zhao, O. Lhoták, A. Chang, and J. Pu 25:17

Two other rules that we want to highlight are KJ-Null and KJ-NonNull (and their λs
counterparts). These rules give us a limited form of “subkinding”, so that `j T :: ∗v or
`j T :: ∗n imply `j T :: ∗.

I Definition 6.1 (Base kinds). We say K is a base kind if K ∈ {∗, ∗n, ∗v}.

6.2 Denotational Semantics
Before we can prove properties of nullification, we need a semantics for our types and kinds.
That is, so far, types and kinds are just syntactic objects, and kinding rules are syntactic
rules devoid of meaning. For this task of assigning meaning we turn to the machinery of
denotational semantics. The technical presentation is based on the treatment of predicative
System F in Mitchell [20].

Here is a summary of the rest of this section. First, we construct set-theoretic models
for both calculi. In this case, a model is just a family of sets that contains denotations of
types and kinds. We then show how to map kinds and types to their denotations in the
model. The mapping is roughly as follows: kinds −→ families of sets, proper types −→ sets,
and generic types −→ functions from sets to sets. Finally, we prove a soundness lemma for
kinding rules that says that if a type is well-kinded, then its denotation is defined and,
further, it is contained in the denotation of the corresponding kind: i.e. Γ `j T :: K =⇒
JT Kjη ∈ JKKj . The proofs of all results in this section can be found in the first author’s
thesis [22].

6.2.1 Semantic Model
I Definition 6.2 (String literals). strings denotes the set of finite-length strings.

The model for λj is a pair J = (U1, U2) of universes (families of sets).
U1 is the universe of proper types. It is the least set containing {null},Z, and strings

that is closed under union, product, and functions (i.e. if u and v are in U1, then the set of all
functions between u and v, written uv, is also in U1). Additionally, we define two families of
sets that contain nullable and non-nullable types, respectively: Unull

1 = {u|u ∈ U1, null ∈ u},
and Uval

1 = {u|u ∈ U1, null 6∈ u}. Notice that both Unull
1 and Uval

1 are subsets of U1, and
that U1 = Unull

1 ∪ Uval
1 .

The universe U2 is a superset of U1 that, additionally, contains all generic types. First,
we define a family of sets {U i2}, for i ≥ 0: U0

2 = U1, and U i+1
2 = U i2 ∪ {f : Unull

1 → U i2}.
Then we set U2 =

⋃
i≥0 U

i
2.

The model for λs is very similar to the previous one. It is a pair S = (U1, U
′
2), where U1 is as

defined before. U ′2 is almost the same as U2, except that we set U ′i+1
2 = U ′i2 ∪{f : U1 → U ′i2 }.

Highlighted is the fact that generics in λs take arguments from U1, as opposed to Unull
1 .

6.2.2 Meaning of Kinds
I Definition 6.3 (Number of arrows in a kind). Let K be a kind. Then arr(K) denotes the
number of arrows (⇒) in K.

I Definition 6.4 (Meaning of kinds). We give meaning to λj and λs kinds via functions JKj
and JKs, respectively. These functions are inductively defined on the structure of a kind K.

ECOOP 2020

25:18 Scala with Explicit Nulls

λj

JintjKjη = Z
JStringjKjη = {null} ∪ strings
JS ×j T Kjη = {null} ∪ (JSKjη × JT Kjη)
JS →j T Kjη = JSKjηJT Kjη

JΠj(X :: ∗n).SKjη = λ(a ∈ Unull
1).JSKj(η[X → a])

JAppj(S, T)Kjη = JSKjη(JT Kjη)
JXKjη = η(X)

λs

JNullKsη = {null}
JintsKsη = Z
JStringsKsη = strings
Jσ ×s τKsη = JσKsη × JτKsη
Jσ →s τKsη = JσKsηJτKsη

JΠs(X :: ∗).σKsη = λ(a ∈ U1).JσKs(η[X → a])
JApps(σ, τ)Ksη = JσKsη(JτKsη)
Jσ + τKsη = JσKsη ∪ JτKsη

JXKsη = η(X)

Figure 6 Type denotations for λj and λs. Differences are highlighted.

J∗nKj = Unull
1

J∗vKj = Uval
1

J∗Kj = U1

J∗n ⇒ KKj = {f : Unull
1 → JKKj}

J∗nKs = Unull
1

J∗vKs = Uval
1

J∗Ks = U1

J∗ ⇒ KKs = {f : U1 → JKKs}

We can show that the meaning of kinds is contained within the corresponding model.

I Lemma 6.5 (Kinds are well-defined). If K is a λj kind, then JKKj ⊆ U
arr(K)
2 . If K is a

λs kind, then JKKs ⊆ U ′arr(K)
2 .

6.2.3 Meaning of types
We now give denotations for types. To handle types that are not closed, we make the
denotation functions take two arguments: the type whose meaning is being computed and an
environment that gives meaning to the free variables. Additionally, we make the simplifying
assumption that types have been alpha-renamed so that there are no name collisions.

I Definition 6.6 (λj Environments). A λj environment η : V ar → Unull
1 is a map from

variables to elements of Unull
1 . The empty environment is denoted by ∅. An environment can

be extended with the notation η[X → a], provided that X was not already in the domain.

I Definition 6.7 (λs Environment). A λs environment η : V ar → U1 is a map from variables
to elements of U1.

I Definition 6.8 (Environment Conformance). An environment η (from λj or λs) conforms
to a context Γ, written η � Γ, if dom(η) = dom(Γ).

I Definition 6.9 (Meaning of types). We define the meaning of types via functions JKj :
Typesλj → Envλj → U2 and JKs : Typesλs → Envλs → U ′2. These are shown in Figure 6.

I Example 6.10.

JΠj(X :: ∗n).XKj∅ = λ(a ∈ Unull
1).JXKj∅[X → a]

= λ(a ∈ Unull
1).∅[X → a](X)

= λ(a ∈ Unull
1).a

= id

That is, the denotation of Πj(X :: ∗n).X is the identity function that maps sets (types)
in Unull

1 to themselves.

A. Nieto, Y. Zhao, O. Lhoták, A. Chang, and J. Pu 25:19

The following lemma says that the kinding rules correctly assign kinds to our types.

I Lemma 6.11 (Soundness of kinding rules). The following hold:
Γ `j T :: K and η � Γ implies JT Kjη ∈ JKKj
Γ `s T :: K and η � Γ implies JT Ksη ∈ JKKs

6.3 Type Nullification
Now that we have formal definitions for both λj and λs, we can also formally define type
nullification. Recall that type nullification makes nullability explicit as we go from a type
system where null is implicit (λj ’s) to one where null is explicit (λs’s). For example,
(intj)×j (Stringj →j Stringj) becomes (ints)×s (Strings + Null→s Strings + Null).

That is, type nullification is a function that turns λj types into λs types. In the imple-
mentation (described in Section 3.1), we decided not to nullify arguments in type applications.
That is, given a Java class List<T>, type applications such as List<String> are translated
as List<String>, and not as List<String|Null>. The motivation for special casing type
arguments is maximizing backwards-compatibility. Because of the different treatment for
types based on whether they are in an argument position or not, we will model nullification
as a pair of functions (Fnull, Anull). These are defined below.

I Definition 6.12 (Type nullification).

Fnull(intj) = ints
Fnull(Stringj) = Strings + Null
Fnull(X) = X + Null
Fnull(S →j T) = Fnull(S)→s Fnull(T)
Fnull(Πj(X :: ∗n).S) = Πs(X :: ∗).Fnull(S)
Fnull(Appj(S, T)) = Apps(Fnull(S), Anull(T))
Fnull(S ×j T) = (Fnull(S)×s Fnull(T)) + Null

Anull(intj) = ints
Anull(Stringj) = Strings
Anull(S ×j T) = Fnull(S)×s Fnull(T)
Anull(S →j T) = Fnull(S)→s Fnull(T)
Anull(Appj(S, T)) = Apps(Fnull(S), Anull(T))
Anull(X) = X

As the name suggests, Anull handles types that are arguments to type application, and
Fnull handles the rest. Anull differs from Fnull in that it does not nullify types at the outermost
level (see e.g. the Stringj case).

I Definition 6.13 (Context nullification). We lift nullification to work on contexts, turning
λj contexts into (syntactic) λs contexts.

Fnull(∅) = ∅
Fnull(Γ, X :: ∗n) = Fnull(Γ), X :: ∗

I Definition 6.14 (Kind nullification). We also lift nullification to work on kinds, turning λj
kinds into λs kinds.

Fnull(K) = K if K is a base kind
Fnull(∗n ⇒ K′) = ∗ ⇒ Fnull(K′) otherwise

6.4 Soundness
We can finally prove a soundness result for type nullification. But what should soundness
mean in this case? One plausible, but as it turns out, incorrect, definition is that nullification
leaves the meaning of types unchanged.

I Conjecture 6.15 (Soundness – Incorrect). Let Γ `j T :: K, and let η be an environment
such that η � Γ. Then JT Kjη = JFnull(T)Ksη.

ECOOP 2020

25:20 Scala with Explicit Nulls

This conjecture is false because the meaning of generics differs between λj and λs. In
both cases, generics are denoted by functions on types, but the domains of the functions are
different:

JΠj(X :: ∗n).SKjη = λ(a ∈ Unull
1).JSKj(η[X → a])

JΠs(X :: ∗).SKsη = λ(a ∈ U1).JSKs(η[X → a])

That is, λj generics take arguments that are in Unull
1 (nullable arguments) and λs generics

have wider domains and take arguments from all of U1. This matches the behaviour in
Java and Scala, where the generic class List<A> gets “mapped” by nullification to the Scala
class List[A]. List<int> is then not valid in Java (because int is not a nullable type), but
List<int> is valid in Scala.

We can recover soundness via the following observation. If G is a Java generic, even
though JGKj and JGKs are not equal, for any valid type application G<T> in Java, JG < T >

Kj = JFnull(G < T >)Ks. That is, our soundness theorem will say that nullification leaves
fully-applied generic types unchanged. This is just as well because users can only manipulate
values of type G<T> and never values of type G directly.

Before we state the soundness theorem we need a few ancillary definitions.

I Definition 6.16 (Similar Types). Let S, T ∈ U1. Then we say S is similar to T , written
S ∼ T , if S ∪ {null} = T ∪ {null}.

That is, two types denotations are similar if they contain the same elements, except for
possibly null. Note that ∼ is symmetric.

I Definition 6.17 (Similar Type Vectors). Let ~S = (S1, . . . , Sn) and ~T = (T1, . . . , Tn) be
vectors of types, where ~S and ~T have the same number of elements. Then ~S ∼ ~T if they are
similar at every component.

I Definition 6.18 (Similar Environments). Let η, η′ be environments (either from λj or λs).
Then η is similar to η′, written η ∼ η′, if dom(η) = dom(η′) and for all type variables X in
the domain, we have η(X) ∼ η′(X).

Note this relation is also symmetric.

I Definition 6.19 (Similar Kinds). Let K1 and K2 be two base kinds. Then K1 K2 is
defined by case analysis.

∗ ∗ (SK-Prop)

∗v ∗v (SK-NonNull)

∗n ∗n (SK-Null1)

∗n ∗v (SK-Null2)

∗n ∗ (SK-Null3)

The rules in Definition 6.19 capture what happens to the kind of a type after being
transformed by Anull. For example, Stringj has kind ∗n in λj , but Anull(Stringj) = Strings
has kind ∗v in λs. This is described by rule (SK-Null2). The relation is not symmetric.
This reflects the fact that Anull turns ∗v types into ∗v types, but can turn a ∗n type into a
∗v type.

I Lemma 6.20. If K is a base kind, then K K.

A. Nieto, Y. Zhao, O. Lhoták, A. Chang, and J. Pu 25:21

Before proving soundness, we need to prove a weaker lemma that says that nullification
preserves well-kindedness. This lemma is necessary because if T is well-kinded and nullification
turns T into Fnull(T), the latter must be well-kinded as well.

I Lemma 6.21 (Nullification preserves well-kindedness). Let Γ `j T :: K and Γ′ = Fnull(Γ).
Then
1. Γ′ `s Fnull(T) :: Fnull(K).
2. If K is a base kind, there exists a kind K ′ with K K ′ such that Γ′ `s Anull(T) :: K ′.

I Definition 6.22 (Curried type application). If f is a function of m arguments and
~x = (x1, . . . , xm), we use the notation f(~x) to mean the curried function application
f(x1)(x2) . . . (xm). In the degenerate case where f is not a function (i.e. m = 0), we
set f(~x) = f .

We can finally show soundness. We need to strengthen the induction hypothesis to talk
about both Fnull and Anull.

I Theorem 6.23 (Soundness of type nullification). Let Γ `j T :: K. Let η, η′ be environments
such that η � Γ and η ∼ η′. Then the following two hold:
1. If K is a base kind, then

a. JT Kjη = JFnull(T)Ksη′ and
b. JT Kjη ∼ JAnull(T)Ksη′.

2. If K is a type application with arr(K) = m, let ~x and ~y be two m-vectors of elements of
Unull

1 and U1, respectively, with ~x ∼ ~y. Then JT Kjη(~x) = JFnull(T)Ksη′(~y).

The first assertion in the soundness theorem says that the meaning of base (non-
generic) types is unchanged by nullification. For example, the denotations of Stringj
and Fnull(Stringj) = Strings + Null are equal. The second assertion says that if we start
with a generic type that takes K arguments and apply it fully (i.e. apply it to K arguments),
and then we apply nullification, the meaning of the type application is also unchanged,
provided that the original type application is well-kinded in λj . For example, in λj we
can represent generic pairs by Pair = Πj(X :: ∗n).Πj(Y :: ∗n).X ×j Y . The theorem says
that if Pair(T1,T2) = Appj(Appj(Pair, T1), T2) is well-kinded in λj (i.e. both T1 and T2
are in ∗n), then the meaning of Pair(T1,T2) is also unchanged by nullification. That is,
JPair(T1,T2)Kj = JFnull(Pair(T1,T2))Ks.

6.5 Discussion
As Section 3.1 points out, both underapproximations and overapproximations in nullification
would lead to unsoundness, so “preserves elements of types” is a useful soundness criterion
for type nullification.

That the meaning of types with base kinds remains unchanged is important, because
program values always have base kinds. The meaning of generics is changed by nullification.
This reflects the fact that, in λs and Scala, type arguments can be either value or reference
types, while in λj and Java only reference types can be used. The soundness theorem
(Theorem 6.23) in this section shows that fully-applied generics (which have base kinds)
remain unchanged. Extrapolating, this means that Java types corresponding to fully-applied
generics (e.g. ArrayList<String>), can be represented exactly in Scala. The other direction
does not hold; e.g. the Scala type List[Int] cannot be represented directly in Java
(because Int is a value type). Instead, List[Int] must be translated as List<Integer> or
List<Object>, where Integer is the Java type for boxed integers. The type translation
from Scala to Java (erasure) is not modelled in this section and remains as future work.

ECOOP 2020

25:22 Scala with Explicit Nulls

7 Related Work

The related work we have identified can be divided into four classes:
Type systems for nullability in modern, widely used programming languages.
Schemes to guarantee sound initialization. These have been mostly implemented as
research prototypes, or as pluggable type systems.
Pluggable type systems that are not part of the “core” of a programming language, but
are used as checkers that provide additional guarantees (in our case, related to nullability).
Denotations of types.

7.1 Nullability in the Mainstream

Kotlin is an object-oriented, statically-typed programming language for the JVM [17]. Kotlin’s
flow typing handles both vars and vals, while our system currently only supports vals.
Additionally, Kotlin can recognize nullability annotations not just at the top-level, but also
within type arguments to generics. Nullability in Kotlin is expressed with a type modifier:
the reference type T is non-nullable, but T? is nullable. By contrast, in our design explicit
nullability is achieved through a combination of union types and a new type hierarchy. The
two approaches are comparable in their expressiveness, but in a language with support for
union types (such as Scala), our approach expresses nullability as a derived concept and
avoids introducing new kinds of types.

Kotlin handles Java interoperability via platform types. A platform type, written T!,
is a type with unknown nullability. Kotlin turns all Java-originated types into platform
types. Given a type T!, Kotlin allows casting it (automatically) into both a T? and a T.
The cast from T! to T? always succeeds, but the cast from T! to T might fail at runtime,
because the Kotlin compiler automatically inserts a runtime assertion that the value being
cast is non-null. We chose to represent types flowing into Scala code from Java using union
types and the JavaNull annotation. In this way we avoid introducing a new kind of type
(platform types) into the already-crowded Scala type system. Another reason for diverging
from the platform types approach is soundness. Kotlin allows (unsound) member selections
on platform types, just like we do in Scala via JavaNull, but platform types are even more
permissive. For example, Kotlin automatically casts a value of platform type String! to the
non-nullable type String; by contrast, in our design the type String | JavaNull is not a
subtype of String, so the cast needs to be applied manually. We can think of platform types
as a generalization of JavaNull that allows not only member selections, but also subtyping
with respect to non-nullable types. We wanted to strike a balance between soundness and
usability in our design, so we opted for a more restrictive approach than Kotlin’s in the
handling of Java-originated types.

Ceylon is another object-oriented, statically-typed language that also targets the JVM
[12]. Ceylon has union and intersection types, like Scala, and represents explicit nullability
via union types [13]. The main difference between Ceylon’s design and ours is the handling
of interoperability with Java. Ceylon, like Kotlin, takes an “optimistic” approach where all
Java-originated types used in Ceylon code are assumed to be non-nullable (and checked as
such at runtime, with automatically-generated assertions). By contrast, we assume that all
Java reference types are nullable, and so develop a type nullification function that turns Java
types, including generics, into equivalent Scala types. To our knowledge, we are the first to
formally describe type nullification, as well propose and prove a correctness criteria for it
(nullification preserves values of types).

A. Nieto, Y. Zhao, O. Lhoták, A. Chang, and J. Pu 25:23

Swift is a statically-typed programming language, originally designed for the iOS and
macOS ecosystems [4]. Swift has a nil reference, which is similar to null in Scala [5]. Types
in Swift are non-nullable by default, but one can use optionals to get back nullability. For
example, the type Int?, an optional, is either an integer or nil. Optionals can be force
unwrapped using the ! operator, which potentially raises a runtime error if the underlying
optional is nil. Swift also has a notion of optional binding, which is similar to the monadic
bind operator in Haskell [30], but specialized for optionals. Additionally, Swift has implicitly
unwrapped optionals, which are similar to Kotlin’s platform types. That is, the type Int!,
an implicitly unwrapped optional, need not be forced unwrapped explicitly before a value
can be retrieved, but if the underlying value is nil, it will produce a runtime error.

C# has reference types that are non-nullable by default. Compared to our design, C#
offers more fine-grained control over where explicit nulls are enabled. In our system, explicit
nulls can only be enabled or disabled at the project level. In C#, the user can additionally
opt in to explicit nulls for specific code regions via “pragmas” (program metadata).

7.2 Sound Initialization
Even with a type system that has non-nullable types, there is a possibility of unsoundness
because of incomplete initialization. This can happen, for example, due to dynamic dispatch,
or leaking of the this reference from the constructor to helper methods. The problem is
that in an unitialized (or partially uninitialized) object, the invariants enforced by the type
system need not hold yet. Specifically, fields that are marked as non-null might nevertheless
be null (or contain nonsensical data) because they have not yet been initialized.

Over the years, many solutions have been proposed for the sound initialization problem,
usually involving a combination of type system features and static analyses. These prior
designs include raw types [10], masked types [24], delayed types [11], the Freedom Before
Commitment scheme [29], and X10’s hardhat design [31]. These last two schemes have been
identified as the bases for a sound initialization scheme for Scala [19].

7.3 Pluggable Type Checkers
Another line of work that is relevant to nullability is pluggable type checkers. A pluggable
type checker is a custom-built typechecker that refines the typing rules of a host system [23].

The Checker Framework [23] is a framework for building pluggable type checkers for Java.
Users have the option of writing their typecheckers in a declarative style, which requires less
work (they do not need to write Java code) but is less expressive, or in a procedural style,
where the checker can have arbitrarily complex logic, but is therefore harder to implement.
One of the checkers that comes “pre-packaged” with the framework is the Nullness Checker.
In fact, “the Nullness Checker is the largest checker by far that has been built with the Checker
Framework” [9]. As of 2017, the Nullness Checker implemented a variant of the Freedom
Before Commitment scheme, as well as support for flow typing and multiple heuristics to
improve the accuracy of its static analysis [7, 9]. Dietl et al. [9] conducted an extensive
evaluation of the Nullness Checker in production code, finding multiple errors in the Google
Collections library for Java.

The Granullar project [7] combines the null checker from the Checker Framework with
techniques from gradual typing [28]. Granullar allows the user to migrate only part of a
project to use null checks. To that effect, the code under consideration is divided into checked
and unchecked regions. Nullability checks are done statically within the checked region,
using the Freedom Before Commitment scheme implemented by the Checker Framework.

ECOOP 2020

25:24 Scala with Explicit Nulls

No checks are done for the unchecked portion of the code. However, Granullar insulates
the checked region from unsafe interactions with the unchecked region by inserting runtime
non-null checks at the boundary.

NullAway [6] is a nullness checker for Android applications developed at Uber. NullAway is
implemented as a pluggable type system on top of the Error Prone framework [1]. NullAway
trades away soundness for efficiency. Specifically, the tool is unsound in multiple ways:
its initialization checks ignore the problem of leaking the this reference, all unchecked
methods are assumed to return non-null values, and flow typing assumes that all methods
are pure and deterministic. In exchange for the unsoundness, NullAway has a lower build-
time (2.5x) and annotation overheads than similar tools (2.8 - 5.1x) [6]. After extensive
empirical evaluation [6], NullAway’s authors note that the unsound assumptions do not lead
to nullability errors in practice.

7.4 Semantics of Nullification
The model of System Fω that we used is based on the one given by Mitchell [20] for System
F (which, in turn, is based on Bruce et al. [8]). The denotations for sums and product types
are standard in the literature.

There is one deviation from Mitchell [20] in how we construct denotations for generics.
The standard way is to say that the denotation of a generic type is an (infinite) Cartesian
product, whereas we use a simple function on types. That is, instead of saying JΠs(X ::
∗).SKsη =

∏
a∈U1

JSKj(η[X → a]), we define JΠs(X :: ∗).SKsη = λ(a ∈ U1).JSKs(η[X → a]).
The reason for the discrepancy is that λj and λs have type applications at the type level (e.g.
Appj(S, T)), whereas in System F, type applications are terms (e.g. t [T]). If we use the
variant with the Cartesian product, then JApps(Πs(X :: ∗).X, ints)Ks∅ would be an element
of JintsKs (an element of Z). However, what we need for the soundness theorem is that
JApps(Πs(X :: ∗).X, ints)Ks∅ be equal to JintsKs, hence the second definition.

The novelty of our work is the use of denotational semantics for reasoning specifically
about nullification. We are not aware of any related work that formalizes and proves soundness
of nullification.

8 Conclusions

In this paper, we described a modification to the Scala type system that makes nullability
explicit in the types. Reference types are no longer nullable, and nullability can be recovered
using type unions. Because interoperability with Java is important, a type nullification
phase translates Java types into Scala types. A simple form of flow typing allows for more
idiomatic handling of nullable values. We implemented the design as a modification to the
Dotty compiler.

To evaluate the implementation of explicit nulls, we migrated Scala programs from the
Dotty community build to use the new type system. The results confirm that Scala code uses
null references sparingly and that our system requires few modifications to the Scala internals
of existing programs, with the significant exception of the places where Scala code interacts
with Java code. The Java type system does not provide information about which references
could be null. A Scala programmer faces an inevitable choice: One option is to annotate the
Java code or to defensively check for the possibility of a null reference at every call to a Java
method (and the type system can enforce such checks), but this requires considerable effort
in programs that contain many such calls. Another option is to configure the type system to

A. Nieto, Y. Zhao, O. Lhoták, A. Chang, and J. Pu 25:25

optimistically but unsoundly assume that Java methods do not return null, which makes
migration to the type system easy, but retains the possibility of null dereference exceptions
if the Java methods violate the assumption.

We also showed how the intuitive reasoning about nullification based on sets can be given
a solid formal footing, via denotational semantics. First, we presented λj and λs, two type
systems based on System Fω restricted to second-order type operators. These type systems
formalize the implicit and explicit nature of null in Java and Scala, respectively. We then
gave simple set-theoretic models for λj and λs, which in turn allow us to define denotations
for types and kinds. We formalized nullification as a function from λj types to λs types.
Finally, we proved a soundness theorem that says that nullification leaves the meaning of
types largely unchanged.

References
1 Edward Aftandilian, Raluca Sauciuc, Siddharth Priya, and Sundaresan Krishnan. Building

Useful Program Analysis Tools Using an Extensible Java Compiler. In 2012 IEEE 12th
International Working Conference on Source Code Analysis and Manipulation, pages 14–23.
IEEE, 2012.

2 Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. The essence
of dependent object types. In A List of Successes That Can Change the World - Essays
Dedicated to Philip Wadler on the Occasion of His 60th Birthday, pages 249–272, 2016.

3 Nada Amin and Ross Tate. Java and Scala’s Type Systems are Unsound: The Existential Crisis
of Null Pointers. In Eelco Visser and Yannis Smaragdakis, editors, Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands,
October 30 - November 4, 2016, pages 838–848. ACM, 2016. doi:10.1145/2983990.2984004.

4 Apple Inc. About swift. [Online; accessed 5-November-2019]. URL: https://docs.swift.
org/swift-book/.

5 Apple Inc. Swift language guide. [Online; accessed 5-November-2019]. URL: https://docs.
swift.org/swift-book/LanguageGuide/TheBasics.html.

6 Subarno Banerjee, Lazaro Clapp, and Manu Sridharan. Nullaway: Practical Type-Based Null
Safety for Java. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pages
740–750. ACM, 2019.

7 Dan Brotherston, Werner Dietl, and Ondřej Lhoták. Granullar: Gradual Nullable Types for
Java. In Proceedings of the 26th International Conference on Compiler Construction, pages
87–97. ACM, 2017.

8 Kim B Bruce, Albert R Meyer, and John C Mitchell. The Semantics of Second-Order Lambda
Calculus. Information and Computation, 85(1):76–134, 1990.

9 Werner Dietl, Stephanie Dietzel, Michael D Ernst, Kivanç Muşlu, and Todd W Schiller.
Building and Using Pluggable Type-Checkers. In Proceedings of the 33rd International
Conference on Software Engineering, pages 681–690. ACM, 2011.

10 Manuel Fähndrich and K. Rustan M. Leino. Declaring and Checking Non-Null Types in an
Object-Oriented Language. In Ron Crocker and Guy L. Steele Jr., editors, Proceedings of the
2003 ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and
Applications, OOPSLA 2003, October 26-30, 2003, Anaheim, CA, USA, pages 302–312. ACM,
2003. doi:10.1145/949305.949332.

11 Manuel Fähndrich and Songtao Xia. Establishing Object Invariants with Delayed Types. In
Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy L. Steele Jr., editors,
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec,
Canada, pages 337–350. ACM, 2007. doi:10.1145/1297027.1297052.

ECOOP 2020

https://doi.org/10.1145/2983990.2984004
https://docs.swift.org/swift-book/
https://docs.swift.org/swift-book/
https://docs.swift.org/swift-book/LanguageGuide/TheBasics.html
https://docs.swift.org/swift-book/LanguageGuide/TheBasics.html
https://doi.org/10.1145/949305.949332
https://doi.org/10.1145/1297027.1297052

25:26 Scala with Explicit Nulls

12 Gavin King. The Ceylon Language. [Online; accessed 30-May-2020]. URL: https:
//ceylon-lang.org/.

13 Gavin King. Using Java From Ceylon. [Online; accessed 30-May-2020]. URL: https://
ceylon-lang.org/documentation/1.2/reference/interoperability/java-from-ceylon/.

14 Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

15 Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. Typing Local Control and State
Using Flow Analysis. In European Symposium on Programming, pages 256–275. Springer,
2011.

16 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core
calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.

17 Kotlin Foundation. Kotlin programming language. [Online; accessed 5-November-2019]. URL:
https://kotlinlang.org/.

18 Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java virtual machine
specification. Pearson Education, 2014.

19 Fengyun Liu, Aggelos Biboudis, and Martin Odersky. Initialization Patterns in Dotty. In
Proceedings of the 9th ACM SIGPLAN International Symposium on Scala, pages 51–55. ACM,
2018.

20 John C Mitchell. Foundations for Programming Languages, volume 1. MIT press Cambridge,
1996.

21 MITRE. 2019 CWE Top 25 Most Dangerous Software Errors. [Online; accessed 17-November-
2019]. URL: https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html.

22 Abel Nieto Rodriguez. Scala with explicit nulls. Master’s thesis, University of Waterloo, 2019.
23 Matthew M Papi, Mahmood Ali, Telmo Luis Correa Jr, Jeff H Perkins, and Michael D Ernst.

Practical Pluggable Types for Java. In Proceedings of the 2008 international symposium on
Software testing and analysis, pages 201–212. ACM, 2008.

24 Xin Qi and Andrew C. Myers. Masked Types for Sound Object Initialization. In Zhong Shao
and Benjamin C. Pierce, editors, Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January 21-23,
2009, pages 53–65. ACM, 2009. doi:10.1145/1480881.1480890.

25 Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták. A simple soundness proof for
dependent object types. PACMPL, 1(OOPSLA):46:1–46:27, 2017.

26 John C Reynolds. Towards a Theory of Type Structure. In Programming Symposium, pages
408–425. Springer, 1974.

27 Tiark Rompf and Nada Amin. Type soundness for dependent object types (DOT). In Proceed-
ings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam,
The Netherlands, October 30 - November 4, 2016, pages 624–641, 2016.

28 Jeremy G Siek and Walid Taha. Gradual Typing for Functional Languages. In Scheme and
Functional Programming Workshop, volume 6, pages 81–92, 2006.

29 Alexander J. Summers and Peter Müller. Freedom Before Commitment: a Lightweight Type
System for Object Initialisation. In Cristina Videira Lopes and Kathleen Fisher, editors,
Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2011, part of SPLASH 2011, Portland, OR,
USA, October 22 - 27, 2011, pages 1013–1032. ACM, 2011. doi:10.1145/2048066.2048142.

30 Philip Wadler. Monads for Functional Programming. In International School on Advanced
Functional Programming, pages 24–52. Springer, 1995.

31 Yoav Zibin, David Cunningham, Igor Peshansky, and Vijay Saraswat. Object Initialization
in X10. In European Conference on Object-Oriented Programming, pages 207–231. Springer,
2012.

https://ceylon-lang.org/
https://ceylon-lang.org/
https://ceylon-lang.org/documentation/1.2/reference/interoperability/java-from-ceylon/
https://ceylon-lang.org/documentation/1.2/reference/interoperability/java-from-ceylon/
https://kotlinlang.org/
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://doi.org/10.1145/1480881.1480890
https://doi.org/10.1145/2048066.2048142

A Type-Directed Operational Semantics
For a Calculus with a Merge Operator
Xuejing Huang
The University of Hong Kong, China
xjhuang@cs.hku.hk

Bruno C. d. S. Oliveira
The University of Hong Kong, China
bruno@cs.hku.hk

Abstract
Calculi with disjoint intersection types and a merge operator provide general mechanisms that
can subsume various other features. Such calculi can also encode highly dynamic forms of object
composition, which capture common programming patterns in dynamically typed languages (such as
JavaScript) in a fully statically typed manner. Unfortunately, unlike many other foundational calculi
(such as System F , System F<: or Featherweight Java), recent calculi with the merge operator lack
a (direct) operational semantics with standard and expected properties such as determinism and
subject-reduction. Furthermore the metatheory for such calculi can only account for terminating
programs, which is a significant restriction in practice.

This paper proposes a type-directed operational semantics (TDOS) for λ:
i: a calculus with

intersection types and a merge operator. The calculus is inspired by two closely related calculi by
Dunfield (2014) and Oliveira et al. (2016). Although Dunfield proposes a direct small-step semantics
for her calculus, her semantics lacks both determinism and subject-reduction. Using our TDOS
we obtain a direct semantics for λ:

i that has both properties. To fully obtain determinism, the
λ:

i calculus employs a disjointness restriction proposed in Oliveira et al.’s λi calculus. As an added
benefit the TDOS approach deals with recursion in a straightforward way, unlike λi and subsequent
calculi where recursion is problematic. To further relate λ:

i to the calculi by Dunfield and Oliveira et
al. we show two results. Firstly, the semantics of λ:

i is sound with respect to Dunfield’s small-step
semantics. Secondly, we show that the type system of λ:

i is complete with respect to the λi type
system. All results have been fully formalized in the Coq theorem prover.

2012 ACM Subject Classification Theory of computation → Type theory; Software and its engin-
eering → Object oriented languages; Software and its engineering → Polymorphism

Keywords and phrases operational semantics, type systems, intersection types

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.26

Supplementary Material ECOOP 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.2.9.
https://github.com/XSnow/ECOOP2020

Funding This work has been sponsored by Hong Kong Research Grant Council projects number
17210617 and 17209519.

Acknowledgements We thank the anonymous reviewers for their helpful comments.

1 Introduction

The merge operator was firstly introduced by Reynolds in the Forsythe language [43] over 30
years ago. It has since been studied, refined and used in some language designs by multiple
researchers [2, 5, 9, 20,23,39]. At its essence the merge operator allows creating values that
can have multiple types (encoded as intersection types [18, 41]). For example, with the merge
operator, the following program is valid:

let x : Int & Bool = 1 , , True in (x + 1, not x)

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Xuejing Huang and Bruno C. d. S. Oliveira;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 26; pp. 26:1–26:32

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8496-491X
mailto:xjhuang@cs.hku.hk
mailto:bruno@cs.hku.hk
https://doi.org/10.4230/LIPIcs.ECOOP.2020.26
https://doi.org/10.4230/DARTS.6.2.9
https://github.com/XSnow/ECOOP2020
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 A Type-Directed Operational Semantics for a Calculus with a Merge Operator

Here the variable x has two types, expressed by the intersection type Int & Bool. The
corresponding value for x is built using the merge operator (, ,). Later uses of x , such as the
expression (x+ 1, not x) can use x both as an integer or as a boolean. For this particular
example, the result of executing the expression is the pair (2, False).

The merge operator adds expressive power to calculi with intersection types. Much work
on intersection types has focused on refinement intersections [21, 24, 28], which only increase
the expressive power of types. In systems with refinement intersections, types can simply
be erased during compilation. However, in those systems the intersection type Int & Bool is
invalid since Int and Bool are not refinements of each other. In other systems, including many
OO languages with intersection types [25,34,36,42], the type Int & Bool has no inhabitants
and the simple program above is inexpressible. The merge operator adds expressiveness to
terms and allows constructing values that inhabit the intersection type Int & Bool.

There are various practical applications for the merge operator. One benefit, as Dun-
field [23] argues, is that the merge operator and intersection types provide “general mechanisms
that subsume many different features”. This is important because often a new type system
feature involves extending the metatheory and implementation, which can be non-trivial. If
instead we provide general mechanisms that can encode such features, then adding new fea-
tures will become a lot easier. Dunfield has illustrated this point by showing that multi-field
records, overloading and forms of dynamic typing can all be easily encoded in the presence
of the merge operator. More recently, the merge operator has been used in calculi with
disjoint intersection types [2, 5, 20] to encode several non-trivial object-oriented features,
which enable highly dynamic forms of object composition not available in current mainstream
languages such as Scala or Java. These include first-class traits [4], dynamic mixins [2],
and forms of family polymorphism [5]. These features allow, for instance, capturing widely
used and expressive techniques for object composition used by JavaScript programmers (and
programmers in other dynamically typed languages), but in a completely statically type-safe
manner [2,4]. For example, in the SEDEL language [4], which is based on disjoint intersection
types, we can define and use first-class traits such as:

// addId takes a trait as an argument, and returns another trait
addId(super : Trait[Person], idNumber : Int) : Trait[Student] =

trait inherits super ⇒ { // dynamically inheriting from an unknown person
def id : Int = idNumber

}

Similarly to classes in JavaScript, first-class traits can be passed as arguments, returned
as results, and they can be constructed dynamically (at run-time). In the program above
inheritance is encoded as a merge in the core language with disjoint intersection types used
by SEDEL.

Despite over 30 years of research, the semantics of the merge operator has proved to be
quite elusive. Because of its foundational importance, we would expect a simple and clear
direct semantics to exist for calculi with a merge operator. After all, this is what we get for
other foundational calculi such as the simply typed lambda calculus, System F , System Fω, the
calculus of constructions, System F<:, Featherweight Java and others. All these calculi have
a simple and elegant direct operational semantics (often presented in a small-step style [55]).
While for the merge operator there have been efforts in the past to define a direct operational
semantics, these efforts have placed severe limitations that disallow many of the applications
previously discussed or they lacked important properties. Reynolds [44] was the first to look
at this problem, but in his calculus the merge operator is severely limited (for instance a
merge of two functions is not possible). Castagna [9] studied another calculus, where only
merges of functions are possible. Pierce [39] was the first to briefly consider a calculus with

X. Huang and B. C. d. S. Oliveira 26:3

an unrestricted merge operator (called glue in his own work). He discussed an extension to
F∧ with a merge operator but he did not study the dynamic semantics with the extension.
Finally, Dunfield [23] goes further and presents a direct operational semantics for a calculus
with an unrestricted merge operator. However the problem is that subject-reduction and
determinism are lost.

Dunfield also presents an alternative way to give the semantics for a calculus with the merge
operator indirectly by elaboration to another calculus. This elaboration semantics is type-safe
and offers, for instance, a reasonable implementation strategy, and it is also employed in more
recent work on the merge operator with disjoint intersection types. However the elaboration
semantics has two important drawbacks. Firstly, reasoning about the elaboration semantics
is much more complex: to understand the semantics of programs with the merge operator
we have to understand the translation and semantics of the target calculus. This complicates
informal and formal reasoning. Secondly, a fundamental property in an elaboration semantics
is coherence [44] (which ensures that the meaning of a program is not ambiguous). All
existing calculi with disjoint intersection types prove coherence, but this currently comes at
a high price: the calculi and proof techniques employed to prove coherence can only deal
with terminating programs. A severe limitation in practice!

This paper presents a type-directed operational semantics (TDOS) for λ:
i: a calculus with

intersection types and a merge operator [43]. λ:
i is inspired by closely related calculi by

Dunfield [23] and Oliveira et al. (λi) [20], but addresses two key difficulties in the dynamic
semantics of calculi with a merge operator. The first one is the type-dependent nature of the
merge operator. This difficulty is addressed by using types in the TDOS to guide reduction,
which is crucial to prove subject-reduction. The second difficulty is that a fully unrestricted
merge operator is inherently ambiguous. For instance the merge 1, , 2 can evaluate to both 1
and 2. Therefore some restriction is still necessary for a deterministic semantics. To fully
obtain determinism, the λ:

i calculus uses the disjointness restriction that is employed in λi and
several other calculi using disjoint intersection types, and two important new notions: typed
reduction and consistency. Typed reduction is a reduction relation that can further reduce
values under a certain type. In other words, type annotations influence operational behavior:
two programs that differ only in type annotations may behave differently. Consistency is an
equivalence relation on values, that is key for the determinism result. Determinism in TDOS
offers the same guarantee that coherence offers in an elaboration semantics (both properties
ensure that the semantics is unambiguous), but it is much simpler to prove. Additionally,
the TDOS approach deals with recursion in a straightforward way, unlike λi and subsequent
calculi where recursion is very problematic for proving coherence.

To further relate λ:
i to the calculi by Dunfield and Oliveira et al. we show two results.

Firstly, we show that the type system of λ:
i is complete with respect to the type system of λi.

Secondly, the semantics of λ:
i is sound with respect to Dunfield’s semantics. In our work we

use two variants of λ:
i: one that follows Dunfield’s original formulation of subtyping, and

another with a more powerful subtyping relation inspired by Bi et al. [5]. The more powerful
subtyping relation enables λ:

i to account for merges of functions in a natural way, which
was awkward in λi. For the variant with the extension we also require a minor extension to
Dunfield’s operational semantics. The two variants of the λ:

i calculus and its metatheory
have been fully formalized in the Coq theorem prover.

In summary, the contributions of this paper are:
The λ:

i calculus and its TDOS:We present a TDOS for λ:
i: a calculus with intersection

types and a merge operator. The semantics of λ:
i is both deterministic and it has subject-

reduction.

ECOOP 2020

26:4 A Type-Directed Operational Semantics for a Calculus with a Merge Operator

Support for non-terminating programs: Our new proof methods can deal with
recursion, unlike the proof methods used in previous calculi with disjoint intersection
types [5, 6], due to limitations of the current proof approaches for coherence.
Typed reduction and consistency: We propose the novel notions of typed reduction
and consistency, which are useful to prove determinism and subject-reduction.
Relation with other calculus with intersection types: We relate λ:

i with the calculi
proposed by Dunfield and Oliveira et al (λi). In short all programs that are accepted in
λi can type-check with our type system, and the semantics of λ:

i is sound with respect to
Dunfield’s semantics.
Coq formalization: All the results presented in this paper have been formalized in the
Coq theorem prover and they are available in the supplementary material.

2 Overview

This section gives an overview of the type-directed operational semantics for λ:
i. We first

provide some background about the applications of the merge operator. Then we introduce
Dunfield’s untyped semantics [23], and identify its problems: the non-determinism of the
semantics and the lack of subject-reduction. Dunfield’s semantics is nonetheless used to
guide the design of our own TDOS. We show how the TDOS of λ:

i uses type annotations to
guide reduction, thus obtaining a deterministic semantics that also has the subject-reduction
property.

2.1 First-Class Traits: An Application of the Merge Operator
To give an idea of the kinds of applications for calculi with a merge operator, we briefly present
one existing application: typed first-class traits [4]. Traits [46] in object-oriented programming
provide a model of multiple inheritance. Both traits and mixins [27] encapsulate a collection
of related methods to be added to a class. When composing multiple traits/mixins, conflicts
are dealt differently. Mixins use the order of composition to determine which implementation
to pick. Traits require programmers to explicitly resolve the conflicts instead, and reject
compositions with conflicts. Merges with disjoint intersection types are closely related to
traits because merges with conflicts are also rejected.

Here we borrow an example from the SEDEL language [4] to demostrate how it encodes
(typed) first-class traits and dynamic inheritance via the merge operator.
type Editor = {on_key : String → String, do_cut : String, show_help : String};
type Version = {version : String};

trait editor [self : Editor & Version] ⇒ {
on_key(key : String) = "Pressing " ++ key;
do_cut = self.on_key "C-x" ++ " for cutting text";
show_help = "Version: " ++ self.version ++ " Basic usage..."

};

In SEDEL traits are elaborated into a core calculus with disjoint intersection types and a
merge operator. A trait can be viewed as a function taking a self argument and producing
a record. In this example, the record, which contains three fields, is encoded as a merge
of three single field records. Because all the fields have distinct field names, the merge is
disjoint and the definition is accepted. Similarly to a JavaScript class, in the trait editor, the
doCut method calls the onKey method via the self reference and it is dynamically dispatched.
What is more, traits in SEDEL have a self type annotation which is similar to Scala [36]. In
this example, the type of the self reference is the intersection of two record types Editor and

X. Huang and B. C. d. S. Oliveira 26:5

Version. Note that show_help is defined in terms of an undefined version method. Usually,
in a statically typed language like Java, an abstract method is required, making editor an
abstract class. Instead, SEDEL encodes abstract methods via self-types. The requirements
stated by the type annotation of self must be satisfied when later composing editor with
other traits, i.e. an implementation of the method version should be provided.

The interesting features in SEDEL are that traits are first-class and inheritance can be
dynamic. The following example illustrates such features:

type Spelling = {check : String};

spell_mixin (base : Trait[Editor & Version, Editor]) =
trait [self : Editor & Version] inherits base ⇒ {
override on_key(key : String) = "Process " ++ key ++ " on spell editor";
check = super.on_key "C-c" ++ " for spelling check"

}

The above function takes a trait as an argument, and returns a trait as a result. The
argument base is a trait of type Trait[Editor & Version, Editor], where the two types denote
trait requirements and functionality respectively. The trait editor has type Trait[Editor
& Version, Editor], since it requires Editor & Version and only provides those method
specified by Editor. Therefore, editor can be used as an argument for spell_mixin. Note
that unlike mainstream OOP languages like Java, the inherited trait (which would correspond
to a superclass in Java) is parametrized, thus enabling dynamic inheritance. In SEDEL the
choice of the inherited trait (i.e. the superclass) can happen at run-time, unlike in languages
with static inheritance (such as Java or Scala). Finally, also note the use of the keyword
override to override on_key. Without such keyword the definition of spell_mixin would be
rejected due to a conflict (or a violation of disjointness), since base already provides an
implementation of on_key. For a more detailed description of SEDEL and first-class traits
we refer the reader to the work by Bi et al. [4].

2.2 Background: Dunfield’s Non-Deterministic Semantics
Dunfield studied the semantics of a calculus with intersection types and a merge operator.
The interesting aspect of her calculus is the merge operator, which takes two terms e1 and e2,
of some types A and B, to create a new term that can behave both as a term of type A and
as a term of type B. Intersection types and the merge operator in Dunfield’s calculus are
similar to pair types and pairs. Indeed, a program written with pairs that behaves identically
to the program shown in Section 1 is:

let x : (Int,Bool) = (1,True) in (fst x + 1, not (snd x))

However while for pairs both the introductions and eliminations are explicit, with the merge
operator the eliminations (i.e. projections) are implicit and driven by the types of the terms.
Dunfield exploits this similarity to give a type-directed elaboration semantics to her calculus.
The elaboration transforms merges into pairs, intersection types into pair types and inserts
the missing projections.

Syntax. The top of Figure 1 shows the syntax of Dunfield’s calculus. Types include a
top type Top, function types (A → B) and intersection types (written as A&B). Most
expressions are standard, except the merges (E1 , , E2). The calculus also includes a canonical
top value >, and allows variables to be values. Note that the original Dunfield’s calculus
uses a different notation for intersection types (A ∧B), and supports union types (A ∨B).

ECOOP 2020

26:6 A Type-Directed Operational Semantics for a Calculus with a Merge Operator

Type A,B ::= Top | A→ B | A&B

Expr E ::= x | > | λx.E | E1 E2 | fixx.E | E1 , , E2
V alue V ::= x | > | λx.E | V1 , , V2

E E′ (Operational semantics of Dunfield’s calculus)

DStep-appl
E1 E′1

E1 E2 E′1 E2

DStep-appr
E2 E′2

V1 E2 V1 E
′
2

DStep-beta

(λx. E)V E[x 7→ V]

DStep-fix

fix x. E E[x 7→ fix x. E]

DStep-mergel
E1 E′1

E1 , , E2 E′1 , , E2

DStep-merger
E2 E′2

V1 , , E2 V1 , , E
′
2

DStep-unmergel

E1 , , E2 E1

DStep-unmerger

E1 , , E2 E2

DStep-split

E E , , E

Figure 1 The syntax and non-deterministic small-step semantics of Dunfield’s calculus.

Union types are not supported by λ:
i, since it is based on the λi calculus [20] with disjoint

intersection types, which does not have unions either. For a better comparison, we adjust
the syntax and omit union types in Dunfield’s system.

Operational Semantics. The bottom part of Figure 1 presents the reduction rules. The
interesting construct is the merge operator, as all other rules not involving the merge operator
are standard call-by-value reduction rules. The reduction of a merge construct in Dunfield’s
calculus is quite flexible: a merge of two expressions (which do not even need to be two
values) can step to its left subexpression (by rule DStep-unmergel) or the right one (by
rule DStep-unmerger). Any expressions can split into two by rule DStep-split. Therefore,
even though the reduction rules may have already reached a value form, it is still possible to
step further using rule DStep-split.

Problem 1: No Subject-Reduction. A major problem of this operational semantics is that
it does not preserve types. Note that reduction is oblivious of types, so a term can reduce to
two other terms with potentially different (and unrelated) types. For instance:

1 , , True 1 1 , , True True

Here the merge of an integer and a boolean is reduced to either the integer (using rule DStep-
unmergel) or the boolean (using rule DStep-unmerger). In Dunfield’s calculus the term
1 , , True can have multiple types, including Int or Bool or even Int & Bool. As a consequence,
the semantics is not type-preserving in general.

What is worse, a well-typed expression can reduce to an expression that is ill-typed:

(1 , , λx. x + 1) 2 1 2

This reduction leads to an ill-typed term (with any type) because we drop the lambda instead
of the 1 in the merge.

X. Huang and B. C. d. S. Oliveira 26:7

Problem 2: Non-determinism. Even in the case of type-preserving reductions there can
be another problem. Because of the pair of unmerge rules (rule DStep-unmergel and
rule DStep-unmerger), the choice between a merge always has two options. This means
that a reduced term can lead to two other terms of the same type, but with different meanings.
For example:

1 , , 2 1 1 , , 2 2

There is even a third option to reduce a merge with the split rule (rule DStep-split):

1 , , 2 (1 , , 2) , , (1 , , 2)

In other words the semantics is non-deterministic.
Note that Dunfield’s operational semantics is an overapproximation of the intended

behavior. In her work, it is used to provide a soundness result for her elaboration semantics,
which is type-safe (but still ambiguous).

2.3 A Type-Driven Semantics for Type Preservation
An essential problem is that the semantics cannot ignore the types if the reduction is meant
to be type-preserving. Dunfield notes that “For type preservation to hold, the operational
semantics would need access to the typing derivation” [23]. To avoid run-time type-checking,
we design a type-driven semantics and use type annotations to guide reduction. Therefore our
λ:

i calculus is explicitly typed, unlike Dunfield’s calculus. Nevertheless, it is easy to design
source languages that infer some of the type annotations and insert them automatically to
create valid λ:

i terms as we will see in Section 5. We discuss the main challenges and key
ideas of the design of λ:

i next.

Type-driven Reduction. Our operational semantics follows a standard call-by-value small-
step reduction and it is closely related to Dunfield’s semantics. However, type annotations
play an important role in the reduction rules and are used to guide reduction. For example, in
λ:

i we can write explicitly annotated expressions such as (1 , , True) : Int and (1 , , True) : Bool.
For those expressions the following reductions are valid:

(1 , , True) : Int ↪→ 1 (1 , , True) : Bool ↪→ True

In contrast the following reductions are not possible:

(1 , , True) : Bool ↪→� 1 (1 , , True) : Int ↪→� True

Note also that in λ:
i the meaning of expression 1 , , True without any type annotation can

only be a corresponding value 1 , , True that does not drop any information.

Typed Reduction. The crucial component in the operational semantics that enables the use
of type information during reduction is an auxiliary typed reduction relation v ↪→A v′ that is
used when we want some value to match a type. Typed reduction is where type information
from annotations in λ:

i “filters” reductions that are invalid due to a type mismatch. Typed
reduction takes a value and a type (which can be viewed as inputs), and gives a unique value
of that type as output. Note that this process may result in further reduction of the value,
unlike many other languages where values can never be further reduced. Typed reduction is
used in two places during reduction:

ECOOP 2020

26:8 A Type-Directed Operational Semantics for a Calculus with a Merge Operator

Step-annov
v ↪→A v′

v : A ↪→ v′

Step-beta
v ↪→A v′

(λx. e : A→ B) v ↪→ (e[x 7→ v′]) : B

The first place where typed reduction is used is in rule Step-annov. When reduction
encounters a value with a type annotation A it uses typed reduction to do further reduction
depending on the type A. To see typed reduction in action, consider a simple merge of
primitive values such as 1 , , True , , ‘c’ with an annotation Int & Char. Using rule Step-annov
typed reduction is invoked, resulting in:

1 , , True , , ‘c’ ↪→Int & Char 1 , , ‘c’

We could have type-reduced the same value under a similar type but where the two types in
the intersection are interchanged:

1 , , True , , ‘c’ ↪→Char & Int ‘c’ , , 1

Both typed reductions are valid and they illustrate the ability of typed reduction to create a
value that matches exactly with the shape of the type.

The second place where typed reduction is used is in rule Step-beta. In a function
application, the actual argument could be a merge containing more components than what
the function expects. One example is (λx. x + 1 : Int → Int) (1 , , True). Since the merge
term (1 , , True) provides an integer 1, the redundant components (the True in this case)
are useless, and sometimes even harmful. Consider a function λx. (x , , False) with type
Int→ Int & Bool, applied to (1 , , True). If we performed direct substitution of the argument
in the lambda body, this would result in 1 , , True , , False. This brings ambiguity, and the
term is not well-typed, as we shall see in Section 2.5. Therefore, before substitution, the
value must be further reduced with typed reduction under the expected type of the function
argument. Thus the value that is substituted in the lambda body is 1 (but not 1 , , True),
and the final result is 1 , , False.

These examples show some non-trivial aspects of typed reduction, which must decompose
values, and possibly drop some of the components and permute other components. The
details of the typed reduction relation will be discussed in Section 4. As we shall see functions
introduce further complications.

2.4 The Challenges of Functions
One of the hardest challenges in designing the semantics of λ:

i was the design of the rules for
functions. We discuss the challenges next.

Return Types Matter. As we have seen above, the input type annotation of lambdas is
necessary during beta reduction. However, it is not enough to distinguish among multiple
functions in a merge (e.g. (λx. x + 1) , , (λx.True)) without run-time type checking. Unlike
primitive values, whose types can be told by their forms, for functions, we need the type of the
function (including the output type) to select the right function from a merge. Therefore, in
λ:

i all functions are annotated with both the input and output types. With such annotations
we can deal with programs such as:

((λf.f 1) : (Int→ Int)→ Int) ((λx. x + 1) : Int→ Int , , (λx.True) : Int→ Bool)

X. Huang and B. C. d. S. Oliveira 26:9

In this program we have a lambda that takes a function f as an argument and applies it to
1. The lambda is applied to the merge of two functions of types Int→ Int and Int→ Bool.
To select the right function from the merge, the types of the functions are used to guide the
reduction of the merge. This avoids the need for run-time type-checking, which would be
otherwise necessary to recover the full type of functions.

Annotation Refinement. Given a value, for any of its supertypes, typed reduction gives
a result. Since functions are values, sometimes this leads to the refinement of the type
annotation of lambdas. Following the convention introduced by previous works [20], → has
lower precedence than &, which means A→ B&C equals to A→ (B&C). Consider a single
function λx. x , , True : Int → Int & Bool to be reduced under type Int & Bool → Int. To let
the function return an integer when applied to a merge of type Int & Bool, we must change
either the lambda body or the embedded annotation. Since reducing under a lambda body
is not allowed in call-by-value, λ:

i adopts the latter option, and treats the input and output
annotations differently. The input annotation should not be changed as it represents the
expected input type of the function and helps to adjust the input value before substitution
in beta reduction. The output annotation, in contrast, must be replaced by Int, representing
a future reduction to be done after substitution. The output of the application then can be
thought as an integer and can be safely merged with another boolean, for example. In short,
the actual λ:

i reduction is:

((λx. x , , True) : Int→ Int & Bool) : Int & Bool→ Int
↪→ (λx. x , , True) : Int→ Int

2.5 Disjoint Intersection Types and Consistency for Determinism

Even if the semantics is type-directed and it rules out reductions that do not preserve types,
it can still be non-deterministic. To solve this problem, we employ the disjointness restriction
proposed by Oliveira et al. [20] and the novel notion of consistency. Both disjointness and
consistency play a fundamental role in the proof of determinism.

Disjointness. Two types are disjoint (written as A ∗ B), if any common supertypes that
they have are top-like types (i.e. supertypes of any type; written as eCd).

I Definition 1 (Disjoint Types).

A ∗B ≡ ∀C, if A <: C and B <: C then eCd

Intuitively, if two types are disjoint (e.g. Int & Char ∗Bool), their corresponding values do not
overlap (e.g. 1 , , ‘c’ and True). The only exceptions are top-like types, as they are disjoint
with any types [2]. Since every value of a top-like type has the same effect, typed reduction
unifies them to a fixed result. Thus the disjointness checking in the following typing rule
guarantees that e1 and e2 can be merged safely, without any ambiguities. For example, this
typing rule does not accept 1 , , 2 or True , , 1 , , False, as two subterms of the merge have
overlapped types (in this case, the same type Int and Bool, respectively).

Γ ` e1 : A Γ ` e2 : B A ∗B
Γ ` e1 , , e2 : A&B

Etyp-merge

ECOOP 2020

26:10 A Type-Directed Operational Semantics for a Calculus with a Merge Operator

Consistency. Recall the split rule (rule DStep-split) in Dunfield’s semantics: E E , , E.
It duplicates terms in a merge. Similar things can happen in our typed reduction if the type
has overlapping parts, which is allowed, for example, in an expression 1 : Int & Int. Note
that in this expression the term 1 can be given type annotation Int & Int since Int <: Int & Int.
During reduction, typed reduction is eventually used to create a value that matches the
shape of type Int & Int by duplicating the integer:

1 ↪→Int&Int 1, , 1

Note that the disjointness restriction does not allow sub-expressions in a merge to have the
same type: 1 , , 1 cannot type-check with rule Etyp-merge. To obtain type preservation,
there is a special (run-time) typing rule for merges of values, where a novel consistency check
is used (written as v1 ≈ v2):

· ` v1 : A · ` v2 : B v1 ≈ v2

Γ ` v1 , , v2 : A&B
Etyp-mergev

Mainly, consistency allows values to have overlapped parts as far as they are syntactically
equal. For example, 1 , , True and 1 , , ‘c’ are consistent, since the overlapped part Int in both
of merges is the same value. True and ‘c’ are consistent because they are not overlapped
at all. But 1 , , True and 2 are not consistent, as they have different values for the same
type Int. When two values have disjoint types, they must be consistent. For merges of such
values, both rule Etyp-mergev and rule Etyp-merge can be applied, and the types always
coincide. In λ:

i, consistency is defined in terms of typed reduction:

I Definition 2 (Consistency). Two values v1 and v2 are said to be consistent (written v1 ≈ v2)
if, for any type A, the result of typed reduction for the two values is the same.

v1 ≈ v2 ≡ ∀ A, if v1 ↪→A v′1 and v2 ↪→A v′2 then v
′
1 = v′2

Although the specification of consistency is decidable and an equivalent algorithmic definition
exists, it is not required. In practice, in a programming language implementation, the
rule Etyp-mergev may be omitted, since, as stated, its main purpose is to ensure that
run-time values are type-preserving.

Finally, note that λi [20] is stricter than λ:
i and forbids any intersection types which are

not disjoint. That is to say, the term 1 : Int & Int is not well-typed because the intersection
Int & Int is not disjoint. The idea of allowing unrestricted intersections, while only having the
disjointness restriction for merges, was first employed in the NeColus calculus [5]. λ:

i follows
such an idea and 1 : Int & Int is well-typed in λ:

i. Allowing unrestricted intersections adds
extra expressive power. For instance, in calculi with polymorphism, unrestricted intersections
can be used to encode bounded quantification [8], whereas with disjoint intersections only
such an encoding does not work [6].

3 The λ:
i Calculus: Syntax, Subtyping and Typing

This section presents the syntax, subtyping, and typing of λ:
i: a calculus with intersection

types and a merge operator. This calculus is a small variant of the λi calculus [20] (which
itself is inspired by Dunfield’s calculus [23]) extended with annotated expressions, explicit
subsumption and fixpoints. The explicit type annotations and subtyping are necessary for
the type-directed operational semantics of λ:

i and to preserve determinism. The addition of
fixpoints illustrates the ability of TDOS to deal with non-terminating programs, which are
still not supported by calculi that rely on elaboration and semantic coherence proofs [5, 6].

X. Huang and B. C. d. S. Oliveira 26:11

3.1 Syntax
The syntax of λ:

i is:

Type A,B ::= Int | Top | A→ B | A&B

Expr e ::= x | i | > | e : A | e1 e2 | λx.e : A→ B | e1 , , e2 | fix x.e : A
V alue v ::= i | > | λx.e : A→ B | v1 , , v2
Context Γ ::= · | Γ, x : A

Types. Meta-variables A and B range over types. Two basic types are included: the integer
type Int and the top type Top. Function types A→ B and intersection types A&B can be
used to construct compound types.

Expressions. Meta-variable e ranges over expressions. Expressions include some standard
constructs: variables (x); integers (i); a canonical top value >; annotated expressions
(e : A); and application of a term e1 to term e2 (denoted by e1e2). Lambda abstractions
(λx.e : A→ B) must have a type annotation A→ B, meaning that the input type is A and
the output type is B. The expression e1 , , e2 is the merge of expressions e1 and e2. Finally,
fixpoints fix x. e : A (which also require a type annotation) model recursion.

Values and Contexts. The meta-variable v ranges over values. Values include integers, the
canonical > value, lambda abstractions and merges of values. Typing contexts are standard.
Γ tracks the bound variables x with their type A.

3.2 Subtyping and Disjointness
The subtyping rules of the form A <: B are shown on the top of Figure 2. These subtyping
rules, except for rule S-toparr, were first introduced by Davies and Pfenning [21], and are
used in λi as well. The original subtyping relation is known to be reflexive and transitive [21].
We proved the reflexivity and transitivity of the extended subtyping relation as well. There
are 3 rules regarding intersection types. Together they define A&B as the greatest lower
bound of A and B.

Top-like Types and Arrow Types. Intuitively, a top-like type is both a supertype and a
subtype of Top, including the Top type and intersections of top-like types. The newly added
rule S-toparr enlarges top-like types to include arrow types when their return types are
top-like. A simple unary relation that captures top-like types inductively is defined on the
bottom of Figure 2. The following theorem states the correctness and completeness of the
definition.

I Lemma 3 (Soundness and Completeness of the Definition of Top-like Types).

eAd if and only if Top <: A

Rule S-toparr is inspired by the following rule in BCD-style subtyping [3] (and adopted by
Bi et al. [5]):

Top <: Top→ Top
BCD-toparr

ECOOP 2020

26:12 A Type-Directed Operational Semantics for a Calculus with a Merge Operator

A <: B (Subtyping)

S-z

Int <: Int

S-top

A <: Top

S-arr
B1 <: A1 A2 <: B2

A1 → A2 <: B1 → B2

S-andr
A1 <: A2 A1 <: A3

A1 <: A2 &A3

S-toparr
Top <: B2

A <: B1 → B2

S-andl1
A1 <: A3

A1 &A2 <: A3

S-andl2
A2 <: A3

A1 &A2 <: A3

eAd (Top-like types)

TL-and
eAd eBd
eA&Bd

TL-top

eTopd

TL-arr
eBd

eA→ Bd

Figure 2 Subtyping rules of λ:
i and definition of top-like types.

Since BCD-style subtyping includes a transitivity rule as an axiom, with this rule, Int→ Top
and Int → (Top → Top) are supertypes (and also subtypes) of Top. Due to the lack of
built-in transitivity rule in λ:

i’s subtyping, the above consequence has to be expressed more
explicitly in the adapted rule S-toparr. We will come back to our motivation for including
rule S-toparr in Section 3.3.

Disjointness. In Section 2.5, the specification of disjointness is presented. Such specification
is a slightly more liberal version of the definition originally used in λi. In particular in our
definition A and B themselves can be top-like types, which was forbidden in λi. An equivalent
algorithmic definition of disjointness (A ∗a B) is presented in Appendix A, which is the same
as the definition in the NeColus calculus [5].

I Lemma 4 (Disjointness Properties). Disjointness satisfies:
1. A ∗B if and only if A ∗a B.
2. if A ∗ (B1 → C) then A ∗ (B2 → C).
3. if A ∗B&C then A ∗B and A ∗ C.

3.3 Typing
The expression typing judgment Γ ` e : A is standard. It says that in the typing environment
Γ the expression e is of type A. Unlike λi, there is no well-formedness restriction on
types1. This generalization is inspired by the calculus NeColus [5], where the well-formedness
constraints are removed from λi, and expressions like 1 : Int & Int are allowed. In other words
the calculus supports unrestricted intersections as well as disjoint intersection types (which
are the only kind of intersections supported in λi).

The type system, shown in Figure 3, is syntax-directed. Most typing rules directly follow
the declarative type system of λi, including the merge rule Etyp-merge, where disjointness
is used. When two expressions have disjoint types, any parts from each of them do not
have overlapping types. Therefore, their merge does not introduce ambiguity. With this

1 The wellformedness and typing rules for λi can be found in Section 5.2.

X. Huang and B. C. d. S. Oliveira 26:13

Γ ` e : A (Typing)

Etyp-top

Γ ` > : Top

Etyp-lit

Γ ` i : Int

Etyp-var
x : A ∈ Γ
Γ ` x : A

Etyp-anno
Γ ` e : B B <: A

Γ ` (e : A) : A

Etyp-abs
Γ, x : A ` e : B

C <: A B <: D
Γ ` (λx. e : A→ D) : C → D

Etyp-fix
Γ, x : A ` e : A

Γ ` (fix x. e : A) : A

Etyp-app
Γ ` e1 : A→ B

Γ ` e2 : A
Γ ` e1 e2 : B

Etyp-merge
Γ ` e1 : A

Γ ` e2 : B A ∗B
Γ ` e1 , , e2 : A&B

Etyp-mergev
· ` v1 : A · ` v2 : B

v1 ≈ v2

Γ ` v1 , , v2 : A&B

Figure 3 Type system of λ:
i.

restriction, rule Etyp-merge does not accept expressions like 1, , 2 or even 1, , 1. On the
other hand, the novel rule Etyp-mergev allows consistent values to be merged regardless of
their types. It accepts 1 , , 1 while still rejecting 1, , 2. It is for values only, and values are
closed. Therefore the type judgments appearing in it as premises should have empty context,
which is denoted by ·. Together the two rules support the determinism and type preservation
of the TDOS, as discussed in Section 2.5.

Top-Like Types and Merges of Functions. We can finally come back to the motivation to
include rule S-toparr in subtyping and depart from both Dunfield calculus and λi, which do
not have such a rule. Without the rule S-toparr in subtyping, no arrow types are top-like,
therefore two arrow types A→ B and C → D are never disjoint in terms of Definition 1, as
they have a common supertype A&C → Top. Consequently, we can never create merges
with more than one function, which is quite restrictive. For Dunfield this is not a problem,
because she does not have the disjointness restriction. So her calculus supports merges of any
functions (but it is incoherent). In λi an ad-hoc solution is proposed, by forcing the matter
and employing the syntactic definition of top-like types in Figure 2 in disjointness. However
this means that in λi Lemma 3 is false, since top-like function types are not supertypes of
Top. In contrast, the approach we take in λ:

i is to add the rule S-toparr in subtyping. Now
Top <: (A&C → Top) is derivable and thus A&C → Top is genuinely a top-like type. In
turn this makes merges of multiple functions typeable without losing the intuition behind
top-like types.

Type-Checking for Lambda Abstractions. Rule Etyp-abs can be thought as a combination
of the standard typing rule and the subsumption rule. A well-typed lambda abstraction can
have multiple types with the same return type. Its type annotation indicates the principal
input type and the return type. Thus the input type can be any subtype of the principal
one, since arrow types are contravariant in their argument types. While the principal input
type describes the lambda’s expectation on its argument, the annotated return type ensures
the type of the evaluated result of lambdas. It just needs to be a supertype of the inner
expression of the lambda. Rule Etyp-abs is inspired by the “distributed” use of subsumption
in the λ& calculus [9].

ECOOP 2020

26:14 A Type-Directed Operational Semantics for a Calculus with a Merge Operator

Explicit Subsumption. Unlike many calculi where there is a general subsumption rule that
can apply anywhere, in λ:

i subsumption needs to be explicitly triggered by a type annotation
(except for lambdas, as explained above). The annotation rule Etyp-anno acts as explicit
subsumption and assigns supertypes to expressions, provided a suitable type annotation.
There is a strong motivation not to include a general (implicit) subsumption rule in calculi
with disjoint intersection types. With an implicit subsumption rule disjointness alone is
insufficient to prevent some ambiguous terms, as shown in the following example.

Subsumption
Etyp-merge
Subsumption

· ` 1 : Int Int <: Top
· ` 1 : Top · ` 2 : Int Top ∗ Int

· ` 1 , , 2 : Top & Int Top & Int <: Int & Int
· ` 1 , , 2 : Int & Int

Via the typical implicit subsumption, type Top is assigned to integer 1. Then 1 can be
merged with 2 of type Int since their types are disjoint. At that time, the merged term
1 , , 2 has type Top & Int, which is a subtype of Int & Int. By applying the subsumption
rule again, the ambiguous term 1 , , 2 finally bypasses the disjointness restriction, having
type Int & Int. However, note that with rule Etyp-anno we can still type-check the term
(1 : Top), , 2, and reducing that term under the type Int can only unambiguously result in 2.
The type annotation is key to prevent using the value 1 as an integer. Finally, the use of an
explicit subsumption rule is a simpler alternative to bidirectional type-systems employed in
other calculi with disjoint intersection types. Bidirectional type-checking is also capable of
controlling subsumption, but adds more complexity.

Principal Types. The principal type of a value is the most specific one among all of its
types, i.e. it is the subtype of any other type of the term. Its definition is syntax-directed.

I Definition 5 (Principal types). typep〈v〉 calculates the principal type of value v.

typep〈>〉 = Top
typep〈n〉 = Int

typep〈λx. e : A→ B〉 = A→ B

typep〈v1 , , v2〉 = typep〈v1〉 & typep〈v2〉

I Lemma 6 (Principal Types). For any value v, if its principal type is A, then
1. if · ` v : B then A <: B.
2. if · ` v : B and B ∗ C then A ∗ C.
3. · ` v : A.

4 A Type-Directed Operational Semantics for λ:
i

This section introduces the type-directed operational semantics for λ:
i. The operational

semantics uses type information arising from type annotations to guide the reduction process.
In particular, a new relation called typed reduction is used to further reduce values based on
the contextual type information, forcing the value to match the type structure. We show
two important properties for λ:

i: determinism of reduction and type soundness. That is to
say, there is only one way to reduce an expression according to the small-step relation, and
the process preserves types and never gets stuck.

X. Huang and B. C. d. S. Oliveira 26:15

v ↪→A v′ (Typed reduction)

TReduce-lit

i ↪→Int i

TReduce-top

v ↪→Top >

TReduce-toparr
eBd

v ↪→A→B λx.> : Top→ B

TReduce-arrow
¬eDd

C <: A B <: D
λx. e : A→ B ↪→C→D λx. e : A→ D

TReduce-and
v ↪→A v1 v ↪→B v2

v ↪→A & B v1 , , v2

TReduce-mergevl
v1 ↪→A v′1 A ordinary

v1 , , v2 ↪→A v′1

TReduce-mergevr
v2 ↪→A v′2 A ordinary

v1 , , v2 ↪→A v′2

Figure 4 Typed reduction of λ:
i.

4.1 Typed Reduction of Values
To account for the type information during reduction λ:

i uses an auxiliary reduction relation
called typed reduction for reducing values under a certain type. Typed reduction v ↪→A v′

reduces the value v under type A, producing a value v′ that has type A. It arises when given
a value v of some type, where A is a supertype of the type of v, and v needs to be converted
to a value compatible with the supertype A. The typed reduction ensures that values and
types have a strong correspondence. If a value is well-typed, its principal type can be told
directly by looking at its syntactic form.

Figure 4 shows the typed reduction relation. Rule TReduce-top expresses the fact
that Top is the supertype of any type, which means that any value can be reduced under
type Top. Similarly, rule TReduce-toparr indicates that any value reduces to a lambda
abstraction λx.> : Top → B under a top-like arrow type A → B. Although it is not the
only inhabited value of type A→ B, the reduction result has to be fixed for determinism.
Rule TReduce-lit expresses that an integer value reduced under the supertype Int is just
the integer value itself. Rule TReduce-arrow states that a lambda value λx. e : A→ B,
under a non-top-like type C → D, evaluates to λx. e : A→ D if C <: A and B <: D. The
restriction that C → D is not top-like avoids overlapping with rule TReduce-toparr.
Importantly rule TReduce-arrow changes the return type of lambda abstractions. For
example:

(λx. x , , 2 : Char→ Char & Int) ↪→(Char & Int→Char) λx. x , , 2 : Char→ Char

Intersections and Merges. In the remaining rules, we first decompose intersections. Then
we only need to consider types that are not intersections, which are called ordinary types [21]:

A ordinary (Ordinary types)

O-top

Top ordinary

O-int

Int ordinary

O-arrow

A→ B ordinary

ECOOP 2020

26:16 A Type-Directed Operational Semantics for a Calculus with a Merge Operator

We take care of the value by going through every merge, until both value and types are in a
basic form. Rule TReduce-mergevl and rule TReduce-mergevr are a pair of rules for
reducing merges under an ordinary type. Since the type is not an intersection, the result
contains no merge. Usually, we need to select between the left part and right part of a
merge according to the type. The values of disjoint types do not overlap on non-top-like
types. For example, 1 , , (λx. x : Int → Int) ↪→Int 1 selects the left part. For top-like types,
no matter which rule is applied, the reduction result is determined by the type only, as
rule TReduce-top and rule TReduce-toparr suggest.

Rule TReduce-and is the rule that deals with intersection types. It says that if a value
v can be reduced to v1 under type A, and can be reduced to v2 under type B, then its
reduction result under type A&B is the merge of two results v1 , , v2. Note that this rule
may duplicate values. For example 1 ↪→Int & Int 1 , , 1. Such duplication requires special care,
since the merge violates disjointness. The specially designed typing rule (rule Etyp-mergev)
uses the notion of consistency (discussed in Section 4.2) instead of disjointness to type-check
a merge of two values. Note also that such duplication implies that sometimes it is possible
to use either rule TReduce-mergevl or rule TReduce-mergevr to reduce a value. For
example, 1 , , 1 ↪→Int 1. The consistency restriction (Definition 2) in rule Etyp-mergev
ensures that no matter which rule is applied in such a case, the result is the same.

Example. A larger example to demonstrate how typed reduction works is:

(λx. x , , ‘c’ : Int→ Int & Char) , , (λx. x : Bool→ Bool) , , 1
↪→Int & (Int→Int) 1 , , (λx. x , , ‘c’ : Int→ Int)

The initial value is the merge of two lambda abstractions and an integer. The target type is
Int & (Int→ Int). Because the target type is an intersection, typed reduction first employs
rule TReduce-and to decompose the intersection into Int and Int → Int. Under type Int
the value reduces to 1, and under type Int → Int it will reduce to λx. x , , ‘c’ : Int → Int.
Therefore, we obtain the merge 1 , , (λx. x , , ‘c’ : Int→ Int) with type Int & (Int→ Int).

Basic Properties of Typed Reduction. Some properties of typed reduction can be proved
directly by induction on the typed reduction derivation. First, when typed reduction is under
a top-like type, the result only depends on the type. Second, typed reduction produces the
same result whenever it is done directly or indirectly. Third, if a well-typed value can be
typed reduced by some type, its principal type must be a subtype of that type.

I Lemma 7 (Typed reduction on top-like types). If eAd, v1 ↪→A v′1 , and v2 ↪→A v′2 then
v′1 = v′2.

When typed reduction is under a top-like type, the result only depends on the type.

I Lemma 8 (Transitivity of typed reduction). If v ↪→A v1, and v1 ↪→B v2, then v ↪→B v2.

Typed reduction produces the same result whenever it is done directly or indirectly.

I Lemma 9 (Typed reduction respects subtyping). If v ↪→A v′, then typep〈v〉 <: A.

This lemma relates typed reduction and subtyping. It states that if a well-typed value can
be typed reduced by type A, its principal type must be a subtype of A.

X. Huang and B. C. d. S. Oliveira 26:17

4.2 Consistency and Type Soundness of Typed Reduction

Consistent values, as specified in Definition 2, introduce no ambiguity in typed reduction.
Consider one type, if two consistent values both can reduce under the type, they should
produce the same result. The consistency restriction ensures that duplicated values in a
merge type-check, but it still rejects merges with different values of the same type. A value
of a top-like type is consistent with any other value. It only type reduces under top-like
types, which leads to a fixed result decided by the type.

Relating Disjointness and Consistency. Assuming that two values have disjoint types,
according to Lemma 6, their principal types must be disjoint as well. From Lemma 9, we can
conclude that when the two values both reduce under a type, that type must be a common
supertype of their principal types, which is known to be top-like (Definition 1). Furthermore,
Lemma 7 implies that their reduction results are always the same under such top-like types,
so they are consistent (Definition 2).

I Lemma 10 (Consistency of disjoint values). If A∗B, · ` v1 : A, and · ` v2 : B then v1 ≈ v2.

Determinism and Type Soundness of Typed Reduction. The merge construct makes it
hard to design a deterministic operational semantics. Disjointness and consistency restrictions
prevent merges like 1, , 2, and bring the possibility to deal with merges based on types. Typed
reduction takes a well-typed value, which, if it is a merge, must be consistent (according to
Lemma 10). When the two typed reduction rules for merges (rule TReduce-mergevl and
rule TReduce-mergevr) overlap, no matter which one is chosen, either value reduces to
the same result due to consistency (Definition 2). Indeed our typed reduction relation always
produces a unique result for any legal combination of the input value and type. This serves
as a foundation for the determinism of the operational semantics.

I Lemma 11 (Determinism of Typed Reduction). For every well-typed v (that is there is some
type B such that · ` v : B), if v ↪→A v1 and v ↪→A v2 then v1 = v2.

Via the transitivity lemma (Lemma 8) and the above determinism lemma, we obtain the
following property: any reduction results of the given value are consistent.

I Lemma 12 (Consistency after Typed Reduction). If v is well-typed , and v ↪→A v1 , and
v ↪→B v2 then v1 ≈ v2.

The lemma shows that the reduction result of rule TReduce-and is always made of consistent
values, which is needed in type preservation via the typing rule Etyp-mergev. Then a
(generalized) type preservation lemma on typed reduction can be proved.

I Lemma 13 (Preservation of Typed reduction). If · ` v : B and v ↪→A v′ then · ` v′ : A.

In the particular case where A = B, this lemma shows that typed reduction preserves types.
However, more generally, it shows that if a value is well-typed under a type B and it can be
type reduced under another type A then the reduced value is always well-typed at type A.
Finally, the typed reduction progress lemma is:

I Lemma 14 (Progress of Typed Reduction). If · ` v : A, and A <: B, then ∃v′, v ↪→B v′.

ECOOP 2020

26:18 A Type-Directed Operational Semantics for a Calculus with a Merge Operator

e ↪→ e′ (Reduction)

Step-appl
e1 ↪→ e′1

e1 e2 ↪→ e′1 e2

Step-appr
e2 ↪→ e′2

v1 e2 ↪→ v1 e
′
2

Step-fix

fix x. e : A ↪→ e[x 7→ fix x. e : A]

Step-mergel
e1 ↪→ e′1

e1 , , e2 ↪→ e′1 , , e2

Step-merger
e2 ↪→ e′2

v1 , , e2 ↪→ v1 , , e
′
2

Step-anno
e ↪→ e′

e : A ↪→ e′ : A

Step-beta
v ↪→A v′

(λx. e : A→ B) v ↪→ (e[x 7→ v′]) : B

Step-annov
v ↪→A v′

v : A ↪→ v′

Figure 5 Call-by-value reduction of λ:
i.

4.3 Reduction
The reduction rules are presented in Figure 5. Most of them are standard. Rule Step-beta
and rule Step-annov are the two rules relying on typed reduction judgments. Rule Step-
beta says that a lambda value λx. e : A → B applied to value v reduces by replacing the
bound variable x in e by v′. Importantly v′ is obtained by type reducing v under type
A. In other words, in rule Step-beta further (typed) reduction may be necessary on the
argument depending on its type. This is unlike many other calculi where values are in a final
form and no further reduction is needed (thus the value v can be directly substituted). The
rule Step-annov says that an annotated v : A can be reduced to v′ if v type reduces to v′
under type A.

Metatheory of Reduction. When designing the operational semantics of λ:
i, we want it to

have two properties: determinism of reduction and type soundness. That is to say, there is
only one way to reduce an expression according to the small-step relation, and the process
preserves types and never gets stuck. Similar lemmas on typed reduction were already
presented, which are necessary for proving the following theorems, mainly in cases related to
rule Step-annov and rule Step-beta.

I Theorem 15 (Determinism of ↪→). If · ` e : A, e ↪→ e1, e ↪→ e2, then e1 = e2.

I Theorem 16 (Type Preservation of ↪→). If · ` e : A, and e ↪→ e′ then · ` e′ : A.

I Theorem 17 (Progress of ↪→). If · ` e : A, then e is a value or ∃e′, e ↪→ e′.

5 Relationship to Dunfield’s Calculus and λi

Dunfield’s calculus [23] and λi [20] are two calculi that directly inspired λ:
i. In this section,

we discuss the relationship between λ:
i and them. First, we show that λ:

i’s TDOS and a
slightly extended version of Dunfield’s non-deterministic operational semantics are related.
The need for extending Dunfield’s original semantics is mostly due to the addition of the
rule S-toparr in subtyping, which Dunfield does not have. In Section 6 we also discuss a
variant of λ:

i (which does not include rule S-toparr) and show that such variant requires

X. Huang and B. C. d. S. Oliveira 26:19

| i | = i
| > | = >

|λx. e : A→ B | = λx. | e |
|fix x. e : A | = fix x. | e |

| e : A | = | e |
| e1 e2 | = | e1 | | e2 |

| e1 , , e2 | = | e1 | , , | e2 |

Figure 6 Type erasure for λ:
i expressions.

no changes to Dunfield’s original semantics. The other relationship is between λ:
i’s type

system and λi’s type system. The former comparison shows the soundness of the operational
semantics of λ:

i with respect to Dunfield’s semantics. The latter one proves that λ:
i’s type

system is at least as expressive as, if not stronger than, λi’s.

Type Erasure. Differently from the other two systems, λ:
i uses type annotations in its

syntax to obtain a direct operational semantics. | e | erases annotations in term e. By erasing
all annotations, terms in λ:

i can be converted to terms in Dunfield’s system and λi. The only
exception is fixpoints, which λi does not have. The annotation erasure function is defined in
Figure 6. Note that for every value v in λ:

i, | v | is a value as well.

5.1 Soundness with respect to Dunfield’s Operational Semantics
Dunfield’s original reduction rules are presented in Fig 1. We extend her operational semantics
with the following two rules. The full reduction rules can be found in the appendix.

E E′ (The extension of Dunfield’s calculus)

DStep-top

E >

DStep-toparr

> λx.>

Rule DStep-top states that any value can be reduced to >, corresponding to A <: Top.
Rule DStep-toparr says that the value > can be reduced to a lambda which returns
>, suggested by the subtyping rule S-toparr. Together with merge rules, the extended
reduction can reduce any term to a value under a top-like type. Dunfield avoids having a
rule DStep-top by performing a simplifying elaboration step advance:

Γ ` V : Top ↪→ >
Dunfield-Typing-T

With such a rule, values of type Top are directly translated into >, and do not need any
further reduction in the target language. Accordingly, in her source language, there is no rule
to convert these values to >. We do not have such an elaboration step and we have already
added rule DStep-toparr, so instead, we extend the original semantics with the two rules.

Soundness. Given Dunfield’s extended semantics, we can show a theorem that each step in
the TDOS of λi corresponds to zero, one, or multiple steps in Dunfield’s semantics.

I Theorem 18 (Soundness of ↪→ with respect to Dunfield’s semantics). If e ↪→ e′, then
| e | ∗ | e′ |.

ECOOP 2020

26:20 A Type-Directed Operational Semantics for a Calculus with a Merge Operator

Γ |= A (Type wellformedness)

Wf-top

Γ |= Top

Wf-int

Γ |= Int

Wf-arr
Γ |= A Γ |= B

Γ |= A→ B

Wf-and
Γ |= A

Γ |= B A ∗i B

Γ |= A&B

Γ |= E : A (Typing)

ITyp-top

Γ |= > : Top

ITyp-lit

Γ |= i : Int

ITyp-var
x : A ∈ Γ
Γ |= x : A

ITyp-lam
Γ |= A

Γ, x : A |= E : B
Γ |= (λx. E) : A→ B

ITyp-app
Γ |= E1 : A→ B

Γ |= E2 : A
Γ |= E1 E2 : B

ITyp-merge
Γ |= E1 : A

Γ |= E2 : B A ∗i B

Γ |= E1 , , E2 : A&B

ITyp-sub
Γ |= E : A AlB

Γ |= E : B

Figure 7 The declarative type system of λi.

A necessary lemma for this theorem is the soundness of typed reduction.

I Lemma 19 (Soundness of Typed Reduction with respect to Dunfield’s semantics). If v ↪→A v′,
then | v | ∗ | v′ |.

This lemma shows that although the type information guides the reduction of values, it
does not add additional behavior to values. For example, a merge can step to its left
part (or the right part) with rule TReduce-mergevl (or rule TReduce-mergevr),
corresponding to rule DStep-unmergel (or rule DStep-unmerger). And rule TReduce-
and (v ↪→A & B v1 , , v2 if v ↪→A v1 and v ↪→B v2) can be understood as a combination of
spliting (rule DStep-split V V , , V) and further reduction on each component separately.

In Section 6, we present another variant of λ:
i, which has the same subtyping relation

as Dunfield’s system (minus union types). The same soundness theorem is proved for that
variant without any modifications to Dunfield’s operational semantics.

5.2 Completeness with respect to the Type System of λi
λi drops union types and introduces the disjointness restriction to Dunfield’s system. When
introducing λi, Oliveira et al. proposed an algorithmic and a declarative type system. The
two type systems were shown to be equally expressive. For the declarative type system there
is still the possibility of ambiguity due to the presence of an (implicit) subsumption rule (see
also the discussion in Section 3.3). However, annotations in the bidirectional algorithmic
type system ensure that well-typed terms in λi are unambiguous and subsumption is kept
under control.

The type system of λ:
i is based on the declarative type system of λi, with three main

changes:

X. Huang and B. C. d. S. Oliveira 26:21

1. λ:
i forces the subsumption rule to be explicitly triggered by a type annotation.

2. λ:
i supports fixpoints while λi does not.

3. λ:
i has an additional rule for the merge of values (rule Etyp-mergev), which is required

to prove type preservation, since duplicated values can occur in merges after reduction.

Some details need to be explained before presenting the completeness theorem. Firstly,
because they are irrelevant, rules related to products and projection operators in λi are
dropped. Secondly, the subtyping in λ:

i is stronger due to the added rule S-toparr. Thirdly,
top-like types are disjoint with any type in λ:

i, while the disjointness in λi is restricted to
types which are not top-like. The definition of λi’s subtyping and disjointness can be found
in the appendix.

I Theorem 20 (Completeness of Typing with respect to λi). If Γ |= E : A, then there exists
some e such that Γ ` e : A and E = | e |.

The above theorem shows that the type system of λ:
i is able to type check any well-typed

terms in λi, with proper type annotations inserted based on the typing derivation. It is built
on the completeness of subtyping and disjointness of λ:

i. The result means that λi’s type
system (or any type system equivalent to it) can be used as a surface language where many
of the explicit annotations of λ:

i are inferred automatically. That is to say, the λi calculus
can be translated without loss of expressivity or flexibility into λ:

i.
To further show that some type inference with recursion is feasible, we extended the

bi-directional type system of λi with recursion, and replaced the subtyping and disjointness
by λ:

i’s. We designed an elaboration from the extended system to λ:
i and proved the following

theorem. The typing rules can be found in the appendix.

I Theorem 21 (Completeness of Typing with respect to the Extended Bidirectional Type System
of λi). If Γ ` E ⇒ A ↪→ e or Γ ` E ⇐ A ↪→ e, then Γ ` e : A.

6 Discussion

This section discusses one variant of λ:
i, which is also formalized in Coq. The variant follows

the subtyping relation in λi and Dunfield’s calculus strictly and does not support multiple
functions in merges. Some possible extensions to our work are also discussed.

6.1 A Variant of λ:
i

In Section 5.1, we validate the TDOS of λ:
i via a soundness theorem (Theorem 18) with

respect to an extended operational semantics of Dunfield’s calculus. In this section, we
discuss a variant of λ:

i that requires no extension to Dunfield’s operational semantics. Its
syntax and typing rules can be found in the appendix. Instead of adding rule S-toparr,
this variant keeps the same subtyping relation as Dunfield’s and adapts the definition of
top-like types and disjointness, losing the ability to have multiple functions in a merge.
Consequently, it is possible to prove the following soundness theorem on this variant without
any modifications on Dunfield’s operational semantics2.

I Theorem 22 (Soundness of ↪→ in the simple variant). If e ↪→ e′, then | e | ∗ | e′ |.

The above theorem states that each step taken by the TDOS corresponds to a series of
reduction in the original operational semantics of Dunfield’s calculus.

2 For the syntax and rules of Dunfield’s system, please refer to Section 2.

ECOOP 2020

26:22 A Type-Directed Operational Semantics for a Calculus with a Merge Operator

Besides soundness, this variant keeps the other important properties of λi: determinism,
type preservation and progress. A completeness theorem with respect to the type system of
λi is established as well.

I Theorem 23 (Completeness of Typing in the simple variant). If Γ |= E : A in λi, then there
exists some e such that Γ ` e : A in the variant and E = | e |.

Designing the Variant. As presented in Section 5.1, there are two reduction rules in
λ:

i that are related to the extension of Dunfield’s operational semantics: rule TReduce-top
(v ↪→Top >) and rule TReduce-toparr. They reduce values under top-like types into a
unified form. Without rule S-toparr, no arrow types are top-like, thus the latter is removed
from the variant. However there is still rule TReduce-top, which is not accounted for in
Dunfield’s original system. While we believe that such a rule fits in spirit well with the
remaining non-deterministic rules, it is interesting to see if it is possible to model a calculus
without it (and without extending Dunfield semantics at all).

Reducing a value v under type Top, in fact, can be thought as seeking an inhabited value
of Top which acts like v. In Dunfield’s original semantics there is no way to convert a value
to >, which is our source of difficulties. Dunfield solves this problem by having a typing rule
for values that allows any value to have type Top. This works well in her setting because she
can have ambiguous terms. Unfortunately, it does not work well in our setting because, as
discussed in detail in Section 3.3, allowing values to be implicitly typed as Top provides a
way to bypass the disjointness restrictions. We overcome the problem instead by introducing
a new value construct v : Top in our variant. This new form of value inhabits the Top type
but, unlike > it does not forget about the original value v (which can be of any type). Thus
the original value v, can be recovered by erasing the wrapped annotation.

TRed-top

v ↪→Top v : Top

Although the new rule then corresponds to v v after annotation erasure, it breaks
determinism as a merge can reduce to either its left or right component, leading to different
results, e.g. 1, ,True ↪→Top 1 : Top and 1, ,True ↪→Top True : Top. To solve this problem we
directly reduce the value before splitting merges by excluding Top from ordinary types.

To use the new construct for expressions and mix it with annotated terms, values and
expressions are separated into two syntactic categories in the variant (but all values can
be treated as expressions 〈v〉). The partition results in some tedious rules in the reduction
relation. For instance, 〈v1〉 , , 〈v2〉 ↪→ 〈v1, , v2〉 reduces a merge of two values to a merged
value.

6.2 Improvements and Extensions
Less Checks on Reduction. In rule TReduce-arrow (in Figure 4), the premise C <: A is
actually redundant for the purposes of reduction. Since we only care about well-typed terms
being reduced, such a check has already been guaranteed by typing. Therefore an actual
implementation could omit that check. The reason why we keep the premise is that typed
reduction plays another role in our metatheory: it allows us to define consistency. Consistency
is defined for any (untyped) values, and the extra check there tightens up the definition of
consistency. With the premise, typed reduction directly implies a subtyping relation between
the principal type of the reduced value and the reduction type. (See Lemma 9: If v ↪→A v′,
then typep〈v〉 <: A). One could wonder if this property is unnecessary because it may be

X. Huang and B. C. d. S. Oliveira 26:23

derived by type preservation of reduction. Note that whenever typed reduction is called in
a reduction rule, the subtyping relation can be obtained from the typing derivation of the
reduced term. For example, reducing v : A will type reduce v under A. If v : A is well-typed,
then we could in principle prove that typep〈v〉 <: A. Unfortunately, the above proof is hard
to attain in practice. Because type preservation depends on consistency, and consistency is
defined by typed reduction. Once the subtyping property relies on type preservation, there
is a cyclic dependency between the properties. In future work we would like to look at this
issue more closely and try to discard the premise by taking full advantage of the type system.

Distributive Subtyping. Although the subtyping of λ:
i allows multiple functions in a merge,

it lacks the distributive subtyping rule for intersection types that has been employed in some
recent calculi [5, 6]. The distributivity of intersections over arrows ((A→ B1) & (A→ B2) <:
A→ B1 &B2) [3] is well accepted for its theoretical elegance. But it is also well-known for
being troublesome. Mainly, there are two challenges for adapting distributive subtyping to
λ:

i.
The rule indicates that a merge of functions can be applied. While the current typing
rule can check such application with suitable annotations, designing new reduction rules
is necessary. A promising solution is to have a rule allows parallel application like
(v1 , , v2) v ↪→ v1 v , , v2 v.
Function types are no longer “ordinary”. In λ:

i, the intuition behind ordinary types is that
their typed reduction results never contains merges, which is necessary for determinism.
With distributivity, typed reduction may produce a merge under a single function type.
For example, λx. ‘c’ : Int → Char , , λx. x : Int → Int ↪→Int→Char & Int λx. ‘c’ : Int →
Char , , λx. x : Int → Int. In the typed reduction of λ:

i, intersections are split into basic
units. However, it is not straightforward to split a function type.

7 Related Work

7.1 Calculi with the Merge Operator and a Direct Semantics
Intersection types with a merge operator are a key feature of Reynolds’ Forsythe language [43].
Reynolds studied a core calculus [43] with similarities to λ:

i. However, merges in Forsythe
are restricted and use a syntactic criterion to determine what merges are allowed. A merge
is permitted only when the second term is a lambda abstraction or a single field record,
which makes the structure of merge always biased. To prevent potential ambiguity, the
latter overrides the former when overlapped. Note that the structure of merge in Forsythe is
always biased. If formalized as a tree, the right child of every node is a leaf. The only place
for primitive types is the leftmost component. Forsythe follows the standard call-by-name
small-step reduction, during which types are ignored. The reduction rules deal with merges
by continuously checking if the second component can be used in the context (abstractions
for application, records for projection). This simple approach, however, is unable to reduce
merges when (multiple) primitive types are required. Reynolds admits this issue in his later
work [45]. In λ:

i types are used to select values from a merge and the disjointness restriction
guarantees the determinism. Therefore the order of a value in a merge is not a deciding
factor on whether the value is used or not.

The calculus λ& proposed by Castagna et al. [9] has a restricted version of the merge
operator for functions only. The merge operator is indexed by a list of types of its components.
The operational semantics uses the run-time types of values to select the “best approximate”
branch of an overloaded function. λ& requires run-time type checking on values, while

ECOOP 2020

26:24 A Type-Directed Operational Semantics for a Calculus with a Merge Operator

Dunfield’s
[23]

λi [20] Fi [2] NeColus [5] F+
i [6] λ:

i

Disjointness
Unrestricted Intersections
Determinism or Coherence No Coh. Coh. Coh. Coh. Det.
Coercion Free
Recursion
Direct Semantics
Subject-Reduction - - - -

Figure 8 Summary of intersection calculi with the merge operator (= yes, = no, - = not
applicable).

in TDOS, all type information is present already in type annotations. Another obvious
difference is that λ:

i supports merges of any types (not just functions), which are useful for
applications other than overloading of functions, including: multifield extensible records with
subtyping [20]; encodings of objects and traits [4]; dynamic mixins [2]; or simple forms of
family polymorphism [5].

Several other calculi with intersection types and overloading of functions have been
proposed [10–12], but these calculi do not support a merge operator, and thus avoid the
ambiguity problems caused by the construct.

7.2 Calculi with a Merge Operator and an Elaboration Semantics
Instead of a direct semantics, many recent works [2, 5, 6, 20, 23] on intersection types employ
an elaboration semantics, translating merges in the source language to products (or pairs) in
a target language. With an elaboration semantics the subtyping derivations are coercive [33]:
they produce coercion functions that explicitly convert terms of one type to another in the
target language. This idea was first proposed by Dunfield [23], where she shows how to
elaborate a calculus with intersection and union types and a merge operator to a standard
call-by-value lambda calculus with products and sums. Dunfield also proposed a direct
semantics, which served as inspiration for our own work. However, her direct semantics is
non-deterministic and lacks subject-reduction (as discussed in detail in Section 2.2). Unlike
Forsythe and λ&, Dunfield’s calculus has unrestricted merges and allows a merge to work as
an argument. Her calculus is flexible and expressive and can deal with several programs that
are not allowed in Forsythe and λ&.

To remove the ambiguity issues in Dunfield’s work, the λi calculus [20] forbids overlapping
in intersections using the disjointness restriction for all well-formed intersections. In other
words, λi does not support unrestricted intersections. Because of this restriction, the proof
of coherence in λi is still relatively simple. Likewise, in following work on the Fi calculus [2],
which extends λi with disjoint polymorphism, all intersections must be disjoint. However the
disjointness restriction causes difficulties because it breaks stability of type substitutions. Sta-
bility is a desirable property in a polymorphic type system that ensures that if a polymorphic
type is well-formed then any instantiation of that type is also well-formed. Unfortunately,
with disjoint intersections only, this property is not true in general. Thus Fi can only prove
a restricted version of stability, which makes its metatheory non-trivial.

Disjointness of all well-formed intersections is only a sufficient (but not necessary) restric-
tion to ensure an unambiguous semantics. The NeColus calculus [5] relaxes the restriction
without introducing ambiguity. In NeColus 1 : Int & Int is allowed, but the same term is

X. Huang and B. C. d. S. Oliveira 26:25

rejected in λi. In other words, NeColus employs the disjointness restriction only on merges,
but otherwise allows unrestricted intersections. Unfortunately, this comes at a cost: it is
much harder to prove the coherence of elaboration. Both NeColus and F+

i [6] (a calculus
derived from Fi that allows unrestricted intersections) deal with this problem by establishing
coherence using contextual equivalence and a logical relation [40,49,50] to prove it. The proof
method, however, cannot deal with non-terminating programs. In fact none of the existing
calculi with disjoint intersection types supports recursion, which is a severe restriction.

We retain the essence of the power of Dunfield’s calculus (modulo the disjointness
restrictions to rule out ambiguity), and gain benefits from the direct semantics. Figure 8
summarizes the key differences between our work and prior work, focusing on the most
recent work on disjoint intersection types. Note that the row titled “Coercion Free” denotes
whether subtyping generates coercions or not. λ:

i is coercion free, while all other calculi based
on an elaboration semantics employ coercive subtyping. Next we give more detail on the
advantages of a direct semantics over the elaboration semantics and proof methods employed
in previous work on disjoint intersection types.

Shorter, more Direct Reasoning. Programmers want to understand the meaning of their
programs. A formal semantics can help with this. With our TDOS semantics we can
essentially employ a style similar to equational reasoning in functional programming to
directly reason about programs written in λ:

i. For example, it takes a few reasoning steps to
work out the result of (λx. x + 1 : Int→ Int) (2 , , ‘c’):

(λx. x + 1 : Int→ Int) (2 , , ‘c’)
↪→ (2 + 1) : Int {by Step-beta and typed reduction of argument under Int}
↪→ 3 : Int {by Step-anno and usual reduction rules for arithmetic}
↪→ 3 {by Step-annov and typed reduction of 3 under Int}

Here reasoning is easily justifiable from the small-step reduction rules and type-directed
reduction. In fact building tools (such as some form of debugger), that automate such kind
of reasoning should be easy using the TDOS rules.

However, with an elaboration semantics, the (precise) reasoning steps to determine the
final result are much more complex. Firstly the expression has to be translated into the
target language before reducing to a similar target term. Figure 9 shows this elaboration
process in λi, where an expression in the source language is translated into an expression in a
target language with products. The source term (λx. x + 1 : Int→ Int) (2 , , ‘c’) is elaborated
into the target term (λx. x + 1) (fst (2 , ‘c’)). As we can see the actual derivation is rather
long, so we skip the full steps. Also, for simplicity’s sake, here we assume the subtyping
judgement produces the most straightforward coercion fst. This elaboration step together
with the introduction of coercions into the program makes it much harder for programmers
to precisely understand the semantics of a program. Moreover while the coercions inserted
in this small expression may not look too bad, in larger programs the addition of coercions
can be a lot more severe, hampering the understanding of the program. After elaboration we
can then use the target language semantics, to determine a target language value.

(λx. x + 1) (fst (2 , ‘c’))
↪→ (λx. x + 1) 2 {by a rule similar to Step-appr and reduction rules for pairs}
↪→ 2 + 1 {by beta reduction rule}
↪→ 3 {by usual reduction rules for arithmetic}

ECOOP 2020

26:26 A Type-Directed Operational Semantics for a Calculus with a Merge Operator

T-app

T-ann
...

· ` (λx. x + 1 : Int→ Int)⇒ Int→ Int λx. x + 1
······ T-sub

T-merge
...

· ` (2 , , ‘c’)⇒ Int & Char (2 , ‘c’)
·········

Sub-andl
Int & Char <: Int fst

· ` (2 , , ‘c’)⇐ Int fst (2 , ‘c’)
· ` (λx. x + 1 : Int→ Int) (2 , , ‘c’)⇒ Int (λx. x + 1) (fst (2 , ‘c’))

Figure 9 Elaboration of the expression (λx. x + 1 : Int→ Int) (2 , , ‘c’) into a target calculus with
products.

A final issue is that sometimes it is not even possible to translate back the value of the target
language into an equivalent “value” on the source. For instance in the NeColus calculus [5]
1 : Int & Int results in (1, 1), which is a pair in the target language. But the corresponding
source value 1 , , 1 is not typable in NeColus. In essence, with an elaboration, programmers
must understand not only the source language, but also the elaboration process as well as
the semantics of the target language, if they want to precisely understand the semantics of a
program. Since the main point of semantics is to give clear and simple rules to understand the
meaning of programs, a direct semantics is a better option for providing such understanding.

Simpler Proofs of Unambiguity. For calculi with an elaboration semantics, unrestricted
intersections make it harder to prove the coherence. Our λ:

i calculus, on the other hand, has
a deterministic semantics, which implies unambiguity directly. For instance, (1 : Int & Int) :
Int only steps to 1 in λ:

i. But it can be elaborated into two target expressions in the
NeColus calculus corresponding to two typing derivations:

(1 : Int & Int) : Int fst (1, 1)

(1 : Int & Int) : Int snd (1, 1)

Thus the coherence proof needs deeper knowledge about the semantics: the two different
terms are known to both reduce to 1 eventually. Therefore they are related by the logical
relation employed in NeColus for coherence. Things get more complicated for functions. The
following example shows two possible elaborations of the same function. To relate them
requires reasoning inside the binders and a notion of contextual equivalence.

λx. x + 1 : Int & Int→ Int λx. fst x + 1

λx. x + 1 : Int & Int→ Int λx. snd x + 1

Furthermore, the two target expressions above are clearly not equivalent in the general
case. For instance, if we apply them to (1, 2) we get different results. However, the target
expressions will always behave equivalently when applied to arguments elaborated from the
NeColus source calculus. NeColus, forbids terms like (1 , , 2) and thus cannot produce a target
value (1, 2). Because of elaboration and also this deeper form of reasoning required to show
the equivalence of semantics, calculi defined by elaboration require a lot more infrastructure
for the source and target calculi and the elaboration between them, while in a direct semantics
only one calculus is involved and the reasoning required to prove determinism is quite simple.

X. Huang and B. C. d. S. Oliveira 26:27

Not Limited to Terminating Programs. The (basic) forms of logical relations employed
by NeColus and F+

i has cannot deal with non-terminating programs. In principle, recursion
could be supported by using a step-indexed logical relation [1], but this is left for future work
(and it is non-trivial). λ:

i smoothly handles unrestricted intersections and recursion, using
TDOS to reach determinism with a significantly simpler proof method. It also makes other
features that lead to non-terminating programs, such as recursive types, feasible.

7.3 Languages and Calculi with Type-Dependent Semantics

Typed Operational Semantics Goguen [29] uses types in its reduction judgment, similarly
to typed reduction in λ:

i. However, Goguen’s typed operational semantics is designed for
studying meta-theoretic properties, especially strong normalization, and is not aimed to
describe type-dependent semantics. Unlike TDOS, in typed operational semantics the
reduction process does not use the additional type information to guide reduction. Instead,
the combination of well-typedness and computation provides inversion principles for proving
various metatheoretical properties. Typed operational semantics has been applied to several
systems. These include simply typed lambda calculi [30], calculi with dependent types [26, 29]
and higher-order subtyping [17]. Note that the semantics of these systems does not depend
on typing, and the untyped (type-erased) reduction relations are still presented to describe
how to evaluate programs.

Type classes [32, 52] are an approach to parametric overloading used in languages like
Haskell. The commonly adopted compilation strategy for it is the dictionary passing style
elaboration [13, 14, 31, 52]. Other mechanisms inspired by type classes, such as Scala’s
implicits [19], Agda’s instance arguments [22] or Ocaml’s modular implicits [54] have an
elaboration semantics as well. In one of the pioneering works of type classes, Kaes [32] gives
two formulations for a direct operational semantics. One of them decides the concrete type of
the instance of overloaded functions at run-time, by analyzing all arguments after evaluating
them. In both Kaes’ work and a following work by Odersky et al. [37], the run-time semantics
has some restrictions with respect to type classes. For example, overloading on return types
(needed for example for the read function in Haskell) is not supported. Interestingly, the
semantics of λ:

i allows overloading on return types, which is used whenever two functions
coexist on a merge.

Gradual typing [47] has become popular over the last few years. Gradual typing is another
example of a type-dependent mechanism, since the success or not of an (implicit) cast may
depend on the particular type used for the implicit cast. Thus the semantics of a gradually
typed language is type-dependent. Like other type-dependent mechanisms the semantics
of gradually typed source languages is usually given by a (type-dependent) elaboration
semantics into a cast calculus, such as the Blame calculus [53] or the Threesome calculus [48].

Static binding of fields and method overloading in Java [51] make use of type annotations
computed in a preprocessing phase. For each method invocation, the annotation states the
argument type of the most specific method applicable according to the static types. Based
on the annotation and the run-time type (class) of the object, a dynamic lookup function
yields a proper method at run-time. This allows static method overloading works across the
inheritance hierarchy, together with dynamic dispatch. Multiple dispatching [15,16,35,38]
generalizes object-oriented dynamic dispatch to determine the overloaded method to invoke
based on the run-time type of all its arguments. Similarly to TDOS, much of the type
information is recovered from type annotations in multiple dispatching mechanisms, but,
unlike TDOS, they only use input types to determine the semantics.

ECOOP 2020

26:28 A Type-Directed Operational Semantics for a Calculus with a Merge Operator

8 Conclusion

In this work we presented a TDOS for λ:
i: a calculus that includes intersection types and

an expressive unbiased merge operator. Among all similar calculi, λ:
i is the first to have a

direct operational semantics that is both deterministic and has subject-reduction. Compared
with the elaboration approach, having a direct semantics avoids the translation process
and a target calculus. This simplifies both informal and formal reasoning. For instance,
establishing the coherence of elaboration in NeColus [5] requires much more sophistication
than obtaining the determinism theorem in λ:

i. Furthermore the proof method for coherence
in NeColus cannot deal with non-terminating programs, whereas dealing with recursion is
straightforward in λ:

i. The semantics of λ:
i exploits type annotations to guide reduction.

The key component of TDOS is typed reduction, which allows values to be further reduced
depending on their type. For the future we would like to develop further the TDOS approach
in the setting of disjoint intersection types. Some interesting extensions include support for
distributive subtyping [3], disjoint polymorphism [2] and iso-recursive types with the Amber
rule [7].

References
1 Amal J. Ahmed. Step-indexed syntactic logical relations for recursive and quantified types.

In Peter Sestoft, editor, Programming Languages and Systems, 15th European Symposium
on Programming, ESOP 2006, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2006, Vienna, Austria, March 27-28, 2006, Proceedings,
volume 3924 of Lecture Notes in Computer Science, pages 69–83. Springer, 2006. doi:
10.1007/11693024_6.

2 João Alpuim, Bruno C. d. S. Oliveira, and Zhiyuan Shi. Disjoint polymorphism. In Hong-
seok Yang, editor, Programming Languages and Systems - 26th European Symposium on
Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceed-
ings, volume 10201 of Lecture Notes in Computer Science, pages 1–28. Springer, 2017.
doi:10.1007/978-3-662-54434-1_1.

3 Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda model
and the completeness of type assignment 1. The journal of symbolic logic, 48(4), 1983.

4 Xuan Bi and Bruno C. d. S. Oliveira. Typed first-class traits. In Todd D. Millstein, editor,
32nd European Conference on Object-Oriented Programming, ECOOP 2018, July 16-21, 2018,
Amsterdam, The Netherlands, volume 109 of LIPIcs, pages 9:1–9:28. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ECOOP.2018.9.

5 Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. The essence of nested composition.
In Todd D. Millstein, editor, 32nd European Conference on Object-Oriented Programming,
ECOOP 2018, July 16-21, 2018, Amsterdam, The Netherlands, volume 109 of LIPIcs, pages
22:1–22:33. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.
ECOOP.2018.22.

6 Xuan Bi, Ningning Xie, Bruno C. d. S. Oliveira, and Tom Schrijvers. Distributive disjoint
polymorphism for compositional programming. In Luís Caires, editor, Programming Languages
and Systems - 28th European Symposium on Programming, ESOP 2019, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech
Republic, April 6-11, 2019, Proceedings, volume 11423 of Lecture Notes in Computer Science,
pages 381–409. Springer, 2019. doi:10.1007/978-3-030-17184-1_14.

7 Luca Cardelli. Amber. In Guy Cousineau, Pierre-Louis Curien, and Bernard Robinet, editors,
Combinators and Functional Programming Languages, Thirteenth Spring School of the LITP,
Val d’Ajol, France, May 6-10, 1985, Proceedings, volume 242 of Lecture Notes in Computer
Science, pages 21–47. Springer, 1985. doi:10.1007/3-540-17184-3_38.

https://doi.org/10.1007/11693024_6
https://doi.org/10.1007/11693024_6
https://doi.org/10.1007/978-3-662-54434-1_1
https://doi.org/10.4230/LIPIcs.ECOOP.2018.9
https://doi.org/10.4230/LIPIcs.ECOOP.2018.22
https://doi.org/10.4230/LIPIcs.ECOOP.2018.22
https://doi.org/10.1007/978-3-030-17184-1_14
https://doi.org/10.1007/3-540-17184-3_38

X. Huang and B. C. d. S. Oliveira 26:29

8 Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism.
ACM Comput. Surv., 17(4):471–522, 1985. doi:10.1145/6041.6042.

9 Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for overloaded functions
with subtyping. Inf. Comput., 117(1):115–135, 1995. doi:10.1006/inco.1995.1033.

10 Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, and Pietro Abate. Polymorphic functions
with set-theoretic types: Part 2: Local type inference and type reconstruction. In Sriram K.
Rajamani and David Walker, editors, Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January
15-17, 2015, pages 289–302. ACM, 2015. doi:10.1145/2676726.2676991.

11 Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, Hyeonseung Im, Sergueï Lenglet, and Luca
Padovani. Polymorphic functions with set-theoretic types: part 1: syntax, semantics, and
evaluation. In Suresh Jagannathan and Peter Sewell, editors, The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA,
USA, January 20-21, 2014, pages 5–18. ACM, 2014. doi:10.1145/2535838.2535840.

12 Giuseppe Castagna and Zhiwu Xu. Set-theoretic foundation of parametric polymorphism
and subtyping. In Manuel M. T. Chakravarty, Zhenjiang Hu, and Olivier Danvy, editors,
Proceeding of the 16th ACM SIGPLAN international conference on Functional Programming,
ICFP 2011, Tokyo, Japan, September 19-21, 2011, pages 94–106. ACM, 2011. doi:10.1145/
2034773.2034788.

13 Manuel M. T. Chakravarty, Gabriele Keller, and Simon L. Peyton Jones. Associated type
synonyms. In Olivier Danvy and Benjamin C. Pierce, editors, Proceedings of the 10th ACM
SIGPLAN International Conference on Functional Programming, ICFP 2005, Tallinn, Estonia,
September 26-28, 2005, pages 241–253. ACM, 2005. doi:10.1145/1086365.1086397.

14 Manuel M. T. Chakravarty, Gabriele Keller, Simon L. Peyton Jones, and Simon Marlow.
Associated types with class. In Jens Palsberg and Martín Abadi, editors, Proceedings of
the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2005, Long Beach, California, USA, January 12-14, 2005, pages 1–13. ACM, 2005.
doi:10.1145/1040305.1040306.

15 Craig Chambers and Weimin Chen. Efficient multiple and predicated dispatching. In Brent
Hailpern, Linda M. Northrop, and A. Michael Berman, editors, Proceedings of the 1999 ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages & Applications
(OOPSLA ’99), Denver, Colorado, USA, November 1-5, 1999, pages 238–255. ACM, 1999.
doi:10.1145/320384.320407.

16 Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd D. Millstein. Multijava: modular
open classes and symmetric multiple dispatch for java. In Mary Beth Rosson and Doug Lea,
editors, Proceedings of the 2000 ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages & Applications (OOPSLA 2000), Minneapolis, Minnesota, USA, October
15-19, 2000, pages 130–145. ACM, 2000. doi:10.1145/353171.353181.

17 Adriana B. Compagnoni and Healfdene Goguen. Typed operational semantics for higher-order
subtyping. Inf. Comput., 184(2):242–297, 2003. doi:10.1016/S0890-5401(03)00062-2.

18 Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Functional characters of
solvable terms. Math. Log. Q., 27(2-6):45–58, 1981. doi:10.1002/malq.19810270205.

19 Bruno C. d. S. Oliveira, Adriaan Moors, and Martin Odersky. Type classes as objects and
implicits. In William R. Cook, Siobhán Clarke, and Martin C. Rinard, editors, Proceedings
of the 25th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2010, October 17-21, 2010, Reno/Tahoe, Nevada,
USA, pages 341–360. ACM, 2010. doi:10.1145/1869459.1869489.

20 Bruno C. d. S. Oliveira, Zhiyuan Shi, and João Alpuim. Disjoint intersection types. In Jacques
Garrigue, Gabriele Keller, and Eijiro Sumii, editors, Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming, ICFP 2016, Nara, Japan, September
18-22, 2016, pages 364–377. ACM, 2016. doi:10.1145/2951913.2951945.

ECOOP 2020

https://doi.org/10.1145/6041.6042
https://doi.org/10.1006/inco.1995.1033
https://doi.org/10.1145/2676726.2676991
https://doi.org/10.1145/2535838.2535840
https://doi.org/10.1145/2034773.2034788
https://doi.org/10.1145/2034773.2034788
https://doi.org/10.1145/1086365.1086397
https://doi.org/10.1145/1040305.1040306
https://doi.org/10.1145/320384.320407
https://doi.org/10.1145/353171.353181
https://doi.org/10.1016/S0890-5401(03)00062-2
https://doi.org/10.1002/malq.19810270205
https://doi.org/10.1145/1869459.1869489
https://doi.org/10.1145/2951913.2951945

26:30 A Type-Directed Operational Semantics for a Calculus with a Merge Operator

21 Rowan Davies and Frank Pfenning. Intersection types and computational effects. In Martin
Odersky and Philip Wadler, editors, Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming (ICFP ’00), Montreal, Canada, September 18-21,
2000, pages 198–208. ACM, 2000. doi:10.1145/351240.351259.

22 Dominique Devriese and Frank Piessens. On the bright side of type classes: instance arguments
in agda. In Manuel M. T. Chakravarty, Zhenjiang Hu, and Olivier Danvy, editors, Proceeding
of the 16th ACM SIGPLAN international conference on Functional Programming, ICFP 2011,
Tokyo, Japan, September 19-21, 2011, pages 143–155. ACM, 2011. doi:10.1145/2034773.
2034796.

23 Jana Dunfield. Elaborating intersection and union types. J. Funct. Program., 24(2-3):133–165,
2014. doi:10.1017/S0956796813000270.

24 Jana Dunfield and Frank Pfenning. Type assignment for intersections and unions in call-
by-value languages. In Andrew D. Gordon, editor, Foundations of Software Science and
Computational Structures, 6th International Conference, FOSSACS 2003 Held as Part of
the Joint European Conference on Theory and Practice of Software, ETAPS 2003, Warsaw,
Poland, April 7-11, 2003, Proceedings, volume 2620 of Lecture Notes in Computer Science,
pages 250–266. Springer, 2003. doi:10.1007/3-540-36576-1_16.

25 Facebook. Flow. https://flow.org/, 2014.
26 Yangyue Feng and Zhaohui Luo. Typed operational semantics for dependent record types. In

Tom Hirschowitz, editor, Proceedings Types for Proofs and Programs, Revised Selected Papers,
TYPES 2009, Aussois, France, 12-15th May 2009, volume 53 of EPTCS, pages 30–46, 2009.
doi:10.4204/EPTCS.53.3.

27 Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mixins. In
David B. MacQueen and Luca Cardelli, editors, POPL ’98, Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Diego, CA,
USA, January 19-21, 1998, pages 171–183. ACM, 1998. doi:10.1145/268946.268961.

28 Timothy S. Freeman and Frank Pfenning. Refinement types for ML. In David S. Wise, editor,
Proceedings of the ACM SIGPLAN’91 Conference on Programming Language Design and
Implementation (PLDI), Toronto, Ontario, Canada, June 26-28, 1991, pages 268–277. ACM,
1991. doi:10.1145/113445.113468.

29 Healfdene Goguen. A typed operational semantics for type theory. PhD thesis, University of
Edinburgh, UK, 1994. URL: http://hdl.handle.net/1842/405.

30 Healfdene Goguen. Typed operational semantics. In Mariangiola Dezani-Ciancaglini and
Gordon D. Plotkin, editors, Typed Lambda Calculi and Applications, Second International
Conference on Typed Lambda Calculi and Applications, TLCA ’95, Edinburgh, UK, April
10-12, 1995, Proceedings, volume 902 of Lecture Notes in Computer Science, pages 186–200.
Springer, 1995. doi:10.1007/BFb0014053.

31 Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip Wadler. Type classes in
haskell. ACM Trans. Program. Lang. Syst., 18(2):109–138, 1996. doi:10.1145/227699.227700.

32 Stefan Kaes. Parametric overloading in polymorphic programming languages. In Harald
Ganzinger, editor, ESOP ’88, 2nd European Symposium on Programming, Nancy, France,
March 21-24, 1988, Proceedings, volume 300 of Lecture Notes in Computer Science, pages
131–144. Springer, 1988. doi:10.1007/3-540-19027-9_9.

33 Zhaohui Luo. Coercive subtyping. J. Log. Comput., 9(1):105–130, 1999. doi:10.1093/logcom/
9.1.105.

34 Microsoft. Typescript. https://www.typescriptlang.org/, 2012.
35 Radu Muschevici, Alex Potanin, Ewan D. Tempero, and James Noble. Multiple dispatch in

practice. In Gail E. Harris, editor, Proceedings of the 23rd Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2008,
October 19-23, 2008, Nashville, TN, USA, pages 563–582. ACM, 2008. doi:10.1145/1449764.
1449808.

https://doi.org/10.1145/351240.351259
https://doi.org/10.1145/2034773.2034796
https://doi.org/10.1145/2034773.2034796
https://doi.org/10.1017/S0956796813000270
https://doi.org/10.1007/3-540-36576-1_16
https://flow.org/
https://doi.org/10.4204/EPTCS.53.3
https://doi.org/10.1145/268946.268961
https://doi.org/10.1145/113445.113468
http://hdl.handle.net/1842/405
https://doi.org/10.1007/BFb0014053
https://doi.org/10.1145/227699.227700
https://doi.org/10.1007/3-540-19027-9_9
https://doi.org/10.1093/logcom/9.1.105
https://doi.org/10.1093/logcom/9.1.105
https://www.typescriptlang.org/
https://doi.org/10.1145/1449764.1449808
https://doi.org/10.1145/1449764.1449808

X. Huang and B. C. d. S. Oliveira 26:31

36 Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth, Stéphane
Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. An
overview of the scala programming language. Technical report, École Polytechnique Fédérale
de Lausanne, 2004.

37 Martin Odersky, Philip Wadler, and Martin Wehr. A second look at overloading. In John
Williams, editor, Proceedings of the seventh international conference on Functional programming
languages and computer architecture, FPCA 1995, La Jolla, California, USA, June 25-28,
1995, pages 135–146. ACM, 1995. doi:10.1145/224164.224195.

38 Gyunghee Park, Jaemin Hong, Guy L. Steele Jr., and Sukyoung Ryu. Polymorphic symmetric
multiple dispatch with variance. Proc. ACM Program. Lang., 3(POPL):11:1–11:28, 2019.
doi:10.1145/3290324.

39 Benjamin C. Pierce. Programming with Intersection Types and Bounded Polymorphism. PhD
thesis, Carnegie Mellon University, December 1991.

40 Gordon Plotkin. Lambda-definability and logical relations, 1973.
41 Garrel Pottinger. A type assignment for the strongly normalizable λ-terms. To HB Curry:

essays on combinatory logic, lambda calculus and formalism, pages 561–577, 1980.
42 Redhat. Ceylon. https://ceylon-lang.org/, 2011.
43 John C Reynolds. Preliminary design of the programming language Forsythe. Technical

Report CMU-CS-88-159, Carnegie Mellon University, 1988.
44 John C. Reynolds. The coherence of languages with intersection types. In Takayasu Ito and

Albert R. Meyer, editors, Theoretical Aspects of Computer Software, International Conference
TACS ’91, Sendai, Japan, September 24-27, 1991, Proceedings, volume 526 of Lecture Notes in
Computer Science, pages 675–700. Springer, 1991. doi:10.1007/3-540-54415-1_70.

45 John C Reynolds. Design of the programming language Forsythe. In ALGOL-like languages,
pages 173–233. Springer, 1997.

46 Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P. Black. Traits: Com-
posable units of behaviour. In Luca Cardelli, editor, ECOOP 2003 - Object-Oriented Pro-
gramming, 17th European Conference, Darmstadt, Germany, July 21-25, 2003, Proceed-
ings, volume 2743 of Lecture Notes in Computer Science, pages 248–274. Springer, 2003.
doi:10.1007/978-3-540-45070-2_12.

47 Jeremy G Siek and Walid Taha. Gradual typing for functional languages. In Scheme and
Functional Programming Workshop, 2006.

48 Jeremy G. Siek and Philip Wadler. Threesomes, with and without blame. In Manuel V.
Hermenegildo and Jens Palsberg, editors, Proceedings of the 37th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2010, Madrid, Spain, January
17-23, 2010, pages 365–376. ACM, 2010. doi:10.1145/1706299.1706342.

49 Richard Statman. Logical relations and the typed λ-calculus. Inf. Control., 65(2/3):85–97,
1985. doi:10.1016/S0019-9958(85)80001-2.

50 William W. Tait. Intensional interpretations of functionals of finite type I. J. Symb. Log.,
32(2):198–212, 1967. doi:10.2307/2271658.

51 David von Oheimb and Tobias Nipkow. Machine-checking the java specification: Proving type-
safety. In Jim Alves-Foss, editor, Formal Syntax and Semantics of Java, volume 1523 of Lecture
Notes in Computer Science, pages 119–156. Springer, 1999. doi:10.1007/3-540-48737-9_4.

52 Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-hoc. In
Conference Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, January 11-13, 1989, pages 60–76. ACM Press, 1989. doi:
10.1145/75277.75283.

53 Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed. In Giuseppe
Castagna, editor, Programming Languages and Systems, 18th European Symposium on Pro-
gramming, ESOP 2009, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, volume 5502 of Lecture
Notes in Computer Science, pages 1–16. Springer, 2009. doi:10.1007/978-3-642-00590-9_1.

ECOOP 2020

https://doi.org/10.1145/224164.224195
https://doi.org/10.1145/3290324
https://ceylon-lang.org/
https://doi.org/10.1007/3-540-54415-1_70
https://doi.org/10.1007/978-3-540-45070-2_12
https://doi.org/10.1145/1706299.1706342
https://doi.org/10.1016/S0019-9958(85)80001-2
https://doi.org/10.2307/2271658
https://doi.org/10.1007/3-540-48737-9_4
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283
https://doi.org/10.1007/978-3-642-00590-9_1

26:32 A Type-Directed Operational Semantics for a Calculus with a Merge Operator

54 Leo White, Frédéric Bour, and Jeremy Yallop. Modular implicits. In Oleg Kiselyov and
Jacques Garrigue, editors, Proceedings ML Family/OCaml Users and Developers workshops,
ML/OCaml 2014, Gothenburg, Sweden, September 4-5, 2014, volume 198 of EPTCS, pages
22–63, 2014. doi:10.4204/EPTCS.198.2.

55 Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Inf.
Comput., 115(1):38–94, 1994. doi:10.1006/inco.1994.1093.

https://doi.org/10.4204/EPTCS.198.2
https://doi.org/10.1006/inco.1994.1093

Row and Bounded Polymorphism via Disjoint
Polymorphism
Ningning Xie
The University of Hong Kong, China
nnxie@cs.hku.hk

Bruno C. d. S. Oliveira
The University of Hong Kong, China
bruno@cs.hku.hk

Xuan Bi
The University of Hong Kong, China
xbi@cs.hku.hk

Tom Schrijvers
KU Leuven, Belgium
https://people.cs.kuleuven.be/~tom.schrijvers/
tom.schrijvers@cs.kuleuven.be

Abstract
Polymorphism and subtyping are important features in mainstream OO languages. The most common
way to integrate the two is via F<: style bounded quantification. A closely related mechanism is
row polymorphism, which provides an alternative to subtyping, while still enabling many of the
same applications. Yet another approach is to have type systems with intersection types and
polymorphism. A recent addition to this design space are calculi with disjoint intersection types and
disjoint polymorphism. With all these alternatives it is natural to wonder how they are related.

This paper provides an answer to this question. We show that disjoint polymorphism can
recover forms of both row polymorphism and bounded polymorphism, while retaining key desirable
properties, such as type-safety and decidability. Furthermore, we identify the extra power of disjoint
polymorphism which enables additional features that cannot be easily encoded in calculi with row
polymorphism or bounded quantification alone. Ultimately we expect that our work is useful to
inform language designers about the expressive power of those common features, and to simplify
implementations and metatheory of feature-rich languages with polymorphism and subtyping.

2012 ACM Subject Classification Theory of computation → Type theory; Software and its engi-
neering → Object oriented languages; Software and its engineering → Polymorphism

Keywords and phrases Intersection types, bounded polymorphism, row polymorphism

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.27

Supplementary Material https://github.com/xnning/Row-and-Bounded-via-Disjoint

Funding This work has been sponsored by Hong Kong Research Grant Council projects number
17210617 and 17209519, and by the Research Foundation - Flanders.

Acknowledgements We thank the anonymous reviewers for their helpful comments.

1 Introduction

Intersection types [51, 22, 59] and parametric polymorphism are common features in many
newer mainstream Object-Oriented (OO) languages. Among others intersection types are
useful to express multiple interface inheritance [21]. They feature in programming languages
like Scala [44], TypeScript [40], Ceylon [52] and Flow [31]. These languages also incorporate
a form of parametric polymorphism, typically generalized to account for subtyping and
supporting bounded quantification [12]. As programmers get more experienced with the

© Ningning Xie, Bruno C. d. S. Oliveira, Xuan Bi, and Tom Schrijvers;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 27; pp. 27:1–27:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nnxie@cs.hku.hk
mailto:bruno@cs.hku.hk
mailto:xbi@cs.hku.hk
https://orcid.org/0000-0001-8771-5559
https://people.cs.kuleuven.be/~tom.schrijvers/
mailto:tom.schrijvers@cs.kuleuven.be
https://doi.org/10.4230/LIPIcs.ECOOP.2020.27
https://github.com/xnning/Row-and-Bounded-via-Disjoint
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Row and Bounded Polymorphism via Disjoint Polymorphism

combination of intersection types and polymorphism, they discover new applications. For
example, the documentation of TypeScript [41] shows how the two features can express a
composition operator for objects that enables an expressive form of statically typed dynamic
inheritance [20, 32] and mixin composition [8]:

function extend<A, B>(first: A, second: B): A & B

The polymorphic function extend takes two objects and produces a result whose type is the
intersection of the types of the original objects. The implementation of extend relies on low
level features of JavaScript and is right-biased: the fields or properties of second are chosen
in favor of the ones in first. For example, we can create a new object jim as follows:

var jim = extend(new Person(’Jim’), new ConsoleLogger());

The jim object has type Person & ConsoleLogger, and acts both as a person and as a
console logger. Using extend to compose objects is much more flexible than the static
inheritance mechanisms of common OO languages like Java or Scala. It can type-check
flexible OO patterns that have been used for many years in many dynamically-typed languages.
Functions similar to extend have also been encoded in Scala [47, 54].

Unfortunately, the extend function in TypeScript suffers from ambiguity issues, and
worse, it is not type-safe [2]. Indeed, given two objects with the same field or method names,
extend does not detect potential conflicts. Instead it silently composes the two objects,
using the implementation based on a biased choice. This does implement a mixin semantics,
but it has the drawback that it can unintentionally override methods, without any warnings
or errors. Additionally, the extend function is not type-safe: if two objects have the same
property name with different types, extend may lookup the property of the wrong type.

In the literature of intersection types, extend is essentially what has been identified as
the merge operator [55]. As illustrated by Dunfield [28], the expressive power of the merge
operator can encode diverse programming language features, promising an economy of theory
and implementation. Calculi with disjoint intersection types [46, 7, 2] incorporate a coherent
merge operator. In such calculi the merge operator can merge two terms with arbitrary types
as long as their types are disjoint; disjointness conflicts are reported as type-errors. Some
calculi with disjoint intersection types, such as F+

i [7], also support disjoint polymorphism [2],
which extends System F style universal quantification with a disjointness constraint. With
disjoint polymorphism we can model extend as:

let extend A (B * A) (first : A, second : B) : A & B = first ,, second

Unlike the TypeScript definition, which relies on type-unsafe features, the definition above
includes the full implementation. The definition of extend uses the merge operator (,,) to
compose the two objects. The type variable B has a disjointness constraint (B * A) which
states that B must be disjoint from A. Disjointness retains the flexibility to encode highly
dynamic forms of inheritance, while ensuring both type-safety and the absence of conflicts.

Row polymorphism and disjoint polymorphism. Disjoint polymorphism looks quite close to
certain forms of row polymorphism. Indeed, when restricted to record types, row polymorphism
with constrained quantification [34] provides an approach to recovering an unambiguous
semantics for extend as well. Constrained quantification extends System F style universal
quantification with a compatibility constraint. By requiring B to be compatible with A, we
can encode a row polymorphic variant of extend as:

N. Xie, B. C. d. S. Oliveira, X. Bi, and T. Schrijvers 27:3

let extend A (B # A) (first : A, second : B) : A || B = first || second

Here A and B are row variables standing for record types, and B is compatible with A (B # A),
which ensures the absence of conflicts. The || operator concatenates two records at both the
term level and the type level. The key difference between the two implementations of extend
is that in the version with row variables, A and B only stand for record types. In contrast
in the version with disjoint polymorphism, A and B are arbitrary types. In languages with
nominal type systems, allowing arbitrary types is important to deal with nominal types of
classes, for instance. The encoding of extend suggests that at least some functionality of row
polymorphism can be captured with disjoint polymorphism. Indeed, there are clear analogies
between the two mechanisms: the merge operators (,, and ||) are similar; compatibility plays
a similar role to disjointness; and intersection types generalize record type concatenation.

Bounded quantification and disjoint polymorphism. Polymorphic object-oriented lan-
guages also typically feature bounded quantification, which addresses the interaction between
polymorphism and subtyping. Bounded quantification generalizes universal quantification by
allowing programmers to specify upper bounds on type variables. For example:

let getName (A <: Person) (o : A) : (String,A) = (o.name,o)

expresses a function getName that takes an object o whose type is a subtype of Person,
extracts its name and returns a copy of the object. Note that bounded quantification is
useful to avoid the loss of information problem of subtyping [11]. Using the simpler type:

let getName_bad (o : Person) : (String,Person) = (o.name,o)

would lose static type information when given a subtype of Person as an argument.
An alternative version of getName that also does not lose type information is:

let getName A (o : A & Person) : (String,A & Person) = (o.name,o)

Here, the type variable A is unrestricted and represents the statically unknown part of
the type of the object. The intersection type A & Person ensures that the object must at
least contain all properties of Person, but does not forget about the statically unknown
components. The two versions of getName show a common use case in OOP, but they use
different features: the first uses bounded quantification, while the second uses a combination
of intersection types and polymorphism. The connection between bounded quantification
and polymorphic intersection types has been informally observed by Pierce [48].

Disjoint polymorphism, row polymorphism and bounded quantification provide a range
of functionalities for OOP languages. Thus a language designer may be tempted to design
a core language that combines all of these concepts. However, supporting all of them
would lead to a significant implementation effort and a complex metatheory with non-trivial
interactions between features. Furthermore, a common principle for (core) languages is to
avoid overlapping features, which provide different ways to solve the same problem. Yet there
seems to be a significant overlap between these features, which goes against that principle.

This paper builds on the similarities between the mechanisms, and shows that forms of both
row polymorphism and bounded polymorphism can be recovered by type-safe elaborations
into languages with disjoint polymorphism. Theoretically, it is important to formally establish
the comparison among different type features, to allow a deep understanding and a precise
discussion of the relative expressiveness of each feature. In practice, this result suggests

ECOOP 2020

27:4 Row and Bounded Polymorphism via Disjoint Polymorphism

that core languages wishing to support all those features only need to support disjoint
polymorphism natively, promising an economy of the implementation of those languages. To
establish the relationship between row, bounded and disjoint polymorphism in a rigorous
and precise manner, we formalize elaborations from λ|| [34], a System F like calculus with
row polymorphism, and from kernel F<: [12], into F+

i . Our work serves as a guideline for
language designers wishing to combine disjoint polymorphism, with bounded quantification
and/or row polymorphism. The elaborations are useful to understand exactly what can and
cannot be encoded, and to uncover and overcome difficulties. To our surprise, a full encoding
of λ|| is quite subtle: there are subtle differences between compatibility and disjointness.
Moreover, certain general forms of bounded quantification are problematic, but all programs
in kernel F<: (the most widely used and decidable fragment of F<:) are encodable.

We make the following specific contributions:
A formal elaboration from row to disjoint polymorphism: We present a formal
elaboration from λ|| to F+

i (Section 4). We first identify an intuitive elaboration (Sec-
tion 4.3). Due to discrepancies between compatibility and disjointness this elaboration
does not work for all λ|| programs. However it is possible to find a simple restriction on
λ|| that allows for the intuitive elaboration to work. We then present a complete, but non-
trivial elaboration that targets the original λ|| without restrictions (Section 4.4). While the
design space of row polymorphic calculi is very diverse, features in λ|| are representative
of most other calculi. We discuss elaborating other row calculi in Section 6.1.
A formal elaboration from bounded to disjoint polymorphism: We identify a
fragment of F<: that is encodable in terms of polymorphic intersection type systems, by
providing an elaboration from kernel F<: to F+

i (Section 5). Our elaboration, for the first
time, validates the informal observation between polymorphic intersection systems and
bounded quantification. We discuss other variants of F<: in Section 6.2.
A discussion of the extra expressive power of disjoint polymorphism: We
identify and discuss specific features of disjoint polymorphism that cannot be easily
encoded in F<: and λ|| (Section 2.4), including distributivity of intersections over other
constructs, and the combination of subtyping and row polymorphism. We discuss other
variants of intersection type systems in Section 6.3.
Coq formalization: All elaborations and metatheory of this paper, except for some
manual proof for simulation, has been mechanically formalized in the Coq proof assistant,
including type-safety and coherence. The Coq formalization amounts to 18,855 lines of
proofs and code (not including blank lines, comments and existing metatheory for F+

i).

2 Overview

This section introduces the key ideas of the encodings for bounded quantification and row
polymorphism. We also discuss the added extra power of disjoint polymorphism over bounded
quantification and row polymorphism.

2.1 Background: Disjoint Polymorphism
Disjoint polymorphism [2, 7] combines disjoint intersection types with parametric polymor-
phism. In particular, F+

i [7] supports intersection types A&B for terms that are both of type
A and of type B. With the merge operator we can construct terms of an intersection type, like
1 , , True of type Int & Bool. Thanks to subtyping, a term of type Int & Bool can also be used
as if it had type Int, or as if it had type Bool. F+

i requires the two components of a merge to
have disjoint types, e.g., 1 , , 2 : Int & Int is not allowed, because it is ambiguous which value

N. Xie, B. C. d. S. Oliveira, X. Bi, and T. Schrijvers 27:5

should be used at type Int. With disjoint quantification, it is possible to merge components
whose type contains type variables. For instance, the term Λ(α ∗ Int). λ(x : α). x , , 1 has type
∀(α ∗ Int). α→ α& Int. The disjointness annotation α ∗ Int allows α to be instantiated only to
types that are disjoint from Int. Without a disjointness constraint, the term Λα. λ(x : α). x , , 1
is rejected. Otherwise such a term would allow α to be instantiated to Int, and thus the
function could be applied to numbers, e.g., 2, leading to the ambiguous merge 2 , , 1.

2.2 Row Polymorphism through Disjoint Polymorphism
Row types, originally introduced by Wand [63] to model inheritance, provide an approach
to typing extensible records. Row types have been studied extensively [35, 11, 53, 42] and
have been applied to provide extensibility in various type systems [37, 36, 38]. According to
Rémy [53], record calculi can be divided into those that support free extension, and those
that support strict extension. The former allows extension with fields that already exist,
whereas the latter does not. In this paper we focus on λ||, a calculus proposed by Harper
and Pierce [34] that extends System F with row polymorphism. λ|| belongs to the strict
camp and avoids concatenating records with a field label in common by means of constrained
quantification. A constrained quantifier attaches a constraint list to a type variable, which
restricts the instantiations of that type variable to be record types with field labels that are
distinct from all the record types in the constraint list. What sets λ|| apart from other strict
record calculi is its ability to merge records with statically unknown fields, and a mechanism
to ensure that the resulting record is conflict-free (i.e., no duplicate labels). The following
function concatenates two records by the merge operator ||:

mergeRcd = Λ(α1 # Empty).Λ(α2 #α1). λ(x1 : α1). λ(x2 : α2). x1 || x2

which takes two type variables, each of which lacks (#) the appropriate fields (Empty means
no constraints at all). The function above can take any record type as its first argument, but
the second type must be compatible with the first (α2#α1), i.e., the second record cannot
have any labels that also occur in the first. These constraints ensure that the resulting record
x1 || x2 has no duplicate labels. If later we want to say that the first record x1 has at least a
field l1 of type Int, we can refine the constraint list of α1, α2 and the type of x1 accordingly:

Λ(α1 # {l1 : Int}).Λ(α2 # (α1, {l1 : Int})). λ(x1 : α1 || {l1 : Int}). λ(x2 : α2). x1 || x2

Encoding with disjoint polymorphism. Our encoding of λ|| into F+
i is based on the simi-

larities between the two calculi that the astute reader may have already observed. Indeed,
the constrained quantification of record type variables Λ(α# R). ε is quite similar to the
disjoint quantification Λ(α ∗A).E . They both constrain the use of respectively the record
concatenation operator x1 || x2 and the merge operator x1 , , x2. Exploiting these similarities,
we can encode mergeRcd as follows in F+

i :

mergeAny = Λ(α1 ∗ >).Λ(α2 ∗ α1). λ(x1 : α1). λ(x2 : α2). x1 , , x2

An important difference is that in mergeRcd, α1 and α2 are row variables: they can only be
instantiated with record types. In contrast in mergeAny, α1 and α2 are type variables and
they can be instantiated with any types, including types which are not records (such as Int).

Formal elaboration. To establish the validity of the encoding, we have formalized two
different elaborations of λ|| into F+

i . The first elaboration exploits the obvious similarity
between the two mechanisms. While it clearly works for many example programs, the

ECOOP 2020

27:6 Row and Bounded Polymorphism via Disjoint Polymorphism

formalization of the metatheory reveals that the straightforward elaboration does not work
for all programs. Indeed, it turns out that there is a subtle difference in the interpretation
of the constrained quantification and the disjoint quantification that makes the elaboration
break down in some cases. For instance, the λ|| binder Λα#{l : Int} expresses that α cannot
have the label l at all. In contrast, the F+

i binder Λβ ∗ {l : Int} expresses that β cannot have
a field l of type Int, but it can have a field l of some other disjoint type, say Bool. In what
we consider to be contrived programs, this subtle difference invalidates the elaboration. We
can eliminate this source of semantic difference by slightly restricting λ||, which is what we
do in the first elaboration. However, in order to handle those contrived (but well-typed)
unrestricted λ|| programs as well, we also present a more complex elaboration that faithfully
captures the semantics of constrained quantification in unrestricted λ||.

2.3 Bounded Quantification through Disjoint Polymorphism
Bounded quantification is a language feature that integrates parametric polymorphism with
subtyping. It was first introduced in the language Fun [12] as a means of typing functions
that operate uniformly over all subtypes of a given type, and has been the subject of much
theoretical and practical effort [9, 48, 49, 39, 13, 11, 18, 25, 50]. In this paper, we focus on
System F<:, which is a calculus with bounded quantification that extends System F.

As an illustration of bounded quantification, consider the following definition:

f = λ(x : {val : Int}). {orig = x, val = x.val + 1}

The function f has type {val : Int} → {orig : {val : Int}, val : Int}, but it actually works for all
records that have a val field of type Int. Thanks to bounded quantification we can formulate
a variant of f that admits this:

fpoly = Λ(α <: {val : Int}). λ(x : α). {orig = x, val = x.val + 1}

The term fpoly has type ∀(α <: {val : Int}). α→ {orig : α, val : Int}. Here the (upper-)bound
{val : Int} restricts the instantiation of the quantified type variable α to subtypes of {val : Int}.

Encoding with disjoint polymorphism. Pierce [48] informally discussed an encoding of
bounded quantification in terms of intersection types. To illustrate the encoding, let us
consider a function of type ∀(α <: Int). α→ α, which requires the type of the argument to
be a subtype of Int. With intersection types, we know that α& Int is always a subtype of Int.
Therefore, the type ∀α. (α& Int)→ (α& Int) expresses a similar subtype requirement. This
leads to the following encoding of bounded quantification, by reading a bounded quantifier
as an abbreviation for an unbounded one with a slightly modified body:

∀(α <: A).B , ∀β. ([β& A/α]B)

For the fpoly example, we have its encoded type

∀β. β& {val : Int} → {orig : β& {val : Int}, val : Int}

However, there is no formalization of this encoding, and it is not clear at all what fragment
of programs can be encoded. Pierce showed that this is not an encoding for full F<: as it
does not respect the subtyping rule for universal quantification. Nevertheless, after some
experimentation, where the encoding was manually applied to complex examples, he came to
the conclusion that “the encoding trick works better than might be expected”. Castagna and

N. Xie, B. C. d. S. Oliveira, X. Bi, and T. Schrijvers 27:7

Xu [19] even claim that “bounded quantification does not require any modification” in their
intersection type system due to this encoding. However, due to Pierce’s counterexamples,
without further qualification, this statement cannot be fully justified.

What is missing is to clarify precisely the expressiveness of this encoding with a type-
theoretic formalization. Our work serves as a basis to fill the gaps, by identifying an encodable
fragment of F<:, i.e., kernel F<:, and thus, for the first time, validates the informal observation
of this encoding.

Formal elaboration. We formalize Pierce’s informal encoding idea and turn it into a
structurally recursive procedure that systematically and simultaneously replaces all bounded
quantifiers in a term. While doing this we faced several technical challenges. The first one
was the misalignment between the F<: and F+

i type systems: the former is undirected and the
latter is bidirectional. This is a source of complication. In particular, we need to add explicit
type annotations for all terms whose type cannot be synthesized, but only checked. Another
challenge was the implicit use of subsumption in the typing of F<: terms. We shift around
the position in the term where subsumption happens and still arrive at the same type for
the whole term. While the different typing derivations may lead to different F+

i elaborations,
we do not want those different elaborations to have a different meaning. Hence, we must
show that the elaboration is coherent. Finally we had to identify the class of F<: programs
for which the encoding actually works. This was not clear from the individual examples that
Pierce gave, but it was necessary to make a formal statement that characterizes the extent
and thus the usefulness of the encoding. Our translation shows that all well-typed kernel F<:
programs are encodable as well-typed F+

i programs. We believe that this justifies Pierce’s
claim that the encoding might work better than expected, as kernel F<: is the most common
decidable fragment of F<: and widely used to model key aspects of OO programs.

2.4 The Extra Power of Disjoint Polymorphism
This section identifies some of the additional expressive power of F+

i over F<: and λ|| alone.

Distributivity, Nested Composition and Family Polymorphism. F+
i is based on BCD

subtyping [4], which features distributive subtyping rules, and enables nested composition
of merges. Nested composition has several applications. In particular it is a key feature to
enable family polymorphism [29].

With nested composition we can model a combinator that is useful to compose interpre-
tations of embedded DSLs. A minimal example [7] is:

type R[e] = {lit : Int → e, neg : e → e} -- literal and negative expressions
compose = Λ(a * >). Λ(b * a). λ(r1 : R[a]). λ(r2 : R[b]). (r1 ,, r2) : R[a & b]

Here R[e] stands for the abstract syntax of a tiny form of arithmetic expressions. The
combinator compose allows the composition of two arbitrary interpretations (such as evaluation
and pretty printing), into a single interpretation that runs both interpretations at once. In
F+
i this functionality is achieved by simply merging r1 and r2. Nested composition takes care

of the details, by implicitly using a form of type-directed code generation, which is triggered
by the upcast: R[a] & R[b] <: R[a & b] in expression r1 ,, r2. The type of r1 ,, r2 is
R[a] & R[b]. In F+

i , due to the distributivity properties of intersections, such a type is a
subtype of R[a & b]. Importantly, the fact that records are not treated specially in the type
language is a key to allowing distributivity, which in turn enables nested composition.

ECOOP 2020

27:8 Row and Bounded Polymorphism via Disjoint Polymorphism

The interested reader can see the work by Bi et al. [6, 7] for more complete examples.
These examples illustrate how nested composition provides a simple and elegant solution to
the Expression Problem (EP) [62]. In essence the approach mimics Ernst’s solution to the
EP with family polymorphism [30] (which also relies on a form of nested composition).

With bounded quantification alone, compose is essentially not expressible. A solution
with row polymorphism can be simulated only at the cost of more work:

Λ(a # Empty). Λ(b # a). λ(r1 : R[a]). λ(r2 : R[b]).
{ lit = λ(i : Int) . (r1.lit i , r2.lit i)
, neg = λ(e : (a, b)). (r1.neg (fst e), r2.neg (snd e)) }

Since row polymorphism does not support nested composition of merges, the code for
executing the two interpretations at once has to be explicitly modeled with some tedious
boilerplate code. Moreover, the results of the two interpretations have to be stored in a pair,
and explicit projections are necessary to access the values.

In essence the manual composition approach employed with row polymorphism is akin
to some existing solutions to the EP which need to tediously compose classes in different
families manually. For instance, it is well-known that Scala enables solutions to the EP [65].
However, without nested composition those solutions are cluttered with manual composition
code. In contrast, solutions based on nested composition are much more concise and elegant
thanks to the automatic composition [30, 6, 7].

Subtyping and row typing. F+
i combines both subtyping and row polymorphism under one

roof. The majority of systems with row polymorphism have been employed as an alternative
to subtyping (although some row calculi also have subtyping, e.g., [11]). λ||, in particular,
has no subtyping. One argument for row polymorphism is that it also eliminates the loss of
information problem of subtyping [11]. For example, with subtyping, an identity function:

λ(x : {l : Int}). x

with type {l : Int} → {l : Int} may, inadvertently, lose some precision on the output type.
For instance, the function can be applied to the record {l = 1, l ′ = True}, but the result type
of such an application is {l : Int} and not {l : Int, l ′ : Bool}.

λ|| solves the loss of information problem by formulating the function in a different way:

Λ(α# {l : Int}). λ(x : {l : Int} || α). x

In this function the row variable α stands for any record without a label l. The type of x
expresses that x includes a label l, as well as any labels in α. In this function the output
type is {l : Int} || α as well. Therefore the application of the function to {l = 1, l ′ = True}
has the type {l : Int, l ′ : Bool}, which does not lose precision.

In F+
i we can easily translate the λ|| approach and reap its benefits too:

Λ(α ∗ {l : Int}). λ(x : {l : Int}&α). x

This function, like the row polymorphic version, preserves the precision of the output type.
Nevertheless, for many functions subtyping does not lose precision. For example:

λ(x : {l : Int}). x.l + 1

The function has type {l : Int} → Int. In this case no matter which record is passed as an
argument the output type is as precise as it can be. Note that this function is valid in F+

i

and, because of subtyping, the record {l = 1, l ′ = True} is a valid argument. However in λ||,
the only way to allow records with more labels, is to generalize the function to:

N. Xie, B. C. d. S. Oliveira, X. Bi, and T. Schrijvers 27:9

Λ(α# {l : Int}). λ(x : {l : Int} || α). x.l + 1

In this case the generalization does not gain any precision, and in fact it requires a more
complex type than the version with subtyping.

In summary, unlike λ||, many functions in F+
i can have a simpler non-polymorphic type

and still allow for larger records to be used as inputs.

3 Disjoint Polymorphism

This section reviews F+
i , which serves as target of our elaborations of row and bounded

polymorphism. The F+
i calculus and its metatheory have been studied already in Bi et al. [7].

We refer to prior work on for further details regarding F+
i ’s formalization and metatheory.

3.1 Syntax and Semantics
Syntax. The syntax of F+

i is given at the top of Figure 1. Types A,B,C include integers
Int, the top type >, the bottom type ⊥, arrows A→ B, intersection types A & B, singleton
record types {l : A}, type variables α and disjoint quantification ∀(α ∗A).B. Expressions
E include term variables x, integers i, the top value >, abstractions λx.E , applications
E1 E2, merge expressions E1 , , E2, annotated terms E : A, singleton records {l = E}, record
projections E .l, type abstractions Λ(α ∗A).E and type applications E A. Term contexts Γ
record types of term variables, and type contexts ∆ record disjointness constraints of type
variables. Well-formedness of a type or a context are standard and omitted here.

Subtyping. The subtyping relation of F+
i is presented in the middle of Figure 1. Most

rules are standard. For functions (rule S-arr) and disjoint quantifications (rule S-forall),
subtyping is covariant in positive positions, and contravariant in negative positions. Rules S-
andl, S-andr, and S-and for intersection types axiomatize that A & B is the greatest lower
bound of A and B. Moreover, F+

i features BCD-style subtyping [4], where intersections
are distributive over other type constructs. Concretely, intersections distribute over arrows
(rule S-distArr), records (rule S-distRcd) and disjoint quantifications (rule S-distAll).
Rules S-topArr, S-topRcd, and S-topAll are special cases of the distributivity rules,
when viewing > as a 0-ary intersection.

Typing. The bidirectional typing rules for F+
i are given at the bottom of Figure 1. The

inference judgment ∆; Γ ` E ⇒ A says that under the type context ∆ and the term context
Γ, we can synthesize the type A for the expression E . The checking judgment ∆; Γ ` E ⇐ A
checks E against the type A under the contexts ∆ and Γ. Most of the typing rules are
standard. Rule T-merge says that the merge expression E1 , , E2 is well-typed if both
sub-expressions are well-typed, and their types are disjoint. The disjointness judgment
∆ ` A1 ∗A2 is important to rule out invalid merges, such as 1 , , 2. Rule T-tabs says that,
when typing a type abstraction, we put the disjointness constraint into the type context and
then type-check the body. Conversely, rule T-tapp checks that the type argument should
satisfy the disjointness constraint.

Disjointness. Figure 2 presents the rules of the disjointness relation. Essentially, disjointness
checks whether the merge of two expressions preserves coherence. Rules D-topL and D-
topR say that top-like types are disjoint with any type. The top-like predicate eAd, given at

ECOOP 2020

27:10 Row and Bounded Polymorphism via Disjoint Polymorphism

Types A,B,C ::= Int | > | ⊥ | A→ B | A & B | {l : A} | α | ∀(α ∗A).B
Expressions E ::= x | i | > | λx.E | E1 E2 | E1 , , E2 | E : A | {l = E} | E .l

| Λ(α ∗A).E | E A
Term contexts Γ ::= • | Γ, x : A
Type contexts ∆ ::= • | ∆, α ∗A

A <: B (Declarative subtyping)

S-refl

A <: A

S-trans
A2 <: A3 A1 <: A2

A1 <: A3

S-top

A <: >

S-bot

⊥ <: A

S-rcd
A <: B

{l : A} <: {l : B}

S-arr
B1 <: A1 A2 <: B2

A1 → A2 <: B1 → B2

S-forall
B1 <: B2 A2 <: A1

∀(α ∗A1).B1 <: ∀(α ∗A2).B2

S-and
A1 <: A2 A1 <: A3

A1 <: A2 & A3

S-andl

A1 & A2 <: A1

S-andr

A1 & A2 <: A2

S-distArr

(A1 → A2) & (A1 → A3) <: A1 → A2 & A3

S-distRcd

{l : A}& {l : B} <: {l : A & B}

S-distAll

(∀(α ∗A).B1) & (∀(α ∗A).B2) <: ∀(α ∗A).B1 & B2

S-topArr

> <: > → >

S-topRcd

> <: {l : >}

S-topAll

> <: ∀(α ∗ >).>

∆; Γ ` E ⇒ A (Inference)

T-top
` ∆ ∆ ` Γ
∆; Γ ` > ⇒ >

T-nat
` ∆ ∆ ` Γ
∆; Γ ` i⇒ Int

T-var
` ∆ ∆ ` Γ (x : A) ∈ Γ

∆; Γ ` x ⇒ A

T-app
∆; Γ ` E1 ⇒ A1 → A2 ∆; Γ ` E2 ⇐ A1

∆; Γ ` E1 E2 ⇒ A2

T-tabs
∆ ` A ∆, α ∗A; Γ ` E ⇒ B

∆; Γ ` Λ(α ∗A).E ⇒ ∀(α ∗A).B

T-merge
∆; Γ ` E1 ⇒ A1 ∆; Γ ` E2 ⇒ A2 ∆ ` A1 ∗A2

∆; Γ ` E1 , , E2 ⇒ A1 & A2

T-rcd
∆; Γ ` E ⇒ A

∆; Γ ` {l = E} ⇒ {l : A}

T-proj
∆; Γ ` E ⇒ {l : A}

∆; Γ ` E .l ⇒ A

T-anno
∆; Γ ` E ⇐ A

∆; Γ ` E : A⇒ A

T-tapp
∆; Γ ` E ⇒ ∀(α ∗ B).C ∆ ` A ∗ B

∆; Γ ` E A⇒ [A/α]C

∆; Γ ` E ⇐ A (Checking)

T-abs
∆ ` A ∆; Γ, x : A ` E ⇐ B

∆; Γ ` λx.E ⇐ A→ B

T-sub
∆; Γ ` E ⇒ B B <: A

∆; Γ ` E ⇐ A

Figure 1 Syntax, declarative subtyping, and bidirectional type system of F+
i .

N. Xie, B. C. d. S. Oliveira, X. Bi, and T. Schrijvers 27:11

eAd (Top-like types)

TL-top

e>d

TL-and
eAd eBd
eA & Bd

TL-arr
eBd

eA→ Bd

TL-rcd
eAd

e{l : A}d

TL-all
eBd

e∀(α ∗A).Bd

∆ ` A ∗ B (Disjointness)

D-topL
eAd

∆ ` A ∗ B

D-topR
eBd

∆ ` A ∗ B

D-ax
A ∗ax B

∆ ` A ∗ B

D-arr
∆ ` A2 ∗ B2

∆ ` A1 → A2 ∗ B1 → B2

D-andL
∆ ` A1 ∗ B ∆ ` A2 ∗ B

∆ ` A1 & A2 ∗ B

D-andR
∆ ` A ∗ B1 ∆ ` A ∗ B2

∆ ` A ∗ B1 & B2

D-rcdNeq
l1 6= l2

∆ ` {l1 : A} ∗ {l2 : B}

D-rcdEq
∆ ` A ∗ B

∆ ` {l : A} ∗ {l : B}

D-tvarL
(α ∗A) ∈ ∆ A <: B

∆ ` α ∗ B

D-tvarR
(α ∗A) ∈ ∆ A <: B

∆ ` B ∗ α

D-forall
∆, α ∗A1 & A2 ` B1 ∗ B2

∆ ` ∀(α ∗A1).B1 ∗ ∀(α ∗A2).B2

Figure 2 Selected rules for disjointness.

the top of Figure 2, captures the set of types that are isomorphic to >. Disjointness axioms
A ∗ax B (appearing in rule D-ax) take care of two types with different type constructors (e.g.,
Int and records). The axiom rules can be found in Appendix A.2. The other disjointness
rules are standard and explained in detail in previous work [46, 2]. Finally, we note that
subtyping preserves disjointness.

I Lemma 1 (Subtyping preserves disjointness). If ∆ ` A ∗ B and B <: C , then ∆ ` A ∗ C .

3.2 Elaboration and Coherence
The dynamic semantics of F+

i is given by a type-directed elaboration (e) into another
calculus, Fco, a variant of System F with explicit coercions. The full definition of Fco and
the elaboration process can be found in Appendix B. The main challenge of the elaboration
is that, due to the non-deterministic nature of the declarative type system, an F+

i expression
can elaborate to different Fco expressions. For example, the subtyping rules S-and, S-andl,
and S-andr overlap with each other when both sides are intersections, leading to different
coercions depending on the order in which these rules are applied. To establish coherence for
F+
i , Bi et al. [7] resort to contextual equivalence, and they prove that different elaborations of

the same F+
i expression are contextually equivalent. More formally, ∆; Γ ` e1 wctx e2 means

that two Fco expressions are contextually equivalent under the corresponding elaboration
contexts of ∆ and Γ. We state the central coherence theorem below.

I Theorem 2 (Coherence of F+
i). We have that

If ∆; Γ ` E ⇒ A e1 , and ∆; Γ ` E ⇒ A e2 , then ∆; Γ ` e1 wctx e2.
If ∆; Γ ` E ⇐ A e1 , and ∆; Γ ` E ⇐ A e2 , then ∆; Γ ` e1 wctx e2.

ECOOP 2020

27:12 Row and Bounded Polymorphism via Disjoint Polymorphism

4 Encoding Row Polymorphism

This section shows how to systematically elaborate λ|| [34] – a polymorphic record calculus
with constrained quantification – into F+

i . We first identify a simple and direct elaboration
for a fragment of λ||, and then present a carefully crafted elaboration of full λ|| using a more
sophisticated elaboration.

4.1 Syntax of λ||

We start by briefly reviewing the syntax of λ||, shown at the top of Figure 3. Metavariable t
ranges over types, which include the integer type Int, function types t1 → t2, constrained
quantifications ∀α# R. t and record types r . Record types are built from record type variables
α, the empty record type Empty, single-field records {l : t} and record merges r1 || r2.1 A
constraint list R of record types is used to constrain instantiations of record type variables.

Metavariable ε ranges over terms, including term variables x, integers i, lambda abstrac-
tions λ(x : t). ε, function applications ε1 ε2, the empty record empty, single-field records
{l = ε}, record merges ε1 || ε2, record restrictions ε\l, record projections ε.l, type abstractions
Λ(α# R). ε and type applications ε [r]. As a side note, from the syntax of type applications
ε [r], it can already be seen that λ|| only supports quantification over record types.

4.2 Typing Rules of λ||

The type system of λ|| consists of several conventional judgments. The complete set of rules
appears in Appendix C.2. Figure 3 presents selected well-formedness rules for record types.
A merge r1 || r2 is well-formed in context T if r1 and r2 are well-formed, and moreover, r1
and r2 are compatible in T (rule wfr-Merge) – the most important judgment in λ||, as we
will explain next.

Compatibility. The compatibility relation in the middle of Figure 3 plays a central role in λ||.
It is the underlying mechanism for deciding when merging two records is “sensible”. Informally,
T ` r1 # r2 holds if r1 lacks every field contained in r2 and vice versa. Compatibility is
symmetric (rule cmp-Symm) and respects type equivalence (rule cmp-Eq). Rule cmp-Base
says that if a record is compatible with {l : t}, it is also compatible with every record
{l : t′} with the same label l. A type variable is compatible with the records in its constraint
list (rule cmp-Tvar). Two single-field records are compatible if they have different labels
(rule cmp-BaseBase). The remaining rules are self-explanatory; we refer the reader to [34]
for further explanation. The judgment of constraint list satisfaction T ` r # R ensures that
r is compatible with every record in the constraint list R.

Type equivalence. Unlike F+
i , λ|| does not have subtyping. Instead, λ|| uses type equivalence

to convert terms of one type to another. A selection of the rules defining equivalence of types
and constraint lists appears at the bottom of Figure 3. The relation t1 ∼ t2 is an equivalence
relation, and is a congruence with respect to the type constructors. Merge is associative
(rule teq-MergeAssoc), commutative (rule teq-MergeComm), and has Empty as its unit
(rule teq-MergeUnit). As a consequence, records are identified up to permutations. The
equivalence of constrained quantification (rule teq-CongAll) relies on the equivalence of

1 The original λ|| also includes record type restrictions r \ l, which can be systematically erased using
type equivalence, thus we omit type-level restrictions but keep term-level restrictions.

N. Xie, B. C. d. S. Oliveira, X. Bi, and T. Schrijvers 27:13

Types t ::= Int | t1 → t2 | ∀α# R. t | r
Records r ::= α | Empty | {l : t} | r1 || r2

Constraint lists R ::= � | r ,R
Terms ε ::= x | i | λ(x : t). ε | ε1 ε2 | empty | {l = ε} | ε1 || ε2

| ε \ l | ε.l | Λ(α# R). ε | ε [r]
Term contexts G ::= � | G, x : t
Type contexts T ::= � | T, α# R

T ` r record (Well-formed record types)

wfr-Var
(α# R) ∈ T
T ` α record

wfr-Merge
T ` r1 record T ` r2 record T ` r1 # r2

T ` r1 || r2 record

T ` r1 # r2 (Compatibility)

cmp-Eq
T ` r # s r ∼ r ′ s ∼ s′

T ` r ′ # s′

cmp-Symm
T ` r # s
T ` s # r

cmp-Base
T ` r # {l : t} T ` t′ type

T ` r # {l : t′}

cmp-Tvar
(α# R) ∈ T T ` R ok r ∈ R

T ` α# r

cmp-MergeE
T ` r # (s1 || s2)

T ` r # si

cmp-Empty
T ` r record
T ` r # Empty

cmp-MergeI
T ` s1 # s2 T ` r # s1 T ` r # s2

T ` r # (s1 || s2)

cmp-BaseBase
l 6= l ′ T ` t type T ` t′ type

T ` {l : t}# {l ′ : t′}

T ` r # R (Constraint list satisfaction)

cmpList-Nil
T ` r record
T ` r # �

cmpList-Cons
T ` r # r ′ T ` r # R

T ` r # r ′,R

t1 ∼ t2 (Type equivalence)

teq-MergeAssoc

r1 || (r2 || r3) ∼ (r1 || r2) || r3

teq-MergeComm

r1 || r2 ∼ r2 || r1

teq-MergeUnit

r || Empty ∼ r

teq-CongAll
R ∼ R′ t ∼ t′

∀α# R. t ∼ ∀α# R′. t′

R1 ∼ R2 (Constraint list equivalence)

ceq-Swap

r , (r ′,R) ∼ r ′, (r ,R)

ceq-Merge

(r1 || r2),R ∼ r1, (r2,R)

ceq-Empty

Empty,R ∼ R

ceq-Base

{l : t},R ∼ {l : t′},R

Figure 3 Syntax, and selected rules of λ||.

ECOOP 2020

27:14 Row and Bounded Polymorphism via Disjoint Polymorphism

T ;G ` ε : t E (Type-directed elaboration)

wtt-Eq
T ;G ` ε : t E T ` t′ type t ∼ t′

T ;G ` ε : t′ E : Jt′K

wtt-Base
T ;G ` ε : t E

T ;G ` {l = ε} : {l : t} {l = E}

wtt-Restr
T ;G ` ε : {l : t} || r E

T ;G ` ε \ l : r E : JrK

wtt-Select
T ;G ` ε : {l : t} || r E

T ;G ` ε.l : t (E : {l : JtK}).l

wtt-Empty
T ok T ` G ok

T ;G ` empty : Empty >

wtt-Merge
T ;G ` ε1 : r1 E1

T ;G ` ε2 : r2 E2 T ` r1 # r2

T ;G ` ε1 || ε2 : r1 || r2 E1 , , E2

wtt-AllE
T ;G ` ε : ∀α# R. t E T ` r # R

T ;G ` ε [r] : [r/α]t E JrK JrK⊥

wtt-AllI
T ` R ok T, α# R;G ` ε : t E

T ;G ` Λ(α# R). ε : ∀α# R. t Λ(α ∗ JRK).Λ(α⊥ ∗ JRK).E

Figure 4 Selected typing rules of λ|| with elaboration.

constraint lists R1 ∼ R2. Again, it is an equivalence relation, and it respects type equivalence.
Constraint lists are essentially finite sets, so order is irrelevant (rule ceq-Swap). Merges
of constraints can be “flattened” (rule ceq-Merge), and occurrences of Empty may be
eliminated (rule ceq-Empty). The last rule ceq-Base is quite interesting: it implies that
the types of single-field records are ignored. The reason is that, as far as compatibility is
concerned, only labels matter, thus changing the types of records in constraint lists will not
affect their compatibility relation. We will have more to say about this in Section 4.3.

Typing rules. A selection of typing rules is shown in Figure 4. In a first reading, the gray
parts can be ignored. Most of the typing rules are quite standard. Typing is invariant under
type equivalence (rule wtt-Eq). Two terms can be merged if their types are compatible
(rule wtt-Merge). Type application ε [r] is well-typed if the type argument r satisfies the
constraints R (rule wtt-AllE).

I Remark 3. We have made a few simplifications compared to the original λ||, notably the
typing of record selection (rule wtt-Select) and restriction (rule wtt-Restr). In the
original formulation, both typing rules use a partial function r_l that denotes the type
associated with label l in r . Instead of using partial functions, here we explicitly expose the
expected label in a record. It can be shown that if label l is present in record type r , then
the fields in r can be rearranged so that l comes first by type equivalence. This formulation
was also adopted by Leijen [35].

4.3 A Simple yet Incomplete Encoding
The similarities between λ|| and F+

i , which the astute reader may have already observed,
suggest an intuitive elaboration scheme. On the syntactic level, it is easy to see a one-to-one
correspondence between λ|| types and F+

i types. We use JtK to denote the elaboration

N. Xie, B. C. d. S. Oliveira, X. Bi, and T. Schrijvers 27:15

JtK JIntK = Int JRK J�K = >
Jt1 → t2K = Jt1K→ Jt2K Jr ,RK = JrK & JRK

J∀α# R. tK = ∀(α ∗ JRK). JtK JT K J�K = •
JαK = α JT, α# RK = JT K, α ∗ JRK

JEmptyK = > JGK J�K = •
J{l : t}K = {l : JtK} JG, x : tK = JGK, x : JtK

Jr1 || r2K = Jr1K & Jr2K

T ;G ` ε : t i E (Type-directed elaboration)

wtti-Eq
T ;G ` ε : t i E T ` t′ type t ∼ t′

T ;G ` ε : t′ i E : Jt′K

wtti-Base
T ;G ` ε : t i E

T ;G ` {l = ε} : {l : t} i {l = E}

wtti-AllI
T ` R ok T, α# R;G ` ε : t i E

T ;G ` Λ(α# R). ε : ∀α# R. t i Λ(α ∗ JRK).E

wtti-AllE
T ;G ` ε : ∀α# R. t i E T ` r # R

T ;G ` ε [r] : [r/α]t i E JrK

Figure 5 Intuitive elaboration functions, and selected type-directed elaboration from λ|| to F+
i .

function from λ|| types to F+
i types, whose formal definition is given at the top of Figure 5.

Elaboration of expressions is also easy. Constrained type abstractions Λ(α# R). ε correspond
to Λ(α ∗ A).E ; record merges can be simulated by the more general merge operator of
F+
i ; record restriction can be modeled as annotated terms, and so on. On the semantic

level, well-formedness judgments of λ|| match with well-formedness judgments of F+
i . The

compatibility relation corresponds to the disjointness relation. What might not be so obvious
is that type equivalence is expressible via subtyping. More specifically, t1 ∼ t2 induces two
subtyping relations: Jt1K <: Jt2K and Jt2K <: Jt1K. Under this elaboration scheme, the full
definition of type-directed elaboration, denoted as T ;G ` ε : t i E , where i stands for
“intuitive”, is simple (selected rules are given at the bottom of Figure 5). With all these in
mind, let us consider two examples.

I Example 4. Consider the term Λ(α# {l : Int}). λ(x : α). x . This term can be assigned the
type (among others) ∀α# {l : Int}. α→ α, and its F+

i counterpart Λ(α ∗ {l : Int}). λ(x : α). x
has type ∀(α ∗ {l : Int}). α → α, which corresponds directly to ∀α# {l : Int}. α → α. In
λ||, the same term could also be assigned type ∀α# {l : Bool}. α→ α (rule wtt-Eq), since
∀α# {l : Bool}. α → α is equivalent to ∀α# {l : Int}. α → α by rules teq-CongAll and
ceq-Base. However, in F+

i , these two types have no relationship at all – ∀(α∗{l : Int}). α→ α

is not the same as ∀(α ∗ {l : Bool}). α→ α, and indeed it should not be, as these two types
have completely different meanings!

I Example 5. Consider the term ε = Λ(α# {l : Bool}). λ(x : α). λ(y : {l : Int}). x || y. This
term has type ∀α# {l : Bool}. α→ {l : Int} → α || {l : Int}, and its “obvious” elaboration is
E = Λ(α∗{l : Bool}). λ(x : α). λ(y : {l : Int}). x , , y. However, expression E is ill-typed in F+

i :
we cannot merge x with y because their types (α and {l : Int} respectively) are not disjoint.
Allowing it to type-check causes incoherence: evaluating (E {l : Int} {l = 1} {l = 2}).l could
result in 1 or 2!

ECOOP 2020

27:16 Row and Bounded Polymorphism via Disjoint Polymorphism

These examples underline a crucial observation: disjointness is more fine-grained than
compatibility. Unlike F+

i , the existence of ε in λ|| will not cause incoherence because
compatibility can only relate records with different labels, and thus ε can only be applied to
records without label l at all. So λ|| rejects type application ε [{l : Int}] in the first place.
However, disjointness also relates records with the same label as long as their types are
disjoint, i.e., rule D-rcdEq. Section 2.4 illustrates the importance of rule D-rcdEq for
distributivity, which is not supported by λ||. A careful comparison between the two calculi
reveals that two rules are “to blame”: rule ceq-Base and rule cmp-Base, which are the
cause for the problem in Example 4 and Example 5 respectively.

{l : t},R ∼ {l : t′},R
ceq-Base

T ` r # {l : t} T ` t′ type
T ` r # {l : t′}

cmp-Base

Yet, both Example 4 and Example 5 seem contrived. From the expression Λ(α# {l :
Int}). λ(x : α). x, the user can reasonably expect the type to be ∀α# {l : Int}. α → α. For
ε, an equivalent definition with more sensible and readable annotation is ε′ = Λ(α# {l :
Int}). λ(x : α). λ(y : {l : Int}). x || y, whose corresponding elaboration type-checks successfully.
We believe that programs with the same issue always have some equivalent accepted programs
by changing some type annotations.

We propose a restricted λ|| by: (1) replacing rule ceq-Base with rule ceq-BaseAlt; and
(2) removing rule cmp-Base. We conjecture that this change has no practical consequences
and no expressiveness is lost. Moreover, the restrictions coincide with the observation in
Harper and Pierce [34]: we may normalize constraint lists into the form l1, . . . , ln, α1, . . . , αm
where the li’s are labels and the αi’s are record type variables. The normalization then
validates the change of rules.

t ∼ t′

{l : t},R ∼ {l : t′},R
ceq-BaseAlt

In return, we can prove the intuitive elaboration for restricted λ|| is, indeed, sound:

I Theorem 6 (Type-safety of i elaboration). If T ;G ` ε : t i E then JT K; JGK ` E ⇒ JtK.

4.4 A Complete Encoding of λ|| and its Challenges

One criticism to the intuitive encoding is that it does not fully model λ||: fewer expressions
type-check in the modified λ||. Thus, we present a carefully designed encoding that is able
to elaborate the original λ|| to F+

i without any restrictions at all. It is highly non-trivial and
reveals the essence of constrained quantification from the point of view of disjointness.

First, let us take a step back and have another look at Example 5. As we have discussed,
the root cause is rule cmp-Base, which says that if a record is compatible with a single-field
record {l : t}, then it is compatible with every single-field record {l : t′}. To express the
essence of rule cmp-Base in F+

i , we utilize the bottom type ⊥. In F+
i , according to Lemma 1,

if some type A is disjoint to {l : ⊥}, then, because {l : ⊥} <: {l : B} (by rules S-rcd and
S-bot) for any B, we have that A is disjoint to {l : B}. In other words, in F+

i , if a record is
disjoint to {l : ⊥}, then it is disjoint to every single-field record {l : A}.

I Lemma 7 (Disjointness to records with bottom). If ∆ ` A ∗ {l : ⊥}, then ∆ ` A ∗ {l : B}
for all B.

N. Xie, B. C. d. S. Oliveira, X. Bi, and T. Schrijvers 27:17

Essentially, a compatibility constraint with {l : t} in λ|| corresponds to a disjointness
constraint to {l : ⊥} in F+

i . Thus, we bottom-elaborate the record types that appear in a
constraint list: if a record {l : t} appears in a constraint list, then it is bottom-elaborated to
{l : ⊥}. For Example 4, both ∀α# {l : Int}. α→ α and ∀α# {l : Bool}. α→ α elaborate to
∀(α ∗ {l : ⊥}). α→ α. For Example 5, ε elaborates to E ′ = Λ(α ∗ {l : ⊥}). λ(x : α). λ(y : {l :
Int}). x , , y, which type-checks in F+

i .

I Example 8. Now consider the λ|| term

ε1 = (Λ(α# Empty). λ(x : (∀β#α. Int)). 1) [{l : Int}] (Λ(β# {l : Int}). 2)

The term type-checks in λ|| and has type Int. During elaboration, we treat records differently
according to where they occur. For the type argument {l : Int}, since it is not in a constraint
list, we elaborate it normally to {l : Int}. For the term argument (Λ(β# {l : Int}). 2),
since the record {l : Int} appears in a constraint list, we elaborate the term argument to
(Λ(β ∗ {l : ⊥}). 2). The whole term is then elaborated to

E1 = (Λ(α ∗ >). ((λx. 1) : (∀(β ∗ α). Int)→ Int)) {l : Int} (Λ(β ∗ {l : ⊥}). 2)

However, E1 fails to type-check in F+
i : after type application, we substitute α with the type

argument {l : Int} in x ’s type (∀(β ∗ α). Int), yielding (∀(β ∗ {l : Int}). Int), whereas the term
argument has type (∀(β ∗ {l : ⊥}). Int), which does not match (and is not a subtype of) the
expected parameter type!

The tricky part here is that, for type variables that appear in the constraint list, after
type application, the elaborated disjointness constraint contains the original type argument
instead of the bottom-elaborated type. In this case, the result type of type application, i.e.,
((∀(β ∗ {l : Int}). Int)→ Int), has {l : Int} instead of {l : ⊥} in the disjointness constraint.

Apparently we cannot bottom-elaborate every type argument, or otherwise we would lose
type information for records. For example, ((Λ(α# Empty). λ(x : α). x) [{l : Int}] {l = 1}).l +1
should not elaborate to ((Λ(α ∗ >). (λx. x) : α→ α) {l : ⊥}{l = 1}).l + 1, which is ill-typed.

Therefore, we bottom-elaborate record variables that appear in a constraint list. To this
end, we map a record type variable α to a pair of type variables α and α⊥, where α⊥ is
used in the disjointness constraint. Note that, α⊥ is not a new sort of type variable–we can
use α1 or α2 as well – the subscript ⊥ here is only for readability. The bottom-elaborated
type variable α⊥ is introduced by an extra type abstraction. While α takes the normal
type argument, α⊥ takes an extra bottom-elaborated type argument. As an example, the
expression ε1 in Example 8 is elaborated to E ′1, which type-checks successfully in F+

i , where
the differences from E1 are highlighted in gray.

E ′
1 = (Λ(α ∗>). Λ(α⊥ ∗ >) . (λx. 1) : (∀(β ∗ α⊥). Int)→ Int) {l : Int} {l : ⊥} (Λ(β ∗ {l : ⊥}). 2)

Intentionally, α⊥ is a subtype of α, as it always takes bottom-elaborated type arguments
that are subtype of the original type arguments. For example, {l : ⊥} is a subtype of {l : Int}.
However, the type system is unaware of this observation.

I Example 9. Consider the term

ε2 = Λ(α# Empty).Λ(β#α). λ(x : α). λ(y : β). x || y.

Under the current approach, it elaborates to

E2 = Λ(α ∗ >).Λ(α⊥ ∗ >).Λ(β ∗ α⊥).Λ(β⊥ ∗ α⊥). λ(x : α). λ(y : β). x , , y

ECOOP 2020

27:18 Row and Bounded Polymorphism via Disjoint Polymorphism

JtK JIntK = Int JrK⊥ JαK⊥ = α⊥

Jt1 → t2K = Jt1K→ Jt2K JEmptyK⊥ = >
J∀α# R. tK = ∀(α ∗ JRK). ∀(α⊥ ∗ JRK). JtK J{l : t}K⊥ = {l : ⊥}

JαK = α Jr1 || r2K⊥ = Jr1K⊥ & Jr2K⊥

JEmptyK = > JRK J�K = >

J{l : t}K = {l : JtK} Jr ,RK = JrK & JrK⊥ & JRK

Jr1 || r2K = Jr1K & Jr2K JT K J�K = •

JGK J�K = • JT, α# RK = JT K, α ∗ JRK, α⊥ ∗ JRK

JG, x : tK = JGK, x : JtK

Figure 6 Elaboration functions from λ|| to F+
i .

However, the merge x , , y fails to type-check, as we do not have the information that α ∗ β.
We only have β ∗α⊥ in the context. If the system could know that α⊥ <: α, then by Lemma 1
we could derive β ∗ α.

Twisting F+
i by adding the axiom α⊥ <: α is unsatisfactory, as it complicates the subtyping

relation and also significantly affects the metatheory. Our solution is to include both the
regularly elaborated types as well as the bottom-elaborated types into the disjointness
constraint. In other words, β is disjoint with both α and α⊥. Now ε2 elaborates to E ′2, which
type-checks successfully in F+

i . Note we have also elaborated and bottom-elaborated Empty.

E ′
2 = Λ(α ∗ >&>).Λ(α⊥ ∗ >&>).Λ(β ∗ α&α⊥).Λ(β⊥ ∗ α&α⊥). λx : α. λy : β. x , , y

4.5 Formal Elaboration
With all the above ideas and observations in mind, we are ready to give a formal account of
the elaboration. The elaboration of types is given in Figure 6. We highlight the differences
from Figure 5 in grey. There are two ways of elaborating records: JrK (contained in JtK) for
regular elaboration and JrK⊥ for bottom elaboration. In regular elaboration JtK, α elaborates
to α. Of particular interest is the case of elaborating quantifiers: each quantifier ∀α# R. t is
split into two quantifiers ∀(α ∗ JRK).∀(α⊥ ∗ JRK). JtK in F+

i . The relative order of α and α⊥ is
not important, as long as we respect the order when elaborating type applications. Bottom
elaboration JrK⊥ elaborates α to α⊥, and {l : t} to {l : ⊥}.

When elaborating constraint lists (JRK), a record r is elaborated to the intersection of
both its regular elaboration and bottom elaboration. Thus if β is compatible with α, then
its elaboration β is disjoint with both α and α⊥.

Now let us go back to the gray parts in Figure 4. The major difference from Figure 5
is rule wtt-AllI and rule wtt-AllE. In rule wtt-AllI, we elaborate constrained type
abstractions to disjoint type abstractions with two quantifiers, matching the elaboration of
constrained quantification. Note that the relative order of α and α⊥ should match the order of
α and α⊥ in elaborating quantifiers. Similarly, in the type application ε [r] (rule wtt-AllE),
we first elaborate e to E . The elaboration E is then applied to two types JrK and JrK⊥, as E
has two quantifiers resulting from the elaboration. It is of great importance that the relative
order of JrK and JrK⊥ should match the order of α and α⊥ in elaborating quantifiers. There
is a protocol that we must follow during elaboration: if α is substituted by JrK, then α⊥ is
substituted by JrK⊥.

N. Xie, B. C. d. S. Oliveira, X. Bi, and T. Schrijvers 27:19

4.6 Metatheory
Our elaboration enjoys desirable properties. The following lemma states that our elaboration
function commutes with substitution, in a slightly involved way:

I Lemma 10 (Elaboration commutes with substitution). We have (1) J[r/α]tK =
[JrK⊥/α⊥][JrK/α]JtK; (2) J[r/α]r1K⊥ = [JrK⊥/α⊥][JrK/α]Jr1K⊥; and (3) J[r/α]RK =
[JrK⊥/α⊥][JrK/α]JRK.

We show key lemmas that bridge the gap between row and disjoint polymorphism.

I Lemma 11 (Type equivalence implies subtyping). If t1 ∼ t2, then we have Jt1K <: Jt2K and
Jt2K <: Jt1K.

I Lemma 12 (Compatibility implies disjointness). If T ` r1 # r2, then we have: (1) JT K `
Jr1K ∗ Jr2K; (2) JT K ` Jr1K ∗ Jr2K⊥; (3) JT K ` Jr1K⊥ ∗ Jr2K; and (4) JT K ` Jr1K⊥ ∗ Jr2K⊥.

I Lemma 13 (Essence of compatibility). If T ` r # {l : t}, then for all A, we have (1)
JT K ` JrK ∗ {l : A}; and (2) JT K ` JrK⊥ ∗ {l : A}.

With everything in place, we prove that our elaboration in Figure 4 is type-safe. The
reader can refer to our Coq formalization for details.

I Theorem 14 (Type-safety of elaboration). If T ;G ` ε : t E , then JT K; JGK ` E ⇒ JtK.

Coherence. Because of rule wtt-Eq, a λ|| expression can possibly elaborate to many
different F+

i expressions. For example, the term Λ(α# {l : Int}). λ(x : α). x has the following
two elaborations E1 and E2 (among others). This is the problem of coherence [56]: the
meaning of a target program depends on the choice of a particular elaboration typing.
1. E1 = Λ(α ∗ ({l : Int}& {l : ⊥})).Λ(α⊥ ∗ ({l : Int}& {l : ⊥})). λ(x : α). x;
2. E2 = (E1 : J∀α# {l : Bool}. α→ αK) : J∀α# {l : Int}. α→ αK

To prove that different elaborations are equivalent, we utilize the definition of contextual
equivalence. In particular, we prove that if a λ|| expression ε with type t elaborates to two
F+
i expressions, and these two F+

i expressions further elaborate to two Fco expressions, then
the Fco expressions are contextually equivalent.

I Theorem 15 (Coherence of elaboration). If �; � ` ε : t E1 , and �; � ` ε : t E2 , and
•; • ` E1 ⇒ JtK e1 , and •; • ` E2 ⇒ JtK e2 , then •; • ` e1 wctx e2.

5 Encoding Bounded Quantification

This section presents a type-safe and coherent encoding of kernel F<: [12] into F+
i . This

encoding validates the informal observation about the relationship between polymorphic
intersection systems and bounded quantification.

5.1 Syntax and Semantics of kernel F<:

We start by reviewing the syntax and semantics of kernel F<:, a polymorphic calculus with
bounded quantification. The syntax of F<: is given at the top of Figure 7. It is a version of
F<: extended with records2 [10]. In addition to standard System F constructs, types σ include

2 We could also encode record types in F<:, which however is a bit involved.

ECOOP 2020

27:20 Row and Bounded Polymorphism via Disjoint Polymorphism

bounded quantifications ∀(α <: τ). σ, which give a bound for the type variable; and record
types {l1 : σ1, .. , ln : σn}, for which we assume all labels are distinct. In addition to standard
System F terms, terms ε include type abstractions Λ(α <: σ). ε, records {l1 = ε1, .. , ln = εn},
and projections ε.l. Contexts Σ record both the types of term variables, and the bounds of
type variables. We use Σ ` σ to mean that a type is well-formed under a context.

Subtyping. The subtyping relation is presented in the middle of Figure 7. Most rules are
quite standard. Rule f-sub-tvar-binds says that a type variable α is a subtype of its
bound σ. Rule f-sub-forall, first introduced in Fun [12], requires that the bounds of
two quantified types must be identical in order for one to be a subtype of the other. Full
F<: relaxes this restriction and includes a more powerful formulation where subtyping of
quantified types is contravariant in their bounds and covariant in their bodies. We will discuss
full F<: in Section 6.2. Rules f-sub-rcdDepth, f-sub-rcdWidth, and f-sub-rcdPerm
together form the usual record subtyping.

Typing. The typing rules of F<: are shown below the subtyping relation. The reader is
advised to ignore the gray parts for now. Most rules are straightforward. Unlike F+

i , F<:
has a subsumption rule (rule f-sub) for implicit upcasting that can be triggered anywhere
during type-checking. Type abstractions are checked by moving their bounds into the context
(rule f-tabs), and type applications check that the type being passed satisfies the bound of
the corresponding quantifier (rule f-tapp).

5.2 Elaboration Function
Adapting the encoding from Pierce [48] to our setting, we have

∀(α <: σ). τ , ∀(α ∗ >). [α&σ/α]τ

We turn the encoding into an elaboration function. Instead of immediately substituting α
with α&σ, we collect the bounds α <: σ as we traverse the quantifiers, and only substitute
when we encounter a type variable α. This strategy is consistent with elaborating types with
free type variables. For example, consider the expression α <: Int ` (λ(x : α). x + 1) : α→ Int.
This expression type-checks because we have the information α <: Int in the context so that
we can upcast (by rule f-sub) the type of x to Int when checking x + 1. Here it is important
to propagate the context information to the type being elaborated. In a fairly standard
way, we regard the context as a big binder. Intuitively, if we elaborate α under the context
α <: Int, it should give us the same result as if elaborating α inside ∀(α <: Int). α. Therefore,
in this case, we substitute α by α& Int, which yields x : α& Int, and thus validates x + 1.

Formally, type elaboration is denoted as JσKΣ = A, which reads: under context Σ, type σ
elaborates to type A. Elaboration of a closed type is just a special case where the context is
empty, i.e., JσK�. The full definition is given on the lower left of Figure 7. Most rules are
self-explanatory. In particular, bounded quantification elaborates into disjoint quantification
by moving the bound information into the context. When elaborating a type variable α, we
traverse the context until we find its subtyping constraint α <: σ, and then we substitute it
with an intersection type α& JσKΣ.

I Lemma 16 (JσKΣ is total). If Σ ` σ, then there exists a unique type A such that JσKΣ = A.

N. Xie, B. C. d. S. Oliveira, X. Bi, and T. Schrijvers 27:21

Types σ, τ ::= Int | > | α | σ → τ | ∀(α <: τ). σ | {l1 : σ1, .. , ln : σn}
Terms ε ::= i | > | x | λ(x : σ). ε | ε1 ε2 | Λ(α <: τ). ε | ε σ | {l1 = ε1, .. , ln = εn} | ε.l
Value υ ::= i | > | λ(x : σ). ε | Λ(α <: σ). ε | {l1 = υ1, .. , ln = υn}
Context Σ ::= � | Σ, x : σ | Σ, α <: σ

Σ ` σ <: τ (Subtyping)

f-sub-refl
Σ ok Σ ` σ

Σ ` σ <: σ

f-sub-trans
Σ ` σ1 <: σ2 Σ ` σ2 <: σ3

Σ ` σ1 <: σ3

f-sub-top
Σ ok Σ ` σ

Σ ` σ <: >

f-sub-tvar-binds
(α <: σ) ∈ Σ
Σ ` α <: σ

f-sub-arrow
Σ ` τ1 <: σ1 Σ ` σ2 <: τ2

Σ ` σ1 → σ2 <: τ1 → τ2

f-sub-forall
Σ, α <: τ ` σ1 <: σ2

Σ ` ∀(α <: τ). σ1 <: ∀(α <: τ). σ2

f-sub-rcdDepth
for each i Σ ` σi <: τi

Σ ` {li : σi} <: {li : τi}

f-sub-rcdWidth

Σ ` {li : σi∈1..n+k
i } <: {li : σi∈1..n

i }

f-sub-rcdPerm
{l ′

j : τ j∈1..n
j } is a permutation of {li : σi∈1..n

i }
Σ ` {l ′

j : τ j∈1..n
j } <: {li : σi∈1..n

i }

Σ ` ε : σ E (Typing)

f-top
Σ ok

Σ ` > : > >

f-nat
Σ ok

Σ ` i : Int i

f-var
Σ ok (x : σ) ∈ Σ

Σ ` x : σ x

f-arrow
Σ, x : σ ` ε : τ E

Σ ` λ(x : σ). ε : σ → τ (λx.E) : (JσKΣ → JτKΣ)

f-sub
Σ ` ε : σ E Σ ` σ <: τ

Σ ` ε : τ E : JτKΣ

f-app
Σ ` ε1 : σ → τ E1 Σ ` ε2 : σ E2

Σ ` ε1 ε2 : τ E1 E2

f-tabs
Σ, α <: σ ` ε : τ E

Σ ` Λ(α <: σ). ε : ∀(α <: σ). τ Λ(α ∗ >).E

f-rcd
Σ ` ε1 : σ1 E1 ..Σ ` εn : σn En

Σ ` {l1 = ε1, .. , ln = εn} : {l1 : σ1, .. , ln : σn} {l1 = E1}, , .. , , {ln = En}

f-proj
Σ ` ε : {l1 : σ1, .. , l : σ, .. , ln : σn} E

Σ ` ε.l : σ (E : J{l : σ}KΣ).l

f-tapp
Σ ` ε : ∀(α <: τ1). τ2 E Σ ` σ <: τ1

Σ ` ε σ : [σ/α]τ2 (E JσKΣ) : (J([σ/α]τ2)KΣ)

JσKΣ JIntKΣ = Int TΣU T�U = •
J>KΣ = > TΣ, α <: σU = TΣU, α ∗ >

J(σ → τ)KΣ = JσKΣ → JτKΣ TΣ, x : σU = TΣU
J({l1 : σ1, .. , ln : σn})KΣ = {l1 : Jσ1KΣ}& .. & {ln : JσnKΣ}

JαK(Σ,x:σ) = JαKΣ

JαK(Σ,β<:σ) = JαKΣ VΣW V�W = •
JαK(Σ,α<:σ) = α& JσKΣ VΣ, α <: σW = VΣW

J∀(α <: σ). τKΣ = ∀(α ∗ >). JτKΣ,α<:σ VΣ, x : σW = VΣW, x : JσKΣ

Figure 7 Syntax, subtyping, typing and elaboration of kernel F<:.

ECOOP 2020

27:22 Row and Bounded Polymorphism via Disjoint Polymorphism

We now lift the elaboration function to contexts, given on the lower right of Figure 7.
TΣU elaborates a F<: context to a F+

i type context, in which subtyping constraints α <: σ
of type variables are elaborated to disjointness constraints α ∗ > and all term variables are
ignored. VΣW elaborates a F<: context to a F+

i term context, in which all type variables are
ignored and the types of term variables are elaborated under the prefix context.

5.3 Type-directed Elaboration
An intuitive elaboration scheme of expressions is to simply apply the elaboration function
to types. For example, under context Σ, if ε elaborates to E , then type applications ε σ
elaborates to E JσKΣ. Now let us consider an example.

I Example 17. Consider a F<: judgment

β <: Int ` (Λ(α <: >). λ(x : α). x)β : β → β

Here the type application type-checks because by rule f-sub-top we have β <: >. If we
elaborate ε σ to E JσKΣ directly, the resulting expression is

(Λ(α ∗ >). (λx. x) : (α&>)→ (α&>)) (β& Int)

Note that as F+
i does not have annotated abstractions, we put the elaborated arrow type as

the type annotation. Following the typing rule of F+
i , we can infer the type of this expression:

β ∗ >; • ` (Λ(α ∗ >). ((λx. x) : (α&>)→ (α&>)) (β& Int))⇒ (β& Int &>)→ (β& Int &>)

However, the expected result type β → β elaborates to

(β& Int)→ (β& Int)

Now we get a mismatch between the actual type ((β& Int &>) → (β& Int &>)) and the
expected type ((β& Int)→ (β& Int)) of the expression!

Fortunately, in this particular example, we can prove that the actual type and the
expected type are subtypes of each other, i.e., they are isomorphic. Why is that true? Recall
that we have β <: >, which after elaboration gives us (β& Int) <: >. Therefore we can show
that the following two subtyping instances are valid: (1) (β& Int &>) → (β& Int &>) <:
(β& Int)→ (β& Int); and (2) (β& Int)→ (β& Int) <: (β& Int &>)→ (β& Int &>).

More generally, we prove that elaboration commutes with substitution, yielding isomorphic
types. Consider that under the context Σ, we have a type application ε σ, where ε has type
∀(α <: τ1). τ2, and in order for it to type-check, we have σ <: τ1. The expected type we want
of the expression is the elaboration of the F<: typing result, i.e., J([σ/α]τ2)KΣ. The actual
type is the result of feeding the elaborated argument JσKΣ to the elaborated quantification
J∀(α <: τ1). τ2KΣ, i.e., [JσKΣ/α](Jτ2K(Σ,α<:τ1)).

I Lemma 18 (Elaboration commutes with substitution). Given Σ ` σ <: τ1, we have (1)
J[σ/α]τ2KΣ <: [JσKΣ/α](Jτ2K(Σ,α<:τ1)); and (2) [JσKΣ/α](Jτ2K(Σ,α<:τ1)) <: J([σ/α]τ2)KΣ.

Note that the elaboration scheme slightly varies depending on the type semantics of the
target intersection type calculi. It is a desirable property that typing should be preserved
after elaboration, i.e., the elaborated expression should have the corresponding elaborated
type. For languages with an implicit subsumption rule (e.g., rule f-sub in kernel F<:),
Lemma 18 can implicitly upcast the actual type to the expected type, and thus validates the

N. Xie, B. C. d. S. Oliveira, X. Bi, and T. Schrijvers 27:23

kernel F<: (Λ(α <: Int). λ(x : α). 1) Int −→ λ(x : Int). 1

F+
i

((Λ(α∗>). ((λx. 1) : α& Int→ Int)) Int) : Int→ Int (λx. 1) : Int→ Int

Fco (〈id, id〉 → id) ((Λα. λx. 1) Int) −→ (〈id, id〉 → id) (λx. 1) wctx λx. 1

Figure 8 Key idea of simulation illustrated with an example.

intuitive elaboration of the type applications. For languages with explicit subsumption rules
(e.g., rule T-sub in F+

i), to remedy this situation, we need to annotate the expression with
the expected type to explicitly upcast the type. Concretely, in this example, the elaborated
expression, with the added annotation highlighted in grey, will be:

((Λ(α ∗ >). (λx. x) : (α&>)→ (α&>)) (β& Int)) : (β& Int)→ (β& Int)

Finally, we can go back and consider the elaboration of expressions in the grey part of
Figure 7. Most of the elaboration rules are self-explanatory. In particular, in rule f-tapp,
type applications ε σ elaborates to (E JσKΣ) : J([σ/α]τ2)KΣ.

5.4 Metatheory
Now that we have everything in place, we are ready to prove that our elaboration is sound.

I Theorem 19 (Type-safety of elaboration). If Σ ` ε : σ E , then TΣU; VΣW ` E ⇒ JσKΣ.

However, due to the implicit upcasting (rule f-sub), a F<: expression can possibly
elaborate to many different ones in F+

i . For example, consider (λ(x : >). 2) 1. Two elaborations
(among others) are (1) ((λx. 2) : > → Int) (1 : >); and (2) (((λx. 2) : > → Int) : Int→ Int) 1.
Therefore, we prove that different elaborations lead to contextually equivalent results.3

I Theorem 20 (Coherence of elaboration). If � ` ε : σ E1 , and � ` ε : σ E2 , and
•; • ` E1 ⇒ JσK� e1 , and •; • ` E2 ⇒ JσK� e2 , then •; • ` e1 wctx e2.

We also prove a weaker simulation result4: if the standard direct operational semantics of
kernel F<: produces ε1 −→ ε2, and ε2 elaborates to E2 in F+

i , which in turn elaborates to e2
in Fco, then ε1 elaborates to E1 in F+

i , which in turn elaborates to e1 in Fco, and e1 −→ e′1,
where e′1 and e2 are contextually equivalent. The lemma is weaker in the sense that e′1 and e2
are not syntactically equivalent. Given the coherence lemmas of F+

i and of the elaboration,
it is no surprise that here contextual equivalence takes the place of the syntactic equivalence,
as explicit upcasting generates coercions, which may break syntactic equivalence. As an
example, consider Figure 8, where e1 steps to an expression e′1 = (〈id, id〉 → id) (λx. 1) that
is contextually equivalent to e2 = λx. 1.

3 One restriction in Bi et al. [7] is that due to the well-foundedness issue, the logical relation of F+
i is

defined only for its predicative subset, where type arguments in type applications can only be monotypes.
Since our proof is built upon the logical relation of F+

i , Theorem 20 is restricted to predicative subset
of kernel F<: as well. If the well-foundedness of impredicative F+

i is recovered, e.g., by employing
step-indexing logical relations [1], we expect that our proof remains valid.

4 Note that λ|| does not provide a semantics [34], so we did not discuss the operational semantics in
Section 4. If λ|| had a operational semantics, we believe a similar theorem would apply.

ECOOP 2020

27:24 Row and Bounded Polymorphism via Disjoint Polymorphism

I Theorem 21 (Simulation). If ε1 −→ ε2, and � ` ε2 : σ E2 , and •; • ` E2 ⇒ JσK� e2 ,
then there exist E1, e1, e′1 such that � ` ε1 : σ E1 , and •; • ` E1 ⇒ JσK� e1 , and
e1 −→ e′1, where •; • ` e′1 wctx e2.

The detailed paper proof of this lemma is given in Appendix D. This lemma requires
a generalized logical equivalence for F+

i , which is not yet supported in the current Coq
framework. Therefore we only present the paper proof. If the Coq framework of F+

i is
generalized, we expect that the lemma can be proved in Coq.

6 Discussion

In this section we discuss some possible paths for further exploration.

6.1 Variants of Row Polymorphism
According to Rémy [53], record calculi can typically be categorized into two groups based on
how they support the extension operation: the strict group does not allow duplicate labels,
while the free group does. We have already shown that F+

i supports λ||, a calculus in the
strict group, with a more fine-grained control as disjointness allows duplicate labels as long as
their types are disjoint. λTIR [60] is another calculus from the strict group, which introduces
type-indexed rather than label-indexed rows, and uses membership constraints to avoid
conflicts. To distinguish types and row, λTIR incorporates a kind system that distinguishes
rows from types. We believe that F+

i could also serve as a target for λTIR, as type-indexed
rows are closely related to disjoint intersections. Thus an elaboration from λTIR to F+

i is
interesting future work.

For the free group, there are two different approaches for extension: previous fields are
always retained, and record projections always select the first matching label [35]; or the
extension overwrites the field if it is already present [5, 53, 11]. The former system suffers
from the similar issue of ambiguity, as records can be extended with the same label even
when types are overlapping, which violates the essence of disjointness. For the latter system,
essentially F+

i is capable to encode the extension operation in a different form. Consider a
function that overwrites (←) the label l in a record by incrementing the original value [11]:

inc = Λα <: {l : Int}.λ(x : α). x ← {l = x.l + 1}

In F+
i , we can define

inc′ = Λ(α ∗ {l : Int}). λ(x : α& {l : Int}). (x : α , , {l = (x : {l : Int}).l + 1})

There are two differences. Firstly, the type arguments to the two functions are different: inc
expects a type argument which includes {l : Int}, while inc′ expects a type argument which
excludes {l : Int}, and {l : Int} is later recovered in x’s type by an intersection type. This
explains a more involved encoding. Secondly, the term arguments to the two functions are
also different: inc accepts arguments that have exactly one l label with type Int, while inc′
can accept arguments of type {l : Int}& {l : Bool}. This again manifests the fine-grained
control of disjointness. That being said, we have not studied nor formalized the encoding.

Type-inference. The focus of our work is languages that have more modest goals in terms
of type-inference. Note that neither λ|| or F+

i address sophisticated type-inference. We focus
on languages with subtyping, including TypeScript, Ceylon, Scala or Flow. Languages like

N. Xie, B. C. d. S. Oliveira, X. Bi, and T. Schrijvers 27:25

Racket also include a variant of row polymorphism, without full-type inference to model
powerful OOP features [61]. Many other row type systems [53, 64, 63, 35] support type
inference. For the future, we wish to investigate whether a disjoint polymorphic calculus
offering similar type inference can model calculi with row polymorphism and type inference.
We believe that several ideas employed in work on type inference for row polymorphism can
be adapted to a setting with disjoint polymorphism.

6.2 Variants of Bounded Quantification
Full F<: [23] includes a more powerful formulation of subtyping for universal quantification
(rule f-sub-forallAlt), which is contravariant in the bound types and covariant in the
body types. However, this subtyping rule renders subtyping in full F<: undecidable [49].

Σ ` τ2 <: τ1 Σ, α <: τ2 ` σ1 <: σ2

Σ ` ∀(α <: τ1). σ1 <: ∀(α <: τ2). σ2
f-sub-forallAlt

Moreover, this rule breaks the encoding. Consider the example [48]:

� ` ∀(α <: >). α <: ∀(α <: Int). α

which elaborates to a non-derivable F+
i judgment

• ` ∀(α ∗ >). α&> <: ∀(α ∗ >). α& Int

since α ∗ > ` α&> <: α& Int is not true.
One possible solution is to adopt a more powerful subtyping relation in the target calculus,

where a polymorphic type is a subtype of one type if the first has more instances [45]. For
example, the following judgment holds true, as α can be instantiated to Int to get Int→ Int:

∀α. α→ α <: Int→ Int

Then the judgment • ` ∀(α ∗ >). α&> <: ∀(α ∗ >). α& Int is derivable. After we skolemise
the type variable α in the right hand side, we can instantiate α in the left hand side by
α& Int to get α ∗ > ` α& Int &> <: α& Int.

Interestingly, such subtyping is usually predicative, i.e., universal quantifications can only
be instantiated with monotypes; or otherwise it is undecidable. Thus if the bounds can only
be monotypes, it may be the case that a target calculus with the more powerful subtyping
rule can encode the predicative version of full F<:.

6.3 Variants of Intersection Type Systems
λ|| is encodable into intersection type systems that feature the merge operator, unrestricted
intersection types, polymorphism and guarantee coherence through constraints similar to
compatibility or disjointness. This currently only applies to F+

i . Some intersection type
systems [28, 6, 46] only support simple record types. While Alpuim and Oliveira [2] do
support polymorphism, they only allow intersection types between disjoint types. Hence, our
elaboration of constraint lists to JrK & JrK⊥ is rejected as JrK and JrK⊥ may not be disjoint.

Kernel F<: is encodable for intersection type systems that feature polymorphism and
unrestricted intersection types. For example, a similar encoding might be applicable to other
intersection type systems [17, 19]. Interestingly, the behavior of elaborated expressions varies
according to the type semantics of the target. Consider a function f of type ∀(α <: Int). α→ α,
which, based on the encoding, elaborates to ∀α. α& Int→ α& Int. The original type expects a
type argument which is a subtype of Int; while in the intersection type system, the elaborated

ECOOP 2020

27:26 Row and Bounded Polymorphism via Disjoint Polymorphism

type can take any type argument, e.g., Bool, and then expect a term argument of type
Int & Bool. In intersection type systems (e.g., [43]) where Int & Bool is uninhabited (equivalent
to the bottom type), f Bool can take nothing. Yet, in calculi with the merge operator, we
can have, e.g., f Bool (1 , , True).

7 Related Work

Bounded quantification and intersection types. The language Fun [12] introduced bounded
quantification. Bounded quantification is later extended with extensible records [10, 11],
recursively defined types [9] and session types [25, 33] among other extensions. The full
variant of F<: [23] (see also Section 6.2) is proved to be undecidable [49]. The kernel Fun
variant [12], which restricts the subtyping of bounds to be invariant, is decidable.

Pierce [48] proposed the encoding of bounded quantification in terms of intersection
types in an informal discussion, which is the main inspiration of our Section 5. Castagna
and Xu [19] mentioned in a footnote that a type variable α bounded by a type σ can be
encoded by replacing every occurrence of α by β ∧ σ where β is a fresh unbounded variable.
Castagna et al. [17] further mentioned that the possible instantiation of a type variable α
with a upper bound σ and a lower bound τ is equivalent to the possible instantiation of
(τ ∨ β)∧ σ. Dolan and Mycroft [26] used a similar encoding as one of the main ingredients of
the biunification algorithm: α <: σ− (where types have polarity) implies the bisubstitution
θ = [(µ−β.α u [β/α−](σ−))/α−], which by unrolling implies that θ(α−) = α u θ(σ−). The
idea of encoding bounded quantification using intersection types is not new. However, as
far as we know, we are the first to formalize an elaboration and study the metatheory
from a calculus with bounded quantification into a calculus with intersection types and
polymorphism. This contrasts with the previous informal discussions, which have only shown
a few concrete examples of programs that could be manually translated (or not).

Row calculi and intersection types. Along the way we have mentioned many row calculi [35,
5, 53, 11, 64, 63]. Reynolds [57] developed an encoding of simple records in terms of
intersection types and his merge construct. Similar ideas had been applied by more recent
work on intersection types with a merge operator [28, 6, 2]. Alpuim and Oliveira [2]
showed informally that many features of row polymorphism can be simulated with disjoint
polymorphism. However, their system is limiting for the encoding in Section 4.4.

Intersection types and the merge operator. The F+
i calculus follows from a line of work

on intersection types with a merge operator. The programming language Forsythe [57, 55]
includes a merge operator. However, several restrictions were imposed to make the merge
operator coherent [56]. For example, merging two functions is forbidden. Castagna et al. [14]
studied a special merge operator that only works on functions. Dunfield [28] proposed a
calculus with unrestricted intersection types and unrestricted merges. However his calculus
loses coherence. For example, 1, , 2 could elaborate to 1 or 2. Pierce [48] proposed a
primitive function glue, similar to unrestricted merges. Oliveira et al. [46] proposed disjoint
intersection types and disjoint merges to recover syntactic coherence. Later this approach was
extended with disjoint polymorphism [2]. Bi et al. [6] support unrestricted intersection types
and disjoint merges, based on a novel semantic coherence approach in terms of contextual
equivalence, which is later extended to support polymorphic types [7].

Other work on intersection types includes refinement intersections [24, 27]; set theoretical
foundation for type connectives including intersections, unions and negations [16, 15, 17, 19];
and the DOT calculus, which aims at providing a foundational calculus for Scala that

N. Xie, B. C. d. S. Oliveira, X. Bi, and T. Schrijvers 27:27

incorporates features including intersection types [3, 58]. In those calculi, intersection types
only increase the expressiveness of types, but not the expressiveness of terms. For example,
the intersection type Int & Bool is uninhabited. The type system of Ceylon [43] exploits this
fact and considers any intersection of such disjoint types equivalent to the bottom type (⊥).

8 Conclusion and Future Work

We have presented the elaboration from kernel F<: and λ|| to F+
i , and showed that disjoint

polymorphism is powerful enough to encode essential aspects of bounded quantification
and row polymorphism, which is useful for economy of theory and implementation. The
elaboration from kernel F<: identifies one encodable fragment of F<:, and thus validates the
previous informal observation by Pierce. The elaboration from λ|| to F+

i reveals the essence
of constrained quantification from the point of view of disjointness. As for future work, we
plan to study the encoding of other variants of F<:, as well as other row calculi. We also
plan to study type inference of F+

i .

References
1 Amal Ahmed. Step-indexed syntactic logical relations for recursive and quantified types. In

European Symposium on Programming (ESOP), 2006.
2 João Alpuim, Bruno C. d. S. Oliveira, and Zhiyuan Shi. Disjoint polymorphism. In European

Symposium on Programming (ESOP), 2017.
3 Nada Amin, Adriaan Moors, and Martin Odersky. Dependent object types. In Workshop on

Foundations of Object-Oriented Languages, 2012.
4 Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda model

and the completeness of type assignment. The journal of symbolic logic, 48(04):931–940, 1983.
5 Bernard Berthomieu and Camille Le Monies De Sagazan. A calculus of tagged types, with

applications to process languages. Types for Program Analysis, page 1, 1995.
6 Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. The essence of nested composition. In

European Conference on Object-Oriented Programming (ECOOP), 2018.
7 Xuan Bi, Ningning Xie, Bruno C. d. S. Oliveira, and Tom Schrijvers. Distributive disjoint

polymorphism for compositional programming. In European Symposium on Programming
(ESOP), 2019.

8 Gilad Bracha. The programming language jigsaw: mixins, modularity and multiple inheritance.
PhD thesis, Dept. of Computer Science, University of Utah, 1992.

9 Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C Mitchell. F-bounded
polymorphism for object-oriented programming. In FPCA, volume 89, pages 273–280, 1989.

10 Luca Cardelli. Extensible records in a pure calculus of subtyping. Digital. Systems Research
Center, 1992.

11 Luca Cardelli and John C Mitchell. Operations on records. In International Conference on
Mathematical Foundations of Programming Semantics, 1989.

12 Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism.
ACM Computing Surveys, 17(4):471–523, 1985.

13 Felice Cardone. Relational semantics for recursive types and bounded quantification. In
International Colloquium on Automata, Languages, and Programming, pages 164–178. Springer,
1989.

14 Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for overloaded functions
with subtyping. In Conference on LISP and Functional Programming, 1992.

15 Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, and Pietro Abate. Polymorphic functions with
set-theoretic types: part 2: local type inference and type reconstruction. In Principles of
Programming Languages (POPL), 2015.

ECOOP 2020

27:28 Row and Bounded Polymorphism via Disjoint Polymorphism

16 Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, Hyeonseung Im, Sergueï Lenglet, and Luca
Padovani. Polymorphic functions with set-theoretic types: part 1: syntax, semantics, and
evaluation. In Principles of Programming Languages (POPL), 2014.

17 Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyen. Set-theoretic types for polymor-
phic variants. In International Conference on Functional Programming (ICFP), 2016.

18 Giuseppe Castagna and Benjamin C Pierce. Decidable bounded quantification. In Principles
of Programming Languages (POPL), 1994.

19 Giuseppe Castagna and Zhiwu Xu. Set-theoretic foundation of parametric polymorphism and
subtyping. In International Conference on Functional Programming (ICFP), 2011.

20 C. Chambers, D. Ungar, B.W. Chang, and U. Hölzle. Parents are shared parts of objects:
Inheritance and encapsulation in SELF. Lisp and Symbolic Computation, 4(3):207–222, 1991.

21 Adriana B Compagnoni and Benjamin C Pierce. Higher-order intersection types and multiple
inheritance. Mathematical Structures in Computer Science (MSCS), 6(5):469–501, 1996.

22 Mario Coppo, Mariangiola Dezani-Ciancaglini, and Patrick Sallé. Functional characterization
of some semantic equalities inside λ-calculus. In International Colloquium on Automata,
Languages, and Programming, pages 133–146. Springer, 1979.

23 Pierre-Louis Curien and Giorgio Ghelli. Coherence of subsumption, minimum typing and
type-checking in f≤. Mathematical structures in computer science, 2(1):55–91, 1992.

24 Rowan Davies. Practical refinement-type checking. PhD thesis, School of Computer Science,
Carnegie Mellon University, 2005.

25 Mariangiola Dezani-Ciancaglini, Elena Giachino, Sophia Drossopoulou, and Nobuko Yoshida.
Bounded session types for object oriented languages. In Formal Methods for Components and
Objects, pages 207–245. Springer, 2007.

26 Stephen Dolan and Alan Mycroft. Polymorphism, subtyping, and type inference in mlsub. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, pages 60–72, New York, NY, USA, 2017. ACM. doi:10.1145/3009837.3009882.

27 Joshua Dunfield. Refined typechecking with stardust. In PLPV, 2007.
28 Joshua Dunfield. Elaborating intersection and union types. Journal of Functional Programming

(JFP), 24(2-3):133–165, 2014.
29 Erik Ernst. Family polymorphism. In European Conference on Object-Oriented Programming

(ECOOP), 2001.
30 Erik Ernst. The expression problem, scandinavian style. On Mechanisms For Specialization,

page 27, 2004.
31 Facebook. Flow. https://flow.org/, 2014.
32 Matthew Flatt, Robert Bruce Findler, and Matthias Felleisen. Scheme with classes, mixins,

and traits. In Programming Languages and Systems (APLAS), 2006.
33 Simon J Gay. Bounded polymorphism in session types. Mathematical Structures in Computer

Science, 18(5):895–930, 2008.
34 Robert Harper and Benjamin Pierce. A record calculus based on symmetric concatenation. In

Principles of Programming Languages (POPL), 1991.
35 Daan Leijen. Extensible records with scoped labels. Trends in Functional Programming,

5:297–312, 2005.
36 Daan Leijen. Type directed compilation of row-typed algebraic effects. In Principles of

Programming Languages (POPL), 2017.
37 Sam Lindley and James Cheney. Row-based effect types for database integration. In Proceedings

of the 8th ACM SIGPLAN workshop on Types in language design and implementation, pages
91–102. ACM, 2012.

38 Sam Lindley and J Garrett Morris. Lightweight functional session types. Behavioural Types:
from Theory to Tools. River Publishers, pages 265–286, 2017.

39 Simon Martini. Bounded quantifiers have interval models. In Proceedings of the 1988 ACM
conference on LISP and functional programming, pages 164–173. ACM, 1988.

40 Microsoft. Typescript. https://www.typescriptlang.org/, 2012.

https://doi.org/10.1145/3009837.3009882
https://flow.org/
https://www.typescriptlang.org/

N. Xie, B. C. d. S. Oliveira, X. Bi, and T. Schrijvers 27:29

41 Microsoft. https://www.typescriptlang.org/docs/handbook/advanced-types.html, 2019.
Online; accessed 16 June 2019.

42 J. Garrett Morris and James McKinna. Abstracting extensible data types: or, rows by any
other name. In Principles of Programming Languages (POPL), 2019.

43 Fabian Muehlboeck and Ross Tate. Empowering union and intersection types with integrated
subtyping. In Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
2018.

44 Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth, Stéphane
Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. An overview
of the scala programming language. Technical report, EPFL, 2004.

45 Martin Odersky and Konstantin Läufer. Putting type annotations to work. In Symposium on
Principles of Programming Languages (POPL), 1996.

46 Bruno C. d. S. Oliveira, Zhiyuan Shi, and João Alpuim. Disjoint intersection types. In
International Conference on Functional Programming (ICFP), 2016.

47 Bruno C. d. S. Oliveira, Tijs Van Der Storm, Alex Loh, and William R Cook. Feature-oriented
programming with object algebras. In European Conference on Object-Oriented Programming
(ECOOP), 2013.

48 Benjamin C Pierce. Programming with intersection types and bounded polymorphism. PhD
thesis, University of Pennsylvania, 1991.

49 Benjamin C Pierce. Bounded quantification is undecidable. Information and Computation,
112(1):131–165, 1994.

50 Benjamin C Pierce and David N Turner. Local type argument synthesis with bounded
quantification. Technical report, Technical Report 495, Computer Science Department, Indiana
University, 1997.

51 Garrel Pottinger. A type assignment for the strongly normalizable λ-terms. To HB Curry:
essays on combinatory logic, lambda calculus and formalism, pages 561–577, 1980.

52 Redhat. Ceylon. https://ceylon-lang.org/, 2011.
53 Didier Rémy. Type inference for records in a natural extension of ML. Theoretical Aspects Of

Object-Oriented Programming. Types, Semantics and . . . , 1993.
54 Tillmann Rendel, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. From object

algebras to attribute grammars. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages and Applications, OOPSLA ’14, page
377–395, New York, NY, USA, 2014. Association for Computing Machinery. doi:10.1145/
2660193.2660237.

55 John C Reynolds. Preliminary design of the programming language forsythe. Technical report,
Carnegie Mellon University, 1988.

56 John C. Reynolds. The coherence of languages with intersection types. In Lecture Notes in
Computer Science (LNCS), pages 675–700. Springer Berlin Heidelberg, 1991.

57 John C Reynolds. Design of the programming language forsythe. In ALGOL-like languages,
pages 173–233. Birkhauser Boston Inc., 1997.

58 Tiark Rompf and Nada Amin. Type soundness for dependent object types (DOT). In
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2016.

59 Patrick Salle. Une extension de la theorie des types en lambda-calcul. In Proceedings of the
Fifth Colloquium on Automata, Languages and Programming, pages 398–410, London, UK,
UK, 1978. Springer-Verlag.

60 Mark Shields and Erik Meijer. Type-indexed rows. In Proceedings of the 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’01, pages 261–275,
New York, NY, USA, 2001. ACM. doi:10.1145/360204.360230.

61 Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam Tobin-Hochstadt, and
Matthias Felleisen. Gradual typing for first-class classes. In Object-oriented Programming:
Systems, Languages and Applications (OOPSLA), 2012.

62 Philip Wadler. The expression problem. Java-genericity mailing list, 1998.

ECOOP 2020

https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://ceylon-lang.org/
https://doi.org/10.1145/2660193.2660237
https://doi.org/10.1145/2660193.2660237
https://doi.org/10.1145/360204.360230

27:30 Row and Bounded Polymorphism via Disjoint Polymorphism

63 Mitchell Wand. Complete type inference for simple objects. In Symposium on Logic in
Computer Science (LICS), 1987.

64 Mitchell Wand. Type inference for record concatenation and multiple inheritance. In Symposium
on Logic in Computer Science (LICS), 1989.

65 Mathhias Zenger and Martin Odersky. Independently extensible solutions to the expression
problem. In Foundations of Object-Oriented Languages, 2005.

A Trusted Infrastructure for Symbolic Analysis of
Event-Driven Web Applications
Gabriela Sampaio
Imperial College London, United Kingdom
g.sampaio17@imperial.ac.uk

José Fragoso Santos
INESC-ID/Instituto Superior Técnico, Universidade de Lisboa, Portugal
Imperial College London, United Kingdom
jose.fragoso@tecnico.ulisboa.pt

Petar Maksimović
Imperial College London, United Kingdom
p.maksimovic@imperial.ac.uk

Philippa Gardner
Imperial College London, United Kingdom
p.gardner@imperial.ac.uk

Abstract

We introduce a trusted infrastructure for the symbolic analysis of modern event-driven Web applica-
tions. This infrastructure consists of reference implementations of the DOM Core Level 1, DOM UI
Events, JavaScript Promises and the JavaScript async/await APIs, all underpinned by a simple
Core Event Semantics which is sufficiently expressive to describe the event models underlying these
APIs. Our reference implementations are trustworthy in that three follow the appropriate standards
line-by-line and all are thoroughly tested against the official test-suites, passing all the applicable
tests. Using the Core Event Semantics and the reference implementations, we develop JaVerT.Click,
a symbolic execution tool for JavaScript that, for the first time, supports reasoning about JavaScript
programs that use multiple event-related APIs. We demonstrate the viability of JaVerT.Click by
proving both the presence and absence of bugs in real-world JavaScript code.

2012 ACM Subject Classification Software and its engineering → Formal software verification;
Software and its engineering → Software testing and debugging

Keywords and phrases Events, DOM, JavaScript, promises, symbolic execution, bug-finding

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.28

Supplementary Material ECOOP 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.2.5.

Funding Fragoso Santos, Gardner, and Maksimović were partially supported by the EPSRC Pro-
gramme Grant “REMS: Rigorous Engineering for Mainstream Systems” (EP/K008528/1) and the
EPSRC Fellowship “VetSpec: Verified Trustworthy Software Specification” (EP/R034567/1).
Gabriela Sampaio: Sampaio was supported by a CAPES Foundation Scholarship, process number
88881.129599/2016-01.
José Fragoso Santos: Fragoso Santos was partially supported by national funds through Fundação
para a Ciência e a Tecnologia (FCT), with reference UIDB/50021/2020 (INESC-ID multi-annual
funding).

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Gabriela Sampaio, José Fragoso Santos, Petar Maksimović, and Philippa Gardner;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 28; pp. 28:1–28:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:g.sampaio17@imperial.ac.uk
mailto:jose.fragoso@tecnico.ulisboa.pt
mailto:p.maksimovic@imperial.ac.uk
mailto:p.gardner@imperial.ac.uk
https://doi.org/10.4230/LIPIcs.ECOOP.2020.28
https://doi.org/10.4230/DARTS.6.2.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 A Trusted Infrastructure for Symbolic Analysis of Event-Driven Web Applications

Figure 1 Infrastructure of JaVerT.Click.

1 Introduction

Event-driven programming lies at the core of modern Web applications, facilitated by a variety
of APIs, such as DOM UI Events [53], JavaScript (JS) Promises [7] and Web Workers [52],
each of which comes with its own event model and idiosyncrasies. There has been work on
formalising and reasoning about some of these event models: e.g., Rajani et al. [29] have
given a formal semantics of DOM UI Events, instrumented to disallow insecure information
flows; Lerner at al. [19] have given a formal model and have proven several meta-properties
of the DOM Event Dispatch algorithm; and Madsen et al. [22] have developed a calculus for
reasoning about JS promises. In each case, the work targets a specific API and its associated
event model, and it is not apparent how the work can be extended to include other APIs.

We introduce a trusted infrastructure for the symbolic analysis of modern event-driven
Web applications which, we believe for the first time, supports reasoning about code that uses
multiple event-related APIs within a single, unified formalism. This infrastructure comprises:
1. a Core Event Semantics, which identifies the fundamental building blocks underpinning the

event models of widely-used APIs, and which is formalised and implemented parametrically,
assuming an underlying language L (§2); and

2. trusted JS reference implementations of DOM Core Level 1, DOM UI Events, JS promises,
and the JS async/await (§3-4), the APIs that we target in this paper.

Our infrastructure can readily be added on top of existing symbolic analysis tools; in this
paper, we connect it to JaVerT 2.0 [13], a state-of-the-art symbolic analysis tool for JS,
creating JaVerT.Click, the first symbolic analysis tool that can reason about JS programs that
use multiple event-related APIs. We use JaVerT.Click to analyse cash [55] and p−map [35],
two real-world JS libraries that interact with the targeted APIs, finding bugs in both and
establishing bounded correctness of several important properties for cash.

The infrastructure of JaVerT.Click is illustrated in Figure 1. JaVerT.Click is built on
top of JaVerT 2.0 [13], which supports three types of analysis: whole-program symbolic
testing, verification, and automatic compositional testing based on bi-abduction; in this
paper, we focus only on symbolic testing. The symbolic execution engine of JaVerT 2.0
works on JSIL, a simple intermediate language that can be instantiated with either the
concrete or symbolic memory model of JS. JSIL comes with a correctness result that states
that its symbolic testing has no false positives. JaVerT 2.0 targets the strict mode of the
ECMAScript 5 standard (ES5 Strict), and comes with: JS-2-JSIL, a trusted compiler from
ES5 Strict to JSIL which preserves the memory model and the semantics line-by-line, and is
tested using the official Test262 test suite [6]; and the JS-2-JSIL runtime, which provides
JSIL implementations of the ES5 Strict internal and built-in functions.

G. Sampaio, J. F. Santos, P. Maksimović, and P. Gardner 28:3

Our reference implementations are all written in ES5 Strict and get compiled to JSIL
using JS-2-JSIL as part of JaVerT.Click. These implementations are trusted in that all except
that of JS async/await (cf. §4.2) follow the API standards line-by-line and all are thoroughly
tested against the official test suites, passing all the applicable tests. During the testing, we
have discovered coverage gaps in the test suites of DOM Core Level 1 and UI Events and
created additional tests to fill these gaps. Our choice to use JS as the API implementation
language enables us to directly build on our previous JS analysis, simplifies implementations
of promises and async/await, which rely on JS for some of their functionality, and makes
the implementations easily reusable by other symbolic analysis tools for JS.

As our programs of interest use JS features beyond ES5 Strict, such as async/await and
anonymous lambda-functions, we introduce a transpilation step from ES6+ Strict to ES5
Strict. This transpiled program and the compiled API reference implementations are then
compiled to JSIL using the JS-2-JSIL compiler. The resulting JSIL code, together with the
JS-2-JSIL runtime, is passed to the Core Event Semantics instantiated with either the JSIL
concrete semantics (for testing) or the JSIL symbolic semantics (for analysis). Assuming
correctness of the underlying language (e.g. JSIL), we give a general correctness result for
the Core Event Semantics, proving that it has no false positives.

We apply JaVerT.Click to real-world JS code that calls the APIs studied in this paper (§5).
In particular, we provide comprehensive symbolic testing of the events module of the cash
library [55], a widely-used alternative for jQuery, which makes heavy use of DOM UI Events.
We create a symbolic test suite for the events module with 100% line coverage, establishing
bounded correctness of several important properties of the module, such as: ‘a handler can
be executed for a given event if and only if it has been previously registered for that event’,
and also discovering two subtle, previously unknown bugs. We also symbolically test the
small, yet widely-used, p−map library [35], which uses JS promises and async/await to
provide an extra layer of functionality on top of JS promises. We achieve 100% line coverage,
discovering one bug. All discovered bugs have been reported and have since been fixed.

We believe that our infrastructure can straightforwardly be extended to support other
event-driven Web APIs, such as File [51], postMessage [54], and Web Workers [52]. This would
require a trusted JS reference implementation of the target API and, possibly, an extension
of the Core Event Semantics with primitives that handle new types of event behaviour.

2 Core Event Semantics

Our ultimate goal is to develop a formalism within which one could reason symbolically
about all event-related APIs. In this paper, we take an important step towards this goal by
distilling the essence of three fundamental, complex such APIs – DOM UI events, JS promises,
and JS async/await – into a minimal Core Event Semantics (onward: Event Semantics)
that is easily extensible with support for further APIs. We define the Event Semantics
parametrically, as a layer on top of the semantics of a given underlying language (L), thus
focussing only on event-related details and filtering out any clutter potentially introduced by
the L-semantics. The Event Semantics interacts with the L-semantics by exposing a set of
labels, which correspond to the fundamental operations underpinning the targeted APIs, such
as event handler registration/deregistration and synchronous/asynchronous event dispatch.
In this section, we first define the main concepts of the Event Semantics and explain the
intuition behind them (§2.1), and then present the concrete (§2.2) and symbolic (§2.3) Event
Semantics, connected with an appropriate correctness result.

ECOOP 2020

28:4 A Trusted Infrastructure for Symbolic Analysis of Event-Driven Web Applications

Values Event Types Function Ids Handler Registers L-Confs Conf. Preds
v ∈ V e ∈ E ⊂ V f ∈ F ⊂ V h ∈ H : E ⇀ F c ∈ C p ∈ P : C → B

Event Labels
` ∈ L := addHdlr〈e, f〉 | remHdlr〈e, f〉 | sDispatch〈e, v〉 | aDispatch〈e, v〉 | schedule〈f, v〉 | await〈v, p〉

Continuations Continuation Queues E-Configurations
κ ∈ K := (f, v) | (c, p) q ∈ Q : K ω ∈ Ω : C ×H×Q

Figure 2 Main Concepts of the Event Semantics.

2.1 Main Concepts of the Event Semantics

The main concepts of our Event Semantics are given in Figure 2. The Event Semantics
inherits its values, v ∈ V , from the corresponding L-semantics: for example, if the L-semantics
is concrete, these values will be concrete; analogously, if it is symbolic, they will be symbolic.
In the meta-theory, we assume that the L-values contain: a distinguished set of unique event
types, e ∈ E , intuitively corresponding to, for example, click or focus in the DOM; and a
distinguished set of unique function identifiers, f ∈ F . In the implementation, we represent
both as strings. For simplicity, we onward refer to event types as events. Our modelling
of events is guided by the DOM, in the sense that each event is associated with a list of
handlers: that is, the functions that should be executed when that event is triggered; this
information is kept by the Event Semantics in handler registers, h ∈ H.

The Event Semantics, expectedly, needs to be aware of the configurations of the underlying
language (L-configurations), c ∈ C, but sees them as a black box and interacts with them
only through an interface, presented shortly. It does assume that an L-configuration can be
divided into: a store component, describing the variable store of L; and a heap component,
describing the heap on which L-execution operates; and a control flow component, describing
how the L-execution is to proceed. For example, a concrete JSIL configuration, 〈ρ, µ,m, cs, i〉,
consists of: a variable store ρ (the store component); a memory µ and a metadata table m
(the heap component); and a call stack cs for capturing nested function calls and the index
of the next command to be executed, i (the control flow component). A symbolic JSIL
configuration also includes a path condition, π, which is part of the control flow component.
An L-configuration is final iff it cannot be executed further in the L-semantics. To model
correctly the synchronous dispatch of the DOM and the asynchronous wait of the JS await,
we also require boolean predicates on L-configurations, p ∈ P.

The L-semantics communicates with the Event Semantics via event labels, ` ∈ L, which
represent the fundamental operations (primitives) through which we capture the behaviour
of our targeted APIs. In particular, addHdlr and remHdlr, respectively, allow us to add and
remove handlers for a given event, whereas sDispatch and aDispatch, respectively, allow us to
dispatch events either synchronously (corresponding to the DOM programmatic dispatch) or
asynchronously (corresponding to a user event, such as clicking a button on a Web page).
These four labels are used in the modelling of DOM UI Events (cf. 3.2). Additionally, we
support asynchronous computation scheduling via the schedule label, required for JS promises
(cf. 4.1), and an asynchronous wait via the await label, required for JS await (cf. 4.2).

All three targeted APIs work with an underlying queue of computations: for the DOM,
this queue is implicitly formed by event dispatch; for JavaScript promises and async/await,
this queue is the job queue of JavaScript. We model these queues as a unified continuation
queue, q ∈ Q, which is, essentially, a list of continuations, κ ∈ K, which describe how the
execution of the Event Semantics is to proceed. We consider two types of continuations:

G. Sampaio, J. F. Santos, P. Maksimović, and P. Gardner 28:5

handler-continuations and yield-continuations. A handler-continuation is a pair, (f, v),
essentially stating that the handler f is be to be executed with argument v. When an event
is dispatched via sDispatch or aDispatch, the respective handler-continuations are put in the
handler queue. A yield-continuation is a pair, (c, p), stating that the L-configuration c has
been suspended and can be re-activated once the predicate p holds.

Finally, the Event Semantics configurations, (E-configurations), ω ∈ Ω, consist of: an
L-configuration; a handler register; and a continuation queue.

Using the Event Semantics in JavaScript. Our JS reference implementations of the event-
related APIs interact with the Event Semantics via JS wrapper functions, one per event
label; we denote, for example, the wrapper function of the addHdlr label by __addHdlr,
and the others analogously. Calls to these wrapper functions are meant to be intercepted
by the underlying JavaScript implementation, which is then supposed to construct the
corresponding label and pass it on to the Event Semantics. In JaVerT.Click, these wrapper
functions resolve to JSIL functions with dedicated identifiers, the calls to which are then
intercepted appropriately by the JSIL semantics. This approach, however, is independent of
JaVerT.Click: any other implementation of JavaScript and of our Event Semantics can re-use
our reference implementations, as long as these wrapper functions are properly intercepted.

Example. Below, we give a simple JavaScript example of how our Event Semantics can
be used in JaVerT.Click (left), together with parts of its execution trace (right). In the
E-configurations shown in the trace, we focus on the handler register and continuation queue,
both of which are initially empty, and omit the details of the JSIL-configuration c.

First, in lines 1-9, we declare a variable person and two functions: h1, which initialises
person, and h2, which prints out its name. Next, in lines 11-12, we add h1 and h2 as handlers
for the ′init′ and ′print′ events, respectively, by using the wrapper function __addHdlr,
exposed globally by the Event Semantics. This is recorded appropriately in the handler
register, which then does not change for the remainder of the execution (denoted by −||− in
the diagram). Next, in lines 14-15, we declare e1 and e2 to be two symbolic events (strings),
using the symbStr() function of JaVerT.Click. Finally, we dispatch e1 asynchronously (line
17) and e2 synchronously (line 18), using the appropriate wrapper functions. Intuitively,

1 var person;
2

3 function h1() {
4 person = {name:'Mary'}
5 }
6

7 function h2() {
8 console.log(person.name)
9 }

10

11 __addHdlr('init', h1)
12 __addHdlr('print', h2)
13

14 var e1 = symbStr()
15 var e2 = symbStr()
16

17 __aDispatch(e1)
18 __sDispatch(e2)

ECOOP 2020

28:6 A Trusted Infrastructure for Symbolic Analysis of Event-Driven Web Applications

in an asynchronous dispatch, the related handlers (here, any handlers for e1) are added
to the back of the current continuation queue (here, an empty continuation queue), to be
executed after all of the previously scheduled continuations are completed. In contrast, in
a synchronous dispatch, the current computation is suspended and the related handlers
(here, any handlers for e2) are added to the front of the continuation queue (which now
contains the handlers for e1), to be executed immediately, followed by the remainder of the
suspended current computation (which is empty, as the synchronous dispatch is at the end
of the program, and is thus omitted from the diagram).

Given that the events are symbolic, the two dispatches will cause the execution of
JaVerT.Click to branch; there are four relevant cases, as illustrated in the diagram. First,
if e1 equals ′print′ and e2 equals ′init′, the continuation queue after the dispatches will
contain h1 followed by h2, meaning that the execution will terminate successfully and ′Mary′

will be printed to the console. However, if e2 equals ′print′ (meaning that h2 will be put in
the front of the continuation queue by the synchronous dispatch) or if e1 equals ′print′ and
e2 has no associated handlers (meaning that h2 will be put in the back of the continuation
queue by the asynchronous dispatch, but will be the only function in that queue), the
execution will throw a native JavaScript type error, as h2 will attempt to read the ′name′

property of person, which will not have been initialised. Finally, in all other cases, the
execution will terminate successfully, but with no output to the console.

Parametricity of the Event Semantics. As illustrated in Figure 1, the Event Semantics
is implemented parametrically, as a layer on top of a given L-semantics. Since a unified
presentation that reflects the implementation precisely would take up considerable space, we
choose to present the concrete (§2.2) and the symbolic (§2.3) Event Semantics separately.

2.2 Concrete Event Semantics
A concrete Event Semantics is built on top of a concrete L-semantics. It interacts with
L-configurations via an interface that consists of six functions: assume, suspend, initialConf,
isFinal, mergeConfs, and splitReturn; we describe these functions abstractly on their first use,
and illustrate how some of them work in JSIL. The Event Semantics also uses the following
auxiliary relations: (1) add handler, AH(h, e, f), for extending the handler register h with
the handler f for an event e; (2) remove handler, RH(h, e, f), for removing the handler f for
e from h; (3) find handlers, FH(h, e), for obtaining the handlers associated with e in h; and
(4) continue with, CWL(c, κ), for updating the L-configuration c so that the continuation κ
can be executed. We first give the formal definitions of these auxiliary relations, using
function notation as they are deterministic in the concrete case. We write ++ to denote list
concatenation; ho(e) to denote h(e) if it is defined, and the empty list otherwise; and l \ f to
denote the list obtained from the list l by removing all occurrences of f .

Concrete Event Semantics: Auxiliary Relations

Add Handler
AH(h, e, f) ,

h [e 7→ ho(e)++[f]]

Find Handler
FH(h, e) , ho(e)

CW-Handler-Cont.
CWL(c, (f, v)) , L.initialConf(c, (f, v))

Remove Handler

RH(h, e, f) ,

{
h [e 7→ h(e) \ f] , if e ∈ dom(h)
h, otherwise

CW-Yield-Cont.
p(c) = True

CWL(c, (c′, p)) , L.mergeConfs(c, c′)

G. Sampaio, J. F. Santos, P. Maksimović, and P. Gardner 28:7

These definitions are all straightforward except CWL.When given a handler-continuation,
κ = (f, v), CWL sets up the execution of the handler f with argument v by using the initialConf
function of the L-semantics interface, which returns an the L-configuration consisting of the
the heap component of c and the control flow and store components set up to execute only
the function f with argument v. When given a yield-continuation, κ = (c′, p), CWL requires
the predicate p to hold for the current L-configuration c, in which case it merges the two
configurations using the mergeConfs(c, c′) function of the L-semantics interface, which returns
a configuration that consists of the heap component of c and the control flow and store
components of c′; in particular, in JSIL, given c = 〈ρ, µ,m, cs, i〉 and c′ = 〈ρ′, µ′,m′, cs′, i′〉,
we would have that mergeConfs(c, c′) = 〈ρ′, µ,m, cs′, i′〉.

We now give the concrete Event Semantics transitions, which are of the form ω ;α
E(L) ω

′,
where ω and ω′, respectively, are the configurations before and after the computed step,
and α is an environment action. Environment actions are used to model events triggered
by the environment, such as user UI-events and network events. They have the grammar
α ::= · | (e, v), where · represents no environment action and (e, v) represents the triggering
of the event e with value v. For clarity, we elide · in the transitions.

Concrete Event Semantics: 〈c, h, q〉;α
E(L) 〈c′, h′, q′〉

Language Transition
c;L c

′

〈c, h, q〉;E(L) 〈c′, h, q〉

Add Handler
c;`

L c
′ ` = addHdlr〈e, f〉

〈c, h, q〉;E(L) 〈c′,AH(h, e, f), q〉

Remove Handler
c;`

L c
′ ` = remHdlr〈e, f〉

〈c, h, q〉;E(L) 〈c′,RH(h, e, f), q〉

Synchronous Dispatch
c;`

L c
′ ` = sDispatch〈e, v〉 [fi |n0] = FH(h, e)

q′ = [(fi, [e, v]) |ni=0] c′′ = L.suspend(c′)
〈c, h, q〉;E(L) 〈c′′, h, q′ ++[(c′, (λc.True))]++q〉

Asynchronous Dispatch
c;`

L c
′ ` = aDispatch〈e, v〉

[fi |n0] = FH(h, e) q′ = [(fi, [e, v]) |ni=0]
〈c, h, q〉;E(L) 〈c′, h, q++q′〉

Schedule
c;`

L c
′ ` = schedule〈f, v〉
q′ = q++[(f, v)]

〈c, h, q〉;E(L) 〈c′, h, q′〉

Await
c;`

L c
′ ` = await〈v, p〉

(cr, ca) = L.splitReturn(c′, v)
〈c, h, q〉;E(L) 〈cr, h, q++[(ca, p)]〉

Environment Dispatch
[fi |n0] = FH(h, e)
q′ = [(fi, [e, v]) |ni=0]

〈c, h, q〉;(e,v)
E(L) 〈c, h, q++q′〉

Continuation-Success
L.isFinal(c) q = κ : q′

〈c, h, q〉;E(L) 〈CWL(c, κ), h, q′〉

Continuation-Failure
L.isFinal(c) q = κ : q′ (c, κ) 6∈ dom(CWL)

〈c, h, q〉;E(L) 〈c, h, q′++[κ]〉

The first seven rules rely on a transition of the L-semantics, updating the current L-
configuration with the one generated by the L-transition and using the generated label to
determine which event-related action is to be performed, if any. The first three rules are
straightforward; we describe the remaining four below:

[Synchronous Dispatch] When the L-semantics generates the label sDispatch〈e, v〉, the Event
Semantics first creates a handler-continuation for each handler associated with e, together
with a yield continuation, (c′, (λc.True)). These continuations are then all added to the
front of the continuation queue, ensuring that the handlers will be executed in order, after
which the current computation will be retaken unconditionally, given [CW-Yield-Cont.].
Lastly, the Event Semantics uses the suspend(c′) function of the L-semantics, which
returns the configuration that is the same as c′ but marked as final, to construct a final
configuration c′′, which, given [Continuation-Success], means that the execution of c′

will stop and the first handler will be executed next.

ECOOP 2020

28:8 A Trusted Infrastructure for Symbolic Analysis of Event-Driven Web Applications

[Asynchronous Dispatch] When the L-semantics generates the label aDispatch〈e, v〉, the
Event Semantics proceeds similarly to [Synchronous Dispatch], but the continuations
are added to the back of the continuation queue rather than to the front, meaning that
the handlers will still be executed in order, but at some point in the future.

[Schedule] The L-semantics generates the label schedule〈f, v〉; the Event Semantics creates
a handler-continuation (f, v) for the given function with the given arguments and places
it at the back of the continuation queue.

[Await] When the L-semantics generates the label await〈v, p〉, the Event Semantics creates
the return configuration, cr, and the await configuration, ca via the splitReturn function
of the L-semantics interface, which constructs: cr from c by setting up the control flow
component as if the currently executing function, f , returned the value v; and ca from c by
setting up the control flow component to only contain the remainder of the execution of f .
It then schedules the remainder of the computation of the currently executing function
to be completed asynchronously once p holds, and continues the current computation as
if the currently executing function had returned the value v.

The remaining three transitions do not rely on the L-semantics. In the [Environment
Dispatch] case, the environment generates the label (e, v), and the Event Semantics behaves
as for [Asynchronous Dispatch], except that the resulting L-configuration does not change. If
the current active configuration is final (as checked by the isFinal(c) function of the L-semantics
interface, which returns true if c is final, and false otherwise), the Event Semantics tries to
create a new configuration for the execution of the continuation at the front of the continuation
queue. If this is possible, the execution proceeds ([Continuation-Success]); otherwise, that
continuation is demoted to the back of the continuation queue ([Continuation-Failure]).

2.3 Symbolic Event Semantics
Symbolic execution [2, 3, 4] is a program analysis technique that systematically explores all
possible executions of the given program up to a bound, by executing the program on symbolic
values instead of concrete ones. For each execution path, symbolic execution constructs a
first-order quantifier-free formula, called a path condition, which accumulates the constraints
on the symbolic inputs that direct the execution along that path. Here, we describe a
symbolic version of the Event Semantics introduced in §2.2, obtained by lifting the concrete
event semantics to the symbolic level, following well-established approaches [44, 43, 12].

We assume that L has a symbolic semantics with symbolic values, v̂ ∈ V̂, built using
symbolic variables, x̂ ∈ X̂ . The concepts introduced in §2.1 are defined as in Figure 2, but for
symbolic instead of concrete values, and are annotated with ˆ to be distinguishable from their
concrete counterparts; e.g., we have: symbolic events, ê ∈ Ê ⊂ V̂; symbolic handler registers,
ĥ ∈ Ĥ, mapping symbolic events to lists of function identifiers; and symbolic configurations,
ω̂ ∈ Ω̂, comprising a symbolic L-configuration, ĉ ∈ Ĉf , a symbolic handler register, and a
symbolic continuation queue, q̂ ∈ Q̂. We also assume that every symbolic L-configuration ĉ
contains a boolean symbolic value, π ∈ Π ⊂ V̂, to which we refer as the path condition of ĉ.

The symbolic Event Semantics, like the concrete, uses the L-semantics interface and
the four auxiliary relations introduced in §2.2. When executed symbolically, however, the
auxiliary relations that operate on handler registers (AH, RH, and FH) may branch. To
account for this branching, we pair each outcome with a constraint describing the conditions
under which the outcome is valid. The formal definitions are given below; we omit the
definition of the RH relation, as it is analogous to that of AH.

G. Sampaio, J. F. Santos, P. Maksimović, and P. Gardner 28:9

Symbolic Event Semantics: Auxiliary Relations

Add Handler - Found
ê′ ∈ dom(ĥ) ĥ′ = ĥ

[
ê′ 7→ ĥ(ê′)++[f]

]
AH(ĥ, ê, f) ; (ĥ′, ê = ê′)

Add Handler - Not Found
ĥ′ = ĥ [ê 7→ [f]]

AH(ĥ, ê, f) ; (ĥ′, ê 6∈ dom(ĥ))

Find Handler - Found
ê′ ∈ dom(ĥ)

FH(ĥ, ê) ; (ĥ(ê′), ê = ê′)

Find Handler - Not Found
FH(ĥ, ê) ; ([], ê 6∈ dom(ĥ))

An excerpt of the symbolic Event Semantics is given below. We focus on the representative
rules different from their concrete counterparts, highlighting the differences in grey . These
differences are introduced by the above-discussed branching of the auxiliary relations; in
particular, every time an auxiliary relation is used, the constraint it generates must be added
to the current path condition using the assume(ĉ, π) function of the L-semantics interface,
which returns the symbolic L-configuration obtained by extending the path condition of ĉ
with the formula π if such an extension is satisfiable, and is undefined otherwise.

Symbolic Event Semantics (excerpt): 〈ĉ, ĥ, q̂〉;α̂
Ê(L) 〈ĉ

′, ĥ′, q̂′〉

Add Handler
ĉ;

ˆ̀
L ĉ

′ ˆ̀= addHdlr〈ê, f〉
AH(ĥ, ê, f) ; (ĥ′, π) ĉ′′ = L.assume(ĉ′, π)

〈ĉ, ĥ, q̂〉;Ê(L) 〈ĉ
′′, ĥ′, q̂〉

Environment Dispatch
FH(ĥ, ê) ; ([fi |n0], π) q̂′ = [(fi, [ê, v̂]) |ni=0]

ĉ′ = L.assume(ĉ, π)
〈ĉ, ĥ, q̂〉;(ê,v̂)

Ê(L)
〈ĉ′, ĥ, q̂++q̂′〉

Synchronous Dispatch
ĉ;

ˆ̀
L ĉ

′ ˆ̀= sDispatch〈ê, v̂〉
FH((ĥ, ê)) ; (([fi |n0], π)) q̂′ = [(fi, [ê, v̂]) |ni=0]

ĉ′′ = L.assume(ĉ′, π) ĉ′′′ = L.suspend(ĉ′′)
〈ĉ, ĥ, q̂〉;Ê(L) 〈ĉ

′′′, ĥ, q̂′ ++[(ĉ′′, (λĉ.True))]++q̂〉

Asynchronous Dispatch
ĉ;

ˆ̀
L ĉ

′ ˆ̀= aDispatch〈ê, v̂〉
FH(ĥ, ê) ; ([fi |n0], π) q̂′ = [(fi, [ê, v̂]) |ni=0]

ĉ′′ = L.assume(ĉ′, π)
〈ĉ, ĥ, q̂〉;Ê(L) 〈ĉ

′′, ĥ, q̂++q̂′〉

Correctness. To establish the correctness of the symbolic Event Semantics w.r.t the concrete
Event Semantics, we first relate the corresponding configurations using symbolic environments,
ε : X̂ ⇀ V, which map symbolic variables to concrete values, while preserving types.
Given a symbolic environment ε, we write Iε(v̂) to denote the interpretation of v̂ under ε,
with the key case being that of symbolic variables: Iε(x̂) = ε(x̂). We extend Iε to all
other concepts defined in Figure 2 component-wise, overloading notation: for example,
Iε(〈ĉ, ĥ, q̂〉) , 〈Iε(ĉ), Iε(ĥ), Iε(q̂)〉. We assume that interpretation is preserved by the
functions of the L-semantics interface; for example, that L.isFinal(ĉ)⇔ L.isFinal(Iε(ĉ)).

We define the models of a symbolic L-configuration ĉ under the path condition π as the
set of all concrete configurations obtained via interpretations of ĉ that satisfy π and their
accompanying symbolic environments: Mπ(ĉ) = {(ε, Iε(ĉ)) | Iε(π) = True}. We extend this
notion to symbolic labels, environment actions, and E-configurations, overloading notation.

The correctness of the Event Semantics relies on the correctness of the L-semantics. A
given symbolic L-semantics is correct w.r.t. a given concrete L-semantics, as formalised in
Definition 1, if every symbolic trace: (1) over-approximates all concrete traces that follow
its execution path and whose initial concrete L-configuration is over-approximated by the
initial symbolic L-configuration (Directed Soundness); and (2) has at least one concretisation
(Directed Completeness). Directed Completeness, in particular, guarantees the absence of
false-positive bug-reports: if a bug happens symbolically, then it must also happen concretely.

ECOOP 2020

28:10 A Trusted Infrastructure for Symbolic Analysis of Event-Driven Web Applications

I Definition 1 (Correctness Criteria - Symbolic L-Semantics).

L-Directed-Soundness
ĉ;

ˆ̀
L ĉ

′ ∧ (π ⇒ pc(ĉ′)) ∧ (ε, c) ∈Mπ(ĉ) ∧ c;`
L c

′

=⇒ (ε, c′) ∈Mπ(ĉ′) ∧ (ε, `) ∈Mπ(ˆ̀)

L-Directed-Completeness
ĉ;

ˆ̀
L ĉ

′ ∧ (π ⇒ pc(ĉ′))
∧ (ε, c) ∈Mπ(ĉ)

=⇒ ∃ `, c′. c;`
L c

′

Theorem 2 states that if the symbolic L-semantics is correct, then so is the obtained
Event Semantics. To precisely identify the concrete traces that follow the same path as the
symbolic trace, in Theorem 2 we only pick concretisations of the initial symbolic state that
satisfy the final path condition (π = pc(ω̂′)).

I Theorem 2 (Correctness of the Symbolic Event Semantics).

E-Directed-Soundness
ω̂ ;α̂

Ê(L) ω̂
′ ∧ π = pc(ω̂′) ∧ (ε, ω) ∈Mπ(ω̂)

∧ (ε, α) ∈Mπ(α̂) ∧ ω ;α
E(L) ω

′

=⇒ (ε, ω′) ∈Mπ(ω̂′)

E-Directed-Completeness
ω̂ ;α̂

Ê(L) ω̂
′ ∧ π = pc(ω̂′)

∧ (ε, ω) ∈Mπ(ω̂)
=⇒ ∃α, ω′. ω ;α

E(L) ω
′

We actually prove a stronger result, analogous to that given in Definition 1, with
π ⇒ pc(ω̂′), from which the presented result trivially follows. The proof is done by case
analysis on the symbolic rules for the Event Semantics, and can be found integrally in [31].

3 The DOM API

The Document Object Model (DOM) [53] is an API through which the code executing in the
browser can interact with the Web page displayed to the user. Initially designed as a simple
XML/HTML inspect-update library, the DOM has been substantially extended over the
last twenty years and now includes a wide variety of features, such as specialised traversals,
events, abstract views, and cascading style sheets. To cope with this growing complexity, the
DOM API has been organised as a collection of smaller APIs, each targeting a specific set
of features. Recently, the most relevant of these APIs, Core Levels 1-3 [47, 49], have been
unified in a single all-encompassing DOM API, called the DOM Living Standard [53], which
defines a “platform-neutral model for events, aborting activities, and node-trees”. The DOM
Living Standard is inspired by the ECMAScript standard [7]. It is written as if it were the
pseudo-code of a DOM implementation, describing each DOM method operationally and
detailing each evaluation step. This approach, unlike the previous declarative one [47, 48, 49],
facilitates new reference implementations tightly connected to the text of the standard.

In this section, we present our JavaScript reference implementations of two DOM APIs:
DOM Core Level 1 [47], which describes a range of operations for inspecting and updating
XML/HTML documents (§3.1); and DOM UI Events [53], which describes the event model
of the DOM (§3.2). For the latter, we describe in detail its connection to the Event
Semantics. Importantly, both reference implementations are trustworthy: they closely follow
the specifications of their corresponding methods as per the DOM Living Standard, as
illustrated in this section; and they were thoroughly tested against the appropriate official
test suites, as shown in §5. They, therefore, constitute a reliable representation of the DOM,
which is useful for analysing Web programs that interact with the DOM API.

3.1 DOM Core Level 1
The DOM Core Level 1 API [47] is the first version of the DOM API. It describes how
XML/HTML documents are internally represented as DOM trees and defines a range of
methods for manipulating these trees. DOM trees comprise several different types of DOM

G. Sampaio, J. F. Santos, P. Maksimović, and P. Gardner 28:11

interface Element : Node {
readonly attribute DOMString tagName;
DOMString getAttribute(DOMString name);
void setAttribute(DOMString name, DOMString value) raises (DOMException);
void removeAttribute(DOMString name) raises (DOMException);
Attr getAttributeNode(DOMString name);
Attr setAttributeNode(Attr newAttr) raises (DOMException);
Attr removeAttributeNode(Attr oldAttr) raises (DOMException);
NodeList getElementsByTagName(DOMString name);
void normalize();

};

Figure 3 DOM Element interface (top) and the respective JavaScript object graph (bottom).

nodes and are subject to a number of topological constraints restricting the ways in which
these nodes can form a valid DOM tree. For instance, the root node of every DOM tree
must have type Document and can have at most one child of type Element. Elements, on
the other hand, can have multiple child nodes of different types, such as Text and Element.

The DOM standard defines interfaces describing the structure of every type of DOM
node in an object-oriented style. For every node type, the standard specifies the fields and
methods exposed by the nodes of that type. Furthermore, as in standard OO languages,
each node type might inherit from another node type; for instance, every Element node is
also a Node, meaning that it exposes all fields and methods defined in the Node interface.

We implement the DOM Core Level 1 API in JavaScript (ES5 Strict), encoding DOM
objects as JS objects. In particular, each type of DOM node is mapped to the JS constructor
function in charge of creating the nodes of that type. Also, we emulate class-based inheritance,
which is used to describe DOM nodes in the standard, using the prototype inheritance of JS,
by storing the methods shared by all nodes of a given type in their (shared) prototype.

In the following, we describe our implementations of the Element and NodeList inter-
faces, which showcase, respectively, how our implementation follows the standard, and how
JavaScript enables us to write an elegant implementation of DOM live collections.

Element Interface. In Figure 3, we show the Element interface written in IDL (Interface
Description Language) as in the standard (top) and a fragment of its corresponding object
graph from our JavaScript implementation (bottom). The standard states that Element
inherits from Node, meaning that all objects of type Element expose the methods and fields
of Node objects. Additionally, every Element object exposes a field tagName and the methods
getAttribute, setAttribute, removeAttribute, getAttributeNode, setAttributeNode,
removeAttributeNode, getElementsByTagName, and normalize.

In the JavaScript object graph, besides exposing the property tagName, all Element
objects directly define the properties corresponding to the fields of the Node interface (e.g.
nodeName, ownerDocument, etc). The methods of the Element interface are stored in the
object ElemProto, the prototype of all Element objects, and the Node methods are stored in
NodeProto, which is the prototype of ElemProto.

ECOOP 2020

28:12 A Trusted Infrastructure for Symbolic Analysis of Event-Driven Web Applications

NodeList Interface. The NodeList interface describes the so-called DOM live collections.
A live collection is a special data structure defined in the DOM API that automatically reflects
changes that occur in its associated document. For instance, the getElementsByTagName
method from the above-mentioned Element interface returns a live collection containing the
DOM nodes that match the supplied tag name. Working with live collections is error-prone
and requires particular attention. Consider, for example, the following program:

var divs = body.getElementsByTagName("div");
for (var i = 0; i < divs.length; i++)

{ body.appendChild(document.createElement("div")) }

This program iterates over the initial collection of div nodes in the DOM tree rooted at body.
On each iteration, it creates a new div node and inserts it into the original tree. However, this
new div is also inserted into the live collection divs, whose length automatically increases
by one, causing the program to loop forever.

The NodeList interface defines the field length, for obtaining the length of a node list,
and the method item(i) for accessing its i-th element. In JavaScript, we implement node
lists lazily in that we recompute the contents of a given node list every time it is inspected.
This we achieve by extending NodeList objects with an internal compute function, used
to compute its contents. We call compute at every invocation of the item method, and
associate the length property of every node list with a JavaScript getter that also calls
compute before checking the the length of the corresponding node list. As an optimisation,
we cache computed live collections by associating each node list with a unique identifier and
maintaining a global array of computed node lists. However, whenever there is any update
to the DOM tree, all cached live collections are invalidated and will be re-computed the next
time they are inspected.

3.2 DOM UI Events
The DOM UI Events API [53] describes the DOM event model. In particular, it provides
the mechanism for programmers to register event listeners, and explains how these listeners
are collected and executed every time a DOM event gets triggered either by the environment
(for example, via user events and browser events) or programatically.

At the core of the UI Events API is the DOM Dispatch algorithm, which precisely
describes the process of collecting and executing event listeners every time a DOM event gets
triggered. The DOM Living standard includes the pseudo-code of the Dispatch algorithm,
detailing all the steps that are performed when dispatching a DOM event ([53], §2.9). It is a
complex algorithm that relies on a number of auxiliary functions, which, in turn, are also
described operationally and often rely on other auxiliary functions themselves.

In the following, we describe our implementation of the DOM Dispatch, demonstrate
that this implementation follows the pseudo-code of the standard line-by-line, and describe
in detail how it is connected to the Event Semantics.

DOM Dispatch. We explain the DOM Dispatch algorithm via an example given in Figure 4,
which shows a DOM tree of an HTML page with an element dv containing two buttons, bt1
and bt2, and illustrates the steps taken by Dispatch when the user clicks on bt1. Coarsely,
Dispatch first determines the propagation path of the triggered event, i.e. the list of DOM
nodes connecting the element on which the event was triggered to the root of the DOM
document, in this case [bt1, dv, bd, htm, doc]. Then, it executes the handlers registered along
that propagation path during three consecutive phases: (1) the capture phase, where the

G. Sampaio, J. F. Santos, P. Maksimović, and P. Gardner 28:13

Figure 4 DOM Dispatch Phases.

event is propagated from the root of the document, doc, to the target, bt1; (2) the target
phase, where the event is processed at the target, bt1; and (3) the bubble phase, where the
event is propagated back to the root. During each phase, Dispatch executes the handlers
attached to the current node if they were registered for the current event and phase. The
DOM API method for registering handlers, addEventListener(type, handler, useCapture),
allows the programmer to specify if a given handler is to be executed in the capture phase or
the bubble phase through the useCapture boolean; by default, handlers get executed in the
target phase. Importantly, the propagation path is computed only once, before the handlers
are executed, meaning that even if their execution alter the propagation path, those changes
will not be taken into account by the Dispatch algorithm.

Below, we present our JavaScript (ES5 Strict) implementation of the Dispatch algorithm.
In the standard, Dispatch is presented as a monolithic 56-line function that is difficult
to understand. We instead structure it into seven auxiliary functions, each following the
corresponding pseudo-code of the standard line-by-line.

1 function Dispatch(event, target, flags) {
2 var relatedTarget = retarget(event.relatedTarget, target);
3 var touchTargets = getTouchTargets(event, target);
4 var actTarget = isActivationTarget(event);
5 updatePropagationPath(event, target, relatedTarget, touchTargets, actTarget);
6 captureAndTarget(event, flags)
7 if (event.bubbles) { bubble(event, flags) }
8 clear(event);
9 return !event.canceled

10 }

The Dispatch algorithm receives as input: the Event object that represents the triggered
event; the Node object on which the event was triggered; and optional flags used to identify
a target/event requiring special treatment. The algorithm then proceeds as follows:

1. Call retarget to determine the related target of the triggered event. Some events are
associated with two targets: the main target, supplied as the argument of Dispatch; and
the related target, determined by retarget. For instance, mouseout, an event triggered
when the user moves the mouse from one node to another, has two targets: the node at
which the mouse originally was (main), and the node to which it moved (related).

2. Call getTouchTargets to obtain the list of touch targets associated with the triggered
event. Events involving interactions between the user and a touching surface can be
associated with a variable number of targets (e.g., due to the user placing multiple fingers
on the surface), called touch targets.

3. Call isActivationTarget to check if the event has an associated activation behaviour.
For instance, when a click event is triggered on a hyperlink, the browser should open a
window with the corresponding URL.

4. Call updatePropagationPath to the determine the propagation path of the event.
5. Call captureAndTarget to execute the capture and target phases.

ECOOP 2020

28:14 A Trusted Infrastructure for Symbolic Analysis of Event-Driven Web Applications

6. Call bubble to execute the bubble phase if the result of inspecting the property bubbles
of the event object is true.

7. Call clear to reset some of the properties of the event object to null.
8. Return a boolean indicating if the activation behaviour of the event was not cancelled.

When no activation behaviour is defined, the algorithm returns true.

Using the Event Semantics. In related works [19, 29], the DOM Dispatch is either baked
into the formalism, which then becomes complex, and/or not fully faithful to the standard.
We take a novel, substantially different approach that allows us both to keep the Event
Semantics simple and to represent rigorously all of the details of the DOM Dispatch. In
particular, we store information about DOM handlers directly in their associated Element
nodes in the JavaScript heap, implement the Dispatch fully in JavaScript, and only use the
Event Semantics to: (1) register the Dispatch function as the handler of all DOM events
using the addHdlr primitive; and (2) dispatch programmatic DOM events synchronously using
the sDispatch primitive. The former effectively means that any time a DOM event (e.g. click
or focus), is triggered, either synchronously or asynchronously, the DOM Dispatch function
itself is scheduled for execution by the Event Semantics. It is then the job of this function,
rather than the Event Semantics, to traverse the DOM tree, starting at the node where the
event was triggered, and execute the user-register handlers in the appropriate order.

Below, we show our implementation of the dispatchEvent function, used to model
programmatic dispatch of DOM events. This function calls the Event Semantics synchronous
dispatch wrapper, __sDispatch, in line 5. The behaviour of the sDispatch primitive, as
given in §2, precisely captures the programmatic DOM event dispatch as per the standard,
where the associated event handlers are meant to be executed immediately.

1 function dispatchEvent(event, flags) {
2 if (event.dispatch || !event.initialized) {
3 throw new DOMException(INVALID_STATE_ERR) };
4 event.isTrusted = false; event.target = this;
5 return __sDispatch(event, this, flags)
6 }

Line-by-Line Closeness. We demonstrate that our JavaScript implementation follows the
DOM UI Events standard line-by-line by appealing to the code of the innerInvoke function,
given below. The innerInvoke function is one of the auxiliary functions used by the
Dispatch algorithm. It is used to execute the listeners for a given event during all three
phases of the Dispatch algorithm. We illustrate the line-by-line closeness by inlining in
comments, for each line of code, its corresponding line in the standard.

1 function innerInvoke (event, listeners, phase, legacyOutputDidListenersThrowFlag) {
2 var found = false; // 1. Let found be false.
3 for (var i = 0; i < listeners.length; i++) { // 2. For each listener in

listeners...↪→

4 if (listener.removed) continue; // ...whose removed is false:
5 // 2.1. If event's type attribute value is not listener's type, then continue.
6 if (event.type !== listener.type) continue;
7 // 2.2. Set found to true.
8 found = true;
9 // 2.3. If phase is "capturing" and listener's capture is false, then continue.

10 if ((phase === "capturing") && (listener.capture === false)) continue;
11 // 2.4. If phase is "bubbling" and listener's capture is true, then continue.
12 if ((phase === "bubbling") && (listener.capture === true)) continue;
13 // 2.5. If listener's once is true, then remove listener from event's

currentTarget attribute value's event listener list.↪→

14 if (listener.once === true) event.currentTarget.removeListener(listener);

G. Sampaio, J. F. Santos, P. Maksimović, and P. Gardner 28:15

15 ...
16 // 2.10. Call a user object's operation with listener's callback, "handleEvent",

event, and event's currentTarget attribute value.↪→

17 execCallBack(listener.handleEvent, "handleEvent", event, event.currentTarget);
18 ...
19 // 2.13. If event's stop immediate propagation flag is set, then return found.
20 if (event.stopImmediatePropagation === true) return found;
21 }
22 return found; // 3. Return found
23 }

DOM Event Model and the JavaScript Semantics. The interaction between the DOM
Dispatch algorithm and the JavaScript semantics may trigger unexpected behaviours if not
properly engineered. Consider, for instance, the following function to be used as a handler:

function h(ev) { Object.defineProperty(ev, "bubbles", { get: malicious }) }

If the programmer registers h as an event handler and that event is triggered, the function
malicious will be implicitly called when the Dispatch algorithm tries to resolve the value of
the property bubbles after the execution of the target phase, because bubbles is an accessor
property (it does not contain a value, but instead getter/setter functions that are executed on
property access/update) and malicious is its getter. This behaviour is actually disallowed
by the DOM standard, which defines the bubbles attribute as read-only, but is exhibited by
the DOM engines of Chrome, Edge, Firefox, and Safari. Our reference implementation does
not suffer from this problem as we define read-only attributes as non-writable on creation.

4 JavaScript Promises and async/await

Promises were introduced into JavaScript (JS) in the 6th version of the standard [8], in
response to the increasing popularity and usefulness of various, often incompatible, custom-
made libraries for asynchronous computation. Their addition provided clarity and security to
JS developers; in fact, the official Promises API has greatly simplified the creation, combina-
tion, and chaining of asynchronous computations, eliminating the so-called callback hell of
multiple nested callbacks [14], which is extremely difficult to understand and reason about.

A JS Promise, in essence, is the reification of an asynchronous computation that was
either already settled in the past or still remains to be settled in the future. A promise can
be settled successfully, in which case we say that it is resolved (the standard also uses the
term fulfilled), or unsuccessfully, in which case we say that it is rejected. If a promise has not
been yet settled, we say that it is pending.

Promises are often used together with the JS async/await API. This API introduces
asynchronous functions, inside of which one can await on a promise to be fulfilled before
proceeding with the current computation. The key point of asynchronous functions is that
they do not block the execution of their caller function when their execution gets suspended
on an await; instead, the control is immediately transferred to the caller function, which
continues with the execution as if the asynchronous function had simply returned.

This section describes our reference implementations of the JS Promises and async/await
APIs, as described in sections 25.6, 25.7, and 6.2.3.1 of the 9th version of the ECMAScript
standard [9]. Analogously to the DOM reference implementations, these APIs: are imple-
mented directly in JS (ES5 Strict), with the Promises implementation following the standard
line-by-line; are thoroughly tested against the latest version of the official ECMAScript test
suite [6] (cf. §5); and make use of their dedicated Event Semantics primitives (cf. §2).

ECOOP 2020

28:16 A Trusted Infrastructure for Symbolic Analysis of Event-Driven Web Applications

Figure 5 Promises Object Graph.

4.1 Promises API
At the core of the Promises API is the promise constructor, Promise, which is used for
creating new promises. This constructor receives as input an executor function, which
captures the computation to be performed asynchronously. Executor functions have two
arguments: a function resolve for stating that the corresponding promise has been resolved,
and a function reject for stating that it has been rejected. Until one of these functions is
called, the corresponding promise is left pending. Consider the following example:
function f(v) { console.log(v) };
var p = new Promise((resolve, reject) => {

document.getElementById("dv").addEventListener("click", () => { resolve(1) })
});
p.then(f); console.log(2)

This program creates a promise p, whose executor function registers the function that
resolves the promise as the handler for the click event on the DOM element with identifier dv.
This means that p will only get resolved after the user clicks on that DOM element. Afterwards,
the program uses the then function of the Promises API to register a fulfill reaction on
the promise p, meaning that when/if p gets resolved, the function f will be scheduled for
execution with the argument with which p was resolved (in this case, 1). Reactions are
scheduled in a first-in-first-out manner every time the current computation terminates or
yields control. Hence, the program above will always output the string 21 to the console,
regardless of how quickly the user is able to click on the DOM element in question.

Besides the constructor Promise and the method then, the Promises API provides several
other functions for creating, combining, and chaining promises together. The behaviour of
these functions/methods is thoroughly described in the ECMAScript standard in pseudo-code.
This pseudo-code relies on numerous JavaScript internal functions, whose definitions in the
ECMAScript standard are also operational, intricate, and intertwined.

The structure of Promise objects is also fairly complex. We illustrate this by giving, in
Figure 5, the object graph associated with the promise p of the example after the execution
of the then method, but before the promise gets settled. Each Promise object keeps track
of its current state, reactions to be triggered when the promise is resolved/rejected, and
its result, in its internal properties __State, __FulfillReactions, __RejectReactions,
and __Result, respectively. In this case, the promise p is in the “pending” state and
its result is undefined, as it has not been yet resolved. Observe that f is registered to
execute after p using the then function in the example; it is not stored directly as a fulfil
reaction. Instead, there is a promise reaction, r, which, in addition to keeping track of f in
its __Handler property, also holds, in its __Capability field, a promise capability c, which
keeps track of the promise on whose settlement f should be executed (c.__Promise), and the
resolve and reject functions given to the executor function of that promise (c.__Resolve
and c.__Reject). In the example, the promise capability c contains the promise p and the
internal resolve and reject algorithms of the standard.

G. Sampaio, J. F. Santos, P. Maksimović, and P. Gardner 28:17

Using the Event Semantics. Our reference implementation of JS promises interacts with
the Event Semantics when triggering Promise reactions for a promise that got settled; this is
done by the TriggerPromiseReactions function. This function is given as input an array of
promise reactions and the value with which their corresponding promise was settled (either
resolved or rejected). It then iterates over the elements of the array and, for each element,
uses the internal function PromiseReactionJob to create an anonymous function that will
essentially call the handler of the given reaction with the provided value. This anonymous
function is then scheduled for execution directly using the wrapper function of the schedule
primitive of the Event Semantics, as highlighted in line 5 of the following code.

1 function TriggerPromiseReactions (reactions, argument) {
2 if (!reactions) return undefined;
3 for (var i = 0; i < reactions.length; i++) {
4 var reactionJob = PromiseReactionJob (reactions[i], argument);
5 __schedule(reactionJob);
6 }
7 }

Note that the Event Semantics schedule primitive, as defined in §2, adds the given handler
to the end of the continuation queue. This is consistent with the behaviour of JS Promises
described in the standard, Section 8.4.1 [9], which states that pending jobs (essentially, the
fulfil and reject reactions) are to be added “at the back of the job queue”.

Line-by-Line Closeness. We demonstrate that our implementation follows the ECMAScript
standard line-by-line by appealing to the FulFillPromise function, described in the Section
25.4.1.4 of the standard; we give its implementation, annotated with the corresponding lines
of the standard. The FulFillPromise function is one of the internal functions used by the
function ResolveFun (shown in Figure 5), which, in turn, is used by promise executors to fulfil
their associated promises. The function FulFillPromise receives a promise together with
the value with which it is to be resolved and proceeds as follows: (1) sets the internal state
of the given promise object appropriately; and (2) schedules the promise’s fulfil reactions.

1 function FulfillPromise(promise, value) {
2 // 1. Assert: The value of promise's [[State]] internal slot is "pending".
3 Assert(promise.__State === "pending");
4 // 2. Let reactions be the value of promise's [[FulfillReactions]] internal slot.
5 var reactions = promise.__FulfillReactions;
6 // 3. Set the value of promise's [[Result]] internal slot to value.
7 promise.__Result = value;
8 // 4. Set the value of promise's [[FulfillReactions]] internal slot to undefined.
9 promise.__FulfillReactions = undefined;

10 // 5. Set the value of promise's [[RejectReactions]] internal slot to undefined.
11 promise.__RejectReactions = undefined;
12 // 6. Set the value of promise's [[State]] internal slot to "fulfilled".
13 promise.__State = "fulfilled";
14 // 7. Return TriggerPromiseReactions(reactions, value).
15 return TriggerPromiseReactions (reactions, value)
16 }

4.2 async/await
The async/await APIs are defined in Sections 6.3.1 and 25.7 of the 9th version of the
ECMAScript standard [9]; they are meant to be used together, as it is only possible to use
await inside an asynchronous function. Furthermore, the async/await APIs directly build
on the Promises API in that they make explicit use of JS Promises functions and methods.

ECOOP 2020

28:18 A Trusted Infrastructure for Symbolic Analysis of Event-Driven Web Applications

In a nutshell, an asynchronous function is a JavaScript function whose execution can yield,
that is, transfer the control to its calling context without having completed its execution. A
call to an asynchronous function is evaluated to a promise that is settled once that function
terminates executing: if the function returns, the promise is fulfilled; if the function throws,
the promise is rejected. Consider, for instance, the following program:
1 async function f () { if (b === true) { return 1 } else { throw 2 } };
2 f().then((v) => { console.log(v) }, (v) => { console.log(v) }) (CS1)

Recall that the method then receives as input two functions which are registered, re-
spectively, as a fulfil reaction and a reject reaction on the this object. Hence, the first
function is executed if the promise is fulfilled, whereas the second one is executed if it is
rejected. Consequently, in the case of the example, if the global variable b is equal to true,
the program will write 1 to the console, otherwise it will write 2.

As stated above, an asynchronous function can make use of the await expression to
transfer the control to the calling context. Essentially, the expression (await e) evaluates e
to a promise and suspends the computation of the current function until that promise is
settled. Consider, for example, the program below:
1 var p = new Promise(function (resolve, reject) { ... });
2 async function g () { return await p };
3 g().then((v) => { console.log(v) }, (v) => { console.log(v) });

(CS2)

This time, the asynchronous function g awaits on a promise p. If/when p is settled, g
returns the value with which it was settled. Suppose, for instance, that p is resolved with
value 1; in this case, the function g returns 1, meaning that its associated promise will also be
fulfilled with value 1. Alternatively, suppose that p is rejected with value 1; then, g throws
1, meaning that its associated promise will also be rejected with value 1. In both cases, the
program will simply write 1 to the console.

Line-by-line Closeness. For async/await, we depart from our line-by-line closeness ap-
proach. The reason is that this would require JSIL to support first-order execution contexts,
which, in turn, would constitute a considerable engineering effort, including changing the
internal representation of execution contexts and extending JSIL with various primitives for
their manipulation. Instead, we opted for a more lightweight, compilation-based, approach
that still correctly models the async/await behaviour described in the standard.

Compiling async/await to ES5 Strict. As async and await fundamentally change the
control flow behaviour of the language, they cannot be simply implemented as libraries.
Hence, we introduce a pre-compilation step that translates these constructs to ES5 Strict.
Expectedly, the compiled programs use the Promise constructor to create the promise
associated with the execution of the asynchronous function being compiled. The key case of
the compiler, given below, corresponds to the default translation1 of asynchronous functions:

C〈async function(x̄){s}〉 , function(x̄) {
return new Promise(function(resolve, reject) {

try {Ca〈s〉; resolve(undefined)} catch(e) {reject(e)}
})

}

1 If an asynchronous function can return from a finally block, the settling of its associated promise
must be deferred to that finally block, making the compilation of return statements more complex.

G. Sampaio, J. F. Santos, P. Maksimović, and P. Gardner 28:19

Essentially, an asynchronous function is compiled to a normal ES5 Strict function that simply
creates a promise p and returns it. The body of the original function is run inside the
executor of the promise. Additionally, we make use of an auxiliary compiler Ca to rewrite
return statements inside the body of the original function so that they are replaced by a
call to resolve followed by an empty return. Hence, the function f, given in Code Snippet 1,
is compiled to:

1 function f () {
2 return new Promise (function (resolve, reject) {
3 try { if (b === true) { resolve(1); return } else { throw 2 } }
4 catch (x) { reject(x); return }
5 })
6 }

The compilation of the await p expression is more involved. Concretely, the compiled
code calls the wrapper function for the Event Semantics await primitive with the argument
getPredicate(p), which corresponds to a function that evaluates to true once the promise p
has been settled. Given the definition of await in §2, this precisely corresponds to the core
behaviour of the JS await. Then, the compiled code checks if the promise was fulfilled: if so,
it continues with the execution normally; if not, it throws the value with which the promise
was rejected. Below, we illustrate the compilation of the function g, given in Code Snippet 2.

1 function g () {
2 return new Promise (function (resolve, reject) {
3 try {
4 __await(getPredicate(p));
5 if(p.__State === "resolved") { resolve(p.__Result) } else { throw p.__Result }
6 } catch (x) { reject(x); return }
7 })
8 }

5 Evaluation

We show that our reference implementations of DOM Core Level 1, DOM UI Events, JS
Promises, and async/await are trustworthy by passing all applicable tests from their official
test suites [46, 50, 6] in JaVerT.Click. In doing so, we discover coverage gaps in the DOM
Core Level 1 and UI Events test suites and create additional tests to complete their coverage.
We demonstrate that JaVerT.Click can reason about real-world JS code by creating a
comprehensive symbolic test suite for the events module of the cash library [55], a widely-
used alternative for jQuery. Our symbolic testing establishes bounded correctness of several
essential properties of the library and reveals two subtle, previously unknown bugs. We also
symbolically test the p−map library [35], which adds an extra layer of functionality on top of
JS promises. We achieve 100% line coverage and discover one bug. All three bugs discovered
by JaVerT.Click in cash and p−map have been reported and have since been fixed.

5.1 Testing the Reference Implementations
To run the test suites, we establish a common testing infrastructure, illustrated below. The
tests for Promises and async/await are written in JS. To run them in JaVerT.Click, we only
need to compile the ECMAScript test harness together with the tests. The tests for DOM
Events, in contrast, are written in HTML and contain JS scripts enclosed by the <script>
tag. Using Python scripts, we first isolate this code into a JS test file, then add to it the
JSON object obtained from the appropriate input XML file using the xml−js parser [58].
Finally, as the DOM Core Level 1 tests are written in XML, we additionally have to first
transform them into HTML tests using XSLT.

ECOOP 2020

28:20 A Trusted Infrastructure for Symbolic Analysis of Event-Driven Web Applications

We present the results of testing our reference implementations against their appropriate
official test suites. For each implementation, we provide the number of: available tests in
the test suite; applicable tests; and passing tests. Additionally, for three of the test suites,
we give: its computed line coverage; the number of untested lines in its standard; and the
number of additional tests that we created to complete its coverage. Given that we pass all
of the applicable tests, which have substantial coverage of their respective standards, for all
four APIs, we have strong confidence that our reference implementations are indeed correct.
Interestingly, the test suite repository for DOM Events also provides the testing results for
four browsers: Chrome, Edge, Firefox and Safari [57]. These results show that no single
browser fully passes the test suite, and that, out of the 56 tests that we pass, 12 fail in at
least one of the four browsers.

Core Level 1 Events Promises async/await

Available Tests 527 83 474 86
Applicable Tests 527 56 344 68
Passing Tests 527 56 344 68

Test Suite Line Coverage 98.14% 97.45% 98.76% N/A
Number of Untested Lines 13 8 5 N/A

Additional Tests 5 3 N/A N/A

For three of the test suites, some tests need to be filtered out due to the coverage of
either our reference implementations or JaVerT.Click. For DOM Events, we filter out 1 test
that uses ES6 classes, 5 that use the postMessage API, 2 that use the AJAX API, and 19
that use unsupported CSS features (scrolling and animation). For Promises, most filtered
tests (106/130) are due to ES6 Symbol iteration; once we support this feature, these tests
should pass as similar tests that use Array iteration already pass. We also filter out 21 tests
that use other unsupported ES6 features (classes, reflection, and proxies), and 3 that require
non-strict mode. For async/await, we filter out 14 tests that use ES6 default arguments
and 4 that use ES6 generators.

When it comes to test suite coverage, we observe that it is comprehensive, but incomplete.
We have inspected the filtered tests for DOM Events and JS Promises and believe that they
would not trigger the missing lines. Note that we are not able to perform a proper coverage
analysis for async/await, as we do not follow its description in the standard line-by-line.

Observations. We have found the ECMAScript standard to be written and tested with a
higher degree of rigour than the DOM Living Standard. It is self-contained and precise, with
no implicit assumptions and discrepancies between the standard and the test suite.

The DOM Living Standard, in contrast, uses features from other standards, such as
HTML and the Shadow DOM [26], without providing any intuition. This meant that
we needed to understand multiple standards written in different formats and had to read

G. Sampaio, J. F. Santos, P. Maksimović, and P. Gardner 28:21

substantial additional documentation (e.g., the Mozilla Web Docs [25]) in order to model
the API behaviour correctly. Additionally, the DOM Living Standard interfaces do not
have a well-defined scope. For instance, the standard makes clear that every EventTarget
object has an associated event listener list, but this list is not declared as an attribute of the
EventTarget interface. This can lead to different interpretations by implementors. Finally,
we found a few discrepancies between the DOM Standard and the official test suites that are
likely to cause difficulties for implementors: for example:

In DOM Core Level 1, on setting Attr.value, the standard only states that a Text node
with the unparsed contents of the provided value should be created; the tests additionally
require that this text node be inserted as a child node of the attribute.
In DOM Events, for Event.isTrusted, the standard defines the isTrusted property
of the Event interface to be a boolean that is used to indicate whether or not the
dispatchEvent function was used; the tests specifically require the isTrusted property
to be an accessor property and to have a dedicated getter.

5.2 Symbolic Testing of the cash Library
The cash library [55] is a jQuery alternative for modern browsers that provides jQuery-style
syntax for manipulating the DOM. Its main goal is to remain as small as possible, while
still staying (mostly) compatible with jQuery and providing its users with a similar set of
features. Moreover, it exhibits better performance than jQuery, as it dominantly relies on
native browser events rather than on a custom event model. It has a growing community of
users, with more than 10K weekly downloads and 735K overall downloads on npm [56], and
more than 4.4K stars on GitHub [55].

We focus our analysis on the events module of cash, which provides a mechanism for
creating and manipulating DOM events, offering additional functionalities and greater level
of control with respect to the native DOM event model. This module has five main and
twelve auxiliary functions. Here, we focus on the main functions, presented below:
.on: ele.on(e, h) registers the handler h for an event e on the element ele;
.off: ele.off(e, h) deregisters the handler h for the event e on the element ele;
.one: ele.one(e, h) behaves the same as .on, except that h can be triggered only once and is

automatically deregistered afterwards;
.ready: ele.ready(f) executes the function f after ensuring that the entire document content

has been loaded successfully;
.trigger: ele.trigger(e) triggers the handlers for an event e on the element ele.

The cash library comes with a concrete test suite, which has 95.52% overall line coverage.
The 18 tests for the events module contain 288 lines of code. Their coverage of .on is 76.92%,
of .trigger is 93.75%, of .ready is 0% and of the main auxiliary function of .on is 81.82%;
the remaining functions have 100% coverage. We complete the coverage of the concrete test
suite for the events module by writing five additional concrete tests.

5.2.1 Bounded Correctness
We create a symbolic test suite for the events module of cash, with two goals in mind:
(1) achieving 100% line coverage for all event-related functions; and (2) establishing bounded
correctness of several essential properties. We achieve both goals using just eight symbolic
tests. In Table 1, we give, for these tests, their execution time (Time, in seconds) and the
number of executed JSIL commands (JSIL Cmds). Each test, additionally, has an overhead
of 4.454 seconds, 9 lines of code, and 899,390 executed commands due to the setup of the

ECOOP 2020

28:22 A Trusted Infrastructure for Symbolic Analysis of Event-Driven Web Applications

initial heap and auxiliary testing functions. We single out four tests, which capture important
properties that the events module should respect; the remaining ones are grouped together
as other, as they offer little additional insight. These four tests are:
rHand : If a handler has been executed, then it must have previously been registered.
sHand : If a single handler has been registered to a given event using .on, then that is the

only handler that can be executed for that event. This test has revealed two bugs in the
events module of cash, discussed in detail in §5.2.2.

tOne : If a single handler has been registered to a given event using .one, then that handler
can be executed for that event only once.

tOff : If a handler registered to an event is deregistered using .off, then that handler can
no longer be executed for that event.

The tests establish that these properties hold for all events (strings) up to length 20.
The bound 20 has been chosen as the length of the longest property of the JavaScript initial
heap, propertyIsEnumerable. It can be adjusted in the tests themselves: the running
times will be bound-linear for rHand, tOne, and tOff, which use one symbolic event; and
bound-quadratic for sHand, which uses two.

The obtained results demonstrate that symbolic testing is far superior to concrete testing:
our symbolic test suite has greater coverage, 29% fewer lines of code, and, most importantly,
provides much stronger correctness guarantees that are beyond the limit of concrete testing.

5.2.2 The Discovered Bugs
As part of its effort to remain minimal, the cash library, unlike jQuery, does not implement its
own event model. Instead, it heavily relies on the event model of the browser. However, the
semantics of events in cash differs from that of the browser events. For example, cash enforces
that all user-defined focus-related handlers bubble, by redirecting handler registration (via .on
or .one) and deregistration (via .off) for the 'focus'/'blur' events to 'focusin'/'focusout'
instead. The redirection is implemented as follows: any event that is passed to the .on, .one,
and .off functions is first processed by the getEventTypeBubbling function:

function getEventTypeBubbling(e) { return eventsFocus[e] || e }

which is intended to substitute 'focus' by 'focusin' and 'blur' by 'focusout', while keeping
other events intact, by indexing the eventsFocus object

var eventsFocus = { focus: 'focusin', blur: 'focusout' }.

with the event e. This indexing is meant to return a string, which is then processed using
String.prototype.split. This implementation, however, causes two subtle bugs, discovered
by the sHand test, whose stylised code, with detailed inlined explanations, is given below:

1 var count = 0, ele = $('.event'); // Initialise counter and target element
2

3 function h () { count++ } // Handler counts the number of times it was called

Table 1 Symbolic Test Suite for the events module of cash.

Test Name rHand sHand tOne tOff other Total

Time (s) 5.54 144.38 24.35 22.87 42.20 239.34
JSIL Cmds 1,468,907 38,240,506 9,288,337 9,400,471 14,150,893 72,549,114

G. Sampaio, J. F. Santos, P. Maksimović, and P. Gardner 28:23

4

5 // Create two symbolic events, e1 and e2, of maximum length 20
6 var e1 = symbStr(20), e2 = symbStr(20);
7

8 // Register the handler for e1 on ele, then trigger e2 on ele
9 ele.on(e1, h); ele.trigger(e2);

10

11 Assert(
12 // Handler was executed only once, if e1 and e2 were equal and non-empty,
13 (count === 1 && e1 === e2 && e1 !== "") ||
14 // and was not executed otherwise.
15 (count === 0 && (e1 !== e2 || e1 === ""))
16);

Bug 1: Overlooked Prototype Inheritance. The first set of counter-examples demonstrates
that cash throws a native JavaScript type error when executing ele.on(e1, h) if

e1 ∈ {'constructor', 'hasOwnProperty', 'isPrototypeOf',
'propertyIsEnumerable', 'toLocaleString', 'toString', 'valueOf'}.

Recall that the function getEventTypeBubbling indexes the eventsFocus object to
redirect focus-related events. Indexing objects as key-value maps, however, may return
unexpected values, as shown in [32]: e.g., eventsFocus['valueOf'] returns the function object
found at Object.prototype.valueOf, as the 'valueOf' property is not in the eventsFocus
object itself, but is in its prototype. Then, since that function object has no split property
in its prototype chain, the subsequent call to .split throws a native JavaScript type error.

Bug 2: Unintended Event Triggering. The second set of counter-examples demonstrates
that the final correctness assertion of the sHand test does not hold if

(e1, e2) ∈ {('blur', 'blur'), ('focus', 'focus'), ('blur', 'focusout'), ('focus', 'focusin')}.

In particular, for the first two counter-examples, the handler is not executed even though e1
and e2 are equal, whereas, for the second two, it is executed despite e1 and e2 being different.
This bug is also caused by the redirection done in the getEventTypeBubbling function.
Precisely, this redirection is applied in the .on, .one, and .off functions, but not in the
.trigger function, effectively meaning that user-registered handlers for 'focus' and 'blur'
can respectively be triggered only via 'focusin' and 'focusout' instead. This is admittedly
not intended, and it results from the simplification of the corresponding jQuery mechanisms.

Both bugs have been reported to the developers of cash,2 and have since been fixed. The
first bug also exists in jQuery, where it will be corrected for the upcoming 4.0 version.3

5.3 Symbolic Testing of the p−map Library
The p−map library [35] is a small JavaScript library that extends the functionality of
JavaScript promises with the ability to concurrently map over pending promises. It has more
than 10M weekly downloads and 825M overall downloads on npm [36], and 532 stars on

2 https://github.com/kenwheeler/cash/issues/317, 318
3 https://github.com/jquery/jquery/issues/3256

ECOOP 2020

https://github.com/kenwheeler/cash/issues/317
https://github.com/jquery/jquery/issues/3256

28:24 A Trusted Infrastructure for Symbolic Analysis of Event-Driven Web Applications

GitHub [35]. It calls both the JavaScript Promises and JavaScript async/await APIs. We
performed symbolic testing of p−map, where we achieved 100% line coverage and discovered
a bug that allowed the number of concurrently handled promises to go above its declared
maximum due to the library using non-integer numbers. This bug has been reported to
and fixed by the developers of p−map.4 For space reasons, we delay the full account of our
analysis of p−map to a future publication.

6 Related Work

We believe we are the first to provide a general infrastructure for symbolic analysis of
modern event-driven Web applications. There has been prior work on formalising and
analysing specific event-driven Web APIs, such as DOM UI Events [29, 19] and JavaScript
Promises [22, 1], as well as Node.js events [21, 23]. However, to the best of our knowledge,
there is no prior work on formalising the JavaScript async/await API. Hence, we focus
the discussion on: (1) axiomatic and operational semantics for DOM Core Level 1; (2)
operational semantics for DOM Events; (3) operational semantics for JavaScript Promises;
and (4) symbolic execution for JavaScript programs that interact with the DOM.

Axiomatic/Operational Semantics of DOM Core Level 1. Based on context logic [5],
Smith et al. introduced an axiomatic semantics [15] for a small fragment of DOM Core
Level 1, proving it sound with respect to their operational semantics. In his PhD thesis [34],
Smith extended this axiomatic semantics to all fundamental interfaces of DOM Core Level 1,
including live collections and fine-grained reasoning about various types of DOM nodes,
omitting only a minor part on the extended interfaces. This axiomatic semantics follows the
DOM standard closely, but has not been implemented, and there has been no work on using
this semantics to reason about real-world JavaScript programs that interact with the DOM.

Several operational semantics for different fragments and adaptations of DOM Core
Level 1 were proposed for various types of analysis, such as information flow control [24, 30],
type systems [42] and abstract interpretation [18], targeting JS programs that interact with
the DOM. These papers, however, do not aim to establish a trusted formal representation of
the DOM using which others can build their own program analyses; instead, they provide a
DOM representation specific to their kind of analyses. In contrast, our DOM Core Level 1
JS reference implementation has been designed to be trusted in that it follows the text of the
standard line-by-line and passes all 525 tests of the official test suite [46]. This, combined
with its extensive use in the symbolic testing of the cash library, gives us confidence that
others will be able to use it for their analysis of JS programs calling the DOM.

Operational Semantics for DOM Events. In this context, the work closest to ours is [19],
which presents the first operational model for reasoning about DOM events. This model
consists of a Scheme [38] reference implementation of DOM UI events and is used to
prove meta-properties of the DOM semantics, such as the immutability of the propagation
path during the execution of the Dispatch algorithm. The authors justify their reference
implementation by annotating the paragraphs of the standard with links to the relevant
definitions and reduction rules in their implementation, and by comparing its behaviour with
various browser implementations using randomly generated test cases. The implementation,
however, is not tested against the official DOM Events test suite and does not have a
line-by-line correspondence with the text of the standard.

4 https://github.com/sindresorhus/p-map/issues/26

https://github.com/sindresorhus/p-map/issues/26

G. Sampaio, J. F. Santos, P. Maksimović, and P. Gardner 28:25

There are multiple tools for analysing event-driven JavaScript programs based on different
types of program analyses, such as information flow control [29, 45], type systems [28], and
abstract interpretation [27]. Of these tools, only [29] comes with a formal semantics of DOM
events. Concretely, the authors propose a simplified DOM event semantics instrumented
with a sound information-flow monitor, and implement the monitor instrumentation on top
of Webkit [41], the browser engine used by Safari. The proposed semantics is, however, only
intended for illustrative purposes as it does not include a number of event-related features,
such as interaction with shadow trees, slotables, and touch/related targets. In contrast, our
reference implementation of DOM Events does not simplify the standard and passes 56 tests
of the official test suite (100% of the appropriate tests, given our current coverage).

A Core Semantics for JavaScript Promises. Madsen et al. [22] were the first to propose a
formal core calculus for reasoning about JavaScript (JS) promises. Concretely, they introduce
λp, an extension of the small core JavaScript calculus, λJS [17], with dedicated syntactic
constructs for promise creation and manipulation. The authors give the formal semantics of
λp and show how it can be used to encode promise operations not directly supported in the
syntax (e.g. catch and then). The paper further introduces the concept of promise graphs,
a program artifact used by the authors to explain promise-related errors. Later, Alimadadi
et al. [1] extend promise graphs to take into account previously unmodelled ES6 features,
such as default reactions, exceptions, race and all. Using the extended promise graphs, the
authors develop PromiseKeeper, a dynamic analysis tool built on top of Jalangi [33] for
finding and explaining promise-related bugs in JS code.

The λJS -calculus [17] was justified by a desugaring function from ES5 that has been tested
against the official Test262 test suite [6]. In contrast, λp does not come with a desugaring
function from ES6 to λp and hence has not been tested against the promises-related part
of Test262. Whilst λp is mainly used to explain buggy behaviours related to the misuse of
JS promises, our goal was to create a trusted reference implementation of JS promises that
models their semantics precisely in order to enable various types of analysis for JS programs
that use promises, including the symbolic testing presented in the paper. For this reason, we
took great care in justifying its correctness.

Symbolic Execution for the DOM. Symbolic reasoning about the DOM in the literature
is mostly focussed on bug-finding and/or automatic concrete test generation. For example,
ConFix [10] uses concolic execution to generate DOM fixtures that allow high-coverage
testing of JavaScript functions that use the DOM; however, it does not support DOM events
and dynamically generated code using eval that interacts with the DOM. V-DOM [59]
creates test suites by analysing both server- and client-side code, but only considers handlers
that were registered statically (via HTML code, e.g. <button onclick="myFunction()"/>)
and does not support dynamic handler registration (via addEventListener()).

There are several tools focussed on finding dependencies between event handlers, such
as SymJS [20] and JSdep [37], which then use this information to automatically generate
tests in the form of event triggering sequences. SymJS identifies handler dependencies by
performing a dynamic write-read analysis. However, its representation of the DOM is not
entirely consistent with the standard: e.g., text inputs and radio boxes are represented
symbolically either as strings or numbers, rather than objects. JSdep implements the first
constraint-based declarative program analysis for computing dependencies between event
handlers. This approach is shown to be effective, but no soundness guarantees are provided.

ECOOP 2020

28:26 A Trusted Infrastructure for Symbolic Analysis of Event-Driven Web Applications

While the goals of these tools are different from ours, there is room for comparison. In par-
ticular, some of them do not follow the DOM standard (e.g., SymJS relies on HTMLUnit [16],
which provides its own implementation of the DOM event dispatch algorithm) and none
offer a justification with respect to their representation of the DOM. In contrast, we provide
complete, trustworthy reference implementations of DOM Core Level 1 and UI Events that
follow the standard line-by-line and pass all of the applicable official tests. Importantly, these
tools do not appear to be able to reason about events whose type is symbolic. We believe
that this is one of the advantages of our work, as it allows us to write few symbolic tests
to achieve broad coverage. It also enables us to provide bounded correctness guarantees of
library properties, which, to our knowledge, has not been done before, and which is certainly
beyond the reach of either manually- or automatically-generated concrete test suites. On the
other hand, the above-mentioned tools do generate their concrete test suites automatically,
while in JaVerT.Click, the developers have to write symbolic tests themselves.

7 Conclusions and Future Work

We have introduced a Core Event Semantics that is simple in design, yet expressive enough
to capture the essence of three fundamental, complex event-related APIs, namely DOM UI
Events, JavaScript Promises and async/await. To accompany the Core Event Semantics,
we have created reference implementations of these three APIs, as well as a reference
implementation of DOM Core Level 1, which underpins DOM UI Events. Our reference
implementations are trusted, in the sense that all except that of async/await follow their
respective standards line-by-line, and all are thoroughly tested against their official test
suites. Together, the Core Event Semantics and the reference implementations form a trusted
infrastructure that enables symbolic analysis of modern event-driven Web programs.

We have demonstrated that our infrastructure can be used in practice by implementing
the Core Event Semantics, closely following the theory, on top of JaVerT 2.0, a state-of-the-
art tool for JavaScript symbolic analysis. We have used the resulting tool, JaVerT.Click,
to symbolically test two real-world libraries: cash and p−map, both with with 100% line
coverage, establishing bounded correctness of several important properties and discovering
three bugs in the process. To our knowledge, this is the first time that reasoning about
multiple event-based APIs is supported either in a single formalism or in a single tool.

As part of the overall testing process, we have additionally discovered coverage gaps in
the official test suites of DOM Core Level 1 and DOM UI Events, as well as in the concrete
test suite of cash, and have created appropriate concrete tests that address these gaps.

We plan to extend this work in several directions. First of all, following the methodology
that we have introduced in this paper, we will add support for other event-based APIs,
such as the File [51], postMessage [54], and the Web Workers APIs [52], to the Core Event
Semantics and JaVerT.Click. For each new API, this amounts to providing a trusted reference
implementation in JavaScript, and extending the Event Semantics with any new appropriate
event primitives that may be required. For instance, supporting the Web Workers API
will require the Event Semantics to be extended with basic message-passing facilities. Our
over-arching goal is to create a minimal event model expressive enough to reason about all
widely-used Web APIs natively supported by major browsers.

We also intend to analyse further real-world libraries that are clients of our supported
APIs. For example, PreactJS [39], a fast and light alternative to ReactJS [40], appears to be
an excellent first target, as it is relatively small yet very successful, and is already being used
by several major industrial players.

G. Sampaio, J. F. Santos, P. Maksimović, and P. Gardner 28:27

Another avenue to explore, given our trusted infrastructure, would be how to extend the
full verification facilities of JaVerT.Click in order to be able to prove both meta-properties
of the APIs themselves as well as correctness properties of programs that interact with the
DOM and/or use event-related APIs.

We will also implement the Event Semantics as a layer on top of Gillian [11], our new
multi-language platform for compositional symbolic analysis, by instantiating the Event
Semantics with Gillian’s intermediate language, GIL. There, in addition to JS code, we plan
to reason about WebAssembly and Rust code that interacts with various event-based APIs.

Finally, we plan to design a policy language that would allow the developers to specify
the event sequences of interest, given the programs they would like to analyse. These policies
might play a role in automatically generating tests, as in the discussed related work [20, 37],
but also in the broader context of symbolic analysis, where they would limit the branching
that arises from exploring all possible event sequences triggered by the environment.

References
1 S. Alimadadi, D. Zhong, M. Madsen, and F. Tip. Finding Broken Promises in Asynchronous

JavaScript Programs. PACMPL, 2(OOPSLA):162:1–162:26, 2018.
2 R. Baldoni, E. Coppa, D. Cono D’Elia, C. Demetrescu, and I. Finocchi. A Survey of Symbolic

Execution Techniques. ACM Computing Surveys, 51(3):50:1–50:39, 2018.
3 C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen, N. Tillmann, and W. Visser.

Symbolic Execution for Software Testing in Practice: Preliminary Assessment. In ICSE, 2011.
4 C. Cadar and K. Sen. Symbolic Execution for Software Testing: Three Decades Later. Commun.

ACM, 56:82–90, 2013.
5 C. Calcagno, P. Gardner, and U. Zarfaty. Context logic and tree update. In POPL, 2005.
6 ECMA TC39. Test262 Test Suite. https://github.com/tc39/test262, visited 05/2020.
7 ECMA TC39. The ECMAScript Standard. https://www.ecma-international.org/

publications/standards/Ecma-262.htm, visited 05/2020.
8 ECMA TC39. The ECMAScript Standard - 6th Edition. http://www.ecma-international.

org/ecma-262/6.0/, visited 05/2020.
9 ECMA TC39. The ECMAScript Standard - 9th Edition. http://www.ecma-international.

org/ecma-262/9.0/, visited 05/2020.
10 A. M. Fard, A. Mesbah, and E. Wohlstadter. Generating Fixtures for JavaScript Unit Testing

(T). In ASE, 2015.
11 J. Fragoso Santos, P. Maksimović, S.-E. Ayoun, and Philippa G. Gillian, Part 1: A Multi-

language Framework for Symbolic Execution. In PLDI, 2020.
12 J. Fragoso Santos, P. Maksimović, T. Grohens, J. Dolby, and P. Gardner. Symbolic Execution

for JavaScript. In PPDP, 2018.
13 J. Fragoso Santos, P. Maksimović, G. Sampaio, and P. Gardner. JaVerT 2.0: Compositional

Symbolic Execution for JavaScript. PACMPL, 3(POPL):66, 2019.
14 K. Gallaba, A. Mesbah, and I. Beschastnikh. Don’t Call Us, We’ll Call You: Characterizing

Callbacks in Javascript. In ESEM, 2015.
15 P. Gardner, G. Smith, M. J. Wheelhouse, and U. Zarfaty. Local Hoare Reasoning about DOM.

In PODS, 2008.
16 Gargoyle Software Inc. HTMUnit. http://htmlunit.sourceforge.io/, visited 05/2020.
17 A. Guha, C. Saftoiu, and S. Krishnamurthi. The Essence of Javascript. In ECOOP, 2010.
18 S. Holm Jensen, M. Madsen, and A. Møller. Modeling the HTML DOM and Browser API in

Static Analysis of JavaScript Web Applications. In ESEC/FSE, 2011.
19 B. S. Lerner, M. J. Carroll, D. P. Kimmel, H. Quay-De La Vallee, and S. Krishnamurthi.

Modeling and Reasoning about DOM Events. In WebApps, 2012.
20 G. Li, E. Andreasen, and I. Ghosh. SymJS: Automatic Symbolic Testing of JavaScript Web

Applications. In FSE, 2014.

ECOOP 2020

https://github.com/tc39/test262
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/ecma-262/6.0/
http://www.ecma-international.org/ecma-262/6.0/
http://www.ecma-international.org/ecma-262/9.0/
http://www.ecma-international.org/ecma-262/9.0/
http://htmlunit.sourceforge.io/

28:28 A Trusted Infrastructure for Symbolic Analysis of Event-Driven Web Applications

21 M. Loring, M. Marron, and D. Leijen. Semantics of asynchronous javascript. In DLS, 2017.
22 M. Madsen, O. Lhoták, and F. Tip. A Model for Reasoning about JavaScript Promises.

PACMPL, 1(OOPSLA):86:1–86:24, 2017.
23 M. Madsen, F. Tip, and O. Lhotak. Static Analysis of Event-Driven Node.js JavaScript

Applications. In OOPSLA, 2015.
24 A. Almeida Matos, J. Fragoso Santos, and T. Rezk. An Information Flow Monitor for a Core

of DOM - Introducing References and Live Primitives. In TGC, 2014.
25 Mozilla. MDN Web Docs. http://developer.mozilla.org/en-US/, visited 05/2020.
26 Mozilla. Using Shadow DOM. https://developer.mozilla.org/en-US/docs/Web/Web_

Components/Using_shadow_DOM, visited 05/2020.
27 C. Park, S. Won, J. Jin, and S. Ryu. Static Analysis of JavaScript Web Applications in the

Wild via Practical DOM Modeling (T). In ASE, 2015.
28 J. Gibbs Politz, S. A. Eliopoulos, A. Guha, and S. Krishnamurthi. ADsafety: Type-Based

Verification of JavaScript Sandboxing. In USENIX Security Symposium, 2011.
29 V. Rajani, A. Bichhawat, D. Garg, and C. Hammer. Information Flow Control for Event

Handling and the DOM in Web Browsers. In CSF, 2015.
30 Alejandro Russo, Andrei Sabelfeld, and Andrey Chudnov. Tracking Information Flow in

Dynamic Tree Structures. In ESORICS, 2009.
31 G. Sampaio, J. Fragoso Santos, P. Maksimović, and P. Gardner. A Trusted Infrastructure for

Symbolic Analysis of Event-Driven Web Applications (Technical Report). https://vtss.doc.
ic.ac.uk/publications/Sampaio2020Trusted.pdf, visited 05/2020.

32 J. Fragoso Santos, P. Maksimović, D. Naudžiūnienė, T. Wood, and P. Gardner. JaVerT:
JavaScript Verification Toolchain. PACMPL, 2(POPL):50:1–50:33, 2018.

33 K. Sen, S. Kalasapur, T. G. Brutch, and S. Gibbs. Jalangi: A Selective Record-Replay and
Dynamic Analysis Framework for JavaScript. In ESEC/FSE’13, 2013.

34 G. Smith. Local reasoning about Web programs. PhD thesis, Imperial College, UK, 2011.
35 S. Sorhus. p-map (GitHub). https://github.com/sindresorhus/p-map, visited 05/2020.
36 S. Sorhus. p-map (npm). https://www.npmjs.com/package/p-map, visited 05/2020.
37 C. Sung, M. Kusano, N. Sinha, and C. Wang. Static DOM Event Dependency Analysis for

Testing Web Applications. In FSE, 2016.
38 Scheme Team. The Revised Report on the Algorithmic Language Scheme. https://schemers.

org/Documents/Standards/R5RS/r5rs.pdf, visited 05/2020.
39 The PreactJS Team. PreactJS library. http://preactjs.com, visited 05/2020.
40 The ReactJS Team. ReactJS library. http://reactjs.org, visited 05/2020.
41 The WebKit Team. WebKit Browser Engine. https://webkit.org, visited 05/2020.
42 Peter Thiemann. A Type Safe DOM API. In DBPL, 2005.
43 E. Torlak and R. Bodík. Growing Solver-Aided Languages with Rosette. In Onward!, 2013.
44 E. Torlak and R. Bodík. A Lightweight Symbolic Virtual Machine for Solver-Aided Host

Languages. In PLDI, 2014.
45 M. Vanhoef, W. De Groef, D. Devriese, F. Piessens, and T. Rezk. Stateful Declassification

Policies for Event-Driven Programs. In CSF, 2014.
46 W3C. DOM Core Level 1 Official Test Suite. http://www.w3.org/2004/04/ecmascript/

level1/core/, visited 05/2020.
47 W3C. DOM Core Level 1 Specification. http://www.w3.org/TR/1998/

REC-DOM-Level-1-19981001/level-one-core.html, visited 05/2020.
48 W3C. DOM Core Level 2 Specification. http://www.w3.org/TR/2000/

REC-DOM-Level-2-Core-20001113/, visited 05/2020.
49 W3C. DOM Core Level 3 Specification. http://www.w3.org/TR/2004/

REC-DOM-Level-3-Core-20040407/, visited 05/2020.
50 W3C. DOM Events Official Test Suite. https://github.com/web-platform-tests/wpt/

tree/master/dom/events, visited 05/2020.
51 W3C. File API. http://www.w3.org/TR/FileAPI/, visited 05/2020.

http://developer.mozilla.org/en-US/
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_shadow_DOM
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_shadow_DOM
https://vtss.doc.ic.ac.uk/publications/Sampaio2020Trusted.pdf
https://vtss.doc.ic.ac.uk/publications/Sampaio2020Trusted.pdf
https://github.com/sindresorhus/p-map
https://www.npmjs.com/package/p-map
https://schemers.org/Documents/Standards/R5RS/r5rs.pdf
https://schemers.org/Documents/Standards/R5RS/r5rs.pdf
http://preactjs.com
http://reactjs.org
https://webkit.org
http://www.w3.org/2004/04/ecmascript/level1/core/
http://www.w3.org/2004/04/ecmascript/level1/core/
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/level-one-core.html
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/level-one-core.html
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
https://github.com/web-platform-tests/wpt/tree/master/dom/events
https://github.com/web-platform-tests/wpt/tree/master/dom/events
http://www.w3.org/TR/FileAPI/

G. Sampaio, J. F. Santos, P. Maksimović, and P. Gardner 28:29

52 W3C. HTML Standard. http://html.spec.whatwg.org/multipage/workers.html#workers,
visited 05/2020.

53 WHATWG. DOM API Specification. http://dom.spec.whatwg.org, visited 05/2020.
54 WHATWG. The postMessage API. https://html.spec.whatwg.org/multipage/

web-messaging.html#posting-messages, visited 05/2020.
55 K. Wheeler, S. Shaw, and F. Spampinato. cash (GitHub). https://github.com/kenwheeler/

cash, visited 05/2020.
56 K. Wheeler, S. Shaw, and F. Spampinato. cash (npm). https://www.npmjs.com/package/

cash-dom, visited 05/2020.
57 wpt.fyi. Events Browser Compliance. http://wpt.fyi/results/dom/events, visited 05/2020.
58 Y. Nashwaan. xml-js: Converter Utility between XML Text and Javascript Objects/JSON

Text. http://www.npmjs.com/package/xml-js, visited 05/2020.
59 Y. Zou, Z. Chen, Y. Zheng, X. Zhang, and Z. Gao. Virtual DOM Coverage: Drive an Effective

Testing for Dynamic Web Applications. ISSTA, 2014.

ECOOP 2020

http://html.spec.whatwg.org/multipage/workers.html#workers
http://dom.spec.whatwg.org
https://html.spec.whatwg.org/multipage/web-messaging.html#posting-messages
https://html.spec.whatwg.org/multipage/web-messaging.html#posting-messages
https://github.com/kenwheeler/cash
https://github.com/kenwheeler/cash
https://www.npmjs.com/package/cash-dom
https://www.npmjs.com/package/cash-dom
http://wpt.fyi/results/dom/events
http://www.npmjs.com/package/xml-js

The Duality of Subtyping
Bruno C. d. S. Oliveira
The University of Hong Kong, China
bruno@cs.hku.hk

Cui Shaobo
University of California San Diego, CA, USA
cuishaobo@gmail.com

Baber Rehman
The University of Hong Kong, China
brehman@cs.hku.hk

Abstract
Subtyping is a concept frequently encountered in many programming languages and calculi. Various
forms of subtyping exist for different type system features, including intersection types, union types
or bounded quantification. Normally these features are designed independently of each other, without
exploiting obvious similarities (or dualities) between features.

This paper proposes a novel methodology for designing subtyping relations that exploits duality
between features. At the core of our methodology is a generalization of subtyping relations, which
we call Duotyping. Duotyping is parameterized by the mode of the relation. One of these modes is the
usual subtyping, while another mode is supertyping (the dual of subtyping). Using the mode it is
possible to generalize the usual rules of subtyping to account not only for the intended behaviour of
one particular language construct, but also of its dual. Duotyping brings multiple benefits, including:
shorter specifications and implementations, dual features that come essentially for free, as well as
new proof techniques for various properties of subtyping. To evaluate a design based on Duotyping
against traditional designs, we formalized various calculi with common OOP features (including
union types, intersection types and bounded quantification) in Coq in both styles. Our results show
that the metatheory when using Duotyping does not come at a significant cost: the metatheory
with Duotyping has similar complexity and size compared to the metatheory for traditional designs.
However, we discover new features as duals to well-known features. Furthermore, we also show that
Duotyping can significantly simplify transitivity proofs for many of the calculi studied by us.

2012 ACM Subject Classification Software and its engineering → Object oriented languages

Keywords and phrases DuoTyping, OOP, Duality, Subtyping, Supertyping

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.29

Supplementary Material ECOOP 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.2.8.
https://github.com/baberrehman/coq-duotyping

Funding Funded by Hong Kong Research Grant Council projects number 17210617 and 17209519.

Acknowledgements We thank the anonymous reviewers for their helpful comments.

1 Introduction

Subtyping is a concept frequently encountered in many programming languages and calculi.
It is also a pervasive and fundamental feature in Object-Oriented Programming (OOP).
Various forms of subtyping exist for different type system features, including intersection
types [6], union types [6] or bounded quantification [15]. Modern OOP languages such as
Scala [34], Ceylon [29], Flow [19] or TypeScript [12] all support the aforementioned type
system features.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Bruno C. d. S. Oliveira, Cui Shaobo, and Baber Rehman;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 29; pp. 29:1–29:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bruno@cs.hku.hk
mailto:cuishaobo@gmail.com
mailto:brehman@cs.hku.hk
https://doi.org/10.4230/LIPIcs.ECOOP.2020.29
https://doi.org/10.4230/DARTS.6.2.8
https://github.com/baberrehman/coq-duotyping
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 The Duality of Subtyping

As programming languages evolve, new features are added. This requires that subtyping
for these new features is developed and also integrated with existing features. However, the
design and implementation of subtyping for new features is quite often non-trivial. There
are several, well-documented issues in the literature. These include finding algorithmic forms
for subtyping (for instance doing transitivity elimination) [43] or proving metatheoretical
properties such as transitivity or narrowing [1]. Such issues occur, for instance, in some
of the latest developments for OOP languages, such as the DOT calculi (which model the
essence of Scala) [3]. One possible way to reduce the non-trivial amount of work needed
to develop new features, would be if two related features could be develop at once with a
coherent design. This paper explores a new methodology that enables such benefits.

Normally programming language features are designed independently of each other.
However there are features that are closely related to each other, and can be viewed as dual
features. Various programming language features are known to be dual in programming
language theory. For instance sum and product types are well-known to be duals [14].
Similarly universal and existential quantification are dual concepts as well [9]. Moreover
duality is a key concept in category theory [30] and many abstractions widely used in
functional programming (such as Monads and CoMonads [44]) are also known to be duals.

In OOP type systems dual features are also common. For instance all OOP languages
contain a top type (called Object in Java or Any in Scala), which is the supertype of all
types. Many OOP languages also contain a bottom type, which is a subtype of all types. Top
and bottom types can be viewed as dual features, mirroring the functionality of each other.
Intersection and union types are another example of dual features. The intersection of two
types A and B can be used to type a value that implements both A and B. The union of two
types A and B can be used to type a value that implements either A or B.

Duality in OOP and subtyping is often only informally observed by humans. For instance,
by simply understanding the behaviour of the features and observing their complementary
roles, as we just did in the previous paragraph. At best duality is more precisely observed
by looking at the rules for the language constructs and their duals and observing a certain
symmetry between those rules. However existing formalisms and language designs for type
systems and subtyping relations do not directly incorporate duality. Unfortunately this
means that an opportunity to exploit obvious similarities between features is lost.

This paper proposes a novel methodology for designing subtyping relations that exploits
duality between features directly in the formalism. At the core of our methodology is a
generalization of subtyping relations, which we call Duotyping. Duotyping is parameterized
by the mode of the relation. One of these modes is the usual subtyping, while another
mode is supertyping (the dual of subtyping). Using the mode it is possible to generalize the
usual rules of subtyping to account not only for the intended behaviour of one particular
language construct, but also of its dual. This means that the behaviour of the language
construct and its dual is modelled by a single, common set of rules. In turn this ensures
that the behaviour of the two features is modelled consistently. Moreover it also enables
various theorems/properties of subtyping to be generalized to account for the dual features.
Therefore, Duotyping offers similar benefits to the how duality is exploited in category theory.
More concretely, Duotyping brings multiple benefits for the design of subtyping relations,
which are discussed next.

Shorter specifications. When duality is exploited in specifications of subtyping it leads to
shorter specifications because rules for dual features are shared. This also ensures a consistent
design of the rules between the dual features directly in the formalism. Such consistency is not

B.C. d. S. Oliveira, C. Shaobo, and B. Rehman 29:3

enforceable in traditional formulations of subtyping where the rules are designed separately,
and thus their design is completely unconstrained with respect to the dual feature. A concrete
example that illustrates shorter specifications is a traditional subtyping relation with top,
bottom, union and intersection types, which would normally have 8 subtyping rules for those
constructs. In a design with Duotyping we only need 5 subtyping rules. Basically we need
only half of the rules (4 in this case) to model the feature-specific rules, plus an additional
duality rule which is generic (and plays a similar role to reflexivity and transitivity).

“Buy” one feature get one feature for free! Duality can lead to the discovery of new
features. While top and bottom types, or intersection and union types are well-known in the
literature (and understood to be duals), other features in languages with subtyping do not
have a known dual feature in the literature. This is partly because, when a language designer
employs traditional formulations of subtyping, he/she is often only interested in the design of
a feature (but not necessarily of its dual). Even for the case of union and intersection types,
intersection types were developed first and the development of union types occurred years
later. Because the dual feature is often also useful, the traditional way to design subtyping
rules represents a loss of opportunity to get another language feature essentially for free.

One well-known example of a language feature that has been widely exploited in the
literature, but its dual feature has received much less attention is bounded quantification [17].
Bounded quantification allows type variables to be defined with upper bounds. However
lower bounds are also useful. One can think of universal quantification with lower bounds
as a dual to universal quantification with upper bounds. The essence of (upper) bounded
quantification is captured by the well-known F<: calculus [17]. However, as far as we know,
there is no design that extends F<: with lower bounded quantification in the literature.
Applying a Duotyping design to F<: gives us, naturally, the two features at once (lower
and upper bounded quantification), as illustrated in our Section 4. Such generalization of
bounded quantification is related to the recent form of universal quantification with type
bounds employed in Scala and the DOT family of calculi [3]. However, while Scala’s type
bounds are more expressive than what we propose, they are also much more complex and
are in fact one of the key complications in the type systems of languages like Scala. Most
DOT calculi require a built-in transitivity rule in subtyping because it is not known how to
eliminate transitivity. In contrast, the generalization of F<: proposed by us has a formulation
of subtyping where transitivity can be proved as a separate lemma.

New proof techniques. Designs of subtyping with duality also enable new proof techniques
that exploit such duality. For instance there are various theorems that can be stated for both
a feature and its dual, instead of having separate theorems for both. Some of the properties
of union and intersection types are examples of this. Moreover, Duotyping also enables new
proof techniques to prove traditionally hard theorems such as transitivity. Surprisingly to us,
for the vast majority of the calculi that we have applied Duotyping to, transitivity proofs
have been considerably simpler than their corresponding traditional formulations due to the
use of Duotyping!

Shorter implementations. Finally Duotyping also enables for shorter implementations. The
benefits of shorter implementations are similar and follow from the benefits of shorter
specifications. However there is a complicating factor when moving from a relational
specification into an implementation: the duality rule is non-algorithmic. This is akin to what
happens with transitivity, which is often also used in declarative formulations of subtyping.

ECOOP 2020

29:4 The Duality of Subtyping

Eliminating transitivity to obtain an algorithmic system can often be a non-trivial challenge
(as illustrated, for instance, by the DOT family of calculi [3]). However, we show that there
is a simple and generally applicable technique that can be used to move from a declarative
formulation of Duotyping into an algorithmic version. This contrasts with transitivity, for
which there is not a generally applicable transitivity elimination technique.

To evaluate a design based on Duotyping against traditional designs of subtyping, we
formalized various calculi with common OOP features (including union types, intersection
types and bounded quantification) in Coq in both styles. Our results show that the metatheory
when using Duotyping has similar complexity and size compared to traditional designs.
However, the Duotyping formalizations come with more features (for instance lower-bounded
quantification) that dualize other well-known features (upper-bounded quantification). Finally,
we also show that Duotyping can significantly simplify transitivity proofs for many of the
calculi studied by us.

In summary, the contributions of this paper are:
Duotyping: A new methodology for the design of subtyping relations exploiting duality.
A case study on Duotyping: A comprehensive study of various existing type systems
and features, which were redesigned to employ the Duotyping methodology. Our results
show that in most systems the size of the metatheory without duality and with duality is
comparable, while often transitivity proofs become simpler when employing duality.
F<: with lower bounded quantification: We propose a new generalization of System
F<:, called Fk�, which allows not only type variables to be quantified with upper bounds
and lower bounds as well. While this system is weaker than Scala/DOT’s type bounds, it
nonetheless allows for simple transitivity proofs (which have been a significant challenge
in calculi with type bounds [40]).
Mechanization in Coq: All the systems in our case study have been formalized in the
Coq theorem prover [8].

2 Overview

This section gives an overview of Duotyping. We show how to design subtyping relations
employing Duotyping, and discuss the advantages of a design with Duotyping instead of a
traditional subtyping formulation in more detail.

2.1 Subtyping with union and intersection types

To motivate the design of Duotyping relations we first consider a traditional subtyping relation
with union and intersection types, as well as top and bottom types. We choose a system
with union and intersection types because these features are nowadays common in various
OOP languages, including Scala [34], TypeScript [12], Ceylon [29] or Flow [19]. Therefore
union and intersection types are of practical interest. Furthermore union and intersection
types are simple, intuitive and good for showing duality between concepts.

The types used for the subtyping relation include the top type >, the bottom type ⊥,
integer types Int, function types A→ B, intersection types A ∧ B and union types A ∨ B:

Types A,B ::= > | ⊥ | Int | A→ B | A ∧ B | A ∨ B

B.C. d. S. Oliveira, C. Shaobo, and B. Rehman 29:5

A <: B (Traditional Subtyping)

A <: >
ts-top

⊥ <: A
ts-btm

Int <: Int
ts-int

B1 <: A1 A2 <: B2

A1 → A2 <: B1 → B2
ts-arrow

A <: A1 A <: A2

A <: A1 ∧A2
ts-anda

A1 <: A
A1 ∧A2 <: A

ts-andb
A2 <: A

A1 ∧A2 <: A
ts-andc

A1 <: A A2 <: A
A1 ∨A2 <: A

ts-ora
A <: A1

A <: A1 ∨A2
ts-orb

A <: A2

A <: A1 ∨A2
ts-orc

Figure 1 Subtyping for union and intersection types.

Traditional Subtyping. A simple subtyping relation accounting for union and intersection
types is given in Figure 1. Rule ts-top defines that every type is a subtype of >, and
Rule ts-btm states that every type is a supertype of ⊥. Rule ts-int is for integers, and
states that Int is a subtype of itself. Rule ts-arrow is the traditional subtyping rule for
function types. Rules ts-anda, ts-andb, and ts-andc are subtyping rules for intersection
types. Rules ts-ora, ts-orb, and ts-orc are subtyping rules for union types. The rules
that we employ here are quite common for systems with union and intersection types. For
instance they are the same rules used in various DOT-calculi [3] (which model the essence of
Scala). For simplicity we do not account for distributivity rules, which also appear in some
type systems and calculi [7, 11, 47].

2.2 Subtyping Specifications using Duotyping

In the subtyping relation presented in Figure 1, it is quite obvious that many rules look
alike. Some rules are essentially a “mirror image” of other rules. The rules for top and
bottom types are an example of this. Another example are the rules ts-andb and ts-orb.
Although informally humans can easily observe the similarity between many of the rules, this
similarity/duality is not expressed directly in the formalism. For example, there is nothing
preventing us from designing rules that are not duals. Duotyping aims at capturing duality in
the rules themselves, and expressing duality as part of the formalism, rather than just leaving
duality informally observable by humans. This can prevent, for instance, designing rules for
dual concepts that do not really dualize. Therefore Duotyping can enforce consistency of dual
rule designs.

To illustrate how Duotyping rules are designed and relate to the traditional subtyping
rules, lets refactor the traditional rules in a few basic steps. Firstly, lets assume that we have a
second relation A :> B that captures the supertyping between a type A and B. Supertyping
is nothing but the subtyping relation with its arguments flipped. So, the rules of supertyping
could be simply obtained by taking all the rules in Figure 1 and deriving corresponding rules
where all the arguments are flipped around. We skip that boring definition here. With both
supertyping and subtyping, the top and bottom rules can be presented as follows:

A <: >
ts-top

A :> ⊥
tsp-btm

ECOOP 2020

29:6 The Duality of Subtyping

Similarly the rules rule ts-andb and rule ts-orb, can be presented as:

A1 <: A
A1 ∧A2 <: A

ts-andb
A1 :> A

A1 ∨A2 :> A
tsp-orb

This simple refactoring shows that the only difference between dual rules is the relation itself,
and the (dual) language constructs. Apart from that everything else is the same.

Duotyping. With Duotyping we can provide a single unified rule, which captures the two
distinct subtyping rules, instead. The Duotyping relation is parameterized by a mode ♦:

Mode ♦ ::= <: | :>

which can be subtyping (<:) or supertyping (:>). Thus the Duotyping relation is of the form:

A♦B

The mode ♦ is a (third) parameter of the relation (besides A and B). With this mode in
place, we can readily capture the two refactored rules for supertyping of bottom types and
subtyping of top types as two Duotyping rules. However this still requires us to write two
distinct rules. To unify those rules into a single one, we introduce a function e♦d that chooses
the right bound depending on the mode being used:

e<:d = >
e :>d = ⊥

If the mode is subtyping the upper bound of the relation is the top type, otherwise it is the
bottom type. With e♦d we can then write a single unified rule that captures the upper bounds
of subtyping and supertyping, and which generalizes both rule ts-top and rule tsp-btm:

A♦ e♦d
gds-topbtm

The Duality rule. The Duotyping rule above captures the 2 rules that were refactored above.
However there are 4 rules in total for top and bottom types (two for subtyping and two for
supertyping). The two missing rules are:

⊥ <: A
ts-btm

> :> A
tsp-top

To capture these missing rules, the Duotyping relation includes a special duality rule:

B ♦A
A♦B

gds-dual

which simply inverts the mode and flips the arguments of the relation. The definition of ♦ is,
unsurprisingly:

<: = :>
:> = <:

With the duality rule it is clear that the two missing rules are now derivable from the
Duotyping rule for bounds and the duality rule. In essence this is the overall idea of the
design of Duotyping rules.

B.C. d. S. Oliveira, C. Shaobo, and B. Rehman 29:7

A♦B (Declarative Duotyping)

A♦ e♦d
gds-topbtm

Int♦ Int
gds-int

A1 ♦A2 B1 ♦B2

A1 → B1 ♦A2 → B2
gds-arrow

A♦C
(A ♦? B)♦C

gds-Left
B ♦C

(A ♦? B)♦C
gds-Right

A♦B A♦C
A♦ (B ♦? C)

gds-both

B ♦A
A♦B

gds-dual

Figure 2 The Duotyping relation for a calculus with union and intersection types.

Complete set of rules. Figure 2 shows the complete version of declarative Duotyping rules
for a system with union and intersection types. Rule gds-topbtm defines the rule bounds
(which generalizes the rules for top and bottom types). Rule gds-int is a simple rule for
integers. Int is subtype and supertype of Int. Rule gds-arrow is an interesting case. In the
first premise A ♦ B we invert the mode instead of flipping the arguments of the relation, as
done in rule ts-arrow. One side-effect of this change is that it keeps the rule fully covariant,
which contrasts with subtyping relations where for arrow types we need contravariance for
subtyping of the inputs. This apparently innocent change has important consequences and
plays a fundamental role to simplify transitivity proofs as we shall see in Section 2.5.

Rules gds-Left, gds-Right, and gds-both each generalize two rules in the traditional
formulation of subtyping. Rule gds-Left generalizes rules ts-andb and ts-orb. Rule gds-
Right generalizes rules ts-andc and ts-orc. Rule gds-both generalizes rules ts-anda
and ts-ora. In the three rules an operation A ♦? B is used:

A <:? B = A ∧ B
A :>? B = A ∨ B

This operation is used to choose between intersection or union types depending on the mode.
If the Duotyping mode is subtyping then we get a rule for intersection types, otherwise we
get a dual rule for union types.

Uniform and dual rules. In the context of Duotyping it is useful to distinguish between two
different kinds of rules: uniform rules and dual rules.

Uniform rules are those that are essentially the same for supertyping and subtyping.
Rules gds-int and gds-arrow are uniform rules. In those rules the arguments of the
relation are exactly the same no matter which mode is being used (subtyping or supertyping).

Dual rules are those that employ dual constructs, like the rules for top and bottom or
the rules for union and intersections. Rules gds-topbtm, gds-left, gds-right, and
gds-both are dual rules. The interesting point in these rules is that they use different

(dual) constructs depending on the mode. For example, when instantiated with subtyping
and supertyping, respectively, the rule gds-topbtm results in:

A <: > A :> ⊥

ECOOP 2020

29:8 The Duality of Subtyping

2.3 Implementations using Duotyping
Figure 2 showed the declarative Duotyping rules for a calculus with union and intersection
types. All the rules are syntax directed, except for the duality rule (rule gds-dual). This
rule flips the mode and arguments to generate a formulation using the dual mode: i.e. it flips
subtyping to provide the equivalent supertyping formulation and vice versa. A benefit of
using a formulation with the duality rule is that it enables a short specification of Duotyping.
Unfortunately the duality rule is not algorithmic, because the duality rule can always be
applied indefinitely. In other words naively translating the rules into an program would
easily result in a non-terminating procedure. Therefore to obtain an algorithmic formulation
some additional work is needed.

Fortunately, for declarative formulations of Duotyping, there is a simple technique that
can be used to obtain an algorithmic formulation. A key observation is that Duotyping only
needs to be flipped (with the duality rule) at most one time. Flipping the relation two or
more times simply gets us back to the starting point. To capture this idea we can use a
(boolean) flag that keeps track of whether the procedure has already employed the duality
rule or not.

To make such an idea concrete, Figure 3 shows Haskell code that implements a procedure
duo for determining Duotyping for two types. The code is based on the rules in Figure 2, but
it uses a boolean flag to prevent the dual rule (the second to last case in duo) from being
applied indefinitely. The boolean is true in the initial call or recursive calls to structurally
smaller arguments. If the algorithm fails for the first five cases (which are basically a direct
translation of the rules gds-topbtm, gds-int, gds-arrow, gds-Left, and gds-Right),
then the algorithm simply flips the boolean flag, mode and arguments to run over a dual
formulation. This is the second to last line of the algorithm.

For example, if the algorithm is called with the mode set to subtyping and it is not able to
find any matching case with the first 5 rules, then it flips the boolean flag to False, subtyping
to supertyping and the arguments to check the equivalent supertyping formulation. If again
it fails to find a matching rule, False will be returned and the algorithm will terminate.
This illustrates that it is enough to flip the boolean flag once to exploit Duotyping. In all our
Coq formulations of Duotyping we have developed an alternative algorithmic formulation of
Duotyping which uses an extra boolean flag and is shown to be sound and complete to the
declarative formulations with the duality rule. In short there is an easy, general and provably
sound and complete way to implement algorithms based on the idea of Duotyping, while at
the same time retaining the benefits of reuse of the logic for rules for dual constructs.

2.4 Discovering new features
Duotyping can provide interesting extra features essentially for free. For example, the hallmark
feature of the well-known F<: calculus (a polymorphic calculus with subtyping) [15] is bounded
quantification, which is a feature used in most modern OOP languages (such as Scala or
Java). In F<:, bounded quantification allows type variables to be defined with upper bounds.
For example, the following Scala program illustrates the use of such upper bounds:

class Person {
def name: String = "person"

}

class Student extends Person {
override def name: String = "student"
def id: String = "id"

}

B.C. d. S. Oliveira, C. Shaobo, and B. Rehman 29:9

data Op = And | Or
data Typ = TInt | TArrow Typ Typ | TOp Op Typ Typ | TBot | TTop
data Mode = Sub | Sup

duo :: Bool -> Mode -> Typ -> Typ -> Bool
duo f m TInt TInt = True
duo f m _ b | b == mode_to_sub m = True
duo f m (TArrow a b) (TArrow c d) =

duo True (flip m) a c && duo True m b d
duo f m (TOp op a b) c | choose m == op = duo True m a c || duo True m b c
duo f m a (TOp op b c) | choose m == op = duo True m a b && duo True m a c
duo True m a b = duo False (flip m) b a
duo _ _ _ _ = False

Figure 3 Haskell code for implementing an algorithmic formulation of Duotyping rules.

class StudentsCollection[S <: Student](obj: S) {
def student: S = obj

}

The Scala program shown above uses the upper bounds for the class StudentsCollection
written as S <: Student. This upper bound restricts StudentsCollection to be instantiated
with Student and its subtypes. Since the upper bound is Student, any class that is supertype
of Student like Person cannot be instantiated in StudentsCollection.
However lower bounds are also useful, and indeed the Scala language allows them (though
Java does not). One example of a program with lower bounds in Scala is:

class GraduateStudent extends Student {
def degree: String = "graduate degree"

}

class ResearchStudent extends GraduateStudent {
override def degree: String = "research degree"

}

class CollectionExcludingResearchStudents[S >: GraduateStudent](obj: S) {
def student: S = obj

}

In contrast to the upper bounds, the Scala program shown above uses the lower bounds for
the class CollectionExcludingResearchStudents written as S >: GraduateStudent. This lower
bound restricts CollectionExcludingResearchStudents to be instantiated with GraduateStudent
and its supertypes. Since the lower bound is GraduateStudent. Any class that is a subtype of
GraduateStudent (such as ResearchStudent) cannot be instantiated in CollectionExcludingRe-
searchStudents. But any supertype of GraduateStudent like Student and Person (including
GraduateStudent) can be instantiated in CollectionExcludingResearchStudents.

One can think of universal quantification with lower bounds as a dual to universal
quantification with upper bounds. While there is no extension of F<: that we know of that
presents universal quantification with lower bounds in the literature, applying a Duotyping
design to F<: gives us, naturally, the two features at once (lower and upper bounded
quantification).

ECOOP 2020

29:10 The Duality of Subtyping

Bounded quantification in F<:. The traditional subtyping rule of System kernel F<: with
upper bounded quantification is:

Γ,X <: A ` B <: C
Γ ` (∀X <: A.B) <: (∀X <: A.C)

ts-forallkfs

In the premise of this rule, we add the type variable X to the context with an upper bound
A. If under the extended context the bodies of the universal quantifier (B and C) are in a
subtyping relation then the universal quantifiers are also in a subtyping relation.

To add lower bounded quantification the obvious idea is to add a second rule:

Γ,X :> A ` B <: C
Γ ` (∀X :> A.B) <: (∀X :> A.C)

ts-forallkfsb

However this alone is not quite right because the environment is also extended with a lower
bound (X >: A), which does not exist in F<: contexts. Therefore some additional care is
also needed for the variable cases of F<: extended with lower bounded quantification. When
an upper bounded constraint is found in the environment, the variable case needs to deal
with the upper bound appropriately. Since there are two rules dealing with the variable case
in F<:, one possible approach is to add two more rules for dealing with upper bounds:

X :>A ∈ Γ Γ ` B <: A
Γ ` B <: X

ts-TVarb
X :>A ∈ Γ

Γ ` X <: X
ts-ReflTvar

However such a design feels a little unsatisfactory. We need a total of 6 rules to fully deal
with lower and upper bounded quantification (instead of 3 rules in F<:). At the same time
the rules are nearly identical, differing only on the kind of bounds that is used. Furthermore
the metatheory of F<: also needs to be significantly changed. In particular narrowing has
to be adapted to account for the lower bounds and transitivity has to be extended with
several new cases. Since both narrowing and transitivity proofs for F<: are non-trivial, this
extension is also non-trivial and adds further complexity to already complex proofs.

A variant of Kernel F<: with Duotyping. We now reconsider the design of Kernel F<:
from scratch employing the Duotyping methodology. In the subtyping rule for universal
quantification, it is important to note that the subtyping relation between two universal
quantifiers in the conclusion is the same as the relation between types B and C in premise.
Similarly, the (subtyping/supertyping) bounds of type variable X in the conclusion are the
same as the bounds of type variable X in premise. In a design with Duotyping, we would like
to generalize the two uses of subtyping. Therefore, we can design a single unified rule with
the help of two modes:

Γ,X♦1A ` B ♦2 C
Γ ` (∀X♦1A.B)♦2 (∀X♦1A.C)

gs-forallkfs

Section 4.1 explains the Duotyping rules of our Duotyping kernel F<: variant with union and
intersection types (F∧∨k♦) in detail. Rule gs-forallkfs is the interesting case, capturing
both upper and lower bounded quantification in an elegant way. This rule states that if in a
well-formed context, type variable X has a ♦1 relation with type A and if type B has ♦2

B.C. d. S. Oliveira, C. Shaobo, and B. Rehman 29:11

A♦B (Algorithmic Duotyping)

A♦ e♦d
gs-topbtma

e♦d♦A
gs-topbtmb

Int♦ Int
gs-int

A1 ♦A2 B1 ♦B2

A1 → B1 ♦A2 → B2
gs-arrow

Figure 4 The Duotyping relation for simply typed lambda calculus calculus.

relation with type C , then the universal quantification with body B has a ♦2 relation with
the universal quantification with body C . Correspondingly there are also two Duotyping
rules for variables:

X♦A ∈ Γ Γ ` A♦B
Γ ` X ♦B

gs-TVara
X♦1A ∈ Γ
Γ ` X ♦2 X

gs-ReflTvar

In short, the design of a variant of F<: with Duotyping leads to a system that naturally
accounts for both upper and lower bounded quantification. Moreover, the metatheory,
and in particular the proofs of narrowing and transitivity are not more complex than the
corresponding original F<: proofs. In fact the proof of transitivity is significantly simpler,
because Duotyping enables novel proof techniques as we discuss next.

2.5 New proof techniques
Transitivity proofs are usually a challenge for systems with subtyping. This is partly because
subtyping relations often need to deal with some contravariance. For instance, the rule ts-
arrow (in Figure 1) is contravariant on the input types. Such contravariance causes problems
in certain proofs, including transitivity. To illustrate the issue more concretely, let’s distill
the essence of the problem by considering a simple lambda calculus with subtyping called
λ<:, where the types are:

Types A,B ::= > | Int | A→ B

and the subtyping rules for those types are just the relevant subset of the rules in Figure 1.
The transitivity proof for this simple calculus is:

I Lemma 1 (λ<: Transitivity). If A <: B and B <: C then A <: C .

Proof. By induction on type B.
Case > and case Int are trivial to prove by destructing the hypothesis in context.
Case B1 → B2 requires inversion of the two hypotheses to discover that A can only be a
function type, while C is either a function type or >. J

In the arrow case, we need to invert both hypotheses to discover more information about
A and C . For this very simply language this double inversion is not too problematic, but
as the language of types grows and the subtyping relation becomes more complicated, such
inversions become significantly harder to deal with.

At this point one may wonder if the transitivity proof could be done using a different
inductive argument to start with, and thus avoid the double inversions. After all there are
various other possible choices. Perhaps the most obvious choice is to try induction on the

ECOOP 2020

29:12 The Duality of Subtyping

subtyping relation itself (A <: B), rather than on type B. However this does not work
because of the contravariance for arrow types, which renders one of induction hypothesis
in the arrow case useless (and thus do not allow the case to be proved). Other alternative
choices for an inductive argument (such as type A or C) do not work for similar reasons.

Developing metatheory with Duotyping. In order to develop metatheory with Duotyping
it is convenient to use an equivalent formulation of Duotyping that eliminates the duality
rule (which is non-algorithmic and makes inversions more difficult). For λ♦, which is a
Duotyping version of λ<:, this would lead to the set of rules in Figure 4. This alternative
algorithmic version eliminates the duality rule. Rules gs-topbtma, gs-int, and gs-arrow
are similar to the rules we discussed in Section 2.2. Rule gs-topbtmb is the dual rule of
rule gs-topbtma. With Rule gs-topbtmb, the duality rule is unnecessary.

Transitivity with Duotyping. Now we turn our attention to the proof of transitivity:

I Lemma 2 (λ♦ Transitivity). If A♦B and B♦C then A♦C .

Proof. By induction on A♦B.
All cases are trivial to prove by destructing ♦ and inversion of the second hypothesis
(B♦C). J

Transitivity of systems with Duotyping can often be proved by induction on the subtyping
relation itself. This has the nice advantage that all the cases essentially become trivial to
prove (for λ♦) and only a single inversion is needed for arrow types. A key reason why
such approach works in the formulation with Duotyping is that we can keep case for arrow
types covariant. Instead we only flip the mode. Another important observation is that
when we prove a transitivity lemma with Duotyping we are, in fact, proving two lemmas
simultaneously: one lemma for transitivity of subtyping, and another one for transitivity
of supertyping. When we use the induction hypothesis we have access to both lemmas (by
choosing the appropriate mode).

The proof of the transitivity lemma by induction on the Duotyping relation can scale
up to more complex subtyping/Duotyping relations. This includes subtyping relations with
advanced features such as intersection types, union types, parametric polymorphism and
bounded quantification. All of these can follow the same strategy (induction on the Duotyping
relation) to simplify the transitivity proof, as we shall see in Section 5.

3 The λ∧∨
♦ calculus

In Section 2 we gave an overview and discussed advantages of using the Duotyping relation.
In this section we introduce a lambda calculus with union and intersection types that is
based on Duotyping. We aim at showing that developing calculi and metatheory using
Duotyping is simple, requiring only a few small adaptations compared with more traditional
formulations based on subtyping. Our main aim is to show type soundness (subject-reduction
and preservation) for λ∧∨♦ .

3.1 Syntax and Duotyping
Syntax. Figure 5 shows the syntax of the calculus. The types for λ∧∨♦ were already introduced
in Section 2. Terms include all the constructs for the lambda calculus (variables x , functions
λx : A. e and applications e1 e2) and integers (n). Values are a subset of terms, consisting of

B.C. d. S. Oliveira, C. Shaobo, and B. Rehman 29:13

Types A,B ::= > | ⊥ | Int | A→ B | A ∧ B | A ∨ B
Terms e ::= x | n | λx : A. e | e1 e2

Values v ::= n | λx : A. e
Context Γ ::= • | Γ, x : A
Mode ♦ ::= <: | :>

A♦B (Algorithmic Duotyping)

A♦C
(A ♦? B)♦C

gs-lefta
A♦B

A♦ (B ♦? C)
gs-leftb

B ♦C
(A ♦? B)♦C

gs-righta

A♦C
A♦ (B ♦? C)

gs-rightb
A♦B A♦C

A♦ (B ♦? C)
gs-botha

A♦C B ♦C
(A ♦? B)♦C

gs-bothb

Figure 5 Syntax and Duotyping relation for union and intersection types.

abstractions and integers only. The mode ♦ is used to choose the mode of the relation: it
can be either subtyping (<:) or supertyping (:>). Typing contexts Γ are standard and used
to track the types of the variables in a program. Finally, a well-formedness relation Γ ` ok
ensures that typing contexts are well-formed.

Duotyping for λ∧∨
♦ . The Duotyping rules for λ∧∨♦ were already partly presented in Figure 2.

In addition to the rules in the λ♦, we also need extra rules for union and intersection types.
These extra rules are presented in Figure 5. Rules gs-lefta, gs-righta, and gs-botha
are also similar to the rules gds-Left, gds-Right, and gds-both presented in Figure 2.
Since we eliminate the duality rule in the algorithmic version, we add dual subtyping rules.
Rules gs-leftb, gs-rightb, and gs-bothb are the dual versions of rules gs-lefta, gs-
righta, and gs-botha respectively. This formulation is shown to be sound and complete
with respect to the formulation with the duality rule in Figure 2. As explained in Section 2
this variant of the rules makes some proofs easier, thus we employ it here. The Duotyping
relation is reflexive and transitive:

I Theorem 3 (Reflexivity). A♦A.

Proof. By induction on type A. Reflexivity is trivial to prove by applying subtyping rules. J

I Theorem 4 (Transitivity). If A♦B and B♦C then A♦C .

Proof. By induction on subtyping relation.
Cases rule gs-topbtma, rule gs-int, rule gs-lefta, rule gs-righta and rule gs-botha
are trivial to prove.
Case rule gs-topbtmb requires an additional Lemma 5.
Case rule gs-arrow requires induction on hypothesis and subtyping rules.
Cases rule gs-leftb and rule gs-rightb requires an additional Lemma 6 to be applied
on hypothesis in context.
Case rule gs-bothb requires induction on the hypothesis. This case also requires rule gs-
leftb, rule gs-rightb, and rule gs-botha subtyping rules. J

We used the following auxiliary lemmas to prove transitivity.

ECOOP 2020

29:14 The Duality of Subtyping

Γ ` e : A (Typing)

Γ ` ok x : A ∈ Γ
Γ ` x : A

g-var
Γ ` ok

Γ ` n : Int
g-int

Γ, x : A1 ` e2 : A2

Γ ` λx : A1. e2 : A1 → A2
g-abs

Γ ` e1 : A1 → A2 Γ ` e2 : A1

Γ ` e1 e2 : A2
g-app

Γ ` e : B B <: A
Γ ` e : A

g-sub

e1 −→ e2 (Reduction)

(λx : A1. e1) v2 −→ [x 7→ v2]e1
gred-AppAbs

e1 −→ e′
1

e1 e −→ e′
1 e

gred-Fun
e1 −→ e′

1

v e1 −→ v e′
1

gred-Arg

Figure 6 Typing and reduction for λ∧∨
♦ .

I Lemma 5 (Bound Selection). If e♦d♦B then A♦B.

This lemma captures the upper and lower bounds with respect to relation between two
types. If the mode is subtyping, then it states that any type that is supertype of > is
supertype of all the other types. If the mode is supertyping, then it states that any type
that is subtype of ⊥ is subtype of all the other types. In essence the lemma generalizes the
following two lemmas (defined directly over subtyping and supertyping):

If > <: B then A <: B
If ⊥ :> B then A :> B

I Lemma 6 (Inversion for rule GDS-Both). If C ♦ (A ♦? B) then (C ♦ A) and (C ♦ B).

This lemma captures the relation between types with respect to the duality of union and
intersection types. It is the general form of two lemmas:

I Lemma 7 (Inversion for Union types). If (A ∨ B) <: C then (A <: C) and (B <: C).

I Lemma 8 (Inversion for Intersection types). If C <: (A∧B) then (C <: A) and (C <: B).

Finally there is also a duality lemma, which complements reflexivity and transitivity:

I Lemma 9 (Duality). A♦B = B♦A.

This lemma captures the essence of duality, and enables us to switch the mode of the
relation by flipping the arguments as well. Furthermore, the duality lemma plays a crucial
role when proving soundness and completeness with respect to the declarative version of
Duotyping, which has duality as an axiom instead. All of these lemmas are used in later
proofs for type soundness.

3.2 Semantics and type soundness
Typing. The first part of Figure 6 presents the typing rules of λ∧∨♦ . The rules are standard.
Note that rule g-sub is the subsumption rule: if an expression e has type B and B is a
subtype of A then e has type A. Noteworthy, B <: A is the Duotyping relation being used
with the subtyping mode.

B.C. d. S. Oliveira, C. Shaobo, and B. Rehman 29:15

Reduction. At the bottom of Figure 6 we show the reduction rules of λ∧∨♦ . Again, the
reduction rules are standard. Rule gred-AppAbs is the usual beta-reduction rule, which
substitutes a value v2 for x in the lambda body e1. Rule gred-Fun and rule gred-Arg are
the standard call-by-value rules for applications.

Type soundness. The proof for type soundness relies on the usual preservation and progress
lemmas:

I Lemma 10 (Type Preservation). If Γ ` e : A and e −→ e′ then: Γ ` e′ : A.

Proof. By induction on the typing relation and with the help of Lemma 9. J

I Lemma 11 (Progress). If Γ ` e : A then:
1. either e is a value.
2. or e can take a step to e′.

Proof. By induction on the typing relation. J

3.3 Summary and Comparison
Besides λ∧∨♦ , which employs the Duotyping relation, we have also formalized a lambda calculus
with union and intersection types using the traditional subtyping relation (λ∧∨<:). Most of
the metatheory is similar with a great deal of theorems being almost the same. The main
differences are in the metatheory for subtyping which has to be generalized. For example
both reflexivity and transitivity have to be generalized to operate in the Duotyping relation
instead. The formalization with Duotyping only has two additional lemmas (the duality
lemma and the bound selection lemma), which have no counterparts with subtyping. The
number of lines of code for the formalization of λ∧∨<: is 596 whereas for λ∧∨♦ is 630. The total
number of lemmas required for λ∧∨<: are 23 and 25 for λ∧∨♦ . Following two lemmas in λ∧∨<: are
captured as one lemma in λ∧∨♦ (Lemma 6):

Inversion for Union Types. This lemma is already stated as Lemma 7: it is the inversion
of the subtyping rule for the union types in the traditional subtyping relation. The lemma
states that if the union of two types A and B is the subtype of a type C , then both types A
and B are subtypes of type C .

Inversion for Intersection Types. This lemma, which corresponds to Lemma 8, is the
inversion of the subtyping rule for the intersection types with the traditional subtyping
relation. It states that if a type C is the subtype of the intersection of two types A and B,
then the type C is a subtype of both types A and B.

4 The F ∧∨
k♦ calculus

In Section 3 we introduced a simple calculus with union and intersection types using
Duotyping. This section extends that calculus with bounded quantification based on kernel
F<:. This new variant also employs Duotyping and is called F∧∨k♦ . The main aim of this
section is to show that sometimes we can get interesting and novel dual features come for free.
In addition to upper bounded quantification of F<:, System F∧∨k♦ provides lower bounded
quantification as well. Additionally, we also show the type soundness of F∧∨k♦ .

ECOOP 2020

29:16 The Duality of Subtyping

Types A,B ::= > | ⊥ | Int | A→ B | A ∧ B | A ∨ B | X | ∀(X♦A).B
Terms e ::= x | n | λx : A. e | e1 e2 | Λ(X ♦A).e | e A
Values v ::= n | λx : A. e | Λ(X ♦A).e
Context Γ ::= • | Γ, x : A | Γ,X ♦A
Mode ♦ ::= <: | :>

Γ ` A♦B (F∧∨
k♦ Duotyping)

Γ ` ok X♦1A ∈ Γ
Γ ` X ♦2 X

gs-ReflTvara
X♦A ∈ Γ Γ ` A♦B

Γ ` X ♦B
gs-TVara

X♦A ∈ Γ Γ ` B ♦A
Γ ` B ♦X

gs-TVarb
Γ,X♦1A ` B ♦2 C

Γ ` (∀X♦1A.B)♦2 (∀X♦1A.C)
gs-forallkfs

Figure 7 Syntax and additional rules for Duotyping in F∧∨
k♦ .

4.1 Syntax and Duotyping
Syntax. Figure 7 shows the syntax of the calculus F∧∨k♦ . Types >, ⊥, Int, A→ B, A ∧ B,
A ∨ B are already introduced in Section 2. Type variable X and a universal quantifier on
type variables ∀(X♦A).B are the two additional types in F∧∨k♦ . Terms x, n, λx : A. e, e1 e2
are already discussed in Section 3.1. Type abstraction Λ(X ♦A).e and type application e A
are two additional terms in F∧∨k♦ . Values are a subset of terms, consisting of term abstraction,
type abstraction and integers.

Duotyping for F∧∨
k♦ . Duotyping rules for a calculus with union and intersection types are

presented in Figure 4. F∧∨k♦ has two significant differences in its Duotyping rules in comparison
to Figure 4, which are presented in Figure 7. The first one is the addition of a typing context
in the Duotyping rules. This is important to ensure that type variables are bound. Thus,
Duotyping for F∧∨k♦ is now of the form Γ ` A♦B. The second difference is that there are
four more rules, three of them (rules gs-ReflTvara, gs-TVara, and gs-forallkfs)
were already explained in Section 2.4. Rule gs-TVarb is the dual of rule gs-TVara. We
introduce this rule to eliminate the duality rule.

The Duotyping relation for F∧∨k♦ is reflexive and transitive as well:

I Theorem 12 (Reflexivity). Γ ` A♦A.

Proof. By induction on type A. J

I Theorem 13 (Transitivity). If Γ ` A♦B and Γ ` B♦C then Γ ` A♦C .

Proof. By induction on Γ ` A♦B.
Cases rule gs-topbtma, rule gs-topbtmb, rule gs-int, rule gs-ReflTvar, rule gs-
TVara, rule gs-lefta, rule gs-righta, rule gs-botha are trivial to prove.
Case rule gs-arrow is proved using the induction hypotheses.
Case rule gs-TVarb can be proved using Lemma 16.
Case rule gs-forallkfs is proved using the induction hypotheses.
Case rule gs-leftb can be proved using an additional Lemma 15.
Case rule gs-rightb also uses Lemma 15.
Case rule gs-bothb is proved using the induction hypotheses. J

B.C. d. S. Oliveira, C. Shaobo, and B. Rehman 29:17

The auxiliary lemmas for transitivity are described next and are essentially the same as
in Section 3.1.

I Lemma 14 (Bound Selection). If Γ `e♦d♦B then Γ ` A♦B.

I Lemma 15 (Inversion for rule GDS-Both). If Γ ` C ♦ (A ♦? B) then Γ ` (C ♦ A) and (C
♦ B).

There is also a duality lemma:

I Lemma 16 (Duality). Γ ` A♦B = Γ ` B♦A.

Finally, We also proved weakening and the narrowing lemmas for Duotyping calculus.
Here we briefly compare the narrowing lemma for F∧∨k<: and F∧∨k♦ :

I Lemma 17 (F∧∨k<: Narrowing Lemma). If Γ ` A <: B and Γ,X <: B,Γ1 ` C <: D then
Γ,X <: A,Γ1 ` C <: D

I Lemma 18 (F∧∨k♦ Narrowing Lemma). If Γ ` A♦1 B and Γ,X♦1B,Γ1 ` C♦2D then
Γ,X♦1A,Γ1 ` C♦2D

Lemma 17 exploits only the subtyping relation while Lemma 18 exploits our Duotyping
relation. Lemma 18 illustrates how lower and upper bounds are captured under a unified
mode relation in narrowing. Like the transitivity statement using a Duotyping formulation,
one can think of the Duotyping narrowing lemma as actually two distinct lemmas: one for
narrowing of upper bounds and another for narrowing of lower bounds. Also, it is important
to note that Lemma 18 is using two modes ♦1 and ♦2. ♦1 is the relation between types A,
B and the type variable X . Whereas, ♦2 is the relation between type C and type D. Those
two relations do not need to be the same.

4.2 Semantics and type soundness
Typing. The first part of Figure 8 presents the typing rules of F∧∨k♦ . The first five rules are
standard and are already explained in Section 2.1. Rules g-tabs and g-tapp are the two
additional rules in F∧∨k♦ . Rule g-tabs is similar to the standard rule for type abstractions
in F<: except that it generalizes the subtyping bound to a ♦ bound, which could either be
subtyping or supertyping. Rule g-app again differs from the rule for type applications in F<:
by using a ♦ bound instead of just a subtyping bound. These two rules rules are noteworthy
because they also illustrate an advantage of using Duotyping in the typing relation. Without
Duotyping we would need multiple typing rules to capture different variations of the bounds.

Reduction. The last part of Figure 8 presents the reduction rules of our calculus. Again,
reduction rules are standard except for the rule gred-TAppTAbs. In rule gred-TAppTAbs
the duality relation captures both upper and the lower bounds. Rule gred-TFun is the
standard reduction rule for the type applications.

Type Soundness. We proved the type soundness for our calculus. All the proofs are
formalized in Coq theorem prover.

I Lemma 19 (Type Preservation). If Γ ` e : A and e −→ e′ then: Γ ` e′ : A.

Proof. By induction on the typing relation.
Case rules g-var, g-int, g-abs, g-tabs, and g-subs are trivial to solve.
Case rule g-app uses Theorem 12 and Lemma 16.
Case rule g-tapp uses Theorem 12. J

ECOOP 2020

29:18 The Duality of Subtyping

Γ ` e : A (Typing)

Γ ` ok x : A ∈ Γ
Γ ` x : A

g-var
Γ ` ok

Γ ` n : Int
g-int

Γ, x : A1 ` e2 : A2

Γ ` λx : A1. e2 : A1 → A2
g-abs

Γ ` e1 : A1 → A2 Γ ` e2 : A1

Γ ` e1 e2 : A2
g-app

Γ ` e : B Γ ` B <: A
Γ ` e : A

g-subs

Γ,X ♦A ` e : B
Γ ` ΛX ♦A. e : ∀(X♦A).B

g-tabs
Γ ` e : ∀(X♦A).B Γ ` C ♦A

Γ ` e C : [X 7→ C]B
g-tapp

e1 −→ e2 (Reduction)

(λx : A1. e1) v2 −→ [x 7→ v2]e1
gred-AppAbs

e1 −→ e′
1

e1 e −→ e′
1 e

gred-Fun
e1 −→ e′

1

v e1 −→ v e′
1

gred-Arg

(ΛX ♦A. e1) B −→ [X 7→ B]e1
gred-TAppTAbs

e1 −→ e′
1

e1 A −→ e′
1 A

gred-TFun

Figure 8 Typing and reduction of the duotyped kernel F<:.

I Lemma 20 (Progress). If Γ ` e : A then:
1. either e is value.
2. or e can take step to e′.

Proof. By induction on the typing relation.
Case rules g-var, g-int, g-abs, g-tabs, and g-subs are trivial to solve.
Case rule g-app requires canonical forms.
Case rule g-tapp requires canonical forms. J

4.3 Summary and Comparison
Besides F∧∨k♦ , which employs the Duotyping relation, we have also formalized a calculus
F∧∨k<:: an extension of kernel F<: (only with upper bounded quantification) with union and
intersection types using the traditional subtyping relation. The essential differences are
similar to what we already discussed in Section 3.3. The formalization with Duotyping only
has two additional lemmas (the duality lemma and the bound selection lemma), besides a
few minor auxiliary lemmas. The number of lines for proof for the formalization of F∧∨k<: is
1648 whereas for F∧∨k♦ is 1770. The total lemmas required for F∧∨k<: are 74 and 81 for F∧∨k♦ .
We emphasize that one significant difference between F∧∨k<: and F∧∨k♦ is the additional lower
bounded quantification provided by F∧∨k♦ . This is an extra feature which comes essentially
for free with Duotyping.

5 A Case Study on Duotyping

In this section we present an empirical case study, which we conducted to validate some of
the benefits of Duotyping. Overall, the results of our case study indicate that: Duotyping does
allow for compact specifications; the complexity of developing formalization with Duotyping is
comparable to similar developments using traditional subtyping relations; transitivity proofs
are often significantly simpler; and Duotyping is a generally applicable technique.

B.C. d. S. Oliveira, C. Shaobo, and B. Rehman 29:19

5.1 Case Study
We formalized a number of different calculi using Duotyping. All the proofs and metatheory
are mechanically checked by the Coq theorem prover. We also formalized a few traditional
subtyping systems for comparison. Table 1 shows a brief overview of various systems that we
formalized. λ<:, λ∧∨<: , Fk<:, F∧∨k<: and FF <: are the traditional subtyping systems. The Coq
formalizations for the traditional subtyping systems are based on existing Coq formalizations
from the locally nameless representation with cofinite quantification tutorial and repository
(https://www.chargueraud.org/softs/ln/) by Charguéraud [18]. The formalizations of
λ♦, λ∧∨♦ , Fk♦, F∧∨k♦ and FF♦ are their respective Duotyping formulations, and modify the
original ones with traditional subtyping. Subscript <: represents a calculus with traditional
subtyping whereas ♦ represents a calculus with Duotyping. Superscript ∧∨ is the notation
for a system with intersection and union types. Subscript k corresponds to the kernel version
of a variant of F<:, while subscript F corresponds to the corresponding full version. We also
formalized a simple polymorphic system without bounded quantification using Duotyping. We
have two Duotyping variants for this polymorphic type system without bounded quantification.
One without union and intersection types (F♦) and another with union and intersection
types (F∧∨♦).

In Table 1, the last column (Transitivity) summarizes the proof technique used in each
system to prove transitivity. Recall the transitivity lemma (using the Duotyping formulation):

I Theorem 21 (Transitivity). If A♦B and B♦C then A♦C .

Induction on the middle type means induction on type B (or well-formed type B for
polymorphic systems), whereas induction on the Duotyping relation means induction on
A♦B.

Research Questions. Section 1 discussed benefits of using Duotyping. This section attempts
to quantify some of these benefits. More concretely, we answer the following questions in
this section:

Does Duotyping provide shorter specifications?
Does Duotyping increase the complexity of the formalization and metatheory of the
language?
Does Duotyping make transitivity proofs simpler?
Is Duotyping a generally applicable technique?

We follow an empirical approach to answer these questions and address each question in
a separate (sub)section. Obviously a precise measure for complexity/simplicity is hard
to obtain. We use SLOC for the formalization and proofs as an approximation. All the
formalizations are written in the same Coq style to ensure that the comparisons are fair.

5.2 Does Duotyping provide shorter specifications?
This section answers our first question. In short our case study seems to support this
conclusion. The declarative Duotyping rules of all the systems that we formalized are shown
in Table 2. Please note that the formulation also contains the duality rule. λ♦ has the
basic set of Duotyping rules. These rules are common in all of the systems. λ∧∨♦ has the
subtyping rules for intersection types and union types in addition to the rules from λ♦.
F♦ contains two more rules (rules gds-ReflTvarp and gds-forallfsp) in addition to
the rules from λ♦. F∧∨♦ has all the rules from λ♦, λ∧∨♦ and F♦. Fk♦ has three additional

ECOOP 2020

https://www.chargueraud.org/softs/ln/

29:20 The Duality of Subtyping

Table 1 Description of all systems.

Name Description SLOC Transitivity
λ<: STLC with subtyping 537 By induction on the middle type.
λ♦ STLC with Duotyping 583 By induction on the Duotyping rela-

tion.
λ∧∨

<: STLC with subtyping, union types
and intersection types

595 By induction on the middle type.

λ∧∨
♦ STLC with Duotyping, union types

and intersection types
623 By induction on the Duotyping rela-

tion.
F♦ Simple polymorphic system with

Duotyping and without bounded
quantification

1466 By induction on the Duotyping rela-
tion.

F∧∨
♦ Simple polymorphic system with

Duotyping, union types and inter-
section types and without bounded
quantification

1546 By induction on the Duotyping rela-
tion.

Fk<: System F<: kernel 1542 By induction on the (well-formed)
middle type.

Fk♦ System F<: kernel with Duotyping 1579 By induction on the Duotyping rela-
tion.

F∧∨
k<: System F<: kernel with subtyping,

union types and intersection types
1648 By induction on the (well-formed)

middle type.
F∧∨

k♦ System F<: kernel with Duotyping,
union types and intersection types

1770 By induction on the Duotyping rela-
tion.

FF <: System full F<: 1518 By induction on the (well-formed)
middle type.

FF♦ System full F<: with Duotyping 1786 By induction on the (well-formed)
middle type.

subtyping rules gds-ReflTvar, gds-TVar, and gds-forallkfs in addition to the rules
from λ♦. F∧∨k♦ has all the rules from λ♦, λ∧∨♦ , and Fk♦. FF♦ has an additional subtyping
rule gds-forallffs.

Comparison with systems using traditional subtyping. Table 3 shows the number of rules
and features for different calculi formulated with subtyping and Duotyping. In our formulation,
λ<: has 3 types >, Int, and A→ B. This requires 3 subtyping rules to capture the subtyping
relation of these 3 types. If we wanted to support the ⊥ type in λ<: we would need to add
1 more subtyping rule. In the table we express the extra rules required for extra features
as (+n), where n is the number of extra rules. Duotyping supports ⊥ for free by exploiting
the dual nature of > with the help of duality rule. Systems with more rules follow the same
approach for traditional systems i.e more types require more subtyping rules. If we wanted to
support the ⊥ type in λ∧∨<: we also need 1 additional rule. To further extend our discussion
to the polymorphic systems with bounded quantification, we would need 4 additional rules
in Fk<: (1 for ⊥ type and 3 for lower bounded quantification). Similarly we would need 4
additional rules to support lower bounds and lower bounded quantification in F∧∨k<:.

In summary, in the systems that we compared Duotyping has a similar number of rules to
systems with subtyping, but it comes with extra features. If we wanted to add those features
to systems with traditional subtyping, then that would generally result in more rules for the
traditional versions compared to Duotyping. This would also have an impact in the SLOC of
the metatheory, increasing the metatheory for those systems considerably.

B.C. d. S. Oliveira, C. Shaobo, and B. Rehman 29:21

Table 2 Declarative Duotyping rules of all systems.

Name Duotyping Rules
λ♦

A♦B (λ♦ Duotyping)

A♦ e♦d
gds-topbtm

Int♦ Int
gds-int

A1 ♦A2 B1 ♦B2

A1 → B1 ♦A2 → B2
gds-arrow

B ♦A
A♦B

gds-dual

λ∧∨
♦

A♦B (λ∧∨
♦ Duotyping plus all rules from λ♦)

A♦C
(A ♦? B)♦C

gds-Left
B ♦C

(A ♦? B)♦C
gds-Right

A♦B A♦C
A♦ (B ♦? C)

gds-both

F♦

A♦B (F♦ Duotyping plus all rules from λ♦)

X ♦X
gds-ReflTvarp

A♦B
(∀X .A)♦ (∀X .B)

gds-forallfsp

F∧∨
♦

A♦B (F∧∨
♦ Duotyping plus all rules from λ♦, λ∧∨

♦ and F♦)

Fk♦

Γ ` A♦B (Fk♦ Duotyping plus all rules from λ♦)

Γ ` ok X♦1A ∈ Γ
Γ ` X ♦2 X

gds-ReflTvar
X♦A ∈ Γ Γ ` A♦B

Γ ` X ♦B
gds-TVar

Γ,X♦1A ` B ♦2 C
Γ ` (∀X♦1A.B)♦2 (∀X♦1A.C)

gds-forallkfs

F∧∨
k♦

Γ ` A♦B (F∧∨
k♦ Duotyping plus all rules from λ♦, λ∧∨

♦ and Fk♦)

FF♦

Γ ` A♦B (FF♦ Duotyping plus all rules from Fk♦ excluding rule gs-forallkfs and
union/intersection rules)

Γ ` A |♦1 |♦2 B Γ,X♦1(A ♦̃ B) ` A1 ♦2 B1

Γ ` (∀X♦1A.A1)♦2 (∀X♦1B.B1)
gds-forallffs

ECOOP 2020

29:22 The Duality of Subtyping

Table 3 Comparing the features and number of rules with subtyping and Duotyping.

System Subtyping
rules count

System Duotyping
rules count

Duotyping extra features

λ<: 3 (+1) λ♦ 4 lower bounds in λ♦

λ∧∨
<: 9 (+1) λ∧∨

♦ 7 lower bounds in λ∧∨
♦

Fk<: 5 (+4) Fk♦ 7 lower bounds and lower bounded
quantification in Fk♦

F∧∨
k<: 11 (+4) F∧∨

k♦ 10 lower bounds and lower bounded
quantification in F∧∨

k♦

Table 4 SLOC of traditional subtyping and Duotyping systems.

Subtyping
System

SLOC Duotyping
System

SLOC

λ<: 537 λ♦ 583
λ∧∨

<: 595 λ∧∨
♦ 623

Fk<: 1542 Fk♦ 1579
F∧∨

k<: 1648 F∧∨
k♦ 1770

5.3 Does Duotyping increase the complexity of the formalization and
metatheory of the language?

At first, one may think that Duotyping increases the complexity of formalization and metathe-
ory of the language, since it provides interesting extra features and generalizations normally
come at a cost. Interestingly, Duotyping does not add significant extra complexity in the
formalization and metatheory of the language. Table 4 shows the SLOC for formalizations
using traditional subtyping and Duotyping systems. The lines of code for λ∧∨<: are 595 and
the lines of code for λ∧∨♦ are 623. Similarly, the lines of code for F∧∨k<: are 1648 and 1770 for
F∧∨k♦ . Although SLOC for Duotyping systems are slightly more than traditional subtyping
systems, the Duotyping systems come with extra features. Nevertheless the mechanization
effort is roughly the same for version with and without Duotyping. Also, as illustrated in
Sections 3 and 4, the vast majority of the lemmas/metatheory for calculi with Duotyping are
similar to traditional systems with subtyping.

5.4 Does Duotyping make transitivity proofs simpler?

Transitivity is often the most difficult property to prove in the metatheory of a language with
subtyping. Table 1 highlights a brief comparison between the techniques for the transitivity
proof of various systems. Transitivity of systems with Duotyping is generally proved by
induction on the Duotyping relation. One exception is FF♦ where induction on the Duotyping
does not work. As discussed in Section 2.5 Duotyping allows us to simplify the transitivity
proof by using a different inductive argument.

Table 5 shows the SLOC for transitivity proofs of various systems. The SLOC for λ<:
transitivity proof are 7 and the SLOC for λ♦ transitivity proof are 4. Similarly, the SLOC
for F∧∨k<: transitivity proof are 38 and 18 for the transitivity proof of F∧∨k♦ . This evaluation
shows that Duotyping always allows us to reduce the size of the transitivity proof. Again,
it is important to note that Duotyping also provides extra features of lower bound and
lower bounded quantification. Despite these additional features in Duotyping systems, their
transitivity proofs are shorter than the traditional systems with subtyping.

B.C. d. S. Oliveira, C. Shaobo, and B. Rehman 29:23

Table 5 SLOC for transitivity proofs.

Subtyping
System

Transitivity
SLOC

Duotyping
System

Transitivity
SLOC

λ<: 7 λ♦ 4
λ∧∨

<: 13 λ∧∨
♦ 11

Fk<: 26 Fk♦ 13
F∧∨

k<: 38 F∧∨
k♦ 18

However we could not employ this proof technique in our Duotyping version of full F<:
(FF♦). The problem is related to narrowing, which in FF♦ is closely coupled with transitivity.
Despite that we could still apply the technique to most systems with Duotyping, and even for
FF♦ we can still prove transitivity using the same technique as in the traditional F<: (i.e.
using the middle type as the inductive argument).

5.5 Is Duotyping a generally applicable technique?

Our case studies indicate that Duotyping is generally an applicable technique. In all the
systems that we have tried to use Duotyping, we have managed to successfully apply it.
Furthermore we believe that Duotyping can be essentially applied to any system with a
traditional subtyping relation. The most complex system where we have employed Duotyping
is FF♦. In FF♦ universal quantification allows Duotyping between the bounds, generalizing
the universal quantification presented in Section 4. Rule gds-forallffs in FF♦ employs
two operations |♦1|♦2 and A ♦̃ B:

|♦1|♦2

|<: |♦2 = ♦2

| :> |♦2 = ♦2

A ♦̃ B
A <̃: B = B
A :̃> B = A

|♦1|♦2 takes two modes ♦1 and ♦2 as input, and flips ♦2 if ♦1 is subtyping, otherwise it
returns ♦2. This operation chooses the mode to check the relationship between the bounds
of the two universal quantifiers being compared for Duotyping. The second operation A ♦̃ B
selects the bounds to use in the environment when checking the Duotyping of the bodies of
the universal quantifiers. It takes a mode ♦ and two types A B as inputs, and returns the
second type if the mode is subtyping, otherwise it returns the first type.

6 Related Work

Apart from informally observing duality of type system features, as far as we known, formally
exploiting duality in subtyping relations has not been investigated in the past. However there
is plenty of work on uses of duality in programming language theory. Furthermore there is
related work on type systems that exploit various generalizations for added expressive power
or economy in metatheory and implementation. We discuss these next.

ECOOP 2020

29:24 The Duality of Subtyping

6.1 Duality in Logic and Programming Language Theory
In type theory [5] and/or category theory [30, 14] duality occurs in various forms. For
instance, the duality between sum and product types is well-known in both type and category
theory. Properties about such types often explicitly acknowledge duality. Many properties
about sum types are presented as dual properties of corresponding properties on product
types and vice-versa. Our Lemma 6 is an example of a property that applies to both union
and/or intersection types. In this property duality is not only acknowledged, but directly
exploited in the lemma itself to provide a generalized property that can be specialized to one
construct and its dual. Various other dualities between constructs are known and exploited
in various ways in type and/or category theory. For example, existential and universal
quantification can be captured by an encoding by one through the other. The type ∃α. A
can be encoded as ∀β.(∀α. A→ β)→ β, which requires a kind of CPS translation [20] of the
corresponding terms. Similar encodings exist for sums and products.

In the field of proof-theoretic semantics [25] and in natural deduction the concept of
harmony is used to describe introduction and elimination rules that are in some sense dual.
For instance, the usual rules for introduction and elimination of conjunction are in perfect
harmony. The inversion principles by Prawitz [38] are a general procedure to associate to
any arbitrary collection of introduction rules a specific collection of elimination rules. The
elimination rules are in harmony with the given collection of introduction rules. Prawitz
inversion principles attempt to capture harmony in a more precise way, directly expressing it
formally. Therefore inversion principles have similar considerations to Duotyping in terms
of expressing some form of duality directly in a formalism. However inversion principles
focus on introduction and/or elimination rules, while Duotyping is focused on subtyping.
Nevertheless in future work we are interested in exploiting the use of duality in the typing
relation more. We believe that the notion of harmony and inversion principles could be quite
helpful in such work.

Double-line rules [21] are deduction rules that can be read both from top to bottom
(as usual) and also from bottom to top. In other words they express two standard (dual)
deduction rules in a single double-line rule. Like Duotyping, double-line rules aim at expressing
a form of duality in a single rule. Unlike Duotyping, double-line rules are concerned with
(dual) rules where the premises and conclusions of one rule become the conclusions and
premises of the other rule, respectively.

Bernardi et al. [10] explain duality relations in the context in session types. Binary
session types have two endpoints connected through one communication channel. In session
types, connected endpoints should have a dual relation in their session types. The duality
relation in session types is related to types and may have various interpretations. In contrast
Duotyping is about subtyping (or supertyping).

The duality between data and codata is well-known in programming language theory [14].
Data types and codata types are duals in the sense that data types are defined in terms
of constructors while codata types are defined in terms of destructors. More recently, such
duality has been exploited in language design [35, 13] to provide an automatic way to switch
between programs defined on datatypes and equivalent programs defined on codata types.
The use of duality in this line of work is quite different from ours.

6.2 Generalizations in Type Systems and Type Theory
Pure type systems (PTSs) [45, 31, 2, 28, 41, 48] capture a generalization of various type
systems (F, Fω, λP). Typing rules of multiple type systems are expressed in pure type systems
via parameterization. PTSs are parameterized by three sets: a set of sorts; a set of axioms;

B.C. d. S. Oliveira, C. Shaobo, and B. Rehman 29:25

and a set of rules. Concrete type systems (such as System F), are recovered with concrete
instantiations of those sets. Pure type systems with subtyping [48] are a variant of pure type
systems that captures a family of type systems with subtyping. This variant captures only the
upper bounds. It does not provide subtyping generalization with both upper and the lower
bounded quantification like our Duotyping generalizations of F<:. Pure subtype systems [26]
is a family of calculi based on subtyping only (and without a typing relation). This system
eliminates the need of typing and presents an alternative to typing using subtyping only. Pure
subtype systems support upper bounded quantification, but no lower bounded quantification.

Modal Type Theory. Modal type theory [33] is an extension of type theory which provides
type rules using modalities. Modal type theory can represent a proposition as types which
may be proved based upon the deduction rules in a given context. Modal type theory also
employs modes, for instance possibility and necessity [42, 33]. There are many type systems
that use modes to generalize typing relations. One can view Duotyping as a simple instance
of a relation with a mode. In Duotyping the mode is either subtyping or supertyping.

Bi-directional type checking. Bi-directional type checking [37, 23] also employs a mode,
but in the typing relation instead. Bi-directional type checking is a common technique,
used in implementations of programming languages, that can eliminate redundant type
annotations. Bi-directional type-checking is also employed is several type systems, especially
those where full type inference is undecidable [37, 24]. In such cases only partial inference
methods are feasible in practice, which means that some type annotations are necessary.
Bi-directional type checking is useful in such cases, allowing the type information to be easily
propagated without requiring further (redundant) annotations. The modes in bi-directional
type-checking are checking or synthesis. Checking checks a given term against a given type,
whereas the synthesis infers the type based upon the available information in the context.

Unified Subtyping. Unified subtyping [46] is a technique that can be used in dependently
typed systems supporting unified syntax to model typing and subtyping in a single relation.
The single unified subtyping relation generalizes both typing and subtyping. Like Duotyping,
unified subtyping can also help reducing language metatheory and duplication. However
unified subtyping is orthogonal to Duotyping and does not exploit duality of features. We
believe that both techniques can complement each other.

Bounded quantification and generalizations. System F<: [16] is extensively studied due
to its feature of bounded quantification. F-bounded quantification [15] is a generalization of
bounded quantification to handle recursive types. Although we are not aware of an extension
of F<: with lower bounded quantification, such notion has appeared before in some calculi.
For instance, Igarashi and Viroli [27] have pointed out correspondence between use-site
variance and existential types and, in order to capture contravariance, they introduced
lower-bounded existential types.

One generalization of F<: is studied by Amin and Rompf [4], which formalizes type bounds
in Scala. Type bounds is an interesting feature in Scala as elaborated by the following code
(code extended from Section 2.4):

class TypeBoundsCollection[S >: GraduateStudent <: Student](obj: S) {
def student: S = obj

}

ECOOP 2020

29:26 The Duality of Subtyping

While in our variants of F<: we support either lower bounded quantification or upper bounded
quantification (but not both at once), Scala’s type bounds allow both upper and lower bounds
at once. This is clearly more expressive than what we have, but it comes with its own
problems. Formalisms with Scala-like type bounds often need to include a transitivity axiom
(and thus are non-algorithmic) and they have to deal with the bad bounds problem. In
contrast our simpler extension of type bounds is comparable in complexity to F<:’s upper
bounded quantification, and there is a set of algorithmic subtyping rules without a built-in
transitivity axiom.

Intersection and Union Types. Intersection and union types [6, 22, 32, 36] are getting
significant attention in recent years, and are used in several modern programming languages
(including Scala, Flow or TypeScript). Reynolds [39] was the first to promote the use of
intersection types in programming languages. Later on, Pierce [36] studied intersection
types, union types and polymorphism combined in a typed λ-calculus. Recently, Muehlboeck
and Tate [32] presented a generalized formulation of calculi with union and intersection
types. They demonstrated it with the help of Ceylon programming language [29]. Dunfield
[22] presented an expressive calculus with a merge operator and unrestricted intersection
types with union types. We exploit the duality of union and intersection types to illustrate
Duotyping. Our Duotyping calculi manages to capture the six common rules for unions and
intersections using three rules only (plus the duality rule), which provides a simple illustrative
example of the use of duality.

7 Conclusion

In this paper, we have presented a generalization of subtyping using a relation parameterized
by a mode. We call this relation Duotyping. Duotyping allows formalizations of subtyping to
exploit duality between features directly in the formalism, and provides multiple benefits over
traditional subtyping relation. It shortens subtyping specifications, provides dual features
essentially for free and simplifies the transitivity proof in many calculi. An example of
an extra dual feature that is obtained for free, with a Duotyping design, is lower bounded
quantification. Lower bounded quantification arises naturally when we apply the Duotyping
to conventional F<: type systems. To validate the benefits of Duotyping, we have conducted
an empirical evaluation, implemented multiple calculi using both a traditional subtyping
relation and a Duotyping formulation, and compared the resulting formalizations.

Duality has been studied extensively in several contexts in the past. However, as far as
we know, our work is the first to study duality in the context of subtyping. Future work on
Duotyping includes applying the Duotyping methodology to several other forms of subtyping
that are of practical interest. We are particularly interested to apply Duotyping to systems
that include a feature, but have no obvious dual feature. We hope to discover potentially
new features that are useful for programming. Furthermore, we hope to scale the approach
so that it can be used in real programming language implementations, leading to more
compact and consistent implementations of subtyping. Another domain for future work
on Duotyping is the typing relation. Although we already have some simple cases where
Duotyping also provides benefits for typing (see Section 4), we acknowledge that introduction
and elimination rules for some (dual) constructs introduce new challenges. For instance,
more complex introduction and elimination forms for union types and intersection types can
be quite different [22]. Further exploration is needed to see how much Duotyping can help in
typing relations for calculi with such features. More generally, Duotyping promotes the use of

B.C. d. S. Oliveira, C. Shaobo, and B. Rehman 29:27

duality in language design. We envision that in the future new language designs can exploit
duality to ensure consistency between various language constructs, by exploiting techniques
similar to Duotyping.

References
1 Andreas Abel and Dulma Rodriguez. Syntactic metatheory of higher-order subtyping. In

International Workshop on Computer Science Logic, pages 446–460. Springer, 2008.
2 Robin Adams. Pure type systems with judgemental equality. Journal of Functional Program-

ming, 16(2):219–246, 2006.
3 Nada Amin, Adriaan Moors, and Martin Odersky. Dependent object types. In 19th Interna-

tional Workshop on Foundations of Object-Oriented Languages, 2012.
4 Nada Amin and Tiark Rompf. Type soundness proofs with definitional interpreters. In

Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, 2017.

5 Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth through
Proof. Academic Press, Inc., 1986.

6 Franco Barbanera, Mariangiola Dezaniciancaglini, and Ugo Deliguoro. Intersection and union
types: syntax and semantics. Information and Computation, 119(2):202–230, 1995.

7 Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda model
and the completeness of type assignment 1. The journal of symbolic logic, 48(4):931–940, 1983.

8 Bruno Barras, Samuel Boutin, Cristina Cornes, Judicael Courant, Jean-Christophe Filliatre,
Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan Murthy, et al. The
coq proof assistant reference manual: Version 6.1, 1997.

9 Jon Barwise and Robin Cooper. Generalized quantifiers and natural language. In Philosophy,
language, and artificial intelligence, pages 241–301. Springer, 1981.

10 Giovanni Bernardi, Ornela Dardha, Simon J Gay, and Dimitrios Kouzapas. On duality relations
for session types. In International Symposium on Trustworthy Global Computing, pages 51–66.
Springer, 2014.

11 Jan Bessai, Boris Düdder, Andrej Dudenhefner, Tzu-Chun Chen, and Ugo de’Liguoro. Typing
classes and mixins with intersection types. arXiv preprint, 2015. arXiv:1503.04911.

12 Gavin Bierman, Martín Abadi, and Mads Torgersen. Understanding typescript. In European
Conference on Object-Oriented Programming, pages 257–281. Springer, 2014.

13 David Binder, Julian Jabs, Ingo Skupin, and Klaus Ostermann. Decomposition diversity with
symmetric data and codata. Proceedings of the ACM on Programming Languages, 4(POPL):30,
2019.

14 Richard Bird and Oege de Moor. The Algebra of Programming. Prentice-Hall, 1996. URL:
http://www.cs.ox.ac.uk/publications/books/algebra/.

15 Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C Mitchell. F-bounded
polymorphism for object-oriented programming. In FPCA, volume 89, pages 273–280, 1989.

16 Luca Cardelli, Simone Martini, John C Mitchell, and Andre Scedrov. An extension of system
f with subtyping. Information and Computation, 109(1-2):4–56, 1994.

17 Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism.
ACM Computing Surveys (CSUR), 17(4):471–523, 1985.

18 Arthur Charguéraud. The locally nameless representation. Journal of Automated Reasoning,
2011.

19 Avik Chaudhuri. Flow: a static type checker for javascript. SPLASH-I In Systems, Program-
ming, Languages and Applications: Software for Humanity, 2015.

20 Oliver Danvy and Andrzej Filinski. Representing control: A study of the CPS transformation.
Mathematical Structures in Computer Science, 2(4):361–391, December 1992.

21 Kosta Došen. Logical constants as punctuation marks. Notre Dame J. Formal Logic, 30(3):362–
381, June 1989. doi:10.1305/ndjfl/1093635154.

ECOOP 2020

http://arxiv.org/abs/1503.04911
http://www.cs.ox.ac.uk/publications/books/algebra/
https://doi.org/10.1305/ndjfl/1093635154

29:28 The Duality of Subtyping

22 Joshua Dunfield. Elaborating intersection and union types. Journal of Functional Programming,
24(2-3):133–165, 2014.

23 Joshua Dunfield and Neel Krishnaswami. Bidirectional typing. arXiv preprint, 2019. arXiv:
1908.05839.

24 Joshua Dunfield and Neelakantan R. Krishnaswami. Complete and easy bidirectional typecheck-
ing for higher-rank polymorphism. In ICFP, 2013.

25 Gerhard Gentzen. Untersuchungen über das logische Schliessen. Mathematische Zeitschrift,
39:176–210, 405–431, 1934.

26 DeLesley S. Hutchins. Pure subtype systems. In Proceedings of the 37th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010, 2010.

27 Atsushi Igarashi and Mirko Viroli. On variance-based subtyping for parametric types. In
ecoop, pages 441–469, Malaga, Spain, June 2002. sv. To appear in ACM Transactions on
Programming Languages and Systems.

28 LSV Jutting. Typing in pure type systems. Information and Computation, 105(1):30–41, 1993.
29 Gavin King. The ceylon language specification, version 1.0, 2013.
30 Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in Graduate Texts

in Mathematics. Springer, 2 edition, 1998.
31 James McKinna and Robert Pollack. Pure type systems formalized. In International Conference

on Typed Lambda Calculi and Applications, pages 289–305. Springer, 1993.
32 Fabian Muehlboeck and Ross Tate. Empowering union and intersection types with integrated

subtyping. Proceedings of the ACM on Programming Languages, 2(OOPSLA):112, 2018.
33 Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory.

ACM Transactions on Computational Logic (TOCL), 9(3):23, 2008.
34 Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth, Stéphane

Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. An overview
of the scala programming language, 2004.

35 Klaus Ostermann and Julian Jabs. Dualizing generalized algebraic data types by matrix
transposition. In European Symposium on Programming, pages 60–85. Springer, 2018.

36 Benjamin C Pierce. Programming with intersection types, union types, and polymorphism,
2002.

37 Benjamin C. Pierce and David N. Turner. Local type inference. ACM Trans. Program. Lang.
Syst., 22(1), 2000.

38 Dag Prawitz. Proofs and the meaning and completeness of the logical constants. In Essays
on Mathematical and Philosophical Logic. Synthese Library (Studies in Epistemology, Logic,
Methodology, and Philosophy of Science), 1979.

39 John C Reynolds. Preliminary design of the programming language forsythe, 1988.
40 Tiark Rompf and Nada Amin. Type soundness for dependent object types (dot). In Proceedings

of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2016, 2016.

41 Paula Severi and Erik Poll. Pure type systems with definitions. In International Symposium
on Logical Foundations of Computer Science, pages 316–328. Springer, 1994.

42 Alex K Simpson. The proof theory and semantics of intuitionistic modal logic, 1994.
43 Martin Steffen and Benjamin Pierce. Higher-order subtyping, 1994.
44 Tarmo Uustalu and Varmo Vene. Comonadic notions of computation. Electronic Notes in

Theoretical Computer Science, 203(5):263–284, 2008.
45 LS van Benthem Jutting, James McKinna, and Robert Pollack. Checking algorithms for pure

type systems. In International Workshop on Types for Proofs and Programs, pages 19–61.
Springer, 1993.

46 Yanpeng Yang and Bruno C. d. S. Oliveira. Unifying typing and subtyping. Proceedings of
the ACM on Programming Languages, 1(OOPSLA):47, 2017.

http://arxiv.org/abs/1908.05839
http://arxiv.org/abs/1908.05839

B.C. d. S. Oliveira, C. Shaobo, and B. Rehman 29:29

47 Francesco Zappa Nardelli, Julia Belyakova, Artem Pelenitsyn, Benjamin Chung, Jeff Bezanson,
and Jan Vitek. Julia subtyping: a rational reconstruction. Proceedings of the ACM on
Programming Languages, 2(OOPSLA):113, 2018.

48 Jan Zwanenburg. Pure type systems with subtyping. In International Conference on Typed
Lambda Calculi and Applications, pages 381–396. Springer, 1999.

ECOOP 2020

Safe, Flexible Aliasing with Deferred Borrows
Chris Fallin
Mozilla1, Mountain View, CA, USA
cfallin@c1f.net

Abstract
In recent years, programming-language support for static memory safety has developed significantly.
In particular, borrowing and ownership systems, such as the one pioneered by the Rust language,
require the programmer to abide by certain aliasing restrictions but in return guarantee that no
unsafe aliasing can ever occur. This allows parallel code to be written, or existing code to be
parallelized, safely and easily, and the aliasing restrictions also statically prevent a whole class of
bugs such as iterator invalidation. Borrowing is easy to reason about because it matches the intuitive
ownership-passing conventions often used in systems languages.

Unfortunately, a borrowing-based system can sometimes be too restrictive. Because borrows
enforce aliasing rules for their entire lifetimes, they cannot be used to implement some common
patterns that pointers would allow. Programs often use pseudo-pointers, such as indices into an
array of nodes or objects, instead, which can be error-prone: the program is still memory-safe by
construction, but it is not logically memory-safe, because an object access may reach the wrong
object.

In this work, we propose deferred borrows, which provide the type-safety benefits of borrows
without the constraints on usage patterns that they otherwise impose. Deferred borrows work by
encapsulating enough state at creation time to perform the actual borrow later, while statically
guaranteeing that the eventual borrow will reach the same object it would have otherwise. The
static guarantee is made with a path-dependent type tying the deferred borrow to the container
(struct, vector, etc.) of the borrowed object. This combines the type-safety of borrowing with the
flexibility of traditional pointers, while retaining logical memory-safety.

2012 ACM Subject Classification Software and its engineering → General programming languages

Keywords and phrases Rust, type systems, ownership types, borrowing

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.30

1 Introduction

Managing memory ownership properly is central to safe, correct programming in any pro-
gramming language with a mutable heap. Parallel programs with shared memory can easily
experience non-deterministic, undefined behavior if two concurrently-executing threads write
to the same memory. Even sequential programs can experience subtle correctness issues
related to memory ownership: for example, pointer invalidation occurs when a data struc-
ture traversal simultaneously mutates that data structure, leading to dangling or incorrect
references.

Modern programming languages have developed support for managing ownership correctly
by encoding various invariants statically in the type system. Many works propose to
augment pointers with ownership information or capabilities (indicating temporary exclusive
access) [5, 4, 3, 1, 6, 12, 15, 22, 20]. Another related approach categorizes heap objects into
disjoint heap subregions, and annotates pointers to refer only to particular regions [8, 11, 3, 9].
Among languages in widespread use today, the Rust programming language [18] provides
an ownership and borrowing system that adapts ideas from lexical regions [8] to annotate

1 This work is independent of author’s employer and author does not speak for Mozilla.

© Chris Fallin;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 30; pp. 30:1–30:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cfallin@c1f.net
https://doi.org/10.4230/LIPIcs.ECOOP.2020.30
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Safe, Flexible Aliasing with Deferred Borrows

lifetimes on pointers. The language’s type system tracks “borrows” of an owned object –
pointers taken to the object, or copies of those pointers – and ensures that only one mutable
view of the object can be used at a time by blocking access to the original object for the
borrow’s duration. All of these systems work to enforce memory safety in some way by either
disallowing some pointers to exist, or else disallowing some pointers to be accessed, in order
to prevent aliasing, concurrent accesses that would cause correctness issues.

Although these systems can improve correctness for many classes of programs, there is still
resistance to their adoption because they are often not flexible enough. For example, since
its release in 2015, the Rust language has become well-known for the introductory experience
of “fighting the borrow checker”2. The patterns that its ownership-passing and temporary-
borrowing system allows and encourages are unfamiliar to programmers accustomed to
unrestricted pointers in C or Java. As a result, Rust programmers have developed creative
workarounds in their data-structure designs. For example, programs that manipulate graphs
of objects, or otherwise have unpredictable heap graphs, sometimes use indices into a vector
of objects as pseudo-pointers, in place of true pointers (borrows). Unfortunately, this merely
sidesteps the problem, because these pseudo-pointers can be error-prone (as we will show
later), and in any case are more cumbersome to use.

In this paper, we observe that an ownership and borrowing memory-management discipline
is sometimes inflexible for artificial and unnecessary reasons, and that by splitting the borrow
operation into two parts – the lookup, producing a “deferred borrow” handle, and a later
conversion into a real borrow – much of the ease-of-use of an unrestricted language is
recovered. The key idea in this work is to encapsulate a reference to an object that is not
(yet) a borrow, so it does not trigger the restrictive mutual-exclusion rules that mandate
only one usable mutable reference exist. Our language extension uses path-dependent types
to statically bind this reference to the container (such as a vector, key-value map, struct or
tuple) that owns the object. The deferred-borrow reference can later, at the point of actual
use, be recombined with a reference to the container to get a true reference (borrow) of
the pointed-to object. This true borrow lasts only as long as needed (during the use itself),
and thus does not prevent the program from holding many deferred-borrow references to
the same object, several of them mutable at once. Flexibility is achieved without giving up
Rust’s memory safety or suitability for concurrency.

The structure of the remainder of this paper is as follows. In §2, we first provide a tour
of the essential aspects of Rust’s borrowing and ownership system. Then, in §3, we show
how Rust’s borrows do not provide as much flexibility as pointers do, and demonstrate
the alternative approaches that programs often use. We show that while these approaches
attain Rust’s memory safety properties in a literal sense, they lack what we call logical
memory safety: the pseudo-pointers (e.g., indices into vectors), if used incorrectly, can cause
the program to silently access the wrong data. We describe what would be necessary to
avoid these logical memory safety violations. In §4, we introduce an extension to the Rust
type system, static path-dependent types, that provide a minimal building-block for object
references that retain logical memory safety. We prove that static path-dependent types
provide an essential object-binding property. In §5, we finally introduce the concept of a
deferred borrow, which is a general pattern that can be implemented by several types of
containers, such as vectors, key-value maps, structs, and tuples. In §6, we describe how we
have emulated static path-dependent types in the existing Rust type system for evaluation

2 In the 2018 Rust community survey [19], the second and third most difficult-rated topics to learn were
ownership/borrowing and borrow lifetimes, after only the macro system.

C. Fallin 30:3

purposes. In §7, we analyze several common data-structure design patterns and qualitatively
describe how the deferred borrows approach compares to other techniques. In §8 we consider
related work.

2 Background: Ownership and Borrowing

In order to understand the need for deferred borrows, we first describe borrowing-and-
ownership-based memory management as it is practiced in the Rust programming language [18].
We will describe how the language uses ownership to establish unique, unaliased access to
heap objects, which permits statically-verifiable safe parallelism (§2.1). Then, because a pure
ownership tree is cumbersome and difficult to use, we describe how Rust allows borrowing of
owned objects by a form of lifetime-restricted pointer (§2.2). Finally, we look at how Rust
container types typically use borrowing to encode safety invariants and extend the memory
safety of core Rust data structures to the library level (§2.3).

2.1 Object Ownership and Linear Move Semantics

The Rust language, as many other memory safe languages or type systems before it [5, 4, 3],
begins with establishing unique ownership for every object. An instance of an object (in
Rust, a struct) can either exist on the stack or on the heap. In the former case, the local
variable binding owns the object; in the latter, the heap memory is ultimately managed by
an object on the stack, even if this is just a Box<T> (a pointer type).

The language uses affine types to ensure that a given object instance is not duplicated.
When a non-copyable type is assigned (only primitive data types are trivially copyable), the
object is moved out of the original storage slot (e.g., local variable binding), and the storage
slot becomes inaccessible.

Fig. 1 shows a simple demonstration of moving ownership. We can see several examples
of both stack-allocated and heap-allocated objects in this program. The s local variable
is assigned an object initializer for a struct of type S; the storage for s is allocated in the
stack frame. Several of its fields own heap storage, however: for example, the t field owns an
instance of T that is stored on the heap, and the children field owns a vector (array-backed
list) of S, also stored on the heap.

There are two important aspects to Rust’s ownership system on display here. First,
without borrowing (which we introduce below), storage is organized into a strict tree of
access paths. There is data at s, and s.t, and s.children[0], and s.children[0].t. Each
object has exactly one access path, however: there is no aliasing of heap references.

Second, Rust enforces move semantics. When the program assigns local variable t the
value of s.t, the assignment moves the object, and s.t is no longer accessible. The program’s
attempt to access s.t.a later is thus a static compilation error. Likewise, s.children
becomes inaccessible after a move. These assignment semantics preserve the above property:
by never duplicating non-trivial (non-copyable) data, we never create aliasing pointers. Of
course, this restriction will be relaxed later, but only in a controlled way.

By providing exactly one path to any particular object, the ownership system can provide
both (i) precise memory management – when a path goes out of scope, its subtree of memory
resources is freed – and (ii) safe, deterministic (race-free) parallelism, by passing ownership
of entire subtrees to separate parallel tasks. Despite these advantages, it is cumbersome:
many common programming idioms rely on holding multiple references to particular heap
objects. We now describe how pointers can be re-introduced in a limited but safe way.

ECOOP 2020

30:4 Safe, Flexible Aliasing with Deferred Borrows

struct S {
value: u64,
t: Box<T>,
children: Vec<S>,

}
struct T {

a: u64,
b: u64,

}

fn main() {
// `s` lives on the stack, and is the unique owner of:
// `t`, a `T` instance that is also on the stack
// `children`, a `Vec` whose storage (and S instances)
// are on the heap
let mut s: S = S { value: 1,

t: Box::new(T { a: 1, b: 2 }),
children: vec![/* ... */] };

s.value += 1;
s.t.a = 100;
s.children.push(S { ... });

let t = s.t; // moves `t` out of `s`
let children = s.children; // moves `children` out of `s`
s.t.a = 1; // ERROR! (s.t moved out of already)

}

Figure 1 Rust ownership system: examples.

2.2 Safe Pointers: Lifetime-constrained Borrows
In order to allow references to a particular object, Rust permits borrows. A borrow is a kind
of pointer that can be created from an owned access path, and that has an explicit lifetime
that is statically restricted to maintain the safety properties that we introduced with unique
ownership above. In particular:

A borrow temporarily restricts access to an access path, just as a move out of that path
permanently restricts access.
A borrow can only exist as long as the original borrowed object exists: for example, it
cannot be returned from a function if it borrows an object on that function’s stack frame.

Both of these restrictions are implemented using lifetimes. A lifetime is, conceptually, a
static description of a period of time during execution: either a local scope or a contiguous
range of program points. Semantically, every borrow has a lifetime, and every local variable
does, as well. In Rust’s syntax, a lifetime is written as ’a, and a borrow of an object of type
T is written &’a T. Though every borrow semantically has a lifetime, lifetimes are usually
inferred and so they can be omitted.

When a borrow is created, the borrow’s lifetime is constrained such that the borrowed
object must outlive the borrow, and the lifetime of the local variable that holds the borrow
(as a value) must be outlived by the borrow lifetime. This is illustrated in Fig. 2.

Note that borrows can be included in data structures: when a an aggregate datatype
(such as a struct) has a member whose type is a borrow, the lifetime of that borrow must be
defined as a generic parameter of the type. This need arises because such a type is (usually)
defined outside of any function scope, and hence no lifetimes are otherwise in scope. This
implicitly creates an outlives-constraint: when one object contains a pointer to (i.e., a borrow
of) the other, the latter must outlive the former. This is analogous to the local-variable case
above.

C. Fallin 30:5

struct S { ... }

fn main() {
let mut s: S = S { ... };

s.a = 1;

let mut s_borrow: &mut S = &mut s; // \
// |

s.a = 2; // ERROR: s is currently borrowed // | borrow lifetime
// |

s_borrow.a = 2; // OK. // /

// s_borrow is now dead -- `s` can be accessed again.

s.a = 3;
}

Figure 2 Rust borrowing examples.

2.2.1 Access Path-based Disjointness
The borrow system supports two types of borrows: mutable (as &mut T) and immutable (as
&T). Multiple immutable borrows may have overlapping lifetimes, and read-only accesses to
the original, borrowed, object may occur while such borrows exist. In contrast, if a mutable
borrow is created, then no other mutable borrow of that object may have an overlapping
lifetime, and the original object is inaccessible during its lifetime, as illustrated in Fig. 2.

In order to maintain this single-access-path invariant that enables safe parallelism, the
Rust borrow system tracks disjointness of borrows. In particular, for any given object stored
within a local variable or field of a struct (identified by an access path starting from a local
variable), the compiler tracks which borrows are active for which contiguous spans of static
program points, and ensures that no two incompatible borrows or direct accesses overlap.

2.2.2 Two Guarantees: Safety and Unique Mutability
The borrow system in Rust provides pointers that have been statically verified to retain
two important properties: memory safety and unique mutability. Memory safety arises from
outlives-constraints, and means that a pointer cannot be dangling; every pointer dereference
thus accesses valid memory, and the program can never crash from an invalid pointer access.
Unique mutability arises from disjointness constraints, and means that if a pointer is mutable
(can be used for writes), then it is the only available access path to its pointee. This is what
allows for safe parallelism: because of unique mutability, a program cannot have data races.
Both sorts of constraints, and both resulting guarantees, also allow for the creation of safe
container types that extend the access path-based system to dynamically-sized, heap-resident
containers.

2.3 Borrows and Container Types
The power of Rust’s ownership and borrow system arises from the way in which its basic
primitives – borrows with lifetimes, and constraints between lifetimes – can be used by
libraries to build type-safe containers.

Consider, for example, the simple vector (array-backed ordered list with O(1) element
access) API in Fig. 3. This API has two functions: get_index_mut, which returns a pointer
to a storage slot within the vector, and append, which appends a new element.

ECOOP 2020

30:6 Safe, Flexible Aliasing with Deferred Borrows

struct Vector<T> { ... }
impl<T> Vector<T> {

// The 'a lifetime (usually implied, but written explicitly here) ties
// the returned borrow to an implicit borrow of `self` at the callsite.
// The callee cannot use the `Vector` in any other way while the
// borrow to the element is live.
fn get_index_mut<'a>(&'a mut self, index: usize) -> &'a mut T { ... }
fn append(&mut self, t: T) { ... }

}

fn main() {
let mut v = Vector<u32>::new(...);

let elem0 = v.get_index_mut(0); // borrows `v`, returns borrow to elem
*elem0 = 1;
// `elem0` borrow now dead (not used below). Borrow lifetime on `v` ends.

let elem1 = v.get_index_mut(1);
let elem2 = v.get_index_mut(2); // ERROR: `v` already borrowed mutably.
*elem1 = 2;
*elem2 = 3;

let elem3 = v.get_index_mut(3);
// The mutable borrow also serves to "freeze" the underlying storage
// location in place (no other method on the `Vector` can be invoked,
// because we cannot borrow its `self` again). This is needed
// because the borrow is just a pointer: the container must not
// e.g. reallocate its storage to grow an array, rehash a table or
// rotate a tree, etc.
v.append(4); // ERROR: `v` already borrowed mutably.
*elem3 = 4;

}

Figure 3 Rust lifetime constraints used in container APIs.

In order to return a borrow to internal storage – an element contained within, and whose
memory is managed by, the vector – the get_index_mut function must take a borrow of
the vector itself, Given the borrow of the whole vector, it can safely return a borrow of a
piece of that vector, as long as the returned borrow’s lifetime is contained within the original
borrow’s lifetime (trivially true here as the lifetime is the same ’a).

This lifetime-outlives constraint, relating a borrow of the original container to that of its
element, serves two important purposes. First, the borrow on the container serves as a proxy
for the borrow of the element itself. Because the Rust borrow-checker does not have a precise
understanding of vector indices or hashmap keys (for example), it cannot directly track
the access-paths that name these storage locations. Hence, although it might be perfectly
valid (assuming a well-behaved data structure implementation) to borrow both v[i] and
v[j] mutably if i ≠ j, because the element storage slots are disjoint, the borrow checker
cannot actually verify this. The container API leverages the borrow checker in a sound but
conservative way, requiring a borrow of the entire container when an element is borrowed.
Because it is always sound to “over-borrow,” this maintains the no-dangling-pointer and
no-aliasing-mutable-pointer safety properties of Rust’s type system.

Second, and just as importantly, this lifetime constraint and container-borrow mechanism
freezes the container layout in place so that the raw pointer (which is how a borrow is
implemented) remains valid. Here, any access with get_index_mut borrows the container
mutably, which prevents any other access to the original object. Idiomatic container APIs also
allow immutable element borrows, which borrow the container immutably: this allows other

C. Fallin 30:7

read-only access to the container, but still prevents any mutation. This works because any
other function that mutates the container – e.g., append, which might cause the underlying
storage to be reallocated if more space is needed – takes a &mut self parameter, requiring
a mutable borrow, which is incompatible with the outstanding (immutable or mutable)
borrow.

3 Inflexible Borrows and Workarounds

Now that we have seen how Rust enables safe aliasing through borrows with carefully checked
disjoint-lifetime and disjoint-mutability properties, let us consider how these limitations
impact program design.

3.1 Borrowing-Incompatible Data Structures
Two basic patterns of pointer-based data structure design are problematic when borrows are
used in place of pointers, corresponding to each of the constraints that the borrowing system
imposes.

First, the borrowing system requires the borrowed object to outlive the borrow itself, to
preserve the language’s memory-safety property. When one object points to another, the
lifetime of the former must be strictly shorter than the latter. This immediately rules out
cycles of borrows. Common data structures that are cyclic, such as graphs, doubly-linked
lists, and trees with parent pointers, thus cannot be implemented in safe Rust.

Second, the borrowing system requires borrows to be safe relative to each other, and
in particular, allows no more than one mutable borrow to exist at a time. There are many
programming idioms that require holding pointers to inner elements of a data structure: for
example, a “secondary index” might refer to elements in a vector or map indexed by an
alternate key, or an algorithm may keep a stack of pointers to nodes as it traverses a graph or
tree. Some of these pointers may later be used to update the data structure. Unfortunately,
Rust cannot allow these pointers (borrows) to be mutable.

Both of these problems can be seen in Fig. 4. Program 1 shows a simple graph-
manipulation program in C++, demonstrating the ease by which the graph node type
can be defined. In contrast, in Program 2, we run into trouble as soon as we try to define
the node types, caused by both reference cycles and aliasing mutable borrows. We clearly
cannot carry over our habits of freely handling pointers as we had done in C++.

One approach, sometimes seen in core data-structure libraries, is to use “unsafe” raw
pointers that circumvent the type system. While the Rust language allows this C-like flexibility
via an escape hatch, the memory safety then relies completely upon the programmer’s care.
We thus do not consider this approach further.

3.2 A Solution: Pseudo-Pointers
A common approach to allow arbitrary object references in safe Rust is to use names for
objects that are not actually borrows (pointers), such as indices in a vector. Program 3
in Fig. 4 demonstrates this approach. Node references are by indices into a vector, and
this vector is the true owner of the nodes. Rust’s tree-ownership model that described
in §2 is retained, and the program is completely memory-safe. There is no issue when
visitEdge needs to take references to two different nodes to mutate, because these references
(indices) are not actually potentially-aliasing borrows, only integers. We call these integers
pseudo-pointers.

ECOOP 2020

30:8 Safe, Flexible Aliasing with Deferred Borrows

Program 1: C++, using unrestricted native pointers
// Define a graph as a list of pointers to nodes; define a node's edges
// simply as pointers to other nodes.
typedef vector<Node*> Graph;
struct Node { vector<Node*> outEdges; };
void visitEdge(Node* n, Node *neigh) { ... }

void updateGraph(Graph& g) {
for (Node* n : g)

for (Node* neighbor : n->outEdges)
visitEdge(n, neighbor);

}

Program 2: Rust, using references (borrows)
// Problem 1: we will not be able to construct a graph instance of Node<'a>
// because each node needs to outlive its pointed-to nodes; the cyclic
// dependency is impossible to resolve.
//
// Problem 2: we cannot hold mutable borrows of neighboring nodes in
// `outEdges`, because more than one borrow might exist (the type
// system will not allow us to create these borrows).
type Graph<'a> = Vec<Node<'a>>;
struct Node<'a> { outEdges: Vec<&'a mut Node> }

Program 3: Rust, using node indices
// Define a graph as an owned vector of nodes; define out-edges as
// indices of other nodes in this vector.
type Graph = Vec<Node>;
type NodeIndex = usize;
struct Node { outEdges: Vec<NodeIndex> }

// NOTE: this is cumbersome: every access to a node `n' is really
// `g.nodes[n]'.
fn visitEdge(g: &mut Graph, n: NodeIndex, neighbor: NodeIndex) { ... }

fn updateGraph<'a>(g: &mut Graph<'a>) {
for n_idx in 0..g.len() {

// Note: we need to copy the outEdges list here because `visitEdge'
// below takes temporary mutable ownership of the entire graph `g'.
let neighs = g[n_idx].outEdges.clone();
for neigh_idx in &neighs {

visitEdge(g, n_idx, neigh_idx);
}

}
}

Figure 4 A graph-processing program, in C++ (first program) and Rust (second and third
programs), that demonstrates the difficulties imposed by borrowing (second program) and the
type-unsafety of the usual workaround (third program).

However, this approach has several downsides. First, and most directly, it is cumbersome.
To make it work, we need to (i) pass a borrow to the true owner (here, the Graph object)
everywhere along with the pseudo-pointers, and (ii) explicitly dereference the node by
indexing the vector at each point of use. However, beyond the mere ergonomics issues, a
potential correctness issue looms: the vector access g[n_idx] may not refer to the same
Node at access time that it did when the index was taken! If, for example, the program
removes a node and compacts the node-vector, all node indices become invalid, but the type
system does not prevent their use. Even worse, if the program contains multiple vectors of
the appropriate type (say, the program maintains several graphs simultaneously), an index
intended for one may be used to access another. We define a new term to encapsulate these
issues: logical memory safety.

C. Fallin 30:9

3.3 Logical Memory Safety
Rust provides memory safety in the sense that any memory accessed by a Rust program must
be valid memory and must be a valid, still-live instance of the object implied by the type of
the pointer (borrow). Nothing in the vector-based approach invalidates this property, nor
could it, because the guarantee is true for any safe Rust program. Unfortunately, nothing in
the Rust type system ensures that the correct memory will be accessed, because correctness
is a program-specific property.

We define logical memory safety in the context of a program that uses pseudo-pointers
to mean that every access to an object via a reference (such as a vector index) accesses the
same object that the reference was created to refer to. This property provides essentially
the same guarantee that a borrow does: a borrow also ensures that the pointed-to object
remains accessible, and remains the same object, during the lifetime of the borrow.

3.4 Maintaining Safety: Deferred Borrows with Irrevocable Binding
We can now concisely state the goal of this work: we wish to provide logical memory safety for
object references without the limitations of borrows, i.e., in a way that retains the flexibility
of pseudo-pointers.

We build on pseudo-pointers, because they resolve the conflicting-borrows problem right
away. This is because they defer the actual borrow of the container until the referred-to
object is used. In other words, nodes[node_idx] borrows nodes mutably, but only for as
long as the particular operation on this node. This property is the origin of our term deferred
borrow, which we expand further in §5.

To make pseudo-pointers logically memory-safe, let us consider what would be needed: in
concrete terms, for the vector-based approach, we must ensure that an object’s index in the
vector is constant once added (by only appending to the vector). In addition, we must ensure
that an index created for some particular vector is only ever used to access that vector, and
not another, even if their static types match.

We can provide the append-only property at the library API level by encoding the
invariant into the types: for example, provide a .to_append_only() method on Vec<T> that
consumes the Vec (as we can do with linear types!) and returns an AppendOnlyVec<T>.

Ensuring that indices are only used with a particular vector, however, is more challenging.
The existing Rust type system cannot encode this restriction. We must somehow irrevocably
bind an index with a vector object, and require this binding when the access node[node_idx]
occurs. In the following section, we now show how this can be done with static path-dependent
types.

4 Static Path-Dependent Types in Rust

Our key contribution to the core Rust language that enables deferred borrows is the static
path-dependent type. Path-dependent types have been proposed previously in a dynamic
context [7, 14, 2], e.g. in Scala: in that context, a type is an element of some class, and each
class instance has a different type (i.e., the dynamic object identity is part of the type). In
contrast, our path-dependent types are static. This is an extension to an ordinary type that
ties a value to another particular value in-scope, by its access path (local variable plus struct
field(s)).

We define a type T/x to be a subtype of T that has the path x. Intuitively, a path can
refer to any storage place that the borrow-checker tracks: e.g., a local variable binding or a
subfield of one. The path can then be used to constrain function arguments so that, e.g., a

ECOOP 2020

30:10 Safe, Flexible Aliasing with Deferred Borrows

value of type T/x can only be combined with exactly the value in local x. This provides the
necessary conditions for logical memory safety of deferred-borrow smart pointer objects, as
each can be paired with the container from which it must eventually borrow.

4.1 Types with Static Dependent Paths
We augment the type system of Rust so that any type τ can be annotated with a path p
to form type τ/p. The path describes a storage slot, or place in the terminology of Weiss
et al. [21]’s formulation. Concretely, this is a root binding optionally extended with a path
of struct fields. A root binding is (i) a local immutable variable binding in scope, within a
function body; (ii) a formal parameter index, within a function type; or (iii) the self root,
within a struct. In each of these contexts, the path corresponds to a fixed location that will
hold the same value until it goes out of scope or is moved out of.

To communicate our intended semantics, we sketch a set of definitions and inference rules
in Fig. 5. This scheme is built on top of that of Weiss et al. [21] for the Oxide language, which
describes a small core language that captures Rust’s ownership and borrowing semantics.
We first extend the type unification and subtyping judgments with rules to allow the path
annotations on types to flow through the program. We extend the expression typing judgment
to weaken path-dependent types when the corresponding path is dropped or moved out of, or
when a mutable binding is modified: formally, when the place π is removed from the outgoing
typing context Γ in T-Move’, we weaken any type τ/π in the typing context to simply τ .
Finally, we modify the typing rules for function application and struct-field projection to
translate the roots between the three domains (locals, function parameters, or a struct’s self).
This allows struct field types and function parameter types to naturally refer to “neighboring”
values, as we will see below.

4.2 Static Path-Dependent Types in Rust: Syntax and Examples
We now show how static path-dependent types might appear in several Rust snippets to
give a flavor of their integration into the language. First, consider that we have a struct
definition:

struct S<'a> { c: &'a Container, r: Option<ContainerRef/self.c> }

This struct holds a borrow (over whose lifetime it is parameterized) to some Container
type that we have presumably defined elsewhere. It also holds a value of type ContainerRef.
In this struct definition, however, we have augmented this type with a path self.c. In a
struct field type context, any path on a path-dependent type must start with the self path
prefix, and this prefix indicates that the following path refers to a neighboring field in the
same struct instance. Here, whatever ContainerRef that is stored in r of a given instance
will be irrevocably tied via its path to the container in c.

To use this value, we might write a function like the following:

fn foo() {
let c = Container::new_with_contents();
let mut s = S { c, r: None };
let r = s.c.deferred_index(/* index = */ 42);
s.r = Some(r);

let elem = s.c.defborrow(s.r.unwrap());
// ...

}

C. Fallin 30:11

Static Path-Dependent Types

Note: This formalization extends that of Oxide [21], which captures the Rust ownership
and borrowing system in a small core language. We omit a repetition of most of
Oxide’s rules and definitions, and show only those relevant to tagged types below.

e Expression x Variable/Identifier p Path
τ Type π Storage Place i, n Naturals

Language Extensions
τ ∶∶= . . . ∣ τ/p Path-dependent type
p ∶∶= π Storage-place path (in expression context)

∣ i.x1.xn Formal parameter path (in function type)
∣ self.x1.xn Struct path (in struct field type)

T ; Σ; ∆; Γ ⊢ π ∶ τ ⇒ Γ′ (Typing judgment)

Γ ⊢uniq π ∶ τs τs noncopyable
T-Move’ Σ; ∆; Γ ⊢ π ∶ τs

⇒ filter(Γ − π,π)

Similar adaptation to T-Let, omitted for brevity: filter path x from Γ in the
out-context of let x

Σ; ∆; Γ ⊢ ef ∶ (τ
s
1 , . . . , τ

s
n)→ τs

f ⇒ Γ′
Σ; ∆; Γi−1 ⊢ ei ∶ funcpath(τs

i , (e1, . . . , en))⇒ Γi, 1 ≤ i ≤ n
T-App’ Σ; ∆; Γ ⊢ ef(e1, . . . , en) ∶ τ

s
f ⇒ Γn

places-typ meta-function modified so that struct-field types are filtered through
structpath; if x ∶ {x1 ∶ τ/self.π, . . .} ∈ Γ, then x.x1 ∶ x.π ∈ Gamma.

filter(Γ, π) = Γ[τ/π. . . .↦ ⋅]

funcpath(τ, (e1, . . .)) = τ[τ ′/i.π ↦ x.π if ei = x]

structpath(τ, π) = τ[τ ′/self.π′ ↦ π.π′]

τ1 ∼ τ2 ⇒ τ (Type unification)

τ1 ∼ τ2 ⇒ τ
U-Path

τ1/p ∼ τ2/p⇒ τ/p

Σ ⊢ τ1 <∶ τ2 ↝ δ (Subtyping)

Σ ⊢ τ1 <∶ τ2 ↝ δ
S-Path Σ ⊢ τ1/p <∶ τ2 ↝ δ

Figure 5 Static path-dependent types: definitions and rules as an extension of the Oxide
formalization [21].

ECOOP 2020

30:12 Safe, Flexible Aliasing with Deferred Borrows

In this function, we create an instance of S, and initially fill its field c with a new
Container. Let us say that the method Container::deferred_index returns a value of
type ContainerRef/s.c (we will see how such a function can be declared below). Then
r has this type as well. This type unifies with the type of field s.r because T/self.c in
struct-field type context maps to T/s.c for the struct at the particular place s.

How do we pass these path-qualified values between functions? Analogously to our
approach for struct-field types, we allow parameter roots in parameter (and return value)
types. Thus the type of one parameter can be bound to the value of another parameter. For
example, we might define deferred_borrow above as follows:

impl Container {
fn deferred_index(&self, index: usize) -> ContainerRef/0 {

ContainerRef { /* ... */ }
}

}

The return type ContainerRef/0 refers to the 0-th parameter, in this case self: thus,
the returned ContainerRef is bound to the passed-in Container.

Paths can always be stripped from types, but cannot be added in ordinary value dataflow,
due to the subtyping rule S-Path which specifies that τ/p <∶ τ . A value acquires a path at
construction time: e.g., above, the return value is constructed with the struct-literal form for
ContainerRef, and implicitly has type ContainerRef/0.

Finally, the function defborrow can place a path on an inbound parameter type, requiring
that parameter to have the path in order for the function call to typecheck. In this running
example, defborrow() requires the passed-in ContainerRef to be associated with the self
Container in order for the call to succeed:

impl Container {
fn defborrow(&self, r: ContainerRef/0) -> &Elem {

// ...
}

}

In summary, we see that static path-dependent types qualify arbitrary types with storage
paths. The paths available depend on the context. For an expression in a function body,
these are precisely the local storage paths, rooted at local variables. For a struct definition’s
fields, these are paths rooted at self and a field name in the same struct. Finally, for
function parameter and return types, these are the numbered roots 0 to n-1 referring to the
n parameters of the function.

4.3 Correctness: Value-Correspondence Lemma
Building on the above intuition for “binding” one value to another, we can now describe the
condition that path-dependent types ensure:

I Lemma 1. If a storage place π is in scope with any type and with value v at a program
point defined by typing environment Γ, and another storage place π′ is in scope with type τ/π
and with value v′ at the same program point, then for any dynamic execution, the value v′ is
stored in a place of type τ ′ <∶ τ/π only as long as the value v remains in storage place π.

Proof sketch. Follows from the dynamic semantics. As long as the binding π it remains in
scope, the value remains v (because bindings in Oxide are immutable). The rules T-Let and
T-Move in the Oxide formalization [21] on which our formalization is built ensure that π is
dropped from the typing context Γ when it is moved out of or when it falls out of scope. Our
modifications to these rules apply our meta-function filter() to the typing context, weakening
any type τ/π to simply τ . J

C. Fallin 30:13

4.4 Generics and Path Parameters
For brevity, we have not included a formalization of generic path parameters, though we
describe them informally here. In order to allow data structures to contain path-dependent
types that refer to paths outside of the struct in question (i.e., outside of the self path),
we allow generic parameters to provide paths. Field types are known at instantiation time
according to the actual path provided as a parameter, as for type and lifetime generics.

4.5 Alias Analysis and Type-Tag Propagation
We note briefly that this type system can be seen as the combination of path-dependent types
(in the dynamic sense of earlier work [7, 14, 2]) with a static must-alias analysis, so that all
dynamic checks are replaced with static reasoning at type-check time. The rules for unifying
dependent paths attached to types essentially form a very simple path-based intraprocedural
must-alias analysis. When seen this way, one can also imagine several precision enhancements
by adopting more advanced static must-alias techniques, as in e.g. Kastrinis et al. [10].

5 Deferred Borrows

In §3, we saw how the existing Rust borrow system can be inflexible in the face of some
common program design patterns. We described the foundation of a solution in §3.4,
describing how one might combine an index-based scheme (what we call pseudo-pointers)
with some sort of strong binding between these indices and the particular container instances
to which they refer in order to attain logical memory safety, a stronger property than Rust’s
language-level memory safety. Now that we have introduced static path-dependent types, we
can show how to use these to achieve exactly this goal.

Our key insight in this work is that we can alleviate the inflexibility of the borrow system,
caused by the conflict of multiple outstanding borrows, by avoiding a borrow until the point
of use while retaining safety in other ways. This is the origin of the name deferred borrow.

A deferred borrow is an API concept that uses path-dependent types to provide a more
flexible interface to a container. As we described in §2.3, borrows of container elements perform
proxy borrows (borrows with the same lifetime) of the entire container; this approximation is
necessary to retain memory safety because the borrow checker cannot reason about abstract
index spaces or storage locations such as vector indices. The idea of a deferred borrow is to:
1. Freeze the existence of the reference element (e.g., disallow element deletion); and
2. Return some state that can allow a lookup and true borrow of the element later, even if

the internal storage of the container has been rearranged in the meantime. This later
lookup performs a borrow of the entire container, as an ordinary element reference does.

3. Tie this state to the container with a path-dependent type.

This strategy provides all the same guarantees as a true Rust borrow. First, while the
true borrow is outstanding at the point of use, we have memory safety simply by reduction
to the usual Rust container access idiom: the entire container is borrowed for the duration of
the element access. However, for the entire existence of the deferred-borrow element reference,
we also have a substantially similar guarantee: (i) the container is put into a state so that
the element cannot disappear; (ii) the element reference is tied to this particular container;
so (iii) when the deferred borrow is converted into a real borrow, the borrow will refer to
exactly the desired element.

ECOOP 2020

30:14 Safe, Flexible Aliasing with Deferred Borrows

It is important to note that all of these properties were provided by a true borrow
simply because a true borrow performs a borrow of the entire container for the duration
of the element access. In contrast, a deferred borrow synthesizes this same guarantee from
pieces. By doing so, without holding an outstanding borrow on the container, many of the
unnecessary restrictions are avoided. In particular, while a deferred borrow exists, any of the
container elements can be accessed or mutated, even if the outstanding deferred borrow also
allows mutable access; and, if the container is implemented properly, the program can also
append new elements to the container. In other words, we separate a “bookmark” phase, in
which an element is identified, from a “use” phase, in which it is exposed for access.

5.1 Definition and Correctness Conditions
A deferred borrow idiom properly implemented by a container grants logical memory safety,
as long as the container upholds the contract: a deferred borrow object returned by a lookup
operation must convert into the same borrow at any future point if dereferenced with the
same container object. Combining the value-correspondence lemma of §4.3 with this contract,
we have the full guarantee to the user of the container API.

In slightly more precise terms, we can define a deferred-borrow implementation as an API
pattern with the following conditions. Given a mutable container datatype that contains
values of type V indexed by keys of type K and provides the following operations:

insert(c, k, v), which inserts a new storage slot dynamically into container c at abstract
address, or key, k with initial value v,
remove(c, k), which removes a key k from c,
immutable_borrow(c, k) which returns an immutable borrow (pointer) to the storage
slot for k, and has lifetime constraints such that c is immutably borrowed as long as the
returned borrow is in scope,
mutable_borrow(c, k) which likewise returns a mutable borrow tied to a mutable borrow
of the container,

and the usual key-value map semantics (the value seen under the pointer returned by
immutable_borrow or mutable_borrow is that value last stored to a pointer fetched by
mutable_borrow for that key), a deferred-borrow pattern is implemented with the operations:

deferred_get(c, k), which returns some abstract reference type r, tied to the container
with a path-dependent type,
deferred_borrow(c, r), which given any r returned by deferred_get(c, k) at any point in
the past with no interceding remove(c, k) operation, returns an immutable borrow to the
storage slot currently backing k, with lifetime tied to a full-container borrow as above,
and
deferred_get_mut(c, k), likewise but with mutable borrows.

The most important aspect of a deferred-borrow implementation is the property that a
reference remains valid even if the container is later mutated. This implies that the abstract
reference type must somehow keep a logical notion of storage-slot address, rather than a true
pointer, unless the implementation can guarantee that the storage layout will never change.
It is exactly this property that allows us to retain logical memory safety without freezing the
container completely with an ordinary borrow.

The correctness of the deferred-borrow concept arises largely by definition from the above,
in concert with the value-correspondence lemma of §4.3. By using path-dependent types on
the interface above, a deferred-borrow implementation can statically ensure that a reference r
produced from a particular container c is only ever used with that container. The application
in concrete type terms is simple, and will be shown in the next section.

C. Fallin 30:15

Table 1 Examples of containers and associated element-reference (deferred borrow) types, with
implementation strategies. A library that provides deferred-borrow types may preserve memory
safety in several ways, trading off allowed mutation with the amount of state that is kept in the
reference and the amount of (deferred) work to convert it into a true borrow.

Deferred-Borrow Element Reference
Base Container Derived Type Reference State Deferred Work Borrow Result
Vec<T> Vec index bounds check;

base plus index
Option<&T>

AppendOnlyVec index base plus index &T
FrozenVec true pointer none &T

HashMap<K, V> HashMap key, lookup hint hash-table
lookup

Option<&T>

AppendOnlyHashMap key, lookup hint hash-table
lookup

&T

FrozenHashMap true pointer none &T

5.2 Containers and Deferred-Borrow APIs

Let us now see how deferred borrows can be implemented concretely. First, we define a
Rust trait that generalizes over any state that, in association with some container, can be
converted into a borrow of an element in that container:

trait DefBorrow<T, Container> {
fn def_borrow<'a>(&self/1, cont: &'a Container) -> &'a T;

}

trait DefBorrowMut<T, Container> {
fn def_borrow_mut<'a>(&self/1, cont: &'a mut Container) -> &'a mut T;

}

These definitions simply mean that a particular “deferred borrow” object is associated
with a particular container, and if a method on the deferred-borrow state is invoked with
that container (invoking it with any other container instance is a type error), it will return a
reference to (borrow of) the element. This borrow creates a true borrow of the container,
but only as long as this particular access needs it; e.g., a program may hold many mutable
deferred borrows, some of them aliasing, and dereference each in turn to perform a single
mutation before dropping the true borrow.

How might this interface be implemented? Let us consider several real container types:
the Vec (vector) and HashMap (key-value map built with a hashtable). Table 1 summarizes
several options for each.

Recall that we need to freeze the existence of the referred-to element when the deferred
borrow is created. A container whose element index space can dynamically shrink and grow
(true for both Vec and HashMap) might do so in one of several ways. it could freeze its
structure entirely, not allowing addition or removal, or it could still allow addition, simply
prohibiting element removal.

In the first case, if any insertion or removal is prohibited, any actual pointer that refers to
the internal storage for a particular element should remain valid, because the container will
not need to reallocate to grow, and so the deferred-borrow object can carry an actual pointer.
The abstraction is thus erased at runtime, and serves only to translate accesses to one of a
large collection of true pointers into borrows of the container to ensure mutual exclusion.

ECOOP 2020

30:16 Safe, Flexible Aliasing with Deferred Borrows

impl Vec<T> {
// ...
pub fn to_append_only(self) -> AppendOnlyVec<T> {

AppendOnlyVec { vec: self }
}

}

pub struct AppendOnlyVec<T> {
vec: Vec<T>,

}

impl AppendOnlyVec<T> {
pub fn deferred(&self, index: usize) -> AppendOnlyVecRef<T>/0 {

AppendOnlyVecRef { index }
}

pub fn push(&mut self, t: T) {
self.vec.push(t);

}
}

pub struct AppendOnlyVecRef<T> {
index: usize,
_phantom: PhantomData<T>, // keep the Rust type-checker happy by using T.

}

impl DefBorrow<T, AppendOnlyVec<T>> for AppendOnlyVecRef<T> {
fn def_borrow<'a>(&self/1, cont: &'a AppendOnlyVec<T>) -> &'a T {

&cont.vec[self.index]
}

}

Figure 6 Excerpt of the implementation for AppendOnlyVec, one variant of a vector that im-
plements deferred borrows. This variant ensures the existence of elements that have outstanding
deferred borrows simply by disallowing element removals. Deferred borrows are just vector indices
internally; type erasure makes this approach equivalent to “pseudo-pointers” at runtime, but it is
more type-safe.

In the second case, however, the container is still allowed to grow by insertion, and so it
must compute the element location only when the deferred borrow is converted into a true
borrow. In this case, the deferred borrow will contain the logical element address – e.g., a
vector index. This essentially emulates the pseudo-pointer idiom, but with more type-level
safety.

Finally, if we extend the notion of a deferred borrow to one that can return an optional
borrow (i.e., an element borrow or None), we can allow even a standard container with
insertions and removals to produce deferred borrows. In this case, we also must retain a
logical address only in the deferred-borrow object, and perform the lookup late.

Referring again to Table 1, these container variants can be seen as a form of typestate
encoding the restrictions on container mutations that are allowed. The library user can convert
containers only to more constrained variants. Each base type has .to_append_only() and
.to_frozen() methods that consume the original (i.e., have non-borrowed self arguments)
and return the appropriate constrained type, and the append-only type has .to_frozen()
as well.

To provide a complete example, we show a simple implementation of AppendOnlyVec, the
variant of the vector that allows insertions but not removals, in Fig. 6. The main highlights
are that deferred-borrow objects reduce simply to vector indices at runtime (there need not

C. Fallin 30:17

be any dynamic checks that the “correct” vector is accessed, because the path-dependent
types ensure that statically), and that the vector indexing operation at true-borrow time
can be assured of success because the underlying vector is not allowed to shrink after any
deferred-borrow objects are produced.

Note that these types are not exhaustive by any means: one can imagine several other
variants that make still different tradeoffs. For example, a container might allow individual
element deletions yet still provide a deferred-borrow type that returns a &T rather than
Option<&T> by dynamically tracking which elements have outstanding element references.
Internal data structure design may also facilitate the creation of more efficient element
references with less deferred lookup work: for example, a container might allocate stable
memory storage (via, e.g., Box<T>) for each element in order to provide element references
that just store pointers even while the container is allowed to grow, or might lazily move
elements for which references are created to such indirected storage. This section’s proposed
types are merely the simplest design points in a large space enabled by a flexible language
mechanism.

5.3 Auto-Dereferencing for Syntactic Sugar

As one final ergonomic improvement, we note that by including the access path to the
associated container, a deferred-borrow value contains all the information necessary to
convert it to a true borrow automatically. The Rust language today contains a feature known
as “auto-dereferencing” wherein the compiler inserts calls to the deref() or deref_mut()
methods on smart pointer types when necessary. (This is similar to e.g. the use of operator
overrides in C++ to implement smart pointers.) This allows transparent implementation of
borrow/pointer-like values by library authors. We propose a modification to this desugaring
step that, for a value t of type T/a that implements the DefBorrow or DefBorrowMut
trait, invokes the deferred borrow t.def_borrow(&a) or t.def_borrow_mut(&mut a) as
appropriate. This will make deferred-borrow references as ergonomic as true borrows in most
circumstances, without additional user intervention.

5.4 Chained Deferred Borrows

We note that there is nothing preventing a deferred borrow’s path from referring to another
deferred borrow object. In particular, consider the case where one vector container contains
vectors as elements. A deferred borrow reference p1 to an element of the outer vector v1
might have type Ref/v1, and could in turn be used to produce a deferred borrow reference
p2, which might have type Ref/p1. Auto-dereferencing could then chain two true borrows at
the time of use, so that a write to p2.a becomes:

let v1: FrozenVec<FrozenVec<u32>> = ...;
let p1 = v1.deferred(0); // type FrozenVecRef/v1
let p2 = p1.deferred(0); // type FrozenVecRef/p1

// `p2.a = x` becomes:
let tmp1 = p1.def_borrow_mut(&mut v1); // type &mut FrozenVec<u32>, lifetime <: `v1`
let tmp2 = tmp1.def_borrow_mut(tmp1); // type &mut u32, lifetime <: `tmp1`
*tmp2 = x;
// tmp2 and tmp1 now out of scope; mutable borrow on `v1` ends.

ECOOP 2020

30:18 Safe, Flexible Aliasing with Deferred Borrows

6 Deferred-Borrow Prototype: Emulating Paths in Stable Rust

In order to evaluate the utility of deferred borrows, we implemented a prototype library
of container types that provide deferred-borrow element references. Ideally, such a library
would make use of true path-dependent types, as we described in §4. For expediency of
implementation and experimentation, we instead chose to emulate path-dependent types
with type-tagging, which is a strategy that works in stable Rust today (§6.1). We then
illustrate several examples of our container library using this strategy (§6.2).

6.1 Emulating Path-Dependent Types with Type Tagging
Because a path-dependent type is a sort of dependent type – that is, because the type
depends on a value in the program – we cannot implement our proposed system as written
in today’s stable Rust language. Instead, we can emulate many of the type-safety benefits of
path-dependent types, albeit without the convenience of auto-dereferences and with slightly
more syntactic noise, by (i) tagging the container and its references with an extra type
parameter, such that the “tag” type must match for a deference to work, and then (ii)
using a unique type for every container allocation site. This strategy is less powerful than a
true path-dependent type because it will let different objects from the same allocation site
intermingle references, but is sufficient to understand the annotation burden and verify that
the general approach can work.3

To understand this approach, consider first the following snippet using the “true” library
design with path-dependent types:

fn main() {
let v: AppendOnlyVec<T> = ...;
let ref1: AppendOnlyVecRef<T>/v = v.deferred(i);
let w: AppendOnlyVec<T> = ...;
let ref2: AppendOnlyVecRef<T>/w = w.deferred(j);
*ref1 = ...; // auto-derefs to: *ref1.def_borrow_mut(&mut v) = ...;

// This is a type error (we used `w`, not `v`, but ref1 is of type `.../v`)
// *ref1.def_borrow_mut(&mut w) = ...;

}

Instead, we define our container type with an extra type parameter Tag: hence, the
container type becomes AppendOnlyVec<T, Tag>, and its deferred-borrow references are of
type AppendOnlyVecRef<T, Tag>. Thus the example becomes:

fn main() {
struct Tag1 {} // We can wrap this in a macro! (see below)
let v: AppendOnlyVec<T, Tag1> = ...;
let ref1: AppendOnlyVec<T, Tag1> = v.deferred(i);

struct Tag2 {}
let w: AppendOnlyVec<T, Tag2> = ...;
let ref2: AppendOnlyVec<T, Tag2> = w.deferred(j);
*ref1.def_borrow_mut(&mut v) = ...;

}

3 Note that this is subtly different than ownership-type approaches that encode ownership as a generic
parameter, such as Potanin et al. [17]: while that work’s system enforces particular object instances as
owners in a principled way, our prototype approach simply ties the path-dependent type to a static
allocation site, which may produce many object instances. The only advantage of our scheme is that it
can be written in Rust’s existing type system.

C. Fallin 30:19

Note that this tag-type approach is not as strict as a true static path-dependent type,
even as our example illustrates that the tag types can distinguish references from ‘v‘ and
‘w‘. Consider the case where a container is allocated within a loop: each instance, on
each iteration, must have the same type, but logical memory safety requires disallowing a
deferred-borrow from one to be used in a dereference with another.

However, this prototype has some value: it lets us see an approximation of the annotation
burden, in that deferred-borrow types Ref<T>/v become Ref<T, V>. This is enough to
evaluate the feasibility of large-program refactorings.

6.2 Macros for Tag Types

In order to make this strategy feasible and ergonomic enough for reasonable prototype use, we
define several macros alongside our library of container types so that (i) container definition
(with tag type) and (ii) deferred-reference access, which would become an invisible auto-deref
with true path-dependent types, are both relatively simple.

First, we define a macro that defines a new empty tag type and parameterizes a container
constructor:

fn main() {
let v = vec![1,2,3,4];
let mut v = freeze!(FrozenVec, v);

This expands to a struct-type definition inside a new scope (hence invisible to the rest of
the program) and a constructor invocation parameterized on this tag type. The multiple
instances that are produced by this expression are not distinguished by the type system as they
would be with path-dependent types, but they are distinguished from other containers in the
program that happen to coincide in the element type. (This is thus a form of allocation-site
newtype idiom.)

Then, we define a macro that provides a short form for the deferred borrow itself, allowing
the above dereferences to become simply:

fn ref<Tag>(v: &mut FrozenVec<u32, Tag>, elem: FrozenVecRef<u32, Tag>) {
let value = *d!(v, elem);
*dmut!(v, elem) += 1;

}

7 Qualitative Evaluation: Newly Possible Programming Patterns

We briefly describe several programming patterns that are possible with deferred borrows
but not while restricted to true borrows, and discuss how API design considerations change
when more flexible object references are possible.

7.1 Use Case #1: Graph Library

Consider the use-case of a general graph library: a top-level Graph object owns many Node
instances, and each node contains out-edges to other nodes, with some Edge data attached
to each out-edge. A straightforward Rust implementation, without deferred borrows, would
simply hold Nodes in an array, and use indices to refer to them from other nodes:

ECOOP 2020

30:20 Safe, Flexible Aliasing with Deferred Borrows

pub struct Graph {
nodes: Vec<Node>,

}

pub type NodeIndex = usize;
pub struct Node {

out_edges: Vec<(Edge, NodeIndex)>,
}

pub type EdgeIndex = usize;

We can then provide an API that allows for insertion of nodes and edges, and allows for
accessing or mutating the data at each node or edge:

impl Graph {
pub fn add_node(&mut self, node: Node) -> NodeIndex { ... }
pub fn add_edge(&mut self, from: NodeIndex, to: NodeIndex, data: Edge) { ... }

pub fn node<'a>(&'a self, node: NodeIndex) -> &'a Node { ... }
pub fn node_mut<'a>(&'a mut self, node: NodeIndex) -> &'a mut Node { ... }
pub fn edge<'a>(&'a self, node: NodeIndex, edge: EdgeIndex) -> &'a Edge { ... }
pub fn edge_mut<'a>(&'a mut self, node: NodeIndex, edge: EdgeIndex)

-> &'a mut Edge { ... }

// ...
}

The two primary issues with such an API, as we have described already in motivating
our approach, are (i) verbosity in use, due to the need to handle indices differently than
native pointers/borrows, and (ii) logical unsafety because indices may be forged by the user,
or erroneously taken from other contexts (e.g., another graph).

Thus, the following code is valid, but produces an unexpected result, because the
programmer mixes indices from different domains (two different graphs) and erroneously
uses an index in the wrong domain (here, a node index for graph g1 used to index into g2’s
nodes):

fn graphs_are_isomorphic(g1: &Graph, g2: &Graph) -> Mapping {
'l: for mapping in generate_all_mappings() { // brute-force

for n1 in g1.node_ids() {
let n2 = mapping.map_node(n1);
// TYPO / logical error --v
if !nodes_are_isomorphic(g1, g2, n1, n1, &mapping) {

continue 'l;
}

}
return mapping;

}
}

In addition, accessing node data is cumbersome: each access must be written as
g.nodes[i] rather than simply p (where p is a borrow). Note that the API user can-
not simply take and save multiple borrows: if any borrow is live (mutable or immutable),
no other mutable borrow can be created or used. (This may not be an issue for code that
simply queries a data structure, though the lifetime annotations can still be difficult to
manage. However it is surely an issue for any code that updates a data structure while
holding multiple pointers into its inner structure.) As a result of this limitation, typical
function bodies might look as follows:

C. Fallin 30:21

fn nodes_are_isomorphic(g1: &Graph, g2: &Graph, n1: NodeIndex, n2: NodeIndex,
mapping: &Mapping) {

if !data_is_equal(&g1.nodes[n1].data, &g2.nodes[n2].data) {
return false;

}
// ...

}

fn mutate_nodes<F: Fn(&mut Node)>(g: &mut Graph, root: NodeIndex, mutate: F) {
mutate(&mut g.nodes[root]);
for i in 0..g.nodes[root].neighbor_count() {

let neighbor = g.nodes[root].get_neighbor(i);
if /* ... !visited(neighbor) ... */ {

mutate_nodes(g, neighbor, mutate);
}

}
}

In contrast, a graph library that makes use of the deferred borrow pattern and the
path-dependent types extension to Rust could define an API as follows:

impl Graph {
pub fn add_node(&mut self, node: Node) -> NodeRef/0 { ... }
// ...

}

impl DefBorrow<Node, Graph> for NodeRef {
fn def_borrow<'a>(&self/a, g: &'a Graph) -> &'a Node { ... }

}
impl DefBorrowMut<Node, Graph> for NodeRef {

fn def_borrow_mut<'a>(&mut self/a, g: &'a Graph) -> &'a mut Node { ... }
}

Given this API, the above functions could be rewritten as below, using generic path
parameters (§4.4) to the Mapping object (definition omitted here) so that it can accept and
produce indices associated with each graph object:

fn graphs_are_isomorphic(g1: &Graph, g2: &Graph) -> Mapping</0, /1> {
'l: for mapping in generate_all_mappings() { // brute-force

for n1 in g1.nodes() { // n1 is of type: NodeRef/g1
let n2 = mapping.map_node(n1); // n2 is of type: NodeRef/g2
// typecheck error caught statically ---------v
if !nodes_are_isomorphic(g1.node(n1), g2.node(n1), &mapping) {

continue 'l;
}

}
return mapping;

}
}

Furthermore, if auto-dereference behavior is implemented for the deferred-borrow traits,
then node accesses become much more convenient:

fn nodes_are_isomorphic(g1: &Graph, g2: &Graph, n1: NodeRef/0, n2: NodeRef/1,
mapping: &Mapping</0, /1>) {

if !data_is_equal(&n1.data, &n2.data) {
return false;

}
// ...

}

ECOOP 2020

30:22 Safe, Flexible Aliasing with Deferred Borrows

fn mutate_nodes<F: Fn(&mut Node)>(g: &mut Graph, root: NodeRef/0, mutate: F) {
mutate(&mut *root); // auto-deref.
for i in 0..root.neighbor_count() {

let neighbor = root.get_neighbor(i);
if /* ... !visited(neighbor) ... */ {

mutate_nodes(g, neighbor, mutate);
}

}
}

Note that the efficiency of these node accesses can be adjusted in a tradeoff with graph-
mutation flexibility. If the user is willing to accept that the graph is frozen at a certain node
count (many graph algorithms have this property: they do not mutate the graph topology,
only data at each node/edge), then nodes can be stored in a FrozenVec, and a NodeRef is
exactly as efficient as a true pointer, because it compiles down to exactly that. In contrast,
if the programmer desires to allow graph expansion, an AppendOnlyVec could be used. If
deletions are also desired, a more complex reference type might be used that dynamically
prevents deletions of nodes with outstanding references. In short, the deferred-borrow idiom
allows code to be generic to the particular reference/addressing scheme.

Finally, we note that the lessons we have learned from this example also apply to more
heterogeneous or general data structures with arbitrary object-to-object linkage. For example,
a tree with parent pointers (thus creating cycles between parent and children) or cross-links,
could store tree nodes in an array and use deferred-borrow references throughout.

7.2 Use Case #2: Entity-Component Systems
Many programs operate on a large number of objects that fall into a small number of
categories, and must hold references to these objects throughout their data structures. A
common pattern is the entity-component system: the program has some global context with
a few arrays or dynamically-sized vectors, one per object type; and a reference to an object
of type T is simply an index into the vector of all Ts. This provides efficiency advantages by
allowing for more compact references (e.g., 32-bit indices instead of 64-bit pointers), more
compact heap layout, and more efficient access patterns (i.e., streaming through an array in
order rather than pointer-chasing). As such, the pattern is often used in high-performance
scenarios such as game programming.

If we use deferred-borrow references for every entity in the system, we again have the
guarantee against incorrect use of indices: e.g., an index into the array of all T objects
cannot be used to index into the array of U objects instead. The path-dependent types
are particularly ergonomic in this use pattern, however, because it is already the case that
nearly every function will be passed a top-level “context” that allows access to the entity
arrays; the reference types simply have types with paths starting at that context, and are
thus automatically usable anywhere in the program without further plumbing. For example:

fn f(ctx: &mut Ctx, t: TRef/0, u: URef/0) {
t.do_stuff(ctx);
u.mutate(ctx);
t.operate_with(ctx, u);

}

As a real-world test of this hypothesis, we took a small program, a microarchitectural CPU
simulator, consisting of around 6000 lines of Rust. The simulator is written approximately in
the style described above: references to major components of the simulated system (CPU

C. Fallin 30:23

cores, caches, memory banks, etc.) are all by IDs that are indices into simulator-wide arrays.
We adapted the system so that, instead, it would use deferred borrows to refer to CPU cores.
The diff for this change (using the tag-type-based prototype library described in §6) was
approximately 200 lines, almost all of which were in function signatures or field types within
struct definitions.

7.3 Use Case #3: Logical Safety in an Array-based Algorithm
We note that static path-dependent types have uses outside of the deferred-borrow pattern.
In fact, they are applicable as a means of tying references or handles to a particular context
wherever such handles occur.

To see one such example, let us consider the case of an algorithm that operates on arrays
of data, and manipulates indices into those arrays. It is often the case that such code is
error-prone to write: the programmer might confuse which index corresponds to which array.

Let us say, for example, that we wish to develop an edit-distance algorithm that takes
two strings (arrays of characters):

fn edit_distance(s1: &[u8], s2: &[u8]) -> usize {
for i in 0..s1.len() {

for j in 0..s2.len() {
do_stuff(s1[i], s2[j]); // correct
do_stuff(s1[i], s2[i]); // logical error!

}
}

}

One could make use of static path-dependent types to make such a logical error impossible,
by defining a type SafeSlice<T> that wraps a &[T] and provides deferred-borrow-like element
references:

fn edit_distance(s1: SafeSlice<u8>, s2: SafeSlice<u8>) -> usize {
for i in s1.indices() {

for j in s2.indices() {
do_stuff(s1, s2, i, j);
do_stuff(s1, s2, i, i); // caught at compile time!

}
}

}

In fact, path-dependent types are far more powerful than our examples have demonstrated
so far: they serve, in brief, as a way to ensure unforgeable values that are produced and
consumed by some opaque manager object and usable only with that object. We believe this
type-system primitive would have many other use cases in a systems programming language
such as Rust.

8 Related Work

Many prior works have explored the tradeoff space in type-system approaches to sound,
usable memory-safety with useful aliasing guarantees that allow for parallelism. While we
build on the particular programming language Rust in this work, Rust borrows from a long
line of work on ownership-based and region-based memory-management. In addition, we
adapt path-dependent types, which are a limited form of generalized dependent types, to
provide type safety. To our knowledge, this is the first work to combine path-dependent
types with a region-based ownership or borrowing system to provide static safety guarantees
for a more flexible form of “borrowed” ownership.

ECOOP 2020

30:24 Safe, Flexible Aliasing with Deferred Borrows

Ownership tracking originated with Ownership Types [5] and spawned a long line of
followup works [4, 3, 1, 6, 9, 15] to encode “contexts” or ownership domains, reason about
split or fractional ownership and varying levels of access permission, allow “ombudsmen”
that provide a safe external reference to internal state, and other approaches. In general,
these past works begin with a highly restricted system – objects form a strict ownership tree,
and access to an object is possible only by its owner – and then systematically relax that
constraint to allow for common programming idioms to be expressed.

Rust’s borrowing system adapts region-based memory management ideas from Cyclone [8]
to provide safe borrows of subtrees of the ownership tree. The borrows have constrained
lifetimes, based on lexical regions, and the lifetimes of borrows of the same owned object are
mutually disjoint. Abstractly, borrowing can also be seen as a form of permission system;
effects and permissions have been widely studied as a means to provide memory safety and
allow for deterministic parallel processing [9, 12].

Path-dependent types are a subset of dependent types [23], and have been extensively
studied in the context of object-oriented languages, starting with Ernst [7] and Odersky
et al. [14]. These works use path-dependent types to tie together related specific object
instances, exactly as we use them to tie element references to the appropriate containers.
In the context of the Scala language, path-dependent types have been formalized and serve
as a foundational abstraction in the language [2], although Scala’s path-dependent types
associate a new type with each value or class instance at runtime, and are hence a dynamic
concept; the Scala implementation performs dynamic checks as a result. In contrast, our use
of path-dependent types is purely static. Other sorts of dependent types, such as constraint
types [13], can also encode restrictions on values which can in principle be used to build safe
containers as we have. Such schemes are powerful and general; in contrast, our approach is
specific to the problem of associating one object with another specific object.

There has been some work on how to build container data types in the context of
ownership systems, or to fit a more regimented ownership system. Potanin et al. [16] modify
standard Java container types to conform to an owner-as-accessor ownership system: this
means that they must ensure that direct object accesses to internal state only go through
the container itself. This is similar to how our deferred-borrow objects contain state that
allows a container to return a direct reference at time of use.

9 Future Work and Conclusion

In this paper, we have examined the shortcomings of ownership and borrow-based memory
management as practiced in the Rust programming language. Although borrows with static
lifetimes allow the compiler to verify that (i) no dangling pointers exist, and (ii) no aliasing
mutable pointers exist, the imprecision in borrow tracking that arises when container data
types are used frequently creates friction for programmers. A standard idiom is to refer to
container elements by index, manually indexing an element each time a short-lived borrow is
required. However, this approach is cumbersome and is logically unsafe because an index is
not tied to the container. We introduce deferred borrows, which encapsulate a memory-safe
reference to an element of a container. A deferred borrow provides the same static guarantees
as an ordinary borrow: it will never be dangling and it will never allow aliasing mutable
pointers to exist. This is achieved by performing a true borrow of the associated container
only when the deferred borrow is actually used, rather than when it is created. The associated
container is tied to the deferred borrow with the use of static path-dependent types.

C. Fallin 30:25

While we have presented a complete proposal, we believe there are several angles for
further expansion of this language feature that are promising. First, while the deferred-borrow
implementation is currently manual (the container type must return a value with a type that
implements the DefBorrow trait), it could be auto-derived from an ordinary access method
that returns a true borrow. The compiler should be able to analyze the method body to
determine whether actions are safe to defer based on just a few assumptions (e.g., that the
internal storage of a Vec will not be reallocated).

Second, we have not discussed field borrows so far, but conceptually a field accessor
(x.a) is a deferred-borrow operator, or selector, whose state happens to be constant. The
Rust borrow checker obviates the need for deferred field borrows in many common cases
because it can directly track individual fields (it natively understands field access paths),
but reformulating field accesses in terms of deferred borrows may provide an opportunity to
simplify the borrow checker.

Finally, deferred borrows, when seen as operators (curried with specific state) that convert
the root container borrow to an element borrow at the time of use, should be composable
as well. This is especially useful when considering field accessors as deferred-borrow state.
In essence, deferred borrows encapsulate an arbitrary access path, possibly constructed
by concatenating access path components, allowing the program to refer to state without
restricting access to portions of the state tree in the meantime.

We believe that the deferred-borrow approach will be a valuable addition to the repertoire
of safe memory management techniques in Rust and related ownership-and-borrowing-based
type systems in the future.

References
1 J Aldrich and C Chambers. Ownership domains: Separating aliasing policy from mechanism.

ECOOP, 2004.
2 N Amin, T Rompf, and M Odersky. Foundations of path-dependent types. OOPSLA, 2014.
3 C Boyapati, A Sălcianu, W Beebee Jr., and M Rinard. Ownership types for safe region-based

memory management in real-time Java. PLDI, 2003.
4 D Clarke and S Drossopoulou. Ownership, encapsulation and the disjointness of type and

effect. OOPSLA, 2002.
5 D G Clarke, J M Potter, and J Noble. Ownership types for flexible alias protection. OOPSLA,

1998.
6 W Dietl, S Drossopoulou, and P Müller. Generic universe types. ECOOP, 2007.
7 E Ernst. Family polymorphism. ECOOP, 2001.
8 D Grossman, G Morrisett, T Jim, M Hicks, Y Wang, and J Cheney. Region-based memory

management in Cyclone. PLDI, 2002.
9 R L Bocchino Jr., V S Adve, D Dig, S V Adve, S Heumann, R Komuravelli, J Overbey,

P Simmons, H Sung, and M Vakilian. A type and effect system for Deterministic Parallel
Java. OOPSLA, 2009.

10 G. Kastrinis, G. Balatsouras, K. Ferles, N. Prokopaki-Kostopoulou, and Y. Smaragdakis. An
efficient data structure for must-alias analysis. CC, 2018.

11 K R M Leino, A Poetzsch-Heffter, and Y Zhou. Using data groups to specify and check side
effects. PLDI, 2002.

12 K Naden, R Bocchino, J Aldrich, and K Bierhoff. A type system for borrowing permissions.
POPL, 2011.

13 N Nystrom, V Saraswat, J Palsberg, and C Grothoff. Constrained types for object-oriented
languages. OOPSLA, 2008.

14 M Odersky, V Cremet, C Röckl, and M Zenger. A nominal theory of objects with dependent
types. ECOOP, 2003.

ECOOP 2020

30:26 Safe, Flexible Aliasing with Deferred Borrows

15 J Östlund and T Wrigstad. Multiple aggregate entry points for ownership types. ECOOP,
2012.

16 A Potanin, M Damitio, and J Noble. Are your incoming aliases really necessary? counting the
cost of object ownership. ICSE, 2013.

17 A Potanin, J Noble, D Clarke, and R Biddle. Generic ownership for generic java. OOPSLA,
2006.

18 Rust community. The Rust programming language. https://www.rust-lang.org/.
19 Rust community. Rust survey 2018 results. https://blog.rust-lang.org/2018/11/27/

Rust-survey-2018.html.
20 S Stork, K Naden, J Sunshine, M Mohr, A Fonseca, P Marques, and J Aldrich. Aeminium: A

permission-based concurrent-by-default programming language approach. ACM Trans. Prog.
Lang. Sys., 36, March 2014.

21 A Weiss, D Patterson, ND Matsakis, and A Ahmed. Oxide: the essence of Rust, 2019.
arXiv:1903.00982.

22 E Westbrook, J Zhao, Z Budimlić, and V Sarkar. Practical permissions for race-free parallelism.
ECOOP, 2012.

23 Hongwei Xi and Frank Pfenning. Dependent types in practical programming. POPL, 1999.

https://www.rust-lang.org/
https://blog.rust-lang.org/2018/11/27/Rust-survey-2018.html
https://blog.rust-lang.org/2018/11/27/Rust-survey-2018.html
http://arxiv.org/abs/1903.00982

Reshape Your Layouts, Not Your Programs:
A Safe Language Extension for Better Cache
Locality
Alexandros Tasos
Imperial College London, United Kingdom
at1917@ic.ac.uk

Juliana Franco
Microsoft Research, London, United Kingdom
juliana.franco@microsoft.com

Sophia Drossopoulou
Imperial College London, United Kingdom
Microsoft Research, London, United Kingdom
scd@doc.ic.ac.uk

Tobias Wrigstad
Uppsala University, Sweden
tobias.wrigstad@it.uu.se

Susan Eisenbach
Imperial College London, United Kingdom
sue@doc.ic.ac.uk

Abstract
The vast gap between CPU and RAM speed means that on modern architectures, developers need
to carefully consider data placement in memory to exploit spatial and temporal cache locality and
use CPU caches effectively. To that extent, developers have devised various strategies regarding
data placement; for objects that should be close in memory, a contiguous pool of objects is allocated
and then new instances are constructed inside it; an array of objects is clustered into multiple arrays,
each holding the values of a specific field of the objects1. Such data placements, however, have to
be performed manually, hence readability, maintainability, memory safety, and key OO concepts
such as encapsulation and object identity need to be sacrificed and the business logic needs to be
modified accordingly.

We propose a language extension, SHAPES, which aims to offer developers high-level fine-grained
control over data placement, whilst retaining memory safety and the look-and-feel of OO. SHAPES
extends an OO language with the concepts of pools and layouts: Developers declare pools that
contain objects of a specific type and specify the pool’s layout. A layout specifies how objects in a
pool are laid out in memory. That is, it dictates how the values of the fields of the pool’s objects are
grouped together into clusters. Objects stored in pools behave identically to ordinary, standalone
objects; the type system allows the code to be oblivious to the layout being used. This means that
the business logic is completely decoupled from any placement concerns and the developer need not
deviate from the spirit of OO to better utilise the cache.

In this paper, we present the features of SHAPES, as well as the design rationale behind each
feature. We then showcase the merit of SHAPES through a sequence of case studies; we claim
that, compared to the manual pooling and clustering of objects, we can observe improvement in
readability and maintainability, and comparable (i.e., on par or better) performance.

We also present SHAPESh, an OO calculus which models the SHAPES ideas, we formalise the
type system, and prove soundness. The SHAPESh type system uses ideas from Ownership Types [1]
and Java Generics [2]: In SHAPESh, pools are part of the types; SHAPESh class and type definitions
are enriched with pool parameters. Moreover, class pool parameters are enriched with bounds, which

1 Commonly referred to as an Array-of-Structs (AoS) to Struct-of-Arrays (SoA) transformation.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Alexandros Tasos, Juliana Franco, Sophia Drossopoulou, Tobias Wrigstad, and
Susan Eisenbach;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 31; pp. 31:1–31:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:at1917@ic.ac.uk
mailto:juliana.franco@microsoft.com
mailto:scd@doc.ic.ac.uk
mailto:tobias.wrigstad@it.uu.se
mailto:sue@doc.ic.ac.uk
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Reshape Your Layouts, Not Your Programs

1 class Professor<pProf: [Professor<pProf>]> {
2 � name: String; � ssn: String;
3 }
4 class Student<pStu: [Student<pStu, pProf>], pProf: [Professor<pProf>]> {
5 � name: String; � age: int; � supervisor: Professor<pProf>;
6 }
7 layout ProfL: Professor = rec{name} + rec{ssn};
8 layout StuL: Student = rec{name, age} + rec{supervisor};
9 ...

10 pools pStu1: StuL<pStu1, pProf1>, pProf1: ProfL<pProf1>;
11 stu = new Student<pStu1, pProf1>;
12 prof = new Professor<pProf1>;
13 stu.supervisor = prof;

Figure 1 Example SHAPES code and memory layout.

is what allows the business logic of SHAPES to be oblivious to the layout being used. SHAPESh

types also enforce pool uniformity and homogeneity. A pool is uniform if it contains objects of the
same class only; a pool is homogeneous if the corresponding fields of all its objects point to objects
in the same pool. These properties allow for more efficient implementation.

For performance considerations, we also designed SHAPESl, an untyped, unsafe low-level language
with no explicit support for objects or pools. We argue that it is possible to translate SHAPESl

into existing low-level intermediate representations, such as LLVM [3], present the translation of
SHAPESh into SHAPESl, and show its soundness.

Thus, we expect SHAPES to offer developers more fine-grained control over data placement,
without sacrificing memory safety or the OO look-and-feel.

2012 ACM Subject Classification Software and its engineering → Classes and objects; Theory of
computation → Formalisms; General and reference → Performance

Keywords and phrases Cache utilisation, Data representation, Memory safety

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.31

Category SCICO Journal-first

Related Version Full article available at https://doi.org/10.1016/j.scico.2020.102481.

Supplementary Material ECOOP 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.2.19.

Funding Alexandros Tasos: Supported by an EPSRC Centre for Doctoral Training in High Perform-
ance Embedded and Distributed Systems (HiPEDS) Grant (Reference EP/L016796/1).

https://doi.org/10.4230/LIPIcs.ECOOP.2020.31
https://doi.org/10.1016/j.scico.2020.102481
https://doi.org/10.4230/DARTS.6.2.19

A. Tasos, J. Franco, S. Drossopoulou, T. Wrigstad, and S. Eisenbach 31:3

References
1 Dave Clarke, Johan Östlund, Ilya Sergey, and Tobias Wrigstad. Ownership Types: A Sur-

vey, pages 15–58. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. doi:10.1007/
978-3-642-36946-9_3.

2 James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The Java Language
Specification, Java SE 8 Edition (Java Series), 2014.

3 Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis
& transformation. In Proceedings of the international symposium on Code generation and
optimization: feedback-directed and runtime optimization, page 75. IEEE Computer Society,
2004.

ECOOP 2020

https://doi.org/10.1007/978-3-642-36946-9_3
https://doi.org/10.1007/978-3-642-36946-9_3

A Big Step from Finite to Infinite Computations
Davide Ancona
DIBRIS, University of Genova, Italy
davide.ancona@unige.it

Francesco Dagnino
DIBRIS, University of Genova, Italy
francesco.dagnino@dibris.unige.it

Jurriaan Rot
Radboud University, The Netherlands
jrot@cs.ru.nl

Elena Zucca
DIBRIS, University of Genova, Italy
elena.zucca@unige.it

Abstract

The known is finite, the unknown infinite
– Thomas Henry Huxley

The behaviour of programs can be described by the final results of computations, and/or their
interactions with the context, also seen as observations. For instance, a function call can terminate
and return a value, as well as have output effects during its execution.

Here, we deal with semantic definitions covering both results and observations. Often, such
definitions are provided for finite computations only. Notably, in big-step style, infinite computations
are simply not modelled, hence diverging and stuck terms are not distinguished. This becomes even
more unsatisfactory if we have observations, since a non-terminating program may have significant
infinite behaviour.

Recently, examples of big-step semantics modeling divergence have been provided [3, 4] by means
of generalized inference systems [2, 5], which allow corules to control coinduction. Indeed, modeling
infinite behaviour by a purely coinductive interpretation of big-step rules would lead to spurious
results [6] and undetermined observation, whereas, by adding appropriate corules, we can correctly
get divergence (∞) as the only result, and a uniquely determined observation. This approach has
been adopted in [3, 4] to design big-step definitions including infinite behaviour for lambda-calculus
and a simple imperative Java-like language. However, in such works the designer of the semantics is
in charge of finding the appropriate corules, and this is a non-trivial task.

In this paper, we show a general construction that extends a given big-step semantics, modeling
finite computations, to include infinite behaviour as well, notably by generating appropriate corules.
The construction consists of two steps:
1. Starting from a monoid O modeling finite observations (e.g., finite traces), we construct an

ω-monoid ⟨O, O∞⟩ also modeling infinite observations (e.g., infinite traces). The latter structure
is a variation of the notion of ω-semigroup [7], including a mixed product composing a finite with
a possibly infinite observation, and an infinite product mapping an infinite sequence of finite
observations into a single one (possibly infinite).

2. Starting from an inference system defining a big-step judgment c⇒ ⟨r , o⟩, with c denoting a
configuration, r ∈ R a result, and o ∈ O a finite observation, we construct an inference system
with corules defining an extended big-step judgment c⇒ ⟨r∞, o∞⟩ with r∞ ∈ R∞ = R + {∞},
and o∞ ∈ O∞ a “possibly infinite” observation. The construction generates additional rules for
propagating divergence, and corules for introducing divergence in a controlled way.

The exact corules added in the construction depend on the type of observations that one starts
with. To show the effectiveness of our approach, we provide several instances of the framework, with
different kinds of (finite) observations.

© Davide Ancona, Francesco Dagnino, Jurriaan Rot, and Elena Zucca;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 32; pp. 32:1–32:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6297-2011
mailto:davide.ancona@unige.it
https://orcid.org/0000-0003-3599-3535
mailto:francesco.dagnino@dibris.unige.it
mailto:jrot@cs.ru.nl
https://orcid.org/0000-0002-6833-6470
mailto:elena.zucca@unige.it
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 A Big Step from Finite to Infinite Computations

Finally, we prove a correctness result for the construction. To this end, we assume the original
big-step semantics to be equivalent to (finite sequences of steps in) a reference small-step semantics,
and we show that, by applying the construction, we obtain an extended big-step semantics which is
still equivalent to the small-step semantics, where we consider possibly infinite sequences of steps.
As hypotheses, rather than just equivalence in the finite case (which would be not enough), we
assume a set of equivalence conditions between individual big-step rules and the small-step relation.
This proof of equivalence holds for deterministic semantics; issues arising in the non-deterministic
case and a possible solution are sketched in the conclusion of the full paper.

2012 ACM Subject Classification Theory of computation → Operational semantics; Software and
its engineering → Recursion; Software and its engineering → Semantics

Keywords and phrases Operational semantics, coinduction, infinite behaviour

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.32

Category SCICO Journal-first

Related Version A full version of the paper is available at [1], https://doi.org/10.1016/j.scico.
2020.102492.

Funding Davide Ancona: Member of GNCS (Gruppo Nazionale per il Calcolo Scientifico), INdAM
(Istituto Nazionale di Alta Matematica “F. Severi”)

References
1 Davide Ancona, Francesco Dagnino, Jurriaan Rot, and Elena Zucca. A big step from finite

to infinite computations. Science of Computer Programming, page 102492, 2020. doi:
10.1016/j.scico.2020.102492.

2 Davide Ancona, Francesco Dagnino, and Elena Zucca. Generalizing inference systems by
coaxioms. In Hongseok Yang, editor, ESOP 2017 - European Symposium on Programming,
volume 10201 of Lecture Notes in Computer Science, pages 29–55. Springer, 2017. doi:
10.1007/978-3-662-54434-1_2.

3 Davide Ancona, Francesco Dagnino, and Elena Zucca. Reasoning on divergent computations
with coaxioms. PACMPL, 1(OOPSLA):81:1–81:26, 2017. doi:10.1145/3133905.

4 Davide Ancona, Francesco Dagnino, and Elena Zucca. Modeling infinite behaviour by corules.
In Todd D. Millstein, editor, ECOOP’18 - Object-Oriented Programming, volume 109 of
LIPIcs, pages 21:1–21:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:
10.4230/LIPIcs.ECOOP.2018.21.

5 Francesco Dagnino. Coaxioms: flexible coinductive definitions by inference systems. Logical
Methods in Computer Science, 15(1), 2019. doi:10.23638/LMCS-15(1:26)2019.

6 Xavier Leroy and Hervé Grall. Coinductive big-step operational semantics. Information and
Computation, 207(2):284–304, 2009. doi:10.1016/j.ic.2007.12.004.

7 Dominique Perrin and Jean-Eric Pin. Infinite words - automata, semigroups, logic and games,
volume 141 of Pure and applied mathematics series. Elsevier Morgan Kaufmann, 2004.

https://doi.org/10.4230/LIPIcs.ECOOP.2020.32
https://doi.org/10.1016/j.scico.2020.102492
https://doi.org/10.1016/j.scico.2020.102492
https://doi.org/10.1016/j.scico.2020.102492
https://doi.org/10.1016/j.scico.2020.102492
https://doi.org/10.1007/978-3-662-54434-1_2
https://doi.org/10.1007/978-3-662-54434-1_2
https://doi.org/10.1145/3133905
https://doi.org/10.4230/LIPIcs.ECOOP.2018.21
https://doi.org/10.4230/LIPIcs.ECOOP.2018.21
https://doi.org/10.23638/LMCS-15(1:26)2019
https://doi.org/10.1016/j.ic.2007.12.004

Abstracting Gradual References
Matías Toro
PLEIAD Laboratory, Computer Science Department (DCC), University of Chile, Santiago, Chile
mtoro@dcc.uchile.cl

Éric Tanter
PLEIAD Laboratory, Computer Science Department (DCC), University of Chile, Santiago, Chile
etanter@dcc.uchile.cl

Abstract
Gradual typing is an effective approach to integrate static and dynamic typing, which supports
the smooth transition between both extremes via the (programmer-controlled) precision of type
annotations [19, 21]. Imprecision is normally introduced via the unknown type ?, e.g. function
type Int → Bool is more precise than ? → ?, and both more precise than ?. Gradual typing
relates types of different precision using consistent type relations, such as type consistency (resp.
consistent subtyping), the gradual counterpart of type equality (resp. subtyping). For instance,
? → Int is consistent with Bool → ?. This approach has been applied in a number of settings, such
as objects [20], subtyping [20, 11], effects [4, 5], ownership [18], typestates [27, 12], information-
flow typing [9, 10, 23], session types [14], refinements [17], set-theoretic types [6], Hoare logic [3],
parametric polymorphism [1, 2, 16, 15, 28, 24], and references [19, 13, 22].

In particular, gradual typing for mutable references has seen the elaboration of various possible
semantics: invariant references [19], guarded references [13], monotonic references [22], and permissive
references [22]. Invariant references are a form of references where reference types are invariant
with respect to type consistency. Guarded references admit variance thanks to systematic runtime
checks on reference reads and writes; the runtime type of an allocated cell never changes during
execution. Guarded references have been formulated in a space-efficient coercion calculus, which
ensures that gradual programs do not accumulate unbounded pending checks during execution.
Hereafter, we refer to this language as HCC. Monotonic references favor efficiency over flexibility by
only allowing reference cells to vary towards more precise types. This allows reference operations in
statically-typed regions to safely proceed without any runtime checks. Permissive references are the
most flexible approach, in which reference cells can be initialized and updated to any value of any
type at any time.

These four developments reflect different design decisions with respect to gradual references: is the
reference type constructor variant under consistency? Can the programmer specify a precise bound
on the static type of a reference, and hence on the corresponding heap cell type? Can the heap cell
type evolve its precision at runtime, and if yes, how? There is obviously no absolute answer to these
questions, as they reflect different tradeoffs such as in efficiency and precision. This work explores
the semantics that results from the application of a systematic methodology to gradualize static type
systems. Currently we can find in the literature two methodologies to gradualize statically-typed
languages: Abstracting Gradual Typing (AGT) [11], and the Gradualizer [7]. In this work, we
consider the AGT methodology as it naturally scales to auxiliary structures such as a mutable heap.

The AGT methodology helps to systematically construct gradually-typed languages by using
abstract interpretation [8] at the type level. In brief, AGT interprets gradual types as an abstraction
of sets of possible static types, formally captured through a Galois connection. The static semantics
of a gradual language are then derived by lifting the semantics of a statically-typed language through
this connection, and the dynamic semantics follow by Curry-Howard from proof normalization
of the type safety argument. The AGT methodology has been shown to be effective in many
contexts: records and subtyping [11], type-and-effects [4, 5], refinement types [17, 26], set-theoretic
and union types [6, 25], information-flow typing [23], and parametric polymorphism [24]. However,
this methodology has never been applied to mutable references in isolation. Although Toro et al. [23]
apply AGT to a language with references, they only gradualize security levels of types (e.g. Ref Int?),
not whole types (e.g. Ref ? is not supported). In this article we answer the following open questions:

© Matías Toro and Éric Tanter;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 33; pp. 33:1–33:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mtoro@dcc.uchile.cl
mailto:etanter@dcc.uchile.cl
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Abstracting Gradual References

Which semantics for gradually-type references follows by systematically applying AGT? Does AGT
justify one of the existing approaches, or does it suggest yet another design? Can we recover other
semantics for gradual references, if yes, how?

This article first reviews the different existing gradual approaches to mutable references through
examples. It then presents the semantics for gradual references that is obtained by applying AGT,
and how to accommodate the other semantics. More specifically, this work makes the following
contributions:

We present λflREF, a gradual language with support for mutable references. We derive λflREF by
applying the AGT methodology to a fully-static simple language with mutable references called
λREF. This is the first application of AGT that focuses on gradually-typed mutable references.
We prove that λflREF satisfies the gradual guarantee of Siek et al. [21]. We also present the first
formal statement and proof of the conservative extension of the dynamic semantics of the static
language [21], for a gradual language derived using AGT.
We prove that the derived language, λflREF, corresponds to the semantics of guarded references
from HCC. Formally, given a λflREF term and its compilation to HCC+ (an adapted version of
HCC extended with conditionals and binary operations) we prove that both terms are bisimilar,
and that consequently they either both terminate, both fail, or both diverge.
We observe that λflREF and HCC+ differ in the order of combination of runtime checks. As a
result, HCC is space efficient whereas λflREF is not: we can write programs in λflREF that may
accumulate an unbounded number of checks. We formalize the changes needed in the dynamic
semantics of λflREF to achieve space efficiency. This technique to recover space efficiency is in
fact independent from mutable references, and is therefore applicable to other gradual languages
derived with AGT.
We formally describe how to support other gradual reference semantics in λflREF by presenting
λpmflREF

, an extension that additionally supports both permissive and monotonic references. Finally,
we prove for the first time that monotonic references satisfy the dynamic gradual guarantee, a
non-trivial result that requires careful consideration of updates to the store.

Additionally, we implemented λflREF as an interactive prototype that displays both typing
derivations and reduction traces. All the examples mentioned in this paper are readily available in
the online prototype available at https://pleiad.cl/grefs.

As a result, this paper sheds further light on the design space of gradual languages with mutable
references and contributes to deepening the understanding of the AGT methodology.

2012 ACM Subject Classification Theory of computation → Type structures; Theory of computation
→ Program semantics

Keywords and phrases Gradual Typing, Mutable References, Abstract interpretation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.33

Category SCICO Journal-first

Related Version A full version of the paper is available at https://doi.org/10.1016/j.scico.
2020.102496.

Funding Matías Toro: Partially funded by FONDECYT Project 3200583.
Éric Tanter : Partially funded by FONDECYT Project 1190058.

References
1 Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. Blame for all.

In Proceedings of the 38th annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2011), pages 201–214, Austin, Texas, USA, January 2011.
ACM Press.

https://pleiad.cl/grefs
https://doi.org/10.4230/LIPIcs.ECOOP.2020.33
https://doi.org/10.1016/j.scico.2020.102496
https://doi.org/10.1016/j.scico.2020.102496

M. Toro and É. Tanter 33:3

2 Amal Ahmed, Dustin Jamner, Jeremy G. Siek, and Philip Wadler. Theorems for free for free:
Parametricity, with and without types. Proceedings of the ACM on Programming Languages,
1(ICFP):39:1–39:28, September 2017.

3 Johannes Bader, Jonathan Aldrich, and Éric Tanter. Gradual program verification. In Işil Dillig
and Jens Palsberg, editors, Proceedings of the 19th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI 2018), volume 10747 of Lecture Notes
in Computer Science, pages 25–46, Los Angeles, CA, USA, January 2018. Springer-Verlag.

4 Felipe Bañados Schwerter, Ronald Garcia, and Éric Tanter. A theory of gradual effect systems.
In Proceedings of the 19th ACM SIGPLAN Conference on Functional Programming (ICFP
2014), pages 283–295, Gothenburg, Sweden, September 2014. ACM Press.

5 Felipe Bañados Schwerter, Ronald Garcia, and Éric Tanter. Gradual type-and-effect systems.
Journal of Functional Programming, 26:19:1–19:69, September 2016.

6 Giuseppe Castagna and Victor Lanvin. Gradual typing with union and intersection types.
Proceedings of the ACM on Programming Languages, 1(ICFP):41:1–41:28, September 2017.

7 Matteo Cimini and Jeremy Siek. The gradualizer: a methodology and algorithm for generating
gradual type systems. In Proceedings of the 43rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 2016), pages 443–455, St Petersburg, FL, USA,
January 2016. ACM Press.

8 Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference Record of
the 4th ACM Symposium on Principles of Programming Languages (POPL 77), pages 238–252,
Los Angeles, CA, USA, January 1977. ACM Press.

9 Tim Disney and Cormac Flanagan. Gradual information flow typing. In International Workshop
on Scripts to Programs, 2011.

10 Luminous Fennell and Peter Thiemann. Gradual security typing with references. In Proceedings
of the 26th Computer Security Foundations Symposium (CSF), pages 224–239, June 2013.

11 Ronald Garcia, Alison M. Clark, and Éric Tanter. Abstracting gradual typing. In Proceedings
of the 43rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL 2016), pages 429–442, St Petersburg, FL, USA, January 2016. ACM Press.

12 Ronald Garcia, Éric Tanter, Roger Wolff, and Jonathan Aldrich. Foundations of typestate-
oriented programming. ACM Transactions on Programming Languages and Systems, 36(4):12:1–
12:44, October 2014.

13 David Herman, Aaron Tomb, and Cormac Flanagan. Space-efficient gradual typing. Higher-
Order and Sympolic Computation, 23(2):167–189, June 2010.

14 Atsushi Igarashi, Peter Thiemann, Vasco T. Vasconcelos, and Philip Wadler. Gradual session
types. Proceedings of the ACM on Programming Languages, 1(ICFP):38:1–38:28, September
2017.

15 Yuu Igarashi, Taro Sekiyama, and Atsushi Igarashi. On polymorphic gradual typing. Proceed-
ings of the ACM on Programming Languages, 1(ICFP):40:1–40:29, September 2017.

16 Lintaro Ina and Atsushi Igarashi. Gradual typing for generics. In Proceedings of the 26th ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA 2011), pages 609–624, Portland, Oregon, USA, October 2011. ACM Press.

17 Nico Lehmann and Éric Tanter. Gradual refinement types. In Proceedings of the 44th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2017), pages
775–788, Paris, France, January 2017. ACM Press.

18 Ilya Sergey and Dave Clarke. Gradual ownership types. In Helmut Seidl, editor, Proceedings
of the 21st European Symposium on Programming Languages and Systems (ESOP 2012),
volume 7211 of Lecture Notes in Computer Science, pages 579–599, Tallinn, Estonia, 2012.
Springer-Verlag.

19 Jeremy Siek and Walid Taha. Gradual typing for functional languages. In Proceedings of the
Scheme and Functional Programming Workshop, pages 81–92, September 2006.

ECOOP 2020

33:4 Abstracting Gradual References

20 Jeremy Siek and Walid Taha. Gradual typing for objects. In Erik Ernst, editor, Proceedings of
the 21st European Conference on Object-oriented Programming (ECOOP 2007), number 4609 in
Lecture Notes in Computer Science, pages 2–27, Berlin, Germany, July 2007. Springer-Verlag.

21 Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. Refined
criteria for gradual typing. In 1st Summit on Advances in Programming Languages (SNAPL
2015), volume 32 of Leibniz International Proceedings in Informatics (LIPIcs), pages 274–293,
Asilomar, California, USA, May 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

22 Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, Sam Tobin-Hochstadt, and Ronald
Garcia. Monotonic references for efficient gradual typing. In Jan Vitek, editor, Proceedings
of the 24th European Symposium on Programming Languages and Systems (ESOP 2015),
volume 9032 of Lecture Notes in Computer Science, pages 432–456, London, UK, March 2015.
Springer-Verlag.

23 Matías Toro, Ronald Garcia, and Éric Tanter. Type-driven gradual security with references.
ACM Transactions on Programming Languages and Systems, 40(4):16:1–16:55, November
2018.

24 Matías Toro, Elizabeth Labrada, and Éric Tanter. Gradual parametricity, revisited. Proceedings
of the ACM on Programming Languages, 3(POPL):17:1–17:30, January 2019.

25 Matías Toro and Éric Tanter. A gradual interpretation of union types. In Proceedings of the
24th Static Analysis Symposium (SAS 2017), volume 10422 of Lecture Notes in Computer
Science, pages 382–404, New York City, NY, USA, August 2017. Springer-Verlag.

26 Niki Vazou, Éric Tanter, and David Van Horn. Gradual liquid type inference. Proceedings of
the ACM on Programming Languages, 2(OOPSLA), November 2018.

27 Roger Wolff, Ronald Garcia, Éric Tanter, and Jonathan Aldrich. Gradual typestate. In Mira
Mezini, editor, Proceedings of the 25th European Conference on Object-oriented Programming
(ECOOP 2011), volume 6813 of Lecture Notes in Computer Science, pages 459–483, Lancaster,
UK, July 2011. Springer-Verlag.

28 Ningning Xie, Xuan Bi, and Bruno C. d. S. Oliveira. Consistent subtyping for all. In Amal
Ahmed, editor, Proceedings of the 27th European Symposium on Programming Languages
and Systems (ESOP 2018), volume 10801 of Lecture Notes in Computer Science, pages 3–30,
Thessaloniki, Greece, April 2018. Springer-Verlag.

	p000-Frontmatter
	Preface
	Message from the General Chair
	Message from the Artifact Evaluation Chairs
	Objects and a Changing World: Foreword by the President of AITO
	Organization

	p001-Ancona
	Inference systems with corules
	From FJ to coFJ
	coFJ and its abstract semantics
	Operational semantics
	Advanced examples
	Soundness
	Related work
	Conclusion

	p002-Peleg
	Introduction
	Overview
	A motivating example
	Background: Observational Equivalence Reduction
	Our approach

	Best-Effort Enumeration With Observational Equivalence
	Finding best-effort solutions

	Fitness Function
	Empirical Evaluation
	Erroneous examples
	Partially solving hard benchmarks
	Solving the original easy benchmarks

	An Exploratory User Study
	Observed behavior
	Interviews
	Discussion
	Threats to validity

	Related work
	Conclusion

	p003-Nieto
	Introduction
	Blame Calculus
	Well-typed Programs Can't Be Blamed

	Main Ideas
	Lambda null
	Blame Assignment
	Stratified lambda null
	Semantics
	Metatheory

	A Calculus with Implicit and Explicit Nulls
	Values of lambda null
	Terms of lambda null
	Types of lambda null
	Typing lambda null
	Compatibility

	Semantics of lambda null
	Auxiliary Predicates
	Reduction Relation
	Blame Assignment

	Metatheory of lambda null
	Safety Lemmas
	Blame Lemmas

	A Calculus for Null Interoperability
	Terms and Types of stratified lambda null
	Typing stratified lambda null
	Desugaring stratified lambda null to lambda null
	Metatheory of stratified lambda null

	Coq Mechanization
	Related Work
	Conclusions

	p004-Gabet
	Introduction
	 GoL: a Memory-Aware Core Language for Go
	Syntax of GoL
	Operational Semantics

	Defining Safety and Liveness: Data Race and Happens-Before
	Safety and Liveness Properties through Barbs
	Happens Before and Data Race

	A Behavioural Typing System for GoL
	Behavioural Types with Shared Variables and Mutexes
	Typing System with Shared Variables and Mutexes
	Operational Semantics of the Behavioural Types

	Properties of GoL Processes and Types
	Type soundness of GoL processes
	Safety and Liveness for Types
	Liveness and Safety for Typed GoL

	Verifying Program Properties: the Modal mu-Calculus
	The Modal mu-Calculus
	Properties of the Behavioural Types

	Extending the framework for Go with channels
	Channels in Processes
	Liveness and Safety for Channels
	Modal mu-Calculus Properties for Channels
	Types and process (program) liveness

	Implementation and Evaluation
	Conclusion and Related Work

	p005-Moiseenko
	Introduction
	Overview of the Compilation Correctness Proof
	An Informal Introduction to IMM
	An Informal Introduction to Weakestmo
	Weakestmo to IMM Compilation: High-Level Proof Structure
	Weakestmo to IMM Compilation Correctness by Example

	Formal Definition of Weakestmo
	Events, Threads and Labels
	Event Structures
	Event Structure Construction
	Event Structure Consistency
	Execution Extraction

	Compilation Proof for Weakestmo
	The Intermediate Memory Model IMM
	Simulation Relation for Weakestmo to IMM Proof
	Simulation Step Proof Outline
	Justifying the New Read Events
	Ordering the New Write Events
	Construction Overview

	Handling SC Accesses
	Compiling IMM-SC to Hardware
	TSO
	POWER
	ARMv7
	ARMv8

	Related Work
	Conclusion

	p006-Diekmann
	Introduction
	Defining the problem

	Background
	Panic mode
	Corchuelo et al.
	The original algorithm
	Ensuring that minimum cost repair sequences aren't missed
	Implementation considerations

	CPCT+
	Finding the complete set of minimum cost repair sequences
	Merging compatible configurations
	Ranking repair sequences
	Timeout

	Experiment
	Methodology
	Results
	The impact of skipping input

	Using error recovery in practice
	A basic solution
	Can semantic action execution continue in the face of error recovery?
	Avoiding insert repairs when possible
	Turning lexing errors into parsing errors

	Threats to validity
	Related work
	Conclusions
	Curated examples
	Java 7
	Lua 5.3
	PHP 7.3

	p007-Li
	Introduction
	Related Work
	Background and Challenges
	A Taste of LLVM IR Programs and Assumptions on LLVM IR
	Challenges
	The K Framework

	K-LLVM Semantics
	K-LLVM Static Semantics
	The K-LLVM Abstract Machine
	K-LLVM Data Layout
	Sample Instruction Semantics

	Evaluation and Applications
	Conclusion and Future Work

	p008-Tsuda
	Introduction
	Space-Efficiency Problem in Gradual Typing
	Space-Efficient Gradual Typing
	Our Work: Coercion-Passing Style

	Space-Efficient Coercion Calculus
	Syntax
	Type System
	Operational Semantics
	Coercion Composition
	Evaluation

	Properties

	Space-Efficient First-Class Coercion Calculus
	Syntax
	Type System
	Operational Semantics
	Properties

	Translation into Coercion-Passing Style
	Definition of Translation
	Correctness of Translation

	Implementation and Evaluation
	Implementation
	Even and Odd Functions
	Evaluation

	Related Work
	Space-Efficient Coercion/Cast Calculi
	Continuation-Passing Style
	First-Class Coercions

	Conclusion

	p009-Imai
	Introduction
	Overview of OCaml Programming with Global Combinators
	Formalisms and Typing for Global Combinators
	Global Combinators and Channel Vector Types
	Typing Global Combinators
	Evaluating Global Combinators to Channel Vectors

	Implementing Global Combinators
	Typing Global Combinators in OCaml: A Summary
	Implementing Global Combinator Evaluation
	Typing Global Combinators via Polymorphic Lenses

	Dynamic and Static Linearity Checks in the Communication API
	Evaluation
	Performance
	Use Cases
	Session Types over HTTP: Implementing OAuth

	Related Work
	Conclusion and Future Work

	p010-Gordon
	Introduction
	Capabilities, Use, and Mention
	The Gap Between Capability Bounds and Effects: Use-Mention Distinction
	Working Around Use-Mention Conflation
	The Limits of Workarounds
	Counterarguments

	Effects, Naming, and Invariants
	A Thought Experiment: Replacing Reference Immutability with Effects
	Global Invariants via Local Capabilities
	Invariants for JavaScript, Instead of Effects
	The Effect System Approach
	Back to Capabilities for Invariants

	Conclusion

	p011-Dalvandi
	Introduction
	Deductive Reasoning for Weak Memory
	Program Syntax
	Semantics
	Program Semantics
	Memory Semantics
	Relationship to the Axiomatic Semantics
	Well Formedness

	Hoare Logic and Owicki-Gries Reasoning for C11
	Soundness and Classical Verification Rules
	An Assertion Language
	Load Buffering
	Message Passing
	Read-Read Coherence

	Case study: Peterson's algorithm
	Mechanisation
	Related Work
	Conclusion

	p012-Madsen
	Introduction
	React
	Semantics
	Design Decisions
	Components, Component Descriptors, and Mounted Components
	Component State and Properties
	Render and Child Components
	Syntax of lambda_react
	Runtime of lambda_react
	Initial State
	Semantics of Object Equality
	Semantics of State Merges
	Semantics of Mounting and Unmounting
	Semantics of Reconciliation
	Semantics of Rendering
	Semantics of State Changes
	Semantics of Events

	Properties of lambda_react
	Definitions
	Theorems

	Lifecycle Hooks
	Related Work
	Conclusions and Future Work

	p013-MacIver
	Introduction
	Foundations of Internal Reduction
	Test-Case Reduction Fundamentals
	Internal Reduction as Shortlex Optimization
	Shortlex Optimization by Example

	The Design of the Hypothesis Reducer
	A Summary of Reduction Passes
	Generator-directed Reduction
	Generator / Reducer Co-design

	Case Studies and Experiments
	Evaluation on Generated Programs
	Experiment Design
	Experimental Analysis

	Case Study: SymPy
	Experiment Design
	Experimental Analysis

	Evaluation against QuickCheck and SmartCheck

	Threats to Validity
	Related Work
	Test-Case Reduction
	Test-Case Reduction in Property-Based Testing
	Choice Sequences to Improve Generation
	Other Uses of Internal Reduction

	Conclusion and Future Work

	p014-Fowler
	Introduction
	Contributions

	Model-View-Update, Formally
	Syntax
	Operational Semantics
	Runtime Syntax
	Reduction Rules

	Metatheory

	lambda_MVU with Session Types
	Commands
	Linearity
	Model transitions
	lambda_MVU with Commands, Linearity, and Transitions
	Syntax and Typing
	Operational Semantics
	Metatheory

	Implementation and Example Application
	Related work
	Conclusion

	p015-Lagouvardos
	Introduction
	Background
	Illustration: TensorFlow Shape Tracking
	Basic Tensor Shape Modeling
	Analysis Structure
	Substrate: WALA and Declarative Value-Flow Analysis
	Declarative Modeling of Shape Transformations
	Broadcast Reasoning
	Reshape Reasoning

	Tensor Value Representation
	Analysis Termination
	Finite shapes
	Termination for Different Value Abstractions and Maximizing Precision

	Discussion
	Evaluation
	Classification of bugs
	Effectiveness and Efficiency
	Precision
	Other bugs found and missed
	Comparison with the state-of-the-art
	Threats to Validity

	Related Work
	Conclusions

	p016-Nielsen
	Introduction
	Motivating Example and Overview
	Background: The TAJS Analyzer
	Value Partitioning
	Three Instantiations of Value Partitioning
	Property Name Partitioning
	Free Variable Partitioning
	Type Partitioning

	Evaluation
	RQ1: Comparison with State-Of-The-Art Analyses
	RQ2: Effects of the Three Instantiations

	Related Work
	Conclusion

	p017-Monat
	Introduction
	Concrete Semantics of Python
	Concrete Semantic Domain
	Semantics of Expressions and Statements

	A Non-relational Static Type Analysis
	Abstract Domain
	Example
	Abstract Transfer Functions

	Relational Analysis using Parametric Polymorphism
	Independent Container Abstractions
	Implementation and Experimental Evaluation
	Modular Implementation into Mopsa
	Optimizations & Extensions
	Experimental Evaluation

	Related Work
	Conclusion

	p018-Dort
	Introduction
	Baseline DOT
	Overview
	Requirements
	Example
	Changes to the Calculus
	Mutability Types
	Dependent Mutability
	Viewpoint Adaptation
	Recursive Types
	Methods
	Reference Variables

	Type System
	Syntax
	Methods
	Type Members

	Typing
	Subtyping Rules
	Variable Typing Rules
	Term Typing Rules
	Definition Typing

	Runtime Configuration
	Environment
	Heap Correspondence

	Reduction
	Example

	Properties and their Proofs
	Immutability Guarantee
	Proofs
	Proof of Type Soundness
	Proof of the Immutability Guarantee

	Related Work
	Reference Mutability
	DOT
	Programming Languages with Reference Mutability

	Conclusion

	p019-VanDenVonder
	Introduction
	Identifying the Awkward Squad for Reactive Programming
	Long Lasting Computations
	Weak Reactivity
	Eventual Reactivity
	Strong Reactivity
	Summary

	Embedding Imperative Code in Reactive Code
	Embedding Reactive Code in Imperative Code
	Solution: General Idea

	Base Language: OOP with Effect and Termination Guarantees
	Basic Expressions and ``Hello World!''
	Abstract Data Types

	The Actor-Reactor Model
	Running Example: Wind Turbine Simulator
	Actors and Data Streams
	Actor Behaviours
	Declaring Data Streams
	Publishing to Data Streams
	Qualifying and Monitoring Data Streams

	Reactors
	Definitions
	Basic Reactor Behaviours
	Point-wise Graph Composition
	Behaviour Stream Composition
	Point-free Graph Composition
	Run-time Semantics of Reactors: Spawning and Linking

	Evaluating the Awkward Squad for Reactive Programming
	FrTime
	Flapjax
	REScala
	ReactJS
	Akka Streams
	RxJS
	Stella
	Additional Mentions

	Conclusion

	p020-DeMuijnck-Hughes
	Introduction
	Contributions
	Outline

	Type-Level State Tracking and Reasoning
	Files with Errors
	Modelling Multiple File Access with Errors

	The Framework
	Capturing Abstract State
	Sequencing Language Expressions
	Reasoning About Abstract State
	Language Evaluation

	Exemplar Uses of Resources
	Exemplar 1: Reasoning About Multiple File Handles
	EDSL Definition
	Handler for the Files EDSL
	Example Programs

	Exemplar 2: Constructing Domain Specific Bigraphs
	Domain Model
	EDSL Definition
	Handler for the Bigraph EDSL
	Example Bigraph Instances

	Exemplar 3: Global Session Descriptions

	Related Work
	Theoretical-Oriented Approaches
	Practical-Oriented Approaches

	Future Work
	Conclusions

	p021-Xiong
	Introduction
	Related Work

	Overview
	Operational Model
	Abstract States: Key-Value Stores and Client Views
	Operational Semantics

	Consistency Models Using Execution Tests on Kv-stores
	Applications
	Application: Verifying Database Protocols
	Application: Invariant Properties of Transactional Libraries

	Conclusions and Future Work

	p022-Donaldson
	Introduction
	Background
	The GLSL and SPIR-V Shading Languages
	The SPIR-V Tooling Ecosystem
	The Vulkan Conformance Test Suite
	Metamorphic Compiler Testing Using GraphicsFuzz

	Integrating GraphicsFuzz Tests With Vulkan CTS
	Fuzzing SPIR-V Compilers via GLSL Shaders
	Argument for Not Running Fuzzing in CTS
	Supporting Crash Tests
	Supporting Wrong Image Tests
	Avoiding Invalid Tests

	gfauto
	Creation and replay of self-contained tests
	Bug de-duplication and prioritization
	Vulkan CTS test export

	Finding Test Coverage Gaps Using GraphicsFuzz and gfauto
	Absolute Code Coverage and its Limitations
	Differential Code Coverage
	Using Test Case Reduction to Synthesize Small Tests
	Manually Tweaking Tests to Improve Oracles
	Implementing Differential Code Coverage

	Fuzzing the SPIR-V Tooling Ecosystem
	Related Work
	Conclusions and Future Work

	p023-Gordon
	Introduction
	Background
	Sequential Effect Systems
	Tagged Delimited Continuations

	Growing Sequential Effects: Control, Prophecies, and Blocking
	Continuation Effects
	Iterating Continuation Effects
	Type Safety
	Deriving Sequential Effect Rules
	Infinite Loops
	Other Derived Rules

	Related Work
	Conclusions

	p024-Barbar
	Introduction
	Background
	Motivation and insights
	Existing efforts and limitations
	Our solution

	A motivating example
	Program representation and type model
	Program representation
	Value-flow representation for flow-sensitive analysis
	Type model

	TypeClone approach
	Base analysis
	Memory allocation ([HEAP] [STACK/GLOBAL])
	Direct and indirect propagation ([PHI] [CAST] [CALL] [RET])
	Loads and stores ([LOAD] [STORE] [SU/WU])
	Object cloning
	Type-based weak, semi-strong, and strong updates
	Field-sensitivity ([FIELD] [FF-NOT-IN-PT] [FF-EQ-PT])

	Object reuse
	Soundness and the heap cloning upper bound

	Evaluation
	Implementation
	Experiments

	Related work
	Conclusion

	p025-Nieto
	Introduction
	A New Type Hierarchy
	Fixing a Soundness Hole

	Java Interoperability
	Type Nullification

	Flow Typing
	Supported Cases
	Stable Paths

	Inferring Flow Facts
	Asserting Non-Nullability

	Evaluation
	Evaluation of Java interaction
	Evaluation of Flow-sensitive typing
	Evaluation of other causes of nullness errors
	Summary

	Denotational Semantics of Nullification
	System F_omega, lambda_j, and lambda_s
	Kinding Rules

	Denotational Semantics
	Semantic Model
	Meaning of Kinds
	Meaning of types

	Type Nullification
	Soundness
	Discussion

	Related Work
	Nullability in the Mainstream
	Sound Initialization
	Pluggable Type Checkers
	Semantics of Nullification

	Conclusions

	p026-Huang
	Introduction
	Overview
	First-Class Traits: An Application of the Merge Operator
	Background: Dunfield's Non-Deterministic Semantics
	A Type-Driven Semantics for Type Preservation
	The Challenges of Functions
	Disjoint Intersection Types and Consistency for Determinism

	The lambda_{i}^{:} Calculus: Syntax, Subtyping and Typing
	Syntax
	Subtyping and Disjointness
	Typing

	A Type-Directed Operational Semantics for lambda_{i}^{:}
	Typed Reduction of Values
	Consistency and Type Soundness of Typed Reduction
	Reduction

	Relationship to Dunfield's Calculus and lambda_{i}
	Soundness with respect to Dunfield's Operational Semantics
	Completeness with respect to the Type System of lambda_{i}

	Discussion
	
	Improvements and Extensions

	Related Work
	Calculi with the Merge Operator and a Direct Semantics
	Calculi with a Merge Operator and an Elaboration Semantics
	Languages and Calculi with Type-Dependent Semantics

	Conclusion

	p027-Xie
	Introduction
	Overview
	Background: Disjoint Polymorphism
	Row Polymorphism through Disjoint Polymorphism
	Bounded Quantification through Disjoint Polymorphism
	The Extra Power of Disjoint Polymorphism

	Disjoint Polymorphism
	Syntax and Semantics
	Elaboration and Coherence

	Encoding Row Polymorphism
	Syntax of lambda^{||}
	Typing Rules of lambda^{||}
	A Simple yet Incomplete Encoding
	A Complete Encoding of lambda^{||} and its Challenges
	Formal Elaboration
	Metatheory

	Encoding Bounded Quantification
	Syntax and Semantics of kernel F_{< :}
	Elaboration Function
	Type-directed Elaboration
	Metatheory

	Discussion
	Variants of Row Polymorphism
	Variants of Bounded Quantification
	Variants of Intersection Type Systems

	Related Work
	Conclusion and Future Work

	p028-Sampaio
	Introduction
	Core Event Semantics
	Main Concepts of the Event Semantics
	Concrete Event Semantics
	Symbolic Event Semantics

	The DOM API
	DOM Core Level 1
	DOM UI Events

	JavaScript Promises and async/await
	Promises API
	async/await

	Evaluation
	Testing the Reference Implementations
	Symbolic Testing of the cash Library
	Bounded Correctness
	The Discovered Bugs

	Symbolic Testing of the p-map Library

	Related Work
	Conclusions and Future Work

	p029-Oliveira
	Introduction
	Overview
	Subtyping with union and intersection types
	Subtyping Specifications using Duotyping
	Implementations using Duotyping
	Discovering new features
	New proof techniques

	The lambda^{wedge vee}_{diamond} calculus
	Syntax and Duotyping
	Semantics and type soundness
	Summary and Comparison

	The F_{k Diamond}^{wedge vee} calculus
	Syntax and Duotyping
	Semantics and type soundness
	Summary and Comparison

	A Case Study on Duotyping
	Case Study
	Does Duotyping provide shorter specifications?
	Does Duotyping increase the complexity of the formalization and metatheory of the language?
	Does Duotyping make transitivity proofs simpler?
	Is Duotyping a generally applicable technique?

	Related Work
	Duality in Logic and Programming Language Theory
	Generalizations in Type Systems and Type Theory

	Conclusion

	p030-Fallin
	Introduction
	Background: Ownership and Borrowing
	Object Ownership and Linear Move Semantics
	Safe Pointers: Lifetime-constrained Borrows
	Access Path-based Disjointness
	Two Guarantees: Safety and Unique Mutability

	Borrows and Container Types

	Inflexible Borrows and Workarounds
	Borrowing-Incompatible Data Structures
	A Solution: Pseudo-Pointers
	Logical Memory Safety
	Maintaining Safety: Deferred Borrows with Irrevocable Binding

	Static Path-Dependent Types in Rust
	Types with Static Dependent Paths
	Static Path-Dependent Types in Rust: Syntax and Examples
	Correctness: Value-Correspondence Lemma
	Generics and Path Parameters
	Alias Analysis and Type-Tag Propagation

	Deferred Borrows
	Definition and Correctness Conditions
	Containers and Deferred-Borrow APIs
	Auto-Dereferencing for Syntactic Sugar
	Chained Deferred Borrows

	Deferred-Borrow Prototype: Emulating Paths in Stable Rust
	Emulating Path-Dependent Types with Type Tagging
	Macros for Tag Types

	Qualitative Evaluation: Newly Possible Programming Patterns
	Use Case #1: Graph Library
	Use Case #2: Entity-Component Systems
	Use Case #3: Logical Safety in an Array-based Algorithm

	Related Work
	Future Work and Conclusion

	p031-Tasos
	p032-Ancona
	p033-Toro

