
A Type-Directed Operational Semantics For a
Calculus with a Merge Operator (Artifact)

Xuejing Huang
The University of Hong Kong, China
xjhuang@cs.hku.hk

Bruno C. d. S. Oliveira
The University of Hong Kong, China
bruno@cs.hku.hk

Abstract
Our companion paper proposes a type-directed oper-
ational semantics (TDOS) for λ:

i: a calculus with in-
tersection types and a merge operator. The artifact
contains the specification of λ:

i and its TDOS, and
related Coq code. λ:

i is formalized using the locally
nameless representation with cofinite quantification.
The Coq definition and some infrastructure code
are generated by Ott and LNgen. λ:

i is inspired by
two closely related calculi by Dunfield (2014) and
Oliveira et al. (2016), and a simple variant of it is

designed to demonstrate the possibility to match
with them without any modification. To relate the
two calculi with λ:

i, a sound theorem on semantics
and a completeness theorem on typing are proved
for each variant. In addition, we extended the bid-
irectional typing of Oliveira et al.’s λi calculus, and
designed an elaboration from it to λ:

i, to show that
many of λ:

i’s explicit annotations can be inferred
automatically.

2012 ACM Subject Classification Theory of computation → Type theory; Software and its engineering
→ Object oriented languages; Software and its engineering → Polymorphism
Keywords and phrases operational semantics, type systems, intersection types
Digital Object Identifier 10.4230/DARTS.6.2.9
Funding This work has been sponsored by Hong Kong Research Grant Council project numbers 17210617
and 17209519.
Acknowledgements The authors wish to thank Bingchen Gong for testing the artifact, and the anonymous
artifact reviewers for their comments and suggestions.

Related Article Xuejing Huang and Bruno C. d. S. Oliveira, “A Type-Directed Operational Semantics
For a Calculus with a Merge Operator”, in 34th European Conference on Object-Oriented Programming
(ECOOP 2020), LIPIcs, Vol. 166, pp. 26:1–26:32, 2020.
https://doi.org/10.4230/LIPIcs.ECOOP.2020.26
Related Conference 34th European Conference on Object-Oriented Programming (ECOOP 2020),
November 15–17, 2020, Berlin, Germany (Virtual Conference)

1 Scope

The artifact includes the Coq [6] formalization and the Ott [8] specification of λ:
i. All the lemmas

and theorems in the paper are proved in the artifact.
The calculus is defined via the locally nameless representation with cofinite quantification [4].

Most of the Coq definitions and some infrastructure code are generated by the Ott tool and
LNgen [2], and relies on the Penn’s metatheory library [1]. We also use the LibTatics.v from the
TLC Coq library [5] which defined a collection of general-purpose tactics. The proof structure
and strategy is inspired by the formalization of the NeColus calculus [3].

© Xuejing Huang and Bruno C. d. S. Oliveira;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 6, Issue 2, Artifact No. 9, pp. 9:1–9:4
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8496-491X
mailto:xjhuang@cs.hku.hk
mailto:bruno@cs.hku.hk
https://doi.org/10.4230/DARTS.6.2.9
https://doi.org/10.4230/LIPIcs.ECOOP.2020.26
https://creativecommons.org/licenses/by/3.0/de/deed.en
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


9:2 A Type-Directed Operational Semantics for a Calculus with a Merge Operator (Artifact)

2 Content

The artifact package includes:
a Docker [7] image which contains the following code with evironment set up
coq directory: the Coq formalization and proofs of λ:

i with the instructions
spec directory: the Ott specification of λ:

i and related calculus
paper.pdf: the companion paper with appendices

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). You can directly access the Coq code
and build from scratch. The offline Docker image in the artifact package offers another option.
It includes the code and all dependencies. To use the image, you can execute the following two
commands in your machine with Docker installed:

docker import docker_image.tar testtest
docker run -it --user=xsnow --workdir=/home/xsnow testtest /bin/bash -l

The image is also available on the Docker Hub. You can use the following command to get
and run the container:

docker run -it sxsnow/ecoop2020

In addition, the latest version of the source code is available at: https://github.com/XSnow/
ECOOP2020.

4 Tested platforms

To use the Docker image, any platform supporting Docker and having it installed should be
enough.

To build from scratch, Coq is necessary. It is available via opam. Its installation requirements
can also be found at https://github.com/coq/coq/wiki/Installation. Penn’s metatheory
library needs to be installed as well. The detailed instruction can be found inside the coq directory.

The generated Coq code has been included in the artifact. But if you would like to generate
the code, you need to install LNgen (from https://github.com/plclub/lngen), which requires
GHC [9], and Ott.

5 License

The artifact is available under the GNU General Public License v3.0.

6 MD5 sum of the artifact

5e97dd3092724a9fd4898f5c9a529c84

7 Size of the artifact

0.99 GiB

https://github.com/XSnow/ECOOP2020
https://github.com/XSnow/ECOOP2020
https://github.com/coq/coq/wiki/Installation
https://github.com/plclub/lngen


X. Huang and B. C. d. S. Oliveira 9:3

A Proof Structure

A.1 In the spec directory
main_version.ott: the syntax defintion and rules for λ:

i

variant.ott: the syntax defintion and rules for the simpler variant of λ:
i

dunfield.ott: the syntax definition and reduction rules of Dunfield’s calculus.
icfp.ott: the typing rules of λi (icfp2016). It use the same syntax definition of expressions
as dunfield.ott.

A.2 In the coq/main_version or coq/variant directory
main_version directory contains the definition and proofs of the main calculus. variant dir-
ectory contains the definition and proofs of the simple variant (discussed in Section 6.1 and the
Appendices).

syntax_ott.v: generated from the Ott files in spec, using the locally nameless encoding. It
involves the typing and semantics of λ:

i, the semantics of Dunfield’s calculus, and the typing of
λi (icfp2016).
rules_inf.v and rules_inf2.v: the LNgen generated code.
Infrastructure.v: the type systems of the calculi and some lemmas.
Subtyping_inversion.v: some properties of the subtyping relation.
Key_properties.v: some necessary lemmas about typed reduction, top-like relatin and
disjointness.
Deterministic.v: the proofs of the determinism property.
Type_Safety.v: the proofs of the type preservation and progress properties.
dunfield.v: the proofs of the soundness theorem with respect to Dunfield’s calculus.
icfp.v: the proofs of the completeness theorem with respect to λi (icfp2016).
icfp_bidirectional.v: in coq/main_version only. It extends the bidirectional type system
of λi by a fixpoint rule, and uses the same defnition of disjointness like our system. In it a
different completeness theorem is proved.

B Correspondence

B.1 Figures and Appendices
Figure 1 (The non-deterministic small-step semantics of Dunfield’s calculus): DunfieldStep
in variant/syntax_ott.v.
Figure 2 (Subtyping rules of λ:

i and definition of top-like types): sub and topLike in
main_version/syntax_ott.v.
Figure 3 (Type system of λ:

i): Etyping in main_version/syntax_ott.v.
Figure 4 (Typed reduction of λ:

i): TypedReduce in main_version/syntax_ott.v.
(Ordinary types in λ:

i): ord in main_version/syntax_ott.v.
Figure 5 (Call-by-value reduction of λ:

i): step in main_version/syntax_ott.v.
Figure 6 (Type erasure for λ:

i expressions): erase_anno in dunfield.v
Appendix A (Algorithmic disjointness): disjoint in main_version/syntax_ott.v.
Appendix B (The full rules of the extended Dunfield’s semantics): DunfieldStep in
main_version/syntax_ott.v.
Appendix E (The variant of λ:

i): in variant/syntax_ott.v.

DARTS



9:4 A Type-Directed Operational Semantics for a Calculus with a Merge Operator (Artifact)

B.2 Definitions, Lemmas and Theorems
Definition 1 (Disjoint types): disjointSpec in syntax_ott.v.
Definition 2 (Consistency): consistencySpec in syntax_ott.v.
Lemma 3 (Soundness and completeness of the definition of top-like types):
toplike_super_top in Key_Propperties.v.
Lemma 4 (Disjointness properties): disjoint_eqv, disjoint_domain_type, and
disjoint_and in Key_Propperties.v.
Definition 5 (Principal types): principal_type in Key_Propperties.v.
Lemma 6 (Principal types): principal_type_sub, principal_type_disjoint, and
principal_type_checks in Key_Propperties.v.
Lemma 7 (Typed reduction on top-like types): TypedReduce_toplike in Key_Propperties.v
Lemma 8 (Transitivity of typed reduction): TypedReduce_trans in Type_Safety.v
Lemma 9 (Typed reduction respects subtyping): TypedReduce_sub in Key_Propperties.v
Lemma 10 (Consistency of disjoint values): disjoint_val_consistent in Key_Propperties.v
Lemma 11 (Determinism of typed reduction): TypedReduce_unique in Deterministic.v
Lemma 12 (Consistency after typed reduction): consistent_afterTR in Type_Safety.v
Lemma 13 (Preservation of typed reduction): TypedReduce_preservation in Type_Safety.v
Lemma 14 (Progress of typed reduction): TypedReduce_progress in Type_Safety.v
Theorem 15 (Determinism of ↪→): step_unique n Deterministic.v
Theorem 16 (Type preservation of ↪→): preservation in Type_Safety.v
Theorem 17 (Progress of ↪→): progress in Type_Safety.v
Theorem 18 (Soundness of ↪→ with respect to Dunfield’s semantics): reduction_soundnes in
main_version/dunfield.v
Lemma 19 (Soundness of typed reduction with respect to Dunfield’s semantics).
tred_soundnes in main_version/dunfield.v
Theorem 20 (Completeness of typing with respect to λ:

i): typing_completeness in
main_version/icfp.v
Theorem 21 (Completeness of typing with respect to the extended bidirectional type system
of λ:

i): typing_completeness in coq/main_version/icfp_bidirectional.v.
Theorem 22 (Soundness of ↪→ in the simple variant): reduction_soundnes in
variant/dunfield.v
Theorem 23 (Completeness of typing in the simple variant): typing_completeness in
variant/icfp.v

References
1 Brian Aydemir, Arthur Charguéraud, Benjamin C.

Pierce, Randy Pollack, and Stephanie Weirich. En-
gineering formal metatheory. In Proceedings of
the 35th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages,
POPL ’08, page 3–15, New York, NY, USA, 2008.
Association for Computing Machinery. doi:10.
1145/1328438.1328443.

2 Brian Aydemir and Stephanie Weirich. LNgen:
Tool support for locally nameless representations.
Technical Report MS-CIS-10-24, Department of
Computer and Information Science, University
of Pennsylvania, June 2010. URL: https://
repository.upenn.edu/cis_reports/933/.

3 Xuan Bi, Bruno C. d. S. Oliveira, and Tom
Schrijvers. The Essence of Nested Composition
(Artifact). Dagstuhl Artifacts Series, 4(3):5:1–5:2,
2018. doi:10.4230/DARTS.4.3.5.

4 Arthur Charguéraud. The locally nameless rep-
resentation. Journal of Automated Reasoning,
49(3):363–408, 2012.

5 Arthur Charguéraud and François Pottier. Tlc:
a non-constructive library for coq. https://www.
chargueraud.org/softs/tlc/.

6 The Coq Development Team. The Coq Refer-
ence Manual, version 8.11.1, April 2020. Available
electronically at https://coq.inria.fr/distrib/
current/refman/.

7 Dirk Merkel. Docker: lightweight linux containers
for consistent development and deployment. Linux
journal, 2014(239):2, 2014.

8 Peter Sewell, Francesco Zappa Nardelli, Scott
Owens, Gilles Peskine, Thomas Ridge, Susmit
Sarkar, et al. Ott: Effective tool support for the
working semanticist. Journal of functional pro-
gramming, 20(1):71–122, 2010.

9 GHC Team. Ghc user’s guide documentation.
https://downloads.haskell.org/˜ghc/latest/
docs/users_guide.pdf, 2020.

https://doi.org/10.1145/1328438.1328443
https://doi.org/10.1145/1328438.1328443
https://repository.upenn.edu/cis_reports/933/
https://repository.upenn.edu/cis_reports/933/
https://doi.org/10.4230/DARTS.4.3.5
https://www.chargueraud.org/softs/tlc/
https://www.chargueraud.org/softs/tlc/
https://coq.inria.fr/distrib/current/refman/
https://coq.inria.fr/distrib/current/refman/
https://downloads.haskell.org/~ghc/latest/docs/users_guide.pdf
https://downloads.haskell.org/~ghc/latest/docs/users_guide.pdf

	Scope
	Content
	Getting the artifact
	Tested platforms
	License
	MD5 sum of the artifact
	Size of the artifact
	Proof Structure
	In the spec directory
	In the coq/main_version or coq/variant directory

	Correspondence
	Figures and Appendices
	Definitions, Lemmas and Theorems


