
Locally Static, Globally Dynamic Session Types
for Active Objects
Reiner Hähnle
Technical University Darmstadt, Germany
reiner.haehnle@tu-darmstadt.de

Anton W. Haubner
Technical University Darmstadt, Germany
anton.haubner@stud.tu-darmstadt.de

Eduard Kamburjan
Technical University Darmstadt, Germany
kamburjan@cs.tu-darmstadt.de

Abstract
Active object languages offer an attractive trade-off between low-level, preemptive concurrency
and fully distributed actors: syntactically identifiable atomic code segments and asynchronous
calls are the basis of cooperative concurrency, still permitting interleaving, but nevertheless being
mechanically analyzable. The challenge is to reconcile local static analysis of atomic segments
with the global scheduling constraints it depends on. Here, we propose an approximate, hybrid
approach; At compile-time we perform a local static analysis: later, any run not complying to a
global specification is excluded via runtime checks. That specification is expressed in a type-theoretic
language inspired by session types. The approach reverses the usual (first global, then local) order
of analysis and, thereby, supports analysis of open distributed systems.

2012 ACM Subject Classification Theory of computation→ Distributed computing models; Theory
of computation → Object oriented constructs; Theory of computation → Type structures

Keywords and phrases Session Types, Active Objects, Runtime Verification, Static Verification

Digital Object Identifier 10.4230/OASIcs.Gabbrielli.2020.1

Funding This research is supported by the Constraint-Based Operational Consistency of Evolving
Software Systems (COCoS) project, funded by the DFG as project 351097374.

For Maurizio Gabbrielli:
“Les raisins, ou la mort!”

1 Introduction

Lately, programming languages based on actors and active objects (AO) attracted a lot of
interest in both academia and industry. Active objects [11] are an object-oriented modeling
formalism, extending the actor model of distributed systems [21]. One prominent represent-
ative, the abstract behavioral specification (ABS) [24] language, was successfully applied in a
variety of domains, ranging from railway operations [31] to cloud-based systems [40].

One of the advantages of ABS is its rich analysis framework with tools based on dataflow
and graph analyses [3], deductive verification [13], and behavioral types [18]. However, for
the time being, there is no support for code generation from scheduling policies (except
user-defined schedulers at the object level), or for runtime verification beyond simple assert
statements. The reasons lie in the AO (ABS) concurrency model.

Communication between Active Objects. An Active Object is a strongly encapsulated
entity whose fields can only be accessed by getter and setter methods. Like an object in
standard OO, an AO declares a set of methods, including constructors. Its peculiarity is that

© Reiner Hähnle, Anton W. Haubner, and Eduard Kamburjan;
licensed under Creative Commons License CC-BY

Recent Developments in the Design and Implementation of Programming Languages.
Editors: Frank S. de Boer and Jacopo Mauro; Article No. 1; pp. 1:1–1:24

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8000-7613
mailto:reiner.haehnle@tu-darmstadt.de
mailto:anton.haubner@stud.tu-darmstadt.de
https://orcid.org/0000-0002-0996-2543
mailto:kamburjan@cs.tu-darmstadt.de
https://doi.org/10.4230/OASIcs.Gabbrielli.2020.1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

1:2 Locally Static, Globally Dynamic Session Types for Active Objects

each method consists of syntactically marked atomic segments whose execution cannot be
preempted. At most one task, executing the code of an atomic segment, is active at any time
on the object’s single processor. The advantage is that each atomic segment functions as a
sequential program and can be analyzed (method-)locally in a modular fashion. However, its
scheduling condition may depend on the availability of results provided by other methods, not
necessarily from the same object. But such synchronization patterns can only be understood
from an object-local or even global (program-wide) perspective. This is bad news for the
local analysis of atomic segments as well, because in general they require information about
previously scheduled tasks in order to guarantee meaningful properties. This dependency is
an obstacle to any modular, global analysis. While it is possible to write sufficiently strong
local contracts [30], it is a difficult, manual task, which does not align well with a top-down
design starting from global communication patterns. In consequence, the ability to verify
closed systems (that do not interact with their environment) is limited. Even worse, the
analysis of open ABS models is generally impossible.

Additionally to cooperative method contracts [30], ABS currently uses Session Types [28,
29] for the verification of communication patterns. Both approaches consist of a local part that
analyzes the code of single methods and a global part, feeding into it, that analyzes scheduling,
synchronization, and messages. The global part is significantly more imprecise than the local
one, because it abstracts away from functional behavior. The local specification is related to
the global specification via a process called projection (from objects down to methods and
atomic segments): the composition principle of the analysis follows the composition principle
of the AO concurrency model [19].

Locally Static, Globally Dynamic Approach. In this paper we reverse the analysis sequence
and partially move it from compile-time to runtime, resulting in a hybrid verification method.
Specifically, local analysis is done statically, at compile-time, while global analysis is performed
later at runtime. This is achieved by a modification of the workflow of session types:
Classically, projection ensures that messages always arrive in their correct order. We retain
projection, but only infer the correct message order per object, then construct a scheduler
that enforces this order.

Local static checks permit to verify open systems: a locally specified ABS model provides
only methods that perform locally correct steps, while at runtime it is ensured that methods
are called correctly and in correct order. The downside is, obviously, that global errors are
only detected at runtime, however, in an open system this is the only option. The second
limitation of our approach is that it is not designed to perform full functional verification of
state invariants, unlike interactive, deductive verification [30]. We aim at a lightweight, fully
automatic method that nevertheless allows to express non-trivial properties and facilitates
top-down design of distributed systems.

Yet, our approach does not modify the ABS concurrency model and requires as the single
extension the availability of user-defined schedulers, i.e., the ability to reject certain task
sequences. From the point of modularity, we can now verify object-local behavior. We
implemented and evaluated our approach and illustrate with a case study that it is possible
to ensure an open system always follows a given protocol.

Structure. In Sect. 2 we introduce active objects, ABS, and a suitable notion of session
types. Sect. 3 describes scheduler generation and instrumentation, Sect. 4 describes and
evaluates the implementation. In Sect. 5 we discuss related approaches. Finally, Sect. 6
concludes and gives future work. For space reasons, here we can describe the main ideas
only with a limited degree of precision. A fully formal treatment is found in the report [20].

R. Hähnle, A.W. Haubner, and E. Kamburjan 1:3

2 Active Objects and Session Types

The concurrency model of AO, as explained above, rests on a syntactically identifiable notion
of atomic code segments that cannot be preempted. Together with strong encapsulation, this
ensures that an object’s state can only be modified by its own methods (including setters)
and any state change must adhere to the local specification of an atomic segment. This is
the basis to establish an object’s invariant by suitable, cooperative scheduling of methods
and their atomic segments. To make this work it is necessary to call a method of another (or
even the own) object without blocking.

All active object languages, therefore, feature non-blocking, asynchronous method calls
that return a future [4], a handle to the task executing the call.

Prgm ::=
−→
ID
−→
CD Main ID ::= interface I

[
extends −→I

]
?{
−→
MS} Program, Interfaces

CD ::= class C
[
implements −→I

]
?
[
(
−→
T f)

]
?{
−→
FD
−−→
Met Run} Main ::= {s} Classes, Main

Run ::= Unit run() {s} FD ::= T f = e Run Method, Fields

MS ::= T m(
−→
T v) Met ::= MS {s; return e;} Signatures, Methods

s ::= while (e) {s} | if (e) {s} [else {s}]? | s; s
| case (e) {−−−−→e => s;} | await g | [T? e]? = rhs Statements

g ::= e? rhs ::= e | new C(−→e) | e.get | e!m(−→e) Guards and RHS’s

Figure 1 ABS grammar. T ranges over types, I over interfaces and C over classes.

The various AO languages differ in the details of how synchronization is performed, so
we now turn to their specific realization in ABS. The syntax of ABS is given by the grammar
in Fig. 1. With e we denote standard expressions over fields f, variables v and operators
|, &, >=, <=, +, -, *, /. Additionally, we use an expression destiny to access the currently
computed future. Types T are all interface names (ABS enforces programming to interfaces),
type-generic futures Fut<T>, lists List<T>, Int, Unit, and Bool. We also assume the usual
functions for lists, etc.

In the final expression of the rule for rhs, the syntax for asynchronous method calls is
shown (for simplicity, we leave out standard synchronous calls). As usual, a “!” replaces the
dot. Asynchronous calls are always executable. Their result is a future of type Fut<T>, where
T is the return type of m. The effect of an asynchronous call is to create a task to execute
m’s body in e’s object o, to be scheduled at some time in the future. In case o is also the
caller, obviously the calling method must first suspend, before the callee can be scheduled.
Asynchronous calls occur only as right-hand side expressions, so the future is stored in a field
(or variable) f. Once the result of the computation performed by m(−→e) is ready, it can be
retrieved with the expression f.get. If the result is not ready, the get expression blocks the
calling object. This can easily lead to a deadlock, so one typically guards a get expression
with an await statement of the form await e?, where e’s type is of the form Fut<T>. The effect
is that execution of the current task is suspended and only rescheduled after the result of e
is ready. The await statement and the syntactic end of a method block are the only places,
where task suspension in ABS can occur. This justifies the following definition:

I Definition 1 (Atomic Segment). Code sequences starting either at the syntactic beginning
of a method body or at the statement right after an await statement and ending either at the
syntactic end of a method body or with an await statement, such that they contain at most
the await statement at the end, are called atomic segment.

Gabbrielli’s Festschrift

1:4 Locally Static, Globally Dynamic Session Types for Active Objects

Generally, ABS programs follow a simple, but standard OO paradigm in any other aspect:
A program contains a main method Main, interfaces

−→
ID and classes

−→
CD. Interfaces are

standard, the main method contains a list of object creations. Classes can have parameters−→
Tf, these are fields being initialized during object creation. The parameter type may have
the form Fut<T>, i.e., futures may be passed as arguments to other methods. Classes have
fields

−→
FD, methods

−−→
Met, and a run method Run to start a process.

I Example 2. Let us illustrate cooperative scheduling in ABS with the example in Fig. 2.
The program models the behavior of a mail server with notification service. It consists of
three objects created in the main block: a mail server m, a user interface u, and a notification
service n, which knows both the mail server and the user interface. Then the notification
service’s only method init() is run on n. The method has a single loop that periodically
checks whether mail arrived and, if this is the case, notifies the user via interface u. Checking
for mail and notifying the user require asynchronous calls to m and u, respectively, so we
allocate suitable fields fCheckMail and fPopup of future type. Checking the mail must be
finished before notification is handled. This is ensured by the await statement in Line 12. At
this point, init() suspends. In the example, init() is the only method executing on m, so
the processor will be simply idle, but it is conceivable that the main method starts other
tasks on the mail server which at this point can be interleaved. Checking for mail is modelled
by randomly choosing one of the literals Mail or NoMail as a return value.

Once the response is available, the user is notified in case there is mail, otherwise, nothing
happens. Since the call to popup() is asynchronous, in the absence of a defined scheduler, the
sequence of multiple calls to popup() is not necessarily in the order of mail arriving. However,
the code ensures that the number of completed or active calls to popup() is always less than
the completed calls to checkMail(), that there can be at most one call to popup() between
any two calls to checkMail(), etc. We will show that session types are suitable to specify
such global behavior in a succinct way, which then can be enforced at runtime.

Before we define session types for AO, we need to set up the machinery of user-defined
schedulers needed to implement runtime checks.

A user-defined scheduler [5] is a side-effect free function in ABS that takes as parameters
(1) a list of schedulable processes and (2) several fields of its class. It returns either Nothing
or Just(p), where p is one of the processes in the input list. The return value controls
scheduling: if Nothing is returned, no process is scheduled, otherwise the chosen process is
scheduled next. A process is represented as an abstract data type Process, i.e., an ADT
that cannot be constructed manually. Instead one can access the future of a process with
destinyOf(p) and its methodname as a String with method(p).

Lists are also ADTs and nth(input,i) returns the i-th element. Keyword def is used to
define a function with parameters that evaluates a result using standard expressions (and
recursion). ABS does not support fully-fledged functional programming and only a fixed set
of higher-order functions. For example, higher-order functions such as map and filter are
part of the ABS standard library.

I Example 3. Let us consider the following scheduler and class.
def Maybe<Process> scheduler(List<Process> input, Int y, String m) =
if (y < 0 || y >= length(input)) Nothing else
if (method(nth(input,y)) != m) Just(nth(input,y)) else Nothing;

[Scheduler: scheduler(queue, y, m)]
class C(String m, Int y) { ... }

R. Hähnle, A.W. Haubner, and E. Kamburjan 1:5

1 data Msg = Mail | NoMail;
2

3 class NotifyService
4 (MailServerI m, UII u)
5 implements NotifyServiceI {
6 Fut<Msg> fCheckMail;
7 Fut<Unit> fPopup;
8 Unit init(int bound) {
9 Int i = 0;

10 while (i < bound) {
11 fCheckMail = m!checkMail();
12 await fCheckMail?;
13 Msg response = fCheckMail.get;
14 case (response) {
15 Mail => fPopup = u!popup(i);
16 NoMail => skip;
17 }
18 i = i + 1;
19 }
20 }
21 }

22 class MailServer
23 implements MailServerI {
24 Msg checkMail() {
25 Msg result = NoMail;
26 if (random(2) == 1)
27 result = Mail;
28 return result;
29 }
30 }
31 class UI implements UII {
32 Unit popup(int id) {
33 println("You got mail! Id " + id);
34 }
35 }
36 { // Main block
37 MailServerI m = new MailServer() ;
38 UII u = new UI();
39 NotifyServiceI n
40 = new NotifyService(m,u);
41 await n!init(42);
42 }

Figure 2 Mail server example in ABS.

y and m, the field names and their types, must be identical in class and scheduler function
to use the scheduler. The code above selects the y-th element in the input list, unless it is out
of range or a process executing a method named m. The annotation [Scheduler: scheduler(
queue, y, m)] connects scheduler and class. Whenever the scheduler is invoked, the input
list is guaranteed to be non-empty.

2.1 Session Types for Active Objects
Session types specify and verify the behavior of a closed unit of communication, called
a session. A session type specification consists of three parts: (1) global types, a global
specification of the session, (2) local types, specifications for the endpoints in a session, and
(3) a projection mechanism that generates a local specification for each endpoint participating
in the communication from a global type. For checking that the whole unit adheres to its
global specification, it suffices to check the local endpoints and, possibly, side-conditions on
the unit. Additionally, the session type system needs some kind of mechanism to ensure that
the local endpoints adhere to their local type.

In the original formulation for the π-calculus [8] a session is centered around a channel,
endpoints are the processes participating in the communication over the typed channel.
To ensure that projection succeeds, a linearity check on the channel is performed as a
side-condition of projection.

For Active Objects, the situation changes: there are no channels and endpoints parti-
cipating in any communication are not uniform, because the target of a method call is an
object, but the target of a future read is a (terminated) process. As there are no channels, a
linearity check to ensure that messages arrive in the right order is impossible.

Session types for AO [28, 29] adopt and adapt the concepts of session types for channels:
Unit of Communication: The unit of communication is described by a set of objects that

only contain pointers to each other.

Gabbrielli’s Festschrift

1:6 Locally Static, Globally Dynamic Session Types for Active Objects

Endpoints: The notion of endpoint is two-fold. Both objects and processes are endpoints
and the projection of a global session type first projects on the object and then projects
one more time on the processes inside that object. The result of the first projection is an
object-local type and the result of the second projection is a method-local type.1

Order of Messages: To ensure messages arrive in the correct order, a static analysis can be
used to determine whether the order of messages is total from the perspective of each
object (but not globally).

Here we remove the check on message order at the level of the type system and instead
enforce it at runtime using the structure provided by the object-local type. Before we
introduce syntax of global and local types, it is worth mentioning that we are only concerned
with protocol adherence: Does the system implement the protocol described by the global
type? We ignore deadlock freedom, which can be approached either with session types [29]
or a dedicated deadlock checker for AO [15, 18, 25]. The system we introducing below is a
slight variation of the session types in [29].

2.1.1 Global Types
Global types follow the structure of regular expressions and allow Kleene star-style repetition,
sequence and branching. Branching is guarded by a single role that determines which branch
of the protocol to follow. As single actions, the type defines a certain kind of interaction
between two roles or a role and a process/future. To keep track of processes and futures
within a protocol, we use tracked futures: references to the future of a specified method call.

I Definition 4. Let p, q range over roles, t over tracked futures and C over ADT constructors.
The syntax of global protocols GP and global types G is defined in Fig. 3. Specifications L·M
are all optional.

GP ::= 0 t−→p :m . G Global Protocol

G ::= p t−→q :m | p↓ tLCM | p↑ tLCM Call, Termination and Synchronization Action
| Rel(p, t) | skip Suspension and Empty Action
| p{Gi}i∈I | (G)∗ | G . G Branching, Repetition and Sequential Composition

Figure 3 Syntax of Global Session Types.

The global protocol starts with 0 t−→p : m and specifies how the session is started. The
call action p t−→q : m specifies a call from the object with role p to the one with role q on
method m. This process is tracked by t in the rest of the type. The termination action
p ↓ tLCM specifies that the object with role p terminates the process tracked by t and the
return value has the outermost constructor C. The synchronization action p↑ tLCM specifies
that the object with role p reads from the future tracked by t and reads a value with the
outermost constructor C. The suspension action Rel(p, t) specifies that the object with role
p suspends its currently active process until the future tracked by t is resolved. We stress

1 The projection may also be done in one step [27], but this removes the object-local types which we are
investigating in this paper.

R. Hähnle, A.W. Haubner, and E. Kamburjan 1:7

that t is not the tracked future of the suspended process. The empty action specifies no
action and is needed to specify, e.g., branches without visible actions. Branching p{Gi}i∈I

specifies that the object with role p chooses one of the branches Gi to continue the protocol.
Finally, repetition and sequential composition are analogous to regular expressions.

I Example 5. We continue Ex. 2. The roles of the protocol are named NS for the notification
service, Mail for the mail server and GUI for the GUI. The intended behavior is specified
by the following global type:

0 t0−→NS :init .(
NS t1−→Mail :check . Rel(NS, t1) .

Mail
{

Mail↓ t1LNewMailM . NS↑ t1LNewMailM . NS t2−→GUI :show . GUI↓ t2
Mail↓ t1LNoMailM . NS↑ t1LNoMailM

}
)∗

. NS↓ t0

The above example demonstrates the use of tracked futures and repetition, but it is
strongly synchronized: The described synchronization structure enforces correct interaction
order, no deviation due to the scheduler is possible. In contrast, consider the following
scenario and global session type that is not strongly synchronized.

I Example 6. The protocol describes four roles: a student S, a service desk D, a computation
server C and a report generator R. The computation server computes the grade of a student,
and sends it to the report generator, which in turn generates a report that is send to the
service desk. The computation server notifies the student that its grade has been computed.
The service desk may only serve the student after the report has arrived. This is specified by
the following global protocol:

0 t0−→C :compute . C t1−→R :toReport . C t2−→S :notify . R t3−→D :publish . R↓ t1

. D↓ t3 . S t4−→D :request . D↓ t4 . S↑ t4 . S↓ t2 . C↓ t0

Note that D is called on request and publish but no synchronization ensures that those
messages arrive in the specified order.

2.1.2 Local Types
We distinguish object-local types, method-local types and scheduling types. Method-local
and object-local types differ syntactically only in their passive choice operator and the
specification of synchronization. Scheduling types describe the actions of the scheduler of a
role and share their syntax with method-local types.
I Definition 7. Let p range over roles and 0, m over method names, t over tracked futures
and C over ADT constructors. The syntax of object-local types L is defined as follows:

L ::= p?tm | p!tm | Put tLCM Receiving, Sending and Termination Action
Get tLCM | Susp(t, t) | React t Synchronization, Suspension and Reactivation Action
&t{Li}i∈I | ⊕ {Li}i∈I Passive and Active Choice
skip | L . L | (L)∗ Empty Action, Sequential Composition and Repetition

The syntax of method-local types is analogous, but (1) the synchronization action takes no C
specification and (2) passive choice takes the following form, called guarded passive choice:

&t{Ci : Li}i∈I

Gabbrielli’s Festschrift

1:8 Locally Static, Globally Dynamic Session Types for Active Objects

The receiving action is the callee’s view on the global call action, p is the caller. Note
that a method in ABS has no access to the caller, but we may access it in the scheduler.
The sending action is the caller’s view on the global call action, p is the callee. The local
termination action is the equivalent of the global termination action. The local suspension
action Susp(t1, t2) specifies that the process computing t1 suspends until t2 is known. The
reactivation action React t specifies reactivation of the process computing t. These two
actions are the local view on the global suspension action, but (1) locally the suspending
process is known and (2) one can infer, where the reactivation must happen. We use three
choice operators:

(Object-Local) Unguarded passive choice &t{Li}i∈I specifies that the object reacts to
the choice stored in t. The choice is stored as the C parameter of the first Get action on t
in the given branch.
(Method-Local) Guarded passive choice &t{Ci : Li}i∈I specifies which constructor corres-
ponds to which branch directly, as it is only indirectly encoded in the unguarded passive
choice.
Active choice ⊕{Li}i∈I specifies that the object or process in question chooses one of the
branches to continue. It is not specified how the choice is made.2

The remaining actions are analogous to their global counterpart.
We introduce projection formally in the subsequent section, but provide examples of local

types based on Ex. 5, 6 now to illustrate the differences among the various local types.

I Example 8. Below is the object-local type of Mail in Ex. 5 followed by the method-local
type of t1 and the scheduling type. The differences between the former are that (1) the
method-local type contains no repetition, because the repetition is not visible to a single
process and (2) the receiving action is omitted, because it is redundant when the tracked
future is known.(

NS?t1 check . ⊕
{

Put t1LNewMailM
Put t1LNoMailM

})∗
Object-local type

⊕
{

Put t1LNewMailM
Put t1LNoMailM

}
Method-local type(

NS?t1 check
)∗

Scheduling type

The method-local type contains only the actions performed by the processes of a single method.
A scheduling type contains only the actions needed for scheduling: empty, reactivation and
receiving actions, as well as both kinds of branching, repetition and sequential compositions.
The following is the scheduling type of D in Ex. 6: R?t3 publish . S?t4 request

3 LSGD Session Types

The verification workflow of our system takes a global type and generates an instrumented
ABS program and a proof that each method is following its method-local type.

First, we establish certain well-formedness conditions of the global type to ensure it
describes a protocol that is realizable in the AO concurrency model.

2 For guarded active choice we refer to Kamburjan & Chen [28].

R. Hähnle, A.W. Haubner, and E. Kamburjan 1:9

Then, the global type is projected on each participating object. This results in an
object-local type, describing the actions an object both expects and is obliged to perform.
From the object-local type we generate (a) a session automaton that describes the order
of scheduling actions and (b) a method-local type for each method. Scheduling actions
include the receiving action (receiving method calls) and the rescheduling action (reacting
to a resolved future).
The session automaton is translated into a user-defined scheduler, which is added to the
object together with fields and operations to keep track of the state.
Each method is checked statically against its method-local type.

For brevity, we give a simplified account of the implemented system [20] and omit some
features, e.g., allowing interactions with objects that do not participate in the session.

3.1 Session Automata
Before defining the workflow, we introduce Session Automata [7]. Session automata are a
class of register automata [33]: finite automata over an infinite alphabet. General register
automata allow to store read values of infinite alphabets in registers and compare the register
contents by equality. Session automata have the restriction that only fresh values can be
stored, i.e., values that have not been seen in the input word so far. This matches our model
when futures are regarded as data and allows one to decide whether two session automata
accept the same language. In our system, the alphabet is the set of futures and we only store
futures upon receiving a method call. This guarantees their freshness upon storage.

I Definition 9. Let Σ be a finite set of labels, D an infinite set of data equipped with equality
and k ∈ N. A k-Register Session Automaton is a tuple (Q, q0,Φ, F), where Q is the set of
states, q0 ∈ Q its start state, F ⊆ Q the set of accepting states, and the transition relation is
as follows:

Φ ⊆
(
Q×Q

)
∪
(
Q× (Σ×D)× P({1, . . . , k})× {1, . . . , k} ×Q

)
Runs of session automata are defined over stores and data words. A transition either (1)

only changes the state, but neither changes the store nor consumes a letter, or (2) changes
the state upon reading the next letter by comparing the data with a register in its store and
storing the read data.

I Definition 10. A store σ : {1, . . . , k} 7→ D ∪ {⊥} is a function from register identifiers
to data or the special symbol ⊥. The initial store σ0 maps all register identifiers to ⊥. A
data word w = (a0, d0), . . . , (an, dn) is a finite sequence of pairs of labels and data. A run
(q0, j0, σ0), . . . , (qm, jm, σj) of a k-register session automaton (Q, q0,Φ, F) on a word w of
length n is a sequence

s ∈ (Q× N× {1, . . . , k} 7→ D)∗

where qi is the current state, σi the current store and ji the next letter. The sequence must
start with (q0, 0, σ0) and satisfy the following condition for each position 0 < i < m:

(qi, qi+1) ∈ Φ ∧ (ji = ji+1) ∧ (σi = σi+1)

∨
(

(qi, (aji
, dji

), I, k, qi+1) ∈ Φ ∧ (ji = ji + 1) ∧ σi+1 = σi[k \ dji
] ∧ ∀l ∈ I. σi(l) = dji

)
In the following we set D = Fut and Σ = {invREv} ×Met ∪ {condREv}.

Gabbrielli’s Festschrift

1:10 Locally Static, Globally Dynamic Session Types for Active Objects

I Example 11. The following 2-register session automaton models the scheduling type of D
in Ex. 8. The two stores of the futures in registers ri are used to model reactivation.

1start 2 3
(invREv, publish)

d 7→ r0

(invREv, request)
d 7→ r1

For brevity, we write (q, (invREv, m), q′) and (i, (condREv), q′) for transitions with the
given label and say that register i is either written or read. We never write to or read from
more than one register in a single transition.

3.2 Projection
Projection generates (1) a method-local type per participating method in the session and (2)
a special object-local type, called scheduling type, for each role. The scheduling type describes
the order of operations controlled by the scheduler, i.e., process start and rescheduling.

Projection consists of four steps: pre-analysis, projection on a role, projection on a tracked
future, and generation of a scheduling type from an object-local type.
Pre-analysis: Reject obviously malformed types and annotate the global type with informa-

tion used in later steps, for example, which future is currently being computed.
Projection on Role: Generate an object-local type that describes the view of a role on the

global type.
Projection on Tracked Future: Generate a method-local type that describes the view of a

process on the object-local type.
Generation of Scheduling Type: Generate the scheduling type that describes the operations

performed by the scheduler of an object.

3.2.1 Pre-Analysis
Pre-analysis of a global type checks that it specifies a feasible protocol in the AO concurrency
model. It generates an annotated global type G〈σ〉, where σ describes the specified state of
a role before and after performing the specified action. We refrain from introducing all the
formal details and only describe the checked properties of a global type.

Future Freshness: Each tracked future identifies exactly one call action. For example, the
following type fails pre-analysis and is rejected, because t is not fresh in the second call.

0 t−→p :m . p t−→q :n . p↓ t . q↓ t

Actor Activity: A call action can only be specified when the callee is not specified as currently
executing a method and a suspending action can only suspend a process when it is specified
as being active. For example, the following global type contains two errors: the call of
t2 must wait until p is terminated and the suspension action of p cannot suspend any
process.

0 t0−→p :m . p t1−→q :n . q t2−→p :o . p↓ t0 . Rel(p, t1) . q↓ t1 . p↓ t2

The following is one possible “debugged” version that passes pre-analysis:

0 t0−→p :m . p t1−→q :n . Rel(p, t1) . q t2−→p :o . p↓ t2 . q↓ t1 . p↓ t0

R. Hähnle, A.W. Haubner, and E. Kamburjan 1:11

Resolution Analysis: A future can only be read if it has terminated before and is accessible
to the reading role.3

Scope Analysis: Repetition introduces scopes into the specification, as a process is started
exactly once and terminated exactly once. For example, the following type is not correctly
scoped, because it allows situations where (1) n is never called, and thus t1 cannot be
terminated and (2) where n is called multiple times and it is not specified how many of
those processes are terminated and in which order:

0 t0−→p :m . (p t1−→q :n)∗ . p↓ t1 . q↓ t0

The scope analysis checks that (1) every tracked future that is started within a repetition
is resolved within the same repetition; (2) every tracked future that is resolved within
a repetition is started within the same repetition; (3) every tracked future that is
synchronized upon within a repetition is started within the same repetition; (4) for every
role the active tracked future and the set of suspended tracked future before and after
the repetition are the same. (5) every tracked future that is started within a branch is
resolved within the same branch; (6) every tracked future that is resolved within a branch
is started within the same branch;

During pre-analysis each global type, except sequence, is annotated with an abstract
state σ. An abstract state is a mapping from roles to a pair (AState,SState), where AState
is either Active(t), expressing that the role is currently specified as executing the process for
t or Susp if it is currently specified inactive. SState is a set of pairs of tracked futures (t, t′),
expressing that there is a suspended process for t waiting for t′. Pre-analysis ensures that
there are no t1, t2 with (t1, t), (t2, t) ∈ SState in any abstract state for any role, i.e., there
are never two processes of one role waiting for the same future.4

3.2.2 Global Projection
The projection of global types on a role is defined in Fig. 4. Projection is a partial function
G�p. It checks that any action is specified to happen when the role performing this action
is active and has a process that can perform the communication. The result of projection is
an object-local type, annotated with abstract states.

The initial action results in a receiving action for the callee and skip for any other role.
Similarly, the projection of a call action is a receiving action for the callee and a sending
action for the caller.

Projection of the termination action has three cases: (1) If projected on the terminating
role, it is ensured that this role is active and can perform the action. The result is a local
termination action. (2) If projected on a role waiting for the tracked future of the action, it
is ensured that this role is inactive. The result is a reactivation action. (3) Projection on any
other role results in skip. Projection fails if, for example, the terminating role is inactive.

Projection of synchronization results in a local synchronization action for the specified
role and skip for any other role. It is checked that the specified role is active. The suspension
action is analogous. Projection of skip is the identity, projection of branching results in
an active choice for the specified role (which must be active) and a passive choice over the
currently active future of the choosing role for any other role. Projection of the repetition

3 On passing data in Session Types for Active Objects, we refer to [27].
4 Because it is not specified in which order they should be reactivated. If such a specification were given,

that order could be reflected in the projected object-local type.

Gabbrielli’s Festschrift

1:12 Locally Static, Globally Dynamic Session Types for Active Objects

0 t−→q :m〈σ〉 � p =
{

0?tm〈σ〉 if p = q
skip otherwise

q t−→r :m〈σ〉 � p =


r!tm〈σ〉 if p = q
q?tm〈σ〉 if p = r
skip otherwise

q↓ tLCM〈σ〉 � p =


Put tLCM〈σ〉 if p = q ∧ σ(p)(Active(t),SState)
React t′〈σ〉 if p 6= q ∧ σ(p)(Susp,SState) ∧ (t, t′) ∈ SState
skip if p 6= q ∧ σ(p)(Susp,SState)∧ 6 ∃t′. (t, t′) ∈ SState

q↑ tLCM〈σ〉 � p =
{

Get tLCM〈σ〉 if p = q ∧ σ(p) = (Active(t′),SState)
skip otherwise

Rel(q, t) � p =
{

Susp(t′, t)〈σ〉 if p = q ∧ σ(p) = (Active(t′),SState)
skip if p 6= q

q{Gi}i∈I〈σ〉 � p =
{
⊕{Gi � p〈σ〉}i∈I if p = q ∧ σ(p) = (Active(t),SState)
&t{Gi � p〈σ〉}i∈I if p 6= q ∧ σ(q) = (Active(t),SState)

(G)∗〈σ〉 � p =
{

(L)∗〈σ〉 if G�p = L 6= skip
skip otherwise

(G1 . G2)�p = (G1 �p) . (G2 �p) skip � p = skip

Figure 4 Projection of global type on roles.

repeats the projection of the inner part if it performs some action. Otherwise, the repetition
is replaced with an empty action. Finally, projection of sequential composition is sequential
composition of the projected types. We assume that structural congruence is used to remove
superfluous empty actions and branching.

3.2.3 Local Projection
Local projection generates a method-local type from an object-local type for each tracked
future. Each tracked future is introduced by a call action, so we can easily connect method-
local types to methods. For simplicity, we demand that each method has only one type.

Local projection must invert the relation between passive choice and synchronization.
A global type specifies first the choice and marks the future of the choosing role during
global projection. Afterwards, the future is resolved and may be synchronized upon. Locally,
however, the method synchronizes first and then branches depending on the read value.
Local projection handles this by pulling out the prefix of all branches from a passive choice
up to the synchronization action over the choosing future.

I Definition 12. Let t be a tracked future and Li a set of object-local types. The prefix for t
of some object-local L is defined as the shortest type Lt that ends in Get tLCM: The function
splitt(L) returns the prefix and the remaining postfix of a type.

splitt(L) = (Lhead,C,Ltail) such that

Lhead = L̂ . Get t, L̂ contains no Get t, and L ≡ L̂ . Get tLCM . Ltail

The function splitt({Li}i∈I) returns the common prefix and the remaining postfixes of all
input types. Note that the function may be undefined.

splitt({Li}i∈I) = (Lhead, {(Ci,Li
tail})) such that splitt(Li) = (Lhead,Ci,Li

tail)

R. Hähnle, A.W. Haubner, and E. Kamburjan 1:13

L〈σ〉�p t = L if σ(p) = ((Active(t),SState)
and L ∈ {p!t′ m, Put t′LCM, Get t′LCM, Susp(t′, t′′), skip}

p?t′ m�p t = React t′ �p t = skip
(L1 . L2)�p t = (L1)�p t . (L2)�p t

(L)∗ �p t =


L�p t if t is introduced within L
(L′)∗ if L�p t = L′ 6= skip and t is not introduced within L
skip otherwise

⊕{Li}i∈I �
p t = ⊕{Li �

p t}i∈I

&t′{Li}i∈I �
p t =

{
L�p t . &t′{Ci : L̂i �p t}i∈I if splitt′({Li}i∈I) = (L, {(Ci, L̂i)})
&t′{Li}i∈I �p t = Lj �p t if j ∈ J and t is introduced in Lj

Figure 5 Projection of local types on tracked futures.

Projection L〈σ〉�p t of an annotated local type L〈σ〉 on t for role p is given in Fig. 5. It
removes receiving and reactivation actions, is the identity on any other non-composed action
and propagates on sequential composition and active choice. For passive choice, the above
split is applied, unless the projection future is introduced in only one branch. Repetitions
outside a single method run are removed.

3.2.4 Scheduling Type
Given a projected object-local type L, the scheduling type S(L) is generated by replacing all
termination, synchronization, suspension and sending actions with skip and using structural
congruence (see Fig. 6) to simplify the result.

3.3 Locally Static
Method-local types are checked statically. This ensures that if every process is scheduled
correctly, then the process will perform its local view on the protocol correctly. Before we
present the type system itself, we define typing contexts and auxiliary functions.

The subtype relations <, ≤ and structural congruence are standard, see Fig. 6. Structural
congruence allows to add and remove skip actions. An active choice with a single branch can
be simplified to the content of the branch. The interesting rules for subtyping are the ones
for branching: Active branching may drop branches, as the implementing role may never
take a subset of its possible choices. Its dual, passive branching, may add branches instead.

We use two typing contexts: ∆ maps locations (fields and variables) to roles, Γ maps
tracked futures to pairs of locations or the symbol ⊥. the ∆ context ensures that a method
interacts with the correct endpoints, while Γ keeps track of futures and their read values.
We use some auxiliary functions and predicates:

The function ΓA removes all fields from the pairs in the image of Γ.
The function constr(e) returns the outermost constructor of expression e.
The function def(C) returns the declaration of class C.
The predicate inter(s,Γ) holds if the statement s contains no get, no return, no await, and
writes into no location that is in a pair in the image of Γ.

Gabbrielli’s Festschrift

1:14 Locally Static, Globally Dynamic Session Types for Active Objects

⊕{Li}i∈I <⊕ {Li}i∈I∪J &t{Ci : Li}i∈I > &t{Ci : Li}i∈I∪J

(L)∗ <(L̂)∗ if L < L̂

L1.L2 <L̂1.L̂2 if Li < L̂i

⊕{Li}i∈I <⊕ {L̂i}i∈I if Li < L̂i

&t{Ci : Li}i∈I <&t{Ci : L̂i}i∈I if Li < L̂i

L ≡⊕ {L} L ≡ skip . L L ≡ L . skip
L . ⊕ {Li}i∈I ≡ ⊕ {L . Li}i∈I ⊕ {L, skipi}i∈I ≡ L

Figure 6 Subtype relation and structural congruence of method-local types.

The predicate p ∈ G or p ∈ L holds if the role p occurs in the type.
The predicate e ∈ imΓ holds if the location e is in any pair in the image of Γ.

The type system is shown in Fig. 7. Rule T-main checks that the main block sets up the
session correctly: Each role is assigned to exactly one object and the corresponding class is
checked against the projected type on this role. Also, each parameter of a class is assigned
such that the passed variable has the correct role (the fij are the fields declared in def(Ci)).
Lastly, the sole called method is correctly specified and called on the correct object. The
rule T-class checks that each role needed for the object-local type is available in some field
and checks each method against its method-local type.

∀i. ∃p ∈ G. ∆(vi) = p ∀p ∈ G. ∃i. ∆(vi) = p
∆i(fij) = ∆(vij) ∆i ` def(Ci) : G � ∆(vi) ∆(vk) = p

T-main
` {Ii vi = new Ci(vij);vk!m();} : 0 t−→p :m . G

∀p ∈ L. ∃i. ∆(fi) = p ∆, ∅ ` sk : L �p t mk is the method of t in L
T-class ∆ ` class C(Ii fi){Tj fj = ej; Tk mk(Tkl vkl){sk}} : L

∆,Γ ` s : L L ≡ L̂′ ≤ L̂
T-≤

∆,Γ ` s : L̂
∆,Γ ` s2 : L inter(s1,Γ)

T-; ∆,Γ ` s1;s2 : L
constr(e) = C

T-return ∆,Γ ` return e; : Put tLCM
T-skip ∆,Γ ` skip : skip

∆,Γ ` s1;s3 : L
∆,Γ ` s2;s3 : L

T-if ∆,Γ ` if(e){s1}else{s2}s3 : L

∆, Γ̃ ` s1 : L1

∆, Γ̃ ` s2 : L2T-while ∆,Γ ` while(e){s1}s2 : (L1)∗.L2

∆,ΓA ` s : L Γ(t′) = (e,_)
T-await ∆,Γ ` await e; s : Susp(t, t′).L

Γ(t) = (e2,_) ∆,Γ[t 7→ (e2, e1)] ` s : L e1 6∈ imΓ
T-get ∆,Γ ` e1 = e2.get; s : Get t.L

∆,Γ[t 7→ (e1,⊥)] ` s : L ∆(e2) = p e1 6∈ imΓ
T-! ∆,Γ ` e1 = e2!m(e); s : p!tm.L

Ci = Cj → ∆,Γ ` si : Lj .L ∀j. ∃i. Ci = Cj Γ(t) = (_, e)
T-case ∆,Γ ` case(e){Ci=>si}i∈Is : &t{Cj : Lj}.L

Figure 7 Static Type System.

R. Hähnle, A.W. Haubner, and E. Kamburjan 1:15

Rule T-≤ is used for structural congruence and sub-typing. The construction of a syntax-
directed variant of the type system without a special rule for subtying is standard. Rule T-;
drops a prefix that performs no communication and modifies no location stored in Γ. Rule
T-return checks that the sole remaining action is a Put action and that the correct constructor
is returned. Rule T-skip closes the proof if the empty program skip is left and no further
action is required. This is needed to typecheck loop bodies, where we can always add skip at
the end. Rule T-if splits the derivation into two branches. The type is not changed. Rule
T-while checks a loop against the Kleene star. The context Γ̃ removes all fields and variables
modified in the loop body. Rule T-await checks that the correct future is synchronized on
and removes all fields from the context. Rule T-get checks that the correct future is read and
stores the information where the read value is available in the context. It ensures that no
relevant read value or future is overwritten. Rule T-! checks that the correct method on the
correct role is called and stores the information where the future is available in the context.
It ensures that no other relevant read value or future is overwritten. Rule T-case checks a
case statement against a passive choice by mapping each branch of the statement against
some branch of the type. It is ensured that for every specified choice an implemented branch
exists and that the read value is indeed stemming from the future containing the choice.

A rule for assignments to copy futures or their read values is easily added, but requires to
keep track of a pair of sets of locations and, for simplicity, we refrain from introducing this.

3.4 Globally Dynamic
The globally dynamic part consists of two steps: first, we translate an object-local type into
a session automaton, then we translate the session automaton into a user-defined scheduler.

3.4.1 Automaton Extraction
The structure of the translation follows the standard translation of regular expressions into
finite automata.

I Definition 13. Let L be a projected object-local type with k tracked futures. Let pos(t) be
the register assigned to t. The translation of L into a k-register session automaton is denoted
A(L) and defined as follows:

A receiving type p?tm is translated into an automaton with two states and a single transition
that reads invREv, m and stores the read future in pos(t):

1start 2
(invREv, m)

d 7→ pos(t)

A reactivation type React (t) is translated into an automaton with two states and a single
transition that reads condREv and matches the read future with the one stored in pos(t).

1start 2
condREv
d
.= pos(t)

Branching, sequence and repetition are the standard translations of alternative, concaten-
ation and Kleene star into finite automata.

After this construction, standard ε-transition elimination is performed.

I Example 14. Consider the following scheduling type [29]:

L =
(
p?t0 m0 . p?t1 m1 . React (t0)

)∗
Its translation A(L) is as follows (the translation yields an ε-transition from state 4 to state
1, which is eliminated to give the depicted automaton):

Gabbrielli’s Festschrift

1:16 Locally Static, Globally Dynamic Session Types for Active Objects

1start 2 3 4
(invREv,m0)
d 7→ r0

(invREv,m1)
d 7→ r1

condREv
d = r0

(invREv,m0)
d 7→ r0

For formal soundness arguments, we again refer to [20]. Intuitively, the extraction is
sound because the language accepted by the automaton is the same language as the one
generated by the object-local type. Not every extracted session automaton is deterministic,
because the input object-local type may not be deterministic, for example:

&t

{
p?m
p?m . q?n

}
After receiving a call on m, this type cannot predict which branch to take. We do allow
non-deterministic schedulers, but the implementation issues a warning. A simple syntax
check on the automaton can exclude them.

3.4.2 Translation and Integration

Given a session automaton, we can finally extract a user-defined scheduler and add instru-
mentation code to ensure correctness.

IDefinition 15. Let C be a class that is checked against an object-local type that is transformed
to a scheduling type L. The instrumented class CI is constructed as follows:

We add a field Int q = 0; that models the current state of the scheduling automaton.
For each register ri we add a field “Maybe<Fut<Any>> ri = Nothing;”.
The scheduler is as in Def. 16.
For each method m we collect all transitions (qi, (invREv, m), qi′)i∈I with written register
reg(i) and add the following as the first statement of m:

case this.q {
qi1 => this.rreg(i1) = Just(destiny); this.q = qi′

1
;

...
qim => this.rreg(im) = Just(destiny); this.q = qi′

m
;

}

This statement saves its future in the given register and updates the automaton state. The
generated scheduler ensures that no default branch is needed.
For each class C we collect all transitions (qi, (condREv), qi′)i∈I with read register reg(i)
and add the following as the first statement after each await statement in any method:

case this.q { qi1 => this.q = qi′
1
; . . . qim => this.q = qi′

m
; }

Again, the generated scheduler ensures that no default branch is needed and the registers
do not need to be checked against destiny.

I Definition 16. The generated scheduler ensures that the initializing method with the
hidden name .init() is always executed first. The function filter is one of the higher-order
functions in ABS and takes a function of the form (params) => code as its first parameter
and a list as its second.

R. Hähnle, A.W. Haubner, and E. Kamburjan 1:17

def Maybe<Process> scheduler(List<Process> list,
Int q,
Maybe<Fut<Any>> r1,
Maybe<Fut<Any>> r2) =

if (filter((Process p) => method(p) == ".init")(queue) != Nil)
headOrNothing(filter((Process p) => method(p) == ".init")(queue))

else case q {
1 => headOrNothing(

filter((Process p) => contains(set["publish"],method(p)))(list));
2 => headOrNothing(

filter((Process p) => contains(set["request"],method(p)))(list));
}

Figure 8 Scheduler generated from Ex. 11.

def Maybe<Process> scheduler(List<Process> list, Int q,
Maybe<Fut<Any>> r1, . . ., Maybe<Fut<Any>> rn) =

if(filter((Process p) => method(p) == ".init")(queue) != Nil)
headOrNothing(filter((Process p) => method(p) == ".init")(queue))

else scheduler_body(list, q, r1, . . ., rn);

After executing the initializer, the scheduler makes a case distinction over the states 1, . . . ,m
of the scheduling automaton:

def Maybe<Process> scheduler_body(List<Process> list, Int q,
Maybe<Fut<Any>> r1, . . ., Maybe<Fut<Any>> rn) =

case q { 1 => transition1; . . . m => transitionm; }

The transition transitioni from a state i is modeled as follows: Let m1, . . . , mn1 be the
method names that have outgoing transitions from i labeled with invREv. Let r’1, . . . , r’n2 be
the registers that the read future is compared with in outgoing transitions from i labeled with
condREv. The first case checks that the future is allowed and not yet stored, the second case
checks that the future is in one of the registers.

headOrNothing(filter((Process p) =>
(contains(set[m1,. . .,mn1],method(p)) && !contains(set[r1,. . .,rn],destinyOf(p)))
|| contains(set[r’1,. . .,r’n2],destinyOf(p))
)(list))

We return the first process that is in the list and matches, a random scheduler is a straight-
forward modification.

I Example 17. The (beautified) scheduler generated from Ex. 11 is shown in Fig. 8:

3.5 Soundness and Stateful Session Types
Soundness. Soundness of the type system follows directly from the soundness theorem
given for the original, purely static systems [27, 28]:

I Theorem 18. Let Prgm be a well-typed ABS program and GP a global protocol. If
` Prgm : GP and every object is instrumented with the scheduler type derived by the `
relation, then every terminating and non-deadlocking run of Prgm has a trace where the
communication events for each object are in the same order as specified in GP.

Gabbrielli’s Festschrift

1:18 Locally Static, Globally Dynamic Session Types for Active Objects

Our notion of soundness is not based on subject reduction and progress. Soundness of our
system is only concerned with protocol adherence, not with deadlock freedom, as discussed
above. Adding deadlock checks in session types complicates the system further [28] for little
gain, as external tools can be used. We assume that the data types have been checked, so
there is no need for a progress theorem. It is similar to session fidelity [22], which expresses
the same intuition in terms of operational semantics.

Neither do we use a subject reduction theorem. Instead, we give a denotational semantics
to session types and regard them as specifications of traces in monadic second-order logic: Any
type GP can be translated into a formula C(GP) expressing that the communication events
for each object are in the same order as specified in GP. Soundness is then a model-theoretic
notion that every trace tr generated by GP is a model of C(GP):

` Prgm : GP→ ∀tr. Prgm ⇓ tr→ tr |= C(GP)

This model-theoretic treatment of session types allows an elegant connection to symbolic
execution and dynamic logic [27] at the cost of an elaborate semantics [14] which we refrain
to introduce for space reasons. This semantics is based on merging of local traces, which
inhibits us from giving a straightfoward subject reduction theorem.

Stateful Session Types. So far, our session types do not constrain the execution state
or passed data, except the outermost constructor of return values. We implemented an
extension of the presented system, where each global call action is annotated with a property.
This annotation is preserved during object-local projection and moved to the termination
action during projection on a tracked future. Regarding instrumentiation, it results in a
simple assert statement for the dynamic check.

I Example 19. We specify that a call of role p to a method m results in a postcondition
that ensures the return value being larger than field f:

. . . . p t−→q :mLthis.f < resultM

The return value is saved in a dedicated variable result and an assert is added afterwards.
If the final statement was “return e;” before, it now is

Int result = e; assert(this.f < result); return result;

If it depends on the state of the scheduler which postcondition has to be checked, a case
statement over the possible values of q is added. This approach is slightly less expressive
than other stateful session types for AO [26, 28], but has the benefit that there is no need to
translate first-order logic formulas into expressions.

4 Implementation and Evaluation

Our system is implemented on top of a slightly modified5 version of the ABS compiler [43, 39].
Source code and all examples are accessible at https://github.com/ahbnr/SessionTypeABS.

As discussed, we do not handle full ABS and demand that the main block initializes a whole
session, each interface plays exactly one role and no objects are created after initialization.
The session type is specified in an ASCII variant of Def. 4 in a separate file alongside the other

5 Blocking schedulers and access to the future of a process are not yet part of the master branch of ABS.

https://github.com/ahbnr/SessionTypeABS

R. Hähnle, A.W. Haubner, and E. Kamburjan 1:19

1 2 3 4 5 10 30 50 70 80 10
0

30
0

50
0

70
0

90
0

repetitions

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

us
er

 m
od

e
ex

ec
ut

io
n

tim
e

[s
]

plain
enforcement

Figure 9 Execution times of the unmodified
(blue) and modified (orange) model for different
amounts of repetitions.

1 2 3 4 5 10 30 50 70 80 10
0

30
0

50
0

70
0

90
0

repetitions

0

10000

20000

30000

40000

m
ax

im
um

 m
em

or
y

re
sid

en
t s

et
 si

ze
 [K

B]

plain
enforcement

Figure 10 Maximum memory resident set size
of the unmodified (blue) and modified (orange)
model for different ammounts of repetitions.

model source files. The ABS compiler is used for parsing and (data-)typechecking the input
model. The AST is then used for the static check and enriched with the instrumentation
from the scheduling type. The resulting AST is passed back to the ABS compiler, which
parses and typechecks it again.

We evaluate the impact of our modifications on the performance of Erlang-based simula-
tions (the standard backend) of ABS models. The experiments are performed on a synthetic
benchmark, where one object implementing the role p repeatedly calls two methods on
another object of role q in a fixed order. The session is specified by the this global type:

0 t−→p :init .

(
p

tm1−−→q :m1 . q↓ tm1 . p
tm2−−→q :m2 . q↓ tm2

)∗
. p↓ t

All reported data resulted from executing the model multiple times and averaging the
measurements. Reported execution times designate the required run time in user-mode of
the Erlang simulation of a model until termination on a Arch Linux system running Kernel
5.3.7 with a i5-4300U@2.9GHz CPU and 4GiB RAM.

Effect of Increased Object Communication. By changing the number of times the repeat-
able section of the session type is executed, we observe the behavior of the model simulation
when the number of calls from p to q increases. We observe that the user-mode execution time
of the simulations is nearly constant and mostly equivalent for the modified and unmodified
version of the model for up to 100 repetitions, see Fig. 9. For higher numbers of repetitions,
execution time increases for both version, but execution time of the modified model grows to
increasing multiples of the execution time of the unmodified one. The maximum memory
resident set size of the Erlang processes develops similarly, see Fig. 10, although the memory
size of the modified model does not grow as rapidly as the execution time.

Comparison to Manual Synchronization. Instead of letting the generated schedulers
enforce the execution order of methods, we now require p and q to synchronize every call
by inserting an await-statement after each interaction. Even though execution time of the
unmodified and modified model still increases for a high number of repetitions, there is
now little difference between them, see Fig. 11. The overhead of synchronization is roughly
equivalent to or lower than the version relying on the generated schedulers.

Testing the Reordering Capabilities of the Scheduler: In the previous experiments the
scheduler never delayed activating a process, because there was always one in the queue which
could immediately be scheduled. We now disable static verification, deliberately reverse the

Gabbrielli’s Festschrift

1:20 Locally Static, Globally Dynamic Session Types for Active Objects

1 2 3 4 5 10 30 50 70 80 10
0

30
0

50
0

70
0

90
0

repetitions

0.0

0.2

0.4

0.6

0.8

1.0
us

er
 m

od
e

ex
ec

ut
io

n
tim

e
[s

]
plain
enforcement

Figure 11 User-mode execution times when
using await statements. Unmodified model in
blue, modified model in orange.

1 2 3 4 5 10 30 50 70 80 10
0

30
0

50
0

70
0

90
0

repetitions

0

500

1000

1500

2000

2500
delays
calls of scheduler

Figure 12 The number of times a scheduler has
been invoked (orange) in contrast to the number
of times it could not activate any waiting process
(blue).

calls in the model source and put duration statements after each call, causing a delay in
the execution.6 We do not use synchronization and calls always arrive out of order at q
and with enough inactivity in between them so that the scheduler of q frequently has to
delay activation of a process until an acceptable one is available. Here, the modified and
unmodified model always complete in almost the same execution time, presumably since
the duration statements induce enough idle time to contain the overhead of the schedulers.
However, we now observe that the scheduler successfully delays and reorders calls, see Fig. 12.

Discussion. A certain overhead must always be expected from instrumentation, but we
deem the observed overhead acceptable. The generated schedulers only result in noteworthy
overhead when a large number of processes is in the object queue. We conjecture that this
effect is mostly an artifact of how the queue is represented for the user-defined scheduler.

5 Related Work

There is a considerable number of papers combining static and dynamic verification, a
complete overview is out of scope for this work. We refer to, for example, the introduction of
Ahrendt et al. [2] and only review directly related approaches here.

The StaRVOOrS [1, 9] tool combines static and dynamic verification of Java programs as
follows: First, it attempts to prove certain properties statically using deductive verification
and then it transforms failed proofs into runtime monitors. The static analysis is used to
ensure that as little as possible is checked dynamically. StarVOOrS distinguishes between
data and control-flow properties. The static analysis is mainly reducing the need for the
computationally heavy data properties (e.g., all values of an array are non-zero) as far as
possible, while monitoring control-flow properties can be done statically.

Our approach can be seen from a similar perspective: the object scheduler is handling the
control flow inside an object, while the added assert statements are handling data properties.
The type checker ensures that inside a method, only data properties need to be checked at

6 Explicit time behavior is realized in Timed ABS [5] and here only used for evaluation.

R. Hähnle, A.W. Haubner, and E. Kamburjan 1:21

runtime. It is straightforward to see how the ongoing integration of Session Types into the
Crowbar prover using Behavioral Program Logic [26] can be used to discard as superflous
assert statements statically.

The literature on session types includes approaches that handle protocols as (partially)
dynamic types or mix static and dynamic checks otherwise. The conceptually closest to our
approach is by Bocchi et at. [6], who also use distributed runtime enforcement, but introduce
new components (for example, a queue) to do so. Completely dynamic approaches to session
types are available for the Python language [12] and an actor model [35]. Other, less related,
approaches are:

Gradual session types [23] transform a dynamically checked dyadic session type for
channels gradually to a statically checked one during development. The dynamic check
for linearity that is central to gradual session types for channels has no direct counterpart
in our system for AO, because the projection mechanisms differ on a technical level.
Certain combined approaches, e.g., for Scala [38], draw the line between static and
dynamic by performing only the linearity check at runtime and any other check statically.

A further type-based approach is typestate [41]. In contrast to session types, it was
developed mainly for OO imperative programs. Typestate models that an object can change
its interface, i.e., the set of exposed methods, over time. This was done statically in the
original work and was subsequently gradualized [42] to combine static and dynamic type
checking. A variant of typestate for concurrent Java, developed by Gerbo & Padovani [17],
dynamically reports violations after injecting monitoring code. The object scheduler in our
approach can be seen as a variant of typestate, but it is generated, not specified.

Choreographies [8] bear similarity to session types, being global specifications with a
projection mechanism. However, they are mainly used to generate code via a correctness-
by-construction approach. This also combines static and dynamic aspects, but reverses the
direction: instead of dynamically ensuring that the static checks are sound, it is statically
ensured (by code generation) that the dynamic behavior is structured correctly. The
distinction between static and dynamic parts becomes even more prominent in the work of
Gabbrielli et al. [16, 36, 37], where dynamic choreographies are used to generate a dynamic
structure to update the structure of the application or include of new participants.

6 Conclusion

What should be the takeaway message from this work? First, the formalism of session types,
first developed in the context of the π-calculus, and so far mainly used in theoretical invest-
igations, appears in our context as a rather versatile and surprisingly practical specification
mechanism. It is easily conceivable to find a more user-friendly, less mathematical notation
for the global types in Fig. 3 and add IDE support.

Second, with the runtime checking approach, session types for AO can form the theoretical
basis for top-down development of open distributed systems (with cooperative concurrency).

Third, as shown here and in [27], session types integrate well with static checking of
logical properties. The semantic link is a straightforward translation from session types into
logic , while the type systems syntactically ensures to place assertions at suitable locations.

Future Work. We plan to adopt the StaRVOOrS approach to partially reduce the need
for assert statements on method-local level. We are investigating the use of the product line
mechanism of ABS [10] to add the monitors, instead of using manual code injection. Using
product lines enables a uniform treatment of code injection in ABS and the injection and
removal of runtime monitors at runtime [40]. Furthermore, we plan to investigate the use of
Timed Session Types [34] for Timed ABS and Hybrid ABS [32].

Gabbrielli’s Festschrift

1:22 Locally Static, Globally Dynamic Session Types for Active Objects

References
1 Wolfgang Ahrendt, Jesús Mauricio Chimento, Gordon J. Pace, and Gerardo Schneider. Verify-

ing data- and control-oriented properties combining static and runtime verification: theory
and tools. Formal Methods Syst. Des., 51(1):200–265, 2017.

2 Wolfgang Ahrendt, Marieke Huisman, Giles Reger, and Kristin Yvonne Rozier. A broader
view on verification: From static to runtime and back (track summary). In ISoLA (2), volume
11245 of Lecture Notes in Computer Science, pages 3–7. Springer, 2018.

3 Elvira Albert, Puri Arenas, Antonio Flores-Montoya, Samir Genaim, Miguel Gómez-Zamalloa,
Enrique Martin-Martin, German Puebla, and Guillermo Román-Díez. SACO: static analyzer
for concurrent objects. In Erika Ábrahám and Klaus Havelund, editors, TACAS 2014,
volume 8413 of Lecture Notes in Computer Science, pages 562–567. Springer, 2014. doi:
10.1007/978-3-642-54862-8_46.

4 Henry G. Baker and Carl E. Hewitt. The incremental garbage collection of processes. In
Proceeding of the Symposium on Artificial Intelligence Programming Languages, number 12 in
SIGPLAN Notices, page 11, August 1977.

5 Joakim Bjørk, Frank S. de Boer, Einar Broch Johnsen, Rudolf Schlatte, and Silvia Lizeth Tapia
Tarifa. User-defined schedulers for real-time concurrent objects. ISSE, 9(1):29–43, 2013.

6 Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida.
Monitoring networks through multiparty session types. Theor. Comput. Sci., 669:33–58, 2017.
doi:10.1016/j.tcs.2017.02.009.

7 Benedikt Bollig, Peter Habermehl, Martin Leucker, and Benjamin Monmege. A fresh approach
to learning register automata. In Marie-Pierre Béal and Olivier Carton, editors, Developments
in Language Theory: 17th Intl. Conf. DLT, Marne-la-Vallée, France, volume 7907 of LNCS,
pages 118–130. Springer, 2013.

8 Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-centered
programming for web services. ACM Trans. Program. Lang. Syst., 34(2):8:1–8:78, 2012.
doi:10.1145/2220365.2220367.

9 Jesús Mauricio Chimento, Wolfgang Ahrendt, Gordon J. Pace, and Gerardo Schneider. Star-
voors: A tool for combined static and runtime verification of java. In Ezio Bartocci and
Rupak Majumdar, editors, RV 2015, volume 9333 of Lecture Notes in Computer Science, pages
297–305. Springer, 2015. doi:10.1007/978-3-319-23820-3_21.

10 Dave Clarke, Radu Muschevici, José Proença, Ina Schaefer, and Rudolf Schlatte. Variability
modelling in the ABS language. In Bernhard K. Aichernig, Frank S. de Boer, and Marcello M.
Bonsangue, editors, FMCO 2010, volume 6957 of Lecture Notes in Computer Science, pages
204–224. Springer, 2010. doi:10.1007/978-3-642-25271-6_11.

11 Frank S. de Boer, Vlad Serbanescu, Reiner Hähnle, Ludovic Henrio, Justine Rochas, Crys-
tal Chang Din, Einar Broch Johnsen, Marjan Sirjani, Ehsan Khamespanah, Kiko Fernandez-
Reyes, and Albert Mingkun Yang. A survey of active object languages. ACM Comput. Surv.,
50(5):76:1–76:39, 2017. doi:10.1145/3122848.

12 Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Practical interruptible conversations: distributed dynamic verification with multiparty ses-
sion types and python. Formal Methods Syst. Des., 46(3):197–225, 2015. doi:10.1007/
s10703-014-0218-8.

13 Crystal Chang Din, Richard Bubel, and Reiner Hähnle. Key-abs: A deductive verification tool
for the concurrent modelling language ABS. In Amy P. Felty and Aart Middeldorp, editors,
Automated Deduction - CADE-25 - 25th International Conference on Automated Deduction,
Berlin, Germany, August 1-7, 2015, Proceedings, volume 9195 of Lecture Notes in Computer
Science, pages 517–526. Springer, 2015. doi:10.1007/978-3-319-21401-6_35.

14 Crystal Chang Din, Reiner Hähnle, Einar Broch Johnsen, Ka I Pun, and Silvia Lizeth Tapia
Tarifa. Locally abstract, globally concrete semantics of concurrent programming languages.
In TABLEAUX, volume 10501 of Lecture Notes in Computer Science, pages 22–43. Springer,
2017.

https://doi.org/10.1007/978-3-642-54862-8_46
https://doi.org/10.1007/978-3-642-54862-8_46
https://doi.org/10.1016/j.tcs.2017.02.009
https://doi.org/10.1145/2220365.2220367
https://doi.org/10.1007/978-3-319-23820-3_21
https://doi.org/10.1007/978-3-642-25271-6_11
https://doi.org/10.1145/3122848
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/978-3-319-21401-6_35

R. Hähnle, A.W. Haubner, and E. Kamburjan 1:23

15 Antonio Flores-Montoya, Elvira Albert, and Samir Genaim. May-happen-in-parallel based
deadlock analysis for concurrent objects. In FMOODS/FORTE, volume 7892 of LNCS, pages
273–288. Springer, 2013.

16 Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and Jacopo Mauro. Guess who’s coming:
Runtime inclusion of participants in choreographies. In Mário S. Alvim, Kostas Chatzikokolakis,
Carlos Olarte, and Frank Valencia, editors, The Art of Modelling Computational Systems: A
Journey from Logic and Concurrency to Security and Privacy - Essays Dedicated to Catuscia
Palamidessi on the Occasion of Her 60th Birthday, volume 11760 of Lecture Notes in Computer
Science, pages 118–138. Springer, 2019. doi:10.1007/978-3-030-31175-9_8.

17 Rosita Gerbo and Luca Padovani. Concurrent typestate-oriented programming in java.
In Francisco Martins and Dominic Orchard, editors, Proceedings Programming Language
Approaches to Concurrency- and Communication-cEntric Software, PLACES@ETAPS 2019,
Prague, Czech Republic, 7th April 2019, volume 291 of EPTCS, pages 24–34, 2019. doi:
10.4204/EPTCS.291.3.

18 Elena Giachino, Cosimo Laneve, and Michael Lienhardt. A framework for deadlock
detection in core ABS. Software and Systems Modeling, 15(4):1013–1048, 2016. doi:
10.1007/s10270-014-0444-y.

19 Dilian Gurov, Reiner Hähnle, and Eduard Kamburjan. Who carries the burden of modularity?
In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal Methods,
Verification and Validation, 9th Intl. Symp., ISoLA 2020, Rhodes, Greece, LNCS. Springer,
October 2020.

20 Anton W Haubner. Semi-dynamic session types for ABS. Bachelor thesis, Technical Univer-
sity of Darmstadt, 2019. URL: https://github.com/ahbnr/SessionTypeABS/blob/master/
thesis/thesis_final_pdfa.pdf.

21 Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular ACTOR formalism for
artificial intelligence. In Proceedings of the 3rd International Joint Conference on Artificial
Intelligence, IJCAI’73, pages 235–245. Morgan Kaufmann Publishers Inc., 1973. URL: http:
//dl.acm.org/citation.cfm?id=1624775.1624804.

22 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In
George C. Necula and Philip Wadler, editors, Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California,
USA, January 7-12, 2008, pages 273–284. ACM, 2008. doi:10.1145/1328438.1328472.

23 Atsushi Igarashi, Peter Thiemann, Vasco T. Vasconcelos, and Philip Wadler. Gradual session
types. Proc. ACM Program. Lang., 1(ICFP):38:1–38:28, 2017. doi:10.1145/3110282.

24 Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin Steffen. ABS:
A core language for abstract behavioral specification. In Bernhard K. Aichernig, Frank S.
de Boer, and Marcello M. Bonsangue, editors, FMCO 2010, volume 6957 of Lecture Notes in
Computer Science, pages 142–164. Springer, 2010. doi:10.1007/978-3-642-25271-6_8.

25 Eduard Kamburjan. Detecting deadlocks in formal system models with condition synchroniza-
tion. ECEASST, 76, 2018. doi:10.14279/tuj.eceasst.76.1070.

26 Eduard Kamburjan. Behavioral program logic. In TABLEAUX, volume 11714 of Lecture
Notes in Computer Science, pages 391–408. Springer, 2019.

27 Eduard Kamburjan. Modular Verification of a Modular Specification: Behavioral Types as
Program Logics. PhD thesis, Technische Universität Darmstadt, 2020.

28 Eduard Kamburjan and Tzu-Chun Chen. Stateful behavioral types for active objects. In
Carlo A. Furia and Kirsten Winter, editors, iFM 2018, volume 11023 of Lecture Notes in
Computer Science, pages 214–235. Springer, 2018. doi:10.1007/978-3-319-98938-9_13.

29 Eduard Kamburjan, Crystal Chang Din, and Tzu-Chun Chen. Session-based compositional
analysis for actor-based languages using futures. In Kazuhiro Ogata, Mark Lawford, and
Shaoying Liu, editors, ICFEM 2016, volume 10009 of Lecture Notes in Computer Science,
pages 296–312, 2016. doi:10.1007/978-3-319-47846-3_19.

Gabbrielli’s Festschrift

https://doi.org/10.1007/978-3-030-31175-9_8
https://doi.org/10.4204/EPTCS.291.3
https://doi.org/10.4204/EPTCS.291.3
https://doi.org/10.1007/s10270-014-0444-y
https://doi.org/10.1007/s10270-014-0444-y
https://github.com/ahbnr/SessionTypeABS/blob/master/thesis/thesis_final_pdfa.pdf
https://github.com/ahbnr/SessionTypeABS/blob/master/thesis/thesis_final_pdfa.pdf
http://dl.acm.org/citation.cfm?id=1624775.1624804
http://dl.acm.org/citation.cfm?id=1624775.1624804
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/3110282
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.14279/tuj.eceasst.76.1070
https://doi.org/10.1007/978-3-319-98938-9_13
https://doi.org/10.1007/978-3-319-47846-3_19

1:24 Locally Static, Globally Dynamic Session Types for Active Objects

30 Eduard Kamburjan, Crystal Chang Din, Reiner Hähnle, and Einar Broch Johnsen. Asyn-
chronous cooperative contracts for cooperative scheduling. In SEFM, volume 11724 of Lecture
Notes in Computer Science, pages 48–66. Springer, 2019.

31 Eduard Kamburjan, Reiner Hähnle, and Sebastian Schön. Formal modeling and analysis
of railway operations with active objects. Sci. Comput. Program., 166:167–193, 2018. doi:
10.1016/j.scico.2018.07.001.

32 Eduard Kamburjan, Stefan Mitsch, Martina Kettenbach, and Reiner Hähnle. Modeling and
verifying cyber-physical systems with hybrid active objects. CoRR, abs/1906.05704, 2019.
arXiv:1906.05704.

33 Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci.,
134(2):329–363, 1994. doi:10.1016/0304-3975(94)90242-9.

34 Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed runtime monitoring for
multiparty conversations. Formal Asp. Comput., 29(5):877–910, 2017.

35 Rumyana Neykova and Nobuko Yoshida. Multiparty session actors. Logical Methods in
Computer Science, 13(1), 2017.

36 Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and Jacopo Mauro.
Dynamic choreographies - safe runtime updates of distributed applications. In Tom Holvoet
and Mirko Viroli, editors, COORDINATION 2015, volume 9037 of Lecture Notes in Computer
Science, pages 67–82. Springer, 2015. doi:10.1007/978-3-319-19282-6_5.

37 Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and Jacopo Mauro.
Dynamic choreographies: Theory and implementation. Log. Methods Comput. Sci., 13(2),
2017. doi:10.23638/LMCS-13(2:1)2017.

38 Alceste Scalas and Nobuko Yoshida. Lightweight session programming in scala. In Shriram
Krishnamurthi and Benjamin S. Lerner, editors, 30th European Conference on Object-Oriented
Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy, volume 56 of LIPIcs, pages
21:1–21:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
ECOOP.2016.21.

39 Rudolf Schlatte and abstools Contributors. Modified branch of the abstools compiler version
1.8.1 - github source repository. https://github.com/ahbnr/abstools/tree/thisDestiny.
Accessed: 2019-10-29.

40 Rudolf Schlatte, Einar Broch Johnsen, Jacopo Mauro, Silvia Lizeth Tapia Tarifa, and
Ingrid Chieh Yu. Release the beasts: When formal methods meet real world data.
In Frank S. de Boer, Marcello M. Bonsangue, and Jan Rutten, editors, It’s All About
Coordination - Essays to Celebrate the Lifelong Scientific Achievements of Farhad Ar-
bab, volume 10865 of Lecture Notes in Computer Science, pages 107–121. Springer, 2018.
doi:10.1007/978-3-319-90089-6_8.

41 Robert E. Strom and Shaula Yemini. Typestate: A programming language concept for
enhancing software reliability. IEEE Trans. Software Eng., 12(1):157–171, 1986. doi:10.1109/
TSE.1986.6312929.

42 Roger Wolff, Ronald Garcia, Éric Tanter, and Jonathan Aldrich. Gradual typestate. In Mira
Mezini, editor, ECOOP 2011 - Object-Oriented Programming - 25th European Conference,
Lancaster, UK, July 25-29, 2011 Proceedings, volume 6813 of Lecture Notes in Computer
Science, pages 459–483. Springer, 2011. doi:10.1007/978-3-642-22655-7_22.

43 Peter Y. H. Wong, Elvira Albert, Radu Muschevici, José Proença, Jan Schäfer, and Rudolf
Schlatte. The ABS tool suite: modelling, executing and analysing distributed adaptable
object-oriented systems. STTT, 14(5):567–588, 2012.

https://doi.org/10.1016/j.scico.2018.07.001
https://doi.org/10.1016/j.scico.2018.07.001
http://arxiv.org/abs/1906.05704
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.1007/978-3-319-19282-6_5
https://doi.org/10.23638/LMCS-13(2:1)2017
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://github.com/ahbnr/abstools/tree/thisDestiny
https://doi.org/10.1007/978-3-319-90089-6_8
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1007/978-3-642-22655-7_22

	Introduction
	Active Objects and Session Types
	Session Types for Active Objects
	Global Types
	Local Types

	LSGD Session Types
	Session Automata
	Projection
	Pre-Analysis
	Global Projection
	Local Projection
	Scheduling Type

	Locally Static
	Globally Dynamic
	Automaton Extraction
	Translation and Integration

	Soundness and Stateful Session Types

	Implementation and Evaluation
	Related Work
	Conclusion

