
A Logic Programming Approach to Reaction
Systems
Moreno Falaschi
Department of Information Engineering and Mathematics, University of Siena, Italy
https://www3.diism.unisi.it/people/person.php?id=485
moreno.falaschi@unisi.it

Giulia Palma
Department of Computer Science, University of Pisa, Italy
giuliapalma29@gmail.com

Abstract
Reaction systems (RS) are a computational framework inspired by the functioning of living cells,
suitable to model the main mechanisms of biochemical reactions. RS have shown to be useful
also for computer science applications, e.g. to model circuits or transition systems. Since their
introduction about 10 years ago, RS matured into a fruitful and dynamically evolving research
area. They have become a popular novel model of interactive computation. RS can be seen as
a rewriting system interacting with the environment represented by the context. RS pose some
problems of implementation, as it is a relatively recent computation model, and several extensions
of the basic model have been designed. In this paper we present some preliminary work on how to
implement this formalism in a logic programming language (Prolog). To the best of our knowledge
this is the first approach to RS in logic programming. Our prototypical implementation does not
aim to be highly performing, but has the advantage of being high level and easily modifiable. So
it is suitable as a rapid prototyping tool for implementing several extensions of reaction systems
in the literature as well as new ones. We also make a preliminary implementation of a kind of
memoization mechanism for stopping potentially infinite and repetitive computations. Then we show
how to implement in our interpreter an extension of RS for modeling a nondeterministic context
and interaction between components of a (biological) system. We then present an extension of the
interpreter for implementing the recently introduced networks of RS.

2012 ACM Subject Classification Theory of computation → Semantics and reasoning; Computing
methodologies → Symbolic calculus algorithms; Software and its engineering → Interpreters

Keywords and phrases reaction systems, logic programming, non deterministic context

Digital Object Identifier 10.4230/OASIcs.Gabbrielli.2020.6

Acknowledgements We thank the anonymous reviewers for their detailed and very useful criticisms
and recommendations that helped us to improve our paper.

1 Introduction

Natural Computing is an area of research which has two main aspects: human designed
computing (models and computational techniques) inspired by nature and computation
taking place in nature (i.e. it also investigates processes taking place in nature in terms
of information processing). The first strand of research is quite well-established. This
paper falls into this second strand of research, since it discusses reaction systems which
are a formal model for the investigation of the functioning of the living cell introduced by
A. Ehrenfeucht and G. Rozenberg [16, 17]. The functioning is viewed in terms of formal
processes resulting from interactions between biochemical reactions taking place in the living
cell. The basic model of reaction systems abstracts from various (technical) features of
biochemical reactions to such an extent that it becomes a qualitative rather than quantitative
model [7, 15]. However, it takes into account the basic bioenergetics (flow of energy) of the

© Moreno Falaschi and Giulia Palma;
licensed under Creative Commons License CC-BY

Recent Developments in the Design and Implementation of Programming Languages.
Editors: Frank S. de Boer and Jacopo Mauro; Article No. 6; pp. 6:1–6:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6659-3828
https://www3.diism.unisi.it/people/person.php?id=485
mailto:moreno.falaschi@unisi.it
mailto:giuliapalma29@gmail.com
https://doi.org/10.4230/OASIcs.Gabbrielli.2020.6
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

6:2 A Logic Programming Approach to Reaction Systems

living cell, and it also takes into account that the living cell is an open system (in the sense
that it interacts with its environment) and its behavior is influenced by its environment. The
main focus of research is on understanding processes that take place in these models. The
Reaction Systems model has already been applied and extended successfully to various areas
of research, since it is relevant in several different fields, such as computer science, biology,
molecular chemistry [20, 21, 9, 3].

In this paper we present our preliminary work on how to implement the framework of
RS in a logic programming language (Prolog). To the best of our knowledge this is the first
approach to RS in logic programming. We illustrate our program by means of some simple
basic examples throughout the paper, and then we consider a more complex example, by
modeling a reaction system representing a regulatory network for lac operon, presented in [12].
We have also implemented a kind of memoization mechanism for stopping potentially infinite
and repetitive computations. We discuss also some extensions of the basic framework and
their implementation. First, we discuss how to implement an extension of RS for modeling
nondeterministic contexts. Then, we show how to implement two RS which interact between
them. Finally we present a prototypical implementation of the recently introduced networks
of reaction systems [6]. Our interpreter is freely available online.

Structure of the paper. In Section 2, we present the basic framework of Reaction Systems.
Then Section 3 is devoted to describing the implementation of the basic framework. Section 4
presents the implementation of a biological example. In Section 5 we discuss some extensions
of RS and the corresponding implementation. We draw some conclusions and discuss future
work in Section 6.

1.1 Related work
Reaction systems pose some interesting problems of implementation, as it is a recent compu-
tation model, and several extensions of the basic model have been designed. In particular,
RS are amenable to both theoretical studies and as a modeling tool for biological processes.
Their dynamics occupy an intermediate position between Cellular Automata [19] and Boolean
Automata Networks [13]. However, since reaction systems have also been employed to model
real-world systems, the availability of fast and efficient simulators is essential for a more
widespread use of them as a modeling tool. The first available simulator was brsim [1], written
in Haskell and it has been the fastest CPU-based simulator available for a relatively long
time. Later, a GPU-based approach to the simulation of reaction systems has been explored
with HERESY in [23], written using CUDA. It has been shown to be the fastest simulator for
large-scale systems, due to its ability to exploit the large number of computational units inside
GPUs. It also provides a CPU-based simulator written in Python 2, however it is more a
“fallback” simulator when GPUs are not available, and is slower than brsim. Both simulators
employ the same direct simulation method, which is based on the set-theoretic definition of
the reaction systems’ dynamics. Recently, in [18] the authors provide an optimized Common
Lisp simulator, employing the direct simulation method, which is able to offer performances
comparable with the GPU-based simulator on a large-scale real-world model, the ErbB model.
It has been shown to be the fastest CPU-based simulator currently available. They also
explore other ways of performing the simulation, in particular, by looking at the graph of
dependencies between reactions, it is possible to avoid performing the simulation of parts of
the reactions that cannot produce any effect on its dynamics; and by rewriting the dynamical
evolution of a reaction system in terms of matrix-vector multiplications, vector additions,
and clipping operations, they exploit the existing high-performance linear algebra libraries to

M. Falaschi and G. Palma 6:3

perform the simulation and therefore they use a proof-of-concept implementation employing
Python 3 and Numpy. Regarding the non-determinism of the context, some results are
illustrated in [9], in which the authors consider the link-calculus [8, 11], which allows to model
multiparty interaction in concurrent systems, and show that it allows to embed reaction
systems, by representing the behaviour of each entity and preserving faithfully their features.
Such a framework contribute to increase the expressiveness of reaction systems, indeed it
exploits the interaction among different reaction systems. In [10] the authors show how to
define a context which can be really expressive, by adding to it a non deterministic and a
recursive operator.

In this paper we present some preliminary work on how to implement the formalism of
RS in a logic programming language: Prolog. Although this prototypical implementation is
not highly performing and competitive compared to the above mentioned implementation,
it has the considerable advantage of being very high level and easily modifiable. Therefore,
it is suitable as a working rapid prototyping tool for implementing extensions of reaction
systems, as we show in this paper.

2 Reaction Systems

Natural Computing is concerned with human-designed computing inspired by nature as well
as with computation taking place in nature. The theory of Reaction Systems [16, 7] was born
in the field of Natural Computing to model the behavior of biochemical reactions taking
place in living cells. The original motivation was to understand interactions of biochemical
reactions in the living cell from the natural computing point of view. These interactions are
based on mechanisms of facilitation and inhibition, which underlie the definition of reaction
system. A reaction is a chemical process in which substances act mutually on each other and
are changed into different substances, or one substance changes into other substances. A
reaction takes place if all its reactants are present and none of its inhibitors is present. If a
reaction takes place, then it creates its products. Therefore to specify a reaction one needs to
specify its set of reactants, its set of inhibitors and its set of products.

I Definition 1 (Reaction). A reaction is a triplet a = (R, I, P), where R, I, P are finite sets.
If S is a set such that R, I, P ⊆ S, then a is a reaction in S.

The sets R, I, P are also written Ra, Ia, Pa and called the reactant set of a, the inhibitor set
of a, and the product set of a, respectively. Also, Ra ∪ Ia is the set of the resources of a and
rac(S) denotes the set of all reactions in S. Because R and I are non empty, all products
are produced from at least one reactant and every reaction can be inhibited in some way.
Sometimes artificial inhibitors are used that are never produced by any reaction. For the
sake of simplicity, in some examples, we will allow I to be empty.
The effect of a reaction a is conditional: if Ra is present and no element of Ia is present, then
Pa is produced. Otherwise, the reaction does not take place, and “nothing” is produced.

I Definition 2 (Result of Reaction). Let a be a reaction, A a finite set of reactions and T a
finite set.

a is enabled by T if Ra ⊆ T and Ia ∩ T = ∅ (indicated by ena(T));
The result of a on T is defined by:

resa(T) =
{
Pa if ena(T)
∅ otherwise

The results of A on T is defined by resA(T) =
⋃

a∈A resa(T).

Gabbrielli’s Festschrift

6:4 A Logic Programming Approach to Reaction Systems

Now that the formal notion of a reaction and its effect on states have been established, we
can proceed to define reaction systems, which are an abstract model of the functioning of the
living cell. A reaction system is essentially a set of reactions. We also specify the background
set, which consists of entities needed for defining the reactions and for reasoning about the
system.

I Definition 3 (Reaction Systems). A reaction system, abbreviated rs, is an ordered pair
A = (S,A) such that S is a finite set, and A ⊆ rac(S).

The set S is called the background set of A. Its elements are called entities, they represent
molecular entities (e. g. atoms, ions, molecules) that may be present in the state of a
biochemical system modeled by A. The set A is the set of reactions of A. Since S is finite,
so is A. All the notations introduced for sets of reactions carry over to reaction systems:
T ⊆ S, enA(T) = enA(T); resA(T) = resA(T); T is active in A, if enA(T) 6= ∅. The theory
of Reaction Systems is based on the following assumptions:
1. No permanency. An entity of a set T vanishes unless it is sustained by a reaction. This

reflects the fact that a living cell would die for lack of energy, without chemical reactions.
2. No counting. The basic model of reaction systems is very abstract and qualitative, i.e.

the quantity of entities that are present in a cell is not taken into account. In fact the
number of reagents does not count in the reaction systems model, unlike the stoichiometric
equations, in which the quantities are fundamental.

3. Threshold nature of resources. From the previous item, we assume that either an
entity is available and there is enough of it (i.e. there are no conflicts), or it is not
available at all.

The dynamic behavior of reaction systems is captured through the notion of interactive
process:

I Definition 4 (Interactive Process). Let A = (S,A) be a reaction system. An interact-
ive process in A is a pair π = (γ, δ) of finite sequences such that: γ = C0, C1, . . . , Cn,
δ = D1, . . . , Dn, n ≥ 1, where C0, . . . , Cn, D1, . . . , Dn ⊆ S,D1 = resA(C0), and Di =
resA(Di−1 ∪ Ci−1) for 2 ≤ i ≤ n.

Living cells are seen as open systems that continuously react with the external environment,
in discrete steps. The sequence γ is the context sequence of π and represents the influence of
the environment on the Reaction System. The sequence δ is the result sequence of π and
it is entirely determined by γ and A. Note that Ci and Di do not have to be disjoint. Let
W0 = C0 and Wi = Ci ∪Di for all 1 ≤ i ≤ n. The sequence W0, . . . ,Wn is the state sequence
of π, sts(π). W0 is the initial state of π. For each 0 ≤ j ≤ n, Cj is the context of Wj .

Let us consider a clarifying example that illustrates the concepts introduced in Section 2.

I Example 5. Let us consider a reaction system A = ({e1, e2, e3, e4}, A), where A is the set
of the two reactions:

a1 = ({e1, e2}︸ ︷︷ ︸
R1= Reactants of a1

, {e3}︸︷︷︸
I1= Inhibitors of a1

, {e2, e3}︸ ︷︷ ︸
P1= Products of a1

)

a2 = ({e1}︸︷︷︸
R2= Reactants of a2

, {e4}︸︷︷︸
I2= Inhibitors of a2

, {e1, e4}︸ ︷︷ ︸
P2= Products of a2

)

The sequence τ = {e2, e3, e1, e4},ø is a context-indipendent state sequence of A, assuming
that the initial state is T0 = {e1, e2}. Indeed: R1 = T0 and T0∩I1 = ø, then reaction a1 takes
place, producing P1; also R2 ⊂ T0 and I2∩T0 = ø, then reaction a2 takes place producing P2.

M. Falaschi and G. Palma 6:5

Therefore, we get T1 = P2∪P3 = {e2, e3, e1, e4}. Now, since I1∩T1 = {e3} 6= ø, then reaction
a1 does not take place. Reaction a2 does not take place either, in fact I2 ∩ T1 = {e4} = ø.
Finally, we get T2 = ø.
Let us now assume that the computation is not context-indipendent. If the context sequence
is γ = {e1, e4}, {e4}, then the corresponding state sequence is τ = {e4},ø. Indeed: G0 =
T0 ∪ C0 = {e1, e2, e4}. From the fact that G0 ∩ I2 = {e4} 6= ø, we get the reaction a2 does
not take place. Instead reaction a1 occurs in fact R1 ⊆ G0 and I1 ∩ G0 = ø. Then we
get T1 = {e2, e3}. Now, we have G1 = T1 ∪ {e4} = {e2, e3, e4}. Since G1 ∩ I1 = ø and
G1 ∩ I2 = ø, neither reaction a1 nor reaction a2 take place. Therefore, we get T2 = ø.

3 A logic programming approach to Reaction Systems

In this Section we briefly describe a prototypical implementation of the Reaction Systems
framework in a logic programming language (Prolog), which is available on-line1, together
with a small manual to use it.

3.1 An Interpreter of Reaction Systems in logic programming
Sets are represented by corresponding lists of values. The background set S of a reaction
system is represented by a list of distinct constant symbols. A reaction (R, I, P) is
represented by a triple of lists, where R is the list of the reactants, I is the list of the inhibitors
and P is the list of products. The set of reactions in a reaction system is defined by a list
of reactions and is introduced by using the predicate reactionSet/1. So, this predicate is
fundamental and one fact for this predicate must be included. If the computation is context
independent reactionSet/1 is the only predicate for which we have to add a unit fact in
the program. If we want to perform a computation context dependent, then we have to add
also a unit fact for the other fundamental predicate context/1. The predicate context/1
takes as input a list of context lists. Hence a user has to modify only one, or at most two
unit facts to be able to run her reaction system.

3.2 A computation with the interpreter of Reaction Systems
Now we briefly describe some of the main predicates which are part of the interpreter of
Reaction Systems.

When evaluating a query to our interpreter, the predicate which needs to be called is
computation(InitialState, ListOfStates). The first input argument InitialState is
the list of the reagents to be put in the initial state. The second argument ListOfStates is
the list of states which is computed in the reaction system by our interpreter. So, a query to
our interpreter consists of a call to computation/2.

The execution of the predicate computation/2 starts by making some preliminary checks
(predicate preliminaryCheck/1) to verify that the basic assumptions on reaction systems
are respected. Namely, for each reaction (R,I,P) the set of reagents R and the sets of
inhibitors I are non empty, and they don’t share elements. Then, the interpreter will give
the user some choices:
1) whether she wants to make a context independent computation or a computation which

interacts with the context.

1 https://www3.diism.unisi.it/~falaschi/ReactionSystems

Gabbrielli’s Festschrift

https://www3.diism.unisi.it/~falaschi/ReactionSystems

6:6 A Logic Programming Approach to Reaction Systems

2) whether she wants to make a computation with a limited maximal number of steps, or if
the computation should be of a possibly unlimited length.

Then the appropriate predicate corresponding to the choice of the user is selected, between
the following four ones:

computationLimitedToKStepsContextIndependent/2
computationLimitedToKSteps/2
unlimitedComputationContextIndependent/2
unlimitedComputation/2

Notice that unlimitedComputation/2 and unlimitedComputationContextIndependent/2
may enter in a loop if there is a reaction (R,I,P) in which the same reactant in R appears in
P, or more in general when there are dependencies between the reactants in R and the ones
computed by some other reaction. A loop can be stopped by using the inhibition mechanism,
or by a memoization mechanism, as explained at the end of this section.

A single step of the computation is performed as follows. The result of a single reaction
(without the context) is computed by the predicate result (T, R, I, P, P1). Given the
state T and the reaction (R, I, P), the result P1 will be P if the reaction is enabled in
T (that is, if the predicate enable is true), otherwise it will return the empty set. The
predicate enable (R, I, T) checks if the reaction with reactants R and inhibitors I is
enabled in the state T. We recall that in a reaction system for a reaction to occur it must
hold: R ⊆ T and I ∩ T = ∅. Then the result of all reactions on T is computed by the
predicate resultallreactions (T, ReactionSet, T1), which recursively calls result/5
and collects the union of its outcomes.

Let us see a trivial example.

I Example 6. Let us define the predicate reactionset as follows:

reactionset ([([e1, e2], [e3], [e2, e3]), ([e1], [e4], [e1, e4])]).

This means that there are two reactions in the system. We execute the following query:

? - computation ([e1, e2], L).

Then, by selecting the modality “computation context independent” we get:

L = [[e2, e3, e1, e4], []]

that is the next state [e2, e3, e1, e4] and the final state []. The computation in this
case uses an empty context represented internally by an empty list.

We now modify the example in order to show the interactive influence of the context. To
consider the effect of the context, we need to add a unit fact for the predicate context/1.
The input argument of this predicate must be a list of context reagent lists. The list in
position k corresponds to the context to be added at step k of the computation. For instance:
context([[e1, e2], [e3, e2, e5]]).

If the context list has length m, and the computation is longer, it continues from step
m+1 as context independent. We define the predicate that calculates a computation starting
from an initial state, returning a list of states. The context is taken into account now. We
report here a small fragment of the interpreter. The predicate
computeWithContext(ComputState,Context,Reactions,ComputStateSequence) takes in
input the current ComputState, the Context sequence, the list of Reactions in the Reaction
System, and returns the computed ComputStateSequence.

M. Falaschi and G. Palma 6:7

unlimitedComputation(InitialState,L):-
reactionSet(R),context([C0|Cs]),
union(InitialState,C0,SC),computeWithContext(SC,Cs,R,L).

computeWithContext ([], C, R, []).
computeWithContext ([X | L], [], R, [S1 | S]) : -

resultallreactions ([X | L], R, S1),
computeWithContext (S1, [], R, S).

computeWithContext ([X | L], [C | Cs], R, [S1 | S]) : -
resultallreactions ([X | L], R, S1),
union (S1, C, S2), computeWithContext (S2, Cs, R, S).

Let us see a simple example.

I Example 7. Let us define the context and the reactions of a reaction system as follows:

context([[e1, e2], [e3, e2, e5]]).
reactionSet([([e1,e2],[e3],[e2,e3]), ([e5], [e4], [e1,e4])]).

We can execute the following query (starting from an empty initial state):

? - computation ([], L).

We get:

L = [[e2, e3], [e1, e4], []].

that is the next state is [e2, e3], then [e1, e4] and the final state [].

3.3 Stopping unlimited computations with memoization
A problem which may arise during a computation in a reaction system is that a loop can be
created easily either directly in one reaction or with dependencies between different reactions.
For instance consider the reaction [[a],[b],[a]]. If we start with the initial state [a],
then an infinite sequence [a], [a], [a], will be generated, unless the context introduces
the inhibitor b at some stage of the computation.

We have extended our interpreter by using a technique in the style of “memoization”. So
we have defined a predicate unlimitedComputationContextIndependentMemoized which
keeps track of the states of the computation generated, and as soon as a state of the
computation is repeated (i.e. it appears identical in a previous step), the computation is
stopped and the finite sequence of states until the current one is returned.

4 Reaction systems: a biological example

In this section we present the encoding of a reaction system example taken from [12],
that regards the lac operon mechanism in the reaction system formalism. Therefore, we
preliminary introduce the most essential notions about the lac operon.

4.1 The lac operon
An operon is a functioning unit of DNA containing a cluster of genes under the control
of a single promoter (i.e. a sequence of DNA to which proteins bind in order to initiate
transcription). The lac operon is involved in the metabolism of lactose in Escherichia coli
cells (i.e. a bacteria which lives in the intestines of mammals and birds and which is needed

Gabbrielli’s Festschrift

6:8 A Logic Programming Approach to Reaction Systems

to digest food). It is composed by three adjacent structural genes (plus some regulatory
components): lacZ, lacY and lacA encoding for two enzymes Z and A, and a transporter Y ,
involved in the digestion of the lactose. The main regulations are:

The DNA sequence, called promoter, is recognized by a RNA polymerase (i.e. an enzyme
that synthesizes RNA from a DNA template) to iniziate the transcription of the genes
lacZ, lacY and lacA;
The gene lacI encodes for a repressor protein I;
A DNA segment, called the operator (OP), obstructs the RNA polymerase functionality
when the repressor protein I is bound to it forming I-OP ;
A short DNA sequence, called the CAP-binding site, when it is bound to the complex
composed by the protein CAP and the signal molecule cAMP , acts as a promoter for
the interaction between the RNA polymerase and the promoter.

The functionality of the lac operon is based on the integration of two control mechanisms of
which, one is mediated by lactose, while the other one is mediated by glucose.
1. In the first control mechanism, an effect of the absence of the lactose is that I can bind

the operator sequence preventing in this way the lac operon expression. If lactose is
available, I is unable to bind the operator sequence, and then the lac operon can be
potentially expressed.

2. In the second control mechanism, in the absence of glucose, the molecule cAMP and
the protein CAP increase the lac operon expression, thanks to the fact that the binding
between the molecular complex cAMP -CAP and the CAP -binding site increases.

Therefore, to sum up, the condition that promotes the operon gene expression is the presence
of lactose and the absence of glucose.

4.2 The Reaction System formalization
The reaction system for the lac operon is defined as Alac = (S,A), where the set S represents
the main biochemical components involved in the considered genetic system and the reaction
set A contains the biochemical reactions involved in the regulation of the lac operon expression.
S = {lac, Z, Y,A, lacI, I, I-OP, cya, cAMP, crp, CAP, cAMP -CAP, lactose, glucose} and A
consists of the following 10 reactions:

a1 = ({lac}, {...}, {lac}), a6 = ({cya}, {...}, {cAMP }),
a2 = ({lacI}, {...}, {lacI}), a7 = ({crp}, {...}, {crp}),
a3 = ({lacI}, {...}, {I}), a8 = ({crp}, {...}, {CAP }),
a4 = ({I}, {lactose}, {I-OP }), a9 = ({cAMP, CAP }, {glucose}, {cAMP -CAP }),
a5 = ({cya}, {...}, {cya}), a10 = ({lac, cAMP -CAP }, {I-OP }, {Z, Y, A}).

where {...} stands for any dummy inhibitor. Observe that reactions a1, a2, a5, a7 are necessary
to grant the permanency of the genes in the system; while reactions a4, a9, a10 can only be
enabled if the current state of the system does not include the inhibitor elements specified
in each reaction. In more details, reaction a4 can be applied only in the absence of lactose,
reaction a9 in the absence of glucose, and reaction a10 when repressor I is not bound to the
operator OP .
The lac operon expression is based on which substrates the environment provides. In order
to translate this situation in the lac operon reaction system, we need to evaluate what
happens to the system when the context provides both glucose and lactose, only glucose,
only lactose, or none of them. To do this, we define a default context (DC) that mimics
the real biological system in which the genomic elements plus their encoded proteins are

M. Falaschi and G. Palma 6:9

normally present; hence DC is composed by those entities that are always present in the
system DC = {lac, lacI, I, cya, cAMP, crp, CAP}, whereas the lactose and the glucose are
given non-deterministically by the context.

4.3 The Reaction System encoding in Prolog
We now show the encoding of the considered reaction systems in Prolog. We note that, by
definition, the set of inhibitors should not be empty, but in this example most of the triples
have empty inhibitors. Thus, we add a dummy inhibitor gp, i.e. a new constant that does
not appear in any reaction, if the set of inhibitors is empty. If we add the new inhibitor gp in
all sets of inhibitors in the rules, then we can use it to force the termination of a computation,
when the context introduces it. This is useful, as reactions such as “([a], [], [a])” may cause
an infinite loop. Notice that since a reaction system has a finite background set, we can
prove the following property:

I Proposition 8. If a reaction system enters in an infinite loop then the infinite computation
has the form W0,W1, . . . Wm . . .Wk . . . , where m < k, and Wm = Wk.

This means that the subsequence Wm, . . . ,Wk will then be repeated iteratively.
Let us now consider the program presented in Section 3, where we replace the rules for

predicates reactionset and context by the following ones:

reactionset([([lac], [gp], [lac]), ([laci],[gp],[laci]),
([laci],[gp],[ig]), ([ig],[lactose, gp],[iop]),
([cya],[gp],[cya]), ([cya],[gp], [camp]),
([crp],[gp],[crp]), ([crp],[gp],[cap]),
([camp, cap],[glucose, gp],[campcap]),
([lac, campcap], [iop, gp],[z,y,a])]).

context([[lac,laci,ig,cya,camp,crp,cap],
[glucose], [glucose], [glucose],
[glucose], [glucose], [glucose, lactose],
[glucose, lactose], [glucose, lactose],
[glucose, lactose], [glucose, lactose],[gp]]).

By executing the following query:

? - computation ([], L).

We get:

L = [[lac, laci, ig, iop, cya, camp, crp, cap, campcap],
[[lac, laci, ig, iop, cya, camp, crp, cap],
[lac, laci, ig, iop, cya, camp, crp, cap],
[lac, laci, ig, iop, cya, camp, crp, cap],
[lac, laci, ig, iop, cya, camp, crp, cap],
[lac, laci, ig, iop, cya, camp, crp, cap],
[lac, laci, ig, cya, camp, crp, cap],
[lac, laci, ig, cya, camp, crp, cap],
[lac, laci, ig, cya, camp, crp, cap],
[lac, laci, ig, cya, camp, crp, cap],
[lac, laci, ig, cya, camp, crp, cap], []]

In the following section, we will present some extensions of the basic framework and a
possible implementation in our interpreter.

Gabbrielli’s Festschrift

6:10 A Logic Programming Approach to Reaction Systems

5 Extensions of the basic framework: modifications to the context

In this section we want to show that our interpreter is flexible and can be exploited as a
rapid prototyping tool for implementing prototypes of extensions of the basic framework
of reaction systems. We will illustrate this characteristic by defining first a very simple
nondeterministic extension of reaction systems, and then showing how to implement a recent
extension of reaction systems to a network of them [6].

5.1 Non-deterministic context
Reaction systems are deterministic. However, the evolution of a computation interacting with
a context depends on such interaction. So, recently some work has focused on extending the
context behaviour to make it more expressive. For instance [10] has designed an extension of
the context based on process algebras which allows for non deterministic and even recursive
contexts. Here we propose a much simpler extension, by adding a nondeterministic operator
to the context.

The implementation of non-deterministic finite transition systems provides an instructive
insight into the role of context in interactive processes. Let’s modify our program and add a
non-determinism operator in context. In this way, the context instead of being made from a
sequence of lists S1, S2, . . . , will be a list in which each element of the list is a list of lists from
which it can be chosen not deterministically. For example (S11 +S12 + · · ·+S1k1)(S21 +S22 +
S23 + · · ·+ Sk2) . . . and the system chooses one of these lists at each step in a completely
non-deterministic way. If our context sequence was (S11)(S21 + S22)(S31 + S32), then the
possible (context) sequences generated in a non-deterministic way would be S11-S21-S31 or
S11-S21-S32 or S11-S22-S31 or S11-S22-S32.

The nondeterministic choice on each step of the context is performed by the predicate
chooseContext/2, which chooses randomly one of the contexts in the list.

We modify our program in the following way:

contextND([[[a1,a2],[a3,a2,a5]],[[a2,a3,a,4],[a1,a2,a5],[a3]]]).

chooseContext(PossibleContext, ChoosenContext):-
length(PossibleContext, Length),
random(0,Lenght,Index),
nth0(Index,PossibleContext,ChoosenContext).

context([],[]).
context([L|OtherList],[Cc|Cot]):- chooseContext(L,Cc),
context(OtherList,Cot).
computation(InitialState,L):- reactionSet(R), contexND(C),

context(C,[C0|Cs]), union(InitialState,C0,SC),
computeWithContext(SC,Cs,R,L).

We have defined the predicate chooseContext that selects a random element from a list
of lists. The new context is a list whose elements are lists in which to choose a list. The
new context is given by contextND. To create the context we defined the context predicate.
Finally, we modified the computation predicate.

We notice that we will not add these modifications to our interpreter. These modifications
could be useful to model easily non deterministic systems, with a don’t care kind of non-
determinism which is typical of concurrent systems [24]. Don’t care nondeterminism means
that only one of the possible choices is chosen, and the other alternatives are discarded. For an

M. Falaschi and G. Palma 6:11

extension of our interpreter which exploits a non deterministic context with the typical don’t
know non determinism of logic programming please see [10]. Don’t know nondeterminism
means that all possible choice alternatives are tried.

In the following section we show that our interpreter can be extended to model two
interacting reaction systems.

5.2 Interaction of two Reaction Systems
We start by discussing first a simple extension to a network made by two reaction systems
which “cooperate”. We illustrate how it is possible to program two reaction systems encodings,
in such a way that the entities that usually come from the context of one reaction system
will be provided instead from the other reaction system.
A slight modification of our program allows us to consider two reaction systems in which the
output of the first reaction system becomes the context of the other.

We can define two separate unit predicates for the reactions in the two RS, reactionsetF/1
and reactionsetS/1. Then, we have to modify the computation/2 predicate so that in
the case of the first reaction system we provide the context via the context predicate; while
for the second reaction system we use the list obtained from the computation of the first
reaction system.

reactionsetF([([a1,a2],[a3],[a2,a3]),([a5],[a4],[a1,a4])]).
reactionsetS([([a1,a3],[a4],[a1,a3]),([a3,a5],[a4],[a2,a4])]).

computationF(InitialState,L):-reactionsetF(R),context([C0|Cs]),
union(InitialState,C0,SC),computeWithContext(SC,Cs,R,L).

/* new predicate to calculate the second reaction system */
computation(InitialStateF,InitialStateS, L):- reactionsetS(R),

computationF(InitialStateF,[C0|L1]), context([C0|L1]),
union(InitialState,C0,SC),computeWithContext(SC,Cs,R,L).

In the following section we show that our interpreter can be extended to model networks
of reaction systems. We have enclosed this extension in the interpreter available online.

5.3 Networks of Reaction Systems
Here we illustrate how to extend our interpreter for modeling networks of reaction systems
as introduced in [6]. In [6] the context has its own structure: the context for a reaction
system originates from a network of reaction systems. Such a network is formalized as a
graph where nodes represent reaction systems, and where each reaction system contributes
to defining the context of all its neighbours. Thus, as the context for a reaction system is
given by a network of reaction systems communicating with it, the interaction between two
reaction systems that we have introduced in Section 5.2 can be seen as a special case of the
definition of a network of reaction systems. In the basic model of [6] reported here, all edges
function as communication channels and states of reaction systems residing at nodes are
synchronized according to a global clock.
We start by introducing the general notions of centralized network of reaction systems and
interactive network process. In the network of RS that we will define, the j-th RS will be
denoted by Aj = (Sj , Aj). µ : V → F is a location function, which assigns RS to nodes. So,
for vj ∈ V , µ(vj) = Aj . The set of incoming neighbours of a node v in a graph, namely those
nodes for which there is an edge connecting them to v, is denoted by in(v). The following
two definitions are from paper [6].

Gabbrielli’s Festschrift

6:12 A Logic Programming Approach to Reaction Systems

I Definition 9. A centralized network of reaction systems is a tuple N = (G,F , µ), where
G = (V,E, v0) is a finite centralized graph such that in(v0) 6= ∅, F is a nonempty finite set of
reaction systems, and µ : V → F is a location function, assigning reaction systems to nodes.

The following definition formalises the notion of a computation of length n for an interactive
network process, which is given by a vector of individual interactive processes of the reaction
systems in the network nodes. The computation starts from an initial given distribution
(Cj

0 , D
j
0). Roughly speaking Cj

k represents the context for RS j at step k of computation,
and Dj

k represents the state of RS j at step k of computation. Thus, for any node vj , for
each subsequent step i of the process associated with such a node πj , the component Dj

i is
obtained by applying enabled reactions from Aj to the current state, while the component
Cj

i is given by the union of the results produced, at the previous step, by the incoming
neighbours of vj . It is finally made an intersection with Sj to filter out entities which are
not in the background set of Aj .

I Definition 10. Let N = (V,E, v0,F , µ) be a centralized network of reaction systems with
|V | = m + 1 for some m ≥ 0. For n ∈ N+, an interactive (n-step) network process is a
tuple Π = (π0, . . . , πm), where, for j ∈ {0, . . . ,m}, πj = (γj , δj) and γj = (Cj

0 , . . . , C
j
n),

δj = (Dj
0, . . . , D

j
n), are such that:

1. Cj
k = Sj ∩

⋃
{Di

k−1|vi ∈ in(vj)}, for k ∈ {1, . . . , n},

2. Dj
k = resAj (Dj

k−1 ∪ C
j
k−1) for k ∈ {1, . . . , n}.

3. If in(vj) = ∅, then Cj
0 = ∅.

We now illustrate the implementation of the network of Reaction Systems. The new
implementation proceeds for a limited number of steps K, where K is a number given at the
beginning when it is requested by the program, or until an empty state is encountered. The
complete derivation of the Reaction System 1 is calculated (it was called 0 in the previous
definition). The reaction systems of the network corresponds to the nodes of the network and
are numbered by positive integers 1, 2, 3, and so on. At the beginning, the overall number
of Reaction Systems in the network must be given as input. In the following we present
an example consisting of two reaction systems, but the program is valid for an arbitrary
finite number of nodes. As output we obtain the final state of all the Reaction Systems
in the network, and the complete computation of the reaction system 1. It is sufficient to
invoke main(F, D), so that the program calculates F and D, i.e. the overall final state F
of the network and the complete derivation D for reaction system 1. We do not restrict
the set of computed values to the background of the node. It would be easy to add such a
restriction. For the sake of simplicity we assume that all RSs in the network have the same
background set.

The edges of the network are represented by a predicate network/1 introducing a list of
pairs of the form [m,n] meaning that there is an arc from node m to node n. The predicate
search(N,Net,S0,S1) looks for all pairs [N1,N] in Net and returns S1 = union of the states
in position N1 of S0, thus computing the context for N in the network of RS.

The predicate initialStates/1 is defined by a unit fact which introduces a list of list
defining the initial states of the nodes in the network. So list in position k corresponds to
the initial state of node k.

Let us see a fragment of one example. For more details please refer to the interpreter
online.

M. Falaschi and G. Palma 6:13

reaction(1,[([lac],[a],[cya]),([lacI],[a],[lac2]),
...([lac2],[a],[lac3]),([cya],[a],[cya3])]).

reaction(2,[([lac],[a],[cya1,cya]),([lacI],[a],[lac2]),
...([lac2],[a],[lac3]),([cya],[a],[cya,cya2])]).

network([[2,1]]).

computeOneStep(N,S,S2):- computeState(S,SO,1),
network(Net), computeContext(SO,Net,N,S1),
unionList(SO,S1,S2).

computeState([],[],K).
computeState([S|Ss],[S1|S1s],K):-reaction(K,R),

resultallreactions(S,R,S1), K1 is K+1,
computeState(Ss,S1s,K1).

computeContext(S,Net,N,SO):- computeContext1(S,Net,N,SO,1).

computeContext1(S,Net,N,[],N1):-N<N1.
computeContext1(S,Net,N,[S1|SO],N1):-N1=<N,

search(N1,Net,S,S1),N2 is N1+1,
computeContext1(S,Net,N,SO,N2).

initialStates([[lac],[lac]]).

An example of execution follows:
| ?- main(F,D).
Give me the number of Reaction Systems in the Network
(a positive integer, followed by a dot) 2.
Give me the maximun number of computation steps
(a positive integer, followed by a dot) 5.

D = [[cya1,cya],[cya3,cya,cya2],[cya3,cya,cya2], [cya3,cya,cya2],[cya3,cya,cya2]]
F = [[cya3,cya,cya2],[cya,cya2]]

This model of communicating reaction systems can enable the study of the behaviour
of one reaction system in relation to other ones. This way, the lac operon system can
be connected with the two systems producing the lactose and the glucose, and therefore
the presence of these two entities in the lac operon system can be regulated by realistic
mechanisms.

6 Conclusions and future work

In this paper we have recalled the framework of Reaction Systems introduced by A. Ehren-
feucht and G. Rozenberg [16]. Then we have described our preliminary implementation of
this framework in Prolog. We have then shown that our interpreter is flexible and suitable
for rapid prototyping and implementing extensions of the basic framework. It allows to make
indefinitely long computations, computations limited to a maximum of k steps, and we have
also introduced a kind of memoization mechanism based on accumulators for stopping a
computation when a state gets repeated. The user can choose her preferences. Thus, we
have shown how to implement an extension of RS for modeling nondeterministic contexts
with don’t care non determinism, and two interacting RS, and then we have implemented
the recently introduced networks of reaction systems [6]. Our interpreter is freely available

Gabbrielli’s Festschrift

6:14 A Logic Programming Approach to Reaction Systems

online. As a future work we plan to improve the implementation to make it more efficient
by using constraint logic programs, by exploiting finite domains, and CLP(SET) [14], and
more user friendly, also by interfacing it to graphical tools for showing the computations in
our framework. We also plan as a future work to study how to exploit the structures which
have been defined for representing efficiently enormous numbers of states in model checking,
in order to improve the evaluation of reaction systems. Some work has already been done
in [22]. We also want to study the application of static analysis techniques [2, 5, 4] to RS.

References
1 S. Azimi, C. Gratie, S. Ivanov, and I. Petre. Dependency graphs and mass conservation in

reaction systems. Theoretical Computer Science, 598:23—-39, 2015. doi:10.1016/j.tcs.2015.
02.014.

2 R. Barbuti, R. Gori, F. Levi, and P. Milazzo. Investigating dynamic causalities in reaction
systems. Theor. Comput. Sci., 623:114–145, 2016. doi:10.1016/j.tcs.2015.11.041.

3 A. Bernini, L. Brodo, P. Degano, M. Falaschi, and D. Hermith. Process calculi for biological
processes. Natural Computing, 17(2):345–373, 2018. doi:10.1007/s11047-018-9673-2.

4 C. Bodei, L. Brodo, and R. Focardi. Static evidences for attack reconstruction. In Proc. of
Programming Languages with Applications to Biology and Security, volume 9465 of Lecture
Notes in Computer Science, pages 162–182. Springer, 2015. doi:10.1007/978-3-319-25527-9_
12.

5 C. Bodei, L. Brodo, R. Gori, F. Levi, A. Bernini, and D. Hermith. A static analysis for brane
calculi providing global occurrence counting information. Theor. Comput. Sci, 696:11–51, 2017.
doi:10.1016/j.tcs.2017.07.008.

6 P. Bottoni, A. Labella, and G. Rozenberg. Networks of reaction systems. International Journal
of Foundations of Computer Science, 31:53–71, 2020. doi:10.1142/S0129054120400043.

7 R. Brijder, A. Ehrenfeucht, M. Main, and G. Rozenberg. A tour of reaction systems. In-
ternational Journal of Foundations of Computer Science, 22(07):1499–1517, 2011. doi:
10.1142/S0129054111008842.

8 L. Brodo. On the expressiveness of pi-calculus for encoding mobile ambients. Mathematical
Structures in Computer Science, 28(2):202–240, 2018. doi:10.1017/S0960129516000256.

9 L. Brodo, R. Bruni, and M. Falaschi. Enhancing reaction systems: a process algebraic approach.
In M. Alvim, K. Chatzikokolakis, C. Olarte, and F. Valencia, editors, The Art of Modelling
Computational Systems: A Journey from Logic and Concurrency to Security and Privacy,
volume 11760 of Lecture Notes in Computer Science, pages 68–85. Springer Berlin, 2019.
doi:10.1007/978-3-030-31175-9_5.

10 L. Brodo, R. Bruni, and M. Falaschi. SOS rules for equivalences of reaction systems. In
Pre-proceedings of the 28th Int. workshop on Functional and Logic Programming (WFLP 2020),
2020. arXiv:2009.01001.

11 L. Brodo and C. Olarte. Symbolic semantics for multiparty interactions in the link-calculus.
In Proc. of SOFSEM’17, volume 10139 of Lecture Notes in Computer Science, pages 62–75.
Springer, 2017. doi:10.1007/978-3-319-51963-0_6.

12 L. Corolli, C. Maj, F. Marinia, D. Besozzi, and G. Mauri. An excursion in reaction systems:
From computer science to biology. Theoretical Computer Science, 454:95–108, 2012. doi:
10.1016/j.tcs.2012.04.003.

13 J. Demongeot, M. Noual, and S. Sené. On the number of attractors of positive and neg-
ative boolean automata circuits. In 2010 IEEE 24th International Conference on Ad-
vanced Information Networking and Applications Workshops, pages 782–789, 2010. doi:
10.1109/WAINA.2010.141.

14 A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets and constraint logic programming.
ACM Transactions on Programming Languages and Systems, 22(5):861–931, 2000. doi:
10.1145/365151.365169.

https://doi.org/10.1016/j.tcs.2015.02.014
https://doi.org/10.1016/j.tcs.2015.02.014
https://doi.org/10.1016/j.tcs.2015.11.041
https://doi.org/10.1007/s11047-018-9673-2
https://doi.org/10.1007/978-3-319-25527-9_12
https://doi.org/10.1007/978-3-319-25527-9_12
https://doi.org/10.1016/j.tcs.2017.07.008
https://doi.org/10.1142/S0129054120400043
https://doi.org/10.1142/S0129054111008842
https://doi.org/10.1142/S0129054111008842
https://doi.org/10.1017/S0960129516000256
https://doi.org/10.1007/978-3-030-31175-9_5
http://arxiv.org/abs/2009.01001
https://doi.org/10.1007/978-3-319-51963-0_6
https://doi.org/10.1016/j.tcs.2012.04.003
https://doi.org/10.1016/j.tcs.2012.04.003
https://doi.org/10.1109/WAINA.2010.141
https://doi.org/10.1109/WAINA.2010.141
https://doi.org/10.1145/365151.365169
https://doi.org/10.1145/365151.365169

M. Falaschi and G. Palma 6:15

15 A. Ehrenfeucht, J. Kleijn, M. Koutny, and G. Rozenberg. Qualitative and quantitative aspects
of a model for processes inspired by the functioning of the living cell. In Evgeny Katz, editor,
Biomolecular Information Processing: From Logic Systems to Smart Sensors and Actuators,
pages 323–331. Wiley, 2012. doi:10.1002/9783527645480.ch16.

16 A. Ehrenfeucht and G. Rozenberg. Reaction systems. Fundamenta Informaticae, 76:1–18, 2006.
URL: https://content.iospress.com/articles/fundamenta-informaticae/fi75-1-4-15.

17 A. Ehrenfeucht and G. Rozenberg. Reaction systems: a formal framework for processes
based on biochemical interactions. Electronic Communications of the EASST, 26:1–10, 2010.
doi:10.1007/978-3-642-02424-5_3.

18 C. Ferretti, A. Leporati, and L. Manzoni. The many roads to the simulation of reaction
systems. Fundamenta Informaticae, 171(1-4):175–188, 2020. doi:10.3233/FI-2020-1878.

19 J. Kari. Theory of cellular automata: A survey. Theoretical Computer Science, 334(1-3):3–33,
2005. doi:10.1016/j.tcs.2004.11.021.

20 H-J. Kreowski and G. Rozenberg. Graph surfing by reaction systems. In Lambers L. and
Weber J., editors, Graph Transformation. ICGT 2018., volume 10887 of Lecture Notes in
Computer Science, pages 45–62. Springer Berlin, 2018. doi:10.1007/978-3-319-92991-0_4.

21 H-J. Kreowski and G. Rozenberg. Graph transformation through graph surfing in reaction
systems. Journal of Logical and Algebraic Methods in Programming, 109, 2019. doi:10.1016/
j.jlamp.2019.100481.

22 A. Mȩski, W. Penczek, and G. Rozenberg. Model checking temporal properties of reaction
systems. Information Sciences, 313:22–42, 2015. doi:10.1016/j.ins.2015.03.048.

23 M.S. Nobile, A.E. Porreca, S. Spolaor, L. Manzoni, P. Cazzaniga, G. Mauri, and D. Besozzi.
Efficient simulation of reaction systems on graphics processing units. Fundamenta Informaticae,
154(1-4):307––321, 2017. doi:10.3233/FI-2017-1568.

24 E. Shapiro. The family of concurrent logic languages. ACM Computing Surveys, 21(3):412–510,
September 1989. doi:10.1145/72551.72555.

Gabbrielli’s Festschrift

https://doi.org/10.1002/9783527645480.ch16
https://content.iospress.com/articles/fundamenta-informaticae/fi75-1-4-15
https://doi.org/10.1007/978-3-642-02424-5_3
https://doi.org/10.3233/FI-2020-1878
https://doi.org/10.1016/j.tcs.2004.11.021
https://doi.org/10.1007/978-3-319-92991-0_4
https://doi.org/10.1016/j.jlamp.2019.100481
https://doi.org/10.1016/j.jlamp.2019.100481
https://doi.org/10.1016/j.ins.2015.03.048
https://doi.org/10.3233/FI-2017-1568
https://doi.org/10.1145/72551.72555

	Introduction
	Related work

	Reaction Systems
	A logic programming approach to Reaction Systems
	An Interpreter of Reaction Systems in logic programming
	A computation with the interpreter of Reaction Systems
	Stopping unlimited computations with memoization

	Reaction systems: a biological example
	The lac operon
	The Reaction System formalization
	The Reaction System encoding in Prolog

	Extensions of the basic framework: modifications to the context
	Non-deterministic context
	Interaction of two Reaction Systems
	Networks of Reaction Systems

	Conclusions and future work

