
A Concurrent Language for Argumentation:
Preliminary Notes
Stefano Bistarelli
University of Perugia, Italy
http://www.dmi.unipg.it/bista/
stefano.bistarelli@unipg.it

Carlo Taticchi
Gran Sasso Science Institute, L’Aquila, Italy
carlo.taticchi@gssi.it

Abstract
While agent-based modelling languages naturally implement concurrency, the currently available
languages for argumentation do not allow to explicitly model this type of interaction. In this paper
we introduce a concurrent language for handling process arguing and communicating using a shared
argumentation framework (reminding shared constraint store as in concurrent constraint). We
introduce also basic expansions, contraction and revision procedures as main bricks for enforcement,
debate, negotiation and persuasion.

2012 ACM Subject Classification Computing methodologies → Knowledge representation and
reasoning; Theory of computation → Concurrency; Computing methodologies → Concurrent pro-
gramming languages

Keywords and phrases Argumentation, Concurrent Language, Debating, Negotiation, Belief Revision

Digital Object Identifier 10.4230/OASIcs.Gabbrielli.2020.9

Funding This work was partially supported by “Argumentation 360” (Ricerca di Base 2017–2019),
“RACRA” (Ricerca di Base 2018–2020) and “ASIA” (Social Interaction with Argumentation –
GNCS-INDAM).

1 Introduction

Many applications in the field of artificial intelligence aim to reproduce the human behaviour
and reasoning in order to allow machines to think and act accordingly. One of the main
challenges in this sense is to provide tools for expressing a certain kind of knowledge in
a formal way so that the machines can use it for reasoning and infer new information.
Argumentation Theory provides formal models for representing and evaluating arguments
that interact with each other. Consider, for example, two people arguing about whether
lowering taxes is good or not. The first person says that a) lowering taxes would increase
productivity; the second person replies with b) a study showed that productivity decrease
when taxes are lowered; then, the first person adds c) the study is not reliable since it uses
data from unverified sources. The dialogue between the two people is conducted through three
main arguments (a,b and c) whose internal structure can be represented through different
formalisms [26, 30], and for which we can identify the relations b attacks a and c attacks
b. In this paper, we use the representation for Argumentation Frameworks introduced by
Dung [18], in which arguments are abstract, that is their internal structure, as well as their
origin, is left unspecified. Abstract Argumentation Frameworks (AFs), have been widely
studied from the point of view of the acceptability of arguments and, recently, several authors

© Stefano Bistarelli and Carlo Taticchi;
licensed under Creative Commons License CC-BY

Recent Developments in the Design and Implementation of Programming Languages.
Editors: Frank S. de Boer and Jacopo Mauro; Article No. 9; pp. 9:1–9:22

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7411-9678
http://www.dmi.unipg.it/bista/
mailto:stefano.bistarelli@unipg.it
https://orcid.org/0000-0003-1260-4672
mailto:carlo.taticchi@gssi.it
https://doi.org/10.4230/OASIcs.Gabbrielli.2020.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

9:2 A Concurrent Language for Argumentation: Preliminary Notes

have investigated the dynamics of AFs, taking into account both theoretical [28, 4, 10] and
computational aspects (for example, a special track on dynamics [7] appeared in the Third
International Competition on Computational Models of Argumentation1).

Logical frameworks for argumentation, like the ones presented in [17, 19], have been
introduced to fulfil the operational tasks related to the study of dynamics in AFs, such as
the description of AFs, the specification of modifications, and the search for sets of “good”
arguments. Although some of these languages could be exploited to implement applications
based on argumentation, for instance to model debates among political opponents, none
of them consider the possibility of having concurrent interactions or agents arguing with
each other. This lack represents a significant gap between the reasoning capacities of AFs
and their possible use in real-life tools. As an example, consider the situation in which two
debating agents share a knowledge base, represented by an AF, and both of them want to
update it with new information, in such a way that the new beliefs are consistent with the
previous ones. The agents can act independently and simultaneously. Similarly to what
happens in concurrent programming, if no synchronization mechanism is taken into account,
the result of update or revision can be unpredictable and can also lead to the introduction of
inconsistencies.

Motivated by the above considerations, we introduce a concurrent language for argument-
ation (CA) that aims to be used also for modelling different types of interaction between
agents (as negotiations, persuasion, deliberation and dialogues). In particular, our language
allows for modelling concurrent processes, inspired by notions such as the Ask-and-Tell
constraint system [29], and using AFs as centralised store. The language is thus endowed
with primitives for the specification of interaction between agents through the fundamental
operations of adding (or removing) and checking arguments and attacks. Besides specifying
a logic for argument interaction, our language can model debating agents (e.g., chatbots)
that take part in a conversation and provide arguments.

Alchourrón, Gärdenfors, and Makinson (AGM) theory [1] gives operations (like expansion,
contraction, revision) for updating and revising beliefs on a knowledge base. We propose a
set of AGM-style operations that allow for modifying an AF (which constitutes the shared
memory our agents access to communicate) and changing the status of its arguments so as to
allow the implementation of more complex operations, like negotiation and the other forms
of dialogues.

The rest of this paper is structured as follows: in Section 2 we recall some notions from
Argumentation Theory; in Section 3 we define a labelling semantics for AFs upon which the
agents build their beliefs; in Section 4 we present the syntax and the operational semantics of
our concurrent language, together with some high level operations that realize the interaction
between agents; in Section 5 we discuss existing formalisms from the literature that bring
together argumentation and multiagent systems, highlighting the contact points and the
differences with our work; Section 6 concludes the paper with final remarks and perspectives
on future work.

2 Abstract Argumentation Frameworks

In this section, we briefly recall the basic concepts we refer to in our proposal. In particular,
we give the fundamental definition for Abstract Argumentation Frameworks, together with
the notions of acceptable argument and argumentation semantics.

1 ICCMA2019 website: http://iccma2019.dmi.unipg.it.

http://iccma2019.dmi.unipg.it

S. Bistarelli and C. Taticchi 9:3

Argumentation is an interdisciplinary field that aims to understand and model the human
natural fashion of reasoning. In Artificial Intelligence, argumentation theory allows one
to deal with uncertainty in non-monotonic (defeasible) reasoning, and it is used to give a
qualitative, logical evaluation to sets of interacting arguments, called extensions. In his
seminal paper [18], Dung defines the building blocks of abstract argumentation.

I Definition 1 (AFs). Let U be the set of all possible arguments, which we refer to as the
“universe”. An Abstract Argumentation Framework is a pair 〈Arg,R〉 where Arg ⊆ U is a set
of arguments and R is a binary relation on Arg representing attacks2.

AFs can be represented through directed graphs, that we depict using the standard
conventions. For two arguments a, b ∈ Arg, (a, b) ∈ R represents an attack directed from a

against b. Moreover, we say that an argument b is defended by a set B ⊆ Arg if and only if,
for every argument a ∈ Arg, if R(a, b) then there is some c ∈ B such that R(c, a).

The goal is to establish which are the acceptable arguments according to a certain
semantics, namely a selection criterion. Non-accepted arguments are rejected. Different kinds
of semantics have been introduced [18, 2] that reflect qualities which are likely to be desirable
for “good” subsets of arguments. We first give the definition for the extension-based semantics
(also referred to as Dung semantics), namely admissible, complete, stable, preferred, and
grounded semantics (denoted with adm, com, stb, prf and gde, respectively, and generically
with σ).

I Definition 2 (Extension-based semantics). Let F = 〈Arg,R〉 be an AF. A set E ⊆ Arg

is conflict-free in F , denoted E ∈ Scf (F), if and only if there are no a, b ∈ E such that
(a, b) ∈ R. For E ∈ Scf (F) we have that:

E ∈ Sadm(F) if each a ∈ E is defended by E;
E ∈ Scom(F) if E ∈ Sadm(F) and ∀a ∈ Arg defended by E, a ∈ E;
E ∈ Sstb(F) if ∀a ∈ Arg \ E, ∃b ∈ E such that (b, a) ∈ R;
E ∈ Sprf (F) if E ∈ Sadm(F) and @E′ ∈ Sadm(F) such that E ⊂ E′;
E ∈ Sgde(F) if E ∈ Scom(F) and @E′ ∈ Scom(F) such that E′ ⊂ E.

Moreover, if E satisfies one of the above semantics, we say that E is an extension for
that semantics (for example, if E ∈ Sadm(F) we say that E is an admissible extension).

The different semantics described in Definition 2 corresponds to different styles of reason-
ing, each of which may be more appropriate for being applied to a particular application
domain. The characterisation of the reasoning requirements for the various domains is still
a largely open research problem [3] and can only be based on general criteria rather than
on specific cases. The stable semantics can be considered the strongest one: the accepted
arguments attack all the others in the framework. Since a stable extension may not exist,
the preferred semantics can be used as a valid alternative. The preferred semantics, in turn,
does not have a unique extension, making the grounded semantics (that always exists and
admits exactly one solution) an overall good option for establishing which arguments have to
be accepted.

A partial order can be defined among the set of extensions for the different semantics.
In detail, we know that Sstb(F) ⊆ Sprf (F) ⊆ Scom(F) ⊆ Sadm(F) ⊆ Scf (F) and Sgde(F) ⊆
Scom(F). Besides enumerating the extensions for a certain semantics σ, one of the most

2 We introduce both U and Arg ⊆ U (not present in the original definition by Dung) for our convenience,
since in the concurrent language that we will define in Section 4 we use an operator to dynamically add
arguments from U to Arg.

Gabbrielli’s Festschrift

9:4 A Concurrent Language for Argumentation: Preliminary Notes

common tasks performed on AFs is to decide whether an argument a is accepted in some
extension of Sσ(F) or in all extensions of Sσ(F). In the former case, we say that a is
credulously accepted with respect to σ; in the latter, a is instead sceptically accepted with
respect to σ. The grounded semantics, in particular, coincides with the set of arguments
sceptically accepted by the complete ones.

I Example 3. In Figure 1 we provide an example of AF where sets of extensions are given for
all the mentioned semantics3. We discuss some details: the singleton {e} is not conflict-free
because e attacks itself. The argument b is not contained in any admissible extension because
no other argument (included itself) defends b from the attack of a. The empty set {}, and
the singletons {c} and {d} are not complete extensions because a, which is not attacked
by any other argument, has to be contained in all complete extensions. Only the maximal
(with respect to set inclusion) admissible extensions {a, c} and {a, d} are preferred, while
the minimal complete {a} is the (unique) grounded extension. Then, the arguments in the
subset {a, d}, that conduct attacks against all the other arguments (namely b, d and e),
represent a stable extension. To conclude the example, we want to point out that argument
a is sceptically accepted with respect to the complete semantics, since it appears in all three
subsets of Scom(F). On the other hand, argument c, that is in just one complete extension,
is credulously accepted with respect to the complete semantics.

Figure 1 An argumentation framework F for which we compute the following sets of exten-
sions: Scf (F) = {{},{a},{b},{c},{d},{a, c},{a, d},{b, d}}, Sadm(F) = {{},{a},{c},{d},{a, c},{a, d}},
Scom(F) = {{a},{a, c},{a, d}}, Sprf (F) = {{a, c},{a, d}}, Sstb(F) = {{a, d}}, and Sgde(F) = {{a}}.

Many of the above-mentioned semantics (such as the admissible and the complete ones)
exploit the notion of defence in order to decide whether an argument is part of an extension
or not. The phenomenon for which an argument is accepted in some extension because it is
defended by another argument belonging to that extension is known as reinstatement [11].
In that paper, Caminada also gives a definition for a reinstatement labelling.

I Definition 4 (Reinstatement labelling). Let F = 〈Arg,R〉 be an AF and L = {in, out,
undec}. A labelling of F is a total function L : Arg → L. We define in(L) = {a ∈ Arg |
L(a) = in}, out(L) = {a ∈ Arg | L(a) = out} and undec(L) = {a ∈ Arg | L(a) = undec}.
We say that L is a reinstatement labelling if and only if it satisfies the following:

∀a, b ∈ Arg, if a ∈ in(L) and (b, a) ∈ R then b ∈ out(L);
∀a ∈ Arg, if a ∈ out(L) then ∃b ∈ Arg such that b ∈ in(L) and (b, a) ∈ R.

In other words, an argument is labelled in if all its attackers are labelled out, and it is
labelled out if at least an in node attacks it. In all other cases, the argument is labelled
undec. A labelling-based semantics [2] associates with an AF a subset of all the possible
labellings. In Figure 2 we show an example of reinstatement labelling on an AF. Moreover,
there exists a connection between reinstatement labellings and the Dung-style semantics.

3 The examples are made using the ConArg suite [8]. Web interface: http://www.dmi.unipg.it/conarg.

http://www.dmi.unipg.it/conarg

S. Bistarelli and C. Taticchi 9:5

This connection is summarised in Table 1: the set of in arguments in any reinstatement
labelling constitutes a complete extension; then, if no argument is undec, the reinstatement
labelling provides a stable extension; if the set of in arguments (or the set of out arguments)
is maximal with respect to all the possible labellings, we obtain a preferred extension; finally
the grounded extension is identified by labellings where either the set of undec arguments is
maximal, or the set of in (respectively out) arguments is maximal.

Figure 2 an example of AF in which reinstatement labelling is showed by using colours. Arguments
a and c highlighted in green are in, red ones (b and d) are out, and the the yellow argument e (that
attacks itself) is undec.

Table 1 Reinstatement labelling vs semantics.

Labelling restrictions Semantics

no restrictions complete
empty undec stable

maximal in preferred
maximal out preferred
maximal undec grounded
minimal in grounded
minimal out grounded

Reinstatement labelling allows to inspect AFs on a finer grain than Dung’s extensions,
since the undec label identifies arguments that are not acceptable, but still not directly
defeated by accepted arguments. However, the information brought by the undec label can
be misleading. Consider for example an AF in which two arguments a and b are attacking
each other (Figure 3, left). A possible labelling for such a framework would label both
arguments as undec. Indeed, we cannot decide whether, in general, it is worth accepting a
(or b). Consider now a second AF composed of two arguments c and d where only c attacks
d and both arguments are labelled as undec (Figure 3, right). At this point, one could
conclude that it is not possible to univocally establish whether c is a good argument or not,
similarly to what happens in the previous example. However, in this case the fact of c being
undec does not depend on the structure of the framework, but rather on the choice of just
ignoring it.

Figure 3 Two AFs where all arguments are labelled undec. The one on the left has two
undistinguishable arguments a and b, while argument c of the AF on the right is arguably better
than d, from the point of view of acceptability.

Gabbrielli’s Festschrift

9:6 A Concurrent Language for Argumentation: Preliminary Notes

Ambiguity of the undec label is solved in the four-state labelling introduced by [22], where
arguments that are assigned the label in are accepted, those that are assigned the label out
are rejected, those that are assigned both in and out (which we denote as undec) are neither
fully accepted nor fully rejected, and those that are not considered at all are assigned the
empty set ∅. The labelling of [22] is defined as follow.

I Definition 5 (Four-state labelling). A four-state labelling consists of a total mapping
L : Arg → 2{in,out} that satisfies the following conditions:
∀a ∈ Arg, if out ∈ L(a), then ∃b ∈ Arg such that (b, a) ∈ R and in ∈ L(b);
∀a ∈ Arg, if in ∈ L(a), then ∀b ∈ Arg such that (b, a) ∈ R, out ∈ L(b);
∀a ∈ Arg, if in ∈ L(a), then ∀c such that (a, c) ∈ R, out ∈ L(c).

A four-state labelling is said to be total4 if and only if ∀a ∈ Arg, L(a) 6= ∅. A labelling which
is not total is called partial. Moreover, the four labels form the lattice of Figure 4, in which
undec (that is the set {in, out}) is the top element and ∅ is the bottom.

Figure 4 Lattice of labels in the four-state labelling.

We show an example of labelling in Figure 5, where all four labels are used. Note
that the arguments labelled in and out in the figure do not satisfy the condition of the
reinstatement labelling. Even though the labelling of Definition 5 is more informative than

Figure 5 Labelling of an AF showed through colours. Argument e, highlighted in green, is the
only in; red arguments d and f are out; those in yellow, i.e., a, b and c, are undec; and the grey
arguments g and h are left with an empty label ∅.

the reinstatement labelling of Definition 4 (that does not comprehend an empty label), there
is no direct connection between labellings and extensions of a certain semantics, as it happens
for the reinstatement labelling.

3 A Four-state Labelling Semantics

We showed in the previous section that both reinstatement and four-state labellings have
both pros and cons. The labelling by Caminada does not allow to leave unlabelled arguments
that we do not want to consider in computing acceptability and forces all arguments that are

4 The total labelling is called “complete” in the original definition [22]. We changed it to avoid ambiguity
with the complete semantics.

S. Bistarelli and C. Taticchi 9:7

neither in nor out to be labelled undec. On the other hand, the set of arguments labelled
in by the reinstatement labelling showed in Definition 4 always correspond to a complete
extension and some other semantics can be obtained by applying restrictions on the labelling
itself (see Table 1), while four-state labelling does not necessarily correspond to any particular
extension. To overcome this problem, in the following we establish a mapping between a
modified four-state labelling and the classical semantics of Definition 2.

The labelling of an AF gives information about the acceptability of the arguments in the
framework (according to the various Dung’s semantics) and can be used by intelligent agents
to represent the state of their beliefs. Each different label can be traced to a particular
meaning. ∅ stands for “don’t care” [22] and identifies arguments that are not considered by
the agents. For instance, arguments in U \Arg, that are only part of the universe, but not of
the shared AF, are labelled with ∅ since they are outside the interest of the agents. Accepted
and rejected arguments (labelled as in and out, respectively), allow agents to discern true
beliefs from the false ones. At last, undec arguments possess both in and out labels, meaning
that agents cannot decide about the acceptability of a belief (“don’t know”, indeed).

I Definition 6 (Four-state labelling semantics). Let U be a universe of arguments, F =
〈Arg,R〉 an AF with Arg ⊆ U and R ⊆ Arg × Arg the arguments and attacks. L is a
four-state labelling on F if and only if
∀a ∈ U \Arg.L(a) = ∅;
∀a ∈ Arg, if out ∈ L(a), then ∃b ∈ Arg such that (b, a) ∈ R and in ∈ L(b);
∀a ∈ Arg, if in ∈ L(a), then ∀b ∈ Arg such that (b, a) ∈ R, out ∈ L(b);
∀a ∈ Arg, if in ∈ L(a), then ∀c such that (a, c) ∈ R, out ∈ L(c).

Moreover,
L is a conflict-free labelling if and only if:
L(a) = {in} =⇒ ∀b ∈ Arg | (b, a) ∈ R.L(b) 6= {in} and
L(a) = {out} =⇒ ∃b ∈ Arg | (b, a) ∈ R ∧ L(b) = {in}

L is an admissible labelling if and only if:
L(a) = {in} =⇒ ∀b ∈ Arg | (b, a) ∈ R.L(b) = {out} and
L(a) = {out} =⇒ ∃b ∈ Arg | (b, a) ∈ R ∧ L(b) = {in}

L is a complete labelling if and only if:
L(a) = {in} ⇐⇒ ∀b ∈ Arg | (b, a) ∈ R.L(b) = {out} and
L(a) = {out} ⇐⇒ ∃b ∈ Arg | (b, a) ∈ R ∧ L(b) = {in}

L is a stable labelling if and only if:
L is a complete labelling and
@a ∈ Arg | L(a) = {in, out}

L is a preferred labelling if and only if:
L is an admissible labelling and
{a | L(a) = {in}} is maximal among all the admissible labellings

L is a grounded labelling if and only if:
L is a complete labelling and
{a | L(a) = {in}} is minimal among all the complete labellings

We can show there is a correspondence between labellings satisfying the restrictions
given in the definition above and the extensions of a certain semantics. We use the notation
L ∈ Sσ(F) to identify a labelling L corresponding to an extension of the semantics σ with
respect to the AF F .

Gabbrielli’s Festschrift

9:8 A Concurrent Language for Argumentation: Preliminary Notes

I Theorem 7. A four-state labelling L of an AF F = 〈Arg,R〉 is a conflict-free (respectively
admissible, complete, stable, preferred, grounded) labelling as in Definition 6 if and only if
the set I of arguments labelled in by L is a conflict-free (respectively admissible, complete,
stable, preferred, grounded) extension of F .

Proof. We sketch the proof for the admissible labelling. The conflict-free case is obtained
through a similar reasoning and the remaining can be constructed as in [12].
⇒) Consider an admissible labelling L on F = 〈Arg,R〉. We have to show that there are

no a, b ∈ I such that (a, b) ∈ R and that each a ∈ I is defended by I. First of all, arguments
labelled in by L can only be attacked by out arguments, so for all a, b ∈ I we have (a, b) /∈ R.
Then, if a is attacked by an argument b (which we know must be out) that argument is
necessarily in turn attacked by at least one in. We conclude that I defends all its elements
and therefore it is an admissible extension.
⇐) We have an admissible extension E composed of arguments labelled in by L, and we

know that all arguments in E does not attack each other and are defended by E. Hence, in
arguments of L cannot be attacked by other arguments with the label in. Finally, arguments
that are attacked from E are out. J

In the next session, where we present our concurrent language for argumentation, the
labelling of Definition 6 is used to implement both primitives and high level operations
that rely on the acceptability state of agent’s belief and are able to change the underlying
knowledge base accordingly.

4 The Language

Agents/processes in a distributed/concurrent system can perform operations that affect the
behaviour of other components. The indeterminacy in the execution order of the processes
may lead to inconsistent results for the computation or even cause errors that prevent
particular tasks from being completed. We refer to this kind of situation as a race condition.
If not properly handled, race conditions can cause loss of information, resource starvation and
deadlock. In order to understand the behaviour of agents and devise solutions that guarantee
correct executions, many formalisms have been proposed for modelling concurrent systems.
Concurrent Constraint Programming (CC) [29], in particular, relies on a constraint store
of shared variables in which agents can read and write in accordance with some properties
posed on the variables. The basic operations that can be executed by agents in the CC
framework are a blocking Ask and an atomic Tell. These operations realise the interaction
with the store and also allow one to deal with partial information.

Starting from the CC syntax, we enrich the ask and tell operators in order to handle the
interaction with an AF used as knowledge base for the agents. We replace the ask with three
decisional operations: a syntactic check that verifies if a given set of arguments and attacks
is contained in the knowledge base, and two semantic test operations that we use to retrieve
information about the acceptability of arguments in an AF. The tell operation (that we call
add) augments the store with additional arguments and attack relations. We can also remove
parts of the knowledge base through a specifically designed removal operation. Finally, a
guarded parallel composition ‖G allows for executing all the operations that satisfy some
given conditions, and a prioritised operator +P is used to implement if-then-else constructs.
The syntax of our concurrent language for argumentation is presented in Table 2, while in
Table 3 we give the definitions for the transition rules.

Suppose to have an agent A whose knowledge base is represented by an AF F = 〈Arg,R〉.
An add(Arg′, R′) action performed by the agent results in the addition of a set of arguments
Arg′ ⊆ U (where U is the universe) and a set of relations R′ to the AF F . When performing

S. Bistarelli and C. Taticchi 9:9

Table 2 CA syntax.

P ::= C.A

C ::= p(a, l, σ) :: A | C.C
A ::= success | add(Arg,R)→ A | rmv(Arg,R)→ A | E | A‖A | ∃xA | p(a, l, σ)
E ::= testc(a, l, σ)→ A | tests(a, l, σ)→ A | check(Arg,R)→ A

| E + E | E +P E | E‖GE

an Addition, (possibly) new arguments are taken from U \ Arg. We want to make clear
that the tuple (Arg′, R′) is not an AF, indeed it is possible to have Arg′ = ∅ and R′ 6= ∅,
which allows to perform an addition of only attack relations to the considered AF. It is
as well possible to add only arguments to F , or both arguments and attacks. Intuitively,
rmv(Arg,R) allows to specify arguments and/or attacks to remove from the knowledge
base. Removing an argument from an AF requires to also remove the attack relations
involving that argument and trying to remove an argument (or an attack) which does not
exist in F will have no consequences. The operation check(Arg′, R′) is used to verify whether
the specified arguments and attack relations are contained in the set of arguments and
attacks of the knowledge base, without introducing any further change. If the check is
positive, the operation succeeds, otherwise it suspends. We have two distinct test operations,
both requiring the specification of an argument a ∈ A, a label l ∈ {in, out, undec, ∅} and a
semantics σ ∈ {adm, com, stb, prf, gde}. The credulous testc(a, l, σ) succeeds if there exists at
least an extension of Sσ(F) whose corresponding labelling L is such that L(a) = l; otherwise
(in the case L(a) 6= l in all labellings) it suspends. The sceptical tests(a, l, σ) succeeds5 if a
is labelled l in all possible labellings L ∈ Sσ(F); otherwise (in the case L(a) 6= L in some
labellings) it suspends. The guarded parallelism ‖G is designed to execute all the operations
for which the guard in the inner expression is satisfied. More in detail, E1‖GE2 is successful
when either E1, E2 or both are successful and all the operations that can be executed are
executed. This behaviour is different both from classical parallelism (for which all the agents
have to terminate in order for the procedure to succeed) and from nondeterminism (that only
selects one branch). The operator +P is left-associative and realises an if-then-else construct:
if we have E1 +P E2 and E1 is successful, than E1 will be always chosen over E2, even if also
E2 is successful, so in order for E2 to be selected, it has to be the only one that succeeds.
Differently from nondeterminism, +P prioritises the execution of a branch when both E1
and E2 can be executed. Moreover, an if-then-else construct cannot be obtained starting
from nondeterminism since of our language is not expressive enough to capture success or
failure conditions of each branch.

The remaining operators are classical concurrency compositions: an agent in a parallel
composition obtained through ‖ succeeds if all the agents succeed; any agent composed
through + is chosen if its guards succeeds; the existential quantifier ∃xA behaves like
agent A where variables in x are local to A6. The parallel composition operator enables
the specification of complex concurrent argumentation processes. For example, a debate

5 The set of extensions Sσ(F) is finite, thus both testc(a, l, σ) and tests(a, l, σ) are decidable.
6 We plan to use existential quantifiers to extend our work by allowing our agents to have local stores.

Gabbrielli’s Festschrift

9:10 A Concurrent Language for Argumentation: Preliminary Notes

Table 3 CA operational semantics.

〈add(Arg′, R′)→ A, 〈Arg,R〉〉 −→ 〈A, 〈Arg ∪Arg′, R ∪R′〉〉 Addition

〈rmv(Arg′, R′)→ A, 〈Arg,R〉〉 −→ 〈A, 〈Arg \Arg′, R \ {R′ ∪R′′}〉〉
where R′′ = {(a, b) ∈ R | a ∈ Arg′ ∨ b ∈ Arg′} Removal

Arg′ ⊆ Arg ∧R′ ⊆ R
〈check(Arg′, R′)→ A, 〈Arg,R〉〉 −→ 〈A, 〈Arg,R〉〉

Check

∃L ∈ Sσ(F) | l ∈ L(a)
〈testc(a, l, σ)→ A,F 〉 −→ 〈A,F 〉

Credulous Test

∀L ∈ Sσ(F).l ∈ L(a)
〈tests(a, l, σ)→ A,F 〉 −→ 〈A,F 〉

Sceptical Test

〈A1, F 〉 −→ 〈A′
1, F

′〉
〈A1‖A2, F 〉 −→ 〈A′

1‖A2, F
′〉

〈A2‖A1, F 〉 −→ 〈A2‖A′
1, F

′〉

〈A1, F 〉 −→ 〈success, F ′〉
〈A1‖A2, F 〉 −→ 〈A2, F

′〉
〈A2‖A1, F 〉 −→ 〈A2, F ′〉

Parallelism

〈E1, F 〉 −→ 〈A1, F 〉, 〈E2, F 〉 6−→
〈E1‖GE2, F 〉 −→ 〈A1, F 〉
〈E2‖GE1, F 〉 −→ 〈A1, F 〉

Guarded Parallelism (1)

〈E1, F 〉 −→ 〈A1, F 〉, 〈E2, F 〉 −→ 〈A2, F 〉
〈E1‖GE2, F 〉 −→ 〈A1‖A2, F 〉

Guarded Parallelism (2)

〈E1, F 〉 −→ 〈A1, F 〉
〈E1 + E2, F 〉 −→ 〈A1, F 〉
〈E2 + E1, F 〉 −→ 〈A1, F 〉

Nondeterminism

〈E1, F 〉 −→ 〈A1, F 〉
〈E1 +P E2, F 〉 −→ 〈E1, F 〉

If Then Else (1)

〈E1, F 〉 6−→, 〈E2, F 〉 −→ 〈A2, F 〉
〈E1 +P E2, F 〉 −→ 〈E2, F 〉

If Then Else (2)

〈A[y/x], F 〉 −→ 〈A′, F ′〉
〈∃xA,F 〉 −→ 〈A′, F ′〉

with y fresh Hidden Variables

〈p(b,m, γ), F 〉 −→ 〈A[b/a,m/l, γ/σ], F 〉 when p(a, l, σ) :: A Procedure Call

S. Bistarelli and C. Taticchi 9:11

involving many agents that asynchronously provide arguments can be modelled as a parallel
composition of add operations performed on the knowledge base. Concluding, P is the class
of programs, and the procedure call C has three parameters that allow the implementation
of operators which takes into account an argument, a label and a semantics. Below, we give
an example of a CA program.

I Example 8. Consider the AF in Figure 6 (left), where the complete semantics is the set
{{a}, {a, e}, {a, d}} and the preferred coincides with {{a, d}, {a, e}}. An agent A wants to
perform the following operation: if argument d is labelled out in all complete extensions,
then remove the argument c from the knowledge base. At the same time, an agent B wants
to add an argument f attacking d only if e is labelled in in some preferred extension. If
A is the first agent to be executed, the sceptical test on argument d will suspend, since d
belongs to the complete extension {a, d}. The credulous test performed by agent B, instead,
is successful and so it can proceed to add an argument f that defeats d. Now d is sceptically
rejected by the complete semantics and agent A can finally remove the argument c. After
the execution of the program below, we obtain the AF of Figure 6 (right).

A : tests(d, out, com)→ rmv({c}, {(a, c)})→ success

B : testc(e, in, prf)→ add({f}, {(f, d)})→ success

P : A‖B

Figure 6 The AF on the right is obtained starting from the one on the left trough the addition
of an argument f attacking d and the removal of c together with the attack (a, c).

As we will see in the next session, we aim to use the operators of our language to model
the behaviour of agents involved in particular argumentative processes (such as persuasion
and negotiation). Note that the language is very permissive: there are no constraints on
which arguments or attacks an agent can add/remove. Future work include the partition of
arguments and attack with respect to the owner’s capabilities and restrict permissions on
legal moves.

4.1 Belief Revision and the AGM Framework
Interaction between agents can be modelled in different ways, according to the purposes of
the communication. Negotiating agents need to find a common agreement that is beneficial
to all, while, for instance, an agent with the goal of persuading its opponents has to both
defend its position from the attacks of the other agents and defeat all the arguments against
its proposal. The operations needed for the implementation of such kind of interactions must
be able to modify the knowledge base shared between the communicating parts so as to
model the behaviour of the agents. In particular, usually agents interact modifying part of
the shared AF, trying to change the state of acceptance of an argument, often alternating
with other agents or concurrently performing syntactic changes to the AF.

Gabbrielli’s Festschrift

9:12 A Concurrent Language for Argumentation: Preliminary Notes

The AGM framework [1] provides an approach to the problem of revising knowledge
basis by using theories (deductively closed sets of formulae) to represent the beliefs of the
agents. A formula α in a given theory can have different statuses for an agent, according
to its knowledge base K. If the agent can deduce α from its beliefs, then we say that α is
accepted (K ` α). Such a deduction corresponds with the entailment of α by the knowledge
base. If the agent can deduce the negation of α, then we say that α is rejected (K ` ¬α).
Otherwise, the agent cannot deduce anything and α is undetermined. The correspondence
between accepted/rejected beliefs and in/out arguments in a labelling is straightforward.
Since the undetermined status represents the absence of a piece of information (nothing can
be deduced in favour of either accepting or rejecting a belief) it can be mapped into the
empty label ∅. Finally, the undec label is assigned to arguments that are both in and out,
boiling down to the notion of inconsistency in AGM. The empty label, in particular, plays a
fundamental role in identifying new arguments that agents can bring to the debate to defend
(or strengthen) their position. The status of a belief can be changed through some operations
(namely expansion ⊕, contraction � and revision ~) on the knowledge base, as depicted in
Figure 7 (notice the similarity with the lattice in Figure 4).

Figure 7 Transitions between AGM beliefs states.

An expansion basically brings new pieces of information to the base, allowing for un-
determined belief to become either accepted or refused. A contraction, on the contrary,
reduces the information an agent can rely on in making its deduction, and an accepted (or
refused) belief can become undetermined. A revision introduces conflicting information,
making acceptable belief refused and vice-versa. The AGM framework also defines three sets
of rationality postulates (one for each operation) that any good operator should satisfy. To
give an example, if we want to add a new belief on a knowledge base, then we expect that
no other information in the base is removed. AGM operators provide building blocks for
realizing complex interaction processes between agents. Below, we provide some examples:

Negotiation is a process that aims to solve conflicts arising from the interaction between
two or more parties that have different individual goals (for instance, a request of
computational resources in a distributed network), and its outcome is an agreement that
translates in common benefits for all participants. Expansion, here, can be used to model
the behaviour of an agent presenting claims towards its counterparts, while contraction
represents the act of retracting a condition to successfully conclude the negotiation.

S. Bistarelli and C. Taticchi 9:13

Contrary to negotiation, a debate takes place when the goal of the agents in the system
is to promote their own point of view and thus “convince” the others about a conclusion
or a statement. A debate [21] can be considered as a mechanism through which a decision
maker extracts information from two (or more) counterparts, each of them holding
different positions with respect to the right choice. In a multi-agent system, a debate
is a process carried out as the interaction between more parties, each of them trying to
provide arguments strong enough to support their own conclusion. In this case, agents
can make their beliefs accepted in different ways, exploiting AGM operators: inconsistent
beliefs can be made accepted through a contraction, while expansion can make beliefs
which state is undetermined acceptable.
The notion of persuasion in dialogue games [25] aims to solve conflicts of points of view
between two counterparts. In order to persuade the opponent, an agent has to defend its
position by replying to every attack against its initial claim. If it fails, the opponent wins
the game. Agents involved in this kind of persuasive dialogue games have to elaborate
strategies [23], for supporting their beliefs and defeating the adversaries, that consist
in a sequence of actions to perform in the system. Again, revision operations on the
knowledge base are responsible for changing the status of the beliefs of a persuaded agent.

As for knowledge basis in belief revision, AFs can undergo changes that modify the
structure of the framework itself, either integrating new information (and so increasing the
arguments and the attacks in the AF) or discarding previously available knowledge. Agents
using AFs as the mean for exchanging and inferring information has to rely on operations
able to modify such AFs. Besides considering the mere structural changes, also modifications
on the semantics level need to be addressed by the operations performed by the agents. In
the following, we define three operators for AFs, namely argument expansion, contraction and
revision, that comply with classical operators of AGM and that can be built as procedures in
our language.

The argumentation frameworks 〈Arg,R〉 we use as the knowledge base for our concurrent
agents are endowed with a universe of arguments U that are used to bring new information.
Since arguments in U \ Arg do not constitute an actual part of the knowledge base, they
are always labelled ∅, until they are added into the framework and acquire an in and/or an
out label. Notice also that changes to the knowledge base we are interested in modelling
are restricted to a single argument at a time, miming the typical argument interaction in
dynamic AF.

I Definition 9 (Argument extension expansion, contraction, revision). Let F = 〈Arg,R〉 be
an AF on the universe U , Arg ⊆ U , R ⊆ Arg × Arg, σ a semantics, L ∈ Sσ(F) a given
labelling, and a ∈ U an argument.

An argument extension expansion ⊕σa,L : AF → AF computes a new AF F ′ = ⊕σa,L(F)
with semantics Sσ(F ′) for which ∃L′ ∈ Sσ(F ′) such that L′(a) ⊇ L(a) (if L′(a) ⊃ L(a)
the expansion is strict).
An argument extension contraction �σa,L : AF → AF computes a new AF F ′ = �σa,L(F)
with semantics Sσ(F ′) for which ∃L′ ∈ Sσ(F ′) such that L(a) ⊇ L′(a) (if L(a) ⊃ L′(a)
the expansion is strict).
An argument extension revision ~σa,L : AF → AF computes a new AF F ′ = ~σa,L(F) with
semantics Sσ(F ′) for which ∃L′ ∈ Sσ(F ′) such that if L(a) = in/out, then L′(a) = out/in

and ∀b ∈ Arg with b 6= a, L′(b) = L(b) ∨ L′(b) 6= undec (that is no inconsistencies are
introduced).

Moreover, we denote with ⊕σ,la,L(F), �σ,la,L(F) and ~σ,la,L(F) an argument extension expansion,
contraction and revision, respectively, that computes an AF F ′ with semantics Sσ(F ′) for
which ∃L′ ∈ Sσ(F ′) such that L′(a) = l.

Gabbrielli’s Festschrift

9:14 A Concurrent Language for Argumentation: Preliminary Notes

When performing an argument extension expansion (or contraction, or revision) for a
certain argument a of an AF F , the operators of Definition 9 take into account a single
labelling of the semantics σ and there is no control over the other labellings, for which a
can have its label arbitrarily changed. For example, an argument extension expansion that
increases the number of labels of a with respect to a chosen labelling L, may reduce that
number in a different labelling. Therefore, we introduce a further definition that considers
all the possible labellings LFσ of Sσ(F). To compare the various labels an argument can have
in different labellings, we refer to the order in Figure 4 and, calling LFσ↓a

the multi-set of
the labels a has in the various L ∈ LFσ , we say that LF ′

σ↓a
⊇ LFσ↓a

if there exists an injective
function f : LFσ � LF

′

σ such that ∀l ∈ LFσ↓a
.l ≤ f(l). Moreover, we use the notation LFσ↓a

|l
to restrict to l labels in the multi-set LFσ↓a

, where l = {∅, in, out, undec}.

I Definition 10 (Argument semantics expansion, contraction, revision). Let F = 〈Arg,R〉 be
an AF on the universe U , Arg ⊆ U , R ⊆ Arg×Arg, σ a semantics, and a ∈ U an argument.

An argument semantics expansion ⊕σa : AF → AF computes a new AF F ′ = ⊕σa(F) with
semantics Sσ(F ′) such that LF ′

σ↓a
⊇ LFσ↓a

.
An argument semantics contraction �σa : AF → AF computes a new AF F ′ = �σa(F)
with semantics Sσ(F ′) such that LFσ↓a

⊇ LF ′

σ↓a
.

An argument semantics revision ~σa : AF → AF computes a new AF F ′ = ~σa(F) with se-
mantics Sσ(F ′) such that ∀b ∈ Arg.

∣∣∣LFσ↓b
|undec

∣∣∣ ≥ ∣∣∣LF ′

σ↓b
|undec

∣∣∣ (that is no inconsistencies
are introduced), and:
in-to-out revision:

∣∣∣LFσ↓a
|out
∣∣∣ < ∣∣∣LF ′

σ↓a
|out
∣∣∣ ∧ ∣∣∣LFσ↓a

|in
∣∣∣ > ∣∣∣LF ′

σ↓a
|in
∣∣∣;

out-to-in revision:
∣∣∣LFσ↓a

|in
∣∣∣ < ∣∣∣LF ′

σ↓a
|in
∣∣∣ ∧ ∣∣∣LFσ↓a

|out
∣∣∣ > ∣∣∣LF ′

σ↓a
|out
∣∣∣;

It is important to note that the formalism we present is not monotone: the add operation
may lead to a contraction, reducing the number of arguments with the labels in and/or out.
Similarly, the removal of an argument may lead to an expansion (this is the case of Figure 8).

Figure 8 Example of argument extension expansion. Removing the in argument a makes both b
and c undec.

AGM operators have already been studied from the point of view of their implementation
in work as [5, 14], especially with regard to enforcement. However, in the previous literature,
realisability of extensions and not of single arguments is considered. The implementation of
an argument expansion/contraction/revision operator changes according to the semantics
we take into account. In the following, we consider the grounded semantics and show how
the operators of Definitions 9 can be implemented. For the grounded semantics, that only
has one extension, Definitions 9 and 10 coincide. Notice also that there exist many ways to
obtain expansion, contraction and revision. We chose one that leverage between minimality
with respect to the changes required in the framework and linearity of implementation.

I Proposition 11. Let F = 〈Arg,R〉 be an AF on the universe U , Arg ⊆ U , R ⊆ Arg×Arg,
a ∈ U an argument, and L the unique grounded labelling. A possible argument extension
expansion ⊕gde,la,L (F) could act as:

S. Bistarelli and C. Taticchi 9:15

if L(a) = ∅ and l = in, add a to Arg
if L(a) = ∅ and l = out,

if ∃b ∈ Arg | L(b) = in, add 〈{a}, {(b, a)}〉 to F
otherwise, add 〈{a, b}, {(b, a)}〉 to F

if L(a) = in and l = undec,
if ∃b ∈ Arg | L(b) = undec, add (b, a) to R
otherwise, add (a, a) to R

if L(a) = out and l = undec,
∀b ∈ Arg | L(b) = {in} ∧ (b, a) ∈ R, add (a, b) to R

Proof. If a has an empty label, it means that a ∈ U \ Arg, since the grounded labelling
assigns a label different from ∅ to all arguments in Arg. It is then sufficient to add a to the
set of considered arguments Arg to make it in. If the freshly added argument is attacked
by another in argument, it becomes out. Continuing, a is labelled undec in the grounded
labelling only if it is attacked by an undec argument (included a itself), thus, to make an
in argument a become undec we can look for an argument b in Arg that is already labelled
as undec. If we find such a b then it is sufficient to add the attack relation from b to a
to the store. Otherwise, we make a attack itself. Finally, if we want an out argument a
to become undec, we make it attack back all its in attackers. Doing so, we obtain three
distinct complete labellings: one in which a is accepted and its attackers are not, another
one in which the opposite situation occurs, and the third labelling in which neither a nor its
attackers are fully accepted or rejected (that is they are undec). Hence, a will be undec in
the minimal complete labelling (that, by Definition 6, is also grounded). J

I Proposition 12. Let F = 〈Arg,R〉 be an AF on the universe U , Arg ⊆ U , R ⊆ Arg×Arg,
a ∈ U an argument, and L the unique grounded labelling. A possible argument extension
contraction �gde,la,L (F) could act as:

if L(a) = undec and l = in, ∀b ∈ Arg | L(b) = undec, remove (b, a) from R

if L(a) = undec and l = out,
if ∃b ∈ Arg | L(b) = in, add (b, a) to R
otherwise, add 〈{b}, {(b, a)}〉 to F

if L(a) = in and l = ∅, remove a (and all attacks involving a) from F

if L(a) = out and l = ∅, remove a (and all attacks involving a) from F

Proof. Consider a grounded labelling. An undec argument a can become in by removing
all attacks coming from undec arguments (included a itself). Indeed an argument is undec
only if it is attacked by another undec. Note that a cannot be attacked by in arguments,
otherwise it would have been out. Therefore, after the changes a is only attacked by out
arguments, and thus is in. Alternatively, a can become out when it is attacked by another in
argument b (when the store does not contain in arguments, we add one from the universe).
If a is either in or out, instead, we can contract its label to undec through the removal of a
itself form the store. J

I Proposition 13. Let F = 〈Arg,R〉 be an AF on the universe U , Arg ⊆ U , R ⊆ Arg×Arg,
a ∈ U an argument, and L the unique grounded labelling. A possible argument extension
revision ~gde,la,L (F) could act as:

if L(a) = in,
if ∃b ∈ Arg | L(b) = in, add (b, a) to R and then ∀c ∈ Arg | (a, c) ∈ R, add (b, c) to R
otherwise, add 〈{b}, {(b, a)}〉 to F and then ∀c ∈ Arg | (a, c) ∈ R, add (b, c) to R

if L(a) = out, ∀b ∈ Arg | L(b) ∈ {in, undec}, remove (b, a) from R and then ∀c ∈ Arg |
(a, c) ∈ R ∧ L(c) ∈ {in, undec}, remove (a, c) from R

Gabbrielli’s Festschrift

9:16 A Concurrent Language for Argumentation: Preliminary Notes

Proof. Given a grounded labelling we want to change the label of a from in to out (or vice
versa), while preserving the labels of all other arguments. If a is in, we can look for another
argument b labelled in and make b attack a, together with all other arguments attacked by
a. If the store does not contain any in argument, we take one from the universe. If a is out,
we remove all the attacks coming from in and undec arguments, so that the only attacks left
come from out arguments and a becomes in. To preserve the labels of the other arguments,
all attacks from a towards in and undec are removed, since they would have become out
after the revision of a. out arguments attacked by a does not need further adjustments. J

Note that the argument extension revision we propose for grounded semantics in Proposi-
tion 13 is more restrictive than necessary, since ensure all the arguments different from a

(that is the argument to be revised) to maintain the exact same labels, while Definition 9
only forbids to change the label to undec. For each operator, we also show how to implement
it in our language.

I Proposition 14. The argument extension expansion, contraction and revision in Proposi-
tions 12, 12 and 13, respectively, can be implemented in our language.

Proof. We show an example of possible implementations in Tables 4, 5 and 6. We make use
of some syntactic sugar to simplify the presentation of the results. Let be |Arg| = n:

E1 ∧ E2 → A represents E1 → E2 → A;
E1 ∨ E2 → A represents E1 → A+ E2 → A;
true represents a dummy check({}, {});∑
a∈Arg

(E(a)) represents E(a1) + E(a2) + · · ·+ E(an), ∀ai ∈ Arg;∥∥
G

a∈Arg
(E(a)) represents E(a1)‖GE(a2)‖G . . . ‖GE(an), ∀ai ∈ Arg;

testc(a, S, σ)→ A represents
∑
l∈S

(testc(a, l, σ)).

We also use the letter u to identify fresh arguments taken from U \Arg. J

We want to emphasize that guarded parallelism
∥∥
G
and if then else constructs realised

through +P are crucial for the implementation of the aforementioned operators. For instance,
we use

∥∥
G

in the argument extension contraction (Table 5) to remove all and only the
attacks towards a coming from undec arguments. This behaviour cannot be achieved through
classical parallelism (which only succeeds when all the branches terminates). The operator
+P , instead, is used in Table 4 to realise the expansion from ∅ to out: if an in argument b
can be found in the framework, then we add an attack from b to a; otherwise we have to
introduce, beforehand, an in argument. Without an if then else construct it is not possible
to prioritise the choice of looking for an existing in argument and an agent could arbitrarily
add a new argument even if it is not needed.

In devising operations of Definitions 9 and 10, that allow agents for changing the labels
of arguments in a shared knowledge base with respect to a given semantics, we reinterpret
AGM operators for expansion, contraction and revision. In particular, our operations are
restricted to a single argument, rather than considering a set of beliefs as in other approaches
like [14] and [5]. Nonetheless, we maintain similarities with the AGM theory, to the point
that we can highlight some similarities with the original postulates of [1] that characterise
rational operators performing expansion, contraction and revision of beliefs in a knowledge
base. Consider for instance an argument a of an AF F and a semantics σ. An argument
semantics expansion ⊕σa produces as output an AF F ′ for which no labelling L′ ∈ Sσ(F ′)
is such that a has less labels in L′ than in any labelling L of F (i.e., the number of labels
assigned to a either remains the same or increases after the expansion).

S. Bistarelli and C. Taticchi 9:17

Table 4 Argument extension expansion operator (Proposition 11) in CA syntax.

⊕gde,ina,L (F)
(L(a)=∅)

: add({a}, {})→ success

⊕gde,outa,L (F)
(L(a)=∅)

:
∑
b∈Arg

(testc(b, in, gde)→ add({a}, {(b, a)}))→ success

+P

add({a, u}, {(u, a)})→ success

⊕gde,undeca,L (F)
(L(a)=in)

:
∑
b∈Arg

(testc(b, undec, gde)→ add({}, {(b, a)}))→ success

+P

add({}, {(a, a)})→ success

⊕gde,undeca,L (F)
(L(a)=out)

:
∥∥
G

b∈Arg
(testc(b, in, gde) ∧ check({}, {(b, a)})

→ add({}, {(a, b)}))→ success

Table 5 Argument extension contraction operator (Proposition 12) in CA syntax.

�gde,ina,L (F)
(L(a)=undec)

:
∥∥
G

b∈Arg
(testc(b, undec, gde)→ rmv({}, {(b, a)}))→ success

�gde,outa,L (F)
(L(a)=undec)

:
∑
b∈Arg

(testc(b, in, gde)→ add({}, {b, a}))→ success

+P

add({u}, {u, a})→ success

�gde,∅a,L (F)
(L(a)=in)

: rmv({a}, {})→ success

�gde,∅a,L (F)
(L(a)=out)

: rmv({a}, {})→ success

5 Related Work

A formalism for expressing dynamics in AFs is defined in [28] as a Dynamic Argumentation
Framework (DAF). The aim of that paper is to provide a method for instantiating Dung-style
AFs by considering a universal set of arguments U . A DAF consists of an AF 〈U,R〉 and a
set of evidence, which has the role of restricting 〈U,R〉 to possible arguments and relations,
so to obtain a static instance of the framework. DAFs are built starting from argumental
structures, in which a tree of arguments supports a claim (corresponding to the root of the
tree), and then adding attacks between argumental structures. The dynamic component of
a DAF is thus the set of evidence. The introduced approach allows for generalising AFs,

Gabbrielli’s Festschrift

9:18 A Concurrent Language for Argumentation: Preliminary Notes

Table 6 Argument extension revision operator (Proposition 13) in CA syntax.

~gde,outa,L (F)
(L(a)=in)

:
∑
b∈Arg

(testc(b, in, gde)→ add({}, {(b, a)})

→
∥∥
G

c∈Arg
(check({c}, {a, c})→ add({}, {(b, c)})) ‖G true→ success

+P

add({b}, {(b, a)})
→

∥∥
G

c∈Arg
(check({c}, {a, c})→ add({}, {(b, c)})) ‖G true)→ success

~gde,ina,L (F)
(L(a)=out)

:
∥∥
G

b∈Arg
(testc(b, {in, undec}, gde)→ rmv({}, {(b, a)}))

→
∥∥
G

c∈Arg
(

testc(c, {in, undec}, gde) ∧ check({c}, {a, c})
→ rmv({}, {(a, c)}) ‖G true

)→ success

adding the possibility of modelling changes, but, contrary to our study, it does not consider
how such modifications affect the semantics and does not allow to model the behaviour of
concurrent agents.

The impact of modifications on an AF in terms of sets of extensions is studied in [13].
Different kinds of revision are introduced, in which a new argument interacts with an already
existing one. The authors describe different kinds of revision differing in the number of
extensions that appear in the outcome, with respect to a semantics: a decisive revision
allows to obtain a unique non-empty extension, a selective revision reduces the number
of extensions (to a minimum of two), while a questioning one increases that number; a
destructive revision eliminates all extensions, an expansive revision maintain the number
of extension and increases the number of accepted arguments; a conservative revision does
not introduce changes on the semantics level (and is strictly connected to the notion of
robustness [9]), and an altering revision insert and delete arguments in the extensions. All
these revisions are obtained through the addition of a single argument, together with a single
attack relation either towards or from the original AF, and can be implemented as procedures
of our language. The review operator we define in the syntax of our language (as the other
two operator for expansion and contraction), instead, does not consider whole extensions,
but just an argument at a time, allowing communicating agents to modify their beliefs in a
finer grain.

Focusing on syntactic expansion of an AF (the mere addition of arguments and attacks), [5]
show under which conditions a set of arguments can be enforced (to become accepted) for
a specific semantics. Moreover, since adding new arguments and attacks may lead to a
decrease in term of extensions and accepted arguments, the authors also investigate whether
an expansion behave in a monotonic fashion, thus preserving the status of all originally
accepted arguments. The study is only conducted on the case of weak expansion (that
adds further arguments which do not attack previous arguments). The notion of expansion
we use in the presented work is very different from that in [5]. First of all, we take into

S. Bistarelli and C. Taticchi 9:19

account semantics when defining the expansion, making it more similar to an enforcement
itself: we can increment the labels of an argument so to match a desired acceptance status.
Then, our expansion results to be more general, being able to change the status of a certain
argument not only to accepted, but also rejected, undecided or undetermined. This is useful,
for instance, when we want to diminish the beliefs of an opponent agent.

Enforcing is also studied in [14], where the authors consider an expansion of the AF that
only allows the addition of new attack relations, while the set of arguments remains the same
(differently from [5]). It is shown, indeed, that if no new argument is introduced, it is always
possible to guarantee the success of enforcement for any classical semantics. Also in this
case, we want to highlight the differences with our work. Starting from the modifications
allowed into the framework, we are not limited to only change the set of relations, since we
implement procedures that also add and remove arguments. Moreover, the operators we
define are not just enforcement operators, since they allow to modify the acceptability status
of a single argument of an AF.

In our model, AFs are equipped with a universe of arguments that agents use to insert new
information in the knowledge base. The problem of combining AFs is addressed in [6], that
study the computational complexity of verifying if a subset of argument is an extension for a
certain semantics in incomplete argumentation frameworks obtained by merging different
beliefs. The incompleteness is considered both for arguments and attack relations. Similarly
to our approach, arguments (and attacks) can be brought forward by agents and used to build
new acceptable extensions. On the other hand, the scope of [6] is focused on a complexity
analysis and does not provide implementations for the merging.

6 Conclusion and Future Work

We introduced a concurrent language for argumentation, that can be used by (intelligent)
agents to implement different forms of communications. The agents involved in the process
share an abstract argumentation framework that serves as a knowledge base and where
arguments represent the agreed beliefs. The framework can be changed via a set of primitives
that allow the addition and the removal of arguments and attacks. All agents have at their
disposal a universe of “unused” arguments to chose from when they need to introduce new
information. In order to take into account the justification status of such beliefs (which can
be accepted, rejected, undetermined and inconsistent) we considered a four-state labelling
semantics. Besides operations at a syntactic level, thus, we also defined semantic operation
that verify the acceptability of the arguments in the store. Finally, to allow agents for realising
more complex forms of communication (like negotiation and persuasion), we presented three
AGM-style operators, namely of expansion, contraction and revision, that change the status
of a belief to a desired one; we also showed how to implement them in our language.

For the future, we plan to extend this work in many directions. First of all, given the
known issues of abstract argumentation [27], we want to consider structured AFs and provide
an implementation for our expansion, contraction and revision operators, for which a different
store (structured and not abstract, indeed) need to be considered. The concurrent primitives
are already general enough and do not require substantial changes. To obtain a spendable
implementation, we will consider operations that can be done in polynomial time [20], for
instance by using the grounded semantics, for which finding and checking extension is a easy
task from the point of view of computational complexity. We also plan to provide a real
implementation of our language that can be used for both research purposes and practical
applications.

Gabbrielli’s Festschrift

9:20 A Concurrent Language for Argumentation: Preliminary Notes

To further improve the capabilities of our agents and make it more appealing for real-life
applications, we want to extend our language with the ability to handle processes involving
time-critical aspects, in a similar way as CC is extended with temporal logic in [16, 15]. In
this way, we could implement operations that also take into account time constraints. The
shared store could also be shaped as a subsumptive hierarchy, able to handle various relations
among the arguments.

On the operations level, we are currently only able to modify the acceptance status of
the arguments, without further considerations on the obtained semantics. To gain control
also over changes on the set of extensions, we want to introduce operators able to obtain a
specified semantics (when possible) or to leave it unchanged (this can be done relying on the
notion of robustness [9]). Another study we could conduct over the operators concerns their
(non-)monotonicity. Since, in the current state of the work, operations like the removal of an
argument can lead to an expansion into the considered AF, we would like to investigate the
conditions under which, for instance, a contraction can be the only consequence of a removal.
To this extent, also other operations on beliefs (like extraction, consolidation and merging)
could be taken into account.

As a final consideration, whereas in real-life cases it is always clear which part involved
in a debate is stating a particular argument, AFs do not hold any notion of “ownership”
for arguments or attacks, that is, any bond with the one making the assertion is lost. To
overcome this problem, we want to implement the possibility of attaching labels on (groups
of) arguments and attacks of AFs, in order to preserve the information related to whom
added a certain argument or attack, extending and taking into account the work in [24].
Consequently, we can also obtain a notion of locality (or scope) of the belief in the knowledge
base: arguments owned by a given agents can be placed into a local store and used in the
implementation of specific operators through hidden variables.

References
1 Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. On the logic of theory change:

Partial meet contraction and revision functions. The Journal of Symbolic Logic, 50(02):510–530,
June 1985. doi:10.2307/2274239.

2 Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to ar-
gumentation semantics. Knowledge Eng. Review, 26(4):365–410, 2011. doi:10.1017/
S0269888911000166.

3 Pietro Baroni and Massimiliano Giacomin. On principle-based evaluation of extension-based
argumentation semantics. Artif. Intell., 171(10-15):675–700, 2007. doi:10.1016/j.artint.
2007.04.004.

4 Ringo Baumann. What Does it Take to Enforce an Argument? Minimal Change in abstract
Argumentation. Frontiers in Artificial Intelligence and Applications, pages 127–132, 2012.
doi:10.3233/978-1-61499-098-7-127.

5 Ringo Baumann and Gerhard Brewka. Expanding argumentation frameworks: Enfor-
cing and monotonicity results. In Pietro Baroni, Federico Cerutti, Massimiliano Giac-
omin, and Guillermo Ricardo Simari, editors, Computational Models of Argument: Pro-
ceedings of COMMA 2010, Desenzano del Garda, Italy, September 8-10, 2010, volume
216 of Frontiers in Artificial Intelligence and Applications, pages 75–86. IOS Press, 2010.
doi:10.3233/978-1-60750-619-5-75.

6 Dorothea Baumeister, Daniel Neugebauer, Jörg Rothe, and Hilmar Schadrack. Verification in
incomplete argumentation frameworks. Artif. Intell., 264:1–26, 2018. doi:10.1016/j.artint.
2018.08.001.

https://doi.org/10.2307/2274239
https://doi.org/10.1017/S0269888911000166
https://doi.org/10.1017/S0269888911000166
https://doi.org/10.1016/j.artint.2007.04.004
https://doi.org/10.1016/j.artint.2007.04.004
https://doi.org/10.3233/978-1-61499-098-7-127
https://doi.org/10.3233/978-1-60750-619-5-75
https://doi.org/10.1016/j.artint.2018.08.001
https://doi.org/10.1016/j.artint.2018.08.001

S. Bistarelli and C. Taticchi 9:21

7 Stefano Bistarelli, Lars Kotthoff, Francesco Santini, and Carlo Taticchi. Containerisation and
Dynamic Frameworks in ICCMA’19. In Proceedings of the Second International Workshop
on Systems and Algorithms for Formal Argumentation (SAFA 2018) Co-Located with the 7th
International Conference on Computational Models of Argument (COMMA 2018), Warsaw,
Poland, September 11, 2018, volume 2171 of CEUR Workshop Proceedings, pages 4–9. CEUR-
WS.org, 2018.

8 Stefano Bistarelli and Francesco Santini. Conarg: A constraint-based computational framework
for argumentation systems. In IEEE 23rd International Conference on Tools with Artificial
Intelligence, ICTAI 2011, Boca Raton, FL, USA, November 7-9, 2011, pages 605–612. IEEE
Computer Society, 2011. doi:10.1109/ICTAI.2011.96.

9 Stefano Bistarelli, Francesco Santini, and Carlo Taticchi. On Looking for Invariant Operators
in Argumentation Semantics. In Proceedings of the Thirty-First International Florida Artificial
Intelligence Research Society Conference, FLAIRS 2018, Melbourne, Florida, USA. May 21-23
2018., pages 537–540, 2018.

10 Guido Boella, Souhila Kaci, and Leendert W. N. van der Torre. Dynamics in Argumentation
with Single Extensions: Attack Refinement and the Grounded Extension (Extended Version).
In Argumentation in Multi-Agent Systems, 6th International Workshop, ArgMAS 2009. Revised
Selected and Invited Papers, volume 6057 of Lecture Notes in Computer Science, pages 150–159.
Springer, 2009. doi:10.1007/978-3-642-12805-9_9.

11 Martin Caminada. On the Issue of Reinstatement in Argumentation. In Logics in Artificial
Intelligence, 10th European Conference, JELIA 2006, Liverpool, UK, September 13-15, 2006,
Proceedings, volume 4160 of Lecture Notes in Computer Science, pages 111–123. Springer,
2006.

12 Martin Caminada. On the Issue of Reinstatement in Argumentation. In Michael Fisher,
Wiebe van der Hoek, Boris Konev, and Alexei Lisitsa, editors, Logics in Artificial Intelligence,
10th European Conference, JELIA 2006, Liverpool, UK, September 13-15, 2006, Proceedings,
volume 4160 of Lecture Notes in Computer Science, pages 111–123. Springer, 2006.

13 Claudette Cayrol, Florence Dupin de Saint-Cyr, and Marie-Christine Lagasquie-Schiex. Revi-
sion of an Argumentation System. In Principles of Knowledge Representation and Reasoning:
Proceedings of the Eleventh International Conference, KR 2008, Sydney, Australia, September
16-19, 2008, pages 124–134. AAAI Press, 2008.

14 Sylvie Coste-Marquis, Sébastien Konieczny, Jean-Guy Mailly, and Pierre Marquis. Extension
enforcement in abstract argumentation as an optimization problem. In Qiang Yang and Mi-
chael J. Wooldridge, editors, Proceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages
2876–2882. AAAI Press, 2015. URL: http://ijcai.org/Abstract/15/407.

15 Frank S. de Boer, Maurizio Gabbrielli, and Maria Chiara Meo. Semantics and expressive power
of a timed concurrent constraint language. In Gert Smolka, editor, Principles and Practice of
Constraint Programming – CP97, Third International Conference, Linz, Austria, October 29
– November 1, 1997, Proceedings, volume 1330 of Lecture Notes in Computer Science, pages
47–61. Springer, 1997. doi:10.1007/BFb0017429.

16 Frank S. de Boer, Maurizio Gabbrielli, and Maria Chiara Meo. A timed concurrent constraint
language. Inf. Comput., 161(1):45–83, 2000. doi:10.1006/inco.1999.2879.

17 Sylvie Doutre, Andreas Herzig, and Laurent Perrussel. A Dynamic Logic Framework for Ab-
stract Argumentation. In Principles of Knowledge Representation and Reasoning: Proceedings
of the Fourteenth International Conference, KR 2014, Vienna, Austria, July 20-24, 2014, 2014.

18 Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–357,
September 1995. doi:10.1016/0004-3702(94)00041-X.

19 Florence Dupin de Saint-Cyr, Pierre Bisquert, Claudette Cayrol, and Marie-Christine Lagasquie-
Schiex. Argumentation update in YALLA (Yet Another Logic Language for Argumentation).
International Journal of Approximate Reasoning, 75:57–92, August 2016. doi:10.1016/j.
ijar.2016.04.003.

Gabbrielli’s Festschrift

https://doi.org/10.1109/ICTAI.2011.96
https://doi.org/10.1007/978-3-642-12805-9_9
http://ijcai.org/Abstract/15/407
https://doi.org/10.1007/BFb0017429
https://doi.org/10.1006/inco.1999.2879
https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1016/j.ijar.2016.04.003
https://doi.org/10.1016/j.ijar.2016.04.003

9:22 A Concurrent Language for Argumentation: Preliminary Notes

20 Wolfgang Dvorák and Paul E. Dunne. Computational problems in formal argumentation
and their complexity. FLAP, 4(8), 2017. URL: http://www.collegepublications.co.uk/
downloads/ifcolog00017.pdf.

21 Jacob Glazer and Ariel Rubinstein. Debates and Decisions: On a Rationale of Argumentation
Rules. Games and Economic Behavior, 36(2):158–173, 2001. doi:10.1006/game.2000.0824.

22 Hadassa Jakobovits and Dirk Vermeir. Robust semantics for argumentation frameworks. J.
Log. Comput., 9(2):215–261, 1999. doi:10.1093/logcom/9.2.215.

23 Magdalena Kacprzak, Katarzyna Budzynska, and Olena Yaskorska. A logic for strategies in
persuasion dialogue games. In Advances in Knowledge-Based and Intelligent Information and
Engineering Systems – 16th Annual KES Conference, San Sebastian, Spain, 10-12 September
2012, volume 243 of Frontiers in Artificial Intelligence and Applications, pages 98–107. IOS
Press, 2012. doi:10.3233/978-1-61499-105-2-98.

24 Nicolas Maudet, Simon Parsons, and Iyad Rahwan. Argumentation in Multi-Agent Systems:
Context and Recent Developments. In Argumentation in Multi-Agent Systems, Third Interna-
tional Workshop, ArgMAS 2006, Hakodate, Japan, May 8, 2006, Revised Selected and Invited
Papers, pages 1–16, 2006. doi:10.1007/978-3-540-75526-5_1.

25 Henry Prakken. Models of Persuasion Dialogue. In Argumentation in Artificial Intelligence,
pages 281–300. Springer, 2009. doi:10.1007/978-0-387-98197-0_14.

26 Henry Prakken. An abstract framework for argumentation with structured arguments. Argu-
ment & Computation, 1(2):93–124, 2010. doi:10.1080/19462160903564592.

27 Henry Prakken and Michiel De Winter. Abstraction in argumentation: Necessary but dangerous.
In Sanjay Modgil, Katarzyna Budzynska, and John Lawrence, editors, Computational Models
of Argument – Proceedings of COMMA 2018, Warsaw, Poland, 12-14 September 2018, volume
305 of Frontiers in Artificial Intelligence and Applications, pages 85–96. IOS Press, 2018.
doi:10.3233/978-1-61499-906-5-85.

28 Nicolas D. Rotstein, Martın O. Moguillansky, Alejandro J. Garcia, and Guillermo R. Simari.
An abstract argumentation framework for handling dynamics. In Proceedings of the Argument,
Dialogue and Decision Workshop in NMR 2008, Sydney, Australia, pages 131–139, 2008.

29 Vijay A. Saraswat and Martin Rinard. Concurrent constraint programming. In Proceedings
of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
– POPL ’90, pages 232–245, San Francisco, California, United States, 1990. ACM Press.
doi:10.1145/96709.96733.

30 Francesca Toni. A tutorial on assumption-based argumentation. Argument & Computation,
5(1):89–117, 2014. doi:10.1080/19462166.2013.869878.

http://www.collegepublications.co.uk/downloads/ifcolog00017.pdf
http://www.collegepublications.co.uk/downloads/ifcolog00017.pdf
https://doi.org/10.1006/game.2000.0824
https://doi.org/10.1093/logcom/9.2.215
https://doi.org/10.3233/978-1-61499-105-2-98
https://doi.org/10.1007/978-3-540-75526-5_1
https://doi.org/10.1007/978-0-387-98197-0_14
https://doi.org/10.1080/19462160903564592
https://doi.org/10.3233/978-1-61499-906-5-85
https://doi.org/10.1145/96709.96733
https://doi.org/10.1080/19462166.2013.869878

	Introduction
	Abstract Argumentation Frameworks
	A Four-state Labelling Semantics
	The Language
	Belief Revision and the AGM Framework

	Related Work
	Conclusion and Future Work

