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Abstract
We initiate the parameterized complexity study of minimum t-spanner problems on directed graphs.
For a positive integer t, a multiplicative t-spanner of a (directed) graph G is a spanning subgraph
H such that the distance between any two vertices in H is at most t times the distance between
these vertices in G, that is, H keeps the distances in G up to the distortion (or stretch) factor t. An
additive t-spanner is defined as a spanning subgraph that keeps the distances up to the additive
distortion parameter t, that is, the distances in H and G differ by at most t. The task of Directed
Multiplicative Spanner is, given a directed graph G with m arcs and positive integers t and k,
decide whether G has a multiplicative t-spanner with at most m − k arcs. Similarly, Directed
Additive Spanner asks whether G has an additive t-spanner with at most m−k arcs. We show that

Directed Multiplicative Spanner admits a polynomial kernel of size O(k4t5) and can be
solved in randomized (4t)k · nO(1) time,
Directed Additive Spanner is W[1]-hard when parameterized by k even if t = 1 and the
input graphs are restricted to be directed acyclic graphs.

The latter claim contrasts with the recent result of Kobayashi from STACS 2020 that the problem
for undirected graphs is FPT when parameterized by t and k.
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1 Introduction

Given a (directed) graph G, a spanner is a spanning subgraph of G that approximately
preserves distances between the vertices of G. Graph spanners were formally introduced
by Peleg and Schäffer in [14] (see also [15]). Originally, the concept was introduced for
constructing network synchronizers [15]. However, graph spanners have a plethora of
theoretical and practical applications in various areas like efficient routing and fast computing
of shortest paths in networks, distributed computing, robotics, computational geometry and
biology. We refer to the recent survey of Ahmed et al. [1] for the introduction to graph
spanners and their applications.

We are interested in the classical multiplicative and additive graph spanners in unweighted
graphs. Let G be a (directed) graph. For two vertices u, v ∈ V (G), distG(u, v) denotes
the distance between u and v in G, that is, the number of edges (arcs, respectively, for
the directed case) of a shortest (u, v)-path. Let t be a positive integer. It is said that a
spanning subgraph H of G is a multiplicative t-spanner if distH(u, v) ≤ t ·distG(u, v) for every
two vertices u, v ∈ V (G), i.e., H approximates distances in G within factor t. A spanning
subgraph H of G is called an additive t-spanner if distH(u, v) ≤ distG(u, v) + t for every
u, v ∈ V (G), that is, H approximates the distances in G within the additive parameter t.
The standard task in the graph spanner problems is, given an allowed distortion parameter t,
find a sparsest t-spanner, i.e., a spanner with the minimum number of edges. We consider
the parameterized versions of this task:

Input: A (directed) graph G and integers t ≥ 1 and k ≥ 0.
Task: Decide whether there is a multiplicative t-spanner H with at most |E(G)|−k

edges (arcs, respectively).

Multiplicative Spanner parameterized by k + t

and

Input: A (directed) graph G and nonnegative integers t and k.
Task: Decide whether there is an additive t-spanner H with at most |E(G)| − k

edges (arcs, respectively).

Additive Spanner parameterized by k + t

Informally, the task of these problems is to decide whether we can delete at least k edges
(arcs, respectively, for the directed case) in such a way that all the distances in the obtained
graph are “t-close” to the original ones.

Previous work. We refer to [1] for the comprehensive survey of the known results and
mention here only these that directly concern our work. First, we point that the considered
graph spanner problems are computationally hard. It was already shown by Peleg and
Schäffer in [14] that deciding whether an undirected graph G has a multiplicative t-spanner
with at most ` edges is NP-complete even for fixed t = 2. In fact, the problem is NP-complete
for every fixed t ≥ 2 [2]. Moreover, for every t ≥ 2, it is NP-hard to approximate the
minimum number of edges of a multiplicative t-spanner within the factor c log n for some
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c > 1 [10]. The same complexity lower bounds for directed graphs were also shown by Cai [2]
and Kortsarz [10]. Additive t-spanners for undirected graphs were introduced by Liestman
and Shermer in [11, 12]. In particular, they proved in [12], that for every fixed t ≥ 1, it is
NP-complete to decide whether a graph G admits an additive t-spanner with at most ` edges.
It was shown by Chlamtác et al. [4] that for every integer t ≥ 1 and any constant ε > 0,
there is no polynomial-time 2log1−ε /t3-approximation for the minimum number of edges of
an additive t-spanner unless NP ⊆ DTIME(2polylog(n)).

The aforementioned hardness results make it natural to consider these spanner problems
in the parameterized complexity framework. The investigation of Multiplicative Spanner
and Additive Spanner on undirected graphs was initiated by Kobayashi in [8] and [9].
In [8], it was proved that Multiplicative Spanner admits a polynomial kernel of size
O(k2t2). For Additive Spanner, it was shown in [9] that the problem can be solved in
time 2O((k2+kt) log t) · nO(1), that is, the problem is FPT when parameterized by k and t.

Our results. We initiate the study of Multiplicative Spanner and Additive Spanner
on directed graphs and further refer to them as Directed Multiplicative Spanner and
Directed Additive Spanner, respectively. We show that Directed Multiplicative
Spanner admits a kernel of size O(k4t5). We complement this result by observing that the
problem can be solved in (4t)k · nO(1) time by a Monte Carlo algorithm with false negatives.
Then we prove that Directed Additive Spanner becomes much harder on directed graphs
by showing that the problem is W[1]-hard even when t = 1 and the input graphs are restricted
to be directed acyclic graphs (DAGs).

Organization of the paper. In Section 2, we introduce basic notions used in the paper. In
Section 3, we prove that Directed Multiplicative Spanner admits a polynomial kernel
and sketch an FPT algorithm. In Section 4, we show hardness for Directed Additive
Spanner. We conclude in Section 5 by stating some open problems.

2 Preliminaries

Parameterized Complexity and Kernelization. We refer to the recent books [5, 6, 7] for the
detailed introduction. In the Parameterized Complexity theory, the computational complexity
is measured as a function of the input size n of a problem and an integer parameter k associated
with the input. A parameterized problem is said to be fixed-parameter tractable (or FPT) if
it can be solved in time f(k) · nO(1) for some function f . A kernelization algorithm for a
parameterized problem Π is a polynomial algorithm that maps each instance (I, k) of Π to
an instance (I ′, k′) of Π such that
(i) (I, k) is a yes-instance of Π if and only if (I ′, k′) is a yes-instance of Π, and
(ii) |I ′|+ k′ is bounded by f(k) for a computable function f .
Respectively, (I ′, k′) is a kernel and f is its size. A kernel is polynomial if f is polynomial.
It is common to present a kernelization algorithm as a series of reduction rules. A reduction
rule for a parameterized problem is an algorithm that takes an instance of the problem and
computes in polynomial time another instance that is more “simple” in a certain way. A
reduction rule is safe if the computed instance is equivalent to the input instance.

Graphs. Recall that an undirected graph is a pair G = (V, E), where V is a set of vertices
and E is a set of unordered pairs {u, v} of distinct vertices called edges. A directed graph
G = (V, A) is a pair, where V is a set of vertices and A is a set of ordered pairs (u, v)
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12:4 Parameterized Complexity of Directed Spanner Problems

of distinct vertices called arcs. Note we do not allow loops and multiple arcs (that are
irrelevant for distances). We use V (G) and E(G) (A(G), respectively) to denote the set
of vertices and the set of edges (set of arcs, respectively) of G. For a (directed) graph G

and a subset X ⊆ V (G) of vertices, we write G[X] to denote the subgraph of G induced
by X. For a set of vertices S, G − S denotes the (directed) graph obtained by deleting
the vertices of S, that is, G − S = G[V (G) \ S]; for a vertex v, we write G − v instead of
G− {v}. Similarly, for a set of edges (arcs, respectively) S (an edge or arc e, respectively),
G− S (G− e, respectively) denotes the graph obtained by the deletion of the elements of
S (the deletion of e, respectively). A (directed) graph H is a spanning subgraph of G if
V (G) = V (H). We write P = v1 · · · vk to denote a path with the vertices v1, . . . , vk and
the edges (arcs, respectively) {v1, v2}, . . . , {vi−k, vk}; v1 and vk are the end-vertices of P

and we say that P is an (v1, vk)-path. The length of a path is the number of edges (arcs,
respectively) in the path. Also A(P ) denotes the arc set of the path P . For a (u, v)-path P1
and a (v, w)-path P2, we denote by P1 ◦ P2 the concatenation of P1 and P2. We use similar
notation for walks; the difference that the vertices of a walk W = v1 · · · vk are not required
to be distinct and a walk may go through the same edges (arcs, respectively) several times.
Notice that the concatenation of two paths is a walk but not necessarily a path. For two
vertices u, v ∈ V (G), distG(u, v) denotes the distance between u and v in G, that is, the
length of a shortest (u, v)-path; we assume that distG(u, v) = +∞ if there is no (u, v)-path
in G. Clearly, distG(u, v) = distG(v, u) for undirected graphs but this not always the case
fro directed graphs. Let t be a positive integer. It is said that a spanning subgraph H of G

is a multiplicative t-spanner if distH(u, v) ≤ t · distG(u, v) for every u, v ∈ V (G). A spanning
subgraph H of G is called an additive t-spanner if distH(u, v) ≤ distG(u, v) + t for every
u, v ∈ V (G).

3 Directed multiplicative t-spanners

In this section, we consider Directed Multiplicative Spanner. We show that the
problem admits a polynomial kernel and then complement this result by obtaining an FPT
algorithm. These results are based on locality of multiplicative spanners in the sense of the
following folklore observation.
I Observation 1. Let t be a positive integer. A spanning subgraph H of a directed graph G

is a multiplicative t-spanner if and only if for every arc (u, v) ∈ A(G), there is a (u, v)-path
in H of length at most t.

Let t be a positive integer and let G be a directed graph. For an arc a = (u, v) of G, we
say that a (u, v)-path P is a t-detour for a if the length of P is at most t and P does not
contain a. By Observation 1, to solve Directed Multiplicative Spanner for (G, t, k), it
is necessary and sufficient to identify k arcs that have t-detours that do not contain selected
arcs. Then H can be constructed by deleting these arcs.

3.1 Polynomial kernel for Directed Multiplicative Spanner
In this subsection, we show that Directed Multiplicative Spanner admits a polynomial
kernel.
I Theorem 2. Directed Multiplicative Spanner has a kernel of size O(k4t5).
Proof. Let (G, t, k) be an instance of Directed Multiplicative Spanner. Clearly, if
k = 0, then (G, t, k) is a yes-instance, and our algorithm returns a trivial yes-instance in this
case. We assume from now that k > 0.
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We say that a ∈ A(G) is t-good if G has a t-detour for a. Let S be the set of t-good arcs.
Clearly, S can be constructed in polynomial time by making use of Dijkstra’s algorithm.
We follow the idea of Kobayashi [8] for constructing a polynomial kernel for undirected
case and show that if S is sufficiently big, then (G, t, k) is a yes-instance of Directed
Multiplicative Spanner.

B Claim 3. If |S| ≥ 1
2 k(t + 1)((k − 1)t + 2), then (G, t, k) is a yes-instance of Directed

Multiplicative Spanner.

Proof of Claim 3. Let |S| ≥ 1
2 k(t + 1)((k − 1)t + 2). For every a ∈ S, let Pa be a t-detour

for a.
Let S0 = ∅. For i = 1, . . . , k, we iteratively construct sets of arcs S1, . . . , Sk such that

S0 ⊂ S1 ⊂ · · · ⊂ Sk ⊆ S

and sets of arcs Ri such that Ri ⊆ Si \ Si−1 and |Ri| = (k − i)t + 1 for i ∈ {1, . . . , k} using
the following procedure. For i = 1, . . . , k,

select an arbitrary set Ri of size (k − i)t + 1 in S \ Si−1,
set Si = Si−1 ∪

⋃
a∈Ri

(
(A(Pa) ∩ S) ∪ {a}

)
.

We show by induction, that the sets S1, . . . , Sk and R1, . . . , Rk exist. Since |S \ S0| =
|S| ≥ (k − 1)t + 1, we conclude that R1 of size (k − 1)t + 1 can be selected. Assume
that the sets Sj and Rj have been constructed for 0 ≤ j < i ≤ k. Observe that because
|
⋃

a∈Rj

(
(A(Pa) ∩ S) ∪ {a}

)
| ≤ (t + 1)|Rj |,

|Sj \ Sj−1| ≤ |Rj |(t + 1) = ((k − j)t + 1)(t + 1)

for 1 ≤ j < i. Therefore,

|Si−1| ≤
i−1∑
j=1

(((k − j)t + 1)(t + 1)). (1)

Notice that

1
2k(t + 1)((k − 1)t + 2) =

k∑
j=1

(((k − j)t + 1)(t + 1)). (2)

Then by (1) and (2),

|S \ Si−1| ≥
k∑

j=i

(((k − j)t + 1)(t + 1)) ≥ (k − i)t + 1.

This means that Ri can be selected and we can construct Si.
Now we select arcs ai ∈ Ri for i = k, k − 1, . . . , 1. Since |Rk| = 1, the choice of ak is

unique. Assume that ak, . . . , ai+1 have been selected for 1 < i + 1 ≤ k. Then we select an
arbitrary

ai ∈ Ri \
k⋃

j=i+1
A(Paj

).

Because |
⋃k

j=i+1 A(Paj )| ≤ (k − i)t and |Ri| = (k − i)t + 1, ai exists.

IPEC 2020



12:6 Parameterized Complexity of Directed Spanner Problems

Let i ∈ {1, . . . , k}. By the choice of ai, we have that ai /∈ A(Paj ) for i < j ≤ k. From the
other side, ai /∈ A(Pj) for 1 ≤ j < i, because ai ∈ Ri and Ri does not contain the arcs of
Pa for a ∈ Rj for 1 ≤ j < i by the construction of the sets R1, . . . , Rk. We obtain that the
t-detours Pai for i ∈ {1, . . . , k} do not contain any aj for j ∈ {1, . . . , k}. By Observation 1,
H = G− {a1, . . . , ak} is a multiplicative t-spanner. Therefore, (G, t, k) is a yes-instance of
Directed Multiplicative Spanner. C

By Claim 3, we can apply the next rule:

I Reduction Rule 1. If |S| ≥ 1
2 k(t + 1)((k − 1)t + 2), then return a trivial yes-instance of

Directed Multiplicative Spanner and stop.

From now, we assume that |S| < 1
2 k(t + 1)((k − 1)t + 2).

The analog of Reduction Rule 1 is a main step of the kernelization algorithm of Kobay-
ashi [8] for the undirected case, because it almost immediately allows to upper bound the
total number of edges of the graph. However, the directed case is more complicated, since
the arcs of t-detours for a ∈ S may be outside S contrary to the undirected case, where all
the edges of t-detours are in cycles of length at most t + 1 and, therefore, have t-detours
themselves. We use the following procedure to mark the crucial arcs of potential detours.

Marking Procedure. Let G′ = G− S.
(i) For every (u, v) ∈ S, find a shortest (u, v)-path P in G′ and if the length of P is at

most t, then mark the arcs of P .
(ii) For every ordered pair of two distinct arcs (u1, v1), (u2, v2) ∈ S,

(a) find a shortest (u1, u2)-path P1 in G′ and if the length of P1 is at most t, then
mark the arcs of P1,

(b) find a shortest (v2, v1)-path P2 in G′ and if the length of P2 is at most t, then mark
the arcs of P2,

(c) find a shortest (v1, u2)-path P3 in G′ and if the length of P3 is at most t, then mark
the arcs of P3.

Observe that marking can be done in polynomial time by Dijkstra’s algorithm. Denote
by L the set of marked arcs. Our final rule constructs the output instance.

I Reduction Rule 2. Consider the graph H = (V (G), S ∪ L). Delete the isolated vertices of
H, and for the obtained G∗, output (G∗, t, k).

We argue that the rule is safe.

B Claim 4. (G, t, k) is a yes-instance of Directed Multiplicative Spanner if and only
if (G∗, t, k) is a yes-instance.

Proof of Claim 4. Suppose that (G, t, k) is a yes-instance of Directed Multiplicative
Spanner. Then, by Observation 1, there are k distinct arcs a1, . . . , ak ∈ S with their t-
detours P1, . . . , Pk, respectively, such that ai /∈

⋃k
j=1 A(Pj). Notice that a1, . . . , ak ∈ A(G∗).

Consider i ∈ {1, . . . , k} and let ai = (u, v).
Suppose that Pi does not contain arcs from S. Then Pi is a (u, v)-path in G′ = G− S.

By the first step of Marking Procedure, there is a t-detour P ′i for ai whose arcs are in G′

and are marked. Then P ′i is a t-detour for ai in G∗ and aj /∈ A(P ′i ) for j ∈ {1, . . . , k}.
Assume that Pi contains some arcs from S. Let e1, . . . , es be these arcs (in the path order

with respect to Pi starting from u). Note that e1, . . . , es ∈ A(G∗) and they are distinct from
a1, . . . , ak. Let ej = (xj , yj) for j ∈ {1, . . . , s}. Then Pi can be written as the concatenation
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of the paths Pi = Q1 ◦ x1y1 ◦Q2 ◦ · · · ◦ xsys ◦Qs+1, where Q1 is the (u, x1)-subpath of Pi,
Qj is the (yj−1, xj)-subpath of Pi for j ∈ {2, . . . , s}, and Qs+1 is the (ys, v)-subpath of Pi;
note that some of the paths Q1, . . . , Qs+1 may be trivial, i.e., contain a single vertex. Let
j ∈ {1, . . . , s+1}. If Qj is trivial, then Q′j = Qj is a path in G∗, because the vertices incident
to the arcs of S are vertices of G∗. Suppose that Qj is not trivial. If j = 1, then by step
(ii)(a) of Marking Procedure, there is a (u, x1)-path Q′1, whose arcs are in G′ and are marked,
and the length of Q′1 is at most the length of Q1. For j = s + 1, we have, by step (ii)(b),
that there is a (ys, v)-path Q′s+1, whose arcs are in G′ and are marked, and the length of
Q′s+1 is at most the length of Qs+1. Suppose that 2 ≤ j ≤ s. Then by step (ii)(c), there is a
(yj−1, xj)-path Q′j , whose arcs are in G′ and are marked, and the length of Q′j is at most the
length of Qj . Consider the (u, v)-walk Wi = Q′1 ◦ x1y1 ◦Q′2 ◦ · · · ◦ xsys ◦Q′s+1. We have that
W ′

i is a (u, v)-walk of length at most t in G∗ such that aj /∈ A(Wi) for j ∈ {1, . . . , k}. This
implies that G∗ has a t-detour P ′i in G∗ such that aj /∈ A(P ′i ) for j ∈ {1, . . . , k}.

We obtain that for every i ∈ {1, . . . , k}, ai ∈ A(G∗) has a t-detour P ′i such that
a1, . . . , ak /∈ A(P ′i ). By Observation 1, we conclude that G∗ − {a1, . . . , ak} is a multi-
plicative spanner for G∗, that is, (G∗, t, k) is a yes-instance of Directed Multiplicative
Spanner.

For the opposite direction, assume that (G∗, t, k) is a yes-instance of Directed Multi-
plicative Spanner. By Observation 1, there are k distinct arcs a1, . . . , ak ∈ A(G∗) with
their t-detours P1, . . . , Pk, respectively, such that ai /∈

⋃k
j=1 A(Pj). Since G∗ is a subgraph

of G, a1, . . . , ak have the same t-detours in G. By Observation 1, (G, t, k) is a yes-instance.
C

To upper bound the size of G∗, observe that Marking Procedure marks at most t arcs
for each a ∈ S in step (i), that is, at most |S|t arcs are marked in this step. In step (ii), we
mark at most 3t arcs for each ordered pair of arcs of S. Hence, at most 3|S|(|S| − 1)t arcs
are marked in total in the second step. Since |S| < 1

2 k(t + 1)((k − 1)t + 2), we have that G∗

has O(k4t5) arcs. Because G∗ has no isolated vertices, the number of vertices is O(k4t5).
Since each of the reduction rules and Marking Procedure can be done in polynomial time,

we conclude that the total running time of our kernelization algorithm is polynomial. J

3.2 FPT algorithm for Directed Multiplicative Spanner
Combining Theorem 2 with the brute-force procedure that guesses k arcs of G and verifies
whether the deletion of these arcs gives a multiplicative t-spanner, we obtain the straight-
forward 2O(k log(kt)) + nO(1) algorithm for Directed Multiplicative Spanner. If we
use the intermediate steps of the kernelization algorithm, then the running time may be
improved to (kt)2k · nO(1). Namely, we can construct the set S of t-good arcs and execute
Reduction Rule 1 of the kernelization algorithm. Then we either solve the problem or obtain
an instance, where the set S has size at most 1

2 k(t + 1)((k − 1)t + 2)− 1 ≤ k2t2. Then for
every R ⊆ S of size k, we check whether G−R is a multiplicative t-spanner by computing
the distances between every pair of vertices. However, we can slightly improve the parameter
dependence by making use of the random separation technique proposed by Cai, Chan, and
Chan in [3] (we refer to [5, Chapter 5] for the detailed introduction to the technique). In this
subsection, we briefly sketch a Monte Carlo algorithm with false negatives for Directed
Multiplicative Spanner.

I Theorem 5. Directed Multiplicative Spanner can be solved in time (4t)k · nO(1) by
a Monte Carlo algorithm with false negatives.

IPEC 2020
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Proof. Let (G, t, k) be an instance of Directed Multiplicative Spanner. If k = 0 or
t = 1, then the problem is trivial: if k = 0, then (G, t, k) is a yes-instance, and if k > 0 and
t = 1, then (G, t, k) is a no-instance. From now we assume that k ≥ 1 and t ≥ 2.

By Observation 1, to solve Directed Multiplicative Spanner for (G, t, k), it is
necessary and sufficient to identify k arcs that have t-detours that do not contain selected
arcs. We use random separation to distinguish the arcs that have t-detours and the arcs of
the detours. We randomly color the arcs of G by two colors red and blue. An arc is colored
red with probability 1

t and is colored blue with probability t−1
t . Then we try to find k red

arcs that have t-detours composed by blue arcs. Let R be the set of arcs colored red and let
B the set of blue arcs. For (u, v) ∈ R, it can be checked in polynomial time whether (u, v)
has a t-detour with blue arcs by finding the distance between u and v in GB = (V (G), B).
Then we greedily construct the set S of all red arcs with blue t-detours. If |S| ≥ k, then we
conclude that (G, t, k) is a yes-instance by Observation 1.

Suppose that (G, t, k) is a yes-instance of Directed Multiplicative Spanner. Then by
Observation 1, there are k distinct arcs a1, . . . , ak and their t-detours P1, . . . , Pk, respectively,
such that a1, . . . , ak /∈ L =

⋃k
i=1 A(Pi). Notice that |L| ≤ tk. Then the probability that the

considered random coloring colors the arcs a1, . . . , ak red is t−k and the probability that the
arcs of L are colored blue is at least ( t−1

t )tk. We have that( t− 1
t

)t

=
(

1− 1
t

)t

≥ 1
4 .

Therefore, the probability that the arcs a1, . . . , ak are red and their t-detours are blue is at
least (4t)−k. Respectively, the probability that the random coloring fails to color the arcs
a1, . . . , ak red and their t-detours blue is at most 1− 1

(4t)k . This implies that if we iterate
our algorithm for (4t)k colorings, then we either find a solution and stop or we conclude that

(G, t, k) is a no-instance with the mistake probability at most
(

1− 1
(4t)k

)(4t)k

≤ e−1. This
gives us a Monte Carlo algorithm with running time (4t)k · nO(1). J

The same approach can be used for undirected graphs and it can be shown that Multi-
plicative Spanner can be solved in (4t)k · nO(1) time improving the running time given
in [8].

The algorithm from Theorem 5 can be derandomized by using universal sets [13] instead
of random colorings. Since this part is standard (see [5, Chapter 5]), we leave it to the
interested readers.

4 Directed additive t-spanners

In this section, we consider Directed Additive Spanner and show that the problem is
hard on DAGs even if t = 1.

I Theorem 6. Directed Additive Spanner is W[1]-hard on DAGs when parameterized
by k only even if t = 1.

Proof. We reduce from the Independent Set problem. Given a graph G and a positive
integer k, the problem asks whether G has an independent set of size at least k. Independent
Set parameterized k is well-known to be one of the basic W[1]-complete problems (see [5, 6]).
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{vi, vj} ∈ E(G)

yi

zi

xi

xj

yj

zj

yi

zi

xi

xj

yj

zj

{vi, vj} /∈ E(G)

Figure 1 Construction of D.

Let (G, k) be an instance of Independent Set. Denote by v1, . . . , vn the vertices of G.
For every i ∈ {1, . . . , n}, construct three vertices xi, yi, zi and arcs (xi, yi), (yi, zi), (xi, zi).
For every i, j ∈ {1, . . . , n} such that i < j, do the following:

if {vi, vj} ∈ E(G), then construct a directed (zi, xj)-path Pij of length 4,
if {vi, vj} /∈ E(G), then construct a directed (xi, zj)-path Qij of length 4.

Denote the obtained directed graph by D (see Figure 1). It is straightforward to verify that
D is a DAG. We show that (G, k) is a yes-instance of Independent Set if and only if
(D, 1, k) is a yes-instance of Directed Additive Spanner.

Suppose that I = {vi1 , . . . , vik
} is an independent set of size k in G. Let

R = {(xi1 , zi1), . . . , (xik
, zik

)}. We show that D′ = D −R is an additive 1-spanner for D.
We first claim that for every two vertices u and w of D, each shortest (u, w)-path in

D contains at most one arc of R. The proof is by contradiction. Assume that there are
u, w ∈ V (D) and a shortest (u, w)-path P such that P contains at least two arcs of R. Let
(xi, zi) and (xj , zj) be such arcs and let i < j. By the construction, (xi, zi) occurs before
(xj , zj) in P . Since the arcs of R correspond to vertices of the independent set I, vi and vj

are not adjacent in G. Therefore, D contains the (xi, zj)-path Qij of length 4. Since P is a
shortest path containing (xi, zi) and (xj , zj), the (zi, xj)-subpath of P should have length
at most 2. However, by the construction, the distance between zi and xj is at least 4; a
contradiction proving the claim.

Now let u and w be two vertices of D. Let P be a shortest (u, w)-path in D. If P is a
path in D′, then distD′(u, w) = distD(u, w). Suppose that P is not a path in D′. Then P

contains a unique arc (xi, zi) ∈ R by the proved claim. Let P1 be the (u, xi)-subpath of P

and let P2 be the (zi, w)-subpath. Let P ′ = P1 ◦ xiyizi ◦P2. Observe that P ′ is a path in D′.
Since the length of P ′ is the length of P plus 1, distD′(u, w) ≤ distD(u, w) + 1. This implies
that D′ is an additive 1-spanner of D.

Now we assume that (D, 1, k) is a yes-instance of Directed Additive Spanner. Then
there is a set of k arcs R ⊆ A(D) such that D′ = D −R is an additive 1-spanner. Observe
that if (u, v) ∈ R, then D has an (u, v)-path P that does not use the arc (u, v). Otherwise,
distD′(u, v) = +∞ and distD′(u, v) > distD(u, v) + 1. Therefore, R ⊆ {(x1, z1), . . . , (xn, zn)}.
Let R = {(xi1 , zi1), . . . , (xik

, zik
)}. We claim that I = {vi1 , . . . , vik

} is an independent set of
G. Assume, for the sake of contradiction, that this is not the case and there are vi, vj ∈ I

such that vi and vj are adjacent in G. Let i < j. Consider the vertices xi and zj of D. Since
{vi, vj} ∈ E(G), P = xizi ◦Pij ◦xjzj is an (xi, zj)-path of length 6, that is, distD(xi, zj) ≤ 6.
The path P ′ = xiyizi ◦ Pij ◦ xjyjzj has length 8 and is a path in D′. Any other (xi, zj)-
path in D′ uses at least two paths of length 4: one of the paths Pii′ and Qii′ for some
i′ ∈ {1, . . . , n} such that i′ 6= j, and one of the paths Pj′j and Qj′j for some j′ ∈ {1, . . . , n}
such that j′ 6= i. This means that distD′(xi, zj)− distD(xi, zj) ≥ 2 contradicting that D′ is
an additive 1-spanner. We conclude that I is an independent set of G and, therefore, (G, k)
is a yes-instance of Independent Set. J

IPEC 2020
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5 Conclusion

We proved that Directed Multiplicative Spanner admits a kernel of size O(k4t5) can
be solved in (4t)k · nO(1) randomized time. We also demonstrated that Directed Additive
Spanner is W[1]-hard even when t = 1 and the input graphs are restricted to DAGs. The
latter result leads to the question whether Directed Additive Spanner is tractable on
some special classes of directed graphs, like planar directed graphs. We believe that this
problem may be interesting even if the distortion parameter t is assumed to be a constant.

Another possible direction of research is considering different types of directed graph
spanners. For example, what can be said about the roundtrips spanners introduced by
Roditty, Thorup, and Zwick [16]? A spanning subgraph H of a directed graph G is a
multiplicative t-roundtrip-spanner if for every two vertices u and v, distH(u, v)+distH(v, u) ≤
t(distG(u, v) + distG(v, u)), that is, H approximates the sum of the distances between any
two vertices in both directions. Is the analog of Directed Multiplicative Spanner for
roundtrip spanners FPT? Notice that we cannot use Observation 1 that is crucial for our
results for the new problem. Consider, for example, the directed graph G constructed as
follows: construct two vertices u and v and an arc (u, v), and then add a (u, v)-path P1 and
a (v, u)-path P2 of arbitrary length ` ≥ 2 that are internally vertex disjoint. Then it is easy
to see that H = G− (u, v) is a 2-roundtrip spanner for G. However, H has no short detour
for (u, v). It is also possible to define additive t-roundtrip-spanners and consider the analog
of Directed Additive Spanner. We conjecture that this problem is at least as hard as
Directed Additive Spanner.

Let us also mention that we are not aware of results about the parameterized complexity
of the weighted variants of Multiplicative Spanner and Additive Spanner on both
directed and undirected graphs. Here, the input graph is supplied with the edge (arc) weights
and the length of a path is the sum of the weights of its edges (arcs, respectively). Then the
distance between vertices is the length of a shortest path in this metric.
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