
FPT Approximation for Constrained Metric
k-Median/Means
Dishant Goyal
Indian Institute of Technology Delhi, India
Dishant.Goyal@cse.iitd.ac.in

Ragesh Jaiswal1

Indian Institute of Technology Delhi, India
rjaiswal@cse.iitd.ac.in

Amit Kumar
Indian Institute of Technology Delhi, India
amitk@cse.iitd.ac.in

Abstract
The Metric k-median problem over a metric space (X , d) is defined as follows: given a set L ⊆ X
of facility locations and a set C ⊆ X of clients, open a set F ⊆ L of k facilities such that the total
service cost, defined as Φ(F,C) :=

∑
x∈C

minf∈F d(x, f), is minimised. The metric k-means problem
is defined similarly using squared distances (i.e., d2(., .) instead of d(., .)). In many applications
there are additional constraints that any solution needs to satisfy. For example, to balance the load
among the facilities in resource allocation problems, a capacity u is imposed on every facility. That
is, no more than u clients can be assigned to any facility. This problem is known as the capacitated
k-means/k-median problem. Likewise, various other applications have different constraints, which
give rise to different constrained versions of the problem such as r-gather, fault-tolerant, outlier
k-means/k-median problem. Surprisingly, for many of these constrained problems, no constant-
approximation algorithm is known. Moreover, the unconstrained problem itself is known [1] to be
W[2]-hard when parameterized by k. We give FPT algorithms with constant approximation guarantee
for a range of constrained k-median/means problems. For some of the constrained problems, ours
is the first constant factor approximation algorithm whereas for others, we improve or match the
approximation guarantee of previous works. We work within the unified framework of Ding and
Xu [24] that allows us to simultaneously obtain algorithms for a range of constrained problems.
In particular, we obtain a (3 + ε)-approximation and (9 + ε)-approximation for the constrained
versions of the k-median and k-means problem respectively in FPT time. In many practical settings
of the k-median/means problem, one is allowed to open a facility at any client location, i.e., C ⊆ L.
For this special case, our algorithm gives a (2 + ε)-approximation and (4 + ε)-approximation for
the constrained versions of k-median and k-means problem respectively in FPT time. Since our
algorithm is based on simple sampling technique, it can also be converted to a constant-pass log-space
streaming algorithm. In particular, here are some of the main highlights of this work:
1. For the uniform capacitated k-median/means problems our results matches previously known

results of Addad et al. [19].
2. For the r-gather k-median/means problem (clustering with lower bound on the size of clusters),

our FPT approximation bounds are better than what was previously known.
3. Our approximation bounds for the fault-tolerant, outlier, and uncertain versions is better than

all previously known results, albeit in FPT time.
4. For certain constrained settings such as chromatic, l-diversity, and semi-supervised k-median/

means, we obtain the first constant factor approximation algorithms to the best of our knowledge.
5. Since our algorithms are based on a simple sampling based approach, we also obtain constant-pass

log-space streaming algorithms for most of the above-mentioned problems.

1 Part of this work was done while the author was on a sabbatical from IIT Delhi and visiting UC San
Diego.

© Dishant Goyal, Ragesh Jaiswal, and Amit Kumar;
licensed under Creative Commons License CC-BY

15th International Symposium on Parameterized and Exact Computation (IPEC 2020).
Editors: Yixin Cao and Marcin Pilipczuk; Article No. 14; pp. 14:1–14:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Dishant.Goyal@cse.iitd.ac.in
mailto:rjaiswal@cse.iitd.ac.in
mailto:amitk@cse.iitd.ac.in
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 FPT Approximation for Constrained Metric k-Median/Means

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Theory of computation → Facility location and clustering

Keywords and phrases k-means, k-median, approximation algorithms, parameterised algorithms

Digital Object Identifier 10.4230/LIPIcs.IPEC.2020.14

Related Version A full version of the paper is available at https://arxiv.org/abs/2007.11773.

Acknowledgements The authors would like to thank Anup Bhattacharya for useful discussions.
Dishant Goyal would like to thank TCS Research Scholar Program.

1 Introduction

The metric k-means and k-median problems are similar. We combine the discussion of
these problems by giving a definition of the k-service problem that encapsulates both these
problems.

I Definition 1 (k-service problem). Let (X , d) be a metric space, k > 0 be any integer
and ` ≥ 0 be any real number. Given a set L ⊆ X of feasible facility locations, and a set
C ⊆ X of clients, find a set F ⊆ L of k facilities that minimises the total service cost:
Φ(F,C) ≡

∑
j∈C mini∈F d`(i, j).

Note that the k-service problem is also studied with respect to a more general cost function∑
j∈C mini∈F δ(i, j), where δ(i, j) denotes the cost of assigning a client j ∈ C to a facility

i ∈ F . We consider the special case δ(i, j) ≡ d`(i, j). For ` = 1, the problem is known as
the k-median problem and for ` = 2, the problem is known as the k-means problem. The
above definition is motivated by the facility location problem [43] and differs from it in two
ways. First, in the facility location problem, one is allowed to open any number of facilities.
Second, one has to pay for an additional facility establishment cost for every open facility.
Thus the k-service problem is basically the facility location problem for a fixed number of
facilities and 0 facility establishment costs.

The k-service problem can also be viewed as a clustering problem, where the goal is to
group the objects that are similar to each other. Clustering algorithms are commonly used
in data mining, pattern recognition, and information retrieval [33]. However, the notion of a
cluster differs for different applications. For example, some applications consider a cluster
as a dense region of points in the data-space [25, 5], while others consider it as a highly
connected subgraph of a graph [32]. Likewise, various models have been developed in the
past that capture the clustering properties in different ways [47]. The k-means and k-median
problems are examples of the center-based clustering model. In this model, the objects are
mapped to the points in a metric space such that the distance between the points captures
the degree of dissimilarity between them. In other words, the closer the two points are,
the more similar they are to each other. In order to measure the quality of a clustering,
a center (known as the cluster representative) is assigned to each cluster and the cost is
measured based on the distances of the points to their respective cluster centers. Then the
problem objective is to obtain a clustering with the minimum cost. To view the k-median
instance as a clustering instance, consider the client set as a set of data points and the facility
locations as the feasible centers. In a feasible solution, the clients which are assigned to
the same facility are considered a part of the same cluster and the corresponding facility
act as their cluster center. During our discussion, we will use the term center and facility
interchangeably. Similarly, we can view the k-means problem as a clustering problem where
the cost is measured with respect to the squared distances.

https://doi.org/10.4230/LIPIcs.IPEC.2020.14
https://arxiv.org/abs/2007.11773

D. Goyal, R. Jaiswal, and A. Kumar 14:3

Various variants of the k-median/means problem have been studied in the clustering
literature. For example, the Euclidean k-means problem (where C ⊆ L = Rd) is NP-
hard even for a fixed k or a fixed dimension d [22, 4, 41, 45]. This opens the question of
designing a PTAS (polynomial-time approximation schemes) for the problem when either
the number of clusters or the dimension is fixed. Indeed, various PTASs are known under
such conditions [38, 26, 15, 35, 27, 18]. In general, it is known that the problem can not be
approximated within a particular constant factor, unless P = NP [8, 16].

The hardness results in the previous paragraph was for Euclidean setting. These problems
may be harder in general metric spaces which is indeed what has been shown. The metric
k-median problem is hard to approximate within a factor strictly smaller than (1 + 2/e), and
the metric k-means problem is hard to approximate within a factor strictly smaller than
(1 + 8/e) [29, 34]. On the positive side, various constant-factor approximation algorithms
are known for the k-means (and k-median) problems in the metric and Euclidean settings
[36, 14, 7, 30, 40, 11, 3]. Improving these bounds is not the goal of this paper. Instead, we
undertake the task of improving/obtaining approximation bounds of a more general class of
problems called the constrained k-means/k-median problem. Let us see what these problems
are and why they are important.

For many real-world applications, the classical (unconstrained) k-means and k-median
problems do not entirely capture the desired clustering properties. For example, consider the
popular k-anonymity principle [44]. The principle provides anonymity to a public database
while keeping it meaningful at the same time. One way to achieve this is to cluster the data
in such a way to release only partial information related to the clusters obtained. Further,
to protect the data from the re-identification attacks, the clustering should be done in
such a way that each cluster gets at least r data-points. This method is popularly known
as r-gather clustering [2] (see the formal definition in Table 1). Likewise, various other
applications impose a specific set of constraints on the clusters. Such applications have been
studied extensively. A survey on these applications is mentioned in Section 1.1 of [24]. We
collectively mention these problems in Table 1 and their known approximation results in
Table 2. We discuss these problems and their known results in detail in the full version of
the paper.

An important distinction between the constrained problems and their unconstrained
counterparts is the idea of locality. In simple words, the locality property says that the
points which are close to each other should be part of the same cluster. This property holds
for the unconstrained version of the problem. However, this may not necessarily hold for
many of the constrained versions of the problem where minimising clustering cost is not
the only requirement. To understand this, consider a center-set F = {f1, f2, . . . , fk} and let
{C1, ..., Ck} denote the clustering of the dataset such that the cost function gets minimised.
That is, Ci contain all the points for which fi is the closest center in the set F . Note that the
clustering {C1, ..., Ck} just minimises the distance based cost function and may not satisfy
any additional constraint that the clustering may need to satisfy in a constrained setting.
In a constrained setting we may need an algorithm that, given a center-set {f1, ..., fk} as
input, outputs a clustering {C̄1, ..., C̄k} which in addition to minimising

∑
i

∑
x∈C̄i

d`(x, fi)
also satisfies certain clustering constraints. Such an algorithm is called a partition algorithm.
In the unconstrained setting, the partition algorithm simply assigns points to closest center
in F . However, designing such an efficient partition algorithm for the constrained versions
of the problem is a non-trivial task. Ding and Xu [24] gave partition algorithms for all the
problems mentioned in Table 1 (see Section 4 and 5.3 of [24]). Though these algorithms were
specifically designed for the Euclidean space, they can be generalized to any metric space.
We will see that such a partition algorithm is crucial in the design of our FPT algorithms.

IPEC 2020

14:4 FPT Approximation for Constrained Metric k-Median/Means

Table 1 Constrained k-service problems with efficient partition algorithm (see Section 4 and 5.3
in [24] and references therein). The (*) marked problems were not discussed in [24]. Note that for
problems 1 and 2, the bounds are cluster-wise and not facility-wise. Please see definition of Ψ(F, ξ)
and Ψ∗(ξ) below (see eqn. (1) and defn. 2).

Problem Description

1. r-gather k-service problem*
(r, k)-GService

Find clustering ξ = {C1, ..., Ck} with minimum Ψ∗(ξ)
such that for all i, |Ci| ≥ ri

2. r-Capacity k-service problem*
(r, k)-CaService

Find clustering ξ = {C1, ..., Ck} with minimum Ψ∗(ξ)
such that for all i, |Ci| ≤ ri

3. l-Diversity k-service problem
(l, k)-DService

Given that every client has an associated colour,
find a clustering ξ = {C1, ..., Ck} with minimum Ψ∗(ξ)
such that for all i, the fraction of points sharing the
same colour inside Ci is ≤ 1

l

4. Chromatic k-service problem
k-ChService

Given that every client has an associated colour,
find a clustering ξ = {C1, ..., Ck} with minimum Ψ∗(ξ)
such that for all i, Ci should not have any two
points with the same colour.

5. Fault tolerant k-service problem
(l, k)-FService

Given a value lp for every client, find a clustering
ξ = {C1, ..., Ck} and a set F of k centers, such that
the sum of service cost of the points to lp of nearest
centers out of F = {f1, f2, . . . , fk}, is minimised.

6. OWA k-service problem*
k-OWAService

Given a vector (w1, ..., wk) of non-increasing weights, find
a center set {f1, ..., fk} such that

∑
x∈C

∑k

j=1 wj ·
(
dj(x)

)`

is minimised. Here,
(
d1(x), ..., dk(x)

)
is a non-decreasing

ordering of
(
d(x, f1), ..., d(x, fk)

)
.

7. Semi-supervised k-service problem
k-SService

Given a target clustering ξ′ = {C′1, ..., C′k} and constant α,
find a clustering ξ = {C1, ..., Ck} and a center set F , such
that the cost Ψ(F, ξ) := α ·Ψ(F, ξ) + (1− α) ·Dist(ξ′, ξ)
is minimised. Dist denotes the set-difference distance.

8. Uncertain k-service problem
k-UService

Given a discrete probability distribution for every client,
i.e., for a point p ∈ C there is a set Dp = {p1, . . . , ph}
such that p takes the value pi with probability tip
and

∑h

i=1 t
i
p ≤ 1. Find a clustering ξ = {C1, ..., Ck}

so that the expected cost of Ψ∗(ξ) is minimized.

9. Outlier k-service problem*
(k,m)-OService

Find a set Z ⊆ C of size m
and a clustering C′ = {C′1, ..., C′k} of the set C′ := C \ Z,
such that Ψ∗(ξ′) is minimized.

The partition algorithm gives us a way for going from center-set to clustering. What
about the reverse direction? Given a clustering ξ = {C1, C2, . . . , Ck}, can we find a center
set that gives minimum clustering cost? The solution to this problem is simple. Construct
a complete weighted bipartite graph G = (Vl, Vr, E), where a vertex in Vl corresponds to a
facility location in L, and a vertex in Vr corresponds to a cluster Cj ∈ ξ. The weight on an
edge (i, j) ∈ Vl × Vr is equal to the cost of assigning the cluster Cj to the ith facility, i.e.,∑
x∈Cj

d`(x, i). Then we can easily obtain an optimal assignment by finding the minimum
cost perfect matching in the graph G. Let us denote the minimum cost by MCPM(ξ, L)
Thus, it is sufficient to output an optimal clustering for a constrained k-service instance. In
fact, all problems in Table 1 only requires us to output an optimal clustering for the problem.

Ding and Xu [24] suggested the following unified framework for considering any constrained
k-means/k-median problem by modelling an arbitrary set of constraints using feasible
clusterings. Note that they studied the problem in the Euclidean space where C ⊆ L = Rd
whereas we study the problem in general metric space where L and C are discrete and

D. Goyal, R. Jaiswal, and A. Kumar 14:5

separate sets. We will use a few more definitions to define the problem. A k-center-set is a
set of k distinct elements from L and for any k-center-set F = {f1, ..., fk} and a clustering
ξ = {C1, ..., Ck}, we will use the cost function:

Ψ(F, ξ) ≡ min
permutation π

{
k∑
i=1

∑
x∈Ci

d`(x, fπ(i))
}
. (1)

I Definition 2 (Constrained k-service problem). Let (X , d) be a metric space, k > 0 be any
integer and ` ≥ 0 be any real number. Given a set L ⊆ X of feasible facility locations, a set
C ⊆ X of clients, and a set C of feasible clusterings, find a clustering ξ = {C1, C2, . . . , Ck}
in C, that minimizes the following objective function: Ψ∗(ξ) ≡ min

k-center-set F
Ψ(F, ξ).

Note that Ψ∗(ξ) is MCPM(ξ, L), the minimum cost perfect matching as discussed earlier.
The key component of the above definition is the set of feasible clusterings C. Using
this, we can define any constrained version of the problem. Note that C can have an
exponential size. However, for many problems it can be defined concisely using a simple set
of mathematical constraints. For example, C for the r-gather problem can be defined as
C := {ξ | for every cluster Ci ∈ ξ, |Ci| ≥ ri}, where ξ = {C1, C2, . . . , Ck} is a partitioning
of the client set. Note that we consider the hard assignment model for the problem. That
is, one cannot open more than one facility at a location. It differs from the soft assignment
model where one can open multiple facilities at a location. The soft version can be stated
in terms of the hard version – by allowing L to be a multi-set and creating k-copies for
each location in L. It has been observed that the soft-assignment models are easier and
allow better approximation guarantees than the hard-assignment models [21, 39]. For our
discussion, we will call a center-set a soft center-set if it contains facility location multiple
times, otherwise we call it a hard center-set. In fact, a soft center-set is a multi-set. We will
avoid using the term multi-set to keep our discussion simple.

As observed in past works [24, 9], any constrained version of k-median/means can be
solved using a partition algorithm for this version and a solution to a very general “list”
version of the clustering problem which we discuss next. Let us define this problem which we
call the list k-service problem 2. This will help us solve the constrained k-service problem.

I Definition 3 (List k-service problem). Let α be a fixed constant. Let I = (L,C, k, d, `) be
any instance of the k-service problem and let ξ = {C1, C2, . . . , Ck} be an arbitrary clustering
of the client set C. The goal of the problem is: given I, find a list L of k-center-sets (i.e.,
each element of the list is a set of k distinct elements from L) such that, with probability at
least (1/2), L contains a k-center-set F such that Ψ(F, ξ) ≤ α ·Ψ∗(ξ).

Note that the clustering algorithm in the above setup does not get access to the clustering
ξ and yet is supposed to find good centers (constant α approximation) for this clustering.
Given this, it is easy to see that finding a single set of k centers that are good for ξ is not
possible. However, finding a reasonably small list of k-center-sets such that at least one of
the k-center-sets in the list is good may be feasible. This is main realization behind the
formulation of the list version of the problem. The other reason is that since the target
clustering is allowed to be a completely arbitrary partition of the client set C, we can use
the solution of the list k-service problem to solve any constrained k-service problem as

2 This notion of list version of the clustering problem was implicitly present in the work of Ding and
Xu [24]. Bhattacharya et al. [9] formalized this as the list k-means problem.

IPEC 2020

14:6 FPT Approximation for Constrained Metric k-Median/Means

long as there is a partition algorithm. The following theorem combines the list k-service
algorithm and the partition algorithm for a constrained version of the problem to produce a
constant-approximation algorithm this problem.

I Theorem 4. Let I = (L,C, k, d, `,C) be any instance of any constrained k-service problem
and let AC be the corresponding partition algorithm. Let B be an algorithm for the list
k-service problem that runs in time TB for instance (L,C, k, d, `). There is an algorithm
that, with probability at least 1/2, outputs a clustering ξ ∈ C, which is an α-approximation
for the constrained k-service instance. The running time of the algorithm is O(TB + |L| ·TA),
where TA is the running time of the partition algorithm.

Proof. The algorithm is as follows. We first run algorithm B to obtain a list L. For every k-
center-set in the list, the algorithm runs the partition algorithm AC on it. Then the algorithm
outputs that k-center-set that has the minimum clustering cost. Let F ′ be this k-center-set
and ξ′ be the corresponding clustering. We claim that (F ′, ξ′) is an α-approximation for the
constrained k-service problem with probability at least 1/2.

Let ξ∗ be an optimal solution for the constrained k-service instance (L,C, k, d, `,C) and
F ∗ denote the corresponding k-center-set. By the definition of the list k-service problem,
with probability at least 1/2, there is a k-center-set F in the list L, such that Ψ(F, ξ∗) ≤ α ·
Ψ(F ∗, ξ∗). Let ξ = AC(F) ∈ C be the clustering corresponding to F . Thus, Ψ(F, ξ) ≤ Ψ(F, ξ∗)
and so with probability at least 1/2, Ψ(F, ξ) ≤ α ·Ψ(F ∗, ξ∗). Since F ′ gives the minimum
cost clustering in the list, we have Ψ(F ′, ξ′) ≤ Ψ(F, ξ). Therefore, with probability at least
1/2, Ψ(F ′, ξ′) ≤ α ·Ψ(F ∗, ξ∗).

Since, the algorithm runs a partition procedure for every center set in the list, the running
time of this step is |L| · TA. Picking a minimum cost clustering from the list takes O(|L|)
time. Hence the overall running time is O(TB + |L| · TA). J

Now suppose we are given a list L of size g(k) (for some function g) and a partition
algorithm for the problem with FPT running time. Then by Theorem 4, we get an FPT
algorithm for the constrained k-service problem. Since for many of the constrained k-service
problems there exists efficient partition algorithms, it makes sense to design an algorithm for
the list k-service problem that outputs a list of size at most g(k). We design such an algorithm
in this paper. We also need to make sure that the partition algorithms for constrained
problems that we saw in Table 1 exist and our plan of approaching the constrained problem
using the list problem can be executed. Indeed, Ding and Xu [24] gave partition algorithms
for a number of constrained problems. We make addition to their list which allows us to
discuss new problems in this work. These additions and other discussions on approaching
specific constrained problems using the list problem is discussed in the full version of the
paper. What we note here is that the approximation guarantee for the list problem carries
over to all the constrained problem in Table 1. We now look at our main results for the list
k-service problem and its main implications for the constrained problems.

1.1 Our Results
We will show the following result for the list k-service problem.

I Theorem 5 (Main Theorem). Let 0 < ε ≤ 1 and ` ≥ 1. Let (L,C, k, d, `) be any k-service
instance and let ξ = {C1, C2, . . . , Ck} be any arbitrary clustering of the client set. There is
an algorithm that, with probability at least 1/2, outputs a list L of size (k/ε)O(k ` 2), such that
there is a k-center-set S ∈ L in the list such that Ψ(S, ξ) ≤ (3` + ε) ·Ψ∗(ξ). Moreover, the
running time of the algorithm is O

(
n · (k/ε)O(k ` 2)

)
. For the special case when C ⊆ L, the

algorithm gives a (2` + ε)-approximation guarantee.

D. Goyal, R. Jaiswal, and A. Kumar 14:7

Using the above Theorem together with Theorem 4, we obtain the following main results for
the constrained k-means and k-median problems.

I Corollary 6 (k-means). For any constrained version of the metric k-means problem with
a partition algorithm with FPT running time g(k) · nO(1), there is a (9 + ε)-approximation
algorithm with an FPT running time g(k) · (k/ε)O(k) · nO(1). For a special case when C ⊆ L,
the algorithm gives a (4 + ε)-approximation guarantee.

I Corollary 7 (k-median). For any constrained version of the metric k-median problem with
a partition algorithm with FPT running time g(k) · nO(1), there is a (3 + ε)-approximation
algorithm with an FPT running time of g(k) · (k/ε)O(k) · nO(1). For a special case when
C ⊆ L, the algorithm gives a (2 + ε)-approximation guarantee.

Note that by Theorem 4, as long as the running time of the partition algorithm is
g(k) · nO(1), the total running time of the algorithm still stays FPT. All the problems in
Table 1 either have an efficient partition algorithm (polynomial in n and k) or a partition
algorithm with an FPT running time. We discuss these partition algorithms in the full version
of the paper. It should be noted that other than the problems mentioned in Table 1, our
algorithm works for any problem that fits the framework of the constrained k-service problem
(i.e., Definition 2) and has a partition algorithm. This makes the approach extremely versatile
since one may be able to solve more problems that may arise in the future.3 The known
results on constrained problems in Table 1 is summarised in Table 2. Note that for all these
problems we obtain FPT time (9 + ε)-approximation and (3 + ε)-approximation for k-means
and k-median respectively. For the special case when C ⊆ L (a facility can be opened at any
client location), we obtain FPT time (4 + ε)-approximation and (2 + ε)-approximation for
k-means and k-median respectively. There are some subtle differences in the problems in
Table 1 and Table 2. This is to be able to compare our results with known results. We will
highlight these differences in the related work section.

Moreover, we can convert our algorithms to streaming algorithms using the technique
of Goyal et al. [28]. We basically require a streaming version of our algorithm for the list
k-service problem and a streaming partition algorithm for the constrained k-service problem.
In Section 1.5, we will design a constant-pass log-space streaming algorithm for the list k-
service problem. We already know streaming partition algorithms for the various constrained
k-service problems [28]. This would give a streaming algorithm for all the problems given in
Table 1 except for the l-diversity and chromatic k-service problems. Although single-pass
streaming algorithms are considered much useful, it is interesting to know that there is a
constant-pass streaming algorithm for many constrained versions of the k-service problem.

1.2 Related Work
A unified framework for constrained k-means/k-median problems was introduced by Ding
and Xu [24]. Using this framework, they designed a PTAS (fixed k) for various constrained
clustering problems. However, their study was limited to the Euclidean space where C ⊆
L = Rd. Their results were obtained through an algorithm for the list version of the k-means
problem (even though it was not formally defined in their work). The running time of this
algorithm was O(nd·(logn)k ·2poly(k/ε)) and the list size was (logn)k ·2poly(k/ε). Bhattacharya
et al. [9] formally defined and studied the list k-service problem. They obtained a faster

3 We note that new ways of modelling fairness in clustering is giving rise to new clustering problems with
fairness constraints and some of these new problems may fit into this framework.

IPEC 2020

14:8 FPT Approximation for Constrained Metric k-Median/Means

Table 2 Known results for the constrained clustering problems. Note that for all the above
problems we obtain FPT time (3 + ε)-approximation and (9 + ε)-approximation for k-median and
k-means respectively. For the special case when C ⊆ L (a facility can be opened at any client
location), we obtain FPT time (2 + ε)-approximation and (4 + ε)-approximation for k-median and
k-means respectively. Note that uniform case for problems 1 and 2 means that the lower/upper
bound on the size of all clusters is the same.

Problem Metric k-median Metric k-means

1. r-gather k-service
(uniform case)

7.2-approx [23] (for C = L)
(in FPT time)

86.9-approx [23] (for C = L)
(in FPT time)

2. r-Capacity k-service
(uniform case)

(3 + ε)-approx [19]
(in FPT time)

(9 + ε)-approx [19]
(in FPT time)

3. l-Diversity k-service - -

4. Chromatic k-service - -

5. Fault tolerant k-service 93-approx. [31] -

6. OWA k-service 93-approx. [12] -

7. Semi-supervised k-service - -

8. Uncertain k-service
(assigned version)

(6.35 + ε)-approx. [20]
(for C ⊆ L)

(74 + ε)-approx. [20]
(for C ⊆ L)

9. Outlier k-service (7 + ε)-approx. [37] (53 + ε)-approx. [37]

For the Euclidean k-means and k-median (where C ⊆ L = Rd), all the constrained problems
have an FPT time (1 + ε) approximation algorithm [24, 9].

algorithm for the list problem with running time to O(nd · (k/ε)O(log(k/ε))) and list size to
(k/ε)O(log(k/ε)) for the constrained k-means/k-median problem. Recently, Goyal et al. [28]
obtained useful generalisations of the results of Bhattacharya et al. [9] and used this to design
logspace (assuming k and ε are constants) streaming algorithms for various constrained
versions of the problem. In this paper, we study the constrained k-means/median problems
in general metric spaces while treating L and C as separate sets. More importantly, we
design an algorithm that gives a better approximation guarantee than the previously known
algorithms by taking advantage of FPT running time. Moreover, for many problems, it is
the first algorithm that achieves a constant-approximation in FPT running time. Please see
Table 2 for the known results on the problem. Due to space restrictions, we have a detailed
discussion on these problems in the full version of the paper.

In the introduction, we would specifically like to discuss the result of Addad et al. [19]
for the capacitated k-service problem. Their definition of the capacitated k-service problem
is different from the one mentioned in Table 1 that we are considering. Following is their
definition of the capacitated k-service problem.

I Definition 8 (Addad et al. [19]). Given an instance I = (L,C, k, d, `) of the k-service
problem and a capacity function r : L→ Z+, find a set F ⊆ L of k facilities such that the
assignment cost

∑
j∈C mini∈F d`(j, i) is minimized, and no more than ri clients are assigned

to a facility i ∈ L.

D. Goyal, R. Jaiswal, and A. Kumar 14:9

Note that in the above definition, there is a capacity associated with every facility location in
L whereas in our definition, capacities are associated with the k clusters. This means that a
facility can service arbitrary number of clients as long as the cluster sizes are bounded. This
is not allowed as per the problem definition of Addad et al. [19]. However, for the uniform
capacities the problem definitions are equivalent and the results become comparable. We
match the approximation guarantees obtained Addad et al. [19] for the uniform case even
though using very different techniques.

As we mentioned earlier, the unconstrained metric k-median problem is hard to approx-
imate within a factor strictly smaller than (1 + 2/e), and the metric k-means problem is hard
to approximate within a factor strictly smaller than (1 + 8/e). Surprisingly this lower bound
persists even if we allow an FPT running time [17, 42]. However, this FPT lower bound is
based on a complexity theoretic conjecture known as Gap-ETH [13]. The problem also has
a matching upper bound algorithm with an FPT running time [17]. So, the unconstrained
k-means and k-median problems in the metric setting is fairly well understood. On the
other hand, our understanding of most constrained versions of the problem is still far from
complete. We believe that our work is an important step in understanding constrained
problems in general metric spaces.

1.3 Our Techniques
In this section, we discuss our sampling based algorithm for list k-service problem. First, let
us define a few notations and identities that we will use often in our discussions. We define
the unconstrained k-service cost of a set S with respect to a center set F as: Φ(F, S) :=∑
x∈S minf∈F d`(f, x). For a singleton set {f}, we denote Φ({f}, S) by Φ(f, S). We denote

the optimal (unconstrained) k-service cost of an instance (L,C, k, d, `) by OPT (L,C).
As described earlier, an FPT algorithm for the list k-service problem gives an FPT

algorithm for a constrained version of the k-service problem that has an efficient or FPT-time
partition algorithm. Given that we are allowed FPT running time for the list problem, it may
be tempting to think of the following strategy: Use a bi-criteria approximation algorithm for
the unconstrained version of the k-median problem to obtain poly(k/ε) centers S and then
use the partition algorithm on all k-sized subsets of S to pick the best one. Unfortunately,
this strategy does not give a constant factor approximation. We discuss the details in the
full version of the paper.

In this work, we give a sampling based algorithm that is similar to the algorithm of Goyal
et al. [28] that was specifically designed for the Euclidean setting. However, working in a
metric space instead of Euclidean space poses challenges as some of the main tools used for
analysis in the Euclidean setting cannot be used in metric spaces. We carefully devise and
prove new sampling lemmas that makes the high-level analysis of Goyal et al. [28] go through.
Our algorithm is based on D`-sampling. Given a point set F , D`-sampling a point from the
client set C w.r.t. center set F means sampling using the distribution where the sampling
probability of a client x ∈ C is Φ(F,{x})

Φ(F,C) = minf∈F d`(f,x)∑
y∈C

minf∈F d`(f,y)
. In case F is empty, then

D`-sampling is the same as uniform sampling. Please see Algorithm 1 for the list k-service
problem.

Let us discuss some of the main ideas of the algorithm and its analysis. First, note that
as per the algorithm description, the list size is 2k ·

((η+1)k2

k

)
which is (k/ε)O(k`2) for the

parameters given. This is because in step (9), the algorithm considers all possible k sized
subsets of (multi)set T of size (η + 1)k2. We now discuss the approximation guarantee. Note
that in the first step, we obtain a center-set F ⊆ C which is an α-approximation for the

IPEC 2020

14:10 FPT Approximation for Constrained Metric k-Median/Means

Algorithm 1 Algorithm for the list k-service problem.

1 List-k-service (L,C, k, d, `, ε)
2 Inputs: k-service instance (L,C, k, d, `) and accuracy ε
3 Output: A list L, each element in L being a k-center set

4 Constants: β = 4`−1 ·
(
`` · 3`2+4`+3

ε `+1
+ 1
)
; γ = `` · 3`2+5`+1

ε `
;

η = αβ γ k · 3`+2

ε2

5 (1) Run any α-approximation algorithm with α = poly(k) for the unconstrained
6 k-service instance (C,C, k, d, `) and let F be the obtained center-set.
7 (k-means++ [6] is one such algorithm.)
8 (2) L ← ∅
9 (3) Repeat 2k times:

10 (4) Sample a multi-set M of ηk points from C using D`-sampling w.r.t.
11 center set F
12 (5) M ←M ∪ F
13 (6) T ← ∅
14 (7) For every point x in M :
15 (8) T ← T ∪ {k points in L that are closest to x}
16 (9) For all subsets S of T of size k:
17 (10) L ← L ∪ {S}
18 (11) return(L)

unconstrained k-service instance (C,C, k, d, `). Any α that is polynomial in k suffices for
our analysis. That is, Φ(F,C) ≤ α · OPT (C,C). One such algorithm is the k-means++
algorithm [6] that gives an O(4` · log k)-approximation guarantee and a running time O(nk).
Now, let us see how the center-set F can help us. Let us focus on any cluster Ci of a target
clustering ξ = {C1, . . . , Ck}. We note that the closest facility to a uniformly sampled client
from any client set Ci provides a constant approximation to the optimal 1-median/means
cost for Ci in expectation. This is formalized in the next lemma. This lemma (or a similar
version) has been used in multiple other works in analysing sampling based algorithms (for
example, see Lemma 3.1 in [6]). This lemma is restated and formally proven in the full
version of the paper.

I Lemma 9. Let S ⊆ C be any subset of clients and let f∗ be any center in L. If we
uniformly sample a point x in S and open a facility at the closest location in L, then the
following identity holds:

E[Φ(t(x), S)] ≤ 3` · Φ(f∗, S), where t(x) is the closest facility location from x.

Unfortunately, we cannot uniformly sample from Ci directly since Ci is not known to us.
Given this, our main objective should be to use F to try to uniformly sample from Ci so that
we could achieve a constant approximation for Ci. Let us do a case analysis based on the
distance of points in Ci from the nearest point in F . Consider the following two possibilities:
The first possibility is that the points in Ci are close to F . If this is the case, we can uniformly
sample a point from F instead of Ci. This would incur some extra cost. However, the cost
is small and can be bounded. To cover this first possibility, the algorithm adds the entire
set F to the set of sampled points M (see line (5) of the algorithm). The second possibility

D. Goyal, R. Jaiswal, and A. Kumar 14:11

is that the points in Ci are far-away from F . In this case, we can D`-sample the points
from C. Since the points in Ci are far away, the sampled set would contain a good portion
of points from Ci and the points will be almost uniformly distributed. We will show that
almost uniform sampling is sufficient to apply Lemma 9 on Ci. However, we would have to
sample a large number of points to boost the success probability. This requirement is taken
care of by line (4) of the algorithm. Note that we may need to use a hybrid approach for
analysis since the real case may be a combination of the first and second possibility. Most of
the ingenuity of this work lies in formulating and proving appropriate sampling lemmas to
make this hybrid analysis work.

To apply Lemma 9, we need to fulfill one more condition. We need the closest facility
location from a sampled point. This requirement is handled by lines (7) and (8) of the
algorithm. However, note that the algorithm picks k-closest facility locations instead of just
one facility location. We will show that this step is crucial to obtain a hard-assignment
solution for the problem. Finally, the algorithm adds all the potential center sets to a list
L (see line (9) and (10) of the algorithm). The algorithm repeats this procedure 2k times
to boost the success probability (see line (3) of the algorithm). We will show the following
result from which our main theorem (Theorem 5) trivially follows.

I Theorem 10. Let 0 < ε ≤ 1 and ` ≥ 1. Let (L,C, k, d, `) be any k-service instance and let
ξ = {C1, C2, . . . , Ck} be any arbitrary clustering of the client set. The algorithm
List-k-service(L,C, k, d, `, ε), with probability at least 1/2, outputs a list L of size
(k/ε)O(k ` 2), such that there is a k center set S ∈ L in the list such that Ψ(S, ξ) ≤
(3` + ε) ·Ψ∗(ξ). Moreover, the running time of the algorithm is O

(
n · (k/ε)O(k ` 2)

)
. For the

special case of C ⊆ L, the approximation guarantee is (2` + ε).

The details of the analysis is given in the full version of the paper. Here, we give the
high-level outline of the proof. Let ξ = {C1, C2, . . . , Ck} be the (unknown) target clustering
and F ∗ = {f∗1 , f∗2 , . . . , f∗k} be the corresponding optimal center set. Suppose Ci is assigned
to f∗i , and ∆(Ci) denote its corresponding cost, i.e., ∆(Ci) = Φ(f∗i , Ci). Let us classify the
clusters into two categories: W and H.

W := {Ci | Φ(F,Ci) ≤
ε

α γ k
· Φ(F,C), for 1 ≤ i ≤ k}

H := {Ci | Φ(F,Ci) >
ε

αγ k
· Φ(F,C), for 1 ≤ i ≤ k}

In other words, W contains the low-cost clusters and H contains the high-cost clusters with
respect to F . Now, let us look at the set M obtained by lines (4) and (5) of the algorithm.
M contains some D`-sampled points from C and the center set F . We show that M has the
following property.

Property-I: For any cluster Ci ∈ {C1, C2, . . . , Ck}, with probability at least 1/2,
there is a point si in M such that the following holds:

Φ(t(si), Ci) ≤

(

3` + ε

2

)
·∆(Ci) + ε

2`+1 k
·OPT (C,C), if Ci ∈W(

3` + ε

2

)
·∆(Ci), if Ci ∈ H

where t(si) denotes any facility location that is closer to si than f∗i , i.e., d(si, t(si)) ≤
d(si, f∗i).

IPEC 2020

14:12 FPT Approximation for Constrained Metric k-Median/Means

First, let us see how this property gives the desired result. By a well known fact, we have
OPT (C,C) ≤ 2` ·OPT (L,C). Moreover, the optimal cost OPT (L,C) of the unconstrained
k-service instance is always less than the constrained k-service cost

∑k
i=1 ∆(Ci). Therefore,

Property-I implies that Ts := {t(s1), t(s2), . . . , t(sk)} is a
(
3` + ε

)
-approximation for ξ, with

probability at least 1
2k . 4 Now, note that the facility locations that are closest to si satisfy the

definition of t(si). Moreover, the algorithm adds one such facility location to set T (see line
(8) of the algorithm). Thus there is a center-set Ts in the list that gives (3`+ε)-approximation
for ξ. To boost the success probability to 1/2, the algorithm repeats the procedure 2k times
(see line (3) of the algorithm). Based on these arguments, it looks like we got the desired
result. However, there is one issue that we need to take care of. Remember, we are looking for
a hard assignment for the problem, and the set Ts could be a soft center-set, since the closest
facility locations might be same for si’s. In other words, t(si) could be same as t(sj) for
some i 6= j. At the end of this section we will show that there is indeed a hard center-set in
the list L, that gives the required approximation for the problem. For now let us try to argue
Property-I forM and the target clusters. First consider the case of low-cost clusters as follows.

Case 1: Φ(F,Ci) ≤ ε

α γ k
· Φ(F,C)

For a point x ∈ X , let c(x) denote the closest location in F . Based on this definition, consider
a multi-set Mi := {c(x) | x ∈ Ci}. Since Ci has a low cost with respect to F , the points in
Ci are close to from points from F . Consider uniformly sampling a point from Mi. In the
next lemma, we show that a uniformly sampled point from Mi is a good enough center for
Ci. We give the proof in the full version of the paper.

I Lemma 11. Let p be a point sampled uniformly at random from Mi. Then the following
bound holds:

E[Φ(t(p), Ci)] ≤
(

3` + ε

2

)
·∆(Ci) + ε

2`+1 k
·OPT (C,C).

Since the above lemma estimates the average cost corresponding to a sampled point, there
has to be a point p in Mi such that Φ(t(p), Ci) ≤

(
3` + ε

2

)
·∆(Ci) + ε

2`+1 k
· OPT (C,C).

Since Mi is only composed of the points from F and we keep the entire set F in M (see line
(5) of the algorithm), therefore Property-I is satisfied for every cluster Ci ∈W . Let us now
prove Property I for the high cost clusters.

Case 2: Φ(F,Ci) >
ε

α γ k
· Φ(F,C)

Since the cost of the cluster is high, some points of Ci are far away from the center set F .
We partition Ci into two sets: Cni and Cfi , as follows.

Cni := {x | d`(c(x), x) ≤ R`, for x ∈ Ci}, where R` = 1
β
· Φ(F,Ci)
|Ci|

Cfi := {x | d`(c(x), x) > R`, for x ∈ Ci}, where R` = 1
β
· Φ(F,Ci)
|Ci|

4 Note that the probabilities can be multiplied since M can be partitioned into k groups and we actually
show that the good point si for Ci is either in F or is in any group with probability at least 1/2.

D. Goyal, R. Jaiswal, and A. Kumar 14:13

In other words, Cni represents the set of points that are near to the center set F and Cfi
represents the set of points that are far from the center set F . Recall that our prime objective
is to obtain a uniform sample from Ci, so that we can apply lemma 9. To achieve that we
consider sampling from Cni and Cfi separately. The idea is as follow. To sample a point from
Cfi we use the D`-sampling technique and show that it gives an almost uniform sample from
Cfi . For Cni , we will use F as its proxy, and sample a point from F instead. However, doing
so would incur an extra cost. Since we are using F as a proxy for Cni , we define a multi-set
Mn
i := {c(x) | x ∈ Cni }. Let us define another multi-set Mi := Cfi ∪Mn

i . In the following
lemma we show that there is a point in Mi that is a good center for Ci. The lemma is similar
to lemma 11 of the low-cost clusters. The formal proof is given in the full version of the
paper.

I Lemma 12. Let p be a point sampled uniformly at random from Mi. Then the following
bound holds:

E[Φ(t(p), Ci)] ≤
(

3` + ε

4

)
·∆(Ci)

The above lemma gives a bound on the expectation. To show that M has a good center
for high-cost cluster Ci with high probability, we need to make sure that adequate samples
are obtained in line (4) of the algorithm. The choice of parameters β, γ, and η is based on
this probability analysis and is given in the full version of the paper.

Having argued that Property-I is satisfied for every cluster in W and H, we can finally
claim that Ts = {t(s1), t(s2), . . . , t(sk)} is a

(
3` + ε

)
-approximation for ξ with probability at

least 1
2k . However, as described earlier, Ts could be a soft center-set since t(si) can be same

as t(sj) for some i 6= j. To obtain a hard center-set, we make use of line (8) of the algorithm.
In line (8), the algorithm pulls out the k closest points from L instead of just one. Note that
it is not necessary to open a facility at a closest location in L. Rather, we can open a facility
at any location f in L, that is at least as close to si as f∗i , i.e., d(si, f) ≤ d(si, f∗i).

Let T (si) denote a set of k closest facility location for si. We show that there is a hard
center-set Th ⊂ ∪iT (si), such that Th := {f1, . . . , fk} and d(si, fi) ≤ d(si, f∗i) for every
1 ≤ i ≤ k. We define Th using the following simple subroutine:

1 FindFacilities
2 - Th ← ∅
3 - For i ∈ {1, ..., k}:
4 - if (f∗i ∈ T (si)) Th ← Th ∪ {f∗i }
5 - else
6 - Let f ∈ T (si) be any facility such that f is not in Th
7 - Th ← Th ∪ {f}

I Lemma 13. Th = {f1, f2, . . . , fk} contains exactly k different facilities such that for every
1 ≤ i ≤ k, we have d(si, fi) ≤ d(si, f∗i).

Proof. First, let us show that all facilities in Ts are different. Since, f∗i is different for
different clusters, the if statement adds facilities in Th that are different. In else part, we only
add a facility to Th that is not present in Th. Thus the else statement also adds facilities in Th
that are different. Now, let us prove the second property, i.e., d(si, fi) ≤ d(si, f∗i) for every
1 ≤ i ≤ k. The property is trivially true for the facilities added in the if statement. Now, for
the facilities added in the second step we know that T (si) does not contain f∗i . Since, T (si)

IPEC 2020

14:14 FPT Approximation for Constrained Metric k-Median/Means

is a set of k-closest facility locations, we can say that for any facility location f in T (si),
d(si, f) ≤ d(si, f∗i). Thus any facility added in the else statement has d(si, f) ≤ d(si, f∗i).
This completes the proof. J

Thus Th ∈ L is a hard center-set, which gives the (3` + ε)-approximation for the problem.
This completes the analysis of the algorithm.

Now, suppose we are given the flexibility to open a facility at a client location. In other
words, suppose it is given that C ⊆ L. For this case, we can directly open the facilities at the
locations {s1, s2, . . . , sk} instead of t(si)’s, and we would not need lines (7) and (8) of the
algorithm. Further, we can show that lemma 11 and 12 would give (2` + ε)-approximation
for this special case. However, please note that {s1, s2, . . . , sk} is still a soft center-set. To
obtain a hard center-set we do need to consider the k-closest facility locations for a point si.
In that case, lemma 11 and 12 would not provide (2` + ε)-approximation. Therefore, we need
to make some changes in the analysis of lemma 11 and 12 to get back (2` + ε)-approximation.
We discuss these details in the full version of the paper.

1.4 A Matching Lower Bound on approximation
We gave sampling based algorithms and showed an approximation guarantee of (3` + ε) (and
(2` + ε) for the special case C ⊆ L). In this subsection, we show that our analysis of the
approximation factor is tight. More specifically, we will show that our algorithm does not
provide better than (3`− δ′) approximation guarantee for arbitrarily small δ′ > 0 (and 2`− δ′
for the case C ⊆ L). To show this, we create a bad instance for the problem in the following
manner. We create the instance using an undirected weighted graph where C∪L is the vertex
set of the graph and the shortest weighted path between two vertices defines the distance
metric. The set C is partitioned into the subsets C1, C2, . . . , Ck, and L is partitioned into
the subsets L1, L2, . . . , Lk. The subgraphs over C1 ∪ L1, C2 ∪ L2, . . . , and Ck ∪ Lk are all
identical to each other. Let us describe the subgraph over vertex set Ci ∪ Li in general. In
this subgraph, all the clients are connected to a common facility location f∗i with an edge of
unit weight. Also, every client is connected to a distinct set of k facility locations with an
edge of weight (1− δ). We denote this set by T (x) for a client x ∈ Ci. Figure 1 shows the
complete description of this subgraph. Lastly, all pairs of subgraphs Ci ∪ Li and Cj ∪ Lj are
connected with an edge (f∗i , f∗j) of weight ∆� |C|. This completes the construction of the
bad instance.

Let us define a target clustering on the instance. Consider the unconstrained k-service
problem. It is easy to see that ξ = {C1, C2, . . . , Ck} is an optimal clustering for this instance.
The optimal cost of a cluster Ci is Φ(f∗i , Ci) = |Ci|, and the optimal cost of the entire
instance is OPT =

∑
i |Ci| = |C|.

Now, we will show that any list L produced by the algorithm List-k-service does not
contain any center-set that can provide better than (3` − δ′)-approximation for ξ. To show
this, let us examine every center-set in the list L produced by List-k-service. Note that
the set T obtained in line (8) of the algorithm does not contain any optimal facility location
f∗i because f∗i does not belong to T (x). Therefore, no center set in the list contains any of
the optimal facility locations {f∗1 , ..., f∗k}. Let us evaluate the clustering cost corresponding
to every center set in the list. Let F = {f1, f2, . . . , fk} be a center-set in the list. We have
two possibilities for the facilities in F . The first possibility is that, there are at least two
facilities in F , that belongs to the same subgraph Ci ∪Li. In this case, the cost of the target
clustering is Ψ(F, ξ) > ∆ � OPT . So in this case, F gives an unbounded clustering cost.
Let us consider the second possibility that all facilities in F belong to different subgraphs.

D. Goyal, R. Jaiswal, and A. Kumar 14:15

: Client Location

: Facility Location

Figure 1 An undirected weighted subgraph on Ci ∪ Li.

Without loss of generality, we can assume that fi ∈ Li. Since fi can not be the optimal
facility location, we can further assume that fi ∈ T (x) for some x ∈ Ci. The cost of a cluster
in this case is Φ(fi, Ci) = (3− δ)`(|Ci| − 1) + (1− δ)` > (3− δ)`(|Ci| − 1) . Hence, the overall
cost of the instance is Ψ(F, ξ) > (3− δ)` · (|C| − k) ≥ (3− δ)` · |C| − 3` k ≥ (3` − δ′) · |C|, for
δ′ = 3`−1 · ` δ + 3`k

|C| . Therefore, we can say that list does not contain any center set that can

provide better than (3` − δ′) approximation guarantee for ξ.

I Theorem 14. For any 0 < δ′ ≤ 1, there are instances of the k-service problem for
which the algorithm List-k-service(L,C, k, d, `, ε) does not provide better than (3` − δ′)
approximation guarantee.

Now, let us examine the same bad instance when we have the flexibility to open a facility at
a client location. In this case, we have a third possibility that F = {f1, f2, . . . , fk} such that
fi is some client location in Ci. The cost of a cluster in this case is Φ(fi, Ci) = 2` · (|Ci| − 1)
and the overall cost the instance is Ψ(F, ξ) = 2` · |C|−2` ·k = (2`−δ′) · |C|, for δ′ = 2` ·k/|C|.
So for the special case C ⊆ L, we obtain the following theorem.

I Theorem 15. For any 0 < δ′ ≤ 1, there are instances of the k-service problem (with
C ⊆ L), for which the algorithm List-k-service(L,C, k, d, `, ε) does not provide better than
(2` − δ′) approximation guarantee.

1.5 Streaming Algorithms

In this subsection, we discuss how to obtain a constant-pass streaming algorithm using the
ideas of Goyal et al. [28]. Our offline algorithm has two main components, namely: the
list k-service algorithm and partition algorithm. The list k-service procedure is common
to all constrained versions of the problem. However, the partition algorithm differs for
different constrained versions. First, let us convert List-k-service(L,C, k, d, `) algorithm
to a streaming algorithm.

IPEC 2020

14:16 FPT Approximation for Constrained Metric k-Median/Means

Algorithm Streaming algorithm.

1. In the first pass, we run a streaming α-approximation algorithm for the instance
(C,C, k, d, `). For this, we can use the streaming algorithm of Braverman et al. [10].
The algorithm gives a constant-approximation with the space complexity of
O(k logn).

2. In the second pass, we perform the D`-sampling step using the reservoir sampling
technique [46].

3. In the third pass, we find the k-closest facility locations for every point in M .

This gives us the following result.

I Theorem 16. There is a 3-pass streaming algorithm for the list k-service problem, with
the running time of O(n · f(k, ε)) and space complexity of f(k, ε) · logn, where f(k, ε) =
(k/ε)O(k`2).
Now, let us discuss the partition algorithms in streaming setting. For the l-diversity and
chromatic k-service problems, it is known that there is no deterministic log-space streaming
algorithm [28]. For the remaining constrained problems, there are streaming partition
algorithms that are discussed in [28] (for the Euclidean setting) and the full version of
the paper. Note that all of the streaming partitioning algorithms do not give an optimal
partitioning but only a partitioning that is close to the optimal. Each algorithm makes
at most 3-pass over the data-set and takes logarithmic space complexity. The partition
algorithm, together with the list k-service algorithm, gives the following main results.

I Theorem 17. For the following constrained k-service problems there is a 6-pass streaming
algorithm that gives a (3` + ε)-approximation guarantee: (1) r-gather k-service problem,
(2) r-capacity k-service problem, (3) Fault-tolerant k-service problem, (4) Semi-supervised
k-service problem, (5) Uncertain k-service problem (assigned case). The algorithm has the
space complexity of O(f(k, ε, `) · logn) and the running time of O(f(k, ε, `) · nO(1)), where
f(k, ε, `) = (k/ε)O(k`2). Further, the algorithm gives (2` + ε)-approximation guarantee when
C ⊆ L.

I Theorem 18. For the outlier k-service problem there is a 5-pass streaming algorithm
that gives a (3` + ε)-approximation guarantee. The algorithm has space complexity of
O(f(k,m, ε, `) · logn) and running time of f(k,m, ε, `) · nO(1), where f(k,m, ε, `) = ((k +
m)/ε)O(k`2). Further, the algorithm gives (2` + ε)-approximation guarantee when C ⊆ L.

2 Conclusion and Open Problems

In this paper, we worked within the unified framework of Ding and Xu [24] to obtain
simple sampling based algorithms for a range of constrained k-median/means problems
in general metric spaces. Surprisingly, even working within this high-level framework, we
obtained better (or matched) approximation guarantees of known results that were designed
specifically for the constrained problem. On one hand, this shows the versatility of the
unified approach along with the sampling method. On the other hand, it encourages us
to try to design algorithms with better approximation guarantees for these constrained
problems. Our matching approximation lower bound for the sampling algorithm suggests
that further improvement may not be possible through sampling based ideas. On the lower
bound side, it may be useful to obtain results similar to that for the unconstrained setting
where approximation lower bounds of (1 + 2/e) and (1 + 8/e) are known for k-median and
k-means respectively [17]. Another direction is to find other constrained problems that can
fit into the unified framework and can benefit from the results in this work.

D. Goyal, R. Jaiswal, and A. Kumar 14:17

References
1 Marek Adamczyk, Jaroslaw Byrka, Jan Marcinkowski, Syed M. Meesum, and Michal Wlodar-

czyk. Constant-factor FPT approximation for capacitated k-median. In Michael A. Bender,
Ola Svensson, and Grzegorz Herman, editors, 27th Annual European Symposium on Al-
gorithms (ESA 2019), volume 144 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 1:1–1:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ESA.2019.1.

2 Gagan Aggarwal, Rina Panigrahy, Tomás Feder, Dilys Thomas, Krishnaram Kenthapadi,
Samir Khuller, and An Zhu. Achieving anonymity via clustering. ACM Trans. Algorithms,
6(3), July 2010. doi:10.1145/1798596.1798602.

3 S. Ahmadian, A. Norouzi-Fard, O. Svensson, and J. Ward. Better guarantees for k-means and
Euclidean k-median by primal-dual algorithms. In 2017 IEEE 58th Annual Symposium on
Foundations of Computer Science (FOCS 2017), pages 61–72, October 2017. doi:10.1109/
FOCS.2017.15.

4 Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of Euc-
lidean sum-of-squares clustering. Mach. Learn., 75(2):245–248, May 2009. doi:10.1007/
s10994-009-5103-0.

5 Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. Optics: Ordering
points to identify the clustering structure. SIGMOD Rec., 28(2):49–60, June 1999. doi:
10.1145/304181.304187.

6 David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2007, pages 1027–1035, USA, 2007. Society for Industrial and Applied Mathematics.

7 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM
Journal on Computing, 33(3):544–562, 2004. doi:10.1137/S0097539702416402.

8 Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The
Hardness of Approximation of Euclidean k-Means. In Lars Arge and János Pach, editors, 31st
International Symposium on Computational Geometry (SoCG 2015), volume 34 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 754–767, Dagstuhl, Germany, 2015.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.SOCG.2015.754.

9 Anup Bhattacharya, Ragesh Jaiswal, and Amit Kumar. Faster algorithms for the con-
strained k-means problem. Theor. Comp. Sys., 62(1):93–115, January 2018. doi:10.1007/
s00224-017-9820-7.

10 Vladimir Braverman, Adam Meyerson, Rafail Ostrovsky, Alan Roytman, Michael Shindler,
and Brian Tagiku. Streaming k-means on well-clusterable data. In Proceedings of the Twenty-
Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, page 26–40, USA,
2011. Society for Industrial and Applied Mathematics.

11 Jarosław Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An
improved approximation for k-median and positive correlation in budgeted optimization. ACM
Trans. Algorithms, 13(2), March 2017. doi:10.1145/2981561.

12 Jaroslaw Byrka, Piotr Skowron, and Krzysztof Sornat. Proportional Approval Voting, Harmonic
k-median, and Negative Association. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata,
Languages, and Programming (ICALP 2018), volume 107 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 26:1–26:14, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICALP.2018.26.

13 Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manurangsi,
Danupon Nanongkai, and Luca Trevisan. From gap-eth to fpt-inapproximability: Clique,
dominating set, and more. In 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS 2017), pages 743–754, 2017.

IPEC 2020

https://doi.org/10.4230/LIPIcs.ESA.2019.1
https://doi.org/10.1145/1798596.1798602
https://doi.org/10.1109/FOCS.2017.15
https://doi.org/10.1109/FOCS.2017.15
https://doi.org/10.1007/s10994-009-5103-0
https://doi.org/10.1007/s10994-009-5103-0
https://doi.org/10.1145/304181.304187
https://doi.org/10.1145/304181.304187
https://doi.org/10.1137/S0097539702416402
https://doi.org/10.4230/LIPIcs.SOCG.2015.754
https://doi.org/10.1007/s00224-017-9820-7
https://doi.org/10.1007/s00224-017-9820-7
https://doi.org/10.1145/2981561
https://doi.org/10.4230/LIPIcs.ICALP.2018.26

14:18 FPT Approximation for Constrained Metric k-Median/Means

14 Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. Journal of Computer and System Sciences,
65(1):129–149, 2002. doi:10.1006/jcss.2002.1882.

15 Ke Chen. On coresets for k-median and k-means clustering in metric and Euclidean spaces
and their applications. SIAM Journal on Computing, 39(3):923–947, 2009. doi:10.1137/
070699007.

16 Vincent Cohen-Addad and Karthik C.S. Inapproximability of clustering in lp metrics. In
2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS 2019), pages
519–539, 2019.

17 Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li. Tight
FPT Approximations for k-Median and k-Means. In Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming (ICALP 2019), volume 132 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 42:1–42:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICALP.2019.42.

18 Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields approximation
schemes for k-means and k-median in Euclidean and minor-free metrics. 2016 IEEE 57th
Annual Symposium on Foundations of Computer Science (FOCS 2016), 00:353–364, 2016.
doi:doi.ieeecomputersociety.org/10.1109/FOCS.2016.46.

19 Vincent Cohen-Addad and Jason Li. On the Fixed-Parameter Tractability of Capacitated
Clustering. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi,
editors, 46th International Colloquium on Automata, Languages, and Programming (ICALP
2019), volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pages 41:1–
41:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.ICALP.2019.41.

20 Graham Cormode and Andrew McGregor. Approximation algorithms for clustering uncertain
data. In Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS ’08, page 191–200, New York, NY, USA, 2008.
Association for Computing Machinery. doi:10.1145/1376916.1376944.

21 Marek Cygan, MohammadTaghi Hajiaghayi, and Samir Khuller. LP rounding for k-centers
with non-uniform hard capacities. In 2012 IEEE 53rd Annual Symposium on Foundations of
Computer Science, pages 273–282, 2012.

22 Sanjoy Dasgupta. The hardness of k-means clustering. Technical Report CS2008-0916,
Department of Computer Science and Engineering, University of California San Diego, 2008.

23 Hu Ding. Faster balanced clusterings in high dimension. Theoretical Computer Science, 2020.
doi:10.1016/j.tcs.2020.07.022.

24 Hu Ding and Jinhui Xu. A unified framework for clustering constrained data without locality
property. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, page 1471–1490, USA, 2015. Society for Industrial and Applied
Mathematics.

25 Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, KDD 1996, page 226–231.
AAAI Press, 1996.

26 Dan Feldman, Morteza Monemizadeh, and Christian Sohler. A PTAS for k-means clustering
based on weak coresets. In Proceedings of the twenty-third annual symposium on Computational
geometry, SCG 2007, pages 11–18, New York, NY, USA, 2007. ACM. doi:10.1145/1247069.
1247072.

27 Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local search yields a
PTAS for k-means in doubling metrics. SIAM Journal on Computing, 48(2):452–480, 2019.
doi:10.1137/17M1127181.

28 Dishant Goyal, Ragesh Jaiswal, and Amit Kumar. Streaming PTAS for constrained k-means,
2019. arXiv:1909.07511.

https://doi.org/10.1006/jcss.2002.1882
https://doi.org/10.1137/070699007
https://doi.org/10.1137/070699007
https://doi.org/10.4230/LIPIcs.ICALP.2019.42
https://doi.org/doi.ieeecomputersociety.org/10.1109/FOCS.2016.46
https://doi.org/10.4230/LIPIcs.ICALP.2019.41
https://doi.org/10.4230/LIPIcs.ICALP.2019.41
https://doi.org/10.1145/1376916.1376944
https://doi.org/10.1016/j.tcs.2020.07.022
https://doi.org/10.1145/1247069.1247072
https://doi.org/10.1145/1247069.1247072
https://doi.org/10.1137/17M1127181
http://arxiv.org/abs/1909.07511

D. Goyal, R. Jaiswal, and A. Kumar 14:19

29 Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algorithms.
Journal of Algorithms, 31(1):228–248, 1999. doi:10.1006/jagm.1998.0993.

30 Anupam Gupta and Kanat Tangwongsan. Simpler analyses of local search algorithms for
facility location. CoRR, abs/0809.2554, 2008. arXiv:0809.2554.

31 Mohammadtaghi Hajiaghayi, Wei Hu, Jian Li, Shi Li, and Barna Saha. A constant factor
approximation algorithm for fault-tolerant k-median. ACM Trans. Algorithms, 12(3), April
2016. doi:10.1145/2854153.

32 Erez Hartuv and Ron Shamir. A clustering algorithm based on graph connectivity. Information
Processing Letters, 76(4):175–181, 2000. doi:10.1016/S0020-0190(00)00142-3.

33 Anil K. Jain, M Narasimha Murty, and P. J. Flynn. Data clustering: A review. ACM Comput.
Surv., 31(3):264–323, September 1999. doi:10.1145/331499.331504.

34 Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility
location problems. In Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of
Computing, STOC 2002, pages 731–740, New York, NY, USA, 2002. Association for Computing
Machinery. doi:10.1145/509907.510012.

35 Ragesh Jaiswal, Amit Kumar, and Sandeep Sen. A simple D2-sampling based PTAS for
k-means and other clustering problems. Algorithmica, 70(1):22–46, 2014. doi:10.1007/
s00453-013-9833-9.

36 Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman,
and Angela Y. Wu. A local search approximation algorithm for k-means clustering. In
Proceedings of the Eighteenth Annual Symposium on Computational Geometry, SCG 2002,
page 10–18, New York, NY, USA, 2002. Association for Computing Machinery. doi:10.1145/
513400.513402.

37 Ravishankar Krishnaswamy, Shi Li, and Sai Sandeep. Constant approximation for k-median
and k-means with outliers via iterative rounding. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, page 646–659, New York, NY,
USA, 2018. Association for Computing Machinery. doi:10.1145/3188745.3188882.

38 Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear-time approximation schemes
for clustering problems in any dimensions. J. ACM, 57(2):5:1–5:32, February 2010. doi:
10.1145/1667053.1667054.

39 Shi Li. Approximating capacitated k-median with (1 + ε)k open facilities. In Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’16, page
786–796, USA, 2016. Society for Industrial and Applied Mathematics.

40 Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. In Proceedings
of the Forty-Fifth Annual ACM Symposium on Theory of Computing, STOC 2013, page
901–910, New York, NY, USA, 2013. Association for Computing Machinery. doi:10.1145/
2488608.2488723.

41 Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means problem
is NP-hard. Theoretical Computer Science, 442:13–21, 2012. Special Issue on the Workshop
on Algorithms and Computation (WALCOM 2009). doi:10.1016/j.tcs.2010.05.034.

42 Pasin Manurangsi. Tight running time lower bounds for strong inapproximability of maximum
k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In
Proceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2020, page 62?81, USA, 2020. Society for Industrial and Applied Mathematics.

43 Pitu B. Mirchandani and Richard L. Francis. Discrete Location Theory. Wiley, 1990.
44 Latanya Sweeney. k-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzziness

Knowl.-Based Syst., 10(5):557–570, October 2002. doi:10.1142/S0218488502001648.
45 Andrea Vattani. The hardness of k-means clustering in the plane. Technical report, Department

of Computer Science and Engineering, University of California San Diego, 2009.
46 J S Vitter. Random sampling with a reservoir. ACM Trans. Math. Software, 11(1):37–57,

1985.
47 Dongkuan Xu and Yingjie Tian. A comprehensive survey of clustering algorithms. Annals of

Data Science, 2, August 2015. doi:10.1007/s40745-015-0040-1.

IPEC 2020

https://doi.org/10.1006/jagm.1998.0993
http://arxiv.org/abs/0809.2554
https://doi.org/10.1145/2854153
https://doi.org/10.1016/S0020-0190(00)00142-3
https://doi.org/10.1145/331499.331504
https://doi.org/10.1145/509907.510012
https://doi.org/10.1007/s00453-013-9833-9
https://doi.org/10.1007/s00453-013-9833-9
https://doi.org/10.1145/513400.513402
https://doi.org/10.1145/513400.513402
https://doi.org/10.1145/3188745.3188882
https://doi.org/10.1145/1667053.1667054
https://doi.org/10.1145/1667053.1667054
https://doi.org/10.1145/2488608.2488723
https://doi.org/10.1145/2488608.2488723
https://doi.org/10.1016/j.tcs.2010.05.034
https://doi.org/10.1142/S0218488502001648
https://doi.org/10.1007/s40745-015-0040-1

	Introduction
	Our Results
	Related Work
	Our Techniques
	A Matching Lower Bound on approximation
	Streaming Algorithms

	Conclusion and Open Problems

