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Abstract
We study a generalized version of the load balancing problem on unrelated machines with cost
constraints: Given a set of m machines (of certain types) and a set of n jobs, each job j processed
on machine i requires pi,j time units and incurs a cost ci,j , and the goal is to find a schedule of jobs
to machines, which is defined as an ordered partition of n jobs into m disjoint subsets, in such a way
that some objective function of the vector of the completion times of the machines is optimized,
subject to the constraint that the total costs by the schedule must be within a given budget B.
Motivated by recent results from the literature, our focus is on the case when the number of machine
types is a fixed constant and we develop a bi-criteria approximation scheme for the studied problem.
Our result generalizes several known results for certain special cases, such as the case with identical
machines, or the case with a constant number of machines with cost constraints. Building on the
elegant technique recently proposed by Jansen and Maack [15], we construct a more general approach
that can be used to derive approximation schemes to a wider class of load balancing problems with
constraints.
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1 Introduction

In the load balancing problem (LBP), we are given a set of jobs, denoted by [n] = {1, . . . , n},
and a set of unrelated parallel machines, [m] = {1, . . . ,m}. Each job j has processing time
(or size) pi,j on machine i. An assignment (or schedule) of jobs to machines is defined as a
partition of the set [n] into m disjoint subsets, each corresponding to some machine. We
assume that at any time, every machine processes no more than one job and each job is
processed without interruption on one of the machines. The goal is to find a job assignment
that optimizes a certain objective on the vector (L1, . . . , Lm) of the completion times (or
loads) of the machines. Motivated by the work of Alon et al. [1], Epstein and Sgall [10], and
Epstein and Levin [9], we study the LBP with the following four major types of objectives:
(I) minimizing the machine maximum load: maxmi=1 f(Li) (min-max objective),
(II) maximizing the machine minimum load: minmi=1 f(Li) (max-min objective),
(III) minimizing

∑m
i=1 f(Li) (min-sum objective), and

(IV) maximizing
∑m
i=1 f(Li) (max-sum objective),
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where f : R+ → R+ is some fixed function satisfying certain conditions, which will be
specified later. In particular, we consider a more general version of LBP with cost constraint,
denoted as LBC, in which the assignment of a job j to a machine i has, besides the processing
time pi,j , a cost ci,j , and we want to find a schedule that optimizes one of the above objectives,
while ensuring that the total cost derived from that schedule does not exceed a prescribed
budget B. Practical applications of this problem can be found in various domains, such as in
vehicle routing [11, 14], distribution systems [5], and facility location [22].

It is well-known that, unless P = NP, LBP (and thus LBC) cannot be solved in poly-
nomial time for any of the objectives (I)–(IV), leading to a huge body of developments
of approximation algorithms for the problem over the past decades. An α-approximation
algorithm (for some α ∈ (0, 1]) for a maximization problem is a polynomial-time algorithm
that produces, for any given problem instance I, a solution whose value is at least α times the
optimum value. In particular, a polynomial-time approximation scheme (PTAS) is a family
of (1− ε)-approximation algorithms for all ε > 0. The running time of a PTAS is polynomial
in the input size for every fixed ε, but the exponent of the polynomial may depend on 1/ε.
An efficient polynomial-time approximation scheme (EPTAS) is a PTAS whose running time
is f(1/ε) · poly(|I|), where f is some computable function and |I| is the binary encoding
length (or input size) of instance I. An even stronger notion is a fully polynomial-time
approximation scheme (FPTAS), whose time complexity is polynomial in both the input size
and 1/ε. The notion of approximation algorithms for minimization problems can be defined
similarly. Observe that, even without costs, LBC is strongly NP-hard even for identical
machines. One could therefore consider to relax the cost constraint to be able to get better
approximations. For α ∈ (0, 1] and β ≥ 1, an (α, β) (bi-criteria) approximation algorithm
for the maximization version of LBC gives a schedule A with objective value at least αV
and with cost at most βC, where V and C, respectively, are the value and the cost of an
optimal schedule. In case of minimization, we have α ≥ 1 and the objective value of A is
required to be at most αV . A bi-criteria polynomial-time approximation scheme (bi-PTAS)
is defined like a PTAS but based on bi-criteria approximation algorithms. We can give a
formal definition of a bi-PTAS for the problem LBC as follows.

I Definition 1 (bi-PTAS). A bi-PTAS for the maximization version of LBC is a PTAS which
is a (1− ε)-approximation in the objective, and a (1 + ε)-approximation in the constraint.
Similarly, a bi-PTAS for the minimization version of LBC is a PTAS which is a (1 + ε)-
approximation in the objective, and a (1 + ε)-approximation in the constraint.

1.1 Related Work
Most of the previous work on approximation algorithms for LBC has focused on the study of
minimizing the min-max objective (a.k.a. the makespan), for the identity function f (i.e.,
f(x) = x for all x ∈ R+). Lin and Vitter [20] proposed a (2 + 1

ε , 1 + ε)-approximation
algorithm for the problem LBC for any ε > 0, and these factors were then improved to (2, 1)
by Shmoys and Tardos [24]. Regarding inapproximability, Lenstra et al. [18] ruled out the
existence of an (α, 1)-approximation, for any α > 3/2. Better algorithms were known for the
case when there is only a constant number of machines [16, 2, 8]. Jansen and Porkolab [16]
presented a linear-programming-based (1 + ε, 1 + ε)-approximation algorithm with running
time O(n(m/ε)O(m)) (recall that m is the number of machines and n the number of jobs).
Angel et al. [2] followed a dynamic-programming-based approach and significantly improved
this result by exhibiting a (1 + ε, 1)-approximation algorithm, with a worse complexity
than the previous one. Efraimidis and Spirakis [8] generalized the result of Jansen and
Porkolab [16] to the case of two cost constraints.
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We study LBC in the setting when the number of different types of machines is a fixed
constant, where machines are of the same type if the processing time of every job is identical
on these machines. This naturally generalizes previous special cases in the literature such
as the case of identical machines and the case of a constant number of machines. Focusing
on this setting, attempts have been devoted to designing approximation schemes for LBC
without constraints, for different objectives (assuming f is the identity function). An overview
of these results is given in Table 1. The best approximation results for the min-max and
max-min objectives are EPTASes due to Jansen and Maack [15]. Kones and Levin [17] have
significantly generalized these results to an objective that is a convex combination of min-max
and min-sum. More interestingly, their results can be applied to a variety of well-known
machine scheduling problems. However, a straightforward application of their technique does
not seem to work for the case of max-min and max-sum objectives, with cost constraints.
This motivates the study of an improved technique for designing approximation schemes for
the LBC problem, with a general class of functions f .

Table 1 A brief overview of previously known and our novel results for LBC. The parameters k,
n, m, and T are the number of constraints, jobs, machines, and machine types, respectively, and
ε > 0 is any constant less than 1. Our results are highlighted in bold letters; previous results are grey.
Note that the EPTAS provided by Kones and Levin [17] is actually for minimizing both min-max
and min-sum. Our boldfaced results as well as previous results marked with ∗ hold for functions f
fulfilling condition (†) (see Section 1.2).

Objectives min-max max-min min-sum max-sum

k = 0 2 [18] Õ(n−ε) [7] 2 [3] unknown

k = 1
(2 + 1

ε
, 1 + 1

ε
) [20] unknown unknown unknown

(2 + ε, 1) [24]

T = 1, k = 0 PTAS [13] EPTAS [25] EPTAS∗ [1] EPTAS∗ [1]

m = O(1), k = 0 FPTAS [14] FPTAS [26] FPTAS [4] FPTAS [4]

m = O(1), k = 1
bi-PTAS [16] bi-PTAS bi-PTAS bi-PTAS
PTAS [2]

m = O(1), k = 2 bi-PTAS [8] bi-PTAS bi-PTAS bi-PTAS

T = O(1), k = 0 PTAS [6, 12] EPTAS [15] PTAS [6] PTAS
EPTAS [15] EPTAS [17]

T = O(1), k = O(1) bi-PTAS bi-PTAS bi-PTAS bi-PTAS

1.2 Our Contribution
Suppose that the function f : R+ → R+ is computable and fulfills the following condition (†):
For all ε > 0, there exists a δ > 0 (whose value depends only on ε) such that for all x, y ≥ 0,
|y − x| ≤ δx implies |f(y)− f(x)| ≤ εf(x). The function f is convex (respectively, concave)
if and only if

f(x+ δ) + f(y − δ) ≤ f(x) + f(y) (respectively, f(x+ δ) + f(y − δ) ≥ f(x) + f(y))

holds for all x, y, δ with 0 ≤ x ≤ y and 0 ≤ δ ≤ y − x. Our contributions are as follows:

ISAAC 2020
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I Theorem 2. If the number of machine types is fixed, then there is a bi-PTAS for LBC
with max-min or max-sum objectives, for any computable concave function f satisfying
condition (†).

I Theorem 3. If the number of machine types is fixed, then there is a bi-PTAS for LBC with
min-max or min-sum objectives, for any computable convex function f satisfying condition (†).

All of our bi-criteria PTASes are achieved based on a novel algorithmic framework which
combines some existing ideas due to Alon et al. [1] and Jansen and Maack [15], and our
framework is in fact strongly built on them. Their basic idea is as follows:

First, round all the job sizes using the geometric rounding approach;
second, formulate the rounded problem instance as a mixed integer linear program (MILP)
with a small number of integral variables that can be efficiently solved;
and, finally, round the obtained fractional solution to an integer solution, which is then
converted into a near-optimal schedule to the original instance.

This idea has been successfully applied to the cases of max-min and min-max objectives
with identity functions f , as shown by Jansen and Maack [15]. However, major changes are
required to make their approach applicable not only to other objectives such as max-sum
and min-sum but also to non-identity functions f . A crucial change is the way how to deal
with both small jobs and huge jobs of sizes bigger than a threshold K – the guessed optimal
value of the objective. Jansen and Maack [15] show, for every huge job, how one can round
its size to K without changing the objective value. However, this argument is no longer valid
when the objective function is measured as a sum of machine loads.

In our framework, huge jobs are considered together with other types of jobs in the MILP.
In addition, we will find a way of replacing small jobs assigned to a machine by a number
of dummy jobs all of the same reasonable size, which could help in defining configurations.
Another major change is the method of rounding the fractional solution to the MILP. In our
case the flow network utilizing flow integrality technique used by Jansen and Maack [15]
does not help and we instead follow a more general linear-programming rounding combined
with a partial enumeration technique.

Finally, we mention that this approach has also turned out to be useful in the different
context of approximating Pareto sets for fair and efficient allocation of indivisible goods
when there are only a few agent types or a few types of goods [21].

1.3 Organization
Our paper is structured as follows. First, in Section 2, we describe an algorithmic framework
for designing bi-criteria approximation schemes for LBC with respect to the max-sum objective.
In Section 3, we then show how to modify it to obtain similar results for other types of
objectives. We conclude in Section 4 and discuss interesting open problems for future work.

2 Bi-Criteria Approximation Schemes for the Max-Sum Objective

Let us fix some notation to be used throughout this paper. For a positive integer z, we use [z]
to denote the set {1, 2, . . . , z}. A schedule of jobs to machines is denoted by A = (Ai)i∈[T ],
where Ai is the set of machine i’s jobs, and we denote by Li the load of machine i, i.e., the
total of the sizes of the jobs in Ai. We use φI(A) to denote the objective value of schedule A
for a problem instance I. Let T be the number of different machine types and let mt be
the number of machines of type t ∈ [T ] = {1, . . . , T}. Two different machines i and i′ are
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of the same type if pi,j = pi′,j for all jobs j ∈ [n]. The size and the cost of a job j on a
machine of type t is denoted by pt,j and ct,j , respectively. Note that every job j has the
same cost ct,j for all machines of type t. We first present an algorithmic framework for
designing a bi-PTAS for LBC with respect to the max-sum objective, and then show how to
modify it to obtain similar results for other types of objectives. Fix a constant ε ∈ (0, 1);
without loss of generality, we may assume that ε < 1/2. Assume that f is a nonnegative
concave function satisfying condition (†), that is, one can choose δ (depending on ε) such
that |f(y)− f(x)| ≤ ε · f(x) for every x, y ≥ 0, |y − x| ≤ δx. Let α = min{ 1

9 ,
δ
6}. Let I be a

given problem instance and A∗ be its optimal schedule. The following lemma, due to Alon
et al. [1], exhibits the existence of another optimal schedule A of a nice structure, which is
essentially the starting point of our framework.

I Lemma 4 (Alon et al. [1]). There is an optimal schedule A and there are nonnegative
values V1, . . . , VT such that for every machine type t ∈ [T ], if a job of size at least Vt is
assigned to some machine then it is the only job it receives; those machines which are not
assigned such a job are assigned a subset of jobs of total sizes in ( 1

2Vt, 2Vt).

I Remark 5. Regarding the applicability of Lemma 4, note that Observations 2.1 and 2.2
provided by Alon et al. [1] do not aim at addressing cost constraints, which is part of our
problem model LBC. However, since we assume that every job has the same cost for all
machines of the same type, exchanging the jobs between these machines does not affect the
total cost of the whole assignment.

The basic idea in the proof of Lemma 4 is to convert the schedule A∗ into a new schedule
A with the desired structure, by a suitable reassignment of jobs among machines of the
same type. The existence of such an optimal assignment A paves a way for (approximately)
solving I via a simple enumeration technique: First, guess approximate values of Vt for all t
and, second, find a schedule of maximum value among those having a nice structure w.r.t.
these guessed values. The guessing step can be done by enumerating all possible intervals
Ik = [(1 + α)k, (1 + α)k+1), for nonnegative integers k, and in each interval (1 + α)k can
serve as an estimated value of Vt. Consequently, the resulting schedule may not be optimal,
but its value should be within a small factor of 1 + α of the optimum.

The next idea is to decompose our problem instance I into a bounded number of
subproblems, denoted as Sub(I;W ), each being associated with a vector W = (Wt)t∈[T ] that
can be seen as the approximate values of V = (Vt)t∈[T ]. The final solution to the original
instance is the one of maximum value among all solutions to subproblems. Here, a feasible
solution to the subproblem Sub(I;W ) is defined as a solution that gives to each machine
of type t only one job of size at least (1 + α)Wt (later on, we will call this a huge job) or
a set of jobs of total size in ( 1

2Wt, 2(1 + α)Wt); and the total costs of all machines is at
most B. Our goal is to find an approximate solution (in terms of its objective value) to
each subproblem rather than solving it exactly. For doing so, we present a polynomial-time
algorithm, Oracle, which can either report “NO,” meaning that there is no feasible solution,
or which produces a relaxed feasible solution that has a value of at least (1− ρε) times that
of an optimal solution, for some small integer ρ > 0, and has cost at most (1 + ε)B. We
call such a schedule a ρ-schedule. Having the algorithm Oracle, one can solve the original
instance I via Algorithm 1. The correctness of the algorithm is stated in Lemma 6.

I Lemma 6 (Correctness of Algorithm 1). Algorithm 1 returns a schedule that has value at
least (1−O(ε)) times the optimum, and has total costs of at most (1 + ε) ·B. The running
time of the algorithm is a polynomial in the input size, provided that the algorithm Oracle
has the same running time.

ISAAC 2020
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Algorithm 1 Main.

1: P ← ∅
2: for each t ∈ [T ] do
3: ωt ← dlog1+α(

∑
j∈[n] pt,j)e; Ξt = {0} ∪ {(1 + α)k, k = 0, . . . , ωt}

4: for each vector W ∈ Ξ1 × · · · × ΞT do
5: Run Oracle(I;W ) and return a ρ-schedule A (if there exists one)
6: P ← P ∪ {A}
7: Return Ā← arg maxA∈P φ(A)

The proof of Lemma 6 is omitted due to space limitations. In the rest of this section we
describe the algorithm Oracle to solve the subprobem Sub(I;W ), for a given nonnegative
vector W = (Wt)t∈[T ]. Our approach is based on solving a configuration mixed integer linear
program (MILP) that can be viewed as a relaxed version of the subproblem. If the MILP
is infeasible then our algorithm returns “NO”; otherwise, it outputs a solution with some
nice properties by which the solution can be transformed back into a schedule without much
affecting any of the objective value and the total cost. We sketch the main steps of Oracle
in Algorithm 2, and give some more detailed explanations in the following paragraphs.

Algorithm 2 Oracle(I;W ).

1: X ← ∅; ∆← 2(3T + 1
α log 1

α · T + 1); q ← max{d∆/αe, d∆/εe};
2: Classify jobs into small, large, and huge ones according to their sizes
3: Enumerate sets R1

t of the q jobs of largest size among all small jobs, and sets R2
t of the

q jobs of highest cost, which are assigned to machine type t, for all t ∈ [T ]
4: for each valid guess (R1

t ,R2
t )t∈[T ] do

5: Round down job sizes pt,j , based on geometric rounding
6: Define a MILP of small number of integer variables
7: Find an optimal basic feasible solution (BFS) (x∗,y∗) of at most ∆ fractional

components to MILP (if there exists any)
8: Round (x∗,y∗) to an integer solution (x̄∗,y∗) via solving a totally unimodular linear

program, LP
9: Transform (x̄∗,y∗) back into a schedule A
10: X ← X ∪ {A}
11: return Ā = arg maxA∈X φ(A)

2.1 Job Classification

We classify jobs in [n] as small, large, and huge jobs, according to their sizes. A job is called
small, w.r.t. machine type t, if its size is at most αWt,
large, w.r.t. machine type t, if its size is in (αWt, (1 + α)Wt), and
huge, w.r.t. machine type t, if its size is at least (1 + α)Wt.

In addition to the jobs above, we create dummy jobs, each of the same size αWt w.r.t. machine
type t. We call the jobs in [n] real jobs to distinguish them from the dummy jobs. The
dummy jobs are not included as real jobs in the instance I, and are only used for modeling a
mixed integer linear program later on.
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2.2 Guessing Jobs of Specified Sizes and Costs in an Optimal Schedule
Let q = max{d∆/αe, d∆/εe}, where ∆ is some constant that will be specified later. We guess
a set R1

t of the q jobs of largest size among all small jobs and a set R2
t of q jobs of highest

costs, which are assigned to machines of type t in an optimal schedule. For each set R1
t we

define an associated set R̄1
t = {j ∈ [n] \R1

t | αWt ≥ pt,j > minj∈R1
t
pt,j}, meaning that the

(small) jobs in R̄1
t will not be assigned to any machine of type t. Similarly, we define an

associated set R̄2
t = {j ∈ [n] \R2

t | ct,j > minj∈R2
t
ct,j}, for each R2

t . It is essential to make
sure that the sets R1

t and R2
t , t ∈ [T ], are consistent with each other. For doing so, we give

a definition of a valid guess below. Let Rt = R1
t ∪R2

t and R̄t = R̄1
t ∪ R̄2

t for each t ∈ [T ].

I Definition 7 (Valid guess). A tuple (R1
t ,R2

t )t∈[T ] is a valid guess if the following hold:
R1
t ∩ R̄2

t = ∅ and R̄1
t ∩R2

t = ∅ for every t ∈ [T ],
Rt ∩Rt′ = ∅ for every t, t′ ∈ [T ] with t 6= t′.

To find exactly (R1
t ,R2

t )t∈[T ], Algorithm 2 considers all possibilities of choosing such sets
of jobs of size q, with a running time bounded by (Tn)2q = nO(1), as T and q are constants.
In what follows we can thus assume, without loss of generality, that (R1

t ,R2
t )t∈[T ] are given.

2.3 Rounding the Job Sizes
Following the geometric rounding approach, the size of job j for machines of type t ∈ [T ] is
rounded down to

p̂t,j = (1− α)` · αWt, where ` =
⌈
log1−α (pt,j/αWt)

⌉
. (1)

Let Lt be the set of large rounded job sizes w.r.t. machine type t. The main purpose of using
the geometric rounding approach is to bound the size of Lt by a small constant. Indeed,
since the size of every large job is less than (1 + α)Wt, from (1) it follows that the number
of large rounded sizes must be at most log1−α

α
1+α ≤

1
α log 1

α = O(1). On the negative side,
the size of every (real) job may be decreased because of the rounding, but the rounded size
is guaranteed to be within a factor of 1 − α of the original size. Formally, we have that
p̂t,j ≥ (1− α) · pt,j for all t ∈ [T ], j ∈ [n]. Besides, note that the size of dummy jobs is not
affected at all. Let Î be the new instance obtained from I by replacing pt,j by p̂t,j .

I Proposition 8. For any schedule A, it holds that |φÎ(A)− φI(A)| ≤ ε · φI(A).

The proofs of Propositions 8 above and 9 below are omitted due to space limitations.
We define a subproblem Sub(Î;W ) in a similar way as we have done for Sub(I;W ) before,

except that the interval ( 1
2Wt, 2(1 + α)Wt) is now slightly changed to

( 1−α
2 Wt, 2(1 + α)Wt

)
.

I Proposition 9. If there is a feasible schedule A to Sub(I;W ), then A is also a feasible
schedule to Sub(Î;W ), and if A is a ρ-schedule to Sub(Î;W ), then A is a (ρ+ 2)-schedule
to Sub(I;W ).

By Proposition 9, it is sufficient to compute a ρ-schedule Â to Sub(Î;W ) for some small
constant ρ > 0. This is done by Steps 6–9 of Algorithm 2.

2.4 Configuration Mixed Integer Linear Program (C-MILP)
At the heart of the MILP is a so-called configuration, an integer-coordinate vector encoding a
subset of jobs received by a machine. In more detail, each coordinate of the vector encodes
the number of jobs of a particular size contained in the subset. Unlike the configurations

ISAAC 2020
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considered in the model of Jansen and Maack [15], which involve only information about
large job sizes, we allow configurations in our model to involve information about small ones.
This, however, raises some obstacle: The number of small-job sizes can be as large as the
number of small jobs, making the number of configurations as large as well.

To overcome this difficulty, one can instead use a number of dummy jobs of total size
approximating the total size of small jobs. Formally, we can express a configuration as a
(|Lt| + 1)-dimensional vector Φ = (θ,Φv)v∈Lt

∈ Z|Lt|+1
+ , where Φv denotes the number of

jobs of processing time v ∈ Lt, and θ denotes the number of dummy jobs. The value of a
configuration Φ for a machine of type t is defined as σt(Φ) =

∑
v∈Lt

v · Φv + θ · αWt.
For every t ∈ [T ], all the possible configurations of value in

( 1−3α
2 Wt, (2 + 3α)Wt

)
are

collected into a set Ct. Also, we denote by C′t ⊂ Ct the set of configurations Φ with θ > 0.

I Proposition 10. |Ct| is upper-bounded by O(1).

The proof of Proposition 10 is again omitted due to space limitations.
Now, let ϕ1, ϕ2, ϕ3 be nonnegative real numbers with ϕ1 ≤ 1 and ϕ2, ϕ3 ≥ 1. We

formulate a mixed integer linear program, denoted by MILP[ϕ1, ϕ2, ϕ3], that consists of both
fractional and integer variables. Denote x = (xt,j)t∈[T ],j∈[n] and y = (yt,Φ)t∈[T ],Φ∈Ct

, where
xt,j ∈ [0, 1] indicates the fraction of job j assigned to machines of type t and yt,Φ ∈ N the
number of configurations Φ ∈ Ct assigned to machines of type t. Some variables xt,j are set
to be either 0 or 1 according to our sets (R1

t ,R2
t )t∈[T ]. In fact, for j ∈ Rt = R1

t ∪R2
t we set

xt,j = 1 and xt′,j = 0 for every t′ 6= t. In addition, we set xt,j = 0 for all j ∈ R̄t = R̄1
t ∪ R̄2

t .
For t ∈ [T ], let Ot,v = {j ∈ [n] | p̂t,j = v} be the set of jobs of rounded size v w.r.t.

machine type t, and let Ht and St, respectively, be the sets of huge jobs and of small jobs.
The model of MILP[ϕ1, ϕ2, ϕ3] is as follows:

maximize g(x,y) =
∑

t∈[T ]

∑
Φ∈Ct

f(σt(Φ)) · yt,Φ +
∑

t∈[T ]

∑
j∈Ht

f(p̂t,j) · xt,j

subject to∑
j∈Ht

xt,j +
∑

Φ∈Ct

yt,Φ = mt, t ∈ [T ], (2)∑
t∈[T ]

xt,j = 1, j ∈ [n], (3)∑
j∈Ot,v

xt,j ≥
∑

Φ∈Ct

Φv · yt,Φ, t ∈ [T ], v ∈ Lt, (4)

ϕ1
∑
Φ∈C′

t

(θ − 1)yt,Φ ≤
1

αWt

∑
j∈St

p̂t,j · xt,j ≤ ϕ2
∑
Φ∈C′

t

(θ + 1)yt,Φ, t ∈ [T ], (5)

∑
t∈[T ]

∑
j∈[n]

ct,j · xt,j ≤ ϕ3 ·B. (6)

The constraints (2) require that, for every type t ∈ [T ], the total number of configurations
and huge jobs assigned to machines of this type is exactly the number of machines of this
type. By the constraints (3), the variables xt,j indicate the fractional assignment of job j to
machine types t ∈ [T ], for every j ∈ [n]. The constraints (4) guarantee that, for every t ∈ [T ]
and for every v ∈ Lt, the total number of jobs of size v that are assigned to machines of type
t equals the total number of jobs of the same size used in the chosen configurations. The
constraints (5) upper- and lower-bound the total sizes of small jobs assigned to machines
of type t, according to the total size of dummy jobs used by the chosen configurations in
C′t . By the constraints (6), the total cost of the schedule does not exceed ϕ3B. Finally,
notice that the total number of variables and the total number of constraints are bounded
by O(n) and by h = 1 + 3T +

∑
t∈[T ] |Lt|+ n, respectively. This completes the description of

MILP[ϕ1, ϕ2, ϕ3].
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2.5 Computing and Rounding the Solution to MILP
The next lemma summarizes important properties of the above constructed MILP[ϕ1, ϕ2, ϕ3],
which are necessary in analyzing the correctness of Algorithm 2.

I Lemma 11. The following three statements are true:
1. One can find an optimal basic feasible solution (BFS) (x∗,y∗) to MILP[1, 1, 1] (if there

exists any), which has at most ∆ = 2
(
3T + 1

α log 1
α · T + 1

)
fractional components.

2. Solution (x∗,y∗) can be rounded to an integer solution (x̄∗,y∗) with g(x̄∗,y∗) ≥ g(x∗,y∗).
3. The rounded solution (x̄∗,y∗) is feasible to MILP[1− α, 1 + α, 1 + ε].

Proof.
1. It suffices to prove that x∗ has at most ∆ fractional components. Since the number of

nontrivial constraints of MILP[1, 1, 1] is h = 1 + 3T +
∑
t∈[T ] |Lt|+ n, x∗ has at most h

positive components. Consider the family of constraints (3). In each of these constraints,
there are only two cases: (i) there is exactly one positive component x∗t,j = 1, and (ii) there
are at least two nonintegral components. Denote by `1 and `2, respectively, the number of
constraints (3) in each case. Then we have that `1 + `2 = n. The total number of positive
components of x∗ is at least `1 + 2`2 = 2n− `1. By an earlier argument, we must have
that 2n− `1 ≤ h = 1 + 3T +

∑
t∈[T ] |Lt|+n or, equivalently, `1 ≥ n−3T −1−

∑
t∈[T ] |Lt|.

Therefore, the number of nonintegral components of x∗ is at most

h−
(
n− 3T − 1−

∑
t∈[T ]
|Lt|

)
= 2

(
3T + 1 +

∑
t∈[T ]
|Lt|

)
≤ 2

(
3T + 1

α
log 1

α
· T + 1

)
,

as |Lt| is upper-bounded by 1
α log 1

α . Finally, notice that an optimal BFS to MILP[1, 1, 1]
can be found in polynomial time [23].

2. To round (x∗,y∗) to an integer solution, we follow a linear-programming-based approach.2
As y∗ is already integral, we need only to round x∗ (or, more precisely, the fractional
components of x∗). To this end, we find a nonnegative optimal (integer) solution to the
following linear program (LP) in which ξξξ ∈ [0, 1][T ]×[n] and for all t, j we set ξt,j = x∗t,j
for all x∗t,j that are already integral:

max g(ξξξ,y∗) =
∑

t∈[T ]

∑
Φ∈Ct

f(σt(Φ)) · y∗t,Φ +
∑

t∈[T ]

∑
j∈Ht

f(p̂t,j) · ξt,j

subject to∑
j∈Ht

ξt,j = mt −
∑

Φ∈Ct

y∗t,Φ, t ∈ [T ],∑
t∈[T ]

ξt,j = 1, j ∈ [n],∑
j∈Ot,v

ξt,j ≥
∑

Φ∈Ct

Φv · y∗t,Φ, t ∈ [T ], v ∈ Lt,

ξt,j ≥ 0, t ∈ [T ], j ∈ [n].

One can see that LP has the form of Ax ≥ b, where the entries of A are only 0 or 1,
and b is an integer vector. Furthermore, A has exactly two nonzero entries per column.
Hence, A is a totally unimodular matrix, and thus every optimal basic feasible solution of

2 Jansen and Maack [15] employ of a flow network utilizing flow integrality to round (x∗,y∗) to an integer
solution. In our case, the rounding needs to be done without decreasing the optimal objective value,
making Jansen and Maack’s technique inapplicable.
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LP is integral. It is well-known that such a solution ξξξ∗ of LP can be found in polynomial
time. To get the second part of the second item, note that the optimal value of LP is an
upper bound of that of MILP, and that (x∗,y∗) constitutes a feasible solution to LP.
By setting x̄∗t,j = ξ∗t,j for all t, j, we get an integer solution (x̄∗,y∗) with

g(x̄∗,y∗) = g(ξ∗ξ∗ξ∗,y∗) ≥ g(x∗,y∗). (7)

3. One can check that while the integer solution (x̄∗,y∗) fulfills the constraints (2), (3), and
(4), it may violate the last constraints – (5) and (6) – due to the rounding. We will show
that this violation does not affect much the quality of the rounded solution. Consider the
constraints (5) and fix a machine type t ∈ [T ]. It suffices to consider the case when n > q,
and thus R1

t ⊂ [n]; otherwise, n were constant and the original problem trivial to solve.
Let s = arg minj∈R1

t
pt,j and Ut ⊂ [n] be the set of jobs j for which x∗t,j was fractional

but rounded down to 0 because of the rounding. By Lemma 11, the size of Ut is at most
∆. Hence, we have that∑

j∈St

p̂t,j · x̄∗t,j ≥
∑

j∈St

p̂t,j · x∗t,j −
∑

j∈Ut

p̂t,j · x∗t,j

≥
∑

j∈St

p̂t,j · x∗t,j −∆ · p̂t,s

≥
∑

j∈St

p̂t,j · x∗t,j −
∆
|R1

t |
·
∑

j∈R1
t

p̂t,j

=
∑

j∈St

p̂t,j · x∗t,j −
∆
q
·
∑

j∈R1
t

p̂t,j · x∗t,j .

From q ≥ d∆/αe and the feasibility of (x∗,y∗) to MILP[1, 1, 1], it follows that
∑
j∈St

p̂t,j ≥
(1−α) ·

∑
j∈St

p̂t,j · x∗t,j ≥ (1−α)
∑

Φ∈C′
t
(θ− 1) · yt,Φ ·αWt. Similarly, one can prove that∑

j∈St
p̂t,j ≤ (1+α) ·

∑
Φ∈C′

t
(θ+1) ·yt,Φ ·αWt and

∑
t∈[T ]

∑
j∈[n]ct,j · x̄∗t,j ≤ (1+ε) ·B. J

2.6 Solution-to-Schedule Transformation
We now present a transformation of the integer solution (x̄∗,y∗) back into a schedule (not
necessarily feasible) to Sub(Î;W ). The details are provided in Lemma 12 the proof of which
is omitted due to space limitations.

I Lemma 12. Given the integer solution (x̄∗,y∗), one can transform it into a schedule whose
value is at least (1− ε) · g(x̄∗,y∗) and whose cost is at most (1 + ε) ·B.

2.7 Schedule-to-Solution Transformation
I Lemma 13. Given an optimal (feasible) schedule A to Sub(Î;W ), MILP[1, 1, 1] has a
feasible integer solution (x̄,y) whose objective value is at least (1− ε) · φÎ(A).

Proof. Let A be an optimal schedule to Sub(Î;W ), we construct a feasible integer solution
(x̄,y) to MILP[1, 1, 1] as follows. For each job j assigned to machines of type t, we set x̄t,j = 1.
It remains to determine variables yt,Φ for each Φ ∈ Ct. For machines that received large jobs
only, one can easily define configurations corresponding to these machines. For machines that
received small jobs, their assignments in A do not well establish a configuration. For such
machines, we do the following transformation. Let Mt be the set of all machines i of type t
which received small jobs. Fix a machine i ∈ Mt and let δi be the total size of small jobs
assigned to i. We first simply remove all jobs, and then assign dummy jobs to this machine i,
one-by-one, until the total size of jobs assigned is equal to or exceeds δi. Let θi be the number
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of dummy jobs that have been assigned to i. Based on θi and the large jobs assigned to i,
one can easily determine the configuration Φi = (θi,Φiv)v∈Lt

corresponding to this machine.
Finally, we can define the value of variables yt,Φ, for each Φ ∈ Ct, according to the number of
configurations Φ that have been determined. One can check that the constraints (2), (3), (4),
and (5) are fulfilled for ϕ1 = ϕ2 = 1. The satisfaction of the last constraint (6) comes from
the fact that A is an optimal schedule to Sub(Î;W ).

By the transformation above, one can see that |Li−σt(Φi)| ≤ αWt holds for every i ∈Mt.
Using the fact that Li ∈

( 1−α
2 Wt, 2(1 + α)Wt

)
(as A is feasible to Sub(Î;W )), we obtain

1−3α
2 Wt ≤ σt(Φi) ≤ (2 + 3α)Wt. This also holds for every machine i that received large jobs

only, implying that Φi ∈ Ct for every i.
To prove the approximation factor, i.e., g(x̄,y) ≥ (1− ε) · φÎ(A), we first notice that

|Li − σt(Φi)| ≤ 4α · Li ≤ δ · Li =⇒ f(σt(Φi)) ≥ (1− ε) · f(Li) (8)

holds for every i ∈ Mt, as Li ≥ 1−α
2 Wt. If a machine i gets a configuration Φi containing

only large jobs or a huge job j then it holds that f(σt(Φi)) = f(Li) and f(p̂t,j) = f(Li).
This together with (8) gives the desired inequality g(x̄,y) ≥ (1− ε) · φÎ(A). J

2.8 Correctness of Algorithm 2
We now are ready to prove that Algorithm 2 is correct.

I Lemma 14. If A∗ is an optimal (feasible) schedule to the subproblem Sub(I;W ), then
Algorithm 2 runs in polynomial time in the input size and returns a 4-schedule A, that is,
φI(A) ≥ (1− 4ε) · φI(A∗). Moreover, the cost of A is at most (1 + ε) ·B.

Proof. Let Â be an optimal schedule to Sub(Î;W ). Then, by Lemma 13, there exists a
feasible integer solution (x̄,y) to MILP[1, 1, 1] and g(x̄,y) ≥ (1− ε) · φÎ(Â). From (7) and
the fact that (x∗,y∗) is an optimal (fractional) solution to MILP[1, 1, 1], it follows that:

g(x̄∗,y∗) ≥ g(x∗,y∗) ≥ g(x̄,y) ≥ (1− ε) · φÎ(Â). (9)

From Lemma 11.3, we know that (x̄∗,y∗) is feasible to MILP[1− α, 1 + α, 1 + ε]. Hence, by
Lemma 12, one can compute a schedule A such that

φÎ(A) ≥ (1− ε) · g(x̄∗,y∗). (10)

From (9) and (10) it follows that φÎ(A) ≥ (1−ε)2 ·φÎ(Â) ≥ (1−2ε) ·φÎ(Â). By Proposition 9,
we have φI(A) ≥ (1− 4ε) · φI(A∗). Finally, by the feasibility of (x̄∗,y∗) to MILP[1− α, 1 +
α, 1 + ε], the cost of A is at most (1 + ε) ·B.

One can see that the overall complexity of Algorithm 2 is bounded by O(T1 · T2), where
T1 = O(n2q) is the number of valid guesses of Rt, and T2 is the amount of time needed for
solving MILP[ϕ1, ϕ2, ϕ3]. To estimate T2, note that MILP[ϕ1, ϕ2, ϕ3] has many variables but
a constant number of integer ones and thus can be solved in time polynomial in the size of
the input (see, for example, the work of Lenstra [19]). This completes the proof. J

3 Adapting the Framework for Other Objectives

In this section, we will discuss how to adapt the algorithmic framework presented in the
previous section to attain similar results for other objectives such as max-min, min-max, and
min-sum. First of all, note that Lemma 4 holds for any concave function f in case of the
max-min and max-sum objectives, and for any convex function f in case of the min-max
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and min-sum objectives. Also, Proposition 8 applies to any of our four objectives above,
assuming that the function f fulfills condition (†). Now, consider the max-min objective.
The only changes are in the model of the constructed MILP[ϕ1, ϕ2, ϕ3]:

maximize ζ

s.t. constraints (2), (3), (4), and (5)
yt,Φ ≤ mt · y′t,Φ, Φ ∈ Ct, (11)
y′t,Φ · σt(Φ) ≥ ζ, Φ ∈ Ct, (12)
y′t,Φ ∈ {0, 1}, t ∈ [T ],Φ ∈ Ct (13)

are fulfilled. The number of constraints (∆) now increases due to the added constraints, but
still is a constant. Every step in Algorithm 2 remains unchanged and all our calculations
are almost the same as for the max-sum objective. For the min-sum and the min-max
objectives, there are several straightforward changes. The first change concerns the definition
of subproblems, where the output of the algorithm Oracle is now a ρ-schedule whose value
is at most (1 + ρε) times the optimum, for some constant ρ > 0. Rounding job sizes down
still works well, though rounding them up can lead to a final solution with a slightly better
approximation factor. Proposition 8 is unchanged, whilst the second part of Proposition 9 is
stated slightly differently: “If A is a ρ-schedule to Sub(Î;W ), then A is a (ρ+ 4)-schedule to
Sub(I;W ).” The proof is similar to that of Proposition 9. Regarding MILP[ϕ1, ϕ2, ϕ3], the
major change is in the objective, where we now are concerned with a minimization problem
instead of a maximization one. Due to this change, all our technical results (Lemmas 11–14)
can be modified in an appropriate way, without any difficulty. Our method can also be
adopted to achieve a bi-PTAS for the case with any constant number of linear cost constraints,
which generalizes the problem studied by Efraimidis and Spirakis [8].

I Theorem 15. There is a bi-criteria PTAS for the load balancing problem on unrelated
parallel machines with any constant number of linear cost constraints, assuming that the
number of different types of machines is constant.

4 Conclusion and Future Work

We have studied a class of load balancing problems on unrelated parallel machines in the
presence of linear cost constraints, where the number of machine types is assumed to be
bounded by a constant. Building on the work of Alon et al. [1] and Jansen and Maack [15],
we have derived a unified approach for designing approximation schemes for the four studied
objective types, involving a general nonnegative (convex or concave) function f fulfilling a
certain property. Our results significantly generalize several existing results for load balancing
problems with various objectives. Table 1 on page 3 gives an overview of our results.

In addition, in the absence of the constraints, we indeed achieve a PTAS for the max-sum
objective, provided that the number of machine types is constant. As for future work, it
would be interesting to extend our result to the setting where all machines of the same type
are uniformly related [9], that is, they may have different speeds, making the processing
time of a job different on different machines. Note that this special case has already been
settled by Jansen and Maack [15] and Kones and Levin [17] for identity functions f . Another
interesting direction is to study the question of whether we can achieve polynomial-time
approximation schemes for computing a near-optimal schedule whose cost is not allowed to
exceed the budget B.
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