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Abstract
The mechanism for the cake-cutting problem based on the expansion process with unlocking proposed
by Alijani, Farhadi, Ghodsi, Seddighin, and Tajik [1, 18] uses a small number of cuts, but is not
actually envy-free and truthful, although they claimed that it is envy-free and truthful. In this
paper, we consider the same cake-cutting problem and give a new envy-free and truthful mechanism
with a small number of cuts, which is not based on their expansion process with unlocking.
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1 Introduction

The problem of dividing a cake among players in a fair manner has attracted the attention of
mathematicians, economists, political scientists and computer scientists [4, 3, 9, 10, 11, 16, 17]
since it was first considered by Steinhaus [19]. The cake-cutting problem is often used as a
metaphor for prominent real-world problems that involve the division of a heterogeneous
divisible good [6]. Formally, the cake-cutting problem is stated as follows: Given a divisible
heterogeneous cake C and n strategic players N = {1, 2, . . . , n}, where each player i ∈ N
has a valuation function vi over C, find an allocation of C to the players N that satisfies one
or several fairness criteria. In the cake cutting literature, one of the most important criteria
is envy-freeness [4]. In an envy-free allocation, each player considers his/her own allocation
at least as good as any other player’s allocation.

Stromquist [21] showed that there is no finite envy-free cake cutting algorithm that
outputs a contiguous allocation to each player for any n ≥ 3, although an envy-free allocation
with a contiguous allocation to each player is guaranteed to exist [20, 22]. Note that any cake
cutting algorithm that outputs a contiguous allocation to each player uses n− 1 cuts on cake
C. Deng, Qi and Saberi [10] showed that finding an envy-free allocation using n− 1 cuts on
cake C is PPAD-complete when valuation functions are given explicitly by polynomial-time
algorithms, although their result requires very general (e.g., non-additive, non monotone)
valuation functions [12].

In recent papers, some restricted classes of valuation functions have been studied [4, 6, 8,
9, 15]. Piecewise constant and piecewise uniform valuation functions are two special classes
of valuation functions which are very important in practice [1, 4, 9, 18]. For a valuation
function v on cake C, let D(v) = {x ∈ C | v(x) > 0} (thus, D(v) consists of several disjoint
maximal contiguous intervals). Then the valuation function v is called piecewise constant if,
for each contiguous interval I in D(v), v(x′) = v(x′′) holds for all x′, x′′ ∈ I. Note that, in
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15:2 Cake Cutting: An Envy-Free and Truthful Mechanism

a piecewise constant valuation v, v(x) 6= v(y) may hold for x ∈ I and y ∈ J when I, J are
two distinct contiguous intervals in D(v). In a piecewise constant valuation v, if v(x) = v(y)
holds for all x, y ∈ D(v), then v is called a piecewise uniform function. Kurokawa, Lai, and
Procaccia [14] proved that finding an envy-free allocation when the valuation functions are
piecewise uniform is as hard as solving the problem without any restriction on the valuation
functions.

The cake-cutting problem has been studied not only from the viewpoint of computational
complexity but also from the game theoretical point of view [1, 4, 5, 9, 15, 18]. Chen, Lai,
Parkes, and Procaccia [9] considered a strong notion of truthfulness, in which the players’
dominant strategies are to reveal their true valuations over the cake. They presented an envy-
free and truthful mechanism (i.e., polynomial-time algorithm) for the cake-cutting problem
when the valuation functions are piecewise uniform. Aziz and Ye [4] considered the problem
when valuation functions are piecewise constant and piecewise uniform. They designed three
algorithms called CCEA, MEA and CDA for piecewise constant valuations. They showed
that CCEA becomes essentially the same as the envy-free and truthful mechanism proposed
by Chen, et al. [9], if it is restricted for piecewise uniform valuations. However, CCEA and
the mechanism in [9] uses Ω(n2m) cuts, where m is the largest number of maximal contiguous
subintervals in D(vi) = {x ∈ C | vi(x) > 0} in piecewise uniform valuations vi.

Alijani, Farhadi, Ghodsi, Seddighin, and Tajik [1, 18] considered that the number of cuts
is important, noting that, in some cases, each cut might have additional cost: if the cake
models a processing time that must be fairly allocated among a set of tasks, then every
task-switch imposes an overhead and minimizing the total amount of overhead would be
equivalent to minimizing the number of cuts on the cake. Therefore, from the viewpoint of
a small number of cuts, they considered the following cake-cutting problem by restricting
each piecewise uniform valuation vi to satisfy that D(vi) = {x ∈ C | vi(x) > 0} is a single
contiguous interval Ci in cake C: Given a divisible heterogeneous cake C, n strategic players
N = {1, 2, . . . , n} with valuation interval Ci ⊆ C of each player i ∈ N , find a mechanism
for dividing C into pieces and allocating pieces of C to n players N to meet the following
conditions: (i) the mechanism is envy-free; (ii) the mechanism is truthful; and (iii) the
number of cuts made on cake C is small. And they gave an envy-free and truthful mechanism
with at most 2n− 2 cuts based on the expansion process with unlocking, the main result in
the paper [1, 18]. However, the mechanism is not actually envy-free and truthful [2].

Thus, we give an alternative envy-free and truthful mechanism with at most 2n− 2 cuts
which is not based on the expansion process with unlocking. Furthermore, it runs in O(n3)
time. Our approach uses properties in the structures of the valuation intervals.

2 Notation and Fundamental Notions

We are given a divisible heterogeneous cake C = [ 0, 1) = {x | 0 ≤ x < 1} 1, n strategic players
N = {1, 2, . . . , n} with valuation interval Ci = [αi, βi) = {x | 0 ≤ αi ≤ x < βi ≤ 1} ⊆ C of
each player i ∈ N . We denote by CN the (multi-)set of valuation intervals of all the players
N , i.e., CN = (C1, C2, . . . , Cn). We also write CN = (Ci : i ∈ N).

The valuation intervals CN is called solid, if, for every point x ∈ C, there is a player
i ∈ N whose valuation interval Ci ∈ CN contains x. As assumed in [1, 4, 18], we will also
assume that the valuation intervals CN is solid throughout this paper, i.e.,

⋃
Ci∈CN

Ci = C.

1 To guarantee that the pieces allocated to the players by a mechanism are mutually disjoint, we represent
a given cake C to be C = [ 0, 1) = {x | 0 ≤ x < 1} in this paper and we assume that if a subinterval
X = [ x′, x′′) = {x | x′ ≤ x < x′′} of C = [ 0, 1) is cut at y ∈ X with x′ < y < x′′ then X is divided into
two subintervals X ′ = [ x′, y) and X ′′ = [ y, x′′).
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A union X of mutual disjoint sets X1, X2, . . . , Xk is denoted by X = X1 +X2 + · · ·+Xk =∑k
`=1 X`. A piece Ai of cake C is a union of mutually disjoint subintervals Ai1 , Ai2 , . . . , Aiki

of C. Thus, Ai = Ai1 +Ai2 + · · ·+Aiki
=

∑ki

`=1 Ai` . A partition AN = (A1, A2, . . . , An) of
cake C into n disjoint pieces A1, A2, . . . , An is called an allocation of C to n players N if
each piece Ai =

∑ki

`=1 Ai` is allocated to player i. We also write AN = (Ai : i ∈ N). Thus,∑
i∈N Ai = C in allocation AN = (Ai : i ∈ N) of C to n players N , and Ai =

∑ki

`=1 Ai` is
called an allocated piece of C to player i.

For an interval X = [ x′, x′′) of C, the length of X, denoted by len(X), is defined by
x′′ − x′. For a piece A =

∑k
`=1 X` of cake C, the length of A, denoted by len(A), is defined

by the total sum of len(X`), i.e., len(A) =
∑k
`=1 len(X`). For each i ∈ N and valuation

interval Ci of player i, the value of piece A =
∑k
`=1 X` for player i, denoted by Vi(A), is the

total sum of len(X` ∩ Ci), i.e., Vi(A) =
∑k
`=1 len(X` ∩ Ci).

For an allocation AN = (Ai : i ∈ N) of cake C to n players N , if Vi(Ai) ≥ Vi(Aj) for all
j ∈ N , then the allocated piece Ai to player i is called envy-free for player i. If, for every
player i ∈ N , the allocated piece Ai to player i is envy-free for player i, then the allocation
AN = (Ai : i ∈ N) of cake C to n players N is called envy-free.

Let M be a mechanism for the cake-cutting problem. Let CN = (Ci : i ∈ N) be an
arbitrary input to M and AN = (Ai : i ∈ N) be an allocation of cake C to n players N
obtained byM. If AN = (Ai : i ∈ N) with Ai =

∑ki

`=1 Ai` for every input CN = (Ci : i ∈ N)
toM is envy-free thenM is called envy-free.

Now, assume that only player i gives a false valuation interval C ′i and let C′N (i) = (C ′j :
j ∈ N) (all the other players j 6= i give true valuation intervals Cj and thus C ′j = Cj for each
j 6= i) be an input toM and let an allocation of cake C to n players N obtained byM be
A′N (i) = (A′j : j ∈ N) with A′j =

∑k′j
`=1 A

′
j`

for each j ∈ N . The values of Ai =
∑ki

`=1 Ai` and
A′i =

∑k′i
`=1 A

′
i`
for player i are Vi(Ai) =

∑ki

`=1 len(Ai` ∩Ci) and Vi(A′i) =
∑k′i
`=1 len(A′i` ∩Ci)

(note that Vi(A′i) 6=
∑k′i
`=1 len(A′i` ∩ C

′
i)). If Vi(Ai) ≥ Vi(A′i), then player i does not want

to give false valuation interval C ′i and player i will report true valuation interval Ci toM
(thus, to report true valuation interval Ci is a dominant strategy of player i). For each player
i ∈ N , if this holds, thenM is called truthful (allocation AN = (Ai : i ∈ N) obtained byM
is also called truthful ).

For valuation intervals CN = (Ci : i ∈ N) and an interval X = [x′, x′′) of cake C, let
N(X) be the set of players i in N whose valuation intervals Ci are entirely contained in X
and let CN(X) be the (multi-)set of valuation intervals in CN which are entirely contained in
X. Let nX be the cardinality of N(X). Thus,

N(X) = {i ∈ N | Ci ⊆ X,Ci ∈ CN}, CN(X) = (Ci ∈ CN : i ∈ N(X)), nX = |N(X)|. (1)

As we defined the solidness of the valuation intervals CN in cake C, the valuation intervals
CN(X) for interval X = [x′, x′′) of C is called solid, if for every point x ∈ X, there is a
valuation interval Ci ∈ CN(X) containing x. Thus, the valuation intervals CN(X) is solid if
and only if

⋃
Ci∈CN(X)

Ci = X. Solidness will play a central role in this paper. Similarly, the
notion of density defined below will also play the central role in this paper.

The density ρ(X) of interval X = [ x′, x′′) of C is defined by ρ(X) = len(X)
|N(X)| = x′′−x′

nX
. The

density ρ(X) is the average length of pieces of the players in N(X) when the part X of cake
C is divided among the players in N(X). Note that, if X 6= ∅ (i.e., len(X) 6= 0) and nX = 0
then ρ(X) =∞. Let X be the set of all nonempty intervals in C. Let ρmin be the minimum
density among the densities of all nonempty intervals in C, i.e., ρmin = minX∈X ρ(X). Let
Xmin = {X ∈ X | ρ(X) = ρmin}. Thus, Xmin is the set of all intervals of minimum density
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0 1

1 [0.08,0.23)C =
2 [0.58,0.73)C =

3 [0.5,0.8)C =

4 [0.05,0.35)C = 5 [0.47,0.92)C =

6 [0,1)C C= =

Figure 1 Example of the valuation intervals CN = (C1, C2, . . . , C6) where N = {1, 2, . . . , 6}.
The minimum density is ρmin = 0.15 and the set of all intervals of minimum density is Xmin =
{[ 0.08, 0.23) = C1, [ 0.58, 0.73) = C2, [ 0.5, 0.8) = C3, [ 0.05, 0.35) = C4, [ 0.47, 0.92) = C5}. Among
them, C1 and C2 are the minimal intervals of minimum density and C4 and C5 are the maximal
intervals of minimum density. Interval [ 0, 1) = C is of density ρ(C) = 1

6 .

in C. An interval X ∈ Xmin is called a minimal interval of minimum density if X contains no
other interval of Xmin properly. Similarly, X ∈ Xmin is called a maximal interval of minimum
density if no other interval of Xmin contains X properly (Figure 1).

Interval X = [ x′, x′′) of cake C is called a minimal interval with respect to valuations,
if there are valuation intervals Ci = [αi, βi) and Cj = [αj , βj) in CN(X) = (Ck ∈ CN : k ∈
N(X)) such that x′ = αi and x′′ = βj . The following lemmas and corollaries can be obtained
by almost the same arguments. We will give only a proof of the first lemma.

I Lemma 1. Let X = [x′, x′′) be a minimal interval with respect to valuations in cake
C. Suppose that ρ(Y ) ≥ ρ(X) holds for each minimal interval Y = [ y′, y′′) with respect to
valuations which is properly contained in X. Then the valuation intervals CN(X) is solid.

Proof. Suppose that no valuation interval in CN(X) contains a point x ∈ X = [ x′, x′′).
Thus, each valuation interval Ci = [αi, βi) ∈ CN(X) satisfies βi ≤ x or x < αi. Since
X = [ x′, x′′) is a minimal interval with respect to valuations, there are valuation intervals
Cj = [αj , βj) and Ck = [αk, βk) in CN(X) with αj = x′ < x and βk = x′′ > x. Thus, we have
βj ≤ x and x < αk. Let y be the largest right endpoint among valuation intervals in CN(X)
whose right endpoints are smaller than or equal to x. Similarly, let z be the smallest left
endpoint among valuation intervals in CN(X) whose left endpoints are larger than x. Thus
ε = x−y ≥ 0 and δ = z−x > 0. Let Y = [ x′, y) and Z = [z, x′′). Then both Y = [ x′, y) and
Z = [z, x′′) are minimal intervals with respect to valuations. Furthermore, Cj = [αj , βj) ⊆ Y ,
Ck = [αk, βk) ⊆ Z, Y ∩ Z = ∅ and each valuation interval Ci = [αi, βi) ∈ CN(X) satisfies
βi ≤ y ≤ x or x < z ≤ αi. Thus, each valuation interval Ci = [αi, βi) ∈ CN(X) is
either in CN(Y ) or in CN(Z) and we have CN(X) = CN(Y ) + CN(Z) and nX = nY + nZ . Since
len(Y ) = ρ(Y )nY , ρ(Y ) ≥ ρ(X), len(Z) = ρ(Z)nZ , and ρ(Z) ≥ ρ(X), we have

ρ(X) = len(X)
nX

= x′′ − x′

nX
= x′′ − z + z − x+ x− y + y − x′

nZ + nY

= len(Z) + δ + ε+ len(Y )
nZ + nY

= ρ(Z)nZ + ρ(Y )nY + δ + ε

nZ + nY

>
ρ(Z)nZ + ρ(Y )nY

nZ + nY
≥ ρ(X)nZ + ρ(X)nY

nZ + nY
= ρ(X),

a contradiction. Thus, we have CN(X) is solid (i.e.,
⋃
Ci∈CN(X)

Ci = X). J

I Corollary 2. An interval X = [ x′, x′′) of minimum density ρmin in cake C is a minimal
interval with respect to valuations and the valuation intervals CN(X) is solid.
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I Lemma 3. For two distinct minimal intervals Xi = [ x′i, x′′i ) and Xj = [ x′j , x′′j ) with respect
to valuations in cake C such that Xi ∩Xj 6= ∅, if ρ(Xi) ≥ ρ(Xj) and ρ(Xi ∩Xj) ≥ ρ(Xj),
then ρ(Xi ∪Xj) ≤ ρ(Xi).

Now we discuss structures of intervals of minimum density which play a central role in
our mechanism. By Lemmas 1 and 3, we have the following corollaries.

I Corollary 4. Let Xi = [ x′i, x′′i ) and Xj = [ x′j , x′′j ) be two distinct intervals of minimum
density ρmin in cake C. If Xi ∩Xj 6= ∅ then both Y = Xi ∩Xj and Z = Xi ∪Xj are intervals
of minimum density ρmin.

I Corollary 5. If Xi = [x′i, x′′i ) and Xj = [x′j , x′′j ) are two distinct minimal intervals of
minimum density ρmin in cake C, then Xi ∩Xj = ∅. Furthermore, if Xi = [ x′i, x′′i ) lies to
the left of Xj = [x′j , x′′j ) then x′′i ≤ x′j. In this case, if x′′i = x′j then Z = Xi +Xj = [x′i, x′′j )
is an interval of minimum density and there is no valuation interval Ck = [ x′k, x′′k) ∈ CN
such that x′i ≤ x′k < x′′i = x′j < x′′k ≤ x′′j . Similarly, for two distinct maximal intervals
Xi = [ x′i, x′′i ) and Xj = [ x′j , x′′j ) of minimum density ρmin in cake C, we have Xi ∩Xj = ∅,
and if Xi = [x′i, x′′i ) lies to the left of Xj = [x′j , x′′j ) then x′′i < x′j.

3 Outline of Our Mechanism

For a given input of cake C = [ 0, 1), n players N = {1, 2, . . . , n}, and solid valuation intervals
CN = (Ci : i ∈ N) with valuation interval Ci = [αi, βi) of each player i ∈ N , we will give
a mechanismM which finds an allocation AN = (Ai : i ∈ N) to players N satisfying the
following properties: (a)M is envy-free; (b)M is truthful; (c) Ai ⊆ Ci for each i ∈ N ; and
(d)

∑
i∈N Ai = C. We first give a brief outline of our mechanism.

Let H1 = [h′1, h′′1), H2 = [h′2, h′′2), . . . , HL = [h′L, h′′L) be the maximal intervals of
minimum density ρmin in cake C = [ 0, 1). We first cut C = [ 0, 1) at both endpoints of each
H` (` = 1, 2, . . . , L). By Corollary 5, two distinct maximal intervals of minimum density are
disjoint and we can cut the cake at both endpoints of each maximal interval of minimum
density, independently. By these cuts, we can reduce the original cake-cutting problem into
two types of cake-cutting subproblems of type (i) and type (ii) as follows (Figure 2):
(i) the cake-cutting problem within each maximal interval H` = [h′`, h′′` ) (` = 1, 2, . . . , L)

of minimum density (which consists of cake H`, players N(H`) whose valuation intervals
are in H` and valuations CN(H`) with density ρ); and

(ii) the cake-cutting problem obtained by deleting all H` = [h′`, h′′` ) (` = 1, 2, . . . , L), i.e.,
the cake-cutting problem for cake C ′ = C \

∑L
`=1 H`, players N ′ = N \

∑L
`=1 N(H`)

and valuations C′N ′ (which consists of valuations C ′k = Ck \
∑L
`=1 H` 6= ∅ for all k ∈ N ′)

with density ρ′ and
⋃
C′

k
∈C′

N′
C ′k = C ′.

Note that the cake-cutting problem of type (i) is almost the same as the original cake-
cutting problem, since cake H` is a single interval, each valuation Ck ∈ CN(H`) is also a single
interval, and the valuation intervals CN(H`) is solid by Corollary 2.

On the other hand, the cake-cutting problem of type (ii) is different from the original
cake-cutting problem, because the resulting cake C ′ = C \

∑L
`=1 H` may become a set of two

or more disjoint intervals and each remaining valuation C ′k = Ck \
∑L
`=1 H` 6= ∅ may also

become a set of two or more disjoint intervals. However, the cake-cutting problem of type
(ii) can be solved in almost the same way by using an idea proposed by Alijani et al. [1, 18]:
for each ` = 1, 2, . . . , L, perform shrinking of H`. That is, we virtually shrink each hollow
interval H` = [h′`, h′′` ) (since H` was already deleted) and virtually consider h′` = h′′` . Let
H

(S)
` be the shrunken interval obtained by shrinking the corresponding hollow interval H`.

ISAAC 2020
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0 1

1 [0.08,0.23)C =
2 [0.58,0.73)C =

3 [0.5,0.8)C =

4 [0.05,0.35)C = 5 [0.47,0.92)C =

6 [0,1)C C= =

0 1

1 [0.08,0.23)C =
2 [0.58,0.73)C =

3 [0.5,0.8)C =

4 [0.05,0.35)C = 5 [0.47,0.92)C =

'
6 ' [0,0.05) [0.35,0.47) [0.92,1)C C= = + +

0 1

1 [0.08,0.23)A =

2 [0.58,0.73)A =

'
3 [0.5,0.58) [0.73,0.8)C = +

4 [0.05,0.08) [0.23,0.35)A = +
'
5 [0.47,0.58) [0.73,0.92)C = +

6 [0,0.05) [0.35,0.47) [0.92,1)A = + +

Figure 2 The cake-cutting problem can be reduced into two types of cake-cutting subproblems
by cutting cake C = [ 0, 1) at both endpoints of each maximal interval of minimum density: (i) one
within each maximal interval of minimum density (cake [0.05, 0.35) with players R1 = {1, 4} and cake
[0.47, 0.92) with players R2 = {2, 3, 5}), and (ii) one for cake [0, 0.05) + [0.35, 0.47) + [0.92, 1) with
the remaining players whose valuations are obtained by deleting all valuation intervals contained
in maximal intervals of minimum density (players P = {6}). The maximal interval [0.05, 0.35) of
minimum density for cake [0.05, 0.35) with players R1 = {1, 4} is further divided and A1 = [0.08, 0.23)
is allocated to player 1 and A4 = [0.05, 0.08) + [0.23, 0.35) is allocated to player 4. Since the
maximal interval [0.47, 0.92) of minimum density contains the minimal interval C2 = [0.58, 0.73)
of minimum density, C5 = [0.47, 0.92) is cut at both endpoints of C2 and A2 = C2 is allocated
to player 2. The remaining cake C′5 = C5 \ C2 = [0.47, 0.58) + [0.73, 0.92) is further divided and
A3 = [0.5, 0.58) + [0.73, 0.8) is allocated to player 3 and A5 = [0.47, 0.5) + [0.8, 0.92) is to player 5.

By shrinking of all H` = [h′`, h′′` ), cake C ′ = C \
∑L
`=1 H` becomes a single interval

C ′(S), players N ′ = N \
∑L
`=1 N(H`) remains the same, each valuation C ′k ∈ C′N ′ becomes a

single interval C ′(S)
k of C ′(S), and the valuation intervals C′(S)

N ′ = (C ′(S)
k : k ∈ N ′) becomes

solid (i.e.,
⋃
k∈N ′ C

′(S)
k = C ′(S)). Thus, by shrinking of all H`, the cake-cutting problem

of type (ii) above can be reduced to the cake-cutting problem of type (i) for cake C ′(S),
players N ′ = N \

∑L
`=1 N(H`), solid valuation intervals C′(S)

N ′ = (C ′(S)
k : C ′k ∈ C′N ′) with⋃

k∈N ′ C
′(S)
k = C ′(S) and the same density ρ′(S) = ρ′, which can be solved recursively.

From an allocation A′(S)
N ′ = (A′(S)

k : k ∈ N ′) to players N ′ where A′(S)
k is the allocated

piece of cake C ′(S) to player k ∈ N ′ with A′(S)
k ⊆ C ′(S)

k and
∑
i∈N ′ A

′(S)
k = C ′(S), we obtain

an allocation A′N ′ = (A′k : k ∈ N ′) to players N ′ where A′k is the allocated piece of cake C ′ to
player k with A′k ⊆ C ′k and

∑
i∈N ′ A

′
k = C ′ as follows: if A′(S)

k contains a shrunken interval
H

(S)
` of hollow interval H`, then let A′k be the set of disjoint intervals obtained from A

′(S)
k

by restoring each shrunken interval H(S)
` in A′(S)

k as original hollow interval H` = [h′`, h′′` );
otherwise, let A′k = A

′(S)
k . We will call this inverse shrinking of all H` (` = 1, 2, . . . , L).

In summary, we have the following lemma.
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I Lemma 6. For the two cake-cutting subproblems of type (i) and type (ii) above, the
minimum density ρ`min of intervals in the cake-cutting problem within each H` = [h′`, h′′` )
(` = 1, 2, . . . , L) of type (i) satisfies ρ`min = ρmin, and if ρ(C) > ρmin then the minimum
density ρ′min of intervals in the cake-cutting problem of type (ii) satisfies ρ′min > ρmin.

The cake-cutting problem of type (i) within each maximal interval H` = [h′`, h′′` ) of
minimum density ρmin can be solved similarly. Let X1 = [ x′1, x′′1), X2 = [ x′2, x′′2), . . . , XK =
[ x′K , x′′K) be all the minimal intervals of minimum density ρmin in H`. Then by cutting cake
H` at both endpoints of each Xk = [ x′k, x′′k) we can reduce the original cake-cutting problem
into two types of cake-cutting subproblems of type (i) and type (ii) as follows (Figure 2):
(i) the cake-cutting problem within each minimal interval Xk = [x′k, x′′k) (k = 1, 2, . . . ,K)

of minimum density ρmin (which consists of cake Xk, players N(Xk) whose valuation
intervals are in Xk and solid valuation intervals CN(Xk) with density ρ); and

(ii) the cake-cutting problem obtained by deleting all Xk = [x′k, x′′k) (k = 1, 2, . . . ,K), i.e.,
the cake-cutting problem for cake D = H`\

∑K
k=1 Xk, players R = N(H`)\

∑K
k=1 N(Xk)

and valuations DR (which consists of valuations Di = Ci \
∑K
k=1 Xk 6= ∅ for all i ∈ R)

with density ρ′ and
⋃
Di∈DR

Di = D.

For the same reason as above, we can solve the cake-cutting problem of type (ii) recursively
by shrinking of all Xk = [x′k, x′′k). Thus, in summary, we have the following lemma.

I Lemma 7. For the two cake-cutting subproblems of type (i) and type (ii) within each
maximal interval H` = [h′`, h′′` ) above, the minimum density of intervals in the cake-cutting
problem within each Xk = [x′k, x′′k) (k = 1, 2, . . . ,K) of type (i) is ρmin, and the minimum
density ρ′min of intervals in the cake-cutting problem of type (ii) also satisfies ρ′min = ρmin.

Thus, the core of our mechanism is to solve the cake-cutting problem for cake Xk which
is a minimal interval of minimum density ρmin, players N(Xk) and solid valuation intervals
CN(Xk). We call this as Procedure CutMinInterval(N(Xk), Xk, CN(Xk)) and will use it later.

4 Details of Our Mechanism

In this section, we will give details of our mechanism based on the outline in the previous
section. We denote, by Procedure CutCake(P,D,DP ), a method for solving the cake-cutting
problem for cake D which is a single interval, players P and solid valuation intervals DP
(where each valuation Dk ∈ DP for k ∈ P is a single interval in D and

⋃
k∈P Dk = D). The

original cake-cutting problem for cake C, players N and solid valuation intervals CN can be
solved by calling CutCake(N,C, CN ). Thus, we can write our mechanism as follows.

Mechanism 1 Our cake-cutting mechanism.

Input: A cake C = [ 0, 1), n players N = {1, 2, . . . , n} and solid valuation intervals CN
with valuation interval Ci = [αi, βi) of each player i ∈ N and

⋃
Ci∈CN

Ci = C.
Output: Allocation AN = (Ai : i ∈ N) to players N .
Algorithm { CutCake(N,C, CN ); }

We also denote, by Procedure CutMaxInterval(R,H,DR) called in CutCake(P,D,DP ),
a method for solving the cake-cutting problem of type (i) with cake H = H` which is a
maximal interval of minimum density ρmin in cake D, players R = P (H`) = {i ∈ P | Di ⊆
H`, Di ∈ DP } and solid valuation intervals DR = DP (H`) = (Di ∈ DP : i ∈ P (H`)) (thus,
∪Di∈DR

Di = H`). Based on Lemma 6, we can write Procedure CutCake(P,D,DP ) as follows.
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Procedure CutCake(P,D,DP )

Find all the maximal intervals of minimum density ρmin in the cake-cutting
problem with cake D, players P and solid valuation intervals DP ;

Let H1 = [h′1, h′′1), H2 = [h′2, h′′2), . . . , HL = [h′L, h′′L) be all the maximal intervals of
minimum density ρmin; // H1, H2, . . . ,HL are mutually disjoint by Corollary 5

for ` = 1 to L do
cut cake D at both endpoints h′`, h′′` of H`;
R` = {k ∈ P | Dk ⊆ H`, Dk ∈ DP }; DR`

= (Dk ∈ DP : k ∈ R`);
CutMaxInterval(R`, H`,DR`

);
P ′ = P ; D′ = D; for ` = 1 to L do P ′ = P ′ \R`; D′ = D′ \H`;
if P ′ 6= ∅ then // P ′ = P \

∑L
`=1 R` and D′ = D \

∑L
`=1 H`

D′P ′ = ∅;
for each Dk ∈ DP with k ∈ P ′ do D′k = Dk \

∑L
`=1 H`; D′P ′ = D′P ′ + {D′k};

Perform shrinking of all H1, H2, . . . ,HL;
Let D(S), D(S)

k ∈ D(S)
P ′ , and D

(S)
P ′ be obtained from D′, D′k ∈ D′P ′ , and D′P ′

by shrinking of all H1, H2, . . . ,HL, respectively;
CutCake(P ′, D(S),D(S)

P ′ ); Perform inverse shrinking of all H1, H2, . . . ,HL;

Note that, if P ′ 6= ∅ after the deletion of H1, H2, . . . ,HL and CutCake(P ′, D(S),D(S)
P ′ )

is recursively called, then the minimum density ρ′min in CutCake(P ′, D(S),D(S)
P ′ ) satisfies

ρ′min > ρmin by Lemma 6. Next, we give a detailed description of CutMaxInterval(R,H,DR)
based on Lemma 7 and Procedure CutMinInterval(S,X,DS).

Procedure CutMaxInterval(R,H,DR)

Let X1 = [ x′1, x′′1), X2 = [ x′2, x′′2), . . . , XK = [ x′K , x′′K) be all the minimal intervals of
minimum density ρmin in H; // X1, X2, . . . , XK are mutually disjoint by Corollary 5

for k = 1 to K do
cut cake H at both endpoints x′k, x′′k of Xk;
Sk = {i ∈ R | Di ⊆ Xk, Di ∈ DR}; DSk

= (Di ∈ DR : i ∈ Sk);
CutMinInterval(Sk, Xk,DSk

);
R′ = R; H ′ = H; for k = 1 to K do R′ = R′ \ Sk; H ′ = H ′ \Xk;
if R′ 6= ∅ then // R′ = R \

∑K
k=1 Sk and H ′ = H \

∑K
k=1 Xk

D′R′ = ∅;
for each Di ∈ DR with i ∈ R′ do D′i = Di \

∑K
k=1 Xk; D′R′ = D′R′ + {D′i};

Perform shrinking of all X1, X2, . . . , XK ;
Let H(S), D(S)

i ∈ D(S)
R′ , and D

(S)
R′ be obtained from H ′, D′i ∈ D′R′ , and D′R′

by shrinking of all X1, X2, . . . , XK , respectively;
CutMaxInterval(R′, H(S),D(S)

R′ ); Perform inverse shrinking of all X1, X2, . . . , XK ;

Note that, if R′ 6= ∅ after deletion of X1, X2, . . . , XK and CutMaxInterval(R′, H(S),D(S)
R′ )

is recursively called, then the minimum density ρ′min in CutMaxInterval(R′, H(S),D(S)
R′ )

satisfies ρ′min = ρmin by Lemma 7. As mentioned before, Procedure CutMinInterval(S,X,DS)
is the core method for solving the cake-cutting problem where cake X is a minimal interval
of minimum density in maximal interval H of minimum density ρmin, players S=R(X)=
{i ∈ R | Di ∈ DR, Di ⊆ X} and solid valuation intervals DS = DR(X) = (Di ∈ DR : i ∈ S).
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4.1 Core Method: Cutting Minimal Interval of Minimum Density
We need some more definitions and notations to give the core method.

I Definition 8. Let X = [ x′, x′′) be a minimal interval of minimum density ρmin in cake C.
A minimal interval Y = [ y′, y′′) with respect to valuations which is properly contained in X
(i.e., Y ⊂ X) is called a separable interval of X, if len(Y ) is less than (nY + 1) ρmin where
nY is the number of players whose valuation intervals are entirely contained in Y . If there is
no separable interval of X = [x′, x′′), then X is called nonseparable.

We first consider the case when a minimal interval X of minimum density ρmin is
nonseparable. This has a nice property which can be proved by Hall’s Theorem [13].

I Lemma 9. Let X = [x′, x′′) be a nonseparable minimal interval of minimum density
ρmin. For simplicity, we assume N(X) = {1, 2, . . . , nX}. Let Ij = [x′ + (j − 1)ρmin, x

′ +
jρmin) for each j ∈ N(X), and let IN(X) = {I1, I2, . . . , InX

} (thus,
∑
j∈N(X) Ij = X). Let

GN(X) = (CN(X), IN(X), E) be a bipartite graph with vertex set CN(X) + IN(X) and edge
set E where (Ci, Ij) ∈ E if and only if Ij ⊆ Ci. Then GN(X) has a perfect matching
M = {(Ci, Iπ(i)) | i ∈ N(X)} ⊆ E, where π is a permutation on N(X).

(Thus, we can allocate Ai = Iπ(i) ⊆ Ci of cake X to player i ∈ N(X) with
∑
i∈N(X) Ai =

X and we call this Procedure AllocateInterval(N(X), X, CN(X)).)

Next we consider the case when a minimal interval X = [ x′, x′′) of minimum density ρmin
has a separable interval (Figure 3). Let Y be the set of all separable intervals in X and let

y∗ = max
Y=[ y′, y′′)∈Y

y′ and Yy∗ = {Y = [ y′, y′′) ∈ Y | y′ = y∗}. (2)

That is, y∗ is the largest left endpoint of the separable intervals in X and Yy∗ is the set of
all separable intervals with left endpoint y∗ in X. For each interval Y = [ y′, y′′) of X, let

γ(Y ) = len(Y )− nY ρmin. (3)

Then, for a separable interval Y = [ y′, y′′) of X (thus, Y is a minimal interval with respect
to valuations in X by Definition 8), we have

nY ρmin < len(Y ) < (nY + 1) ρmin and 0 < γ(Y ) < ρmin. (4)

Actually, ρ(Y ) = len(Y )
nY

> ρmin by the definition of a minimal interval X of minimum density
ρmin and len(Y ) < (nY + 1) ρmin since Y ⊂ X is a separable interval of X. Let

γ∗ = min
Y ∈Yy∗

γ(Y ). (5)

Clearly, 0 < γ∗ < ρmin by Eqs.(2), (4). Let

Yγ
∗

y∗ = {Y = [ y∗, y′′) ∈ Yy∗ | γ(Y ) = γ∗} and Zγ
∗

y∗ = {y′′ | Y = [ y∗, y′′) ∈ Yγ
∗

y∗ }. (6)

That is, Yγ
∗

y∗ is the set of separable intervals Y = [ y∗, y′′) in Yy∗ with γ(Y ) = γ∗ and Zγ
∗

y∗ is
the set of right endpoints of the separable intervals in Yγ

∗

y∗ . Let J = |Zγ
∗

y∗ | and assume

Zγ
∗

y∗ = {z∗1 , z∗2 , . . . , z∗J}, z∗1 < z∗2 < · · · < z∗J , Yj = [ y∗, z∗j ) for j = 1, 2, . . . , J. (7)

For simplicity, we also consider z∗0 = y∗ + γ∗ and Y0 = [ y∗, z∗0). Then we have the following.
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Figure 3 Players N = {1, 2, . . . , 10} and their valuation intervals C1 = [ 0, 1), C2 = [ 0.01, 0.24),
C3 = [ 0.02, 0.25), C4 = [ 0.05, 0.34), C5 = [ 0.28, 0.52), C6 = [ 0.29, 0.59), C7 = [ 0.3, 0.65), C8 =
[ 0.32, 0.77), C9 = [ 0.45, 0.85), C10 = [ 0.7, 1). X = [ 0, 1) is a minimal interval of minimum
density ρmin = 0.1, and there are several separable intervals of X = [ 0, 1) such as [ 0.01, 0.25),
[ 0.01, 1), [ 0.28, 0.65), [ 0.28, 0.77), [ 0.28, 0.85). The largest left endpoint y∗ of the separable intervals
in X is 0.28 and the set of separable intervals with the largest left endpoint y∗ = 0.28 is Yy∗ =
{[ 0.28, 0.65), [ 0.28, 0.77), [ 0.28, 0.85)}. Thus, Yγ

∗

y∗ = {[ 0.28, 0.65), [ 0.28, 0.85)}, Zγ
∗

y∗ = {0.65, 0.85},
J = 2, z∗1 = 0.65 < z∗2 = 0.85 (and z0 = 0.35, Y0 = [0.28, 0.35), Y1 = [0.35, 0.65) Y2 = [0.65, 0.85)).

I Lemma 10. Let X = [ x′, x′′) be a minimal interval of minimum density ρmin in cake C.
Let Y = [ y∗, z) ⊂ X be an interval such that there exists Ci = [αi, βi) ∈ CN(X) with y∗ ≤ αi
and z = βi. Then γ(Y ) = γ∗ for z ∈ Zγ

∗

y∗ and γ(Y ) > γ∗ for z 6∈ Zγ
∗

y∗ . Furthermore, if
z 6∈ Zγ

∗

y∗ and z > z∗j for some Yj = [y∗, z∗j ) (j = 0, 1, . . . , J), then z − z∗j > ρmin(nY − nYj
).

Proof. It is clear that γ(Y ) = len(Y )− nY ρmin = z − y∗ − nY ρmin by the definition of γ(Y )
of Y = [ y∗, z). Similarly, if z ∈ Zγ

∗

y∗ then γ(Y ) = γ∗ by the definitions of Yγ
∗

y∗ and Zγ
∗

y∗ .
Therefore, we can assume z 6∈ Zγ

∗

y∗ below.
(i) We first consider the case when Y = [ y∗, z) is not a separable interval. If Y = [ y∗, z)

is a minimal interval with respect to valuations then len(Y ) ≥ (nY + 1) ρmin and γ(Y ) =
len(Y ) − nY ρmin ≥ ρmin > γ∗. Otherwise (i.e., if Y = [ y∗, z) is not a minimal interval
with respect to valuations), let y′ = minCj=[αj ,βj)⊂Y :Cj∈CN(X) αj . Then y′ > y∗, since the
valuation interval Ci = [αi, βi) ∈ CN(X) satisfies αi ≥ y∗, z = βi, and Ci ⊂ Y = [ y∗, z). Let
Cj = [αj , βj) ∈ CN(X) satisfy αj = y′ and Cj ⊂ Y . Let Y ′ = [ y′, z) ⊂ Y = [ y∗, z). Then
Y ′ is a minimal interval with respect to valuations and nY ′ = nY . Note that, Y ′ is not a
separable interval since y∗ is the largest left endpoint of separable intervals. Thus, len(Y ′) ≥
(nY ′ + 1) ρmin and len(Y ) = z− y∗ > z− y′ = len(Y ′) ≥ (nY ′ + 1) ρmin = (nY + 1) ρmin and
we have γ(Y ) = len(Y )− nY ρmin > ρmin > γ∗.

(ii) We next consider the case when Y = [ y∗, z) is a separable interval. Thus, nY ρmin <

len(Y ) < (nY + 1)ρmin. By the definition of Zγ
∗

y∗ = {y′′ | Y = [ y∗, y′′) ∈ Yγ
∗

y∗ } and Eq.(5),
we have γ(Y ) = len(Y )− nY ρmin > γ∗ since z 6∈ Zγ

∗

y∗ .
Furthermore, if z 6∈ Zγ

∗

y∗ and z > z∗j for some Yj = [y∗, z∗j ) (j = 0, 1, . . . , J), then z−z∗j =
len(Y )−len(Yj) and we have z−z∗j = len(Y )−len(Yj) = ρminnY +γ(Y )−(ρminnYj

+γ(Yj)) =
(γ(Y )− γ(Yj)) + ρmin(nY − nYj

) > ρmin(nY − nYj
) by γ(Yj) = γ∗ < γ(Y ). J

The following lemma can be obtained by the same argument as in Proof of Lemma 1.

I Lemma 11. Let X = [ x′, x′′) be a minimal interval of minimum density ρmin in cake C.
Then the valuation intervals CN(Yj) for each Yj = [ y∗, z∗j ) (j = 1, 2, . . . , J) is solid.
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0 10.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5' [0.35,0.52)D =

6' [0.35,0.59)D =

7' [0.35,0.65)D =

8' [0.65,0.77)D =

9' [0.65,0.85)D =

2 [0.65,0.85)Z =

1 [0.35,0.65)Z =

* 0.28y = 0* 0.35z = 2* 0.85z =1 * 0.65z =

1' [0,0.35) [0.85,1)D = +2C

3C

0 10.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10' [0.85,1)D =
4C

3 3' [0.02,0.25)D C= =

2 2' [0.01,0.24)D C= =

0 0[ *, *) [0.35,0.85)z z =

( )
1' [0,0.35) [0.85,1)

S
D = +

0 10.1 0.2

( )
10' [0.85,1)

S
D =

( )
4' [0.05,0.34)
S

D =

( )
3' [0.02,0.25)
S

D =

( )
2' [0.01,0.24)
S

D =

0.35=0.85

(0.35=0.85)

4 4' [0.05,0.34)D C= =

Figure 4 In the example in Figure 3, Z1 = [0.35, 0.65), S(Z1) = {5, 6, 7}, D′S(Z1) = (D′5 =
[0.35, 0.52), D′6 = [0.35, 0.59), D′7 = [0.35, 0.65]), and Z2 = [0.65, 0.85), S(Z2) = {8, 9}, D′S(Z2) =
(D′8 = [0.65, 0.77), D′9 = [0.65, 0.85]).

Let X = [x′, x′′) be a minimal interval of minimum density ρmin in cake C and let
S = N(X) and DS = (Di = Ci : Ci ∈ CN , Ci ⊆ X) = CN(X). For each j = 1, 2, . . . , J , let

Zj = [z∗j−1, z
∗
j ), S(Zj) = {i ∈ S | Di ∈ DS , Di ⊆ Yj , Di 6⊆ Yj−1}, n′Zj

= |S(Zj)|, (8)
DS(Zj) = (Di ∈ DS : i ∈ S(Zj)), (9)
D′S(Zj) = (D′i = Di \ Yj−1 : Di ∈ DS(Zj)) (10)

(Figure 4). Note that DS(Zj) = (Di ∈ DS : Di ⊆ Yj) \ (Di ∈ DS : Di ⊆ Yj−1). Note also
that, D′i = Di \ Yj−1 ∈ D′S(Zj) is always contained in Zj = [z∗j−1, z

∗
j ), although valuation

interval Di = [ d′i, d′′i ) ∈ DS(Zj) may not be in Zj = [z∗j−1, z
∗
j ) (i.e., d′i < z∗j−1 may happen).

Of course, y∗ ≤ d′i and z∗j−1 < d′′i ≤ z∗j hold. We consider the cake-cutting problem for cake
Zj , players S(Zj), solid valuation intervals D′S(Zj). Note that, there is no valuation interval
of DS = CN(X) contained in Y0 = [ y∗, z∗0) ⊂ X (nY0 = 0), since if there were a valuation
interval Di ∈ DS contained in Y0, then Di would be a minimal interval with respect to
valuations and nDi

≥ 1 and ρ(Di) ≤ len(Y0) = z∗0 − y∗ = γ∗ < ρmin, a contradiction that X
is a minimal interval of minimum density ρmin. Thus, we have the following lemma.

I Lemma 12. Each interval Zj = [z∗j−1, z
∗
j ) (j = 1, 2, . . . , J) is a minimal interval of

minimum density ρ′min = ρmin for the cake-cutting problem for cake Zj, players S(Zj),
valuation intervals D′S(Zj) with density ρ′. Furthermore, the valuation intervals D′S(Zj) is
solid (thus,

⋃
D′

i
∈D′

S(Zj )
D′i = Zj holds).

Proof. Since we set S = N(X) and DS = (Di = Ci : Ci ∈ CN , Ci ⊆ X) = CN(X), we
have S(Yj) = {i ∈ S | Di ∈ DS , Di ⊆ Yj} = N(Yj) and DS(Yj) = (Di : Di ∈ DS , Di ⊆
Yj) = CN(Yj) for each Yj = [ y∗, z∗j ) (j = 1, 2, . . . , J). Thus, by Lemma 11, DS(Yj) is solid,
and thus, for each point z ∈ Zj = [z∗j−1, z

∗
j ) = Yj \ Yj−1, there is a valuation interval

Di ∈ DS(Yj) containing z. The interval Di is not in DS(Yj−1), since z 6∈ Yj−1. Thus, z is in
D′i = Di \ Yj−1 ∈ D′S(Zj). This implies that the valuation intervals D′S(Zj) is solid.

Thus, we will show below that each Zj = [z∗j−1, z
∗
j ) (j = 1, 2, . . . , J) is a minimal interval

of minimum density ρ′min = ρmin. It is clear that ρ′(Zj) = len(Zj)
n′

Zj

= ρmin, since Yj = [ y∗, z∗j ),
Yj−1 = [ y∗, z∗j−1), Zj = Yj \ Yj−1, S(Zj) = S(Yj) \ S(Yj−1), len(Yj) = ρminnYj + γ∗,
len(Yj−1) = ρminnYj−1 + γ∗, n′Zj

= |S(Zj)| = |S(Yj)| − |S(Yj−1)| = nYj
− nYj−1 and

len(Zj) = len(Yj)− len(Yj−1) = ρmin(nYj − nYj−1) = ρminn
′
Zj
.

Let Z = [z′, z′′) be a proper subinterval of Zj (i.e., Z ⊂ Zj) such that z′′ is a right
endpoint of some valuation interval in D′S(Zj) and that z′ = z∗j−1 or z′ 6= z∗j−1 and z′ is a left
endpoint of some valuation interval in D′S(Zj). Thus, Z = [z′, z′′) ⊂ Zj is a minimal interval
with respect to valuations in cake Zj .
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Figure 5 In the example in Figure 3, S′ = {1, 2, 3, 4, 10}, X ′ = [0, 0.35) + [0.85, 1), D′S′ =
(D′1, D′2, D′3, D′4, D′10) and the cake-cutting problem obtained by shrinking of [0.35, 0.85).

If z′ 6= z∗j−1 then ρ′(Z) = ρ(Z) > ρmin, since Z ⊂ X (Z 6= X) and X is a minimal
interval of minimum density ρmin. Thus, we assume z′ = z∗j−1 < z′′ < z∗j since Z ⊂ Zj .
Now consider the intervals Y ′j = [ y∗, z′′) and Yj−1 = [ y∗, z∗j−1) ⊂ Y ′j = [ y∗, z′′). Thus,
Z = Y ′j \ Yj−1. Let n′Z = |DS(Y ′

j
) \ DS(Yj−1)|. Then n′Z = nY ′

j
− nYj−1 . By Lemma 10, we

have len(Z) = z′′ − z∗j−1 > ρmin(nY ′
j
− nYj−1) = ρmin n

′
Z and ρ′(Z) = len(Z)

n′
Z

> ρmin. Thus,
we have Zj = [z∗j−1, z

∗
j ) is a minimal interval of minimum density ρ′min = ρmin. J

Next, we consider the remaining cake-cutting problem after deletion of the interval
[z∗0 , z∗J) = Z1 + Z2 + · · · + ZJ . Let S([z∗0 , z∗J)) = S(Z1) + S(Z2) + · · · + S(ZJ). Thus,
S([z∗0 , z∗J)) is the set of players whose valuation intervals are in Y ∗J = [ y∗, z∗J). Let

S′ = S \ S([z∗0 , z∗J)), X ′ = X \ [z∗0 , z∗J), D′S′ = (D′i = Di \ [z∗0 , z∗J) : Di ∈ DS , Di 6⊆ YJ)

(Figure 5). Then, we reduce the cake-cutting problem for cake X ′, players S′ and valuations
D′S′ with density ρ′ by shrinking of [z∗0 , z∗J) to the cake-cutting problem for cake X ′(S),
players S′ and solid valuation intervals D′(S)

S′ with density ρ′, where X ′(S), D′(S)
i ∈ D′(S)

S′ and
D′(S)
S′ are obtained from X ′, D′i ∈ D′S′ and D′S′ by shrinking of [z∗0 , z∗J), respectively.

I Lemma 13. X ′(S) is a minimal interval of minimum density ρ′min = ρmin in the cake-
cutting problem for cake X ′(S), players S′, and solid valuation intervals D′(S)

S′ with density
ρ′. (Thus, this can be solved by calling CutMinInterval(S′, X ′(S),D′(S)

S′ ) recursively.)

Proof. We will show that X ′(S) is a minimal interval of minimum density ρmin. We can
obtain ρ′(X ′(S)) = ρmin by almost the same argument as in Lemma 12.

Let Z = [z′, z′′) 6⊆ [ y∗, z∗J) be an interval in X such that Z ′(S), obtained from Z ′ =
Z \ [z∗0 , z∗J) by shrinking of [z∗0 , z∗J), is a proper subinterval in X ′(S) (i.e., Z ′(S) ⊂ X ′(S)).
Thus, z′ < y∗ or z′′ > z∗J . We will show that ρ′(Z ′(S)) > ρmin by dividing into two subcases:
(i) the case of z′ < y∗ and (ii) the case of y∗ ≤ z′ and z′′ > z∗J . As mentioned before, there is
no valuation interval of DS = (Di = Ci : Ci ∈ CN , Ci ⊆ X) = CN(X) which is contained in
[ y∗, z∗0). Thus, there is no valuation interval of D′S′ (and of D′(S)

S′ ) contained in [ y∗, z∗0).
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(i): We only discuss the case of z′ < y∗ < z∗0 < z′′ ≤ z∗J . Since shrinking of [z∗0 , z∗J)
is performed, we can consider z′′ = z∗J and YJ = [ y∗, z∗J) ⊂ Z = [z′, z∗J), len(Z) =
z∗J − z′, ρminnYJ

= z∗J − z∗0 . Thus, after shrinking of [z∗0 , z∗J), Z ′ = Z \ [z∗0 , z∗J) becomes
Z ′(S) = [z′, z∗0) and we have nZ′(S) = nZ − nYJ

, len(Z ′(S)) = z∗0 − z′, and ρ′(Z ′(S)) =
len(Z′(S))
n

Z′(S)
= z∗0−z

′

n
Z′(S)

> ρmin by ρ(Z) = len(Z)
nZ

= z∗J−z
∗
0 +z∗0−z

′

n
Z′(S) +nYJ

= ρminnYJ
+z∗0−z

′

n
Z′(S) +nYJ

> ρmin since
Z ⊂ X and X is a minimal interval of minimum density ρmin.

(ii): We only discuss the case of z∗0 ≤ z′ < z∗J < z′′. By Lemma 10 for j = J , YJ = [ y∗, z∗J )
and Y = [ y∗, z′′), we have Z ′(S) = Z ′ = Z \ [z∗0 , z∗J) = [z∗J , z′′), len(Z ′(S)) = z′′ − z∗J =
len(Y ) − len(YJ) > ρmin(nY − nYJ

) and nZ′(S) ≤ nY − nYJ
(note that Di = [αi, βi) with

y∗ ≤ αi < z∗0 and z∗J < βi ≤ z′′ is in Y = [ y∗, z′′), but not in YJ = [ y∗, z∗J), and thus,
D′i = Di\[z∗0 , z∗J ) = [αi, z∗0)+[z∗J , βi) is not contained in Z ′(S) = Z ′ = Z\[z∗0 , z∗J ) = [z∗J , z′′)).
Thus, ρ′(Z ′(S)) = len(Z′(S))

n
Z′(S)

≥ len(Z′(S))
nY −nYJ

> ρmin.

Thus, we have shown that X ′(S) is a minimal interval of minimum density ρ′min = ρmin.
Finally, we can show that the valuation intervals D′(S)

S′ is solid, by almost the same
argument (and we omit its proof). J

Based on Lemmas 9, 12 and 13, we can write CutMinInterval(S,X,DS) as follows.

Procedure CutMinInterval(S,X,DS).

if X = [x′, x′′) is nonseparable then AllocateInterval(S,X,DS);
// this finds an allocation of X to players S by Lemma 9

else // there is a separable interval in X
Find y∗, γ∗, Yγ

∗

y∗ , and Z
γ∗

y∗ defined by Eqs. (2), (5), (6), and (7), respectively;
Let Zγ

∗

y∗ ={z∗1 , z∗2 , . . . , z∗J} and assume z∗0 =y∗+ γ∗<z∗1 < z∗2 < · · · < z∗J ;
for j = 1 to J do

Zj = [z∗j−1, z
∗
j ); cut cake X at both endpoints z∗j−1, z

∗
j of Zj = [z∗j−1, z

∗
j );

let S(Zj) and D′S(Zj) be defined in Eqs. (8) and (10);
CutMinInterval(S(Zj), Zj ,D′S(Zj));

S′ = S \ S([z∗0 , z∗J)); X ′ = X \ [z∗0 , z∗J);
if S′ 6= ∅ then
D′S′ = ∅; for each Di ∈ DS with i ∈ S′ do D′i =Di \ [z∗0 , z∗J ); D′S′ = D′S′ + {D′i};
Perform shrinking of [z∗0 , z∗J);
Let X ′(S), D′(S)

i ∈ D′(S)
S′ and D′(S)

S′ be obtained from X ′, D′i ∈ D′S′ and D′S′
by shrinking of [z∗0 , z∗J), respectively;

CutMinInterval(S′, X ′(S),D′(S)
S′ ); Perform inverse shrinking of [z∗0 , z∗J);

We have the following lemma for CutMinInterval(S,X,DS).

I Lemma 14. CutMinInterval(S,X,DS) returns an envy-free allocation (Ai : i ∈ S) of X
to players S such that Ai ⊆ Di ∈ DS, len(Ai) = ρmin for each i ∈ S,

∑
i∈S Ai = X and runs

in O(s3) time where s = |S|, and the number of cuts made over X is at most 2s− 2.

Proof. We first show that CutMinInterval(S,X,DS) satisfies the following (a) – (c).
(a) CutMinInterval(S,X,DS) returns an envy-free allocation (Ai : i ∈ S) of X to players S

such that Ai ⊆ Di ∈ DS , len(Ai) = ρmin for each i ∈ S and
∑
i∈S Ai = X.

(b) CutMinInterval(S,X,DS) runs in O(s3) time where s = |S|.
(c) The number of cuts made over X by CutMinInterval(S,X,DS) is at most 2s− 2.
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If X is nonseparable, then, by Lemma 9, AllocateInterval(S,X,DS) finds an allocation
(Ai : i ∈ S) of X to players S such that Ai ⊆ Di ∈ DS , len(Ai) = ρmin for each i ∈ S and∑

i∈S Ai = X. Thus, Vi(Ai) = len(Ai ∩Di) = len(Ai) = ρmin = len(Aj) ≥ len(Aj ∩Di) =
Vi(Aj) for each i, j ∈ S. The number of cuts made by AllocateInterval(S,X,DS) is s− 1. A
perfect matching of a bipartite graph in Lemma 9 with 2s vertices can be obtained in O(s3)
time (a much faster algorithm can be obtained based on the structures of this bipartite graph
and a greedy plane sweep method). Thus, (a) – (c) hold in this case.

If X is separable, then (a) – (c) can be shown by induction on the number of recursive
calls of CutMinInterval(·, ·, ·) in CutMinInterval(S,X,DS) in total.

Assume that (a) – (c) hold when CutMinInterval(S,X,DS) contains at most k ≥ 0
recursive calls in total. Now we consider when CutMinInterval(S,X,DS) contains k + 1
recursive calls in total. Thus, X has a separable interval and CutMinInterval(S,X,DS)
contains J recursive calls CutMinInterval(S(Zj), Zj ,D′S(Zj)) (j = 1, 2, . . . , J) each for cake
Zj which is a minimal interval of minimum density ρmin by Lemma 12 and a recursive
call CutMinInterval(S′, X ′(S),D′(S)

S′ ) for cake X ′(S) which is a minimal interval of minimum
density ρmin by Lemma 13. Note that, each of CutMinInterval(S(Zj), Zj ,D′S(Zj)) (j =
1, 2, . . . , J) and CutMinInterval(S′, X ′(S),D′(S)

S′ ) has at most k recursive calls in total. By the
induction hypothesis, CutMinInterval(S(Zj), Zj ,D′S(Zj)) finds an allocation (Ai : i ∈ S(Zj))
of Zj to players S(Zj) such that Ai ⊆ D′i ∈ D′S(Zj) (thus, Ai ⊆ Di ∈ DS), len(Ai) =
ρmin for each i ∈ S(Zj) and

∑
i∈S(Zj) Ai = Zj for each j = 1, 2, . . . , J . Furthermore,

CutMinInterval(S′, X ′(S),D′(S)
S′ ) finds an allocation (A′(S)

i : i ∈ S′) of X ′(S) to players S′

such that A′(S)
i ⊆ D′(S)

i ∈ D′(S)
S′ , len(A′(S)

i ) = ρmin for each i ∈ S′ and
∑
i∈S′ A

′(S)
i = X ′(S).

By inverse shrinking of [z∗0 , z∗J), we have the allocation (Ai : i ∈ S′) of X ′ = X \ [z∗0 , z∗J) to
players S′ such that Ai ⊆ D′i ∈ D′S′ (thus, Ai ⊆ Di ∈ DS), len(Ai) = ρmin for each i ∈ S′
and

∑
i∈S′ Ai = X ′.

Thus, we can obtain that CutMinInterval(S,X,DS) returns an allocation (Ai : i ∈ S) of
X to players S such that Ai ⊆ Di ∈ DS , len(Ai) = ρmin for each i ∈ S and

∑
i∈S Ai = X.

Since Ai ⊆ Di, len(Ai) = ρmin and Vi(Ai) = len(Ai ∩ Di) = len(Ai) = ρmin = len(Aj) ≥
len(Aj ∩Di) = Vi(Aj) for each i, j ∈ S, the allocation (Ai : i ∈ S) is envy-free. Thus, (a) is
obtained.

Similalry, (b) and (c) can be obtained. For example, for (c), by induction hypethesis, we
have the number of cuts on each Zj is at most 2|S(Zj)| − 2, the number of cuts on X ′(S) (on
X ′) is at most 2|S′|−2 and the number of cuts onX to obtain all Zj (j = 1, 2, . . . , J) is exactly
J+1. Thus, in total, the number of cuts is at most

∑J
j=1(2|S(Zj)|−2)+(2|S′|−2)+(J+1) =

2s− J − 1 ≤ 2s− 2 since J ≥ 1. For (b), note that, all the separable intervals can be found
in O(s2) time, since a separable interval is a minimal interval with respect to valuations and
there are at most s2 minimal intervals [ y′, y′′) in X with respect to valuations (since y′ is
the left endpoint of a valuation interval in DS and y′′ is the right endpoint of a valuation
interval in DS and there are exactly s valuation intervals in DS). Thus, O(s3) time can be
obtained by a naive analysis. J

We have the following lemma for CutMaxInterval(R,H,DR) and CutCake(P,D,DP ).

I Lemma 15. CutMaxInterval(R,H,DR) returns an envy-free allocation (Ai : i ∈ R) of H
to players R with Ai ⊆ Di ∈ DR, len(Ai) = ρmin for each i ∈ R and

∑
i∈RAi = H, and runs

in O(r3) time where r = |R|, and the number of cuts made over H is at most 2r − 2.
CutCake(P,D,DP ) returns an envy-free and truthful allocation (Ai : i ∈ P ) of D to

players P such that Ai ⊆ Di ∈ DP , len(Ai) ≥ ρmin for each i ∈ P and
∑
i∈P Ai = D, and

runs in O(p3) time where p = |P |, and the number of cuts made over D is at most 2p− 2.
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This Lemma can be proved by almost the same argument as in Proof of Lemma 14.
Actually, for cake H which is a maximal interval of minimum density ρmin, players R,
and solid valuation intervals DR = (Di : i ∈ R) with

⋃
i∈RDi = H, we can show that

CutMaxInterval(R,H,DR) satisfies the following (a) – (c).
(a) CutMaxInterval(R,H,DR) returns an envy-free allocation (Ai : i ∈ R) of H to players

R with Ai ⊆ Di ∈ DR, len(Ai) = ρmin for each i ∈ R and
∑
i∈RAi = H.

(b) CutMaxInterval(R,H,DR) runs in O(r3) time where r = |R|.
(c) The number of cuts made over H by CutMaxInterval(R,H,DR) is at most 2r − 2.

Similarly, for cake D, players P , and solid valuation intervals DP = (Di : i ∈ P ) with⋃
i∈P Di = D, CutCake(P,D,DP ) satisfies the following (a) – (d).

(a) CutCake(P,D,DP ) returns an envy-free allocation (Ai : i ∈ P ) of D to players P such
that Ai ⊆ Di ∈ DP , len(Ai) ≥ ρmin for each i ∈ P and

∑
i∈P Ai = D.

(b) CutCake(P,D,DP ) runs in O(p3) time where p = |P |.
(c) The number of cuts made over D by CutCake(P,D,DP ) is at most 2p− 2.
(d) The allocation (Ai : i ∈ R) returned by CutCake(P,D,DP ) is truthful.

Note that, (d) can be obtained in a similar way as in papers [9] and [18], since (a) holds.
By Lemmas 6, 7, and 15, we have the following theorem.

I Theorem 16. Mechanism 1 correctly finds, in O(n3) time, an envy-free and truthful
allocation AN = (Ai : i ∈ N) of cake C to n players N with Ai ⊆ Ci for each player i ∈ N
and

∑
i∈N Ai = C, and the number of cuts made over C by Mechanism 1 is at most 2n− 2.

5 Concluding Remarks

We gave a new envy-free and truthful mechanism with a small number of cuts (i.e, using at
most 2(n− 1) cuts) based on the ideas of the structural properties of intervals of minimum
density and of separable intervals in a minimal interval of minimum density. Our mechanism
can be extended to the related pie-cutting problem [7]. We believe that, if we replace

if X = [x′, x′′) is nonseparable then AllocateInterval(S,X,DS);
else // there is a separable interval in X

in Procedure CutMinInterval(S,X,DS) (where S = N(X) and DS = CN(X)) with
construct the bipartite graph GN(X) defined in Lemma 9;
if GN(X) has a perfect matching then AllocateInterval(S,X,DS);
else // there is a separable interval in X

then we can decrease the number of cuts in many cases without increasing time complexity
since we can decide whether GN(X) has a perfect matching quite efficiently based on the
structures of GN(X) and a greedy plane sweep method. Note that, if GN(X) has no perfect
matching then X = [ x′, x′′) is separable by Lemma 9. By this modification, for the example
in Figure 3, we have allocation (A1 = [0, 0.04) + [0.34, 0.35) + [0.85, 0.9), A2 = [0.04, 0.14),
A3 = [0.14, 0.24), A4 = [0.24, 0.34), A5 = [0.35, 0.45), A6 = [0.45, 0.55), A7 = [0.55, 0.65),
A8 = [0.65, 0.75), A9 = [0.75, 0.85), A10 = [0.9, 1)) with 11 cuts, while without modification,
we have allocation (A1 = [0, 0.04)+[0.34, 0.35)+[0.85, 0.9), A2 = [0.05, 0.15), A3 = [0.15, 0.25),
A4 = [0.04, 0.05) + [0.25, 0.34), A5 = [0.39, 0.49), A6 = [0.49, 0.59), A7 = [0.35, 0.39) +
[0.59, 0.65), A8 = [0.67, 0.77), A9 = [0.65, 0.67) + [0.77, 0.85), A10 = [0.9, 1)) with 14 cuts.

We also believe that our mechanism could be extended for solving the more general
cake-cutting problem where valuation functions of players are all piecewise uniform.
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