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Abstract

We initiate the study of the Diverse Pair of (Maximum/ Perfect) Matchings problems which
given a graph G and an integer k, ask whether G has two (maximum/perfect) matchings whose
symmetric difference is at least k. Diverse Pair of Matchings (asking for two not necessarily
maximum or perfect matchings) is NP-complete on general graphs if k is part of the input, and
we consider two restricted variants. First, we show that on bipartite graphs, the problem is
polynomial-time solvable, and second we show that Diverse Pair of Maximum Matchings is
FPT parameterized by k. We round off the work by showing that Diverse Pair of Matchings
has a kernel on O(k2) vertices.
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26:2 Diverse Pairs of Matchings

1 Introduction

Matching is one of the most fundamental notions in graph theory whose study can be traced
back to the classical theorems of Kőnig [19] and Hall [13]. The first chapter of the book of
Lovász and Plummer [21] devoted to matching contains a nice historical overview on the
development of the matching problem. The problem of finding a maximum size or a perfect
matching are the classical algorithmic problems; an incomplete list of references covering the
history of algorithmic improvements on these problems is [8, 16, 18, 20, 23, 27, 31, 22], see
also the book of Schrijver [28] for a historical overview of matching algorithms.

In this paper we initiate the algorithmic study of the diverse matching problem. In this
problem, we are to find a pair of matchings which are different from each other as much as
possible. More formally, we want the size of their symmetric difference to be large. Recall
that the symmetric difference of two sets X,Y is defined as

X4Y = (X \ Y ) ∪ (Y \X).

We study the following problem.

Input: Graph G, integer k

Question: Does G contain two (maximum/perfect) matchings M1, M2 such that
|M14M2| ≥ k?

Diverse Pair of (Maximum/Perfect) Matchings

Diversity-enhancing is one of the key goals in developing professional social matching
systems [25]. For example, consider the problem of assigning agents to perform various tasks
(say, bus drivers to bus routes or cleaners to different locations). To avoid monotony, which
is one of the declared enemies of happiness at work, the practice is to reassign agents to
new tasks. In this case, we would be very much interested in designing a schedule with
diverse assignments. To give another illustration, assume that a teacher should give a series
of assignments to students that are expected to work in pairs. From one side, the teacher
wishes to follow the preferences of the students given by a graph, but from the other side, it
is preferable to facilitate collaboration between different students. This leads to the problem
of finding diverse perfect matchings in the preference graph.

We now briefly motivate why finding a diverse set of maximum/perfect matchings in a
graph would be of interest. From a graph-theoretic point of view, in the simplest model,
one maximum/perfect matching is as good as the other. But in a practical setting this is
rarely the case since there is a large amount of side information that determines how an
assignment (for instance agents to tasks) is received. Some side information is modeled
by maximum weight matchings, or via notions from social choice theory such as stable or
envy free matchings [4]. Nevertheless, this approach has its natural limitations; some side
information may complicate the model, rendering it intractable, while some side information
may even be impossible to include in a model.

For instance, if we allow agents to have incomplete preference lists or ties, then the
corresponding maximum stable matching problem is NP-hard, even in severely restricted
cases [26]. Other side information may be a priori unknown, and only once presented with a
number of alternatives, we may be able to decide which assignment is the most desirable. In
that case it is key that the presented alternatives are diverse, otherwise the insight we gain
is comparable to that of having a single fixed assignment and is therefore negligible. Similar
motivations for finding diverse solution sets in combinatorial problems can be found in [2, 3].
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Our results and methods. While a perfect or a maximum matching in a graph can be found
in polynomial time, this is not true anymore for the diverse variant of the problem, even
in graphs of maximum degree three. Matching problems are often considered on bipartite
graphs, and we show that Diverse Pair of Maximum Matchings remains polynomial-time
solvable in this case.

The intractability of the problem in the general case also suggests to look at it from
the perspective of parameterized complexity [7, 5] and kernelization [11]. We show that the
problem is FPT parameterized by k, by giving a randomized 4k · nO(1) time algorithm, and
we give a derandomized version of this algorithm that runs in time 4kkO(log k) ·nO(1). Finally,
we show that the problem asking for a diverse pair of (not necessarily maximum) matchings
admits a kernel on O(k2) vertices.

The randomized algorithm for Diverse Pair of Maximum Matchings is obtained via
a combination of color-coding [1] and the polynomial-solvability of finding a minimum cost
maximum matching in a graph [12]. We derandomize this algorithm via universal sets [24].
The kernelization algorithm for Diverse Pair of Matchings first finds a maximal matching
M in the graph. If M is large enough, then we can conclude that we are dealing with a
Yes-instance by splitting M into two matchings. Otherwise, the endpoints of M form a
vertex cover of the input graph which allows us to shrink the graph without changing the
answer to the problem.

Related work. A well-studied generalization of matchings in graphs is that of a b-matching,
where b is an integer; see for instance [21]. Given a graph G and an integer b, a b-matching
is an assignment of an integer µ(e) to each edge e of G, such that for each vertex v, the
sum over all its incident edges ev of µ(ev) is bounded by b. The size of a b-matching is
the sum over all edges e in G of µ(e). The 1-matchings of a graph precisely correspond its
matchings (via the edges e with µ(e) = 1). However, a 2-matching is not always the union of
two matchings: take for instance a triangle. Then, assigning a value of 1 to all its edges gives
a 2-matching; while any matching can have at most one edge from a triangle. Therefore,
finding diverse pairs of matchings is not the same as finding 2-matchings.

Finding q pairwise disjoint matchings of large total size corresponds to finding large
subgraphs that can be q-edge colored, each matching constitutes a color class. The Maximum
q-Edge Colorable Subgraph problem asks for the largest edge-subgraph that can be
properly colored with q colors. This problem is known to be hard to approximate [9].

Let G be a graph with edge set E and maximum degree ∆. Any proper edge coloring
requires at least ∆ colors. On the other hand, Vizing’s Theorem [32] asserts that every graph
can be properly edge-colored with ∆ + 1 colors. A consequence of this result is that (any)
graph G contains a ∆-colorable subgraph with at least ∆

∆+1 |E| edges; which is tight when ∆
is even as witnessed by the complete graph K∆+1. This motivated research in improving
the lower bound when ∆ is odd, or when ∆ is even and K∆+1 is excluded. Kamiński and
Kowalik [17] gave several improved lower bounds for the cases when ∆ ≤ 7.

The difference with Maximum 2-Edge Colorable Subgraph is that in Diverse Pair
of Maximum Matchings, we require matchings (or: color classes) to be of maximum size,
while in the former problem, we only want to maximize the total number of edges in the two
color classes.

A recent manuscript due to Fellows [10] initiated the study of finding diverse sets of
solutions to NP-hard combinatorial problems from the viewpoint of parameterized complex-
ity [2, 3]. Concretely, Baste et al. [2] showed that a large class of vertex subset problems
that are FPT parameterized by treewidth have FPT algorithms in their diverse variant,
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26:4 Diverse Pairs of Matchings

parameterized by treewidth plus the number of requested solutions. Moreover, Baste et
al. [3] showed analogous results for hitting set problems parameterized by solution size plus
number of requested solutions. Our work contrasts this in that the classical variant of the
problem we consider is polynomial-time solvable, while its diverse variant becomes NP-hard,
even when asking for only two solutions.

Very recently, Hanaka et al. [14] gave efficient algorithms for finding diverse sets of
solutions to several other combinatorial problems. This includes an FPT-algorithm for finding
diverse sets of matchings in a graph. However, their result is different from ours. We give
an FPT-algorithm for finding a diverse pair of maximum or perfect matchings, and our
parameter is the size of the symmetric difference between the matchings, in other words, the
diversity measure. In [14], the parameter is the size of the matchings plus the number of
requested solutions, and the matchings do not need to be of maximum cardinality. Note that
in this setting, the maximum possible diversity is bounded in terms of the parameter as well.
In the case that we drop the maximum cardinality requirement on the matchings, we even
obtained a polynomial kernel for finding a diverse pair of matchings. By the same arguments
given in the proof of Theorem 7, we can derive that the problem of finding a diverse set of
r matchings of size k parameterized by k + r considered in [14] is not only FPT but has a
polynomial kernel.

2 Preliminaries

We assume the reader to be familiar with basic notions in graph theory and parameterized
complexity and refer to [6] and [7, 5, 11], respectively, for the necessary background.

All graphs considered in this work are finite, undirected, simple, and without self-
loops. For a graph G we denote by V (G) its set of vertices and by E(G) its set of edges.
For an edge uv ∈ E(G), we call u and v its endpoints. For a vertex v of a graph G,
NG(v) ..= {w ∈ V (G) | vw ∈ E(G)} is the set of neighbors of v in G, and the degree of v is
degG(v) ..= |NG(v)|.

The subgraph induced by X, denoted by G[X], is the graph (X, {uv ∈ E(G) | u, v ∈ X}).
For a set of edges F ⊆ E(G), we let G− F ..= (V (G), E(G) \ F ).

A graph G is called empty if E(G) = ∅. A set of vertices S ⊆ V (G) is an independent
set if G[S] is empty. A set S ⊆ V (G) is a vertex cover if V (G) \ S is an independent set. A
graph G is bipartite if its vertex set can be partitioned into two nonempty independent sets.

NP-Completeness. We briefly argue the NP-completeness of Diverse Pair of Maxim-
um/Perfect Matchings on 3-regular graphs which was observed in [29]. Membership
in NP is clear. To show NP-hardness, we reduce from 3-Edge Coloring on 3-regular
graphs which is known to be NP-complete [15]. Let G be a 3-regular graph on n vertices
(note that this implies that n is even), and consider (G,n) as an instance of Diverse Pair
of Matchings. Suppose that G has a proper 3-edge coloring. Since G is 3-regular, all
three colors appear on an incident edge of each vertex. Therefore, a color class is a perfect
matching of G, and we can take two color classes as our solution to (G,n). Conversely, a
solution (M1,M2) to (G,n) forms two disjoint matchings of size n/2 each. This implies that
both M1 and M2 are perfect, and therefore maximum matchings. Since each vertex in G has
degree three, this means that M3 ..= E(G) \ (M1 ∪M2) also forms a perfect matching in G,
and therefore (M1,M2,M3) is a proper 3-edge coloring of G.

I Observation 1 ([29]). Diverse Pair of (Maximum/Perfect) Matchings is NP-
complete on 3-regular graphs.
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3 A Polynomial-Time Algorithm for Bipartite Graphs

In this section we show that Diverse Pair of Maximum Matchings is solvable in
polynomial time on bipartite graphs via a reduction to the 2-Factor problem.

I Theorem 2. Diverse Pair of Maximum Matchings is polynomial-time solvable on
bipartite graphs.

Proof. Let (G, k) be a given instance of Diverse Pair of Maximum Matchings, where G
is bipartite. We show how to reduce this instance to an equivalent instance of the problem of
finding maximum-weight 2-factor of a larger graph G′. A 2-factor of G′ is a subgraph of G′ in
which the degree of each vertex is equal to 2. Equivalently, 2-factor of G′ is a vertex-disjoint
cycle cover of G′. The problem of finding a maximum-weight factor of a graph is well-known
to be solvable in polynomial time using the Tutte’s reduction to the problem of finding a
maximum-weight perfect matching [21, 30]. Our graph G′ is an edge-weighted graph with
parallel edges. We note that the algorithm of finding a maximum-weight factor works fine
with such graphs.

We also assume that the two parts of G are of equal size. If that is not true, introduce
isolated vertices to the smaller part of G. This does not change the matching structure in G,
so the obtained instance is equivalent to the initial one. Denote the number of vertices in
each part of G by n, so |V (G)| = 2n.

We now show how to construct G′ given G. The graph G′ is defined on the same vertex
set as G is, i.e. V (G′) = V (G). For each edge uv of G, G′ has two parallel edges between u
and v. One of these edges is assigned weight 1, and the other is assigned weight 0. In other
words, edges of G are doubled in G′. Additionally, for each pair of vertices u, v from distinct
parts of G that are not adjacent in G, G′ has two parallel edges of weight −n between u and
v. Thus, G′ is a complete bipartite graph with doubled edges, and weights of these edges
depend on what edges are present in G. This finishes the construction of G′.

B Claim 2.1. Let M1 and M2 be a pair of maximum matchings in G that maximize the value
of |M1∪M2|. Then the maximum weight of a 2-factor of G′ equals |M1∪M2|−2n ·(n−|M1|).

Proof. We first show that G′ has a 2-factor of weight at least |M1 ∪M2| − 2n · (n− |M1|).
Denote this 2-factor by F . It is constructed as follows. For each edge of M1 take the
corresponding edge of weight 1 in G′ into F . Then, for each edge in M2 \M1 take the
corresponding edge of weight 1 into F . For each edge in M1 ∩M2, take the corresponding
edge of weight 0 in G′ into F . Clearly, F is now of weight |M1 ∪M2|, but it is not yet a
2-factor of G′, unless M1 and M2 are perfect matchings.

There are n− |M1| vertices in each part of G that are not saturated by M1. Take these
2(n− |M1|) vertices and take an arbitrary matching between them in G′. All edges of this
matching are of weight −n, otherwise M1 is not maximum in G. Add the edges of this
matching into F . Repeat the same for M2, i.e. take an arbitrary matching in G′ between
vertices that are not saturated by M2 and add all its edges into F . The edges of weight −n
of the matchings for M1 and M2 may coincide. If an edge of weight −n is presented in both
matchings, take both its parallel copies into F . It is easy to see that F is now a 2-factor of
G′, as it consists of edges of two perfect matchings between two parts. The weight of F is
|M1 ∪M2| − n(n− |M1|)− n(n− |M2|) = |M1 ∪M2| − 2n · (n− |M1|).

It is left to show that F is indeed a maximum-weight 2-factor of G′. To see this, take a
maximum-weight factor F ′ of G′ and assume that the weight of F ′ is greater than the weight
of F . Note that F ′ consists of 2n edges. As discussed above, F ′ forms a disjoint union of
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simple cycles on the vertices of G′, where each vertex belongs to exactly one cycle. Note that
some of these cycles may consist of two parallel edges. Since G′ is bipartite, all of these cycles
have even length. Color the edges of F ′ with two colors so that no two consecutive edges
have the same color on a cycle. Then the edges of the same color form a perfect matching in
G′. Denote these matchings by F ′1 and F ′2. Let M ′1 be the set of original edges of G which
copies are present in F ′1. Let M ′2 be the set of edges of G obtained analogously from F ′2.
Copies of edges in M ′1 and M ′2 have weights 0 or 1 in G′. All other edges in F ′1 and F ′2 are of
weight −n.

Observe that if an edge of G is present in both M ′1 and M ′2, then one of its copies in F ′
has weight 0, and the other has weight 1. Thus, the total weight of 0- and 1-weighted edges
in F ′ is at most |M ′1 ∪M ′2|. The number of edges of weight (−n) in F ′ is 2n− |M ′1| − |M ′2|.
Thus, the total weight of F ′ is at most |M ′1 ∪M ′2| − n(2n− (|M ′1|+ |M ′2|)).

We assumed that the weight of F ′ is greater than the weight of F . From this we get that
(|M ′1 ∪M ′2| − |M1 ∪M2|)− n(2|M1| − (|M ′1|+ |M ′2|)) > 0 holds; equivalently, that

(|M ′1 ∪M ′2| − |M1 ∪M2|) > n(2|M1| − (|M ′1|+ |M ′2|)). (1)

Recall thatM ′1 andM ′2 are matchings in G. SupposeM ′1 andM ′2 are maximum matchings
in G. Then the right hand side of Equation 1 evaluates to zero, and – by the definition of M1
and M2 – the left hand side is at most zero. Hence Equation 1 does not hold, a contradiction.
So at least one of M ′1 and M ′2 is not a maximum matching. Thus we get that

|M ′1|+ |M ′2| < 2|M1| (2)

holds; equivalently, that |M ′1|+ |M ′2| − |M1| < |M1| holds. By construction we have that the
size of any matching in G is at most n. In particular |M1| ≤ n, and so we have that

|M ′1|+ |M ′2| − |M1| < n (3)

holds. Equation 2 can be restated as 2|M1| − (|M ′1|+ |M ′2|) > 0. Now,

2|M1| − (|M ′1|+ |M ′2|) ≥ 1 (4)

holds. Substituting Equation 4 in Equation 1 we get that

(|M ′1 ∪M ′2| − |M1 ∪M2|) > n (5)

holds. Observe now that |M ′1|+ |M ′2| ≥ |M ′1 ∪M ′2| and |M1| ≤ |M1 ∪M2| hold. Substituting
these in Equation 5 we get that ((|M ′1|+|M ′2|)−|M1|) > n holds, which contradicts Equation 3.

C

Now let M1,M2 be two arbitrary maximum matchings of G, and let µ(G) denote the
size of a maximum matching of G. Thus |M1| = |M1| = µ(G). By the definition of
symmetric difference we have that |M14M2| = |M1 \ (M1 ∩M2)| + |M2 \ (M1 ∩M2)| =
|M1| − |M1 ∩M2|+ |M2| − |(M1 ∩M2)| = 2µ(G)− 2|M1 ∩M2|. And since |(M1 ∩M2)| =
|M1|+ |M2| − |M1 ∪M2| = 2µ(G)− |M1 ∪M2| we get that |M14M2| = 2µ(G)− 2(2µ(G)−
|M1 ∪M2|) = 2(|M1 ∪M2| − µ(G)). Since µ(G) is an invariant of graph G this means that
the maximum value of |M14M2| is attained by exactly those pairs of maximum matchings
M1,M2 which maximize the value |M1 ∪M2|. Further, let M?

1 ,M
?
2 be a pair of maximum

matchings such that |M?
1 ∪M?

2 | is the maximum among all pairs of maximum matchings.
Then we have that the maximum value of |M14M2|, over all pairs of maximum matchings,
equals 2(|M?

1 ∪M?
2 | − µ(G)).
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From Claim 2.1 we get that we can compute the value |M?
1 ∪M?

2 | – though not the
matchingsM?

1 andM?
2 – in polynomial time, by computing the weight of a maximum 2-factor

in a derived graph. We can find the maximum matching size µ(G) of G in polynomial time
as well. So we can compute the number 2(|M?

1 ∪M?
2 | − µ(G)) in polynomial time. By the

arguments in the previous paragraph, checking whether 2(|M?
1 ∪M?

2 | − µ(G)) ≥ k suffices to
solve the bipartite instance (G, k) of Diverse Pair of Maximum Matchings. J

4 FPT-Algorithm for Diverse Pair of Maximum Matchings

In this section we give an FPT-algorithm for Diverse Pair of Maximum Matchings
parameterized by k. We first give a randomized algorithm based on the color-coding technique
of Alon, Yuster and Zwick [1] in Theorem 3, and then derandomize this algorithm at the
cost of a slightly slower runtime in Corollary 6.

I Theorem 3. Diverse Pair of Maximum Matchings parameterized by k is FPT. More
precisely, there is a randomized algorithm that in time 4k ·nO(1) finds a solution with constant
probability, if it exists, and correctly concludes that there is no solution otherwise, where n
denotes the number of vertices of the input graph.

Proof. Let G be the graph of the given instance. First, we compute a maximum matching
M in G in polynomial time [8, 12, 23]. We check if there is a solution using M as one of the
two matchings.

B Claim 3.1. Let G be a graph and M a maximum matching of G. One can determine
in polynomial time whether G has a maximum matching M ′ such that |M 4M ′| ≥ k, and
construct such a matching if it exists.

Proof. The algorithm is as follows. Let c : E(G)→ {0, 1} be a cost function of the edges of
G, defined as

c(e) ..=
{

1, if e ∈M
0, otherwise ∀e ∈ E(G)

Let M ′ be a minimum cost maximum matching in G using the cost function c. Such a
matching M ′ can be found in polynomial time [12]. Due to the cost function c, a minimum
cost maximum matching in G is one that minimizes the number of edges from M . Therefore,
M ′ maximizes the symmetric difference with M , over all maximum matchings of G. We
verify whether |M 4M ′| ≥ k, and if so, return M ′. Otherwise, we correctly conclude that
there is no matching satisfying the conditions of the claim. C

Due to Claim 3.1, we may now assume that for each maximum matching M ′ of G,
|M ′4M | ≤ k. We will exploit this property to give an algorithm using color coding (see
e.g. [5, Chapter 5]). We color the edges of G uniformly at random with colors red and blue.
For ease of exposition, we also use the notation “red” and “blue” to denote the set of edges
that received color red and blue, respectively.

Suppose that there is a solution (M1,M2). We say that a coloring as above is good for
(M1,M2), if the edges in M1 \M2 and M2 \M1 are colored red and blue, respectively. We
call an edge coloring good, if it is good for some solution. To be able to show that trying 4k

colorings to achieve constant success probability suffices, we bound the size of these sets.
By Claim 3.1, we know that |M 4Mr| ≤ k for all r ∈ {1, 2}. Since |M14M2| is the

Hamming distance between sets, by the triangle inequality,

|M14M2| ≤ |M14M |+ |M 4M2| ≤ 2k

and |M1 \M2|+ |M2 \M1| ≤ 2k. This leads to the following observation.
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26:8 Diverse Pairs of Matchings

B Observation 3.2. Let G be a graph, let M be a maximum matching of G, and suppose
that for all maximum matchings M ′ of G, |M 4M ′| ≤ k. Suppose the edges of G are colored
uniformly at random with colors red and blue. Suppose there is a solution (M1,M2). Then,
with probability at least 2−2k, the edge coloring is good for (M1,M2).

Suppose that our instance is a Yes-instance, and that the edges of G are colored with a
good coloring. We show how to obtain the solution in polynomial time from the edge-colored
graph.

B Claim 3.3. Let G be a graph, M a maximum matching of G, and suppose that the edges
of G are colored uniformly at random with colors red and blue. There is an algorithm that
runs in polynomial time, and if the edge-coloring is good, finds two maximum matchings M1
and M2 in G such that |M14M2| ≥ k, and reports No otherwise.

Proof. The idea is similar to the one given in the algorithm of Claim 3.1. To find M1, we
define the following cost function c1 : E(G)→ {0, 1}:

c1(e) ..=
{

1, if e ∈ blue
0, if e ∈ red ∀e ∈ E(G).

Then, we find a minimum-cost maximum matching M1 of G with the cost function c1 in
polynomial time [12].

Next, to find M2, we consider the cost function c2 : E(G)→ {0, 1}, where

c2(e) ..=
{

1, if e ∈ red
0, if e ∈ blue ∀e ∈ E(G),

and find a minimum-cost maximum matching M2 of G with cost function c2 in polynomial
time [12]. Now, if |M14M2| ≥ k, then we return (M1,M2), and we say No, otherwise.

We now argue the correctness of the algorithm in the case that the edge-coloring of G was
good. In this case, there is a solution (M∗1 ,M∗2 ) such that the edges of M∗1 \M∗2 are red and
the edges ofM∗2 \M∗1 are blue, and |M∗1 4M∗2 | ≥ k. We claim that |M14M2| ≥ |M∗1 4M∗2 |.

To obtain a contradiction, assume that |M14M2| < |M∗1 4M∗2 |.
Since M1, M2, M∗1 , and M∗2 are maximum matchings of G, they have the same size.

Therefore, we have that

|M14M2|+ 2|M1 ∩M2| = |M1|+ |M2| = |M∗1 |+ |M∗2 | = |M∗1 4M∗2 |+ 2|M1 ∩M2|.

Since |M14M2| < |M∗1 4M∗2 |, we obtain that

|M1 ∩M2| > |M∗1 ∩M∗2 |. (6)

Because M∗1 \M∗2 ⊆ red, c1(M∗1 ) = |M∗1 ∩ blue| = |(M∗1 ∩M∗2 ) ∩ blue| by the definition of
the cost function c1. Symmetrically, c2(M∗2 ) = |(M∗1 ∩M∗2 ) ∩ red|. Hence,

c1(M∗1 ) + c2(M∗2 ) = |(M∗1 ∩M∗2 ) ∩ blue|+ |(M∗1 ∩M∗2 ) ∩ red| = |M∗1 ∩M∗2 |. (7)

Notice that c1(M1) = |M1 ∩ blue| ≥ |(M1 ∩ M2) ∩ blue| and c2(M2) = |M2 ∩ red| ≥
|(M1 ∩M2) ∩ red|. Therefore,

c1(M1) + c(M2) ≥ |(M1 ∩M2) ∩ blue|+ |(M1 ∩M2) ∩ red| = |M1 ∩M2|. (8)

Combining (6)–(8), we obtain that

c1(M1) + c2(M2) ≥ |M1 ∩M2| > |M∗1 ∩M∗2 | = c1(M∗1 ) + c2(M∗2 ). (9)
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However, c1(M1) ≤ c1(M∗1 ) and c2(M2) ≤ c2(M∗2 ) by the definition of these matchings and

c1(M1) + c2(M2) ≤ c1(M∗1 ) + c2(M∗2 )

contradicting (9). We conclude that |M14M2| ≥ |M∗1 4M∗2 |. C

Algorithm 1 The algorithm of Theorem 3.

Input :Graph G, integer k
Output : If exists, with constant probability, a pair M1, M2 of maximum matchings

of G such that |M14M2| ≥ k, No otherwise.
1 Compute a maximum matching M of G;
2 if there is a maximum matching M ′ in G such that |M 4M ′| ≥ k then
3 return (M,M ′);
4 end
5 else
6 repeat 22k times
7 Color the edges of G uniformly at random with colors red and blue;
8 run the algorithm of Claim 3.3;
9 if the algorithm returned (M1,M2) then return (M1,M2);

10 return No;
11 end

The outline of the procedure is given in Algorithm 1. It is well-known that a maximum
matching of a graph can be found in polynomial time, therefore line 1 takes polynomial
time. By Claims 3.1 and 3.3, lines 2 and 8, respectively, take polynomial time. Moreover, by
Observation 3.2, if there is a solution, then with probability at least 2−2k an edge-coloring as
constructed in line 8 is good, in which case the algorithm finds the solution by Claim 3.3. It
is clear that repeating this step 22k times yields a constant success probability. J

The algorithm of Theorem 3 can be derandomized by standard tools (see, e.g., [5,
Chapter 5]). To do so, we use the following notion of (Ω, k)-universal sets, which will replace
the random coloring step in the above algorithm by deterministic choices of colorings.

I Definition 4 ((Ω, k)-universal set). Let Ω be a set and k be a positive integer with k ≤ |Ω|.
An (Ω, k)-universal set is a family U of subsets of Ω such that for any size-k set S ⊆ Ω, the
family US

..= {A ∩ S : A ∈ U} contains all subsets of S.

We will use the following construction of a small universal set due to Naor et al. [24].

I Theorem 5 ([24], see also Theorem 5.20 in [5]). For any set Ω and integer k ≤ |Ω|, one can
construct an (Ω, k)-universal set of size 2kkO(log k) log(|Ω|) in time 2kkO(log k)|Ω| log(|Ω|).

This immediately gives the following corollary.

I Corollary 6. There is a deterministic 4kkO(log k) ·nO(1) time algorithm that solves Diverse
Pair of Maximum Matchings, where n denotes the number of vertices in the input graph.

ISAAC 2020
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G

Mu

X

v

Xu

Figure 1 Illustration of the situation in the proof of Claim 7.1. The existence of v implies that
|Xu| ≥ 2k, and since V (M) is a vertex cover of G, the vertices in Xu are pairwise non-adjacent.

5 Polynomial kernel for Diverse Pair of Matchings

We now show that the Diverse Pair of Matchings problem, asking for a pair of not ne-
cessarily maximum matchings has a kernel on O(k2) vertices. Note that the NP-completeness
of this problem is captured in Observation 1 as well. Moreover, we would like to remark
that this variant of the problem is only interesting in the case when the input graph has
no matching of size k or more: otherwise, a maximum matching (which can be found in
polynomial time) forms a trivial solution together with an empty matching.

I Theorem 7. Diverse Pair of Matchings parameterized by k has a kernel on O(k2)
vertices.

Proof. Let (G, k) be an instance of Diverse Pair of Matchings. We provide a procedure
that either correctly concludes that (G, k) is a Yes-instance, or marks a set of O(k2) vertices
X ⊆ V (G) such that (G[X], k) is equivalent to (G, k).

First, let M be a maximal matching of G. If |M | ≥ k, then for any 2-partition (M1,M2)
of M , we have that |M14M2| = |M | ≥ k, and therefore (G, k) is a Yes-instance.

Suppose that |M | < k and therefore, |V (M)| < 2k. Since M is maximal, V (M) is a
vertex cover of G, and therefore, E(G− V (M)) = ∅. This motivates the following procedure
that produces a set of marked vertices X ⊆ V (G), to which we can restrict the instance
without changing the answer.
1. Initialize X ..= V (M).
2. For each v ∈ V (M), add a maximal subset of NG(v) \ V (M) of size at most 2k to X.

Let X denote the set constructed according to the two previous steps. We show that
(G[X], k) is equivalent to (G, k).

B Claim 7.1. Let G, k, M , and X be as above. Then, (G, k) is a Yes-instance of Diverse
Pair of Matchings if and only if (G[X], k) is a Yes-instance of Diverse Pair of
Matchings.

Proof. Since G[X] is a subgraph of G, it is clear that if (G[X], k) is a Yes-instance, then so
is (G, k).

Now suppose that (G, k) is a Yes-instance and let (M1,M2) with |M14M2| ≥ k be a
solution. If M1 ∪M2 ⊆ E(G[X]), then (M1,M2) is also a solution to (G[X], k), so suppose
that for some r ∈ {1, 2}, there is an edge uv ∈Mr such that v ∈ V (G)\X. Since V (M) ⊆ X
and V (M) is a vertex cover of G, we may assume that u ∈ V (M). Since v is a neighbor of u
in V (G) \X, the above marking algorithm added a set of 2k neighbors of u in V (G) \ V (M)
to X, denote that set by Xu. For an illustration see Figure 1.
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Now, since Xu ⊆ V (G) \ V (M), and since V (M) is a vertex cover of G, we have that
E(G[Xu]) = ∅. This means in particular that each edge in M1∪M2 has at most one endpoint
in Xu. Therefore, if all vertices in Xu are the endpoint of some edge in either M1 or in M2,
then |M1 ∪M2| ≥ 2k, which implies that at least one of M1 and M2 contains at least k edges.
Suppose w.l.o.g. that |M1| ≥ k. As above, any 2-partition (M ′1,M ′2) of M1 is such that
|M ′14M ′2| = |M1| ≥ k, therefore (M ′1,M ′2) is a solution to (G[X], k). Otherwise, there is a
vertex x ∈ Xu that is not the endpoint of any edge in M1 ∪M2. We obtain M?

r by removing
uv and adding ux. Then, (M?

r ,M3−r) is still a solution to (G, k), and it uses one more edge
in G[X]. Repeatedly applying this argument shows that (G[X], k) is a Yes-instance. C

The previous claim asserts the correctness of the procedure. Since |V (M)| < 2k, and for
each vertex in V (M), we added at most 2k more vertices to X, we have that |X| = O(k2).
A maximal matching can be found greedily, and it is clear that the marking procedure runs
in polynomial time. This yields the result. J

6 Conclusion

In this work, we initiated the study of algorithmic problems asking for diverse pairs of
(maximum/perfect) matchings, where diverse means that their symmetric difference has to be
at least some value k. These problems are NP-complete on 3-regular graphs, and we showed
that on bipartite graphs, they become polynomial-time solvable; while parameterized by k,
they are FPT, and the problem asking for two diverse (not necessarily maximum) matchings
admits a polynomial kernel.

The notion of diverse matchings opens up many natural further research directions. In
this work, we considered the complexity of finding pairs of diverse matchings. What happens
when we ask for a larger number of matchings? In [2, 3], the measure of diversity of a set
of solutions is the sum over all pairs of their symmetric difference. In this setting, we can
obtain an FPT-algorithm parameterized by the number of requested matchings plus the
“diversity target” using the same approach as in our FPT-algorithm for Diverse Pair of
Maximum Matchings. However, if we ask for a set of matchingsM such that for each pair
M1,M2 ∈ M, |M14M2| ≥ k, then the situation is much less clear, even asking for three
solutions. Call the corresponding problem Diverse Triples of Maximum Matchings. Is
it FPT parameterized by k?

While the symmetric difference is a natural measure of diversity of two matchings, one
might consider other measures as well. The diversity measure at hand may affect the
complexity of the problem, so it would be interesting to see if there is an (easily computable)
diversity measure under which Diverse Pair of Maximum/Perfect Matchings becomes
W[1]-hard.
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