
Multistage s-t Path: Confronting Similarity with
Dissimilarity in Temporal Graphs∗

Till Fluschnik
Technische Universität Berlin, Algorithmics and Computational Complexity, Germany
till.fluschnik@tu-berlin.de

Rolf Niedermeier
Technische Universität Berlin, Algorithmics and Computational Complexity, Germany
rolf.niedermeier@tu-berlin.de

Carsten Schubert
Technische Universität Berlin, Algorithmics and Computational Complexity, Germany
carsten.gm.schubert@campus.tu-berlin.de

Philipp Zschoche
Technische Universität Berlin, Algorithmics and Computational Complexity, Germany
zschoche@tu-berlin.de

Abstract

Addressing a quest by Gupta et al. [ICALP’14], we provide a first, comprehensive study of finding
a short s-t path in the multistage graph model, referred to as the Multistage s-t Path problem.
Herein, given a sequence of graphs over the same vertex set but changing edge sets, the task is to
find short s-t paths in each graph (“snapshot”) such that in the found path sequence the consecutive
s-t paths are “similar”. We measure similarity by the size of the symmetric difference of either the
vertex set (vertex-similarity) or the edge set (edge-similarity) of any two consecutive paths. We
prove that these two variants of Multistage s-t Path are already NP-hard for an input sequence of
only two graphs and maximum vertex degree four. Motivated by this fact and natural applications
of this scenario e.g. in traffic route planning, we perform a parameterized complexity analysis.
Among other results, for both variants, vertex- and edge-similarity, we prove parameterized hardness
(W[1]-hardness) regarding the parameter path length (solution size) for both variants, vertex- and
edge-similarity. As a further conceptual study, we then modify the multistage model by asking for
dissimilar consecutive paths. One of our main technical results (employing so-called representative
sets known from non-temporal settings) is that dissimilarity allows for fixed-parameter tractability for
the parameter solution size, contrasting the W[1]-hardness of the corresponding similarity case. We
also provide partially positive results concerning efficient and effective data reduction (kernelization).

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Graph algorithms analysis

Keywords and phrases Temporal graphs, shortest paths, consecutive similarity, consecutive dissim-
ilarity, parameterized complexity, kernelization, representative sets in temporal graphs

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2020.43

Related Version A full version of the paper is available at https://arxiv.org/abs/2002.07569.

Funding Till Fluschnik: Supported by DFG, project TORE, NI 369/18.

∗ Some results are based on the third author’s bachelor thesis [34].

© Till Fluschnik, Rolf Niedermeier, Carsten Schubert, and Philipp Zschoche;
licensed under Creative Commons License CC-BY

31st International Symposium on Algorithms and Computation (ISAAC 2020).
Editors: Yixin Cao, Siu-Wing Cheng, and Minming Li; Article No. 43; pp. 43:1–43:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2203-4386
mailto:till.fluschnik@tu-berlin.de
https://orcid.org/0000-0003-1703-1236
mailto:rolf.niedermeier@tu-berlin.de
mailto:carsten.gm.schubert@campus.tu-berlin.de
https://orcid.org/0000-0001-9846-0600
mailto:zschoche@tu-berlin.de
https://doi.org/10.4230/LIPIcs.ISAAC.2020.43
https://arxiv.org/abs/2002.07569
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 Multistage s-t Path

1 Introduction

Finding short paths is perhaps the most fundamental task in algorithmic graph theory and
network analysis. There are numerous applications, including operations research, robotics,
social network analysis, traffic and transportation, and VLSI design. More specifically, we
are concerned with finding a short path connecting two designated vertices s and t. It is
fair to say that for static graphs the algorithmics (also from a practical side) of finding
short(est) paths is very well understood. This is much less so when considering path finding
in temporal graphs, that is, graphs whose edge sets change over time1, a framework that in
recent years received more and more attention in the field of network science. For instance,
models concerned with disease spreading or traffic routing typically are more realistic when
taking into account that links between network nodes change over time. In this work, we
study path finding in temporal graphs with the additional (“multistage”) assumption that
s-t-paths for consecutive snapshots of the temporal graph shall be sufficiently “similar”. We
confront this with the opposite view that s-t-paths for consecutive snapshots of the temporal
graph shall be significantly “dissimilar”. Herein, similarity can naturally be measured both
by comparing the edge sets of the s-t paths or the vertex sets of the s-t paths. Altogether,
we end up with four natural problem variants.

A few words on motivation. Both scenarios address different aspects of robustness in an
environment changing over time. Let us first look at the dissimilarity scenario. Here one
may think of a situation where because of necessary recovery or cleansing costs (in pandemic
times one may think of disinfection measures) one wants to avoid that subsequent “agents”
on the way from start to goal share too many parts of their routing paths. Moreover, one
may also think of applications in the context of so-called VIP routing, which address security
aspects [15, 17]. As to the similarity scenario, one may think of robustness in the sense of
“path maintenance”: every deviation from the path used before causes additional costs (set
up, preparation, checking) and thus shall be kept at a minimum. This can be interpreted in
the spirit of incremental changes (evolutionary rather than radical changes) [8, 23].

Formally, a temporal graph G = (V,E1, E2, . . . , Eτ) consists of a set V of vertices and
lifetime τ many edge sets E1, E2, . . . , Eτ over V . Finding an s-t path over time, also known
as temporal s-t path, has already been studied [35, 25]. There, however, a path may use
edges from

⋃τ
i=1Ei, while in our setting we search for path sequences consisting of τ paths,

one for each Ei. With focusing on similar and dissimilar paths here, however, we introduce
a new view on finding paths in temporal graphs. More specifically, addressing a quest of
Gupta et al. [22], one of the first studies on multistage problems, this paper initiates a study
of finding short s-t paths in the multistage model, that is, finding a short s-t path in each
snapshot (V,Ei) of the temporal graph G such that consecutive s-t paths do not differ too
much; formally, we have the following (Π refers to a requested property of a solution path):

Π Multistage s-t Path (Π-MstP)
Input: A temporal graph G = (V,E1, E2, . . . , Eτ), two distinct vertices s, t ∈ V ,

and two integers k, ` ∈ N0.
Question: Is there a sequence (P1, P2, . . . , Pτ) such that Pi is an s-t path in (V,Ei)

with |V (Pi)| ≤ k for all i ∈ {1, . . . , τ}, and distΠ(Pi, Pi+1) ≤ ` for all i ∈
{1, . . . , τ − 1}?

1 Holme and Saramäki [26, 27] and Michail [31] survey algorithmic aspects of temporal graphs.

T. Fluschnik, R. Niedermeier, C. Schubert, and P. Zschoche 43:3

The multistage model requests snapshot solutions such that (in time) consecutive ones are
similar to each other. Herein, similarity is measured by the symmetric difference of the sets
describing the consecutive snapshot solutions. For paths, there are two natural choices for
comparing: the sets of vertices and the sets of edges. Thus, we obtain two distance measures
defined as follows.

distV4V(Pi, Pi+1) := |V (Pi)4V (Pi+1)| (V4V-MstP),
distE4E(Pi, Pi+1) := |E(Pi)4E(Pi+1)| (E4E-MstP).

Confronting the similarity request of the multistage framework with a dissimilarity request
instead leads to the following.

distV∩V(Pi, Pi+1) := |(V (Pi) ∩ V (Pi+1)) \ {s, t}| (V∩V-MstP),
distE∩E(Pi, Pi+1) := |E(Pi) ∩ E(Pi+1)| (E∩E-MstP).

Note that we can easily compute each of the four distance measures in linear time.
In the following, we study the classical and parameterized complexity of all four vari-

ants E4E-MstP, V4V-MstP, V∩V-MstP, and E∩E-MstP. With performing a paramet-
erized complexity analysis, we do not only aim for a better understanding of the influence
of several natural problem parameters like path length k − 1 or the upper bound ` on the
distance values between consecutive snapshots, but we also want to find out where (and
why) the problem variants are potentially different from each other; in particular, this means
confronting the similarity (a.k.a. as classical multistage) view with the dissimilarity view.

Our contributions. We introduce four natural variants of the Multistage s-t Path
problem by employing four different ways to measure the distance between consecutive
solutions. Doing so, seemingly for the first time for multistage models in general, we
provide a seemingly first systematic study on the impact on the algorithmic complexity
when switching between edge and vertex distances on the one hand, and similarity versus
dissimilarity distance measurements on the other hand.

We prove all four problems to be NP-complete, even in the restricted case of only two
snapshots, each snapshot being series-parallel and the underlying graph being of maximum
degree four. We provide an extensive study on the parameterized complexity landscape of
the problems regarding the parameters k (path length), ` (maximum path distance between
consecutive snapshots), τ (lifetime), n (number of graph vertices), ν↓ (vertex cover number
of the “underlying graph”), and ∆↓ (maximum vertex degree in the underlying graph);
see Figure 1 for an overview. The results of our parameterized complexity analysis reveal a
clear distinction between similarity and dissimilarity. When parameterized by the maximum
number k of vertices in each s-t path, while E4E-MstP and V4V-MstP are W[1]-hard,
E∩E-MstP and V∩V-MstP are fixed-parameter tractable. To this end, we develop one
of the first uses of the technique of representative sets [32, 19] in the context of temporal
graphs. In addition, we show that, under standard complexity-theoretic assumptions, the
similarity problem V4V-MstP parameterized by the number of vertices has no polynomial
kernel, while the dissimilarity problem V∩V-MstP has one.

Related work. Our studies are within algorithmic temporal graph theory and, more spe-
cifically, contribute and extend a series of studies on the multistage model. Notably, all
previous studies (on various basic computational problems) within the multistage framework
adhere to the “similarity view”; we extend this by introducing also a “dissimilarity view”.

ISAAC 2020

43:4 Multistage s-t Path

τ `

`+ τ

k

k + τ

ν↓

ν↓ + τ

n

n+ τ

∆↓ + k

τ + ∆↓

p-NP-h

W[1]-h

XP, W[1]-h

FPT, noPK

FPT

FPT, PK

a,b,c a,b,c

e

d,e

e,f

d,h

j

d,p

rd,p

a,b
a,b,c

j,q

g,p

g

i,p

i

E4E-MstP
V4V-MstP

E∩E-MstP and
V∩V-MstP

a (Thm. 4.1) b (Cor. 4.4)
c (Thm. 4.5) d (Prop. 5.1)
e (Thm. 5.2) f (Cor. 5.3)
g (Thm. 5.7) h (Prop. 5.6)
i (Thm. 6.1) j (Thm. 6.3)
p (Thm. 6.7) q (Thm. 6.8)
r (trivial)

Figure 1 Overview of our results. “p-NP-h.”, “W[1]-h.”, “FPT”, “PK”, and “noPK” respectively
abbreviate para-NP-hard, W[1]-hard, fixed-parameter tractable, polynomial kernel, and “no polyno-
mial kernel unless NP ⊆ coNP / poly”. Note that ` ≤ 2k and k ≤ 2ν↓ + 1.

To the best of our knowledge, the multistage model (which is a temporal model not neces-
sarily only applying to graph problems) first appeared in 2014 in works of Eisenstat et al. [10]
and Gupta et al. [22]. In a nutshell, the model considers a sequence (I1, . . . , Iτ) of instances
of some problem P as input, and it asks for a “robust” sequence of solutions to the instances
in the sense that any two consecutive solutions are similar. Several classical problems have
been studied in the multistage model, both from an approximate [1, 4, 2, 3] and from a
parameterized [18, 24, 6] algorithmics point of view. While E4E-MstP and V4V-MstP
adhere to the original multistage model, our two problems E∩E-MstP and V∩V-MstP can
be seen as a novel and natural variation of the multistage model by replacing the goal of
consecutive similarity with consecutive dissimilarity.

Several basic temporal graph problems are closely related to the task of finding a (short)
temporal s-t path (finding an s-t path over time, that is, an s-t path where the edges have
non-decreasing time stamps along the path) [25, 7, 14, 13, 12, 11, 28, 35, 36, 16]. While
these problems typically deal with temporal s-t paths that may span over several snapshots
of the temporal graph, in our multistage-inspired framework we aim for finding an s-t path
in each snapshot.

We mention in passing that there is also somewhat related work on short paths in multiplex
networks (also known as multilayer or multimodal networks) [20]. The main difference to our
scenario is that the temporal aspect imposes an ordering of the layers whereas the multiplex
view does not; in addition, Ghariblou et al. [20] perform a multiobjective optimization, being
particularly interested in Pareto efficiency.

Due to the lack of space, several details and proofs (marked by F) are deferred to a full
version of this paper.

T. Fluschnik, R. Niedermeier, C. Schubert, and P. Zschoche 43:5

2 Preliminaries

We denote by N and N0 the natural numbers excluding and including 0, respectively.
By log(·) we denote the logarithm to base two. We use basic notation from graph theory
and parameterized algorithmics.

Graph theory. An undirected graph G = (V,E) is a tuple consisting of a set V of vertices
and a set E ⊆ {{v, w} | v, w ∈ V, v 6= w} of edges. For a graph G, we also denote
by V (G) and E(G) the vertex and edge set of G, respectively. For a vertex set W ⊆ V ,
the induced subgraph G[W] is defined as the graph (W, {{v, w} ∈ E | v, w ∈ W}). A
path P = (V,E) is a graph with a set V = {v1, . . . , vk} of distinct vertices and edge
set E = {{vi, vi+1} | 1 ≤ i < k} (we often represent path P by the tuple (v1, v2, . . . , vk));
we say that P is a v1-vk path. The length of a path is its number of edges. For two
vertices s, t ∈ V (G), an s-t separator S ⊆ V (G) \ {s, t} is a set of vertices such that there is
no s-t path in G−S, where G−S = G[V \S]. We denote by NG(v) = {w ∈ V | {w, v} ∈ E}
the neighborhood of a vertex v in G, and by deg(v) = |NG(v)| the degree of v in G. Moreover,
we denote by ∆ (or ∆(G)) the maximum vertex-degree of G, that is, ∆(G) = maxv∈V deg(v).
A vertex cover of G is a set W of vertices such that G −W contains no edge; we denote
by ν (or ν(G)) the smallest size of a vertex cover in G. A graph with distinct terminal
vertices s, t is series-parallel if it can be turned into a single edge by a sequence of contractions
of degree-two vertices except s and t while removing any parallel edge that appears [9].

Temporal graph theory. A temporal graph G = (V,E1, E2, . . . , Eτ) consists of a set V of
vertices and lifetime τ many edge sets E1, E2, . . . , Eτ over V . We also denote by τ(G) the
lifetime of G. The size of G is |G| := |V | +

∑τ
i=1 |Ei|. The static graph (V,Ei) is called

the i-th snapshot. The underlying graph G↓ of G is the static graph (V,E1 ∪ · · · ∪ Eτ). The
underlying vertex cover number ν↓ is ν(G↓). The underlying maximum degree ∆↓ is ∆(G↓).

Parameterized complexity. Let Σ denote a finite alphabet. A parameterized problem L ⊆
{(x, k) ∈ Σ∗ × N0} is a subset of all instances (x, k) from Σ∗ × N0, where k denotes the
parameter. A parameterized problem L is (i) fixed-parameter tractable if there is an algorithm
that decides every instance (x, k) for L in f(k) · |x|O(1) time, (ii) contained in the class XP if
there is an algorithm that decides every instance (x, k) for L in |x|f(k) time, and (iii) para-
NP-hard if the problem for some constant value of the parameter is NP-hard, where f is some
computable function only depending on the parameter. For two parameterized problems L,L′,
an instance (x, k) ∈ Σ∗ × N0 of L is equivalent to an instance (x′, k′) ∈ Σ∗ × N0 for L′
if (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L′. A problem L is hard for the class W[1] (W[1]-hard) if for
every problem L′ ∈W[1] there is an algorithm that maps any instance (x, k) in f(k) · |x|O(1)

time to an equivalent instance (x′, k′) with k′ = g(k) for some computable functions f, g.
It holds true that FPT ⊆W[1] ⊆ XP, where FPT denotes the class of all fixed-parameter
tractable parameterized problems. It is believed that FPT 6= W[1], and that hence no W[1]-
hard problem is fixed-parameter tractable. A problem kernelization for a parameterized
problem L is a polynomial-time algorithm that maps any instance (x, k) of L to an equivalent
instance (x′, k′) of L (the kernel) such that |x′|+ k ≤ f(k) for some computable function f ;
If f is a polynomial, we say that the problem kernelization (and kernel) is polynomial. It is
well-known that a decidable parameterized problem is fixed-parameter tractable if and only
if it admits a problem kernelization.

ISAAC 2020

43:6 Multistage s-t Path

(a)

s c11

a1
1

b11

a1
2

b12

· · ·

· · ·

a1
2d

b12d

c12 c13

a2
1

b21

· · ·

· · ·
· · ·

· · ·

· · ·

an2d

bn2d
c12n t

(b)

s c21

a1
1

bj1

ai1

a1
2

bj2

ai2 c22 c23

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
c22n t

Figure 2 Illustration to Construction 1 with (a) illustrating the first snapshot and (b) illustrating
the second snapshot, exemplified for clause C1 = (x1 ∨ xj ∨ xi). The edge {a1

1, a
1
2} is highlighted in

both (a) and (b).

3 Relation between distance measures: from edges to vertices

We show that there are polynomial-time algorithms that, given an instance of E4E-MstP
or of E∩E-MstP, construct an equivalent instance of the respective vertex-counterpart.

I Proposition 3.1 (F). There is an algorithm that, on every input (G, s, t, k, `) to E4E-
MstP, computes in O(|G| · `) time an equivalent instance (G′, s, t, k′, `′) of V4V-MstP
such that k′ ∈ O(k · `), `′ ∈ O(`2), ∆(G↓) = ∆(G′↓), and τ(G) = τ(G′).

I Proposition 3.2 (F). There is an algorithm that, on every input (G, s, t, k, `) to E∩E-
MstP, computes in O(|G|) time an equivalent instance (G′, s, t, k′, `′) of V∩V-MstP such
that k′ = 2k − 1, `′ = `, ∆(G↓) = max{∆(G′↓), 4}, and τ(G) = τ(G′).

Due to Propositions 3.1 and 3.2, often we just may prove lower bounds for E4E-MstP
and E∩E-MstP, and upper bounds for V4V-MstP and V∩V-MstP, and transfer the
results to their respective counterparts.

4 NP-hardness even for two snapshots of maximum degree four

In this section, we prove that all four problems are NP-hard even for only two snapshots and
the maximum underlying vertex-degree being four.

I Theorem 4.1. E4E-MstP and E∩E-MstP, the latter with ` = 0, are NP-hard even if G
consists of two snapshots both being series-parallel graphs and ∆(G↓) = 4.

We give two polynomial-time many-one reductions from the NP-complete 3-SAT, each
employing the following.

I Construction 1. Let (X = {x1, . . . , xn}, C = (C1, . . . , Cn)) be an instance of 3-SAT where
w.l.o.g. the number n of variables equals the number of clauses, and let d ≥ 2 denote the
most frequent appearance (along the clause sequence) of any literal of some variable in X.
We construct a temporal graph G = (V,E1, E2) as follows (see Figure 2 for an illustration).

Let V := {s, t}∪{ci1, . . . , ci2n | i ∈ {1, 2}}∪{ai1, . . . , ai2d | xi ∈ X}∪{bi1, . . . , bi2d | xi ∈ X}.
Let Ei,a :=

⋃
1≤j<2d{{aij , aij+1}} and Ei,b :=

⋃
1≤j<2d{{bij , bij+1}}. Then E1 contains the

edge {s, c11}, the edge set
⋃

1≤i≤n{{c12i−1, a
i
1}, {c12i−1, b

i
1}}, the edge set

⋃
1≤i≤n{{c12i, ai2d},

T. Fluschnik, R. Niedermeier, C. Schubert, and P. Zschoche 43:7

{c12i, bi2d}}, the edge {t, c12n}, the edge set
⋃

1≤i<n{{c12i, c12i+1}}, and the edge sets
⋃

1≤i≤nEi,a
and

⋃
1≤i≤nEi,b. For E2, for each clause Cq ∈ C we define the vertex set VCq

and edge
set ECq

as follows. If Cq contains the j-th appearance of the positive literal xi, then
add ai2j−1, a

i
2j to VCq and the edges {ai2j−1, a

i
2j}, {c22q−1, a

i
2j−1}, {c22q, ai2j} to ECq . If Cq

contains the j-th appearance of the negative literal xi, then add bi2j−1, b
i
2j to VCq

and the
edges {bi2j−1, b

i
2j}, {c22q−1, b

i
2j−1}, {c22q, bi2j} to ECq . Then, E2 contains the edges {s, c21},

{t, c22n}, the edge set
⋃

1≤i<n{{c22i, c22i+1}}, and ECq
for each q ∈ {1, . . . , n}. This finishes

the construction of G. It is not difficult to see that (V,E1) and (V,E2) are series-parallel
graphs. Moreover, ∆(G↓) = 4. Set k = 2 + 2n+ 2d · n. �

Intuitively, if an instance constructed using Construction 1 is a yes-instance for E4E-MstP,
then the s-t path in the first snapshot selects setting variables to true or false such that the s-
t path in the second snapshot can pass a literal for each clause. It follows that Construction 1
is a polynomial-time many-one reduction.

The next two propositions, Propositions 4.2 and 4.3, together prove Theorem 4.1.

I Proposition 4.2 (F). E4E-MstP is NP-hard even if G consists of two snapshots both
being series-parallel graphs and ∆(G↓) = 4.

Interestingly, Construction 1 also gives a polynomial-time many-one reduction for E∩E-
MstP. Here the intuition is opposite: the first snapshot path selects setting the variables to
the complement of a satisfying assignment such that the second snapshot path can pass the
“clause gadgets” without passing any edge contained in the first snapshot path.

I Proposition 4.3 (F). E∩E-MstP is NP-hard even if G consists of two snapshots both
being series-parallel graphs, ∆(G↓) = 4, and ` = 0.

The theorem follows directly from Propositions 4.2 and 4.3. Due to Propositions 3.1
and 3.2, we get the following from Theorem 4.1.

I Corollary 4.4. V4V-MstP and V∩V-MstP with ` = 0 are NP-hard even if τ = 2
and ∆(G↓) = 4.

We proved E∩E-MstP and V∩V-MstP to remain NP-hard even if ` = 0 and τ = 2.
This leads us to ask whether for a constant value of ` + τ , E4E-MstP or V4V-MstP
remain NP-hard. In fact, we prove this to be true for the vertex-variant.

I Theorem 4.5 (F). V4V-MstP is NP-hard and admits no 2o(k) · (|G|)O(1)-time algorithm
unless the Exponential Time Hypothesis fails, even if ` = 0 and τ = 2.

It remains open whether E4E-MstP is contained in XP regarding `+ τ .

5 The role of the parameter path length

In this section, we focus on the parameter k, the maximum number of vertices in any s-t
path. It is not hard to see that all variants allow for an XP-algorithm when parameterized
by the maximum number k of vertices in each path.

I Proposition 5.1 (F). V4V-MstP and V∩V-MstP, and hence E4E-MstP and E∩E-
MstP, are solvable in ∆O(k)

max · |G|O(1) time, where ∆max = maxi∈{1,...,τ}∆((V,Ei)).

We will prove that the parameterization with k distinguishes similarity from dissimilarity:
While E4E-MstP and V4V-MstP are W[1]-hard regarding k (even regarding k+ τ), each
of E∩E-MstP and V∩V-MstP turn out to be fixed-parameter tractable.

ISAAC 2020

43:8 Multistage s-t Path

5.1 W[1]-hardness for the similarity variant regarding k + τ and ν↓

We prove that E4E-MstP is W[1]-hard regarding k + τ even if the upper bound ` on
the sizes of consecutive symmetric differences is constant. Due to Proposition 3.1, we then
obtain the same result for V4V-MstP. The proof is by a parameterized reduction from
the W[1]-complete Multicolored Clique problem.

I Theorem 5.2 (F). Even if ` = 4 and each snapshot is bipartite, E4E-MstP is NP-hard
and W[1]-hard when parameterized by k + τ .

Due to Proposition 3.1, we get the following.

I Corollary 5.3. V4V-MstP is W[1]-hard when parameterized by k+τ , even if ` is constant.

By Proposition 5.1 and since k ≤ n, we know that E4E-MstP and V4V-MstP are
fixed-parameter tractable regarding the number n of graph vertices. Regarding the parameter
number k of path vertices (and even for k + τ), by Theorem 5.2 and Corollary 5.3 we know
that both problems are in XP yet W[1]-hard. Since we can assume k ≤ 2ν↓ + 1 (recall
that ν↓ is the vertex cover number of the underlying graph) in every instance and thus
naturally ν↓ ≤ n, we can settle the parameterized complexity regarding ν↓:

I Theorem 5.4. When parameterized by ν↓, V4V-MstP with ` = 1 and E4E-MstP are
W[1]-hard.

We prove each statement of Theorem 5.4 separately, both proofs rely on parameterized
reductions from Multicolored Clique.

I Proposition 5.5 (F). E4E-MstP when parameterized by ν↓ is W[1]-hard.

For V4V-MstP, we have an even stronger result: the problem is W[1]-hard regarding ν↓
even if the size of any symmetric difference of the vertex sets of consecutive paths is at most
one. The proof is, however, similar to the proof of Proposition 5.5.

I Proposition 5.6 (F). V4V-MstP when parameterized by ν↓ is W[1]-hard, even if ` = 1.

We will see in the next section that a similar result for E∩E-MstP or V∩V-MstP is unlikely.

5.2 Fixed-parameter tractability for dissimilarity variant regarding k
In stark contrast to Theorem 5.2 and Corollary 5.3, we show in this section that V∩V-MstP
and E∩E-MstP can be solved in linear time for constant path lengths; put differently, they
are fixed-parameter tractable when parameterized by path length k − 1.

I Theorem 5.7. V∩V-MstP and E∩E-MstP can be solved in 2O(k) · |G| time.

We defer the proof of Theorem 5.7 towards the end of this section and, moreover, only
describe the algorithm for V∩V-MstP. In a nutshell, the algorithm behind Theorem 5.7
computes for each snapshot sufficiently many s-t paths such that no matter which vertices
are used in the snapshots beforehand and afterwards, one of these s-t paths has a small
intersection with these vertices. To this end, we introduce q-robust sets2 of s-t paths.

2 In a nutshell, q-robust sets are q-representative families [32], just explicitly coined to s-t paths of length
at most k. This notion shall avoid confusion with the later defined q-representatives of independent sets.

T. Fluschnik, R. Niedermeier, C. Schubert, and P. Zschoche 43:9

X1V (Pi−1) :

X2V (Pi+1) :

Pi: s t

P

Figure 3 Illustration of Case 1 in the proof of Lemma 5.9, where |V (Pi+1) \ V (Pi)| > k − `.

I Definition 5.8. Let G = (V,E) be a graph, s, t ∈ V two distinct vertices, F be a set
of s-t paths of length at most k − 1, and q ∈ N0. We call F q-robust if for each set
X ⊆ (V (G) \ {s, t}) of size at most q the following holds: if there is an s-t path in G−X of
length at most k − 1, then there is an s-t path P ∈ F which is an s-t path in G−X.

To find a solution, it is sufficient to have a 2(k − `)-robust set of s-t paths of length at
most k − 1 for each snapshot of the temporal graph:

I Lemma 5.9. Let I = (G = (V, (Ei)τi=1), s, t, k, `) be an instance of V∩V-MstP and Fi be
a 2(k− `)-robust set of s-t paths of length at most k−1 in Gi = (V,Ei), for all i ∈ {1, . . . , τ}.
Then, I is a yes-instance if and only if there is a solution (P1, . . . , Pτ) such that Pi ∈ Fi,
for all i ∈ {1, . . . , τ}.

Proof. Since the converse is trivially true, we only show that if I is a yes-instance, then
there is a solution (P1, . . . , Pτ) for I such that for all i ∈ {1, . . . , τ} we have Pi ∈ Fi.

For all p ∈ {1, . . . , τ + 1}, let Sp be the set of solutions for I such that for all j < p we
have Pj ∈ Fj . Let i := max{p ∈ {1, . . . , τ + 1} | Sp 6= ∅}. If i = τ + 1, then we are done.
Hence, assume towards a contradiction that i ≤ τ .

(Case 1): Suppose 1 < i < τ . Let X1 = V (Pi−1) \ V (Pi) and X2 = V (Pi+1) \ V (Pi).
If X ∈ {X1, X2} is larger than k − `, then remove arbitrary vertices from X such that
|X| = k − `. Note that |V (Pi−1) \ X1| ≤ ` and |V (Pi+1) \ X2| ≤ `. Observe that Pi is
an s-t path of length at most k − 1 in Gi − (X1 ∪X2). Since Fi is 2(k − `)-robust, there
is an s-t path P ∈ Fi of length at most k − 1 in Gi − (X1 ∪ X2), see Figure 3 for an
illustration. Hence, |V (P)∩V (Pi−1)| ≤ |V (P)∩ (V (Pi−1)\X1)| ≤ ` and |V (P)∩V (Pi+1)| ≤
|V (P) ∩ (V (Pi+1) \X2)| ≤ `. Thus, S = (P1, . . . , Pi−1, P, Pi+1, . . . , Pτ) is a solution for I.
This contradicts i being maximal.

(Case 2): If i = 1 (i = τ), then we set X1 = ∅ (X2 = ∅) and conclude analogously to
Case 1 that i is not maximized. J

The main tool of our algorithm is a fast (“linear-time FPT”) computation of small sets of s-t
paths of length at most k−1 which are q-robust. We believe that such a use of representative
families may become a general algorithmic tool being potentially helpful for other multistage
problems. Formally, we show the following.

I Lemma 5.10 (F). Let G = (V,E) be a graph with two distinct vertices s, t ∈ V , and
k, q ∈ N0. We can compute, in 2O(k+q) · |E| time, a q-robust set F of s-t paths of length at
most k − 1 such that |F| ≤ 2q+k.

In order to prove Lemma 5.10, we extend the “representative-family-based” algorithm for
k-Path of Fomin et al. [19] such that we can find s-t paths avoiding a size-at-most-q set of
vertices.Having Lemmata 5.9 and 5.10, we are set to prove Theorem 5.7.

ISAAC 2020

43:10 Multistage s-t Path

Proof of Theorem 5.7. We only show the proof for V∩V-MstP. The fixed-parameter
tractability of E∩E-MstP follows from Proposition 3.2.

Given an instance I = (G = (V, (Ei)τi=1), s, t, k, `) of V∩V-MstP, we first check whether
there is an empty Ei. If this is the case, then I is a no-instance. Afterwards, we can
assume that τ ≤ |G|. For each i ∈ {1, . . . , τ}, we compute in 2O(k+2(k−`))|Ei| = 2O(k)|Ei|
time a 2(k − `)-robust set Fi of s-t paths of length at most k − 1 in Gi = (V,Ei) such
that |Fi| ≤ 2O(k), see Lemma 5.10.

Next, we construct a directed graph G′ = (V ′, E′), where beside s, t each path in Fi has
a corresponding vertex, for all i ∈ {1, . . . , τ}. Formally, that is, V ′ := {s, t} ∪

⋃τ
i=1 Fi, and

E′ := {(P, P ′) | P ∈ Fi, P ′ ∈ Fi+1, |V (P)∩V (P ′)| ≤ `, for some i ∈ {1, . . . , τ−1}}∪{(s, P) |
P ∈ F1} ∪ {(P, t) | P ∈ Fτ}. Observe that |V ′| + |E′| ≤ 2O(k) · τ . We note that I is a
yes-instance if and only if there is an s-t path in G′. Since

∑τ
i=1 |Ei| ≤ |G|, this yields an

overall running time of 2O(k) ·max{τ, |G|} = 2O(k) · |G|.
It remains to show that I is a yes-instance if and only if there is an s-t path in G′. We

only show that if I is a yes-instance, then there is an s-t path in G′ since the converse is easy
to verify from the definition of G′. Let I be a yes-instance. Then, by Lemma 5.9, there is a
solution (P1, . . . , Pτ) such that Pi ∈ Fi, for all i ∈ {1, . . . , τ}. For each i ∈ {1, . . . , τ − 1}, we
have that |V (Pi)∩V (Pi+1)| ≤ `. It follows that G′ has an edge from the vertex corresponding
to Pi to the vertex corresponding to Pi+1. Hence, there is an s-t path in G′ because s is
adjacent to all vertices corresponding to a path in F1 and each vertex corresponding to a
path in Fτ is adjacent to t. J

6 Looking through the lens of efficient data reduction

In this section, we study whether (polynomial) problem kernels for our four multistage s-t
path problems exist. We start from the simple observation that every problem trivially admits
a problem kernel of size polynomial in n + τ . When strengthening n to ν↓, that is, when
parameterizing by ν↓ + τ , where ν↓ denotes the vertex cover number of the underlying graph,
for E∩E-MstP and V∩V-MstP we prove a polynomial-size problem kernel (Section 6.1)
and for E4E-MstP and V4V-MstP we prove a single-exponential-size problem kernel
(Section 6.2). We prove that, unless NP ⊆ coNP / poly, the latter cannot be improved
to polynomial size for V4V-MstP and that when parameterized by n (i.e., dropping τ
from n+ τ) none of the four problems admits a polynomial kernel (Section 6.3).

6.1 Polynomial kernel for the dissimilarity variant regarding ν↓ + τ

In this section, we prove V∩V-MstP and E∩E-MstP to admit problem kernels of polynomial
size in ν↓ + τ .

I Theorem 6.1. Each of V∩V-MstP and E∩E-MstP admits a problem kernel with at
most τ · (2ν↓ + 2 +

(2ν↓
2
)
(3k − 3)) ∈ O(τν3

↓) vertices and τ snapshots.

The kernelization behind Theorem 6.1 basically relies on the following data reduction rule.

I Reduction Rule 1. Let I = (G = (V,E1, E2, . . . , Eτ), s, t, k, `) be an instance of V∩V-
MstP or E∩E-MstP with underlying graph G↓.
1. Compute a vertex cover V ′ of G↓ of size at most 2ν↓.
2. For each pair of distinct vertices v, w ∈ V ′ and each i ∈ {1, . . . , τ}, in N i

vw := (N(V,Ei)(v)∩
N(V,Ei)(w)) \ V ′ mark min{3k − 3, |N i

vw|} vertices.

T. Fluschnik, R. Niedermeier, C. Schubert, and P. Zschoche 43:11

3. Construct a set V ′′ containing {s, t} ∪ V ′ and all marked vertices, and then construct
the temporal graph G′ = (V ′′, E′1, . . . , E′τ), where E′i = {{v, w} ∈ Ei | v, w ∈ V ′′}, for
all i ∈ {1, . . . , τ}.

4. Output the instance O = (G′, s, t, k, `).
First, we prove that we can efficiently execute Reduction Rule 1.

I Lemma 6.2 (F). Reduction Rule 1 is correct and can be executed in O(n · ν2
↓) time.

Proof of Theorem 6.1. Given an instance I = (G = (V,E1, E2, . . . , Eτ), s, t, k, `), we apply
Reduction Rule 1 in polynomial time to obtain the instance O = (G′, s, t, k, `) being equivalent
to I (Lemma 6.2), containing τ snapshots and at most τ ·(2ν↓+2+

(2ν↓
2
)
(3k−3)) vertices. J

6.2 Single-exponential kernel for the similarity variant regarding ν↓ + τ

We prove that E4E-MstP and V4V-MstP admit problem kernels of single-exponential
size in ν↓ + τ , proving containment in FPT. As we will see later, unless NP ⊆ coNP / poly
this result for V4V-MstP cannot be improved to size polynomial in ν↓ + τ .

I Theorem 6.3. Each of E4E-MstP and V4V-MstP admits a problem kernel with at
most 2ν↓ + 4ν↓τ (2ν↓ + 1) vertices and τ snapshots.

To prove Theorem 6.3, we lift the well-known graph-theoretic notion of (false) twins to
temporal graphs as follows.

I Definition 6.4. Two vertices v, w in a temporal graph G = (V,E1, E2, . . . , Eτ) are called
(false) temporal twins if N(V,Ei)(v) = N(V,Ei)(w) for every i ∈ {1, . . . , τ}.

Note that Definition 6.4 implies an equivalence relation ∼ on the vertex set V , where v ∼ w
if and only if they are temporal twins, and, hence, a partition of the vertex set into classes
of temporal twins. Moreover, every pair of vertices in the same temporal twin class is
non-adjacent. We show that such a partition is efficiently computable.

I Lemma 6.5. For a temporal graph G = (V,E1, E2, . . . , Eτ), a partition V = (V1, . . . , Vp)
of V into temporal twin classes is computable in O(τ · |V |2) time.

Proof. Firstly, we compute all (false) twin classes in the first snapshot (V,E1) in time linear
in |V |+ |E1|. Next, for each vertex v ∈ V , check for each w with v ∼ w whether w is a false
twin in each snapshot (V,E2), . . . , (V,Eτ), and adjust ∼ accordingly. J

In a nutshell, given a vertex cover X of our underlying graph, we aim for having few
(i.e., upper-bounded by some single-exponential function in ν↓ + τ) temporal twin classes in
the independent set Y = V \X, where each temporal twin class in turn contains only few
vertices. By definition we have only few temporal twin classes.

I Observation 1. Let G = (V,E1, E2, . . . , Eτ) be a temporal graph with partition V = (X,Y)
of V such that Y is an independent set in each snapshot. Then the size of every partition
of Y into temporal twin classes is at most 2|X|τ .

Proof. There are at most 2|X| different neighborhoods for any vertex in Y per snapshot. As
there are τ snapshots, there are at most (2|X|)τ many temporal twin classes. J

We next aim for shrinking temporal twin classes. Recall that each temporal twin class
forms an independent set, and hence every s-t path must “alternate” between the class and
its neighboring vertices. Thus, for every temporal twin class disjoint from {s, t} it holds

ISAAC 2020

43:12 Multistage s-t Path

true that any s-t path contains less vertices from the temporal twin class than the number
of vertices neighboring it. In fact, temporal twin classes that are large compared to their
neighborhood size can be shrunk.

I Reduction Rule 2. Let S be a temporal twin class with |S\{s, t}| ≥ max1≤i≤τ |N(V,Ei)(S)|.
Then delete a vertex v ∈ S \ {s, t}.

I Lemma 6.6 (F). Reduction Rule 2 is correct and exhaustively applicable in O(τ ·|V |3) time.

Proof of Theorem 6.3. First, in G↓ compute (via a maximal matching) a vertex cover X of
size at most 2ν↓ in linear time. Let V = (X,Y), where Y = V \X is an independent set. Next,
compute all temporal twin classes of Y in polynomial time (Lemma 6.5). Apply Reduction
Rule 2 exhaustively on every temporal twin class. Due to Lemma 6.6, this returns an equivalent
instance in polynomial time where every temporal twin class contains at most |X|+1 vertices.
Due to Observation 1, there are at most 2|X|τ many temporal twin classes. In total, the
obtained temporal graph contains at most |X|+ 2|X|τ (|X|+ 1) vertices and τ snapshots. J

6.3 Lower bounds on kernelization regarding n and ν↓ + τ

We know that relaxing n to ν↓ in n + τ allows for polynomial and single-exponential
kernelization for dissimilarity and similarity, respectively. We know that dropping n is
not possible (Proposition 5.6). In this section, we prove that, unless NP ⊆ coNP / poly,
dropping τ is not possible.

I Theorem 6.7 (F). Unless NP ⊆ coNP /poly, none of E4E-MstP, V4V-MstP, E∩E-
MstP, and V∩V-MstP admits a problem kernel of size polynomial in n.

We prove that, unless NP ⊆ coNP / poly, improving the single-exponential kernel for V4V-
MstP regarding ν↓ + τ to polynomial size is not possible.

I Theorem 6.8 (F). Unless NP ⊆ coNP / poly, V4V-MstP admits no problem kernel of
size polynomial in ν↓ + τ .

To prove Theorem 6.8, we OR-cross-compose [5] from the following NP-complete [33] problem.

Positive 1-in-3 SAT
Input: A set X of variables and a set C of clauses each containing three positive

literals over X.
Question: Is there X ′ ⊆ X such that setting exactly the variables in X ′ to true results

in each clause having exactly one variable set to true?

We call two instances (X, C), (X ′, C′) of Positive 1-in-3 SAT R-equivalent if |X| = |X ′|
and |C| = |C′|. Note that R defines a polynomial equivalence relation [5]. In particular, we
show the following.

I Proposition 6.9 (F). There is an algorithm that given p many R-equivalent instances I1 =
(X1, C1), . . . , Ip = (Xp, Cp) of Positive 1-in-3 SAT, where p is a power of two, computes in
polynomial time an instance I of V4V-MstP such that k+τ+ν↓ ∈ (maxi∈{1,...,p} |Xi|+ |Ci|+
log(p))O(1) and I is a yes-instance if and only if at least one of I1, . . . , Ip is a yes-instance.

We use the following Construction 2 to show Proposition 6.9, see Figure 4 for an illustration.
The basic idea of the construction is that the temporal graph has, among other vertices, a
vertex set D =

⋃p
q=1D

q, where Dq has one vertex for each variable in the q-th input instance.

T. Fluschnik, R. Niedermeier, C. Schubert, and P. Zschoche 43:13

D... . . .

...
D... . . .

Sr0

Sr1

(a)

s
. . .

. . . t

h0(0, r)

h1(0, r)

h0(N, r)

D... . . .

...
D... . . .

(b)

s

v1
1

h0(1, r)
. t

(x1
1 6∈ C1

r)

(xp
j ∈ C

p
r)

≡ C1
r

vpj

≡ Cpr

Figure 4 Illustration of Construction 2 with p input instances. (a) shows a snapshot (V,Er) with
r ≤ log(p). (b) shows a snapshot (V,Elog(p)+r) for the r-th clause of each input instance. Observe
that the green (bright) vertices (including s, t) form a vertex cover of the underlying graph.

If we use a vertex from Dq in the s-t path, then we set the corresponding variable to true. In
the first log(p) snapshots, we ensure that each s-t path can only use vertices from D which
come from the same input instance. The remainder of the snapshots ensures that the clauses
are satisfied. Here, the (log(p) + r)-th snapshot ensures that the r-th clause of some input
instance is satisfied with exactly one variable (vertex). Since we only use variables from one
instance, Proposition 6.9 follows.

I Construction 2. Let I1 = (X1, C1), . . . , Ip = (Xp, Cp) be p, where p is a power of two,
R-equivalent instances of Positive 1-in-3 SAT where N = |Xi| and M = |Ci| for all
i ∈ {1, . . . , p}. Let Dq = {vqi | i ∈ {1, . . . , N}} for all q ∈ {1, . . . , p}, and D =

⋃
q∈{1,...,p}D

q.
Let A = {ai0, ai1 | i ∈ {0, . . . , N}} and B = {bi0, bi1 | i ∈ {0, . . . , N}}. Set V = {s, t}∪D∪A∪B.
Define for each d ∈ {0, 1} the auxiliary function

hd(i, r) :=
{
aid, r odd
bid, r even.

We next describe the edge sets E1, . . . , Elog(p) and Elog(p)+1, . . . , Elog(p)+M . For edge
set Er with r ≤ log(p), let Er contain the edges {s, hd(0, r)}, {t, hd(N, r)} and the edge
set

⋃
1≤i≤N{{hd(i − 1, r), hd(i, r)}} for each d ∈ {0, 1}. These sets form two s-t paths

in (V,Er). Finally, let Sr0 be the union of Dq with the r-th bit of the binary encoding of q− 1
being 0, and Sr1 be the union of Dq with the r-th bit of the binary encoding of q − 1 being 1.
For vqi ∈ Sr0 , add the edges {h0(i−1, r), vqi } and {h0(i, r), vqi }. Similarly, for vqi ∈ Sr1 , add the
edges {h1(i− 1, r), vqi } and {h1(i, r), vqi }. For edge set Elog(p)+r with r ≤ M , let Elog(p)+r
contain the edge {s, h0(0, r)} and the edge set

⋃
1≤i≤N{{h0(i− 1, r), h0(i, r)}}. Consider the

clauses C1
r , . . . , C

p
r . For each Cqr , if x

q
i ∈ Cqr , then add the edges {h0(N, r), vqi }, {v

q
i , t}, and

if xqi 6∈ Cqr , then add the edges {h0(i−1, r), vqi }, {h0(i, r), vqi }. Set k = 2N+3 and ` = 2(N+1).
This finishes the construction. �

Proposition 6.9 describes an OR-cross-composition from an NP-hard problem to V4V-MstP
parameterized by ν↓ + τ , and hence Theorem 6.8 follows [5]. We leave open whether E4E-
MstP allows for a problem kernel of size polynomial in ν↓ + τ .

ISAAC 2020

43:14 Multistage s-t Path

7 Conclusion

On the one extreme, our hardness results exploit that a temporal graph can change dramat-
ically from one time step to another. On the other extreme, the NP-hard (and typically
parameterized hard) Length-Bounded Disjoint Path problem [21] easily reduces to
all four MstP variants with each snapshot having the same edge set. This leads to the
natural question for further islands of computational tractability between these two ex-
tremes. Moreover, for the similarity case, we leave open whether working with edge distances
decisively differs from working with vertex distances.

The models we introduced (and future, more refined models based upon these) may find
several applications as they naturally capture time-dependent route-querying tasks. Besides
resolving questions we explicitly stated as open throughout the text, future work could
address generalizing the “consecutiveness” property by requiring that also short sequences
(as in the time-window model of temporal graphs [29, 30]) of consecutive paths are (pairwise)
similar or dissimilar. Furthermore, with introducing the “dissimilarity view” we entered new
territory in the context of multistage problems; it seems natural to also study it for other
problems beyond s-t Path. Finally, to analyze s-t Path in the global multistage3 setting is
well-motivated as well [24].

References
1 Evripidis Bampis, Bruno Escoffier, and Alexander Kononov. LP-based algorithms for multistage

minimization problems. CoRR, abs/1909.10354, 2019. arXiv:1909.10354.
2 Evripidis Bampis, Bruno Escoffier, Michael Lampis, and Vangelis Th. Paschos. Multistage

matchings. In Proc. of 16th SWAT, volume 101 of LIPIcs, pages 7:1–7:13. Schloss Dagstuhl—
Leibniz-Zentrum für Informatik, 2018.

3 Evripidis Bampis, Bruno Escoffier, Kevin Schewior, and Alexandre Teiller. Online multistage
subset maximization problems. In Proc. of 27th ESA, volume 144 of LIPIcs, pages 11:1–11:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

4 Evripidis Bampis, Bruno Escoffier, and Alexandre Teiller. Multistage knapsack. In Proc. of
44th MFCS, volume 138 of LIPIcs, pages 22:1–22:14. Schloss Dagstuhl—Leibniz-Zentrum für
Informatik, 2019.

5 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds by
cross-composition. SIAM Journal on Discrete Mathematics, 28(1):277–305, 2014.

6 Robert Bredereck, Till Fluschnik, and Andrzej Kaczmarczyk. Multistage committee election.
CoRR, abs/2005.02300, 2020. arXiv:2005.02300.

7 Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding
temporal paths under waiting time constraints. In Proc. of 31st ISAAC, LIPIcs, pages 30:1–
30:18. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2020. doi:10.4230/LIPIcs.ISAAC.
2020.30.

8 Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental clustering
and dynamic information retrieval. SIAM Journal on Computing, 33(6):1417–1440, 2004.

9 Richard J Duffin. Topology of series-parallel networks. Journal of Mathematical Analysis and
Applications, 10(2):303–318, 1965.

10 David Eisenstat, Claire Mathieu, and Nicolas Schabanel. Facility location in evolving metrics.
In Proc. of 41st ICALP, volume 8572 of LNCS, pages 459–470. Springer, 2014.

11 Jessica Enright and Kitty Meeks. Deleting edges to restrict the size of an epidemic: A new
application for treewidth. Algorithmica, 80(6):1857–1889, 2018.

3 That is, the total sum over all differences between consecutive paths in the solution is upper-bounded.

http://arxiv.org/abs/1909.10354
http://arxiv.org/abs/2005.02300
https://doi.org/10.4230/LIPIcs.ISAAC.2020.30
https://doi.org/10.4230/LIPIcs.ISAAC.2020.30

T. Fluschnik, R. Niedermeier, C. Schubert, and P. Zschoche 43:15

12 Jessica Enright, Kitty Meeks, George B. Mertzios, and Viktor Zamaraev. Deleting edges to
restrict the size of an epidemic in temporal networks. In Proc. of 44th MFCS, volume 138 of
LIPIcs, pages 57:1–57:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

13 Thomas Erlebach, Frank Kammer, Kelin Luo, Andrej Sajenko, and Jakob T. Spooner. Two
moves per time step make a difference. In Proc. of 46th ICALP, volume 132 of LIPIcs, pages
141:1–141:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019.

14 Thomas Erlebach and Jakob T. Spooner. Faster exploration of degree-bounded temporal
graphs. In Proc. of 43rd MFCS, volume 117 of LIPIcs, pages 36:1–36:13. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2018.

15 Till Fluschnik, Stefan Kratsch, Rolf Niedermeier, and Manuel Sorge. The parameterized
complexity of the minimum shared edges problem. Journal of Computer and System Sciences,
106:23–48, 2019.

16 Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche.
Temporal graph classes: A view through temporal separators. Theor. Comput. Sci., 806:197–
218, 2020.

17 Till Fluschnik, Marco Morik, and Manuel Sorge. The complexity of routing with collision
avoidance. Journal of Computer and System Sciences, 102:69–86, 2019.

18 Till Fluschnik, Rolf Niedermeier, Valentin Rohm, and Philipp Zschoche. Multistage vertex
cover. In Proc. of 14th IPEC, volume 148 of LIPIcs, pages 14:1–14:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

19 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. Journal of
the ACM, 63(4):29:1–29:60, 2016.

20 Saeed Ghariblou, Mostafa Salehi, Matteo Magnani, and Mahdi Jalili. Shortest paths in
multiplex networks. Nature Scientific Reports, 7:2142, 2017.

21 Petr A. Golovach and Dimitrios M. Thilikos. Paths of bounded length and their cuts:
Parameterized complexity and algorithms. Discrete Optimization, 8(1):72–86, 2011.

22 Anupam Gupta, Kunal Talwar, and Udi Wieder. Changing bases: Multistage optimization
for matroids and matchings. In Proc. of 41st ICALP, volume 8572 of LNCS, pages 563–575.
Springer, 2014.

23 Sepp Hartung and Rolf Niedermeier. Incremental list coloring of graphs, parameterized by
conservation. Theoretical Computer Science, 494:86–98, 2013.

24 Klaus Heeger, Anne-Sophie Himmel, Frank Kammer, Rolf Niedermeier, Malte Renken, and
Andrej Sajenko. Multistage problems on a global budget. CoRR, abs/1912.04392, 2019.
arXiv:1912.04392.

25 Anne-Sophie Himmel, Matthias Bentert, André Nichterlein, and Rolf Niedermeier. Efficient
computation of optimal temporal walks under waiting-time constraints. In Proc. of 8th
COMPLEX NETWORKS, volume 882 of Studies in Computational Intelligence, pages 494–506.
Springer, 2019.

26 Petter Holme and Jari Saramäki (eds.). Temporal Networks. Springer, 2013.
27 Petter Holme and Jari Saramäki (eds.). Temporal Network Theory. Springer, 2019.
28 David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and inference problems for

temporal networks. Journal of Computer and System Sciences, 64(4):820–842, 2002.
29 Matthieu Latapy, Marco Fiore, and Artur Ziviani. Link streams: Methods and applications.

Computer Networks, 150:263–265, 2019.
30 Matthieu Latapy, Tiphaine Viard, and Clémence Magnien. Stream graphs and link streams for

the modeling of interactions over time. Social Network Analysis and Mining, 8(1):61:1–61:29,
2018.

31 Othon Michail. An introduction to temporal graphs: An algorithmic perspective. Internet
Mathematics, 12(4):239–280, 2016.

32 Burkhard Monien. How to find long paths efficiently. In North-Holland Mathematics Studies,
volume 109, pages 239–254. Elsevier, 1985.

ISAAC 2020

http://arxiv.org/abs/1912.04392

43:16 Multistage s-t Path

33 Thomas J Schaefer. The complexity of satisfiability problems. In Proc. 10th STOC, pages
216–226, 1978.

34 Carsten Schubert. Preserving paths in temporal graphs. Master’s thesis, TU Ber-
lin, September 2019. Bachelor thesis. URL: http://fpt.akt.tu-berlin.de/zschoche/
bachelor-carsten-schubert.pdf.

35 Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang, and Hejun Wu. Efficient
algorithms for temporal path computation. IEEE Transactions on Knowledge and Data
Engineering, 28(11):2927–2942, 2016.

36 Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. The complexity
of finding small separators in temporal graphs. Journal of Computer and System Sciences,
107:72–92, 2020.

http://fpt.akt.tu-berlin.de/zschoche/bachelor-carsten-schubert.pdf
http://fpt.akt.tu-berlin.de/zschoche/bachelor-carsten-schubert.pdf

	Introduction
	Preliminaries
	Relation between distance measures: from edges to vertices
	NP-hardness even for two snapshots of maximum degree four
	The role of the parameter path length
	W[1]-hardness for the similarity variant
	Fixed-parameter tractability for dissimilarity variant

	Looking through the lens of efficient data reduction
	Polynomial kernel for the dissimilarity variant
	Single-exponential kernel for the similarity variant
	Lower bounds on kernelization

	Conclusion

