
Shortest-Path Queries in Geometric Networks
Eunjin Oh
Department of Computer Science and Engineering, POSETCH, Pohang, South Korea
eunjin.oh@postech.ac.kr

Abstract
A Euclidean t-spanner for a point set V ⊂ Rd is a graph such that, for any two points p and q in
V , the distance between p and q in the graph is at most t times the Euclidean distance between p
and q. Gudmundsson et al. [TALG 2008] presented a data structure for answering ε-approximate
distance queries in a Euclidean spanner in constant time, but it seems unlikely that one can report
the path itself using this data structure. In this paper, we present a data structure of size O(n logn)
that answers ε-approximate shortest-path queries in time linear in the size of the output.
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1 Introduction

Computing the shortest path between two vertices in a graph is a fundamental problem that
has numerous applications such as route planning, geographic information systems, intelligent
transportation systems, and web-search ranking [25]. Due to its various applications, the
shortest path problem and its variants have been extensively studied for the last several
decades. In a query variant, the goal is to process a given graph so that the shortest path
between two query vertices and its length can be computed efficiently. Since a data structure
for computing the exact distance requires large space, researchers have focused on designing
data structures for answering approximate distance and path queries. We call a path in
a graph G between two vertices u and v an ε-approximate path for a constant ε > 0 if its
length is at most (1 + ε)dG(u, v), where dG(u, v) denotes the distance in G between u and v.
Similarly, any value between dG(u, v) and (1 + ε)dG(u, v) is called an ε-approximate distance
between u and v.

In this paper, we present a data structure for answering approximate shortest-path queries
in a geometric network which is called a Euclidean spanner.

Data structure for shortest-path & distance queries. For a weighted graph, Thorup and
Zwick [27] showed that any data structure for answering (2k + 1)-approximate distance
queries in O(1) time must use Ω(n1+1/k) space assuming the 1963 girth conjecture of Erdős,
where n denotes the size of the graph. In addition to this, several lower bounds on the space
requirements of data structures for approximate distance queries have been presented under
several different conjectures. For details, refer to [26].

Thorup and Zwick [27] presented a data structure of size O(kn1+1/k) for answering
(2k − 1)-approximate distance queries in O(k) time for any integer k > 0. To emphasize that
the query time is constant, they call their data structure an approximate distance oracle.
A lot of data structures for answering the shortest-path and distance queries have been
presented [1, 22, 23, 24, 27].
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52:2 Shortest-Path Queries in Geometric Networks

For special classes of graphs, we can obtain data structures with faster query times and low
space complexities. For planar graphs, there exists a data structure of near-linear space for
computing the exact distance between any two query vertices in polylogarithmic time [6, 10].
Also, approximate distance oracles for planar graphs, bounded-genus, and minor-free graphs
are known [5, 11, 19]. Geometric versions of the approximate distance and shortest path
problem also have been considered. There are numerous results on the shortest path problem
and its query variant in polygonal domains [15, 16, 18], disk intersection graphs [4, 9], and
Euclidean spanners [12].

Euclidean spanner. In this paper, we consider the shortest path problem for a geometric
network which is called a Euclidean spanner for a set of points in d-dimensional Euclidean
space. Let V be a set of n points in d-dimensional Euclidean space for a constant d ≥ 1. A
graph G = (V,E) is called a t-spanner for V if, for any two points p and q in V , the distance
in G between p and q is at most t times the Euclidean distance between p and q. Euclidean
spanners have various applications including pattern recognition, function approximation,
and broadcasting in communication networks [21]. A Euclidean spanner that has small size,
bounded degree, small diameter, and small total weight can be computed efficiently [8, 20].

1.1 Previous Results
Our problem is closely related to the problem of constructing a data structure for answering
approximate distance queries in a Euclidean spanner, which was introduced by Gudmundsson
et al. [12]. They presented an approximate distance oracle for a Euclidean spanner in
d-dimensional space. More specifically, given a d-dimensional Euclidean t-spanner G and
a constant ε > 0, they present a data structure of size O(n logn), which can be computed
in O(m+ n logn), so that given any two vertices p and q, an ε-approximate distance in G
between p and q of V can be computed in constant time, where n denotes the number of
vertices and m denotes the number of edges. Here, all the big-Oh notations hide constants
depending on d, t and ε.

Distance query vs. Shortest-path query. As mentioned in [26], most distance oracles can
be used to compute not only the distances but also the actual paths. This is because after
having computed the distance, most distance oracles have an implicit representation of the
path such that each edge can be output efficiently.

However, it seems unclear if the data structure by Gudmundsson et al. [12] can be used
for reporting an approximate path in a Euclidean spanner. Indeed, the authors of [12] also
mentioned this in [12, 14]. The main difficulty here is that they convert G into graphs Gi’s
such that the edges of each Gi are not necessarily contained in G, for i = 1, . . . ,m for m ≤ n.
After converting G, they handle Gi’s instead of G. Their query algorithm returns the length
of a path π of Gi, but such a path is not necessarily a path of G. Using the fact that G is
a Euclidean t-spanner, they showed that the length of π approximates the distance in G
between two query points. However, it is not difficult to construct an example that π is not
a path of G, that is, π contains edges not contained in the edge set of G, and π connects two
vertices which are not the query points.

1.2 Our Results
In this paper, we present a data structure for answering shortest-path queries approximately
and efficiently on a Euclidean spanner for a point set in d-dimensional Euclidean space. More
specifically, our data structure has size of O(n logn) and can be constructed in O(m+n logn)
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time, where n denotes the number of vertices and m denotes the number of edges of the
spanner. The data structure allows us to returns the edges of an ε-approximate path in
constant time per edge. As in [12], all the big-Oh notations hide constants depending on d, t
and ε.

Why do we need the actual path? For some applications, it is necessary to obtain the
actual path as well as the distance. Imagine that we want to design an efficient navigation
system. Lots of road networks can be represented as Euclidean t-spanners for a small
constant t > 1 [21]. For instance, a part of the southern Scandinavian railroad network is a
1.85-spanner [21]. To design an efficient navigation system, given a starting position and a
destination, we are required to find a shortest path (or an approximate shortest path) in the
road network efficiently. The data structure of [12] tells us how long it takes from the starting
position to the destination, but it does not give how to get there. This is not sufficient for
navigation systems.

Actual path vs. Approximate path. Our algorithm returns an approximate path in time
linear in its complexity. It is possible that an approximate path has a larger complexity than
the actual path. However, it seems not an serious issue for many applications because our
algorithm returns the edges one by one in constant time per edge.

Imagine that we use a navigation system on a highway. Our goal is to find the path from
the starting point to the destination to minimize the travel time. The travel time depends
on the sum of lengths of the edges of the path, not on the number of edges of the path.
Given the starting point and a destination, our algorithm process them in constant time,
and then returns the edges one by one in constant time per edge. To traverse the path, it
sufficient to have the next edge of the current edge on the path. Since a path lying between
two interchanges in a highway, which is represented as an edge of a graph, is sufficiently long,
the computation time is subsumed by the travel time. Therefore, even if an approximate
path has a larger complexity than the actual path, the travel time is within (1 + ε) times the
optimal travel time in this case.

1.3 Preliminaries
Let dG(u, v) denote the distance in a graph G between two vertices u and v, and let |pq|
denote the Euclidean distance between two points p and q. For two values a and b in R, we
use [a, b] to denote the set of all values lying between a and b including a and b, [a, b) to
denote [a, b] \ {b}, and (a, b) to denote [a, b] \ {a, b}. With a slight abuse of notation, for a
finite set A, we use |A| to denote the cardinality of A. For a path π in a Euclidean space, we
use w(π) to denote the length of π.

A subgraph H of a graph G is called a t-spanner of G if the vertex set of H coincides
with the vertex set of G, and dH(v, u) ≤ tdG(v, u) for any two vertices v and u in H. We
call a graph G = (V,E) a geometric graph if each vertex of V corresponds to a point in a
Euclidean space and each edge pq has weight |pq|. Let V be a set of n points in d-dimensional
Euclidean space for a constant d. For a value t ≥ 1, a geometric graph G is called a t-spanner
for V if it is a t-spanner of the complete geometric graph whose vertex set is V , that is,
dG(p, q) ≤ t|pq| for any two points p and q in V . Similarly, for two values L > 0 and t > 1,
a geometric graph G is called an L-partial t-spanner for V if dG(p, q) ≤ t|pq| for any two
points p and q in V with |pq| ≤ L.

For a fixed ε > 0, our goal is to construct a data structure on a t-spanner G for a point
set V in d-dimensional Euclidean space so that, given any two points p and q in V , an
ε-approximate path and its length can be computed efficiently. To make the description
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easier, we assume that G has O(n) edges as in [12], where n is the number of vertices of G.
If it is not the case, we compute a (1 + ε)-spanner G′ of G of size O(n) using the following
lemma, and construct a data structure for G′. Here, notice that G′ is a subgraph of G by
definition.

I Lemma 1 ([13]). For a t-spanner G with n vertices and m edges, we can compute a
(1 + ε)-spanner of G with O(n) edges in O(m+ n logn) time.

The model of computation we use in this paper is the same as the one in [12], which is
the traditional algebraic computation model with the added power of indirect addressing.

2 Overall Data Structure and Query Algorithm

Given a t-spanner G = (V,E) with n vertices and O(n) edges, and a constant ε > 0, we can
construct a data structure of size O(n logn) in O(m+n logn) time so that the ε-approximate
path between any two points can be computed in constant time per edge.

Overall structure of [12]. The data structure of [12] consists of several substructures. Each
substructure is constructed for a value L in R (which might be a function of n) and a subset
WL of V . This allows us to compute an approximate path between two query points p and
q contained in WL such that their Euclidean distance lies in [L/n,L/t]. The size of the
substructure for L is near linear in the complexity of WL.

They partition the edge set with respect to their lengths such that the edge lengths within
each subset differ by a factor of nO(1) of each other. Let L = 〈L1, L2, . . . , Lr〉 be the lengths
of the longest edges contained in the subsets. For each index i with 1 ≤ i ≤ r, they choose a
small subset Wi of V so that for any two query points p and q, there are two vertices x and y
in Wi, and an index i such that |xy| ∈ [Li/n, Li/t] and |px|+ |yq| is sufficiently small. Using
this property, for any two query points p and q, they find an index i and two vertices x and
y of Wi satisfying the properties mentioned above, and compute an approximate distance
between x and y instead of the distance between p and q.

Overall structure of our data structure. As in [12], we partition the edge set with respect
to their lengths, but we choose a subset Vi of V for each index in a way different from [12].
Then we show that if the Euclidean distance between two query points p and q lies in
[Li/n, Li/t], there are two vertices x and y in Vi such that |px|+ |yq| is sufficiently small.
Hence, it suffices to compute the paths between x and p, between y and q, and between x
and y. Notice the difference between ours and [12]: In [12], for any two query points p and
q, there are two vertices x and y of Wi for some index i with |xy| ∈ [Li/n, Li/t] such that
dWi(x, y) approximates dG(p, q). However, in our case, if |pq| ∈ [Li/n, Li/t] for an index i,
then there are two vertices x and y in Vi such that dVi

(x, y) approximates dG(p, q).
In our case, there might be two points p and q such that |pq| /∈ [Li/n, Li/t] for any index

i. This means that not all queries can be answered using our data structure stated above.
To handle this issue, we construct five different partitions (sequences) L1, . . . ,L5 of the edge
lengths such that, for any two points p and q, one of the five sequences contains a value L
with |pq| ∈ [L/n,L/t]. Then we can use the data structure constructed for the partition
(sequence) to compute an ε-approximate path between p and q. Figure 1 illustrates the
overall structure of our data structure.
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L

L1

L2

L3

L4

L5

DS for Lk (Section 3)

Let Lk = 〈L1, . . . , Lr〉.

• Computing long edges
(Section 5.3)

• Computing two vertices incident to long edges
(Section 5.1)

• Computing short edges (Section 5.2)

DS for All Li’s DS for each Li

Figure 1 Illustration for the overall data structure. Given two query points p and q, the query
algorithm finds one element, say Li, in one sequence, say Lk. In Section 6.1, we show how to find the
first and last bridge points, p̄ and q̄, from p to q along an approximate path in G. In Section 6.2, we
show how to compute short edges in a path between p and q. Then the sequence of the long edges
and short edges computed so far forms an approximate path in G between p and q. In Section 6.3,
we show how to compute the long edges an approximate path between p̄ and q̄.

Classifying lengths. Let L = 〈L1, L2, . . . , Lr−1〉 be a sequence of values in R such that
L1 is the length of a shortest edge of G, and Li is n2 times the length of a shortest edge
among all edges of length larger than Li−1 for an integer i ≥ 2, and [L1, Lr−1) contains all
edge lengths. Then for a technical reason, we add Lr = n2Lr−1 at the end of L. Note that
Li ≥ n2Li−1 for every integer i with 2 ≤ i ≤ r. Moreover, for any two vertices of G, their
distance in G lies in [L1, Lr) because a shortest path in G consists of at most n edges, and
thus the length of any edge in G also lies in [L1, Lr) because G is a t-spanner for a constant
t. For a sequence L′ of lengths, let L̄′ be the union of [L′/n, L′/t] over all lengths L′ in L′.
Our goal is to obtain five sequences L1, . . . ,L5 such that the distance in G between any two
vertices lies in the union of L̄1, . . . , L̄5.

For a value x in R, we use xL to denote the sequence 〈xL1, xL2, . . . , xLr〉. Consider the
following five sequences:

L1 = tL, L2 = (t2/n)L, L3 = (t3/n2)L, L4 = ntL, L5 = t2L

The following lemma shows that given two points p and q, one of the five sequences
contains a value L such that |pq| ∈ [L/n,L/t]. Also, as we will see in Section 3, we can find
such a sequence and such a value L in constant time.

I Lemma 2. For any two points p and q, the distance in G between p and q is contained in
the union of L̄1, . . . , L̄5.

Proof. Let p and q be any two points in V . By the definition of L, there is an integer i with
1 < i ≤ r such that |pq| ∈ [Li−1, Li]. Consider the partition of [Li−1, Li) into six intervals
such that the endpoints of the intervals are

Li−1, tLi−1, nLi−1, t3Li/n
3, t2Li/n

2, tLi/n, Li.

We claim that |pq| does not lies in (nLi−1, t
3Li/n

3), for a sufficiently large n. Assume
to the contrary that |pq| ∈ (nLi−1, t

3Li/n
3). Then dG(p, q) ≤ t|pq| < t4Li/n

3 < Li/n
2 for a

sufficiently large n, and thus all edges in a shortest path in G between p and q have length
less than Li/n2. Recall that Li/n2 is the length of a shortest edge of G among all edges of
length larger than Li−1. Thus by construction of L, there is no edge of G whose length lies
in (Li−1, Li/n

2). Therefore, all edges in a shortest path in G between p and q have length
at most Li−1, and thus |pq| ≤ dG(p, q) ≤ nLi−1. This contradicts |pq| ∈ (nLi−1, t

3Li/n
3),

and therefore, |pq| lies on one of the five (closed) intervals excluding (nLi−1, t
3Li/n

3). By
construction, if |pq| lies in the kth interval among the five intervals, then it lies in L̄6−k. J
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(a) (b) (c)

p

q

p
q = q̄

p̄

p
q = q̄

p̄

Figure 2 (a) A shortest path πG in G between p and q. The interior of each dashed curve is a
connected component of Gi−2. (b) Two bridges. The points p̄ and q̄ are the fist points in πG incident
to the bridges from p and q, respectively. (c) The bridges, and edges of Gi−2 from an ε-approximate
path in G between p and q.

3 Finding the Index i with |pq| ∈ [Li−1, Li)

Let L = 〈L1, . . . , Lr〉 be the sequence of values defined in Section 2. The following two
lemmas give an algorithm for computing i with |pq| ∈ [Li−1, Li) in constant time for any
two query points p and q.

I Lemma 3. If Li−1 ≤ |pq| < Li, the length of a longest edge of the path in M between p
and q lies in [Li−2, Li+1), where M denotes a minimum spanning tree of G.

Proof. Let p and q be two vertices of V with Li−1 ≤ |pq| < Li for an integer i. Since G is a
t-spanner, dG(p, q) ≤ t|pq| < tLi. Therefore, every edge in a shortest path in G between p
and q has length at most tLi < Li+1. By the cycle property of the minimum spanning tree,
all edges of the path πM (p, q) in M between p and q have length less than Li+1.

Now we show that a longest edge of πM (p, q) has length at least Li−2. Assume to the
contrary that all edges of πM (p, q) have length less than Li−2. Since the number of vertices
of πM (p, q) is at most n, the length of πM (p, q) is less than nLi−2 < Li−1. Note that
dG(p, q) is at most the length of πM (p, q) because M is a subgraph of G. Therefore, we have
dG(p, q) < nLi−2 < Li−1, which contradicts that Li−1 ≤ |pq| ≤ dG(p, q). J

I Lemma 4. After an O(n logn)-time preprocessing, we can compute the index i with
Li−1 ≤ |pq| < Li in constant time for any two points of V .

Proof. We sort all edges of G in increasing order with respect to the edge weights, and
compute L in O(n logn) time. Also, we compute a minimum spanning tree M of G in
O(n logn) time. Recall that G has O(n) edges.

We construct a binary tree T such that each non-leaf node is associated with an edge
of M , and each leaf node is associated with a vertex of M as follows. If M consists of a
single vertex, T consists of a single node associated with the vertex of M . Otherwise, we
create a new node which is the root of T , and associate the root with a longest edge of M .
The subgraph of M obtained by removing the longest edge of M consists of two connected
components. Then we define a binary tree for each connected component recursively, and
merge the two binary trees by making their roots the children of the root of T . For a vertex
of T associated with an edge e of M , we store the index i(e) such that the length of e lies in
[Li, Li+1). We can construct T and all indices i(·) in O(n logn) time in total.

Then for two points p and q, a longest edge of the path in M between p and q is stored
in the lowest common ancestor of the leaf nodes of M associated with p and q, respectively,
by construction. To answer this query, we construct the data structure in [17] so that the
lowest common ancestor of any two nodes of T can be computed in constant time.
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In this way, we can compute i(e) in constant time, where e is a longest edge of the path
in M between p and q. By Lemma 3, if Li−1 ≤ |pq| < Li for some index i, the length of
e lies in [Li−2, Li+1). That is, i(e) ∈ [i − 2, i). If Li−1 ≤ |pq| < Li, i is either i(e) + 2 or
i(e) + 1, and we can check if a given integer is i or not in constant time. Therefore, we can
compute i with Li−1 ≤ |pq| < Li in constant time. J

Therefore, we can obtain the index i with Li−1 ≤ |pq| < Li in constant time, and then
we can find the sequence Lj with |pq| ∈ L̄j in constant time. With a slight abuse of notation,
we let L = 〈L1, L2, . . . , Lr〉 be Lj . Note that Li ≥ n2Li−1 for every integer i with 2 ≤ i ≤ r,
and the length of every edge of G is in [L1, Lr−1). In the following sections, we present
a data structure of size O(n logn) so that an ε-approximate path between p and q can be
computed in constant time per edge for any two vertices p and q in V with |pq| ∈ L̄.

4 Long and Short Edges of a Shortest Path in G

We decompose E into sets E1, E2, . . . , Er such that Ei is the set of edges of G whose lengths
lie in [Li−1, Li), where L0 = 0. The data structure for L also consists of several substructures.
Each substructure is constructed for each subset Ei. It handles query points p and q with
|pq| ∈ [Li/n, Li/t]. A shortest path πG in G between p and q can be partitioned into several
pieces so that each piece is a maximal subpath of πG contained in the same connected
component of the subgraph of G induced by the edges in E1∪E2∪ . . .∪Ei. We call the edges
of πG connecting two pieces of πG bridges. See Figure 2(a,b). Our strategy is to compute the
bridges of an approximate path first, and then connect each of them by a (not necessarily
shortest) path of G. See Figure 2(c). Since the total length of the bridges is much larger
than the length of the other part of πG, it suffices to connect two bridges by any path of G.

To use this observation, we construct a graph Si of size O(|Ei−1∪Ei|) for each i such that
Si contains all edges of Ei−1 ∪ Ei and some short edges connecting the edges of Ei−1 ∪ Ei.
The number of short edges is O(|Ei−1 ∪ Ei|), and short edges are not necessarily contained
in E. We can modify the data structure of [12] to compute long edges of an approximate
path in Si in the case that the Euclidean distance between the query points is larger than
the length of a longest edge of Si. Using this data structure, we can compute the bridges of
πG for query points p and q. Then we compute the edges of E connecting the bridges. For
an illustration, see Figure 1.

In the following, for a fixed index i, we show how to construct a graph Si, which is a
2Li-partial t(1 + ε)-spanner for V . Using Si, we show how to obtain an ε-approximate path of
G between two query points. We use Gi to denote the subgraph of G with the vertex set V
and the edge set E1∪E2∪ . . .∪Ei. Notice that Gi is an Li-partial t-spanner for V because G
is a t-spanner for V due to Lemma 5. Then our goal in this section can be restated as follows:
construct a data structure for Gi of size O(|Ei ∪ Ei−1|) so that given two points p and q, an
ε-approximate path in Gi can be found efficiently assuming that Li/n ≤ |pq| < Li/t.

I Lemma 5. We have dG(p, q) = dGi
(p, q) for any two points p and q with |pq| < Li/t.

Proof. Since dG(p, q) ≤ t|pq| < Li, the length of any edge of a shortest path in G between p
and q is less than Li. Therefore, every edge of the shortest path is contained in Gi, and thus
dG(p, q) = dGi

(p, q). J
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(a) (b) (c)

Figure 3 (a) The vertices lying in the interior of each dashed circle form a connected component
of Gi−2. (b) The five bridges, and ten bridge points. (c) The line segments from a partial spanner Si.
An edge of Si is either a bridge or an edge of a Euclidean (1 + ε)-spanner for a connected component
of Gi−2.

4.1 Construction of Si
We say an edge is long if its length is at least Li−2, and an edge (which is not necessarily
in Gi) is short, otherwise. Then we have the following lemma.

I Lemma 6. A shortest path in Gi between two points contains a long edge if their Euclidean
distance is at least Li/n.

Proof. Let p and q be two vertices of Gi with |pq| > Li/n. Suppose that all edges of the
shortest path are short, that is, their lengths are less than Li−2. Then dGi(p, q) < nLi−2 ≤
Li/n

3 < |pq|. This contradicts that |pq| ≤ dGi
(p, q) for any two points p and q in V . J

We define a graph Si = (Vi, Fi) as follows. A long edge of Gi is called a bridge if their
endpoints lie on different connected components of Gi−2. In this case, their endpoints are
called bridge points. Let Bi be the set of bridges, and Vi denote the set of bridge points.
Note that Bi ⊆ Ei−1 ∪ Ei and |Vi| = O(|Ei−1 ∪ Ei|). We define the vertex set of Si as Vi.
See Figure 3(a,b).

The edge set Fi of Si is defined as follows. For a connected component γ of Gi−2, let Vi(γ)
be the set of points of Vi which are contained in γ. We construct a Euclidean (1 + ε)-spanner
for Vi(γ) of size O(|Vi(γ)|) in O(|Vi(γ)| log |Vi(γ)|) time using the algorithm in [8]. Then we
let Fi be the set of all edges of Bi and all edges of the Euclidean spanners of length at most
2Li for all connected components of Gi−2. See Figure 3(c).

I Lemma 7. The complexity of Si is O(|Ei ∪ Ei−1|).

Proof. Since all bridges for Gi−2 are contained in Ei ∪ Ei−1, the number of vertices of Vi
is O(|Ei ∪ Ei−1|). An edge of Si is either a bridge for Gi−2 or an edge of the Euclidean
(1 + ε)-spanner for Vi(γ) for a connected component γ of Gi−2. Since the sum of |Vi(γ)| for
all connected components γ is O(|Vi|) = O(|Ei ∪Ei−1||), the number of edges of Si is also
O(|Ei ∪ Ei−1|). J

4.2 Properties of Si
For any two query points p and q with |pq| ∈ [Li/n, Li/t], all bridges in an approximate
path in G between p and q are contained in the edge set of Si. We compute the bridges of
an ε-approximate path in Si between two vertices, and then compute several paths in Gi−2.
The concatenation of those bridges and paths form an ε-approximate path between p and q.
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In this subsection, we show that Si is a 2Li-partial t(1 + ε)-spanner for Vi. This property
is used for designing a data structure for computing the bridges of an ε-approximate path
in Si between two vertices, which is described in Section 6.3.

I Lemma 8. Si is a 2Li-partial t(1 + ε)-spanner for Vi.

Proof. The lemma can be restated as follows by definition: For any two vertices u and v in
Vi with |uv| ≤ 2Li, we have dSi(u, v) ≤ t(1 + ε)|uv|.

Consider two vertices u and v in Vi with |uv| ≤ 2Li which are contained in the same
connected component γ of Gi−2. Recall that the edges of a Euclidean (1 + ε)-spanner for
Vi(γ) of length at most 2Li are contained in the edge set of Si. Therefore, for any two vertices
u and v in Vi(γ) with |uv| ≤ 2Li, their distance in Si is at most (1 + ε)|uv| ≤ t(1 + ε)|uv|
since t > 1. Therefore, in the following, we consider two points u and v in Vi with |uv| ≤ 2Li
which are contained in different connected components of Gi−2.

Consider a shortest path π in G between u and v. Since u and v are not connected in
Gi−2, π contains at least one bridge in Bi. Consider all bridges of Bi contained in π. Let
〈w1, . . . , wk〉 be the sequence of the endpoints of the bridges sorted along π from u to v. For
each j, either wjwj+1 is a bridge of Bi, or wj and wj+1 are connected in Gi−2. Also, let
w0 = u and wk+1 = v.

We construct a path in Si between u and v as follows. It consists of k + 1 subpaths:
π0, π1, . . . , πk. Let j be an index j with 0 ≤ j ≤ k. If wjwj+1 is a bridge in Bi, we let πj be
the bridge. Otherwise, we let πj be a shortest path between wj and wj+1 in the Euclidean
spanner for Vi(γ), where γ is the connected component of Gi−2 containing both wj and wj+1.
Then we let πS be the concatenation of π0, . . . , πk.

Clearly, πS is a path in Si connecting u and v. Also, dSi
(u, v) is at most the length of

πS , which is the sum of the lengths of π0, . . . , πk+1. If πj is a bridge, its length is |wjwj+1|.
Otherwise, its length is at most (1 + ε)|wjwj+1| because it is a shortest path in a Euclidean
spanner. Since wj is a vertex of a shortest path in G for every integer j with 0 ≤ j ≤ k + 1,
the distance in G between u and v is at least the sum of |wjwj+1| for all 0 ≤ j ≤ k. Also,
since G is a Euclidean t-spanner for V , the distance in G between u and v is at most t|uv|.
By combining all of them, we have

dSi
(u, v) ≤

k∑
j=1

dSi
(wj , wj+1) ≤

k∑
j=1

(1 + ε)|wjwj+1| ≤ (1 + ε)dG(u, v) ≤ t(1 + ε)|uv|,

which completes the proof of the lemma. J

I Corollary 9. For two points u, v ∈ Vi with |uv| ≤ Li/t, we have dSi
(u, v) ≤ (1 + ε)dG(u, v).

Also, by construction of Si, we have the following lemma.

I Lemma 10. A longest edge of Si has length at most 2Li.

Notice that, even though the distance in Si between two points is within (1 + ε) times
their distance in G, a shortest path in Si between the two points is not necessarily a path in
G. This is because Si contains edges which are not contained in E. Moreover, it is possible
that p or q is not contained in Vi, where i is the index with |pq| ∈ [Li/n, Li/t].

5 Specifying an Approximate Path

Consider any two points p and q in V with |pq| ∈ [Li/n, Li/t]. In this section, we specify an
ε-approximate path we are going to compute among all ε-approximate paths between p and
q in G. We call such a path an approximate G-path.
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Let p̄ and q̄ be any two vertices of Vi which are contained in the same connected components
of Gi−2 as p and q, respectively. Notice that p and q are not necessarily contained in Vi. If
p ∈ Vi and q ∈ Vi, then p̄ and q̄ might be p and q, respectively. Let π(p, p̄) be any path in
Gi−2 between p and p̄. Similarly, let π(q, q̄) be any path in Gi−2 between q and q̄. Now we
connect p̄ and q̄ by a path in Gi as follows. Let πS(p̄, q̄) be an ε-approximate path in Si
between p̄ and q̄. Note that πS(p̄, q̄) might contain an edge not contained in E. Consider the
bridges in Bi contained in πS(p̄, q̄). Let 〈w1, . . . , wr〉 be the sequence of the endpoints of the
bridges sorted along πS(p̄, q̄).

In the following, we construct a path πε(p, q) of G connecting p, p̄, w1, w2, . . . , wr, q, q̄ in
order whose length is at most (1 + 3ε)dG(p, q). For each integer j = 1, . . . , r, if wjwj+1 is a
bridge, it is an edge of G. In this case, we connect wj and wj+1 by the bridge. If wjwj+1 is
not a bridge, wj and wj+1 are contained in the same connected component γ of Gi−2. In this
case, we connect wj and wj+1 by an arbitrary path in Gi−2. The concatenation of π(p, p̄),
paths (or bridges) connecting wj and wj+1, and π(q, q̄) is called an ε-approximate G-path,
denoted by πε(p, q). By construction, it is a path in G connecting p, p̄, w1, w2, . . . , wr, q̄, q in
order. Notice that all bridges of πε(p, q) are long, and all non-bridge edges are short.

I Lemma 11. The length of πε(p, q) is at most (1 + 3ε)dG(p, q).

Proof. Recall that Li/n ≤ |pq| ≤ Li/t. Let 〈w1, . . . , wr〉 be the sequence of the endpoints
of the bridges in πS(p̄, q̄) from p̄ to q̄. Let w0 = p and wk+1 = q. Consider an edge wjwj+1
with 0 ≤ j ≤ k. If it is a bridge, it is contained in πε(p, q). In this case, the length of
the part of πε(p, q) from wj to wj+1 is |wjwj+1|. If it is not a bridge, wj and wj+1 are
contained in the same connected component of Gi−2. Since Li/Li−1 ≥ n2 and the number
of vertices of Gi−2 is at most n, the length of a path connecting wj and wj+1 in Gi−2 is at
most Li−2n ≤ Li−1/n. Therefore, the length of the part of πε(p, q) from wj to wj+1 is at
most Li−1/n.

Therefore, we have the following inequalities.

w(πε(p, q)) ≤ w(πS(p̄, q̄)) + Li−1

≤ (1 + ε)dG(p̄, q̄) + Li−1

≤ (1 + ε)(dG(p, q) + 2Li−1/n) + Li−1

≤ (1 + ε)dG(p, q) + 2Li−1

≤ (1 + ε)dG(p, q) + 2εdG(p, q),

where w(π) denotes the length of a path π.
The first inequality holds because the total length of bridges of πε(p, q) is at most

|πS(p̄, q̄)|, and the length of the remaining part is at most Li−1. The second inequality holds
by Corollary 9. The third inequality holds because a path in Gi−2 connecting p and p̄ (and
q and q̄) has length at most Li−1/n. The last inequality holds due to Li/n ≤ |pq| ≤ dG(p, q).
Since ε is a constant, for a large n, it holds Li−1 ≤ Li/n2 ≤ dG(p, q)/n ≤ εdG(p, q). Therefore,
the length of πε(p, q) is at most (1 + 3ε)dG(p, q). J

The following lemma will be used for computing the long edges of πε(p, q) in Section 6.3.

I Lemma 12. The Euclidean distance between p̄ and q̄ lies in [Li/(2n), 2Li).

Proof. Since p and p̄ are connected in Gi−2 by definition, the distance in G between them is
at most nLi−2, and thus |pp̄| is at most nLi−2. Similarly, |qq̄| is at most nLi−2. Recall that
|pq| ∈ [Li/n, Li/t].
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By the triangle inequality, we have |p̄q̄| ≤ |p̄p|+ |pq|+ |q̄q| ≤ Li/t+ 2nLi−2 ≤ 2Li, which
shows the upper bound. Similarly, by the triangle inequality, we have |p̄q̄| ≥ |pq|−|p̄p|−|q̄q| ≥
Li/n− 2nLi−2 ≥ Li/(2n), which shows the lower bound. J

6 Computing ε-Approximate G-Paths

In this section, we present a data structure and a query algorithm for computing an ε-
approximate G-path for two query points p and q with |pq| ∈ [Li/n, Li/t] assuming that we
are given the index i. This data structure consists of three substructures: one for computing
p̄ and q̄, one for computing the short edges of the path, and one for computing the long
edges (bridges) of the path.

More specifically, we first construct a data structure in O(n logn) time, which is described
in Section 6.1, so that given two points p and q, and an index i, we can compute p̄ and q̄ in
constant time. Also, we construct a data structure in O(n logn) time so that for any two
points p and q, and an index i − 1, we can report the edges of an arbitrary path in Gi−2
between p and q in constant time per edge. This data structure is described in Section 6.2.
Note that these data structures do not depend on an index, and thus they can be used for all
indices i. In addition to this, we construct a data structure on Si which allows us to find all
bridges in an ε-approximate path in Si between p̄ and q̄. This data structure is described in
Section 6.3, and it is a slight modification of the data structure of [12]. It can be constructed
in O(|Ei ∪ Ei−1| logn) time for each index i, and thus the total construction time for all
indices is O(n logn) time.

I Lemma 13. Assuming the three substructures mentioned above have been constructed, for
any two query points p and q, we can compute πε(p, q) in constant time per edge.

Proof. We first find p̄ and q̄ in constant time using the data structure described in Section 6.1.
Then we compute all bridges of an ε-approximate path πS(p, q) in Si in constant time per
edge using the data structure described in Section 6.3. Notice that the bridges are contained
in πε(p, q). Let 〈w1, . . . , wr〉 be the sequence of the endpoints of the bridges sorted along
πS(p, q). The bridge points are reported by the query algorithm described in Section 6.3 one
by one from w1 to wr in constant time per edge. After wj+1 is reported by the algorithm,
we compute the part of πε(p, q) lying between wj and wj+1. If wjwj+1 is not a bridge.
we compute a path in Gi−2 connecting wj and wj+1 using the data structure described in
Section 6.3 in constant time per edge. The path obtained by concatenating all paths we
computed so far is an ε-approximate G-path. Therefore, we can compute the ε-approximate
G-path in constant time per edge. J

6.1 Computing p̄ for an Index i and Points p and q
In this section, we present a data structure for the following type of queries: Given two
points p and q of V and an index i with |pq| ∈ [Li/n, Li/t], we want to find vertices p̄ (and
q̄) of Vi such that p and p̄ (and q and q̄) are contained in the same connected component
of Gi−2. To do this, we use a minimum spanning tree M of G, which can be computed in
O(n logn) time. Recall that we assume that the number of edges of G is O(n). By properties
of the minimum spanning tree, we have the following observation. We use πT (u, v) to denote
the path in T between u and v for a tree T .

I Observation 14. A longest edge in the path in M between two points p and q has length
at most ` > 0 if and only if there is a path in G between p and q whose longest edge has
length at most `.
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Data Structure. We sort all edges of G in increasing order with respect to their lengths
and compute a minimum spanning tree M of G in O(n logn) time. Then we construct a
tree T such that each non-leaf node stores an index, each leaf node of T stores a vertex of
V , and each edge of T stores two vertices of V . If M consists of a single vertex, T consists
of a single node which stores the vertex of M . Otherwise, consider all edges of M whose
lengths lie in [Ls−1, Ls), where s is an index such that the length of a longest edge of M lies
in [Ls−1, Ls). Imagine that we remove such edges from M . Then there are several connected
components. For each connected component γ, we construct a tree T (γ) recursively. Then
we merge T (γ)’s for all connected components γ by making a new node and connecting it
with the roots of T (γ)’s. Then we store the index s at the new node. Also, for the edge
between the root of each connected component γ and the new node, we store two arbitrary
vertices in Vi and Vi+1 contained in γ. Notice that if a node v of T stores an index i, the
vertices of M stored in the leaf nodes of the subtree rooted at v are connected in Gi.

Then for any two points p and q, the lowest common ancestor of the leaf nodes of T
corresponding to p and q stores the index s such that the length of a longest edge of πM (p, q)
lies in [Ls−1, Ls) by construction. To use this property in our query algorithm, we construct
the data structure in [2, 17] so that the lowest common ancestor (LCA) of any two nodes of
T can be computed in constant time. Also, we construct a level ancestor data structure on T
so that the children of the LCA of p and q contained in πT (p, q) for any two vertices p and q
can be computed in constant time. A level ancestor data structure on an n-vertex tree has
size of O(n), and it can be constructed in O(n logn) time [3].

I Lemma 15. For two points of V with |pq| ∈ [Li/n, Li/t], the index stored in the lowest
common ancestor of the leaf nodes corresponding to p and q in T is either i or i− 1.

Proof. We first claim that p and q are connected in Gi, but not in Gi−2. Since dG(p, q) ≤
t|pq| ≤ Li, a shortest path in G between p and q consists of edges of length at most Li, and
thus p and q are connected in Gi. Also, p and q are not connected in Gi−2. Otherwise,
dG(p, q) ≤ nLi−2 < Li−1, which contradicts Li/n ≤ |pq| ≤ dG(p, q).

The lowest common ancestor of the leaf nodes corresponding to p and q stores the index
i if p and q are not connected in Gi−1, or stores the index i− 1 if p and q are connected in
Gi−1. This completes the proof of the lemma. J

Query Algorithm. To compute p̄, we first find the lowest common ancestor v of the leaf
nodes for p and q in T in constant time, and compute the child v′ of v in πT (v, p), and
the child v′′ of v′ in πT (v, p) in constant time using the level ancestor data structure. By
Lemma 15, v stores i or i− 1. If v stores i− 1, by construction, the edge vv′ of T stores a
vertex in Vi which is connected by p in Gi−2. If v stores i, the edge v′v′′ of T stores a vertex
in Vi connected by p in Gi−2. Therefore, in any case, we can compute p̄ in constant time.
Similarly, we can compute q̄ in constant time.

I Lemma 16. Given a sequence L = 〈L1, L2, . . . , Lr〉 of values in R such that Li ≥ n2Li−1
for every integer i with 2 ≤ i ≤ r, and the length of every edge of G is in [L1, Lr), we can
construct a data structure of size O(n logn) in O(n logn) time so that given any two query
points p and q of V with |pq| ∈ [Li/n, Li/t], we can find vertices p̄ (and q̄) of Vi connected
by p (and q) in Gi−2 in constant time.

6.2 Computing Short Edges
In this section, we show how to construct a data structure so that for any two query points
p and q, and an index i, a path in Gi−2 between p and q can be found in constant time per
edge. Here, a path is not necessarily a shortest path.
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We use a minimum spanning tree M of G. Since M is a tree, we can compute the path
in M connecting any two vertices p and q in constant time per edge. To do this, we choose
an arbitrary vertex of M as the root of M , and construct the data structure in [17] so that
the lowest common ancestor of any two vertices of M can be computed in constant time.
Using this data structure, we compute the LCA u of p and q. Then we traverse M from p

towards the root until we encounter u. Then from u, we traverse the path between u and p
in constant time per edge. Due to the level ancestor data structure, we can compute the
child of any node w in the path between w and q in constant time, and thus each edge of the
path can be computed in constant time. In this way, we can compute the path in M from p

to q in constant time per edge.
By Observation 14, the returned path is a path in Gi−2 assuming that such a path exists.

I Lemma 17. Given a t-spanner G for a point set V in d-dimensional Euclidean space, we
can construct a data structure of size O(n logn) in O(n logn) time so that given any two
query points p and q of V , and an index i, we can compute a path in Gi−2 between p and q
in constant time per edge, assuming such a path exists.

6.3 Computing Long Edges
We construct a data structure on Si so that for any two vertices u and v of Vi, the bridges of
an ε-approximate path in Si between u and v can be computed in constant time per bridge.
We obtain this data structure by slightly modifying the data structure of [12], which allows us
to compute an approximate distance in a 2Li-partial t-spanner in the case that the Euclidean
distance between two query points lies in [Li/(2n), 2Li). In our case, the query points for this
data structure are p̄ and q̄, and their Euclidean distance lies in [Li/(2n), 2Li) by Lemma 12.
We give a brief sketch of the data structure. Details can be found in Section 6.3 in the
appendices.

Brief sketch of [12]. A key idea is to partition [Li/(2n), 2Li) into O(logn) subintervals
each of the same length. Then a value in a subinterval is larger than the square of any
other values in the subinterval. For each interval I, they compute a data structure on Si
such that, for any two vertices u and v of Si with |uv| ∈ tI, the ε-approximate distance
between them can be computed in constant time. Since for any two vertices u and v with
|uv| ∈ [Li/(2n), 2Li), there is a subinterval I such that |uv| ∈ tI. Therefore, they can use
the sequence of O(logn) data structures to answer approximate distance queries.

The data structure constructed for each interval I is a cluster graph, which was introduced
by Das et al. [7]. The vertex set of the cluster graph is the vertex set of Si, and an edge
of the cluster graph is called either an inter-cluster edge, or an intra-cluster edge. If we
remove all inter-cluster edges from the cluster graph, it becomes a forest. A inter-cluster
edge connects the roots of two trees of the forest. Das et al. [7] showed that if uv ∈ tI, the
shortest path in the cluster graph between u and v consists of O(1) inter-cluster edges and
the shortest path between u (and v) and the root of the tree containing u (and v). Moreover,
a vertex is incident to O(1) inter-cluster edges. Also, they showed that the distance in the
cluster graph between two points is an ε-approximate path between them in Si. Using this
property, one can compute an ε-approximate path in constant time.

Modification. It can be easily modified to support shortest-path queries. As in [12], we
compute all inter-cluster edges in the shortest path between u and v in constant time. In the
preprocessing phase, we compute for each inter-cluster edge, we store a path in Si connecting
the endpoints. Since an intra-cluster edge is an edge of Si, we can compute an ε-approximate
path between any two points in constant time.

ISAAC 2020



52:14 Shortest-Path Queries in Geometric Networks

Instead of computing all edges of the path, our goal is to compute the bridges in the path
in constant time per bridge. To do this, for each intra-cluster edge, we store the pointer
pointing to the closest bridge from the edge in the path between the node and the root. Also,
instead of storing all edges of a path for each inter-cluster edge, we store the bridges in the
path only. Then we can find all bridges in the path between v (and u) and the root of the
tree in constant time per bridge.
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