
Signal Passing Self-Assembly Simulates Tile
Automata
Angel A. Cantu
Department of Computer Science, University of Texas – Rio Grande Valley, TX, USA
angel.cantu01@utrgv.edu

Austin Luchsinger
Department of Electrical and Computer Engineering, University of Texas at Austin, TX, USA
amluchsinger@utexas.edu

Robert Schweller
Department of Computer Science, University of Texas – Rio Grande Valley, TX, USA
robert.schweller@utrgv.edu

Tim Wylie
Department of Computer Science, University of Texas – Rio Grande Valley, TX, USA
timothy.wylie@utrgv.edu

Abstract
The natural process of self-assembly has been studied through various abstract models due to the
abundant applications that benefit from self-assembly. Many of these different models emerged in
an effort to capture and understand the fundamental properties of different physical systems and
the mechanisms by which assembly may occur. A newly proposed model, known as Tile Automata,
offers an abstract toolkit to analyze and compare the algorithmic properties of different self-assembly
systems. In this paper, we show that for every Tile Automata system, there exists a Signal-passing
Tile Assembly system that can simulate it. Finally, we connect our result with a recent discovery
showing that Tile Automata can simulate Amoebot programmable matter systems, thus showing
that the Signal-passing Tile Assembly can simulate any Amoebot system.
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1 Introduction

In this paper we explore the connection between two previously studied models of active self-
assembly: the Signal-Passing Tile Assembly Model (STAM) [5, 6, 8, 10], a tile self-assembly
model in which signals are passed based on a DNA strand-displacement mechanism [11], and
the Tile Automata (TA) model [1, 2, 3], a recently proposed mathematical abstraction of
active self-assembly that merges tile self-assembly and asynchronous Cellular Automata [7].
We show that any TA system can be simulated by a corresponding STAM system.

Tile Automata and the Signal-Passing Tile Assembly model are models of active self-
assembly that serve two different purposes. The STAM provides a method for tiles within
a self-assembly system to turn glues on and off based on glue attachments, which are
motivated by a simple DNA strand-displacement mechanism. Due to its direct tie to a
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DNA implementation, along with successful experimental implementation [11], the STAM
provides a direct path to implement active tile self-assembly constructions with DNA strand-
replacement methods. Tile Automata, on the other hand, is an intentional mathematical
abstraction designed to implement the key features of active algorithmic self-assembly while
avoiding specifics tied to any one particular implementation (using state change rules and
tile attachments/detachments based on local affinities between states). By abstracting away
implementation details, TA strives to serve as a proving ground for exploring the power of
active algorithmic self-assembly, along with providing a central hub model through which
various disparate models of self-assembly can be related by way of comparison to TA. One
recent example of this type of application includes [1] in which TA is shown capable of
simulating the Amoebots model [4] of programmable matter.

As Tile Automata seeks to serve as a model for examining the intrinsic power of active self-
assembly systems, it is crucial that the features of the model are based on an experimentally
plausible foundation. Obtaining this foundation is exactly the focus of this paper: we show
that any TA system may be implemented with a STAM system, which has a direct connection
to a DNA strand-replacement implementation. Since the features of TA are quite natural
and may have numerous potential implementations, ours may not be the only or simplest.
However, this connection gives one such path for implementation explicitly. Further, this
provides a new way to program for STAM systems by allowing a programmer to solve
a problem with the simpler and more powerful rules of a TA system, and then compile
the system into a STAM system. As more models are connected to TA, this expands the
programming languages available for STAM systems. For example, with this work and the
work of [1], we now have a proposed DNA implementation of Amoebots [4], as well as a new
method for which to program the STAM through a powerful model of programmable matter.

To show that STAM simulates TA, our approach has three key steps. First, we define
a limited subset of TA based on the key features of TA that are particularly difficult to
simulate within STAM. Second, we prove that this limited version of TA can still simulate
regular TA at scale. Third, we use macro-tiles in the STAM to implement this limited version
of TA at scale. With these components, we get STAM simulating TA.

Limited Tile Automata. The limited version of TA addresses the following features.
STAM tiles send signals based on DNA strand-displacement mechanisms. However, based
on the motivating implementation, these signals are used up after each firing, implying
that each STAM tile has a limited number of signals it may fire before becoming inert.
In contrast, TA tiles may cycle through a given state arbitrarily many times without
becoming used up. To bring TA closer to STAM, we focus on freezing TA systems [3]
which limit state transition rules so that a tile may not revisit a state, implying that each
TA tile will eventually become inert (or freeze).
General TA includes the ability to flip the state of a pair of tiles in a single step. In
contrast, STAM system signal passing must adjust each of a pair of STAM tiles one at
a time, in some order, causing an inaccurate simulation, as well as race conditions. To
address this we consider TA systems with limited rule sets that never change both states
of an adjacent pair within a single rule.
Motivated by the DNA strand-displacement implementation, STAM signals fire as a result
of a bonding between two glues, implying signals are only fired between two tiles which
are stuck together by some positive strength force. In response, we consider limited TA
rules which only induce state changes between state pairs with positive strength affinities.
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Figure 1 (a)–(c) An example signal tile. (d) The acyclic graph which represents the transitioning
of glue labels.

Preventing race conditions among the sides of a STAM tile is difficult when attempting to
adjust the state of a STAM tile in a single conceptual step. To address this, we consider
limited TA systems for which a TA state only changes state based on adjacency from one
of the four cardinal directions.

Together, we refer to the model of TA obtained by applying each of these limitations as
the Freezing, Single-Rule, Bonded, Same-sided Tile Automata model (FRBS).

We begin with a high-level overview of the definitions and models in Section 2. In Section 3,
we discuss the key techniques used to allow each limited variant of TA to individually simulate
general TA, and then show in Section 4 that FRBS simulates all of TA. We then show in
Section 5 that STAM simulates FRBS, to get our main result that STAM simulates TA.
Finally, we look at future work in Section 6.

2 The Models

This work focuses on two models of self-assembly, the signal-passing tile assembly model and
the Tile Automata model. Here, we provide a brief description of the two models. We refer
the reader to [10] for formal STAM definitions and [3] for formal TA definitions.

2.1 Signal Tile Model
The signal-passing tile assembly model (STAM) [5, 6, 8, 9, 10] is a model of self-assembly
which considers semi-intelligent monomers. This form of self-assembly, known as active
self-assembly, allows for system monomers to react to their environment. In the STAM,
system monomers are tiles which have sets of glues on each edge (as opposed to only one glue
per side as in the 2HAM). The glues in these sets are either on, off or latent. Only glues in
the on state may be used for tile attachment. STAM tiles (Figure 1) also each implement a
transition function which produces output actions that may change the state of a particular
glue. Upon the binding of two tiles, the output actions of each tile’s corresponding transition
functions are all instantly queued into a set of pending actions. This allows STAM tiles to
“pass signals” through a series of these transition functions.

2.2 Tile Automata
The Tile Automata model is a marriage between cellular automata and 2-handed self-assembly.
TA systems consist of a set of monomer states, along with local affinities between states
denoting the strength of attraction between adjacent monomers in those states. A set of
local state change rules are included for pairs of adjacent states. Assemblies in the model are
created from an initial set of starting assemblies by combining previously built assemblies
given sufficient binding strength from the affinity function (binding strength that meets or

ISAAC 2020



53:4 Signal Passing Self-Assembly Simulates Tile Automata

CA B D E
States

A
B
=2

C
D
=2

A C =1

B D =1

B E =2

Affinity Functions

B EB D
Transition Rules

A B C D
Initial Assemblies

CA B D

A
B

C
D

A
B
C
D

A
B
C
E

A
B E

Producibles

A
B E

Terminals

Stability Threshold=2

Tile Automata System

Figure 2 An example TA system. Recursively applying the transition rules and affinity functions
to the initial assemblies of a system yields a set of producible assemblies. Any producibles that
cannot combine with, break into, or transition to another assembly are considered to be terminal.
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Figure 3 (a) Examples of m-block representation and mapping. The partial function R takes a
macro-block and maps it to a state in the state space of some other system. (b) The function R′

takes a positioned assembly, containing m-blocks, and maps it to a positioned assembly over the
state space of the other system using the m-block representation function to perform the mapping.
(c) Visual depiction of the simulation roadmap. For clarity, the results are presented in reverse order
with the first result coming from previous work [3], Lem. 1 in Sec. 4, and finally Lem. 3 in Sec. 5.

exceeds a given parameter known as a stability threshold). Further, existing assemblies may
change states of internal monomer tiles according to any applicable state change rules. An
example system is shown in Figure 2.

In order to compare the capability of various models, we formulate our notion of simulation.
This is an oft-argued upon concept (what it means to simulate), but the goal is to capture a
reasonable idea of simulation while allowing for small amount of flexibility.

Simulation

We use the same notion of simulation as was presented in [3]. At a high-level, for system B to
simulate system A means there is a surjective mapping from B to A so that every producible
in B uniquely maps to a producible of A. At a constant scale, we call each mapped tile an
m-block representation. Figure 3a shows this for a 9-block representation, and Figure 3b
shows the mapping with a 3-tile producible. We require that every producible in A has a
producible in B that maps to it. This definition of simulation guarantees that the systems
have the same producibles and terminals (at scale in system B).

3 High-Level Simulation Roadmap

In this section we discuss a set of limitations we impose on the general TA model to allow
for the simplest possible simulation within the STAM. Each imposed limitation addresses a
particular aspect of TA that does not have a clear corresponding aspect within STAM. After
simulating this limited version of TA with STAM, we then show how even this highly limited
version of TA is still able to simulate general TA.

Freezing Tile Automata (F) are TA systems whose rules are restricted so that a tile can
never revisit any state twice. Single-Rule Transition (R) TA systems only change one state
of a given state-pair of tiles, as opposed to simultaneously changing both of the state-pairs.
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Figure 4 An example TA system and the corresponding FBRS macroblocks and transition
dominoes.

Bonded Transition Rule (B) TA systems only utilize transition rules between state-pairs with
positive bonding affinity. Same-sided Transition Rule (S) TA systems require that all rules
which change a given state to a new state utilize the same relative orientation (e.g., state A
only transitions to a new state due to state-pair rules with A on the right); there do not exist
any transition rules with A transitioning except horizontal transitions with A on the right.

Simulation Chain Through TA Variants. In order to connect the STAM simulation to
general TA, we chain simulation results through the collection of TA variants. It is important
to note that simply connecting each variant to general TA is not enough. We must show
that a system with a combination of these variants may also simulate general TA.

4 FRBS → F: Freezing Single-Rule Bonded Same-Sided Tile
Automata simulates Freezing Tile Automata

This simulation utilizes the result from [3], which proves that freezing TA systems can
simulate non-freezing systems. We show that a limited TA variant, freezing single-rule
bonded same-sided (FRBS) Tile Automata, is capable of simulating freezing TA, and thus
general TA. This section is separated into three parts. First, we present a high-level overview
of different aspects of the simulation. We then introduce several preliminary concepts that
are crucial tools used throughout the simulation. Lastly, we present the construction details
for designing FRBS TA systems which are capable of simulating freezing TA systems.

4.1 High-Level Concepts

Macroblock Simulation. This simulation uses constant-scaled macroblocks. Figure 4
sketches what a FRBS macroblock representation for a given general TA system might
look like. Each macroblock encodes a state from the original system. Notice the macroblock
boundaries have a particular geometry which allows dominoes to cooperatively attach to
adjacent macroblocks. This property will be used throughout the simulation construction.

Machinery for Simulating Each Variant Limitation. The simulation construction is presen-
ted in sections, each of which details which mechanics are used to overcome the limitations
of a particular TA variant. The next paragraphs provide high-level descriptions of the tools
used to accomplish this.

ISAAC 2020
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A B A B X B

Figure 5 The primary idea behind the same-sided portion of the simulation is that individual
signals cannot be bidirectional. To overcome this, we ensure that all internal macroblock signals
propagate in the same counterclockwise direction, and all inter-macroblock communications use
temporary transition dominoes.
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Figure 6 (a) In order for a single-transition system to simulate a double-transition system, we
use the attachment of a transition domino. The mapping of both macroblocks can be changed
simultaneously with the attachment of such a domino. (b) The key concept behind the bonded
portion of the simulation is the transition domino. Adjacent macroblocks (bonded or not) allow for
the attachment of a transition domino which may allow communication of transition information.

Same-sided Transitions. Figure 5 presents the key idea for solving the problem of same-
sided transitions. Since this limitation restricts the direction from which a state can be
changed, we present a directional communication scheme. Signals within macroblocks always
travel counterclockwise while we utilize the temporary attachment of transition dominoes to
allow bidirectional communication between macroblocks.

Single-transitions. The transition domino is utilized in a different way to overcome the
problem of single transitions (Figure 6a). Since this variant limits transition rules within
a system to only change one of the two states involved, simultaneous double-transitions
cannot be achieved via state changes alone. Thus, we allow the cooperative attachment of
the transition domino to change the mapping of both macroblocks the moment it attaches.

Bonded-transitions. When trying to handle the bonded-transition restriction, we turn to
the transition domino yet again. With this TA variant, non-bonded state pairs are not
allowed to have transition rules. This can be simulated with the scaled macroblock simulation,
as shown in Figure 6b. Two adjacent macroblocks (that are part of the same assembly)
allow the cooperative attachment of a transition domino regardless of whether or not the
macroblocks themselves are bonded. We can then use the domino bonds to communicate
state change information between the macroblocks.

4.2 Construction Preliminaries
Motivation for Scale Factor. First, we provide some brief motivation for why this is not
done at scale-1. The primary motivation comes from trying to simulate a double-transition
system with a single-transition system. Figure 7a shows an example system with a double-
transition that can not be simulated at scale-1 by a single-transition system. The system
only uses states B and B′ after a double rule transition. Thus, neither single tile with states
B nor B′ are producibles; only the combined assembly of both is producible. Similarly, there
is no producible with an A(A′) and B(B′) state combined. Any single-transition system
would have to allow one of these cases to occur.
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Figure 7 (a) Motivation for scale factor. (b) Details of macroblock sections. Glue tiles represent
the current state of the macroblock X and are placed along the edges to bond with other macroblocks.
The wire is the circular network inside the macroblock (in yellow), encompassing and encompassed by
filler tiles. Strength-1 and strength-2 affinities are depicted by single and double squares, respectively.
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Figure 8 When a transition domino attaches cooperatively with a pair of glue tiles, the transition
directions can be redirected with the series of state changes shown.

Macroblock. For each state tile in a TA system, we construct and map a scale-7 macroblock
composed of three sections: glue tiles, filler tiles, and wire tiles. Filler tiles are used to
maintain the structure and connectivity of the macroblock, especially when some tiles detach
from the macroblock. Also, these tiles never change their states except at the beginning
when macroblocks are generated using the method from [3]. Glue tiles are a way to have
macroblocks bond with other macroblocks according to the affinity function of the TA system
it simulates. For example, if state tiles A′ and B′ in a TA system bond s.t A′ ` B′ ≥ τ ,
then the west and east glue tile of A and B, respectively, bond the same way (thus allowing
macroblocks to bond and mimic the affinity function of the TA system).

Wires. To have macroblock-level state transitions, we use the wire system of each macroblock
to communicate the activity of its four edges, looking out for possible state transitions. Wires
are interconnected series of state tiles that can cascade a series of state changes throughout
its structure. For instance, a state s inside the wire is said to “propagate” if every state
tile of the wire reacts to it by copying the state s onto itself, thus moving the s state across
the wire. These states that propagate are called signals. The state tiles are defined by the
description of the task they achieve and the manner that they propagate through the wire.
Each section of the macroblock is detailed in Figure 7b.

Transition Dominoes. The macroblock’s structure is designed to induce a 1× 2 or 2× 1
empty area next to the glue tiles when two of them bond together, allowing a transition domino
to cooperatively attach with the glue tiles. Transition dominoes are two state tiles with a τ
strength bond that represent the transition that a macroblock can undergo. For example, the
transition domino illustrated in Figure 8 represents the transition rule (X,X,A,X,`) that
can be realized with the transition domino. When the transition directions point outwards,
the wire tiles will be able to initiate the processes necessary for macroblock-state transitions.

ISAAC 2020
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Figure 10 (a) Overriding illustration of the transition signal originating from the s state by the
signal originating from the n state. This event is then detected by the failed transitioned domino
with the fail state Af . (b) An example of two transition dominoes competing to cycle a macroblock’s
wire. Given that the middle transition domino’s right state tile is the failed state Xf , the left state
tile proceeds by representing the replace state Ar.

4.3 FRBS → F: Freezing Single-Rule Bonded Same-Sided Tile
Automata simulates Freezing Tile Automata Construction Details

Here, we present the details for each part of the simulation construction. We depict the
transition direction (i.e., the edge of a state tile subject to state transitions) using the
N,N, N ,

N symbols for the south, north, west, east edge of state tiles, respectively.

Same-Sided. The primary mechanic used in this portion of the simulation is the same as the
high-level idea shown in Figure 5. As mentioned, macroblock state transitions are initiated
by transition dominoes that bond cooperatively to a pair of glue tiles. This attachment
“activates”’ the state tiles of the transition domino, making their transition directions point
towards the adjacent wire tile. The domino’s state tile then transitions the adjacent wire tile
to a cardinal direction state d ∈ {n, s, e, w} (i.e., the location where the transition domino
attached to a macroblock), which initiates the propagation of a transition signal.

Transition signals are used by transition dominoes in order to control a macroblock’s
wire and prevent other transition signals from initiating. For example, if a transition signal
completes a cycle through a macroblock’s wire, then it is “decided” that the macroblock
must transition according to the transition domino. This is depicted in Figure 9 where,
w.l.o.g., the transition domino transitions the adjacent wire tile to the e state, initiating the
transition signal that successfully cycles through the macroblock’s wire. The state tile in
the transition domino then receives notion of the cycle completion from the e state when it
transitions with it to represent the success state.
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Figure 11 (a) State tile Ar initiates the replacement signal starting from state r. (b) After the
first stage is complete, the wire tiles’ transition directions are reinitialized.

Given that many transitions signals may exist within a macroblock simultaneously (race
condition), the hierarchy n > e > s > w is induced when transition signals originating
from “greater” states are allowed to override the propagation of “lesser” states. For example,
applying the hierarchy on the propagation of both transition signals from the n and s states
in Figure 10a makes the transition signal from s stop upon reaching the n state, whereas the
transition signal from n overrides the other signal’s propagation, thus allowing it to complete
the cycle. After the transition signal overrides the s state, the state tile in the transition
domino transitions to represent the fail state (Figure 10a).

A macroblock state transition is said to be possible only if the state tiles in a transition
domino have a success-success state combination. For fail-fail state combinations, the
transition domino can simply detach from the assembly. Figure 10b depicts a success-fail
combination where the middle transition domino controlled the left wire but failed to control
the right wire. For success-fail combinations, the wire tiles in the success side are first
replaced with new tiles before having the transition domino detach from the assembly. This
replacement scheme begins when the success state transitions with the fail state to represent
the replace state, which initiates the propagation of the replacement signal in the wire.

The tile replacement scheme is performed in two stages, starting with replacing wire
tiles with new “unused” ones (Figure 11a). First, the replacement signal initiated from the
domino propagates by having wire tiles detach and replaced with new tiles. In the second
stage, the signal performs one final cycle through the wire while redirecting the transition
directions (Figure 11b). If another transition domino attaches while the second stage is in
progress, it can not propagate its transition signal beyond the tiles placed in the first stage.

For a success-success state combination scenario, the transition domino’s state tiles first
transition with each other to activate a τ -strength affinity with the adjacent macroblocks,
followed by the detachment and replacement of the adjacent glue tile with one representing the
new state of the macroblock. Afterwards, the state tile in the transition domino representing
the new macroblock’s state transitions with the new glue tile and points its transition

ISAAC 2020
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Figure 12 Illustration of a t-shape dummy polyomino attaching to the north side of a macroblock,
replacing the X glue tile with A glue tile.
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Figure 13 In the case that a transitioning macroblock is adjacent to another, the domino-shaped
dummy polyomino attaches and allow the transition process to continue.

directions towards to the wire, initiating the transition signal. This signal propagates in the
manner shown in Figure 12, allowing t-shape dummy polyominoes to attach in the location
where transition dominoes bond. These dummy polyominoes allow the signal to continue
propagating within it in order to detach and replace the macroblock’s glue tile with the new
appropriate one. In the case that a t-shaped dummy polyomino can not be used due to the
presence of another macroblock, a domino-shaped dummy polyomino attaches cooperatively
with the macroblocks wire tiles (Figure 13).

When the transition signal completes a cycle, all of the macroblock’s glue tiles will have
been replaced with the glue tiles of the new state. When the signal returns to the transition
domino, it changes the transition directions of the domino state tile towards the other domino
state tile, signaling to it that the transition process is finished. When this occurs, both
domino state tiles begin the tile replacement scheme on both macroblocks, which cause the
dummy polyominoes to detach. After both replacement schemes are completed, both state
tiles in the transition domino remove their τ -strength bond with the adjacent macroblocks
and detach from the assembly, thus successfully performing macroblock transitions. With
this simulation scheme, the FRBS model can simulate any FRB system.

Single-Transition. We extend the previous simulation scheme to eliminate single-transition
restrictions and perform double-transitions by modifying the transition domino. Instead of
having only one side of the transition domino send the transition signals, we can have both
sides initiate a transition signal for success-success state combinations. When both transition
dominoes represent the success state, both can change their transition directions towards
the wire tiles adjacent to them and start the transition process. After the transition, the
tile replacement scheme occurs on both sides of the transition domino, and only until both
of the tile replacement schemes finish does the transition domino detach (simultaneously
changing both macroblock mappings similar to Figure 6a). This extension shows that a
Freezing Single-Rule Bonded Same-Sided system can simulate any Freezing Bonded system.
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Figure 14 (a) Standard signal passing within the STAM. A simple cascade of signal firings and glue
activations. (b) A standard 3-way handshake setup between two STAM tiles, and our abbreviated
representation of a 3-way handshake. We use this depiction to emphasize each handshake’s role in
the larger communication scheme.

Bonded. To tackle this last restriction, we allow transition dominoes to exist for macroblocks
that do not necessarily have affinity with one another (as shown in Figure 6b). Since transition
dominoes do not require the affinity of two glue tiles to exist for them to perform their
function, they can simply bond in-between two macroblocks and perform the same state
transitions. Thus, we can eliminate the bonded requirement by simulating a Freezing system
using a Freezing Single-Rule Bonded Same-Sided system.

Simulation Results.

I Lemma 1 (FRBS → F). For any freezing Tile Automata system Γ = (Σ,Λ,Π,∆, τ), there
exist a freezing single-rule bonded same-sided Tile Automata system Γ′ = (Σ′,Λ′,Π′,∆′, τ ′)
which simulates Γ using a scale-7 macroblock mapping function and O(|Σ|2) states with a
stability threshold of 2.

Due to space constraints, the detailed proof for this lemma has been omitted.

I Corollary 2 (FRBS→ TA). For any general Tile Automata system Γ, there exist a Freezing
Single-Rule Bonded Same-Sided Tile Automata system Γ′ which simulates Γ using a 7-block
mapping function.

Proof. This follows from Lemma 1 and Theorem 1 from [3]. J

5 STAM simulates Tile Automata/Amoebots

This section is presented in two parts. The first subsection covers several preliminary concepts
and provides the STAM details for various tools used throughout the simulation. The second
subsection presents the complete idea for the simulation construction, relying on the detailed
tools introduced in the first subsection.

5.1 Construction Preliminaries
Here, we cover some key concepts used throughout our simulation method. We refer the
reader to https://asarg.hackresearch.com/main/isaac-2020/, where we provide supplemental
time-step videos for the details of each of the tools described here.

STAM signal passing. Standard signal-passing is straightforward in the STAM. Tile at-
tachment can begin a cascade of signal firings and glue activations (as depicted in Figure 14a).
This is useful when a simple signal is required to travel to a particular location. A drawback
of this simple scheme is that an individual STAM tile does not have the information of
whether or not a signal has been passed to its neighbor. To remedy this, we show how to
execute a simple handshaking scheme with signal tiles in Figure 14b.

ISAAC 2020
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Figure 15 An example which verifies completion of an “off” signal. (a) An off signal is fired from
another glue in the STAM tile. Notice that an off signal is denoted by a red arrow. (b) Upon signal
execution, the SLglue turns off. (c) This causes the right STAM tile to detach. (d) A new tile may
now attach, sending a signal which confirms that the SLglue has successfully been turned off.
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Figure 16 STAM wire replacement scheme details. This method uses standard STAM signals,
handshaking signals, and detachment verification to achieve a wire replacement signal. Green arrows
represent “on” signals, red arrows represent “off” signals, and the red square represents a signal
which turns off many glues on the STAM tile so that detachment may occur.

Verified Glue Deactivation. In the STAM, the natural signal-passing method involves
turning glues on. Another type of signal relies on turning glues off. A similar straightforward
signal may be used to deactivate glues in the STAM; however, it is not immediately clear
how to communicate whether or not glue deactivation has occurred. We show a tile de-
tachment/attachment sequence to verify when a glue deactivation signal has been executed.
This concept is demonstrated in Figure 15, where confirmation of the SLglue “off” signal is
achieved. This is a two-step process in which the tile previously bonded to SLglue detaches,
and a new tile takes its place by attaching to the RConf glue and sending the confirmation
signal.

Macroblocks and Wires. Similar to the simulations of Lemma 1 and [3], this construction
also employs a macroblock replacement method. In both of these previous simulations,
macroblocks communicated with one another via signals sent along “wires.” The tools
presented above – standard signal passing, handshaking, and completion of “off” signals –
allow us to implement similar wires in STAM macroblocks. We consider the scaled macroblock
scheme, in part, because it allows us the ability to detach “expended” STAM tiles and attach
“fresh” tiles. We call this method wire-replacement.

Wire Replacement. The signal-passing techniques presented allow for non-trivial commu-
nication between STAM tiles/assemblies. Since the STAM is naturally a freezing model
(signals may not be reused), we give a wire-replacement scheme allowing us to pass a signal
which “refreshes” a communication wire. An example of such a scheme is in Figure 16.

5.2 STAM → FRBS: STAM simulates Freezing Single-Rule Bonded
Same-Sided TA

Macroblock Mapping. We use a mapping similar to that shown in Figure 17 in our STAM
simulates TA result. The idea is that different TA states are represented by unique glue-state
combinations among tiles in a respective STAM macroblock. Furthermore, state transitions
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Figure 17 An example STAM simulation of TA. (a) A freezing single-rule bonded same-sided
TA system. (b) A STAM macroblock which mimics the behavior of the states from the simulated
TA system. The three macroblocks on the right correspond to states A, B, and C, respectively.
Different combinations of active/inactive glues on each of the inner tiles change the state which the
macroblock represents.
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Figure 18 (a) A sketch of the transition polyomino triggering STAM signals. (b) The initialization
of the signal from Figure 18a. This depicts what happens when the transition polyomino attaches to
the macroblock pair. After a brief handshake, two signals are queued. A standard positive signal
sent counterclockwise by the j glues, and a detachment signal which will allow a newly attaching
tile to begin the wire replacement signal sent by the i glues.

in the given TA model would be represented/executed by corresponding signal firings in the
representative STAM macroblocks. The example in Figure 17 shows how a simple TA system
can be mapped to a set of STAM macroblocks. All TA affinity rules are represented by the
geometric teeth on the edge of the macroblocks. Also, this geometry creates gaps between
adjacent macroblocks. These gaps are used in macroblock state changes.

Macroblock State Changes. Since a single TA state is represented by a macroblock, we
must ensure that state changes occur in the same manner. Namely, we must ensure that a
transition is complete before exposing glues which represent new attachments or transitions
that may occur. To accomplish this, we must carefully engineer these macroblocks to perform
state changes in a specific way. Below are the steps for simulating the “state change” process:
1. Transition polyomino attaches and initiates signals (Figure 18a).
2. Two opposing signals race to determine if a state change occurs (Figure 19).
3. Attach dummy polyominoes between any adjacent macroblocks or along any empty edge

(Phase 1 in Figure 20).
4. Turn on all glues representing new macroblock affinity (Phase 2 in Figure 20).
5. Turn off all glues representing old macroblock affinity (Phase 3 in Figure 21).
6. Refresh signal wire and detach dummy polyominoes (Phase 4 in Figure 21).

Step 1 of the process attempts to initiate a state change by sending two opposing signals
around an internal state wire within the macroblock. Details for this initiation are shown in
Figure 18b. It should be noted that, since we are simulating same-sided TA systems, we can
guarantee that multiple state transitions cannot be queued on the same macroblock.

ISAAC 2020
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Figure 19 (a-d) A sketch of the transition signal succeeding. (e-h) A sketch of the transition
signal failing.

Step 2 of the “state change” process involves clockwise and counterclockwise signals
being sent around the internal state wire of the macroblock. The counterclockwise signal
is a straightforward STAM signal such as that shown in Figure 14a. This signal halts if it
ever encounters another transition polyomino attached to the macroblock. Should this signal
finish a complete cycle around the state wire, a state transition is imminent. The clockwise
signal is a reset signal, similar to wires from Figure 16. If this signal is ever started, the
counterclockwise signal can never complete a cycle around the state wire. This race prevents
deadlocking by adding a nondeterministic reset to the state change initiation signal.

Step 3 ensures that the outer edges of a macroblock cannot be involved in any attachments
while undergoing a state change. If there are any adjacent macroblocks, dummy “l”-shaped
polyominoes attach. Otherwise, dummy “T”-shaped polyominoes attach.

Step 4 sends a signal which activates all macroblock edge glues that represent the
corresponding new TA state’s affinities. This signal is a straightforward STAM signal like
Figure 14a, but the verification of glue activations involves a tile attachment/detachment
sequence similar to that of Figure 15.

Step 5 sends a signal similar to the one from step 4. The difference is that this signal is
responsible for deactivating all macroblock edge glues which correspond to the old TA state’s
affinities. This signal is also a combination of a straightforward STAM signal (Figure 14a)
and an attachment/detachment verification signal (Figure 15).

Step 6 in the transition process “refreshes” the internal state wire, preparing the proper
signals which correspond to the newly represented TA state. This signal is a wire replacement
signal very similar to the one shown in Figure 16.

Macroblock Construction. Macroblocks in this system are constructed in the same method
as was presented in [3]. This process involves building a frame (via a sequence of deterministic
single-tile attachments), and then constructs the various initial macroblocks of a system
within that frame. The purpose for this is to ensure macroblock construction is complete
before exposing any edges that may cause attachments/transitions with other macroblocks
within the system. The TA process from [3] involves simple attachments, a single state change
per tile, and one detachment phase; thus, it can easily be implemented with straightforward
STAM signals (Figure 14a) and handshaking (Figure 14b). No detachment verification is
needed, as that is the last step of the macroblock construction process.

I Lemma 3 (STAM→ FRBS). For any freezing single-rule bonded same-sided TA system
Γ = (Σ,Λ,Π,∆, τ), there exists a STAM system Γ′ = (T ′, τ ′) which simulates it under the
2-fuzz rule via a O(|Σ|2)-block replacement function.
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Figure 20 (a-d) Phase 1 of the transition process is responsible for attaching dummy polyominoes
to ensure no neighbors are currently transitioning. (e-h) Phase 2 of the transition process sends a
counterclockwise signal which activates all glues of the state being transitioned to.
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Figure 21 (a-d) Phase 3 of the transition process sends a counterclockwise signal which deactivates
all glues of the previous state and replaces them with dummy tiles. (e-h) Phase 4 refreshes the wire
for the new state, and detaches all dummy blocks as well as the transition polyomino.

Due to space constraints, the detailed proof for this lemma has been omitted.

I Theorem 4. For any general TA system Γ, there exists a Signal-passing Tile Assembly
system Γ′ which simulates it.

Proof. This result follows from Corollary 2, Lemma 3, and Theorem 1 from [3]. J

I Corollary 5. For any arbitrary amoebot system Γ, there exists a Signal-passing Tile
Assembly system Γ′ which simulates it.

Proof. This result follows from Theorem 4 and Theorem 1 from [1] which shows that general
TA is capable of simulating any arbitrary amoebot system. J

6 Towards STAM/TA Equivalence

We consider the possibility of simulating STAM within TA as a direction for future work.
The STAM, as formulated in [10], was intended to provide a highly asynchronous framework
which allows robust behavior independent of physical system parameters. However, their
method of instantly queuing the output actions of transition functions allows a subtle, but
strong, synchronous operation. With this in mind, we propose an important alteration to the
definition of Active Tiles and Transition Functions to address this subtle synchronicity issue.
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1. Double-sided Firing (Queue All). The transition functions of t1 and t2 fire simultaneously.
2. Single-sided Firing (Queue One Side). The transition functions of t1 and t2 are fired

independently.
3. Single-action Firing (Queue One Action). The output actions of the transition functions

of t1 and t2 are fired independently.

Notice that the synchronicity issue discussed earlier is resolved by removing the instant-
aneous firing of transition functions. The three firing variations presented are just natural
ways to consider how the firing could be performed.

I Conjecture. For any STAM variant system Γ, there exists a simulating TA system Γ′.

We believe the asynchronous STAM variations are not only motivated, but also required
in order for TA to simulate the STAM. Furthermore, the concepts introduced within this
work may be helpful in resolving this conjecture. For example, from this work we know that
the single-rule transition restriction does not inherently limit the power of TA. Thus, we can
plausibly use this to show the single-sided variant of STAM can simulate all of TA.
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