
2nd Workshop on Formal
Methods for Blockchains

FMBC 2020, July 20–21, 2020, Los Angeles, California, USA
(Virtual Conference)

Edited by

Bruno Bernardo
Diego Marmsoler

OASIcs – Vo l . 84 – FMBC 2020 www.dagstuh l .de/oas i c s



Editors

Bruno Bernardo
Nomadic Labs, Paris, France
bruno@nomadic-labs.com

Diego Marmsoler
University of Exeter, UK
d.marmsoler@exeter.ac.uk

ACM Classification 2012
Security and privacy → Logic and verification; Software and its engineering → Formal software verification;
Security and privacy → Distributed systems security; Computer systems organization → Peer-to-peer
architectures

ISBN 978-3-95977-169-6

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-169-6.

Publication date
December, 2020

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.FMBC.2020.0

ISBN 978-3-95977-169-6 ISSN 1868-8969 https://www.dagstuhl.de/oasics

mailto:bruno@nomadic-labs.com
https://orcid.org/0000-0003-2859-7673
mailto:d.marmsoler@exeter.ac.uk
https://www.dagstuhl.de/dagpub/978-3-95977-169-6
https://www.dagstuhl.de/dagpub/978-3-95977-169-6
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/OASIcs.FMBC.2020.0
https://www.dagstuhl.de/dagpub/978-3-95977-169-6
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics


0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 1868-8969

https://www.dagstuhl.de/oasics

FMBC 2020

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics




Contents

Preface
Bruno Bernardo and Diego Marmsoler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:vii

Invited Talk

Formal Design, Implementation and Verification of Blockchain Languages Using K
Grigore Rosu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1:1–1:1

Smart contracts and payments

Formal Specification and Verification of Solidity Contracts with Events
Ákos Hajdu, Dejan Jovanović, and Gabriela Ciocarlie . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2:1–2:9

Populating the Peephole Optimizer of a Smart Contract Compiler
Maria A. Schett and Julian Nagele . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3:1–3:15

Tezla, an Intermediate Representation for Static Analysis of Michelson Smart
Contracts

João Santos Reis, Paul Crocker, and Simão Melo de Sousa . . . . . . . . . . . . . . . . . . . . . . 4:1–4:12

A Blockchain Model in Tamarin and Formal Analysis of Hash Time Lock Contract
Colin Boyd, Kristian Gjøsteen, and Shuang Wu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5:1–5:13

Merkle trees and Bitcoin

Authenticated Data Structures as Functors in Isabelle/HOL
Andreas Lochbihler and Ognjen Marić . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6:1–6:15

Mechanized Formal Model of Bitcoin’s Blockchain Validation Procedures
Kristijan Rupić, Lovro Rožić, and Ante Derek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7:1–7:14

Towards Verifying the Bitcoin-S Library
Ramon Boss, Kai Brünnler, and Anna Doukmak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8:1–8:9

Consensus

On the Formal Verification of the Stellar Consensus Protocol
Giuliano Losa and Mike Dodds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9:1–9:9

Formal Specification and Model Checking of the Tendermint Blockchain
Synchronization Protocol

Sean Braithwaite, Ethan Buchman, Igor Konnov, Zarko Milosevic, Ilina Stoilkovska,
Josef Widder, and Anca Zamfir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10:1–10:8

Inter-Blockchain Protocols with the Isabelle Infrastructure Framework
Florian Kammüller and Uwe Nestmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11:1–11:12

2nd Workshop on Formal Methods for Blockchains (FMBC 2020).
Editors: Bruno Bernardo and Diego Marmsoler

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de




Preface

The 2nd Workshop on Formal Methods for Blockchains (FMBC) took place virtually on July
20/21 2020 as part of CAV 2020, the 32nd International Conference on Computer-Aided
Verification. Its purpose was to be a forum to identify theoretical and practical approaches
applying formal methods to blockchain technology.

This second edition of FMBC attracted 18 submissions (10 long papers, 4 short papers,
and 4 extended abstracts) on topics such as verification of smart contracts or analysis of
consensus protocols. Each paper was reviewed by at least three program committee members
or appointed external reviewers. This led to a selection of 10 papers (7 long and 3 short) that
will be presented at the workshop as regular talks, as well as 1 long paper and 4 extended
abstracts that will be presented as lightning talks. Additionally, we were very pleased to
have an invited keynote by Grigore Rosu (University of Illinois at Urbana-Champaign).

This volume contains the papers selected for regular talks, the extended abstracts and
paper selected for lightning talks as well as the abstract of the invited talk. Before inclusion,
the papers were reviewed a second time after the workshop by the program committee.

We thank all the authors that submitted a paper, as well as the program committee
members and external reviewers for their immense work. We are grateful to Shuvendu Lahiri
and Chao Wang, Program Chairs of CAV 2020, and to Zvonimir Rakamaric, Workshop Chair
of CAV 2020, for their support and guidance. Finally, we would like to express our gratitude
to our sponsor Nomadic Labs for its generous support.
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Formal Design, Implementation and Verification
of Blockchain Languages Using K
Grigore Rosu
University of Illinois at Urbana-Champaign, Urbana, IL, USA
http://fsl.cs.illinois.edu/index.php/Grigore_Rosu
grosu@illinois.edu

Abstract
The usual post-mortem approach to formal language semantics and verification, where the language
is firstly implemented and used in production for many years before a need for formal semantics
and verification tools naturally arises, simply does not work anymore. New blockchain languages
or virtual machines are proposed at an alarming rate, followed by new versions of them every few
weeks, together with programs (or smart contracts) in these languages that are responsible for
financial transactions of potentially significant value. Formal analysis and verification tools are
therefore needed immediately for such languages and virtual machines. We will present recent
academic and commercial results in developing blockchain languages and virtual machines that come
directly equipped with formal analysis and verification tools. The main idea is to generate all these
automatically, correct-by-construction from a formal language specification.
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Formal Specification and Verification of Solidity
Contracts with Events
Ákos Hajdu
Budapest University of Technology and Economics, Hungary
hajdua@mit.bme.hu

Dejan Jovanović
SRI International, New York City, NY, USA
dejan.jovanovic@sri.com

Gabriela Ciocarlie
SRI International, New York City, NY, USA
gabriela.ciocarlie@sri.com

Abstract
Events in the Solidity language provide a means of communication between the on-chain services
of decentralized applications and the users of those services. Events are commonly used as an
abstraction of contract execution that is relevant from the users’ perspective. Users must, therefore,
be able to understand the meaning and trust the validity of the emitted events. This paper presents
a source-level approach for the formal specification and verification of Solidity contracts with the
primary focus on events. Our approach allows the specification of events in terms of the on-chain
data that they track, and the predicates that define the correspondence between the blockchain
state and the abstract view provided by the events. The approach is implemented in solc-verify,
a modular verifier for Solidity, and we demonstrate its applicability with various examples.

2012 ACM Subject Classification Software and its engineering → Formal methods

Keywords and phrases Smart contracts, Solidity, events, specification, verification

Digital Object Identifier 10.4230/OASIcs.FMBC.2020.2

Category Short Paper

Related Version Preprint is available at https://arxiv.org/abs/2005.10382.

Supplementary Material https://github.com/SRI-CSL/solidity

1 Introduction

Ethereum is a public, blockchain-based computing platform that provides a single-world-
computer abstraction for developing decentralized applications [17]. The core of such
applications are programs – termed smart contracts [15] – deployed on the blockchain. While
Ethereum nodes run a low-level virtual machine (EVM [17]), smart contracts are usually
written in a high-level, contract-oriented language, most notably Solidity [14]. The contract
code can be executed by issuing transactions to the network, which are then processed by
the participating nodes. Results of a completed transaction are provided to the issuing user,
and other interested parties observing the contract, through transaction receipts. While the
blockchain is publicly available for users to inspect and replay the transactions, the contracts
can communicate important state changes, including intermediate changes, by emitting
events [1]. Events usually represent a limited abstract view of the transaction execution
that is relevant for the users and they can be read off the transaction receipts. The common
expectation is that by observing the events, the user can reconstruct the relevant parts of
the current state of the contracts. Technically, events can be viewed as special triggers with
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2:2 Formal Spec. and Verif. of Solidity Contracts with Events

arguments that are stored in the blockchain logs. While these logs are programmatically
inaccessible from contracts, the users can easily subscribe to and observe the events with
the accompanying data. For example, a token-exchange application can monitor the current
state of token balances by tracking transfer events in the individual token contracts.

Smart contracts, as any software, are also prone to bugs and errors. In the Ethereum
context, any flaws in contracts come with potentially devastating financial consequences, as
demonstrated by various infamous examples [2]. While there has been a great interest in
applying formal methods to smart contracts [2, 4], events are usually considered merely a
logging mechanism that is not relevant for functional correctness. However, since events are
a central state-change notification mechanism for users of decentralized applications, it is
crucial that the users are able to understand the meaning and trust the validity of the emitted
events. In this paper, we propose a source-level approach for the formal specification and
verification of Solidity contracts with the primary focus on events. Our approach provides
in-code annotations to specify events in terms of the blockchain data they track, and to
declare events possibly emitted by functions. We verify that (1) whenever tracked data
changes, a corresponding event is emitted, and (2) an event can only be emitted if there
was indeed a change. Furthermore, to establish the correspondence between the abstract
view provided by events and the actual execution, we allow events to be annotated with
predicates (conditions) that must hold before or after the data change. We implemented
the proposed approach in the open-source1 solc-verify [9, 8] tool and demonstrated its
applicability via various examples. solc-verify is based on modular program verification,
but we present our idea in a more general setting that can serve as a building block for
alternative verification approaches.

Related work. To the best of our knowledge, our approach is the first to enable formal
specification and verification of Solidity events in terms of the contract state. Mythril [12]
operates over compiled bytecode and focuses on weaknesses defined in the SWC Registry,2
which currently does not include events. Slither [7] supports a few common, built-in
patterns related to events (e.g., out-of-order due to reentrancy), but these patterns do not
capture functional aspects. VeriSol [16] and VerX [13] target functional verification with
invariants, pre- and postconditions, but do not mention events. Such invariants were also
studied in the context of instrumentation and runtime validation [10], but not for events;
our approach focuses on compile-time verification instead of runtime. In a broader setting,
the event mechanism of Solidity is a special case of monitoring used for runtime verification
of reactive, event-based systems [6]. In this context, events can be considered as manually
written monitors, for which we aim to prove correctness.

2 Background

Solidity. Solidity [14] is a high-level, contract-oriented programming language supporting
the rapid development of smart contracts for the Ethereum platform. We briefly introduce
Solidity by restricting our presentation to the aspects relevant for events. An example
contract (Registry) is shown in Figure 1. Contracts are similar to classes in object-oriented
programming. A contract can define additional types, such as the Entry struct in the
example, consisting of a Boolean flag and an integer data. The persistent data stored on

1 https://github.com/SRI-CSL/solidity
2 https://swcregistry.io/
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Á. Hajdu, D. Jovanović, and G. Ciocarlie 2:3

the blockchain can be defined with state variables. The example contract declares a single
variable entries, which is a mapping from addresses to Entry structs. Contracts can also
define events, including possible arguments. The example declares two events, new_entry
and updated_entry, to signal a new or an updated entry, respectively. Both events take the
address and the new value for the data as their arguments. Finally, functions are defined that
can be called as transactions to act on the contract state. The example defines two functions:
add and update. The add function first checks with a require that the data corresponding
to the caller address (msg.sender) is not yet set. If the condition of require does not hold,
the transaction is reverted. Otherwise, the function sets the data and the flag, and emits the
new_entry event. The update function is similar to add, with the exception that the data
must already be set, and the new value should be larger than the old one (for illustrative
purposes).

Note that Solidity puts no restrictions on the emitted events, and a faulty (or malicious)
contract could both emit events that do not correspond to state changes or miss triggering an
event on some change [5], potentially misleading users. In the case of the Registry contract,
the events are emitted correctly, and the user can reproduce the changes in entries by
relying solely on the emitted events and their arguments.

contract Registry {
struct Entry { bool set; int data; } // User - defined type

mapping ( address => Entry ) entries ; // State variable

/// @notice tracks -changes -in entries
/// @notice precondition ! entries [at].set
/// @notice postcondition entries [at].set && entries [at] .data == value
event new_entry ( address at , int value );

/// @notice tracks -changes -in entries
/// @notice precondition entries [at].set && entries [at] .data < value
/// @notice postcondition entries [at].set && entries [at] .data == value
event updated_entry ( address at , int value );

/// @notice emits new_entry
function add(int value ) public {

require (! entries [ msg.sender ].set);
entries [ msg.sender ].set = true ;
entries [ msg.sender ] .data = value ;
emit new_entry ( msg.sender , value );

}

/// @notice emits updated_entry
function update (int value ) public {

require ( entries [ msg.sender ].set && entries [ msg.sender ] .data < value );
entries [ msg.sender ] .data = value ;
emit updated_entry ( msg.sender , value );

}
}

Figure 1 An example contract illustrating Solidity events. Users of the contract can associate an
integer value to their address and can later update it with a larger value.

solc-verify. solc-verify [9] is a source-level verification tool for checking functional cor-
rectness of smart contracts. solc-verify takes contracts written in Solidity and provides
various in-code annotations to specify functional behavior (e.g., pre- and postconditions,
invariants). As an example, consider a typical token contract (illustrated by Figure 2), which
gives its creator all the tokens in the constructor and then provides a function to transfer
them between users. The functional correctness of the contract logic can be specified by
the existing annotation capabilities of solc-verify (denoted by *). The top-level contract

FMBC 2020



2:4 Formal Spec. and Verif. of Solidity Contracts with Events

invariant ensures the inductive property that the sum of balances always equals to the total
supply. Invariants become postconditions to the constructor and both pre- and postconditions
to all public functions. Furthermore, the correctness of the constructor and the transfer
function is established with additional postconditions. Besides the illustrated properties,
assertions, overflows, preconditions, loop invariants, and modification specifiers are also
supported.

solc-verify translates the annotated contracts to the Boogie Intermediate Verification
Language (IVL). The key idea of the translation is to encode state variables as global heaps
and functions as procedures. solc-verify relies on the Boogie verifier [3] to perform modular
verification by discharging verification conditions to SMT solvers. The verification conditions
encode the function body while assuming the preconditions, and then check if postconditions
hold. In this process, function calls are replaced by their specification and loops by their
invariants (modularity). Finally, the results are back-annotated to the Solidity source.

Goal. Previous versions of solc-verify ignored events as they were considered merely
a logging mechanism, not directly relevant for functional correctness. However, as argued
before, formal specification and verification of events can be relevant. Therefore, this paper
presents extensions to the specification and translation capabilities of solc-verify that
enable reasoning about Solidity events. We propose event-specific annotations (Section 3)
and use them to instrument the code during translation with additional conditions to be
verified (Section 4).

* /// @notice invariant sum( balances ) == total
contract Token {

mapping ( address => uint ) balances ;
uint total ;

/// @notice tracks -changes -in balances
/// @notice tracks -changes -in total
/// @notice precondition balances [from] == 0
/// @notice postcondition balances [from] == amount
/// @notice postcondition total == amount
event initialized ( address from , uint amount );

/// @notice tracks -changes -in balances
/// @notice precondition balances [from] >= amount
/// @notice postcondition balances [from] == before ( balances [from ]) - amount
/// @notice postcondition balances [to] == before ( balances [to ]) + amount
event transferred ( address from , address to , uint amount );

* /// @notice postcondition balances [ msg.sender ] == _total
/// @notice emits initialized
constructor ( uint _total ) public {

balances [ msg.sender ] = total = _total ;
emit initialized ( msg.sender , total );

}

* /// @notice postcondition balances [ msg.sender ] == old( balances [ msg.sender ]) - amount
* /// @notice postcondition balances [to] == old( balances [to ]) + amount

/// @notice emits transferred
function transfer ( address to , uint amount ) public {

require ( balances [ msg.sender ] >= amount && msg.sender != to);
balances [ msg.sender ] -= amount ;
balances [to] += amount ;
emit transferred ( msg.sender , to , amount );

}
}

Figure 2 A token contract illustrating existing specification capabilities of solc-verify (marked
with *) and the new annotations for events, including postconditions that refer to previous state.



Á. Hajdu, D. Jovanović, and G. Ciocarlie 2:5

3 Specification of Events

Our approach provides in-code annotations to specify events in terms of the on-chain data that
they track for changes. Furthermore, additional predicates can specify the correspondence
between the abstract view provided by events and the actual data, before and after the
change. With a few exceptions (see later), annotations are expected to be inserted by the
developer.

Data changes and checkpoints. Each event can declare a set of contract state variables
that it tracks for changes. In the Registry example (Figure 1), both events track the single
state variable entries, as specified by the tracks-changes-in annotations. In the Token
example (Figure 2), transferred only tracks balances, whereas initialized tracks total
as well. Intuitively, we use the tracking of changes to make sure that (1) if a tracked variable
changes, a corresponding event must be emitted after; and (2) an event should be emitted
only if some of its tracked variables have changed before. As data changes often occur in
multiple steps, or conditionally (e.g., updating both members of a struct in the function add
of Figure 1 or adding and subtracting in transfer of Figure 2), events cannot always be
emitted directly after a single modifying statement. Therefore, we define the precise semantics
of “before” and “after” by introducing before- and after-checkpoints. Before-checkpoints
of an event are determined dynamically by the first change in a variable they track. In
contrast, after-checkpoints are defined by static barriers, marking the latest point in code
where the emitting should be fulfilled. Currently, we define loop and transaction boundaries
(external calls to public functions and function return) as after-checkpoints. The semantics
of checkpoints is that an event corresponding to a state variable change must be emitted at
some point between before- and after-checkpoints, which also clears the before-checkpoint.
Conversely, an event can only be emitted if a tracked variable indeed changed (there was a
before-checkpoint).

Event pre- and postconditions. In addition to the set of tracked variables, events can also
be annotated with predicates that define conditions over the state variables and the arguments
of the event. There are two kinds of predicates: pre- and postconditions. Preconditions
capture the values of state variables at the before-checkpoint, while postconditions correspond
to the point when the event is emitted. In the Registry contract (Figure 1), both events
(new_entry and updated_entry) have the same postcondition, namely that the data at
the given address must be set and its value must match the value in the argument. The
precondition of new_entry is that the data must not yet be set, while for updated_entry,
it must be set and its value should be smaller than the event argument. Postcondition
expressions often need to connect the state at the point of emit and before the change. As an
example, consider the transfer function of the token contract in Figure 2 that deducts the
sender’s balance and increases the receiver’s. To specify the postcondition of the Transfer
event, we need to relate the new balances to the previous balances. We provide a special
before function – to be used in postconditions – that refers to previous values of state
variables. Note that each variable appearing in a predicate is implicitly tracked, i.e., no
explicit tracks-changes-in annotation would be required.

Functions. We require contract functions to be annotated with the events that they possibly
emit using the emits keyword. For example, the add and update functions in Figure 1
can emit new_entry and updated_entry, respectively. If a function calls other functions
(including base constructors), the callee’s emitted events must also be included in the caller’s
specifications.
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4 Verification

A contract with events and specifications is checked in two steps. First, a syntactical
check is performed to ensure that functions only emit events that they specified (via emits
annotations). Then, we check the data tracking specifications and predicates by translating
the contract to the input language of a verifier, and instrumenting the code with the checks
and the required bookkeeping. In our implementation, we use the Boogie IVL and verifier [3],
but we present our solution in a general way that can be reused by other Solidity verifiers.

Function emits. We first check whether functions only emit those events that are specified
via emits annotations. This is a syntactic check on the Solidity AST: we find all emit
statements in the function and check whether the corresponding events are specified to be
emitted. When a function calls other functions internally (i.e., from the same contract),
we apply a modular check based on the call graph: all events specified to be emitted by
the callee must also be specified by the caller. On the other hand, we currently ignore
external calls (such as .call() or .transfer()). Such external calls cannot modify state
variables or trigger events from the current contract directly (as they are non-public). Indirect
modifications and emits are possible by calling back public functions, but those are specified
and checked independently (modularity of reasoning [9]). Furthermore, we also treat calls
to other contracts’ functions as external because addresses are not type checked runtime
(only the function signature is checked) [9]. Finally, we also verify at each assignment (to a
tracked variable), whether the function specifies a corresponding event to be emitted.

Data tracking and predicates. Verification of data tracking and predicates is performed
by instrumenting the contract code with additional variables and statements to save state
and to make extra checks at checkpoints. For clarity, we describe the instrumentation on the
Solidity level. We illustrate the approach through the example contract in Figure 3, which
has two state variables x and y, and whenever one of them changes, an event is emitted
with their current difference. Furthermore, x <= y should hold both at the before- and the
after-checkpoint. The extra instructions are displayed as labels where they are injected, while
the corresponding code can be found in the snippets to the right.

For each state variable that is tracked by any event, we introduce two additional variables
in the contract: one with the same type to save the before-state, and a Boolean flag to
indicate whether the data has been modified (snippet new-vars in Figure 3). Functions are
then instrumented with extra statements to save state, enforce after-checkpoints (barriers)
and to perform specification checks when events are emitted. Functions ensure on entry
that none of the variables tracked by their specified events have been modified since the
checkpoint before the call (snippet assume-clear). In other words, all relevant events must
have been emitted before making the call. In modular verification, this assumption becomes
a precondition to the function. Before each modification (assignment statement), if the state
variable is not modified yet, the current value is stored3 in the helper variable and the flag
for modification is set, introducing a before-checkpoint (snippets y-before and x-before).

At each emit statement, several checks are added (snippet emit-spec). First, we check
that the data has indeed been modified, otherwise the event should not be emitted. Then
we check each pre- and postcondition. By default, preconditions refer to the before-state

3 Saving data (e.g., mappings) with assignments might not yield valid Solidity code. This code is for
clarity of presentation and is handled by solc-verify internally.
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contract C {
uint x;
uint y;

/// @notice tracks - changes in x
/// @notice tracks - changes in y
/// @notice precondition x <= y
/// @notice postcondition x <= y
/// @notice postcondition x + diff == y
event xy_changed ( uint diff);

/// @notice emits xy_changed
function f( uint n) public {

require (x <= y);

y += n;

emit xy_changed (y - x);

for ( uint i = 0; i < n; ++i) {

x++;

emit xy_changed (y - x);

}

}
}

uint x_old ; // Previous state of x
uint y_old ; // Previous state of y
bool x_mod ; // Modified since last checkpoint
bool y_mod ; // Modified since last checkpoint

new-vars

new-vars

require (! x_mod && ! y_mod ); // Modif. clear

assume-clear

assume-clear

assert (! x_mod && ! y_mod ); // Modif. clear

after-chpt

after-chpt

after-chpt

after-chpt

// Save y if not saved yet: before - checkpt
if (! y_mod ) { y_old = y; y_mod = true ; }

y-before

y-before

assert ( x_mod || y_mod ); // Emit without change
assert (( x_mod ? x_old :x) <= ( y_mod ? y_old :y)); // Pre
assert (x <= y); // Post
assert (x + (y - x) == y); // Post
x_mod = y_mod = false ; // Emitted

emit-spec
emit-spec

emit-spec

// Save x if not saved yet: before - checkpt
if (! x_mod ) { x_old = x; x_mod = true ; }

x-before

x-before

Figure 3 Example contract with instrumentation snippets for checking event specifications.

and postconditions to the current values, except if the variable is explicitly wrapped with
before(). Note that we refer to the previous value of a variable v with v_mod ? v_old :
v because, in general, there might be variables that were not modified (e.g., x at the first
emit in Figure 3). After performing the checks, emitting the event clears the flags (before-
checkpoints). Finally, before returning, functions enforce after-checkpoints by asserting that
no state variable is in a modified state, i.e., the function cannot end in debt with events
(snippet after-chpt). In modular verification, this check becomes a postcondition to the
function. We also insert an after-checkpoint before the loop and at the end of every iteration
(serving as loop invariant).

Discussion. One potential limitation of our approach is that we consider loop boundaries
after-checkpoints: some contracts change the data many times in the loop, but only emit a
single summarizing event after the loop. This limitation could be alleviated with annotations
to “allow delaying” the emit after the loop, but we do not support this as it leads to
more complex specification and verification. Note that this limitation comes from modular
verification as loops need an invariant. However, if we were to perform bounded model
checking or symbolic execution, this might not be a limitation.

Our approach is not tied to Boogie or modular verification. The instrumentation can be
performed on the Solidity level, and the correctness of the specification is reduced to checking
assertions at particular points in the code. This means that the instrumented code can be
fed into any Solidity verifier that can check for assertion failures. The event specifications
are deemed correct if and only if there are no related assertion failures.

A possible future use-case of our approach lies in the behavioral analysis of contracts
based on logs. Such analyses could reveal relationships individually and across contracts that
are not otherwise apparent (e.g., exposing entities that control the blockchain interactions) or
attack evidence. Application-level log analysis has been used for a long time for monitoring

FMBC 2020



2:8 Formal Spec. and Verif. of Solidity Contracts with Events

and security purposes, and most existing techniques assume that application logs can be
trusted or, if applications are subverted by attackers, the subversion can be captured [11].
Our approach guarantees the validity of the emitted events, making them even more suitable
for such analysis.

5 Conclusion

We presented an approach for the formal specification and verification of Solidity smart
contracts that rely on events to communicate with their users, providing an abstract view
of their state. We proposed in-code annotations to specify events in terms of the state
variables they track for changes. Furthermore, we introduced additional predicates (pre- and
postconditions) for specifying conditions on the state before and after the change, establishing
the correspondence between the blockchain state and the emitted events. The approach is
implemented in solc-verify and we demonstrated its applicability with various examples.
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Abstract
Developing compiler optimizations, especially for new, rapidly evolving smart contract languages, can
be onerous and error-prone, but is especially important for smart contracts, where deployment and
execution directly translate to monetary cost and which cannot change once deployed. One common
optimization technique is the use of peephole optimizations, replacement rules that are applied
using pattern-matching. These rules are normally constructed using human expertise, which is both
time-consuming and far from systematic in exploring opportunities for optimization. In this work
we propose a pipeline to automatically populate the peephole optimizer of a smart contract compiler.
We apply superoptimization to an existing code base to obtain sequences of instructions, which
can be replaced by cheaper, observationally equivalent instructions. We then generate peephole
optimization rules by extracting the underlying patterns of these optimizations. We provide a
case study of our approach and a prototype implementation for bytecode of the Ethereum Virtual
Machine, the tool ppltr, which combines the superoptimizer ebso and the rule generator sorg. Then
we evaluate our approach by generating and applying nearly 1k peephole optimization rules extracted
from 2k optimizations obtained from deployed bytecode.

2012 ACM Subject Classification Software and its engineering → Formal methods; Software and
its engineering → Compilers

Keywords and phrases Compiler Optimizations, Constraint Solving, Ethereum Bytecode

Digital Object Identifier 10.4230/OASIcs.FMBC.2020.3

Supplementary Material https://github.com/mariaschett/ppltr

1 Introduction

In this work we leverage formal methods to automatically populate the peephole optimizer
of a smart contract compiler. A peephole optimizer uses pattern matching to optimize a
small fragment of code, i.e., a peephole, by applying optimization rules. But finding sound
optimization rules is a bottleneck as witnessed by the peephole optimizer of the Solidity
compiler solc.1 Currently, solc features fewer than 20 rules compared to LLVM’s 1000+
rules. Thus we propose a pipeline to automatically populate the peephole optimizer of a
smart contract compiler by combining techniques from constraint solving and rewriting as
illustrated in Figure 1.

Smart contract languages typically have a large and accessible code base to use as a basis
for finding optimizations, e.g., code deployed to public blockchains or test cases.

1 github.com/ethereum/solidity/blob/ 019ec63f63bae7bbe89f5b62bb7b202ef5dadce6/
libevmasm/PeepholeOptimiser.cpp
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code base

rules

(3a)

find optimi-
zations

generate
rules

PUSH 0
SUB
PUSH 3
ADD
SHA3

PUSH 3
SUB
SHA3

(3b)

PUSH 0
SUB
PUSH x
ADD

PUSH x
SUB

(1) (2)

⇛

Figure 1 Pipeline to automatically generate peephole optimization rules from a code base.

(1) This allows us to start from an existing code base, to find optimizations by using auto-
mated tools to synthesize observationally equivalent but cheaper instruction sequences.

This automatic synthesis is possible, because many smart contract languages come with
formally defined operational semantics, e.g., the Ethereum yellow paper [22]. Moreover,
execution of a smart contract comes with a clear cost model – gas – giving rise to a precise
notion of optimality. To give an example, the bytecode for the Ethereum virtual machine
PUSH 0 SUB PUSH 3 ADD SHA3 computes a hash of 3 + (0−w) for some word w already on the
stack. As 3 + (0−w) = 3−w the bytecode corresponding to PUSH 3 SUB SHA3, computes the
same result and cheaper.
(2) From such optimizations, we can generate rules. Using concepts from rewriting we

generalize “unnecessarily specific” arguments and strip away “unnecessary” context to
obtain optimization rules.

For the above example, we generate the rule PUSH 0 SUB PUSH x ADD ⇛ PUSH x SUB by gener-
alizing 3 to x.
(3) Finally we can feed back and apply the generated rules to

(a) the rules themselves, and
(b) the code base and again start the cycle to find new optimizations.

We demonstrate the applicability of our pipeline in a case study for bytecode of the Ethereum
virtual machine (EVM). We implemented a prototype: ppltr, a peephole otimization rule
generator. For phase (1), we use the tool ebso [19], a superoptimizer for EVM bytecode. For
phase (2), we use sorg, a superoptimization based rule generator. All tools are available
open-source under the Apache-2.0 license.2 We evaluated our approach on bytecode of
the 250 most called contracts of the Ethereum blockchain, where we found 2032 distinct
optimizations from which we automatically generated 993 optimization rules.

Contributions

1. We propose a pipeline for automatically populating a peephole optimizer, and
2. a sound and complete procedure to generate optimization rules from optimizations.
3. We perform a case study for EVM bytecode with
4. a prototype implementation, together with
5. an evaluation.

2 Available at github.com/juliannagele/ebso/tree/v2.1, github.com/mariaschett/sorg/tree/v1.1,
and github.com/mariaschett/ppltr/tree/v1.0.

https://github.com/juliannagele/ebso/tree/v2.1
github.com/juliannagele/ebso/tree/v2.1
https://github.com/mariaschett/sorg/tree/v1.1
github.com/mariaschett/sorg/tree/v1.1
https://github.com/mariaschett/ppltr/tree/v1.0
github.com/mariaschett/ppltr/tree/v1.0
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2 Approach

We assume a machine model with a state over a set of words W with an observational
equivalence relation ≡ on states, which may take only parts of the state into account. States
are modified based on instructions from a set I, where an instruction ι ∈ I deterministically
transforms a state σ into some state σ′ denoted by σ ι→ σ′. Some instructions act only on
parts of the state, while others take immediate arguments from W. We write ι(w1, . . . , wk) for
an instruction ι ∈ I which takes k immediate arguments w1, . . . , wk ∈W and say that ι has
arity k. For example, in a stack-based machine the instruction PUSH 3 takes the immediate
argument 3, while SUB has arity 0, but consumes two arguments from the stack.

A program ρ is a sequence of instructions ι0 · · · ιn. The length of ρ is its number of
instructions, denoted by |ρ|. We write ε for the empty program and ρ ·τ for the concatenation
of programs ρ and τ . A program ρ = ι0 · · · ιn transforms a family of states σ = (σj)j≤n+1 by
stepwise transformation, i.e., σ0

ι0→ σ1
ι1→ . . .

ιn→ σn+1, and we write σ0
ρ→→ σn+1. Here σj is

the state after executing j instructions, and σ0 is the designated start state. We often write
states instead of families of states, when the distinction is clear from the context.

We write cost(ι, σ) for the cost incurred by executing instruction ι on state σ. The cost
of executing a program is simply the sum of the cost of its instructions: cost(ι0 · · · ιn,σ) =∑n
j=0 cost(ιj , σj). Two programs ρ and τ are equal, denoted by ρ = τ , if they are syntactically

equal, and equivalent, ρ ≡ τ , if they are observationally equivalent, i.e., for states σ and σ′

with σ0 ≡ σ′0, σ0
ρ→→ σ|ρ|+1, and σ′0

τ→→ σ′|τ |+1 we have σ|ρ|+1 ≡ σ′|τ |+1.

I Definition 1. Let ρ and τ be programs with ρ ≡ τ and cost(ρ,σ) > cost(τ,σ) for all
states σ. Then τ is an optimization of ρ, and we write ρ ⫺ τ .

In Section 2.1, we will show how we can obtain such optimizations – and in Section 2.2
we will use them to generate optimization rules. To do so, we need to define what constitutes
a rule. Therefore we abstract over the immediate arguments of instructions by using a
countably infinite set of variables V . We extend I to IV by adding instructions ι(x1, . . . , xk)
for all x1, . . . , xk ∈ V and all ι ∈ I of arity k > 0.

A program over IV is called a program schema. To obtain a maximal schema of a program
schema s every ι(w1, . . . , wk) in s is replaced by ι(x1, . . . , xk), where x1, . . . , xk are fresh
variables from V. All variables in a program schema s are collected in Var(s).

A substitution γ : V → W ∪ V maps variables to variables and words. In a ground
substitution γ the range is restricted to W, i.e., γ : V →W. We apply γ to a schema s by
replacing all variables x in s by γ(x) and write sγ for the result. Note that sγ is a program.
A substitution γ is at least as general as a substitution γ′, denoted γ ·≤ γ′, if there is a
substitution γ′′ such that γγ′′ = γ′. If γ ·≤ γ′ and γ′ 6 ·≤ γ then we say γ is more general than
γ′ and write γ ·< γ′.

We call program schemas s and t observationally equivalent, and write s ≡ t, if sγ ≡ tγ
holds for all γ and write cost(s,σ) > cost(t,σ′) if cost(sγ,σ) > cost(tγ,σ′) for all γ.

I Definition 2. Let ` and r be program schemas with ` ≡ r and cost(`,σ) > cost(r,σ). Then
`⇛ r is an (optimization) rule.

By definition, every optimization ρ ⫺ τ is an optimization rule ρ ⇛ τ . A context C is
a pair of program schemas (s1, s2). We write C[t] for the program schema s1 · t · s2 and
call s1 a prefix and s2 a postfix of C[t]. A context (s1, s2) is at least as general as a context
(t1, t2), denoted by (s1, s2) ≤ (t1, t2), if there is a context (r1, r2) such that r1 · s1 = t1 and
s2 · r2 = t2. If C ≤ C ′ and C ′ 6≤ C then we say C is more general than C ′ and write C < C ′.
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The following definition captures all optimization rules that can produce a given opti-
mization when instantiated.

I Definition 3. The optimization rules for an optimization ρ ⫺ τ are defined as R(ρ ⫺ τ) =
{`⇛ r | ρ = C[`γ] and τ = C[rγ] for some substitution γ and context C}.

We ensure that applying peephole optimizations is sound by the following lemma.

I Lemma 4. If ρ ≡ τ then C[ρ] ≡ C[τ ] for all contexts C.

Proof. We show the statement by induction on C. By assumption, the statement holds for
the base case C = (ε, ε). For the step case C = (ι · s1, s2) observe that every instruction ι is
deterministic, i.e., executing ι starting from a state σ leads to a deterministic state σ′. By
induction hypothesis, executing s1ρs2 and s1τs2 from a state σ′ leads to an observationally
equivalent state σ′′, and therefore ι · s1 · ρ · s2 ≡ ι · s1 · τ · s2 holds. We can reason analogously
for C = (s1, s2 · ι). J

2.1 Find Optimizations
As Definition 1 suggests finding an optimization for a program ρ necessitates finding
1. an observationally equivalent program τ , where
2. the cost of τ is less than the cost of ρ.
We leverage a constraint solver, such as Z3 [8], to automatically find equivalent, but cheaper
programs. To this end, we express the above as an SMT problem: given a source program ρ,
is there a target program τ such that for all possible inputs, executing ρ and τ results in the
same final state, but the cost of τ is less than the cost of ρ? Our encoding is based on the
encoding from unbounded superoptimization [11].

Find an Observationally Equivalent Program

To encode observational equivalence we first need a constraint that expresses equality on
states: Let enc_eq_state(σ, σ′) be an SMT constraint that evaluates to true, whenever state
σ and state σ′ are observationally equivalent. The concrete instantiation of this constraint
depends on the machine that is modeled. For instance, the state may be modeled as several
uninterpreted functions. An encoding for the EVM, modeling the state with a stack, storage,
and exceptional halting can be found in Example 16, with the corresponding encoding of
enc_eq_state in Example 18.

Based on the operational semantics for every ι ∈ I, we need to encode the effect of ι on a
state i.e., the relation ι→.

I Definition 5. Let enc_step(ι, σ, σ′) be an SMT encoding of the effect of an instruction
ι as constraints between state σ and state σ′. For a program ρ = ι0 · · · ιn and states σ we
define enc_progr(ρ,σ) as

∧
06j6n enc_step(ιj , σj , σj+1).

Again, the concrete encoding of enc_step depends on the machine that is modeled, see
Example 17 for our instantiation for the EVM.

Most programs will consume some input words ~x. To pass them to the program, we
assume an encoding enc_init(~x,σ) that sets constraints on the start state σ0 appropriately,
e.g., putting the words in ~x in registers or on the stack according to the machine model. Based
on the constraint enc_step, we can encode the search space of all possible target programs.
To this end we represent the target program as a pair τ = 〈instr, n〉 of an uninterpreted
function instr(j) : N → I and its length n ∈ N. The function instr acts as a template to
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be filled by the SMT solver returning the instruction to be used at position j of the target
program. After a model has been found, the concrete target program can be reconstructed
as instr(0) · instr(1) · · · instr(n− 1).

I Definition 6. Given a set of instructions I we define the SMT encoding for the enumeration
of every program of length n as enc_search(τ,σ) as

∀j. 0 6 j < n→
∧
ι∈I

instr(j) = ι→ enc_step(ι, σj , σj+1) ∧
∨
ι∈I

instr(j) = ι (1)

The first clause states that if we pick ι at position j, then the effect is determined
by enc_step(ι, σj , σj+1). The second clause,

∨
ι∈I instr(j) = ι, ascertains that for every

position j some instruction is picked.

I Definition 7. The encoding for finding an observationally equivalent program to a given
program ρ is

∃n, ∀~x. enc_init(~x,σ) ∧ enc_init(~x,σ′) ∧
enc_progr(ρ,σ) ∧ enc_search(τ,σ′) ∧ enc_eq_state(σ|ρ|+1, σ

′
n) (2)

The first two constraints initialize states σ and σ′ with the same inputs, the third and
fourth constraint encode the effects of the existing program ρ and the sought after target
program τ respectively, while the final constraint demands that they are observationally
equivalent, i.e., that they result in equivalent states. With this constraint we will find
observational equivalent programs. Now we will need to add constraints on the cost.

Find a Cheaper Program

To achieve this we extend Constraint (2) from Definition 7 by a constraint stating that
the cost of executing the target program τ is less than the cost of executing the source
program ρ: i.e., cost(ρ,σ) > cost(τ,σ′). Here the cost of τ is again defined by summation,
i.e., for τ = 〈instr, n〉 we have cost(τ,σ′) =

∑n−1
j=0 cost(instr(j), σj).

2.2 Generate Rules
As Definition 3 indicates generating optimization rules from optimizations requires us
1. to find a substitution γ, and
2. to find a context C.

Find a Substitution

In the first step we generalize the immediate arguments of instructions in an optimization
ρ ⫺ τ by finding a substitution. We capture all possible generalizations of a rule using the
following definition.

I Definition 8. The generalized rules of an optimization rule ρ⇛ τ are defined as G(ρ ⇛
τ) = {`⇛ r | `γ = ρ and rγ = τ for some substitution γ}.

I Example 9. Let ρ ≡ τ be the optimization from the introduction, i.e., PUSH 0 SUB PUSH
3 ADD SHA3 ≡ PUSH 3 SUB SHA3. Then G(ρ ≡ τ) consists of two rules: PUSH 0 SUB PUSH x ADD
SHA3 ⇛ PUSH x SUB SHA3 and ρ⇛ τ itself. Note that the pair PUSH y SUB PUSH x ADD SHA3
and PUSH x SUB SHA3 is not in G(ρ ≡ τ). Applying the substitution γ = {x 7→ 3, y 7→ 0} would
yield the original optimization, but since PUSH y SUB PUSH x ADD SHA3 6≡ PUSH x SUB SHA3
they do not constitute an optimization rule.

Example 19 shows further generalized rules for EVM bytecode.
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To implement G we can do an exhaustive search as follows: start from a maximal schema
for the given optimization and try all possibilities of mapping the variables back to the
original values, checking whether the result yields a rule. The following procedure implements
this approach, additionally using an order on the candidate substitutions to prune the search
space.

I Definition 10. We define the function generalize as follows:
1: function generalize(ρ⇛ τ)
2: R ← ∅
3: `0, r0 ← maximal program schemas `o and r0 for ρ and τ with Var(`0) ∩ Var(r0) = ∅
4: γ0 ← the substitution γ0 with ρ = `0γ0 and τ = r0γ0
5: Γ← {γ | γ(x) = γ0(x) or γ(x) = y for γ0(x) = γ0(y) and x, y ∈ Var(`0) ∪ Var(r0)}
6: for all γ ∈ Γ do
7: if `0γ ≡ r0γ then
8: R ← R ∪ {`0γ ⇛ r0γ}
9: Γ← Γ \ {γ′ | γ ·< γ′}
10: else
11: Γ← Γ \ {γ′ | γ′ ·< γ}
12: return R

Using the order ·< on substitutions to prune the search space is key for implementation.
Pruning only removes rules covered by others as the following lemma shows.

I Lemma 11. For every `⇛ r ∈ G(α) of a rule α there is a `′ ⇛ r′ ∈ generalize(α) and a
substitution γ such that `′γ = ` and r′γ = r.

Proof. We fix `⇛ r ∈ G(α). Let `0 and r0 be the maximal schemas of α. By definition of
maximal schema there is a γ′ such that `0γ

′ = ` and r0γ
′ = r. A renaming of γ′ is in Γ and

thus either generalize(α) will consider it at some point, or it will be removed by either line 9
or line 11.

If it is considered then a renaming of ` ⇛ r is in generalize(α). If it is removed by line 9,
then a substitution γ with γ ·< γ′ and and `0γ ≡ r0γ was considered. Thus `0γ ⇛ r0γ is
in generalize(α) and we have `0γγ

′′ = ` and r0γγ
′′ = r for some γ′′ by γ ·< γ′. If γ′ was

removed by line 11 then a substitution γ with γ′ ·< γ and and `0γ 6≡ r0γ was considered. But
this contradicts the assumption `⇛ r ∈ G(α), because observational equivalence is closed
under substitution. J

Find a Context

As a second step We strip the generalized rules of any unnecessary pre- and postfix. Again
we first capture all possible stripped rules and then give an implementation.

I Definition 12. The stripped rules of a rule ρ ⇛ τ are defined as C(ρ ⇛ τ) = {` ⇛ r | ρ =
C[`] and τ = C[r]}.

I Example 13. Continuing Example 9, for the rule PUSH 0 SUB PUSH x ADD SHA3 ⇛ PUSH x

SUB SHA3 the stripped rules C contain the rule PUSH 0 SUB PUSH x ADD ⇛ PUSH x SUB, obtained
by stripping away the context (ε, SHA3), and the original rule itself, since applying the empty
context (ε, ε) to a program yields the program itself.

Example 20 shows further rules stripped of their context in EVM bytecode.
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To implement C we follow the same strategy as for G: try all possible contexts in an
exhaustive search, checking whether they yield a rule and use an order contexts to prune the
search space.

I Definition 14. We define the function strip as
1: function strip(ρ⇛ τ)
2: R ← ∅
3: (s0, t0)← the longest common prefix s0 and the longest common postfix t0 of ρ and τ
4: `0, r0 ← the program schemas `0 and r0 with s0 · `0 · t0 = ρ and s0 · r0 · t0 = τ

5: Γ← {C | C = (s, t) where s′ · s = s0 and t · t′ = t0 for some s′, t′}
6: for all C ∈ Γ do
7: if C[`0] ≡ C[r0] then
8: R ← R ∪ {C[`0] ⇛ C[r0]}
9: Γ← Γ \ {C ′ | C < C ′}
10: else
11: Γ← Γ \ {C ′ | C ′ < C}
12: return R

Again, the order on contexts allows us to prune the search space without loss.

I Lemma 15. For every `⇛ r ∈ C(α) of a rule α there is a `′ ⇛ r′ ∈ strip(α) and a
context C such that C[`′] = ` and C[r′] = r.

Proof. We fix a rule `⇛ r ∈ C(α). Let (s0, t0) be the longest common prefix and the longest
common postfix of α and be `0, r0 the program schemas with s0 · `0 · t0 ⇛ s0 · r0 · t0 = α. A
context C ′ with C ′[`0] = ` and C ′[r0] = r is in Γ and thus either strip(α) will consider it at
some point, or it will be removed by either line 9 or line 11.

If it is considered then `⇛ r is in strip(α). If it is removed by line 9, then a context C
with C < C ′ and and C[`0] ≡ C[r0] was considered. Thus C[`0] ⇛ C[r0] is in strip(α) and we
have C ′′[C[`0] = ` and C ′′[C[r0]] = r for some C ′′ by C < C ′. If C ′ was removed by line 11
then a context C with C ′ < C and and C[`0] 6≡ C[r0] was considered. Again this contradicts
the assumption `⇛ r ∈ C(α), because observational equivalence is closed under context. J

Soundness and Completeness

Finally, we combine the two functions and for an optimization ρ ⫺ τ define sorg(ρ ⫺ τ) =
{strip(`⇛ r) | `⇛ r ∈ generalize(ρ⇛ τ)}.

The rules generated by sorg(ρ ⫺ τ) are sound: for every ` ⇛ r ∈ sorg(ρ ⇛ τ) there is a
substitution γ and a context C such that C[`γ] = ρ and C[rγ] = τ . This directly follows
from generalize(ρ⇛ τ) ⊆ G(ρ⇛ τ) and strip(ρ⇛ τ) ⊆ C(ρ⇛ τ).

The rules generated by sorg(ρ ⫺ τ) are also complete: for every `⇛ r ∈ R(ρ ⫺ τ) there is
a `′ ⇛ r′ ∈ sorg(ρ ⫺ τ), a substitution γ and a context C such that C[`′γ] = ` and C[r′γ] = r.
This directly follows from Lemmas 11 and 15.

3 Case Study: EVM bytecode

To demonstrate the applicability of our pipeline from Figure 1 we implement it in the context
of Ethereum for EVM bytecode. We sketch how one could apply the approach to other smart
contract languages in Section 5.

The EVM is a virtual machine formally defined in the Ethereum yellow paper [22]. It
is based on a stack which holds bit vectors of size 256. The stack may over- or underflow;
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both lead the EVM to enter an exceptional halting state. The EVM also features a volatile
memory, which is a word-addressed byte array, and a persistent key-value storage, which is a
word-addressed word array stored on the Ethereum blockchain.

3.1 Find Optimizations with ebso
We find optimizations using our tool ebso [19], an EVM bytecode superoptimizer. As an input
ebso takes an ebso block – a basic block that additionally does not contain instructions whose
semantics are not encoded, such as instructions that have an outside effect like LOG. Then,
encoding the EVM execution state and unbounded superoptimization following Section 2.1,
in the best case ebso produces a cheaper, observationally equivalent ebso block.

I Example 16. We encode the EVM execution state σ using four uninterpreted functions
〈sk, c, hlt, str〉 to model the stack, stack pointer, exceptional halting and storage:
(i) sk(j, ~x, n) returns the word from position n, starting from 0, in the stack after executing

j instructions on ~x,
(ii) c(j) returns the number of words on the stack after executing j instructions,
(iii) hlt(j) returns true (>) if exceptional halting has occurred after executing j instructions,

and false (⊥) otherwise, and
(iv) str(j, ~x, k) returns the word at key k after executing j instructions on ~x.
Note that these functions represent all states throughout an execution, i.e., σ, while to obtain
σj for some j, we simply apply them to j thus: σj = 〈sk(j), c(j), hlt(j), str(j)〉. To refer to
individual components of states we use subscripts, for instance we write skσ to refer to the
stack of state σ.

For a program ρ which takes d arguments on the stack we add d fresh variables to
represent the input ~x and add the following constraint to enc_init(~x,σ):∧

06i<d
skσ(~x, 0, i) = xi ∧ cσ(0) = d ∧ hltσ(0) = ⊥

The storage str is initialized similarly using an Ackermann encoding [1, 14].

To ease readability and save space we do not include the EVM’s memory in this encoding
of the execution state. It can be represented analogously to the storage.

I Example 17. Next we instantiate the operational semantics of the instructions. The
constraint enc_stack(ι, σj , σj+1) describes the effect that ι has on stack. Here we give as
example the instruction SUB and refer to [22] or [19] for details. Let −bv denote subtraction
on bit-vectors. Then we have

enc_stack(SUB, σj , σj+1) := skσ(j + 1, ~x, cσ(j + 1)− 1)
= skσ(j, ~x, cσ(j)− 1)−bv skσ(j, ~x, cσ(j)− 2)

Using enc_stack we can formulate the constraint enc_step. Here δ(ι) and α(ι) refer to the
number of words which ι deletes from, and adds to the stack respectively. For all instructions
except SSTORE we have:

enc_step(ι, σj , σj+1) := enc_stack(ι, σj , σj+1) ∧
cσ(j + 1) = cσ(j) + α(ι)− δ(ι) ∧
∀n. n < cσ(j)− δ(ι)→ skσ(j + 1, ~x, n) = skσ(j, ~x, n) ∧
hltσ(j + 1) = hltσ(j) ∨ cσ(j)− δ(ι) < 0 ∨ cσ(j)− δ(ι) + α(ι) > 210 ∧
∀w. strσ(j + 1, ~x, w) = strσ(j, ~x, w)
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Here the second line updates the counter for the number of words on the stack according to
the number of words added and deleted. The third line expresses that all words on the stack
below cσ(j)− δ(ι) are preserved. The fourth line captures that exceptions relevant to the
stack can occur through either an underflow or an overflow, and that once it has occurred, an
exceptional halt state persists. Finally the last line states that all ι 6= SSTORE do not change
the storage. The constraint for SSTORE is similar updating the storage using the Ackermann
encoding.

I Example 18. The final ingredient we need to instantiate is the equivalence relation on
states. For two states at steps j1 and j2 where σj1 = 〈sk(j1), c(j1), hlt(j1), str(j1)〉 and σ′j2

=
〈sk′(j2), c′(j2), hlt′(j2), str′(j2)〉 and input ~x we define the constraint enc_eq_state(σj1 , σ

′
j2

)
as

c(j1) = c′(j2) ∧ hlt(j1) = hlt′(j2)
∧ ∀w. str(j1, ~x, w) = str′(j2, ~x, w)
∧ ∀n. n < c(j1)→ sk(j1, ~x, n) = sk′(j2, ~x, n)

With the presented encoding, ebso, and an SMT solver we can now automatically find
optimizations for EVM bytecode. Next, we also want to automatically generate rules.

3.2 Generate Rules with sorg
To generate rules for EVM bytecode we implemented sorg, a superoptimization based rule
generator. Like ebso, sorg is implemented in OCaml; sorg depends on ebso for the representa-
tion of EVM bytecode and SMT encoding to check observational equivalence.

The main contribution of sorg is to provide notions of program schema, substitutions,
and context in order to implement the two main procedures of Section 2.2: generalize and
strip. For generalize we implement the procedure from Definition 10, keeping only the most
general rules in the result.

I Example 19. In our evaluation in Section 4, we found the following optimization:
SWAP1 POP PUSH 0 PUSH 1 MUL PUSH 0 ⫺ SWAP1 POP PUSH 0 DUP1

Generalizing immediate arguments and dropping the prefix SWAP1 POP sorg yields two optimiza-
tion rules: PUSH x PUSH 1 MUL PUSH x ⇛ PUSH x DUP1 as well as PUSH 0 PUSH x MUL PUSH
0 ⇛ PUSH 0 DUP1.

For strip we implement the procedure from Definition 14, keeping only the most stripped
rules.

I Example 20. From the rule CALLVALUE DUP1 POP ⇛ CALLVALUE CALLVALUE POP sorg can
either strip the postfix POP or the prefix CALLVALUE, obtaining the rules CALLVALUE DUP1 ⇛

CALLVALUE CALLVALUE and DUP1 POP ⇛ CALLVALUE POP.

One main ingredient of both generalize and strip is a check for observational equivalence.
To determine observational equivalence in sorg we use an SMT encoding with components
from ebso, similar to Definition 7. For two program schemas ρ and τ , we have ρ ≡ τ if there
are no inputs that distinguish them. That is

∃~x. enc_init(~x,σ) ∧ enc_init(~x,σ′)
∧ enc_progr(ρ,σ) ∧ enc_progr(τ,σ′)
∧ ¬enc_eq_state(σ|ρ|+1, σ

′
|τ |+1)
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With sorg we can now automatically generate rules, but it remains to glue the tools
together and implement a feedback mechanism.

3.3 Coordinate with ppltr

To coordinate our tools ebso and sorg we implemented the tool ppltr, a populator for a
peephole optimizer. As ebso and sorg, ppltr is implemented in OCaml. The tool has two main
tasks. The first is to manage the interfaces, i.e., to generate ebso blocks from smart contracts,
generate ebso blocks for a given size k, prepare optimizations generated by ebso as input for
sorg, and analyze and de-duplicate a set of rules produced by sorg. The second main task is
to feed back the optimization rules, i.e., to rewrite right-hand sides of the optimization rules
themselves, and apply the optimization rules to ebso blocks. To achieve the latter task, ppltr
implements a rewrite engine.

4 Evaluation

We evaluate our pipeline by generating optimization rules for EVM bytecode. We collected
the 250 most called smart contracts until block 9 786 000 at Apr-01-2020 12:17:26 PM +UTC
from the Ethereum blockchain using Google BigQuery.3

We split the 250 contracts into 106 798 ebso blocks E. As peephole optimization rules
typically span only few instructions, we restrict the size of a block: using a sliding window
we split every block larger than 6 instructions into k blocks of at most 6 instructions. To
reduce the noise, we remove blocks which are only different in the arguments of PUSH keeping
only those with words of size smaller than 5 bit. We so obtain 54 301 ebso blocks.
(1) Using ebso find 1580 optimizations from these blocks, run on a cluster with Intel Xeon

Gold 6126 CPUs at 2.60 GHz, 2 GB of memory and a time-out of 15 min.
(2) From these optimizations, we generate 1525 rules with sorg, run on the same set-up. For

48 optimizations sorg timed out and could not generate rules and we removed roughly
half the rules, as they were duplicates generated from different optimizations.

(3) Thus we arrive at 758 rules R0, which we use with the rewrite engine of ppltr to
(a) rewrite the right-hand sides of R0 reducing 4 rules, and
(b) rewrite our original ebso blocks in E, which changed 17 255 ebso blocks.

We again use the same window-size and noise reduction to get 25 585 new ebso blocks. Going
through the same procedure, we find 452 optimizations with ebso, and generate 435 rules R1
with sorg with 16 timeouts. Combining the results we get 993 rules R2 = R0 ∪R1 which are
available at

github.com/mariaschett/ppltr/blob/v1.0/eval/17-reduced-rules.csv

We right-reduced 31 rules in R2 and discarded 967 replicated rules originating from different
optimizations. One optimization generated two rules (cf. Example 19).

To estimate gas and size saving on a contract level we apply the rules in R2 to
1. our original 250 most called smart contracts, and
2. extend the data set to the 1000 most called contracts.

3 cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-
smart-contract-analytics.

https://github.com/mariaschett/ppltr/blob/v1.0/eval/17-reduced-rules.csv
github.com/mariaschett/ppltr/blob/v1.0/eval/17-reduced-rules.csv
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
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Table 1 Savings when applying the rules in R2 on most called contracts.

accumulated gas savings accumulated length savings

250 most called contracts 106 811 g 35 699 instructions 3.94 %
1000 most called contracts 435 002 g 146 376 instructions 4.58 %

Table 1 shows our results. The first column shows the accumulated gas savings over all
contracts, and the second column shows the accumulated length savings. Note that results
depend on the order in which the rules are applied (cf. Section 5). First, we can observe that
the rules translate well from 250 to 1000 contracts, achieving roughly 4 times higher savings,
which demonstrates that R2 also extends beyond the original data set, from which it was
generated.

Now let us consider the gas savings. In Table 1 we accumulate the cost of all the removed
instructions for each contract. How much is actually saved, however, depends on how often
the contract is called and which parts are executed. Unfortunately we lack the resources to
replay all the transactions to determine the exact savings. Taking into account how often
a contract was called, we save 7.41× 1010 g for the former and 1.02× 1011 g for the latter.
Assuming that about 10 % of a contract is executed per call and that savings are uniformly
distributed, this translates to 41 049.33 $ and 56 505.15 $ for a gas price of 27.6 gwei and an
ETH-USD course of 200.62 $, which are averages from etherscan.io/charts.

While the cost of executing a cheap instruction like ADD or POP may be negligible, the
cost of storing that instruction may not be so. Therefore, we also look at the savings in
length: the overall storage space of the bytecode reduces by more than 4.5 %. The contract
with the highest length saving was reduced by 19.94 %, removing 345 from originally 1730
instructions.

We also analyze which rules are applied to the contracts. Applying rules may lead to the
applicability of other rules, but exploring all rewrite sequences is intractable, and we assume
that initial applicability on a contract is a reasonable proxy. Figure 2 groups rules in R2 by
their applicability to the 1000 most called contracts. We can observe a long tail: more than
half of the nearly 1k rules are applicable only 10 times or less, whereas the top 50 rules are
applicable more than 500 times. This suggests that, if a smaller set of rules is desired, this
analysis can guide which rules to discard.

Next we inspect the rules within R2. The five most applied rules for the 1000 most called
contracts are listed in Figure 3. Most of these rules are relatively simple and should clearly
be applied exhaustively. The fourth rule is perhaps a bit unexpected and may have been
missed on manual inspection, but it is cheaper to execute CALLVALUE twice than duplicating
its result. The last rule hints at a specific compiler produced anti-pattern. Our approach
could also be leveraged to detect those.

Figure 4 shows the six rules with the highest gas savings, 17 g and 15 g. We consider two
of these rules in more detail. The rule PUSH 1 MUL PUSH 0 NOT AND ⇛ ε combines two obser-
vations – that 1 and PUSH 0 NOT are neutral elements for multiplication and AND respectively.

0 100 200 300 400 500 600 700 800 900

rule applicable n times: < 10 < 20 < 50 < 100 < 500 > 500

Figure 2 Applicability of rules in R2 to 1000 most called contracts.
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1. SWAP1 POP POP ⇛ POP POP (×8926)
2. ISZERO ISZERO ISZERO ⇛ ISZERO (×7893)
3. PUSH y PUSH x SWAP1 ⇛ PUSH x PUSH y (×7742)
4. CALLVALUE DUP1 ⇛ CALLVALUE CALLVALUE (×7740)
5. SWAP1 SLOAD SWAP1 PUSH x EXP SWAP1 ⇛ PUSH x EXP SWAP1 SLOAD (×5625)

Figure 3 Rules most applied to the 1000 most called contracts.

1. PUSH 1 MUL DUP3 PUSH 0 NOT AND ⇛ DUP3
PUSH 1 MUL PUSH 0 NOT AND ⇛ ε

2. PUSH 0 DUP6 DUP5 SUB LT ISZERO ⇛ PUSH 1
PUSH 0 NOT AND EQ ISZERO ISZERO ⇛ EQ
SWAP1 PUSH 0 NOT AND SWAP1 ⇛ ε

PUSH 0 DUP2 PUSH x AND LT ISZERO ⇛ PUSH 1

Figure 4 Rules saving most gas.

Depending on the implementation of the peephole optimizer it may be desirable to split this
rule which could be achieved by left-reducing the rules. Key to the rule PUSH 0 DUP6 DUP5
SUB LT ISZERO ⇛ PUSH 1 is the less-than comparison LT with the smallest element 0 always
evaluating to false. The rule does not depend on the result of DUP6 DUP5 SUB, and indeed this
is replaced by DUP2 PUSH x AND in the otherwise identical rule in the last line. Generalizing
those two rules would require the use of higher-order patterns.

Rules may not only save gas, but also reduce the length of the produced code. These
often coincide, and indeed the top 14 length-reducing rules, removing 5 instructions each,
subsume the above gas-saving rules. On the other end, there are also rules which save gas
but do not reduce the length such as CALLVALUE DUP1 ⇛ CALLVALUE CALLVALUE saving 1 g. In
Table 2, we analyze the right-hand sides of R2. We investigated which instructions were
added, i.e., do not appear on the left-hand side, and removed, i.e., appear on the left- but not
the right-hand side of the rule. We group instructions for arithmetic, comparison, bitwise
operations, and environment/memory. Unsurprisingly, many more instructions were removed
than added, which is expected, because removing instructions always saves gas. The majority
of removed instructions is concerned with the stack layout. Surprisingly, also ISZERO is often
redundant – as also observed in the second rule in Figure 3. Still, instructions are also
synthesized on the right-hand side giving rise to optimizations taking the semantic of an
instructions into account – potentially also interacting with stack manipulation, for example
the rule SWAP1 LT ⇛ GT.

Finally, we also successfully validated all rules R2 by running a reference implementation
of the EVM, go-ethereum version 1.9.14 on pseudo-random input.4 Therefore, we run the
bytecode of every block in E and the bytecode obtained by applying the rewrite rules to
observe that both produce the same final state.

5 Related and Future Work

Chen et al. [7] also developed a tool to rewrite optimization patterns in EVM bytecode. As
opposed to our approach, they devised their 24 (anti-)patterns by manual inspection of the
code base. Albert et al. [2] synthesize optimized straight-line EVM bytecode for operations on

4 github.com/ethereum/go-ethereum

https://github.com/ethereum/go-ethereum
github.com/ethereum/go-ethereum
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Table 2 Added and removed instructions by group.

arith. comp. ISZERO bitwise DUPi SWAPi PUSH POP env./mem.

added 10 27 24 12 47 28 134 14 29
removed 80 92 108 83 345 952 182 173 18

the stack with Max-SMT. To gain efficiency, they do not encode the semantics of bit-vector
instructions, and instead employ hand-crafted simplification rules. These hand-crafted rules
could be inspired by, or even automatically derived from, rules generated by ppltr, which do
consider the semantic of bit-vector instructions. Bansal et al. [5] use superoptimization to
automatically generate a peephole optimizer for x86 binaries. Aside from the application, the
main difference of their approach to ppltr is that it does not process optimizations into rules
but instead keeps them in an optimization database in order to reapply them. Moreover it
uses an enumeration based superoptimizer, which is more exhaustive, but limits instruction
sequences to length 3.

We believe our approach is also applicable for different smart contract languages. Face-
book’s Move [6] is a gas-metered and verification friendly designed language with an existing
code base, such as for example from github.com/libra/libra/tree/master/language/
move-lang/functional-tests/tests. The machine model of Move is stack-based with
typed locals. To adapt the presented approach the SMT encoding would need to be extended
to incorporate types and locals. Michelson [15], the smart contract language for the Tezos
blockchain, also comes with a detailed formal semantics. Like the EVM it is a stack-based
language, but features high-level data types, like lists, sets, and maps. To use the presented
approach these data types need to be handled in the SMT encoding and SMT solvers do
support complex theories such as sets and lists. Moreover, type information could be used to
prune search space, resulting in a positive performance impact.

To automatically integrate the rules generated by ppltr into a compiler a DSL like the
one used by GCC5 or Alive [16] might prove useful. Such an automatic integration would be
especially welcome when one wants to re-populate the optimizer of a compiler, e.g. because
new instructions are available, such as the addition of shift-operators to the EVM.

Hirai [10] used the meta-tool Lem [17] to formalize the semantics of the EVM. This
formalization was extended by Amani et al. [3] by a program logic using the interactive
proof assistant Isabelle/HOL to provide an approach to the verification of Ethereum smart
contracts. Another formalization of the EVM semantics by Hildenbrandt et al. [9] use the
K-framework [20], a rewriting-based framework for defining programming language design
and semantics. One of these formalizations could be used to verify the correctness of our
encoding, or possibly even generate it automatically.

Our definitions in Section 2.2 are based on concepts from term rewriting [4] and thus we
also look at the machinery of term rewriting. Termination of the rules ensures we can apply
them exhaustively without looping. Intuitively all rules in R2 are terminating, since left-hand
sides have a higher cost than right-hand sides, and indeed the termination prover WANDA [12]
shows termination of all 993 rules in R2.6 Confluence guarantees a unique result regardless
of how the rules are applied. To check confluence one analyses critical pairs, situations where

5 gcc.gnu.org/onlinedocs/gccint/The-Language.html
6 We chose WANDA as its support for types allowed us to leverage that arguments of PUSH are words,
which greatly aided the automated proof.
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application of one rule potentially destroys the possibility for applying another one. The
confluence checker CSI [18] reports 82 765 critical pairs, 14 973 of which are joinable and
thus harmless. The remaining 67 792 are not, so the rules in R2 are not confluent. This is
not surprising, since there are different ways to achieve the same with the same cost, e.g.
PUSH x PUSH x and PUSH x DUP1. This may be resolved by defining an additional precedence
on the rules, e.g., based on the size of their bytecode. To make a terminating set of rules
confluent, one can use completion – automatically if we employing tools such as Ctrl [21].
Finally, one could imagine more expressive rules such as PUSH x PUSH y ADD ⇛ PUSH z where
z = x + y. Such rules allow to capture constant folding. To do so, rules in constrained
rewriting [13] come with constraints over a theory as used in SMT solvers.

6 Conclusion

We propose a pipeline to populate the peephole optimizer of a smart contract compiler with
three phases to
(1) find optimizations, from which we
(2) generate rules, and
(3) a feedback mechanism to apply the rules.
We demonstrate our approach for EVM bytecode using the tools ebso, sorg, and ppltr,
generating 993 peephole optimization rules from the 250 most called contracts of the Ether-
eum blockchain. We successfully applied our rules to the 1000 most called contracts and
discarded 146 376 instructions, saving 435 002 g and 4.5 % storage space. An advantage of
our approach lies in its modularity. On the one hand in the modularity of the phases. One
could, for example, obtain additional optimizations in a different manner and incorporate
them easily. On the other hand, there is the modularity inherent to peephole optimization
rules being applied to short programs: it enables an iterative approach to encoding and
optimizing instructions based on feasibility and profitability.

Our approach is tailored towards new, rapidly evolving languages and their compilers
with clear cost models such as gas metering, and we believe readily applies to languages
other than EVM bytecode such as Move and Michelson.
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Abstract
This paper introduces Tezla, an intermediate representation of Michelson smart contracts that
eases the design of static smart contract analysers. This intermediate representation uses a store and
aims to preserve the semantics, flow and resource usage of the original smart contract. This enables
properties like gas consumption to be statically verified. We provide an automated decompiler of
Michelson smart contracts to Tezla. In order to support our claim about the adequacy of Tezla,
we develop a static analyser that takes advantage of the Tezla representation of Michelson smart
contracts to prove simple but non-trivial properties.
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1 Introduction

The term “smart contract” was proposed by Nick Szabo as a way to formalize and secure
relationships over public networks [26]. In a blockchain, a smart contract is an application
written in some specific language that is embedded in a transaction (hence the program code
is immutable once it is on the blockchain). Some examples of smart contracts applications are
the management of agreements between parties without resorting to a third party (escrow)
and to function as a multisignature account spending requirement. Smart contracts have
the ability to transfer/receive funds to/from users or from other smart contracts and can
interact with other smart contracts.

There are reports of bugs and consequently attacks in smart contracts that have led to
losses of millions of dollars worth of assets. One of the most famous and most costly of
these attacks was on the Distributed Autonomous Organization (DAO), on the Ethereum
blockchain [8]. The attacker managed to withdraw approximately 3.6 million ethers from the
contract.
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Given the fact that a smart contract in a blockchain cannot be updated or patched, there
is an increasing interest in providing tools and mechanisms that guarantee or potentiate the
correctness of smart contracts and to verify certain properties. However, current tools and
algorithms for program verification that are based, for example, on deductive verification
and static analysis, are usually designed for classical store-based languages in contrast
with Michelson [15], the smart contract language for the Tezos Blockchain [11], which is
stack-based.

To facilitate the usage of such tools to verify Michelson smart contracts, we present
Tezla, a store-based intermediate representation language for Michelson, and its respective
tooling. We provide an automated translator of Michelson smart contracts to Tezla. The
translator was designed and implemented in a way that aims to preserve the semantics, flow,
and resource usage of the original smart contract, so that properties like gas consumption
can be faithfully verified at the Tezla representation level. To support our work, we present
a case study of a demo platform for the static analysis of Tezos smart contracts using the
Tezla intermediate representation alongside with an example analysis.

The paper is structured as follows. In section 2, we introduce the Tezla intermediate
representation and the translation mechanism of Michelson code to Tezla. Section 3
addresses the static analysis platform case study that targets Tezla-represented smart
contracts. In section 4, we talk about the related work. Finally, section 5 concludes with a
general overview of this contribution and future lines of work.

2 Tezla

Tezla aims to facilitate the adoption of existing static analysis tools and algorithms. As
such, Tezla is an intermediate representation of Michelson code that uses a store instead
of a stack, enforces the Static Single-Assignment Form (SSA) [20] and aims to preserve
information about gas consumption. We will see in the next section how such characteristics
ease the translation of a Tezla program into its Control Flow Graph (CFG) forms and the
construction of data-flow equations.

Compiled languages (like Albert [5], LIGO [1], SmartPy [16], Lorentz [25], etc.) also
provide a higher-level abstraction over Michelson. However, as it happens with most
compiled languages, the produced code may not be as concise or compact as expected which,
in the case of smart contracts, may result in a higher gas consumption and, consequentially,
undesired costs. Tezla was designed to have a tight integration with the Michelson code
to be executed, not as a language that compiles to Michelson neither as a higher level
language to ease the writing of Michelson smart contracts.

Tezla adapts the Michelson syntax and semantics in order to transform the stack usage
to a traditional store usage. As such, we encourage the reader to head to the Michelson
documentation [14] for more information about the Michelson language and its syntax and
semantics.

Due to its large extent, the full syntax and semantics of the Tezla representation
are not presented here but can be found at https://gitlab.com/releaselab/fresco/
tezla-semantics.

In a general way, Michelson push-like instructions are translated into variable assign-
ments, whereas instructions that consume stack values are translated to expressions that use
as arguments the variables that match the values from the stack. Furthermore, lists, sets and
maps deconstruct and lifting of option and or types that happen implicitly are represented
through explicit expressions added to Tezla.

https://gitlab.com/releaselab/fresco/tezla-semantics
https://gitlab.com/releaselab/fresco/tezla-semantics
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Since the operational effect of stack manipulation is transposed into variable assignments,
we also expose in a Tezla represented contract the stack manipulation as instructions that
act as no-op instructions in the case of a semantics that do not take resource consumption
into account1. In the case of a resource aware semantics, these instructions will semantically
encode this consumption.

The following section describes in detail the process of transforming a Michelson smart
contract to a Tezla representation.

2.1 Push-like instructions and stack values consumption
Instructions that push N values to the stack are translated to N variable assignments of
those values. The translation process maintains a Michelson program stack that associates
each stack position to the variable to which that position value was assigned to. When a
stack element is consumed, the corresponding variable is used to represent the value. A very
simple example is provided in listings 1 and 2.

Listing 1 Stack manipulation ex-
ample – Michelson code.
PUSH nat 5;
PUSH nat 6;
ADD;

Listing 2 Stack manipulation ex-
ample – Tezla code.
v1 := PUSH nat 5;
v2 := PUSH nat 6;
v3 := ADD v1 v2;

The block on listing 1 is translated to the Tezla representation shown in listing 2.
From the previous example, we can also observe that Michelson instructions that

consume N stack variables are translated to an expression that consumes those N values.
Concretely, the instruction ADD that consumes two values (say, a and b), from the stack is
translated to ADD a b.

2.2 Branching and deconstructions
Michelson provides developers with branching structures that act on different conditions.
As Tezla aims at being used as an intermediate representation for static analysis, there are
some properties we would like to maintain. One such property is static single-assignment
form (SSA-form) [20], so that we obtain data flow information in a way that simplifies
analyses and code optimization. This is guaranteed as Tezla-represented smart contracts
are, by construction, in SSA-form, since each assignment uses new variables.

In order to deal with branching, the Tezla representation makes use of φ-functions
(see [20]) that select between two values depending on the branch. As an illustration consider
the Michelson example in listing 3.

The IF_CONS instruction tests if the top of the stack is a non-empty list, and deconstructs
the list in the true branch by putting the head and the tail of the list on top of the stack.

In this example, the IF_CONS instructions checks the top of the stack and if it is a
non-empty list it inserts the sum of a int value already on the stack with the head of the
list at the lists’s head. If the list is empty, it inserts the value into the empty list. Here,
each branch of the IF_CONS instruction will result in a stack with a list of integers, whose
values depends on which branch was executed. This translates to the Tezla representation
presented on listing 4.

1 This is the case of the semantics presented in this paper.
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Listing 3 Branching example – Michelson
code.
IF_CONS

{ DUP ;
DIP { CONS ; SWAP } ;
ADD ; CONS }

{ NIL int ; SWAP ; CONS } ;
DUP ;
PAIR;

Listing 4 Branching example - Tezla
code.
IF_CONS v1
{

v2 := hd v1;
v3 := tl v1;
v4 := DUP v2;
v5 := CONS v2 v3;
SWAP;
v6 := ADD v4 v0;
v7 := CONS v6 v5

}
{

v8 := NIL int;
SWAP;
v9 := CONS v0 v8

};
v10 := φ(v7 , v9);
v11 := DUP v10;
v12 := PAIR v11 v10;

The variable v10 will receive its value through a φ-function that returns the value of v7
if the true branch is executed, or the value of v9 otherwise.

From this example, it is possible to observe that the deconstruction of a list is explicit
through two variable assignments. This is also the behaviour of IF_NONE and IF_LEFT
instructions, where the unlifting of option and or types happens explicitly through an
assignment.

2.3 Loops, maps and iterations

Michelson also provides language constructs for looping and iteration over the elements
of lists, sets and maps. Sets in Michelson are defined as ordered lists, whereas maps
are defined as lists of key-value pairs ordered by key. These are treated using the same
φ-functions mechanism in order to preserve SSA-form. We can observe this on the example
listing 5.

This example uses a LOOP_LEFT (loop with an accumulator) to sum 1 to a nat (starting
with the value 0) until that value becomes greater than 100 and casts the result to an int.
This example translates to the code presented in listing 6.

Note that the LOOP_LEFT variable is assigned to the value of v1 if it is the first time
that the loop condition is checked, or v12 if the program flow comes from the loop body.
Moreover, notice that the same explicit deconstruction of an or (union type) variable is
applied here, where v3 gets assigned the value of the unlifting of the loop variable in the
beginning of the loop body and v13 at the end of the loop. Similar behaviour applies to the
other looping and iteration instructions.

2.4 Parameter and Storage

We now present an example of a complete Michelson smart contract (listing 7).
The contract takes an int as parameter and adds 1 to that value, which is later put in

the storage. This contract translates to the Tezla code of figure 8.
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Listing 5 Loop example – Michelson code.
PUSH nat 0 ;
LEFT nat ;
LOOP_LEFT

{ DUP ;
PUSH nat 100 ;
COMPARE ;
GE ;
IF

{ PUSH nat 1 ;
ADD ; LEFT nat }

{ RIGHT nat } } ;
INT ;

Listing 6 Loop example – Tezla code.
v0 := PUSH nat 0;
v1 := LEFT nat v0;
LOOP_LEFT v2 := φ(v1 , v12)
{

v3 := unlift_or v2;
v4 := DUP v3;
v5 := PUSH nat 100;
v6 := COMPARE v5 v4;
v7 := GE v6;
IF v7
{

v8 := PUSH nat 1;
v9 := ADD v8 v3;
v10 := LEFT nat v9;

}
{

v11 := RIGHT nat v3;
}
v12 := φ(v10 , v11 );

}
v13 := unlift_or v2;
v14 := INT v13;

Listing 7 Example contract – Michelson
code.
parameter (int) ;
storage (int) ;
code { CAR ;

PUSH int 1;
ADD;
NIL operation ;
PAIR; }

Listing 8 Example contract – Tezla code.
v0 := CAR parameter_storage ;
v1 := PUSH int 1;
v2 := ADD v1 v0;
v3 := NIL operation ;
v4 := PAIR v3 v2;
return v4;

In this example, we can observe that a Michelson contract has a parameter and storage.
The initial stack of any Michelson smart contract is a stack that contains a single pair
whose first element is the input parameter and second element is the contract storage. As
such, we introduce a variable called parameter_storage that contains the value of that pair.

The final stack of any Michelson smart contract is also a stack that contains a single
pair whose first element is a list of internal operations that it wants to emit and whose second
element is the resulting storage of the smart contract. We identify the variable containing
this pair through the addition of a return instruction.

3 Building static analyses for Tezla smart contracts

In this section, we present the experiments conducted in order to test and demonstrate the
applicability of the Tezla intermediate representation to perform static analysis.

3.1 SoftCheck
We build and organise these static analyses upon a generic data-flow analysis platform called
SoftCheck [18]. SoftCheck provides an internal and intermediate program representation,
called SCIL, rich enough to express high-level as well as low-level imperative programming
constructs and simple enough to be adequately translated into CFGs.
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SoftCheck is organised upon a generic monotone framework [12] that is able to extract
a set of data-flow equations from (1) a suitable representation of programs and; (2) a set of
monotone functions; and then to solve them. SoftCheck is written in OCaml and makes
use of functor interfaces to leverage its genericity (see figure 1).

By generic we mean that, given a translation from a programming language to SCIL.
SoftCheck gives the ability to instantiate its underlying monotone framework by means of
a functor interface. Then all defined static analyses are automatically available for the given
programming language.

On the other hand, once written as a set of properties that define the domain of the
analysis and the monotone functions on that domain, a particular static analysis can be
incorporated (again, through instantiating a functor) as an available static analysis for all
interfaced programming languages.

SoftCheck offers several standard data-flow analysis such as very busy expressions,
available expressions, tainted analysis etc.

We propose in the next sections to detail how we have interfaced Tezla with SCIL, how
we have designed a simple but useful data-flow analysis within SoftCheck and how we have
tested this analysis on the Michelson smart contracts running in the Tezos blockchain.

Language1

Ast Cfg

Analysis1Language1

Analysis1Language2

...

Language2

Ast Cfg

Analysis1Language2

Analysis1Language2

...

...

Language specific
input

Analysis1

Properties Monotone functions

Analysis2

Properties Monotone functions

...

Analysis specific
input

Lattices

Dependences

Fix CfgGenerator

Support libraries

Framework

Solver

Program

Result

Solver engine

Figure 1 SoftCheck in a picture (adapted from [21]).

3.2 Constructing a Tezla Representation of a Contract
To obtain the Tezla representation of a smart contract, we first developed a parser to
obtain an abstract syntax representation of a Michelson smart contract. This parser
was implemented in OCaml and Menhir and respects the syntax described in the Tezos
documentation [15]. It allows us to obtain a data type that fully abstracts the syntax (with
the exception of annotations). The reason behind the implementation of our own parser was
to obtain a data type that would better suit and ease the adoption of the integration with
SoftCheck. Therefore, to improve the integration between these two forms, Tezla data
types were built upon the data types of Michelson.

Control-flow graphs are a common representation among static analysis tools. We
provide a library for automatic extraction of such representation from any Tezla-represented
smart contract. This library is based upon the control-flow generation template present in
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SoftCheck. As such, control-flow graphs generated with this library can be used with
SoftCheck without further work. To instantiate the control-flow graph generation template,
we simply provided the library with a module with functions that describe how control flows
between each node.

3.3 Sign Detection: An Example Analysis
At this point, the SoftCheck platform is ready to be used to develop data flow analyses
targeting Tezla represented smart contracts.

Here we devise an example of a static analysis for sign detection. The abstract domain
consists of the following abstract sign values: 0 (zero), 1 (one), 0+ (zero or positive), 0- (zero
or negative), + (positive), - (negative), > (don’t know) and ⊥ (not a number). These values
are organised according to the lattice on figure 2.

1

+

0+

0

0-

>

⊥

-

Figure 2 Sign lattice.

Using SoftCheck, we implemented a simple sign detection analysis of numerical values.
By definition, nats have a lowest precision value of 0+, while ints can have any value. Every
other data type has a sign value of ⊥.

This implementation does not propagate information to non-simple types (pair, or, etc.),
but it does perform some precision refinements on branching.

To implement such an analysis, we provided SoftCheck, in addition to the previously
defined Tezla control-flow graph library, a module that defines how each instruction impacts
the sign value of a variable. Then, using the integrated solver mechanism based on the
monotone framework, we are able to run this analysis on any Tezla represented smart
contract.

We now present an example. Listings 9 and 10 show the code of a smart contract and
its Tezla representation. This contract multiplies its parameter by −5 if the parameter
is equal to 0, or by −2 otherwise, and stores the result in the storage. Figure 3 shows the
control-flow graph of representation of that contract.

Running this analysis on the previously mentioned contract produced the results shown
in Figure 4. In these results we can observe the known sign value of each variable at the exit
of each block of the control-flow graph in Figure 3. For brevity, we omitted non-numerical
variables from the result.

It it possible to observe from the results that the analysis takes into account several
details. For instance, the sign of values of type nat are, by definition, always zero or positive.
The analysis also refines the sign values on conditional branches according to the test. In
this case, we can observe that in blocks 6 and 7 (true branch) the sign value of v1 must be 0,
as the test corresponds to 0 == v1. Complementary to this, in blocks 8 and 9 the value of
v1 assumes the sign value of +, since being a nat value its value must be 0+ and we know
that its values is not zero because the test 0 == v1 failed.
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Listing 9 Example contract for sign analysis –
Michelson code.
parameter nat ;
storage int ;
code { CAR ;

DUP ;
PUSH nat 0 ;
COMPARE ;
EQ ;
IF { PUSH int -5 ; MUL }

{ PUSH int -2 ; MUL } ;
NIL operation ;
PAIR }

Listing 10 Example contract for sign
analysis – Tezla code.
v0 := CAR parameter_storage ;
v1 := DUP v0;
v2 := PUSH nat 0;
v3 := COMPARE v2 v1;
v4 := EQ v3;
IF v4
{

v5 := PUSH int -5;
v6 := MUL v5 v0;

}
{

v7 := PUSH int -2;
v8 := MUL v7 v0;

};
v9 := phi(v6 , v8);
v10 := NIL operation ;
v11 := PAIR v10 v9;
return v11;

Due to the Tezla nature, we were able to take advantage of existing tooling, such as
the SoftCheck platform, and effortlessly design the run a data-flow analysis. This enables
and eases the development of static analysis that can be used to verify smart contracts but
also to perform code optimisations, such as dead code elimination. Albeit simple, the sign
analysis can be used to instrument such dead code elimination procedure.

3.4 Experimental Results and Benchmarking
Tezla and all the tooling are implemented in OCaml and are available at [13]. Tezla
accepts Michelson contracts that are valid according to the Tezos protocol 006 Carthage. We
conducted experimental evaluations that consisted in transforming to Tezla and running
the developed analyses on a batch of smart contracts.

To do so, we implemented a tool that allows the extraction of smart contracts available
in the Tezos blockchain. With that tool, we extracted 142 unique smart contracts. We tested
these unique contracts alongside 21 smart contracts we have implemented ourselves.

We successfully converted all smart contracts with a coverage result of all Michelson
instructions except for 9 instructions that were not used in any of these 163 contracts. On
those, we ran the available analyses and obtained the benchmarks presented on table 1.
These experiments were performed on a machine with an Intel i7–8750H (2.2 GHz) processor
with 6 cores and 32 GB of RAM.

In the absence of an optimisation tool that takes advantage of the information computed
by the analysis, we do not produce any optimisations from the analyses results. To do so,
currently one must manually inspect the reports produced by the analysis. These reports,
the source code of contracts under evaluation, as well as the respective analysis results and
other performed static analyses are available at [22, 19].

4 Related Work

Albert [5] is an intermediate language for the development of Michelson smart contracts. This
language provides an high-level abstraction of the stack and some of the language datatypes.
This language can be compiled to Michelson through a compiler written in Coq that targets
Mi-Cho-Coq [4], a Coq specification of the Michelson language.
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Figure 3 Generated CFG, by the SoftCheck tool.

Table 1 Benchmark results.

Average time 0.48 s
Worst-case
(number of
instructions)

2231
(6.08 s)

Worst-case (time) 9.87 s
(926 instructions)

Average time
per instrucion 0.0009

Several high-level languages [1, 2, 16, 7, 25] that target Michelson have been developed.
Each one presents a different mechanism that abstracts the low-level stack usage. However, a
program analysis tool that would target one of these languages should not be easily reusable
to programs written in the other languages.

Scilla [23, 24] is an intermediate language that aims to be a translation target of high-level
languages for smart contract development. It introduces a communicating automata-based
computational model that separates the communication and programming aspects of a
contract. The purpose of this language is to serve as a basis representation for program
analysis and verification of smart contracts. We believe that Tezla is at a different level
than Scilla, as we could use a Tezla representation to be mid step between having a Scilla
representation and the Michelson code.

Slither [10], presented in 2019, is a static analysis framework for Ethereum smart contract.
It uses the Solidity smart contract compiler generated Abstract Syntax Tree to transform the
contract into an intermediate representation called SlithIR. This representation also uses a
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0: {
v0: 0+

}
1: {

v0: 0+,
v1: 0+

}
2: {

v0: 0+,
v1: 0+,
v2: 0

}
3: {

v0: 0+,
v1: 0+,
v2: 0,
v3: 0-

}
4: {

v0: 0+,
v1: 0+,

v2: 0,
v3: 0-

}
5: {

v0: 0+,
v1: 0+,
v2: 0,
v3: 0-

}
6: {

v0: 0,
v1: 0,
v2: 0,
v3: 0-,
v5: -

}
7: {

v0: 0,
v1: 0,
v2: 0,
v3: 0-,

v5: -,
v6: 0

}
8: {

v0: +,
v1: +,
v2: 0,
v3: 0-,
v7: -

}
9: {

v0: +,
v1: +,
v2: 0,
v3: 0-,
v7: -,
v8: -

}
10: {

v0: 0+,
v1: 0+,

v2: 0,
v3: 0-,
v5: -,
v6: 0,
v7: -,
v8: -,
v9: 0-

}
11: {

v0: 0+,
v1: 0+,
v2: 0,
v3: 0-,
v5: -,
v6: 0,
v7: -,
v8: -,
v9: 0-

}
12: {

v0: 0+,

v1: 0+,
v2: 0,
v3: 0-,
v5: -,
v6: 0,
v7: -,
v8: -,
v9: 0-

}
13: {

v0: 0+,
v1: 0+,
v2: 0,
v3: 0-,
v5: -,
v6: 0,
v7: -,
v8: -,
v9: 0-

}

Figure 4 Generated report for the sign analysis.

SSA form and a reduced instruction set to facilitate the implementation of program analyses
of smart contracts. However, the Slither intermediate representation is not able to accurately
model some low-level information like gas computations, which we took into account when
designing Tezla. Also, this work does not contemplate a formal semantics of SlithIR.

Solidifier [3] is a bounded model checker for Ethereum smart contracts that converts
the original source code to Solid, a formalisation of Solidity that runs on its own execution
environment. Solid is translated to Boogie, an intermediate verification language that is
used by the bounded model checker Corral, which is then used to look for semantic property
violations.

Durieux et. al [9] presented a review on static analysis tools for Ethereum smart contracts.
This work presents an extensive list of 35 tools, of which 9 respected their inclusion criteria:
the tool is publicly available and supports a command-line interface; takes as input a Solidity
contract; requires nothing but the source code of the contract; the tool claims to be able to
identify vulnerabilities and bad practices in the contract. The authors then used those tools
to test several vulnerabilities on a sample set of 47,587 smart contracts. This work presents
some interesting results, as it was able to detect 97% of the smart contracts as vulnerable, as
well as identify two categories of DASP10 as not able to be detect by the tools.

5 Conclusion

To the best of our knowledge, this is the first work towards a static analysis framework for
Tezos smart contracts. Tezla positions itself as an intermediate representation obtained
from a Michelson smart contract, the low-level language of Tezos smart contracts. This
representation abstracts the stack usage through the usage of a store, easing the adoption
of mechanisms and frameworks for program analysis that assume this characteristic, while
maintaining the original semantics of the smart contract.
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We have presented a case study on how this intermediate representation can be used to
implement a static analysis by using Tezla along side the SoftCheck platform. This has
shown how effortlessly one can perform static analysis on Michelson code without forcing
developers to use a different language or implement ad hoc static analysis tooling for a
stack-based language.

Michelson smart contracts have a mechanism of contract level polymorphism called
entrypoints, where a contract can be called with an entrypoint name and an argument. This
mechanism takes the form of a parameter composed as nesting of or types with entrypoint
name annotations. This parameter is then checked at the top of the contract in a nesting of
IF_LEFT instructions, running the desired entry point this way. This mechanism is optional
and transparent to smart contracts without entry points. As such, they are also transparent
to Tezla. We therefore plan to extend Tezla to deal with entrypoints and generate isolated
components for each entrypoint of a smart contract, which allow us to obtain clearer control
flow graphs and analysis results. This allows us to analyse each entry point separately and
possibly obtain more fine-grained results.

5.1 Future Work

At the moment of this paper writing, there is an initial work on an static analysis of Tezla
represented smart contracts to detect potentially costly loops.

Future plans include a proof of correctness of the Michelson to Tezla transformation
through a proof of equivalence of the Tezla semantics in respect to Michelson semantics.
We aim to do so by developing a Tezla semantics using the Why3 deductive program
verification platform and using the work done in WhylSon [6] to prove the semantic
equivalence of Michelson and Tezla. Furthermore, this semantics should be accountable
of gas consumption, so that we can provide a sound Tezla resource analysis in respect to
the original Michelson code. This will also make way to the development of a platform for
principled static analysis of Michelson smart contracts.

We plan to study which problems and properties are of interest so that we can integrate
existing tools and algorithms for code optimization, resource usage and security analysis and
correctness verification.

Another direction to tackle is the interfacing of Tezla with other static analysis platforms
such as those provided by the MOPSA project [17] which, among other capabilities, provides
a means to integrate static analyses. The integration with different static analysis platforms
makes way to a more diverse universe of possible static analysis. Furthermore, it reinforces
the statement that Tezla is an intermediate representation suitable not only for SoftCheck
but for other platforms.
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Abstract
Formal analysis and verification methods can aid the design and validation of security properties in
blockchain based protocols. However, to generate a reasonable and correct verification, a proper
model for the blockchain is needed. In this paper, we give a blockchain model in Tamarin. Based
on our model we analyze and give a formal verification for the hash time lock contract, an atomic
cross chain trading protocol. The result shows that our model is able to identify an underlying
assumption for the hash time lock contract and that the model is useful for analyzing blockchain
based protocols.
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https://github.com/ShuangWu121/Tamarin-code-for-HTLC-verification

1 Introduction

In a blockchain based protocol, the blockchain serves as a reliable public ledger to deliver
ordered outcomes to all its agents. Protocols can be executed by using smart contracts and
the execution states are recorded on the blockchain. The blockchain essentially performs as
a distributed trusted party to reduce the direct trust between the entities in the system.

In order to formally verify the security properties of protocols built on top of blockchains,
a proper model for blockchains is needed. The model must capture the interesting properties
of blockchains, without becoming too complicated. A blockchain is more than a public ledger.
The dynamics of the growing chain provide a time reference: the relatively stable growth of
the blockchain height offers a “global time”. With respect to this global time, a blockchain
enables a time lock function used as a restriction specifying that a transaction cannot be
added to blockchain before a set time (actually a given chain height). Thus in order to
capture properties of time lock contracts a blockchain model should include the following
features.

Model time. The blockchain model should contain a global time reference in the system.
Different blockchains contain different global time references. The model should be able
to capture time-relevant risks, such as race conditions.
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Model the time lock restriction. The time out event of a time lock should be triggered by
the time reference. It should be possible to model the risk introduced by a time lock that
times out earlier or later than is expected.

Clarify the underlying assumptions. If a certain property of the blockchain fails, a protocol
built on top of it will not be safe either.

Related work

In 2014, Andrychowicz et al. [2] modeled a multiparty computation contract in Bitcoin by
using timed automata. Back then the time lock functionality in Bitcoin was limited and
consequently the structure of the contract is different today. Bursuc and Kremer [4] used
Tamarin to model the blockchain as a public ledger, and analysed the ZKCP [7] protocol
built on top of it. But in their model, the executions are not time-relevant. Turuani et
al. [10] give a formal model in ASLan++ of the two-factor authentication protocol used by
the Electrum Bitcoin wallet. Bentov et al. [3] propose a real-time cryptocurrency exchange
service, and they give an informal cryptographic proof for the security of a hash time lock
protocol, with a probabilistic modeling of forking. Sun and Yu [9] give a formal verification
model for five kinds of security issues in the Ethereum blockchain using Coq.

Our contributions

To address the above challenges, we build a blockchain model in Tamarin [8]. The model
defines a public ledger and a global time reference for the system, with time lock functionality
built on top. We also define the security properties of an atomic cross chain trading protocol
and give a formal proof for the security of the hash time lock contract (HTLC). To our
knowledge, this is the first HTLC analysis by formal verification tools. The proof clarifies a
“hidden” security assumption: the growth speed of the two blockchains need to be stable,
otherwise security will fail. We further use our model to analyze an older version of the hash
time lock contract, and Tamarin is able to find a flaw. Even if the assumption looks trivial
and the flaw is somewhat obscure, this demonstrates that our model is able to address the
above challenges and can be used for formal verification of blockchain based protocols.

2 Background

2.1 Hash time lock contract
The goal of the hash time lock contract (HTLC) is to exchange different cryptocurrencies
between two players in a decentralized way. Consider Alice who wants to exchange Bitcoin
for Altcoin, and Bob who wants to exchange Altcoin for Bitcoin. They could do the following:
1. Alice creates a transaction that is locked by a hash value h := H(sk) to send Bob 1

Bitcoin. Bob can take the funds only if he can provide the hash pre-image. This is Alice’s
commitment transaction.

2. After Alice’s commitment transaction has been confirmed on the Bitcoin blockchain, Bob
creates a transaction (contract) to send 1 Altcoin to Alice, locked using the same hash
value h := H(sk). This is Bob’s commitment transaction.

3. Alice takes Bob’s Altcoin by providing her signature and the pre-image of the hash lock.
Bob learns the hash pre-image and unlocks the Bitcoin that Alice sent to him.

In order to avoid an interrupted protocol leaving players’ funds locked forever, the
commitment transactions are also locked by time locks. After the time lock times out, the
transaction can be redeemed by the sender. The time lock of Alice’s commitment transaction
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Alice commitment transaction
IF: 〈hash〉〈SigB〉 Pay Bob 1 Bitcoin
ELSE: 〈Timeout〉〈SigA〉 Pay Alice 1 Bitcoin

Bob commitment transaction
IF: 〈hash〉〈SigA〉 Pay Alice 1 Altcoin
ELSE: 〈Timeout〉〈SigB〉 Pay Bob 1 Altcoin

timeline

tAcom
tBcom

Reveal hash
pre-image
pay Bob tAopen

Timeout
pay Alice

tAout

Reveal hash
pre-image
pay AlicetBopen

Timeout
pay Bob

tBout

Figure 1 Hash time lock contract execution.

should be longer than Bob’s commitment transaction, since in the case that Alice takes Bob’s
Altcoin at the last moment before Bob’s commitment transaction timed out, her commitment
is still locked by the time lock and Bob still has time to take Alice’s Bitcoin. A successful
execution of a hash time lock contract can be seen in figure 1. Notice that in the figure we
use the same structure (script) to describe Altcoin and Bitcoin, but in fact we just consider
two Bitcoin-like blockchains. As long as the blockchain supports both timelock and hash
lock functionalities, the hash time lock contract protocol can be used.

The above description is the latest version of the hash time lock contract [6], where a
time lock restricts when a transaction can be spent by its following transaction. Thus the
two potential outputs of a commitment transaction are specified inside the commitment
transaction. The previous version [5, 1] utilizes a time lock that only restricts when a
transaction can be added to blockchain. The time lock is then not specified in the commitment
transaction, but in the redeem transaction. In this case the redeem transaction must be
signed by multiple signatures, thus the procedure involves two players exchanging signatures
on transactions.

2.2 About Tamarin

Tamarin [8] is an automatic symbolic protocol verification tool. Given a protocol, the user
specifies the roles running the protocol and their behaviors, the adversary model and the
security properties by using the Tamarin programming language. Tamarin applies malicious
adversarial behavior to the roles and uses a backward search method to generate counter-
examples to the security claims. Tamarin ends up with either a proof that demonstrates that
the given protocol satisfies the security properties, or Tamarin would give an attack for a
failed security claim.

In Tamarin, the communication messages, fresh randomness and the states of the protocols
are represented by symbolic terms called facts. There are two special facts to model the
interaction with the untrusted environment: In(∗), Out(∗),representing the protocol’s input
and output from and to the environment. All the messages forwarded by In(∗) and Out(∗)
can be learned by the adversary. The fact K(x) denotes the adversary learning x. Some facts
are linear, which means that they can be used only once. The protocols and the specifications
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of the adversaries are modeled by using multiset rewriting rules. These rules and facts define
a labeled transition system. Security properties are either defined in terms of traces of the
transition system or the observational equivalence of two transition systems.

A role in the protocol is specified by Tamarin multiset rewriting rules. A rule consists of
three elements: (L,A,R):[L]− [A]→ [R], the left side facts L (states, messages of the protocol)
are the premises of the rule, the right side facts R are rule conclusions, and the actions
in the middle square brackets A are to label the traces. A rule can be executed as long
as its premises exist in the current system states. Then the facts in the premises will be
removed from the current system states, while the facts in conclusion will be added. Users
can also add restrictions to enforce that only traces satisfying the restrictions are considered
by Tamarin’s backward search.

We illustrate Tamarin syntax by introducing a toy Diffie-Hellman key exchange protocol:
rule Server_1:
[ Fr(~a) ]−−>[ S_1( ~a, ’g’^~a), Out( ’g’^~a) ]

rule Client:
[ Fr(~b), In( X ) ]−−[ Key(X ^~b) ]−>[ Out(’g’ ^~b ) ]

rule Server_2:
[ S_1( a, ’g’^a ), In( Y ) ]−−[ Key( Y^a ) ]−>[ ]

In the first step, the server generates fresh randomness ∼a (the symbol ∼ denotes a fresh
nonce, the function Fr(∗) means generating a fresh nonce), sends ga to client by the fact
Out(’g’ ˆ∼a), and it records the inner state by the fact S_1( ∼ a, ’g’ ∼̂a) . This state will be
used in next step of the server with the name Server_2.

The client receives the message from server by fact In(X), it then generates the session
key according to the Diffie-Hellman key exchange protocol. This trace and its parameters
are recorded by the action Key(Xˆ∼b), this will later be used to claim the security property
of the protocol. The server’s next step generates a similar action.

The security properties to be evaluated are defined by lemmas. In the above example we
want to claim there is no adversary that can learn the secret key.
lemma Key_secrecy:
" All key #i . Key( key )@i ==> not Ex #j . K( key )@j "

The lemma Key_secrecy specifies that in all the traces that have an action Key(key), no
adversary could learn the input of the action, namely, the value key, expressed by statement
that there is no fact K(key) in the trace.

3 Tamarin Blockchain model

3.1 Simplification
A complete blockchain model would be too complex for Tamarin to work with, if it could
even be expressed. We have simplified the structures of the transactions and blocks to make
our blockchain model simpler, while still expressive enough to capture the essential elements
for describing attacks on the protocols, and thus making verification possible. We let the
blocks only include zero or one transactions, and forks are not allowed, thus we only consider
the blocks that are already stable. The consensus protocol and cost are not modeled in our
work. A transaction contains six elements: the id of the transaction that is being spent, the
sender’s address (we simply denote the addresses as public keys), the input signature (or
script), output address (or script), the block sequence and the id of this transaction.

We set the relative growing speeds of the two blockchains to be the same. This simplifica-
tion will not change the primary mechanism of the protocol because if the speed of Alice’s
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blockchain is two time faster than Bob’s blockchain, the time lock of Alice will be twice as
long to ensure that it is longer than Bob’s time lock in real time.

3.2 Tamarin blockchain model rules
We describe the rules of our blockchain model in two parts: the ledger rules and the global
time rules. The ledger rules add a transaction to a block. The global time rules generate the
time state called ’Tick’ to specify the time point of a block being added to the blockchain.

Figure 2 Tick chain.

In the global time rules, each time Tick has a unique parameter time. (It also has another
parameter to tie a Tick to a specific blockchain, so that block chains can grow at different
speeds. For simplicity we leave it out of Figure 2.) When generating a new Tick, an older
Tick that has the largest time will be consumed and the time will be increased by one. Thus
the Ticks form a time state transition chain that we call a Tickchain. Given the uniqueness
of each Tick and since “time” is always increasing, each Tick can be considered as an empty
block and the Tickchain can serve as base for a blockchain. We refer the blockchain in our
Tamarin model as Tickchain and its blocks are called Tickblocks. In order to model adding
a transaction to a certain Tickblock, a LedgerTick with a parameter Height equal to time is
generated along with a new Tick. The ledger rules consume a LedgerTick to create a new
transaction. In this way we bind a transaction to a Tickblock. The parameter Height also
implies a sequence of transactions. After the executions of a protocol, there may be some
LedgerTicks left without being consumed, which means that no transaction was added to the
corresponding Tickblock.

Global time rules. There are two rules: Tick_start and Tick to create a blockchain. (We
also use Tick to name the rule that generates a Tick state.) The rule Tick_start initiates the
clock and the rule Tick updates the clock, i.e. increase the clock by adding ’1’. There are three
facts involved in the global time rules: Chain(BC), Tick(BC, time) and LedgerTick(BC, height).
Chain(BC) specifies which blockchain. Tick(BC, x) and LedgerTick(BC, x) denote a certain
block with the block height x. Tick(BC, x) will be consumed by the Tick rules to updates
the clock by iteration. LedgerTick(BC, x) will be consumed by the ledger rules to link a
transaction to a block. All these facts are linear facts that can be only consumed one time.

Global time rules
Tick_Start

Input: Chain(BC)
Output: Tick(′1′),LedgerTick(′1′)

Tick
Input: Tick(BC, time)
Output: Tick(BC, time +′ 1′),

LedgerTick(BC, time +′ 1′)
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Ledger rules. The ledger rules model the nodes in blockchain network: the nodes get
transaction information from the network, check its validity and then record the transaction
to the blockchain.

There are two types of transaction in our model: SimpleTx(BC, InTx, InSig,
OutPk, tx, height) to model the transactions without the hash and time lock, and
CommitTx(BC, InTx, InSig, OutScript, tx, height) to model the transactions locked by a hash
and a time lock. In these two transactions, BC denotes which blockchain the transaction
belongs to; InTx is a nonce that identifies a previous unspent transaction owned by the sender;
InSig is the sender’s signature. tx is a nonce that identifies this transaction; height specifies
in which block this transaction has been recorded. In the simple transaction, the OutPk is
the receiver’s address, while the OutScript in a commitment transaction is a hash time lock
contract script, specifying the hash value, time lock value and receiver’s address.

There are five rules to model the blockchain behaviors, Mine_Coin, Simple_Tx,
Commit_Tx, Commit_open and Commit_timeout. The purpose of these rules are to generate
blocks that contain different types of transactions and append the block to the blockchain.
Mine_Coin creates the original coins of the blockchain. Simple_Tx spends a simple transac-
tion and creates a new unspent simple transaction. Commit_Tx creates a transaction that
is locked by a hash and a time lock. Commit_open models the transaction that is spent by
revealing the hash pre-image. The Commit_timeout model the commit transaction that is
spent by sender redeeming the transaction in the case of timeout.

Ledger rules
Mine_Coin

Input: Fr(∼ n), PK(A, pkA), ledgerTick(BC, t)
Output: SimpleTx(BC,′ 0′,′ 0′, pkA, n, t)

Simple_Tx
Input: SimpleTx(BC, InTx, InSig,Pk, n, height),

In(〈tx,Sig, pkB〉), ledgerTik(BC, t)
Output: SimpleTx(BC, n,Sig, pkB, tx, t)

Commit_Tx
Input: SimpleTx(BC, InTx, InSig,Pk, n, height),

In(〈Sig, 〈pkA, timelock, hash, pkB〉〉),
LedgerTick(BC, t)

Output: Commit_Tx(BC, n,Sig, 〈pkA, timelock,
hash, pkB〉, tx, t)

Commit_open
Input: Commit_Tx(BC, InTx, InSig, 〈pkA,

timelock, hash, pkB〉, n, height),
In(〈〈Script1,Script2〉,PKaddress〉),
LedgerTick(BC, t),

Output: SimpleTx(BC, n,Sig, pkB, tx, t)
Commit_timeout

Input: Commit_Tx(BC, InTx, InSig, 〈pkA,
timelock, hash, pkB〉, n, height)
In(〈Script1,PKaddress〉)
LedgerTik(BC, t)

Output: SimpleTx(BC, n,Script1,Pk, tx, t)

Restrictions. The no double spending property of blockchain is guaranteed by restriction
rule. When a transaction has been spent, an action Spend(BC, tx,M, t) will be recorded in
the Tamarin system to identify the event. On a single blockchain, for a transaction x, there
can only exist one Spend(BC, x,M, t).
restriction DoubleSpending:
"All BC x n m t1 t2 #i #j .Spend(BC,x,n,t1)@i &Spend(BC,x,m,t2)@j==>#i=#j"

To help Tamarin reason more efficiently, we add one more restriction HappenBefore. This
restriction simply tells Tamarin that a transaction that has a larger block number should
happen later than a transaction that has a smaller block number.
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restriction HappenBefore:
"All BC t1 t2 #i .HappenBefore(BC,t1,t2)@i==>Ex x .t2=t1+x"

4 Model HTLC in Tamarin

We model the two roles Alice and Bob in the hash time lock contract. Alice is the contract
initiator, Bob is the responder. Alice is not allowed to set up a hash time lock contract with
herself. The roles send data to blockchain network by using fact Out(∗), i.e. they send data
to the environment directly. It models the blockchain network as public, where the adversary
learns anything sent to and received from the network.

4.1 HTLC rules
Alices’ rules. Alice is defined by two rules: Alice_send and Alice_receive. The rule
Alice_send broadcasts Alice’s commitment transaction and redeem transaction to the block-
chain network. The rule Alice_receive broadcasts the transaction to open Bob’s commitment
transaction. Note that even though Alice broadcasts her commitment transaction and
its redeem transaction at the same time, the redeem transaction cannot be added to the
blockchain until the time lock of Alice’s commitment transaction expires.

Alice_send

The rule takes a simple transaction tx, Alice’s secret keys, Bob’s address and a fresh nonce
as input. It outputs Alice’s commitment transaction, Alice’s redeem transaction, and a state
Alice_1_record to record the hash pre-image. It spends the simple transaction tx with signa-
ture SigA and outputs a commitment transaction that has 〈pk(ltkA1), timelock_A, hash, pkB3〉
as output. The two potential ways to spend this commitment transaction are: 1) Redeem
by Alice: when the time lock timelock_A timed out, Alice could redeem the commitment
transaction by providing the signature of the public key pk(ltkA1). 2) Opened by Bob: Bob
can take the funding by providing the pre-image of the hash lock and the signature of pkB3.
The rule outputs the redeem transaction at the same time, since Alice desires to broadcast
the redeem transaction earlier so that it can be added on the blockchain as soon as the time
lock expires. The Tamarin code is listed below.
rule Alice_send:

let
timelock_A=’1’+’1’
hash=HTLChash(~hsk)
SigA=sign(<’BC1’,tx,pk(ltkA),<pk(ltkA1),timelock_A,hash,pkB3>>,ltkA)
CommitTxAlice=TXhash(<tx,SigA,<pk(ltkA1),timelock_A,hash,pkB3>>)
SigA1=sign(<’BC1’,CommitTxAlice,<pk(ltkA1),timelock_A,hash,pkB3>,pkA2>,ltkA1)

in
[ !SimpleTx(’BC1’,’0’,’0’,pk(ltkA),tx,t) ,!PK(A,pk(ltkA1)),!PK(A,pkA2),!PK(B,pkB3),
Fr(~hsk)]

−−[ InEq(A,B) ]−>
[ Out(<tx,SigA,<pk(ltkA1),timelock_A,hash,pkB3>>),Out(<CommitTxAlice,SigA1,pkA2>)

,Alice_1_record(hash,~hsk)]

Alice_receive

The rule takes a commitment transaction that has Alice as receiver, a state record
Alice_1_record and Alice’s address as inputs. It outputs a transaction spending the commit-
ment transaction and a fact Reveal(hsk). The rule opens the pre-image of hash and provide
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the signature SigA3 for pkA3. This spending transaction will be added to the blockchain by
the ledger rule Commit_open, it transfers the funding to the target address.

rule Alice_receive:
let

SigA3=sign(<’BC2’,CommitTxBob,<pkB1,timelock_B,hash,pk(ltkA3)>,pkA4>,ltkA3)
in

[!CommitTx(’BC2’,tx0,SigB0,<pkB1,timelock_B,hash,pk(ltkA3)>,CommitTxBob,t)
,Alice_1_record(hash,hsk),!PK(A,pkA4)]

−−[ Alice_receive(CommitTxBob) ]−>
[ Out(<CommitTxBob,<hsk,SigA3>,pkA4,hsk>)]

Bob’s rules. Bob is specified by the rules Bob_send, Bob_receive and a restriction
Not_Spend. The rule Bob_send generates the commitment transaction and its redeem
transaction, and broadcasts them to the blockchain network. The rule Bob_receive is to
open Alice’s commitment transaction and the restriction Not_Spend checks that Alice’s
commitment transaction has not been spent.

Bob_send

The rule takes Alice’s commitment transaction, a simple transaction, Alice’s receiving address,
Bob’s redeem address and Bob’s secret key as input. The restriction Not_Spend checks if
Alice’s commitment transaction is just added to the blockchain. If it is, the rule will output
Bob’s commitment transaction, its redeem transaction and Bob_1_record to record the hash
lock and the transaction id of Alice’s commitment transaction. The output script in Bob’s
commitment transaction is 〈pk(ltkB), timelock_B, hash, pkA3〉. The hash is the same with
the hash lock in Alice’s commitment transaction.

rule Bob_send:
let

timelock_B=’1’
SigB=sign(<’BC2’,tx,pk(ltkB),<pk(ltkB1),timelock_B,hash,pkA3>>,ltkB)
CommitTxBob=TXhash(<tx,SigB,<pk(ltkB1),timelock_B,hash,pkA3>>)
SigB1=sign(<’BC2’,CommitTxBob,<pk(ltkB1),timelock_B,hash,pkA3>,pkB2>,ltkB1)

in
[!SimpleTx(’BC2’,’0’,’0’,pk(ltkB),tx,t1),!PK(B,pk(ltkB1)) ,!PK(B,pkB2),!PK(A,pkA3)
,!CommitTx(’BC1’,tx_0,SigA_0,<pkA,timelock_A,hash,pkB>,CommitTxAlice,t)]

−−[Not_Spend(CommitTxAlice)]−>
[ Bob_1_record(hash,CommitTxAlice)
,Out(<tx,SigB,<pk(ltkB1),timelock_B,hash,pkA3>>)
,Out(<CommitTxBob,SigB1,pkB2>)]

Bob_receive

The rule takes a state record Bob_1_record, the hash pre-image In(hsk), Bob’s address
and Alice’s commitment transaction as inputs. It outputs the transaction to open Alice’s
commitment transaction. By providing the signature of the public key pk(ltkB3) and the
pre-image of the hash lock, Bob transfers the funding to his address pkB4.

rule Bob_receive:
let

SigB3=sign(<’BC1’,CommitTxAlice,<pkA1,timelock_A,hash,pk(ltkB3)>,pkB4>,ltkB3)
in

[ Bob_1_record(hash,CommitTxAlice),In(hsk),!PK(B,pkB4)
,!CommitTx(’BC1’,tx0,SigA0,<pkA1,timelock_A,hash,pk(ltkB3)>,CommitTxAlice,t)]

−−[ Bob_receive(CommitTxAlice) ]−>
[ Out(<CommitTxAlice,<hsk,SigB3>,pkB4,hsk>) ]
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5 Tamarin Security analysis

5.1 Preliminaries
We describe a transaction as a tuple of six elements: TX{BC, InTx, InSig,Output, n, height},
where BC is the blockchain which this transaction belongs to, InTx is the ID of the input
transaction, InSig is the input signature, n is the id of this transaction, and height specifies
which block contains this transaction. For a simple transaction, the parameter Output
is simply a public key, while for a commitment transaction, the Output will be a tuple
〈pk1, timelock, hash, pk2〉 that contains two public keys pk1 and pk2, a time lock and a hash
lock. The commitment transaction can be spent by revealing the hash pre-image and the
signature of pk2 or providing the signature of pk1 if the time lock timed out. The parameter
height is ignored if a transaction is not recorded on the blockchain yet.

For a specific time lock, we denotes its value as ∆. It restricts a commitment transaction
can be spent only if there is at least ∆ blocks appended after the block that contains this
commitment transaction. We specify the corresponding real time duration of generating these
∆ blocks as δ. The relationship is typically simple, for instance, in the Bitcoin blockchain
the approximate time to generate 20 blocks is 200 minutes, so with timelock ∆ = 20 we get
real time δ = 200. The reason why the real time also involved in the formula is that we are
dealing with two blockchains. Each of the two blockchains can be seen as a time reference,
but these two time references might get out of sync, thus we need a single global clock.

When a commitment transaction is added on the blockchain, we denote the event as
{Γhsk,∆A

Acom , t,Tick}, which means Alice’s commitment transaction is recorded on blockchain at
time point t in block sequence Tick, locked by ∆A and a hash with pre-image hsk. The open and
timeout of the commitment transaction are specified as {Γhsk,∆

Aopen, t,Tick} and {Γhsk,∆
Ared , t,Tick},

respectively.

5.2 Security claim
For Alice, the hash time lock contract should satisfy the first two properties. For Bob, the
protocol should guarantee the last two security properties:

Property 1. Bob cannot open Alice’s commitment transaction and take her funding unless
Bob has created a commitment transaction to Alice.

∀{Γhsk,∆
Aopen, tAopen,TickAopen} ==>∃{Γhsk,∆

Bcom, tBcom,TickBcom}

The equation claims that for all the events that Alice’s commitment transactions have been
opened, there must exist an event that Bob made a commitment transaction before. The
commitment transaction made by Bob should use the same hash lock generated from hsk
and it sends funding to Alice’s address.

lemma Security_1_Alice:
" All A tx1 SigA pkA1 timelock_A hash pkB3 CommitTxAlice

TickAcom TickAopen #tAcom #tAopen #Apk1 .

!PK(A,pkA1)@Apk1
&!CommitTx(’BC1’,tx1,SigA,<pkA1,timelock_A,hash,pkB3>,CommitTxAlice,TickAcom)@tAcom
&Spend(’BC1’,CommitTxAlice,’CommitOpen’,TickAopen)@tAopen

==>Ex tx2 SigB pkB1 timelock_B pkA3 CommitTxBob
TickBcom #tBcom #Apk2 .
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!PK(A,pkA3)@Apk2
&!CommitTx(’BC2’,tx2,SigB,<pkB1,timelock_B,hash,pkA3>,CommitTxBob,TickBcom)@tBcom
&#tBcom<#tAopen

"

Tamarin verifies the first security claim is true.

Property 2. Bob can redeem his funding only if the time lock of his commitment transaction
timed out.

∀({Γh,∆B
Bcom, tBcom,TickBcom} ∧ {Γh,∆A

Bred , tBred,TickBred})==> tBred > tBcom + δB

Since in a single blockchain, a transaction recorded early has a smaller height than those
recorded later. We reduce this security property to:

∀({Γh,∆B
Bcom, tBcom,TickBcom} ∧ {Γh,∆A

Bred , tBred,TickBred})==> TickBred > TickBcom + ∆B

The equation claims that the duration between the time point Bob’s commitment trans-
action is added to the blockchain and the time point Bob’s redeem transaction is added
to the blockchain is always larger than the duration of its time lock. Bob cannot redeem
his commitment transaction before it timed out. This property guarantees that there is no
race condition between Bob’s redeem transaction and the transaction of Alice to open Bob’s
commitment transaction.

lemma Security_2_Alice:
" All tx2 SigB pkB1 timelock_B hash pkA3 CommitTxBob TickBcom #tBcom

TickBTout #tBTout .

!CommitTx(’BC2’,tx2,SigB,<pkB1,timelock_B,hash,pkA3>,CommitTxBob,TickBcom)@tBcom
&Spend(’BC2’,CommitTxBob,’CommitTout’,TickBTout)@tBTout

==>Ex x. TickBTout=TickBcom+timelock_B+x
"

Tamarin verifies the above security claim is true.

Property 3. After Alice takes Bob’s funding, Bob has time to take Alice’s funding before
Alice’s commitment transaction time out.

∀({Γh,∆A
Acom, tAcom,TickAcom} ∧ {Γh,∆B

Bopen, tBopen,TickBopen}==> tAcom + δA > tBopen

The equation claims that if Alice takes Bob’s funding at the last moment before it
timed out, Bob should always have some time left before Alice’s commitment transaction is
timed out. This property avoids the risk of the race condition between Bob opening Alice’s
commitment transaction and Alice redeems her commitment transaction.

lemma Security_3_Bob:
"
All CommitTxAlice hash timelock_A pkA1 tx1 SigA pkB3 TickAcom #tAcom

CommitTxBob timelock_B pkB1 tx2 SigB pkA3 TickBcom #tBcom
#tBopen1 #tATout1 #tBopen #tATout .

!CommitTx(’BC1’,tx1,SigA,<pkA1,timelock_A,hash,pkB3>,CommitTxAlice,TickAcom)@tAcom
&!CommitTx(’BC2’,tx2,SigB,<pkB1,timelock_B,hash,pkA3>,CommitTxBob,TickBcom)@tBcom

&Spend(’BC2’,CommitTxBob,’CommitOpen’,TickBcom+timelock_B)@tBopen1
&LedgerTick(’BC2’,TickBcom+timelock_B)@tBopen

&LedgerTick(’BC1’,TickAcom+timelock_A+’1’)@tATout
&Spend(’BC1’,CommitTxAlice,’CommitTout’,TickAcom+timelock_A+’1’)@tATout1

==> #tBopen<#tATout
"

Tamarin gives a counterexample to this security claim, because the growth speed of the
blockchains may differ. We explain in detail in the next subsection.
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Property 4. Alice could redeem her funding only if her commitment transaction timed out.

∀({Γh,∆A
Acom, tAcom,TickAcom} ∧ {Γh,∆A

Ared , tAred,TickAred})==> tAred > tAcom + δA

The equation removes the same race condition risk that Alice has as described in security
property 2.

lemma Security_4_Bob:
"
All tx1 SigA pkA1 timelock_A hash pkB3 CommitTxAlice TickAcom #tAcom #tATout

TickATout .

!CommitTx(’BC1’,tx1,SigA,<pkA1,timelock_A,hash,pkB3>,CommitTxAlice,TickAcom)@tAcom
&Spend(’BC1’,CommitTxAlice,’CommitTout’,TickATout)@tATout

==>Ex x. TickATout=TickAcom+timelock_A+x
"

Tamarin verifies this security claim is true.

5.3 Discussion on property 3
The failure of property 3 claims that after Alice taking Bob’s funding, there exists a case that
Bob has no time to open Alice commitment transaction before it expires. Tamarin shows
that this attack happens in the case that the blockchain on which Alice made a commit
transaction grows faster than is expected. Thus Alice’s commitment transaction expires
earlier even before Bob’s commitment transaction expires. Therefore Alice has the chance to
redeem her funding and also take Bob’s funding.

Therefore, we need to have a blockchain that not only has liveness and consistency but
also keeps a stable growth speed for the block height. Based on the Tamarin result, we add
an extra restriction to restrict the growing speed of the blockchain “BC2” to be at least as
fast as “BC1”, and then evaluate the security property again.
restriction stable_growing_blockchain:
"All height #i .Tick(’BC1’,height)@i==>Ex #j.Tick(’BC2’,height)@j"

Tamarin now proves that property 3 holds. Notice that in the real scenario we expected
both two blockchains should have stable growing speed, but this condition is not necessary
for HTLC. The result shows that as long as “BC” grows relatively no slower than “BC1”,
HTLC is secure. The reason is Alice holds the pre-image of the hash, she only needs to
observe the height of “BC2” to take Bob’s funding before its timelock expires, she doesn’t
need to worry Bob will take her funding since he doesn’t know the hash pre-image. While
for Bob, if he publishes his commitment transaction, he needs to make sure Alice cannot
withdraw her funding earlier than Alice taking his funding.

6 Analysis of the old version of HTLC

The old version of the hash time lock contract was used when the time lock functionality
could only constrain the time point that a certain transaction is allowed to be added to
blockchain. In this case, the time lock is specified in the redeem transaction rather than the
commitment transaction. To make an agreement for the time lock duration of the redeem
transaction, the two players need to exchange their signatures on the redeem transaction.
The multi-signatures are checked by the nodes before they add the transaction into a block.
The signature exchanging procedure is done before the players publish their commitment
transaction, otherwise, they might be unable to redeem their commitment transactions.
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We claim the same four security properties from section 5 for the old version hash time
lock contract. Tamarin verifies that the protocol satisfies the security claims given that Alice
is allowed to only use a fixed duration of timelock in the contract. However, in reality, Alice
might use the timelock with different durations. In this case, there is an attack that allows
Alice to redeem her funding earlier than the time period that Bob has signed.

The attack is as follows: Alice will initiate two hash time lock contracts with Bob, these
two hash time lock contracts are the same except the second one has longer time lock than the
first one. She aborts the first one when she gets Bob’s signature on her redeem transaction.
Bob will also abort the contract since Alice doesn’t publish her commitment transaction.
Alice initiates the second contract with Bob, using the same hash lock, but longer time lock.
(Bob could in principle notice that he has signed the same hash before, but this requires Bob
to keep track of earlier contracts, which is impractical.) In this scenario, after both players
publish their commitment transactions to blockchains, Alice can use the redeem transaction
of the fist hash time lock contract to unlock her commitment transaction in the second hash
time lock contract. Because the second redeem transaction has a shorter time lock, she can
redeem the commitment transaction earlier than Bob’s expectation.

When we enable different timelocks in our Tamarin model, Tamarin finds the attack
and shows that security property 3 fails even with the synchronization between the two
blockchain growth speeds.

7 Conclusion

In this paper, we give a formal model for blockchain in Tamarin. Using this model we give
a formal verification for security of the hash time lock contract. The verification result
from Tamarin shows that the security of HTLC is based on the security assumptions of
the underlying blockchain, but also requires that the responder blockchain (the blockchain
that Bob operates on) needs to grow at least as fast as the initiator’s blockchain. This
result demonstrates that our Tamarin blockchain model can be used to find security issues in
blockchain-based protocols. We note that the verification process of Tamarin needs human
guidance to some extent, which could be improved in future work. Also, the model can be
improved to allow forks to be more comprehensive.
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Abstract
Merkle trees are ubiquitous in blockchains and other distributed ledger technologies (DLTs). They
guarantee that the involved systems are referring to the same binary tree, even if each of them knows
only the cryptographic hash of the root. Inclusion proofs allow knowledgeable systems to share
subtrees with other systems and the latter can verify the subtrees’ authenticity. Often, blockchains
and DLTs use data structures more complicated than binary trees; authenticated data structures
generalize Merkle trees to such structures.

We show how to formally define and reason about authenticated data structures, their inclusion
proofs, and operations thereon as datatypes in Isabelle/HOL. The construction lives in the symbolic
model, i.e., we assume that no hash collisions occur. Our approach is modular and allows us to
construct complicated trees from reusable building blocks, which we call Merkle functors. Merkle
functors include sums, products, and function spaces and are closed under composition and least
fixpoints. As a practical application, we model the hierarchical transactions of Canton, a practical
interoperability protocol for distributed ledgers, as authenticated data structures. This is a first
step towards formalizing the Canton protocol and verifying its integrity and security guarantees.
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1 Introduction

Authenticated data structures (ADSs) allow systems to use succinct digests to ensure that
they are referring to the same data structure, even if each system knows only a part of the
data structure. The benefits are twofold. First, this saves storage and bandwidth: the systems
can store only the structure’s parts that are relevant for them, and transmit just digests, not
the whole structure. Blockchains use ADSs for this reason, both in the core design and in
various optimizations (e.g., Bitcoin’s lightweight clients). Second, ADSs can keep parts of
the structure confidential to the subset of the systems involved in processing the structure.
For example, distributed ledger technology (DLT) promises to keep multiple organizations
synchronized on their shared business data. Synchronization requires transactions, i.e.,
atomic changes to the shared state. Yet organizations often do not want to share their full
state with all involved parties. Some DLT protocols such as the Canton interoperability
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tx: Bob and Alice complete the purchase contract
visible to: Alice, Bob

subtx: Alice instructs Bank to
move money to Bob’s account
visible to: Alice, Bob, Bank

subtx: Bob instructs DMV to
transfer the car title to Alice
visible to: Alice, Bob, DMV

Figure 1 A hierarchical Canton transaction. DMV is the de-
partment of motor vehicles.

Canton
domain

Bank DMV

Alice Bob

Figure 2 Example topol-
ogy of a Canton-based dis-
tributed ledger.

protocol [7] and Corda [8] leverage ADSs to provide both transactions and varying levels of
confidentiality. Formal reasoning about blockchains and DLTs thus often requires mechanised
theories of ADSs. In fact, the formalization of Canton was the starting point for this work.

Merkle trees [20] are the prime example of an ADS. They are binary trees of digests, i.e.,
cryptographic hashes. Leaves contain data hashes, and inner nodes combine their children’s
hashes using a hash function h. An inclusion proof, also known as a Merkle proof, shows that
a tree t includes a subtree st. It consists of the roots of t and st and the siblings of nodes on
the path between these roots. The proof is valid if the hash of every node on the path is h
of the children’s hashes. It is sound, i.e., does prove inclusion, if h is collision-resistant. It
keeps the rest of the tree confidential if h is preimage-resistant and the hashed data contains
sufficient entropy.

ADSs [21] generalize these ideas to arbitrary finite tree data structures, whose hierarchies
can conveniently encode more complex relationships between data. Our main example are
the hierarchical transactions [4] in the Canton protocol. Suppose that Alice wants to sell a
car title to Bob. Figure 1 shows the corresponding Canton transaction for exchanging the
money and the title. (We take significant liberties in the presentation of Canton in this paper
and focus on parts relevant for the construction of ADSs and for reasoning about them.)
The transaction is generated from a smart contract (written in the DAML [10] programming
language) implementing the purchase agreement.

The transactions’ hierarchical nature benefits Canton in three crucial ways. First, complex
transactions can be composed from simpler building blocks, which are transactions themselves.
The purchase transaction above composes two such sub-transactions: the money transfer
and the title transfer. Second, participants learn only the contents of subtransactions they
are involved in. Above, the Bank only sees the money transfer, but not what Alice bought;
similarly, the DMV does not learn the car’s price. This also improves scalability, as everyone
processes only the subtransactions they are involved in. Third, the hierarchy enables correct
delegation in Canton’s built-in authorization logic even in a Byzantine setting. Canton
encodes this hierarchy, enriched with some additional data, in ADSs, and exchanges inclusion
proofs for subtransactions. We give more details throughout the paper, but summarize the
resulting requirements on the formalization here:
1. It must support ADS digests, to check that two inclusion proofs refer to the same ADS.

This allows the example transaction to commit atomically, even if the Bank and the DMV
see only a part of it.

2. Proofs must enable proving inclusion for multiple subtrees simultaneously, not just single
subtree as standard. Canton uses such inclusion multi-proofs to save bandwidth.

3. Inclusion proofs refering to the same ADS must be mergeable into one multi-proof. In the
example of Figure 1, Alice receives inclusion proofs for the entire transaction as well as
both sub-transactions, and merges them to a single data structure, the entire transaction.



A. Lochbihler and O. Marić 6:3

In this work, we show how to modularly define ADSs as datatypes in Isabelle/HOL. The
modular approach is our main theoretical contribution. It allows us to construct complicated
trees from small reusable building blocks, for which properties are easy to prove. To that end,
we consider authenticated data structures as so-called Merkle functors and equip them with
appropriate operations and their specifications. The class of Merkle functors includes sums,
products, and function spaces, and is closed under composition and least fixpoints. Hence,
the construction works for any inductive datatype (sums of products and exponentials).
Concrete functors are defined as algebraic datatypes using Isabelle/HOL’s datatype package
[3]. This shallow embedding is a significant practical benefit, as it enables the use of Isabelle’s
rich reasoning infrastructure for datatypes. The construction lives in the symbolic model,
i.e., we assume that no hash collisions occur. Finally, we show that the theory is suitable
for constructing concrete real-world instances such as Canton’s transaction trees. Our
formalization is available in the Isabelle AFP [18].

The rest of the paper is structured as follows. In Section 2, we provide the background
on Canton and use it to motivate our abstract interface for ADSs. Section 3 shows how to
construct such interfaces for tree-like structures in a modular fashion. Section 4 demonstrates
how to create inclusion proofs for general rose trees and Canton transactions in particular.
We discuss the related work in Section 5 and conclude in Section 6.

2 Operations on Authenticated Data Structures

We now present the interfaces for ADSs, motivated by their application to Canton. Figure 2
shows a suitable Canton-based deployment for our example transaction. The participants
transact using Canton, a distributed commit protocol similar to a two-phase commit protocol.
The protocol is run over a Canton domain operated by a third party that acts as the commit
coordinator. While the participants may be Byzantine, the domain is assumed to be honest-
but-curious. That is, it is trusted to correctly execute the protocol, but it should not learn
the contents of a transaction (e.g., how much Alice pays to Bob). Unlike in most other DLT
solutions, participants share business data only on a need-to-know basis [6]. In particular,
the domain receives business data only in encrypted form or as a digest. The domain may
only learn the metadata that allows the protocol to tolerate Byzantine participants.

These privacy requirements motivate the hierarchical transactions that Canton uses,
which are encoded in transaction trees. The tree for the example transaction from Figure 1
is shown in Figure 3. Each (sub)-transaction of Figure 1 is turned into a view in Figure 3,
which consists of the view data and view metadata. For example, the node labeled by 1 in
Figure 3 is the view corresponding to the top-level transaction in Figure 1. Its first two
children contain the view’s data and metadata. The metadata lists who is affected by the
view and should therefore participate in the commit protocol (here, Alice and Bob), and is
shared with Alice, Bob and the domain. The view data contains the confidential data with
the actual state updates, and is shared only with Alice and Bob. This view also has two
subviews, which correspond to the sub-transactions in Figure 1 as expected. Views can have
an arbitrary number of subviews; e.g., the views labeled by 1.1 and 1.2 have no subviews.

Additionally, the two leaf children of the tree root store metadata describing transaction-
wide parameters that apply to all views. The first is visible to the domain and the participants
involved in the transaction; the second only to the latter. Formally, the transaction tree can be
modelled by the following datatypes, for some types common-metadata, participant-metadata,
view-metadata, and view-data whose contents are irrelevant for this paper.
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1participant
metadata

common
metadata

1.1offer acceptance
view data

offer acceptance
view metadata

money transfer
view data

money transfer
view metadata

1.2

title transfer
view metadata

title transfer
view data

Figure 3 Simplified Canton transaction tree for car title sale of Figure 1.

datatype view = View 〈view-metadata〉 〈view-data〉 (subviews: 〈view list〉)
datatype transaction =
Transaction 〈common-metadata〉 〈participant-metadata〉 (views: 〈view list〉)

In Figure 3, the Transaction and View constructors become the inner nodes (black circles)
and the data sits at the leaves (grey rectangles).

The participants and the domain can use a root hash of an ADS over a Transaction to
ensure that they are all referring to the same transaction tree. When constructing ADS
hashes, we need to consider ADSs with multiple roots (i.e., forests) rather than just a single
root like in a Merkle tree. For example, computing the hash of an inner node in a Merkle
tree requires taking a hash over both of its children, i.e., over the forest constructed from
its two children. The concrete hash operation depends on the shape of the forest (a pair in
this case). The new root is again a degenerate forest of a single tree with a single root hash.
This view underlies our modular construction principle in Section 3.

In this paper, we use the following Isabelle notations: Type variables ′a, ′b are prefixed
by ′ like in Standard ML. Type constructors like list are usually written postfix as in string
list. Exceptions are the function space ⇒, sums +, and products ×, all written infix. The
notation t :: τ denotes that the term t has the type τ . In our construction, we will use the
following decorations. Raw data to be arranged in an ADS is written as usual, e.g., ′a, ′a list.
Hashes and forests of hashes carry a subscript h as in ′ah. We leave hashes for now abstract
as type variables and define them only in Section 3. Since the root hash identifies an ADS,
we represent ADSs by their hashes.

A root hash makes communication more efficient, but we require more. For example,
the Bank does not know the contents or participants of view 1.2; the domain hides the
latter. Still, the Bank must ensure that the view 1.1 is really included in the transaction
tree. In general, the views visible to a participant are called the participant’s projection of
the transaction. Canton aims to achieve the following integrity guarantee [4]: There exists a
shared ledger that adheres to the underlying DAML smart contracts such that its projection
to each honest participant consists exactly of the updates that have passed the participant’s
local checks. This requires the ability to prove that a substructure is included in a root hash.

Inclusion proofs are therefore the main workhorse in our formalization and the focus of
this paper. We denote the type of inclusion proofs over the source type with the subscript m,
e.g., ′am, ( ′am,

′ah) treem. We need two operations on inclusion proofs:
1. Computing the (forest of) root hashes of an inclusion proof, in order to identify the ADS

to which the inclusion proof corresponds.
2. Merging two inclusion proofs with the same root hash.
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Accordingly, we introduce two type synonyms for these operations:

type_synonym ( ′am,
′ah) hash = 〈 ′am ⇒ ′ah〉

type_synonym ′am merge = 〈 ′am ⇒ ′am ⇒ ′am option〉

We model the merge operation as a partial function using the option that returns None
iff the inclusion proofs have different (forests of) root hashes. We require that merging is
idempotent, commutative, and associative. The merge operation makes inclusion proofs
with the same hash into a semi-lattice, where the induced order treats an inclusion proof as
smaller than another if it reveals less. In that case, we say that the smaller is a blinding of
the larger inclusion proof.

type_synonym ′am blinding-of = 〈 ′am ⇒ ′am ⇒ bool〉

I Definition 1. A Merkle interface consists of three operations h :: ( ′am,
′ah) hash and m ::

′am merge and bo :: ′am blinding-of with the following properties:
1. Merge respects hashes, i.e., (h a = h b) = (∃ ab. m a b = Some ab).
2. Merge is idempotent, i.e., m a a = Some a.
3. Merge is commutative, i.e., m a b = m b a.
4. Merge is associative, i.e., m a b >>= m c = m b c >>= m a,

where (>>=) is the monadic bind on the option type.
5. Blinding is induced by merge, i.e., bo a b = (m a b = Some b).
So merge is the least upper bound in the blinding relation:

(m a b = Some ab) = (bo a ab ∧ bo b ab ∧ (∀ u. bo a u −→ bo b u −→ bo ab u))

Also, the equivalence closure of the blinding relation gives the equivalence classes of the
inclusion proofs under the hash function: equivclp bo = vimage2p h h (=) where equivclp R
denotes the equivalence closure of R and vimage2p f g R = (λx y. R (f x) (g y)) the preimage
of a relation under a pair of functions.

Isabelle/HOL’s term language is not expressive enough to automatically create the ADS
and inclusion proof types of arbitrary tree-shaped data, define the interface’s operation, or
build inclusion proofs for subtrees of tree-shaped data. Instead, in the next two sections, we
show how to systematically construct these types and operations.

3 Modularly Constructing Forests of Authenticated Data Structures

In this section, we develop the theory to modularly construct ADSs, their inclusion proofs as
HOL datatypes, and Merkle interfaces over them. We start with the concept of a blindable
position (Section 3.1), which models an ADS node, and show how we obtain ADSs for
Canton’s transaction trees by introducing blindable positions in the right spots of the
datatype definitions (Section 3.2).

We have shown how the Merkle interface specification is preserved by type composition
(Section 3.3). It is, however, not inductive and therefore not preserved by datatype construc-
tions. We thus generalize it and show that functor composition and least fixpoint preserve
the generalization (Section 3.4). Finally, we show that sums, products and function spaces
preserve the generalization (Section 3.5) and compose these preservation results to obtain
the Merkle interface properties for Canton transactions (Section 3.6).
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3.1 Blindable position
A blindable position represents a node (inner node or leaf) in an ADS. Recall that “blinding”
allows an inclusion proof to hide the node contents by using just the root hash of the node.
In this work, we model such hashes symbolically, that is, as injective functions, and assume
that no hash collisions occur. We do not assume surjectivity though: some hashes do not
correspond to any value. We model such values as garbage coming from a countable set (the
naturals). This suffices as digests contain only a finite amount of information.

datatype ′ah blindableh = Content 〈 ′ah〉 | Garbage 〈nat〉

Since the hash function is injective, we can identify the values ′a with a subset of the
hashes, namely those of form Content. Accordingly, we could also have written ′a blindableh

instead of ′ah blindableh. However, as an ADS contains hashes of hashes, ′ah is more accurate
here. For example, a degenerate Merkle tree with a single leaf, which stores some data x, has
the root hash Content x.

What does an inclusion proof for this tree look like? It can take two forms. Either it
reveals x, i.e., the leaf is not blinded, or it does not reveal x, i.e., the leaf is blinded. The
following datatype formalizes these cases.

datatype ( ′am,
′ah) blindablem = Unblinded 〈 ′am〉 | Blinded 〈 ′ah blindableh〉

Similar to blindableh, inclusion proofs may be nested, e.g., if a Merkle tree leaf contains
another Merkle tree as data. We therefore use the inclusion proof type variable ′am instead
of ′a. In the second case, the hash could be garbage, so we use ′ah.

Note that our blindableh hashes are typed: hashes of those ADSs that store ints and those
that store strings in their leaves always differ. In the real world, they can be equal as hashes
are just bitstrings. However, for systems which follow security best practices, type flaw
attacks lead to different hashes unless a hash collision occurs. Garbage hashes adequately
model such confusion possibilities: a hash of the int Leaf would be treated as garbage in the
type of hashes for the ADS of strings. This is adequate for inclusion proofs because we care
about the contents of a hash only if the position is unblinded and thus of shape Content.

Having introduced the types for blindable positions, we now define the corresponding
operations and show that they satisfy the specification merkle-interface. The hash operation
hash-blindable :: ( ′am,

′ah) hash ⇒ (( ′am,
′ah) blindablem,

′ah blindableh) hash converts
an inclusion proof into the root hash of the tree. It is parameterized by a hash function
ha that converts nested inclusion proofs ′am into their root hashes ′ah. Its definition is
straightforward: for unblinded nodes, apply ha, and for blinded nodes, just take the contained
hash. Similarly, the blinding order blinding-of-blindable :: ( ′am,

′ah) hash ⇒ ′am blinding-of
⇒ ( ′am,

′ah) blindablem blinding-of is parametrized by the hash ha and the blinding order
boa for the nested inclusion proofs, as well as the blindable inclusion proofs to be compared.
If both of the compared inclusion proofs unblind the contents, then we compare the contents
using boa. Otherwise, the first argument is a blinding of the second one only if it is blinded,
and if its hash matches the hash of the second argument. Merging of blindable positions
is also similar. If both positions are unblinded, merge-blindable tries to merge the contents.
If both are blinded, it succeeds iff the hashes are the same. Otherwise, it checks that the
hashes are the same and, if so, returns the unblinded version. It is straightforward to show
the following lemma.

I Lemma 2. If ha, boa, and ma jointly form a Merkle interface, then so do hash-blindable
ha, blinding-of-blindable ha boa, and merge-blindable ha ma.
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3.2 Example: Canton transaction trees
We now illustrate how to use blindableh and blindablem to define the ADSs and inclusion
proofs for the Canton transaction trees from Section 2. As shown in Figure 3, the trans-
action tree contains a node for the transaction tree as a whole, every view, and every leaf
(common-metadata, participant-metadata view-metadata, and view-data). Yet, the datatype
declarations do not contain the information what should become a separate node in the ADS.
To make the construction systematic, we start from an isomorphic representation of view
and transaction, where we mark the blindable positions with the type constructor blindable,
which is just the identity functor:

datatype view = View
〈((view-metadata blindable × view-data blindable) × view list) blindable〉

datatype transaction = Transaction
〈((common-metadata blindable × participant-metadata blindable) × view list) blindable〉

To define the hashes and inclusion proofs, we simply replace each type constructor τ with
its counterparts τh and τm. For views, this looks as follows. Here ×h, ×m, listh, and listm

are type synonyms for × and list; Section 3.5 introduces them formally. We abuse notation
by writing view-metadatah and view-metadatam for the blindable position of view-metadata.

type_synonym view-metadatah = 〈view-metadata blindableh〉

type_synonym view-datah = 〈view-data blindableh〉

datatype viewh = Viewh 〈((view-metadatah ×h view-datah) ×h viewh listh) blindableh〉

type_synonym view-metadatam = 〈(view-metadata, view-metadata) blindablem〉

type_synonym view-datam = 〈(view-data, view-data) blindablem〉

datatype viewm = Viewm

〈((view-metadatam ×m view-datam) ×m viewm listm,

(view-metadatah ×h view-datah) ×h viewh listh) blindablem〉

These types nest hashes and inclusion proofs: A view node, e.g., nests hashes and inclusion
proofs for the metadata, the data, and all the subviews. In particular, the viewh and viewm

datatypes recurse through the blindableh and blindablem type constructors. This works
because blindableh and blindablem are bounded natural functors (BNFs) [3]. In fact, this
transformation works for any datatype declaration thanks to the compositionality of BNFs.
The construction for transaction trees is similar.

3.3 Composition
Having defined the types of ADSs, we next must define the operations on ADSs and prove
that they form a Merkle interface. Doing so directly is possible, but prohibitively complex.
Instead, we modularize the proofs following the structure of the types. We can derive
preservation lemmas for all involved type constructors analogous to merkle-blindable.

The preservation lemmas are compositional by construction: if ′ah τh/( ′am,
′ah) τm

and ′bh σh/( ′bm,
′bh) σm satisfy merkle-interface, then so does their composition ′ah τh

σh/(( ′am,
′ah) τm,

′ah τh) σm. For example, we can define the instance for blindable nodes
of type view-data compositionally. First, we exploit the fact that every nullary functor
satisfies merkle-interface with the discrete ordering (=), hash id and merge defined only for
equal operands. Second, we compose view-data, viewed as a nullary functor with blindable.
For example, we define:

abbreviation hash-view-data :: 〈(view-datam, view-datah) hash〉 where
〈hash-view-data ≡ hash-blindable id〉
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We perform the same constructions on view-metadata, and then use composition for the
pair view-metadata × view-data, to get the following (the operations for products will be
introduced in Section 3.5).

I Lemma 3. The following three operations form a Merkle interface:
hash-prod hash-view-metadata hash-view-data
blinding-of-prod blinding-of-view-metadata blinding-of-view-data
merge-prod merge-view-metadata merge-view-data

3.4 Inductive generalization for least fixpoints
The view datatype is the least fixpoint of the functor

′a F = ((view-metadata blindable × view-data blindable) × ′a list) blindable

and so are viewh and viewm of analogous functors Fh and Fm. Composition gives us a
preservation theorem for F, but we need another one for least fixpoints.

Yet, the Merkle interface specification is not inductive and thus not preserved by fixpoints.
We now generalize it. Simultaneously, we make the generalization more amenable to Isabelle’s
proof automation by focusing on the blinding order and characterizing merge as its join. Our
generalization splits the Merkle interface into three:

1. The interface blinding-respects-hashes assumes that bo ≤ vimage2p h h (=) where (≤)
denotes inclusion on binary predicates.

2. The interface blinding-of-on formalizes the order properties of the blinding relation bo:
Reflexivity bo x x, transitivity bo x y =⇒ bo y z =⇒ bo x z, and antisymmetry bo x y
=⇒ bo y x =⇒ x = y hold for all x ∈ A and all y, z: The restriction of x to the set A
makes the statement inductive, as A can be instantiated to the set of smaller values in
structural induction proofs.

3. The interface merge-on extends blinding-of-on applied to the type’s universal set UNIV
with the characterization of merge as the join, but now again restricted by a set A. In
the unrestricted case A = UNIV, merge-on is equivalent to the Merkle interface.

We are now ready to define the class of Merkle functors. For readability, we only spell
out the case of unary functors. The generalization to n-ary functors is as expected.

I Definition 4 (Merkle functor). A unary BNF Fh and binary BNF Fm constitute a unary
Merkle functor if there exist operations:

hash ′F :: (( ′ah,
′ah) Fm,

′ah Fh) hash and
blinding-of F :: ( ′am,

′ah) hash ⇒ ′am blinding-of ⇒ ( ′am,
′ah) Fm blinding-of and

mergeF :: ( ′am,
′ah) hash ⇒ ′am merge ⇒ ( ′am,

′ah) Fm merge
with the following properties

Monotonicity
bo ≤ bo ′

blinding-of F h bo ≤ blinding-of F h bo ′

Congruence
∀ a∈A. ∀ b. m a b = m ′ a b

∀ x ∈ {y. set1-Fm y ⊆ A}. ∀ b. mergeF h m x y = mergeF h m ′ x y
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Hashes
blinding-respects-hashes h bo

blinding-respects-hashes (hashF h) (blinding-of F h bo)

Blinding order
blinding-of-on A h bo

blinding-of-on {x. set1-Fm x ⊆ A} (hashF h) (blinding-of F h bo)

Merge
merge-on A h bo m

merge-on {x. set1-Fm x ⊆ A} (hashF h) (blinding-of F h bo) (mergeF h m)

where hashF h = hash ′F ◦ map-Fm h id for the BNF mapper map-Fm, and where the BNF
setter set1-Fm x returns all atoms of type ′am in x :: ( ′am,

′ah) Fm.

Every Merkle functor preserves the Merkle interface specification: set A = UNIV in the
merge property and use the equivalence between the Merkle interface and merge-on. With
this, we now state the main theoretical contribution of this paper.

I Theorem 5. Merkle functors of arbitrary arity are closed under composition and least
fixpoints.

Proof. (Sketch) Closure under composition is obvious from the shape of the properties and
the fact that BNFs are closed under composition. For closure under least fixpoints, we
consider a functor F and its least fixpoint T through one of F ’s arguments. say datatype
T = T 〈T F 〉, and similarly for Th and Tm. The operations are defined as follows, where we
omit all Merkle operation parameters for type parameters that are not affected.

The hash operation hash-T ′ is defined by primitive recursion:

hash-T ′ (Tm x) = Th (hash-F ′ (map-Fm hash-T ′ x)).

The blinding order blinding-of-T is defined inductively by the following rule:

blinding-of-F hash-T blinding-of-T x y
blinding-of-T (Tm x) (Tm y)

Monotonicity ensures that blinding-of-T is well-defined.
Merge merge-T is defined by well-founded recursion over the subterm relation on Tm:

merge-T (Tm x) (Tm y) = map-option Tm (merge-F hash-T merge-T x y)

Congruence ensures that merge-F calls merge-T recursively only on smaller arguments.
Monotonicity and preservation of blinding-respects-hashes are proven by rule induction on
blinding-of-T. Congruence, blinding-of-on, and merge-on are shown by structural induction
on the argument that is constrained by A. J

Isabelle/HOL lacks the abstraction over type constructors necessary to formalize this
theorem. As our approach also translates to theorem provers with more expressive type
systems (e.g., Lean, Coq), the theorem could be formalized there. For Isabelle/HOL, we
adopt an approach similar to Blanchette et al. [3]. We axiomatize a binary Merkle functor
and carry out the construction and proofs for least fixpoints and composition, illustrating how
the definition and proofs generalize to functors with several type arguments. The example
ADS constructions in Section 3.6 then merely adapt these proofs to the concrete functors at
hand.
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3.5 Concrete Merkle functors
We now present concrete Merkle functors. They show that the class of Merkle functors is
sufficiently large to be of interest. In particular, it contains all inductive datatypes (least
fixpoints of sums of products). We have formalized all of the following.

The discrete functor from Section 3.3 with hash operation id and the discrete blinding
order (=) is a nullary Merkle functor.
Blindable positions blindableh and blindablem are a unary Merkle functor.
Sums and products are binary Merkle functors. We set ×h = ×m = × and +h = +m

= +. The hash operations hash-prod and hash-sum are the mappers map-prod and
map-sum, respectively. The blinding orders blinding-of-prod and blinding-of-sum are the
relators rel-prod and rel-sum. The merge operation merge-of-prod attempts to merge
each component separately, while merge-of-sum can only merge left and left, or right and
right values. (Formally, ×m and +m should take four type arguments. However, as sums
and products do not themselves contain blindable positions, the type arguments ′ah and
′bh are ignored in inclusion proofs and we therefore omit them.)
The function space ′a ⇒ ′b is a unary Merkle functor in the codomain. Like for sums
and products, ⇒h = ⇒m = ⇒ and no additional type arguments are added. Hashing is
function composition and the blinding order is pointwise.

3.6 Case study: Merkle rose trees and Canton’s transactions
Theorem 5 shows that all datatypes built from the Merkle functors in the previous section are
Merkle functors. We apply the construction sketched in the proof to concrete datatypes that
build on top of each other. For example, lists, rose trees [24], and Canton transactions are
all Merkle functors. We prove that ′a list is a Merkle functor with the help of an isomorphic
data type that is the least fixpoint µX . 1 + ′a × X and following the fixpoint construction
of Theorem 5. We transfer the definitions and theorems to list using the transfer package
[16]. Rose trees are then given by the datatype

datatype ′a rose-tree = Tree 〈( ′a × ′a rose-tree list) blindable〉

Applying the construction gives us Merkle rose trees with the corresponding operations and
their properties.

datatype ′ah rose-treeh = Treeh 〈( ′ah ×h
′ah rose-treeh listh) blindableh〉

datatype ( ′am,
′ah) rose-treem = Treem

〈( ′am ×m ( ′am,
′ah) rose-treem listm,

′ah ×h
′ah rose-treeh listh) blindablem〉

From here, it is only a small step to transactions in Canton. Views are isomorphic to Merkle
rose trees where the data at the nodes is instantiated, i.e., composed, with the Merkle functor
corresponding to view-metadata blindable × view-data blindable. Then, transactions compose
the Merkle functor for common-metadata blindable × participant-metadata blindable × - list
with views. We have lifted our machinery from these raw Merkle functors to the datatypes
viewm and transactionm using the lifting and transfer packages [16].

4 Creating Inclusion Proofs

So far, given a tree-like data type ′t, we showed how to systematically construct the corre-
sponding type of ADSs ′th and their inclusion proofs ′tm. To make use of this construction
in practice, we must also be able to create values of type ′tm from values of type ′t. As



A. Lochbihler and O. Marić 6:11

in the case of our composition and fixpoint theorem, HOL’s lack of abstraction over type
constructors makes it impossible to express this process in HOL in its full generality. Instead,
we sketch how it works on rose trees, as these are the most general type of tree in terms of
branching. The construction can be easily adapted for other kinds of trees.

There are three basic operations:
Digesting, hash-source-tree, returns the root hash for a rose tree.
Embedding, embed-source-tree returns the inclusion proof that proves inclusion of the
whole tree.
Fully blinding, blind-source-tree returns the inclusion proof that proves no inclusion at all
(the root is blinded).

Digesting and fully blinding conceptually do the same thing, but their return types ( ′ah

rose-treeh and ( ′am,
′ah) rose-treem) differ. As rose trees are parameterized by their node

label type, digesting, embedding, and fully blinding take parameters which digest, embed, or
fully blind the node labels. The expected properties hold: the embedded and fully blinded
versions of the same rose tree have the same hash, namely the digest of the rose tree, and
the former is a blinding of the latter.

The more interesting operations concern creating an inclusion proof for a subtree of a
tree. For example, with Canton’s hierarchical transactions, we would like to prove that a
subtransaction is really part of the entire transaction. Such a proof consists of the subtree
itself, together with a path connecting the tree’s root to the subtree’s root. As noticed
by Seefried [23], this corresponds to a zipper [15] focused on the subtree. This connection
enables simple manipulation of such proofs in a functional programming style, well-suited to
HOL. The zippers for rose trees are captured by the following types.

type_synonym ′a path-elem = 〈 ′a × ′a rose-tree list × ′a rose-tree list〉

type_synonym ′a path = 〈 ′a path-elem list〉

type_synonym ′a zipper = 〈 ′a path × ′a rose-tree〉

Given a zipper that focuses on a node, we define the operations that turn rose trees into
zippers and vice versa.

tree-of-zipper ([], t) = t
tree-of-zipper ((a, l, r) · z, t) = tree-of-zipper (z, Tree (a, l @ t · r))

zipper-of-tree t ≡ ([], t)

The zippers for Merkle rose trees, i.e., inclusion proofs for rose trees, have the exact same
shape, except that all the type constructors are subscripted by m and have another type
parameter capturing the type of hashes (e.g., ( ′am,

′ah) zipperm). Like for rose trees, we
define operations that blind and embed a path respectively. This way, zippers on rose trees
can be turned into zippers on Merkle rose trees. As expected, starting with a rose tree zipper,
blinding and embedding its path yields a Merkle rose tree with the same hash. Furthermore,
reconstructing a Merkle rose tree from an embedded rose tree zipper gives the same result as
first reconstructing the rose tree and then embedding it into a Merkle rose tree. Finally, we
show that reconstruction of trees from zippers respects the blinding relation if the Merkle
operations on the labels satisfy merkle-interface:

blinding-of-tree h bo (tree-of-zipperm (p, t)) (tree-of-zipperm (p, t ′)) =
blinding-of-tree h bo t t ′

Inclusion proofs derived from zippers prove inclusion of a single subtree of the rose tree.
The general case of several subtrees can be reduced to the single-subtree case using merging.
When we want to create an inclusion proof for several subtrees, we create an inclusion proof
for each individual subtree and then merge them into one.
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To that end, we have defined operations to turn a rose tree into a zipper focused on
the root and into zippers into its subtrees. Then, the function zippers-rose-tree enumerates
the inclusion proof zippers for all nodes of a rose tree using those two operations. This
allows us to easily model the messages that the initiator of a transaction sends in the first
phase of Canton’s commit protocol. The initiator constructs all zippers for the views in
the transaction tree, and then turns each such zipper into an inclusion proof. Finally, the
initiator merges each view proof with the proof from the zipper for the transaction metadata
and ships it to the recipients.

At the end of the two-phase commit protocol, the domain’s commit message contains an
inclusion proof of the view metadata for all the views that the participant should have received.
The participant can decide whether it has received all views it was supposed to receive, it
compares this inclusion proof against the merged inclusion proofs that it had received from
the initiator, using the inclusion proof order blinding-of-transaction on transactions.

5 Related Work

Miller et al. developed a lambda calculus with authentication primitives for generic tree
structures [21]. The calculus was formalized in Isabelle/HOL by Brun and Traytel [5]. In the
calculus, the programmer annotates the structures with authentication tags. Given a value
of such a structure, and a function operating on it, their presented method automatically
creates a correctness proof accompanying a result. The proof allows a verifier that holds
only a digest of values with authentication tags (but not the values themselves) to check
the function’s result for correctness. The proof is a stream of inclusion proofs, one for each
tagged value that the function operates on. Merging of inclusion proofs is not considered,
although the streams can be optimized by sharing. Unlike Brun and Traytel [5] who use
a deep embedding with the Nominal library, our embedding is shallow. Furthermore, our
ADSs can provide inclusion proofs for multiple sub-structures simultaneously. However, we
do not aim to derive generic correctness proofs for functions on the data structures.

Several other works formalize (binary) Merkle trees. White [25] formalized sparse Merkle
trees [9] as part of a Coq model of a cryptographic ledger. An asset belongs to an address if
the address encodes a path in the sparse Merkle tree from the root node to a leaf with the
asset. A merge operation allows a single Merkle tree to provide several inclusion proofs. Our
generic development can be instantiated to cover this structure. Yu et al. [26] use Merkle
constructions on different binary trees to implement logs with inclusion and exclusion proofs.
The constructions are proved correct using a pen-and-paper approach. The proved properties
are then used in the Tamarin verification tool to analyze a security protocol. Ogawa et al
[22] formalize binary Merkle trees as used in a timestamping protocol. They automatically
verify parts of the protocol using the Mona theorem prover.

As part of the Everest project, HACL∗ contains a formal verification of balanced binary
Merkle trees [13]. The balanced trees represent a sequence of hashes, which is padded with
dummy values to a power of 2. A reduction proof shows that hash collisions between root
hashes can be traced back to hash collisions of the underlying hash function. The main
focus is on a refinement to an efficient executable implementation. It would be interesting to
investigate whether and how their reduction-proof approach to dealing with hash collisions
can be generalized compositionally to our general ADS setting.

Seefried [23] observed that inclusion proofs in a Merkle tree correspond to Huet-style
zippers [15], where the subtrees in zipper context have been replaced by the Merkle root
hashes. McBride showed that zippers represent one-hole contexts [19]. In this analogy, our
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inclusion multi-proofs correspond to contexts with arbitrarily many holes. These many-hole
zippers must not be confused with Kiselyov’s zippers [17] and Hinze and Jeuring’s webs [14],
which are derived from the traversal operation rather than the data structure.

6 Conclusion and Future Work

We have presented a modular construction principle for authenticated data structures over
tree-shaped HOL datatypes (i.e., functors), and basic operations over these structures. The
class of supported functors includes sums, products, and functions, and is closed under
composition and least fixpoints. The supported operations are root hash computations and
merging of inclusion proofs. We showed how to instantiate the construction to rose trees, as
well as to real-world structures used in Canton, a Byzantine fault tolerant commit protocol.

The ongoing formalization of the Canton protocol will continue to test our abstractions
and trigger further improvements. As noted earlier, ADSs not only improve storage efficiency,
but also provide confidentiality. For example, Canton uses them to keep parts of a transaction
confidential to a subset of the transaction’s participants. However, reasoning about confi-
dentiality is not straightforward. As hashing is injective, we can simply write inv h in HOL
to invert hash functions. In fact, our current model does not even distinguish between the
authenticated data structure and its digest because of this. A sound confidentiality analysis
must therefore restrict the adversary using an appropriate calculus, e.g., a Dolev-Yao style
deduction relation [11]. The analysis must take into account situations such as a Merkle tree
node with two children with identical hashes; unblinding one child automatically unblinds the
other. However, our representation distinguishes between the two, which might represent a
problem. Another situation where this might be a problem is when merging inclusion proofs
for commutative structures. One option is to consider Merkle functors as quotients with
respect to a normalization function that collects all unblinding information and propagates
the unblinding across the whole inclusion proof. The normalized inclusion proofs then serve
as the canonical representatives. We have not yet worked out whether such a construction
can still be modular and whether the quotients are still BNFs [12].

Moreover, our representation of hashes as terms makes hashing injective. While this
is “morally equivalent” to standard cryptographic assumptions, an alternative (followed
by [5]) would be to prove results about authentication as a disjunction: either the result
holds, or a hash collision was found. The advantage of such a statement would be that hash
collisions become explicit, which simplifies the soundness argument for the formalization. As
is, nothing prevents us from conceptually “evaluating” the hash function on arbitrarily many
inputs, which would not be cryptographically sound. To make hash collisions explicit, we
must make hashes explicit, i.e., use a type like bitstrings instead of terms. We do not expect
problems with extending our constructions to such a model, but it is unclear how severely
the indirection through bitstrings impacts our proofs, in particular the Canton formalization.

We have based our construction on bounded natural functors (BNFs) as they are the
semantic domain for datatypes in Isabelle/HOL and closed under least fixpoints. Fortunately,
our Merkle constructions and proof need very little of the BNF structure and therefore
generalize straightforwardly to other systems. For example, Lean’s quotients of polynomial
functors (QFPs) [1] are more general than BNFs and also closed under fixpoints. The concept
of a Merkle functor can be directly expressed on QPFs as the BNF setter in Def. 4 can be
replaced by the predicate lifting for QPFs. The closure proofs for composition and least
fixpoint also work with predicate lifting. Moreover, the meta-theory can be formalized in
Lean’s more expressive type system, even for functors of arbitrary arity, and then instantiated
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for the concrete functor at hand. So in Lean, we would not have to redo the proof for every
ADS. This also applies to other systems like Agda and Coq. Furthermore, the construction of
concrete functors can be mimicked in any system that supports mutually recursive algebraic
datatypes and higher-order functions, as all our ADS are built from sums, products, function
spaces, and nested recursion through other datatypes, e.g., blindableh and blindablem. (Nested
datatype recursion can be reduced to mutual recursion [2], so mutually recursive algebraic
datatypes suffice.)
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Abstract
We present the first mechanized formal model of Bitcoin’s transaction and blockchain data structures
including the formalization of the blockchain validation procedures. Our formal model, though
still a simplified representation of an actual Bitcoin blockchain, includes regular and coinbase
transactions, segregated witnesses, relative and absolute locktime, the Bitcoin Script language
expressions together with a denotational semantics, transaction fees and block rewards. We formally
specify the details of validity checks performed when adding new blocks to the blockchain. We
assume perfect cryptography and use the symbolic approach for modeling hash functions and digital
signatures.

To demonstrate the utility of the model, we formally state and prove several essential properties
of a valid blockchain – transactions are unique, each coin can be spent at most once and the new
value is only created through block rewards. The model and the proofs are largely independent of
Bitcoin specific details and easily generalize to any cryptocurrency blockchain based on the Unspent
Transaction Output (UTXO) paradigm.

We mechanize all the results using the Coq proof assistant.
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1 Introduction

In the past decade, due to the popularity of Bitcoin [18] and other cryptocurrencies, as
well as new applications such as smart contracts [10], blockchain systems have attracted
significant attention from the scientific community. The blockchain systems implement
distributed ledgers where the data and transaction integrity is enforced using cryptography
and consensus mechanisms.

Despite the openness of the Bitcoin system, serious design and implementation flaws
have been discovered over the years. For example, a simple design flaw made it possible to
include two different coinbase transactions with the same transaction identifier (TXID) into
the blockchain [2]. The flaw was subsequently fixed in two Bitcoin Improvement Proposals:
BIP 30 [2] made the older of the two transactions unspendable and included explicit checks
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for uniqueness of TXID’s, BIP 34 [3] mandated that coinbase transactions must include
block height information, thereby fixing the design flaw. More recently (and more seriously),
an implementation error in the transaction and block verification logic of the official Bitcoin
client [5] made it possible for malicious miners to launch double-spending attacks.

In this paper, we build a formal model of Bitcoin’s blockchain validation logic and we
fully mechanize it using the Coq proof assistant [24]. We use the model to verify essential
properties of a valid blockchain including the absence of both flaws described above.

We use the formal model of Bitcoin transactions by Atzei et al. [9] as the reference point
for our formalization and mechanization efforts. We extend the simple “blockchain” model
(i.e. a simple list of transactions) of [9] by adding an explicit blockchain data structure
containing blocks of transactions linked by hash pointers. Our model also includes the
complete treatment of coinbase transactions, the block height information as mandated by
BIP34, transaction fees and block rewards. Finally, we model the blockchain validation
procedures by formally specifying the sanity and validity checks performed by Bitcoin clients
when adding new blocks; we define the blockchain to be valid if it passes the said validation
procedures.

Contributions

Contributions of this paper are as follows:
1. We propose a fully mechanized model for Bitcoin transaction and the blockchain data

structures. While simplified, the model includes many important details such as multi-
signatures, segregated witnesses, absolute and relative locktimes, coinbase transactions,
transaction fees and block rewards.

2. We define a denotational semantics for symbolic typed variant of Bitcoin Script language.
3. We define the sanity and validity checks performed by clients when adding new blocks to

the blockchain.
4. We demonstrate the utility of the model by giving machine-verified proofs for three

essential properties of a valid blockchain – same coin cannot be spent twice, transactions
are unique, the total value of unspent coins is equal to the total value of block rewards.

5. We mechanize all the above results using the Coq proof assistant.

We make a number of simplifying assumptions in our work. First, we use the Dolev-
Yao [15] model of cryptography where hash functions and digital signatures are abstract
operations with perfect security properties. We simplify the Blockchain data structure by
ignoring the Merkle trees that are normally used to include transactions and witnesses in block
headers. Instead of a stack-based Script language and the corresponding execution model, we
formalize the output scripts using an expression language with typed denotational semantics.
Finally, many important aspects of the Bitcoin system such as the proof-of-work consensus
mechanism, peer-to-peer network protocol, transaction and block discovery methods, etc. are
out of scope of this work. Note that, there are efforts underway to mechanize those aspects of
the Bitcoin system [22] – we view them as complementary to results presented in this paper.

We assume the reader is familiar with the Bitcoin system in general as well as the details
of transaction and blockchain data structures including the notions of inputs, outputs, witness
scripts and coinbase transactions. Due to space constraints, we defer details for the several
aspects of the formal model (e.g., the semantics of the script language expressions) as well as
proofs to the Coq artifacts.
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Satoshi, Index, Time , N (1)

PK, SK , N (2)
is_key_pair : PK→ SK→ bool (3)

Modifier , {aa, an, as, sa, sn, ss} (4)

Figure 1 Basic definitions, key pairs and hash flags.

Outline

Section 2 presents our model of Bitcoin transactions formalized using the Coq proof assistant.
In Section 3 we give the formal model of the blockchain data structure. In Section 4 we use
the model to provide machine-verified proofs for the essential properties of a valid blockchain.
In Section 5 we discuss the limitations of our model. We address related work in Section 6
and conclude in Section 7.

2 Formal Model of Bitcoin Transactions and Blockchain

We present a Coq model of the Bitcoin blockchain and the Bitcoin Script language. For now,
we are primarily interested in transaction and blockchain validity.

Notation

For some type τ we use τ∗ to denote the type of lists of elements of type τ . We denote
the empty list as [] and the singleton list containing some element x by [x]. We use ’+’ to
denote list concatenation, | · | to denote list length, and ∈ to denote list membership. Dot
notation is used to denote access to individual members of structures. For example, we
write T.wit(i) to access the i-th index of the witness field of some transaction T . We will
abbreviate T.stub.inputs with T.inputs (and similarly with other fields of transaction stubs).
These notations might differ slightly from our Coq code but correspond to it in a one-to-one
fashion.

2.1 The Transaction Model
We start out with a model of transactions and transaction histories, i.e., lists of transactions
ordered by logical time. We model the Bitcoin Script language in order to provide an
end-to-end model of transaction verification, although the proofs of various properties of our
model could be made parametric with respect to a choice of the script language with relative
ease, since their details tend to not affect higher-level properties.

As mentioned in the introduction, we use the symbolic approach when modeling crypto-
graphic primitives. This allows us to simplify hashes of objects to only the objects themselves
equipped with a decidable equality predicate, making the hash function essentially be the
identity function which is injective and therefore also collision-resistant in a trivial way.

We begin by listing the basic definitions (Figure 1) which we will use throughout the
rest of the formalization. Amounts of money (Satoshis, the name of the smallest Bitcoin
denomination) and logical time in the system are both modeled as natural numbers for
simplicity (1). Next, we define key pairs (2) for public-key digital signatures as trivial
inductive types wrapping a value with decidable equality (in particular, a natural number)
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and we define a public and secret key to belong to the same pair if and only if they wrap
equal values (3). We also define modifiers (4) corresponding to SIGHASH flags used in
transaction signing [9].

Next, we need to define transactions (22). A regular transaction definition should consist
of at least the following: a list of transaction inputs (16); a list of transaction outputs (17);
a list of witness data associated with the inputs (24). Since we model SegWit [4], in our
model we will distinguish between transactions and transactions paired with their respective
witnesses depending on the context. The model of transactions also includes the absolute
lock time (18) (nLockTime), which is a constraint on the earliest time the transaction can
appear in a valid blockchain. While Bitcoin allows this to be either a block height or a UNIX
timestamp depending on the range of the value [1], we only model some abstract, logical
time. Extending the model to allow for block height or UNIX time should be fairly trivial.
Unlike Atzei et al. [9], we also model coinbase transactions explicitly. They contain outputs
but no inputs. These outputs represent the reward for mining of blocks and should be the
sole supply of money in the system. They also contain their block height, i.e., the number of
the block they are contained in in order to make them distinct as in BIP 34 [3].

Inputs (16) are references to outputs of other transactions, i.e., pairs of the referenced
transaction and an index into its output list, along with a relative lock time which is another
temporal constraint used in transaction verification. Unlike a Bitcoin implementation, this
reference contains referenced transactions themselves instead of their hashes. Therefore, we
require a decidable equality predicate on transactions, as well as an induction principle for
its proof of correctness; we write an induction principle for transactions and their mutually
inductive types manually. This is due to the fact that our inductive datatypes contain lists of
the datatypes themselves – this creates an implicit mutual induction with lists which needs
an induction principle more involved than ones Coq can automatically generate. This could
have been avoided had we inlined lists (i.e. made our own datatypes using constructors
analogous to cons and nil), however we would lose access to various existing theorems about
lists contained in the standard library.

A transaction output (17) consists of its value in Satoshis and a script (5) for the
verification of attempts to redeem the output. The Bitcoin Script language is a stack-based
language that is used to write output scripts that verify that the conditions for redeeming
the output are met. A script takes a fixed number of inputs which depends on the commands
used; these inputs are called the witness and a redeeming transaction must provide them.
Following Atzei et al. [9], we model the script language as an expression-based language
instead as that allows us to easily specify denotational semantics for the scripts.

In a Bitcoin implementation all script values are just byte vectors at most 520 bytes
long and their interpretation is made by the stack commands as either numbers, truth
values, signatures, hashes etc. As we model hashes and signatures symbolically, we need our
script input value type StackValue (9) to represent those possibilities as well, so we choose
to impose a rudimentary type system on the values and their denotations that allows for
integers (10), booleans (11), transaction signatures (13), and hashes of any type of value (12).
As a transaction signature (26) is simply a wrapper for a secret key and a transaction “hash”,
a value will possibly contain transactions as well, making StackValue mutually inductive
with transactions in our model (Figure 2).

The output script expression language is relatively simple. Most notable expression types
are variables (6), constants of any StackValue (7), a multi-signature verification primitive (8)
and several other arithmetic and comparison operations. We model it with an inductive
type Exp (5) mutually inductive with StackValue and TxStub due to the fact that arbitrary
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Exp : Set ::= (5)
e_var : string→ Exp (6)

e_const : StackValue→ Exp (7)
e_plus : Exp→ Exp→ Exp

e_minus : Exp→ Exp→ Exp

e_equal : Exp→ Exp→ Exp

e_less : Exp→ Exp→ Exp

e_if : Exp→ Exp→ Exp→ Exp

e_length : Exp→ Exp

e_hash : Exp→ Exp

e_versig : PK∗ → Exp∗ → Exp (8)
e_abs_after : Time→ Exp→ Exp

e_rel_after : Time→ Exp→ Exp

StackValue : Set ::= (9)
sv_int : Z→ StackValue (10)

sv_bool : bool→ StackValue (11)
sv_hash : StackValue→ StackValue

(12)
sv_sig : TxStub→ SK→ Modifier

→ Index→ StackValue (13)
TxStub : Set ::= (14)

tx_stub { (15)
inputs : (TxStub× Index× Time)∗;

(16)
outputs : (Exp× Satoshi)∗; (17)
absLock : Time } (18)

coinbase { (19)
block_height : N ; (20)

outputs : (Exp× Satoshi)∗ } (21)

Tx : Set ::= tx { (22)
stub : TxStub; (23)

witnesses : (StackValue∗)∗ } (24)

Figure 2 Mutually inductive transaction, witness value and script definition.

StackValues can be contained as constants in the expressions, which is made necessary
by our imposed type system in order to meaningfully define arithmetic and comparison
operations. The final result are three mutually inductive types (Figure 2) together with their
mutual induction principle.

The witnesses (24) are data associated with each input. When verifying a redeeming
attempt, they are used as the initial stack value in the output scripts of their associated
inputs. Note that it is impossible to sign the witnesses along with the rest of transaction due
to the fact that usually the witness data needs to contain the transaction signature itself.
Not signing the witnesses implies that they can be changed before being included in a block,
changing the hash of the transaction with witnesses included, a problem known as transaction
malleability. This was resolved by the implementation of a protocol upgrade called SegWit
(Segregated Witness) introduced by BIP141 [4]. We account for these subtleties in our model
by separating the witnesses from input data in our model as well. In implementations of
SegWit the witnesses are moved outside transaction data structures into their own Merkle tree
stored in the containing block’s coinbase transaction. To be able to talk about transaction
history validity, we will sometimes have to associate transactions with their corresponding
witnesses regardless of SegWit; to achieve this, we separate the transaction model into two
layers of inductive types: the type TxStub (14) containing the transaction data save for the
witnesses, and full transaction Tx (22) containing its stub and a list of witnesses (24). The
transaction hash for input referencing purposes (TXID) is modeled by the the TxStub type.
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TxStubHash ::= tx_hash : TxStub→ Modifier→ Index→ TxStubHash (25)
Sig ::= sig : SK→ Modifier→ Index→ TxStub→ Sig (26)
ver : PK→ Sig× Modifier→ TxStub→ Index→ bool (27)

multi_ver : PK∗ → (Sig× Modifier)∗ → TxStub→ Index→ bool (28)

Figure 3 Signatures and routines for their verification.

2.2 Signature Verification and Output Redeeming

We now define our model of transaction signatures and their verification (Figure 3). A
transaction signature is the SK-signed hash of a transaction with some fields disregarded
in a way controlled by SIGHASH flags; in particular, some of the inputs are disregarded
depending on the exact flags. We model hashes computed in this manner with the inductive
type TxStubHash (25) wrapping the hashed transaction and the hashing flags, along with
a comparison predicate which is based on transaction stub equality modulo hash flags.
Signatures are represented by the inductive type Sig (26) wrapping everything a TxStubHash
wraps, as well as the secret key. A signature needs to be paired with the hash flags used
to compute it as they affect the result and are required for checking; this is implemented
in Bitcoin by appending a byte denoting the hash flags to the signature. We model this
explicitly by using Sig× Modifier even though we could introspect our inductive wrappers
for their value.

We proceed to define single (27) and multiple (28) signature verification routines. We
model successful signature verification with a public key using a simple check for pairedness
of the given public key with the wrapped secret key with the function is_key_pair (3), and
a check for hash equality by comparing both TxStubHash and the hash flags for equality;
the verification succeeds if all comparisons do. Multiple signature verification tries to verify
a list of signatures, in order, using an ordered list of public keys. The procedure repeatedly
calls the single signature verification routine for each signature with successive public keys
from the list until success, or until all public keys have been exhausted and no matching keys
have been found; the whole routine succeeds if all signatures have been successfully verified
and fails otherwise.

We define a straightforward denotational semantics for the script language based on
Atzei et al. [9]. We impose a type system onto the values appearing in the script language
(which are untyped in Bitcoin), consisting of the same types as StackValue, as well as a
bottom type denoting failed computations or invalid types. We define the context of a witness
make_context e T.wit(i) to be the mapping from variables (free_vars e) to the values in the
witness. The order of the variables is determined by a preorder traversal of the expression’s
syntax tree. The denotation of a script expression depends on the redeeming transaction, the
index of the redeeming input and the context constructed from the corresponding witness. In
the definition below, den_bool is a constructor for denotational values which wraps a boolean
value. We refer the reader to the Coq development for details due to space constraints.

I Definition 1 (Script verification). We say a transaction T ’s i-th input verifies a script e if:

verifies(T, i, e) , |free_vars e| = |T.wit(i)| ∧ JeKT,i,make_context e T.wit(i) = den_bool true.
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TxHistory , (Tx× Time)∗ (29)
UT XO : TxHistory

→ (TxStub× Index)∗ (30)
ST XO : TxHistory

→ (TxStub× Index)∗ (31)

sum_inputs : TxStub→ Satoshi (32)
sum_outputs : TxStub→ Satoshi (33)
UT XO_value : TxHistory→ Satoshi (34)
coinbase_value : TxHistory→ Satoshi (35)
coinbase_height : TxHistory→ N (36)

Figure 4 Transaction history model.

I Definition 2 (Output redeeming). We say the j-th input of transaction T2 at logical time
t2 redeems the i-th output of transaction T1 at logical time t1 for a value of v Satoshis if:

redeems(T1, i, t1, v, T2, j, t2) ,
(i) ∃ relLock e, T2.inputs(j) = (T1, i, relLock) ∧ T1.outputs(i) = (e, v) ∧

(ii) T2.absLock ≤ t2 ∧ t1 + relLock ≤ t2 ∧
(iii) verifies(T2, j, e)

3 Blockchain Model and Validity

We begin our model of the Bitcoin blockchain by first considering transaction histories and
their validity. We then define our model of the blockchain and its validity by requiring that
the transaction history encoded by the blockchain be valid, among other things.

For Bitcoin to function as a currency, it is crucial to control the way in which money is
created. Only coinbase transactions should increase the total sum of money in the system.
However, if a transaction output was to be spent more than once, it would essentially act
as duplicated money. Therefore, it is necessary to ensure that transaction outputs can be
spent at most once. Transactions attempting to spend an already spent output, or spend an
unspent output multiple times at once must be disallowed in a valid transaction history. We
provide a formal definition of the transaction history validity predicate that enforces this and
certain other conditions necessary for a history to be considered valid. We later prove that
this property indeed implies that no double spending of transaction outputs is happening
within a valid history, as well as that the total sum of unspent transaction outputs never
exceeds supply, i.e., the sum of coinbase outputs.

We define a transaction history (29) as a list of transactions with witnesses and the
logical time at which they occur. We also define the notions of spent and unspent transaction
outputs; an output at index i of a transaction T1 in the blockchain is unspent in a history TH
if there is no transaction anywhere in TH that has an input (T1, i), whereas an output is spent
in TH if such a transaction and input exist. We define functions STXO and UTXO (31, 30)
on histories that compute respectively the list of spent and unspent outputs, with outputs
represented as pair of the containing transaction and the output’s index. We also formally
prove the obvious fact that every output of every transaction in a blockchain is either spent
or unspent. We define the sum of values of inputs (32) and outputs (33) of a transaction, as
well as the sum of values of all UTXO-s (34) and all coinbase outputs (35) in a transaction
history which should represent the total supply of money in a transaction history following
some validity rules which we will define. We define coinbase_height to be the number of
coinbase transactions in a transaction history; note that this is going to be equal to the block
height, but is formalized independently.
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Using the work of Atzei et al. [9] as a reference point, we define transaction history
validity (4) inductively by requiring that each valid transaction history is formed by a
sequence of valid updates (3) each extending the history by a single transaction in a way that
enforces the necessary invariants.

I Definition 3 (Valid update for transaction histories).

is_valid_update(T H, T, t) ,
(i) ∃ block_height outputs, T.stub = coinbase block_height outputs ∧
(ii) ∀ T H ′ T ′ t′, T H = T H ′ + [(T ′, t′)] =⇒ t′ ≤ t ∧
(iii) T.block_height = coinbase_height T H

∨
(iv) sum_inputs(T ) ≥ sum_outputs(T ) ∧
(v) ∀ T H ′ T ′ t′, T H = T H ′ + [(T ′, t′)] =⇒ t′ ≤ t ∧
(vi) T.inputs 6= [] ∧ ∀ i j T ′i oi ri T ′j oj rj , i 6= j ∧

T.inputs(i) = (T ′i , oi, ri) ∧ T.inputs(j) = (T ′j , oj , rj) =⇒ (T ′i , oi) 6= (T ′j , oj) ∧
(vii) ∀ j T ′ o r t′ s v, (T ′, t′) ∈ T H ∧ T.inputs(j) = (T ′, i, r) ∧ T ′.outputs(i) = (s, v)

=⇒ (T ′, i) ∈ UT XO(T H) ∧ redeems(T ′, i, t′, v, T, j, t)

I Definition 4 (Transaction history validity).

tx_history_valid(TH) ::=
bc_empty : TH = []→ tx_history_valid(TH)
bc_cons : ∀ TH ′ T t, TH = TH ′ + [(T, t)]→ tx_history_valid(TH ′)

→ valid_update(TH ′, T, t′)→ tx_history_valid(TH)

Now we define a blockchain (Figure 5, 37) as an inductive type. Hash pointers to blocks
are, as before, represented by the blocks themselves. As we do not deal with proof-of-
work or consensus, the only contents of a block are the pointer to the previous block (40),
the transactions (41) and witnesses (42) of the block, and the block’s timestamp (43).
Transactions and witnesses are both represented as lists instead of Merkle trees, but are
separated according to SegWit. We also define block_height (44) to be the number of blocks
in the blockchain, and bc_to_tx_history (45) to be a function that flattens a blockchain
into the transaction history it represents by concatenating lists of transactions paired with
their respective witnesses. We define the block reward (47), a function from block height of
the block to be minted to the base value to include in the block’s coinbase transaction; and
transaction_fees (46) to be the sum of the differences between input and output value for
each transaction in a list.

The definitions of valid updates of blockchains by blocks and valid blockchains are
analogous to the definitions for transaction histories.

I Definition 5 (Valid update for blockchains). A blockchain B is validly updated with a new
block containing (transactions, witnesses, timestamp) when
1. transactions list contains exactly one coinbase transaction CB as the first transaction
2. CB.block_height = block_height B
3. sum_outputs CB = block_reward (block_height B)+ transaction_fees transactions
4. tx_history_valid (bc_to_tx_history (Block B transactions witnesses timestamp))
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Blockchain ::= (37)
Empty (38)
Block { (39)

prevBlock : Blockchain; (40)
transactions : TxStub∗; (41)

witnesses : ((StackValue∗)∗)∗; (42)
timestamp : Time } (43)

block_height : Blockchain→ N (44)
bc_to_tx_history : Blockchain→ TxHistory

(45)
transaction_fees : TxStub∗ → Satoshi (46)

block_reward : N→ Satoshi (47)

Figure 5 Blockchain model.

I Definition 6 (Blockchain validity). We define the validity of a blockchain inductively.
An Empty blockchain is valid.
A blockchain B with a block appended is valid whenever B was valid, the length of
the block’s transactions and witnesses lists is equal, and the appended block validly
updates B.

4 Formally Verified Blockchain Properties

With all the definitions in place, we move on to state several important properties of valid
transaction histories and blockchains, which we have proven in our Coq development. Here
we list only a part of the development due to space constraints; it can be seen in full along
with the proofs in the accompanying materials.

First, we prove that blockchain validity implies the validity of the transaction history it
stores. This follows directly from the definition of valid updates with blocks applied to the
last block in the chain, if any. This result allows us to reason about valid transaction histories
instead of blockchains, which can be more convenient e.g., when proving the impossibility of
double spending in a valid blockchain (and transaction history).

I Lemma 7 (Blockchain validity implies transaction history validity). Let B be a valid blockchain.
Then bc_to_tx_history B is a valid transaction history.

Note that the definition of a transaction history does not order the transactions according
to output spending. In a valid transaction history, however, every transaction input refers to
an output of a transaction earlier in the history, which we proved as a lemma.

The first key property of the blockchain we consider is the impossibility of spending the
same output multiple times.

I Theorem 8 (No double spending). Let B be a valid blockchain, and TH be its (valid)
transaction history. Let Ti and Tj be two transactions in TH at indices i, j respectively.
Then

∀ki kj , (Ti.inputs(ki) = (T ′i , li, trl,i) ∧ Tj .inputs(kj) = (T ′j , lj , trl,j) ∧ (i, ki) 6= (j, kj))
=⇒ (T ′i , li) 6= (T ′j , lj).

Another key property of valid transaction histories is that transactions identifiers are
unique. While in reality we have to allow for the noninjectivity of hashes, in our model
transactions are wholly unique within valid histories.
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I Theorem 9 (Transaction uniqueness). Let B be a valid blockchain, and TH be its (valid)
transaction history. Let txs be the list of TxStubs in the history (i.e., TH with timestamps
and witnesses removed). Let Ti and Tj be transactions at indices i, j in txs, respectively. If
Ti = Tj, then i = j.

In the remainder of this section we consider properties of the total supply of money in
the system. This should be equal to the sum of all coinbase output values, however it is also
allowed to be smaller than that due to the presence of transaction fees.

I Theorem 10 (Coinbase value bounds UTXO value above). Let TH be a valid transaction
history. Then

UTXO_value TH ≤ coinbase_value TH.

The following theorem illustrates the fact that only UTXO-s may be used as transaction
inputs quantitatively. The proof follows from the definition of valid updates.

I Theorem 11 (UTXO value bounds input value sum). Let TH+[(T, t)] be a valid transaction
history. Then

sum_inputs (stub T ) ≤ UTXO_value TH.

The final theorem is a strengthening of (10) shows that supply is exactly controlled by
block rewards. It boils down to proving that transaction fees are properly collected in the
coinbase transaction outputs of each block.

I Theorem 12 (Total block reward equals UTXO value). Let B be a valid blockchain, and
TH = bc_to_tx_history B. Then:

UTXO_value TH =
block_height B−1∑

b=0
block_reward b.

5 Limitations

Here we briefly discuss the limitations of our model and compare it to the Bitcoin client.
Since we use the symbolic model for digital signatures and hash functions, we are

unable to prove the desired properties in the computational model of cryptography. Of
course, we are also unable to extract the code for a verified client. We can overcome the
latter by reusing Coq models of the cryptographic primitives (e.g. [7] for the SHA256 hash
function) As for the former, since we are not concerned with the proof-of-work verification,
we only rely on hash functions for data integrity and only need their collision resistance
property. In the computational model, we could verify the properties under the assumption
no collision occurred anywhere in that blockchain. For modeling properties of digital
signatures in Coq we could attempt to use the toolset of the Foundational Cryptography
Framework [21]. Alternatively, we could try to model the system within the universally
composable (UC) security framework and replace the digital signature implementation with
an ideal functionality similarly to the approach taken in [12] to develop mechanized analysis
of a key exchange protocol.

The blockchain verification procedures are currently modeled mostly as first order inductive
predicates rather than decidable routines and, hence, cannot be used to extract verified code.
We plan to address this by writing the missing decision routines that generate proofs or
disproofs of our propositions as well as routines that parse our model from serialized data,
which would give us verified extractable blockchain validation code.
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Comparison with the official Bitcoin client

First, we do not attempt to model several important aspects of the validation logic, since we
do not consider them to be relevant to the correctness properties we wished to tackle first.
Most notably, we omit proof-of-work verification and the corresponding data fields from the
model. Transactions and blocks in our model do not have version numbers accounting for
protocol updates. We do not enforce block and transaction size limits, coinbase maturity
and we do not reject transactions with absurdly high fees.

We make a number of technical choices that result in a simpler formal model and diverge
from the Bitcoin client. For example, we have explicit coinbase transactions while in the
Bitcoin client coinbase transactions are stored in the same data structure and are distinguished
by a single input field with the zero hash pointer. We feel that addressing these differences is
a technical matter, albeit tedious and time consuming.

In our model, only transactions with segregated witnesses are supported, while the
Bitcoin client additionally supports legacy transactions where the witness is a part of the
transaction’s input field. There are several other examples of extensions where both current
and legacy features are supported. Moreover, these are almost always implemented in a
backward-compatible manner. From a consensus perspective it is desirable that the blockchain
verification procedures are updated by a soft-fork – old nodes must recognize the new blocks
as valid. Hence, new features often need to be hacked into the existing protocol in order to
satisfy the old validation procedures (e.g., see the “segregated witness” implementation [4]).

We feel that the multitude of supported options along with backwards-compatible imple-
mentations present the most significant challenge for building a complete mechanized formal
model that is faithful to the wire-level protocol. Hence, more research is needed to produce
methods of building and using such models without the exploding complexity.

6 Related Work

Bitcoin and similar systems have received a lot of attention in the scientific community in
recent years with many attempts to formally specify and verify various aspects of blockchain
systems.

Formal treatment of the Bitcoin system

First, we give an overview of formal models aimed at specification and verification of various
aspects of the Bitcoin system.

Atzei et al.[9] give a formal model of Bitcoin transactions that we use a starting point for
our formalization and mechanization efforts. The model includes transaction and blockchain
data structures, as well as the semantics for the Bitcoin Script language. The model is
used to formally prove “well-formedness” properties of the Bitcoin blockchain including
the impossibility of double-spending. In contrast to a simplified “linked list” model of [9],
we fully model blocks and the blockchain including coinbase transactions in each block,
block height information, block rewards and transaction fees. For transactions themselves,
our models are different in several details where we try to be closer to the behavior of
the Bitcoin client. Most notably, in [9] segregated witnesses are a part of the transaction
structure, while we store them in blocks, independently of transactions. Mechanization
using the Coq proof assistant forces us to carefully specify all the details of the model. For
example, mutually inductive definitions have to be explicitly taken into account. Similarly,
we need to explicitly state and prove many assumptions that are implicit in [9], such as the
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temporal properties of spent outputs and explicit encoding of witnesses and hash functions.
We replicate the no-double-spent result given in [9] but in a more general setting (with a
blockchain data structure) and with a proof that is machine-verified. More importantly, we
prove two additional properties of a valid blockchain.

In [13], the authors present the Extended UTXO model (EUTXO), which aims to extend
Bitcoin’s UTXO model in order to allow more expressive validation scripts. The work
determines the expressive power of the model by showing its equivalence with Constraint
Emitting Machines, a variant of state machines which is unimplementable in Bitcoin’s script.
As part of the work, the authors mechanize a transaction model very similar to the one
in [9] using the Agda proof assistant. While close to our work, the authors do not attempt
to follow Bitcoin specifically and work with a more general UTXO model (i.e. they do not
model SegWit), and the overlapping part of the work does not extend beyond [9]. Thus, the
previously stated differences between [9] (other than the mechanization) and our work apply
here as well.

In [11] an alternative model is given for the semantics of blockchain transactions by using
directed acyclic graphs to abstract the interactions of an incoming transaction with the
blockchain. They provide a general blockchain model which they instantiate to to Bitcoin,
Ethereum and Hyperledger Fabric systems.

Formal models of the Bitcoin Script language have also been an area of active research. In
[8], the model of [9] is applied to development of a high-level domain specific language which
then compiles into Bitcoin Script language, with the goal of systematically analyzing actual
smart contracts proposed by researchers and Bitcoin developers. In [17] authors formalize
the Bitcoin Script language with the goal of automatically finding inputs that satisfy a given
script.

Finally, formal pen-and-paper treatments of Bitcoin’s consensus mechanism include [16]
where the focus is on quantifying the quality of the blockchain system by determining how
many adversarial blocks are expected on the blockchain; and [14] where the authors work out
the probability of a successful double-spending attack (assuming some nodes are malicious)
and use the UPPAAL model checker to verify the results.

Consensus mechanization

In [22], the authors focus on mechanizing protocols and data structures necessary for estab-
lishing distributed consensus in blockchain systems. They formally prove a form of eventual
consistency in a network,while precisely characterizing all assumptions on implementations
of underlying security primitives. In [23], authors build and mechanize a probabilistic model
of blockchain consensus with the eventual goal of stating and proving probabilistic security
properties in a Byzantine setting. Other efforts towards automated verification of blockchain
consensus mechanisms include [19, 20] that focus on the proposed proof-of-stake mechanism
for the Ethereum system. All above efforts use the Coq proof assistant.

7 Conclusions and Future Work

In this paper, we have presented a Coq formalization for the Bitcoin’s blockchain validation
procedures including the models of basic data structures of the Bitcoin blockchain system
and the denotational semantics for the typed variant of the Bitcoin Script language. We
have used the model to provide machine-verified proofs for three essential properties of
a valid blockchain: impossibility of double-spending, uniqueness of transactions and that
cryptocurrency value is created only through block rewards.
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In the future, we are going to discharge a number of simplifying assumptions and attempt
to further bridge the gap between the abstract model and the reference client. In particular,
we plan to model Merkle trees and use them to store transactions and witnesses in blocks.
We also plan to make segregated witnesses optional and investigate the interaction between
different types of transactions. More generally, we wish to investigate the scenarios where
validity checks are updated. This will enable us to formally model the notion of soft-forks and
evaluate proposed changes to the Bitcoin protocol such as spending rules based on Taproot,
Schnorr signatures, and Merkle branches [6].

References
1 Bitcoin documentation. https://en.bitcoin.it/wiki/Protocol_documentation, 2010.
2 Bitcoin improvement proposal 30: Duplicate transactions. bip-0030.mediawiki, 2012.
3 Bitcoin improvement proposal 34: Block v2, height in coinbase. bip-0034.mediawiki, 2012.
4 Bitcoin improvement proposal 141: Segregated witness (consensus layer). bip-0141.mediawiki,

2015.
5 Double spending in bitcoin clients. CVE-2018-17144, 2018.
6 Bitcoin improvement proposal 341: Segwit version 1 spending rules. bip-0341.mediawiki, 2020.
7 Andrew W. Appel. Verification of a cryptographic primitive: Sha-256. ACM Trans. Program.

Lang. Syst., 37(2), April 2015. doi:10.1145/2701415.
8 Nicola Atzei, Massimo Bartoletti, Tiziana Cimoli, Stefano Lande, and Roberto Zunino. Sok:

Unraveling bitcoin smart contracts. In Principles of Security and Trust, pages 217–242, Cham,
2018. Springer International Publishing.

9 Nicola Atzei, Massimo Bartoletti, Stefano Lande, and Roberto Zunino. A formal model of
bitcoin transactions. IACR Cryptology ePrint Archive, 2017:1124, 2017.

10 Vitalik Buterin. A next-generation smart contract and decentralized application platform.
https://github.com/ethereum/wiki/wiki/White-Paper, 2014. White-paper.

11 Christian Cachin, Angelo De Caro, Pedro Moreno-Sanchez, Björn Tackmann, and Marko
Vukolic. The transaction graph for modeling blockchain semantics. IACR Cryptology ePrint
Archive, 2017:1070, 2017.

12 R. Canetti, A. Stoughton, and M. Varia. Easyuc: Using easycrypt to mechanize proofs
of universally composable security. In 2019 IEEE 32nd Computer Security Foundations
Symposium (CSF), pages 167–16716, June 2019.

13 Manuel Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian, Mi-
chael Peyton Jones, and Philip Wadler. The extended utxo model. In Workshop on Trusted
Smart Contracts, 2020.

14 Kaylash Chaudhary, Ansgar Fehnker, Jan Cornelis van de Pol, and Mariëlle Ida Antoinette
Stoelinga. Modeling and verification of the bitcoin protocol. In Proceedings of the Workshop
on Models for Formal Analysis of Real Systems (MARS 2015), Electronic Proceedings in
Theoretical Computer Science, pages 46–60, Australia, November 2015. Open Publishing
Association.

15 D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2):198–208, March 1983.

16 Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Advances in Cryptology - EUROCRYPT 2015, pages 281–310, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

17 Rick Klomp and Andrea Bracciali. On symbolic verification of bitcoin’s SCRIPT language. In
Data Privacy Management, Cryptocurrencies and Blockchain Technology, pages 38–56, Cham,
2018. Springer International Publishing.

18 Satoshi Nakamoto. Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.org/
bitcoin.pdf, 2008.

FMBC 2020

https://en.bitcoin.it/wiki/Protocol_documentation
https://github.com/bitcoin/bips/blob/master/bip-0030.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-17144
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://doi.org/10.1145/2701415
https://github.com/ethereum/wiki/wiki/White-Paper
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf


7:14 Mechanized Formal Model of Bitcoin’s Blockchain Validation Procedures

19 Karl Palmskog, Milos Gligoric, Lucas Pena, Brandon Moore, and Grigore Rosu. Verific-
ation of casper in the coq proof assistant. https://github.com/runtimeverification/
casper-proofs, 2018. Technical report.

20 Karl Palmskog, Milos Gligoric, Lucas Pena, Brandon Moore, and Grigore Rosu. Verifying
finality for blockchain systems. In CoqPL’19, 2019.

21 Adam Petcher and Greg Morrisett. The foundational cryptography framework. In Principles
of Security and Trust, pages 53–72, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

22 George Pirlea and Ilya Sergey. Mechanising blockchain concensus. In 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs. ACM New York, 2018.

23 Ilya Sergey and Kiran Gopinathan. Towards mechanising probabilistic properties of a block-
chain. In CoqPL’19, 2019.

24 The Coq Development Team. The coq proof assistant, version 8.10.0, October 2019. doi:
10.5281/zenodo.3476303.

https://github.com/runtimeverification/casper-proofs
https://github.com/runtimeverification/casper-proofs
https://doi.org/10.5281/zenodo.3476303
https://doi.org/10.5281/zenodo.3476303


Towards Verifying the Bitcoin-S Library
Ramon Boss
Bern University of Applied Sciences, Switzerland
ramon.boss@outlook.com

Kai Brünnler
Bern University of Applied Sciences, Switzerland
kai.bruennler@bfh.ch

Anna Doukmak
Bern University of Applied Sciences, Switzerland
anna.doukmak@gmail.com

Abstract
We try to verify properties of the Bitcoin-S library, a Scala implementation of parts of the Bitcoin
protocol. We use the Stainless verifier which supports programs in a fragment of Scala called Pure
Scala. Since Bitcoin-S is not written in this fragment, we extract the relevant code from it and
rewrite it until we arrive at code that we successfully verify. In that process we find and fix two
bugs in Bitcoin-S.
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Supplementary Material The original Bitcoin-S code we started from, the extracted code, and the
finally verified code are available in our GitHub repository [6]: https://github.com/kaibr/bitcoin-
s-verification.

1 Introduction

For software handling cryptocurrency, correctness is clearly crucial. However, even in very
well-tested software such as Bitcoin Core, serious bugs occur. The most recent example is
the bug found in September 2018 [9] which essentially allowed to arbitrarily create new coins.
Such software is thus a worthwhile target for formal verification. In this work, we set out to
verify properties of the Bitcoin-S library with the Stainless verifier. So this is a case study in
applying the Stainless verifier to existing real-world code.

The Bitcoin-S Library. The Bitcoin-S library is an implementation of parts of the Bitcoin
protocol in Scala [10, 11]. In particular, it allows to serialize, deserialize, sign and validate
Bitcoin transactions. The library uses immutable data structures and algebraic data types
but is not specifically written with formal verification in mind. According to the website, the
library is used in production, handling significant amounts of cryptocurrency each day [10].

The Stainless Verifier. Stainless is the successor of the Leon verifier and is developed at
EPF Lausanne [2, 13, 1]. A distinguishing feature of Stainless is that it accepts specifications
written in the programming language itself (Scala). Also, it focusses on counterexample
finding in addition to proving correctness. Counterexamples are immediately useful to
programmers, which can not be said about correctness proofs.
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1 def factorial(n: Int): Int = {
2 require(n >= 0)
3 if (n == 0) {
4 1
5 } else {
6 n * factorial(n - 1)
7 }
8 } ensuring(res => res >= 0)

Figure 1 Factorial function with specification.

Figure 2 Stainless output for the factorial function.

The example in Figure 1 is adapted from the Stainless documentation [7] and shows how
the verifier is used. Note how a precondition is specified using require and a postcondition
using ensuring. Our function does not satisfy the specification. An overflow in the 32-bit
integer type leads to a negative result for the input 17, as Stainless reports in Figure 2.
Changing the type Int to BigInt will result in a successful verification.

The Pure Scala Fragment. The Scala fragment supported by Stainless comprises algebraic
data types in the form of abstract classes, case classes and case objects, objects for grouping
classes and functions, boolean expressions with short-circuit interpretation, generics with
invariant type parameters, pattern matching, local and anonymous classes and more. In
addition to Pure Scala Stainless also supports some imperative features, such as while loops
and using a (mutable) variable in a local scope of a function. They turn out not to be
relevant for our current work.

What will turn out to be more relevant for us are the Scala features which Stainless
does not support, such as: inheritance by objects, abstract type members, and inner classes
in case objects. Also, Stainless has its own library of some core data types and functions
which are mapped to corresponding data types and functions inside of the SMT solver that
Stainless ultimately relies on. Those data types in general do not have all the methods of the
Scala data types. For example, the BigInt type in Scala has methods for bitwise operations
while the BigInt type in Stainless does not.

Outline and Properties to Verify. In the next section we try to verify the property that a
regular (non-coinbase) transaction can not generate new coins. We call it the No-Inflation
Property. Trying to verify it, we uncover and fix a bug in the Bitcoin-S library. We then find
that there is too much code involved that lies outside of the supported fragment to currently
make this verification feasible. So we turn to a simpler property to verify. The simplest
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1 def checkTransaction(transaction: Transaction): Boolean = {
2 val inputOutputsNotZero =
3 !( transaction.inputs.isEmpty || transaction.outputs.isEmpty)
4 val txNotLargerThanBlock =
5 transaction.bytes.size < Consensus.maxBlockSize
6 val outputsSpendValidAmountsOfMoney =
7 !transaction.outputs.exists(o =>
8 o.value < CurrencyUnits.zero || o.value > Consensus.maxMoney)
9

10 val outputValues = transaction.outputs.map(_.value)
11 val totalSpentByOutputs: CurrencyUnit =
12 outputValues.fold(CurrencyUnits.zero)(_ + _)
13 val allOutputsValidMoneyRange =
14 validMoneyRange(totalSpentByOutputs)
15 val prevOutputTxIds = transaction.inputs.map(_.previousOutput.txId)
16 val noDuplicateInputs =
17 prevOutputTxIds.distinct.size == prevOutputTxIds.size
18
19 val isValidScriptSigForCoinbaseTx = transaction.isCoinbase match {
20 case true =>
21 transaction.inputs.head.scriptSignature.asmBytes.size >= 2 &&
22 transaction.inputs.head.scriptSignature.asmBytes.size <= 100
23 case false =>
24 !transaction.inputs.exists(
25 _.previousOutput == EmptyTransactionOutPoint)
26 }
27 inputOutputsNotZero && txNotLargerThanBlock &&
28 outputsSpendValidAmountsOfMoney && noDuplicateInputs &&
29 allOutputsValidMoneyRange && noDuplicateInputs &&
30 isValidScriptSigForCoinbaseTx
31 }

Figure 3 The checkTransaction function.

possible property we can think of is the fact that adding zero satoshis to a given amount of
satoshis yields the given amount of satoshis. We call it the Addition-With-Zero Property and
we try to verify it in Section 3. Here as well we see that a significant part of the code lies
outside of the supported fragment. We rewrite it until we arrive at code that we successfully
verify. In that process we find and fix a second bug in Bitcoin-S.

2 The No-Inflation Property

An Attempt at Verification. Naively trying Stainless on the entire Bitcoin-S codebase
results in many errors – as was to be expected. We tried to extract only the code relevant to
the No-Inflation Property and to verify that. However, even the extracted code has more
than 1500 lines and liberally uses Scala features outside of the supported fragment. We
started to rewrite the code in the supported fragment, but quickly realized that a better
approach is to first verify a simpler property depending on less code and later come back to
the No-Inflation Property with more experience. However, during the process of trying to
rewrite the code, we found a bug in the checkTransaction function shown in Figure 3.

A Bug in the checkTransaction Function. Given a transaction the function returns true
if some basic checks succeed, otherwise false. For example, one of those checks is that both
the list of inputs and list of outputs need to be non-empty.

Note particularly lines 15-17. Here, the value prevOutputTxIds gathers a list of all
transaction identifiers referenced by the inputs of the current transaction. If the size of this
list is the same as the size of this list with duplicates removed, we know that no transaction
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15 val prevOutputs = transaction.inputs.map(_.previousOutput)
16 val noDuplicateInputs =
17 prevOutputs.distinct.size == prevOutputs.size

Figure 4 Bug Fix.

has been referenced twice. This prevents a transaction from spending two different outputs
of the same previous transaction. The check is too strict: checkTransaction returns false
for valid transactions.

The fix is simple: we perform the duplicate check on the TransactionOutPoint instances
instead of on their transaction identifiers. Note that TransactionOutPoint is a case class
and thus its notion of equality is just what we need: equality of of both the transaction
identifier and the output index.

Specifically, we replace lines 15-17 as shown in Figure 4. We submitted this fix together
with a corresponding unit test to the Bitcoin-S project in a pull request, which has been
merged [5].

We now turn to the much simpler Addition-With-Zero Property.

3 The Addition-With-Zero Property

It is of course a crucial property we are verifying here: if zero satoshis were credited to your
account, you would not want your balance to change! It is also the simplest meaningful
property to verify that we can think of. However, the code involved in performing the addition
of two satoshi amounts in Bitcoin-S is non-trivial. The reason for that is a peculiarity of
consensus code: agreement with the majority is the only relevant notion of correctness. The
most widely used bitcoin implementation by far is the reference implementation Bitcoin
Core, written in C++. For consensus code, Bitcoin-S thus has little choice but to be in strict
agreement with the reference implementation. To achieve that, it implements C-like data
types in Scala and then implements functionality using those C-like data types. For example,
the Satoshis class, which represents an amount of satoshis, is implemented using the class
Int64 which aims to represent the C-type int64_t.

Extracting the Relevant Code. The relevant code for the addition of satoshis is in two
files: CurrencyUnits.scala and NumberType.scala. From those files we removed the majority
of the code because it is not needed for the verification of our property. For example, we
removed all number types except for Int64 (so Int32, UInt64, etc.) because they are not
used. We also removed the superclasses Factory and NetworkElement of CurrencyUnit
and Number, respectively, because the inherited members are not used. We further removed
all binary operations on Number that are not used, like subtraction and multiplication. The
extracted code is shown in Figure 5 and Figure 6.

A Bug in the checkResult Function. Note the checkResult function on line 12 and the
value andMask on line 23 of NumberType.scala. The function is intended to catch overflows
by performing a bitwise conjunction of its argument with andMask and comparing the result
with the argument. However, because of the way Java BigIntegers are represented [14] and
because bitwise operations implicitly perform a sign extension [8] on the shorter operand,
the function does not actually catch overflows.



R. Boss, K. Brünnler, and A. Doukmak 8:5

1 package extracted.number
2
3 sealed abstract class Number[T <: Number[T]] {
4 type A = BigInt
5 protected def underlying: A
6 def toLong: Long = toBigInt.bigInteger.longValueExact ()
7 def toBigInt: BigInt = underlying
8 def andMask: BigInt
9 def apply: A => T

10 def +(num: T): T = apply(checkResult(underlying + num.underlying))
11
12 private def checkResult(result: BigInt): A = {
13 require (( result & andMask) == result ,
14 "Result␣was␣out␣of␣bounds ,␣got:␣" + result)
15 result
16 }
17 }
18
19 sealed abstract class SignedNumber[T <: Number[T]] extends Number[T]
20
21 sealed abstract class Int64 extends SignedNumber[Int64] {
22 override def apply: A => Int64 = Int64(_)
23 override def andMask = 0xffffffffffffffffL
24 }
25
26 trait BaseNumbers[T] {
27 def zero: T
28 }
29
30 object Int64 extends BaseNumbers[Int64] {
31 private case class Int64Impl(underlying: BigInt) extends Int64 {
32 require(underlying >= -9223372036854775808L,
33 "Number␣was␣too␣small␣for␣a␣int64 ,␣got:␣" + underlying)
34 require(underlying <= 9223372036854775807L,
35 "Number␣was␣too␣big␣for␣a␣int64 ,␣got:␣" + underlying)
36 }
37
38 lazy val zero = Int64 (0)
39 def apply(long: Long): Int64 = Int64(BigInt(long))
40 def apply(bigInt: BigInt): Int64 = Int64Impl(bigInt)
41 }

Figure 5 Extracted Code from NumberType.scala.
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1 package extracted.currency
2
3 import extracted.number .{ BaseNumbers , Int64}
4
5 sealed abstract class CurrencyUnit {
6 type A
7 def satoshis: Satoshis
8 def ==(c: CurrencyUnit): Boolean = satoshis == c.satoshis
9 def +(c: CurrencyUnit): CurrencyUnit = {

10 Satoshis(satoshis.underlying + c.satoshis.underlying)
11 }
12 protected def underlying: A
13 }
14
15 sealed abstract class Satoshis extends CurrencyUnit {
16 override type A = Int64
17 override def satoshis: Satoshis = this
18 def toBigInt: BigInt = BigInt(toLong)
19 def toLong: Long = underlying.toLong
20 def ==(satoshis: Satoshis): Boolean = underlying == satoshis.underlying
21 }
22
23 object Satoshis extends BaseNumbers[Satoshis] {
24 val zero = Satoshis(Int64.zero)
25 def apply(int64: Int64): Satoshis = SatoshisImpl(int64)
26 private case class SatoshisImpl(underlying: Int64) extends Satoshis
27 }

Figure 6 Extracted Code from CurrencyUnits.scala.

While this is a potentially serious bug, it turns out that checkResult is only ever called
inside a constructor call for a number type which contains the intended range check, see lines
32-35. The checkResult function thus can, and should, be removed entirely. The Bitcoin-S
developers have acknowledged the bug and we submitted a pull request to fix it, which has
been merged [4].

For further development of Bitcoin-S, this raises a question. If the goal of the Int64 type
is to emulate int64_t then why does it prevent overflows? To achieve strict agreement with
Bitcoin Core, a better approach might be to remove overflow checking from the data type
and to add it in exactly those places where it happens in Bitcoin Core.

Rewriting the Code. We now turn to the list of Scala features used by the extracted code
which are not supported by Stainless and how to rewrite the code in the supported fragment.

All code changes are equivalent in the (admittedly narrow) sense that if the Addition-
With-Zero Property holds for the rewritten code, then it also holds for the original code.

Inheriting Objects. In both files we have objects extending the BaseNumbers trait, on lines
30 and 23 respectively, which Stainless does not support. We simply turn those objects into
case objects. That code is equivalent: case objects have various additional properties (for
example, being serializable) but none of our code depends on the absence of those.

Abstract Type Members. In CurrencyUnits.scala on line 6 there is an abstract type that
is not supported. Note that we can not simply replace it with a (supported) type parameter
since the CurrencyUnit class uses one of its implementing classes: Satoshis. Since the Satoshis
class overrides A with Int64 anyway, we just remove the abstract type declaration and replace
A by Int64 everywhere.
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Non-Literal BigInt Constructor Argument. In CurrencyUnits.scala on line 18 the BigInt
constructor is called with a non-literal argument. As described before, the types in the
Stainless library are more restricted than their Scala library counterparts. In particular, the
Stainless BigInt constructor is restricted to literal arguments. So we simply replace toLong
by underlying.toBigInt: instead of converting the underlying Int64 (which in turn has an
underlying BigInt) to Long and then back to BigInt we simply directly return the BigInt.
This is an equivalent transformation: the only thing that might go wrong in the detour via
Long is that the underlying BigInt does not fit into a Long. However, the only constructor of
Int64Impl ensures exactly that and all functions producing Int64 do so via this constructor.

Self-Reference in Type Parameter Bound. In NumberTypes.scala both on lines 3 and 19
is a class with a type parameter and a type boundary that contains that type parameter itself.
Stainless does not currently support such self-referential type boundaries. We opened an
issue [3] on the Stainless repository and the developers have targeted version 0.4 to support
self-referential type boundaries. Since our code only uses Number with type parameter T
instantiated to Int64, we just remove the type parameter declaration and replace all its
occurrences by Int64.

Missing Member bigInteger in BigInt. In NumberType on line 6 there is a reference to
bigInteger. The Scala BigInt class is essentially a wrapper around java.math.BigInteger.
BigInt has a member bigInteger which is the underlying instance of the Java class. The
Java class has a method longValueExact which returns a long only if the BigInteger fits
into a long, otherwise throws exception. Stainless does not support Java classes and in
particular its BigInt has no member bigInteger. However, our code does not call toLong
anymore, so we just remove it.

Type Members. In NumberType.scala there is a type member on line 4. Our version of
Stainless (0.1) does not support type members. We just remove the declaration and replace
all occurrences of A with BigInt, since A is never overwritten in an implementing class. Note
that in the meantime Stainless has implemented support for type members [12]. Since version
0.2 verification should succeed without this change.

Missing Bitwise-And Method on BigInt. Contrary to Scala BigInt, the Stainless BigInt
class does not support bitwise operations, in particular not the &-method used in Num-
berType.scala on line 13. However, as described above, the checkResult function is both
broken and redundant, so we remove it and all calls to it.

Inner Class in Case Object. We have inner classes in NumberType.scala on line 31 and in
CurrencyUnits.scala on line 26. Stainless does not support inner classes in a case object. We
just move the inner classes out of the case objects. They do not interfere with any other
code.

Message Parameter in Require. The calls of the require function on lines 32 and 34 in
CurrencyUnits.scala have a second parameter: the error message. Stainless does not support
the message parameter. We simply remove it.
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9 def +(c: CurrencyUnit): CurrencyUnit = {
10 Satoshis(satoshis.underlying + c.satoshis.underlying)
11 } ensuring (res =>
12 (c == Satoshis.zero) ==> (res == this))

Figure 7 Addition function with specification.

Figure 8 Stainless output for the rewritten code.

Missing Implicit Long to BigInt Conversion. The Scala BigInt class has implict conver-
sions from Long which NumberType.scala uses on lines 32 and 34. They are missing in the
Stainless BigInt. A BigInt constructor with a Long argument is also missing. We thus
replace the Long literals by an explicit call to the BigInt constructor with a literal string
argument, e.g. BigInt("-9223...5808").

The Specification. Now that all our code is in the supported fragment, we can finally
write our specification. We add a postcondition to the +-method of the CurrencyUnit-class
(Figure 6, lines 9-11) resulting in Figure 7. We successfully verify it with Stainless, as the
output in Figure 8 shows.

The original Bitcoin-S code we started from, the extracted code, and the finally verified
code are available in our GitHub repository [6].

4 Conclusion and Future Work

We are happy to see some friendly green verifier output. However, apart from the bugs we
found, the main conclusion of this work is that we had to non-trivially transform even a very
small portion of the code (70 lines) in order to verify it. And that was true even though
the code was purely functional to begin with. At the moment, it is probably unrealistic to
routinely formally verify properties as part of the Bitcoin-S development process. However,
Stainless development has already progressed (e.g. type members are supported in recent
versions) and continues to do so (e.g. self-referential type bounds are on the roadmap). Some
missing features that we identified are presumably very easy to support, like the message
parameter in the require function. Some other features presumably require more substantial
work, like bitwise operations on integer types.

On the other hand, Bitcoin-S uses features that might not be supported even by future
Stainless versions, such as calls to Java code.

Given our experience, the best route towards integrating verification into the Bitcoin-S
development process would be to re-implement parts of the library in Pure Scala. We would
split the library into a verified and non-verified part, and use Stainless only on the verified
part. It is then both a technical but also a political question how much code, if any, can be
moved to the verified part. That is an interesting direction for future work.
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Abstract
The Stellar Consensus Protocol (SCP) is a quorum-based BFT consensus protocol. However, instead
of using threshold-based quorums, SCP is permissionless and its quorum system emerges from
participants’ self-declared trust relationships. In this paper, we describe the methodology we deploy
to formally verify the safety and liveness of SCP for arbitrary but fixed configurations.

The proof uses a combination of Ivy and Isabelle/HOL. In Ivy, we model SCP in first-order logic,
and we verify safety and liveness under eventual synchrony. In Isabelle/HOL, we prove the validity
of our first-order encoding with respect to a more direct higher-order model. SCP is currently
deployed in the Stellar Network, and we believe this is the first mechanized proof of both safety and
liveness, specified in LTL, for a deployed BFT protocol.
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1 Introduction

Blockchains rely on Byzantine Fault-Tolerant (abbreviated BFT) consensus protocols to
ensure that, despite the presence of malicious participants, the network of participants as a
whole eventually reaches consensus on what block to append next to the blockchain. In many
blockchains, the security of large amount of digital assets depend on the correctness of the
blockchain’s BFT consensus protocol, but designing BFT consensus protocols is notoriously
difficult and serious flaws can remain undetected for years [1].

While formal verification can prevent many correctness issues in BFT consensus protocols,
performing such verification is challenging for several reasons: BFT consensus protocols are
designed to support an arbitrary number of participants; their executions and their reachable
state-space are unbounded; they operate in asynchronous networks where the interleaving of
messages is unpredictable; and finally, verifying termination is as important as verifying that
participants never disagree.

In this paper, we summarize our approach to the formal verification of the main safety
and liveness properties of the Stellar Consensus Protocol (abbreviated SCP) [7] using the
Ivy methodology [10]. Both the safety and liveness proofs apply to a unique model of SCP.
This model is parameterized by a fixed but arbitrary set of participants and denotes a set
of infinite executions. To our knowledge, this is the first work that mechanically proves
both safety and liveness, expressed in LTL, of a deployed BFT protocol under arbitrary
configurations.
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At a high level, verifying the safety of a protocol with Ivy entails 1) developing a set
of axioms to express the protocol’s underlying domain model as a first-order theory over
uninterpreted sorts; 2) modeling the protocol in Ivy’s procedural language; 3) developing
an inductive invariant that implies the safety properties, while ensuring that verification
conditions fall into the decidable first-order logic fragment EPR [5]. This is facilitated by
Ivy’s modular decomposition features [17].

For termination, or more generally liveness, Ivy provides a liveness to safety reduction [12]
crafted specifically to help produce decidable verification conditions. Given a temporal
property in First-Order Linear Temporal Logic (FO-LTL), Ivy automatically synthesises a
transition system and an associated safety property such that if the synthesized system is
safe, then the temporal property of the original system holds. The user can then verify that
the synthesized transition system is safe using the safety verification methodology.

Producing EPR verification conditions ensures that Z3 can automatically and reliably
determine their satisfiability. Compared to approaches that use automation but do not
require decidability, Ivy’s predictable automation greatly simplifies the mental model of the
prover that the user must keep in mind when developing a proof. The user can thus stop
worrying about the prover and instead focus on the properties of the protocol.

A key challenge in applying the Ivy methodology to SCP is to model SCP’s permissionless
Federated Byzantine Quorum Systems in first-order logic and in a way that is conductive to
decidable reasoning in EPR. In SCP, every participant expresses agreement requirements
with other nodes, and SCP relies on the properties of the resulting graph-like structure to
solve consensus. At first sight, such a complex family of structures seem hard to axiomatize
in first-order logic, let alone EPR.

The rest of the paper focuses on the first-order logic modeling of Federated Byzantine
Quorum Systems. This model abstracts over significant aspects of SCP’s quorum system.
To provide evidence that the abstraction is sound, we verify some of its key properties with
respect to a more concrete model in Isabelle/HOL.

With a first-order theory of Federated Byzantine Quorum Systems established, we verify
that SCP’s balloting protocol [7] satisfies its agreement property and that, under eventual
synchrony, it satisfies its termination property (i.e. that every node eventually decides). This
safety and liveness proof largely follows patterns identified previously during the verification
of other consensus protocols in Ivy [14, 12, 3], and it is not described in this paper.

Our paper supplies evidence that BFT consensus protocol can be verified with decidable
logics, which enables powerful yet stable automation, using the Ivy methodology. The proof
is available online [8], and, for a more complete reference, we plan to publish an extended
version of this paper with a detailed account of the safety and liveness proof that are omitted
here.

2 Solving Consensus in a Federated Byzantine Quorum System

SCP must solve consensus, guaranteeing agreement and termination, in a permissionless
system where nodes can join or leave without any synchronization and without the permission
of any gatekeeper. There is thus no common notion of the set of all nodes. Moreover, the
system is susceptible to Sybil attacks, in which attackers create a large number of identities
to try to overwhelm the system. In such an environment, traditional threshold-based quorum
systems, defined in terms of the total number of nodes, are thus of no use.

Other permissionless protocols like Bitcoin or Algorand use Proof-of-Work or Proof-of-
Stake to defend against Sybil attacks. Stellar takes a different approach. The Stellar Network
is intended as a platform to exchange digitized real-world assets (e.g. land parcels, retail
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coupons, national currencies, agricultural goods, etc.). Most participants are thus expected
to engage with recognized identities and have real-world relationships with some (but not
all) other participants in the network. SCP leverages these real-world relationships to defend
against Sybil attacks, counting on real-world relationships to be difficult for an attacker to
establish.

Concretely, each node in the Stellar Network is required to independently declare a set
of slices, where each slice is a set of nodes. The intent is that a node n accepts some new
information it hears on the network if and only if one of its slices unanimously agrees that
the information is correct. Thus slices can be thought of as agreement requirements. Nodes
advertise their slices throughout the network, and each node forms its own, personal notion
of quorum based on its own slices and on the slices of other nodes it knows about, as follows.
A quorum of n is defined as a set Q of nodes such that a) n has a slice included in Q and b)
each member of Q has a slice included in Q. In other words, a quorum of n is a set that
n satisfies the agreement requirement of n and of all its members. Formally, let slices(n)
denote the set of slices of node n. Then a set of nodes Q is a quorum of a node n if a)
∃S ∈ slices(n). S ⊆ Q and b) ∀m ∈ Q. ∃S ∈ slices(m). S ⊆ Q. The resulting quorum system
is called a Federated Byzantine Quorum System (abbreviated FBQS).

2.1 Intact and Intertwined Sets

With the notion of quorum in place, it seems possible to take a traditional threshold-based
BFT consensus protocols, and only change how quorums are defined in order to obtain a
consensus protocol for the Stellar Network. However, FBQS have some unusual properties
that complicate the task. First, the notion of quorum is not global to the system; instead,
each node has its own view of what a quorum is. Second, the quorums of a node depend on
what slices other nodes declare; thus, Byzantine nodes can influence a well-behaved node’s
notion of what a quorum is. Third, it is possible that a subset of the nodes have quorums
that intersect enough to guarantee safety, while some other subsets do not; thus, consensus
may be solvable for only a strict subset of the system; there may even by two or more disjoint
subsets of the system that form consensus islands that nevertheless diverge from each other.

What properties must a set of nodes satisfy in order for consensus to be solvable among
its members? We do not know a precise answer to this question [9]. However, we can prove
that SCP solves eventually synchronous consensus among sets of nodes called intact sets.
A set I of well-behaved (non-Byzantine) nodes is intact when, regardless of what slices
Byzantine nodes advertise: a) I enjoys quorum availability, i.e. the set I is a quorum for
all its members, and b) I enjoys quorum intersection, i.e. if n1 and n2 are members of I,
if Q1 is a quorum of n1, and if and Q2 is a quorum of n2, then the intersection of Q1 and
Q2 contains a member of I. An important property of intact sets is that the union of two
intact sects that intersect is also an intact set; thus maximal intact sets are disjoint and form
consensus islands within the network.

Sets which have quorum intersection but which lack quorum availability are called
intertwined sets. Precisely, a set S of nodes is intertwined when, if n1 and n2 are members
of S, if Q1 is a quorum of n1, and if Q2 is a quorum of n2, then the intersection of Q1
and Q2 contains an intertwined member. SCP also guarantees that there will not be any
disagreement among an intertwined set.

FMBC 2020
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2.2 Termination and the Cascade Theorem
Thanks to the quorum intersection property, it is easy to guarantee agreement to an inter-
twined set. However, termination is more difficult to achieve. Traditional BFT consensus
protocols often rely on eventual synchrony [4] to ensure termination. The idea is that, once
the system becomes synchronous, the protocol can rely on all nodes having the same view of
the system.

For example, suppose that, in a threshold quorum system, a quorum Q unanimously
agrees on statement X. If the network is synchronous, then all nodes shortly notice that Q

unanimously agrees on X. In this sense, they all form the same view of the fact “there is
a quorum that is unanimous about X”. Instead, if the quorum system is not a threshold
quorum system but an FBQS, then no such common view arises because Q may be a quorum
only of some nodes but not others.

SCP circumvents this problem using an epidemic propagation phenomenon that guarantees
that, once the system is synchronous, if an intact node witnesses a unanimous quorum, then
the knowledge that there is such a quorum soon propagates to the entire intact set, and
Byzantine nodes cannot prevent propagation.

The epidemic propagation phenomenon is enabled by the Cascade Theorem. This theorem
relies on the notion of slice-blocking set. A set B is a slice-blocking set for a node n when
every slice of n intersects B. The cascading theorem states that if n is intact, Q is a quorum
of n, and U is a superset of Q, then either all intact nodes belong to U , or U slice-blocks
some intact node m /∈ U .

Let us now get back to the example in which a quorum Q of an intact node unanimously
agrees on statement X. We would like that all intact nodes learn the fact “there exists a
quorum of an intact node that unanimously agrees on X”. By the Cascade Theorem, either
all intact nodes already know the fact, or there must be an intact node n that does not know
it but that is slice-blocked by a set of intact nodes that know it. Thus, if we add the rule
that n must accept a fact if slice-blocked by a set that already accepted the fact, then n

newly accepts the fact. This process then repeats until the knowledge of the existence of Q

propagates to the entire intact set.
Finally, we must also be sure that malicious nodes cannot use epidemic propagation to

propagate forged facts. This is guaranteed because if n is intact and S slice-blocks n, then S

contains an intact node.

3 Modeling Federated Byzantine Quorum Systems in EPR

In this section, we describe the first-order theory of Federated Byzantine Quorum System.
This is the model we use in our proofs of safety and liveness (the proofs themselves are not
described in detail in this paper).

3.1 Enabling Decidable Reasoning
We craft the FBQS model to meet two constraints: on the one hand, the model must enable
decidable automated reasoning in EPR; on the other hand, the model must accurately
capture the properties that FBQSs have in practice. Our solution is to abstract over some
important aspects of FBQSs to make decidable reasoning possible, while formally verifying
that the model is sound with respect to a more concrete model developed in Isabelle/HOL.
By doing so, we trade off a relatively small manual proof effort in Isabelle/HOL in exchange
for decidable automated reasoning in Ivy.
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To enable decidable reasoning with Ivy, we model FBQSs as a first-order theory consisting
of: a) a set of uninterpreted sorts, b) constants, functions, and relations over those sorts, and
c) first-order axioms that constrain the models of the theory to structures that have properties
sufficient for the balloting protocol to be correct. Moreover, we must use quantifier alternations
and functions carefully, as those will impact our ability to keep protocol verification conditions
in EPR.

A verification condition is in EPR when its sorts are stratified: for every pair of sorts a

and b, say that b depends on a if either a) an existential quantifier on sort b is in the scope of
a universal quantifier on sort a, or b) there is a function symbol of type a1, · · · , an → b with
a = aj for some j ∈ 1 · · ·n; sorts are stratified if the dependencies between sort do not form
any loops or cycles. For example, in the formula ∀x.∃y.P (x, y) where x is of sort a and y is
of sort b and P is a predicate symbol, sort b depends on sort a but the formula is stratified.
However, if both x and y have the same sort, then there is a sort dependency loop and the
formula is not stratified.

Protocol verification conditions are formulas of the form A ∧ I ∧ T ∧ ¬I ′, where A is
the conjunction of the FBQS theory axioms, I is a protocol invariant, T is the protocol’s
transition relation, and I ′ is the post-state version of I. Thus unstratified verification
conditions can arise because of the interaction between axioms, invariants, their negation,
and the protocol’s transition relation. It is thus wise to minimize the use of function symbols
and quantifier alternation when developing the EPR FBQS theory.

In our experience, stratification is nevertheless likely to become an issue during protocol
verification. However, Ivy has modular decomposition features specifically designed to help
keep verification conditions decidable. The process of structuring proof modularly to ensure
decidability is explained in details by Taube et al. [17]. In the case of liveness proofs, prophecy
variables also help keep verification conditions decidable [13].

3.2 The Unique Challenges Posed by FBQSs
Developing an EPR theory of FBQSs is challenging because the notions we presented
in Section 2, such as intact sets, slice-blocking sets, or the cascading theorem, are naturally
second-order concepts. I.e. they are naturally expressed by quantifying over sets. While we
cannot precisely capture the higher-order theory of sets in first-order logic, we can approximate
it by using a first-order uninterpreted sort nset, a membership relation member(N:node,
S:nset), and appropriate axioms.

The full first-order theory of FBQSs appears in Figure 1. We model an arbitrary but
fixed configuration, i.e. an arbitrary set of nodes with arbitrary slices and we consider a
fixed intact set I among those nodes as well as a superset S of I such that S is intertwined
(note that an intact set is inherently intertwined, so there is no inconsistency here). Instead
of modeling slices explicitly, we only model the notions of intact node, intertwined node,
quorum, and slice-blocking set.

Formally, in Figure 1, we introduce an uninterpreted sort node, denoting the set of all
nodes, and an uninterpreted sort nset, denoting the powerset of the set of nodes (lines 1
and 2). Well-behaved, intertwined, and intact nodes are identified by corresponding unary
relations (lines 3 to 5), and quorums of a node are identified by the binary relation quorum_of
(line 7). Finally, the binary relation member (line 6) denotes set membership, and the binary
relation slice_blocking identifies the slice-blocking sets of a node (line 8).

Given those sorts and relations, we obtain the first-order theory of FBQSs using the
following axioms. First, line 9, we assert that intact nodes are intertwined, and that
intertwined nodes are well-behaved. In line 10 and 11, we assert that quorums of well-
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behaved nodes are not empty. Then, line 12 to 15, we define two predicates to identify
quorums of intertwined nodes and quorums of intact nodes. Then, line 16 and 17, we assert
the quorum intersection property of intertwined nodes. Similarly, line 18 and 19, we assert
the quorum intersection property of intact nodes. Line 20 and 21, we assert that if N is intact
and S slice-blocks N, then S contains an intact node. Finally, line 22, we assert that the set
of intact nodes is a quorum.

The conjunction of all the axioms is an EPR formula because the associated quantifier-
alternation graph has a single dependency: sort node depends on sort nset. For example,
lines 16 and 17 in Figure 1, the quorum intersection axiom for intertwined sets creates a
dependency from sort node to sort nset. As explained in Section 3.1, this dependency may
create a quantifier-alternation cycle when the axioms are conjoined with other formulas in
a verification condition, and it is the user’s responsibility to make use of Ivy’s modularity
features to avoid such a cycle when verifying a protocol; this process is explained in [17].

The reader may notice that the Cascade Theorem is missing from the axioms, and instead
is expressed as an axiom schema in Figure 2. The reason is that we could not satisfactorily
express it in first-order logic. The theorem states that if p is a predicate on nodes (i.e.
a set of nodes) and Q is a quorum of an intact node whose intact members unanimously
satisfy p, then either a) all intact nodes satisfy p or b) there exists an intact node N that
does not satisfy p but that is slice-blocked by a set S whose members are exclusively intact
and unanimously satisfy p. While other axioms quantify over a restricted family of sets,
such as quorums or slice-blocking sets, the Cascade Theorem quantifies over all predicates p.
It is thus inherently second-order. Ivy allows to express it as an axiom schema, but Ivy’s
proof automation cannot reason about such a second-order formula. Instead, Ivy allows to
manually instantiate it, substituting p for a concrete predicate, to prove particular invariants.
We use this technique in the termination proof of SCP. Note that, also when instantiating
the Cascade Theorem, we must be careful not to introduce quantifier-alternation cycles.

Together, the axioms appearing in Figure 1 and the axiom schema of Figure 2 form the
first-order theory of Federated Byzantine Quorum Systems.

3.3 Validating the Model
Asserting axioms instead of proving them as properties from basic definitions can be dangerous:
even benign-looking axioms can turn out to be contradictory, e.g. because of a typo, thereby
making any proof relying on them vacuous. To avoid this situation, we ask Ivy to find a
model of the axioms of Figure 1 conjoined with the instantiations of the cascade_thm axiom
schema that we use in the proof. Ivy confirms the existence of a model, which rules out any
contradiction.

Another risk is that, although the axioms are not contradictory, they do not accurately
model FBQSs. For instance, the first-order model abstracts over slices and instead considers
that a node’s quorums are fixed. This is limiting because, in reality, nodes are expected to
change their slices in response to observed failures or changes in how much they trust other
nodes. It is nevertheless interesting to prove that, under the assumption that well-behaved
nodes do not change their slices, SCP is safe and live.

Another issue is that, as we have noted in Section 2, FBQSs have the peculiar property
that, by crafting the slices they advertise, malicious nodes can dynamically influence a
well-behaved node’s notion of quorum. But in our model, the quorums of a well-behaved node
are fixed. This is in fact a form of abstraction. Given a FBQS where well-behaved nodes have
fixed slices and Byzantine nodes can advertise arbitrary slices, we defined its fixed-quorums
counterpart, where we assign to each well-behaved node the set of all quorums that could
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1: type node # the type of nodes; this is an uninterpreted, arbitrary non-empty type
2: type nset # the type of node sets
3: relation well_behaved(N:node)
4: relation intertwined(N:node)
5: relation intact(N:node)
6: relation member(N:node, S:nset) # this is the set membership relation
7: relation quorum_of(N:node, Q:nset)
8: relation slice_blocking(S:nset, N:node)
9: axiom ∀ N. (intact(N) → intertwined(N)) ∧ (intertwined(N) → well_behaved(N))
10 axiom (∃ N . well_behaved(N) ∧ quorum_of(N,Q))
11 → ∃ N . well_behaved(N) ∧ member(N,Q)
12: definition quorum_of_intertwined(Q) =
13: (∃ N. intertwined(N) ∧ quorum_of(N,Q))
14: definition quorum_of_intact(Q) =
15: (∃ N. intact(N) ∧ quorum_of(N,Q))
16: axiom ∀ Q1,Q2. quorum_of_intertwined(Q1) ∧ quorum_of_intertwined(Q2)
17: → ∃ N. intertwined(N) ∧ member(N,Q1) ∧ member(N,Q2)
18: axiom ∀ Q1,Q2. quorum_of_intact(Q1) ∧ quorum_of_intact(Q2)
19: → ∃ N. intact(N) ∧ member(N,Q1) ∧ member(N,Q2)
20: axiom ∀ S. (∃ N. intact(N) ∧ slice_blocking(S,N))
21: → ∃ N2. member(N2,S) ∧ intact(N2)
22: axiom ∃ Q. ∀ N. member(N,Q) ↔ intact(N) ∧ quorum_of(N,Q)

Figure 1 A model of Federated Byzantine Quorum Systems in the EPR fragment of first-order
logic.

possibly arise given arbitrary malicious behavior of Byzantine nodes. Intuitively, in this
new fixed-quorums model, it is harder to achieve consensus because the Byzantine adversary
has more choices of quorums to manipulate. Thus a consensus algorithm that works in the
fixed-quorums model will work in the model in which quorums can be dynamically shaped
by Byzantine nodes.

Finally, we prove in Isabelle/HOL that the fixed-quorums model satisfies all the properties
axiomatized in the first-order model; thus the first-order model is an abstraction of the
fixed-quorums model. We now describe the Isabelle/HOL fixed-quorums model.

The Isabelle/HOL model formalizes FBQSs from the notion of slice. It assumes that
well-behaved nodes have fixed slices, but it accounts for the situation in which malicious
nodes dynamically shape the quorums of well-behaved nodes. To do so, we define a quorum
Q of a node n as a set of nodes such that a) n has a slice included in Q and b) every
well-behaved member of Q has a slice included in Q. Note how this definition of quorum
subtly differs from the one of Section 2. By placing requirements only on well-behaved nodes,
we account for any possible slices that could be advertised by malicious nodes. We then prove
in Isabelle/HOL that all the axioms of the first-order model (Figure 1) and the Cascade
Theorem (Figure 2) hold. This Isabelle/HOL theory is purely definitional (i.e. it does not
use axioms).

There is no mechanically-checked connection between Isabelle/HOL and Ivy, and thus
the best we can do is to carefully check, by hand, that the Ivy axioms correspond to the
properties proved in Isabelle/HOL. Fortunately, the syntax and semantics of first-order
formulas in Isabelle/HOL is very close to that of Ivy. This can be seen by comparing the Ivy
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axiom [cascade_thm] {
function p(N:node):bool
property (∃ Q . quorum_of_intact(Q) ∧ (∀ N . intact(N) ∧ member(N,Q) → p(N)))
→ ((∀ N . intact(N) → p(N))

∨ (∃ N,S . intact(N) ∧ ¬p(N) ∧ slice_blocking(S,N)
∧ (∀ N2 . member(N2,S) → (intact(N2) ∧ p(N2)))))

}

Figure 2 The second-order Cascade Theorem as an axiom schema in Ivy.

axiom schema of Figure 2 with its Isabelle/HOL counterpart appearing in Figure 3.

theorem cascade:
fixes P
assumes "∃ Q . ∃ n . intact n ∧ quorum_of n Q ∧ (∀ n ∈ Q . intact n −→ P n)"
obtains "∀ n . intact n −→ P n" | "∃ n S . intact n ∧ ¬P n
∧ (∀ Sl ∈ slices n . S ∩ Sl 6= {}) ∧ (∀ n ∈ S. intact n ∧ P n)"

Figure 3 The Cascade Theorem in Isabelle/HOL.

4 Related Work

Lokhava et al [7] discuss the Stellar Network in the broader context of global payments; they
also describe at a high level the formal verification effort that is the subject of the present
paper. The purpose of the present paper is to dig into the technical details necessary to
apply this technique to future proofs of BFT protocols. Losa et al. [9] show that FBQSs are
an instance of the more general Personal Byzantine Quorum System model, and we reuse
some of the Isabelle/HOL theories developed for this work.

Other works verify safety properties of BFT consensus protocols using Dafny, Coq, or
Isabelle/HOL. For example, Alturki et al. verify safety properties of Algorand in Coq [2].
Palmskog et al.[15] and Nakamura et al.[11] verify properties of Ethereum’s Casper CBC
in Coq and Isabelle/HOL, respectively. Rahli verifies safety properties of PBFT in the
Velisarios framework [16], which is based on Coq. IronFleet [6] verifies safety and liveness of
a crash-tolerant implementation of Multi-Paxos using Dafny.

Isabelle/HOL, Dafny, and Coq are not restricted by decidable logics, but they lack the
specific features that allow Ivy users to restrict verification conditions to a decidable fragment
and in turn benefit from reliable proof automation. A series of papers describe the different
aspects of decidable reasoning about protocols in Ivy. [14] focuses on modeling and safety
verification of consensus protocols at a high level of abstraction. [3] presents a tool to
synthesize first-order axioms modeling threshold-based quorum systems.[17] present Ivy’s
modularity features, which enable decidable safety verification of more complex protocols
and their implementations. Finally, Ivy’s liveness-to-safety reduction [12] allows decidable
reasoning about liveness properties expressed in LTL. Ivy’s support for prophecy variables [13]
offers an additional tool that helps preserve decidability. In an extended version of this paper,
we plan to present the Ivy proofs of safety and liveness of SCP and compare with the works
cited above.
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Abstract
Blockchain synchronization is one of the core protocols of Tendermint blockchains. In this short
paper, we discuss our recent efforts in formal specification of the protocol and its implementation,
as well as some initial model checking results. We demonstrate that the protocol quality and
understanding can be improved by writing specifications and model checking them.
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1 Introduction

Tendermint is a state-of-the art Byzantine-fault-tolerant state machine replication (BFT
SMR) engine equipped with a flexible interface supporting arbitrary state machines written
in any programming language [2]. Tendermint is particularly popular for proof-of-stake
blockchains, and constitutes a core component of the Cosmos Project [3]. At the heart
of the Cosmos Project is the InterBlockchain Communication (IBC) protocol for reliable
communication between independent BFT SMs; what TCP is for computers, IBC aims to be
for blockchains.

Multiple Tendermint-based blockchains currently run in production on the public Internet
and have for over a year, with new ones launching regularly, carrying billions of dollars of
cumulative value in the market capitalizations of their respective cryptocurrencies. One of
the primary deployments, the so-called Cosmos Hub blockchain, is operated by a diverse set
of 125 consensus forming nodes connected to one another over an open-membership gossip
network consisting of hundreds of other nodes.

Tendermint was the first to apply traditional BFT consensus protocols to blockchain
systems [9]. The core Tendermint BFT consensus protocol constitutes a modern implemen-
tation of the consensus algorithm for Byzantine faults with Authentication from [6] built
on top of an efficient gossiping layer. The latest description of the consensus protocol can
be found in the technical report [4]. Tendermint consensus has been a source of inspiration
for a wide variety of blockchain systems that have followed [15, 5], though few, if any, have
achieved its level of maturity in production.
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Figure 1 A Fastsync execution for a fully unsynchronized node of height 1.

The reference implementation of the Tendermint software is written in Go [14]. Under
the hood, it consists of several fault-tolerant distributed protocols that interact to ensure
efficient operation:

Consensus. Core BFT consensus protocol including the gossiping of proposals, blocks,
and votes.

Evidence. To incentivize consensus participants to follow the consensus protocol (and not
behave faulty), in the proof-of-stake systems, misbehavior is punished by destroying stake.
This protocol gossips evidence of malicious behavior in the form of conflicting signatures.

Mempool. A protocol to gossip transactions, ensuring transactions eventually end up in a
block are distributed to all participants.

Peer Exchange. Gossiping is based on communication only with a subset of the peers.
Managing a list of available peers and selecting the peers based on performance metrics
is done by this protocol.

Blockchain synchronization (Fastsync). If a peer gets disconnected by the network for some
time, it might miss the most recent blocks in the blockchain. A node that recovers from
such a disconnection uses the blockchain synchronization protocol called Fastsync to learn
blocks without going through consensus.

We are conducting a project to formally specify and model check these protocols. The
first protocol we considered was the blockchain synchronization protocol called Fastsync.
Specifications can be found in English [10] and TLA+ [11].

Fastsync. A full node that connects to a Tendermint blockchain needs to synchronize its
state to the latest global state of the network. One way to achieve this is to update its local
copy of the blockchain and replay all transactions, using Fastsync: initially, the node has a
local copy of a blockchain prefix and the corresponding application state that may be out
of date. The node queries its peers for the blocks that were decided on by the Tendermint
blockchain since the time the full node was disconnected from the system. After receiving
these blocks, the protocol executes the transactions that are stored in the blocks, in order to
synchronize to the current height of the blockchain and the corresponding application state.

Figure 1 shows a typical execution of the Blockchain Synchronization protocol. In this
execution, a new node connects to two full nodes: a correct peer and a faulty peer. The
node requests the blockchain heights of the peers by issuing statusReq. Once a peer replies
with its height, e.g., with statusRes(10), the node can request for a block i by sending the
message blockReq(i). In our example, the correct peer receives the request blockReq(1) for
block 1 and replies with the message blockRes(1) that contains the block. In a Tendermint
blockchain, the commit for block (signed votes messages) h is contained in block h+1, and
thus a node performing Fastsync must receive two sequential blocks before it can verify fully
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Figure 2 Concurrent threads of execution in the Fastsync implementation [13].

the first one. If verification succeeds, the first block is accepted; if it fails, both blocks are
rejected, since it is not known which block was faulty. When the node rejects a block, it
suspects the sending peer of being faulty and evicts this peer from the set of peers. The
same happens when a peer does not reply within a predefined time interval. In our example,
the faulty peer is evicted, and the node finishes synchronization with the correct peer.

The above example may produce an impression that it is easy to specify and verify
correctness of Fastsync. (The authors of this paper thought so.) By writing several protocol
specifications in English and TLA+ and by running model checkers, we have found that the
specifications, in particular in the presence of faulty peers, are intricate.

2 Architecture

The most recent implementation of the Fastsync protocol, called V2, is the result of significant
refactoring to improve testability and determinism, as described in the Architectural Decision
Record [13]. In the original design, a go-routine (thread of execution) was spawned for each
block requested, and was responsible for both protocol logic and network IO. In the V2
design, protocol logic is decoupled from IO by using three concurrent threads of execution: a
scheduler, a processor, and a demuxer, as per Figure 2. Rounded-corner rectangles represent
concurrent threads that exchange the events that are depicted by rectangles on the edges
between threads.

The demuxer acts as an internal bridge: it is responsible for translating between internal
events and network IO messages, and for routing events between components. Both the
scheduler and processor are structured as finite state machines with input and output events.
Input events are received on an unbounded priority queue, with higher priority for error
events. Output events are emitted on a blocking, bounded channel. Network IO is handled
by the Tendermint p2p subsystem, where messages are sent in a non-blocking manner.

The IO component is responsible for exchanging (sending and receiving) Fastsync protocol
messages with peers. There is one send and one receive routine per peer (denoted Receive
and sendRoutine on Figure 2, respectively).
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The scheduler contains the business logic for tracking peers and determining which block
to request from whom. The scheduler receives relevant protocol messages from peers (for
example bcBlockResponse and bcStatusResponse), but also internal events that are the
result of the block processing in the processor (the events carry the information of whether
a block was successfully processed or there was an error). The scheduler schedules block
requests by emitting internal events (scBlockRequest) and also informs the processor about
internal processing, for example, when block response is received (scBlockReceived) or if
there is an error in peer behaviour (scPeerError).

The processor handles the computationally expensive block processing, including verifica-
tion of consensus signatures and execution of all transactions. It manages the block store
(denoted Store on Figure 2) and interacts with the Tendermint block execution component
(denoted BlockState). Furthermore, it informs the scheduler whether a block processing was
successful (pcBlockProcessed) or it has led to an error (pcBlockVerificationFailure).

Once the Fastsync protocol terminates, this is signaled to the Tendermint consensus
component (denoted ConsensusReactor) with a trySwitchToConsensus event.

3 Specifications in English and TLA+

Structured Specification in English. We start our formalization by a structured English
specification [10], that consists of four parts:
1. Blockchain. Formalization of relevant properties of the blockchain and its blocks.
2. Sequential problem statement. Parts of the sequential safety specification read as follows:

“Let bh be the height of the blockchain at the time Fastsync starts. When the
protocol terminates, it outputs a list of all blocks from its initial height to some
height terminationHeight ≥ bh− 1”. (Fastsync cannot synchronize to the maximum
height bh as in Tendermint, verification of block at height h requires the commit
from the block at height h + 1.)

This specification is sequential, as it ignores that the blockchain is implemented in a
distributed system, in which validators may be faulty. Even if they are correct, they
locally have prefixes of different lengths, so that bh is not clearly defined a priori.

3. Distributed aspects. Here we introduce the computational model and the refinement of
the problem statement. For instance, the above translates to:

“Let maxh be the maximum height of a correct peer to which the node is connected
at the time Fastsync starts. If the protocol terminates successfully, it is at some
height terminationHeight ≥ maxh − 1.”

4. Distributed protocol. Specification of the protocol, where we describe inputs, outputs,
variables, and functions used by the protocol. We specify functions mainly by precon-
ditions, postconditions, and error conditions. Further, we provide invariants over the
protocol variables. These inform both the implementation and the verification effort.

Specifications in TLA+. The structure of the English specification already highlighted
interesting properties of the protocols and pointed to some issues. As it is written in natural
language, the English specification is ambiguous. To eliminate the ambiguities, we have
written three TLA+ specifications, which focus on different aspects of the protocol and its
architecture:
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High-level specification (HLS). This specification contains the minimal set of interactions
in the synchronization protocol. Its primary purpose is to highlight safety and termination.
HLS was mainly written by the researchers.
Low-level specification (LLS). While HLS captures the distributed protocol, there was a
significant gap between HLS and the implementation. For instance, the implementation
uses additional messages and contains detailed error codes, which are missing in HLS. The
low-level specification is much closer to the implementation, and it was mainly written
by distributed system engineers.
Concurrency specification (CRS). As discussed above, the V2 implementation utilizes
several threads that communicate via queues. To formally capture this structure, we
wrote a specification that models threads and message queues.

We discuss the modeling assumptions of HLS [11], which builds the basis for our model
checking work discussed in Section 4. (1) The node starts with a finite set of peers, which can
shrink, when the node suspects peers of being faulty. This set is partitioned in two subsets:
correct and faulty. (2) The blockchain can grow up to a fixed height. By fixing the parameters
of (1) and (2), we run finite-state model checking with tlc [8] and Apalache [7, 1]. We model
the distributed system as two components: the node and its peers. These two components
communicate via two variables: outMsg that keeps an output message from the node to a
peer, and inMsg that keeps an input message from a peer to the node; both variables may
be set to None, indicating that there is no message. The components alternate their steps:
The odd turns belong to the node, whereas the even turns belong to the peers.

This approach is simple but powerful. On one hand, it dramatically decreases the state
space, as there are no queues, and alternation produces fewer states than disjunction. On
the other hand, it does not decrease precision, as the peers consume and produce message
at a high degree of non-determinism. Moreover, this approach allows us to easily formulate
fairness in the system as weak fairness over the variable turn, which encodes the scheduled
component.

Finally, V2 relies on several timeouts to guarantee termination. In TLA+ specifications,
we simply model timeouts with non-determinism and weak fairness.

4 Model Checking with TLC and Apalache

While developing TLA+ specifications, we were using TLA+ Toolbox and the tlc model
checker [8]. We also checked the safety properties with the new symbolic model checker
Apalache [7, 1]. So far, we have checked the specifications for tiny parameters such as
1–3 peers and small Blockchain heights1. Table 1 summarizes the results and running times
of tlc and Apalache. A central property is the protocol’s termination:

wfturn(FlipTurn)⇒ �(state = “finished”) (Termination)

1 The original protocol specification in TLA+ is available in the main branch: https://github.com/
informalsystems/tendermint-rs/tree/master/docs/spec/fastsync. The refined protocol specifica-
tion was located in a pull request at the moment of writing (July 23, 2020): https://github.com/
informalsystems/tendermint-rs/pull/466. After peer-review of the updates, the refined specification
will be merged into the main branch.
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In the early experiments, we did not find violations of this property, as tlc did not
finish its exhaustive search. However, later, after refining the specification, tlc reported a
counterexample at depth 7, which is indicated with [7]=7 in Table 1. The refined termination
property looks as follows:(

wfturn(FlipTurn)

∧ �(inMsg.type = “syncT imeout” ∧ blockPool.height ≤ blockPool.syncHeight)
)

⇒ �(state = “finished”) (TerminationByTO)

A global timeout guarantees that the protocol terminates, no matter what happens. tlc
did not report liveness violations of TerminationByTO up to depth 14, which is indicated with
[3]<14 in Table 1. However, the tlc search was not exhaustive, as we have terminated the
model checker after 24 hours. We did not check liveness with Apalache, as it only supports
safety at the moment. The more interesting property is “synchronization”, whose intuitive
meaning is that when Fastsync terminates, it has reached the height of the blockchain. Let
us formalize this as Sync1: To see that our modeling is precise, let us start with a property
we know to be slightly wrong, namely, when the protocol finishes, it reaches the maximum
height among the heights of the correct peers, i.e.,

state = “finished”⇒ blockPool.height ≥ MaxCorrectPeerHeight(blockPool) (Sync1)

The model checkers report counterexamples. One reason is that to verify a block h, one
needs the commit signatures from block h + 1. We also observe that we do not require that
the node that runs Fastsync needs to be connected to correct peers. Hence, we fix it in Sync2
by stating that height MaxCorrectPeerHeight(blockPool) − 1 should be reached when the
node is connected to correct peers. This property also fails. This time we observe that a
global timeout – that guarantees Termination – may terminate Fastsync before it has reached
the maximal height. We add a precondition for “no timeout”, and call the property Sync3.
Neither tlc, nor Apalache produce a counterexample up to computation depth 15 and 21,
respectively.

The following two properties might appear to be intuitively correct, but the model
checkers produce counterexamples. SyncFromCorrect states that the accepted blocks originate
only from the correct processes. This property fails, as it does not consider that faulty peers
may behave correct in an execution prefix (before they show faulty behavior). Thus, the
initial intuition fails. CorrectNeverSuspected states that the correct peers are never removed
from the peer set. This would be a desirable property, but the latest implementation V2
does not guarantee it.

5 Conclusions

We approach this work with a process-oriented goal in mind: By Verification-Driven De-
velopment [12] we understand a design process for distributed systems that makes it easier
to test and verify the software. The re-design of the Fastsync protocol that resulted in a
decomposition into state machines should be understood under this aspect. The design docu-
ments, namely the English and the TLA+ specifications, are artifacts of this design process,
and are means of communication between researchers, software engineers, and verification
engineers. The structured English specification strikes a balance between mathematical
rigor and readability. It serves as the base (i) for formal verification efforts in TLA+ that
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Table 1 Model checking results for tlc and Apalache against the high-level specification for
the following parameters: 1 correct peer, 1 faulty peer, 4 blocks (Apple MacBook Pro 2019). The
symbols in “result” are: found a bug 7, and no bug up to given length [3].

Property TLC (6 CPUs, 13 GB) APALACHE (1 CPU)

result time #states result time

Sync1 [7]=5 28s 1.1M [7]=5 16s
Sync2 [7]=5 28s 1.1M [7]=5 16s
Sync3 [3]<15 TO 875M [3]<21 1h25m
Termination [7]=7 7m25s 2.9M not supported
TerminationByTO [3]<14 TO 461M not supported
SyncFromCorrect [7]=9 8m34s 4.5M [7]=9 1m23s
CorrectNeverSuspected [7]=3 4s 126K [7]=3 9s

will give precise semantics, and (ii) for implementations. The annotations with invariants,
preconditions, and postconditions are very helpful for the software engineers to guide the
implementation.

The formalization also led to a better understanding of the liveness properties that we
expect and want from blockchain synchronization protocols. It also improved the understand-
ing of the discrepancies between the current implementations (Fastsync V0, V1, and V2). We
have found several liveness issues that come from unexpected behavior of faulty peers. For
instance, rather than reporting bad blocks, faulty peers may be very slow in reporting good
blocks. If they report them slower than the blockchain grows, but fast enough to not lead to
a timeout at the node, V2 may never terminate. This highlights that a vital requirement had
not been explicitly captured before, namely, a relationship between timeout duration, block
generation rate, and message end-to-end delays. We made these requirements explicit as part
of the English specification; they constitute timing assumptions upon which the protocol is
based. As this is closely related to real-time, we are not able to capture and reproduce this
with TLA+. However, TLA+ counterexamples and the English specifications helped us in
isolating this scenario.

For safety verification, we can replace a timeout by a non-deterministic event that may
occur at any time. For liveness we have to treat the relation of timeouts to message delays
and processing times precisely. The extensive use of timeouts in the current implementation
poses a challenge to liveness verification. Some of our current research challenges are therefore
timeouts, and we are interested in answering the following questions: How to limit timeouts
in the implementation? What is the most effective way to use timeouts in the implementation
in order to stay precise in the verification? How can we capture the relation of the (local)
timeouts to (global) message delays in model checking? We keep these challenges for future
work.

Model checkers and the produced counterexamples were quite helpful in understanding
and refining the protocol properties. After refining the protocol, which results in larger state
space, we found that tlc could not reach error states within the reasonable time frame of
one hour. However, Apalache was still finding errors within 10 minutes, which was still
interactive enough for us. As future work, we also plan to find an inductive invariant and
prove its correctness with Apalache (for fixed but larger parameters).
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Abstract
The main incentives of blockchain technology are distribution and distributed change, consistency,
and consensus. Beyond just being a distributed ledger for digital currency, smart contracts add
transaction protocols to blockchains to execute terms of a contract in a blockchain network. Inter-
blockchain (IBC) protocols define and control exchanges between different blockchains.

The Isabelle Infrastructure framework has been designed to serve security and privacy for IoT
architectures by formal specification and stepwise attack analysis and refinement1. A major case study
of this framework is a distributed health care scenario for data consistency for GDPR compliance.
This application led to the development of an abstract system specification of blockchains for IoT
infrastructures.

In this paper, we first give a summary of the concept of IBC. We then introduce an instantiation
of the Isabelle Infrastructure framework to model blockchains. Based on this we extend this model
to instantiate different blockchains and formalize IBC protocols. We prove the concept by defining
the generic property of global consistency and prove it in Isabelle.
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1 Introduction

Inter-blockchain (IBC) protocols is a concept driven by industry. It serves to provide “reliable
and secure communication between deterministic processes” [24] that run on independent
blockchains or distributed ledgers. Practical application of IBC are for example the Cosmos
Hub [5] “the first of thousands of interconnected blockchains” with the purpose of facilitating
transfers between blockchains.

A formal specification of IBC within a Higher Order Logic theorem prover like Isabelle
has the advantage that it provides a very rigorous model of the IBC concepts enabling
mechanically verified properties. In principle, from such a formalization, executable code
into many standard programming languages like Haskell or Scala can be generated. However,
such code generation would always be understood to provide only reference implementations.
Moreover, the major insights from specifying a practice oriented concept like IBC is that

1 In this paper we do neither illustrate attack tree analysis nor security refinement.
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the formal specification is mainly useful to provide a more abstract yet more precise model
that carefully picks out the central concepts used within the application, here IBC. In doing
this, the used methodology, here Isabelle, can provide as a framework existing work to
immediately support the IBC specification. We rely heavily on the Isabelle Infrastructure
framework [15] as an existing instantiation of Isabelle/HOL (which we will simply refer to
as Isabelle within this paper). This framework offers a range of predefined concepts like
Kripke structures and CTL, as well as state transition relations, actors, and policies that
can be readily instantiated to the current application of IBC. Besides extracting a more
abstract but precise specification of IBC, the resulting scientific advantage is to show that
as a product of this process it becomes feasible to lay open crucial basic properties that
result from the application domain (blockchain security). As the main result of this kind, we
formally establish a global consistency property, define it formally on our IBC model and
prove a consistency preservation theorem that shows the safety of our formal IBC semantics.

The contributions of this paper are
summarizing the main features of IBC into a logical conceptual model,
building a formal model of IBC in Isabelle as an instance of the Isabelle Infrastructure
framework but extending it with sets of infrastructures,
illustrating the feasibility of the formal model by expressing a global consistency property
and formally proving it in Isabelle.

The last point seems to suggest that IBC can be seen as a “blockchain of blockchains”.

1.1 Inter-blockchain protocols (IBC)
In this section, we summarize the main concepts of the IBC following the practice-oriented
description [24]: we refer to the relevant section of the principal documentation[24], giving
precise reference to section numbers. Figure 1 is a copy an overview architectural sketch
provided by the main specification [24].

Figure 1 Architecture of IBC[24].

One of the main abstractions used in IBC comprising its architectural description is the
actor [24, Section 1.1.1] which is the same as a user. Instances given to exemplify this are: a
human end user, a module or smart contract running on a blockchain, or an off-chain relayer
process. This relayer process represents the logical core of the IBC. It is a process that is
outside any of the blockchains (”off-chain” [24]) that is responsible for “relaying” IBC data
packets between blockchains. It can scan their states and submit data.

The notion of state machine is very central in IBC: the terms machine, chain, blockchain, or
ledger are used interchangeably [24, Section 1.1.2] to denote a state machine that implements
part or all of the IBC. In using the Isabelle Infrastructure framework – whose core part is
the formal definition of a state machine semantics through a state transition relation – we
follow this important architectural spirit.
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Consensus is not explicitly defined but somewhat implicitly by the notion of consensus
algorithm “the protocol used by the set of processes operating a distributed ledger to come
to agreement on the same state” [24, 1.1.5] where “Consensus state” is defined next as
information about the “state of a consensus algorithm” [24, 1.1.6]. We can safely understand
consensus to mean the agreement of the actors on the next state with respect to the state
transition relation.

1.2 Isabelle Infrastructure framework

The Isabelle Infrastructure is built in the interactive generic theorem prover Isabelle/HOL
[19]. As a framework, it supports formalization and proof of systems with actors and policies.
It originally emerged from verification of insider threat scenarios but it soon became clear
that the theoretical concepts, like temporal logic combined with Kripke structures and a
generic notion of state transitions were very suitable to be combined with attack trees into a
formal security engineering process [3] and framework [10].

Figure 2 gives an overview of the Isabelle Infrastructure framework with its layers of
object-logics – each level below embeds the one above showing the novel contribution of
this paper in blue on the top. The formal model of IBC in Isabelle uses the Isabelle

Kripke structures & CTL

Attack trees

Refinement

Infrastructures 
for IBC

Figure 2 Generic Isabelle Infrastructure framework applied to Inter-blockchain protocols (IBC).

Infrastructure framework instantiating it by reusing its concept of actors for users, processes
running on blockchains, or relayers running off-chain. Technically, an Isabelle theory file
IBC.thy builds on top of the theories for Kripke structures and CTL (MC.thy), attack trees
(AT.thy), and security refinement (Refinement.thy). Thus all these concepts can be used
to specify the formal model for IBC, express relevant and interesting properties and conduct
interactive proofs (with the full support of the powerful and highly automated proof support
of Isabelle). The IBC theory itself is an adaptation of the Infrastructure theory of the Isabelle
Infrastructure framework and reuses (or slightly adapts) existing concepts. In the remainder
of this paper, we introduce the model that we conceived for IBC. All Isabelle sources are
available online [12].
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2 IBC in Isabelle

2.1 Overview
In the following, we give a detailed description of the central parts of the formal Isabelle
theory of IBC, pointing out and motivating special design decisions. In addition to the short
general intro to the Isabelle Infrastructure framework of the previous section, we provide
explanations of all used Isabelle specific specification concepts on the fly.

The IBC is supposed to work for any type of blockchain, for example, Bitcoin or Ethereum,
therefore the formal model abstracts from specific details of a specific blockchain. Similar to
the IBC specification [24], the Isabelle formalization focuses on the central IBC concepts
as depicted in Figure 1: ledgers, actors or modules, respectively, and the relayer process
interacting via the IBC protocol with the modules within the distributed ledgers. In our
formal model based on the Isabelle Infrastructure framework, we represent each blockchain
as an infrastructure containing nodes on which the modules (actors) are running. Data items
are assigned to actors. The ledgers of each infrastructure keep control over the data items.
That is, a ledger is a unique assignment that controls the access to a data item and keeps a
record of where the data item resides within this and other blockchains. The IBC enables
just that: a unified view over a whole range of heterogeneous blockchains that exchange data
consistently. Therefore, our formal model goes beyond the usual application of the Isabelle
Infrastructure framework, e.g. [8], and considers sets of infrastructures (representing different
blockchains).

2.2 Ledgers
Actors are a general concept provided by the Isabelle Infrastructure framework and can be
used directly to represent the actor concept in IBC.
typedecl actor
type_synonym identity = string
consts Actor :: string ⇒ actor

Similar to the general Infrastructure framework, actors can perform actions. However, in
this instantiation to IBC we redefine the actions representing the central activities of the
relayer scanning each blockchain’s state and submitting transactions (see Section 1.1).
datatype action = scan | submit

The Decentralized Label Model (DLM) [17] allows labeling data with owners and readers.
We also adopt this definition of security labeled data as already formalised in [10]. Labeled
data is given by the type dlm × data where data can be any data type.
type_synonym data = string
type_synonym dlm = identity × identity set

One major achievement of a blockchain is that it acts like a distributed ledger, that is,
a global accounting book. A distributed ledger is a unique consistent transcript keeping
track of protected data across a distributed system. In our application, the ledger must
mainly keep track of where the data resides for any labeled data item. To express the system
requirement that processing may not change the security and privacy labels of data, we
introduce a type of security and privacy preserving functions.
typedef label_fun = {f :: dlm × data ⇒ dlm × data.

∀ x. fst x = fst (f x)}
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We formalize a ledger thus as a type of partial functions that maps a data item to a pair of
the data’s label and the set of locations where the data item is registered. Since all function
in HOL are total, we use a standard Isabelle way of representing partial functions using the
type constructor option. This type constructor lifts every type α to the type α option
which consists of the unique constant None and the range of elements Some x for all x∈ α.
type_synonym ledger = data ⇒ (dlm × node set)option

Since the type ledger is a function type, it automatically constrains each data item d in its
domain to have at most one range element Some(l,N), that is, at most one valid data label
l of type dlm and a list of current blockchain nodes N at which this data item is transcribed.
lemma ledger_def_prop: ∀ lg:: ledger. ∀ d:: data.

lg d = None | (∃! l. (∃! L. lg d = Some(l, L)))

In an earlier application of the Isabelle Infrastructure framework to IoT security and
privacy[15], we established a formal notion of blockchain. However, there we used a more
explicit logical characterization in an Isabelle type definition which creates additional proof
effort and makes formulas more complex. The current representation of the ledger type
as a partial function type is more concise and implicitly carries the requested uniqueness
properties. Note that the defining property of the ledger type is now proved from the used
type constructors by the above lemma instead of being specified into the type as in the earlier
formalization [15].

2.3 Infrastructures as blockchains
The datatype sc_fun formalizes any action that is sent or received between different block-
chains and may have effects on the labeled data. Therefore the inputs to the send and receive
messages are two identities of sender and receiver as well as the dlm label and the concerned
data.
datatype sc_fun = Send identity × identity × dlm × data

| Receive identity × identity × dlm × data

In addition to specifying the potential types of smart contracts, we need to provide a way
of keeping track of the transactions that are executed within a blockchain. To this end,
we define the following type of transaction_record which is a list of all executed smart
contracts.
type_synonym transaction_record = sc_fun list

The central component that builds the system state is an infrastructure. Since we use
the Isabelle Infrastructure framework, we consider blockchains as infrastructures. The
essential architecture of such an infrastructure is a simple graph of blockchain nodes on
which the processes (actors) reside given as the first component (node ×node)set of the
below datatype igraph. Besides this basic architecture, this infrastructure graph also stores
the other components of the blockchain. The second input is a function that assigns a set
of actor identities to each node in the graph representing the current location of the actors.
The next input associates actors to a pair of string sets by a pair-valued function whose first
range component is a set describing the credentials in the possession of an actor and the
second component is a set defining the roles the actor can take on. An infrastructure graph
also allows assigning a string to each location to represent some current state information of
that location. Finally, the ledger is added as a separate component as well as the transaction
record.
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datatype igraph =
Lgraph (node × node)set

node ⇒ node set
actor ⇒ (string set × string set)
node ⇒ string
ledger
transaction_record

Corresponding projection functions for each of the components of an infrastructure graph
are provided. They are omitted here for brevity but are available in the online version [12]);
they are named gra for the actual set of pairs of locations, agra for the actor map, cgra for
the credentials, and lgra for the state of a location ledgra for the ledger component in the
graph and trec for the transaction record. Infrastructures contain an infrastructure graph
and a policy given by a function that assigns local policies over a graph to all locations of
the graph.

datatype infrastructure =
Infrastructure igraph

[igraph , location] ⇒ apolicy set

There are projection functions graphI and delta when applied to an infrastructure return
the graph and the policy, respectively.

Policies specify the expected behaviour of actors of an infrastructure. We define the
behaviour of actors using a predicate enables: within infrastructure I, at location l, an
actor h is enabled to perform an action a if there is a pair (p,e) in the local policy of l –
delta I l projects to the local policy – such that action a is in the action set e and the
policy predicate p holds for actor h.

enables I l h a = ∃ (p,e) ∈ delta I l. a ∈ e ∧ p h

Compared to the applications of the Isabelle Infrastructure framework, e.g. [8], we do not
make use of policies to model the constraints of our application. However different to previous
applications, the IBC challenges the framework in other ways leading to slight extensions.

2.4 Relayer and set of blockchains
To model the relayer, we also use infrastructures: the relayer is a distinguished infrastructure.
It could be thought of as another distributed application with various relayer processes to
avoid bottlenecks but for simplicity, we assume that there is one specific actor ”relayer”
that resides on a specific node in the relayer infrastructure.

We express protocols as traces of execution steps of IBC transaction steps, that is,
lists of smart contracts sc_fun (see previous section). Using traces of execution steps to
represent protocols, follows the classical method of the inductive approach to security protocol
verification originally devised by Paulson [22] and already successfully used for the Isabelle
Infrastructure framework, for example, [13] and more recently [11, 9].

datatype ibc_protocol = Protocol sc_fun list set

The datatype blockchainset puts together the IBC protocol as a triple: as the first
element it includes the IBC protocol, the second element is the list of infrastructures where
each element is one blockchain involved in the IBC, and the third element is a single
distinguished infrastructure, the relayer.
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datatype blockchainset = Infs ibc_protocol
infrastructure list
infrastructure

To round off these new datatypes, we provide additional projection functions and constructors.
For a given blockchain Il, the projection trcs Il returns the sc_fun list set representing
the protocol, the projection the_Il returns the list of infrastructures of all involved block-
chains, and relayer Il gives the distinguished infrastructure, the third element, which is
the relayer infrastructure. To facilitate handling of data transactions, we define some update
functions: the function application upd_ld d lN I updates a ledger at the data point d to
now contain the pair lN of a dlm label and a set of nodes of residences of the data. Scaling
this up to the level of infrastructures, the function application upd_Il d lN Il updates all
blockchains in the infrastructure list of the blockchainset Il using the former ledger update
upd_ld. A function replace allows to replace an infrastructure I in a blockchainset Il. See
the online resources [12] for technical details and implementations of these definitions.

2.5 Consensus
The consensus algorithm may be different for each blockchain employed in the IBC. Therefore,
we cannot make any assumptions at the general specification level of the IBC about it. Yet,
we still want to use it in the description of the IBC protocol semantics. Therefore, we apply
a trick: we declare Consensus to be a constant at the level of the specification of the IBC.

consts Consensus :: infrastructure ⇒ blockchainset ⇒ blockchainset

In Isabelle this means that Consensus is a function mapping an infrastructure and a system
state of type blockchain to blockchain but there is no semantics attached to this constant.
The constant is part of the theory IBC.thy and can be used in it like any other defined
element but it has no meaning. However, a semantics can be later attached to it in an
application of the IBC theory to specific blockchains. This could be done in the current
context for example using a definition in a locale [14].

locale ConsensusExample =
fixes cons_algo :: infrastructure ⇒ blockchainset ⇒ infrastructure
defines cons_algo_def: cons_algo I Il = ...
fixes Consensus :: infrastructure ⇒ blockchainset ⇒ blockchainset
defines Consensus_def: Consensus I Il = replace (cons_algo I Il) I Il

The predicate Consensus redefines the semantics within the locale ConsensusExample. The
first locale definition is omitted here for simplicity. We could imagine that it is a description
of a consensus algorithm that can depend on all the state constituents, like actors, nodes, and
policies of the blockchain I but also of the surrounding blockchainset including the relayer
state and the current protocol state. The definition of the constant Consensus lifts the
algorithm to the blockchain by using the replace function defined as part of the infrastructure
for blockchainsets (see Section 2.4 or refer to the Isabelle code [12]).

2.6 IBC state transition semantics
The semantics of the IBC state machines is defined by a state transition relation over
blockchain sets. That is, we define a syntactic infix notation Il → Il’ to denote that
blockchain sets Il and Il’ are in this relation.
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inductive state_transition_in ::
[blockchainset , blockchainset] ⇒ bool "(_ → _)"

The rules of the inductive definition state_transition_in allow the definition of the
intended behaviour of the relayer scanning an arbitrary blockchain (see Section 1.1). The
relayer stores the results in its own transaction record. The following rule scan is the first
of two inductive definition rules defining the transition relation →: if an infrastructure I
is in the blockchainset Il, the actor (process, module) resides at node n in the graph G
of I; R is the relayer and thus enabled to scan. The follow up state Il’ of Il is given by
extending any current protocol trace l using the specially defined function insertp by the
transaction Send(a,b,(a,as), d). Also the relayer’s trace record trec R is extended by
the same transaction.

scan : inbc I Il =⇒ G = graphI I =⇒ a @G n =⇒ n ∈ nodes G =⇒
R = graphI (relayer Il) =⇒ r @R n’ =⇒ n’ @R nodes R =⇒
relrole (relayer Il) (Actor r) =⇒
enables I n (Actor r) scan =⇒
ledgra G d = Some ((a, as), N) =⇒ r ∈ as =⇒
R’ = Infrastructure

(Lgraph (gra R)(agra R)(cgra R)(lgra R)
(( ledgra R)(d := Some((a, as),N)))
(trec R))

(delta (relayer Il)) =⇒
l ∈ trcs Il =⇒ Consensus I Il = Il ’ =⇒
Il ’ = insertp ((Send(a,b,(a,as), d)) # l) (replrel R’ Il)
=⇒ Il → Il ’

Additionally, the relayer can submit data onto an arbitrary blockchain (see Section 1.1). The
second rule submit of → defines its semantics: between the infrastructures I and J which
are both in the blockchain set Il the relayer R can submit data d from an owner a to an
owner b if the ledger component ledgra R of the relayer’s infrastructure R is updated to
the new owner in both blockchains. The update is achieved using the function update :=
of Isabelle’s function theory updating the point d to the new value Some((b, bs), N). In
the construction of the next state blockchainset Il’ the specially defined update operators
mentioned in Section 2.4 are used: replrel for updating the relayer and bc_upd for the
infrastructure list representing the “client” blockchains. Note the latter realizes the consistent
update in both involved infrastructures I and J.

submit : G = graphI I =⇒ inbc I Il =⇒ a @G n =⇒ n ∈ nodes G =⇒
ledgra G d = Some ((a, as), N) =⇒
H = graphI J =⇒ inbc J Il =⇒ b @H n’ =⇒ n’ ∈ nodes H =⇒
ledgra H d = Some ((a, as), N) =⇒
R = graphI (relayer Il) =⇒ r @R n’’ =⇒ n’’ ∈ nodes R =⇒
relrole (relayer Il) (Actor r) =⇒
enables J n’ (Actor r) submit =⇒
r ∈ as =⇒
R’ = Infrastructure

(Lgraph (gra R)(agra R)(cgra R)(lgra R)
(( ledgra R)(d := Some((b, bs),N)))
(trec R))

(delta (relayer Il)) =⇒
Il’ = insertp (Receive(a,b,(a,as),d)# l)

(replrel R’ (bc_upd d ((b,as), N) Il)) =⇒
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Consensus J Il = Il ’
=⇒ Il → Il’

The real advantage of the Isabelle Infrastructure framework comes into play when using
the possibility of instantiation of axiomatic type classes provided by Isabelle. Since state
transitions have been defined by an axiomatic type class in the framework within the theory
for Kripke structures and CTL, we can now instantiate blockchainsets as state and thereby
inherit the entire logic, constructors and theorems.

instantiation blockchainset :: state

3 Global consistency

To illustrate the use of the abstract formal model of IBC presented in this paper, we show
that we can exhibit an important property: global consistency. That is, if the IBC scans and
submits between blockchains it must not introduce inconsistencies.

Expressing this property alone represents a proof of concept since it shows that our IBC
model is detailed enough to capture explicitly the notion of consistent data representation
across different blockchains. Proving the property is a non-trivial contribution (see proof
scripts [12]) that helped exhibiting a range of useful auxiliary definitions and lemmas as we
will highlight in this section when discussing the global consistency theorem. The proofs were
greatly helped by the recent advances in proof automation in Isabelle using sledgehammer [21].
The fact that the property is provable shows that the model and in particular its semantics
conform to the intuition described in [24]. The formalization and proof also highlight the
pros and cons of our model as discussed in the Conclusions in Section 4.

We first define global consistency as the property that the individual ledgers in each
blockchain in an IBC blockchainset agree on the data, that is, they all hold consistent
information about the access control of the data (the first part of type dlm of the ledgra
output (see Section 2.2)) and where the data resides: the set of nodes that are the second
component of the ledgra output.

Global_consistency Il = (∀ I I’. inbc I Il → inbc I’ Il →
(∀ d. (ledgra (graphI I’) d) = (ledgra (graphI I) d)))

The theorem shows that if global consistency holds, then a step of the state transition does
preserve it.

theorem consistency_preservation:
global_consistency Il =⇒ (Il → Il ’) =⇒ global_consistency Il ’

Preservation of global consistency guarantees that any transaction happening within IBC
preserves one consistent view over all data, their access control, and residence. If initially
data is not visible on all blockchains, not all ledgers are equal. However, if eventually data has
traveled across, all ledgers become the same: the blockchainset becomes like one blockchain:
a “blockchain of blockchains”.

4 Conclusions, related work, and outlook

In this paper, we have provided an abstract formal model of the Inter-blockchain protocol
(IBC) [24] as an instantiation of the Isabelle Infrastructure framework. We have detailed the
formal presentation in Isabelle and the extensions to the Isabelle Infrastructure framework,
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most notably by defining sets of (heterogeneous) blockchains including protocols and a
distinguished relayer. The abstraction we conceived for this model has been first validated
by a proof of concept by sketching how the abstract notion of Consensus can be instantiated
by a locale (Section 2.5). Furthermore, we have defined a global consistency property over
blockchainsets proving that our abstraction yields the desired expressivity (Section 3). We
have proved a preservation theorem for global consistency in Isabelle. Summarizing, our
model allows to prove meta-theoretical results but is not too abstract to allow instantiation
onto concrete blockchains and their Consensus algorithms. As a more general thought, the
dealings with global consistency seem to suggest that IBC creates a blockchain of blockchains.

4.1 Related Work
Relevant examples for the investigation of formal support for blockchains and smart contracts
can be found in abundance in the proceedings of the first FMBC workshop [2]. We only
discuss the few most closely related ones from there since others are either focusing on specific
blockchains (unlike the generic IBC we consider) or are differing in the formal approach (not
using theorem provers and thus not addressing the same level of expressivity and assurance).

A range of works formalizes smart contracts typical for the Ethereum virtual machine.
For example, using the K framework [23], the Lem language [7], and F* [6]. We focus here on
the work that has been performed in the K-framework [23]. The K-framework is a semantics
framework enabling to produce executable operational semantics for programming languages.
K also provides tools like parsers, interpreters, model-checkers and program verifiers. It
has been applied to provide a verification environment for the Ethereum Virtual Machine
EVM [20] which is useful for verifying programme modules within Ethereum’s smart contract
systems, for example, Ethereum’s Name Service (ENS) [25].

In comparison to those dedicated verification environments for specific blockchains, like
Ethereum, our formal model strongly abstracts from technical detail. This abstraction is
necessary to accommodate a global view that allows to reason about the communication
between a heterogeneous set of blockchains.

A few works use model checkers and SMT solvers, for example [4]. Deductive verification
platforms like Why3 [11,13] have been also used for smart contracts. Interactive proof
assistants (e.g. Isabelle/HOL or Coq) have been used before for modeling and proving
properties about Ethereum and Tezos smart contracts [1].

Very related is the work by Nielsen and Spitters on Smart Contract Interactions in
Coq [18]. The authors construct a model of smart contracts that allows for inter-contract
communication generalizing over depth-first execution blockchains like Ethereum and breadth-
first execution blockchains like Tezos. They use Coq’s functional language Galina to express
smart contracts. Besides the obvious difference of being a Coq development rather than an
Isabelle development, we address the high level protocol language IBC instead of focusing on
generalized smart contracts.

Maybe even more closely related is the work on the specification of the dedicated security
framework Cap9 in Isabelle [16]. Compared to us it focuses again on the expression of smart
contracts and does not have the inter-blockchain aspect like our IBC.

4.2 Outlook
The global consistency preservation theorem proves the concept of the IBC specification
and also shows that the formalization in itself is a useful experiment: extracting a closed
abstract model of the IBC from the technical specification [24] has immediately produced
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the consistency question. The abstraction allowed to define semantics in which a strong
global consistency theorem could be proved within Isabelle in reasonably short time. It
should be understood that these are first steps that mainly serve to prove the concept
of using the Isabelle Infrastructure framework for advancing the IBC. A clear next step
is to elaborate the sketched application example of Section 2.5 of a concrete blockchain
and its consensus algorithm. A much more challenging next step is to refine the model
by elaborating a more concrete IBC protocol example by instantiation of the ibc_prot
component of the blockchainset type. This would be a fruitful future avenue for applied
research in collaboration with the designers of IBC.

The notions of attack trees and security refinement have not been applied in this ap-
plication of the Isabelle Infrastructure framework but can be seen in other applications, for
example to auction protocols [13], GDPR [8], or IoT security [10]. Nevertheless, the current
application has brought about much improvement on the formalization of the ledger datatype
as well as instantiating the generic state of the framework to sets of infrastructures and
defining their state transition.

The Isabelle Infrastructure framework subsumes the earlier Isabelle Insider framework,
for example [13]. Thus there is the possibility to reason about malicious agents that are in
the group of trusted participants. This could be used to reason about participants that do
not comply to the IBC protocol and in terms of Consensus it would enable reasoning on
Byzantine fault tolerance. Using attack tree analysis and security refinement in a security
engineering cycle [15] could then be used to develop secure IBC solutions.

References
1 S. Amani, M. Bégel, M. Bortin, and M. Staples. Towards verifying ethereum smart contract

bytecode in isabelle/hol. In Proceedings of the 7th ACM SIGPLAN International Conference
on Certified Programs and Proofs, pages 66–77. ACM, 2018.

2 N. Catano, D. Marmsoler, and B. Bernardo, editors. Pre-proceedings of the First Workshop on
Formal Methods for Blockchains, FMBC, 2019. Selected papers to appear in Springer LNCS.
URL: https://sites.google.com/view/fmbc.

3 CHIST-ERA. Success: Secure accessibility for the internet of things, 2016.
http://www.chistera.eu/projects/success.

4 Sylvain Conchon, Alexandrina Korneva1, and Fatiha Zaidi. Verifying smart contracts with
cubicle, 2019. Selected papers to appear in Springer LNCS. URL: https://sites.google.
com/view/fmbc.

5 Cosmos. Cosmos hub, 2020. accessed 23.1.2020. URL: https://hub.cosmos.network/master/
hub-overview/overview.html.

6 I. Grishchenko, M. Maffei, and C. Schneidewind. A semantic framework for the security
analysis of ethereum smart contracts. In L. Bauer and R. Ksters, editors, Principles of Security
and Trust, Lecture Notes in Computer Science, pages 243–269. Springer, 2017.

7 Y. Hirai. Defining the ethereum virtual machine for interactive theorem provers. In M. Brenner,
K. Rohloff, J. Bonneau, A. Miller, P. Y. Ryan, V. Teague, A. Braccialiand M. Sala, F. Pintore,
and M. Jakobsson, editors, Financial Cryptography and Data Security, Lecture Notes in
Computer Science, pages 520–535. Springer, 2017.

8 F. Kammüller. Formal modeling and analysis of data protection for gdpr compliance of iot
healthcare systems. In IEEE Systems, Man and Cybernetics, SMC2018. IEEE, 2018.

9 F. Kammüller. Attack trees in isabelle extended with probabilities for quantum cryptography.
Computer & Security, 87, 2019. URL: //doi.org/10.1016/j.cose.2019.101572.

10 F. Kammüller. Combining secure system design with risk assessment for iot healthcare systems.
In Workshop on Security, Privacy, and Trust in the IoT, SPTIoT’19, colocated with IEEE
PerCom. IEEE, 2019.

FMBC 2020

https://sites.google.com/view/fmbc
https://sites.google.com/view/fmbc
https://sites.google.com/view/fmbc
https://hub.cosmos.network/master/hub-overview/overview.html
https://hub.cosmos.network/master/hub-overview/overview.html
//doi.org/10.1016/j.cose.2019.101572


11:12 IBC in Isabelle

11 F. Kammüller. Qkd in isabelle – bayesian calculation. arXiv, cs.CR, 2019. URL: https:
//arxiv.org/abs/1905.00325.

12 F. Kammüller. Isabelle infrastructure framework for ibc, 2020. Isabelle sources for IBC
formalisation. URL: https://github.com/flokam/IsabelleSC.

13 F. Kammüller, M. Kerber, and C.W. Probst. Towards formal analysis of insider threats for
auctions. In 8th ACM CCS International Workshop on Managing Insider Security Threats,
MIST’16. ACM, 2016.

14 F. Kammüller, M. Wenzel, and L. C. Paulson. Locales – a sectioning concept for Isabelle.
In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery, editors, Theorem Proving
in Higher Order Logics, 12th International Conference, TPHOLs’99, volume 1690 of LNCS.
Springer, 1999.

15 Florian Kammüller. A formal development cycle for security engineering in isabelle, 2020.
arXiv:2001.08983.

16 Mikhail Mandrykin1, Jake O’Shannessy, Jacob Payne, and Ilya Shchepetkov. Formal specifica-
tion of a security framework for smart contracts, 2019. Selected papers to appear in Springer
LNCS. URL: https://sites.google.com/view/fmbc.

17 A. C. Myers and B. Liskov. Complete, safe information flow with decentralized labels. In
Proceedings of the IEEE Symposium on Security and Privacy. IEEE, 1999.

18 J. Botsch Nielsen and B. Spitters. Smart contract interactions in coq, 2019. Selected papers
to appear in Springer LNCS. URL: https://sites.google.com/view/fmbc.

19 T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

20 Daejun Park, Yi Zhang, Manasvi Saxena, Philip Daian, and Grigore Roundefinedu. A formal
verification tool for ethereum vm bytecode. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2018, pages 912–915, New York, NY, USA, 2018. Association for
Computing Machinery. doi:10.1145/3236024.3264591.

21 Lawrence Paulson and Jasmin Blanchette. Three years of experience with sledgehammer,
a practical link between automatic and interactive theorem provers. Proceedings of the 8th
International Workshop on the Implementation of Logics, February 2015. doi:10.29007/tnfd.

22 Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols. Journal of
Computer Security, 6(1-2):85–128, 1998. URL: http://iospress.metapress.com/content/
5wlu8p2am1du051d/.

23 Grigore Rosu. Specifying languages and verifying programs with k. 2013 15th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing, pages 28–31, 2013.

24 The IBC Specification Team. The interblockchain communication protocol, 2020. 4th May
2020 — 1.0.0-rc5. URL: https://github.com/cosmos/ics/blob/master/spec.pdf.

25 Duy Minh Vo. Verification of Smart Contracts using the K-framework. PhD thesis, Technische
Universität Berlin, 2018.

https://arxiv.org/abs/1905.00325
https://arxiv.org/abs/1905.00325
https://github.com/flokam/IsabelleSC
http://arxiv.org/abs/2001.08983
https://sites.google.com/view/fmbc
https://sites.google.com/view/fmbc
https://doi.org/10.1145/3236024.3264591
https://doi.org/10.29007/tnfd
http://iospress.metapress.com/content/5wlu8p2am1du051d/
http://iospress.metapress.com/content/5wlu8p2am1du051d/
https://github.com/cosmos/ics/blob/master/spec.pdf

	p000-Frontmatter
	Preface

	p001-Rosu
	p002-Hajdu
	Introduction
	Background
	Specification of Events
	Verification
	Conclusion

	p003-Schett
	Introduction
	Approach
	Find Optimizations
	Generate Rules

	Case Study: EVM bytecode
	Find Optimizations with ebso
	Generate Rules with sorg
	Coordinate with ppltr

	Evaluation
	Related and Future Work
	Conclusion

	p004-SantosReis
	Introduction
	Tezla
	Push-like instructions and stack values consumption
	Branching and deconstructions
	Loops, maps and iterations
	Parameter and Storage

	Building static analyses for Tezla smart contracts
	SoftCheck
	Constructing a Tezla Representation of a Contract
	Sign Detection: An Example Analysis
	Experimental Results and Benchmarking

	Related Work
	Conclusion
	Future Work


	p005-Boyd
	Introduction
	Background
	Hash time lock contract
	About Tamarin

	Tamarin Blockchain model
	Simplification
	Tamarin blockchain model rules

	Model HTLC in Tamarin
	HTLC rules

	Tamarin Security analysis
	Preliminaries
	Security claim
	Discussion on property 3

	Analysis of the old version of HTLC
	Conclusion

	p006-Lochbihler
	Introduction
	Operations on Authenticated Data Structures
	Modularly Constructing Forests of Authenticated Data Structures
	Blindable position
	Example: Canton transaction trees
	Composition
	Inductive generalization for least fixpoints
	Concrete Merkle functors
	Case study: Merkle rose trees and Canton's transactions

	Creating Inclusion Proofs
	Related Work
	Conclusion and Future Work

	p007-Rupic
	Introduction
	Formal Model of Bitcoin Transactions and Blockchain
	The Transaction Model
	Signature Verification and Output Redeeming

	Blockchain Model and Validity
	Formally Verified Blockchain Properties
	Limitations
	Related Work
	Conclusions and Future Work

	p008-Boss
	Introduction
	The No-Inflation Property
	The Addition-With-Zero Property
	Conclusion and Future Work

	p009-Losa
	Introduction
	Solving Consensus in a Federated Byzantine Quorum System
	Intact and Intertwined Sets
	Termination and the Cascade Theorem

	Modeling Federated Byzantine Quorum Systems in EPR
	Enabling Decidable Reasoning
	The Unique Challenges Posed by FBQSs
	Validating the Model

	Related Work

	p010-Braithwaite
	Introduction
	Architecture
	Specifications in English and TLA+
	Model Checking with TLC and Apalache
	Conclusions

	p011-Kammuller
	Introduction
	Inter-blockchain protocols (IBC)
	Isabelle Infrastructure framework

	IBC in Isabelle
	Overview
	Ledgers
	Infrastructures as blockchains
	Relayer and set of blockchains
	Consensus
	IBC state transition semantics

	Global consistency
	Conclusions, related work, and outlook
	Related Work
	Outlook



