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Abstract
Events in the Solidity language provide a means of communication between the on-chain services
of decentralized applications and the users of those services. Events are commonly used as an
abstraction of contract execution that is relevant from the users’ perspective. Users must, therefore,
be able to understand the meaning and trust the validity of the emitted events. This paper presents
a source-level approach for the formal specification and verification of Solidity contracts with the
primary focus on events. Our approach allows the specification of events in terms of the on-chain
data that they track, and the predicates that define the correspondence between the blockchain
state and the abstract view provided by the events. The approach is implemented in solc-verify,
a modular verifier for Solidity, and we demonstrate its applicability with various examples.
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1 Introduction

Ethereum is a public, blockchain-based computing platform that provides a single-world-
computer abstraction for developing decentralized applications [17]. The core of such
applications are programs – termed smart contracts [15] – deployed on the blockchain. While
Ethereum nodes run a low-level virtual machine (EVM [17]), smart contracts are usually
written in a high-level, contract-oriented language, most notably Solidity [14]. The contract
code can be executed by issuing transactions to the network, which are then processed by
the participating nodes. Results of a completed transaction are provided to the issuing user,
and other interested parties observing the contract, through transaction receipts. While the
blockchain is publicly available for users to inspect and replay the transactions, the contracts
can communicate important state changes, including intermediate changes, by emitting
events [1]. Events usually represent a limited abstract view of the transaction execution
that is relevant for the users and they can be read off the transaction receipts. The common
expectation is that by observing the events, the user can reconstruct the relevant parts of
the current state of the contracts. Technically, events can be viewed as special triggers with
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arguments that are stored in the blockchain logs. While these logs are programmatically
inaccessible from contracts, the users can easily subscribe to and observe the events with
the accompanying data. For example, a token-exchange application can monitor the current
state of token balances by tracking transfer events in the individual token contracts.

Smart contracts, as any software, are also prone to bugs and errors. In the Ethereum
context, any flaws in contracts come with potentially devastating financial consequences, as
demonstrated by various infamous examples [2]. While there has been a great interest in
applying formal methods to smart contracts [2, 4], events are usually considered merely a
logging mechanism that is not relevant for functional correctness. However, since events are
a central state-change notification mechanism for users of decentralized applications, it is
crucial that the users are able to understand the meaning and trust the validity of the emitted
events. In this paper, we propose a source-level approach for the formal specification and
verification of Solidity contracts with the primary focus on events. Our approach provides
in-code annotations to specify events in terms of the blockchain data they track, and to
declare events possibly emitted by functions. We verify that (1) whenever tracked data
changes, a corresponding event is emitted, and (2) an event can only be emitted if there
was indeed a change. Furthermore, to establish the correspondence between the abstract
view provided by events and the actual execution, we allow events to be annotated with
predicates (conditions) that must hold before or after the data change. We implemented
the proposed approach in the open-source1 solc-verify [9, 8] tool and demonstrated its
applicability via various examples. solc-verify is based on modular program verification,
but we present our idea in a more general setting that can serve as a building block for
alternative verification approaches.

Related work. To the best of our knowledge, our approach is the first to enable formal
specification and verification of Solidity events in terms of the contract state. Mythril [12]
operates over compiled bytecode and focuses on weaknesses defined in the SWC Registry,2
which currently does not include events. Slither [7] supports a few common, built-in
patterns related to events (e.g., out-of-order due to reentrancy), but these patterns do not
capture functional aspects. VeriSol [16] and VerX [13] target functional verification with
invariants, pre- and postconditions, but do not mention events. Such invariants were also
studied in the context of instrumentation and runtime validation [10], but not for events;
our approach focuses on compile-time verification instead of runtime. In a broader setting,
the event mechanism of Solidity is a special case of monitoring used for runtime verification
of reactive, event-based systems [6]. In this context, events can be considered as manually
written monitors, for which we aim to prove correctness.

2 Background

Solidity. Solidity [14] is a high-level, contract-oriented programming language supporting
the rapid development of smart contracts for the Ethereum platform. We briefly introduce
Solidity by restricting our presentation to the aspects relevant for events. An example
contract (Registry) is shown in Figure 1. Contracts are similar to classes in object-oriented
programming. A contract can define additional types, such as the Entry struct in the
example, consisting of a Boolean flag and an integer data. The persistent data stored on

1 https://github.com/SRI-CSL/solidity
2 https://swcregistry.io/
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the blockchain can be defined with state variables. The example contract declares a single
variable entries, which is a mapping from addresses to Entry structs. Contracts can also
define events, including possible arguments. The example declares two events, new_entry
and updated_entry, to signal a new or an updated entry, respectively. Both events take the
address and the new value for the data as their arguments. Finally, functions are defined that
can be called as transactions to act on the contract state. The example defines two functions:
add and update. The add function first checks with a require that the data corresponding
to the caller address (msg.sender) is not yet set. If the condition of require does not hold,
the transaction is reverted. Otherwise, the function sets the data and the flag, and emits the
new_entry event. The update function is similar to add, with the exception that the data
must already be set, and the new value should be larger than the old one (for illustrative
purposes).

Note that Solidity puts no restrictions on the emitted events, and a faulty (or malicious)
contract could both emit events that do not correspond to state changes or miss triggering an
event on some change [5], potentially misleading users. In the case of the Registry contract,
the events are emitted correctly, and the user can reproduce the changes in entries by
relying solely on the emitted events and their arguments.

contract Registry {
struct Entry { bool set; int data; } // User - defined type

mapping ( address => Entry ) entries ; // State variable

/// @notice tracks -changes -in entries
/// @notice precondition ! entries [at].set
/// @notice postcondition entries [at].set && entries [at] .data == value
event new_entry ( address at , int value );

/// @notice tracks -changes -in entries
/// @notice precondition entries [at].set && entries [at] .data < value
/// @notice postcondition entries [at].set && entries [at] .data == value
event updated_entry ( address at , int value );

/// @notice emits new_entry
function add(int value ) public {

require (! entries [ msg.sender ].set);
entries [ msg.sender ].set = true ;
entries [ msg.sender ] .data = value ;
emit new_entry ( msg.sender , value );

}

/// @notice emits updated_entry
function update (int value ) public {

require ( entries [ msg.sender ].set && entries [ msg.sender ] .data < value );
entries [ msg.sender ] .data = value ;
emit updated_entry ( msg.sender , value );

}
}

Figure 1 An example contract illustrating Solidity events. Users of the contract can associate an
integer value to their address and can later update it with a larger value.

solc-verify. solc-verify [9] is a source-level verification tool for checking functional cor-
rectness of smart contracts. solc-verify takes contracts written in Solidity and provides
various in-code annotations to specify functional behavior (e.g., pre- and postconditions,
invariants). As an example, consider a typical token contract (illustrated by Figure 2), which
gives its creator all the tokens in the constructor and then provides a function to transfer
them between users. The functional correctness of the contract logic can be specified by
the existing annotation capabilities of solc-verify (denoted by *). The top-level contract
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invariant ensures the inductive property that the sum of balances always equals to the total
supply. Invariants become postconditions to the constructor and both pre- and postconditions
to all public functions. Furthermore, the correctness of the constructor and the transfer
function is established with additional postconditions. Besides the illustrated properties,
assertions, overflows, preconditions, loop invariants, and modification specifiers are also
supported.

solc-verify translates the annotated contracts to the Boogie Intermediate Verification
Language (IVL). The key idea of the translation is to encode state variables as global heaps
and functions as procedures. solc-verify relies on the Boogie verifier [3] to perform modular
verification by discharging verification conditions to SMT solvers. The verification conditions
encode the function body while assuming the preconditions, and then check if postconditions
hold. In this process, function calls are replaced by their specification and loops by their
invariants (modularity). Finally, the results are back-annotated to the Solidity source.

Goal. Previous versions of solc-verify ignored events as they were considered merely
a logging mechanism, not directly relevant for functional correctness. However, as argued
before, formal specification and verification of events can be relevant. Therefore, this paper
presents extensions to the specification and translation capabilities of solc-verify that
enable reasoning about Solidity events. We propose event-specific annotations (Section 3)
and use them to instrument the code during translation with additional conditions to be
verified (Section 4).

* /// @notice invariant sum( balances ) == total
contract Token {

mapping ( address => uint ) balances ;
uint total ;

/// @notice tracks -changes -in balances
/// @notice tracks -changes -in total
/// @notice precondition balances [from] == 0
/// @notice postcondition balances [from] == amount
/// @notice postcondition total == amount
event initialized ( address from , uint amount );

/// @notice tracks -changes -in balances
/// @notice precondition balances [from] >= amount
/// @notice postcondition balances [from] == before ( balances [from ]) - amount
/// @notice postcondition balances [to] == before ( balances [to ]) + amount
event transferred ( address from , address to , uint amount );

* /// @notice postcondition balances [ msg.sender ] == _total
/// @notice emits initialized
constructor ( uint _total ) public {

balances [ msg.sender ] = total = _total ;
emit initialized ( msg.sender , total );

}

* /// @notice postcondition balances [ msg.sender ] == old( balances [ msg.sender ]) - amount
* /// @notice postcondition balances [to] == old( balances [to ]) + amount

/// @notice emits transferred
function transfer ( address to , uint amount ) public {

require ( balances [ msg.sender ] >= amount && msg.sender != to);
balances [ msg.sender ] -= amount ;
balances [to] += amount ;
emit transferred ( msg.sender , to , amount );

}
}

Figure 2 A token contract illustrating existing specification capabilities of solc-verify (marked
with *) and the new annotations for events, including postconditions that refer to previous state.



Á. Hajdu, D. Jovanović, and G. Ciocarlie 2:5

3 Specification of Events

Our approach provides in-code annotations to specify events in terms of the on-chain data that
they track for changes. Furthermore, additional predicates can specify the correspondence
between the abstract view provided by events and the actual data, before and after the
change. With a few exceptions (see later), annotations are expected to be inserted by the
developer.

Data changes and checkpoints. Each event can declare a set of contract state variables
that it tracks for changes. In the Registry example (Figure 1), both events track the single
state variable entries, as specified by the tracks-changes-in annotations. In the Token
example (Figure 2), transferred only tracks balances, whereas initialized tracks total
as well. Intuitively, we use the tracking of changes to make sure that (1) if a tracked variable
changes, a corresponding event must be emitted after; and (2) an event should be emitted
only if some of its tracked variables have changed before. As data changes often occur in
multiple steps, or conditionally (e.g., updating both members of a struct in the function add
of Figure 1 or adding and subtracting in transfer of Figure 2), events cannot always be
emitted directly after a single modifying statement. Therefore, we define the precise semantics
of “before” and “after” by introducing before- and after-checkpoints. Before-checkpoints
of an event are determined dynamically by the first change in a variable they track. In
contrast, after-checkpoints are defined by static barriers, marking the latest point in code
where the emitting should be fulfilled. Currently, we define loop and transaction boundaries
(external calls to public functions and function return) as after-checkpoints. The semantics
of checkpoints is that an event corresponding to a state variable change must be emitted at
some point between before- and after-checkpoints, which also clears the before-checkpoint.
Conversely, an event can only be emitted if a tracked variable indeed changed (there was a
before-checkpoint).

Event pre- and postconditions. In addition to the set of tracked variables, events can also
be annotated with predicates that define conditions over the state variables and the arguments
of the event. There are two kinds of predicates: pre- and postconditions. Preconditions
capture the values of state variables at the before-checkpoint, while postconditions correspond
to the point when the event is emitted. In the Registry contract (Figure 1), both events
(new_entry and updated_entry) have the same postcondition, namely that the data at
the given address must be set and its value must match the value in the argument. The
precondition of new_entry is that the data must not yet be set, while for updated_entry,
it must be set and its value should be smaller than the event argument. Postcondition
expressions often need to connect the state at the point of emit and before the change. As an
example, consider the transfer function of the token contract in Figure 2 that deducts the
sender’s balance and increases the receiver’s. To specify the postcondition of the Transfer
event, we need to relate the new balances to the previous balances. We provide a special
before function – to be used in postconditions – that refers to previous values of state
variables. Note that each variable appearing in a predicate is implicitly tracked, i.e., no
explicit tracks-changes-in annotation would be required.

Functions. We require contract functions to be annotated with the events that they possibly
emit using the emits keyword. For example, the add and update functions in Figure 1
can emit new_entry and updated_entry, respectively. If a function calls other functions
(including base constructors), the callee’s emitted events must also be included in the caller’s
specifications.
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4 Verification

A contract with events and specifications is checked in two steps. First, a syntactical
check is performed to ensure that functions only emit events that they specified (via emits
annotations). Then, we check the data tracking specifications and predicates by translating
the contract to the input language of a verifier, and instrumenting the code with the checks
and the required bookkeeping. In our implementation, we use the Boogie IVL and verifier [3],
but we present our solution in a general way that can be reused by other Solidity verifiers.

Function emits. We first check whether functions only emit those events that are specified
via emits annotations. This is a syntactic check on the Solidity AST: we find all emit
statements in the function and check whether the corresponding events are specified to be
emitted. When a function calls other functions internally (i.e., from the same contract),
we apply a modular check based on the call graph: all events specified to be emitted by
the callee must also be specified by the caller. On the other hand, we currently ignore
external calls (such as .call() or .transfer()). Such external calls cannot modify state
variables or trigger events from the current contract directly (as they are non-public). Indirect
modifications and emits are possible by calling back public functions, but those are specified
and checked independently (modularity of reasoning [9]). Furthermore, we also treat calls
to other contracts’ functions as external because addresses are not type checked runtime
(only the function signature is checked) [9]. Finally, we also verify at each assignment (to a
tracked variable), whether the function specifies a corresponding event to be emitted.

Data tracking and predicates. Verification of data tracking and predicates is performed
by instrumenting the contract code with additional variables and statements to save state
and to make extra checks at checkpoints. For clarity, we describe the instrumentation on the
Solidity level. We illustrate the approach through the example contract in Figure 3, which
has two state variables x and y, and whenever one of them changes, an event is emitted
with their current difference. Furthermore, x <= y should hold both at the before- and the
after-checkpoint. The extra instructions are displayed as labels where they are injected, while
the corresponding code can be found in the snippets to the right.

For each state variable that is tracked by any event, we introduce two additional variables
in the contract: one with the same type to save the before-state, and a Boolean flag to
indicate whether the data has been modified (snippet new-vars in Figure 3). Functions are
then instrumented with extra statements to save state, enforce after-checkpoints (barriers)
and to perform specification checks when events are emitted. Functions ensure on entry
that none of the variables tracked by their specified events have been modified since the
checkpoint before the call (snippet assume-clear). In other words, all relevant events must
have been emitted before making the call. In modular verification, this assumption becomes
a precondition to the function. Before each modification (assignment statement), if the state
variable is not modified yet, the current value is stored3 in the helper variable and the flag
for modification is set, introducing a before-checkpoint (snippets y-before and x-before).

At each emit statement, several checks are added (snippet emit-spec). First, we check
that the data has indeed been modified, otherwise the event should not be emitted. Then
we check each pre- and postcondition. By default, preconditions refer to the before-state

3 Saving data (e.g., mappings) with assignments might not yield valid Solidity code. This code is for
clarity of presentation and is handled by solc-verify internally.
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contract C {
uint x;
uint y;

/// @notice tracks - changes in x
/// @notice tracks - changes in y
/// @notice precondition x <= y
/// @notice postcondition x <= y
/// @notice postcondition x + diff == y
event xy_changed ( uint diff);

/// @notice emits xy_changed
function f( uint n) public {

require (x <= y);

y += n;

emit xy_changed (y - x);

for ( uint i = 0; i < n; ++i) {

x++;

emit xy_changed (y - x);

}

}
}

uint x_old ; // Previous state of x
uint y_old ; // Previous state of y
bool x_mod ; // Modified since last checkpoint
bool y_mod ; // Modified since last checkpoint

new-vars

new-vars

require (! x_mod && ! y_mod ); // Modif. clear

assume-clear

assume-clear

assert (! x_mod && ! y_mod ); // Modif. clear

after-chpt

after-chpt

after-chpt

after-chpt

// Save y if not saved yet: before - checkpt
if (! y_mod ) { y_old = y; y_mod = true ; }

y-before

y-before

assert ( x_mod || y_mod ); // Emit without change
assert (( x_mod ? x_old :x) <= ( y_mod ? y_old :y)); // Pre
assert (x <= y); // Post
assert (x + (y - x) == y); // Post
x_mod = y_mod = false ; // Emitted

emit-spec
emit-spec

emit-spec

// Save x if not saved yet: before - checkpt
if (! x_mod ) { x_old = x; x_mod = true ; }

x-before

x-before

Figure 3 Example contract with instrumentation snippets for checking event specifications.

and postconditions to the current values, except if the variable is explicitly wrapped with
before(). Note that we refer to the previous value of a variable v with v_mod ? v_old :
v because, in general, there might be variables that were not modified (e.g., x at the first
emit in Figure 3). After performing the checks, emitting the event clears the flags (before-
checkpoints). Finally, before returning, functions enforce after-checkpoints by asserting that
no state variable is in a modified state, i.e., the function cannot end in debt with events
(snippet after-chpt). In modular verification, this check becomes a postcondition to the
function. We also insert an after-checkpoint before the loop and at the end of every iteration
(serving as loop invariant).

Discussion. One potential limitation of our approach is that we consider loop boundaries
after-checkpoints: some contracts change the data many times in the loop, but only emit a
single summarizing event after the loop. This limitation could be alleviated with annotations
to “allow delaying” the emit after the loop, but we do not support this as it leads to
more complex specification and verification. Note that this limitation comes from modular
verification as loops need an invariant. However, if we were to perform bounded model
checking or symbolic execution, this might not be a limitation.

Our approach is not tied to Boogie or modular verification. The instrumentation can be
performed on the Solidity level, and the correctness of the specification is reduced to checking
assertions at particular points in the code. This means that the instrumented code can be
fed into any Solidity verifier that can check for assertion failures. The event specifications
are deemed correct if and only if there are no related assertion failures.

A possible future use-case of our approach lies in the behavioral analysis of contracts
based on logs. Such analyses could reveal relationships individually and across contracts that
are not otherwise apparent (e.g., exposing entities that control the blockchain interactions) or
attack evidence. Application-level log analysis has been used for a long time for monitoring
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and security purposes, and most existing techniques assume that application logs can be
trusted or, if applications are subverted by attackers, the subversion can be captured [11].
Our approach guarantees the validity of the emitted events, making them even more suitable
for such analysis.

5 Conclusion

We presented an approach for the formal specification and verification of Solidity smart
contracts that rely on events to communicate with their users, providing an abstract view
of their state. We proposed in-code annotations to specify events in terms of the state
variables they track for changes. Furthermore, we introduced additional predicates (pre- and
postconditions) for specifying conditions on the state before and after the change, establishing
the correspondence between the blockchain state and the emitted events. The approach is
implemented in solc-verify and we demonstrated its applicability with various examples.

References
1 A guide to events and logs in Ethereum smart contracts. https://consensys.net/blog/

blockchain-development/guide-to-events-and-logs-in-ethereum-smart-contracts,
2016.

2 Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on Ethereum smart
contracts. In Principles of Security and Trust, volume 10204 of Lecture Notes in Computer
Science, pages 164–186. Springer, 2017. doi:10.1007/978-3-662-54455-6_8.

3 Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In Formal Methods for
Components and Objects, volume 4111 of LNCS, pages 364–387. Springer, 2006.

4 Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu. A survey on Ethereum
systems security: Vulnerabilities, attacks, and defenses. ACM Comput. Surv., 53(3), 2020.

5 J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen. Defining smart contract defects on
Ethereum. IEEE Transactions on Software Engineering, 2020. Early access.

6 Séverine Colin and Leonardo Mariani. Run-time verification. In Model-Based Testing of
Reactive Systems: Advanced Lectures, volume 3472 of Lecture Notes in Computer Science,
chapter 18, pages 525–555. Springer, 2005.

7 Josselin Feist, Gustavo Greico, and Alex Groce. Slither: A static analysis framework for
smart contracts. In Proc. of the 2nd International Workshop on Emerging Trends in Software
Engineering for Blockchain, pages 8–15. IEEE, 2019.

8 Ákos Hajdu and Dejan Jovanović. SMT-friendly formalization of the solidity memory model.
In Programming Languages and System, volume 12075 of Lecture Notes in Computer Science,
pages 224–250. Springer, 2020. doi:10.1007/978-3-030-44914-8_9.

9 Ákos Hajdu and Dejan Jovanović. solc-verify: A modular verifier for Solidity smart contracts.
In Verified Software. Theories, Tools, and Experiments, volume 12301 of Lecture Notes in
Computer Science, pages 161–179. Springer, 2020. doi:10.1007/978-3-030-41600-3_11.

10 Ao Li, Jemin Andrew Choi, and Fan Long. Securing smart contract with runtime validation.
In Proc. of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, page 438–453. ACM, 2020.

11 Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. MPI:
Multiple perspective attack investigation with semantic aware execution partitioning. In Proc.
of the 26th USENIX Security Symposium, pages 1111–1128. USENIX Association, 2017.

12 Bernhard Mueller. Smashing Ethereum smart contracts for fun and real profit. In Proc. of the
9th Annual HITB Security Conference (HITBSecConf), 2018.

https://consensys.net/blog/blockchain-development/guide-to-events-and-logs-in-ethereum-smart-contracts
https://consensys.net/blog/blockchain-development/guide-to-events-and-logs-in-ethereum-smart-contracts
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-030-44914-8_9
https://doi.org/10.1007/978-3-030-41600-3_11


Á. Hajdu, D. Jovanović, and G. Ciocarlie 2:9

13 A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and M. Vechev. VerX: Safety
verification of smart contracts. In Proc. of the 2020 IEEE Symposium on Security and Privacy,
pages 414–430. IEEE, 2020.

14 Solidity documentation. https://solidity.readthedocs.io, 2020.
15 Nick Szabo. Smart contracts. https://web.archive.org/web/20011102030833/http://

szabo.best.vwh.net:80/smart.contracts.html, 1994.
16 Yuepeng Wang, Shuvendu K Lahiri, Shuo Chen, Rong Pan, Isil Dillig, Cody Born, Immad

Naseer, and Kostas Ferles. Formal verification of workflow policies for smart contracts in
Azure blockchain. In Verified Software. Theories, Tools, and Experiments, volume 12031 of
Lecture Notes in Computer Science, pages 87–106. Springer, 2020.

17 Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. https:
//ethereum.github.io/yellowpaper/paper.pdf, 2019.

FMBC 2020

https://solidity.readthedocs.io
https://web.archive.org/web/20011102030833/http://szabo.best.vwh.net:80/smart.contracts.html
https://web.archive.org/web/20011102030833/http://szabo.best.vwh.net:80/smart.contracts.html
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

	Introduction
	Background
	Specification of Events
	Verification
	Conclusion

