
29th EACSL Annual Conference
on Computer Science Logic

CSL 2021, January 25–28, 2021, Ljubljana, Slovenia (Virtual
Conference)

Edited by

Christel Baier
Jean Goubault-Larrecq

LIPIcs – Vo l . 183 – CSL 2021 www.dagstuh l .de/ l ip i c s

Editors

Christel Baier
Technische Universität Dresden, Germany
christel.baier@tu-dresden.de

Jean Goubault-Larrecq
ENS Paris-Saclay, France
goubault@lsv.fr

ACM Classification 2012
Theory of computation → Logic

ISBN 978-3-95977-175-7

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-175-7.

Publication date
January, 2021

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.CSL.2021.0

ISBN 978-3-95977-175-7 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-5321-9343
mailto:christel.baier@tu-dresden.de
https://orcid.org/0000-0001-5879-3304
mailto:goubault@lsv.fr
https://www.dagstuhl.de/dagpub/978-3-95977-175-7
https://www.dagstuhl.de/dagpub/978-3-95977-175-7
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/LIPIcs.CSL.2021.0
https://www.dagstuhl.de/dagpub/978-3-95977-175-7
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU München)
Meena Mahajan (Institute of Mathematical Sciences)
Dieter van Melkebeek (University of Wisconsin-Madison)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

CSL 2021

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Christel Baier and Jean Goubault-Larrecq . 0:ix–0:x

Programme Committee
. 0:xi

Organisation Committee
. 0:xiii

Reviewers
. 0:xv

Ackermann Award 2020
. 0:xvii

Invited Talks

µ-Calculi with Atoms
Bartek Klin . 1:1–1:1

Mathematical Structures in Dependent Type Theory
Assia Mahboubi . 2:1–2:3

Branching in Well-Structured Transition Systems
Sylvain Schmitz . 3:1–3:3

Borel Sets in Reverse Mathematics
Linda Westrick . 4:1–4:2

Regular Papers

The Logic of Contextuality
Samson Abramsky and Rui Soares Barbosa . 5:1–5:18

Factorize Factorization
Beniamino Accattoli, Claudia Faggian, and Giulio Guerrieri . 6:1–6:25

The Best a Monitor Can Do
Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and
Karoliina Lehtinen . 7:1–7:23

Are Two Binary Operators Necessary to Finitely Axiomatise Parallel Composition?
Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik 8:1–8:17

A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation
André Arnold, Damian Niwiński, and Paweł Parys . 9:1–9:23

Learning Concepts Described By Weight Aggregation Logic
Steffen van Bergerem and Nicole Schweikardt . 10:1–10:18

Open Bar – a Brouwerian Intuitionistic Logic with a Pinch of Excluded Middle
Mark Bickford, Liron Cohen, Robert L. Constable, and Vincent Rahli 11:1–11:23

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Discounted-Sum Automata with Multiple Discount Factors
Udi Boker and Guy Hefetz . 12:1–12:23

Reachability in Distributed Memory Automata
Benedikt Bollig, Fedor Ryabinin, and Arnaud Sangnier . 13:1–13:16

Pregrammars and Intersection Types
Sabine Broda . 14:1–14:22

Learning Automata and Transducers: A Categorical Approach
Thomas Colcombet, Daniela Petrişan, and Riccardo Stabile . 15:1–15:17

Game Comonads & Generalised Quantifiers
Adam Ó Conghaile and Anuj Dawar . 16:1–16:17

Semiring Provenance for Fixed-Point Logic
Katrin M. Dannert, Erich Grädel, Matthias Naaf, and Val Tannen 17:1–17:22

Extension Preservation in the Finite and Prefix Classes of First Order Logic
Anuj Dawar and Abhisekh Sankaran . 18:1–18:13

Realizability with Stateful Computations for Nonstandard Analysis
Bruno Dinis and Étienne Miquey . 19:1–19:23

Decidable Entailments in Separation Logic with Inductive Definitions: Beyond
Establishment

Mnacho Echenim, Radu Iosif, and Nicolas Peltier . 20:1–20:18

Church’s Thesis and Related Axioms in Coq’s Type Theory
Yannick Forster . 21:1–21:19

Computing Measure as a Primitive Operation in Real Number Computation
Christine Gaßner, Arno Pauly, and Florian Steinberg . 22:1–22:22

A Partial Metric Semantics of Higher-Order Types and Approximate Program
Transformations

Guillaume Geoffroy and Paolo Pistone . 23:1–23:18

A Deep Quantitative Type System
Giulio Guerrieri, Willem B. Heijltjes, and Joseph W.N. Paulus 24:1–24:24

Categorifying Non-Idempotent Intersection Types
Giulio Guerrieri and Federico Olimpieri . 25:1–25:24

The Alternating-Time µ-Calculus with Disjunctive Explicit Strategies
Merlin Göttlinger, Lutz Schröder, and Dirk Pattinson . 26:1–26:22

On the Complexity of Horn and Krom Fragments of Second-Order Boolean Logic
Miika Hannula, Juha Kontinen, Martin Lück, and Jonni Virtema 27:1–27:22

Domain Theory in Constructive and Predicative Univalent Foundations
Tom de Jong and Martín Hötzel Escardó . 28:1–28:18

A Cyclic Proof System for HFLN
Mayuko Kori, Takeshi Tsukada, and Naoki Kobayashi . 29:1–29:22

Compositional Modelling of Network Games
Elena Di Lavore, Jules Hedges, and Paweł Sobociński . 30:1–30:24

Contents 0:vii

Canonization for Bounded and Dihedral Color Classes in Choiceless Polynomial
Time

Moritz Lichter and Pascal Schweitzer . 31:1–31:18

Preservation Theorems Through the Lens of Topology
Aliaume Lopez . 32:1–32:17

Choiceless Computation and Symmetry: Limitations of Definability
Benedikt Pago . 33:1–33:21

Typable Fragments of Polynomial Automatic Amortized Resource Analysis
Long Pham and Jan Hoffmann . 34:1–34:19

The Yoneda Reduction of Polymorphic Types
Paolo Pistone and Luca Tranchini . 35:1–35:22

Degrees of Ambiguity for Parity Tree Automata
Alexander Rabinovich and Doron Tiferet . 36:1–36:20

On Flat Lossy Channel Machines
Philippe Schnoebelen . 37:1–37:22

Realizability Without Symmetry
Haruka Tomita . 38:1–38:16

CSL 2021

Preface

This volume contains the papers presented at CSL 2021, the 29th edition in the series
of Computer Science Logic (CSL), the annual conference of the European Association for
Computer Science Logic (EACSL).

CSL 2021 was held in Ljubljana, Slovenia, 25-28 January 2021, virtually due to the
enduring SARS-Cov2 (Covid-19) outbreak.

CSL started as a series of international workshops, and became an international con-
ference in 1992. Previous editions of CSL were held in Barcelona (2020), Birmingham
(2018), Stockholm (2017), Marseille (2016), Berlin (2015), Vienna (2014), Torino (2013),
Fontainebleau (2012), Bergen(2011), Brno (2010), Coimbra (2009), Bologna (2008), Lausanne
(2007), Szeged (2006), Oxford (2005), Karpacz (2004), Vienna (2003), Edinburgh (2002),
Paris (2001), Munich (2000), Madrid (1999), Brno (1998), Aarhus (1997), Utrecht (1996),
Paderborn (1995), Kazimierz (1994), Swansea (1993) and San Miniato (1992).

CSL is an interdisciplinary conference, spanning across both basic and application-oriented
research in mathematical logic and computer science. It is a forum for the presentation
of research on all aspects of logic and applications, including automated deduction and
interactive theorem proving, constructive mathematics and type theory, equational logic
and term rewriting, automata and games, game semantics, modal and temporal logic,
logical aspects of computational complexity, finite model theory, computational proof theory,
logic programming and constraints, lambda calculus and combinatory logic, domain theory,
categorical logic and topological semantics, database theory, specification, extraction and
transformation of programs, logical aspects of quantum computing, logical foundations of
programming paradigms, verification and program analysis, linear logic, higher-order logic,
non-monotonic reasoning.

CSL 2021 received 82 submissions from 28 countries. The programme committee selected
34 papers for presentation at the conference. Each paper was reviewed by at least three
members of the programme committee, with the help of external reviewers. The submission
and reviewing process, programme committee discussion, and author notifications were all
handled by the Easychair conference management system. In addition to the contributed
papers, there were five invited talks, by

Sophia Drossopoulou (Imperial College, London, UK)
Bartek Klin (Universytet Warszawski, Warsawa, Poland)
Assia Mahboubi (INRIA and LS2N, Université de Nantes, France, and Vrije Universiteit
Amsterdam, the Netherlands)
Sylvain Schmitz (Université de Paris, CNRS, IRIF, France and IUF, France)
Linda Brown Westrick (Department of Mathematics, Penn State University, University
Park, PA, USA).

We thank the five invited speakers for contributing to the success of the conference with
their interesting talks and papers.

A special regular item in the CSL programme is the Ackermann Award presentation.
This is the EACSL Outstanding Dissertation Award for Logic in Computer Science. This
year, the jury decided to give the Ackermann Award for 2020 to

Benjamin Lucien Kaminski for his PhD thesis Advanced Weakest Precondition Calculi
for Probabilistic Programs

supervised by Joost-Pieter Katoen at the RTWH Aachen University, Germany.
29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Preface

The award was officially presented at the conference on January 26th, 2021. The citation
of the award is included in the proceedings.

We are very grateful to all the members of the CSL 2021 programme committee and
external reviewers for their careful and efficient evaluation of the papers submitted. We
would like to thank also the members of the organisation committee, Alex Simpson, Andrej
Bauer, and Danel Ahman, for taking care of every detail to make the conference enjoyable
for all the participants, a task that was made all the more arduous because of the particular
sanitary conditions of the year 2020. It was also a pleasure to work with Thomas Schwentick
who, as the EACSL president, provided excellent guidance. The proceedings of CSL 2021
are published as a volume in the LIPIcs series. We thank Michael Wagner and all the
Dagstuhl/LIPIcs team for their ongoing support and for the high quality preparation of these
proceedings.

Christel Baier and Jean Goubault-Larrecq November 10th, 2020.

Programme Committee

Andreas Abel, University of Gothenburg, Sweden
Zena M. Ariola, University of Oregon, USA
Jeremy Avigad, Carnegie Mellon University, USA
Christel Baier, Technische Universität Dresden, Germany (co-chair)
Jasmin Blanchette, Vrije Universiteit Amsterdam, the Netherlands
Jean Goubault-Larrecq, ENS Paris-Saclay, France (co-chair)
Masahito Hasegawa, Kyoto University, Japan
Jean-Baptiste Jeannin, University of Michigan, USA
Michael Kaminski, Technion Haifa, Israel
Delia Kesner, Université de Paris, France
Laura Kovács, Vienna University of Technology, Austria
Martin Lange, University of Kassel, Germany
Sławomir Lasota, Warsaw University, Poland
Florin Manea, Georg-August Universität Göttingen, Germany
Stefan Milius, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
Antoine Mottet, Charles University, Czech Republic
Andrzej Murawski, University of Oxford, UK
Elaine Pimentel, Universidade Federal do Rio Grande do Norte, Brasil
Sophie Pinchinat, IRISA Rennes, France
Simona Ronchi Della Rocca, Università di Torino, Italy
Krishna S, IIT Bombay, India
Peter Selinger, Dalhousie University, Canada
Sebastian Siebertz, Universität Bremen, Germany
Alex Simpson, University of Ljubljana, Slovenia (organizer)
Marie Van Den Bogaard, Université Libre de Bruxelles, Belgium
Yde Venema, Universiteit van Amsterdam, the Netherlands

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Organisation Committee

Alex Simpson, University of Ljubljana (chair)
Andrej Bauer, University of Ljubljana
Danel Ahman, University of Ljubljana

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Reviewers

Andrea Aler Tubella, Matthew Anderson, Carlos Areces, Guillaume Aucher, Steve Awodey,
Patrick Baillot, Chris Barrett, Christoph Berkholz, Raphaël Berthon, Dietmar Berwanger,
Adrien Boiret, Johannes Borgström, Laura Bozzelli, Flavien Breuvart, James Brotherston,
Guillaume Brunerie, Paola Bruscoli, Florian Bruse, Antonio Bucciarelli, Andrei Bulatov,
David Cerna, Dmitry Chistikov, Jules Chouquet, Corina Cirstea, Ranald Clouston, Carmen
Constantin, Gianluca Curzi, Luc Dartois, Ankush Das, Anupam Das, Rocco De Nicola, Ugo
de’Liguoro, Antonin Delpeuch, Martin Desharnais, Andrej Dudenhefner, Arnaud Durand,
Harley Eades III, Gabriel Ebner, Thomas Ehrhard, Kord Eickmeyer, Sebastian Enqvist,
Martín Escardó, Santiago Escobar, Léo Exibard, Marie Fortin, Nissim Francez, Marco Ga-
boardi, Blaise Genest, Stéphane Graham-Lengrand, Stefan Göller, Daniel Hausmann, Willem
Heijltjes, Léo Henry, Hugo Herbelin, Dirk Hofmann, Naohiko Hoshino, Mathieu Hoyrup,
Pierre Hyvernat, Ismaël Jecker, Shin-Ya Katsumata, Kohei Kishida, Bartek Klin, Orna Kup-
ferman, Clemens Kupke, Dietrich Kuske, Temur Kutsia, Ori Lahav, Engel Lefaucheux, Anela
Lolic, Fosco Loregian, Michele Loreti, Etienne Lozes, Christof Löding, Florent Madelaine,
Johann Makowsky, Giulio Manzonetto, Sonia Marin, Johannes Marti, Barnaby Martin,
Andrea Masini, Ralph Matthes, Bastien Maubert, Klaus Meer, Arne Meier, Paul-André
Melliès, George Metcalfe, Lukasz Mikulski, Fabio Mogavero, Georg Moser, Max New, Linh
Anh Nguyen, Lê Thành Dũng Nguyễn, Andrey Nikolaev, Fredrik Nordvall Forsberg, Luca
Paolini, Luc Pellissier, Mati Pentus, Guillermo Perez, Anton Pirogov, Alberto Policriti,
Andrei Popescu, Amaury Pouly, Thomas Powell, Alexander Rabinovich, Roman Rabinovich,
Revantha Ramanayake, Steven Ramsay, Luca Reggio, Giselle Reis, Christophe Ringeissen, Si-
mon Robillard, Benjamin Rossman, Luca Roversi, Reuben Rowe, Jakub Rydval, David Sands,
Gabriel Scherer, Joshua Schneider, Lutz Schröder, Francois Schwarzentruber, Alexandra
Silva, Michał Skrzypczak, Sam Staton, Frank Stephan, Jonathan Sterling, Sorin Stratulat,
Lutz Straßburger, Tony Tan, Szymon Toruńczyk, Patrick Totzke, Sophie Tourret, Riccardo
Treglia, Henning Urbat, Tarmo Uustalu, Steffen van Bakel, Benno van den Berg, Peter Van
Emde Boas, Femke Van Raamsdonk, Daniel Ventura, Oleg Verbitsky, Alexandre Vigny, Petar
Vukmirović, Uwe Waldmann, Armin Weiss, Gregory Wilsenach, Anna Zamansky, Vladimir
Zamdzhiev, Dmitriy Zhuk, Florian Zuleger.

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Ackermann Award 2020

By Mikołaj Bojańczyk, Prakash Panangaden and Thomas Schwentick,
for the Jury of the EACSL Ackermann Award

The sixteenth Ackermann Award is presented at CSL’21 in Ljubljana, Slovenia (virtually).
The 2020 Ackermann Award was open to any PhD dissertation on any topic represented
at the annual CSL and LICS conferences that were formally accepted by a degree-granting
institution in fulfillment of the PhD degree between 1 January 2018 and 31 December 2019.
The Jury received eight nominations for the 2020 Award. The candidates came from a
number of different countries around the world. The institutions at which the nominees
obtained their doctorates represent six different countries in Europe and North America.

Again this year, EACSL Ackermann Award is generously sponsored by the association
Alumni der Informatik Dortmund e.V.1

The topics covered a wide range of areas in Logic and Computer Science as represen-
ted by the LICS and CSL conferences. All submissions were of a very high quality and
contained significant contributions to their particular fields. The jury wish to extend their
congratulations to all the nominated candidates for their outstanding work.

The wide range of excellent candidates presented the jury with a difficult task. After an
extensive discussion, one candidate stood out and the jury unanimously decided to award
the 2020 Ackermann Award to:

Benjamin Lucien Kaminski from Germany, for his thesis
Advanced Weakest Precondition Calculi for Probabilistic Programs
approved by RWTH Aachen in 2019.

Citation

Benjamin Lucien Kaminski receives the 2020 Ackerman Award of the European Association
of Computer Science Login (EACSL) for his thesis

Advanced Weakest Precondition Calculi for Probabilistic Programs.

The major contribution of the thesis is calculi – in the style of weakest precondition calculus
– for tasks such as: proving bounds on expected running time (e.g. finite expected running
time), proving almost sure termination, or computing conditional expected values. Due to
the subtle nature of probabilistic programs, these are results which require extraordinary skill.
At the same time, the thesis is expected to make – in fact, it already has made – an important
impact due to the promising and wide-ranging applications. Finally, the quality of exposition
is exemplary. With almost 400 pages of well chosen examples and lucid explanations, the
thesis can serve as a textbook for newcomers in the field.

Background of the Thesis

Kaminski has made substantial advances in the analysis of probabilistic programs, a topic
which – apart from its traditional importance in the study of programming languages – has

1 www.cs.tu-dortmund.de/nps/en/Alumni/index.html

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

www.cs.tu-dortmund.de/nps/en/Alumni/index.html
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xviii Ackermann Award 2020

also recently assumed a central role in the field of machine learning. Program analysis is a
major topic in programming languages since the seminal work of the Cousot’s in the 1970’s.
In the case of probabilistic programs the issues are very subtle, since one cannot simply assert
that a certain property holds. One must incorporate probabilistic reasoning at the very heart
of the analysis. Following Dexter Kozen’s seminal contributions to probabilistic program
semantics and probabilistic dynamic logic in the 1980s, many workers have developed this
subject.

There was a flowering of ideas connected with reasoning about probability since Kozen’s
work. These include Joost-Pieter Katoen, Kaminski’s advisor, Christel Baier, Nathalie
Bertrand and Marta Kwiatkowska among others on probabilistic model checking, Kim Larsen,
Arne Skou, Josée Desharnais, Radha Jagadeesan, Vineet Gupta and Prakash Panangaden
on probabilistic bisimulation and related metrics, Catuscia Palamidessi and her many
collaborators on topics related to privacy and security, just to give a sample. In more recent
times probabilistic programming languages like Church and Anglican have emerged from
the machine learning community with fascinating results from, for example, Nate Ackerman,
Cameron Freer and Dan Roy. It is clear that the topic of probabilistic programming languages
and logics is not a niche topic, indeed an Ackerman Award had previously been given to
Matteo Mio in 2013 for research on probabilistic logic.

Contributions of the Thesis

Kaminski’s thesis extends the expectation calculus of McIver and Morgan which is the
probabilistic analogue of Dijkstra’s weakest precondition calculus in a significant way, by
allowing signed measures instead of probability measures. His thesis contains a striking
new compositional analysis of expected running times, which goes far beyond the older
approach which could only infer almost-sure termination. Also for almost-sure termination,
the thesis contains progress in the shape of a new proof rule, which can be applied, for
example, to easily prove almost-sure termination of the 1-dimensional random walk. Apart
from expected running times and almost-sure termination, Kaminski also develops a new
calculus for reasoning about conditioning in probabilistic programs; which is of particular
importance in the context of machine learning.

Finally, apart from proof calculi, the thesis also includes analysis of the computational
complexity of deciding termination for probabilistic programs. A highlight of this analysis is
the result that the questions “does a program terminate almost surely on a given input?”
and “does a program terminate almost surely on all inputs?” occupy the same place in the
arithmetical hierarchy; despite the seeming greater difficulty of the second question.

The numerous innovations in this thesis will have a long lasting impact on the theory
and practice of probabilistic programming.

Biographical Sketch

Benjamin Kaminski carried out his PhD (under the supervision of Joost-Pieter Katoen) at
RWTH in Aachen Germany, which is also where he completed his undergraduate studies.
His work on probabilistic programs has received the Best Paper award at ETAPS 2016. He
is currently a Lecturer at the University College of London.

Ackermann Award 2020 0:xix

Jury
The jury for the Ackermann Award 2020 consisted of eight members, two of them ex officio,
namely, the president and the vice-president of EACSL. In addition, the jury also included a
representative of SIGLOG (the ACM Special Interest Group on Logic and Computation).

The members of the jury were:
Christel Baier (TU Dresden),
Michael Benedikt (University of Oxford),
Mikołaj Bojańczyk (University of Warsaw),
Jean Goubault-Larrecq (ENS Paris-Saclay),
Prakash Panangaden (McGill University),
Simona Ronchi Della Rocca (University of Torino), the vice-president of EACSL,
Thomas Schwentick (TU Dortmund University), the president of EACSL,
Alexandra Silva, (University College London), ACM SigLog representative.

Previous winners
Previous winners of the Ackermann Award were
2005, Oxford:

Mikołaj Bojańczyk from Poland,
Konstantin Korovin from Russia, and
Nathan Segerlind from the USA.

2006, Szeged:
Balder ten Cate from the Netherlands, and
Stefan Milius from Germany.

2007, Lausanne:
Dietmar Berwanger from Germany and Romania,
Stéphane Lengrand from France, and
Ting Zhang from the People’s Republic of China.

2008, Bertinoro:
Krishnendu Chatterjee from India.

2009, Coimbra:
Jakob Nordström from Sweden.

2010, Brno:
no award given.

2011, Bergen:
Benjamin Rossman from USA.

2012, Fontainebleau:
Andrew Polonsky from Ukraine, and
Szymon Toruńczyk from Poland.

2013, Turin:
Matteo Mio from Italy.

2014, Vienna:
Michael Elberfeld from Germany.

2015, Berlin:
Hugo Férée from France, and
Mickael Randour from Belgium.

2016, Marseille:
Nicolai Kraus from Germany

CSL 2021

0:xx Ackermann Award 2020

2017, Stockholm:
Amaury Pouly from France.

2018, Birmingham:
Amina Doumane from France.

2019, Barcelona (conference in 2020):
Antoine Mottet from France.

Detailed reports on their work appeared in the CSL proceedings and are also available on
the EACSL homepage.

µ-Calculi with Atoms
Bartek Klin
University of Warsaw, Poland

Abstract
Modal µ-calculus is a well-known formalism for describing properties of state-based transition
systems. It can define properties such as “[in the current state] p holds, and there is a path where
is holds again at some point in the future”, where p comes from some fixed vocabulary of basic
predicates.

A formula of the classical µ-calculus refers only to finitely many basic predicates, which may
sometimes seem restrictive. Real systems routinely operate on data coming from potentially infinite
domains, such as numbers or character strings. Basic properties of such systems may reasonably
include ones like “the number n was input”, for every number n. It is then not clear how to say that
“there exists a transition path where the currently input number is input again some time in the
future” as a formula.

Various modal formalisms have been proposed to model temporal properties of systems that refer
to data coming from infinite domains. Here I focus on the modal µ-calculus with atoms, which is an
extension of the classical calculus with features of nominal sets. There, basic predicates, formulas
and models rely on atoms that come from some fixed infinite domain and can be tested for equality
(or, in an extended variant, for some fixed order).

I present a few variants of the modal µ-calculus with atoms, and describe their properties.
As an example application, I show how to formulate the security property of the cryptographic
Needham-Schroeder protocol, which relies on generating atomic nonces and comparing them for
equality, and which famously fails due to a man-in-the-middle attack.

Much of the material presented in this talk is drawn from [1, 2, 3].

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Theory of
computation → Verification by model checking

Keywords and phrases modal µ-calculus, sets with atoms

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.1

Category Invited Talk

References
1 C. Eberhart and B. Klin. History-dependent nominal µ-calculus. In 2019 34th Annual

ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–13, 2019.
2 B. Klin and M. Łełyk. Scalar and Vectorial µ-calculus with Atoms. Logical Methods in

Computer Science, Volume 15, Issue 4, 2019.
3 B. Klin and M. Łełyk. Modal µ-Calculus with Atoms. In Procs. CSL 2017, volume 82 of

LIPIcs, pages 30:1–30:21, 2017.

© Bartek Klin;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CSL.2021.1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Mathematical Structures in Dependent Type
Theory
Assia Mahboubi
Inria, Nantes, France
LS2N, Université de Nantes, France
Vrije Universiteit Amsterdam, The Netherlands
http://people.rennes.inria.fr/Assia.Mahboubi/
Assia.Mahboubi@inria.fr

Abstract
In this talk, we discuss the role and the implementation of mathematical structures in libraries of
formalised mathematics in dependent type theory.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Logic and verification

Keywords and phrases Mathematical structures, formalized mathematics, dependent type theory

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.2

Category Invited Talk

1 Summary

Since the early writings of the Nicolas Bourbaki group [3], mathematical structures are used
in all fields of mathematics to structure the mathematical language, its vocabulary and its
notational apparatus. An instance of a given structure is a carrier set equipped with some
identified elements, with some operations on the carrier, and with some properties – called
the axioms of the structure. Put in good use, these abstractions clarify the mathematical
discourse for a knowledgeable audience, while emphasising correspondences between seemingly
unrelated mathematical objects. Classical model theory provides a mathematical formalisation
of the notion of structure [12], of which algebraic structures are an instance.

The past decade has seen the advent of several large-scale libraries of formalised mathemat-
ics [6, 2, 9, 17], most of which framed by a hierarchy of formal algebraic structures [10, 13, 8, 17].
The latter hierarchies can be seen as a formal-proof-engineering device, which organises
inheritance and sharing in a similar way as the design patterns of object-oriented program-
ming [7, 4]. The implementation and the features of these hierarchies depend both on the
flavour of foundations the proof assistant is based on, and on the implementation in the
prover of enhanced type inference procedures [15, 11, 16, 1, 14]. The central idea is to
take benefit of some form of type inference in order to compute automatically the missing
information in the user input, so as to achieve concision in the statement of formal sentences,
while still providing a well-formed term to the prover’s checker.

This talk will focus more specifically on the case of formalisations, and proof assistants,
based on variants of dependent type theory. This setting allows in particular a first-class
representation of structures using dependent tuples (also called telescopes [5]). It will discuss
the recent techniques proposed to design these hierarchies, their pitfalls, the corresponding
achievements, and their limitations.

References
1 Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi. Hints in

unification. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel,

© Assia Mahboubi;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 2; pp. 2:1–2:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://people.rennes.inria.fr/Assia.Mahboubi/
mailto:Assia.Mahboubi@inria.fr
https://doi.org/10.4230/LIPIcs.CSL.2021.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Mathematical Structures in Dependent Type Theory

editors, Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs
2009, Munich, Germany, August 17-20, 2009. Proceedings, volume 5674 of Lecture Notes in
Computer Science, pages 84–98. Springer, 2009. doi:10.1007/978-3-642-03359-9_8.

2 Grzegorz Bancerek, Czeslaw Bylinski, Adam Grabowski, Artur Kornilowicz, Roman
Matuszewski, Adam Naumowicz, and Karol Pak. The role of the mizar mathematical lib-
rary for interactive proof development in mizar. J. Autom. Reason., 61(1-4):9–32, 2018.
doi:10.1007/s10817-017-9440-6.

3 Nicholas Bourbaki. The Architecture of Mathematics. The American Mathematical Monthly,
57(4), 1950.

4 Cyril Cohen, Kazuhiko Sakaguchi, and Enrico Tassi. Hierarchy builder: Algebraic hierarchies
made easy in coq with elpi (system description). In Zena M. Ariola, editor, 5th International
Conference on Formal Structures for Computation and Deduction, FSCD 2020, June 29-July
6, 2020, Paris, France (Virtual Conference), volume 167 of LIPIcs, pages 34:1–34:21. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.FSCD.2020.34.

5 N. G. de Bruijn. Telescopic mappings in typed lambda calculus. Information and Computation,
91(2):189–204, 1991.

6 Manuel Eberl, Gerwin Klein, Tobias Nipkow, Larry Paulson, and René Thiemann. Archive of
Formal Proofs. https://www.isa-afp.org/about.html.

7 Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, 1st edition,
1994.

8 François Garillot, Georges Gonthier, Assia Mahboubi, and Laurence Rideau. Packaging
mathematical structures. In Theorem Proving in Higher-Order Logics (TPHOL 2009), volume
5674 of Lecture Notes in Computer Science, pages 327–342. Springer, 2009.

9 Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, François Garillot,
Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence
Rideau, Alexey Solovyev, Enrico Tassi, and Laurent Théry. A machine-checked proof of the
odd order theorem. In 4th International Conference on Interactive Theorem Proving (ITP
2013), Rennes, France, July 22–26, 2013, volume 7998 of Lecture Notes in Computer Science,
pages 163–179. Springer, 2013.

10 Adam Grabowski, Artur Kornilowicz, and Christoph Schwarzweller. On algebraic hierarchies
in mathematical repository of Mizar. In Maria Ganzha, Leszek A. Maciaszek, and Marcin
Paprzycki, editors, Proceedings of the 2016 Federated Conference on Computer Science and
Information Systems, FedCSIS 2016, Gdańsk, Poland, September 11-14, 2016, volume 8 of
Annals of Computer Science and Information Systems, pages 363–371. IEEE, 2016. doi:
10.15439/2016F520.

11 Florian Haftmann and Makarius Wenzel. Constructive type classes in isabelle. In Thor-
sten Altenkirch and Conor McBride, editors, Types for Proofs and Programs, Interna-
tional Workshop, TYPES 2006, Nottingham, UK, April 18-21, 2006, Revised Selected Pa-
pers, volume 4502 of Lecture Notes in Computer Science, pages 160–174. Springer, 2006.
doi:10.1007/978-3-540-74464-1_11.

12 Wilfrid Hodges. Model Theory. Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 1993. doi:10.1017/CBO9780511551574.

13 Johannes Hölzl, Fabian Immler, and Brian Huffman. Type classes and filters for mathematical
analysis in Isabelle/HOL. In 4th International Conference on Interactive Theorem Proving
(ITP 2013), Rennes, France, July 22–26, 2013, volume 7998 of Lecture Notes in Computer
Science, pages 279–294. Springer, 2013.

14 Assia Mahboubi and Enrico Tassi. Canonical structures for the working Coq user. In 4th
International Conference on Interactive Theorem Proving (ITP 2013), Rennes, France, July
22–26, 2013, volume 7998 of Lecture Notes in Computer Science, pages 19–34. Springer, 2013.

15 Amokrane Saïbi. Typing algorithm in type theory with inheritance. In Peter Lee, Fritz Henglein,
and Neil D. Jones, editors, Conference Record of POPL’97: The 24th ACM SIGPLAN-

https://doi.org/10.1007/978-3-642-03359-9_8
https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.4230/LIPIcs.FSCD.2020.34
https://www.isa-afp.org/about.html
https://doi.org/10.15439/2016F520
https://doi.org/10.15439/2016F520
https://doi.org/10.1007/978-3-540-74464-1_11
https://doi.org/10.1017/CBO9780511551574

A. Mahboubi 2:3

SIGACT Symposium on Principles of Programming Languages, Papers Presented at the
Symposium, Paris, France, 15-17 January 1997, pages 292–301. ACM Press, 1997. doi:
10.1145/263699.263742.

16 Matthieu Sozeau and Nicolas Oury. First-Class Type Classes. In 21st International Conference
on Theorem Proving in Higher Order Logics (TPHOLs 2008), Montréal, Québec, Canada,
August 18–21, 2008, volume 5170 of Lecture Notes in Computer Science, pages 278–293.
Springer, 2008.

17 The mathlib Community. The Lean mathematical library. In 9th ACM SIGPLAN International
Conference on Certified Programs and Proofs (CPP 2020), New Orleans, LA, USA, January
20–21, 2020, pages 367–381. ACM, 2020.

CSL 2021

https://doi.org/10.1145/263699.263742
https://doi.org/10.1145/263699.263742

Branching in Well-Structured Transition Systems
Sylvain Schmitz
Université de Paris, CNRS, IRIF, France
IUF, Paris, France
schmitz@irif.fr

Abstract
The framework of well-structured transition systems has been highly successful in providing generic
algorithms to show the decidability of verification problems for infinite-state systems. In some of
these applications, the executions in the system at hand are actually trees, and need to be “lifted” to
executions over sets of configurations in order to fit in the framework. The downside of this approach
is that we might lose precision when analysing the computational complexity of the algorithms,
compared to reasoning over branching executions.

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy; Theory of computation → Program reasoning; Theory of computation → Verification by
model checking

Keywords and phrases fast-growing complexity, well-structured transition system

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.3

Category Invited Talk

Funding ANR-17-CE40-0028 BraVAS

Acknowledgements The presentation is based on joint work with Ranko Lazić.

1 Outline

In this talk, I intend to present a few ideas developed jointly with Ranko Lazić in [18]
and investigate how to adapt the framework of well-structured transition systems (WSTS),
due chiefly to Abdulla, Čerāns, Jonsson, and Tsay [1] and Finkel and Schnoebelen [10],
in order to handle tree computations. The WSTS framework supplies generic algorithms
for model-checking infinite-state systems, where the algorithms’ termination relies on a
well-quasi-ordering [16] of the configurations compatible with the transition relation.

Lifting Branching Systems. Well-structured transitions systems have found numerous
applications since their inception in the 1990’s, and these already encompass applications for
infinite-state systems with branching executions rather than linear ones. In relation to logic
in computer science, some of my favourite examples include provability in substructural logics
like the conjunctive-implicational fragment of relevance logic [20, 25] or propositional linear
logic with either contraction or weakening [17], and satisfiability for fragments of XPath over
data trees [14, 6, 9].

Indeed, one can lift a branching transition relation to reason instead over linear executions
over sets of configurations. Depending on the exact setup, the well-quasi-ordering on configur-
ations is similarly lifted using either the Smyth quasi-ordering – also known as the minoring
quasi-ordering – , or the Hoare quasi-ordering – also known as the majoring quasi-ordering.
In the applications to substructural or data logics mentioned above, the configurations are
essentially vectors of natural numbers in Nd for some d (ordered componentwise), and in
those cases the two quasi-orderings over sets of configurations are well [13, 19] and compatible
with the lifted transition relations, thereby defining a WSTS.

© Sylvain Schmitz;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 3; pp. 3:1–3:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4101-4308
mailto:schmitz@irif.fr
https://doi.org/10.4230/LIPIcs.CSL.2021.3
http://bravas.labri.fr/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Branching in Well-Structured Transition Systems

Algorithmic Complexity. While this lifting approach is successful for establishing decidability
results, it is less so when trying to prove complexity upper bounds. In most algorithmic
uses of well-quasi-orderings, one can rely on generic combinatorial analyses to extract upper
bounds [7, 24, 21, 23, etc.]. The obtained bounds are typically non primitive-recursive, and
depend primarily on the quasi-ordering. This approach has been applied to several classes of
WSTS, and in many cases these gigantic worst-case complexity upper bounds are really a
testament to the expressiveness of the corresponding classes of WSTS, as they are matched
with tight lower bounds [12, 15, 11, 4, 21, 22, etc.].

In the case of the Smyth and Hoare quasi-orderings over subsets of Nd however, the
complexity bounds on the lifted WSTS typically do not match the lower bounds. In that
respect, Balasubramanian [3] recently improved the upper bounds of Abriola, Figueira, and
Senno [2] and his hyper-Ackermannian bounds for the Hoare quasi-ordering over finite subsets
of Nd are tight. But those lower bounds might not be realisable through the lifting of a
branching transition system, and so far the known complexity lower bounds for all the
mentioned applications [25, 5, 8, 17] are Ackermannian or lower.

References

1 Parosh A. Abdulla, Karlis Čerāns, Bengt Jonsson, and Yih-Kuen Tsay. Algorithmic analysis of
programs with well quasi-ordered domains. Information and Computation, 160(1–2):109–127,
2000. doi:10.1006/inco.1999.2843.

2 Sergio Abriola, Santiago Figueira, and Gabriel Senno. Linearizing well-quasi orders and
bounding the length of bad sequences. Theoretical Computer Science, 603:3–22, 2015. doi:
10.1016/j.tcs.2015.07.012.

3 A. R. Balasubramanian. Complexity of controlled bad sequences over finite sets of Nd. In
Proceedings of LICS 2020. ACM, 2020. doi:10.1145/3373718.3394753.

4 Normann Decker and Daniel Thoma. On freeze LTL with ordered attributes. In Proceedings of
FoSSaCS 2016, volume 9634 of Lecture Notes in Computer Science, pages 269–284. Springer,
2016. doi:10.1007/978-3-662-49630-5_16.

5 Stéphane Demri and Ranko Lazić. LTL with the freeze quantifier and register automata. ACM
Transactions on Computational Logic, 10(3):16, 2009. doi:10.1145/1507244.1507246.

6 Diego Figueira. Alternating register automata on finite words and trees. Logical Methods in
Computer Science, 8(1), 2012. doi:10.2168/LMCS-8(1:22)2012.

7 Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen. Ackermannian
and primitive-recursive bounds with Dickson’s Lemma. In Proceedings of LICS 2011, pages
269–278. IEEE, 2011. doi:10.1109/LICS.2011.39.

8 Diego Figueira and Luc Segoufin. Future-looking logics on data words and trees. In Proceedings
of MFCS ’09, volume 5734 of Lecture Notes in Computer Science, pages 331–343. Springer,
2009. doi:10.1007/978-3-642-03816-7_29.

9 Diego Figueira and Luc Segoufin. Bottom-up automata on data trees and vertical XPath.
Logical Methods in Computer Science, 13(4), 2017. doi:10.23638/LMCS-13(4:5)2017.

10 Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1–2):63–92, 2001. doi:10.1016/S0304-3975(00)00102-X.

11 Christoph Haase, Sylvain Schmitz, and Philippe Schnoebelen. The power of priority channel
systems. Logical Methods in Computer Science, 10(4):4:1–4:39, December 2014. doi:10.2168/
LMCS-10(4:4)2014.

12 Serge Haddad, Sylvain Schmitz, and Philippe Schnoebelen. The ordinal recursive complexity
of timed-arc Petri nets, data nets, and other enriched nets. In Proceedings of LICS 2012, pages
355–364. IEEE Press, 2012. doi:10.1109/LICS.2012.46.

13 Petr Jančar. A note on well quasi-orderings for powersets. Information Processing Letters,
72(5–6):155–160, 1999. doi:10.1016/S0020-0190(99)00149-0.

https://doi.org/10.1006/inco.1999.2843
https://doi.org/10.1016/j.tcs.2015.07.012
https://doi.org/10.1016/j.tcs.2015.07.012
https://doi.org/10.1145/3373718.3394753
https://doi.org/10.1007/978-3-662-49630-5_16
https://doi.org/10.1145/1507244.1507246
https://doi.org/10.2168/LMCS-8(1:22)2012
https://doi.org/10.1109/LICS.2011.39
https://doi.org/10.1007/978-3-642-03816-7_29
https://doi.org/10.23638/LMCS-13(4:5)2017
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.2168/LMCS-10(4:4)2014
https://doi.org/10.2168/LMCS-10(4:4)2014
https://doi.org/10.1109/LICS.2012.46
https://doi.org/10.1016/S0020-0190(99)00149-0

S. Schmitz 3:3

14 Marcin Jurdziński and Ranko Lazić. Alternating automata on data trees and XPath satisfiabil-
ity. ACM Transactions on Computational Logic, 12(3), 2011. doi:10.1145/1929954.1929956.

15 Prateek Karandikar and Sylvain Schmitz. The parametric ordinal-recursive complexity of
Post embedding problems. In Proceedings of FoSSaCS 2013, volume 7794 of Lecture Notes in
Computer Science, pages 273–288. Springer, 2013. doi:10.1007/978-3-642-37075-5_18.

16 Joseph B. Kruskal. The theory of well-quasi-ordering: A frequently discovered concept.
Journal of Combinatorial Theory, Series A, 13(3):297–305, 1972. doi:10.1016/0097-3165(72)
90063-5.

17 Ranko Lazić and Sylvain Schmitz. Non-elementary complexities for branching VASS, MELL,
and extensions. ACM Transactions on Computational Logic, 16(3):20:1–20:30, 2015. doi:
10.1145/2733375.

18 Ranko Lazić and Sylvain Schmitz. The ideal view on Rackoff’s coverability technique. Inform-
ation and Computation, 2020. In press. doi:10.1016/j.ic.2020.104582.

19 Alberto Marcone. Fine analysis of the quasi-orderings on the power set. Order, 18(4):339–347,
2001. doi:10.1023/A:1013952225669.

20 Jacques Riche and Robert K. Meyer. Kripke, Belnap, Urquhart and relevant decidability &
complexity. In Proceedings of CSL 1998, volume 1584 of Lecture Notes in Computer Science,
pages 224–240. Springer, 1999. doi:10.1007/10703163_16.

21 Fernando Rosa-Velardo. Ordinal recursive complexity of unordered data nets. Information
and Computation, 254(1):41–58, 2017. doi:10.1016/j.ic.2017.02.002.

22 Sylvain Schmitz. Algorithmic Complexity of Well-Quasi-Orders. Habilitation thesis,
École Normale Supérieure Paris-Saclay, 2017. URL: http://tel.archives-ouvertes.fr/
tel-01663266.

23 Sylvain Schmitz. The parametric complexity of lossy counter machines. In Proceedings of
ICALP 2019, volume 132 of Leibniz International Proceedings in Informatics, pages 129:1–
129:15. LZI, 2019. doi:10.4230/LIPIcs.ICALP.2019.129.

24 Sylvain Schmitz and Philippe Schnoebelen. Multiply-recursive upper bounds with Higman’s
Lemma. In Proceedings of ICALP 2011, volume 6756 of Lecture Notes in Computer Science,
pages 441–452. Springer, 2011. doi:10.1007/978-3-642-22012-8_35.

25 Alasdair Urquhart. The complexity of decision procedures in relevance logic II. Journal of
Symbolic Logic, 64(4):1774–1802, 1999. doi:10.2307/2586811.

CSL 2021

https://doi.org/10.1145/1929954.1929956
https://doi.org/10.1007/978-3-642-37075-5_18
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.1145/2733375
https://doi.org/10.1145/2733375
https://doi.org/10.1016/j.ic.2020.104582
https://doi.org/10.1023/A:1013952225669
https://doi.org/10.1007/10703163_16
https://doi.org/10.1016/j.ic.2017.02.002
http://tel.archives-ouvertes.fr/tel-01663266
http://tel.archives-ouvertes.fr/tel-01663266
https://doi.org/10.4230/LIPIcs.ICALP.2019.129
https://doi.org/10.1007/978-3-642-22012-8_35
https://doi.org/10.2307/2586811

Borel Sets in Reverse Mathematics
Linda Westrick
The Pennsylvania State University, University Park, PA, USA
https://personal.psu.edu/lzw299/
westrick@psu.edu

Abstract
We present what is known about the reverse mathematical strength of weak theorems involving
Borel sets.

2012 ACM Subject Classification Theory of computation → Constructive mathematics

Keywords and phrases Borel sets, reverse mathematics, measure, category

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.4

Category Invited Talk

Funding Linda Westrick: This work was partially supported by NSF grant DMS-1854107.

Acknowledgements This talk includes joint work with many co-authors: Eric Astor, Damir Dzha-
farov, Stephen Flood, Antonio Montalbán, Reed Solomon, Henry Towsner and Rose Weisshaar.

Theorems about Borel sets are often proved using arguments which appeal to some
property of Borel sets, rather than recursing on the Borel structure of the set directly. For
example, the statement “there is no Borel well-ordering of the reals” can be proved using
either a measure or category argument. More generally, suppose we are given a theorem about
Borel sets and a proof based on measure theory. Could the same theorem also be proved with
a category argument? In principle, when the answer is “no”, reverse mathematics provides
a framework for proving this negative answer. However, early treatments of Borel sets in
reverse mathematics (see [3]) used arithmetic transfinite recursion (ATR0) as a base theory,
and thus were not able to distinguish between a measure argument, a category argument,
and a direct recursion.

Given a code for a Borel set B and an element x which may or may not be in B, a direct
recursion on the structure of B is generally required to determine whether x ∈ B or x 6∈ B.
Therefore, in models of second order arithmetic which do not satisfy ATR0, there are codes B

and elements x for which the model is not powerful enough to see either x ∈ B or x /∈ B [2].
To avoid giving artificial strength to theorems which simply assert that a Borel set has an
element, in [1] we defined the notion of a completely determined Borel set. Roughly speaking,
inside a given model, B is completely determined if for all x either x ∈ B or x 6∈ B. This
allows a separation between direct recursion on the one hand, and measure and category
arguments on the other.

I Theorem 1. The following principles are strictly weaker than ATR0:
1. Every completely determined Borel set has the property of Baire. [1]
2. Every completely determined Borel set is measurable. [5]

Furthermore, if M is an ω-model of (1), then for every Z ∈ M there is a G ∈ M that is
∆1

1(Z)-generic [1]. And if M is an ω-model of (2), then for every Z ∈ M there is an R ∈ M
that is ∆1

1(Z)-random [5].
The hyperarithmetic sets, HY P , give the weakest ω-model of second order arithmetic

in which the completely determined Borel sets are at all well behaved, being closed under
countable unions and intersections. However, in HY P , one can construct some “Borel” sets
by choice arguments.

© Linda Westrick;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 4; pp. 4:1–4:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5495-7383
https://personal.psu.edu/lzw299/
mailto:westrick@psu.edu
https://doi.org/10.4230/LIPIcs.CSL.2021.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Borel Sets in Reverse Mathematics

I Theorem 2 ([4]). In HY P :
1. There is a completely determined Borel well-ordering of the reals.
2. Every completely determined Borel n-regular acyclic graph has a completely determined

Borel 2-coloring.
3. The prisoners have a completely determined Borel winning strategy in the infinite prisoner

hat game.

We present what is known about the reverse mathematical strength of these and other
weak theorems involving Borel sets.

References
1 Eric P. Astor, Damir Dzhafarov, Antonio Montalbán, Reed Solomon, and Linda Brown

Westrick. The determined property of Baire in reverse math. J. Symb. Log., 85(1):166–198,
2020. doi:10.1017/jsl.2019.64.

2 Damir Dzhafarov, Stephen Flood, Reed Solomon, and Linda Brown Westrick. Effectiveness
for the Dual Ramsey Theorem. CoRR, Submitted 2017. arXiv:1710.00070.

3 Stephen G. Simpson. Subsystems of second order arithmetic. Perspectives in Logic. Cambridge
University Press, Cambridge; Association for Symbolic Logic, Poughkeepsie, NY, second
edition, 2009. doi:10.1017/CBO9780511581007.

4 Henry Towsner, Rose Weisshaar, and Linda Westrick. Borel combinatorics fail in HYP. CoRR,
In preparation.

5 Linda Westrick. Completely determined Borel sets and measurability. CoRR, Submitted 2020.
arXiv:2001.01881.

https://doi.org/10.1017/jsl.2019.64
http://arxiv.org/abs/1710.00070
https://doi.org/10.1017/CBO9780511581007
http://arxiv.org/abs/2001.01881

The Logic of Contextuality
Samson Abramsky
Department of Computer Science, University of Oxford, UK
https://www.cs.ox.ac.uk/people/samson.abramsky/
samson.abramsky@cs.ox.ac.uk

Rui Soares Barbosa1

INL – International Iberian Nanotechnology Laboratory, Braga, Portugal
https://www.cs.ox.ac.uk/people/rui.soaresbarbosa/rsb
rui.soaresbarbosa@inl.int

Abstract
Contextuality is a key signature of quantum non-classicality, which has been shown to play a central
role in enabling quantum advantage for a wide range of information-processing and computational
tasks. We study the logic of contextuality from a structural point of view, in the setting of partial
Boolean algebras introduced by Kochen and Specker in their seminal work. These contrast with
traditional quantum logic à la Birkhoff and von Neumann in that operations such as conjunction
and disjunction are partial, only being defined in the domain where they are physically meaningful.

We study how this setting relates to current work on contextuality such as the sheaf-theoretic and
graph-theoretic approaches. We introduce a general free construction extending the commeasurability
relation on a partial Boolean algebra, i.e. the domain of definition of the binary logical operations.
This construction has a surprisingly broad range of uses. We apply it in the study of a number of
issues, including:

establishing the connection between the abstract measurement scenarios studied in the contextu-
ality literature and the setting of partial Boolean algebras;
formulating various contextuality properties in this setting, including probabilistic contextuality
as well as the strong, state-independent notion of contextuality given by Kochen–Specker
paradoxes, which are logically contradictory statements validated by partial Boolean algebras,
specifically those arising from quantum mechanics;
investigating a Logical Exclusivity Principle, and its relation to the Probabilistic Exclusivity
Principle widely studied in recent work on contextuality as a step towards closing in on the set
of quantum-realisable correlations;
developing some work towards a logical presentation of the Hilbert space tensor product, using
logical exclusivity to capture some of its salient quantum features.

2012 ACM Subject Classification Theory of computation → Logic; Theory of computation →
Quantum computation theory; Mathematics of computing

Keywords and phrases partial Boolean algebras, contextuality, exclusivity principles, Kochen–Specker
paradoxes, tensor product

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.5

Funding Samson Abramsky: This author acknowledges support from EPSRC – Engineering and
Physical Sciences Research Council, EP/T00696X/1, Resources and Coresources: a junction between
categorical semantics and descriptive complexity.
Rui Soares Barbosa: This author acknowledges support from EPSRC – Engineering and Physical
Sciences Research Council, EP/R044759/1, Combining Viewpoints in Quantum Theory (Ext.), and
from FCT – Fundação para a Ciência e a Tecnologia, CEECINST/00062/2018.

Acknowledgements The authors would like to thank Chris Heunen for helpful discussions.

1 This work was carried out in part while RSB was at the School of Informatics, the University of
Edinburgh.

© Samson Abramsky and Rui Soares Barbosa;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 5; pp. 5:1–5:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-3921-6637
https://www.cs.ox.ac.uk/people/samson.abramsky/
mailto:samson.abramsky@cs.ox.ac.uk
https://orcid.org/0000-0002-0465-8518
https://www.cs.ox.ac.uk/people/rui.soaresbarbosa/rsb
mailto:rui.soaresbarbosa@inl.int
https://doi.org/10.4230/LIPIcs.CSL.2021.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 The Logic of Contextuality

1 Introduction

Kochen and Specker’s seminal work on quantum contextuality used the formalism of partial
Boolean algebras [21]. In contrast to quantum logic in the sense of Birkhoff and von Neumann
[7], partial Boolean algebras only admit physically meaningful operations. In the key example
of P(H), the projectors on a Hilbert space H, the operation of conjunction, i.e. product of
projectors, becomes a partial one, only defined on commuting projectors.

In more recent work [20], Kochen developed a large part of the foundations of quantum
theory in terms of partial Boolean algebras. Heunen and van den Berg [25] showed that
every partial Boolean algebra is the colimit of its (total) Boolean subalgebras. Thus the
topos approach to quantum theory [17] can be seen as a refinement, in explicitly categorical
language, of the partial Boolean algebra approach. In this paper, we relate partial Boolean
algebras to current frameworks for contextuality, in particular the sheaf-theoretic [5] and
graph-theoretic [9] approaches.

A major role in our technical development is played by a general universal construction
for partial Boolean algebras, which freely generates a new partial Boolean algebra from a
given one and extra commeasurability constraints (Section 2.2, Theorem 1). This result
is proved constructively, using an inductive presentation by generators and relations. It
is used throughout the paper as it provides a flexible tool, subsuming a number of other
constructions: some previously known, and some new.

We describe a construction of partial Boolean algebras from graphical measurement
scenarios, i.e. scenarios whose measurement compatibility structure is given by a binary
compatibility relation, or graph. Empirical models, i.e. correlations satisfying the no-signalling
or no-disturbance principle, on these scenarios correspond bijectively to probability valuations,
or states, on the corresponding partial Boolean algebras (Section 3.3).

We then turn our attention to contextuality properties. We discuss how probabilistic
contextuality is formulated in the setting of partial Boolean algebras (Section 4.2), and
show that the strong, state-independent form of contextuality considered by Kochen and
Specker can be neatly captured using the universal construction mentioned above (Section 4.1,
Theorem 16).

We also consider questions of quantum realisability, i.e. aiming to characterise the logical
structure of partial Boolean algebras of projectors on a Hilbert space, and probability models
that admit a Hilbert space realisation. This motivates us to propose a Logical Exclusivity
Principle (LEP), which is always satisfied by partial Boolean algebras of the form P(H)
(Section 5.1). We use a variant of our universal construction to show that there is a reflection
between partial Boolean algebras and those satisfying LEP (Section 5.4, Theorem 26). We
relate this Logical Exclusivity Principle to Specker’s Exclusivity Principle for probabilistic
models [8]. We show that if a partial Boolean algebra satisfies LEP, then all its states satisfy
the Probabilistic Exclusivity Principle (PEP) (Section 5.3, Proposition 24). Moreover, we
show that a state on a partial Boolean algebra satisfies PEP if it extends to one on its
logically exclusive reflection, i.e. the freely generated partial Boolean algebra satisfying LEP
(Section 5.3, Theorem 25).

In a similar vein, we consider the extent to which the tensor product operation on Hilbert
spaces can be “tracked” by a corresponding operation on partial Boolean algebras. We first
consider the tensor product described in [25, 20], which can be put in generator and relations
form using our free construction (Section 6.1). It is easily seen that it fails to capture all the
relations holding in the partial Boolean algebra of projectors on the Hilbert space tensor
product. We then show that there is a natural monoidal structure on partial Boolean algebras
satisfying LEP (Section 6.2). This contrasts with the situation for standard contextuality

S. Abramsky and R. S. Barbosa 5:3

models satisfying Specker’s Exclusivity Principle, which are not closed under tensor product.
Both tensor product constructions above work by freely extending commeasurability starting
from the coproduct of partial Boolean algebras. We show that such an operation never gives
rise to Kochen–Specker paradoxes (Section 6.3). This can be seen as a limitative result for
using such an approach to fully capture the Hilbert space tensor product in logical form, in
terms of partial Boolean algebras.

We conclude with a discussion of some natural questions that arise from our results (Sec-
tion 7).

2 Partial Boolean algebras

2.1 Basic definitions
A partial Boolean algebra A is given by a set (also written A), a reflexive, symmetric binary
relation � on A, read as “commeasurability” or “compatibility”, constants 0 and 1, a total
unary operation ¬, and partial binary operations ∧ and ∨ with domain �. These must satisfy
the following property: every set S of pairwise-commeasurable elements must be contained
in a set T of pairwise-commeasurable elements which forms a (total) Boolean algebra2 under
the restrictions of the given operations.

Morphisms of partial Boolean algebras are maps preserving commeasurability, and the
operations wherever defined. This gives a category pBA.

Heunen and van den Berg show in [25, Theorem 4] that every partial Boolean algebra
is the colimit, in pBA, of the diagram C(A) consisting of its Boolean subalgebras and the
inclusions between them.

2.2 Colimits and free extensions of commeasurability
In [25], the category pBA is shown to be cocomplete. Coproducts have a simple direct
description. The coproduct A⊕B of partial Boolean algebras A, B is their disjoint union
with 0A identified with 0B , and 1A identified with 1B . Other than these identifications, no
commeasurability holds between elements of A and elements of B. By contrast, coequalisers,
and general colimits, are shown to exist in [25] by an appeal to the Adjoint Functor Theorem.
One of our technical contributions is to give a direct construction of the needed colimits, by
an inductive presentation.3

More generally, we use this approach to prove the following result, which freely generates
from a given partial Boolean algebra a new one where prescribed additional commeasurability
relations are enforced between its elements.

I Theorem 1. Given a partial Boolean algebra A and a binary relation } on A, there is a
partial Boolean algebra A[}] such that:

there is a pBA-morphism η : A −→ A[}] satisfying a} b ⇒ η(a)�A[}] η(b);
for every partial Boolean algebra B and pBA-morphism h : A −→ B satisfying a} b ⇒
h(a) �B h(b), there is a unique pBA-morphism ĥ : A[}] −→ B such that h = ĥ ◦ η,
i.e. such that the following diagram commutes

A A[}]

B

h

η

ĥ

2 From now on, whenever we say just “Boolean algebra”, we mean total Boolean algebra.
3 For a well-known discussion of the advantages of an explicit construction over an appeal to the Adjoint

Functor Theorem, see [18, p. xvii].

CSL 2021

5:4 The Logic of Contextuality

Table 1 Rules for free partial Boolean algebra with extended compatibility relation.

a ∈ A
ı(a)↓

a�A b
ı(a)� ı(b)

a} b
ı(a)� ı(b)

0 ≡ ı(0A), 1 ≡ ı(1A)
a�A b

ı(a) ∧ ı(b) ≡ ı(a ∧A b), ı(a) ∨ ı(b) ≡ ı(a ∨A b) ¬ı(a) ≡ ı(¬Aa)

0↓, 1↓
t� u

t ∧ u↓, t ∨ u↓
t↓
¬t↓

t↓
t� t, t� 0, t� 1

t� u
u� t

t� u, t� v, u� v
t ∧ u� v, t ∨ u� v

t� u
¬t� u

t↓
t ≡ t

t ≡ u
u ≡ t

t ≡ u, u ≡ v
t ≡ v

t ≡ u, u� v
t� v

ϕ(~x) ≡Bool ψ(~x),
∧
i,j ui � uj

ϕ(~u) ≡ ψ(~u)
t ≡ t′, u ≡ u′, t� u

t ∧ u ≡ t′ ∧ u′, t ∨ u ≡ t′ ∨ u′
t ≡ u
¬t ≡ ¬u

We do not require that the relation } include the commeasurability relation �A already
defined on A. Of course, it is the case that A[}] ∼= A[�A ∪ }] for any }, but it will be
notationally convenient to allow an arbitrary relation } in this construction. In particular,
note that A[∅] ∼= A[�A] ∼= A.

As already mentioned, this result is proved constructively, by giving proof rules for
commeasurability and equivalence relations over a set of syntactic terms generated from A.
In fact, we start with a set of “pre-terms” and also give rules for definedness.

We define the set of pre-terms P inductively, to be the closure of the set of generators
G := {ı(a) | a ∈ A} under the Boolean operations and constants. The standard theory of
Boolean algebras gives us an equational theory ≡Bool for terms in the Boolean signature
{0, 1,∧,∨,¬} over variables x, y, . . . We have the usual notion of substitution of pre-terms for
variables: if ϕ(~x) is a Boolean term in the variables x1, . . . , xn, and if u1, . . . , un are pre-terms,
then ϕ(~u) is the pre-term which results from replacing xi by ui for all i ∈ {1, . . . , n}.

We now define a predicate ↓ (definedness or existence), and binary relations � and ≡ on
P , by the set of rules in Table 1. To illustrate the first rule on the last line, consider the
distributivity axiom: x ∧ (y ∨ z) ≡Bool (x ∧ y) ∨ (x ∧ z). Under the assumptions t� u, u� v,
t� v, we can infer t ∧ (u ∨ v) ≡ (t ∧ u) ∨ (t ∧ v). Note that in this rule ϕ(~x) and ψ(~x) are
pure Boolean terms, i.e. they do not contain generators.

One can show the following by structural induction on derivations, where ` means
derivability of an assertion from the rules.

I Lemma 2. For all pre-terms t and u,
1. ` t� u implies ` t↓ and ` u↓;
2. ` t ≡ u implies ` t↓ and ` u↓ and ` t� u.

We define the set of terms T := {t ∈ P | t↓}. The relation ≡ is an equivalence relation on
T , by the rules in the fifth line. We define a structure A[}] as follows. The carrier is T/≡.
The relation � is defined by: [t]� [u] :⇔ ` t�u. This is well defined due to the last rule on
the fifth line. The operations are defined by representatives: if [t]� [u], then [t]∧ [u] := [t∧u],

S. Abramsky and R. S. Barbosa 5:5

etc. These are shown to be well defined using the congruence rules on the last line. The first
rule on the last line now suffices to show that any set of pairwise-commeasurable elements of
A[}] extends to a Boolean algebra, establishing the following proposition.

I Proposition 3. A[}] is a partial Boolean algebra.

There is a map η : A −→ A[}] sending a to [ı(a)]. By the rules on the first two lines, this
is a pBA-morphism which moreover satisfies a} b ⇒ η(a)� η(b).

Now, given a partial Boolean algebra B and a morphism h : A −→ B such that a} b ⇒
h(a) �B h(b), we shall show that there is a unique partial Boolean algebra morphism
ĥ : A[}] −→ B such that h = ĥ ◦ η.

We define a partial map γ : P −⇀ B by structural recursion on pre-terms:

γ(ı(a)) := h(a) γ(t ∧ u) := γ(t) ∧B γ(u)
γ(¬t) := ¬Bγ(t) γ(t ∨ u) := γ(t) ∨B γ(u)

Note that this map is partial because the operations ∧B and ∨B are.

I Proposition 4. For all pre-terms t and u, the following conditions hold:
1. ` t↓ implies γ(t) is defined;
2. ` t� u implies γ(t)�B γ(u);
3. ` t ≡ u implies γ(t) = γ(u).

Proof. The proof goes by structural induction on derivations from the rules. It suffices
to verify that each rule is a valid statement about the partial Boolean algebra B when
assertions about t, u are replaced by the corresponding assertions about γ(t), γ(u). Note
that γ(t)�B γ(u) and γ(t) = γ(u) are taken to imply, in particular, that γ(t) and γ(u) are
well-defined elements of B.

For example, the third rule on the fifth line (transitivity of ≡) gets translated to

γ(t) = γ(u), γ(u) = γ(v)
γ(t) = γ(v)

which simply expresses transitivity of equality. Most other cases are similar.
The first rule on the last line is the least straightforward. The induction hypothesis gives

γ(ui) �B γ(uj) for all i and j, i.e. {γ(u1), . . . , γ(un)} is a set of pairwise-commeasurable
elements in B. It can therefore be extended to a Boolean subalgebra of B. This implies that
for any pure Boolean term ϕ(~x), γ(ϕ(u1, . . . , un)) = ϕB(γ(u1), . . . , γ(un)) is well defined in
B, and moreover that γ(ϕ(~u)) = γ(ψ(~u)) whenever ϕ(~x) ≡Bool ψ(~x), as required. J

Proof of Theorem 1. We can now establish the required universal property. We define
ĥ([t]) := γ(t). It follows straightforwardly from the definition of γ together with the previous
proposition that this is well defined and has the required properties. J

This result will prove to be very useful in what follows.

Coequalisers and colimits
A variation of this construction is also useful, where instead of just forcing commeasurability,
one forces equality. Given a partial Boolean algebra A and a relation } as before, we write
A[},≡] for the algebra generated by the above inductive construction, with one additional
rule:

a} a′

ı(a) ≡ ı(a′)

CSL 2021

5:6 The Logic of Contextuality

We can define a pBA-morphism η : A −→ A[},≡] by η(a) := [ı(a)]. Clearly this satisfies
a } a′ ⇒ η(a) = η(a′). A simple adaptation of the proof of Theorem 1 establishes the
following universal property of this construction.

I Theorem 5. Let h : A −→ B be a pBA-morphism such that a } a′ ⇒ h(a) = h(a′).
Then there is a unique pBA-morphism ĥ : A[},≡] −→ B such that h = ĥ ◦ η.

This result can be used to give an explicit construction of coequalisers, and hence general
colimits, in pBA. Given a diagram

A B
f

g

in pBA, we define a relation } on B by b } b′ := ∃a ∈ A. f(a) = b ∧ g(a) = b′. Then,
η : B −→ B[},≡] is the coequaliser of f and g.

2.3 States on partial Boolean algebras
I Definition 6. A state or probability valuation on a partial Boolean algebra A is a map
ν : A −→ [0, 1] such that:
1. ν(0) = 0;
2. ν(¬x) = 1− ν(x);
3. for all x, y ∈ A with x� y, ν(x ∨ y) + ν(x ∧ y) = ν(x) + ν(y).

I Proposition 7. A map ν : A −→ [0, 1] is a state iff for every Boolean subalgebra B of A,
the restriction of ν to B is a finitely additive probability measure on B.

I Lemma 8. Let A be a partial Boolean algebra. There is a one-to-one correspondence
between:

states on A;
families (νS)S∈C(A) indexed by the Boolean subalgebras S of A, where νS is a finitely
additive probability measure on S and νS = νT ◦ ιS,T whenever S ⊆ T .

I Lemma 9. Let A be a finite Boolean algebra. There is a one-to-one correspondence between
states on A and probability distributions on its set of atoms.

Proof. Write X for the set of atoms of A. If ν : A −→ [0, 1] is a state on A, then∑
x∈X

ν(x) = ν
(∨

X
)

can be shown by induction on the size of X, using Definition 6–1 for the base case, and
using Definition 6–3,1 and the fact that x ∧ y = 0 when x and y are distinct atoms for the
induction step. Since

∨
X = 1, we conclude that

∑
x∈X ν(x) = 1 and so ν|X : X −→ [0, 1] is

a probability distribution on X.
Conversely, if d : X −→ [0, 1] is a probability distribution, we extend it to the whole

Boolean algebra using the fact that any element is uniquely written as the join of a set of
atoms, as follows: for any S ⊆ X,

ν
(∨

S
)

:=
∑
x∈S

d(x) . J

S. Abramsky and R. S. Barbosa 5:7

3 Graphical measurement scenarios and partial Boolean algebras

3.1 Measurement scenarios and (no-signalling) empirical models
We consider the basic framework of the sheaf-theoretic approach introduced in [5] to provide a
unified perspective on non-locality and contextuality. Our focus here will not be solely on the
question of contextuality, but also on principles that approximate the set of quantum-realisable
behaviours.

Measurement scenarios provide an abstract notion of an experimental setup. They model
a situation where there is a set of measurements, or queries, one can perform on a system,
but not all of which may be performed simultaneously.

In this paper, we focus on what we term “graphical” scenarios, where a subset of measure-
ments is compatible (i.e. can be performed together) if its elements are pairwise compatible.
Hence, compatibility is specified simply by a binary relation. A paradigmatic example is
quantum theory, where compatibility is given by commutativity: a set of measurements
(observables) can be performed together if and only if its elements commute pairwise.

Note that, in contrast to [5], we do not require that the set of measurements be finite.
We do, however, consider only measurements with a finite set of outcomes. This allows us to
include within the scope of our discussion the scenario formed by all the quantum-mechanical
observables on a system described by a finite-dimensional Hilbert space.

I Definition 10. A graphical measurement scenario is a triple 〈X,_,O〉 consisting of:
a set X of measurements,
a reflexive, symmetric relation _ on X, indicating compatibility of measurements.
a family (Ox)x∈X assigning a finite set Ox of outcomes to each measurement x ∈ X.

A context is a subset of measurements σ ⊆ X that are pairwise compatible, i.e. a clique of
the relation _. We write Kl(_) for the set of contexts.

A particular case of interest is that of measurement scenarios where every measurement
is dichotomic, i.e. has two possible outcomes.

Given a measurement scenario, an empirical model specifies particular probabilistic
observable behaviour that may be displayed by a physical system.

I Definition 11. Let 〈X,_,O〉 be a measurement scenario. A (no-signalling) empirical
model is a family (eσ)σ∈Kl(_) where for each context σ ∈ Kl(_), eσ is a probability distri-
bution on the set E(σ) :=

∏
x∈σ Ox of joint assignments of outcomes to the measurements

in σ, and such that eσ = eτ |σ whenever σ and τ are contexts with σ ⊆ τ , where eτ |σ is
marginalisation of distributions given as follows: for any s ∈ E(σ),

eτ |σ(s) :=
∑

t∈E(τ),t|σ=s

eτ (t) .

Such an empirical model is said to be non-contextual if there is a (global) probability
distribution d on the set E(X) =

∏
x∈X Ox that marginalises to the empirical probabilities,

i.e. such that d|σ = eσ for all contexts σ ∈ Kl(_).

The marginalisation condition in the definition of empirical models (eσ = eτ |σ for contexts
σ ⊆ τ) ensures that the probabilistic outcome of a compatible subset of measurements
is independent of which other compatible measurements are performed alongside these.
This is sometimes referred to as the no-disturbance condition [24], or no-signalling
condition [23] in the special case of Bell scenarios. This is a local compatibility condition,

CSL 2021

5:8 The Logic of Contextuality

whereas non-contextuality can be seen as global compatibility: this justifies the slogan
that contextuality arises from empirical data which is locally consistent but globally
inconsistent [3, 2].

No-disturbance is satisfied by any empirical probabilities that can be realised in quantum
mechanics [5]. However, this condition is much weaker than quantum realisability. Empirical
models allow for behaviours that may be considered super-quantum, exemplified by the
Popescu–Rohrlich (PR) box [23]. A lot of effort has gone into trying to characterise the set
of quantum behaviours by imposing some additional, physically motivated conditions on
empirical models, leading to various approximations from above to this quantum set.

3.2 Exclusivity principle on empirical models
One candidate for a property that is distinctive for the quantum case has appeared in various
formulations as Local Orthogonality [11], Consistent Exclusivity [15], or Specker’s Exclusivity
Principle [8]. We shall refer to it as the Probabilistic Exclusivity Principle (PEP), since it is
expressed as a constraint on probability assignments.

Informally, it says that if we have a family of pairwise exclusive events, then their
probabilities must sum to at most 1. Of course, if all the events live on a single sample space,
this would just be a basic property of probability measures. What gives the condition its
force is that, in general, these events live on different, incompatible contexts. Thus, it
reaches beyond the usual view of contexts as different classical “windows” on a quantum
system, in which incompatible contexts are regarded as incommensurable.

We can give a precise formulation of PEP in terms of empirical models as follows. First,
we say that events s ∈ E(σ) and t ∈ E(τ) are exclusive if for some x ∈ σ ∩ τ , s(x) 6= t(x).
The principle holds for an empirical model (eσ)σ∈Kl(_) if for any family {si ∈ E(σi)}i∈I of
pairwise-exclusive events, then∑

i∈I
eσi(si) ≤ 1.

This principle is valid in quantum-realisable empirical models, in which measurements corres-
pond to observables, because incompatible (non-commuting) observables can share projectors,
and exclusivity of outcomes with respect to common projectors implies orthogonality.

Although we know that PEP does not fully characterise the quantum-realisable empirical
models, it stands as an important and fruitful principle [15, 6]. We wish to study this
principle from the perspective of partial Boolean algebras.

3.3 From graphical measurement scenarios to partial Boolean algebras
To any graphical measurement scenario, we can associate a partial Boolean algebra whose
states correspond to empirical models.

I Definition 12. Let X = 〈X,_,O〉 be a graphical measurement scenario. The partial
Boolean algebra AX is defined as follows:

For each measurement x ∈ X, take Bx to be the finite Boolean algebra with atoms
corresponding to the elements of Ox. We write [x = o] for the atom of Bx corresponding
to the outcome o ∈ Ox.
Consider the partial Boolean algebra A :=

⊕
x∈X Bx, the coproduct of all the Boolean

algebras Bx taken in the category pBA. Note that all its elements are of the form ıx(a)
for a unique x ∈ X and a ∈ Bx, except for the constants 0 and 1.

S. Abramsky and R. S. Barbosa 5:9

Define the following relation } on the elements of A:

ıx(a)} ıy(b) iff x_y or a ∈ {0, 1} or b ∈ {0, 1} .

Take AX := A[}], the extension of A by the relation }, as given by Theorem 1.

We can give an alternative description using colimits.

I Definition 13. Let X = 〈X,_,O〉 be a graphical measurement scenario. The partial
Boolean algebra BX is defined as follows:

For each measurement x ∈ X, let Bx be as in Definition 12.
For each context σ ∈ Kl(_), let Bσ :=

∑
x∈σ Bx, the coproduct of all the Bx with x ∈ σ,

taken in the category BA of Boolean algebras.4
Given contexts σ, τ ∈ Kl(_) with σ ⊆ τ , there is a Boolean algebra homomorphism
ιτσ : Bσ −→ Bτ given by the obvious injection.
Take BX to be the colimit in the category pBA of the diagram consisting of the Boolean
algebras (Bσ)σ∈Kl(_) and the inclusions (ιτσ)σ⊆τ∈Kl(_).

Note that the colimit in this instance can be given explicitly in a closed form, as it is
that of a diagram of Boolean algebras and inclusions satisfying the conditions of Kalmbach’s
“bundle lemma” [19, 1.4.22]. The carrier set of BX is the union of all the Bσ modulo the
identifications along inclusions ιτσ. The Boolean subalgebras of BX are exactly those in the
family (Bσ)σ∈Kl(_).

I Proposition 14. The two descriptions coincide: for any X, AX ∼= BX.

I Proposition 15. For any graphical measurement scenario X, there is a one-to-one corres-
pondence between states on AX and empirical models on X.

Proof. This follows from the fact that the Boolean subalgebras of AX are the family
(Bσ)σ∈Kl(_), by applying Lemmas 8 and 9, and noting that the condition νS = νT ◦ ιS,T for
S ⊆ T on states on Boolean subalgebras translates under the correspondence in Lemma 9 to
marginalisation of probability distributions. J

4 Partial Boolean algebras and contextuality

We consider some aspects of contextuality formulated in the framework of partial Boolean
algebras, and relate them to the free construction from Theorem 1.

4.1 The Kochen–Specker property
The Kochen–Specker theorem, as originally stated [21], is that there are partial Boolean
algebras of Hilbert space projectors with no pBA-morphisms to 2, the two-element Boolean
algebra. Since every (non-trivial5) Boolean algebra has a homomorphism to 2, this implies
that such a partial Boolean algebra A has no morphism to any (non-trivial) Boolean algebra.

Now, BA is a full subcategory of pBA. We know from [25] that A is the colimit in pBA
of the diagram C(A) consisting of its Boolean subalgebras and inclusions between them. Let
B be the colimit in BA of the same diagram C(A). Then, the cone from C(A) to B is also a
cone in pBA, hence there is a mediating pBA-morphism from A to B.

4 Note that the set of atoms of such a coproduct Boolean algebra is the cartesian product of the sets of
atoms of each of the summands. Hence an atom of Bσ corresponds to an assignment of an outcome in
Ox to each measurement x ∈ σ.

5 See the following discussion.

CSL 2021

5:10 The Logic of Contextuality

To resolve the apparent contradiction, note that BA is an equational variety of algebras
over Set. As such, it is complete and cocomplete, but it also admits the one-element
Boolean algebra 1, in which 0 = 1. Note that the trivial Boolean algebra 1 does not have a
homomorphism to 2.

We can conclude from the discussion above that a partial Boolean algebra satisfies the
Kochen–Specker property of not having a morphism to 2 if and only if the colimit in BA of
its diagram of Boolean subalgebras is 1. In fact, we could formulate this property directly for
diagrams of Boolean algebras, without referring to partial Boolean algebras at all: a diagram
in BA is K–S if its colimit in BA is 1. We could say that such a diagram is “implicitly
contradictory” since in trying to combine all the information in a colimit we obtain the
manifestly contradictory 1.

Finally, this property admits a neat formulation in terms of the free extension of partial
Boolean algebras by a relation, reminiscent of the definition of a perfect group.

I Theorem 16. Let A be a partial Boolean algebra. The following are equivalent:
1. A has the K–S property, i.e. it has no morphism to 2.
2. The diagram C(A) of Boolean subalgebras of A is K–S, i.e. its colimit in BA is 1.
3. A[A2] = 1.

Proof. The equivalence between the first two statements follows from the discussion above.
Now, all elements are commeasurable in A[A2], so it is a Boolean algebra. There is a
morphism A −→ 2 if and only if there is a morphism A[A2] −→ 2, by the universal property
of A[A2] (in the ⇒ direction) or composition with η : A −→ A[A2] (in the ⇐ direction).
Since A[A2] is a Boolean algebra, this is in turn equivalent to A[A2] being non-trivial. In
other words, there is no morphism A −→ 2 if and only if A[A2] = 1. J

4.2 Probabilistic contextuality
The notion of contextuality for states also admits a formulation in this setting.

I Definition 17. A state ν : A −→ [0, 1] on a partial Boolean algebra A is said to be
non-contextual if it extends to A[A2], i.e. if there is a state ν̂ : A[A2] −→ [0, 1] such that
ν = ν̂ ◦ η.

By the universal property of A[A2], this is equivalent to requiring that there be some
Boolean algebra B, a morphism h : A −→ B, and state ν̂ : B −→ [0, 1] such that ν = ν̂ ◦ η.

I Proposition 18. Let X be a graphical measurement scenario. A state on AX is contextual
in the sense of Definition 17 if and only if the corresponding empirical model under the
correspondence of Proposition 15 is contextual in the sense of Definition 11.

Note that if A has the Kochen–Specker property, then A[A2] = 1, and since there is
no state on 1, every state of A is necessarily contextual. An advantage of partial Boolean
algebras is that the K–S property provides an intrinsic, logical approach to defining state-
independent contextuality.

5 Exclusivity principles for partial Boolean algebras

We now consider exclusivity principles from the partial Boolean algebra perspective. This
will subsume the previous discussion on PEP for empirical models in graphical measurement
scenarios.

S. Abramsky and R. S. Barbosa 5:11

We introduce two exclusivity principles: one acts at the “logical” level, i.e. the level of
events or elements of a partial Boolean algebra, whereas the other acts at the “probabilistic”
level, applying to states of a partial Boolean algebra.

5.1 Logical exclusivity principle (LEP)

The basic ingredient is a notion of exclusivity between events (or elements) of a partial
Boolean algebra. Given a partial Boolean algebra A and elements a, b ∈ A, we write a ≤ b
to mean that a� b and a∧ b = a. Note that the restriction of this relation ≤ to any Boolean
subalgebra of A coincides with the partial order underlying that Boolean algebra.

I Definition 19. Let A be a partial Boolean algebra. Two elements a, b ∈ A are said to be
exclusive, written a ⊥ b, if there is an element c ∈ A such that a ≤ c and b ≤ ¬c.

Note that a ⊥ b is a weaker requirement than a ∧ b = 0, although the two would be
equivalent in a Boolean algebra. The point is that in a general partial Boolean algebra
one might have exclusive events that are not commeasurable (and for which, therefore, the
∧ operation is not even defined).

I Definition 20. A partial Boolean algebra is said to satisfy the logical exclusivity prin-
ciple (LEP) if any two elements that are exclusive are also commeasurable, i.e. if ⊥ ⊆ �.

We write epBA for the full subcategory of pBA whose objects are partial Boolean algebras
satisfying LEP.

Logical exclusivity and transitivity

The logical exclusivity principle turns out to be equivalent to the following notion of
transitivity [22, 16].

I Definition 21. A partial Boolean algebra is said to be transitive if for all elements a, b, c,
a ≤ b and b ≤ c implies a ≤ c.

Transitivity can fail in general for a partial Boolean algebra, since one need not have
a� c under the stated hypotheses. Note that the relation ≤ on a partial Boolean algebra
is always reflexive and anti-symmetric, so this condition is equivalent to ≤ being a partial
order (globally) on A. A partial Boolean algebra of the form P(H) is always transitive.

I Proposition 22. Let A be a partial Boolean algebra. Then it satisfies LEP if and only if it
is transitive.

Proof. Suppose that A satisfies LEP, a ≤ b, and b ≤ c. Then ¬c ≤ ¬b. Hence, by LEP,
a� ¬c, and so a� ¬¬c = c. Now, a ∧ c = (a ∧ b) ∧ c = a ∧ (b ∧ c) = a ∧ b = a, showing that
a ≤ c.

Conversely, suppose that A is transitive, a ≤ c, and b ≤ ¬c. Then, c = ¬¬c ≤ ¬b, hence
a ≤ ¬b by transitivity. In particular, a� ¬b, and so a� ¬¬b = b. J

As an immediate consequence, any P(H) satisfies LEP.
It is shown in [14] that a partial Boolean algebra is transitive if and only if it is an

orthomodular poset.

CSL 2021

5:12 The Logic of Contextuality

5.2 Probabilistic exclusivity principle (PEP)
We now consider an analogous principle applying at the probabilistic level, i.e. at the level
on states of a partial Boolean algebra.

I Definition 23. Let A be a partial Boolean algebra. A state ν : A −→ [0, 1] on A is said to
satisfy the probabilistic exclusivity principle (PEP) if for any set S ⊆ A of pairwise-
exclusive elements, i.e. such that a ⊥ b for any distinct a, b ∈ S, we have

∑
a∈S ν(a) ≤ 1.

A partial Boolean algebra is said to satisfy PEP if all of its states satisfy PEP.

Note that the condition
∑
a∈S ν(a) ≤ 1 is true of any set S of elements in a Boolean

algebra satisfying a ∧ b = 0 for distinct a, b ∈ S.
Note that this subsumes the discussion of the PEP at the level of empirical models. If X

is a measurement scenario, the correspondence in Proposition 15 between empirical models
on X and states of AX restricts to a bijection between empirical models and states satisfying
the probabilistic exclusivity principle.

5.3 LEP vs PEP
The following result follows immediately from the definitions of partial Boolean algebras and
states.

I Proposition 24. Let A be a partial Boolean algebra satisfying the logical exclusivity principle.
Then, any state on A satisfies the probabilistic exclusivity principle.

In a general partial Boolean algebra A, however, not all states need satisfy the PEP. A
well-known example is the state on the partial Boolean algebra corresponding to a (4, 2, 2)
Bell scenario6 which corresponds to two (independent) copies of the PR box [11].

However, using the construction from Theorem 1, we can construct from A a new partial
Boolean algebra, namely A[⊥], whose states yield states of A that satisfy PEP.

I Theorem 25. Let A be a partial Boolean algebra. Then a state ν : A −→ [0, 1] satisfies
PEP if there is a state ν̂ of A[⊥] such that

A A[⊥]

[0, 1]
ν

η

ν̂

commutes.

Proof. Let ν : A −→ [0, 1] be a state, and suppose it factorises through a state ν̂ of A[⊥]. Let
S ⊆ A be a set of pairwise exclusive events in A. Then {η(a) | a ∈ S} is a commeasurable
subset of A[⊥], hence it is contained in a Boolean subalgebra B of A[⊥]. Since ν̂ must restrict
to a finitely-additive probability measure on B, and since η(a) ∧A[⊥] η(b) = 0 for all distinct
a, b ∈ S, we have that∑

a∈S
ν(a) =

∑
a∈S

ν̂(η(a)) ≤ 1 . J

6 This stands for a scenario in which there are 4 parties, each of which can choose to perform one of 2
measurements with 2 possible outcomes.

S. Abramsky and R. S. Barbosa 5:13

5.4 A reflective adjunction for logical exclusivity
It is not clear whether the partial Boolean algebra A[⊥] necessarily satisfies LEP. While the
principle holds for all its elements in the image of η : A −→ A[⊥], it may fail to hold for
other elements in A[⊥].

However, we can adapt the construction of Theorem 1 to show that one can freely generate,
from any given partial Boolean algebra, a new partial Boolean algebra satisfying LEP. This
LEP-isation is analogous to e.g. the way one can “abelianise” any group, or use Stone–Čech
compactification to form a compact Hausdorff space from any topological space.

I Theorem 26. The category epBA is a reflective subcategory of pBA, i.e. the inclusion
functor I : epBA −→ pBA has a left adjoint X : pBA −→ epBA. Concretely, for any
partial Boolean algebra A, there is a partial Boolean algebra X(A) = A[⊥]∗ which satisfies
LEP such that:

there is a pBA-morphism η : A −→ A[⊥]∗;
for any pBA-morphism h : A −→ B where B is a partial Boolean algebra B satisfying
LEP, there is a unique pBA-morphism ĥ : A[⊥]∗ −→ B such that h = ĥ ◦ η, i.e. such
that the following diagram commutes:

A A[⊥]∗

B

h

η

ĥ

The proof of this result follows from a simple adaptation of the proof of Theorem 1,
namely adding the following rule to the inductive system presented in Table 1:

u ∧ t ≡ u, v ∧ ¬t ≡ v
u� v

This rule will enforce the logical exclusivity principle, and the universal property is proved
in a manner similar to the proof of Theorem 1.

6 Tensor products of partial Boolean algebras

6.1 A (first) tensor product by generators and relations
In [25], it is shown that pBA has a monoidal structure, with A⊗B given by the colimit of
the family of Boolean algebras C +D, as C ranges over Boolean subalgebras of A, D ranges
over Boolean subalgebras of B, and + denotes the coproduct of Boolean algebras.

The tensor product in [25] is not constructed explicitly: it relies on the existence of
coequalisers in pBA, which is proved by an appeal to the Adjoint Functor Theorem.

Our Theorem 1 allows us to give an explicit description of this construction using
generators and relations.

I Proposition 27. Let A and B be partial Boolean algebras. Then

A⊗B ∼= (A⊕B)[:] ,

where : is the relation on the carrier set of A ⊕ B given by ı(a) : (b) for all a ∈ A and
b ∈ B.

This can be verified by comparing the universal property from Theorem 1 with [25,
Proposition 30].

CSL 2021

5:14 The Logic of Contextuality

6.2 A more expressive tensor product
There is a lax monoidal functor P : Hilb −→ pBA, which takes a Hilbert space to its
projectors, viewed as constituting a partial Boolean algebra. The coherence morphisms
P(H)⊗ P(K) −→ P(H⊗K) are induced by the evident embeddings of P(H) and P(K) into
P(H⊗K), given by p 7−→ p⊗ 1, q 7−→ 1⊗ q.

It is easy to see that such morphisms are far from being isomorphisms. For example,
if H = K = C2, then there are (many) morphisms from A = P(C2) to 2, which lift to
morphisms from A ⊗ A to 2. However, by the Kochen–Specker theorem, there is no such
morphism from P(C4) = P(C2 ⊗ C2).

Interestingly, in [20] it is shown that the images of P(H) and P(K), for any finite-
dimensional H and K, generate P(H⊗K). This is used in [20] to justify the claim contradicted
by the previous paragraph. The gap in the argument is that more relations hold in P(H⊗K)
than in P(H) ⊗ P(K). Nevertheless, this result is very suggestive. In standard Boolean
algebra theory, these images would satisfy the criteria for P(H⊗K) being the “internal sum”
of P(H) and P(K) [12]. Evidently, for partial Boolean algebras, these criteria are no longer
sufficient. This poses the challenge of finding stronger criteria, and a stronger notion of
tensor product to match.

An important property satisfied by the rules in Table 1 as applied in constructing A⊗B
is that, if t↓ can be derived, then u↓ can be derived for every subterm u of t. This appears
to be too strong a constraint to capture the full logic of the Hilbert space tensor product.

To see why this is an issue, consider projectors p1 ⊗ p2 and q1 ⊗ q2. To ensure in general
that they commute, we need the conjunctive requirement that p1 commutes with q1 and
p2 commutes with q2. However, to show that they are orthogonal, we have a disjunctive
requirement: p1⊥q1 or p2⊥q2. If we establish orthogonality in this way, we are entitled
to conclude that p1 ⊗ p2 and q1 ⊗ q2 are commeasurable, even though (say) p2 and q2 are
not. Indeed, the idea that propositions can be defined on quantum systems even though
subexpressions are not is emphasised in [20].

This leads us to define a stronger tensor product by forcing logical exclusivity to hold
in the tensor product from [25]. This amounts to composing with the reflection to epBA;
� := X ◦ ⊗. Explicitly, we define the logical exclusivity tensor product by

A�B = (A⊗B)[⊥]∗ = (A⊕B)[:][⊥]∗.

This is sound for the Hilbert space model. More precisely, P is still a lax monoidal functor
with respect to this tensor product. It remains to be seen how close it gets us to the full
Hilbert space tensor product.

6.3 Commeasurability extensions, Kochen–Specker, and Hilbert space
tensor product

We can ask generally if extending commeasurability by some relation R can induce the
Kochen–Specker property in A[R] when it did not hold in A. In fact, it is easily seen that
this can never happen.

I Theorem 28 (K–S faithfulness of extensions). Let A be a partial Boolean algebra, and
R ⊆ A2 a relation on A. Then A has the K–S property if and only if A[R] does.

Proof. If A does not have the K–S property, it has a morphism to a non-trivial Boolean
algebra B. By the universal property of A[R], there is a morphism ĥ : A[R] −→ B. Thus,
A[R] does not have the K–S property. Conversely, if there is a morphism k : A[R] −→ B to a
non-trivial Boolean algebra B, then k◦η : A −→ B, so A does not have the K–S property. J

S. Abramsky and R. S. Barbosa 5:15

We can apply this in particular to the tensor product.

I Corollary 29. If A and B do not have the K–S property, then neither does (A⊗B)[⊥]k.

Proof. If A and B do not have the K–S property, they have morphisms to 2, and hence so
does A⊕B. Applying Theorem 28 inductively k+ 1 times, one concludes that (A⊗B)[⊥]k =
(A⊕B)[:][⊥]k does not have the K–S property. J

Under the conjecture that A[⊥]∗ coincides with iterating A[⊥] to a fixpoint, this would
show that the logical exclusivity tensor product A � B never induces a Kochen–Specker
paradox if none was already present in A or B.

This can be seen as a limitative result, in the following sense. One of the key points at
which non-classicality emerges in quantum theory is the passage from P(C2), which does not
have the K–S property, to P(C4) = P(C2 ⊗ C2), which does.7 By contrast, it would follow
from Corollary 29 that P(C2)�P(C2) does not have the K–S property. Therefore, we need a
stronger tensor product to track this emergent complexity in the quantum case.

7 Discussion

A number of questions arise from the ideas developed in this paper.

First, we have shown that LEP implies PEP; that is, if a partial Boolean algebra satisfies
Logical Exclusivity, then all its states satisfy Probabilistic Exclusivity. We conjecture
that the converse holds.
I Conjecture 30. PEP ⇒ LEP.
Similarly, we conjecture the converse to Theorem 25.
I Conjecture 31. If state ν of a partial Boolean algebra A satisfies PEP, then there is a
state ν̂ of A[⊥] such that ν = ν̂ ◦ η.
This would amount to generalising the universality of A[⊥] from pBA-morphisms to
states. It would yield a one-to-one correspondence between states of A satisfying PEP
and states of A[⊥].
Proving the conjecture above would involve extending a state on a partial Boolean algebra
A to a state on A[}]. A similar operation was achieved for partial Boolean algebras arising
from measurement scenarios in Proposition 15, because in that case Definition 13 provided
a simple description of the Boolean subalgebras of A[}]. Is an analogous description
possible for the general case considered in Theorem 1, or at least for the particular case
of A[⊥]?
A classic result by Greechie [13] constructs a class of orthomodular lattices which admit no
states. Since orthomodular lattices are transitive partial Boolean algebras (see e.g. [25]),
this means that there are examples of partial Boolean algebras satisfying LEP which
admit no states. Is there a partial Boolean algebra not satisfying LEP which admits no
states? This would provide a counter-example to Conjecture 30.
There are some technical questions relating to the A[⊥]∗ construction:

Is it a completion (i.e. is the reflector a faithful functor)?
Is it the same as iterating the A[⊥] construction to a fixpoint?

7 Note that P(C2) ∼=
⊕

i∈I 4i, where I is a set of the power of the continuum, and each 4i is the
four-element Boolean algebra.

CSL 2021

5:16 The Logic of Contextuality

Is the relation of A[⊥]∗ to A[⊥] an instance of a more general relationship between
iterating an inductive construction, and adding a rule to the inductive construction
itself?

Our discussion of tensor products led us to introduce a strong tensor product of partial
Boolean algebras, A�B. This brings us closer to an answer to the following particularly
interesting question:
I Question 32. Is there a monoidal structure ~ on the category pBA such that the
functor P : Hilb −→ pBA is strong monoidal with respect to this structure, i.e. such
that P(H)~ P(K) ∼= P(H⊗K)?
A positive answer to this question would offer a complete logical characterisation of
the Hilbert space tensor product, and provide an important step towards giving lo-
gical foundations for quantum theory in a form useful for quantum information and
computation.
We recall the following quotation from Ernst Specker given in [8]:

Do you know what, according to me, is the fundamental theorem of quantum
mechanics? . . . That is, if you have several questions and you can answer any
two of them, then you can also answer all three of them. This seems to me very
fundamental.

This refers to the binarity of compatibility in quantum mechanics. A set of observables
is compatible if they are pairwise so. This is built into the definition of partial Boolean
algebras, and it is why we only considered graphical measurement scenarios in this paper.
However, in the general theory of contextuality, as developed e.g. in [5], more general
forms of compatibility are considered, represented by simplicial complexes. The notion of
partial Boolean algebras in a broader sense introduced in [10] seems suitable to deal with
this more general format. How much of the theory carries over?
Partial Boolean algebras capture logical structure. We have seen how this logical structure
can be used to enforce strong constraints on the probabilistic behaviour of states. This is
somewhat analogous to the role of possibilistic empirical models in [5]. Can we lift the
concepts and results relating to possibilistic empirical models in [5, 4, 1] to the level of
partial Boolean algebras?
There is much more to be said regarding contextuality in this setting. In current work in
progress, we are considering the following topics:

A hierarchy of logical contextuality properties generalising those studied in [5].
A systematic treatment of “Kochen–Specker paradoxes”, i.e. contradictory statements
which can be validated in partial Boolean algebras.
Constructions that transform state-dependent to state-independent forms of contextu-
ality.

References
1 Samson Abramsky. Relational hidden variables and non-locality. Studia Logica, 101(2):411–452,

2013. In Juha Kontinen, Jouko Väänänen, and Dag Westerståhl, editors, special issue on
Dependence and Independence in Logic. doi:10.1007/s11225-013-9477-4.

2 Samson Abramsky. Contextuality: At the borders of paradox. In Elaine Landry, editor,
Categories for the Working Philosopher. Oxford University Press, 2017. doi:10.1093/oso/
9780198748991.003.0011.

3 Samson Abramsky, Rui Soares Barbosa, Kohei Kishida, Raymond Lal, and Shane Mansfield.
Contextuality, cohomology and paradox. In Stephan Kreutzer, editor, Proceedings of 24th
EACSL Annual Conference on Computer Science Logic (CSL 2015), volume 41 of Leibniz

https://doi.org/10.1007/s11225-013-9477-4
https://doi.org/10.1093/oso/9780198748991.003.0011
https://doi.org/10.1093/oso/9780198748991.003.0011

S. Abramsky and R. S. Barbosa 5:17

International Proceedings in Informatics (LIPIcs), pages 211–228. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.CSL.2015.211.

4 Samson Abramsky, Rui Soares Barbosa, Kohei Kishida, Raymond Lal, and Shane Mansfield.
Possibilities determine the combinatorial structure of probability polytopes. Journal of
Mathematical Psychology, 74:58–65, 2016. In Ehtibar N. Dzhafarov, Janne V. Kujala, and
Reinhard Suck, editors, special issue on Foundations of Probability Theory in Psychology and
Beyond. doi:10.1016/j.jmp.2016.03.006.

5 Samson Abramsky and Adam Brandenburger. The sheaf-theoretic structure of non-locality
and contextuality. New Journal of Physics, 13(11):113036, 2011. doi:10.1088/1367-2630/
13/11/113036.

6 Barbara Amaral, Marcelo Terra Cunha, and Adán Cabello. Exclusivity principle forbids
sets of correlations larger than the quantum set. Physical Review A, 89(3):030101, 2014.
doi:10.1103/PhysRevA.89.030101.

7 Garrett Birkhoff and John von Neumann. The logic of quantum mechanics. Annals of
Mathematics, 37(4):823–843, 1936. doi:10.2307/1968621.

8 Adán Cabello. Specker’s fundamental principle of quantum mechanics. arXiv preprint
arXiv:1212.1756 [quant-ph], 2012.

9 Adán Cabello, Simone Severini, and Andreas Winter. Graph-theoretic approach to quantum
correlations. Physical Review Letters, 112(4):040401, 2014. doi:10.1103/PhysRevLett.112.
040401.

10 Janusz Czelakowski. Partial boolean algebras in a broader sense. Studia Logica, 38(1):1–16,
1979. doi:10.1007/BF00493669.

11 Tobias Fritz, Ana Belén Sainz, Remigiusz Augusiak, Jonatan Bohr Brask, Rafael Chaves,
Anthony Leverrier, and Antonio Acín. Local orthogonality as a multipartite principle for
quantum correlations. Nature Communications, 4:2263, 2013. doi:10.1038/ncomms3263.

12 Steven Givant and Paul Halmos. Introduction to Boolean algebras. Undergraduate Texts in
Mathematics. Springer-Verlag New York, 2009. doi:10.1007/978-0-387-68436-9.

13 Richard J. Greechie. Orthomodular lattices admitting no states. Journal of Combinatorial
Theory, Series A, 10(2):119–132, 1971. doi:10.1016/0097-3165(71)90015-X.

14 Stanley P. Gudder. Partial algebraic structures associated with orthomodular posets. Pacific
Journal of Mathematics, 41(3):717–730, 1972. doi:10.2140/pjm.1972.41.717.

15 Joe Henson. Quantum contextuality from a simple principle? arXiV preprint arXiv:1210.5978
[quant-ph], 2012.

16 Richard I. G. Hughes. The structure and interpretation of quantum mechanics. Harvard
University Press, 1989.

17 Chris J. Isham and Jeremy Butterfield. Topos perspective on the Kochen–Specker theorem:
I. Quantum states as generalized valuations. International Journal of Theoretical Physics,
37(11):2669–2733, 1998.

18 Peter T. Johnstone. Topos theory, volume 10 of London Mathematical Society Monographs.
Academic Press, 1997.

19 Gudrun Kalmbach. Orthomodular lattices, volume 18 of London Mathematical Society Mono-
graphs. Academic Press, 1983.

20 Simon Kochen. A reconstruction of quantum mechanics. Foundations of Physics, 45(5):557–590,
2015. doi:10.1007/s10701-015-9886-5.

21 Simon Kochen and Ernst P. Specker. The problem of hidden variables in quantum mechanics.
Journal of Mathematics and Mechanics, 17(1):59–87, 1967.

22 Patricia F. Lock and Gary M. Hardegree. Connections among quantum logics. Part 1.
Quantum propositional logics. International Journal of Theoretical Physics, 24(1):43–53, 1985.
doi:10.1007/BF00670072.

23 Sandu Popescu and Daniel Rohrlich. Quantum nonlocality as an axiom. Foundations of
Physics, 24(3):379–385, 1994. doi:10.1007/BF02058098.

CSL 2021

https://doi.org/10.4230/LIPIcs.CSL.2015.211
https://doi.org/10.1016/j.jmp.2016.03.006
https://doi.org/10.1088/1367-2630/13/11/113036
https://doi.org/10.1088/1367-2630/13/11/113036
https://doi.org/10.1103/PhysRevA.89.030101
https://doi.org/10.2307/1968621
https://doi.org/10.1103/PhysRevLett.112.040401
https://doi.org/10.1103/PhysRevLett.112.040401
https://doi.org/10.1007/BF00493669
https://doi.org/10.1038/ncomms3263
https://doi.org/10.1007/978-0-387-68436-9
https://doi.org/10.1016/0097-3165(71)90015-X
https://doi.org/10.2140/pjm.1972.41.717
https://doi.org/10.1007/s10701-015-9886-5
https://doi.org/10.1007/BF00670072
https://doi.org/10.1007/BF02058098

5:18 The Logic of Contextuality

24 Ravishankar Ramanathan, Akihito Soeda, Paweł Kurzyński, and Dagomir Kaszlikowski.
Generalized monogamy of contextual inequalities from the no-disturbance principle. Physical
Review Letters, 109(5):050404, 2012. doi:10.1103/PhysRevLett.109.050404.

25 Benno van den Berg and Chris Heunen. Noncommutativity as a colimit. Applied Categorical
Structures, 20(4):393–414, 2012. doi:10.1007/s10485-011-9246-3.

https://doi.org/10.1103/PhysRevLett.109.050404
https://doi.org/10.1007/s10485-011-9246-3

Factorize Factorization
Beniamino Accattoli
Inria & LIX, École Polytechnique, UMR 7161, Palaiseau, France

Claudia Faggian
Université de Paris, IRIF, CNRS, F-75013 Paris, France

Giulio Guerrieri
University of Bath, Department of Computer Science, Bath, UK

Abstract
We present a new technique for proving factorization theorems for compound rewriting systems in
a modular way, which is inspired by the Hindley-Rosen technique for confluence. Specifically, our
approach is well adapted to deal with extensions of the call-by-name and call-by-value λ-calculi.

The technique is first developed abstractly. We isolate a sufficient condition (called linear swap)
for lifting factorization from components to the compound system, and which is compatible with
β-reduction. We then closely analyze some common factorization schemas for the λ-calculus.

Concretely, we apply our technique to diverse extensions of the λ-calculus, among which de’
Liguoro and Piperno’s non-deterministic λ-calculus and – for call-by-value – Carraro and Guerrieri’s
shuffling calculus. For both calculi the literature contains factorization theorems. In both cases, we
give a new proof which is neat, simpler than the original, and strikingly shorter.

2012 ACM Subject Classification Theory of computation→ Rewrite systems; Theory of computation
→ Lambda calculus; Theory of computation → Logic

Keywords and phrases Lambda Calculus, Rewriting, Reduction Strategies, Factorization

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.6

Funding This work is partially supported by ANR JCJC grant “COCA HOLA” (ANR-16-CE40-
004-01), ANR PRC project PPS (ANR-19-CE48-0014), and EPSRC Project EP/R029121/1 Typed
lambda-calculi with sharing and unsharing.

1 Introduction

The λ-calculus underlies functional programming languages and, more generally, the paradigm
of higher-order computation. Through the years, more and more advanced features have
enriched this paradigm, including control, non-determinism, states, probabilistic or quantum
features. The well established way to proceed is to extend the λ-calculus with new operators.
Every time, good operational properties, such as confluence, normalization, or termination,
need to be proved. It is evident that the more complex and advanced is the calculus under
study, the more the ability to modularize the analyses of its properties is crucial.

Techniques for modular proofs are available for termination and confluence, with a rich
literature which examines under which conditions these properties lift from modules to the
compound system – some representative papers are [56, 55, 57, 51, 40, 41, 42, 32, 10, 20, 18,
17, 5, 12], see Gramlich [22] for a survey. Termination and confluence concern the existence
and the uniqueness of normal forms, which are the results of a computation. When the
focus is on how to compute the result, that is, on identifying reduction strategies with good
properties, then only few abstract techniques are currently available (we mention [21, 38, 39],
[54, Ch. 8], and [2]) – this paper proposes a new one.

© Beniamino Accattoli, Claudia Faggian, and Giulio Guerrieri;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 6; pp. 6:1–6:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0469-4279
https://doi.org/10.4230/LIPIcs.CSL.2021.6
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Factorize Factorization

Factorization. The most basic property about how to compute is factorization, whose
paradigmatic example is the head factorization theorem of the λ-calculus (Theorem 11.4.6 in
Barendregt’s book [11]): every β-reduction sequence t −→∗β u can be re-organized/factorized
so as to first reducing head redexes and then everything else – in symbols t→

h
∗ · →
¬h
∗ u.

The study of factorization in λ-calculus goes back to Rosser [50]. Factorization results are
sometimes referred to as semi-standardization [43], or postponement [54], and often simply
called standardization – standardization is however a more sophisticated property (sketched
below) of which factorization is a basic instance. Here, we adopt Melliès terminology [39].

According to Melliès [39], the meaning of factorization is that the essential part of a
computation can always be separated from its junk. Let’s abstract the role of head reduction,
by assuming that computations consist of steps→e which are in some sense essential, and steps
→i which are not. Factorization says that every rewrite sequence t→∗ s can be factorized as
t→e ∗ u→i

∗ s, i.e., as a sequence of essential steps followed by inessential ones.
Well known examples of essential reductions are head and leftmost-outermost reduction

for the λ-calculus (see Barendregt [11]), or left and weak reduction for the call-by-value
λ-calculus (see Plotkin [46] and Paolini and Ronchi Della Rocca [49]).

Very much as confluence, factorization for λ-calculi requires non-trivial proof techniques
such as finite developments [15, 54], labeling [37, 31], or parallel reduction [53].

Uses of Factorization. Factorization is commonly used as a building block in proving more
sophisticated properties of the how-to-compute kind. It is often the main ingredient in proofs
of normalization theorems [11, 53, 29, 3], stating that a reduction strategy reaches a normal
form whenever one exists. Leftmost-outermost normalization is a well known example.

Another property, standardization, generalizes factorization: reduction sequences can be
organized with respect to an order on redexes, not just with respect to the distinction essen-
tial/inessential. It is an early result that factorization can be used to prove standardization:
iterated head factorizations provides what is probably the simplest way to prove Curry and
Feys’ left-to-right standardization theorem, via Mitschke’s argument [43].

Additionally, the independence of some computational tasks, such as garbage collection,
is often modeled as a factorization theorem.

Contributions of this Paper. In this paper we propose a technique for proving in a modular
way factorization theorems for compound higher-order systems, such as those obtained by
extending the λ-calculus with advanced features. The approach can be seen as an analogous
for factorization of the classical technique for confluence based on Hindley-Rosen lemma,
which we discuss in the next paragraphs. Mimicking the use of Hindley-Rosen lemma is
natural, yet to our knowledge such an approach has never been used before, at least not in
the λ-calculus literature. Perhaps this is because a direct transposition of Hindley-Rosen
technique does not work with β reduction, as we discuss below and in Sect. 3.

After developing a sharper technique, we apply it to various known extensions of the
λ-calculus which do not fit into easily manageable categories of rewriting systems. In all our
case studies, our novel proofs are neat, concise, and simpler than the originals.

Confluence via Hindley-Rosen. The simplest modular technique to establish confluence is
based on Hindley-Rosen lemma [11, Prop. 3.3.5], which states that the union of two confluent
reductions →1 and →2 is confluent if →1 and →2 satisfy a commutation property. This is
the technique used in Barendregt’s book for proving confluence of →βη [11, Thm. 3.3.9],
where it is also stressed that the proof is simpler than Curry and Feys’ original one [15].

B. Accattoli, C. Faggian, and G. Guerrieri 6:3

While the result is basic, Hindley-Rosen technique provides a powerful tool to prove
confluence of compound systems. In the literature of the λ-calculus, we mention for instance
its use in the linear-algebraic λ-calculus [7], the probabilistic λ-calculus [19], the Λµ-calculus
[52], the shuffling calculus [14], the λ-calculus extended with lists [48] or pattern-matching
[13], or with a let construct [6]. It is worth to spell out the gain. Confluence is often a
non-trivial property to establish – when higher-order is involved, the proof of confluence
requires sophisticated techniques. The difficulty compounds when extending the λ-calculus
with new constructs. Still, the problem is often originated by β reduction itself, which
encapsulates the higher-order features of the computation. By using Hindley-Rosen lemma,
confluence of β is used as a black box : one relies on that – without having to prove it again –
to show that the extended calculus is confluent.

Hindley-Rosen and Sufficient Conditions. There is a subtle distinction between Hindley-
Rosen lemma, and what we refer to as Hindley-Rosen technique. Hindley-Rosen lemma
reduces confluence of a compound system to commutation of the components – the modules.
To establish commutation, however, is a non-trivial task, because it is a global property, that is,
it quantifies over all sequences of steps. The success of the lemma in the λ-calculus literature
stems from the existence of easy-to-check conditions which suffice to prove commutation. All
the examples mentioned above indeed satisfy Hindley’s strong commutation property [26]
(Lemma 3.3.6 in [11]), where at most one reduction – but not both – may require multiple
steps to close a diagram, commutation then follows by a finitary tiling argument. Strong
commutation turns Hindley-Rosen lemma into an effective, concrete proof technique.

Modular Factorization, Abstractly. Here, we present a modular approach to factorization
inspired by the Hindley-Rosen technique. A formulation of Hindley-Rosen lemma for fac-
torization is immediate, and is indeed folklore. But exactly as for confluence, this reduces
factorization of a compound system to a property that is difficult to establish, without a
real gain. The crucial point is finding suitable conditions that can be used in practice. The
issue here is that the natural adaptation of strong commutation to factorization is – in
general – not verified by extensions of the λ-calculi, as it does not interact well with β (see
Ex. 3.2 in Sect. 3). We identify an alternative condition – called linear swap – which is
satisfied by a large variety of interesting examples, turning the approach into an effective,
concrete technique. Testing the linear swap condition is easy and combinatorial in nature,
as it is a local property, in the sense that only single steps (rather than sequences of steps)
need to be manipulated. This holds true even when the modules are not confluent, or
non-terminating. The other key point in our approach is that we assume the modules to
be factorizing, therefore we can use their factorization – that may require non-trivial proof
techniques such as parallel reductions or finite developments – as a black box.

Modular Factorization, Concretely. We then focus on our target, how to establish fac-
torization results for extensions of the λ-calculus. Concretely, we start from β reduction,
or its call-by-value counterpart βv, and allow the calculus to be enriched with extra rules.
Here we discover a further striking gain: for common factorization schemas such as head or
weak factorization, verifying the required linear swap conditions reduces to checking a single
case, together with the fact that the new rule behaves well with respect to substitution. The
test for modular factorization that we obtain is a ready-to-use and easy recipe that can be
applied in a variety of cases.

CSL 2021

6:4 Factorize Factorization

We illustrate our technique by providing several examples, chosen to stress the indepen-
dence of the technique from other rewriting properties. In particular, we give a new and
arguably simpler proof of two results from the literature. The first is head factorization
for the non-deterministic λ-calculus by de’ Liguoro and Piperno [16], which extends the
λ-calculus with a choice operator ⊕. It is a non-confluent calculus, and it is representative
of the class of λ-calculi extended with a commutative effect – such as probabilistic choice – of
which it presents most features and all issues, see [34] for a thorough discussion.

The second is a new, simplified proof of factorization for the shuffling calculus – a
refinement of the call-by-value λ-calculus due to Carraro and Guerrieri [14], whose left
factorization is proved by Guerrieri, Paolini, and Ronchi della Rocca in [25]. In this case
the λ-calculus is extended with extra rules but they are not associated with a new operator.
The resulting calculus is subtle, as it has critical pairs.

In both cases, the new proof is neat, conceptually clear, and strikingly short. The reason
why our proofs are only a few lines long, whereas the originals require several pages, is exactly
that there is no need to “prove again” factorization of β or βv. We just show that β or βv
interacts well with the new rules.

Further Applications: Probabilistic λ-calculi. The investigation in this paper was triggered
by concrete needs, namely the study of strategies for probabilistic λ-calculi [19, 36]. The
probabilistic structure adds complexity, and indeed makes the study of factorization painful
– exposing the need for tools to make such an analysis more manageable. Our technique
smoothly applies, providing new concise proofs that are significantly simpler than the originals
– indeed surprisingly simple. These results are however only overviewed in this paper: we
sketch the application to the call-by-value probabilistic calculus by Faggian and Ronchi
della Rocca [19], leaving the technical details in Appendix B. The reason is that, while the
application of our technique is simple, the syntax of probabilistic λ-calculi is not – because
reduction is defined on (monadic) structures representing probability distributions over terms.
Aiming at making the paper accessible within the space limits, we prefer to focus on examples
in a syntax which is familiar to a wide audience. Indeed, once the technique is understood,
its application to other settings is immediate, and in large part automatic.

A Final Remark. Like Hindley-Rosen for confluence, our technique is sufficient but not
necessary to factorization. Still, its features and wide range of application make it a
remarkable tool to tame the complexity that is often encountered in the analysis of advanced
compound calculi. By emphasizing the benefits of a modular approach to factorization, we
hope to prompt the development of even more techniques.

Related work. To our knowledge, the only result in the literature about modular techniques
for factorization is Accattoli’s technique for calculi with explicit substitutions [2], which relies
on termination hypotheses. Our linear swap condition (page 8) is technically the same as his
diagonal-swap condition. One of the insights at the inception of this work is exactly that
termination in [2] is used only to establish factorization of each single module, but not when
combining them. Here we assume modules to be factorizing, therefore avoiding termination
requirements, and obtaining a more widely applicable technique.

Van Oostrom’s decreasing diagrams technique [59] is a powerful and inherently modular
tool to establish confluence and commutation. Surprisingly, it has not yet been used for
factorization, but steps in this direction have been presented recently [58].

B. Accattoli, C. Faggian, and G. Guerrieri 6:5

A divide-and-conquer approach is well-studied for termination. The key point is finding
conditions which guarantee that the union of terminating relations is terminating. Several have
been studied [10, 20]. The weakest such condition, namely→2 ·→1⊆→2 ∪(→1 ·(→1 ∪ →2)∗),
is introduced by Doornbos and von Karger [18], and then studied by Dershowitz [17], under
the name of lazy commutation, and by van Oostrom and Zantema [61]. Interestingly, lazy
commutation is similar to the linear swap condition.

Another approach to study extensions of a rewriting system is isolating syntactical
conditions that induce rewriting properties – for instance orthogonality of the rewriting rules
induces confluence, see Terese [54, Ch. 10.4]. Factorization and standardization are also
investigated, in particular for left-to-right standardization [54, Ch. 8.5.7].

2 Preliminaries

In this section we recall some standard definitions and notations in rewriting theory (see for
instance Terese [54] or Baader and Nipkow [9]), and then provide an overview of commutation,
confluence, and factorization. Both confluence and factorization are forms of commutation.

Basics. An abstract rewriting system (ARS) is a pair A = (A,−→) consisting of a set A and
a binary relation → on A whose pairs are written t −→ s and called steps. We denote →∗
(resp. →=) the transitive-reflexive (resp. reflexive) closure of →, and use ← for the reverse
relation of →, that is, u ← t if t → u. If →1,→2 are binary relations on A then →1 · →2
denotes their composition, i.e. t→1 · →2 s if there exists u ∈ A such that t→1 u→2 s. We
write (A, {→1,→2}) to denote the ARS (A,→) where → = →1 ∪ →2. We freely use the
fact that the transitive-reflexive closure of a relation is a closure operator, that is, it satisfies

→⊆→∗, (→∗)∗ = →∗, →1 ⊆ →2 implies →∗1 ⊆ →∗2 . (Closure)

The following property is an immediate consequence:

(→1 ∪ →2)∗ = (→∗1 ∪ →∗2)∗. (TR)

Local vs Global Properties. An important distinction in rewriting theory is between local
and global properties. A property of term t is local if it is quantified over only one-step
reductions from t, while it is global if it is quantified over all rewrite sequences from t. Local
properties are easier to test, because the analysis (usually) involves a finite number of cases.

Commutation. Two relations →1 and →2 on A commute if ←1
∗ · →2

∗ ⊆ →2
∗ · ←1

∗.

Confluence. A relation → on A is confluent if it commutes with itself. A classic tool to
modularize the proof of confluence is Hindley-Rosen lemma. Confluence of two relations →1
and →2 does not imply confluence of →1 ∪ →2, however it does if they commute.

I Lemma (Hindley-Rosen). Let →1 and →2 be relations on the set A. If →1 and →2 are
confluent and commute with each other, then →1 ∪ →2 is confluent.

Easy-to-Check Conditions for Hindley Rosen. Commutation is a global condition, which
is difficult to test. What turns Hindley-Rosen lemma into an effective, usable technique, is
the availability of local, easy-to-check sufficient conditions. One of the simplest but most
useful such conditions is Hindley’s strong commutation [26]:

←1 · →2 ⊆ →2
∗ · ←1

= (Strong Commutation)

CSL 2021

6:6 Factorize Factorization

I Lemma 2.1 (Local test for commutation [26]). Strong commutation implies commutation.

All the extensions of λ-calculus we cited at pages 2–3 (namely [11, 7, 19, 52, 14, 48, 13, 6])
prove confluence by using Hindley-Rosen lemma via strong commutation (possibly in its
weaker diamond-like form ←1 · →2 ⊆ →2

= · ←1
=).

Factorization. We now recall definitions and basic facts on the rewriting property at the
center of this paper, factorization. Let A = (A, {→e ,→i }) be an ARS.

The relation → = →e ∪ →i satisfies e-factorization, written Fact(→e ,→i), if

Fact(→e ,→i) : (→e ∪ →i)∗ ⊆ →e
∗ · →i

∗ (Factorization)

The relation →i postpones after →e , written PP(→e ,→i), if

PP(→e ,→i) : →i
∗ · →e

∗ ⊆ →e
∗ · →i

∗. (Postponement)

Postponement can be formulated in terms of commutation, and vice versa, since clearly (→i
postpones after →e) if and only if (←i commutes with →e). Note that reversing →i introduces
an asymmetry between the two relations. It is an easy result that e-factorization is equivalent
to postponement, which is a more convenient way to express it. The following equivalences –
which we shall use freely – are all well known.

I Lemma 2.2. For any two relations →e ,→i the following statements are equivalent:
1. Semi-local postponement: →i

∗ · →e ⊆ →e ∗ · →i
∗ (and its dual →i · →e

∗ ⊆ →e ∗ · →i
∗).

2. Postponement: PP(→e ,→i).
3. Factorization: Fact(→e ,→i).

Another property that we shall use freely is the following, which is immediate by the
definition of postponement and property TR (page 5).

I Lemma 2.3. Given a relation ◦→i such that ◦→i
∗ =→i

∗, PP(→e ,→i) if and only if PP(→e , ◦→i).

A well-known use of the above is to instantiate ◦→i with a notion of parallel reduction [53].

Easy-to-Check Sufficient Condition for Postponement. Hindley first noted that a local
property implies postponement, hence factorization [26]. It is immediate to recognize that
the property below is exactly the postponement analog of strong commutation in Lemma 2.1
(it is the same expression, with →i :=←1 and →e :=→2).

We say that →i strongly postpones after →e , if

SP(→e ,→i) : →i · →e ⊆ →e
∗ · →i

= (Strong Postponement)

I Lemma 2.4 (Local test for postponement [26]). Strong postponement implies postponement:
SP(→e ,→i) implies PP(→e ,→i), and so Fact(→e ,→i).

Strong postponement is at the heart of several factorization proofs. However (similarly to
the diamond property for confluence) it can rarely be used directly, because most interesting
relations – e.g. β reduction in λ-calculus – do not satisfy it. Still, its range of application
hugely widens by using Lemma 2.3.

It is instructive to examine strong postponement with respect to β reduction, as it allows
us to also recall why it is difficult to establish head factorization for the λ-calculus.

B. Accattoli, C. Faggian, and G. Guerrieri 6:7

I Example 2.5 (λ-calculus and strong postponement). In view of head factorization, the β
reduction is decomposed in head reduction →

h β
and its dual →

¬h β
, that is →β = →

h β
∪ →
¬h β

.
To prove head factorization is not trivial precisely because SP(→

h β
,→
¬h β

) does not hold.
Consider the following example: (λx.xxx)(Iz) →

¬h β
(λx.xxx)z →

h β
zzz. This sequence

→
¬h
· →

h
can only postpone to a reduction sequence of the form →

h
· →

h
· →
¬h
· →
¬h
:

(λx.xxx)(Iz)→
h β

(Iz)(Iz)(Iz)→
h β

z(Iz)(Iz) →
¬h β

zz(Iz) →
¬h β

zzz.

A solution is to compress sequences of→
¬h

by introducing an intermediate relation ◦→
¬h

(internal
parallel reduction) such that ◦→

¬h
∗ =→
¬h β

∗ and which does verify strong postponement. This is
indeed the core of Takahashi’s technique [53]. All the work in [53] goes into defining parallel
reductions, and proving SP(→

h β
, ◦→
¬h

). One indeed has ◦→
¬h
· →

h β
⊆ →

h β
· →

h β
∗ · ◦→
¬h
.

3 Modularizing Factorization

All along this section, we assume to have two relations →α,→γ on the same set A, such that

→α = →e α ∪ →i α and →γ = →e γ ∪ →i γ .

We define →i := (→i α ∪ →i γ) and →e := (→e α ∪ →e γ). Clearly →α ∪ →γ = →i ∪ →e . Our goal
is obtaining a technique in the style of Hindley-Rosen’s for confluence, to establish that if
→α,→γ are e-factorizing then their union also is, that is, Fact(→e ,→i) holds.

Issues. In spite of the large and fruitful use in the λ-calculus literature of Hindley-Rosen
technique to simplify the analysis of confluence, we are not aware of any similar technique in
the analysis of factorization. In this section we explain why a transposition of the technique
is not immediate when β reduction is involved.

A direct equivalent of Hindley-Rosen lemma for commutation is folklore. An explicit
proof is in [59]. Formulated in terms of postponement we obtain the following statement.

I Lemma 3.1 (Hindley-Rosen transposed to factorization). Assume that →α and →γ are
e-factorizing relations. Their union →α ∪ →γ satisfies Fact(→e ,→i) if

PP(→e γ ,→i α) : →i α
∗ · →e γ

∗ ⊆→e γ
∗ · →i α

∗ and PP(→e α,→i γ) : →i γ
∗ · →e α

∗ ⊆→e α
∗ · →i γ

∗ . (#)

Exactly as Hindley-Rosen lemma, the modularization lemma above is of no practical use
by itself, as the pair of conditions (#) one has to test are as global as the original problem.
What we need is to have local conditions (akin to strong commutation) to turn the lemma
into a usable technique. One obvious choice is strong postponement:

SP(→e γ ,→i α) : →i α · →e γ ⊆→e γ
∗ · →i α

= and SP(→e α,→i γ) : →i γ · →e α ⊆→e α
∗ · →i γ

= . (##)

Clearly, ## implies # (Lemma 2.4). We may hope to have all the elements for a
postponement analog of Hindley-Rosen technique, but it is not the case. Unfortunately,
conditions ## usually do not hold in extensions of the λ-calculus. Let us illustrate the issue
with an example, the non-deterministic λ-calculus, that we shall develop formally in Sect. 5.

I Example 3.2 (Issues). Consider the extension of the language of λ-terms with a construct
⊕ which models non-deterministic choice. The term ⊕pq non-deterministically reduces to
either p or q, that is, ⊕pq →⊕ p and ⊕pq →⊕ q. The calculus (Λ,→β ∪ →⊕) has two
reduction rules, →β and →⊕. For both, we define head and non-head steps as usual.

CSL 2021

6:8 Factorize Factorization

Consider the following sequence: (λx.xxx)(⊕pq) →
¬h ⊕

(λx.xxx)p→
h β

ppp. This sequence
→
¬h ⊕

· →
h β

can only postpone to a reduction sequence of the form →
h β
· →

h ⊕
· →
¬h ⊕

· →
¬h ⊕

:

(λx.xxx)(⊕pq)→
h β

(⊕pq)(⊕pq)(⊕pq)→
h ⊕

p(⊕pq)(⊕pq) →
¬h ⊕

pp(⊕pq) →
¬h ⊕

ppp.

As the β-step duplicates the redex ⊕pq, the condition SP(→
h β
,→
¬h ⊕

): →
¬h ⊕
· →

h β
⊆ →

h β
∗ · →
¬h ⊕

=

does not hold. The phenomenon is similar to Ex. 2.5, but now moving to parallel reduction is
not a solution: the problem here is not just compressing steps, but the fact that by swapping
→
¬h ⊕

and →
h β

, a third relation →
h ⊕

appears.

Note that the problem above is specific to factorization, and does not appear with confluence.

A Robust Condition for Modular Factorization. Inspired by Accattoli’s study of factoriza-
tion for λ-calculi with explicit substitutions [2], we consider an alternative sufficient condition
for modular factorization, which holds in many examples, as the next sections shall show.

We say that →i α linearly swaps with →e γ if

lSwap(→i α,→e γ) : →i α · →e γ ⊆ →e γ · →
∗
α (Linear Swap)

Note that, on the right-hand side, the relation is →∗α, not →i α. This small change will
make a big difference, and overcome the issue we have seen in Ex. 3.2 (note that there
→i β→h ⊕ ⊆ →h β→

∗
⊕ holds). Perhaps surprisingly, this easy-to-check condition, which is local

and linear in →e γ , suffices, and holds in a large variety of cases. Moreover, it holds directly
(even with β) that is, without the mediating role of parallel reductions (as it is the instead
the case of Takahashi’s technique, see Ex. 2.5).

We finally obtain a modular factorization technique, via the following easy property.

I Lemma 3.3. →a · →b ⊆ →b · →∗c implies →∗a · →b ⊆ →b · →∗c .

I Theorem 3.4 (Modular factorization). Let →α = (→e α ∪ →i α) and →γ = (→e γ ∪ →i γ)
be e-factorizing relations. The union →α ∪ →γ satisfies e-factorization Fact(→e ,→i), for
→e := →e α ∪ →e γ , and →i := →i α ∪ →i γ , if the following linear swaps hold:

lSwap(→i α,→e γ) : →i α · →e γ ⊆ →e γ · →
∗
α and lSwap(→i γ ,→e α) : →i γ · →e α ⊆ →e α · →

∗
γ .

Proof. We prove that the assumptions imply SP(→e ,→i α
∗ ∪ →i γ

∗), hence PP(→e ,→i α
∗ ∪ →i γ

∗)
(by Lemma 2.4). Therefore PP(→e ,→i) by Lemma 2.3 (because (→i α ∪ →i γ)∗ = (→i α

∗ ∪ →i γ
∗)∗

by property TR), and so Fact(→e ,→i) holds according to Lemma 2.2.
To verify SP(→e α ∪ →e γ ,→i α

∗ ∪ →i γ
∗), we observe that →i k

∗ · →e j ⊆ (→e j ∪ →e k)∗· →i k
∗

for all k, j ∈ {α, γ}:
Case j = k. This is immediate by e-factorization of →α and →γ , and by Lemma 2.2.1.
Case j 6= k. lSwap(→i α,→e γ) implies (→i α)∗· →e γ ⊆ →e γ · →∗α, by Lemma 3.3. Since →α

e-factorizes, we obtain (→i α)∗· →e γ ⊆ →e γ · →e α∗ · →i α
∗. Similarly for lSwap(→i γ ,→e α). J

Note that in the proof of Theorem 3.4, the assumption that→α and→γ factorize is crucial.
Using that, together with Lemma 3.3, we obtain SP(→e ,→i α

∗), that is, →i α
∗ postpones after

both e-steps, (and similarly for →i γ
∗). Note also that lSwap(→i ,→e) – taken alone – does not

imply PP(→e ,→i). For instance, let’s consider again Ex. 2.5. It is clear that lSwap(→
¬h β

,→
h β

)
holds and yet it does not imply Fact(→

h β
,→
¬h β

). Stronger tools, such as parallel reduction or
finite development are needed here – there is no magic.

The next sections apply the modularization result to various λ-calculus extensions.

B. Accattoli, C. Faggian, and G. Guerrieri 6:9

Linear Postponement. We collect here two easy properties which shall simplify the proof of
factorization in several of the case studies (to prove them, use Lemma 3.3 and Lemma 2.4).

I Lemma 3.5 (Linear postponement).
1. (→i · →e ⊆ →e · →i

∗) ⇒ SP(→e ,→i
∗) ⇒ Fact(→e ,→i).

2. (→i · →e ⊆ →e · →
=) ⇒ SP(→e ,→i) ⇒ Fact(→e ,→i).

Factorization vs. Confluence. Factorization and confluence are independent properties. In
Sect. 5 we apply our modular factorization technique to a non-confluent calculus. Conversely,
βη, which is confluent, does not verify head nor leftmost factorization, even though both β
and η – separately – do.

4 Extensions of the Call-by-Name λ-Calculus: Head Factorization

We shall study factorization theorems for extensions of both of the call-by-name (shortened to
CbN) and of the call-by-value (CbV) λ-calculus. The CbN λ-calculus – also simply known as
λ-calculus – is the set of λ-terms Λ, equipped with the β-reduction, while the CbV λ-calculus
is the set of λ-terms Λ, equipped with the βv-reduction.

In this section, we first revise the language of the λ-calculus and then consider the case
where the calculus is enriched with new operators, such as a non-deterministic choice or a
fixpoint operator – so, together with β, we have other reduction rules. We study in this
setting head factorization, which is by far the most important and common factorization
scheme in λ-calculus. We show that here our modular technique further simplifies, providing
an easy, ready-to-use test for head factorization of compound systems (Proposition 4.5).
Indeed, verifying the two linear swap conditions of Theorem 3.4 now reduces to a single,
simple test. Such a simplification only relies on β and on the properties of the contextual
closure, that is, it holds independently of the specific form of the extra rule.

4.1 The (Applied) λ-Calculus
Since in the next sections we shall extend the λ-calculus with new operators, such as a
non-deterministic choice ⊕ or a fixpoint combinator Y , we include constants in the syntax,
which are meant to represent such operators. So, for instance, in Sect. 5 we shall see ⊕ as a
constant. This way factorization results with respect to β-reduction can be seen as holding
also in the λ-calculus with extended syntax – this is absolutely harmless.

Note that despite the fact that the classic Barendregt’s book [11] defines the λ-calculus
without constants (the calculus is pure), other classic references such as Hindley and Seldin’s
book [28] or Plotkin [46] do include constants in the language of terms – thus there is nothing
exotic in our approach. Following Hindley and Seldin, when the set of constants is empty,
the calculus is called pure, otherwise applied.

The Language. The following grammars generate λ-terms and contexts.

t, u, p, q, r, s ::= x | c | λx.t | ts (terms, Λ) C ::= 〈 〉 | tC | Ct | λx.C (contexts)

where x ranges over a countable set of variables, c over a disjoint (finite, infinite or empty) set
of constants. Variables and constants are atoms, terms of shape pq are applications, and λx.p
abstractions. If the constants are c1, ..., cn, the set of terms is sometimes noted as Λc1...cn

.
The plugging C〈t〉 of a term t into a context C is the term obtained by replacing the only

occurrence of the hole 〈 〉 in C with t, possibly capturing some free variables of t.

CSL 2021

6:10 Factorize Factorization

A reduction step →γ is defined as the contextual closure of a relation 7→γ on Λ called root
or (γ-)rule. Explicitly, t →γ s if t = C〈r〉 and s = C〈r′〉, for some context C with r 7→γ r

′;
the term r is called a γ-redex. Given two rules 7→α, 7→γ on Λ, the relation →αγ is →α ∪ →γ ,
which can equivalently be defined as the contextual closure of 7→α∪ 7→γ .

The (CbN) λ-calculus is (Λ,→β), the set Λ of terms and β-reduction →β , defined as
the contextual closure of the β-rule: (λx.p)q 7→β p{x:=q} where p{x:=q} denotes capture-
avoiding substitution. We work up to α-equivalence; fv(t) is the set of free variables of t.

Properties of the Contextual Closure. Here we recall basic properties about contextual
closures and substitution, preparing the ground for the simplifications studied next.

A relation # on terms is substitutive if

r # r′ implies r{x:=q}# r′{x:=q}. (Substitutivity)

An obvious induction on the shape of terms shows the following (see Barendregt [11], p. 54).

I Property 4.1 (Substitution). Let →γ be the contextual closure of 7→γ .
1. If 7→γ is substitutive then →γ is substitutive: p→γ p

′ implies p{x:=q} →γ p
′{x:=q}.

2. If q →γ q
′ then t{x:=q} →∗γ t{x:=q′}.

We recall a basic but key property of contextual closures. If a step →γ is obtained by closure
under non-empty context of a rule 7→γ , then it preserves the shape of the term:

I Property 4.2 (Shape preservation). Assume t = C〈r〉 → C〈r′〉 = t′ and that context C is
non-empty. The term t′ is an application (resp. an abstraction) if and only if t is.

Since the closure of 7→γ under the empty context 〈 〉 is always an essential step (whatever
head, left, or weak), Property 4.2 implies that non-essential steps always preserve the shape
of terms – we spell this out in Properties A.1 and A.2 in the Appendix. Notice that 7→γ

indicates the step →γ that is obtained by empty contextual closure.

Head Reduction. Head contexts are defined as follows:

H ::= λx1 . . . λxk.〈 〉t1 . . . tn (head contexts)

where k ≥ 0 and n ≥ 0. A non-head context is a context that is not head. A head step
→
h γ

(resp. non-head step →
¬h γ

) is defined as the closure under head contexts (resp. non-head
contexts) of the rule 7→γ . Clearly,→γ =→

h γ
∪ →
¬h γ

. Head steps play the role of essential steps.
Note that the empty context 〈 〉 is a head context. Therefore 7→γ ⊆ →h γ holds (a fact that

we shall freely use) and Property 4.2 always applies to non-head steps.

4.2 Call-by-Name: Head Factorization, Modularly
Head factorization is of great importance for the theory of the CbN λ-calculus, which is why
head factorization for →β is well studied. If we consider a calculus (Λ,→β ∪ →γ), where
→γ is a new reduction added to β, our modular technique (Theorem 3.4) states that the
compound system→β ∪ →γ satisfies head factorization if→γ does, and both lSwap(→

¬h β
,→

h γ
)

and lSwap(→
¬h γ

,→
h β

) hold. We show that in the head case our technique simplifies even more,
reducing to the test in Proposition 4.5.

First, we observe that in this case, any linear swap condition can be tested by considering
for the head step only the root relation 7→, that is, only the closure of 7→ under empty
context, which is a head step by definition. This is expressed in the following lemma, where
we include also a variant that shall be useful later on.

B. Accattoli, C. Faggian, and G. Guerrieri 6:11

I Lemma 4.3 (Lifting root linear swaps). Let 7→α and 7→γ be root relations on Λ.
1. →
¬h α

· 7→γ ⊆ →h γ· →
∗
α implies lSwap(→

¬h α
,→

h γ
).

2. Similarly, →
¬h α

· 7→γ ⊆ →h γ · →
=
α implies →

¬h α
· →γ ⊆ →h γ · →

=
α .

Second, since we are studying →β ∪ →γ , one of the linear swaps is lSwap(→
¬h γ

,→
h β

). We
show that, whatever is →γ , it linearly swaps with →

h β
as soon as 7→γ is substitutive.

I Lemma 4.4 (Swap with →
h β

). If 7→γ is substitutive then lSwap(→
¬h γ

,→
h β

) holds.

The proofs of Lemma 4.3 and Lemma 4.4 are in Appendix A.1.
Summing up, since head factorization for β is known, we obtain the following test to verify

that the compound system→β ∪ →γ satisfies head factorization Fact(→
h β
∪ →

h γ
,→
¬h β
∪ →
¬h γ

).

I Proposition 4.5 (A test for modular head factorization). Let →β be β-reduction and →γ be
the contextual closure of a rule 7→γ . Their union →β ∪ →γ satisfies head factorization if:
1. Head factorization of →γ : Fact(→

h γ
, →
¬h γ

).
2. Root linear swap: →

¬h β
· 7→γ ⊆ →h γ · →

∗
β.

3. Substitutivity: 7→γ is substitutive.

Note that none of the properties concerns →β alone, as we already know that head fac-
torization of →β holds. In Sect. 5 we shall use our test (Proposition 4.5) to prove head
factorization for the non-deterministic λ-calculus. The full proof is only a few lines long.

We conclude by observing that Lemma 4.3 gives either a proof that the swap conditions
hold, or a counter-example. Let us give an example of this latter use.

I Example 4.6 (Finding counter-examples). The test of Proposition 4.5 can also be used to
provide a counter-example to head factorization when it fails. Let’s instantiate →γ with
→η, that is, the contextual closure of rule λx.tx 7→η t if x /∈ fv(t). Now, consider the root
linear swap: t := λx.(II)(Ix) →

¬h β
λx.(II)x 7→η II =: s, where I := λz.z. Note that t has

no →
h η

step, and so the two steps cannot be swapped. The reduction sequence above is a
counter-example to both head and leftmost factorization for βη. Start with the head (and
leftmost) redex II: λx.(II)(Ix)→

h βη
λx.I(Ix). From λx.I(Ix), there is no way to reach s.

We recall that βη still satisfies leftmost normalization – the proof is non-trivial [31, 53, 60, 30].

5 The Non-Deterministic λ-Calculus Λ⊕

De’ Liguoro and Piperno’s non-deterministic λ-calculus Λ⊕ is defined in [16] by extending the
λ-calculus with a new operator ⊕ whose rule models non-deterministic choice. Intuitively,
t⊕ p non-deterministically rewrites to either t or p. Notably, Λ⊕ is not confluent, hence it is
a good example of the fact that confluence and factorization are independent properties.

We briefly recall Λ⊕ and its features, then use our technique to give a novel and neat
proof of de’ Liguoro and Piperno’s head factorization result [16, Cor. 2.10].

Syntax. We slightly depart from the presentation in [16], as we consider ⊕ as a constant,
and write ⊕tp rather than t⊕ p, working as usual for the λ-calculus with constants (see e.g.,
[28], or [11, Sec. 15.3]).1 Terms and contexts are generated by:

t, p, q, r ::= x | ⊕ | λx.t | tp (terms, Λ⊕) C ::= 〈 〉 | tC | Ct | λx.C (contexts)

As before, →β denotes β-reduction, while the rewrite step →⊕ is the contextual closure of
the following non-deterministic rule: ⊕tp 7→⊕ t and ⊕tp 7→⊕ p.

1 Note that there is no loss with respect to the syntax in [16], where ⊕ comes with exactly two arguments,
because in our formalism such a restriction defines a sub-system that is closed under reduction.

CSL 2021

6:12 Factorize Factorization

Subtleties. The calculus (Λ⊕,→β ∪ →⊕) is not trivial. Clearly, →β ∪ →⊕ is not confluent.
Moreover, the following examples from [16] show that permuting β and ⊕ steps is delicate.
→⊕ creates β-redexes. For instance, (⊕ y (λx.x))z →⊕ (λx.x)z →β z, hence the →⊕-step
cannot be postponed after →β .
Choice duplication. Postponing →β after →⊕ is also problematic, because β-steps may
multiply choices, introducing new results: flipping a coin and duplicating the result
is not equivalent to duplicating the coin and then flipping twice. For instance, let
t = (λx.xx)(⊕pq). Duplicating first one may have t→β (⊕pq)(⊕pq)→⊕ q(⊕pq)→⊕ qp
while flipping first one has t→⊕ (λx.xx)p→β pp or t→⊕ (λx.xx)q →β qq but in both
cases qp cannot be reached.

These examples are significant as the same issues impact any calculus with choice effects.

Head Factorization. The head (resp. non-head)2 rewrite steps →
h β

and →
h ⊕

(resp. →
¬h β

and →
¬h ⊕

) are defined as the closure by head (resp. non-head) contexts of rules 7→β and 7→⊕,
respectively. We also set →

h
:= →

h β
∪ →

h ⊕
and →

¬h
:= →
¬h β
∪ →
¬h ⊕

.
De’ Liguoro and Piperno prove that despite the failure of confluence, Λ⊕ satisfies head

factorization. They prove this result via standardization, following Klop’s technique [31].

I Theorem 5.1 (Head factorization, Cor. 2.10 in [16]). Fact(→
h
, →
¬h

) holds in the non-
deterministic λ-calculus Λ⊕.

A New Proof, Modularly. We give a novel, strikingly simple proof of Fact(→
h
,→
¬h

), simply
by proving that→β and→⊕ satisfy the hypotheses of the test for modular head factorization
(Proposition 4.5). All the ingredients we need are given by the following easy lemma.

I Lemma 5.2 (Root linear swaps).
1. t →

¬h β
p 7→⊕ q implies t 7→⊕ · →=

β q.
2. t →

¬h ⊕
p 7→⊕ q implies t 7→⊕ · →=

⊕ q.

Proof.
1. Let p = ⊕p1p2 and assume ⊕p1p2 7→⊕ pi = q, with i ∈ {1, 2}. Since t →

¬h β
p, then by

Property 4.2 (as spelled out in Property A.1) t has shape ⊕t1t2, with ⊕t1t2 →¬h β
⊕p1p2.

Therefore, either t1 →β p1 or t2 →β p2, from which t = ⊕t1t2 7→⊕ ti →=
β pi = q.

2. The proof is the same as above, just replace β with ⊕. J

I Theorem 5.3 (Testing head factorization). We have Fact(→
h
, →
¬h

) because we have:
1. Head factorization of →⊕: Fact(→

h ⊕
, →
¬h ⊕

).
2. Root linear swap: →

¬h β
· 7→⊕ ⊆ →h ⊕ · →

=
β .

3. Substitutivity: 7→⊕ is substitutive.

Proof. We prove the hypotheses of Proposition 4.5.
1. →
¬h ⊕

linearly postpones after→
h ⊕

because lifting the swap in Lemma 5.2.2 via Lemma 4.3.2
(with α = γ = ⊕) gives t →

¬h ⊕
p→

h ⊕
q ⊆ t→

h ⊕
· →=
⊕ q. Lemma 3.5.2 gives Factorization.

2. This is exactly Lemma 5.2.1.
3. By definition of substitution (⊕p1p2){x:=q} = ⊕ p1{x:=q} p2{x:=q} 7→⊕ pi{x:=q}. J

2 Non-head steps are called internal (→
i
) in [16].

B. Accattoli, C. Faggian, and G. Guerrieri 6:13

6 Extensions of the CbV λ-Calculus: Left and Weak Factorization

Plotkin’s call-by-value (CbV) λ-calculus [46] is the restriction of the λ-calculus where β-
redexes can be fired only when the argument is a value, where values are defined by:

v ::= x | c | λx.t (values, V)

The CbV λ-calculus is given by the pair (Λ,→βv), where βv-reduction →βv is the
contextual closure of the following rule 7→βv

: (λx.t)v 7→βv
t{x:=v}, where v is a value.

Left and Weak Reduction. In the literature on the CbV λ-calculus, factorization is
considered with respect to various essential reductions. Usually, the essential reduction
is weak, that is, it does not act under abstractions. There are three main weak schemes:
reducing from left to right, as originally done by Plotkin [46], from right to left, as done for
instance by Leroy’s ZINC abstract machine [35], or in an unspecified non-deterministic order,
used for example by Dal Lago and Martini [33].

Here we focus on the left(-to-right) and the (unspecified) weak schemes. Left contexts L
and weak contexts W are respectively defined by:

L ::= 〈 〉 | Lt | vL (left contexts) W ::= 〈 〉 |Wt | tW (weak contexts)

Given a rule 7→γ , a left step →
l γ

(resp., a weak step →w γ) is the closure of 7→γ under a left
(resp. weak) context. A non-left step →

¬l γ
(resp. non-weak step →¬w γ) is the closure of 7→γ

under a context that is not left (resp. not weak).

Left/Weak Factorization, Modularly. For both left and weak reductions, we derive a test
for modular factorization analogous to the test for head factorization (Proposition 4.5). Note
that we already know that (Λ,→βv

) satisfies left and weak factorization: the former was
proved by Plotkin [46], the latter is folklore – a proof can be found in our previous work [3].

I Proposition 6.1 (A test for modular left/weak factorization). Let →βv be βv-reduction, →γ

be the contextual closure of a rule 7→γ, and e ∈ {l,w}. Their union →βv
∪ →γ satisfies

e-factorization Fact(→e βv ∪ →e γ ,→¬e βv ∪ →¬e γ) if:
1. e-factorization of →γ : Fact(→e γ ,→¬e γ).
2. Root linear swap: →¬e βv · 7→γ ⊆ →e γ · →∗βv

.
3. Substitutivity: 7→γ is substitutive.
The easy proof is in Appendix A.2.

7 The Shuffling Calculus

Plotkin’s CbV λ-calculus is usually considered on closed terms. When dealing with open
terms, it is well known that a mismatch between the operational and the denotational
semantics arises, as first pointed out by Paolini and Ronchi della Rocca [45, 44, 49]. The
literature contains several proposals of extensions of βv reduction to overcome this issue, see
Accattoli and Guerrieri for discussions [4]. One such refinement is Carraro and Guerrieri’s
shuffling calculus [14], which extends Plotkin’s λ-calculus with extra rules (without adding
new operators). These rules are inspired by linear logic proof nets, and are the CbV analogous
of Regnier’s σ rules [47]. Left factorization for the shuffling calculus is studied by Guerrieri,
Paolini, and Ronchi della Rocca in [24, 25, 23], by adapting Takahashi’s technique [53].

CSL 2021

6:14 Factorize Factorization

We recall the calculus, then use our technique to give a new proof of factorization, both
left (as in [25]) and weak (new). Remarkably, our proofs are very short, whereas the original
requires several pages (to define parallel reductions and prove their properties).

The Syntax. The shuffling calculus is simply Plotkin’s calculus extended with σ-reduction
→σ , that is, the contextual closure of the root relation 7→σ = 7→σ1 ∪ 7→σ3 , where

(λx.t)us 7→σ1 (λx.ts)u if x /∈ fv(s) v((λx.t)u) 7→σ3 (λx.vt)u if x /∈ fv(v)

We write →σi
for the contextual closure of 7→σi

(so →σ = →σ1 ∪ →σ3), and −→sh=→βv
∪ →σ .

Subtleties. From a rewriting perspective, the shuffling calculus is an interesting extension
of the λ-calculus because its intricate rules do not fit into easy-to-manage classes of rewriting
systems. Orthogonal systems have only simple forms of overlaps of redexes. While the
λ-calculus is an orthogonal system, the σ-rules introduce non-trivial overlaps such as the
following ones. Setting I := λx.x and δ := λx.xx, the term δIδ is a σ1-redex and contains
the βv-redex δI, while the term δ(Iδ)(xI) is a σ1-redex and contains the σ3-redex δ(Iδ),
which contains in turn the βv-redex Iδ.

Left and Weak Factorization. Despite all these traits, the shuffling calculus has good
properties, such as confluence [14], and left factorization [25]. Moreover, →σ is terminating
[14]. The tests developed in the previous section allow us to easily prove both left and weak
factorization. We check the hypotheses of Proposition 6.1 – all the ingredients we need are
in Lemma 7.1 (the easy details are in Appendix A.3). Note that the empty context is both a
left and a weak context, hence t 7→σi

u implies both t→
l σi

u and t→w σi
u.

I Lemma 7.1 (Root linear swaps). Let e ∈ {l,w} and i ∈ {1, 3}. Then:
1. →¬e βv

· 7→σi
⊆ 7→σi

· →βv
.

2. →¬e σ · 7→σi ⊆ 7→σi · →σ.

I Theorem 7.2 (Testing left (weak) factorization). Let e ∈ {l,w}. Fact(→e sh,→¬e sh) holds, as:
1. Left (resp. weak) factorization of →σ : Fact(→e σ,→¬e σ).
2. Root linear swap: →¬e βv

· 7→σ ⊆ →e σ · →βv
.

3. Substitutivity: 7→σi
is substitutive, for i ∈ {1, 3}.

Proof. We prove the hypotheses of Proposition 6.1:
1. Left (resp. weak) factorization of →σ holds because →¬e σ linearly postpones after →e σ :

indeed, by Lemma 7.1.2 →¬e σ · 7→σ ⊆ →e σ · →σ and by contextual closure (Lemma A.3
with α = γ = σ) we have that →¬e σ · →e σ⊆→e σ · →=

σ . We conclude by Lemma 3.5.2.
2. This is Lemma 7.1.1.
3. By definition of substitution. The immediate proof is in Appendix A.3. J

8 Non-Terminating Relations

In this section we provide examples of the fact that our technique does not rest on termination
hypotheses. We consider fixpoint operators in both CbN and CbV, which have non-terminating
reductions. Obviously, when terms are not restricted by types, the operator is definable, so
the example is slight artificial, but we hope clarifying.

B. Accattoli, C. Faggian, and G. Guerrieri 6:15

There are also cases where the modules are terminating but the compound system is not.
The technique, surprisingly, still works. Accattoli gives various examples based on λ-calculi
with explicit substitutions in [2]. An insight of this paper – not evident in [2] – is that
termination is not needed to lift factorization from the modules to the compound system.

CbN Fixpoint, Head Factorization. We first consider the calculus βY := (ΛY ,→β ∪ →Y)
[27]3. It extends the CbN λ-calculus with a constant Y and a reduction →Y , the contextual
closure of the rule Y t 7→Y t(Y t). Points 1-3 below are immediate – details in Appendix A.4.

I Proposition 8.1 (Testing head factorization for βY). →β ∪ →Y satisfies head factorization:
1. Head factorization of →Y : Fact(→

h Y, →¬h Y).
2. Root linear swap: →

¬h β
· 7→Y ⊆ →h Y · →

∗
β.

3. Substitutivity: 7→Y is substitutive.

CbV Fixpoint, Weak Factorization. We now consider weak factorization and a CbV
counterpart of the previous example. We follow Abramsky and McCusker [1], who study a
call-by-value PCF with a fixpoint (more precisely, a recursion) operator Z. Similarly, we
extend the CbV λ-calculus with a constant Z and its reduction →Z , which is the contextual
closure of the rule Zv 7→Z λx.v(Zv)x where v is a value. The calculus βvZ is therefore
(ΛZ ,→βv ∪ →Z). Points 1-3 below are all immediate – details in Appendix A.4.

I Proposition 8.2 (Testing weak factorization for βvZ). →β ∪ →Z satisfies weak factorization:
1. Weak factorization of →Z : Fact(→w Z, →¬w Z).
2. Root linear swap: →¬w βv · 7→Z ⊆ →w Z · →∗βv

.
3. Substitutivity: 7→Z is substitutive.

9 Further Applications: Probabilistic Calculi

In this paper, we present our technique using examples which are within the familiar language
of λ-calculus. However the core of the technique – Theorem 3.4 – is independent from a
specific syntax. It can be used in calculi whose objects are richer than λ-terms. The
probabilistic λ-calculus is a prime example.

A recent line of research is developing probabilistic calculi where evaluation is not limited
to a deterministic strategy. Faggian and Ronchi della Rocca [19] define two calculi – Λcbv

⊕ and
Λcbn
⊕ – which model respectively CbV and CbN probabilistic higher-order computation, while

being conservative extensions of the CbV and CbN λ-calculi. For both calculi confluence and
factorization (called standardization in [19]) hold. There is however a deep asymmetry between
the two results. Confluence is neatly proved via Hindley-Rosen technique, by relying on the
fact the β and βv reductions are confluent. The proof of factorization is instead laborious: the
authors define a notion of parallel reduction for the new calculus, and then adapt Takahashi’s
technique [53]. Leventis work [36] on the call-by-name probabilistic λ-calculus suffers a
similar problem. He proves factorization by relying on the finite developments method, but
the proof is equally laborious.

Our technique allows for a neat, concise proof of factorization, which reduces to only
testing a single linear swap, with no need for parallel reductions or finite developments.
Proving factorization turns out to be in fact easier than proving confluence. The technical
details – that is, the definition of the calculus and the proof – are in Appendix B.

3 Head factorization of βY is easily obtained by a high-level argument, as consequence of left-normality,
see Terese [54, Ch. 8.5]. The point that we want to stress here is that the validity of linear swaps is not
limited to terminating reduction, and βY provides a simple, familiar example.

CSL 2021

6:16 Factorize Factorization

10 Conclusions and Discussions

Summary. A well-established approach to model higher-order computation with advanced
features is to start from the call-by-name or call-by-value λ-calculus, and enrich it with new
constructs. We propose a sharp technique to establish factorization of a compound system
from factorization of its components. As we point out, the natural transposition of Hindley-
Rosen technique for confluence does not work here, because the obtained conditions are – in
general – not validated by extensions of the λ-calculus. The turning point is the identification
of an alternative sufficient condition, called linear swap. Moreover, on common factorization
schemes such as head or weak factorization, our technique reduces to a straightforward test.
Concretely, we apply our technique to various examples, stressing its independence from
common simplifying hypotheses such as confluence, orthogonality, and termination.

Black Box and Elementary Commutations. A key feature of our technique is to take
factorization of the core relations – the modules – as black boxes. The focus is then on the
analysis of the interaction between the modules. The benefit is both practical and conceptual:
we disentangle the components – and the issues – under study. This is especially appealing
when dealing with extensions of the λ-calculus, built on top of β or βv reduction, because
often most of the difficulties come from the higher-order component, that is, β or βv itself –
whose factorization is non-trivial but already proven – rather than from the added features.

Good illustrations of these points are our proofs of factorization. We stress that:
the proof of factorization of the compound system is independent of the specific technique
(finite developments, parallel reduction, etc.) used to prove factorization of the modules;
to verify good interaction between the modules, it often suffices to check elementary, local
commutations – the linear swaps.

These features provide a neat proof technique supporting the development and the analysis
of complex compound systems.

Conclusions. When one wants to model new computational features, the calculus is often
not given, but it has to be designed, in such a way that it satisfies confluence and factorization.
The process of developing the calculus and the process of proving its good properties, go
hand in hand. If the latter is difficult and prone to errors, the former also is. The black-box
approach makes our technique efficient and accessible also to working scientists who are not
specialists in rewriting. And even for the λ-calculus expert who masters tools such as finite
developments, labeling or parallel reduction, it still appears desirable to limit the amount of
difficulties. The more advanced and complex are the computational systems we study, the
more crucial it is to have reasoning tools as simple to use as possible.

References
1 Samson Abramsky and Guy McCusker. Call-by-value games. In Computer Science Logic,

11th International Workshop, CSL ’97, Annual Conference, volume 1414 of Lecture Notes in
Computer Science, pages 1–17. Springer, 1997. doi:10.1007/BFb0028004.

2 Beniamino Accattoli. An abstract factorization theorem for explicit substitutions. In 23rd
International Conference on Rewriting Techniques and Applications, RTA 2012, volume 15 of
LIPIcs, pages 6–21. Schloss Dagstuhl, 2012. doi:10.4230/LIPIcs.RTA.2012.6.

3 Beniamino Accattoli, Claudia Faggian, and Giulio Guerrieri. Factorization and normalization,
essentially. In Programming Languages and Systems - 17th Asian Symposium, APLAS
2019, volume 11893 of Lecture Notes in Computer Science, pages 159–180. Springer, 2019.
doi:10.1007/978-3-030-34175-6_9.

https://doi.org/10.1007/BFb0028004
https://doi.org/10.4230/LIPIcs.RTA.2012.6
https://doi.org/10.1007/978-3-030-34175-6_9

B. Accattoli, C. Faggian, and G. Guerrieri 6:17

4 Beniamino Accattoli and Giulio Guerrieri. Open call-by-value. In Programming Languages and
Systems - 14th Asian Symposium, APLAS 2016, volume 10017 of Lecture Notes in Computer
Science, pages 206–226. Springer, 2016. doi:10.1007/978-3-319-47958-3_12.

5 Yohji Akama. On Mints’ reduction for ccc-calculus. In Typed Lambda Calculi and Applications,
International Conference on Typed Lambda Calculi and Applications, TLCA ’93, volume 664
of Lecture Notes in Computer Science, pages 1–12. Springer, 1993. doi:10.1007/BFb0037094.

6 Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip Wadler. The call-
by-need lambda calculus. In 22nd ACM Symposium on Principles of Programming Languages,
POPL’95, pages 233–246. ACM Press, 1995. doi:10.1145/199448.199507.

7 Pablo Arrighi and Gilles Dowek. Lineal: A linear-algebraic lambda-calculus. Log. Methods
Comput. Sci., 13(1), 2017. doi:10.23638/LMCS-13(1:8)2017.

8 Martin Avanzini, Ugo Dal Lago, and Akihisa Yamada. On probabilistic term rewriting. In
Functional and Logic Programming - 14th International Symposium, FLOPS 2018, volume
10818 of Lecture Notes in Computer Science, pages 132–148. Springer, 2018. doi:10.1007/
978-3-319-90686-7_9.

9 Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press,
1998. doi:10.1017/CBO9781139172752.

10 Leo Bachmair and Nachum Dershowitz. Commutation, transformation, and termination. In
8th International Conference on Automated Deduction, CADE 1986, volume 230 of Lecture
Notes in Computer Science, pages 5–20. Springer, 1986. doi:10.1007/3-540-16780-3_76.

11 Hendrik Pieter Barendregt. The Lambda Calculus – Its Syntax and Semantics, volume 103 of
Studies in logic and the foundations of mathematics. North-Holland, 1984.

12 Frédéric Blanqui. Size-based termination of higher-order rewriting. J. Funct. Program., 28:e11,
2018. doi:10.1017/S0956796818000072.

13 Antonio Bucciarelli, Delia Kesner, and Simona Ronchi Della Rocca. Observability = typability
+ inhabitation. CoRR, 2018. URL: http://arxiv.org/abs/1812.06009.

14 Alberto Carraro and Giulio Guerrieri. A semantical and operational account of call-by-value
solvability. In Foundations of Software Science and Computation Structures, 17th International
Conference, FoSSaCS 2014, volume 8412 of Lecture Notes in Computer Science, pages 103–118.
Springer, 2014. doi:10.1007/978-3-642-54830-7_7.

15 Haskell B. Curry and Robert Feys. Combinatory Logic, Volume 1. Studies in logic and the
foundations of mathematics. North-Holland, 1958.

16 Ugo de’ Liguoro and Adolfo Piperno. Non deterministic extensions of untyped lambda-calculus.
Inf. Comput., 122(2):149–177, 1995. doi:10.1006/inco.1995.1145.

17 Nachum Dershowitz. On lazy commutation. In O. Grumberg, M. Kaminski, S. Katz,
and S. Wintner, editors, Languages: From Formal to Natural, Essays Dedicated to Nis-
sim Francez on the Occasion of His 65th Birthday, pages 59–82. Springer, 2009. doi:
10.1007/978-3-642-01748-3_5.

18 Henk Doornbos and Burghard von Karger. On the union of well-founded relations. Logic
Journal of the IGPL, 6(2):195–201, 1998. doi:10.1093/jigpal/6.2.195.

19 Claudia Faggian and Simona Ronchi Della Rocca. Lambda calculus and probabilistic compu-
tation. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019,
pages 1–13. IEEE Computer Society, 2019. doi:10.1109/LICS.2019.8785699.

20 Alfons Geser. Relative Termination. PhD thesis, University of Passau, Germany, 1990. URL:
http://vts.uni-ulm.de/docs/2012/8146/vts_8146_11884.pdf.

21 Georges Gonthier, Jean-Jacques Lévy, and Paul-André Melliès. An abstract standardisation
theorem. In Proceedings of the Seventh Annual Symposium on Logic in Computer Science
(LICS ’92), pages 72–81. IEEE Computer Society, 1992. doi:10.1109/LICS.1992.185521.

22 Bernhard Gramlich. Modularity in term rewriting revisited. Theor. Comput. Sci., 464:3–19,
2012. doi:10.1016/j.tcs.2012.09.008.

23 Giulio Guerrieri. Head reduction and normalization in a call-by-value lambda-calculus. In
2nd International Workshop on Rewriting Techniques for Program Transformations and

CSL 2021

https://doi.org/10.1007/978-3-319-47958-3_12
https://doi.org/10.1007/BFb0037094
https://doi.org/10.1145/199448.199507
https://doi.org/10.23638/LMCS-13(1:8)2017
https://doi.org/10.1007/978-3-319-90686-7_9
https://doi.org/10.1007/978-3-319-90686-7_9
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1007/3-540-16780-3_76
https://doi.org/10.1017/S0956796818000072
http://arxiv.org/abs/1812.06009
https://doi.org/10.1007/978-3-642-54830-7_7
https://doi.org/10.1006/inco.1995.1145
https://doi.org/10.1007/978-3-642-01748-3_5
https://doi.org/10.1007/978-3-642-01748-3_5
https://doi.org/10.1093/jigpal/6.2.195
https://doi.org/10.1109/LICS.2019.8785699
http://vts.uni-ulm.de/docs/2012/8146/vts_8146_11884.pdf
https://doi.org/10.1109/LICS.1992.185521
https://doi.org/10.1016/j.tcs.2012.09.008

6:18 Factorize Factorization

Evaluation, WPTE 2015, volume 46 of OASICS, pages 3–17. Schloss Dagstuhl, 2015. doi:
10.4230/OASIcs.WPTE.2015.3.

24 Giulio Guerrieri, Luca Paolini, and Simona Ronchi Della Rocca. Standardization of a call-
by-value lambda-calculus. In 13th International Conference on Typed Lambda Calculi and
Applications, TLCA 2015, volume 38 of LIPIcs, pages 211–225. Schloss Dagstuhl, 2015.
doi:10.4230/LIPIcs.TLCA.2015.211.

25 Giulio Guerrieri, Luca Paolini, and Simona Ronchi Della Rocca. Standardization and con-
servativity of a refined call-by-value lambda-calculus. Logical Methods in Computer Science,
13(4), 2017. doi:10.23638/LMCS-13(4:29)2017.

26 J. Roger Hindley. The Church-Rosser Property and a Result in Combinatory Logic. PhD
thesis, University of Newcastle-upon-Tyne, 1964.

27 J. Roger Hindley. Reductions of residuals are finite. Transactions of the American Mathematical
Society, 240:345–361, 1978.

28 J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combinators: An Introduction.
Cambridge University Press, New York, NY, USA, 2 edition, 2008.

29 Nao Hirokawa, Aart Middeldorp, and Georg Moser. Leftmost outermost revisited. In 26th
International Conference on Rewriting Techniques and Applications, RTA 2015, volume 36 of
LIPIcs, pages 209–222. Schloss Dagstuhl, 2015. doi:10.4230/LIPIcs.RTA.2015.209.

30 Katsumasa Ishii. A proof of the leftmost reduction theorem for λβη-calculus. Theor. Comput.
Sci., 747:26–32, 2018. doi:10.1016/j.tcs.2018.06.003.

31 Jan Willem Klop. Combinatory Reduction Systems. Phd thesis, Mathematisch Centrum,
Amsterdam, 1980.

32 Masahito Kurihara and Ikuo Kaji. Modular term rewriting systems and the termination. Inf.
Process. Lett., 34(1):1–4, 1990. doi:10.1016/0020-0190(90)90221-I.

33 Ugo Dal Lago and Simone Martini. The weak lambda calculus as a reasonable machine. Theor.
Comput. Sci., 398(1-3):32–50, 2008. doi:10.1016/j.tcs.2008.01.044.

34 Ugo Dal Lago and Margherita Zorzi. Probabilistic operational semantics for the lambda
calculus. RAIRO Theor. Informatics Appl., 46(3):413–450, 2012. doi:10.1051/ita/2012012.

35 Xavier Leroy. The ZINC experiment: an economical implementation of the ML language.
Technical report 117, INRIA, 1990. URL: http://gallium.inria.fr/~xleroy/publi/ZINC.
pdf.

36 Thomas Leventis. A deterministic rewrite system for the probabilistic λ-calculus. Math. Struct.
Comput. Sci., 29(10):1479–1512, 2019. doi:10.1017/S0960129519000045.

37 Jean-Jacques Lévy. Réductions corrcectes et optimales dans le lambda calcul. PhD thesis,
University of Paris 7, 1978.

38 Paul-André Melliès. Typed lambda-calculi with explicit substitutions may not terminate. In
Typed Lambda Calculi and Applications, Second International Conference on Typed Lambda
Calculi and Applications, TLCA ’95, volume 902 of Lecture Notes in Computer Science, pages
328–334. Springer, 1995. doi:10.1007/BFb0014062.

39 Paul-André Melliès. A factorisation theorem in rewriting theory. In Category Theory and
Computer Science, 7th International Conference, CTCS ’97, volume 1290 of Lecture Notes in
Computer Science, pages 49–68. Springer, 1997. doi:doi.org/10.1007/BFb0026981.

40 Aart Middeldorp. Modular aspects of properties of term rewriting systems related to normal
forms. In Rewriting Techniques and Applications, 3rd International Conference, RTA-89,
volume 355 of Lecture Notes in Computer Science, pages 263–277. Springer, 1989. doi:
10.1007/3-540-51081-8_113.

41 Aart Middeldorp. A sufficient condition for the termination of the direct sum of term rewriting
systems. In Proceedings of the Fourth Annual Symposium on Logic in Computer Science (LICS
’89), pages 396–401. IEEE Computer Society, 1989. doi:10.1109/LICS.1989.39194.

42 Aart Middeldorp. Confluence of the disjoint union of conditional term rewriting systems.
In Conditional and Typed Rewriting Systems, 2nd International Workshop, CTRS 1990,

https://doi.org/10.4230/OASIcs.WPTE.2015.3
https://doi.org/10.4230/OASIcs.WPTE.2015.3
https://doi.org/10.4230/LIPIcs.TLCA.2015.211
https://doi.org/10.23638/LMCS-13(4:29)2017
https://doi.org/10.4230/LIPIcs.RTA.2015.209
https://doi.org/10.1016/j.tcs.2018.06.003
https://doi.org/10.1016/0020-0190(90)90221-I
https://doi.org/10.1016/j.tcs.2008.01.044
https://doi.org/10.1051/ita/2012012
http://gallium.inria.fr/~xleroy/publi/ZINC.pdf
http://gallium.inria.fr/~xleroy/publi/ZINC.pdf
https://doi.org/10.1017/S0960129519000045
https://doi.org/10.1007/BFb0014062
https://doi.org/doi.org/10.1007/BFb0026981
https://doi.org/10.1007/3-540-51081-8_113
https://doi.org/10.1007/3-540-51081-8_113
https://doi.org/10.1109/LICS.1989.39194

B. Accattoli, C. Faggian, and G. Guerrieri 6:19

volume 516 of Lecture Notes in Computer Science, pages 295–306. Springer, 1990. doi:
10.1007/3-540-54317-1_99.

43 Gerd Mitschke. The standardization theorem for λ-calculus. Mathematical Logic Quarterly,
25(1-2):29–31, 1979. doi:10.1002/malq.19790250104.

44 Luca Paolini. Call-by-value separability and computability. In Theoretical Computer Science,
7th Italian Conference, ICTCS 2001, volume 2202 of Lecture Notes in Computer Science, pages
74–89. Springer, 2001. doi:10.1007/3-540-45446-2_5.

45 Luca Paolini and Simona Ronchi Della Rocca. Call-by-value solvability. RAIRO Theor.
Informatics Appl., 33(6):507–534, 1999. doi:10.1051/ita:1999130.

46 Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput.
Sci., 1(2):125–159, 1975. doi:10.1016/0304-3975(75)90017-1.

47 Laurent Regnier. Une équivalence sur les lambda-termes. Theor. Comput. Sci., 126(2):281–292,
1994. doi:10.1016/0304-3975(94)90012-4.

48 György E. Révész. A list-oriented extension of the lambda-calculus satisfying the Church-Rosser
theorem. Theor. Comput. Sci., 93(1):75–89, 1992. doi:10.1016/0304-3975(92)90212-X.

49 Simona Ronchi Della Rocca and Luca Paolini. The Parametric Lambda Calculus - A Metamodel
for Computation. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2004.
doi:10.1007/978-3-662-10394-4.

50 J. Barkley Rosser. A mathematical logic without variables. Duke Mathematical Journal,
1(3):328–355, September 1935. doi:10.1215/S0012-7094-35-00123-5.

51 Michaël Rusinowitch. On termination of the direct sum of term-rewriting systems. Inf. Process.
Lett., 26(2):65–70, 1987. doi:10.1016/0020-0190(87)90039-1.

52 Alexis Saurin. On the relations between the syntactic theories of lambda-mu-calculi. In
Computer Science Logic, 22nd International Workshop, CSL 2008, 17th Annual Conference,
volume 5213 of Lecture Notes in Computer Science, pages 154–168. Springer, 2008. doi:
10.1007/978-3-540-87531-4_13.

53 Masako Takahashi. Parallel reductions in lambda-calculus. Inf. Comput., 118(1):120–127,
1995. doi:10.1006/inco.1995.1057.

54 Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

55 Yoshihito Toyama. Counterexamples to termination for the direct sum of term rewriting
systems. Inf. Process. Lett., 25(3):141–143, 1987. doi:10.1016/0020-0190(87)90122-0.

56 Yoshihito Toyama. On the church-rosser property for the direct sum of term rewriting systems.
J. ACM, 34(1):128–143, 1987. doi:10.1145/7531.7534.

57 Yoshihito Toyama, Jan Willem Klop, and Hendrik Pieter Barendregt. Termination for the
direct sum of left-linear term rewriting systems -preliminary draft-. In Rewriting Techniques
and Applications, 3rd International Conference, RTA-89, volume 355 of Lecture Notes in
Computer Science, pages 477–491. Springer, 1989. doi:10.1007/3-540-51081-8_127.

58 Vincent Van Oostrom. Some symmetries of commutation diamonds. Talk at the International
Workshop on Confluence, 30 June 2020.

59 Vincent van Oostrom. Confluence by decreasing diagrams. In Rewriting Techniques and
Applications, 19th International Conference, RTA 2008,, volume 5117 of Lecture Notes in
Computer Science, pages 306–320. Springer, 2008. doi:10.1007/978-3-540-70590-1_21.

60 Vincent van Oostrom and Yoshihito Toyama. Normalisation by random descent. In 1st
International Conference on Formal Structures for Computation and Deduction, FSCD 2016,
volume 52 of LIPIcs, pages 32:1–32:18. Schloss Dagstuhl, 2016. doi:10.4230/LIPIcs.FSCD.
2016.32.

61 Vincent van Oostrom and Hans Zantema. Triangulation in rewriting. In 23rd International
Conference on Rewriting Techniques and Applications (RTA’12) , RTA 2012, volume 15 of
LIPIcs, pages 240–255. Schloss Dagstuhl, 2012. doi:10.4230/LIPIcs.RTA.2012.240.

CSL 2021

https://doi.org/10.1007/3-540-54317-1_99
https://doi.org/10.1007/3-540-54317-1_99
https://doi.org/10.1002/malq.19790250104
https://doi.org/10.1007/3-540-45446-2_5
https://doi.org/10.1051/ita:1999130
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1016/0304-3975(94)90012-4
https://doi.org/10.1016/0304-3975(92)90212-X
https://doi.org/10.1007/978-3-662-10394-4
https://doi.org/10.1215/S0012-7094-35-00123-5
https://doi.org/10.1016/0020-0190(87)90039-1
https://doi.org/10.1007/978-3-540-87531-4_13
https://doi.org/10.1007/978-3-540-87531-4_13
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1016/0020-0190(87)90122-0
https://doi.org/10.1145/7531.7534
https://doi.org/10.1007/3-540-51081-8_127
https://doi.org/10.1007/978-3-540-70590-1_21
https://doi.org/10.4230/LIPIcs.FSCD.2016.32
https://doi.org/10.4230/LIPIcs.FSCD.2016.32
https://doi.org/10.4230/LIPIcs.RTA.2012.240

6:20 Factorize Factorization

APPENDIX

Appendix A collects omitted details of proofs. In Appendix B we illustrate a more advanced
example of application of our technique, namely to the probabilistic λ-calculus.

A Appendix: Omitted Proofs

A.1 Head Factorization (Sect. 4)
Consequences of Property 4.2. Note that the empty context 〈 〉 is a head context. Hence, for
a non-head step C〈r〉 →

¬h
C〈r′〉, necessarily C 6= 〈 〉, and Property 4.2 applies. Consequently:

I Property A.1 (Shape preservation). For any γ-rule, →
¬h γ

preserves the shapes of terms:
1. Atom: there is no t such that t →

¬h γ
a, for any variable or constant a.

2. Abstraction: t →
¬h γ

λx.u1 implies t = λx.t1 and t1 →¬h γ
u1.

3. Application: t →
¬h γ

u1u2 implies t = t1t2 with: either t2 →γ u2 and t1 = u1; or t1 →γ u1

and t2 = u2, and if moreover t1 →h γ u1 then t1 and u1 are abstractions.
4. Redex: if t →

¬h γ
u, and u is a β-redex, then t is a β-redex.

Similarly, if t →
¬h γ

u and u has shape ct1 . . . tk (c is a constant), t has the same shape.
Point 4. follows from points 1. to 3. Note that, in particular, if u is a ⊕-redex, so is t.

Head Factorization, Modularly.

I Lemma (4.3 Lifting root linear swaps). Let 7→α and 7→γ be root relations on Λ.
1. →
¬h α
· 7→γ ⊆ →h γ · →

∗
α implies lSwap(→

¬h α
,→

h γ
).

2. Similarly, →
¬h α
· 7→γ ⊆ →h γ · →

=
α implies →

¬h α
· →γ ⊆ →h γ · →

=
α .

Proof.
1. We prove that t →

¬h α
u →

h γ
s implies t →

h γ
· →∗α s by induction on the head context

H = λx1 . . . λxk.〈 〉t1 . . . tn of the reduction step u→
h γ

s. Cases:
a. u is a γ-redex (i.e. H = 〈 〉, k = 0, n = 0) and hence t →

¬h α
u 7→γ s. Thus, t→h γ · →

∗
α s

by the hypothesis →
¬h α

· 7→γ⊆ →h γ · →
∗
α.

b. u = λx.u1 (i.e. k > 0) with u1 →h γ s1 and u = λx.u1 →h γ λx.s1 = s. By shape
preservation (Property A.1.2) t = λx.t1 and t1 →¬h α

u1. By i.h., we can conclude.
c. u = u1u2 (i.e., k = 0, n > 0) with u1 →h γ u

′
1 and u = u1u2 →h γ u

′
1u2 = s. By shape

preservation (Property A.1.3), there are two sub-cases for t →
¬h α

u1u2.
i. t = t1u2 and t1 →α u1. Note that it impossible that t1 →h α u1, otherwise u1 would

be an abstraction (by Property A.1.3) and this would contradict u1u2 →h γ u
′
1u2.

Therefore, t1 →h α u1. By i.h., t1 →h γ t
′
1 →∗α u′1 so t = t1u2 →h γ t

′
1u2 →∗α u′1u2 = s.

ii. t = u1t2 and t2 →α u2. Then, t = u1t2 →h γ u
′
1t2 →α u

′
1u2 = s.

2. The proof is similar to Point 1. J

I Lemma (4.4 Swap with →
h β

). If 7→γ is substitutive then lSwap(→
¬h γ

,→
h β

) holds.

Proof. By Lemma 4.3, it is enough to prove that t →
¬h γ

u 7→β s implies t →
h β
· →∗γ s.

According to Property 4.1.1, →γ is substitutive. Let u = (λx.u1)u2 7→β u1{x:=u2} = s. By
shape preservation (Property A.1) applied to t →

¬h γ
u, there are only two cases:

B. Accattoli, C. Faggian, and G. Guerrieri 6:21

1. either t = (λx.p)u2 and p→γ u1, so t→h β p{x:=u2} →γ u1{x:=u2} as→γ is substitutive;
2. or t = (λx.u1)q and q →γ u2, so t→h β u1{x:=q} →∗γ u1{x:=u2} by Property 4.1.2. J

A.2 Call-by-Value λ-Calculus (Sect. 6)
Consequences of Property 4.2. The empty context 〈 〉 is both a left and a weak context.
Hence, Property 4.2 always applies to non-left and non-weak steps. Consequently:

I Property A.2 (Shape preservation). For any e ∈ {l,w}, →¬e γ preserves the shape of terms:
1. Atom: there is no t such that t →¬e γ a, for any variable or constant a.
2. Abstraction: t →¬e γ λx.u1 implies t = λx.t1 and t1 →γ u1.
3. Application: t →¬e γ u1u2 implies t = t1t2, with either (i) t1 →¬e γ u1 and t2 = u2, or (ii)

t2 →γ u2 and t1 = u1. Moreover, in case (ii): if vt2 →¬l
vu2 (v is a value), then t2 →¬l

u2;
if t1t2 →¬w γ u1u2, then t2 →¬w γ u2.

4. Redex: if t →¬e γ u, and u is a βv-redex, then t also is (as a consequence of points 1. to 3.).

Left and Weak Factorization, Modularly. To prove Proposition 6.1 we proceed similarly
to Sect. 4.2.

I Lemma A.3 (Lifting root linear swaps). Let 7→α and 7→γ be root relations on Λ.
1. If →

¬l α
· 7→γ ⊆ →l γ · →

∗
α then lSwap(→

¬l α
,→

l γ
).

2. If →¬w α · 7→γ ⊆ →w γ · →∗α then lSwap(→¬w α,→w γ).
3. Similarly, →¬e α · 7→γ⊆ →e γ · →=

α implies →¬e α · →γ⊆ →e γ · →=
α , with e ∈ {l,w}

Proof.
1. We prove that t →

¬l α
u→

l γ
s implies t→

l γ
· →∗α s, by induction on the context L of u→

l γ
s.

a. L = 〈 〉, i.e. u 7→γ s. The claim holds by hypothesis.
b. L = L′u2, i.e. u = u1u2 →l γ s1u2 = s with u1 →l γ s1. By Property A.2.3, t = t1t2 and

i. either t2 →α u2 (and t1 = u1), so t = u1t2 →l γ s1t2 →α s1u2 = s;
ii. or t1 →¬l α

u1 (and t2 = u2); by i.h., t1 →l γ · →
∗
α s1, so t = t1u2 →l γ · →

∗
α s1u2 = s.

c. L = vL′, i.e. u = vu2 →l γ vs2 = s with u2 →l γ s2. By Property A.2.3, t = t1t2 and
i. either t2 →¬l α

u2 (and t1 = v); by i.h., t2 →l γ · →
∗
α s2, so t = vt2 →l γ · →

∗
α vs2 = s;

ii. or t1 →¬l α
v (and t2 = u2); since v is a value, by Property A.2.1-2, t1 is also a value

and so t = t1u2 →l γ t1s2 →α vs2 = s.
2. The proof is similar Point 1, but simpler. Case W = 〈 〉 is the same. Case W = W′u2 is

exactly like L = L′u2, and case W = u1W′ is symmetric to case W = W′u2.
3. The proof is similar to Points 1-2. J

I Lemma A.4 (Swap with →e βv
). If 7→γ is substitutive then lSwap(→¬e γ ,→e βv

), for e ∈ {l,w}.

Proof. We prove lSwap(→
¬l γ

,→
l βv

), the other swap is similar. By Lemma A.3, it is enough
to prove that t →

¬l γ
u 7→βv

s implies t →
l βv
· →∗γ s. According to Property 4.1.1, →γ is

substitutive. Let u = (λx.u1)v 7→βv
u1{x:=v} = s. By shape preservation (Property A.2)

applied to t →
¬l γ

u, there are only two cases:
1. either t = (λx.t1)v and t1 →γ u1, so t→l βv

t1{x:=v} →γ u1{x:=v} as →γ is substitutive;
2. or t = (λx.u1)w where w →γ v and w is a value; hence, t = (λx.u1)w →

l βv
u1{x:=w} →∗γ

u1{x:=v}, where the →γ steps take place by Property 4.1.2. J

CSL 2021

6:22 Factorize Factorization

A.3 The Shuffling Calculus (Sect. 7)
I Property A.5 (Values are closed under substitution). If v and w are values, so is v{x:=w}.

I Lemma (7.1 Root linear swaps). Let e ∈ {l,w} and i ∈ {1, 3}. Then:
1. →¬e βv

· 7→σi
⊆ 7→σi

· →βv
.

2. →¬e σ · 7→σi
⊆ 7→σi

· →σ.

Proof. We prove the following, more general, statement: Let e ∈ {l,w} and i ∈ {1, 3}, let
→γ be the contextual closure of any rule 7→γ on Λ. Then, t →¬e γ u 7→σi

s ⊆ t 7→σi
· →γ s.

First, let us consider e = l. We examine the two cases for u 7→σi s (i = 1 or i = 3).
σ1: By hypothesis, u = (λx.q)pr 7→σ1 (λx.qr)p = s with x /∈ fv(r). We can assume x /∈ fv(t).

Since t →
¬l γ

u, by Property A.2 (iterated), we have t = (λx.q′)p′r′ and moreover:
either q′ →γ q and r′ = r and p′ = p,
or r′ →γ r and q′ = q and p′ = p,
or p′ →

¬l γ
p and q′ = q and r′ = r.

In any case, t = (λx.q′)p′r′ 7→σ1 (λx.q′r′)p′ →
¬l γ

(λx.qr)p = s, since x /∈ fv(t) ⊇ fv(r′).
σ3: By hypothesis, u = v((λx.r)p) 7→σ3 (λx.vr)p = s with x /∈ fv(v). We can assume

x /∈ fv(t). As t →
¬l γ

u, by Property A.2 (iterated), we have t = v′((λx.r′)p′) and moreover:
either v′ →

¬l γ
v and r′ = r and p′ = p,

or r′ →γ r and v′ = v and p′ = p,
or p′ →

¬l γ
p and v′ = v and r′ = r.

In any case, t = v′((λx.r′)p′) 7→σ3 (λx.v′r′)p′ →
¬l γ

(λx.vr)p = s, as x /∈ fv(t) ⊇ fv(v′).

As usual, the proof in the case e = w is similar, and simpler. J

I Lemma A.6 (Substitutivity of →σ). If t 7→σi t
′ then t{x:=v} 7→σi t

′{x:=v}, for i ∈ {1, 3}.

Proof. σ1: t = (λy.r)su 7→σ1 (λx.ru)s = t′ with y /∈ fv(u) and we can suppose without loss of
generality that y /∈ fv(v)∪{x}. Therefore, t{x:=v} = (λy.r{x:=v})s{x:=v}u{x:=v} 7→σ1

(λy.r{x:=v}u{x:=v})s{x:=v} = t′{x:=v} since y /∈ (fv(u) r {x}) ∪ fv(v) = fv(u{x:=v}).
σ3: t = w((λy.u)s) 7→σ3 (λy.wu)s = t′ with y /∈ fv(w) and we can suppose without loss

of generality that y /∈ fv(v) ∪ {x}. Therefore, t{x:=v} = w((λy.u{x:=v})s{x:=v}) 7→σ3

(λy.w{x:=v}u{x:=v})s{x:=v} = t′{x:=v} as w{x:=v} is a value (Property A.5) and
y /∈ (fv(w) r {x}) ∪ fv(v) = fv(w{x:=v}). J

A.4 Non-Terminating Relations (Sect. 8)
I Proposition (8.1 Testing head factorization for βY). →β ∪ →Y satisfies head factorization:
1. Head factorization of →Y : Fact(→

h Y, →¬h Y).
2. Root linear swap: →

¬h β
· 7→Y ⊆ →h Y · →

∗
β.

3. Substitutivity: 7→Y is substitutive.

Proof. We verify the hypotheses of Proposition 4.5:
1. To verify that the reduction →Y satisfies head factorization is routine.
2. Assume t →

¬h β
Y p 7→Y p(Y p). By Property 4.2 (as spelled out in Property A.1), if

t →
¬h β

Y p then t = Y q and q →β p. Hence t = Y q →
h Y

q(Y q)→∗β p(Y p).
3. Simply (Y p){x:=q} = Y (p{x:=q}) 7→Y (p{x:=q})(Y (p{x:=q})) = (p(Y p)){x:=q}. J

B. Accattoli, C. Faggian, and G. Guerrieri 6:23

I Proposition (8.2 Testing weak factorization for βvZ). →β ∪ →Z satisfies weak factorization:
1. Weak factorization of →Z : Fact(→w Z, →¬w Z).

2. Root linear swap: →¬w βv
· 7→Z ⊆ →w Z · →∗βv

.

3. Substitutivity: 7→Z is substitutive.

Proof. We prove the hypotheses of Proposition 4.5:
1. It is easy to verify that →¬w Z · →w Z ⊆ →w Z · →¬w Z

∗. Then apply Lemma 3.5.1.

2. Assume t →¬w βv
Zv 7→Z λx.v(Zv)x. By Property 4.2 (as spelled-out in Property A.2), if

t →¬w βv
Zv then t = Zw and w →βv

v. So, t = Zw →w Z λx.w(Zw)x→∗βv
λx.v(Zv)x.

3. Simply (Zv){x:=q} = Z(v{x:=q}) 7→Z λy.v{x:=q}(Z(v{x:=q})y = (λy.v(Zv)y){x:=q}.
J

B Appendix: Factorizing Factorization in Probabilistic λ-calculus

Faggian and Ronchi della Rocca [19] define two calculi – Λcbn
⊕ and Λcbv

⊕ – which model
respectively CbV and CbN probabilistic higher-order computation, and are conservative
extensions of the CbN and CbV λ-calculi. Here we focus on CbV, which is the most relevant
paradigm for calculi with effects, but the same approach applies to CbN.

We first recall the syntax of Λcbv
⊕ (we refer to [19] for background and details), and then

give a new proof of weak factorization, using our technique and obtaining a neat, compact
proof of factorization, which only requires a few lines.

Terms. Λcbv
⊕ is a rewrite system where the objects to be rewritten are not terms, but

monadic structures on terms, namely multi-distributions [8]. Intuitively, a multi-distribution
represents a probability distribution on the possible reductions from a term. Terms and
contexts are the same as for the non-deterministic λ-calculus, but here we write the ⊕ infix,
to facilitate reference to [19]. Terms and values are generated by the grammars

M ::= x | λx.M |MM |M ⊕M (Terms Λ⊕)
V ::= x | λx.M (Values V)

where x ranges over a countable set of variables. Contexts and weak contexts are given by:

C ::= 〈 〉 | CM |MC | λx.C | C⊕M |M ⊕ C (Contexts)
W ::= 〈 〉 |WM |MW (Weak Contexts)

where 〈 〉 denotes the hole of the context.
The intended behaviour of M ⊕N is to reduce to either M or N , with equal probability

1
2 . This is formalized by means of multi-distributions.

Multi-distributions. A multi-distribution m = [piMi | i ∈ I] is a multiset of pairs of the
form pM , with p ∈]0, 1], M ∈ Λ⊕, and

∑
pi ≤ 1. We denote by M(Λ⊕) the set of all

multi-distributions. The sum of multi-distributions is denoted by +. The product q · m of a
scalar q and a multi-distribution m is defined pointwise q[piMi]i∈I := [(qpi)Mi]i∈I .

CSL 2021

6:24 Factorize Factorization

C〈(λx.M)V 〉 →βv
[C〈M{x:=V }〉] W〈M ⊕N〉 →⊕ [1

2 W(M), 1
2 W(N)]

→ :=→βv ∪ →⊕
→w :=→w βv ∪ →⊕

Figure 1 Reduction Steps.

[M]⇒r [M]
M →r m

[M]⇒r m

([Mi]⇒r mi)i∈I
[piMi | i ∈ I]⇒r +i∈I pi · mi

Figure 2 Lifting →r to ⇒r.

The calculus (M(Λ⊕),⇒)(M(Λ⊕),⇒)(M(Λ⊕),⇒). The calculus Λcbv
⊕ is the rewrite system (M(Λ⊕),⇒) where

M(Λ⊕) is the set of multi-distributions on Λ⊕ and the relation ⇒⊆ M(Λ⊕) ×M(Λ⊕) is
defined in Fig. 1 and Fig. 2. First, we define one-step reductions from terms to multi-
distributions – so for example, M ⊕N → [1

2M, 1
2N]. Then, we lift the definition of reduction

to a binary relation onM(Λ⊕), in the natural way – for instance [1
2 (λx.x)z, 1

2 (M ⊕N)]⇒
[1

2z,
1
4M, 1

4N]. Precisely:
1. The reductions →βv ,→⊕⊆ Λ⊕ ×M(Λ⊕) are defined in Fig. 1. Observe that the ⊕ rule –

probabilistic choice – is closed only under weak contexts (no reduction in the body of a
function nor in the scope of an operator ⊕). Instead, the βv rule is closed under general
contexts. Its restriction to closure under weak context is denoted →w β . The relation →
is the union →β ∪ →⊕, while weak4 reduction →w is the union of the weak reductions
→w βv

∪ →⊕. A →-step which is not weak is noted →¬w .
2. The lifting of a relation→r⊆ Λ⊕×M(Λ⊕) to a reduction on multi-distribution is defined

in Fig. 2. In particular, →,→βv
,→⊕,→w , →¬w lift to ⇒,⇒βv

,⇒⊕,⇒w , ⇒¬w .
The restriction of →⊕ to weak contexts is necessary to have confluence, see [19] for a
discussion. The fact that reduction →βv is unrestricted guarantees that the new calculus is a
conservative extension of CbV λ-calculus.

Factorization, Modularly. Faggian and Ronchi della Rocca prove – by defining suitable
notions of parallel reduction and internal parallel reduction with respect to ⇒βv

∪ ⇒⊕ –
that Λcbv

⊕ satisfies Fact(⇒w , ⇒¬w), that is m⇒∗ n implies m⇒w ∗ · ⇒¬w
∗ n.

This result – there called finitary surface standardization – is central in [19] because it is
the base of the asymptotic constructions which are the core of that paper.

We now give a novel, strikingly short proof of the same result, by using Theorem 3.4. It
turns out that we only need to verify the following swap, which is immediate to check.

I Lemma B.1. M →¬w βv
· →⊕ n implies M →⊕ · ⇒βv

n.

I Theorem B.2 (Factorization of ⇒). Let ⇒w := (⇒w βv
∪ ⇒⊕) and ⇒¬w := (⇒¬w βv

). Then
(M(Λ⊕), {⇒βv

,⇒⊕}) satisfies w-factorization Fact(⇒w , ⇒¬w).

Proof. We verify that the conditions of Theorem 3.4 hold. Note that ⊕ has no internal steps,
therefore, it suffices to verify only two conditions:
1. weak factorization of ⇒βv

: Fact(⇒w βv , ⇒¬w βv).

4 In [19], a weak reduction (resp. weak context) is called surface, and hence noted →s .

B. Accattoli, C. Faggian, and G. Guerrieri 6:25

2. ⇒¬w βv
linearly swaps with ⇒⊕: ⇒¬w βv

· ⇒⊕ ⊆ ⇒⊕ · ⇒∗βv
.

The other two conditions of Theorem 3.4 hold vacuously, because ⇒¬w ⊕ = ∅ (and⇒w ⊕ =⇒⊕).

1. Fact(⇒w βv , ⇒¬w βv) follows from weak factorization of the CbV λ-calculus Fact(→w βv , →¬w βv)
(see Sect. 6) because clearly ([1M]⇒βv

[1N] if and only if M →βv
N), ([1M]⇒w βv

[1N]
if and only if M →w βv N), and similarly ([1M] ⇒¬w βv [1N] if and only if M →¬w βv N).

2. Lemma B.1 implies m ⇒¬w βv
· ⇒⊕ n ⊆ m⇒⊕ · ⇒βv

n, by the definition of lifting. J

CSL 2021

The Best a Monitor Can Do
Luca Aceto
Reykjavik University, Iceland
Gran Sasso Science Institute, L’Aquila, Italy
luca@ru.is

Antonis Achilleos
Reykjavik University, Iceland
antonios@ru.is

Adrian Francalanza
University of Malta, Malta
afra1@um.edu.mt

Anna Ingólfsdóttir
Reykjavik University, Iceland
annai@ru.is

Karoliina Lehtinen
University of Liverpool, UK
k.lehtinen@liverpool.ac.uk

Abstract
Existing notions of monitorability for branching-time properties are fairly restrictive. This, in
turn, impacts the ability to incorporate prior knowledge about the system under scrutiny – which
corresponds to a branching-time property – into the runtime analysis. We propose a definition of
optimal monitors that verify the best monitorable under- or over-approximation of a specification,
regardless of its monitorability status. Optimal monitors can be obtained for arbitrary branching-time
properties by synthesising a sound and complete monitor for their strongest monitorable consequence.
We show that the strongest monitorable consequence of specifications expressed in Hennessy-Milner
logic with recursion is itself expressible in this logic, and present a procedure to find it. Our procedure
enables prior knowledge to be optimally incorporated into runtime monitors.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Software
and its engineering → Formal software verification

Keywords and phrases monitorability, branching-time logics, runtime verification

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.7

Funding Research supported by the Icelandic Research Fund projects “Theoretical Foundations
for Monitorability” (No:163406-051) and “Epistemic Logic for Distributed Runtime Monitoring”
(No:184940-051), the MIUR project PRIN 2017FTXR7S IT MATTERS, project BehAPI, funded by
the EU H2020 RISE programme under the Marie Skłodowska-Curie grant agreement No:778233,
and project FouCo, funded by EU H2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No:892704.

1 Introduction

Branching-time properties, as described by logics such as CTL, CTL* and the modal µ-
calculus, are normally verified using well-established pre-deployment techniques like model
checking [18, 10]. However, there are cases where the system model is either unavailable (e.g.,
due to third-party intellectual property restrictions), or not fully understood (e.g., when
parts of the system logic is governed by machine-learning tools). In these cases, monitors

© Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 7; pp. 7:1–7:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2197-3018
mailto:luca@ru.is
https://orcid.org/0000-0002-1314-333X
mailto:antonios@ru.is
https://orcid.org/0000-0003-3829-7391
mailto:afra1@um.edu.mt
https://orcid.org/0000-0001-8362-3075
mailto:annai@ru.is
https://orcid.org/0000-0003-1171-8790
mailto:k.lehtinen@liverpool.ac.uk
https://doi.org/10.4230/LIPIcs.CSL.2021.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 The Best a Monitor Can Do

can be used effectively to observe the execution of a system (rather than its state space) for
verification purposes, as demonstrated in [26, 1, 4]; this technique is broadly referred to as
runtime verification (RV) [25, 11].

RV is a best-effort strategy since it is limited to the incremental analysis of a single
execution. The study of monitorability [4, 5] asks what correctness guarantees RV can provide
and what properties can be monitored adequately with these guarantees. A wide body of
work [46, 29, 50, 21, 26, 1, 28, 2, 4] primarily considers safety properties [7] (“something bad
never happens”) as those worth monitoring for, as they correspond to properties for which
violations can always be identified from some finite prefix of an execution. However, limiting
monitoring to this class of properties severely restricts the utility of RV. The restriction
is particularly acute for branching-time properties [26, 1], which explains, in part, why
RV tools generally restrict themselves to linear-time properties. But there are cases where
formal specifications (a scarce resource in verification) have already been expressed in a
branching-time logic and perhaps formally verified for some subcomponents. In such cases, a
systematic method to incorporate such prior knowledge about the system into the runtime
analysis would be beneficial.

A number of alternatives can be used to mitigate the shortcomings of RV for branching-
time properties. One method would be to increase the observational powers of the monitor
or employ multiple runs of the same system [2]. Alternatively, one can weaken the monitor
guarantees expected during RV. The latter approach is the one explored in this paper.
We propose the use of optimal monitors, which flag all violations that can be determined
from execution prefixes contradicting the property (and ignore the violations that cannot).
Although such monitors may fail to identify all violations, they represent the best monitors
can do, and do not impose any restrictions on the considered class of properties. We show
how these optimal monitors can be obtained systematically by computing the strongest
monitorable consequence of the property to be dynamically verified.

I Example 1. A system with two (enumerated) components produces the events open, oi,
write, wi, and close, ci, for i ∈ {1, 2}. A specification for the first component states that:

“In all executions, w1 (write) occurs, but only after an open, o1.” (Spec 1)

According to the existing notion of branching-time monitorability [26], a specification is
monitorable if there is monitor that correctly identifies all violating processes from some
prefix they produce. In other words, all violating processes must produce an execution
prefix such that any process that produces this prefix also violates the property. This is one
way of generalising the notion of safety property to the branching-time setting. (Spec 1) is
not monitorable because there is no monitor which correctly identifies all violations of this
specification. In particular, a first component that never reaches w1 violates this property,
but this cannot be determined from any finite prefix of its executions. However, there
are other violations of (Spec 1) than can be detected. For instance, monitors can detect
executions where w1 occurs before o1. Consider the (weaker) specification

“In all executions, w1 (write) does not occur before an open, o1.” (Spec 2)

Since there is a monitor that detects all violations for (Spec 2), it is monitorable. More
importantly, this monitor also turns out to be optimal with respect to (Spec 1) since these
violations are the only ones that can be detected in (Spec 1). Conveniently, [26] also describes
a procedure to synthesise the complete monitor from the logical formula describing (Spec 2)
which could, in turn, also be used as the optimal monitor for (Spec 1). y

L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, and K. Lehtinen 7:3

I Example 2. The previous example illustrates the difficulty of monitoring for unbounded
or infinite behaviour (“In all executions, w1 occurs . . . ”) which applies equally to linear and
branching-time properties. Branching-time properties present additional challenges relating
to the branching structure of computation. Consider the following specification:

“After o2 (opening the second component), (closing it) c2 is reachable
but always via w2 (by writing to the second component beforehand).” (Spec 3)

This is intrinsically a branching time property as it concerns the state space of the system.
In particular, no single execution can provide information about whether c2 is reachable
from all states entered via o2. This property is therefore classified as unmonitorable. It turns
out that its strongest monitorable consequence is the following property:

“After o2, c2 is only reachable via w2.” (Spec 4)

A sound and complete monitor for this specification flags a violation when it witnesses
an execution in which o2 is followed by c2 without first seeing w2. Such a monitor is also
the optimal monitor for (Spec 3). Computing the strongest monitorable consequence of a
property allows us to extract the part of the property amenable to runtime analysis. y

Our proposed methodology allows us to address another common weakness found in
existing RV approaches. Specifically, these approaches often treat the system under scrutiny
as a black box, without leveraging any prior partial knowledge about the system.

I Example 3. Recall the system in Ex. 1 and consider the property:

“In all executions, c1 (close) is never immediately followed by a write, w1.” (Spec 5)

(Spec 5) is monitorable according to [26]: a monitor can flag a violation whenever it observes
c1w1 during an execution. On the other hand, if the monitor observes the sequence of events
c1w2w1 in an execution, it cannot determine whether the system violates (Spec 5) or not.

But, suppose we have prior knowledge that the executions of the first and second
components are completely independent. Then events such as w2 and w1 – coming from
independent concurrent components – can be interleaved arbitrarily. A monitor that observes
c1w2w1 can then infer that the system can also produce the sequence of events c1w1w2,
meaning that observing c1w2w1, or more generally c1w∗2w1, provides enough evidence to flag
that the system violates (Spec 5). In other words, the prior knowledge allows the monitor to
infer violations from executions which by themselves wouldn’t suffice to reach a verdict. y

When synthesising monitors for a property P , such as (Spec 5), we would like to sys-
tematically incorporate any prior knowledge on the system, such as the independence of
components or state-reachability, that can be expressed as a branching-time property K. To
do this, we build a monitor based on the conjunction K ∧ P rather than just P . Then, if an
execution of a system known to satisfy K is inconsistent with K ∧ P , we can deduce that
the system violates P . However, as K ∧ P can be an arbitrary branching-time property, it
might not itself be monitorable, even if P is monitorable, and the known monitor synthesis
procedures might not apply. Again, we can adopt the procedure discussed earlier to obtain an
optimal monitor for K ∧P instead. Note that while P might be designed to be a monitorable
property, or even a linear-time property, K typically cannot be restricted in this way. In
particular, properties such as those in Ex. 3 describing the possible interleavings of concurrent
components, and those in Ex. 2 describing the system state-space, are inherently unmonitor-
able branching-time properties. Yet, so far, approaches to incorporate prior knowledge into
runtime monitoring, referred to as grey-box monitoring or monitoring with assumptions, has
restricted itself to knowledge representable as a linear-time property [30, 49, 17, 39].

CSL 2021

7:4 The Best a Monitor Can Do

Our contribution is twofold. First, we propose a general procedure to obtain optimal
monitors for arbitrary branching-time properties (Sec. 3): following the intuition of Ex. 1
and 2, we find the strongest monitorable consequence, e.g., (Spec 2), of an arbitrary branching-
time property, e.g., (Spec 1), which allows us to use existing synthesis procedures (e.g., those
in [9, 8]) to produce the sound and complete monitor from this monitorable consequence.
We show that the resulting monitor is optimal for the original specification. This approach
allows arbitrary branching-time specifications, for instance those originally designed for
model checking, or those combining a monitorable property with prior knowledge, to be
verified at runtime. We show that this is indeed the best a monitor can do with prior
knowledge. Note that although we use an existing definition of branching-time monitorability
to define the strongest monitorable consequence, our optimality result proves that using a
different definition cannot improve the procedure. Our result can be seen as the generalisation
of the notion of bad prefixes [35], i.e. prefixes that monitors can use to reach a negative
verdict, to the branching-time setting. Although the set of bad prefixes appears frequently
in various works in RV, its generalisation to the branching-time setting and the proposed
disciplined methodology for obtaining optimal monitors from non-monitorable properties via
the strongest monitorable consequence is, to the best of our knowledge, new.

Our second contribution is technical: we show in Sec. 5 how to compute the strongest
monitorable consequence of an arbitrary property expressed in the Hennessy–Milner logic
with Recursion, a variant of the modal µ-calculus. This is a popular verification logic
that captures all regular tree languages, embeds other popular modal and temporal logics,
such as LTL, CTL and CTL*, and corresponds to the bisimulation invariant fragment of
monadic second order logic [31]. The size of the strongest monitorable consequence that
we compute is bounded by a double exponential in the size of the original formula. This
matches the bound on the size of a deterministic automaton that recognises the bad prefixes
of an LTL formula [35]. In contrast, the transformation from an LTL formula to its strongest
monitorable consequence, also expressed in LTL, is non-elementary (see Sec. 5.5).

We discuss related work, and in particular how this work compares to monitoring in the
linear-time setting, in Sec. 6. Omitted proofs can be found in the appendix.

2 Preliminaries

Actions, Processes, Properties and Traces. Fix a finite set Act of actions where a, b ∈ Act,
a set of process states p, q, r, . . . ∈ Prc (sometimes called processes), and a transition relation,
−→ ⊆ (Prc×Act×Prc). The triple 〈Prc,Act,−→〉 forms a Labelled Transition System
(LTS) [33] where the suggestive notation p a−→ q denotes (p, a, q) ∈ −→. For simplicity, we
assume that all the processes that we refer to in this paper can be found in the same fixed
infinite LTS, such as the one obtained from the set of CCS processes [43]. Specifications,
or properties, are subsets of Prc, ranged over by P,Q,R. A property P is a consequence
of property Q whenever Q ⊆ P . Actions may be sequenced to form finite or infinite traces
t, u ∈ (Act∗ ∪ Actω); the trace prefix-ordering t ≤ u denotes that t is a prefix of u. We
say that a process p produces a trace t, or that t is a trace of p, if there is a sequence of
transitions p a−→ q

b−→ · · · , such that t = ab · · · ; the trace t is also referred to as an execution
of p. Note that if t is a trace of p, then so are all of its prefixes.
Runtime Monitoring, Verification and Monitorability. Runtime monitors are computational
entities that reach a verdict after observing a finite prefix of an execution. A verdict,
once reached, is irrevocable [5]. We only consider single-verdict monitors, namely rejection
monitors, which flag violations of a property, and acceptance monitors, which validate a

L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, and K. Lehtinen 7:5

property. Although mixed-verdict monitors can be used in a linear-time setting [4], only
single-verdict monitors make sense in a branching-time setting1. Rejection and acceptance
monitors are dual to one another in this setting. Our technical development thus focuses on
rejection monitors, and obtains results for acceptance monitors by duality.

A monitor, denoted by m,n, . . ., may be abstractly described as a (possibly infinite) set
of finite traces, m ⊆ Act∗, that satisfies the following condition: if t ∈ m, then for any
u ∈ Act∗ where t ≤ u it holds that u ∈ m. Intuitively, the traces in m are those that witness
a violation of a property. The closure condition describes the irrevocability of verdicts. The
collection of upward-closed subsets of Act∗, denoted by Mon, is therefore the set of all
possible monitors. Often we restrict our discussion to a subset of Mon, M ⊆Mon.

I Definition 4. Monitor m rejects process p, rej(m, p), if p produces a trace t in m. y

Earlier work [23, 26, 24, 4] provides an operational interpretation of Def. 4 via an
instrumentation of the monitor m executing with process p. Soundness and completeness
relate monitors to the specifications they are expected to monitor [26, 4, 5]. Soundness
requires that a monitor give only correct verdicts, while completeness demands that a monitor
reject whenever the specification is violated.

I Definition 5 (Soundness and Completeness). A monitor m ∈Mon is:
1. sound for specification P if for all p ∈ Prc, rej(m, p) implies p /∈ P ;
2. complete for specification P if for all p ∈ Prc, p /∈ P implies rej(m, p). y

I Definition 6 (Monitorability). A specification P is monitorable in a monitor set M if there
exists some m ∈M that is sound and complete for P . y

The notion of monitorability given in Def. 6 comes from [26]; although it is one of
many possible definitions [5], it is the only one that has been extensively studied in the
branching-time setting [26, 3, 1, 2, 4]. It also turns out to be the right one to use in the
quest for optimal monitors, as argued in Sec. 3. One important consequence of Def. 6 is that
there are some properties that are not monitorable.

I Example 7. The monitor from Ex. 3 that rejects all traces containing the consecutive
events c1w1 is sound and complete for Spec 5, whereas Spec 1 in Ex. 1 is not monitorable.
In the sequel, we simplify our example and assume that there is only one component in the
system generating events o,w, c. Another property that is not monitorable is the following:

“cw never occurs and on all infinite executions, w occurs.” (Spec 6)

Indeed, a process whose only maximal trace is oω is not in this property but there is no
monitor that is sound for Spec 6 and rejects it. y

In practice, we often have (prior) knowledge about the type of process the monitor will
be analysing at runtime, and the definition of monitorability should take such information
into account, i.e., grey-box monitoring. For our setting, we can express this prior knowledge
as a set of processes, denoted as R ⊆ Prc, i.e., the processes satisfying that prior knowledge.

I Definition 8 (Soundness/Completeness with Knowledge). The monitor m ∈Mon is:
Sound for specification P with knowledge R if for all p∈R, rej(m, p) implies p/∈P .
Complete for specification P with knowledge R if for all p∈R, p/∈P implies rej(m, p). y

1 Multi-verdict monitors are necessarily unsound in the branching-time setting [26].

CSL 2021

7:6 The Best a Monitor Can Do

I Definition 9 (Monitorability with Knowledge). A specification P is monitorable in a monitor
set M , with prior knowledge R, if there exists a monitor m ∈ M that is both sound and
complete for P with knowledge R. y

3 The Strongest Monitorable Consequence

Since not all specifications have a sound and complete monitor, we are interested in computing
an optimal monitor: a monitor which is sound for the specification, and rejects all violations
that can be flagged. In this section we argue that to find the optimal monitor of a specification,
we first need to compute its strongest monitorable consequence.

Although we focus on rejection monitors, optimal acceptance monitors are dual. An
optimal monitor for a property P is a sound monitor for P that rejects each trace rejected
by some sound monitor for that property.

I Definition 10 (Optimality). For a fixed monitor set M ⊆Mon, monitor m ∈M is optimal
in M for the property P whenever:

it is sound for P and
for all n ∈M , if n is sound for P then n ⊆ m. y

Since the definition of a monitor as a set of finite traces does not guarantee computability,
it is useful to parameterise this definition with the set of monitors M that determines the
computational power of the monitors under scrutiny.

We now aim to characterise optimal monitors in terms of the properties they monitor for.
First, for every monitor m, we can easily define a property for which it is both sound and
complete:

Pm = { p | p does not produce any trace t ∈ m }.

It is not hard to see that such a property Pm is unique for every monitor m.

I Lemma 11. Monitor m is sound and complete for P if and only if P = Pm. J

I Proposition 12. For all m,n ∈Mon, m ⊆ n iff Pn ⊆ Pm.

Proof. For the if case, assume Pn ⊆ Pm and pick a t ∈ m and the process p that produces
only t. Then, p /∈ Pm, which implies p /∈ Pn from Pn ⊆ Pm. By definition of Pn, this implies
t ∈ n. We conclude that m ⊆ n. For the only-if case, assume m ⊆ n and pick a p /∈ Pm that
produces some t ∈ m. By inclusion t ∈ n and therefore p /∈ Pn. J

We can now characterise optimal monitors, Def. 10, in terms a notion of a strongest
monitorable consequence.

I Definition 13 (Strongest Monitorable Consequence). Let M ⊆ Mon. The strongest
monitorable consequence of a specification P with respect to M is a property Q that is
monitorable in M such that:

it is a consequence of P , i.e., P ⊆ Q, and
for any R monitorable in M , P ⊆ R implies Q ⊆ R. y

Note that the existence of a strongest monitorable consequence and of an optimal monitor,
depends onM . We establish the correspondence between strongest monitorable consequences
and optimal monitors (Thm. 16) using the following two lemmas.

I Lemma 14. A sound monitor for a consequence of P is sound for P .

L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, and K. Lehtinen 7:7

Proof. Pick a consequence Q of P , i.e., P ⊆ Q, and a sound monitor m for Q. If rej(m, p)
for some p, then p /∈ Q by Def. 5. By P ⊆ Q we obtain p /∈ P , so m is sound for P . J

I Lemma 15. If m is complete for P and sound for Q then Q ⊆ P .

Proof. Pick a process p 6∈ P ; for P to be a consequence of Q, i.e., Q ⊆ P , we need to show
that p 6∈ Q. By Def. 5.2 we know rej(m, p) and by Def. 5.1 we obtain p 6∈ Q. J

I Theorem 16. A monitor m ∈M that is sound for P is optimal for P in M iff it is sound
and complete for the strongest monitorable consequence of P with respect to M .

Proof. For the if case, assume that m is sound and complete for Q, the strongest monitorable
consequence of P with respect to M . We must show that m is optimal for P in M . Pick any
other monitor n ∈M that is also sound for P . From Lem. 11, Pn is monitorable in M , and
by Lem. 15 we know P ⊆ Pn. Since Q is the strongest monitorable consequence of P , we
also know Q ⊆ Pn, and by Prop. 12 we obtain n ⊆ mQ as required.

For the only-if case, let m be an optimal monitor for P . By Lem. 11 and the soundness
of m for P , it follows that Pm is a consequence of P , i.e., P ⊆ Pm. Next, we show that Pm
is the strongest monitorable consequence of P , from which the claim follows because m is
sound and complete for Pm. Let Q be a monitorable consequence of P and let mQ be a
monitor for it. Since m is optimal (Def. 10), we know that mQ ⊆ m. Thus by Prop. 12 we
obtain Pm ⊆ Q. This implies that Pm is the strongest monitorable consequence of P . J

To find the optimal monitor of an arbitrary property, it therefore suffices to compute the
sound and complete monitor of its strongest monitorable consequence. We can also extend
this result for the cases with prior knowledge about the process to be monitored, Thm. 19.

I Definition 17 (Optimality with Knowledge). For a fixed monitor set M ⊆Mon, monitor
m ∈M is optimal in M for property P with knowledge R whenever:

it is sound for P with knowledge R and
for all n ∈M , if n is sound for P with knowledge R then n ⊆ m. y

Soundness and completeness with prior knowledge can be characterised with respect to
soundness and completeness in the setting with no prior knowledge, Prc.

I Proposition 18. Monitor m is sound with knowledge R for P iff it is sound for P ∩R.

I Theorem 19. For a fixed monitor set M ⊆Mon, a monitor m ∈M is optimal in M for
the property P with knowledge R iff m is optimal in M for property P ∩R.

Proof. For the only-if case, assume that m is optimal for P with knowledge R. From Def. 17,
we know that m is sound for P with knowledge R, and therefore, by Prop. 18, m is sound
for P ∩R. From Def. 17, we also know that if some n is sound for P with R, then n ⊆ m;
again, by Prop. 18, if n is sound for P ∩ R, then n ⊆ m. Therefore, m is also optimal for
P ∩R. The if case is symmetric. J

4 Monitorability in recHML

Following Thms. 16 and 19, we investigate how to compute the strongest monitorable con-
sequence for properties expressible in the Hennessy–Milner logic with recursion, recHML [37],
as a means to obtain optimal monitors for such properties. recHML is a specification
logic describing regular properties of processes, and can be seen as a reformulation of the
well-studied modal µ-calculus [13, 14]. Since there are standard translations from CTL and

CSL 2021

7:8 The Best a Monitor Can Do

Syntax

ϕ,ψ ∈ recHML ::= tt (truth) | ff (falsehood)
| ϕ∨ψ (disjunction) | ϕ∧ψ (conjunction)
| 〈a〉ϕ (existential modality) | [a]ϕ (universal modality)
| minX.ϕ (least fixpoint) | maxX.ϕ (greatest fixpoint)
| X (recursion variable)

Branching-Time Semantics

Jtt, ρK def= Prc Jff, ρK def= ∅

Jϕ1∨ϕ2, ρK
def= Jϕ1, ρK ∪ Jϕ2, ρK Jϕ1∧ϕ2, ρK

def= Jϕ1, ρK ∩ Jϕ2, ρK

J〈a〉ϕ, ρK def=
{
p | ∃q · p a−→ q and q ∈ Jϕ, ρK

}
JX, ρK def= ρ(X)

J[a]ϕ, ρK def=
{
p | ∀q · p a−→ q implies q ∈ Jϕ, ρK

}
JminX.ϕ, ρK def=

⋂
{P | Jϕ, ρ[X 7→ P]K ⊆ P} JmaxX.ϕ, ρK def=

⋃
{P |P ⊆ Jϕ, ρ[X 7→ P]K}

Figure 1 recHML Syntax and Branching-Time Semantics.

CTL* [34] into recHML, our investigation extends to these logics as well. The appeal of
recHML comes from its generality, the pre-existence of procedures to compute sound and
complete monitors for its monitorable fragment and its good closure properties. Indeed, we
show that the strongest monitorable consequence of recHML formulae is itself expressible in
recHML. It is unclear whether this is also the case for other branching-time logics, although
in the linear time setting, this question is settled positively for LTL in [40].

recHML formulae are generated from the syntax given in Fig. 1, according to the
following order of precedence: the existential and universal modal operators (〈a〉ϕ and [a]ϕ),
conjunctions, disjunctions, and fixpoint operators (minX.ϕ and maxX.ϕ). The negation of
a formula ϕ can be constructed with the duality rules in the usual way, and we use ¬ϕ as
a shorthand for it. In a formula minX.ϕ or maxX.ϕ, the fixpoint operator binds all free
occurrences of X in ϕ. The subformula ϕ is then said to be the binding formula of X. We
assume that for each variable X, there is exactly one formula minX.ϕ or maxX.ϕ that binds
X, denoted ϕX . Furthermore, without loss of generality, all formulas are assumed to be
guarded [36]: every occurrence of a fixpoint variable within its binding is within the scope of
a modal operator. We extend the notion of subformula and say that ϕX is the immediate
subformula of X. We write sf (ϕ) for the set of subformulas of ϕ. We take the size of a
formula to be the number of its distinct subformulae, up to α-conversion.

A formula ϕ from recHML is evaluated on a state of an LTS. In addition to true, false and
boolean connectives – which have their usual semantics – recHML has modal and fixpoints
operators. The existential modality 〈a〉ϕ holds at a state if there is an a-successor in which
ϕ holds, whereas the universal modality [a]ϕ holds if ϕ holds in all the a-successors of that
state. The least fixpoint minX.ϕ and its dual maxX.ϕ add recursion to the logic, allowing
for the description of temporal properties such as reachability and invariance. Formally, the
semantics is defined with respect to an interpretation ρ of the free variables of the formula.
We write Jϕ, ρK for the set of process states in an LTS which satisfy ϕ according to ρ. This
set is defined by induction on the structure of the formula ϕ, following the semantics given

L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, and K. Lehtinen 7:9

in Fig. 1. Two formulas are equivalent if they agree on all processes. We often consider
closed formulas – namely those without free variables. In these cases, we can ignore the
environment from the semantics and simply write JϕK instead of Jϕ, ρK.
I Remark 20. A system state p trivially satisfies a specification [a]ϕ if it cannot transition
with action a. Consequently the basic formula [a]ff describes states that cannot perform
a-transitions; the dual basic formula 〈a〉tt denotes states that can perform a-transitions.

I Example 21. Property Spec 6 from Ex. 7 for Act = {o,w, c} can be expressed as:

ϕ1 = (maxX.([o]X ∧ [c]X ∧ [w]X ∧ [c][w]ff)) ∧ minY.([o]Y ∧ [c]Y).

The first conjunct in ϕ1 prohibits the occurrence of cw while the second conjunct requires w
to eventually occur on infinite traces (the sub-formula 〈w〉tt disjuncted with [o]Y ∧ [c]Y can
be left implicit since Act = {o,w, c}). A variation of Spec 1 from Ex. 1 on one component
(for Act = {o,w, c}) is Spec 7, described below and formalised as the formula ϕ2:

“On all infinite executions, w occurs, but w only occurs after o.” (Spec 7)

Whereas the outermost fixpoint formula in ϕ2 below prohibits w from occurring before o,
the innermost fixpoint formula requires w to occur eventually in any infinite execution.

ϕ2 = minX.([w]ff ∧ [c]X ∧ [o](minY.[c]Y ∧ [o]Y)). y

Monitorability for recHML was investigated in [26, 1], where monitors are specified as
regular processes and monitorable properties have a syntactic characterisation:

I Theorem 22. [26, Theorems 1 and 4] A formula of recHML is (violation) monitorable
iff it is equivalent to a formula in the fragment sHML defined as follows:

ϕ,ψ ∈ sHML ::= tt | ff | [a]ϕ | ϕ ∧ ψ | maxX.ϕ | X J

A synthesis function that generates a regular (sound and complete) monitor from a sHML
formula is also presented; such monitors are also shown to be finite state [4].

I Example 23. Since ϕ1 and ϕ2 are not sHML formulas, we cannot use the synthesis
function from [26] to obtain runtime monitors for them. In fact, neither formula is monitorable
according to [26]. Although Spec 5 from Ex. 3, with Acti={oi,wi, ci} and Act=Act1∪Act2,
can be expressed as the sHML formula ϕ3, the knowledge (component independence) can
be only expressed using formulas like ϕ4, which are neither in sHML nor monitorable [26].

ϕ3 = maxX.
(

[c1][w1]ff ∧
∧

a∈Act
[a]X

)
ϕ4 = maxX.

∧
a∈Act1
b∈Act2

([a][b]ff ∨ 〈b〉〈a〉tt) ∧
∧

a∈Act2
b∈Act1

([a][b]ff ∨ 〈b〉〈a〉tt) ∧
∧

a∈Act
[a]X

The sub-formula ([a][b]ff ∨ 〈b〉〈a〉tt) in ϕ4 encodes the implication (〈a〉〈b〉tt⇒ 〈b〉〈a〉tt). The
strongest monitorable consequence of ϕ3 ∧ ϕ4 is expressed by ϕ5:

ϕ5 = maxX.[c1](max Y.
∧

b∈Act2

[b]Y ∧ [w1]ff) ∧
∧

a∈Act
[a]X

A sound and complete monitor for this property will reject a process based on executions
containing c1Act∗2w1, rather than just c1w1. y

In cases such as Ex. 23, we can obtain the optimal monitor of an arbitrary recHML
specification ϕ by: (i) computing the strongest monitorable consequence ψ ∈ sHML of ϕ;
(ii) synthesising a sound and complete monitor for ψ using the synthesis function from [26].

CSL 2021

7:10 The Best a Monitor Can Do

5 Computing Strongest Monitorable Consequences in recHML

In this section, we describe a method for computing the strongest monitorable consequence
of a recHML formula. The full proofs for this section can be found in the appendix. Our
constructions rely on a disjunctive representation of formulas, as given in Def. 24.

I Definition 24 (Disjunctive Form [51]). The set of disjunctive formulas of recHML is given
by the following grammar:

ϕ,ψ ∈ disHML ::= tt | ff | ϕ ∨ ψ |
∧
a∈A

(
(
∧
ϕ∈Ba

〈a〉ϕ) ∧ [a]
∨
ϕ∈Ba

ϕ
)

| maxX.ϕ | minX.ϕ | X,

where A ⊆ Act and, for each action a in A, the set Ba ⊆ disHML is a finite set of
formulas. J

In disjunctive formulas, conjunctions occur to express that for each a∈A, every a-successor
satisfies a formula in some set Ba and every formula in Ba is satisfied by some a-successor.

I Lemma 25 ([51]). Every recHML formula is equivalent to a disjunctive one. J

In [51], Walukiewicz provides a way to construct an equivalent disjunctive formula from a
recHML one, based on a tableau method. He also shows that the satisfiability of disjunctive
recHML formulas is decidable in linear time. Thus, we assume that, with the exception of
ff, all subformulas of disjunctive formulas are satisfiable. This pre-processing accounts for
one exponential in the complexity of our transformation.

We now establish a fundamental property of sHML formulas: if a process q does not
satisfy θ ∈ sHML, then no process p that can produce all traces of q satisfies θ.

I Definition 26. Process p covers process q when all traces of q are traces of p. J

I Lemma 27. If process p covers process q, then for closed θ∈sHML, q /∈JθK implies p/∈JθK.

Proof. From [26] there is a sound and complete m for θ. By q /∈ JθK and the completeness
of m, there is a trace of q (and of p), rejected by m. By the soundness of m, p /∈ JθK. J

We present the construction of the strongest monitorable consequence of a formula Ψ in
three stages. We first eliminate the existential modalities in a formula. Then we eliminate
least fixpoints. Finally, we use a more involved tableau method to remove all disjunctions.

5.1 Eliminating Existential Modalities
I Definition 28. The operator f1 : recHML→ recHML is defined such that f1(〈a〉ϕ) = tt,
while commuting with all other logical connectives. J

That is, f1(Ψ) results from Ψ by replacing every occurrence of a subformula 〈a〉ϕ by tt.

I Lemma 29. For every Ψ ∈ disHML, f1(Ψ) has the same sHML consequences as Ψ.

(Proof outline). We show that every sHML formula is a consequence of Ψ iff it is a
consequence of f1(Ψ). For the if direction, it suffices to prove JΨK ⊆ Jf1(Ψ)K using the
monotonicity of recHML operators resulting from the absence of negation.

L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, and K. Lehtinen 7:11

Γ ∪ {ψ ∨ ϕ}
(∨)

Γ ∪ {ϕ,ψ}
Γ ∪ {ψ ∧ ϕ}

(∧)
Γ ∪ {ϕ} Γ ∪ {ψ}

Γ ∪ {maxX.ϕ}
(max)

Γ ∪ {ϕ}
Γ ([a])

{ψ | [a]ψ ∈ Γ}

Γ ∪ {X}
(X)

Γ ∪ {ϕX}
Γ ∪ {tt}

(tt)
{tt}

Γ ∪ {ff}
(ff)Γ

Γ ∪ {[a]ψ, [b]ϕ} a 6= b
([a, b])

{tt}

Figure 2 Tableau rules where Γ is a set of formulas.

For the only-if direction, the intuition is as follows (see App. A). Let θ be a sHML formula
such that JΨK ⊆ JθK. To show Jf1(Ψ)K ⊆ JθK, we proceed by contradiction: starting from a
process p ∈ Jf1(Ψ)∧¬θK we build a cover q of p such that q ∈ JθK, which contradicts Lem. 27.
To obtain this cover, we use the fact that f1 turns the conjunctions

∧
a∈A

((
∧
ψ∈Ba

〈a〉ψ) ∧
[a]
∨
Ba) of a disjunctive formula into conjunctions of the form

∧
a∈A [a]

∨
Ba. The cover is

obtained by finding the states r in which conjunctions of the latter form must be true for
f1(Ψ) to be true in p, and adding an a-successor sϕ to r for each ϕ ∈ Ba and a ∈ A. This is
possible, because all subformulae of disjunctive formulas are assumed to be satisfiable. The
state r with these additional successors then satisfies

∧
a∈A

((
∧
ψ∈Ba

〈a〉ψ) ∧ [a]
∨
Ba), which

allows us to argue that q ∈ JΨK ⊆ JθK. J

I Remark 30. Disjunctive form is key here: Applying f1 to formula ϕ4 from Ex. 23, which
is not disjunctive, yields

(∧
a∈Act1

∧
b∈Act2

([a][b]ff ∨ tt)
)
∧
(∧

a∈Act2

∧
b∈Act1

([a][b]ff ∨ tt)
)

which can be simplified to tt and does not provide any useful information for monitoring.

5.2 Eliminating Least Fixpoints
I Definition 31. The operator f2 : recHML→ recHML is defined such that f2(minX.ϕ) =
maxX.ϕ, while commuting with all other logical connectives. J

I Lemma 32. For every closed formula Ψ ∈ recHML without existential modalities, f2(Ψ)
has the same sHML consequences as Ψ.

(Proof outline). One direction follows from JminX.ϕK ⊆ JmaxX.ϕK: since recHML is
negation-free, it behaves in a monotone way, and therefore f2(Ψ) is a consequence of Ψ.

The intuition for the other direction is as follows (see App. A). If a process p violates a
consequence θ ∈ sHML of Ψ but satisfies f2(Ψ), then, due to the monitorability of θ, there
is a finite trace t of p, where every process producing t must also violate θ. Thus, there is
a finite process q that violates θ, but also satisfies f2(Ψ) due to the absence of existential
modalities in f2(Ψ). Since f2(Ψ) and Ψ only differ with respect to their fixpoint operators,
they agree on all finite processes: q satisfies Ψ and its consequence θ, a contradiction. J

I Remark 33. Lem. 32 does not hold for formulas with existential modalities. For instance, the
formula minX.〈a〉X is equivalent to, and thus implies, ff; yet f2(minX.〈a〉X) = maxX.〈a〉X,
which is satisfiable by a system producing the infinite trace aω.

I Example 34. Formula ϕ2 from Ex. 21 becomes maxX.([w]ff∧ [c]X∧ [o](max Y.[c]Y ∧ [o]Y))
under f2(−), which simplifies to maxX.([w]ff ∧ [c]X) as max Y.[c]Y ∧ [o]Y simplifies to tt.
Since Act={o, c,w} this formula expresses the property that “w does not occur before o.” J

5.3 Eliminating Disjunctions
The final and hardest step turns a formula without existential modalities and least fixpoints
into its strongest sHML consequence. The intuition is that a violation of a specification of
the form [a]ψ ∨ [a]ϕ can only be monitored if there is an a-successor in which violations for

CSL 2021

7:12 The Best a Monitor Can Do

both ψ and ϕ can be detected. Hence, we turn [a]ψ ∨ [a]ϕ into [a](ψ ∨ ϕ). In contrast, no
violation of [a]ψ ∨ [b]ϕ can be identified from a single branch, so we rewrite it to tt.

To transform fixpoint-free formulas, it suffices to recursively push disjunctions through
the formula. The transformation in the presence of fixpoints is roughly dual to that for
disjunctive form presented by Janin and Walukiewicz in [32] and, like theirs, uses a set of
tableau rules, but this time to eliminate disjunctions rather than conjunctions. Our rules
differ significantly from those in [32] in how they deal with modalities; in particular, our
transformation does not preserve the semantics of formulae, but only sHML consequences.

I Definition 35 (Tableau elimination of disjunctions). Given a closed formula Ψ with neither
min operators nor existential modalities, we build a tableau T (Ψ) consisting of a tree with
back edges, where each node n is labelled with a set LΨ(n) of subformulae of Ψ, such that:

The root is labelled {Ψ},
For each node n and its children, there is a tableau rule (Fig. 2) such that n is labelled
with the premise and its children are labelled with its conclusions,
This tableau rule is the rule [a] only if LΨ(n) matches the premise of no other tableau-rule.

The disjunction-free formula equivalent to Ψ is then retrieved from T (Ψ) by defining the
labelling L′ as follows and applying it to each node. For each leaf node n:

If it has a back-edge to an inner node m, it is labelled Xm;
If it does not have a back-edge, it is labelled with tt, if it contains tt, and ff, otherwise.

For each inner node n that is not the target of a back-edge:
If n has a child m via the rules ∨, tt, [a, b], X,max, then l has the label L′(m);
If n has children m,m′ via rule ∧, then l is label L′(m) ∧ L′(m′);
If n has a child m via [a], then l is label [a]L′(m).

In a second pass, if n is the target of back-edges, then its label is maxXn.l, and otherwise it
is l, where l = L′(n) as defined above. Let f3(Ψ) be the L′-label of the root of T (Ψ).

I Example 36. Consider the bespoke formula maxX.[a]([a]X ∧ [b]ff) ∨ [a]([a]ff ∧ [b]X). The
tableau for this formula labelled with subsets of subformulas using Def. 35 is given below.

maxX.[a]([a]X ∧ [b]ff) ∨ [a]([a]ff ∧ [b]X)
(max)

[a]([a]X ∧ [b]ff) ∨ [a]([a]ff ∧ [b]X)
(∨)

[a]([a]X ∧ [b]ff), [a]([a]ff ∧ [b]X)
([a])

[a]X ∧ [b]ff, [a]ff ∧ [b]X
(∧)

[a]X, [a]ff ∧ [b]X
(∧)

[a]X, [a]ff
([a])

X,ff (ff)
X

[a]X, [b]X
([a, b])tt

[b]ff, [a]ff ∧ [b]X
(∧)

[b]ff, [a]ff
([a, b])tt

[b]ff, [b]X
([b])ff, X (ff)

X

The corresponding tableau relabelled as L′ yielding the strongest sHML consequence is:

maxX1.[a]([a]X1 ∧ tt ∧ tt ∧ [b]X1)
(max)

[a]([a]X1 ∧ tt ∧ tt ∧ [b]X1)
(∨)

[a]([a]X1 ∧ tt ∧ tt ∧ [b]X1)
([a])

[a]X ∧ tt ∧ tt ∧ [b]X1 (∧)
[a]X1 ∧ tt

(∧)
[a]X1 ([a])
X1 (ff)
X1

tt ([a, b])tt

tt ∧ [b]X1 (∧)tt ([a, b])tt
[b]X1 ([b])
X1 (ff)
X1 y

L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, and K. Lehtinen 7:13

I Lemma 37. Given a closed formula Ψ of recHML without min operators or existential
modalities, f3(Ψ) has the same sHML consequences as Ψ.

Proof sketch. The proof of this lemma rests on the observation that all violations of f3(Ψ)
and Ψ correspond to a single path in T (Ψ). We can then use the two labellings of T (Ψ) to
move between the witnesses that we use for the violation of f3(Ψ) and Ψ. J

5.4 The strongest sHML consequence
I Theorem 38. f3◦f2◦f1(Ψ) is the strongest sHML consequence of any closed Ψ ∈ recHML.

Proof. Follows from Lems. 29 and 37 and Def. 31. By construction f3 ◦ f2 ◦ f1(Ψ) ∈ sHML.
Moreover, f3 ◦ f2 ◦ f1(Ψ) has the same sHML consequences as Ψ, making it the strongest
sHML consequence of Ψ. J

We can symmetrically compute the weakest satisfaction-monitorable antecedent of Ψ, in
order to synthesize an optimal acceptance-monitor, or construct the weakest satisfaction-
monitorable antecedent by negating f3 ◦ f2 ◦ f1(¬Ψ) where ¬Ψ is the negation of Ψ in
disjunctive form. In principle, one could also consider constructing optimal monitors from
both violations and satisfactions of a property Ψ, by deducing the strongest violation-
monitorable consequence ϕV of Ψ and the weakest satisfaction-monitorable antecedent ϕS of
Ψ; the monitors could be used in tandem to detect all possible satisfactions or violations for
Ψ. However, in a branching-time setting either ϕV or ϕS must be trivial:

I Proposition 39. For any branching-time property P , its strongest monitorable consequence
PV and its weakest monitorable antecedent PS, we either have PV = Prc or PS = ∅. J

Proof. If there is a process p /∈ PV and a process q ∈ PS , then by merging the initial states
of p and q we obtain a process that covers p and therefore violates PV and therefore also P ,
and that covers q and therefore satisfies PS and therefore also P , a contradiction. J

5.5 Complexity
Eliminating existential modalities and fixpoints does not increase the size of a formula.
However, the two tableau constructions used – the first one required to turn the initial
formula into disjunctive form, and the second one used to eliminate disjunctions – each can
cause an exponential blow-up.

Morally, this is just the cost of determinising alternating automata (already double
exponential for finite automata [16]): the automaton corresponding to our final formula,
obtained via standard formula-automata correspondences [20], is deterministic (even though
automata over trees are not in general determinisable). Indeed, the synthesis from [26], when
applied to the formulas we obtain, yields deterministic monitors, in the sense of [6], because
our formulas contain no disjunctions, and only conjunctions over disjoint modalities (of the
form

∧
a∈A[a]ψa). Whether a more compact non-deterministic monitor can be synthesised

instead, or whether the last step, of constructing f3(−), can be implemented on-the-fly (in
the spirit of [35]) is left for future work.

This double-exponential complexity is already present, and necessary, in the corresponding
linear-time problem computing a deterministic automaton that recognises the bad prefixes of
a linear-time property [35]. As Kupferman and Vardi write, this procedure has the flavour of
determinisation, hence its double-exponential complexity. Our procedure, despite the added
complications associated with branching-time, follows the same principle without a significant

CSL 2021

7:14 The Best a Monitor Can Do

additional cost. Interestingly, obtaining the strongest monitorable consequence of an LTL
formula in LTL form is much harder. While the (counter-free) non-deterministic automaton
that recognises executions without bad prefixes, i.e., the strongest monitorable consequence
of an LTL formula, requires exponential blow-up, the best procedure known to date to go
from a (counter-free) non-deterministic automaton to an LTL formula uses star-free regular
expressions and does not have an elementary complexity upper bound [41, 45].

On a more pragmatic note, both f1 and f2 only simplify formulas while f3 eliminates
subformulae containing mixed modalities [a]ψ ∧ [b]ϕ, so blow-ups can only occur in f3 if
disjunctions and modalities over the same action interact in a pathological way.

6 Related Work

Linear- vs. Branching-time. Runtime monitoring can be used to verify whether an execution
satisfies a linear-time property, for example before the output of a third party component is
used as input for a critical component. It can also be used to verify whether a system satisfies
a branching-time property, for example as a best-effort light-weight verification strategy. The
branching-time properties that one verifies at runtime often consist of properties of the form
“on all paths, ϕL holds”, where ϕL is a linear-time property. For these kinds of properties,
the distinction between the branching-time and linear-time cases can be subtle. In particular,
the branching-time case is then implicitly reduced to the linear-time case, i.e., just checking
for violations of ϕL. However, in this situation it only makes sense to check for violations of
ϕL, as satisfactions do not give enough information to deduce anything about the system
itself. In contrast, if we are interested in truly linear-time properties, then a monitor can
simultaneously check both for violations and satisfactions, as it is done in [27].

Here we are in the branching-time setting: the prior knowledge can be an arbitrary
branching-time property, and the property to be monitored can either be a linear-time
property quantified universally over all branches, or any other branching-time property. Note
that given an LTL formula ϕL, there are standard translations to build a recHML formula
ϕB such that ϕB holds in a system if and only if ϕL holds in all of its executions [15]. These
can be used to combine a linear-time property, to verify at runtime, with a branching-time
property representing the prior knowledge.

As discussed in Sec. 5.5, finding optimal monitors for properties over infinite traces
corresponds to computing the good/bad prefixes of the property. Kupferman and Vardi [35]
describe how to do this for safety properties described as LTL formulas or Büchi automata.
Havelund and Peled [28] describe the same procedure for arbitrary trace properties.

Hierarchies of monitorability. There are many definitions of monitorability (surveyed in [5])
and property classifications (for instance [28, 44]) that help us understand the guarantees we
can expect from RV tools for different properties. However monitorable a property is, its
optimal monitor is by definition the gold standard to which any RV tool can aspire. Optimal
monitors might help determine the degree of monitorability of a property.

Monitoring with prior knowledge. Recently, Henzinger and Saraç [30] studied how as-
sumptions (prior knowledge) can make non-monitorable linear-time properties monitorable.
Interestingly, in their setting a property P is not monitorable under assumption K if and
only if P ∧K is monitorable without assumptions, as is the case here. This is because they
study a different definition of monitorability, which is not as well behaved under assumption
as the notion we use. (Our choice of notion of monitorability is utilitarian: it enables us to

L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, and K. Lehtinen 7:15

compute optimal monitors.) Independently, Cimatti et al. and Leucker have also considered
a form of monitoring of linear-time properties with (linear-time) prior knowledge in [17, 38].
Leucker proposes an LTL semantics parameterised by this prior knowledge while Cimatti
et al. incorporate the assumption directly into the monitoring algorithm, thereby treating
violations of the assumptions and violations of the property to be monitored differently.
Stucki et al. [49] parameterise monitorability for hyperproperties with the system under
consideration. Their notion of perfect monitor corresponds to our optimal monitor. Although
the authors in [22] study the decidability of monitorability for hyperproperties, neither work
describes methods for computing the optimal monitors of hyperproperties.

Multi-valued logics. Logics with three-valued semantics (yes, no, indecisive) can be used
to describe monitors [12, 21, 19]. However, whether monitor semantics are given by a
many-valued logic or other means, questions of soundness, completeness and optimality with
respect to the (two valued) specification formula remain the same.

Monitoring for under-specified components. In orthogonal work that has similarities
with ours, Sistla and co-authors [42, 48, 47] address the following problem: given an under-
specification ϕ, and a goal specification ψ, compute a safety property θ such that ϕ∧θ =⇒ ψ.
The intuition for this is that if ϕ is assumed, and violations of θ can be monitored at runtime,
then ψ can be assumed whenever the monitor does not detect a violation of θ. This problem
then reduces to computing a safety antecedent of a specification, namely ¬ϕ ∧ ψ. Unlike the
strongest monitorable consequence, there is no weakest safety antecedent: properties can be
approximated from below with arbitrary precision using a safety formula.

7 Conclusion

We have shown how to compute optimal monitors for arbitrary regular branching-time
properties, following a procedure which is sound for arbitrary (not just regular) properties.
Our core insight is that the theory of runtime monitors can be extended to the (partial)
verification of specifications previously dismissed as unmonitorable, such as most branching-
time properties. In particular, this enables us to integrate any prior contextual knowledge of
the system into our monitors. We show that this is indeed the best a monitor can do.

References
1 Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir. Monitoring for

silent actions. In Satya Lokam and R. Ramanujam, editors, FSTTCS, volume 93 of LIPIcs,
pages 7:1–7:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

2 Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir. A framework
for parameterized monitorability. In Christel Baier and Ugo Dal Lago, editors, Foundations
of Software Science and Computation Structures - 21st International Conference, FOSSACS
2018, volume 10803 of Lecture Notes in Computer Science, pages 203–220. Springer, 2018.
doi:10.1007/978-3-319-89366-2_11.

3 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Sævar Örn
Kjartansson. On the complexity of determinizing monitors. In Arnaud Carayol and Cyril
Nicaud, editors, Implementation and Application of Automata - 22nd International Conference,
CIAA 2017, volume 10329 of Lecture Notes in Computer Science, pages 1–13. Springer, 2017.
doi:10.1007/978-3-319-60134-2_1.

4 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
Adventures in monitorability: From branching to linear time and back again. Proceedings

CSL 2021

https://doi.org/10.1007/978-3-319-89366-2_11
https://doi.org/10.1007/978-3-319-60134-2_1

7:16 The Best a Monitor Can Do

of the ACM on Programming Languages, 3(POPL):52:1–52:29, 2019. URL: https://dl.acm.
org/citation.cfm?id=3290365.

5 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
An operational guide to monitorability. In Software Engineering and Formal Methods - 17th
International Conference, SEFM 2019, Oslo, Norway, September 18-20, 2019, Proceedings,
volume 11724 of LNCS, pages 433–453. Springer, 2019. doi:10.1007/978-3-030-30446-1_23.

6 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Sævar Örn
Kjartansson. Determinizing monitors for HML with recursion. Journal of Logical and Algebraic
Methods in Programming, 111:100515, February 2020. doi:10.1016/j.jlamp.2019.100515.

7 Bowen Alpern and Fred B Schneider. Defining liveness. Information processing letters,
21(4):181–185, 1985.

8 Duncan Paul Attard, Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingolfsdottir.
Behavioural Types: from Theory to Tools, chapter A Runtime Monitoring Tool for Actor-Based
Systems, pages 49–74. River Publishers, 2017.

9 Duncan Paul Attard and Adrian Francalanza. A monitoring tool for a branching-time logic. In
Yliès Falcone and César Sánchez, editors, Runtime Verification - 16th International Conference,
RV 2016, volume 10012 of Lecture Notes in Computer Science, pages 473–481. Springer, 2016.
doi:10.1007/978-3-319-46982-9_31.

10 Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen. Principles of model checking.
MIT press, 2008.

11 Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. Introduction to Runtime
Verification, pages 1–33. Springer International Publishing, Cham, 2018. doi:10.1007/
978-3-319-75632-5_1.

12 Andreas Bauer, Martin Leucker, and Christian Schallhart. The good, the bad, and the ugly,
but how ugly is ugly? In Oleg Sokolsky and Serdar Taşıran, editors, Runtime Verification,
pages 126–138, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

13 Julian Bradfield and Colin Stirling. Chapter 4 - Modal logics and mu-calculi: An introduction.
In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of Process Algebra, pages
293–330. Elsevier Science, Amsterdam, 2001. doi:10.1016/B978-044482830-9/50022-9.

14 Julian Bradfield and Colin Stirling. Modal µ-calculi. Studies in Logic and Practical Reasoning,
3:721–756, 2007.

15 Julian Bradfield and Igor Walukiewicz. The mu-calculus and Model Checking, pages 871–919.
Springer, May 2018. doi:10.1007/978-3-319-10575-8_26.

16 Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114–133, January 1981. doi:10.1145/322234.322243.

17 Alessandro Cimatti, Chun Tian, and Stefano Tonetta. Assumption-based runtime verification
with partial observability and resets. In International Conference on Runtime Verification,
pages 165–184. Springer, 2019.

18 Edmund M Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT press, 1999.
19 Volker Diekert and Martin Leucker. Topology, monitorable properties and runtime verification.

Theoretical Computer Science, 537:29–41, 2014. Theoretical Aspects of Computing (ICTAC
2011). doi:10.1016/j.tcs.2014.02.052.

20 E Allen Emerson and Charanjit S Jutla. Tree automata, mu-calculus and determinacy. In
FoCS, volume 91, pages 368–377. Citeseer, 1991.

21 Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. What can you verify and enforce
at runtime? International Journal on Software Tools for Technology Transfer, 14(3):349–382,
2012. doi:10.1007/s10009-011-0196-8.

22 Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. Monitoring
hyperproperties. Formal Methods in System Design, 54(3):336–363, 2019.

23 Adrian Francalanza. A Theory of Monitors (Extended Abstract). In FoSSaCS, volume 9634
of LNCS, pages 145–161, 2016.

https://dl.acm.org/citation.cfm?id=3290365
https://dl.acm.org/citation.cfm?id=3290365
https://doi.org/10.1007/978-3-030-30446-1_23
https://doi.org/10.1016/j.jlamp.2019.100515
https://doi.org/10.1007/978-3-319-46982-9_31
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1016/B978-044482830-9/50022-9
https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.1145/322234.322243
https://doi.org/10.1016/j.tcs.2014.02.052
https://doi.org/10.1007/s10009-011-0196-8

L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, and K. Lehtinen 7:17

24 Adrian Francalanza. Consistently-detecting monitors. In Roland Meyer and Uwe Nestmann,
editors, 28th International Conference on Concurrency Theory (CONCUR 2017), volume 85
of LIPIcs, pages 8:1–8:19, Dagstuhl, Germany, 2017. Schloss Dagstuhl. doi:10.4230/LIPIcs.
CONCUR.2017.8.

25 Adrian Francalanza, Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Ian Cassar,
Dario Della Monica, and Anna Ingólfsdóttir. A foundation for runtime monitoring. In
Shuvendu K. Lahiri and Giles Reger, editors, Runtime Verification - 17th International Con-
ference, RV 2017, volume 10548 of Lecture Notes in Computer Science, pages 8–29. Springer,
2017. doi:10.1007/978-3-319-67531-2_2.

26 Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. Monitorability for the Hennessy-
Milner logic with recursion. Formal Methods in System Design, 51(1):87–116, 2017. doi:
10.1007/s10703-017-0273-z.

27 M.C.W. Geilen. On the construction of monitors for temporal logic properties. Electronic
Notes in Theoretical Computer Science, 55(2):181–199, 2001. RV’2001, Runtime Verification
(in connection with CAV ’01). doi:10.1016/S1571-0661(04)00252-X.

28 Klaus Havelund and Doron Peled. Runtime Verification: From Propositional to First-Order
Temporal Logic. In Runtime Verification - 18th International Conference, RV 2018, Limassol,
Cyprus, November 10-13, 2018, Proceedings, volume 11237 of LNCS, pages 90–112. Springer,
2018. doi:10.1007/978-3-030-03769-7_7.

29 Klaus Havelund and Grigore Rosu. Synthesizing monitors for safety properties. In TACAS,
volume 2, pages 342–356. Springer, 2002.

30 Thomas A Henzinger and N Ege Saraç. Monitorability under assumptions. In International
Conference on Runtime Verification, pages 3–18. Springer, 2020.

31 David Janin and Igor Walukiewicz. On the expressive completeness of the propositional
mu-calculus with respect to monadic second order logic. In International Conference on
Concurrency Theory, pages 263–277. Springer, 1996.

32 David Janin and Igor Walukiewicz. On the expressive completeness of the propositional
mu-calculus with respect to monadic second order logic. In CONCUR '96: Concurrency
Theory, pages 263–277. Springer Berlin Heidelberg, 1996. doi:10.1007/3-540-61604-7_60.

33 Robert M. Keller. Formal verification of parallel programs. Commun. ACM, 19(7):371–384,
1976. doi:10.1145/360248.360251.

34 Dexter C. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

35 Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties. Formal Methods
in System Design, 19(3):291–314, 2001.

36 Orna Kupferman, Moshe Y Vardi, and Pierre Wolper. An automata-theoretic approach to
branching-time model checking. Journal of the ACM, 47(2):312–360, 2000.

37 Kim G. Larsen. Proof Systems for Satisfiability in Hennessy-Milner Logic with recursion.
Theoretical Computer Science, 72(2):265–288, 1990. doi:10.1016/0304-3975(90)90038-J.

38 Martin Leucker. Sliding between model checking and runtime verification. In International
Conference on Runtime Verification, pages 82–87. Springer, 2012.

39 Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmitz, and Daniel Thoma. Runtime
verification for timed event streams with partial information. In Bernd Finkbeiner and
Leonardo Mariani, editors, Runtime Verification - 19th International Conference, RV 2019,
Porto, Portugal, October 8-11, 2019, Proceedings, volume 11757 of LNCS, pages 273–291.
Springer, 2019. doi:10.1007/978-3-030-32079-9_16.

40 Grgur Petric Maretić, Mohammad Torabi Dashti, and David Basin. Ltl is closed under
topological closure. Information Processing Letters, 114(8):408–413, 2014.

41 Grgur Petric Maretić, Mohammad Torabi Dashti, and David Basin. Ltl is closed under
topological closure. Information Processing Letters, 114(8):408–413, 2014.

CSL 2021

https://doi.org/10.4230/LIPIcs.CONCUR.2017.8
https://doi.org/10.4230/LIPIcs.CONCUR.2017.8
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/s10703-017-0273-z
https://doi.org/10.1007/s10703-017-0273-z
https://doi.org/10.1016/S1571-0661(04)00252-X
https://doi.org/10.1007/978-3-030-03769-7_7
https://doi.org/10.1007/3-540-61604-7_60
https://doi.org/10.1145/360248.360251
https://doi.org/10.1016/0304-3975(90)90038-J
https://doi.org/10.1007/978-3-030-32079-9_16

7:18 The Best a Monitor Can Do

42 Tiziana Margaria, A. Prasad Sistla, Bernhard Steffen, and Lenore D. Zuck. Taming interface
specifications. In Martín Abadi and Luca de Alfaro, editors, CONCUR 2005 – Concurrency
Theory, pages 548–561, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

43 R Milner. A calculus of communicating systems. Lecture Notes in Comput. Sci. 92, 1980.
44 Doron Peled and Klaus Havelund. Refining the safety–liveness classification of temporal

properties according to monitorability. In Models, Mindsets, Meta: The What, the How, and
the Why Not?, pages 218–234. Springer, 2019.

45 A Peuli and Lenore Zuck. In and out of temporal logic. In [1993] Proceedings Eighth Annual
IEEE Symposium on Logic in Computer Science, pages 124–135. IEEE, 1993.

46 Fred B. Schneider. Enforceable security policies. ACM Transactions on Information and
System Security, 3(1):30–50, 2000.

47 A Prasad Sistla and Abhigna R Srinivas. Monitoring temporal properties of stochastic systems.
In International Workshop on Verification, Model Checking, and Abstract Interpretation, pages
294–308. Springer, 2008.

48 A Prasad Sistla, Min Zhou, and Lenore D Zuck. Monitoring off-the-shelf components. In
International Workshop on Verification, Model Checking, and Abstract Interpretation, pages
222–236. Springer, 2006.

49 Sandro Stucki, César Sánchez, Gerardo Schneider, and Borzoo Bonakdarpour. Gray-box
monitoring of hyperproperties. In Formal Methods–The Next 30 Years: Third World Congress,
FM 2019, Porto, Portugal, October 7–11, 2019, Proceedings, volume 11800, page 406. Springer
Nature, 2019.

50 Mahesh Viswanathan and Moonzoo Kim. Foundations for the run-time monitoring of reactive
systems - fundamentals of the MaC language. In Zhiming Liu and Keijiro Araki, editors,
Theoretical Aspects of Computing - ICTAC 2004, First International Colloquium, volume
3407 of Lecture Notes in Computer Science, pages 543–556. Springer, 2004. doi:10.1007/
978-3-540-31862-0_38.

51 Igor Walukiewicz. Completeness of Kozen's axiomatisation of the propositional µ-calculus.
Information and Computation, 157(1-2):142–182, February 2000. doi:10.1006/inco.1999.
2836.

A Technical Proofs

In our proofs, instead of working with the classical semantics, we use consistent annotations
and counter-annotations which respectively witness that a property holds or does not hold
for a process. The intuition is that an evaluation of ψ ∨ ϕ to true must also evaluate either
ψ or ϕ to true, and an annotation indicates which one. Similarly, for 〈a〉ψ to be true at a
state, one of the state’s a-successors must be annotated with ψ.

I Example 40. The witness of the reachability specification minX.(〈a〉X ∨ 〈b〉tt) (there is a
sequence of a-transitions that leads to a b-transition) for a process p would consist of the
following annotation: p is annotated with

{minX.〈a〉X ∨ 〈b〉tt, 〈a〉X ∨ 〈b〉tt, 〈a〉X},

a finite sequence of a-successors will be annotated with

{X,minX.〈a〉X ∨ 〈b〉tt, 〈a〉X ∨ 〈b〉tt, 〈a〉X}

and finally an a-successor will be annotated with

{X,minX.〈a〉X ∨ 〈b〉tt, 〈a〉X ∨ 〈b〉tt, 〈b〉tt}

and its b-successor will be annotated with tt. J

https://doi.org/10.1007/978-3-540-31862-0_38
https://doi.org/10.1007/978-3-540-31862-0_38
https://doi.org/10.1006/inco.1999.2836
https://doi.org/10.1006/inco.1999.2836

L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, and K. Lehtinen 7:19

In the following, for each formula ϕ with free variables we consider the closure c(ϕ) of ϕ,
which results by replacing in ϕ all free variables X by ϕX . We use JϕK for an open formula
ϕ, to mean Jc(ϕ)K. We say that a formula ϕ is satisfiable when JϕK 6= ∅.

I Definition 41 (Locally consistent annotation). An annotation A : P → P(sf (Ψ)), where
P ⊆ Prc is a labelling of P (a partial labelling of Prc) with sets of subformulae of a closed
formula Ψ of recHML. An annotation is locally consistent if for all states s ∈ P :

ff 6∈ A(s);
If minX.ϕ ∈ A(s) or maxX.ϕ ∈ A(s) then ϕ ∈ A(s);
If X ∈ A(s) then minX.ϕ ∈ A(s) if X is a least fixpoint variable and maxX.ϕ ∈ A(s)
otherwise;
If ϕ ∧ ψ ∈ A(s) then ϕ ∈ A(s) and ψ ∈ A(s);
If ϕ ∨ ψ ∈ A(s) then ϕ ∈ A(s) or ψ ∈ A(s);
If 〈a〉ϕ ∈ A(s) then ϕ ∈ A(s′) for some s′ ∈ P , such that s a−→ s′;
If [a]ϕ ∈ A(s) then ϕ ∈ A(s′) for all s′ ∈ Prc, such that s a−→ s′. J

I Definition 42. For annotation A, an annotated sequence is a (finite or infinite) sequence
π = (ϕ0, s0)(ϕ1, s1) · · · , such that

for each i, ϕi ∈ A(s0);
for all i, i+ 1 that appear as indexes in π, ϕi is of the form ϕi+1 ∧ψ, ψ ∧ϕi+1, ϕi+1 ∨ψ,
ψ ∨ ϕi+1, [a]ϕi+1, 〈a〉ϕi+1, minX.ϕi+1, minX.ϕi+1, or X, where ϕi+1 = minX.ψ or
minX.ψ;
if ϕi = [a]ϕi+1 or 〈a〉ϕi+1, then si

a−→ si+1, and otherwise si = si+1; J

It is not hard to see that if two fixpoint formulas ϕ1, ϕ2 appear in an annotated sequence,
then in the subsequence between (but including) the respective appearances of ϕ1 and ϕ2,
there appears a fixpoint formula ϕ3, such that ϕ1 and ϕ2 are subformulae of ϕ3. Therefore,
in every infinite annotated sequence there appears infinitely often a fixpoint formula ψ, such
that all other fixpoint formulas that appear infinitely often are subformulae of ψ. Then, ψ is
called the outermost fixpoint formula that appears infinitely often in the sequence.

I Definition 43 (Consistent Annotation). An annotation is consistent if it is both locally
consistent and for every infinite annotated sequence, the outermost fixpoint formula that
appears infinitely often in the sequence is a max-formula. J

It is a standard result (see for example [14] for a more thorough discussion) that for a
process p and a subformula ϕ of Ψ, we have that p ∈ JϕK if and only if there is a consistent
annotation such that ϕ ∈ A(p). We call this a consistent ϕ-annotation of p.

We observe that, because formulas are assumed to be guarded, every annotation on
processes with no infinite traces is consistent if and only if it is locally consistent. The same
is true if no min-fixpoints appear in the annotation.

For convenience, we also define the dual, a consistent counter-annotation, which witnesses
that a computation tree violates a property.

I Definition 44 (Consistent counter-annotation). A counter-annotation C : P → P(sf (Ψ)) is
a labelling of P ⊆ Prc with sets of subformulae of a formula Ψ of recHML. A counter-
annotation is locally consistent if for all states s ∈ P :

tt 6∈ C(s);
If minX.ϕ ∈ C(s) or maxX.ϕ ∈ C(s) then ϕ ∈ C(s);
If X ∈ C(s) then minX.ϕ ∈ C(s);
If ϕ ∧ ψ ∈ C(s) then ϕ ∈ C(s) or ψ ∈ C(s);

CSL 2021

7:20 The Best a Monitor Can Do

If ϕ ∨ ψ ∈ C(s) then ϕ ∈ C(s) and ψ ∈ C(s);
If 〈a〉ϕ ∈ C(s) then ϕ ∈ C(s′) for all s′ ∈ Prc, such that s a−→ s′;
If [a]ϕ ∈ C(s) then ϕ ∈ C(s′) for some s′ ∈ P , such that s a−→ s′.

Counter-annotated sequences are defined similarly to annotated sequences. A counter-
annotation is consistent if it is both locally consistent and for every infinite annotated sequence
of subformulae, the outermost fixpoint formula that appears infinitely often in the sequence is
a µ-formula. J

Then, a process p violates a subformula ϕ of Ψ if and only if there is a consistent
counter-annotation C, such that ϕ ∈ C(p).

Eliminating existentials
Lemma 29. For every closed disjunctive recHML formula Ψ, the formula f1(Ψ) has the
same sHML consequences as Ψ.

Proof. Observe that we can construct a consistent annotation for f1(Ψ) from a consistent
annotation for Ψ, by simply replacing each ψ in the annotation by f1(ψ). Then, all conditions
for a consistent annotation are satisfied, and therefore Ψ implies f1(Ψ).

Let θ ∈ sHML be a consequence of Ψ. We show that f1(Ψ) also implies θ

Assume otherwise: let p be a process such that p ∈ Jf1(Ψ) ∧ ¬θK. Let A1 be an annotation
that witnesses p ∈ Jf1(Ψ)K.

We know, by Thm. 22, that θ is monitorable, so there is a finite trace t = a1a2 . . . ak of p,
such that for every p′, if t is a trace of p′, then p′ ∈ J¬θK. Let p = p0

a1−−→ p1
a2−−→ · · · ak−−→ pk

be states reachable from p while producing t, and let q0, q1, . . . , qk be processes with only
the following transitions: q0

a1−−→ q1
a2−−→ · · · ak−−→ qk. From the above, we see that q0 /∈ JθK.

Furthermore, we can define an annotation A2 on {q0, q1, . . . , qk}, such that for all i = 1, . . . , k,
A2(qi) = A1(pi). It is not hard to see, exploiting the absence of existential modalities in
f1(Ψ), that A2 is a consistent annotation, witnessing that q0 ∈ Jf1(Ψ)K.

Let A3 be a minimal consistent annotation witnessing that q0 ∈ Jf1(Ψ)K. Let us observe
that by the definition of Ψ and f1, all formulas in A3 can be of the form tt, X, minX.ψ,
maxX.ψ, ψ1 ∨ ψ2, or

∧
a∈B[a]

∨
Ba. The last kind of formula we call a conjunction. We

say that
∧
a∈B[a]

∨
Ba ∈ A3(qi) is maximal in A3(qi) if it is not a conjunct in any other

conjunction in A3(qi). We now show that due to the disjunctive form of our formulas, a
minimal annotation only has one maximal conjunction per state.

We also define recursively for two formulas ψ1, ψ2 ∈ A3(qi) what is a path from ψ1 to ψ2:
{ψ1} is a path from ψ1 to ψ1; and if F is a path from ψ1 to ψ2, then:

if ψ1 ∨ ψ′1 ∈ A3(qi), then F ∪ {ψ1 ∨ ψ′1} is a path from ψ1 ∨ ψ′1 to ψ2;
if ψ′1 ∨ ψ1 ∈ A3(qi), then F ∪ {ψ′1 ∨ ψ1} is a path from ψ′1 ∨ ψ1 to ψ2;
if maxX.ψ1 ∈ A3(qi), then F ∪ {maxX.ψ1} is a path from maxX.ψ1 to ψ2; and
if minX.ψ1 ∈ A3(qi), then F ∪ {minX.ψ1} is a path from minX.ψ1 to ψ2.

Finally, for each
∧
a∈B [a]

∨
Ba ∈ A3(qi), we define the set of conjunctions that it subsumes,

in the following sense:

ss

(∧
a∈B

[a]
∨
Ba ∈ A3(qi)

)
=
{∧
a∈C

[a]
∨
Ba ∈ A3(qi) | ∅ 6= C ⊆ B

}
.

L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, and K. Lehtinen 7:21

We are now ready to prove the following claim on the minimal annotation A3, which will
allow us to focus on a single maximal conjunction per state:

Claim: for every i, if
∧

a∈B[a]
∨

Ba ∈ A3(qi) and
∧

a∈B′[a]
∨

B′
a ∈ A3(qi), are

maximal in A3(qi), then B = B′ and for all a ∈ B, Ba = B′
a – in other words,

there is at most one maximal conjunction in A3(qi)

We prove the claim by induction on i. For the case where i = 0, we first observe that
f1(Ψ) ∈ A3(q0). Since our formulas are guarded and f1(Ψ) is closed, there is no path from
f1(Ψ) to a variable X. Therefore, according to the conditions for local consistency, there
must be a path F from f1(Ψ) to either tt or to a conjunction ψc. In the first case, we observe
that there can be no conjunction in F (by the definition of a path), and substituting A3(q0)
by F results in a locally consistent annotation, and therefore, A3(q0) = F as A3 is minimal.
In the second case, we observe that there can be no other conjunction in F (by the definition
of a path), and that substituting A3(q0) by F ∪ ss(ψc) (which is a subset of A3(q0)) results in
a locally consistent annotation, and therefore, by minimality, A3(q0) = F ∪ss(ψc). Therefore,
in both cases, there is at most one maximal conjunction in A3(q0).

We now tackle the case for i > 0. By the inductive hypothesis, there is at most one
maximal conjunction

∧
a∈B′′ [a]

∨
B′′a ∈ A3(qi−1). If there is none, or if ai /∈ B′′, then

A3(qi) = ∅ and we are done. Otherwise, let ψ1 =
∨
B′′ai

. By the requirements of local
consistency, ψ1 ∈ A3(qi), and there is a path F1 from ψ1 to tt, to a conjunction ψ2, or to
a variable X1. We can handle the first two cases similarly for the case of i = 0. For the
last case, from the requirements of local consistency, for some k > 0, we can construct k
paths, Fj , 1 ≤ j ≤ k, such that F1 is as defined above, and for 1 < j < k, Fj is a path from
maxXj−1.ψj to Xj (with Xj 6= Xj′ for j 6= j′), and, due to the guardedness of our formulas
and the finiteness of A3(qi), Fk is a path from maxXk−1.ψk to ψk, where ψk = tt or ψk is a
conjunction. Let F =

⋃k
j=1 Fi. With the possible exception of ψk, there is no conjunction in

F . In the case ψk = tt, substituting A3(q0) by F results in a locally consistent annotation,
and therefore, A3(q0) = F . In the case ψk a conjunction, substituting A3(q0) by F ∪ ss(ψ2)
results in a locally consistent annotation, and therefore, A3(q0) = F ∪ ss(ψ2). Therefore, in
both cases, there is at most one maximal conjunction in A3(q0).

We can now use these maximal conjunctions (which all come from the elimination of
existential modalities from the conjunctions of Ψ) to turn q0 into a process that also satisfies
Ψ, by adding successors that satisfy the consistency requirements of the eliminated existential
modalities.

We have assumed that all subformulae of disjunctive formulas (except for ff) are satisfiable.
Therefore, for every subformula 〈a〉ψ of Ψ, we can fix a process sψ ∈ JψK, and assume a
consistent annotation A4 that witnesses these facts. We now construct a process r ∈ JΨK,
such that t is a trace of r. For each qi, i = 0, . . . , k, we construct a process q′i with exactly
the following transitions: q′i

ai+1−−−−→ q′i+1, if i < k, and q′i
a−→ sψ for every ψ ∈ Ba, for every

f1((
∧
ψ∈Ba

〈a〉ψ) ∧ [a]
∨
Ba) ∈ A3(qi). We can now construct a consistent annotation A5 to

witness that q′i ∈ JψK, for every f(ψ) ∈ A3(qi). For each subformula (
∧
ψ∈Ba

〈a〉ψ) ∧ [a]
∨
Ba

of Ψ and every ψ ∈ Ba, A5(sψ) = A4(sψ) ∪ {
∨
Ba}; for i = 0, . . . , k, A5(q′i) = {ψ ∈ sf(Ψ) |

f1(ψ) ∈ A3(q′i)}, and for every other state s, A5(s) = A4(s) if A4 is defined on s. It is then
not hard to see that all conditions for a consistent annotation are satisfied by A5. Therefore,
A5 witnesses that r def= q′0 ∈ JΨK. Furthermore, it is immediately evident that t is a trace of
r, and therefore r /∈ JθK, and therefore θ cannot be a consequence of Ψ, contradicting our
assumptions. This completes the proof of the lemma. J

CSL 2021

7:22 The Best a Monitor Can Do

I Example 45. The necessity of disjunctive form can be seen from the following example:
ψ = (〈a〉[b]ff) ∧ ([a]〈b〉tt ∨ [a][c]ff). For F = {[b]ff ∧ [c]ff, [c]ff}, the equivalent disjunctive
formula is:∧

ϕ∈F
〈a〉ϕ ∧ [a]

∨
F.

In ψ, replacing existentials with tt would yield a formula itself equivalent to tt. However,
from its disjunctive form we can extract its strongest sHML consequence [a][c]ff (rather than
tt). J

Eliminating least fixpoints
Lemma 32. For every closed formula Ψ of recHML without existentials, f2(Ψ) has the
same sHML consequences as Ψ.

Proof. First, observe that Ψ implies f2(Ψ): an annotation for Ψ is locally consistent, so by
replacing all occurrences of min by max, we are certain to have no sequences with infinite
occurrences of min-formulas, so we have a consistent annotation for f2(Ψ).

Now, let θ ∈ sHML, such that θ is not a consequence of f2(Ψ). We prove that θ is
also not a consequence of Ψ, which completes the proof of the lemma. Since θ is not a
consequence of f2(Ψ), there is a p ∈ Jf2(Ψ) ∧ ¬θK. Similarly to the proof of Lem. 29, we
know, by Thm. 22, that θ is monitorable, so we can construct a process q that has no infinite
traces and satisfies f2(Ψ) ∧ ¬θ. Let A be a consistent annotation that witnesses the fact.
From A, we can then construct an annotation A′: A′(s) = {ψ ∈ sf(Ψ) | f2(ψ) ∈ A(s)}, when
A(s) is defined. It is straightforward to see that A′ is locally consistent, using the fact that
A is locally consistent. It is also consistent, because q has no infinite traces. Therefore, A′
witnesses that q ∈ JΨK, which completes the proof. J

A.1 Eliminating disjunctions
Lemma 37. Given a closed formula Ψ of recHML with neither min operators nor existen-
tials, f3(Ψ) has the same sHML consequences as Ψ.

Proof. We fix a tableau T (Ψ) and the corresponding labellings L and L′ of its nodes, as
defined in Def. 35.

We first show that f3(Ψ) is a consequence of Ψ, i.e., ¬f3(Ψ) implies ¬Ψ. Let p be
a process such that p /∈ Jf3(Ψ)K. Since f3(Ψ) is a sHML formula, and similarly to the
proofs of Lems. 29 and 32, we can assume that process p has a single maximal trace t. Let
C : P → P(sf (f3(Ψ))) be a counter-annotation that witnesses the fact that p /∈ Jf3(Ψ)K.
Since p only has finite traces and f3(Ψ) is guarded, C has no infinite counter-annotated
sequences. Therefore, ff appears somewhere in C. We now define C ′, a counter annotation
for Ψ that is defined on the set P ⊆ Prc of processes that are reachable from p by a (possibly
empty) sequence of transitions:

C ′(q) = {ψ ∈ L(n) | n is a tableau node s.t. L′(n) ∈ C(q)},

for every q ∈ P . It is then, not hard to verify that C ′ is locally consistent, and therefore it is
also consistent, thus witnessing that p /∈ JΨK.

We now show that if Ψ implies a formula θ ∈ sHML, then f3(Ψ) also implies θ. Assume
that Ψ implies θ ∈ sHML. Let p be a process such that p 6∈ JθK – therefore, p 6∈ JΨK. Since θ

L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, and K. Lehtinen 7:23

is a sHML formula, as above, we can assume that process p has a single maximal trace t. Let
C be a consistent counter-annotation that witnesses that p /∈ JΨK, defined over P ⊆ Prc. We
now define C ′, a counter annotation for f3(Ψ) that is defined on P ′ = {q ∈ P | C(q) 6= ∅}:

C ′(q) = {L′(n) | n is a tableau node s.t. L(n) ⊆ C(q)},

for every q ∈ P ′. Again, it is not hard to verify that C ′ is locally consistent – and since p has
no infinite traces and our formulas are guarded, C ′ is also consistent. Therefore, p 6∈ Jf3(Ψ)K,
so we have showed that f3(Ψ) implies all sHML consequences of Ψ, which completes the
proof. J

CSL 2021

Are Two Binary Operators Necessary to Finitely
Axiomatise Parallel Composition?
Luca Aceto
Reykjavik University, Iceland
Gran Sasso Science Institute, L’Aquila, Italy

Valentina Castiglioni
Reykjavik University, Iceland

Wan Fokkink
Vrije Universiteit Amsterdam, The Netherlands

Anna Ingólfsdóttir
Reykjavik University, Iceland

Bas Luttik
Eindhoven University of Technology, The Netherlands

Abstract
Bergstra and Klop have shown that bisimilarity has a finite equational axiomatisation over ACP/CCS
extended with the binary left and communication merge operators. Moller proved that auxiliary
operators are necessary to obtain a finite axiomatisation of bisimilarity over CCS, and Aceto et al.
showed that this remains true when Hennessy’s merge is added to that language. These results raise
the question of whether there is one auxiliary binary operator whose addition to CCS leads to a
finite axiomatisation of bisimilarity. This study provides a negative answer to that question based
on three reasonable assumptions.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting; Theory
of computation → Process calculi; Theory of computation → Operational semantics

Keywords and phrases Equational logic, CCS, bisimulation, parallel composition, non-finitely based
algebras

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.8

Related Version An extended version of the paper, with all technical proofs, is available at https:
//arxiv.org/abs/2010.01943.

Funding This work has been supported by the project ‘Open Problems in the Equational Logic of
Processes’ (OPEL) of the Icelandic Research Fund (grant No. 196050-051).

Acknowledgements We thank the anonymous reviewers for their valuable comments.

1 Introduction

The purpose of this paper is to provide an answer to the following problem (see [1, Problem
8]): Are the left merge and the communication merge operators necessary to obtain a finite
equational axiomatisation of bisimilarity over the language CCS? The interest in this problem
is threefold, as an answer to it would:
1. provide the first study on the finite axiomatisability of operators whose operational

semantics is not determined a priori,
2. clarify the status of the auxiliary operators left merge and communication merge, proposed

in [10], in the finite axiomatisation of parallel composition, and
3. give further insight into properties that auxiliary operators used in the finite equational

characterisation of parallel composition ought to afford.
© Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 8; pp. 8:1–8:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2197-3018
https://orcid.org/0000-0002-8112-6523
https://orcid.org/0000-0001-7443-8978
https://orcid.org/0000-0001-8362-3075
https://orcid.org/0000-0001-6710-8436
https://doi.org/10.4230/LIPIcs.CSL.2021.8
https://arxiv.org/abs/2010.01943
https://arxiv.org/abs/2010.01943
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Are Two Binary Operators Necessary to Finitely Axiomatise Parallel Composition?

We prove that, under some reasonable simplifying assumptions, whose role in our technical
developments we discuss below, there is no auxiliary binary operator that can be added
to CCS to yield a finite equational axiomatisation of bisimilarity. Despite falling short of
solving the above-mentioned problem in full generality, our negative result is a substantial
generalisation of previous non-finite-axiomatisability theorems by Moller [19, 20] and Aceto
et al. [4].

In order to put our contribution in context, we first describe the history of the problem
we tackle and then give a bird’s eye view of our results.

The story so far. In the late 1970s, Milner developed the Calculus of Communicating
Systems (CCS) [17], a formal language based on a message-passing paradigm and aimed at
describing communicating processes from an operational point of view. In detail, a labelled
transition system (LTS) [16] was used to equip language expressions with an operational
semantics [23] and was defined using a collection of syntax-driven rules. The analysis of
process behaviour was carried out via an observational bisimulation-based theory [22] that
defines when two states in an LTS describe the same behaviour. In particular, CCS included a
parallel composition operator ‖ to model the interactions among processes. Such an operator,
also known as merge [10, 11], allows one both to interleave the behaviours of its argument
processes (modelling concurrent computations) and to enable some form of synchronisation
between them (modelling interactions). Later on, in collaboration with Hennessy, Milner
studied the equational theory of (recursion free) CCS and proposed a ground-complete
axiomatisation for it modulo bisimilarity [15]. More precisely, Hennessy and Milner presented
a set E of equational axioms from which all equations over closed CCS terms (namely those
with no occurrences of variables) that are valid modulo bisimilarity can be derived using
the rules of equational logic [24]. Notably, the set E included infinitely many axioms, which
were instances of the expansion law that was used to “simulate equationally” the operational
semantics of the parallel composition operator.

The ground-completeness result by Hennessy and Milner started the quest for a finite
axiomatisation of CCS’s parallel composition operator modulo bisimilarity.

Bergstra and Klop showed in [10] that a finite ground-complete axiomatisation modulo
bisimilarity can be obtained by enriching CCS with two auxiliary operators, namely the left
merge and the communication merge |, expressing respectively one step in the asymmetric
pure interleaving and the synchronous behaviour of ‖. Their result was then strengthened
by Aceto et al. in [6], where it is proved that, over the fragment of CCS without recursion,
restriction and relabelling, the auxiliary operators and | allow for finitely axiomatising
‖ modulo bisimilarity also when CCS terms with variables are considered. Moreover,
in [8] that result is extended to the fragment of CCS with relabelling and restriction,
but without communication. From those studies, we can infer that the left merge and
communication merge operators are sufficient to finitely axiomatise parallel composition
modulo bisimilarity. But is the addition of auxiliary operators necessary to obtain a finite
equational axiomatisation, or can the use of the expansion law in the original axiomatisation
of bisimilarity by Hennessy and Milner be replaced by a finite set of sound CCS equations?

To address that question, in [19, 20] Moller considered a minimal fragment of CCS,
including only action prefixing, nondeterministic choice and interleaving, and proved that,
even in the presence of a single action, bisimilarity does not afford a finite ground-complete
axiomatisation over the closed terms in that language. This showed that auxiliary operators
are indeed necessary to obtain a finite equational axiomatisation of bisimilarity. Adapting
Moller’s proof technique, Aceto et al. proved, in [4], that if we replace and | with the so called

L. Aceto, V. Castiglioni, W. Fokkink, A. Ingólfsdóttir, and B. Luttik 8:3

Hennessy’s merge |/ [14], which denotes an asymmetric interleaving with communication,
then the collection of equations that hold modulo bisimilarity over the recursion, restriction
and relabelling free fragment of CCS enriched with |/ is not finitely based (in the presence of
at least two distinct complementary actions).

A natural question that arises from those negative results is the following:

Can one obtain a finite axiomatisation of the parallel composition operator in
bisimulation semantics by adding only one binary operator to the signature of
(recursion, restriction, and relabelling free) CCS?

(P)

In this paper, we provide a partial negative answer to that question. (Note that, in (P),
we focus on binary operators, like all the variations on parallel composition mentioned above,
since using a ternary operator one can express the left and communication merge operators
and, in fact, an arbitrary number of binary operators.)

Our contribution. We analyse the axiomatisability of parallel composition over the language
CCSf , namely CCS enriched with a binary operator f that we use to express ‖ as a derived
operator. We prove that, under three reasonable assumptions, an auxiliary operator f
alone does not allow us to obtain a finite ground-complete axiomatisation of CCSf modulo
bisimilarity.

To this end, the only knowledge we assume on the operational semantics of f is that
it is formally defined by rules in the de Simone format [13] (Assumption 1) and that the
behaviour of the parallel composition operator is expressed equationally by a law that is akin
to the one used by Bergstra and Klop to define ‖ in terms of and | (Assumption 2). We
then argue that the latter assumption yields that the equation

x‖y ≈ f(x, y) + f(y, x) (A)

is valid modulo bisimilarity. Next we proceed by a case analysis over the possible sets of de
Simone rules defining the behaviour of f , in such a way that the validity of Equation (A)
modulo bisimilarity is guaranteed. To fully characterise the sets of rules that may define f ,
we introduce a third simplifying assumption: the target of each rule for f is either a variable
or a term obtained by applying a single CCSf operator to the variables of the rule, according
to the constraints of the de Simone format (Assumption 3). Then, for each of the resulting
cases, we show the desired negative result using proof-theoretic techniques that have their
roots in Moller’s classic results in [19, 20]. This means that we identify a (case-specific)
property of terms denoted by Wn for n ≥ 0. The idea is that, when n is large enough, Wn is
preserved by provability from finite, sound axiom systems. Hence, whenever E is a finite,
sound axiom system and an equation p ≈ q is derivable from E , then either both terms p
and q satisfy Wn, or none of them does. The negative result is then obtained by exhibiting a
(case-specific) infinite family of valid equations {en | n ≥ 0} in which Wn is not preserved,
that is, for each n ≥ 0, Wn is satisfied only by one side of en. Due to the choice of Wn, this
means that the equations in the family cannot all be derived from a finite set of valid axioms
and therefore no finite, sound axiom system can be complete.

To the best of our knowledge, in this paper we propose the first non-finite axiomatisability
result for a process algebra in which one of the operators, namely the auxiliary operator
f , does not have a fixed semantics. However, for our technical developments, it has been
necessary to restrict the search space for f by means of the aforementioned simplifying
assumptions. To our mind, those assumptions are “reasonable” because they allow us
to simplify the combinatorial complexity of our analysis without excessively narrowing

CSL 2021

8:4 Are Two Binary Operators Necessary to Finitely Axiomatise Parallel Composition?

down the set of operators captured by our approach. There are three main reasons behind
Assumption 1:

The de Simone format is the simplest congruence format for bisimilarity. Hence we must
be able to deal with this case before proceeding to any generalisation.
The specification of parallel composition, left merge and communication merge operators
(and of the vast majority of process algebraic operators) is in de Simone format. Hence,
that format was a natural choice also for operator f .
The simplicity of the de Simone rules allows us to reduce considerably the complexity of
our case analysis over the sets of available rules for the operator f . However, as witnessed
by the developments in this article, even with this simplification, the proof of the desired
negative result requires a large amount of delicate, technical work.

Assumptions 2 and 3 still allow us to obtain a significant generalisation of related works,
such as [4], as we can see them as an attempt to identify the requirements needed to apply
Moller’s proof technique to Hennessy’s merge like operators. We stress that the reason for
adding Assumption 3 is purely technical: it plays a role in the proof of one of the claims
in our combinatorial analysis of the rules that f may have (see Lemma 11). Although we
conjecture that the assumption is not actually necessary to obtain that claim, we were unable
to prove it without the assumption.

Even though the vast literature on process algebras offers a plethora of non-finite axio-
matisability results for a variety of languages and semantics (see, for instance, the survey [5]
from 2005), we are not aware of any previous attempt at proving a result akin to the one we
present here. We have already addressed at length how our contribution fits within the study
of the equational logic of processes and how it generalises previous results in that field. The
proof-theoretic tools and the approach we adopt in proving our main theorem, which links
equational logic with structural operational semantics and builds on a number of previous
achievements (such as those in [2]), may have independent interest for researchers in logic
in computer science. To our mind, achieving an answer to question (P) in full generality
would be very pleasing for the concurrency-theory community, as it would finally clarify
the canonical role of Bergstra and Klop’s auxiliary operators in the finite axiomatisation of
parallel composition modulo bisimilarity.

Organisation of contents. After a brief review, in Section 2, of basic notions on process
semantics, CCS and equational logic, in Section 3 we present the simplifying assumptions
under which we tackle the problem (P). In Section 4 we study the operational semantics of
auxiliary operators f meeting our assumptions. In Section 5 we give a detailed presentation
of the proof strategy we will follow to address (P). Sections 6–9 are then devoted to the
technical development of our negative results. We conclude by discussing future work in
Section 10.

Due to space limitations, all proofs have been omitted, and they can be found in the
technical report [3].

2 Background

In this section we introduce the basic definitions and results on which the technical develop-
ments to follow are based.

Labelled Transition Systems and Bisimilarity. As semantic model we consider classic
labelled transition systems [16].

L. Aceto, V. Castiglioni, W. Fokkink, A. Ingólfsdóttir, and B. Luttik 8:5

I Definition 1. A labelled transition system (LTS) is a triple (S,A,−→), where S is a set of
states (or processes), A is a set of actions, and −→ ⊆ S × A × S is a (labelled) transition
relation.

As usual, we use p µ−→ p′ in lieu of (p, µ, p′) ∈ −→. For each p ∈ S and µ ∈ A, we write
p

µ−→ if p µ−→ p′ holds for some p′, and p µ−→6 otherwise.
In this paper, we shall consider the states in a labelled transition system modulo bisimil-

arity [18, 22], allowing us to establish whether two processes have the same behaviour.

I Definition 2. Let (S,A,−→) be a labelled transition system. Bisimilarity, denoted by ↔, is
the largest binary symmetric relation over S such that whenever p ↔ q and p µ−→ p′, then
there is a transition q µ−→ q′ with p′ ↔ q′. If p ↔ q, then we say that p and q are bisimilar.

It is well-known that bisimilarity is an equivalence relation (see, e.g., [18, 22]).

The Language CCSf . The language we consider in this paper is obtained by adding a
single binary operator f to the recursion, restriction and relabelling free subset of Milner’s
CCS [18], henceforth referred to as CCSf , and is given by the following grammar:

t ::= 0 | x | a.t | ā.t | τ.t | t+ t | t ‖ t | f(t, t) ,

where x is a variable drawn from a countably infinite set V, a is an action, and ā is its
complement. We assume that the actions a and ā are distinct. Following [18], the action
symbol τ will result from the synchronised occurrence of the complementary actions a and ā.

In order to obtain the desired negative results, it will be sufficient to consider the
above language with three unary prefixing operators; so there is only one action a with its
corresponding complementary action ā. Our results carry over unchanged to a setting with
an arbitrary number of actions, and corresponding unary prefixing operators. Henceforth,
we let µ ∈ {a, ā, τ} and α ∈ {a, ā}. As usual, we postulate that ¯̄a = a. We shall use the
meta-variables t, u, v, w to range over process terms, and write var(t) for the collection of
variables occurring in the term t. The size of a term is the number of operator symbols in it.
A process term is closed if it does not contain any variables. Closed terms, or processes, will
be typically denoted by p, q, r. Moreover, trailing 0’s will often be omitted from terms.

A (closed) substitution is a mapping from process variables to (closed) CCSf terms. For
every term t and substitution σ, the term obtained by replacing every occurrence of a variable
x in t with the term σ(x) will be written σ(t). Note that σ(t) is closed, if so is σ. We shall
sometimes write σ[x 7→ p] to denote the substitution that maps the variable x into process p
and behaves like σ on all other variables.

In the remainder of this paper, we exploit the associativity and commutativity of + modulo
bisimilarity and we consider process terms modulo them, namely we do not distinguish t+ u

and u+ t, nor (t+ u) + v and t+ (u+ v). In what follows, the symbol = will denote equality
modulo the above identifications. We use a summation

∑
i∈{1,...,k} ti to denote the term

t = t1 + · · ·+ tk, where the empty sum represents 0. We can also assume that the terms ti,
for i ∈ {1, . . . , k}, do not have + as head operator, and refer to them as the summands of t.

Henceforth, for each action µ and m ≥ 0, we let µ0 denote 0 and µm+1 denote µ(µm).
For each action µ and positive integer i ≥ 0, we also define

µ≤i = µ+ µ2 + · · ·+ µi .

CSL 2021

8:6 Are Two Binary Operators Necessary to Finitely Axiomatise Parallel Composition?

Table 1 The rules of equational logic.

(e1) t ≈ t (e2)
t ≈ u
u ≈ t

(e3)
t ≈ u u ≈ v

t ≈ v
(e4)

t ≈ u
σ(t) ≈ σ(u)

(e5)
t ≈ u

µ.t ≈ µ.u
(e6)

t ≈ u t′ ≈ u′

t+ t′ ≈ u+ u′
(e7)

t ≈ u t′ ≈ u′

f(t, t′) ≈ f(u, u′) (e8)
t ≈ u t′ ≈ u′

t ‖ t′ ≈ u ‖ u′
.

Equational Logic. An axiom system E is a collection of (process) equations t ≈ u over
CCSf . An equation t ≈ u is derivable from an axiom system E , notation E ` t ≈ u, if there
is an equational proof for it from E , namely if t ≈ u can be inferred from the axioms in E
using the rules of equational logic, which are reflexivity, symmetry, transitivity, substitution
and closure under CCSf contexts. In Table 1 we report the rules of equational logic over
CCSf .

Without loss of generality one may assume that substitutions happen first in equational
proofs, i.e., that the rule

t ≈ u
σ(t) ≈ σ(u)

may only be used when (t ≈ u) ∈ E . In this case σ(t) ≈ σ(u) is called a substitution instance
of an axiom in E . Moreover, by postulating that for each axiom in E also its symmetric
counterpart is present in E , one may assume that applications of symmetry happen first in
equational proofs, i.e., that the rule

t ≈ u
u ≈ t

is never used in equational proofs. In the remainder of the paper, we shall always tacitly
assume that equational axiom systems are closed with respect to symmetry.

We are interested in equations that are valid modulo some congruence relation R over
closed terms. The equation t ≈ u is said to be sound modulo R if σ(t)Rσ(u) for all closed
substitutions σ. For simplicity, if t ≈ u is sound, then we write tRu. An axiom system is
sound modulo R if, and only if, all of its equations are sound modulo R. Conversely, we say
that E is ground-complete modulo R if pR q implies E ` p ≈ q for all closed terms p, q. We
say that R has a finite, ground-complete, axiomatisation, if there is a finite axiom system E
that is sound and ground-complete for R.

3 The simplifying assumptions

The aim of this paper is to investigate whether bisimilarity admits a finite equational
axiomatisation over CCSf , for some binary operator f . Of course, this question only makes
sense if f is an operator that preserves bisimilarity. In this section we discuss two assumptions
we shall make on the auxiliary operator f in order to meet such requirement and to tackle
problem (P) in a simplified technical setting.

3.1 The de Simone format
One way to guarantee that f preserves bisimilarity is to postulate that the behaviour of f is
described using Plotkin-style rules that fit a rule format that is known to preserve bisimilarity,
see, e.g., [7] for a survey of such rule formats. The simplest format satisfying this criterion is

L. Aceto, V. Castiglioni, W. Fokkink, A. Ingólfsdóttir, and B. Luttik 8:7

the format proposed by de Simone in [13]. We believe that if we can’t deal with operations
specified in that format, then there is little hope to generalise our results. Therefore, we
make the following

I Assumption 1. The behaviour of f is described by rules in de Simone format.

I Definition 3. An SOS rule ρ for f is in de Simone format if it has the form

ρ = {xi
µi−−→ yi | i ∈ I}

f(x1, x2) µ−→ t
(1)

where I ⊆ {1, 2}, µ, µi ∈ {a, ā, τ} (i ∈ I), and moreover
the variables x1, x2 and yi (i ∈ I) are all different and are called the variables of the rule,
t is a CCSf term over variables {x1, x2, yi | i ∈ I}, called the target of the rule, such that

each variable occurs at most once in t, and
if i ∈ I, then xi does not occur in t.

Henceforth, we shall assume, without loss of generality, that the variables x1, x2, y1 and
y2 are the only ones used in operational rules. Moreover, if µ is the label of the transition in
the conclusion of a de Simone rule ρ, we shall say that ρ has µ as label.

The SOS rules for all of the classic CCS operators, reported below, are in de Simone
format, and so are those for Hennessy’s |/ operator from [14] and for Bergstra and Klop’s
left and communication merge operators [9], at least if we disregard issues related to the
treatment of successful termination. Thus restricting ourselves to operators whose operational
behaviour is described by de Simone rules leaves us with a good degree of generality.

µ.x
µ−→ x

x
µ−→ x′

x+ y
µ−→ x′

y
µ−→ y′

x+ y
µ−→ y′

x
µ−→ x′

x ‖ y µ−→ x′ ‖ y
y

µ−→ y′

x ‖ y µ−→ x ‖ y′
x

α−→ x′, y
ᾱ−→ y′

x ‖ y τ−→ x′ ‖ y′

The transition rules for the classic CCS operators above and those for the operator f
give rise to transitions between CCSf terms. The operational semantics for CCSf is thus
given by the LTS whose states are CCSf terms, and whose transitions are those that are
provable using the rules.

In what follows, we shall consider the collection of closed CCSf terms modulo bisimilarity.
Since the SOS rules defining the operational semantics of CCSf are in de Simone’s format,
we have that bisimilarity is a congruence with respect to CCSf operators, that is, µp ↔ µq,
p + p′ ↔ q + q′, p‖p′ ↔ q‖q′ and f(p, p′) ↔ f(q, q′) hold whenever p ↔ q, p′ ↔ q′ and
p, p′, q, q′ are closed CCSf terms.

Bisimilarity is extended to arbitrary CCSf terms thus:

I Definition 4. Let t, u be CCSf terms. We write t ↔ u if and only if σ(t) ↔ σ(u) for
every closed substitution σ.

3.2 Axiomatising ‖ with f

Our second simplifying assumption concerns how the operator f can be used to axiomatise
parallel composition. To this end, a fairly natural assumption on an axiom system over
CCSf is that it includes an equation of the form

x‖y ≈ t(x, y) (2)

CSL 2021

8:8 Are Two Binary Operators Necessary to Finitely Axiomatise Parallel Composition?

where t is a CCSf term that does not contain occurrences of ‖ with var(t) ⊆ {x, y}. More
precisely, the term will be in the general form t(x, y) =

∑
i∈I ti(x, y), where I is a finite index

set and, for each i ∈ I, ti(x, y) does not have + as head operator. Equation (2) essentially
states that ‖ is a derived operator in CCSf modulo bisimilarity. To our mind, this is a
natural, initial assumption to make in studying the problem we tackle in the paper.

We now proceed to refine the form of the term t(x, y), in order to guarantee the soundness,
modulo bisimilarity, of Equation (2). Intuitively, no term ti(x, y) can have prefixing as head
operator. In fact, if t(x, y) had a summand µ.t′(x, y), for some µ ∈ {a, ā, τ}, then one
could easily show that 0‖0 ↔/ t(0,0), since t(0,0) could perform a µ-transition, unlike
0‖0. Similarly, t(x, y) cannot have a variable as a summand, for otherwise we would have
a‖τ ↔/ t(a, τ). Indeed, assume, without loss of generality, that t(x, y) has a summand x.
Then, t(a, τ) a−→ 0, whereas a‖τ cannot terminate in one step. We can therefore assume that,
for each i ∈ I, ti(x, y) = f(t1i (x, y), t2i (x, y)) for some CCSf terms tji (x, y), with j ∈ {1, 2}.
To further narrow down the options on the form that the subterms tji (x, y) might have, we
would need to make some assumptions on the behaviour of the operator f . For the sake
of generality, we assume that the terms tji (x, y) are in the simplest form, namely they are
variables in {x, y}. Such an assumption is reasonable because to allow prefixing and/or
nested occurrences of f -terms in the scope of the terms ti(x, y) we would need to define
(at least partially) the operational semantics of f , thus making our results less general as,
roughly speaking, we would need to study one possible auxiliary operator at a time (the one
identified by the considered set of de Simone rules). Moreover, if we look at how parallel
composition is expressed equationally as a derived operator in terms of Hennessy’s merge or
Bergstra and Klop’s left and communication merge or as in [2], viz. via the equations

x ‖ y ≈ (x |/ y) + (y |/ x)

x ‖ y ≈ (x y) + (y x) + (x | y) x ‖ y ≈ (x y) + (x y) + (x | y) ,

we see the emergence of a pattern: the parallel composition operator is always expressed in
terms of sums of terms built from the auxiliary operators and variables.

Therefore, from now on we will make the following:

I Assumption 2. For some J ⊆ {x, y}2, the equation

x ‖ y ≈
∑
{f(z1, z2) | (z1, z2) ∈ J} (3)

holds modulo bisimilarity. We shall use tJ to denote the right-hand side of the above equation
and use tJ(p, q) to stand for the process σ[x 7→ p, y 7→ q](tJ), for any closed substitution σ.

Using our assumptions, we further investigate the relation between operator f and parallel
composition, obtaining a refined form for Equation (3) (Proposition 7 below).

I Lemma 5. Assume that Assumptions 1 and 2 hold. Then:
1. The index set J on the right-hand side of (3) is non-empty.
2. The set of transition rules for f is non-empty.
3. Each transition rule for f has some premise.
4. The terms f(x, x) and f(y, y) are not summands of tJ .

As a consequence, we may infer that the index set J in the term tJ is either one of the
singletons {(x, y)} or {(y, x)}, or it is the set {(x, y), (y, x)}. Due to Moller’s results to the
effect that bisimilarity has no finite ground-complete axiomatisation over CCS [19, 21], the
former option can be discarded, as shown in the following:

L. Aceto, V. Castiglioni, W. Fokkink, A. Ingólfsdóttir, and B. Luttik 8:9

I Proposition 6. If J is a singleton, then CCSf admits no finite equational axiomatisation
modulo bisimilarity.

As a consequence, we can restate our Assumption 2 in the following simplified form:

I Proposition 7. Equation (3) can be refined to the form:

x ‖ y ≈ f(x, y) + f(y, x) . (4)

Moreover, in the light of Moller’s results in [19, 21], we can restrict ourselves to considering
only operators f such that x ‖ y ≈ f(x, y) does not hold modulo bisimilarity.

For later use, we note a useful consequence of the soundness of Equation (4) modulo
bisimilarity.

I Lemma 8. Assume that Equation (4) holds modulo ↔. Then depth(p) is finite for each
closed CCSf term p.

4 The operational semantics of f

In order to obtain the desired results, we shall, first of all, understand what rules f may and
must have in order for Equation (4) to hold modulo bisimilarity (Proposition 12 below). We
begin this analysis by restricting the possible forms the SOS rules for f may take.

I Lemma 9. Suppose that f meets Assumption 1, and that Equation (4) is sound modulo
bisimilarity. Let ρ be a de Simone rule for f with µ as label. Then:
1. If µ = τ then the set of premises {xi

µi−−→ yi | i ∈ I} of ρ can only have one of the
following possible forms:
{xi

τ−→ yi} for some i ∈ {1, 2}, or
{x1

α−→ y1, x2
ᾱ−→ y2} for some α ∈ {a, ā}.

2. If µ = α for some α ∈ {a, ā}, then the set of premises {xi
µi−−→ yi | i ∈ I} can only have

the form {xi
α−→ yi} for some i ∈ {1, 2}.

The previous lemma limits the form of the premises that rules for f may have in order
for Equation (4) to hold modulo bisimilarity. We now characterise the rules that f must
have in order for it to satisfy that equation.

Firstly, we deal with synchronisation.

I Lemma 10. Assume that Equation (4) holds modulo bisimilarity. Then the operator f
must have a rule of the form

x1
α−→ y1 x2

ᾱ−→ y2

f(x1, x2) τ−→ t(y1, y2)
(5)

for some α ∈ {a, ā} and term t. Moreover, for each rule for f of the above form the term
t(x, y) is bisimilar to x ‖ y.

Henceforth we assume, without loss of generality that the target of a rule of the form (5)
is y1‖y2. We introduce the unary predicates Sfa,ā and Sfā,a to identify which rules of type (5)
are available for f . In detail, Sfa,ā holds if f has a rule of type (5) with premises x1

a−→ y1

and x2
ā−→ y2. Sfā,a holds in the symmetric case.

We consider now the interleaving behaviour in the rules for f . In order to properly
characterise the rules for f as done in the previous Lemma 10, we consider an additional
simplifying assumption on the form that the targets of the rules for f might have.

CSL 2021

8:10 Are Two Binary Operators Necessary to Finitely Axiomatise Parallel Composition?

I Assumption 3. If t is the target of a rule for f , then t is either a variable or a term
obtained by applying a single CCSf operator to the variables of the rule, according to the
constraints of the de Simone format.

I Lemma 11. Let µ ∈ {a, ā, τ}. Then the operator f must have a rule of the form

x1
µ−→ y1

f(x1, x2) µ−→ t(y1, x2)
(6)

or a rule of the form

x2
µ−→ y2

f(x1, x2) µ−→ t(x1, y2)
(7)

for some term t. Moreover, under Assumption 3, for each rule for f of the above forms the
term t(x, y) is bisimilar to x ‖ y.

Henceforth we assume, without loss of generality, that the target of a rule of the form (6)
is y1‖x2 and the target of a rule of the form (7) is x1‖y2.

For each µ ∈ {a, ā, τ}, we introduce two unary predicates, Lfµ and Rfµ, that allow us to
identify which rules with label µ are available for f . In detail,

Lfµ holds if f has a rule of the form (6) with label µ;
Rfµ holds if f has a rule of the form (7) with label µ.

We write Lfµ∧Rfµ to denote that f has both a rule of the form (6) and one of the form (7) with
label µ. We stress that, for each action µ, the validity of predicate Lfµ does not prevent Rfµ
from holding, and vice versa. Throughout the paper, in case only one of the two predicates
holds, we will clearly state it.

Summing up, we have obtained that:

I Proposition 12. If f meets Assumptions 1 and 3 and Equation (4) is sound modulo
bisimilarity, then f must satisfy Sfα,ᾱ for at least one α ∈ {a, ā}, and, for each µ ∈ {a, ā, µ},
at least one of Lfµ and Rfµ.

The next proposition states that this is enough to obtain the soundness of Equation (4).

I Proposition 13. Assume that all of the rules for f have the form (5), (6), or (7). If Sfα,ᾱ
holds for at least one α ∈ {a, ā}, and, for each µ ∈ {a, ā, τ}, at least one of Lfµ and Rfµ holds,
then Equation (4) is sound modulo bisimilarity.

When the set of actions is {a, ā, τ}, there are 81 operators that satisfy the constraints in
Propositions 12 and 13, including parallel composition and Hennessy’s merge. In general,
when the set of actions has 2n+ 1 elements, there are 33n+1 possible operators meeting those
constraints.

5 The main theorem and its proof strategy

Our order of business will now be to use the information collected so far to prove our main
result, namely the following theorem:

I Theorem 14. Assume that f satisfies Assumptions 1 and 3, and that Equation (4) holds
modulo bisimilarity. Then bisimilarity admits no finite equational axiomatisation over CCSf .

L. Aceto, V. Castiglioni, W. Fokkink, A. Ingólfsdóttir, and B. Luttik 8:11

In this section, we discuss the general reasoning behind the proof of Theorem 14. In
light of Propositions 12 and 13, to prove Theorem 14 we will proceed by a case analysis over
the possible sets of allowed SOS rules for operator f . In each case, our proof method will
follow the same general schema, which has its roots in Moller’s arguments to the effect that
bisimilarity is not finitely based over CCS (see, e.g., [4, 19, 20, 21]), and that we present here
at an informal level.

The main idea is to identify a witness property of the negative result. This is a specific
property of CCSf terms, say Wn for n ≥ 0, that, when n is large enough, is preserved by
provability from finite axiom systems. Roughly, this means that if E is a finite set of axioms
that are sound modulo bisimilarity, the equation p ≈ q is provable from E , and n is greater
than the size of all the terms in the equations in E , then either both p and q satisfy Wn,
or none of them does. Then, we exhibit an infinite family of valid equations, say en, called
accordingly witness family of equations for the negative result, in which Wn is not preserved,
namely it is satisfied only by one side of each equation. Thus, Theorem 14 specialises to:

I Theorem 15. Suppose that Assumptions 1–3 are met. Let E be a finite axiom system over
CCSf that is sound modulo bisimilarity. Then there is an infinite family en, n ≥ 0, of sound
equations such that E does not prove the equation en, for each n that is larger than the size
of each term in the equations in E.

In this paper, the property Wn corresponds to having a summand that is bisimilar to a
specific process. In detail:
1. We identify, for each case, a family of processes f(µ, pn), for n ≥ 0, and the choices of µ

and pn are tailored to the particular set of SOS rules allowed for f . Moreover, process
pn will have size at least n, for each n ≥ 0. Sometimes, we shall refer to the processes
f(µ, pn) as the witness processes.

2. We prove that by choosing n large enough, given a finite set of valid equations E and
processes p, q ↔ f(µ, pn), if E ` p ≈ q and p has a summand bisimilar to f(µ, pn), then
also q has a summand bisimilar to f(µ, pn). Informally, we will choose n greater than the
size of all the terms in the equations in E , so that we are guaranteed that the behaviour of
the summand bisimilar to f(µ, pn) is due to a closed substitution instance of a variable.

3. We provide an infinite family of valid equations en in which one side has a summand
bisimilar to f(µ, pn), but the other side does not. In light of item 2, this implies that
such a family of equations cannot be derived from any finite collection of valid equations
over CCSf , modulo bisimilarity, thus proving Theorem 15.

To narrow down the combinatorial analysis over the allowed sets of SOS rules for f we
examine first the distributivity properties, modulo ↔, of the operator f over summation.

First of all, we notice that f cannot distribute over summation in both arguments. This
is a consequence of our previous analysis of the operational rules that such an operator f
may and must have in order for Equation (4) to hold. However, it can also be shown in a
purely algebraic manner.

I Lemma 16. A binary operator satisfying Equation (4) cannot distribute over + in both
arguments.

Hence, we can limit ourselves to considering binary operators satisfying our constraints
that, modulo bisimilarity, distribute over + in one argument or in none.

We consider these two possibilities in turn.

CSL 2021

8:12 Are Two Binary Operators Necessary to Finitely Axiomatise Parallel Composition?

Distributivity in one argument. Due to our Assumptions 1–3, we can exploit a result from
[2] to characterise the rules for an operator f that distributes over summation in one of its
arguments. More specifically, [2, Lemma 4.3] gives a condition on the rules for a smooth
operator g in a GSOS system that includes the + operator in its signature, which guarantees
that g distributes over summation in one of its arguments. (The rules defining the semantics
of smooth operators are a generalisation of those in de Simone format.) Here we show
that, for operator f , the condition in [2, Lemma 4.3] is both necessary and sufficient for
distributivity of f in one of its two arguments.

I Lemma 17. Let i ∈ {1, 2}. Modulo bisimilarity, operator f distributes over summation in
its i-th argument if and only if each rule for f has a premise xi

µi−−→ yi, for some µi.

By Proposition 12, Lemma 17 implies that, when f is distributive in one argument, either
Lfµ holds for all µ ∈ {a, ā, τ} or Rfµ holds for all µ ∈ {a, ā, τ}, and Sα,ᾱ holds for at least
one α ∈ {a, ā}. Notice that if Lfµ holds for each action µ and both Sfa,ā and Sfā,a hold, then
f behaves as Hennessy’s merge |/ [14], and our Theorem 15 specialises to [4, Theorem 22].
Hence we assume, without loss of generality, that Sfα,ᾱ holds for only one α ∈ {a, ā}. A
similar reasoning applies if Rfµ holds for each action µ.

In Section 6 we will present the proof of Theorem 15 in the case of an operator f that
distributes over summation in its first argument (see Theorem 18).

Distributivity in neither argument. We now consider the case in which f does not distribute
over summation in either argument.

Also in this case, we can exploit Lemma 17 to obtain a characterisation of the set of rules
allowed for an operator f satisfying the desired constraints. In detail, we infer that there
must be µ, ν ∈ {a, ā, τ}, not necessarily distinct, such that Lfµ and Rfν hold. Otherwise, as f
must have at least one rule for each action (see Proposition 12), at least one argument would
be involved in the premises of each rule, and this would entail distributivity over summation
in that argument.

We will split the proof of Theorem 15 for an operator f that, modulo bisimilarity, does
not distribute over summation in either argument into three main cases:
1. In Section 7, we consider the case of Lfα ∧Rfα holding, for some α ∈ {a, ā} (Theorem 19).
2. In Section 8, we deal with the case of f having only one rule for α, only one rule for

ᾱ, and such rules are of different forms. As we will see, we will need to distinguish two
subcases, according to which predicate Sfα,ᾱ holds (Theorem 20 and Theorem 21).

3. Finally, in Section 9, we study the case of f having only one rule with label α, only one
rule with label ᾱ, and such rules are of the same type (Theorem 22).

6 Negative result: the case Lfa, L
f
ā, L

f
τ

In this section we discuss the nonexistence of a finite axiomatisation of CCSf in the case of
an operator f that, modulo bisimilarity, distributes over summation in one of its arguments.
We expand only the case of f distributing in the first argument. (The case of distributivity in
the second argument follows by a straightforward adaptation of the arguments we use in this
section.) Hence, in the current setting, we can assume the following set of SOS rules for f :

x1
µ−→ y1

f(x1, x2) µ−→ y1‖x2
∀µ ∈ {a, ā, τ} x1

α−→ y1 x2
ᾱ−→ y2

f(x1, x2) τ−→ y1‖y2

namely, only Lfµ holds for each action µ, and only Sα,ᾱ holds for some α ∈ {a, ā}.

L. Aceto, V. Castiglioni, W. Fokkink, A. Ingólfsdóttir, and B. Luttik 8:13

According to the proof strategy sketched in Section 5, we now introduce a particular
family of equations on which we will build our negative result. We define

pn =
n∑
i=0

ᾱα≤i (n ≥ 0)

en : f(α, pn) ≈ αpn +
n∑
i=0

τα≤i (n ≥ 0) .

It is not difficult to check that the infinite family of equations en is sound modulo bisimilarity.
Our order of business is now to prove the instance of Theorem 15 considering the family

of equations en above, showing that no finite collection of equations over CCSf that are
sound modulo bisimilarity can prove all of the equations en (n ≥ 0).

Formally, we prove the following theorem:

I Theorem 18. Assume an operator f such that only Lfµ holds for each action µ and
only Sfα,ᾱ holds. Let E be a finite axiom system over CCSf that is sound modulo ↔, n be
larger than the size of each term in the equations in E, and p, q be closed terms such that
p, q ↔ f(α, pn). If E ` p ≈ q and p has a summand bisimilar to f(α, pn), then so does q.

Then, since the left-hand side of equation en, viz. the term f(α, pn), has a summand
bisimilar to f(α, pn), whilst the right-hand side, viz. the term αpn +

∑n
i=0 τα

≤i, does not,
we can conclude that the infinite collection of equations {en | n ≥ 0} is the desired witness
family. Theorem 15 is then proved for the considered class of auxiliary binary operators.

7 Negative result: the case Lfα ∧Rf
α

In this section we investigate the first case, out of three, related to an operator f that does
not distribute, modulo bisimilarity, over summation in either of its arguments.

We choose α ∈ {a, ā} and we assume that the set of rules for f includes

x1
α−→ y1

f(x1, x2) α−→ y1‖x2

x2
α−→ y2

f(x1, x2) α−→ x1‖y2
,

namely, predicate Lfα ∧Rfα holds for f .
We stress that the validity of the negative result we prove in this section does not depend

on which types of rules with labels ᾱ and τ are available for f . Moreover, the case of an
operator for which Lfᾱ ∧R

f
ᾱ holds can be easily obtained from the one we are considering,

and it is therefore omitted.
We now introduce the infinite family of valid equations, modulo bisimilarity, that will

allow us to obtain the negative result in the case at hand. We define

qn =
n∑
i=0

αᾱ≤i (n ≥ 0)

en : f(α, qn) ≈ αqn +
n∑
i=0

α(α‖ᾱ≤i) (n ≥ 0) .

Following the proof strategy from Section 5, we aim to show that, when n is large enough,
the witness property of having a summand bisimilar to f(α, qn) is preserved by derivations
from a finite, sound axiom system E , as stated in the following theorem:

CSL 2021

8:14 Are Two Binary Operators Necessary to Finitely Axiomatise Parallel Composition?

I Theorem 19. Assume an operator f such that Lfα ∧ Rfα holds. Let E be a finite axiom
system over CCSf that is sound modulo ↔, n be larger than the size of each term in the
equations in E, and p, q be closed terms such that p, q ↔ f(α, qn). If E ` p ≈ q and p has a
summand bisimilar to f(α, qn), then so does q.

Then, we can conclude that the infinite collection of equations {en | n ≥ 0} is the
desired witness family. In fact, the left-hand side of equation en, viz. the term f(α, qn), has a
summand bisimilar to f(α, qn), whilst the right-hand side, viz. the term αqn+

∑n
i=0 α(α‖ᾱ≤i),

does not. This concludes the proof of Theorem 15 in this case.

8 Negative result: the case Lfα, R
f
ᾱ

In this section we deal with the second case related to an operator f that does not distribute
over summation in either argument. This time, given α ∈ {a, ā}, we assume that operator f
has only one rule with label α and only one rule with label ᾱ, and moreover we assume such
rules to be of different types. In detail, we expand the case in which for action α only the
predicate Lfα holds, and for action ᾱ only Rfᾱ holds, namely f has rules:

x1
α−→ y1

f(x1, x2) α−→ y1‖x2

x2
ᾱ−→ y2

f(x1, x2) ᾱ−→ x1‖y2
.

Once again, the proof for the symmetric case with Lfᾱ and Rfα holding is omitted.
To obtain the proof of the negative result, we consider the same family of witness processes

f(α, pn) from Section 6. However, differently from the previous case, the definition of the
witness family of equations depends on which rules of type (5) are available for f . More
precisely, we need to split the proof of the negative result into two cases, according to whether
the rules for f allow α and pn to synchronise or not.

Case 1: Possibility of synchronisation. Assume first that Sfα,ᾱ holds, so that the rule

x1
α−→ y1 x2

ᾱ−→ y2

f(x1, x2) τ−→ y1‖y2

allows for synchronisation between α and pn. In this setting, the infinite family of equations

en : f(α, pn) ≈ αpn +
n∑
i=0

ᾱ(α‖α≤i) +
n∑
i=0

τα≤i (n ≥ 0)

is sound modulo bisimilarity and it constitutes a family of witness equations.

I Theorem 20. Assume an operator f such that only Lfα holds for α, only Rfᾱ holds for ᾱ,
and Sfα,ᾱ holds. Let E be a finite axiom system over CCSf that is sound modulo ↔, n be
larger than the size of each term in the equations in E, and p, q be closed terms such that
p, q ↔ f(α, pn). If E ` p ≈ q and p has a summand bisimilar to f(α, pn), then so does q.

This proves Theorem 15 in the considered setting, as the left-hand side of equation en,
viz. the term f(α, pn), has a summand bisimilar to f(α, pn), whilst the right-hand side,
viz. the term αpn +

∑n
i=0 ᾱ(α‖ᾱ≤i) +

∑n
i=0 τα

≤i, does not.

L. Aceto, V. Castiglioni, W. Fokkink, A. Ingólfsdóttir, and B. Luttik 8:15

Case 2: No synchronisation. Assume now that the synchronisation between α and pn is
prevented, namely only Sfᾱ,α holds. Then, the witness family of equations changes as follows:

en : f(α, pn) ≈ αpn +
n∑
i=0

ᾱ(α‖α≤i) (n ≥ 0) .

Our order of business is then to prove the following:

I Theorem 21. Assume an operator f such that only Lfα holds for α, only Rfᾱ holds for ᾱ,
and only Sfᾱ,α holds. Let E be a finite axiom system over CCSf that is sound modulo ↔, n
be larger than the size of each term in the equations in E, and p, q be closed terms such that
p, q ↔ f(α, pn). If E ` p ≈ q and p has a summand bisimilar to f(α, pn), then so does q.

Once again, the validity of Theorem 15 follows by noticing that the left-hand side of
equation en, viz. the term f(α, pn), has a summand bisimilar to f(α, pn), whilst the right-hand
side, viz. the term αpn +

∑n
i=0 ᾱ(α‖ᾱ≤i), does not.

9 Negative result: the case Lfτ
This section considers the last case in our analysis, namely that of an operator f that does
not distribute, modulo bisimilarity, over summation in either argument and that has the
same rule type for actions α, ᾱ. Here, we present solely the case in which Lfτ holds, and only
Rfα, R

f
ᾱ hold for α, ᾱ, namely f has rules:

x1
τ−→ y1

f(x1, x2) τ−→ y1‖x2

x2
α−→ y2

f(x1, x2) α−→ x1‖y2

x2
ᾱ−→ y2

f(x1, x2) ᾱ−→ x1‖y2
.

The symmetric case can be obtained from this one in a straightforward manner.
Interestingly, the validity of the negative result we consider in this section is independent

of which rules of type (5) are available for f , and of the validity of the predicate Rfτ .
Consider the family of equations defined by:

en : f(τ, qn) ≈ τqn +
n∑
i=0

α(τ‖ᾱ≤i) (n ≥ 0)

where the processes qn are the same used in Section 7. Theorem 22 below proves that the
collection of equations en, n ≥ 0, is a witness family of equations for our negative result.

I Theorem 22. Assume an operator f such that Lfτ holds and only Rfα and Rfᾱ hold for
actions α and ᾱ. Let E be a finite axiom system over CCSf that is sound modulo ↔, n be
larger than the size of each term in the equations in E, and p, q be closed terms such that
p, q ↔ f(τ, qn). If E ` p ≈ q and p has a summand bisimilar to f(τ, qn), then so does q.

As the left-hand side of equation en, viz. the term f(τ, qn), has a summand bisimilar to
f(τ, qn), whilst the right-hand side, viz. the term τqn +

∑n
i=0 α(τ‖ᾱ≤i), does not, we can

conclude that the collection of infinitely many equations en (n ≥ 0) is the desired witness
family. This concludes the proof of Theorem 15 for this case and our proof of Theorem 14.

10 Conclusions

In this paper, we have shown that, under a number of reasonable assumptions, we cannot
use a single binary auxiliary operator f , whose semantics is defined via inference rules in
the de Simone format, to obtain a finite axiomatisation of bisimilarity over the recursion,

CSL 2021

8:16 Are Two Binary Operators Necessary to Finitely Axiomatise Parallel Composition?

restriction and relabelling free fragment of CCS. Our result constitutes a first step towards
a definitive justification of the canonical standing of the left and communication merge
operators by Bergstra and Klop. We envisage the following ways in which we might generalise
the contribution presented in this study. Firstly, we will try to get rid of Assumptions 2 and 3.
Next, it is natural to relax Assumption 1 by considering the GSOS format [12] in place of the
de Simone format. However, as shown by the heavy amount of technical results necessary
to prove our main result even in our simplified setting, we believe that this generalisation
cannot be obtained in a straightforward manner and that it will require the introduction of
new techniques. It would also be very interesting to explore whether some version of problem
(P) can be solved using existing results from equational logic and universal algebra.

References
1 Luca Aceto. Some of my favourite results in classic process algebra. Bulletin of the EATCS,

81:90–108, 2003.
2 Luca Aceto, Bard Bloom, and Frits W. Vaandrager. Turning SOS rules into equations. Inf.

Comput., 111(1):1–52, 1994. doi:10.1006/inco.1994.1040.
3 Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik. Are two

binary operators necessary to finitely axiomatise parallel composition? CoRR, abs/2010.01943,
2020. URL: http://arxiv.org/abs/2010.01943.

4 Luca Aceto, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik. CCS with Hennessy’s merge
has no finite-equational axiomatization. Theor. Comput. Sci., 330(3):377–405, 2005. doi:
10.1016/j.tcs.2004.10.003.

5 Luca Aceto, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik. Finite equational bases in
process algebra: Results and open questions. In Aart Middeldorp, Vincent van Oostrom,
Femke van Raamsdonk, and Roel C. de Vrijer, editors, Processes, Terms and Cycles: Steps
on the Road to Infinity, Essays Dedicated to Jan Willem Klop, on the Occasion of His 60th
Birthday, volume 3838 of Lecture Notes in Computer Science, pages 338–367. Springer, 2005.
doi:10.1007/11601548_18.

6 Luca Aceto, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik. A finite equational base for
CCS with left merge and communication merge. ACM Trans. Comput. Log., 10(1):6:1–6:26,
2009. doi:10.1145/1459010.1459016.

7 Luca Aceto, Wan Fokkink, and Chris Verhoef. Structural operational semantics. In Hand-
book of Process Algebra, pages 197–292. North-Holland / Elsevier, 2001. doi:10.1016/
b978-044482830-9/50021-7.

8 Luca Aceto, Anna Ingólfsdóttir, Bas Luttik, and Paul van Tilburg. Finite equational bases for
fragments of CCS with restriction and relabelling. In Proceedings of IFIP TCS 2008, volume
273 of IFIP, pages 317–332, 2008. doi:10.1007/978-0-387-09680-3_22.

9 Jan A. Bergstra and Jan Willem Klop. The algebra of recursively defined processes and the
algebra of regular processes. In Proceedings of ICALP 2011, volume 172 of Lecture Notes in
Computer Science, pages 82–94, 1984. doi:10.1007/3-540-13345-3_7.

10 Jan A. Bergstra and Jan Willem Klop. Process algebra for synchronous communication.
Information and Control, 60(1-3):109–137, 1984. doi:10.1016/S0019-9958(84)80025-X.

11 Jan A. Bergstra and Jan Willem Klop. Algebra of communicating processes with abstraction.
Theor. Comput. Sci., 37:77–121, 1985. doi:10.1016/0304-3975(85)90088-X.

12 Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t be traced. J. ACM,
42(1):232–268, 1995. doi:10.1145/200836.200876.

13 Robert de Simone. Higher-level synchronising devices in meije-SCCS. Theor. Comput. Sci.,
37:245–267, 1985. doi:10.1016/0304-3975(85)90093-3.

14 Matthew Hennessy. Axiomatising finite concurrent processes. SIAM J. Comput., 17(5):997–
1017, 1988. doi:10.1137/0217063.

https://doi.org/10.1006/inco.1994.1040
http://arxiv.org/abs/2010.01943
https://doi.org/10.1016/j.tcs.2004.10.003
https://doi.org/10.1016/j.tcs.2004.10.003
https://doi.org/10.1007/11601548_18
https://doi.org/10.1145/1459010.1459016
https://doi.org/10.1016/b978-044482830-9/50021-7
https://doi.org/10.1016/b978-044482830-9/50021-7
https://doi.org/10.1007/978-0-387-09680-3_22
https://doi.org/10.1007/3-540-13345-3_7
https://doi.org/10.1016/S0019-9958(84)80025-X
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1145/200836.200876
https://doi.org/10.1016/0304-3975(85)90093-3
https://doi.org/10.1137/0217063

L. Aceto, V. Castiglioni, W. Fokkink, A. Ingólfsdóttir, and B. Luttik 8:17

15 Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and concurrency. J.
ACM, 32(1):137–161, 1985. doi:10.1145/2455.2460.

16 Robert M. Keller. Formal verification of parallel programs. Commun. ACM, 19(7):371–384,
1976. doi:10.1145/360248.360251.

17 Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer, 1980. doi:10.1007/3-540-10235-3.

18 Robin Milner. Communication and concurrency. PHI Series in computer science. Prentice
Hall, 1989.

19 Faron Moller. Axioms for Concurrency. PhD thesis, Department of Computer Science,
University of Edinburgh, July 1989. Report CST-59-89. Also published as ECS-LFCS-89-84.

20 Faron Moller. The importance of the left merge operator in process algebras. In Proceedings
of ICALP ‘90, volume 443 of Lecture Notes in Computer Science, pages 752–764, 1990.
doi:10.1007/BFb0032072.

21 Faron Moller. The nonexistence of finite axiomatisations for CCS congruences. In Proceedings
of LICS ’90, pages 142–153, 1990. doi:10.1109/LICS.1990.113741.

22 David M. R. Park. Concurrency and automata on infinite sequences. In Proceedings of
GI-Conference, volume 104 of Lecture Notes in Computer Science, pages 167–183, 1981.
doi:10.1007/BFb0017309.

23 Gordon D. Plotkin. A structural approach to operational semantics. Report DAIMI FN-19,
Computer Science Department, Aarhus University, 1981.

24 Walter Taylor. Equational logic. In Contributions to Universal Algebra, pages 465–501.
North-Holland, 1977. doi:10.1016/B978-0-7204-0725-9.50040-X.

CSL 2021

https://doi.org/10.1145/2455.2460
https://doi.org/10.1145/360248.360251
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/BFb0032072
https://doi.org/10.1109/LICS.1990.113741
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1016/B978-0-7204-0725-9.50040-X

A Quasi-Polynomial Black-Box Algorithm for Fixed
Point Evaluation
André Arnold
Independent Researcher, Talence, France
aa-labri@sfr.fr

Damian Niwiński
Institute of Informatics, University of Warsaw, Poland
niwinski@mimuw.edu.pl

Paweł Parys
Institute of Informatics, University of Warsaw, Poland
parys@mimuw.edu.pl

Abstract
We consider nested fixed-point expressions like µz.νy.µx.f(x, y, z) evaluated over a finite lattice, and
ask how many queries to a function f are needed to find the value. The previous upper bounds for a
monotone function f of arity d over the lattice {0, 1}n were of the order nO(d), whereas a lower bound
of Ω

(
n2

lg n

)
is known in case when at least one alternation between the least (µ) and the greatest (ν)

fixed point occurs in the expression. Following a recent development for parity games, we show here
that a quasi-polynomial number of queries is sufficient, namely nlg(d/ lg n)+O(1). The algorithm is
an abstract version of several algorithms proposed recently by a number of authors, which involve
(implicitly or explicitly) the structure of a universal tree. We then show a quasi-polynomial lower
bound for the number of queries used by the algorithms in consideration.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Mu-calculus, Parity games, Quasi-polynomial time, Black-box algorithm

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.9

Funding Paweł Parys: Author supported by the National Science Centre, Poland (grant no.
2016/22/E/ST6/00041).

1 Introduction

Computing fixed points over a finite lattice is a fundamental problem whose algorithmic
nature is not yet completely understood. The problem can be stated as evaluation of an
expression

θdxd.θd−1xd−1. · · · .θ2x2.θ1x1.f (x1, x2, . . . , xd) , (1)

where f is a monotonic mapping f : ({0, 1}n)d → {0, 1}n for some n ≥ 1, and where
θ1, . . . , θd ∈ {µ, ν} with µ and ν standing for the least and the greatest fixed point, respectively.
If every output bit of the function f is a logical OR or a logical AND of some input bits, the
problem is well-known to be equivalent to solving parity games [10, 11] (see, e.g., Arnold
and Niwiński [1, Section 4] for an exact statement of this equivalence), and in this form it
has attracted much attention since at least 20 years. An abstract formulation was previously
considered, e.g., by Browne, Clarke, Jha, Long, and Marrero [4], who made one of the first
complexity improvements. These authors also noticed that several algorithms make use only
of the structure of fixed points, treating the basic operations as black boxes, and suggested a
complexity measure, which in our setting boils down to the following:

I Problem 1.1. How many queries to the function f are needed to evaluate Expression (1)?
© André Arnold, Damian Niwiński, and Paweł Parys;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 9; pp. 9:1–9:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aa-labri@sfr.fr
mailto:niwinski@mimuw.edu.pl
https://orcid.org/0000-0001-7247-1408
mailto:parys@mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.CSL.2021.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

The problem has been taken by Parys [24], who showed in particular that at least Ω
(
n2

lgn

)
queries are needed in case when at least one alternation between µ and ν occurs in the
expression. One might have expected that this lower bound extends to roughly nd in general
case, but we will see below that it is not the case.

The breakthrough result by Calude, Jain, Khoussainov, Li, and Stephan [5] exhibiting
a quasi-polynomial time algorithm for parity games has triggered an intensive flow of
research [12, 13, 14, 18, 19, 21, 22, 25], aiming in potential improvement, but also in better
understanding of the new complexity situation. The new algorithm has a direct consequence
on fixed-point computation: it applies to Expression (1) if the function f is given by a
vector of Boolean terms. While these terms can be in general exponential in n and d,
Hausmann and Schröder [14] showed that the blow-up can be controlled: Expression (1) can
be evaluated in quasi-polynomial time provided that the function f itself can be evaluated in
quasi-polynomial time.

In the present paper we focus on the black-box model and evaluate Expression (1) using
a quasi-polynomial number of queries to the function f . The algorithm is an abstract version
of some recent algorithms for parity games. Our starting point was an algorithm proposed
by Parys [25], which is a standard McNaughton–Zielonka’s algorithm [23, 29] enhanced by
some additional control over recursion. But we also exploit the subsequent improvement by
Lehtinen, Schewe, and Wojtczak [22], and a generalisation by Jurdziński and Morvan [19],
where the control mechanism uses universal trees – a key tool in the modern analysis of
parity games [8].

The number of queries to the function f is bounded by n2·lg(d/ lgn)+O(1) (in this paper lg
stands for the binary logarithm). It can be further improved to nlg(d/ lgn)+O(1) (i.e., almost
quadratically) by reorganising the algorithm in asymmetric manner, which is a celebrated
trick in fixed-point computation invented by Seidl [26]. While the symmetric version of our
algorithm resembles the aforementioned recursive algorithms solving parity games [19, 22, 25],
the asymmetric version is close to the earlier quasi-polynomial algorithms solving parity
games [5, 12, 18, 21]. In consequence, we see a direct link between the two families of
algorithms for parity games, which is hardly visible until the µ-calculus perspective is
adopted. Finally we show a kind of a lower bound for the class of algorithms in consideration.
While this is not an absolute lower bound for the black-box complexity like, e.g., in Parys [24],
we show that any algorithm of the considered form must involve a universal tree and therefore,
by the result of Czerwiński et al. [8], it uses a quasi-polynomial number of queries.

Related work. As mentioned above, we build on recent algorithms for parity games [19,
22, 25]. All these algorithms exploit the concept of dominion introduced by Jurdziński,
Paterson, and Zwick [20], and our initial step in this paper is a fixed-point interpretation
of dominions. The key result on decompositions of dominions is similar to the result on
attractor decompositions of dominions considered by Jurdziński and Morvan [19].

The relation of the new techniques for parity games to the µ-calculus has been addressed
by Lehtinen [21], who showed, in particular, a new upper bound on the alternation depth of a
fixed-point formula. Hausmann and Schröder in the aforementioned work [14] invent a quasi-
polynomial time algorithm for computing fixed points of monotone set-valued functions.1
They did not considered black-box model, but it can be seen that their algorithm (adapted
to Expression (1)) performs n · ddlgne+2 queries to the function f , which is similar to our

1 After the submission of our paper, Hausmann and Schröder released a new version of their work [15],
where they develop a unified method of fixed-point evaluation based on universal graphs [7].

A. Arnold, D. Niwiński, and P. Parys 9:3

algorithm in its asymmetric version. These authors ask in the conclusion whether this
method can also incorporate the algorithm by Parys [25]. For parity games, this question is
essentially answered by a meta-algorithm of Jurdziński and Morvan [19], that captures all
algorithms known so far including [22, 25]. In our work (that we started not knowing the
work of Hausmann and Schröder [14, 15]) we develop a quasi-polynomial method directly for
fixed-point evaluation, and additionally show its limitation.

The concept of symbolic algorithms considered for parity games by Chatterjee, Dvořák,
Henzinger, and Svozil [6], and also by Jurdziński and Morvan [19], is related to Problem 1.1
if the function f is induced by the binary relation of game moves. Then Expression (1)
represents the winning region in a parity game [10] (see also [1]), and any black-box algorithm
solving Problem 1.1 can be adapted to a symbolic algorithm for parity games.

The complexity of solving parity games is tantalisingly close to polynomial time. As the
problem is in NP ∩ co-NP (even in UP ∩ co-UP [16]), one can hardly expect a lower bound
above the P-completeness, which holds already for reachability games [28]. The research in
this direction focuses on specific classes of algorithms. The aforementioned (almost) quadratic
lower bound by Parys [24] concerns the number of queries used by a black-box algorithm.
Recently Czerwiński et al. [8] estimated the size of universal trees, which are behind the
algorithms exhibiting a separation scheme first pinpointed by Bojańczyk and Czerwiński [3].
This gives evidence that the quasi-polynomial complexity of the original algorithm [5] as
well as the follow-ups [12, 13, 18, 21] is tight. There has been some hope that the newest
approach based on controlling recursion in the McNaughton–Zielonka algorithm [19, 22, 25]
may avoid this barrier, but our present results give evidence that it is not the case.

2 Basic concepts

Fixed points. By the celebrated theorem of Knaster and Tarski, if f : L→ L is a monotone
function over a complete lattice 〈L,≤〉, then it has the least (µ) and the greatest (ν) fixed
points satisfying the formulae

µx.f(x) = inf {a | f(a) ≤ a} and νx.f(x) = sup {a | a ≤ f(a)} , (2)

respectively. For a monotone function of several arguments, we can apply fixed-point
operators successively; for example, νy.µx.g(x, y) is the greatest fixed point of the mapping
y 7→ µx.g(x, y), etc. This gives the semantics of Expression (1).

As it is easy to see that

θy.θx.g(x, y) = θx.g(x, x), (3)

for θ ∈ {µ, ν}, we can without loss of generality assume that the µ and ν operators in
Expression (1) alternate.

In this paper, as L we take a finite power Bn of the Boolean lattice B = {0, 1} with the
componentwise order denoted by ≤. We denote the least and the greatest element of Bn
by 0 and 1, respectively (assuming that n is clear from the context). We use a semiring
notation for join and meet, that is, for A,B ∈ Bn we write

A+B
def= sup(A,B) and A ∗B def= inf(A,B).

Moreover, for f : (Bn)d → Bn and for A ∈ Bn, let f�A : (Bn)d−1 → Bn be the mapping
defined by

f�A(x1, . . . , xd−1) def= f(x1, . . . , xd−1, A).

We refer the reader to Arnold and Niwiński [1] for basic properties of fixed points.

CSL 2021

9:4 A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

Restrictions. If A ≤ B, and f : (Bn)d → Bn is monotone in each argument, we let

fA,B(x1, . . . , xd)
def= A+B ∗ f(x1, . . . , xd).

Clearly fA,B is monotone as well. Note that f0,1 = f .
In this paper we often consider a generalisation of Expression (1) where f is replaced by

the restricted function fA,B. Namely, for Θ = 〈θd, θd−1, . . . , θ1〉, with θi ∈ {µ, ν}, we form
an expression (Θ, f, (A,B)) whose value is

‖(Θ, f, (A,B))‖ def= θdxd.θd−1xd−1. · · · .θ1x1.fA,B(x1, . . . , xd).

The object (Θ, f, (A,B)), where the length of Θ equals the number of arguments in the
monotone function f : Bn → Bn and where A ≤ B, is called a fixed-point expression over Bn
(or simply a fixed-point expression if n is clear from the context). We write |Θ|µ and |Θ|ν for
the number of µ and ν operators in Θ, respectively.
I Remark 2.1. The above restriction allows us to “narrow the scope” of a function f to an
interval [A,B] = {x | A ≤ x ≤ B} that can be identified with BI , where I = {i ∈ {1, . . . , n} |
Ai < Bi}. It would be perhaps more natural to define it with a function

A+B ∗ f(A+ x1 ∗B,A+ x2 ∗B, . . . , A+ xn ∗B);

such a function clearly depends only on the bits xi with i ∈ I. But one can easily prove
that θx.A+B ∗ f(A+B ∗ x) = θx.A+B ∗ f(x), and consequently (by induction) the two
definitions lead to the same fixed points. We have chosen fA,B above for its simplicity.

Because ‖(Θ, f, (A,B))‖ is a fixed point of fA,B , it lies between the bounds A,B:

I Proposition 2.2. For every fixed-point expression (Θ, f, (A,B)),

A ≤ ‖(Θ, f, (A,B))‖ ≤ B.

Moreover, the value of (Θ, f, (A,B)) does not depend on the bounds A and B, assuming
that it lies between these bounds (see Appendix A for a proof):

I Proposition 2.3. If A ≤ C ≤ ‖(Θ, f, (A,B))‖ ≤ D ≤ B, then

‖(Θ, f, (A,B))‖ = ‖(Θ, f, (C,D))‖.

Duality. The dual of b ∈ B is b = 1 − b, and the dual of a vector x = (x1, . . . , xn) ∈ Bn
is x = (x1, . . . , xn). The dual of a function f : (Bn)d → Bn is the function f̃ defined by
f̃(x1, . . . , xd) = f(x1, . . . , xd). The dual θ̃ of θ ∈ {ν, µ} is the other element of {ν, µ}, and the
dual of Θ = 〈θ1, . . . , θd〉 is Θ̃ def= 〈θ̃1, . . . , θ̃d〉. The dual of F = (Θ, f, (A,B)) is F̃ def= (Θ̃, f̃ ,
(B,A)). The following is a direct consequence of the definition.

I Proposition 2.4. For every fixed-point expression F we have ‖F̃‖ = ‖F‖.

This proposition allows us to perform proofs by duality: it is enough to prove statements
for one of the fixed-point operators, µ or ν, and then a proof for the other operator follows
by considering the dual expression.

Trees. Ordered trees (or simply trees) are defined by induction: if T1, . . . , Tk are ordered
trees, then 〈T1, . . . , Tk〉 is an ordered tree (where possibly k = 0, which is the base of the
induction). A node, a leaf, a child, a descendant, a parent, an ancestor, etc., are defined
as expected; we skip formal definitions. The width of a tree T , denoted |T |, equals 1 for
T = 〈〉, and |T1|+ · · ·+ |Tk| for T = 〈T1, . . . , Tk〉 with k ≥ 1 (we can identify the width with

A. Arnold, D. Niwiński, and P. Parys 9:5

the number of leaves of a tree). The height of a tree T equals 0 for T = 〈〉, and 1 plus the
maximum of heights of T1, . . . , Tk for T = 〈T1, . . . , Tk〉 with k ≥ 1. We allow concatenation
of trees, so that 〈T1, . . . , Tk〉 · 〈Tk+1, . . . , Tp〉 amounts to 〈T1, . . . , Tk, Tk+1, . . . , Tp〉, and Tn
abbreviates T · . . . · T︸ ︷︷ ︸

n

.

A tree is equitable if all its branches have the same length; more formally, T = 〈T1, . . . , Tk〉
is equitable if all T1, . . . , Tk are equitable and have the same height. In the sequel, we almost
exclusively consider equitable trees. The level of a node in an equitable tree of height h is its
distance from the leaves (in particular leaves are at level 0, and the root is at level h).

Intuitively, a tree T embeds in a tree U if T can be obtained from U by pruning some
subtrees. More formally, T = 〈T1, . . . , Tk〉 embeds in U = 〈U1, . . . , Up〉 if there exist indices
j1, . . . , jk such that 1 ≤ j1 < · · · < jk ≤ p and Ti embeds in Uji for all i ∈ {1, . . . , k}. (Thus
〈〉 embeds in every tree.)

A tree U is (n, h)-universal if it is equitable, has height h, and every (equitable) tree T
of height at most h and width at most n embeds in U . In this statement it does not matter
whether or not we require that T is equitable, because every tree embeds in some equitable
tree of the same height and width. We know three families of (n, h)-universal trees:

Cn,0 = Pn,0 = Sn,0 = S0,h = 〈〉,
Cn,h = 〈Cn,h−1〉n for h ≥ 1,

Pn,h = 〈Pbn/2c,h−1〉bn/2c · 〈Pn,h−1〉 · 〈Pbn/2c,h−1〉bn/2c for h ≥ 1,
Sn,h = Sbn/2c,h · 〈Sn,h−1〉 · Sbn/2c,h for n, h ≥ 1.

I Proposition 2.5 ([19, Proposition 3.2]). Trees Cn,h, Pn,h, and Sn,h are (n, h)-universal.

Trees Pn,h and Sn,h are of quasi-polynomial width; more precisely, they have, respectively,
nlgn+lg(h/ lgn)+O(1) and nlg(h/ lgn)+O(1) leaves [18, 25].

3 Algorithm

3.1 Symmetric version
In this section we present an algorithm that computes the value of a fixed-point expression
F . To this end, we define a value ‖F‖U,V parameterised by two trees U, V . This value can
be computed using |U | · |V | queries to f (cf. Lemma 3.2). Simultaneously, if U and V are
universal, this value actually equals ‖F‖ (cf. Lemma 3.1). Later, we also prove that this is a
necessary condition: the above equality holds only when the trees U and V are universal
(cf. Theorem 5.1).

Let F = (Θ, f, (A,B)) be a fixed-point expression, and let U and V be equitable trees of
height, respectively, |Θ|µ and |Θ|ν . We define a value ‖F‖U,V by induction on the length of
Θ:
(1) if Θ = 〈〉, as ‖F‖U,V we take ‖F‖, that is, A+B ∗ f();
(2) if Θ = 〈ν〉 ·Θ′ and V = 〈V1, . . . , Vp〉, then we take B0 = B, and

Bj = ‖(Θ′, f�Bj−1 , (A,Bj−1))‖U,Vj

for j ∈ {1, . . . , p}, and ‖F‖U,V = Bp;
(3) if Θ = 〈µ〉 ·Θ′ and U = 〈U1, . . . , Up〉, then we take A0 = A, and

Aj = ‖(Θ′, f�Aj−1 , (Aj−1, B))‖Uj ,V

for j ∈ {1, . . . , p}, and ‖F‖U,V = Ap.

CSL 2021

9:6 A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

I Lemma 3.1. Let F = (Θ, f, (A,B)) be a fixed point expression, and let U and V be
(n, |Θ|µ)- and (n, |Θ|ν)-universal trees, respectively. Then ‖F‖U,V = ‖F‖.

The above lemma is proven in Section 4. We can easily compute ‖F‖U,V , following
directly its definition:

I Lemma 3.2. Let F = (Θ, f, (A,B)) be a fixed-point expression, and let U and V be
equitable trees of height, respectively, |Θ|µ and |Θ|ν . There is an algorithm that computes
‖F‖U,V using |U | · |V | queries to the function f .

Proof. The proof goes by induction on the length of Θ. A single query is asked in Case (1) of
the definition of ‖F‖U,V , when all parameters of the original function f have been instantiated,
so the claim is true. In Case (2), when V = 〈V1, . . . , Vp〉 (where p ≥ 1, because V has height
|Θ|µ ≥ 1), the number of queries needed to compute ‖F‖U,V amounts to the sum of the
analogous numbers for ‖(Θ′, f�Bj−1 , (A,Bj−1))‖U,Vj , which, by the induction hypothesis,
equals

|U | · |V1|+ · · ·+ |U | · |Vp| = |U | · |V |.

Case (3) is similar. J

I Remark 3.3. The above direct “naive” algorithm computing ‖F‖U,V can be made “adaptive”:
whenever in Case (2) we have that Bj−1 = Bj−2 and Vj = Vj−1, we do not need to compute
Bj as ‖(Θ′, f�Bj−1 , (A,Bj−1))‖U,Vj , but we can simply take Bj = Bj−1, saving some number
of queries to the function f ; likewise in Case (3).

Lemma 3.1 combined with Lemma 3.2 and with the estimation of the width of the
universal tree Sn,h recalled after Proposition 2.5, yields a possible answer to Problem 1.1:
n2·lg(d/ lgn)+O(1) queries to the function f are enough to evaluate Expression (1). In the next
section we improve this complexity (almost) quadratically.

The above algorithm can be seen as a translation of the generic recursive algorithm
of Jurdziński and Morvan [19] solving parity games (which is also parameterised by two
trees assumed to be universal) to the setting of µ-calculus. There is one difference: the
algorithm for parity games includes computation of attractors, which is absent here. The
above algorithm used with trees Sn,h resembles the recursive algorithm of Lehtinen, Schewe,
and Wojtczak [22], and the adaptive version of the algorithm (cf. Remark 3.3) used with trees
Pn,h resembles the recursive algorithm of Parys [25]. The adaptive version of the algorithm
used with the complete trees Cn,h gives a version of the naive-iteration algorithm that works
in polynomial time assuming that n is fixed (cf. Parys [24]).

3.2 Asymmetric version
We now modify the algorithm from the previous section using an idea of Seidl [26]. As
a first step, we define yet another value, ‖F‖V , parameterised by a single tree V . In its
definition, we proceed in an asymmetric way: on the µ side we simply compute all fixed
points, and on the ν side we follow a structure of the tree V . It turns out that ‖F‖V
equals ‖F‖ if V is universal (cf. Lemma 3.4 below). There is however no direct analogue to
Lemma 3.2, and keeping the number of queries low requires some care. We explore the fact
that nested applications of fixed points of the same kind (µ in this case) can be reduced to
a single application over a vector of variables in a system of equations, which is precisely
the idea behind Seidl’s algorithm [26]. Thus, as a second step of our algorithm, we replace
our recursive definition of ‖F‖V by an equivalent system of least fixed-point equations. This
system has size proportional to |V |, and thus can be solved using such a number of queries
to the function f (see Lemma 3.6 below), yielding the value ‖F‖.

A. Arnold, D. Niwiński, and P. Parys 9:7

Algorithm 1

1: procedure Generate(x,Θ, f ,B, V)
2: begin
3: if Θ = 〈〉 then
4: output “x = B ∗ f”;
5: if Θ = 〈ν〉 ·Θ′ and V = 〈V1, . . . , Vp〉 then begin
6: B0 = B;
7: Bp = x;
8: for j = 1 to p− 1 do
9: Bj = FreshVariable();
10: for j = 1 to p do
11: Generate(Bj ,Θ′, f�Bj−1 ,Bj−1, Vj);
12: end;
13: if Θ = 〈µ〉 ·Θ′ then
14: Generate(x,Θ′, f�x,B, V);
15: end;
16: xres = FreshVariable();
17: Generate(xres,Θ, f(?, . . . , ?), x0, V);

Let F = (Θ, f, (A,B)) be a fixed-point expression, and let V be an equitable tree of
height |Θ|ν . We define ‖F‖V by induction on the length of Θ:
(1) if Θ = 〈〉, as ‖F‖V we take ‖F‖, that is, A+B ∗ f();
(2) if Θ = 〈ν〉 ·Θ′ and V = 〈V1, . . . , Vp〉, then we take B0 = B, and

Bj = ‖(Θ′, f�Bj−1 , (A,Bj−1))‖Vj

for j ∈ {1, . . . , p}, and ‖F‖V = Bp;
(3) if Θ = 〈µ〉 ·Θ′, then we take ‖F‖V = µx.‖(Θ′, f�x, (A,B))‖V (i.e., the least fixed point

of the mapping x 7→ ‖(Θ′, f�x, (A,B))‖V).

When we iterate a function n times, starting from the least element (as in the definition
of ‖F‖Cn,h,V), we reach the least fixed point (appearing in the definition of ‖F‖V). It is
thus not difficult to prove the following lemma, saying that instead of computing ‖F‖ we
can compute ‖F‖V for some universal tree V (see Appendix B for more details).

I Lemma 3.4. Let F = (Θ, f, (A,B)) be a fixed-point expression, and let V be an equitable
tree of height |Θ|ν . Then ‖F‖V = ‖F‖Cn,|Θ|µ ,V . In particular, if V is (n, |Θ|ν)-universal,
then (by Proposition 2.5 and Lemma 3.1) ‖F‖V = ‖F‖.

Next, we consider a system of equations corresponding to the definition of ‖F‖V . For
simplicity, we assume here that A = 0 and B = 1, that is, we consider F = (Θ, f, (0,1)).
Let V be a set of variables, and let V1 = V] {x0} contain additionally a variable (constant)
x0 that is always valuated to the element 1 of Bn. Our equations will be of the form
x = y0 ∗ f(y1, . . . , yd), where x ∈ V, y0, . . . , yd ∈ V1, and f is a constant denoting the
considered function.

The system of equations is generated by Algorithm 1. In this algorithm, f is an expression
of the form f(?, . . . , ?, yk+1, . . . , yd) for some variables yk+1, . . . , yd ∈ V1. Moreover, f�z for
z ∈ V1 denotes f(?, . . . , ?, z, yk+1, . . . , yd) (we substitute z for the last question mark). The
parameter B of the procedure Generate is an element of V1. Note that the algorithm is

CSL 2021

9:8 A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

1 2 3 4

x1 = x0 ∗ f(x1, x0, x1, x0, x2, x0, x4),
x2 = x1 ∗ f(x2, x1, x2, x1, x2, x0, x4),
x3 = x2 ∗ f(x3, x2, x4, x2, x4, x2, x4),
x4 = x3 ∗ f(x4, x3, x4, x2, x4, x2, x4).

Figure 1 A tree V (left), and the system of equations generated for ‖(〈µ〉 · 〈ν, µ〉3, f, (0,1))‖V

(right). Variable x4 stores the result. Observe a correspondence between variables and leaves of V .

syntactical: it depends on the tree V and on the sequence Θ, but not on any particular
interpretation of f. Notice that when the algorithm enters line 4 (i.e., it is going to output
an equation), f contains no ?’s. See also Appendix C for another definition of the system.

For an example of a generated system of equations, see Figure 1.
Now, given F = (Θ, f, (A,B)) and V like in the definition of ‖F‖V , where additionally

A = 0 and B = 1, we can interpret and solve the resulting system in the lattice Bn with
f interpreted by the function f . Thanks to a direct correspondence between the system
and the recursive definition of ‖F‖V , we obtain the following lemma (see Appendix D for a
tedious but straightforward proof).

I Lemma 3.5. Let F = (Θ, f, (0,1)) be a fixed-point expression, and let V be an equitable
tree of height |Θ|ν . The value assigned to the variable xres in the least solution of the system
of equations generated by Algorithm 1 equals ‖F‖V .

We are now ready to state an analogue to Lemma 3.2.

I Lemma 3.6. Let F = (Θ, f, (0,1)) be a fixed-point expression, and let V be an equitable tree
of height |Θ|ν . There is an algorithm that computes ‖F‖V using between |V | and |V | · (1+nd)
queries to the function f .

Proof. By Lemma 3.5, it is enough to generate a system of equations using Algorithm 1, and
then to find the least solution of this system, having |V | equations. The least solution can be
found by a standard worklist algorithm (cf. [26, Proposition 2]). In this algorithm, we keep
updating an underapproximation of the least solution, stage by stage, until reaching a fixed
point. In every stage, we re-evaluate right sides only of those equations in which at least one
variable was modified in the previous stage, and we store results in variables appearing on
the left side (before the first stage we set x0 to 1, other variables to 0, and we treat all of
them as modified). Each among d arguments of |V | equations can be updated (increased) at
most n times, yielding at most |V | · (1 + nd) (and at least |V |) queries to the function f . J

For V = Sn,|Θ|ν , the number of queries becomes nlg(d/ lgn)+O(1), so (almost) quadratically
better than for the algorithm of Section 3.1, and, to our knowledge, the best so far.

I Corollary 3.7. There is an algorithm to evaluate the Expression (1) using at most
nlg(d/ lgn)+O(1) queries.

The reduction from an expression using nested µ and ν fixed-point operators to a system
of equations involving only the least fixed point can be compared to a reduction from parity
games to reachability (or safety) games. As explained in Czerwiński et al. [8], such a reduction
stands behind the “iterative” quasi-polynomial algorithms [5, 12, 18, 21], but (for universal
trees of exponential width) is present also in earlier results [2, 17].

A. Arnold, D. Niwiński, and P. Parys 9:9

3.3 Time and space complexity
Although our main interest is in the number of queries to the function f performed by our
algorithms, let us also analyse their time and space complexity. Let tf be the time needed to
answer a single query (i.e., to compute the value of f for given arguments), and, as previously,
let n and d denote, respectively, the height of the considered lattice and the arity of f .

The symmetric version of our algorithm spends time tf · n2·lg(d/ lgn)+O(1) on computing
values of the function f , and beside of that performs some recursive calls following the
structure of universal trees Sn,h (of course there is no need to actually construct these trees).
Formally, the number of recursive calls depends on the number of nodes of the two trees,
not on the number of leaves. However, in every tree, the number of nodes with at least two
children is smaller than the number of leaves, and one can easily improve the algorithm so
that it “skips” nodes with a single child. Thus, the time spent on performing recursive calls
can be ignored. The memory usage is O(n · d) (the depth of the recursion is d, and on every
level it is enough to store a constant number of elements of Bn).

In the asymmetric version, the system of equations can be solved (using the method
described in the proof of Lemma 3.6) in time proportional to the number of queries. Moreover,
we do not need to actually generate the system; we can instead describe it explicitly based on
the considered tree (see Appendix C for details). Such a description allows to navigate in the
system (e.g. to find all equations containing a given variable) with a constant overhead. Thus,
due to Corollary 3.7, the running time is tf · nlg(d/ lgn)+O(1). To compare, the algorithm of
Hausmann and Schröder [14] needs a factor O(n · ddlgne+2) per query, not O(1).

Concerning the memory usage, in a straightforward implementation we store a value for
every variable while solving the system of equations. We can do better, however. Indeed, we
can observe that if we write the i-th equation as

xi = xk(i,0) ∗ f(xk(i,1), . . . , xk(i,d)),

then for all j ∈ {0, . . . , d} we have k(i, j) ≤ k(i′, j) whenever i ≤ i′ (this is best visible while
looking at the explicit description of the system, introduced in Appendix C). Thanks to
this monotonicity of the system, and monotonicity of f , values assigned to the variables
after every stage of the algorithm satisfy xi ≥ xi′ whenever i ≤ i′ (this is satisfied before the
first stage, and is then preserved). Such a valuation can be stored very succinctly, using n
numbers: for every bit of Bn it is enough to remember the number of the last variable in
which this bit is set to 1. Going further: in order to remember which variables were modified
in the last stage, it is enough to remember two last valuations of the variables. It is not
difficult to adapt the algorithm to such a representation of valuations. Thus, the memory
usage can be reduced to O(n), modulo a polylogarithmic factor.

4 Correctness of the algorithms

In this section we prove that if U and V are universal trees, then ‖F‖ = ‖F‖U,V (Lemma 3.1).
As a first step, we introduce sup-dominions and their decompositions, and we prove some
properties of these notions. Let F = (Θ, f, (A,B)) be a fixed-point expression. A value
D ∈ Bn such that A ≤ D ≤ B is a sup-dominion for F if D = ‖(Θ, f, (A,D))‖.

For readers familiar with game-theoretic dominions considered in prior work [19, 20, 22, 25],
the following analogy may be useful: a sup-dominion for (Θ, f, (A,B)) is an area D where
player Even can force the play either to reach A or to ensure the parity condition while not
leaving D. One can also define inf-dominions (by requiring D = ‖(Θ, f, (D,B))‖), describing
the complement of an analogous area for player Odd; however, we conduct our correctness
proof using only sup-dominions, and then arguing by duality.

CSL 2021

9:10 A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

We first note some useful properties analogous to the properties of game dominions noted
in prior work [19, 22, 25], stemming from Proposition 2.3.

I Lemma 4.1. For every fixed-point expression F , the value ‖F‖ is a sup-dominion for F .

I Lemma 4.2. If D is a sup-dominion for a fixed-point expression (Θ, f, (A,B)), and
A ≤ A′ ≤ D, then D is also a sup-dominion for (Θ, f, (A′, B)).

Lemmata 4.1 and 4.2 are immediate consequences of definitions and of Proposition 2.3.

I Lemma 4.3. Let F = (Θ, f, (A,B)) be a fixed-point expression with Θ = 〈θ〉 ·Θ′. If D is
a sup-dominion for F , then D is also a sup-dominion for (Θ′, f�D, (A,D)).

Proof. We have by definition D = ‖(Θ, f, (A,D))‖ = θx.‖(Θ′, f�x, (A,D))‖. This means
that D is a fixed point of the mapping x 7→ ‖(Θ′, f�x, (A,D))‖, that is, D = ‖(Θ′, f�D,
(A,D))‖, as required. J

I Lemma 4.4. Let F = (Θ, f, (A,B)) be a fixed-point expression with Θ = 〈µ〉 · Θ′. For
every sup-dominion D for F such that A < D there exists a sup-dominion D′ for (Θ′, f�A,
(A,B)) such that A < D′ ≤ D.

Proof. Let g(x) = ‖(Θ′, f�x, (A,D))‖ so that D = ‖(Θ, f, (A,D))‖ = µx.g(x). We have,
by monotonicity, D = g(D) ≥ g(A) = ‖(Θ′, f�A, (A,D))‖. Hence, from Proposition 2.3 we
obtain g(A) = ‖(Θ′, f�A, (A, g(A)))‖. That is, g(A) is a sup-dominion for (Θ′, f�A, (A,B)),
which moreover satisfies A ≤ g(A) ≤ D (where A ≤ g(A) is by Proposition 2.2). If g(A) = A,
we would have D = µx.g(x) ≤ A, a contradiction. Hence g(A) > A, and D′ = g(A) satisfies
the claim. J

Next, we define the crucial concept of the paper: dominion decompositions. Let F = (Θ, f,
(A,B)) be a fixed-point expression. The definition is by induction on the length of Θ. A pair
(D,H) is a sup-dominion decomposition for F if D is a sup-dominion for F and

if Θ = 〈〉, then H = 〈〉;
if Θ = 〈ν〉 ·Θ′, then (D,H) is a sup-dominion decomposition for (Θ′, f�D, (A,D));
if Θ = 〈µ〉 · Θ′, then H = 〈(D1,H1), . . . , (Dk,Hk)〉, where, assuming D0 = A, for
every i ∈ {1, . . . , k} the pair (Di,Hi) is a sup-dominion decomposition for (Θ′, f�Di−1 ,

(Di−1, B)), and Dk = D.

To a sup-dominion decomposition (D,H) we can assign a tree TH by forgetting the
dominions stored in the decomposition and taking only its “shape”: for H = 〈(D1,H1), . . . ,
(Dk,Hk)〉 we let TH = 〈TH1 , . . . , THk〉.

The following crucial lemma states that every dominion has a decomposition (not neces-
sarily unique). Here by |D −A|1 (for D ≥ A) we denote the number of bits that are 1 in D
but 0 in A.

I Lemma 4.5. Let F = (Θ, f, (A,B)) be a fixed-point expression. For every sup-dominion
D for F such that A < D there exists a sup-dominion decomposition (D,H) for F such that
TH is an equitable tree of height |Θ|µ and of width at most |D −A|1.

Proof. The proof is by induction on the length of Θ. For Θ = 〈〉 we just take H = 〈〉 (notice
that TH has width 1 ≤ |D−A|1, because A < D). For Θ = 〈ν〉 ·Θ′, by Lemma 4.3 D is also
a sup-dominion for (Θ′, f�D, (A,D)), and thus the sup-dominion decomposition exists by
the induction hypothesis.

A. Arnold, D. Niwiński, and P. Parys 9:11

Finally, suppose that Θ = 〈µ〉 ·Θ′. We first construct a sequence A = D0 < D1 < · · · <
Dk ≤ D such that Di is a sup-dominion for (Θ′, f�Di−1 , (Di−1, B)), for every i ∈ {1, . . . , k}.
We start with k = 0 (and D0 = A). Then, as long as Dk < D, we create Dk+1 as follows.
First, because D is a sup-dominion for F and because A ≤ Dk, by Lemma 4.2 we have that
D is a sup-dominion for (Θ, f, (Dk, B)). Second, by Lemma 4.4 (applied to D and (Θ, f,
(Dk, B))) there exists sup-dominion Dk+1 for (Θ′, f�Dk , (Dk, B)) such that Dk < Dk+1 ≤ D.
We can thus attach this Dk+1 to the sequence. We end the construction when Dk = D.
To finish the proof, we use the induction hypothesis, which says that every Di can be
extended to a sup-dominion decomposition (Di,Hi) for (Θ′, f�Di−1 , (Di−1, B)) such that
THi is an equitable tree of height |Θ|µ − 1 and of width at most |Di − Di−1|1. Then
H = 〈(D1,H1), . . . , (Dk,Hk)〉 satisfies the thesis. J

Coming slowly to the proof of Lemma 3.1, let us state some basic properties of the value
‖F‖U,V . The first two lemmata can be shown by a straightforward induction on the length
of Θ:

I Lemma 4.6. For every fixed-point expression (Θ, f, (A,B)) and for all equitable trees U, V
of height, respectively, |Θ|µ and |Θ|ν ,

A ≤ ‖(Θ, f, (A,B))‖U,V ≤ B.

I Lemma 4.7. For every fixed-point expression F = (Θ, f, (A,B)) and for all equitable trees
U, V of height, respectively, |Θ|µ and |Θ|ν , we have ‖F̃‖V,U = ‖F‖U,V .

Moreover, again by a straightforward induction, it follows that ‖(Θ, f, (A,B))‖U,V is
monotone in f , A, and B. This value is also monotone in U and V , in the following sense:

I Lemma 4.8. Let F = (Θ, f, (A,B)) be a fixed-point expression, let T,U be equitable trees
of height |Θ|µ, and let T ′, V be equitable trees of height |Θ|ν . If T embeds in U , and T ′
embeds in V , then ‖F‖T,V ≤ ‖F‖U,V ≤ ‖F‖U,T ′ .

Proof. It is enough to prove the inequality ‖F‖T,V ≤ ‖F‖U,V ; the second inequality follows
then by duality (using Lemma 4.7). The proof is by induction on the length of Θ. For
empty Θ both values, ‖F‖T,V and ‖F‖U,V are defined as A + B ∗ f(); we have equality.
For Θ = 〈ν〉 ·Θ′, the inductive definitions of ‖F‖T,V and ‖F‖U,V are the same (we descend
recursively using the tree V), so it is enough to use the induction hypothesis and monotonicity.
Suppose that Θ = 〈µ〉 ·Θ′, and T = 〈T1, . . . , Tk〉, and U = 〈U1, . . . , Up〉. Then ‖F‖T,V and
‖F‖U,V are defined as A′k and Ap, respectively, where

A′0 = A0 = A,

A′i = ‖(Θ′, f�A
′
i−1 , (A′i−1, B))‖Ti,V for i ∈ {1, . . . , k}, and

Aj = ‖(Θ′, f�Aj−1 , (Aj−1, B))‖Uj ,V for j ∈ {1, . . . , p}.

Observe that if Ti embeds in Uj , and A′i−1 ≤ Aj−1, then by monotonicity and by the
induction hypothesis we obtain that A′i ≤ Aj . Moreover, always Aj−1 ≤ Aj , by Lemma 4.6
(this way, we can skip subtrees Uj to which no Ti needs to be embedded). Using these
inequalities and the definition of embedding we easily obtain the required thesis A′k ≤ Ap. J

The next lemma is crucial in the proof of Lemma 3.1.

I Lemma 4.9. Let F = (Θ, f, (A,B)) be a fixed-point expression, and let V be an equitable
tree of height |Θ|ν . If (D,H) is a sup-dominion decomposition for F , then D ≤ ‖F‖TH,V .

CSL 2021

9:12 A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

Proof. The proof is by induction on the length of Θ. If Θ = 〈〉, we have (by the definition of
a sup-dominion) D = ‖(Θ, f, (A,D))‖ = A+D ∗ f() ≤ A+B ∗ f() = ‖F‖TH,V .

Suppose that Θ = 〈ν〉 ·Θ′ and V = 〈V1, . . . , Vp〉. Recall the values Bj from the definition
of ‖F‖TH,V (page 5). We prove by an internal induction on j ∈ {0, . . . , p} that D ≤ Bj
(this gives the thesis since ‖F‖TH,V = Bp). For j = 0 the thesis is clear: D ≤ B = B0.
Next, for j > 0 we prove D ≤ Bj assuming D ≤ Bj−1. Recall that (D,H) is a sup-
dominion decomposition for (Θ′, f�D, (A,D)). Thus, the induction hypothesis implies that
D ≤ ‖(Θ′, f�D, (A,D))‖TH,Vj . Using the assumption D ≤ Bj−1 and monotonicity, we obtain
that D ≤ ‖(Θ′, f�Bj−1 , (A,Bj−1))‖TH,Vj = Bj , as required.

Finally, suppose that Θ = 〈µ〉 ·Θ′ and H = 〈(D1,H1), . . . , (Dk,Hk)〉. Recall the values
Aj from the definition of ‖F‖TH,V . We prove by an internal induction on j ∈ {0, . . . , k} that
Dj ≤ Aj (this gives the thesis since ‖F‖TH,V = Ak). For j = 0 the thesis is clear: D0 =
A = A0. Next, for j > 0 we prove Dj ≤ Aj assuming Dj−1 ≤ Aj−1. Recall that (Dj ,Hj) is
a sup-dominion decomposition for (Θ′, f�Dj−1 , (Dj−1, B)). Thus, the induction hypothesis
implies that Dj ≤ ‖(Θ′, f�Dj−1 , (Dj−1, B))‖THj ,V . Using the assumption Dj−1 ≤ Aj−1 and
monotonicity, we obtain that Dj ≤ ‖(Θ′, f�Aj−1 , (Aj−1, B))‖THj ,V = Aj , as required. J

Proof of Lemma 3.1. Recall that we prove ‖F‖U,V = ‖F‖, where F = (Θ, f, (A,B)) and
U, V are universal. It is actually enough to prove ‖F‖ ≤ ‖F‖U,V , because then the converse
inequality follows by duality (using Proposition 2.4 and Lemma 4.7). By Lemma 4.1 ‖F‖ is
a sup-dominion for F . If ‖F‖ = A, then clearly ‖F‖ ≤ ‖F‖U,V , by Lemma 4.6. Otherwise
‖F‖ > A, so by Lemma 4.5 there exists a sup-dominion decomposition (‖F‖,H) for F such
that TH is an equitable tree of height |Θ|µ and width at most |‖F‖ − A|1 ≤ n. It follows
that TH embeds in U , and thus ‖F‖ ≤ ‖F‖TH,V ≤ ‖F‖U,V by Lemmata 4.8 and 4.9. J

5 Lower bound

We now present a lower bound for the number of queries used in our method. To this end,
we prove that our algorithms work only if they are driven by universal trees:

I Theorem 5.1. Let U, V be equitable trees of height h.
(1) If ‖F‖U,V = ‖F‖ for all fixed-point expressions over Bn of the form F = (Θ, f, (0,1)),

where |Θ|µ = |Θ|ν = h, then U and V are (n, h)-universal.
(2) If ‖F‖V = ‖F‖ for all fixed-point expressions as above, then V is (n, h)-universal.

To estimate the number of queries used by the algorithms of Section 3, we combine
Theorem 5.1 with a result by Czerwiński et al. [8, Theorem 2.3] saying that any (n, h)-
universal tree has at least

(blgnc+h−1
blgnc

)
leaves (which is at least nlg(h/ lgn)−1 if h ≤ n lgn, and

at least
(
n
2
)lg(h/ lgn) in general). Recall that the number of queries used by our algorithms is

proportional to widths of the employed trees (cf. Lemmata 3.2 and 3.6), thus by the above it
is also quasi-polynomial.

The rest of this section is devoted to the proof of Theorem 5.1. Observe first that
Point (2) of this theorem is a direct consequence of Point (1), because ‖F‖V = ‖F‖Cn,h,V ,
by Lemma 3.4. It is thus enough to prove Point (1). Moreover, we can assume that h ≥ 1,
because for height h = 0 there exists only one tree U = V = 〈〉, which is (n, 0)-universal.

In order to prove Point (1), fix an equitable tree T of height h ≥ 1 and of width (exactly)
n. The core of our proof is a “difficult example”: a fixed-point expression FT such that
if ‖FT ‖U,V is correct (i.e., equal to ‖FT ‖) for some U then T embeds in U , under some
mild assumptions saying, roughly, that V is nontrivial. In order to achieve this property, we

A. Arnold, D. Niwiński, and P. Parys 9:13

1 2 3 4 5 6 7 8 9 10 0 x2, x1

3

2 x6, x5

1 x4, x3

Figure 2 Example equitable tree T of height 3 with numbers in leaves. On the right: layer
numbers and corresponding variable names. Dotted and dashed areas represent bits set to 1 in the
values A(v) and B(v) for ancestors v of the 8-th leaf. Thus, the 8-th bit of f3(x1, x2, x3, x4, x5, x6)
is 1 if at least the following bits are set to 1: the first 8 bits of x1, the first 7 bits of x2, the first 8
bits of x3, the first 6 bits of x4, the first 9 bits of x5, and the first 4 bits of x6.

construct FT that has only one sup-dominion decomposition, which has the shape of the
tree T (this claim needs not be proven, but it helps to understand the construction). The
construction is to a large degree motivated by the work of Czerwiński et al. [8]. Existence of
FT for every T essentially implies that U is universal, as soon as we deal with the additional
assumptions on the tree V , which is done at the very end.

Let us assign numbers 1, . . . , n to leaves of T , consecutively from left to right. For every
node v we define two values A(v), B(v) ∈ Bn, as follows:

if the leftmost leaf descendant of v has number i, then bits number 1, 2, . . . , i− 1 in A(v)
are set to 1 (and the remaining bits are set to 0), and
if the rightmost leaf descendant of v has number j, then bits number 1, 2, . . . , j in B(v)
are set to 1 (and the remaining bits are set to 0).

Having these values, for every level ` ∈ {0, . . . , h} we define two functions, g+
` , g

−
` : Bn → Bn.

For every x ∈ Bn, we consider the rightmost node v at level ` such that A(v) ≤ x (such a v
exists, because A(v) = 0 for the extreme-leftmost node v), and we take

g+
` (x) = B(v), and g−` (x) =

{
1 if x = 1,
A(v) otherwise.

Finally, for every level ` ∈ {0, . . . , h} we define a function f` : (Bn)2` → Bn, by induction on
`, as follows:

f0() = 1, and
f`(x1, . . . , x2`−2, x2`−1, x2`) = f`−1(x1, . . . , x2`−2) ∗ g−`−1(x2`−1) ∗ g+

`−1(x2`) for ` ≥ 1.

The sequence of fixed-point operators corresponding to f` is Θ` = 〈µ, ν〉`. As the resulting
expression we take FT = (Θh, fh, (0,1)). See Figure 2 for an example.

Directly from the definition it follows that for every node v at level `,

g+
` (A(v)) = B(v), g−` (B(v)) = B(v), g−` (x) ≤ A(v) if x < B(v). (4)

Another useful property is that for every fixed-point expression of the form (Θ, f ∗C, (A,B))
we can move the multiplicative constant C from “the function” to “the bound” (anyway, it
will be just multiplied by the function):

‖(Θ, f ∗ C, (A,B))‖ = ‖(Θ, f, (A,B ∗ C))‖,

CSL 2021

9:14 A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

Figure 3 Example tree T (left) and the corresponding comb CT (right).

or, more specifically (assuming ` ≥ 1),

‖(Θ`−1, (f`�D)�C , (A,B))‖ = ‖(Θ`−1, f`−1, (A,B ∗ g−`−1(C) ∗ g+
`−1(D)))‖. (5)

The same holds for the value parameterised by two trees, ‖ · ‖U,V .
Analysing the definition of FT , it is not difficult to prove by induction on ` that

‖(Θ`, f`, (0, B(v)))‖ ≥ B(v).

for every node v of T located at level ` (see Appendix E for details). In particular, taking
the root of T as v, we obtain the following lemma.

I Lemma 5.2. ‖FT ‖ = 1.

Next, we define trees used on the “inf” side. Namely, for every ` ∈ {0, . . . , h} we define
an equitable tree C` (“comb”) of height `:

C0 = 〈〉,
C` = 〈C`−1〉 for ` ≥ 1, if every node at level `− 1 in T has at most one child, and
C` = 〈C`−1, S`−1〉 for ` ≥ 1, if some node at level ` − 1 in T has at least two children,
where S`−1 is the (unique) tree of height `− 1 having exactly one leaf.

Moreover, we define CT = Ch. See Figure 3 for an illustration. Notice that the information
about T is “shifted by one level” in CT ; in particular C1 always equals 〈〈〉〉 (leaves of T have
no children), and the shape of CT does not depend on the fact whether or not the root of T
has at least two children. Attention: trees C` and S` defined here should not be confused
with universal trees Cn,h and Sn,h defined earlier.

It is easy to see by induction on ` ∈ {1, . . . , h} that the width of C` plus the number of
nodes of T at level `− 1 is at most n+ 1. In particular, the width of CT is at most n.

For a node v of T we write T (v) for the subtree of T starting at v.

I Lemma 5.3. Let U be an equitable tree of height ` ∈ {0, . . . , h}, and let v be a node of T
located at level `. If T (v) does not embed in U , then ‖(Θ`, f`, (A(v), B(v)))‖U,C` < B(v). If
additionally v has at most one child, then ‖(Θ`, f`, (A(v), B(v)))‖U,C` ≤ A(v).

Proof. The proof is by induction on `. For ` = 0 the node v is a leaf, so surely T (v) (i.e., 〈〉)
embeds in U ; there is nothing to prove.

Suppose now that ` ≥ 1. Let Θ′` = 〈ν〉 · 〈µ, ν〉l−1 and let U = 〈U1, . . . , Up〉. We first prove
that for every child c of v and for every U ′ ∈ {U1, . . . , Up},

‖(Θ′`, f`�A(c), (A(c), B(v)))‖U ′,C` ≤
{
B(c) if T (c) embeds in U ′,
A(c) otherwise. (6)

A. Arnold, D. Niwiński, and P. Parys 9:15

Denote E = ‖(Θ′`, f`�A(c), (A(c), B(v)))‖U ′,C` . Let

B1 = ‖(Θ`−1, (f`�A(c))�B(v), (A(c), B(v)))‖U ′,C`−1 and (7)

B2 = ‖(Θ`−1, (f`�A(c))�B1 , (A(c), B1))‖U ′,S`−1 . (8)

By definition, E equals B1 when C` = 〈C`−1〉, and equals B2 when C` = 〈C`−1, S`−1〉.
Because g−`−1(B(v)) = B(v) ≥ B(c) and g+

`−1(A(c)) = B(c) (cf. Equalities (4)), we can
simplify Equalities (7) and (8) (using also Equality (5)) to

B1 = ‖(Θ`−1, f`−1, (A(c), B(c)))‖U ′,C`−1 , and (9)
B2 = ‖(Θ`−1, f`−1, (A(c), B(c) ∗ g−`−1(B1)))‖U ′,S`−1 . (10)

We now have three cases.
First, suppose that T (c) embeds in U ′. In this case B2 ≤ B1 ≤ B(c) by Lemma 4.6

and Equalities (8) and (9), so E ≤ B(c) (no matter whether E equals B1 or B2).
Next, suppose that T (c) does not embed in U ′ and that C` = 〈C`−1〉. By definition of

C` this means that c (and every other node at level ` − 1) has at most one child. Thus,
the induction hypothesis implies that ‖(Θ`−1, f`−1, (A(c), B(c)))‖U ′,C`−1 ≤ A(c), that is,
E = B1 ≤ A(c) (by Equality (9)).

Finally, suppose that T (c) does not embed in U ′, but C` = 〈C`−1, S`−1〉. In this case
the induction hypothesis implies that ‖(Θ`−1, f`−1, (A(c), B(c)))‖U ′,C`−1 < B(c), that is,
B1 < B(c) (by Equality (9)). Then g−`−1(B1) ≤ A(c) (cf. Equalities (4)), so E = B2 ≤ A(c)
by Lemma 4.6 and Equality (10). This finishes the proof of Inequality (6).

Recall now that ‖(Θ`, f`, (A(v), B(v)))‖U,C` is defined as Ap, where Aj = ‖(Θ′`, f`�Aj−1 ,

(Aj−1, B(v)))‖Uj ,C` for j ∈ {1, . . . , p} and A0 = A(v). Notice that A0 equals A(c) for the
leftmost child c of v. If Aj−1 ≤ A(c) for some child c of v, by monotonicity we have
Aj ≤ ‖(Θ′`, f`�A(c), (A(c), B(v)))‖Uj ,C` , so we can apply Inequality (6). If Aj−1 ≤ A(c) and
T (c) does not embed in Uj , we obtain that Aj ≤ A(c) as well. Contrarily, if Aj−1 ≤ A(c)
and T (c) embeds in Uj , we obtain that Aj ≤ B(c) = A(c′), where c′ is the right sibling of c.
We know that T (v) does not embed in U , so ‖(Θ`, f`, (A(v), B(v)))‖U,C` = Ap ≤ A(c) for
some child c of v (this is the first child that “could not be embedded”), and A(c) < B(v), as
required in the thesis. If moreover v has exactly one child (i.e., c is the only child of v), then
A(c) = A(v). J

I Corollary 5.4. Let U, V be equitable trees of height h. If ‖FT ‖U,V = ‖FT ‖ and CT embeds
in V , then T embeds in U . If ‖F̃T ‖U,V = ‖F̃T ‖ and CT embeds in U , then T embeds in V .

Proof. For the first part, by Lemmata 5.2 and 4.8 we have 1 = ‖FT ‖ = ‖FT ‖U,V ≤ ‖FT ‖U,CT ,
that is, ‖FT ‖U,CT = 1. But Lemma 5.3 (where as v we take the root of T) allows ‖FT ‖U,CT
to be 1 only if T embeds in U . The second part is a consequence of the first part and of the
equalities ‖F̃T ‖ = ‖FT ‖ (Proposition 2.4) and ‖F̃T ‖U,V = ‖FT ‖V,U (Lemma 4.7). J

We now finish the proof of (Point (1) of) Theorem 5.1. From this point, the tree T
is no longer fixed. Recall that we have two equitable trees U, V of height h ≥ 1, and we
assume that ‖F‖U,V = ‖F‖ for all fixed-point expressions of the form F = (Θ, f, (0,1)),
where |Θ|µ = |Θ|ν = h. The goal is to prove that U and V are (n, h)-universal, that is, every
equitable tree T of height h and width at most n can be embedded in U and V .

The difficulty is that in order to prove that a tree T embeds in U , we already need to
know that some tree, namely CT , embeds in V , and in order to prove that a tree T embeds
in V , we already need to know that some tree, namely CT , embeds in U (cf. Corollary 5.4).
In order to deal with this circular dependency, we argue that CT is “simpler” than T . To
compare these trees, we introduce a parameter called a stick length.

CSL 2021

9:16 A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

The stick length of an equitable tree T of height h is the greatest number s ∈ {0, . . . , h}
such that all nodes at levels 0, 1, . . . , s have at most one child. We prove by induction on
h− s that every equitable tree T of height h, width at most n, and stick length s embeds in
U and in V .

The only tree T of height h and stick length s = h is Sh (a single branch); it clearly
embeds in every tree of height h, in particular in U and in V .

For an induction step, consider an equitable tree T of height h, width at most n, and
stick length s < h. Recall that the corresponding tree CT has height h and width at most
n. It is also easy to see that it has stick length s+ 1 (if all nodes at some level ` in T have
at most one child, then all nodes at level ` + 1 in CT have at most one child). Thus, CT
embeds in U and in V by the induction hypothesis. If T has width n, it embeds in U and in
V by Corollary 5.4, as required. If the width is smaller, we consider the tree T ′ of width n
obtained from T by attaching an appropriate number of trees Sh−1 directly below the root.
This tree also has stick length s, height h, and is equitable, so it embeds in U and in V by
the above, and hence T embeds as well.
I Remark 5.5. Theorem 5.1 can be strengthened in the following way: it is enough to assume
that the equalities ‖F‖U,V = ‖F‖ and ‖F‖U = ‖F‖ hold for those monotonic functions f ,
where every output bit is a logical OR or a logical AND of some input bits. Indeed, all
functions constructed in the proof are of this kind. This makes a connection with parity
games (cf. Introduction).

6 Conclusion

It is well known that a nested fixed point like µx.νy.µx.f(x, y, z) can be computed by a
formula

µγz.νβy.µαx.f(x, y, z),

for sufficiently large ordinals α, β, γ, where θηx means that only η iterations of a fixed point
θx are computed (cf. e.g. [27]). Our algorithms refine this idea in two ways: the iterations
follow a more subtle tree structure, and moreover they are combined with narrowing the
scope according to the nested A+B ∗ f pattern. In the asymmetric case, the restrictions
apply only to one kind of fixed points, but the complexity – somewhat surprisingly – actually
improves as we eventually compute a single fixed point (albeit of a larger system).

Our black-box algorithms, when adapted to parity games, match the best complexity
known so far, but do not improve it. Our lower bound, in view of Remark 5.5, gives an
evidence that in the algorithm by Jurdziński and Morvan [19] the use of (not others but)
universal trees is indeed necessary.

This may suggest that any polynomial algorithm for parity games – if it exists – should
involve some other structure of the game, which remains to be discovered. On the other
hand, it is an intriguing question if the lower bound can be strengthen to an “absolute” lower
bound for the number of queries, like the aforementioned (almost) quadratic lower bound [24].
A recently developed theory around the complexity of computing the Nash equilibria [9]
warns us that some problems in NP ∩ co-NP may be hard.

References
1 André Arnold and Damian Niwiński. Rudiments of µ-Calculus. Studies in Logic and the

Foundations of Mathematics. Elsevier, 2001.
2 Julien Bernet, David Janin, and Igor Walukiewicz. Permissive strategies: from parity games

to safety games. RAIRO Theor. Informatics Appl., 36(3):261–275, 2002. doi:10.1051/ita:
2002013.

https://doi.org/10.1051/ita:2002013
https://doi.org/10.1051/ita:2002013

A. Arnold, D. Niwiński, and P. Parys 9:17

3 Mikołaj Bojańczyk and Wojciech Czerwiński. An automata toolbox. Informal lecture notes,
2018. URL: https://www.mimuw.edu.pl/~bojan/upload/reduced-may-25.pdf.

4 Anca Browne, Edmund M. Clarke, Somesh Jha, David E. Long, and Wilfredo R. Marrero.
An improved algorithm for the evaluation of fixpoint expressions. Theor. Comput. Sci.,
178(1-2):237–255, 1997. doi:10.1016/S0304-3975(96)00228-9.

5 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasipolynomial time. In Hamed Hatami, Pierre McKenzie, and Valerie
King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 252–263. ACM,
2017. doi:10.1145/3055399.3055409.

6 Krishnendu Chatterjee, Wolfgang Dvořák, Monika Henzinger, and Alexander Svozil. Quasipoly-
nomial set-based symbolic algorithms for parity games. In Gilles Barthe, Geoff Sut-
cliffe, and Margus Veanes, editors, LPAR-22. 22nd International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, Awassa, Ethiopia, 16-21 November
2018, volume 57 of EPiC Series in Computing, pages 233–253. EasyChair, 2018. URL:
http://www.easychair.org/publications/paper/L8b1.

7 Thomas Colcombet and Nathanaël Fijalkow. Universal graphs and good for games automata:
New tools for infinite duration games. In Mikołaj Bojańczyk and Alex Simpson, editors,
Foundations of Software Science and Computation Structures - 22nd International Conference,
FOSSACS 2019, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, volume
11425 of Lecture Notes in Computer Science, pages 1–26. Springer, 2019. doi:10.1007/
978-3-030-17127-8_1.

8 Wojciech Czerwiński, Laure Daviaud, Nathanaël Fijalkow, Marcin Jurdziński, Ranko Lazić,
and Paweł Parys. Universal trees grow inside separating automata: Quasi-polynomial lower
bounds for parity games. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pages 2333–2349. SIAM, 2019. doi:10.1137/1.9781611975482.142.

9 Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The complexity
of computing a Nash equilibrium. Commun. ACM, 52(2):89–97, 2009. doi:10.1145/1461928.
1461951.

10 E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In 32nd Annual Symposium on Foundations of Computer Science,
San Juan, Puerto Rico, 1-4 October 1991, pages 368–377. IEEE Computer Society, 1991.
doi:10.1109/SFCS.1991.185392.

11 E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. On model checking for the
µ-calculus and its fragments. Theor. Comput. Sci., 258(1-2):491–522, 2001. doi:10.1016/
S0304-3975(00)00034-7.

12 John Fearnley, Sanjay Jain, Sven Schewe, Frank Stephan, and Dominik Wojtczak. An ordered
approach to solving parity games in quasi polynomial time and quasi linear space. In Hakan
Erdogmus and Klaus Havelund, editors, Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software, Santa Barbara, CA, USA, July 10-14, 2017,
pages 112–121. ACM, 2017. doi:10.1145/3092282.3092286.

13 Hugo Gimbert and Rasmus Ibsen-Jensen. A short proof of correctness of the quasi-polynomial
time algorithm for parity games. CoRR, abs/1702.01953, 2017. arXiv:1702.01953.

14 Daniel Hausmann and Lutz Schröder. Computing nested fixpoints in quasipolynomial time.
CoRR, abs/1907.07020v2, 2019. arXiv:1907.07020v2.

15 Daniel Hausmann and Lutz Schröder. Quasipolynomial computation of nested fixpoints. CoRR,
abs/1907.07020v3, 2020. arXiv:1907.07020v3.

16 Marcin Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process. Lett.,
68(3):119–124, 1998. doi:10.1016/S0020-0190(98)00150-1.

CSL 2021

https://www.mimuw.edu.pl/~bojan/upload/reduced-may-25.pdf
https://doi.org/10.1016/S0304-3975(96)00228-9
https://doi.org/10.1145/3055399.3055409
http://www.easychair.org/publications/paper/L8b1
https://doi.org/10.1007/978-3-030-17127-8_1
https://doi.org/10.1007/978-3-030-17127-8_1
https://doi.org/10.1137/1.9781611975482.142
https://doi.org/10.1145/1461928.1461951
https://doi.org/10.1145/1461928.1461951
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.1016/S0304-3975(00)00034-7
https://doi.org/10.1016/S0304-3975(00)00034-7
https://doi.org/10.1145/3092282.3092286
http://arxiv.org/abs/1702.01953
http://arxiv.org/abs/1907.07020v2
http://arxiv.org/abs/1907.07020v3
https://doi.org/10.1016/S0020-0190(98)00150-1

9:18 A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

17 Marcin Jurdziński. Small progress measures for solving parity games. In Horst Reichel
and Sophie Tison, editors, STACS 2000, 17th Annual Symposium on Theoretical Aspects of
Computer Science, Lille, France, February 2000, Proceedings, volume 1770 of Lecture Notes in
Computer Science, pages 290–301. Springer, 2000. doi:10.1007/3-540-46541-3_24.

18 Marcin Jurdziński and Ranko Lazić. Succinct progress measures for solving parity games. In
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,
Iceland, June 20-23, 2017, pages 1–9. IEEE Computer Society, 2017. doi:10.1109/LICS.2017.
8005092.

19 Marcin Jurdziński and Rémi Morvan. A universal attractor decomposition algorithm for parity
games. CoRR, abs/2001.04333, 2020. arXiv:2001.04333.

20 Marcin Jurdziński, Mike Paterson, and Uri Zwick. A deterministic subexponential algorithm
for solving parity games. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages 117–123.
ACM Press, 2006. URL: http://dl.acm.org/citation.cfm?id=1109557.1109571.

21 Karoliina Lehtinen. A modal µ perspective on solving parity games in quasi-polynomial
time. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages
639–648. ACM, 2018. doi:10.1145/3209108.3209115.

22 Karoliina Lehtinen, Sven Schewe, and Dominik Wojtczak. Improving the complexity of Parys’
recursive algorithm. CoRR, abs/1904.11810, 2019. arXiv:1904.11810.

23 Robert McNaughton. Infinite games played on finite graphs. Ann. Pure Appl. Logic, 65(2):149–
184, 1993. doi:10.1016/0168-0072(93)90036-D.

24 Paweł Parys. Some results on complexity of µ-calculus evaluation in the black-box model.
RAIRO - Theor. Inf. and Applic., 47(1):97–109, 2013. doi:10.1051/ita/2012030.

25 Paweł Parys. Parity games: Zielonka’s algorithm in quasi-polynomial time. In Peter Ross-
manith, Pinar Heggernes, and Joost-Pieter Katoen, editors, 44th International Symposium on
Mathematical Foundations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen,
Germany, volume 138 of LIPIcs, pages 10:1–10:13. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.MFCS.2019.10.

26 Helmut Seidl. Fast and simple nested fixpoints. Inf. Process. Lett., 59(6):303–308, 1996.
doi:10.1016/0020-0190(96)00130-5.

27 Igor Walukiewicz. Monadic second order logic on tree-like structures. In Claude Puech and
Rüdiger Reischuk, editors, STACS 96, 13th Annual Symposium on Theoretical Aspects of
Computer Science, Grenoble, France, February 22-24, 1996, Proceedings, volume 1046 of Lecture
Notes in Computer Science, pages 401–413. Springer, 1996. doi:10.1007/3-540-60922-9_33.

28 Shipei Zhang, Oleg Sokolsky, and Scott A. Smolka. On the parallel complexity of model
checking in the modal mu-calculus. In Proceedings of the Ninth Annual Symposium on Logic in
Computer Science (LICS ’94), Paris, France, July 4-7, 1994, pages 154–163. IEEE Computer
Society, 1994. doi:10.1109/LICS.1994.316075.

29 Wiesław Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998. doi:10.1016/S0304-3975(98)
00009-7.

A Proof of Proposition 2.3

I Proposition 2.3. If A ≤ C ≤ ‖(Θ, f, (A,B))‖ ≤ D ≤ B, then

‖(Θ, f, (A,B))‖ = ‖(Θ, f, (C,D))‖.

Proof. The proof is by induction on the length of Θ.
In the base case of Θ = 〈〉, the thesis amounts to A+B ∗ f() = C +D ∗ f(), assuming

that A ≤ C ≤ A + B ∗ f() ≤ D ≤ B. But we have that B ∗ f() ≤ A + B ∗ f() ≤ D and

https://doi.org/10.1007/3-540-46541-3_24
https://doi.org/10.1109/LICS.2017.8005092
https://doi.org/10.1109/LICS.2017.8005092
http://arxiv.org/abs/2001.04333
http://dl.acm.org/citation.cfm?id=1109557.1109571
https://doi.org/10.1145/3209108.3209115
http://arxiv.org/abs/1904.11810
https://doi.org/10.1016/0168-0072(93)90036-D
https://doi.org/10.1051/ita/2012030
https://doi.org/10.4230/LIPIcs.MFCS.2019.10
https://doi.org/10.1016/0020-0190(96)00130-5
https://doi.org/10.1007/3-540-60922-9_33
https://doi.org/10.1109/LICS.1994.316075
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7

A. Arnold, D. Niwiński, and P. Parys 9:19

B ∗ f() ≤ f(), which implies that B ∗ f() ≤ D ∗ f(). Since moreover A ≤ C, we obtain that
A+B ∗ f() ≤ C +D ∗ f(). The converse inequality A+B ∗ f() ≥ C +D ∗ f() can be proven
analogously.

Suppose now that Θ = 〈θ〉·Θ′. Let E = ‖(Θ, f, (A,B))‖. Then E = θx.g(x) where g(x) =
‖(Θ′, f�x, (A,B))‖. By Proposition 2.2 it follows that A ≤ g(x) ≤ B for all x ∈ Bn, which
due to the inequalities A ≤ C and D ≤ B implies that A ≤ C ∗ g(x) ≤ g(x) ≤ D+ g(x) ≤ B.
By the induction hypothesis,

g(x) = ‖(Θ′, f�x, (A,B))‖ = ‖(Θ′, f�x, (C ∗ g(x), D + g(x)))‖.

Let h(x, y) = ‖(Θ′, f�x, (C ∗ g(y), D + g(y)))‖, so that h(x, x) = g(x). By Equality (3),
E = θx.g(x) = θy.θx.h(x, y), so E = θx.h(x,E). Recalling that g(E) = E, by assumption
we have that C ≤ g(E) ≤ D. Unravelling the definition of h in E = θx.h(x,E), we obtain
that

E = θx.‖(Θ′, f�x, (C ∗ g(E), D + g(E)))‖ = θx.‖(Θ′, f�x, (C,D))‖ = ‖(Θ, f, (C,D))‖,

as required. J

B Proof of Lemma 3.4

Heading towards a proof of Lemma 3.4, we first note an analogue to Proposition 2.2
and Lemma 4.6, which follows by a straightforward induction:

I Lemma B.1. For every fixed-point expression (Θ, f, (A,B)) and for every equitable tree V
of height |Θ|ν ,

A ≤ ‖(Θ, f, (A,B))‖V ≤ B.

As already mentioned, while proving Lemma 3.4 we make use of the following simple fact.

I Proposition B.2. For a monotone mapping f : Bn → Bn,

µx.f(x) = f(. . . (f︸ ︷︷ ︸
n

(0)) . . .).

We now generalize Lemma 3.4 a bit, to a variant suitable for an inductive proof (Lemma 3.4
follows from Lemma B.3 by taking A′ = A):

I Lemma B.3. Let (Θ, f, (A,B)) be a fixed-point expression, and let V be an equitable tree
of height |Θ|ν . If A ≤ A′ ≤ ‖(Θ, f, (A,B))‖V , then

‖(Θ, f, (A,B))‖V = ‖(Θ, f, (A′, B))‖Cn,|Θ|µ ,V .

Proof. Induction on the length of Θ. Let h = |Θ|µ. For Θ = 〈〉 on the one hand due to
A ≤ A′ we have

‖(Θ, f, (A,B))‖V = A+B ∗ f() ≤ A′ +B ∗ f() = ‖(Θ, f, (A′, B))‖Cn,h,V ,

and on the other hand due to A′ ≤ ‖(Θ, f, (A,B))‖V we have

A′ +B ∗ f() ≤ A+B ∗ f() +B ∗ f() = A+B ∗ f().

CSL 2021

9:20 A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

Next, suppose that Θ = 〈ν〉 · Θ′ and V = 〈V1, . . . , Vp〉. Let B0 = B′0 = B and for
j ∈ {1, . . . , p}, let

Bj = ‖(Θ′, f�Bj−1 , (A,Bj−1))‖Vj , B′j = ‖(Θ′, f�B
′
j−1 , (A′, B′j−1))‖Cn,h,Vj .

Since A ≤ A′ ≤ ‖(Θ, f, (A,B))‖V = Bp ≤ Bp−1 ≤ · · · ≤ B0 (the inequalities between the
Bj ’s are by Lemma B.1), we have by the induction hypothesis

Bj = ‖(Θ′, f�Bj−1 , (A′, Bj−1))‖Cn,h,Vj .

Thus, Bj−1 = B′j−1 implies Bj = B′j , and since B0 = B′0 = B, we have ‖(Θ, f, (A,B))‖V =
Bp = B′p = ‖(Θ, f, (A′, B))‖Cn,h,V .

Finally, suppose that Θ = 〈µ〉 ·Θ′. Let us define

E0 = 0, Ej = ‖(Θ′, f�Ej−1 , (A,B))‖V for j ∈ {1, . . . , n}, and (11)

A′0 = A′, A′j = ‖(Θ′, f�A
′
j−1 , (A′j−1, B))‖Cn,h−1,V for j ∈ {1, . . . , n}. (12)

Let E = En. By Proposition B.2 we have E = µx.‖(Θ′, f�x, (A,B))‖V = ‖(Θ, f, (A,B))‖V .
Simultaneously, by the definition of ‖(Θ, f, (A′, B))‖Cn,h,V we have ‖(Θ, f, (A′, B))‖Cn,h,V =
A′n. Moreover, by Lemma 4.6 we have A ≤ A′ = A′0 ≤ A′1 ≤ · · · ≤ A′n, that is, A ≤ A′j for
all j ∈ {0, . . . , n}. We now prove by induction on j ∈ {0, . . . , n} that Ej ≤ A′j ≤ E (for
j = n we obtain the required equality E = En = A′n). For j = 0 the inequality boils down
to 0 ≤ A′ ≤ E, which holds by assumption. Suppose thus that j ∈ {1, . . . , n} and that
Ej−1 ≤ A′j−1 ≤ E. By monotonicity and by the induction hypothesis it follows that

Ej
(11)
≤ ‖(Θ′, f�A

′
j−1 , (A′j−1, B))‖V = ‖(Θ′, f�A

′
j−1 , (A′j−1, B))‖Cn,h,V = A′j .

Again by monotonicity and again by the induction hypothesis, since A ≤ A′j−1 ≤ E =
‖(Θ′, f�E , (A,B))‖V ,

A′j
(12)
≤ ‖(Θ′, f�E , (A′j−1, B))‖Cn,h,V = ‖(Θ′, f�E , (A,B))‖V = E. J

C An explicit definition of the system of equations

In this section we give an explicit description of the system of equations generated by
Algorithm 1 for ‖(Θ, f, (A,B))‖V , where |Θ|ν = h. Without loss of generality we may assume
that Θ = 〈µ〉 · 〈ν, µ〉h; to reach such a situation from a general case, one can add additional
parameters (quantified by µ) on which f does not depend (and compress neighbouring
occurrences of µ using Equality (3)). Suppose that leaves of V are numbered 1, . . . ,m from
left to right (where m = |V |). For all i ∈ {1, . . . ,m} and ` ∈ {0, . . . , h}, let λ`(i) be the least
number j ∈ {0, . . . ,m− 1} such that leaves number j + 1 and i have the same ancestor at
level `, and let ρ`(i) be the greatest number j ∈ {1, . . . ,m} such that leaves number i and
j have the same ancestor at level ` (in particular, λ0(i) = i − 1 and ρ0(i) = i). In other
words, if v is the ancestor of the i-th leaf located at level `, then λ`(i) is the number of the
leftmost leaf descendant of v, decreased by one, and ρ`(i) is the number of the rightmost leaf
descendant of v. In the system, we use variables x1, . . . , xm and additionally the variable x0
that is valuated to 1. For every i ∈ {1, . . . ,m} we have an equation

xi = xλ0(i) ∗ f(xρ0(i), xλ0(i), xρ1(i), xλ1(i), xρ2(i), xλ2(i), . . . , xρh−1(i), xλh−1(i), xρh(i)). (?)

A. Arnold, D. Niwiński, and P. Parys 9:21

It is the variable xm that stores the result (i.e., xres = xm).
We now prove that the system generated by Algorithm 1 is indeed of the above form.

Originally, the last argument of the procedure Generate is a subtree of the input tree V .
Let us consider a modification of this procedure, where the last argument is a node of V ,
being the root of this subtree (and then, in the procedure, we consider the subtree starting
in this node).

Consider now a recursive call

Generate(x, 〈µ〉 · 〈ν, µ〉`, f ,B, u) with f = f(?, . . . , ?, y2`+2, . . . , y2h+1)

performed during the considered execution of Algorithm 1. It is easy to prove (by induction
on the depth of the recursion) that, if i is the number of the rightmost leaf descendant of the
node u,

u is located at level `,
for every j ∈ {` + 1, . . . , h}, the argument y2j contains the variable xλj−1(i), and the
argument y2j+1 contains the variable xρj(i),
the argument B contains the variable xλ`(i), and
the argument x contains the variable xρ`(i), that is, xi.

From the above claim it follows that equations generated in line 4 of the algorithm are indeed
of the form (?).

D Proof of Lemma 3.5

I Lemma 3.5. Let F = (Θ, f, (0,1)) be a fixed-point expression, and let V be an equitable
tree of height |Θ|ν . The value assigned to the variable xres in the least solution of the system
of equations generated by Algorithm 1 equals ‖F‖V .

Proof. In order to facilitate an inductive proof of this lemma, we slightly modify Algorithm 1.
Namely, we replace line 14 by the following three lines:
x′ = FreshVariable();
Generate(x,Θ′, f�x′ ,B, V);
output “x′ = x”;

This way, we replace some occurrences of the variable x in the resulting system of equations
by a fresh variable x′, and we add an equation ensuring that x′ equals x. It should be
clear that there is a one-to-one correspondence between solutions of the original system of
equations and solutions of the new one; in particular the least solution is the same (modulo
the difference that in the new system some variables are multiplicated). Thus, from now on
we only consider the modified algorithm.

Let d be the length of Θ. We prove a claim concerning any recursive call

Generate(x, Θ̂, f ,B, V̂) with f = f(?, . . . , ?, yk+1, . . . , yd).

We assume that k (i.e., the number of ?’s) equals the length of Θ̂, and V̂ is an equitable tree
of height |Θ̂|ν (we use here symbols Θ̂ and V̂ , not Θ and V , in order to distinguish these
arguments from the original sequence Θ and from the original tree V). Moreover, we assume
that the variable contained in the argument x is not contained in any of the arguments
yk+1, . . . , yd,B. All calls appearing in the modified version of the algorithm satisfy the above
two conditions (while the second condition is not satisfied by the original algorithm; this
is why we consider the modification). Let S be the system of equations generated by the
above call. A solution of S is a function that maps every variable appearing in S (including

CSL 2021

9:22 A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

those that do not appear on the left side of any equation) to an element of Bn. Consider
also a valuation val : {yk+1, . . . , yd,B} → Bn. Based on the the original function f (of arity
d), the valuation induces a new function fval of arity k, in an obvious way. Let B = val(B)
and E = ‖(Θ̂, fval , (0, B))‖

V̂
.

B Claim.
(1) For every solution R of S that extends val it holds R(x) ≥ E, and
(2) there exists a solution R of S that extends val and such that R(x) = E.

Equivalently, the claim says that in the least solution of S among those that extend the
valuation val, the variable x is valuated to E. In particular, while considering the main call
of the algorithm (i.e., the call in line 17), this claim gives us the thesis of the lemma. It thus
remains to prove the claim, which is done by induction on k.

For k = 0 (i.e., Θ̂ = 〈〉) the system S consists of a single equation, namely x =
B ∗ f(y1, . . . , yd). The valuation val already assigns values to the variables y1, . . . , yd,B (but
not to x), so there is a unique solution that extends val; it maps x to B ∗ fval(), that is, to E.

Next, suppose that Θ̂ = 〈ν〉 · Θ̂′. Let V̂ = 〈V̂1, . . . , V̂p〉, let B0 = B, and for j ∈
{1, . . . , p} let Bj = ‖(Θ̂′, (fval)�Bj−1 , (0, Bj−1))‖

V̂j
. Then, by definition, E = Bp. More-

over, for every j ∈ {1, . . . , p}, let Sj be the system of equations generated by the call
Generate(Bj , Θ̂′, f�Bj−1 ,Bj−1, V̂j) in line 11 of the algorithm.

Consider now a solution R of S that extends val. We prove by induction on j ∈ {0, . . . , p}
that R(Bj) ≥ Bj ; for j = p this gives Point (1) of the claim, because Bp = x and Bp = E.
For j = 0 we have B0 = B, so R(B0) = val(B) = B = B0. For the induction step, we
prove R(Bj) ≥ Bj assuming R(Bj−1) ≥ Bj−1, where j ∈ {1, . . . , p}. Because Sj is a part
of S, our solution R (when restricted to variables appearing in Sj) is also a solution of Sj .
Moreover, it extends val[Bj−1 7→ R(Bj−1)]. Observe that the function of arity k− 1 induced
by the valuation val[Bj−1 7→ R(Bj−1)] (i.e., fval[Bj−1 7→R(Bj−1)]) equals (fval)�R(Bj−1) (below,
similar equalities are used implicitly). Thus, by the induction hypothesis (used for this
valuation) and by monotonicity,

R(Bj) ≥ ‖(Θ̂′, (fval)�R(Bj−1), (0, R(Bj−1)))‖
V̂j
≥ ‖(Θ̂′, (fval)�Bj−1 , (0, Bj−1))‖

V̂j
= Bj .

In order to prove Point (2) of the claim, for every j ∈ {1, . . . , p} we create by the induction
hypothesis a solution Rj to Sj that extends val[Bj−1 7→ Bj−1] and such that Rj(Bj) = Bj .
Observe that the systems S1, . . . ,Sp have pairwise disjoint sets of variables, except for the
variables yk+1, . . . , yd whose values are fixed by val, and except for variables B1, . . . ,Bp−1
shared by consecutive systems, for which we also fix values in a consistent way. It follows
that the solutions R1, . . . , Rp may be merged into a solution R of the whole system S (being
a union of S1, . . . ,Sp). This solution extends val, and satisfies R(x) = Rp(Bp) = Bp = E.

We now come to the last case, namely Θ̂ = 〈µ〉 · Θ̂′. Let S ′ be the system of equations
generated by the call Generate(x, Θ̂′, f�x′ ,B, V̂) in the modified line 14 of the algorithm;
in other words, this is S without the equation x′ = x. Recall that, in this case, E is the
least fixed point of the mapping C 7→ ‖(Θ̂′, (fval)�C , (0, B))‖

V̂
. For Point (1) of the claim,

consider a solution R of S that extends val. This is also a solution of S ′, and R(x′) = R(x).
Thus, by the induction hypothesis used for the valuation val[x′ 7→ R(x)],

R(x) ≥ ‖(Θ̂′, (fval)�R(x), (0, B))‖
V̂
.

By Equalities (2) this means that R(x) can only be greater than the least fixed point of
the aforementioned mapping, that is R(x) ≥ E. This proves Point (1). For Point (2), the

A. Arnold, D. Niwiński, and P. Parys 9:23

induction hypothesis gives us a solution R of S ′ that extends val[x′ 7→ E] and such that
R(x) = ‖(Θ̂′, (fval)�E , (0, B))‖

V̂
, that is, R(x) = E. We also have R(x′) = E, so R is a

solution of S as well. This finishes the proof of the claim, and thus of the whole lemma. J

Lemmata 4.1 and 4.2 are immediate consequences of definitions and of Proposition 2.3.

E Proof of Lemma 5.2

As already mentioned, we obtain Lemma 5.2 by taking the root of T as v in the following
lemma.

I Lemma E.1. For every node v of T located at level `,

‖(Θ`, f`, (0, B(v)))‖ ≥ B(v).

Proof. The proof is by induction on `. Let E = ‖(Θ`, f`, (0, B(v)))‖. For ` = 0 we simply
have E = 0 +B(v) ∗ 1 = B(v).

Suppose now that ` ≥ 1. Let Θ′` = 〈ν〉 · 〈µ, ν〉l−1, and let c be the rightmost node at level
`− 1 such that A(c) ≤ E. We first prove that

‖(Θ′`, f`�E , (0, B(c)))‖ ≥ B(c). (13)

To this end, observe that

‖(Θ`−1, (f`�E)�B(c), (0, B(c)))‖ (5)= ‖(Θ`−1, f`−1, (0, B(c) ∗ g−`−1(B(c)) ∗ g+
`−1(E)))‖

(4)= ‖(Θ`−1, f`−1, (0, B(c) ∗B(c) ∗B(c)))‖ ≥ B(c),

where the last inequality is by the induction hypothesis. Moreover, by Proposition 2.2 we
have a converse inequality. Together, this means that B(c) is a fixed point of the mapping
x 7→ ‖(Θ`−1, (f`�E)�x, (0, B(c)))‖. By definition ‖(Θ′`, f`�E , (0, B(c)))‖ is the greatest fixed
points of this mapping, so it can be only greater. This finishes the proof of Inequality (13).

If B(v) ≤ A(c), the thesis (i.e., E ≥ B(v)) is true, since A(c) ≤ E. Otherwise, B(v) > A(c)
implies that B(v) ≥ B(c) (because c is not higher in the tree than v). Thus, because E is a
fixed point and by monotonicity we have that

E = ‖(Θ′`, f`�E , (0, B(v)))‖ ≥ ‖(Θ′`, f`�E , (0, B(c)))‖
(13)
≥ B(c).

If c is the rightmost node at level ` − 1, we have E ≥ B(c) = 1 ≥ B(v) and again we are
done. In the remaining case, the node c′ one to the right from c satisfies A(c′) = B(c) ≤ E,
contrary to the definition of c. J

CSL 2021

Learning Concepts Described By
Weight Aggregation Logic
Steffen van Bergerem
RWTH Aachen University, Germany
vanbergerem@informatik.rwth-aachen.de

Nicole Schweikardt
Humboldt-Universität zu Berlin, Germany
schweikn@informatik.hu-berlin.de

Abstract
We consider weighted structures, which extend ordinary relational structures by assigning weights,
i.e. elements from a particular group or ring, to tuples present in the structure. We introduce an
extension of first-order logic that allows to aggregate weights of tuples, compare such aggregates,
and use them to build more complex formulas. We provide locality properties of fragments of this
logic including Feferman-Vaught decompositions and a Gaifman normal form for a fragment called
FOW1, as well as a localisation theorem for a larger fragment called FOWA1. This fragment can
express concepts from various machine learning scenarios. Using the locality properties, we show
that concepts definable in FOWA1 over a weighted background structure of at most polylogarithmic
degree are agnostically PAC-learnable in polylogarithmic time after pseudo-linear time preprocessing.

2012 ACM Subject Classification Theory of computation → Logic; Theory of computation →
Complexity theory and logic; Computing methodologies→ Logical and relational learning; Computing
methodologies → Supervised learning

Keywords and phrases first-order definable concept learning, agnostic probably approximately
correct learning, classification problems, locality, Feferman-Vaught decomposition, Gaifman normal
form, first-order logic with counting, weight aggregation logic

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.10

Related Version A full version of the paper is available at [23], https://arxiv.org/abs/2009.10574.

Funding The second author has been partially supported by the ANR project EQUUS ANR-19-CE48-
0019; funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project
number 431183758 (gefördert durch die Deutsche Forschungsgemeinschaft (DFG) – Projektnummer
431183758).

Acknowledgements We thank Martin Grohe and Sandra Kiefer for helpful discussions on the subject.

1 Introduction

In this paper, we study Boolean classification problems. The elements that are to be classified
come from a set X , the instance space. A classifier on X is a function c : X → {0, 1}. Given
a training sequence T of labelled examples (xi, bi) ∈ X × {0, 1}, we want to find a classifier,
called a hypothesis, that can be used to predict the label of elements from X not given in
T . We consider the following well-known frameworks for this setting from computational
learning theory.

In Angluin’s model of exact learning [1], the examples are assumed to be generated using
an unknown classifier, the target concept, from a known concept class. The task is to find a
hypothesis that is consistent with the training sequence T , i.e. a function h : X → {0, 1} such
that h(xi) = bi for all i. In Haussler’s model of agnostic probably approximately correct (PAC)
learning [11], a generalisation of Valiant’s PAC learning model [21], an (unknown) probability

© Steffen van Bergerem and Nicole Schweikardt;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 10; pp. 10:1–10:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5212-8992
mailto:vanbergerem@informatik.rwth-aachen.de
https://orcid.org/0000-0001-5705-1675
mailto:schweikn@informatik.hu-berlin.de
https://doi.org/10.4230/LIPIcs.CSL.2021.10
https://arxiv.org/abs/2009.10574
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Learning Concepts Described by Weight Aggregation Logic

distribution D on X ×{0, 1} is assumed and training examples are drawn independently from
this distribution. The goal is to find a hypothesis that generalises well, i.e. one is interested
in algorithms that return with high probability a hypothesis with a small expected error on
new instances drawn from the same distribution. For more background on PAC learning,
we refer to [12, 19]. We study learning problems in the framework that was introduced by
Grohe and Turán [9] and further studied in [3, 6, 7, 22]. There, the instance space X is a set
of tuples from a background structure and classifiers are described using parametric models
based on logics.

Our Contribution. We introduce a new logic for describing such classifiers, namely first-
order logic with weight aggregation (FOWA). It operates on weighted structures, which extend
ordinary relational structures by assigning weights, i.e. elements from a particular abelian
group or ring, to tuples present in the structure. Such weighted structures were recently
considered by Toruńczyk [20], who studied the complexity of query evaluation problems for
the related logic FO[C] and its fragment FOG[C]. Our logic FOWA, however, is closer to the
syntax and semantics of the first-order logic with counting quantifiers FOC considered in [13].
This connection enables us to achieve locality results for the fragments FOW1 and FOWA1
of FOWA similar to those obtained in [14, 8]. Specifically, we achieve Feferman-Vaught
decompositions and a Gaifman normal form for FOW1 as well as a localisation theorem
for the more expressive logic FOWA1. We provide examples illustrating that FOWA1 can
express concepts relevant for various machine learning scenarios. Using the locality properties,
we show that concepts definable in FOWA1 over a weighted background structure of at
most polylogarithmic degree are agnostically PAC-learnable in polylogarithmic time after
pseudo-linear time preprocessing. This generalises the results that Grohe and Ritzert [7]
obtained for first-order logic to the substantially more expressive logic FOWA1.

The main drawback of the existing logic-based learning results is that they deal with
structures and logics that are too weak for describing meaningful classifiers for real-world
machine learning problems. In machine learning, input data is often given via numerical
values which are contained in or extracted from a more complex structure, such as a relational
database (cf., [5, 10, 17, 18]). Hence, to combine these two types of information, we are
interested in hybrid structures, which extend relational ones by numerical values. Just as in
commonly used relational database systems, to utilise the power of such hybrid structures,
the classifiers should be allowed to use different methods to aggregate the numerical values.
Our main contribution is the design of a logic that is capable of expressing meaningful
machine learning problems and, at the same time, well-behaved enough to have similar
locality properties as first-order logic, which enable us to learn the concepts in sublinear
time.

Outline. This paper is structured as follows. Section 2 fixes basic notation. Section 3
introduces the logic FOWA and its fragments FOW1 and FOWA1, provides examples, and
discusses enrichments of the logic with syntactic sugar in order to make it more user-friendly
(i.e. easier to parse or construct formulas) without increasing its expressive power. Section 4
provides locality results for the fragments FOW1 and FOWA1 that are similar in spirit to the
known locality results for first-order logic and the counting logic FOC1. Section 5 is devoted
to our results on agnostic PAC learning. Section 6 combines the results from the previous
sections to obtain our main learning theorem for FOWA1, and concludes the paper with an
application scenario and directions for future work. Due to space restrictions, we omit some
proofs and proof details in this article; all these details can be found in the preliminary full
version of this paper [23].

S. van Bergerem and N. Schweikardt 10:3

2 Preliminaries

Standard Notation. We write R, Q, Z, N, and N>1 for the sets of reals, rationals, integers,
non-negative integers, and positive integers, respectively. For all m,n ∈ N, we write [m,n]
for the set {k ∈ N : m 6 k 6 n}, and we let [m] := [1,m]. For a k-tuple x̄ = (x1, . . . , xk),
we write |x̄| to denote its arity k. By (), we denote the empty tuple, i.e. the tuple of arity
0. All graphs are assumed to be undirected. For a graph G, we write V (G) and E(G) to
denote its vertex set and edge set, respectively. For V ′ ⊆ V (G), we write G[V ′] to denote the
subgraph of G induced on V ′. We assume familiarity with standard definitions concerning
groups and rings (cf., [23]). When referring to an abelian group (or ring), we will usually
write (S,+S) (or (S,+S , ·S)), we denote the neutral element of the group by 0S , and −a
denotes the inverse of an element a in (S,+S) (and we denote the neutral element of the
ring for (S, ·S) by 1S).

Signatures, Structures, and Neighbourhoods. A signature σ is a finite set of relation
symbols. Associated with every R ∈ σ is an arity ar(R) ∈ N. A σ-structure A consists of
a finite non-empty set A called the universe of A (sometimes denoted U(A)), and for each
R ∈ σ a relation RA ⊆ Aar(R). The size of A is |A| := |A|. Note that, according to these
definitions, the universe A = U(A) of each considered structure A is finite, and all considered
signatures σ are relational (i.e. they do not contain any constants or function symbols), and
may contain relation symbols of arity 0 (the only 0-ary relations over a set A are ∅ and {()}).

Let σ′ be a signature with σ′ ⊇ σ. A σ′-expansion of a σ-structure A is a σ′-structure B
with universe B such that B = A and RB = RA for every R ∈ σ. If B is a σ′-expansion of
A, then A is called the σ-reduct of B. A substructure of a σ-structure A is a σ-structure B
with a universe B ⊆ A and RB ⊆ RA for all R ∈ σ. For a σ-structure A and a non-empty
set B ⊆ A, we write A[B] to denote the induced substructure of A on B, i.e. the σ-structure
with universe B and RA[B] = RA ∩Bar(R) for every R ∈ σ.

The Gaifman graph GA of a σ-structure A is the graph with vertex set A and an edge
between two distinct vertices a, b ∈ A iff there exists R ∈ σ and a tuple (a1, . . . , aar(R)) ∈ RA
such that a, b ∈ {a1, . . . , aar(R)}. The structure A is connected if GA is connected; the
connected components of A are the connected components of GA. The degree of A is the
degree of GA, i.e. the maximum number of neighbours of a vertex of GA. The distance
distA(a, b) between two elements a, b ∈ A is the minimal number of edges of a path from a

to b in GA; if no such path exists, we set distA(a, b) :=∞. For a tuple ā = (a1, . . . , ak) ∈ Ak
and an element b ∈ A, we let distA(ā, b) := mini∈[k] dist(ai, b), and for a tuple b̄ = (b1, . . . , b`),
we let dist(ā, b̄) := minj∈[`] dist(ā, bj).

For every r > 0, the r-ball of ā in A is the set NAr (ā) = {b ∈ A : distA(ā, b) 6 r}. The
r-neighbourhood of ā in A is the structure NAr (ā) := A[NAr (ā)] .

3 Weight Aggregation Logic

This section introduces our new logic, which we call first-order logic with weight aggregation.
It is inspired by the counting logic FOC and its fragment FOC1, as introduced in [13, 8],
as well as the logic FO[C] and its fragment FOG[C], which were recently introduced by
Toruńczyk in [20]. Similarly as in [20], we consider weighted structures, which extend ordinary
relational structures by assigning a weight, i.e. an element of a particular group or ring, to
tuples present in the structure. The syntax and semantics of our logic, however, are closer
in spirit to the syntax and semantics of the logic FOC1, since this will enable us to achieve
locality results similar to those obtained in [14, 8].

CSL 2021

10:4 Learning Concepts Described by Weight Aggregation Logic

Weighted Structures. Let σ be a signature. Let S be a collection of rings and/or abelian
groups. Let W be a finite set of weight symbols, such that each w ∈W has an associated arity
ar(w) ∈ N>1 and a type type(w) ∈ S. A (σ,W)-structure is a σ-structure A that is enriched,
for every w ∈ W, by an interpretation wA : Aar(w) → type(w), which satisfies the following
locality condition: if wA(a1, . . . , ak) 6= 0S for S := type(w), k := ar(w) and (a1, . . . , ak) ∈ Ak,
then k = 1 or a1 = · · · = ak or there exists an R ∈ σ and a tuple (b1, . . . , bar(R)) ∈ RA
such that {a1, . . . , ak} ⊆ {b1, . . . , bar(R)}. All notions that were introduced in Section 2 for
σ-structures carry over to (σ,W)-structures in the obvious way. Specifically, if A is a (σ,W)-
structure and σ′ is a signature with σ′ ⊇ σ, then a σ′-expansion of A is a (σ′,W)-structure
B with B = A, RB = RA for all R ∈ σ, and wB = wA for all w ∈W.

We will use the following as running examples throughout this section.

I Example 3.1.
(a) Consider an online marketplace that allows retailers to sell their products to consumers.

The database of the marketplace contains a table with transactions, and each entry
consists of an identifier, a customer, a product, a retailer, the price per item, and the
number of items sold. We can describe the database of the marketplace as a weighted
structure as follows. Let (Q,+, ·) be the field of rationals, let W contain two unary
weight symbols price and quantity of type (Q,+, ·), let σ = {T}, and let A be a
(σ,W)-structure such that the universe A contains the identifiers for the transactions,
customers, products, and retailers. For every transaction, let TA contain the 4-tuple
(i, c, p, r) consisting of the identifier for the transaction, the customer, the product, and
the retailer. For every transaction identifier i, let priceA(i) be the price per item in the
transaction and let quantityA(i) be the number of items sold; for every other identifier
a in A, let priceA(a) = quantityA(a) = 0.

(b) In a recent survey [17], Pan and Ding describe different approaches to represent social
media users via embeddings into a low-dimensional vector space, where the embeddings
are based on the users’ social media posts1. We represent the available data by a weighted
structure A as follows. Consider the group (Rk,+), where Rk is the set of k-dimensional
real vectors and + is the usual vector addition, and let W contain a unary weight symbol
embedding of type (Rk,+). Let σ = {F} and let A be a (σ,W)-structure such that
the universe A consists of the users of a social network. Let FA contain all pairs of
users (a, b) such that a is a follower of b. For every user a ∈ A, let embeddingA(a) be a
k-dimensional vector representing a’s social media posts.

(c) Consider vertex-coloured edge-weighted graphs, where R,B,G are unary relations of red,
blue, and green vertices, E is a binary relation of edges, and where every edge (a, b) has
an associated weight that is a k-dimensional vector of reals (for some fixed number k).
Such graphs can be viewed as (σ,W)-structures A, where σ = {E,R,B,G}, W contains
a binary weight symbol w of type (Rk,+) and wA(a, b) ∈ Rk for all edges (a, b) ∈ EA.

Fix a countably infinite set vars of variables. A (σ,W)-interpretation I = (A, β) consists of
a (σ,W)-structure A and an assignment β : vars→ A. For k ∈ N>1, elements a1, . . . , ak ∈ A,
and k distinct variables y1, . . . , yk, we write I a1,...,ak

y1,...,yk
for the interpretation (A, β a1,...,ak

y1,...,yk
),

where β a1,...,ak

y1,...,yk
is the assignment β′ with β′(yi) = ai for every i ∈ [k] and β′(z) = β(z) for

all z ∈ vars \ {y1, . . . , yk}.

1 Among other applications, such embeddings might be used to predict a user’s personality or political
leaning.

S. van Bergerem and N. Schweikardt 10:5

The Weight Aggregation Logic FOWA and its Restrictions FOWA1 and FOW1. Let σ
be a signature, S a collection of rings and/or abelian groups, and W a finite set of weight
symbols. An S-predicate collection is a 4-tuple (P, ar, type, J·K) where P is a countable set
of predicate names and, to each P ∈ P, ar assigns an arity ar(P) ∈ N>1, type assigns a
type type(P) ∈ Sar(P), and J·K assigns a semantics JPK ⊆ type(P). For the remainder of this
section, fix an S-predicate collection (P, ar, type, J·K).

For every S ∈ S that is not a ring but just an abelian group, a W-product of type S is
either an element s ∈ S or an expression of the form w(y1, . . . , yk) where w ∈W is of type S,
k = ar(w), and y1, . . . , yk are k pairwise distinct variables in vars. For every ring S ∈ S, a
W-product of type S is an expression of the form t1· · · · ·t` where ` ∈ N>1 and for each i ∈ [`]
either ti ∈ S or there exists a w ∈W with type(w) = S and there exist k := ar(w) pairwise
distinct variables y1, . . . , yk in vars such that ti = w(y1, . . . , yk). By vars(p) we denote the
set of all variables that occur in a W-product p.

I Example 3.2. Recall Example 3.1(a)–(c), and let x and y be variables. Examples of
W-products are price(x)·quantity(x), embedding(x), and w(x, y). Below, in Definition 3.3,
we will provide the formal definition of a logic (including notions of formulas and so-called
S-terms) which is capable of expressing the following statements.
(a) Given a first-order formula ϕgroup(p) that defines products of a certain product group

based on the structure of their transactions, we can describe the amount of money a
consumer c paid on the specified product group via the S-term

tspending(c) :=
∑

price(i) · quantity(i) . ∃p ∃r
(
ϕgroup(p) ∧ T (i, c, p, r)

)
.

This term associates with every consumer c the sum of the product of price(i) and
quantity(i) for all transaction identifiers i for which there exists a product p and a
retailer r such that the tuple (i, c, p, r) belongs to the transaction table and ϕgroup(p)
holds. The S-term

tsales :=
∑

price(i) · quantity(i) . ∃c∃p ∃r
(
ϕgroup(p) ∧ T (i, c, p, r)

)
specifies the amount all customers have paid on products from the product group.
We might want to select the “heavy hitters”, i.e. all customers c for whom tspending(c) >
0.01 · tsales holds. In our logic, this is expressed by the formula

P>(tspending(c), 0.01 · tsales) , where

P> is a predicate name of type (Q,+, ·)× (Q,+, ·) with JP>K = {(r, s) ∈ Q2 : r > s}.
(b) For vectors u, v ∈ Rk, let d(u, v) denote the Euclidean distance between u and v. We

might want to use a formula ϕsimilar(x, y) expressing that the two k-dimensional vectors
associated with persons x and y have Euclidean distance at most 1. To express this in
our logic, we can add the rational field (Q,+, ·) to the collection S and use a predicate
name PED of arity 3 and type (Rk,+) × (Rk,+) × (Q,+, ·) with JPEDK = {(u, v, q) ∈
Rk × Rk ×Q : d(u, v) 6 q}. Then,

ϕsimilar(x, y) := PED(embedding(x), embedding(y), 1)

is a formula with the desired meaning.
(c) For each vertex x, the sum of the weights of edges between x and its blue neighbours is

specified by the S-term tB(x) :=
∑

w(x′, y).(x′=x ∧ E(x′, y) ∧B(y)).

CSL 2021

10:6 Learning Concepts Described by Weight Aggregation Logic

We have designed the definition of the syntax of our logic in a way particularly suitable for
formulating and proving the locality results that are crucial for obtaining our learning results.
To obtain a more user-friendly syntax, i.e. which allows to read and construct formulas in a
more intuitive way, one could of course introduce syntactic sugar that allows to explicitly
write statements of the form

tspending(c) > 0.01 · tsales instead of P>(tspending(c), 0.01 · tsales)
d(embedding(x), embedding(y)) 6 1 instead of PED(embedding(x), embedding(y), 1)∑
y

w(x, y).(E(x, y) ∧B(y)) instead of
∑

w(x′, y).(x′=x ∧ E(x′, y) ∧B(y)).

We now define the precise syntax and semantics of our weight aggregation logic.

I Definition 3.3 (FOWA(P)[σ, S,W]). For FOWA(P)[σ, S,W], the set of formulas and
S-terms is built according to the following rules:
(1) x1=x2 and R(x1, . . . , xar(R)) are formulas,

where R ∈ σ and x1, x2, . . . , xar(R) are variables2.
(2) If w ∈W, S = type(w), s ∈ S, k = ar(w), and x̄ = (x1, . . . , xk) is a tuple of k pairwise

distinct variables, then (s = w(x̄)) is a formula.
(3) If ϕ and ψ are formulas, then ¬ϕ and (ϕ ∨ ψ) are also formulas.
(4) If ϕ is a formula and y ∈ vars, then ∃y ϕ is a formula.
(5) If ϕ is a formula, w ∈W, S = type(w), s ∈ S, k = ar(w), and ȳ = (y1, . . . , yk) is a tuple

of k pairwise distinct variables, then
(
s =

∑
w(ȳ).ϕ

)
is a formula.

(6) If P ∈ P, m = ar(P), and t1, . . . , tm are S-terms such that (type(t1), . . . , type(tm)) =
type(P), then P(t1, . . . , tm) is a formula.

(7) For every S ∈ S and every s ∈ S, s is an S-term of type S.
(8) For every S ∈ S, every w ∈ W of type S, and every tuple (x1, . . . , xk) of k := ar(w)

pairwise distinct variables in vars, w(x1, . . . , xk) is an S-term of type S.
(9) If t1 and t2 are S-terms of the same type S, then so are (t1+ t2) and (t1− t2); furthermore,

if S is a ring (and not just an abelian group), then also (t1·t2) is an S-term of type S.
(10) If ϕ is a formula, S ∈ S, and p is a W-product of type S, then

∑
p.ϕ is an S-term of

type S.
Let I = (A, β) be a (σ,W)-interpretation. For a formula or S-term ξ of FOWA(P)[σ, S,W],
the semantics JξKI is defined as follows.

(1) Jx1=x2KI = 1 if a1=a2, and Jx1=x2KI = 0 otherwise;
JR(x1, . . . , xar(R))KI = 1 if (a1, . . . , aar(R)) ∈ RA, and JR(x1, . . . , xar(R))KI = 0 other-
wise;
where aj := β(xj) for j ∈ {1, . . . ,max{2, ar(R)}}.

(2) J(s = w(x̄))KI = 1 if s = wA(β(x1), . . . , β(xk)), and J(s = w(x̄))KI = 0 otherwise.
(3) J¬ϕKI = 1− JϕKI and J(ϕ ∨ ψ)KI = max{JϕKI , JψKI}.
(4) J∃y ϕKI = max{JϕKI

a
y : a ∈ A}.

(5) J
(
s =

∑
w(ȳ).ϕ

)
KI = 1 if s =

∑
S{wA(ā) : ā = (a1, . . . , ak) ∈ Ak with JϕKI

a1,...,ak
y1,...,yk = 1}

(as usual, by convention, we let
∑
S X = 0S if X = ∅).

(6) JP(t1, . . . , tm)KI = 1 if
(
Jt1KI , . . . , JtmKI

)
∈ JPK, and JP(t1, . . . , tm)KI = 0 otherwise.

(7) JsKI = s.
(8) Jw(x1, . . . , xk)KI = wA(β(x1), . . . , β(xk)).
(9) J(t1 ∗ t2)KI = Jt1KI ∗S Jt2KI , for ∗ ∈ {+,−, ·}.

2 In particular, if ar(R) = 0, then R() is a formula.

S. van Bergerem and N. Schweikardt 10:7

(10) J
∑
p.ϕKI =

∑
S{JpK

I a1,...,ak
y1,...,yk : a1, . . . , ak ∈ A with JϕKI

a1,...,ak
y1,...,yk = 1}, where

{y1, . . . , yk} = vars(p) and k = |vars(p)| and JpKI = Jt1KI ·S · · · ·SJt`KI if p = t1· · · · ·t` is
of type S.

An expression is a formula or an S-term. As usual, for a formula ϕ and a (σ,W)-
interpretation I, we will often write I |= ϕ to indicate that JϕKI = 1. Accordingly, I 6|= ϕ

indicates that JϕKI = 0.
The set vars(ξ) of an expression ξ is defined as the set of all variables in vars that occur

in ξ. The free variables free(ξ) of ξ are defined as follows: free(ξ) = vars(ξ) if ξ is built
according to one of the rules (1), (2), (7), (8); free(¬ϕ) = free(ϕ), free((ϕ ∨ ψ)) = free(ϕ) ∪
free(ψ), free(∃y ϕ) = free(ϕ) \ {y}, free((s =

∑
w(y1, . . . , yk).ϕ)) = free(ϕ) \ {y1, . . . , yk};

free(P(t1, . . . , tm)) =
⋃m
i=1 free(ti); free((t1 ∗ t2)) = free(t1) ∪ free(t2) for ∗ ∈ {+,−, ·};

free(
∑
p.ϕ) = free(ϕ) \ vars(p). As usual, we will write ξ(x̄) for x̄ = (x1, . . . , xk) to indicate

that free(ξ) ⊆ {x1, . . . , xk}. A sentence is a FOWA(P)[σ, S,W]-formula ϕ with free(ϕ) = ∅.
A ground S-term is an S-term t of FOWA(P)[σ, S,W] with free(t) = ∅.

For a (σ,W)-structure A and a tuple ā = (a1, . . . , ak) ∈ Ak, we write A |= ϕ[ā] or
(A, ā) |= ϕ to indicate that for every assignment β : vars→ A with β(xi) = ai for all i ∈ [k],
we have I |= ϕ, for I = (A, β). Similarly, for an S-term t(x̄) we write tA[ā] to denote JtKI .

I Definition 3.4 (FOWA1 and FOW1). The set of formulas and S-terms of the logic
FOWA1(P)[σ, S,W] is built according to the same rules as for the logic FOWA(P)[σ, S,W],
with the following restrictions:
(5)1: rule (5) can only be applied if S is finite,
(6)1: rule (6) can only be applied if | free(t1) ∪ · · · ∪ free(tm)| 6 1.
FOW1(P)[σ, S,W] is the restriction of FOWA1(P)[σ, S,W] where rule (10) cannot be applied.

Note that first-order logic FO[σ] is the restriction of FOW1(P)[σ, S,W] where only
rules (1), (3), and (4) can be applied. As usual, we write (ϕ ∧ ψ) and ∀y ϕ as shorthands
for ¬(¬ϕ ∨ ¬ψ) and ¬∃y ¬ϕ. The quantifier rank qr(ξ) of a FOWA(P)[σ, S,W]-expression ξ
is defined as the maximum nesting depth of constructs using rules (4) and (5) in order to
construct ξ. The aggregation depth dag(ξ) of ξ is defined as the maximum nesting depth of
term constructions using rule (10) in order to construct ξ.
I Remark 3.5. FOW1 can be viewed as an extension of first-order logic with modulo-counting
quantifiers: if S contains the abelian group (Z/mZ,+) for some m > 2, and W contains a
unary weight symbol onem of type Z/mZ such that oneAm(a) = 1 for all a ∈ A, then the
modulo m counting quantifier ∃i mod my ϕ (stating that the number of interpretations for
y that satisfy ϕ is congruent to i modulo m) can be expressed in FOW1(P)[σ, S,W] via(
i =

∑
onem(y).ϕ

)
.

FOWA1 can be viewed as an extension of the logic FOC1 of [8]: if S contains the integer ring
(Z,+, ·) and W contains a unary weight symbol one of type Z such that oneA(a) = 1 for
all a ∈ A on all considered (σ,W)-structures A, then the counting term #(y1, . . . , yk).ϕ of
FOC1 (which counts the number of tuples (y1, . . . , yk) that satisfy ϕ) can be expressed in
FOWA1(P)[σ, S,W] via the S-term

∑
p.ϕ for p := one(y1)· · · · ·one(yk).

Let us mention, again, that we have designed the precise definition of the syntax of our logic
in a way particularly suitable for formulating and proving the locality results that are crucial
for obtaining our learning results. To obtain a more user-friendly syntax, i.e. which allows
to read and construct formulas in a more intuitive way, it would of course make sense to
introduce syntactic sugar that allows to explicitly write statements of the form

#(y1, . . . , yk).ϕ instead of
∑
p.ϕ for p := one(y1)· · · · ·one(yk)(

#(y).ϕ ≡ i mod m
)

or ∃i mod my ϕ instead of
(
i =

∑
onem(y).ϕ

)
.

CSL 2021

10:8 Learning Concepts Described by Weight Aggregation Logic

For this, one would tacitly assume that S contains (Z,+, ·) (or (Z/mZ,+)) and W contains a
unary weight symbol one of type Z (or onem of type Z/mZ) where oneA(a) = 1 (= oneAm(a))
for every a ∈ A and every considered (σ,W)-structure A.

To close this section, we return to the running examples from Examples 3.1 and 3.2.

I Example 3.6. We use the syntactic sugar introduced at the end of Remark 3.5.
(a) The number of consumers who bought products p from the product group defined by

ϕgroup(p) is specified by the S-term

t#cons :=
∑

one(c) . ∃i ∃p ∃r (ϕgroup(p) ∧ T (i, c, p, r));

and using the syntactic sugar described above, this S-term can be expressed via
#(c). ∃i ∃p ∃r (ϕgroup(p) ∧ T (i, c, p, r)).
The consumers c who spent at least as much as the average consumer on the products p
satisfying ϕgroup(p) can be described by the formula

ϕspending(c) := P>
(
(tspending(c) · t#cons) , tsales

)
,

where P> is a binary predicate in P of type Q×Q that is interpreted by the >-relation.
To improve readability, one could introduce syntactic sugar that allows to express this as
tspending(c) > tsales/t#cons. The formula ϕspending(c) belongs to FOWA1(P)[σ, S,W].

(b) The term t#follows(x) := #(y).F (x, y) specifies the number of users y followed by person x.
The term tsum(x) :=

∑
embedding(y).F (x, y) specifies the sum of the vectors associated

with all users y followed by x. To describe the users x whose embedding is δ-close (for
some fixed δ > 0) to the average of the embeddings of users they follow3, we might want
to use a formula ϕclose(x) of the form

d
(

embedding(x) , 1
t#follows(x) · tsum(x)

)
< δ .

We can describe this in FOWA1(P)[σ, S,W] by the formula

ϕclose(x) := Pdist<δ(embedding(x), t#follows(x), tsum(x)),

where Pdist<δ is a ternary predicate in P of type Rk × Z × Rk consisting of all triples
(v̄, `, w̄) with ` > 0 and d(v̄, 1

` ·w̄) < δ.
(c) Recall the term tB(x) introduced in Example 3.2 (c) that specifies the sum of the weights

of edges between x and its blue neighbours, and let tR(x) be a similar term summing
up the weights of edges between x and its red neighbours (using the syntactic sugar
introduced at the end of Example 3.2, this can be described as

∑
y

w(x, y).(E(x, y)∧R(y))).

To specify the vertices x that have exactly 5 red neighbours, we can use the formula
ϕ5 red(x) := (5 = #(y).(E(x, y) ∧R(y))). Let us now assume we are given a particular
set H ⊆ R2k and we want to specify the vertices x that have exactly 5 red neighbours
and for which, in addition, the 2k-ary vector obtained by concatenating the k-ary vectors
computed by summing up the weights of edges between x and its blue neighbours
and by summing up the weights of edges between x and its red neighbours belongs
to H. To express this, we can use a binary predicate P of type Rk × Rk with JPK ={

(ū, v̄) ∈ Rk×Rk : (u1, . . . , uk, v1, . . . , vk) ∈ H}. Then, the FOWA1(P)[σ, S,W]-formula
ψ(x) := ϕ5 red(x) ∧ P(tB(x), tG(x)) specifies the vertices x we are interested in.

3 Depending on the target of the embeddings, this could mean that the user mostly follows users with a
very similar personality or political leaning.

S. van Bergerem and N. Schweikardt 10:9

4 Locality Properties of FOW1 and FOWA1

We now summarise locality properties of FOW1 and FOWA1 that are similar to well-known
locality properties of first-order logic FO and to locality properties of FOC1 achieved in [8].
This includes Feferman-Vaught decompositions and a Gaifman normal form for FOW1, and
a localisation theorem for the more expressive logic FOWA1.

For the remainder of this section, let us fix a signature σ, a collection S of rings and/or
abelian groups, a finite set W of weight symbols, and an S-predicate collection (P, ar, type, J·K).

The notion of local formulas is defined as usual [15]: let r ∈ N. A FOWA(P)[σ, S,W]-form-
ula ϕ(x̄) with free variables x̄ = (x1, . . . , xk) is r-local (around x̄) if for every (σ,W)-structure
A and all ā ∈ Ak, we have A |= ϕ[ā] ⇐⇒ NAr (ā) |= ϕ[ā] . A formula is local if it is r-local
for some r ∈ N.

For an r ∈ N, it is straightforward to construct an FO[σ]-formula distσ6r(x, y) such that
for every (σ,W)-structure A and all a, b ∈ A, we have A |= distσ6r[a, b] ⇐⇒ distA(a, b) 6
r. To improve readability, we write distσ(x, y)6 r for distσ6r(x, y), and distσ(x, y)>r for
¬distσ6r(x, y); and we omit the superscript σ when it is clear from the context. For a
tuple x̄ = (x1, . . . , xk) of variables, dist(x̄, y)>r is a shorthand for

∧k
i=1 dist(xi, y)>r, and

dist(x̄, y)6 r is a shorthand for
∨k
i=1 dist(xi, y)6 r. For ȳ = (y1, . . . , y`), we use dist(x̄; ȳ)>r

and dist(x̄; ȳ)6 r as shorthands for
∧`
j=1 dist(x̄, yj)>r and

∨`
j=1 dist(x̄, yj)6 r, respectively.

The r-localisation ϕ(r) of a FOWA(P)[σ, S,W]-formula ϕ(x̄) is the formula obtained from
ϕ by replacing every subformula of the form ∃y ϕ′ with the formula ∃y

(
ϕ′ ∧ dist(x̄, y) 6 r

)
,

replacing every subformula of the form
(
s =

∑
w(ȳ).ϕ′

)
, for ȳ = (y1, . . . , yk), with the

formula
(
s =

∑
w(ȳ).(ϕ′ ∧

∧k
j=1 dist(x̄, yj) 6 r)

)
, and replacing every S-term of the form∑

p.ϕ′ with the S-term
∑
p.
(
ϕ′ ∧

∧k
j=1 dist(x̄, yj) 6 r

)
, where {y1, . . . , yk} = free(ϕ′). The

resulting formula ϕ(r)(x̄) is r-local.

Feferman-Vaught Decompositions for FOW1. We pick two new unary relation symbols
X,Y that do not belong to σ, and we let σ′ := σ ∪ {X,Y }.

I Definition 4.1. Let A,B be (σ,W)-structures with A ∩B = ∅. The disjoint sum A⊕ B
is the (σ′,W)-structure C with universe C = A ∪ B, XC = A, Y C = B, RC = RA ∪ RB
for all R ∈ σ, and such that for all w ∈ W and k := ar(w) and all c̄ = (c1, . . . , ck) ∈ Ck,
we have wC(c̄) = wA(c̄) if c̄ ∈ Ak, wC(c̄) = wB(c̄) if c̄ ∈ Bk, and wC(c̄) = 0S otherwise (for
S := type(w)). The disjoint union A t B is the (σ,W)-structure obtained from C := A⊕ B
by omitting the relations XC , Y C.

I Definition 4.2. Let L be a subset of FOWA(P)[σ, S,W].
Let k, ` ∈ N and let x̄ = (x1, . . . , xk), ȳ = (y1, . . . , y`) be tuples of k+` pairwise distinct
variables. Let ϕ be a FOWA(P)[σ′,S,W]-formula with free(ϕ) ⊆ {x1, . . . , xk, y1, . . . , y`}. A
Feferman-Vaught decomposition of ϕ in L w.r.t. (x̄; ȳ) is a finite, non-empty set ∆ of tuples
of the form

(
α, β

)
where α, β ∈ L and free(α) ⊆ {x1, . . . , xk} and free(β) ⊆ {y1, . . . , y`},

such that the following is true for all (σ,W)-structures A,B with A ∩B = ∅ and all ā ∈ Ak,
b̄ ∈ B`: A⊕ B |= ϕ[ā, b̄] ⇐⇒ there exists (α, β) ∈ ∆ such that A |= α[ā] and B |= β[b̄].

Our first main result provides Feferman-Vaught decompositions for FOW1.

I Theorem 4.3 (Feferman-Vaught decompositions for FOW1(P)[σ, S,W]).
Let k, ` ∈ N and let x̄ = (x1, . . . , xk), ȳ = (y1, . . . , y`) be tuples of k+` pairwise distinct
variables. For every FOW1(P)[σ′,S,W]-formula ϕ with free(ϕ) ⊆ {x1, . . . , xk, y1, . . . , y`},
there exists a Feferman-Vaught decomposition ∆ in L of ϕ w.r.t. (x̄; ȳ), where L := Lϕ is

CSL 2021

10:10 Learning Concepts Described by Weight Aggregation Logic

the class of all FOW1(P)[σ, S,W]-formulas of quantifier rank at most qr(ϕ) which use only
those P ∈ P and S ∈ S that occur in ϕ and only those S-terms that occur in ϕ or that are of
the form s for an s ∈ S ∈ S where S is finite and occurs in ϕ.

Furthermore, there is an algorithm that computes ∆ upon input of ϕ, x̄, ȳ.

The proof proceeds in a similar way as the proof of the Feferman-Vaught decomposition
for first-order logic with modulo-counting quantifiers in [14]. For details as well as for the
proof of the following corollary of the theorem, we refer to [23].

I Corollary 4.4. Let k, ` ∈ N and let x̄ = (x1, . . . , xk), ȳ = (y1, . . . , y`) be tuples of k+`
pairwise distinct variables. Upon input of an r ∈ N and an r-local FOW1(P)[σ, S,W]-formula
ϕ(x̄, ȳ), one can compute a finite, non-empty set ∆ of pairs

(
α(x̄), β(ȳ)

)
of L-formulas, where

L is the class of all r-localisations of formulas in the class Lϕ of Theorem 4.3, such that the
following two formulas are equivalent:(∧k

i=1
∧`
j=1 dist(xi, yj) > 2r+1

)
∧ ϕ(x̄, ȳ)(∧k

i=1
∧`
j=1 dist(xi, yj) > 2r+1

)
∧
∨

(α,β)∈∆
(
α(x̄) ∧ β(ȳ)

)
.

Gaifman Normal Form for FOW1. We now turn to a Gaifman normal form for FOW1.

I Definition 4.5. A basic-local sentence in FOW1(P)[σ, S,W] is a sentence of the form
∃x1 · · · ∃x`

(∧
16i<j6` dist(xi, xj) > 2r ∧

∧`
i=1 λ(xi)

)
, where ` ∈ N>1, r ∈ N, λ(x) is an

r-local FOW1(P)[σ, S,W]-formula, and x1, . . . , x` are ` pairwise distinct variables.
A local aggregation sentence in FOW1(P)[σ, S,W] is a sentence of the form

(
s =∑

w(ȳ).λ(ȳ)
)
, where w ∈ W, s ∈ S := type(w), ` = ar(w), ȳ = (y1, . . . , y`) is a tuple of `

pairwise distinct variables, and λ(ȳ) is an r-local FOW1(P)[σ, S,W]-formula.
A FOW1(P)[σ, S,W]-formula in Gaifman normal form is a Boolean combination of local

FOW1(P)[σ, S,W]-formulas, basic-local sentences in FOW1(P)[σ, S,W], and local aggregation
sentences in FOW1(P)[σ, S,W].

Our next main theorem provides a Gaifman normal form for FOW1.

I Theorem 4.6 (Gaifman normal form for FOW1(P)[σ, S,W]). Every FOW1(P)[σ, S,W]-
formula ϕ is equivalent to an FOW1(P)[σ, S,W]-formula γ in Gaifman normal form with
free(γ) = free(ϕ). Furthermore, there is an algorithm that computes γ upon input of ϕ.

The proof proceeds similarly as Gaifman’s original proof for first-order logic FO ([2], see
also [4, Sect. 4.1]), but since subformulas are from FOW1(P)[σ, S,W], we use Corollary 4.4
instead of Feferman-Vaught decompositions for FO (cf. [4, Lemma 2.3]). Furthermore, for
formulas built according to rule (5)1, we proceed in a similar way as for the modulo-counting
quantifiers in the Gaifman normal construction of [14]. We defer the reader to the full version
for the details [23].

A Localisation Theorem for FOWA1. Our next main theorem provides a locality result
for the logic FOWA1, which is a logic substantially more expressive than FOW1.

I Theorem 4.7 (Localisation Theorem for FOWA1). For every FOWA1(P)[σ, S,W]-formula
ϕ(x1, . . . , xk) (with k > 0), there is an extension σϕ of σ with relation symbols of arity
6 1, and a FOW1(P)[σϕ,S,W]-formula ϕ′(x1, . . . , xk) that is a Boolean combination of local
formulas and statements of the form R() where R ∈ σϕ has arity 0, for which the following

S. van Bergerem and N. Schweikardt 10:11

is true: there is an algorithm4 that, upon input of a (σ,W)-structure A, computes in time
|A|·dO(1), where d is the degree of A, a σϕ-expansion Aϕ of A such that for all ā ∈ Ak it
holds that Aϕ |= ϕ′[ā] ⇐⇒ A |= ϕ[ā].

We prove this by decomposing FOWA1-expressions into simpler expressions that can be
evaluated in a structure A by exploring for each element a in the universe of A only a local
neighbourhood around a. This is achieved by proving a decomposition theorem that is a
generalisation of the decomposition for FOC1(P) provided in [8, Theorem 6.6], and it builds
upon the Gaifman normal form result of Theorem 4.6. Again, we defer the reader to the full
version for the details [23].

5 Learning Concepts on Weighted Structures

Throughout this section, fix a collection S of rings and/or abelian groups, an S-predicate
collection (P, ar, type, J·K), and a finite set W of weight symbols.

Furthermore, fix numbers k, ` ∈ N. Let L be a logic (e.g. FO, FOW1(P), FOWA1(P),
FOWA(P)), let σ be a signature, and let Φ ⊆ L[σ, S,W] be a set of formulas ϕ(x̄, ȳ) with
|x̄| = k and |ȳ| = `. For a (σ,W)-structure A, we follow the same approach as [3, 6, 7, 9, 22]
and consider the instance space X = Ak and concepts from the concept class

C(Φ,A, k, `) :=
{

Jϕ(x̄, ȳ)KA(x̄, v̄) : ϕ ∈ Φ, v̄ ∈ A`
}
,

where Jϕ(x̄, ȳ)KA(x̄, v̄) is defined as the mapping from Ak to {0, 1} that maps ā ∈ Ak to
Jϕ(ā, v̄)KA, which is 1 iff A |= ϕ[ā, v̄]. Given a training sequence T =

(
(ā1, b1), . . . , (āt, bt)

)
from (Ak×{0, 1})t, we want to compute a hypothesis that consists of a formula ϕ and a tuple
of parameters v̄ and is, depending on the approach, consistent with the training sequence or
probably approximately correct.

Instead of allowing random access to the background structure, we limit our algorithms to
have only local access. That is, an algorithm may only interact with the structure via queries
of the form “Is ā ∈ RA?”, “Return wA(ā)” and “Return a list of all neighbours of a in the
Gaifman graph of A”. Hence, in this model, algorithms are required to access new vertices
only via neighbourhood queries of vertices they have already seen. This enables us to learn
a concept from examples even if the background structure is too large to fit into the main
memory. To obtain a reasonable running time, we intend to find algorithms that compute
a hypothesis in sublinear time, measured in the size of the background structure. This
local access model has already been studied for relational structures in [7, 22] for concepts
definable in FO or in FOCN(P). Modifications of the local access model for strings and trees
have been studied in [3, 6].

In many applications, the same background structure is used multiple times to learn
different concepts. Hence, similar to the approaches in [3, 6], we allow a precomputation
step to enrich the background structure with additional information. That is, instead of
learning on a (σ,W)-structure A, we use an enriched (σ∗,W)-structure A∗, which has the
same universe as A, but σ∗ ⊇ σ contains additional relation symbols. The hypotheses we
compute may make use of this additional information and thus, instead of representing them
via formulas from the fixed set Φ, we consider a set Φ∗ of formulas of signature σ∗. These
formulas may even belong to a logic L∗ different from L. We study the following learning
problem.

4 with P- and S-oracles, i.e., the operations +S , ·S for S ∈ S and checking if a tuple belongs to JPK for
P ∈ P can be done in constant time by referring to an oracle that provides us with the answers

CSL 2021

10:12 Learning Concepts Described by Weight Aggregation Logic

I Problem 5.1 (Exact Learning with Precomputation). Let Φ ⊆ L[σ, S,W] and Φ∗ ⊆
L∗[σ∗,S,W] such that, for every (σ,W)-structure A, there is a (σ∗,W)-structure A∗ with
U(A∗) = U(A) that satisfies C(Φ,A, k, `) ⊆ C(Φ∗,A∗, k, `), i.e. every concept that can be
defined on A using Φ can also be defined on A∗ using Φ∗. The task is as follows.
Given a training sequence T =

(
(ā1, b1), . . . , (āt, bt)

)
∈ (Ak × {0, 1})t and, for a (σ,W)-

structure A, local access to the associated (σ∗,W)-structure A∗,
return a formula ϕ∗ ∈ Φ∗ and a tuple v̄ ∈ A` of parameters such that the hypothesis

Jϕ∗(x̄, ȳ)KA∗(x̄, v̄) is consistent with T , i.e. it maps āi to bi for every i ∈ [t].
The algorithm may reject if there is no consistent classifier using a formula from Φ on A.

Next, we examine requirements for Φ and Φ∗ that help us solve Problem 5.1 efficiently.
Following the approach presented in [7], to obtain algorithms that run in sublinear time, we
study concepts that can be represented via a set of local formulas Φ with a finite set Φ∗ of
normal forms. Using Feferman-Vaught decompositions and the locality of the formulas, we
can then limit the search space for the parameters to those that are in a certain neighbourhood
of the training sequence. Recall that Φ is a set of formulas ϕ(x̄, ȳ) in L[σ, S,W] with |x̄| = k

and |ȳ| = `. In the following, we require Φ to have the following property.

I Property 5.2. There are a signature σ∗, a logic L∗, an r ∈ N, and a finite set of r-local
formulas Φ∗ ⊆ L∗[σ∗,S,W] such that the following hold.
(1) For every (σ,W)-structure A, there is a (σ∗,W)-structure A∗ with U(A∗) = U(A) such

that, for every ϕ(x̄, ȳ) ∈ Φ, there is a ϕ∗(x̄, ȳ) ∈ Φ∗ with A |= ϕ[ā, b̄] ⇐⇒ A∗ |= ϕ∗[ā, b̄]
for all ā ∈ Ak, b̄ ∈ A`.

(2) Every ϕ∗ ∈ Φ∗ has, for every partition (z̄; z̄′) of the free variables of ϕ∗, a Feferman-
Vaught decomposition in Φ∗ w.r.t. (z̄; z̄′).

(3) For all ϕ∗1, ϕ∗2 ∈ Φ∗, the set Φ∗ contains formulas equivalent to ¬ϕ∗1 and to (ϕ∗1 ∨ ϕ∗2).

This property suffices to solve Problem 5.1:

I Theorem 5.3 (Exact Learning with Precomputation). There is an algorithm that solves
Problem 5.1 with local access to a structure A∗ associated with a structure A in time
fΦ∗(A∗) ·

(
logn+ d+ t

)O(1), where A, A∗, Φ, and Φ∗ are as described in Property 5.2, t is
the number of training examples, n and d are the size and the degree of A∗, and fΦ∗(A∗) is
an upper bound on the time complexity of model checking for formulas in Φ∗ on A∗.

We prove the theorem in Section 5.1.
Apart from exact learning with precomputation, we also study hypotheses that generalise

well in the following sense. The generalisation error of a hypothesis h : Ak → {0, 1} for a
probability distribution D on Ak × {0, 1} is

errD(h) := Pr
(ā,b)∼D

(h(ā) 6= b).

We write rat(0, 1) for the set of all rationals q with 0 < q < 1. A hypothesis class
H ⊆ {0, 1}Ak is agnostically PAC-learnable if there is a function tH : rat(0, 1)2 → N and
a learning algorithm L such that for all ε, δ ∈ rat(0, 1) and for every distribution D over
Ak × {0, 1}, when running L on a sequence T of tH(ε, δ) examples drawn i.i.d. from D, it
holds that

Pr
(

errD(L(T)) 6 inf
h∈H

errD(h) + ε

)
> 1− δ.

The following theorem, which we prove in Section 5.2, provides an agnostic PAC learning
algorithm.

S. van Bergerem and N. Schweikardt 10:13

I Theorem 5.4 (Agnostic PAC Learning with Precomputation). Let A, A∗, and Φ∗ be as
in Property 5.2. There is an s ∈ N such that, given local access to A∗, the hypothesis
class H := C(Φ∗,A∗, k, `) is agnostically PAC-learnable with tH(ε, δ) = s ·

⌈
log(n/δ)

ε2

⌉
via

an algorithm that, given tH(ε, δ) examples, returns a hypothesis of the form (ϕ∗, v̄∗) with
ϕ∗ ∈ Φ∗ and v̄∗ ∈ A` in time fΦ∗(A∗) ·

(
logn+ d+ 1

ε + log 1
δ

)O(1) with only local access to
A∗, where n and d are the size and the degree of A∗, and fΦ∗(A∗) is an upper bound on the
time complexity of model checking for formulas in Φ∗ on A∗.

The next remark establishes the crucial link between the learning results of this section and
the locality results of Section 4: it shows that suitably chosen sets Φ ⊆ FOWA1(P)[σ, S,W]
indeed have Property 5.2.
I Remark 5.5. Fix a q ∈ N and let Φ := Φq,k+` be the set of all FO[σ]-formulas ϕ of quantifier
rank at most q and with free variables among {x1, . . . , xk, y1, . . . , y`}. By the well-known
properties of first-order logic, Φ has Property 5.2 (e.g. via L′ := L = FO, σ∗ := σ, and
A∗ := A; this is exactly the setting considered in [7]). By using the locality properties of
FOW1 and FOWA1 from Section 4, we can apply a similar reasoning to FOWA1(P)[σ, S,W]
as to FO[σ]: let the collections P and S be finite (but S may contain some infinite rings or
abelian groups), fix a finite set S of elements s ∈ S ∈ S, and fix a q ∈ N. Let Φ := Φq,k+`,S be
the set of all FOWA1(P)[σ, S,W]-formulas ϕ of quantifier rank and aggregation depth at most
q and with free variables among {x1, . . . , xk, y1, . . . , y`} that have the following additional
property: all symbols s ∈ S ∈ S that are present in ϕ belong to S, all W-products present in
ϕ have length at most q, and the maximum nesting depth of term constructions using rule (9)
in order to construct terms present in ϕ is at most q. This set Φ has Property 5.2. To see
why, note that up to logical equivalence, Φ only contains a finite number of formulas. For
each of these finitely many formulas ϕ, we apply Theorem 4.7 to obtain an extension σϕ of σ,
a σϕ-expansion Aϕ of A, and a local FOW1(P)[σϕ,S,W]-formula ϕ′. Then we let σ∗ be the
union of all the σϕ, we let A∗ be the σ∗-expansion of A whose σϕ-reduct coincides with Aϕ for
each ϕ, and we let Φ′ be the set of all the formulas ϕ′. Choose a number r ∈ N such that each
of the ϕ′ ∈ Φ′ is r-local. Now we can repeatedly apply Theorem 4.3, take the r-localisations
α(r), β(r) of the resulting formulas α, β, and take Boolean combinations to obtain a finite
extension Φ∗ of Φ′ such that Φ∗ satisfies statements (2) and (3) of Property 5.2 and contains
only r-local formulas (see [23] for details on this construction). This Φ∗ witnesses that
Φ := Φq,k+`,S has Property 5.2.

5.1 Exact Learning with Precomputation
Section 5.1 is devoted to the proof of Theorem 5.3.

Let A be a (σ,W)-structure and let A∗ and Φ∗ be as in Property 5.2. To prove
Theorem 5.3, we present an algorithm that follows similar ideas as the algorithm presented
in [7]. Note, however, that [7] focuses on first-order logic, whereas our setting allows to
achieve results for considerably stronger logics.

While the set of possible formulas Φ∗ already has constant size, we have to reduce the
parameter space to obtain an algorithm that runs in sublinear time. Since the formulas in
Φ∗ are r-local, we show that it suffices to consider parameters in a neighbourhood of the
training sequence with a fixed radius.

For S ⊆ A and an element b ∈ A, let distA
∗
(b, S) := mina∈S distA

∗
(b, a). For R > 0,

set NA∗R (S) :=
⋃
a∈S N

A∗
R (a). Also, for a training sequence T =

(
(ā1, b1), . . . , (āt, bt)

)
∈

(Ak × {0, 1})t, let NA∗R (T) := NA
∗

R (S), where S is the set of all a ∈ A that occur in one of
the āi.

CSL 2021

10:14 Learning Concepts Described by Weight Aggregation Logic

1: N ← NA
∗

(2r+1)`(T)
2: for all v̄∗ ∈ N ` do
3: for all ϕ∗(x̄, ȳ) ∈ Φ∗ do
4: consistent← true
5: for all i ∈ [t] do
6: N = NA∗r (āiv̄∗)
7: if Jϕ∗(āi, v̄∗)KN 6= bi then
8: consistent← false
9: if consistent then

10: return (ϕ∗, v̄∗)
11: reject

1: N ← NA
∗

(2r+1)`(T)
2: errmin ← |T |+ 1
3: for all v̄∗ ∈ N ` do
4: for all ϕ∗(x̄, ȳ) ∈ Φ∗ do
5: errcur ← 0
6: for all i ∈ [t] do
7: N = NA∗r (āiv̄∗)
8: if Jϕ∗(āi, v̄∗)KN 6= bi then
9: errcur ← errcur + 1

10: if errcur < errmin then
11: errmin ← errcur
12: ϕ∗min ← ϕ∗

13: v̄∗min ← v̄∗

14: return (ϕ∗min, v̄
∗
min)

Figure 1 Learning algorithms for Theorems 5.3 (left) and 5.4 (right). Both algorithms use as
input a training sequence T =

(
(ā1, b1), . . . , (āt, bt)

)
∈ (Ak × {0, 1})t and have only local access to

the structure A∗.

I Lemma 5.6. Let T =
(
(ā1, b1), . . . , (āt, bt)

)
∈ (Ak × {0, 1})t be consistent with some

classifier in C(Φ∗,A∗, k, `). Then there are a formula ϕ∗(x̄, ȳ) ∈ Φ∗ and a tuple v̄∗ ∈
NA

∗

(2r+1)`(T)` such that Jϕ∗(x̄, ȳ)KA∗(x̄, v̄∗) is consistent with T .

The proof can be found in [23]. It is similar to the proof of the analogous statement in [7]
for the special case of FO, but relies on Property 5.2. We can now prove Theorem 5.3.

Proof of Theorem 5.3. We show that the algorithm depicted on the left-hand side of Figure 1
fulfils the requirements given in Theorem 5.3. The algorithm goes through all tuples
v̄∗ ∈ (NA∗(2r+1)`(T))` and all formulas ϕ∗(x̄, ȳ) ∈ Φ∗. A hypothesis Jϕ∗(x̄, ȳ)KA∗(x̄, v̄∗) is
consistent with the training sequence T if and only if Jϕ∗(āi, v̄∗)KA

∗ = bi for all i ∈ [t]. Since
Φ∗ only contains r-local formulas, this holds if and only if Jϕ∗(āi, v̄∗)KN

A∗
r (āiv̄

∗) = bi for
every i ∈ [t]. Hence, the algorithm only returns a hypothesis if it is consistent. Furthermore,
if there is a consistent hypothesis in C(Φ,A, k, `), then by Property 5.2 (1), there is also a
consistent hypothesis in C(Φ∗,A∗, k, `), and Lemma 5.6 ensures that the algorithm then
returns a hypothesis.

It remains to show that the algorithm satisfies the running time requirements while only
using local access to the structure A∗. For all ā ∈ Ak and v̄∗ ∈ A`, we can bound the size of
their neighbourhood by

∣∣NA∗r (āv̄∗)
∣∣ 6 (k + `) ·

∑r
i=0 d

i 6 (k + `) · (1 + dr+1). Therefore, the
representation size of the substructure NA∗r (āv̄∗) is in O

(
(k + `) · dr+1 · logn

)
. Thus, the

consistency check in lines 4–8 runs in time fΦ∗(A∗) · t ·O
(
(k+ `) ·dr+1 · logn

)
. The algorithm

checks up to |N |` · |Φ∗| ∈ O
(
(tkd(2r+1)`+1)` · |Φ∗|

)
hypotheses with N = NA

∗

(2r+1)`(T).
All in all, since k, `, r are considered constant, the running time of the algorithm is in
fΦ∗(A∗) · (logn+ d+ t)O(1) and it only uses local access to the structure A∗. J

5.2 Agnostic PAC Learning with Precomputation
Section 5.2 is devoted to the proof of Theorem 5.4.

S. van Bergerem and N. Schweikardt 10:15

To obtain a hypothesis that generalises well, we follow the Empirical Risk Minimization
rule (ERM) [19, 24], i.e. our algorithm should return a hypothesis h that minimises the
training error

errT (h) := 1
|T | · |{(ā, b) ∈ T : h(ā) 6= b}|

on the training sequence T . To prove Theorem 5.4, we use the following result from [19].

I Lemma 5.7 (Uniform Convergence [19]). Let H be a finite class of hypotheses h : Ak → {0, 1}.
Then H is agnostically PAC-learnable using an ERM algorithm and

tH(ε, δ) :=
⌈

2 log(2 |H| /δ)
ε2

⌉
.

Proof of Theorem 5.4. We show that the algorithm depicted on the right-hand side of
Figure 1 fulfils the requirements from Theorem 5.4. The algorithm goes through all tuples
v̄∗ ∈ (NA∗(2r+1)`(T))` and all formulas ϕ∗(x̄, ȳ) ∈ Φ∗ and counts the number of errors that
Jϕ∗(x̄, ȳ)KA∗(x̄, v̄∗) makes on T . Then it returns the hypothesis with the minimal training
error.

Since Φ∗ and A` are finite, H = C(Φ∗,A∗, k, `) is finite. Thus, using Lemma 5.7, H is
agnostically PAC-learnable with tH(ε, δ) =

⌈
2 log(2|H|/δ)

ε2

⌉
6
⌈

4` log(|Φ∗|) log(n/δ)
ε2

⌉
. The

running time analysis works as in the proof of Theorem 5.3. The algorithm returns a
hypothesis in time fΦ∗(A∗) · (logn+d+ t)O(1). For a training sequence of length t = tH(ε, δ),
we obtain a running time in fΦ∗(A∗) ·

(
logn+ d+ log(1/δ) + 1/ε

)O(1). J

6 Putting Things Together

Let the collections P and S be finite (but S may contain infinite rings or abelian groups),
fix a finite set S of elements s ∈ S ∈ S, fix a q ∈ N, and let Φ := Φq,k+`,S be the set of
FOWA1(P)[σ, S,W]-formulas defined in Remark 5.5. Let Φ∗, σ∗, and A∗ (for all (σ,W)-
structures A) be as described in Remark 5.5. By Theorem 4.7, A∗ can be computed from
A in time |A|·dO(1), where d is the degree of A. By Remark 5.5, the formulas in Φ∗ are
r-local for a fixed number r, and this implies that model checking for a formula in Φ∗ on A∗
can be done in time polynomial in d. Combining this with Theorems 5.3 and 5.4 yields the
following5.

I Theorem 6.1. Let n and d denote the size and the degree of A.
(1) There is an algorithm that solves Exact Learning with Precomputation for Φ and Φ∗ with

local access to a structure A∗ associated with a structure A in time (logn+ d+ t)O(1),
where t is the number of training examples.

(2) There is an s ∈ N such that, given local access to a structure A∗ associated with a
structure A, the hypothesis class H := C(Φ∗,A∗, k, `) is agnostically PAC-learnable with
tH(ε, δ) = s·

⌈
log(n/δ)

ε2

⌉
via an algorithm that, given tH(ε, δ) examples, returns a hypothesis

of the form (ϕ∗, v̄∗) with ϕ∗ ∈ Φ∗ and v̄∗ ∈ A` in time
(

logn+ d+ 1
ε + log 1

δ

)O(1) with
only local access to A∗.

Additionally, the algorithms can be chosen such that the returned hypotheses can be evaluated
in time (logn+ d)O(1).

5 All mentioned algorithms are assumed to have P- and S-oracles, so that operations +S , ·S for S ∈ S and
checking if a tuple is in JPK for P ∈ P takes time O(1).

CSL 2021

10:16 Learning Concepts Described by Weight Aggregation Logic

We conclude with an example that illustrates an application scenario for Theorem 6.1.

I Example 6.2. Recall the (σ,W)-structure A for the online marketplace from part (a) of
Examples 3.1, 3.2, and 3.6. Retailers can pay the marketplace to advertise their products to
consumers. Since the marketplace demands a fee for every single view of the advertisement,
retailers want the marketplace to only show the advertisement to those consumers that are
likely to buy the product. One possible way to choose suitable consumers is to consider
only those who buy a variety of products from the same or a similar product group as the
advertised product and who are thus more likely to try new products that are similar to the
advertised one. At the same time, the money spent by the chosen consumers on the product
group should be above average.

In the previous examples, we have already seen a formula ϕspending(c) that defines
consumers who have spent at least as much as the average consumer on the product group.
The formula depends on a formula ϕgroup(p) that defines a certain group of products based
on the structure of their transactions. Due to the connection between graph neural networks
and the Weisfeiler-Leman algorithm described in [16], we may assume that there is a formula
in FO[σ] that at least roughly approximates such a product group. Likewise, we might
assume that there is a formula ϕvariety(c) in FO[σ] that defines consumers with a wide variety
of products bought from a specific product group. However, it is a non-trivial task to design
such formulas by hand. It is even not clear whether there exist better rules for finding
suitable consumers. Meanwhile, we can easily show the advertisement to consumers and then
check whether they buy the product. Thus, we can generate a list with positive and negative
examples of consumers. Since the proposed rule can be defined in FOWA1(P)[σ, S,W] as
ϕadvertise(c) := (ϕvariety(c) ∧ ϕspending(c)), we can use one of the learning algorithms from
Theorem 6.1 to find good definitions for ϕvariety(c) and ϕgroup(p) or to learn an even better
definition for ϕadvertise(c) in FOWA1(P)[σ, S,W] from examples.

We believe that our results can be generalised to an extension of FOWA1 where con-
structions of the form P(t1, . . . , tm) are not restricted to the case that |V | = 1 for V :=
free(t1)∪· · ·∪ free(tm), but may also be used in a guarded setting of the form

(
P(t1, . . . , tm)∧∧

v,w∈V dist(v, w)6 r
)
. It would also be interesting to study non-Boolean classification prob-

lems, where classifiers are described by S-terms defined in a suitable fragment of FOWA. We
plan to do this in future work.

References

1 Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1987. doi:
10.1007/BF00116828.

2 Haim Gaifman. On local and non-local properties. In Jacques Stern, editor, Proceedings of the
Herbrand Symposium, volume 107 of Studies in Logic and the Foundations of Mathematics,
pages 105–135. North-Holland, 1982. doi:10.1016/S0049-237X(08)71879-2.

3 Emilie Grienenberger and Martin Ritzert. Learning definable hypotheses on trees. In 22nd
International Conference on Database Theory, ICDT 2019, March 26-28, 2019, Lisbon,
Portugal, pages 24:1–24:18, 2019. doi:10.4230/LIPIcs.ICDT.2019.24.

4 Martin Grohe. Logic, graphs, and algorithms. In Logic and Automata: History and Perspectives
[in Honor of Wolfgang Thomas], volume 2 of Texts in Logic and Games, pages 357–422.
Amsterdam University Press, 2008.

5 Martin Grohe. word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings
of structured data. In Dan Suciu, Yufei Tao, and Zhewei Wei, editors, Proceedings of the
39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS

https://doi.org/10.1007/BF00116828
https://doi.org/10.1007/BF00116828
https://doi.org/10.1016/S0049-237X(08)71879-2
https://doi.org/10.4230/LIPIcs.ICDT.2019.24

S. van Bergerem and N. Schweikardt 10:17

2020, Portland, OR, USA, June 14-19, 2020, pages 1–16. ACM, 2020. doi:10.1145/3375395.
3387641.

6 Martin Grohe, Christof Löding, and Martin Ritzert. Learning MSO-definable hypotheses on
strings. In International Conference on Algorithmic Learning Theory, ALT 2017, 15-17 October
2017, Kyoto University, Kyoto, Japan, pages 434–451, 2017. URL: http://proceedings.mlr.
press/v76/grohe17a.html.

7 Martin Grohe and Martin Ritzert. Learning first-order definable concepts over structures
of small degree. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12, 2017. doi:10.1109/LICS.2017.
8005080.

8 Martin Grohe and Nicole Schweikardt. First-order query evaluation with cardinality conditions.
In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, Houston, TX, USA, June 10-15, 2018, pages 253–266, 2018. doi:10.1145/
3196959.3196970.

9 Martin Grohe and György Turán. Learnability and definability in trees and similar structures.
Theory Comput. Syst., 37(1):193–220, 2004. doi:10.1007/s00224-003-1112-8.

10 Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages 855–864, 2016. doi:
10.1145/2939672.2939754.

11 David Haussler. Decision theoretic generalizations of the PAC model for neural net and
other learning applications. Inf. Comput., 100(1):78–150, 1992. doi:10.1016/0890-5401(92)
90010-D.

12 Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational
Learning Theory. MIT Press, 1994. URL: https://mitpress.mit.edu/books/
introduction-computational-learning-theory.

13 Dietrich Kuske and Nicole Schweikardt. First-order logic with counting. In 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June
20-23, 2017, pages 1–12, 2017. doi:10.1109/LICS.2017.8005133.

14 Dietrich Kuske and Nicole Schweikardt. Gaifman normal forms for counting extensions of
first-order logic. In 45th International Colloquium on Automata, Languages, and Programming,
ICALP 2018, July 9-13, 2018, Prague, Czech Republic, pages 133:1–133:14, 2018. doi:
10.4230/LIPIcs.ICALP.2018.133.

15 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2004. doi:10.1007/978-3-662-07003-1.

16 Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph neural
networks. In The 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, Honolulu,
Hawaii, USA, January 27 - February 1, 2019, pages 4602–4609, 2019. doi:10.1609/aaai.
v33i01.33014602.

17 Shimei Pan and Tao Ding. Social media-based user embedding: A literature review. In
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI 2019, Macao, China, August 10-16, 2019, pages 6318–6324, 2019. doi:10.24963/ijcai.
2019/881.

18 Maximilian Schleich, Dan Olteanu, Mahmoud Abo Khamis, Hung Q. Ngo, and XuanLong
Nguyen. Learning models over relational data: A brief tutorial. In Nahla Ben Amor,
Benjamin Quost, and Martin Theobald, editors, Scalable Uncertainty Management - 13th
International Conference, SUM 2019, Compiègne, France, December 16-18, 2019, Proceedings,
volume 11940 of Lecture Notes in Computer Science, pages 423–432. Springer, 2019. doi:
10.1007/978-3-030-35514-2_32.

19 Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, New York, NY, USA, 2014.

CSL 2021

https://doi.org/10.1145/3375395.3387641
https://doi.org/10.1145/3375395.3387641
http://proceedings.mlr.press/v76/grohe17a.html
http://proceedings.mlr.press/v76/grohe17a.html
https://doi.org/10.1109/LICS.2017.8005080
https://doi.org/10.1109/LICS.2017.8005080
https://doi.org/10.1145/3196959.3196970
https://doi.org/10.1145/3196959.3196970
https://doi.org/10.1007/s00224-003-1112-8
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1016/0890-5401(92)90010-D
https://doi.org/10.1016/0890-5401(92)90010-D
https://mitpress.mit.edu/books/introduction-computational-learning-theory
https://mitpress.mit.edu/books/introduction-computational-learning-theory
https://doi.org/10.1109/LICS.2017.8005133
https://doi.org/10.4230/LIPIcs.ICALP.2018.133
https://doi.org/10.4230/LIPIcs.ICALP.2018.133
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.24963/ijcai.2019/881
https://doi.org/10.24963/ijcai.2019/881
https://doi.org/10.1007/978-3-030-35514-2_32
https://doi.org/10.1007/978-3-030-35514-2_32

10:18 Learning Concepts Described by Weight Aggregation Logic

20 Szymon Toruńczyk. Aggregate queries on sparse databases. In Dan Suciu, Yufei Tao, and
Zhewei Wei, editors, Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS 2020, Portland, OR, USA, June 14-19, 2020, pages
427–443. ACM, 2020. doi:10.1145/3375395.3387660.

21 Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.
doi:10.1145/1968.1972.

22 Steffen van Bergerem. Learning concepts definable in first-order logic with counting. In 34th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC,
Canada, June 24-27, 2019, pages 1–13, 2019. doi:10.1109/LICS.2019.8785811.

23 Steffen van Bergerem and Nicole Schweikardt. Learning concepts described by weight aggrega-
tion logic. CoRR, abs/2009.10574, 2020. arXiv:2009.10574.

24 Vladimir Vapnik. Principles of risk minimization for learning theory. In Advances
in Neural Information Processing Systems 4, [NIPS Conference, Denver, Colorado,
USA, December 2-5, 1991], pages 831–838, 1991. URL: http://papers.nips.cc/paper/
506-principles-of-risk-minimization-for-learning-theory.

https://doi.org/10.1145/3375395.3387660
https://doi.org/10.1145/1968.1972
https://doi.org/10.1109/LICS.2019.8785811
http://arxiv.org/abs/2009.10574
http://papers.nips.cc/paper/506-principles-of-risk-minimization-for-learning-theory
http://papers.nips.cc/paper/506-principles-of-risk-minimization-for-learning-theory

Open Bar – a Brouwerian Intuitionistic Logic with
a Pinch of Excluded Middle
Mark Bickford
Cornell University, Ithaca, NY, USA
markb@cs.cornell.edu

Liron Cohen
Ben Gurion University of the Negev, Beer Sheva, Israel
cliron@cs.bgu.ac.il

Robert L. Constable
Cornell University, Ithaca, NY, USA
rc@cs.cornell.edu

Vincent Rahli
University of Birmingham, UK
V.Rahli@bham.ac.uk

Abstract
One of the differences between Brouwerian intuitionistic logic and classical logic is their treatment of
time. In classical logic truth is atemporal, whereas in intuitionistic logic it is time-relative. Thus, in
intuitionistic logic it is possible to acquire new knowledge as time progresses, whereas the classical
Law of Excluded Middle (LEM) is essentially flattening the notion of time stating that it is possible
to decide whether or not some knowledge will ever be acquired. This paper demonstrates that,
nonetheless, the two approaches are not necessarily incompatible by introducing an intuitionistic
type theory along with a Beth-like model for it that provide some middle ground. On one hand
they incorporate a notion of progressing time and include evolving mathematical entities in the
form of choice sequences, and on the other hand they are consistent with a variant of the classical
LEM. Accordingly, this new type theory provides the basis for a more classically inclined Brouwerian
intuitionistic type theory.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Constructive mathematics

Keywords and phrases Intuitionism, Extensional type theory, Constructive Type Theory, Realizabil-
ity, Choice sequences, Classical Logic, Law of Excluded Middle, Theorem proving, Coq

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.11

Supplementary Material All the results in the paper are formalized in Coq, see https://github.
com/vrahli/NuprlInCoq/tree/ls3/.

1 Introduction

Classical logic and intuitionistic logic are commonly viewed as distinct philosophies. Much
of the difference between the two philosophies can be attributed to the way they handle the
notion of time. In intuitionistic logic time plays a major role as the intuitionistic notions of
knowledge and truth evolve over time. In particular, the seminal concept of intuitionistic
mathematics as developed by Brouwer is that of infinitely proceeding sequences of choices
(called choice sequences) from which the continuum is defined [47, Ch.3]. Choice sequences
are a primitive concept of finite sequences of entities (e.g., natural numbers) that are never
complete, and can always be further extended with new choices [26, 48, 44, 43, 31, 50, 36].
These sequences can be “free” in the sense that they are not necessarily procedurally generated.
This manifestation of the evolving concept of time in intuitionistic logic entails a notion of
computability that goes far beyond that of Church-Turing. In fact, the concept of evolving

© Mark Bickford, Liron Cohen, Robert L. Constable, and Vincent Rahli;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 11; pp. 11:1–11:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2294-7601
mailto:markb@cs.cornell.edu
https://orcid.org/0000-0002-6608-3000
mailto:cliron@cs.bgu.ac.il
mailto:rc@cs.cornell.edu
https://orcid.org/0000-0002-5914-8224
mailto:V.Rahli@bham.ac.uk
https://doi.org/10.4230/LIPIcs.CSL.2021.11
https://github.com/vrahli/NuprlInCoq/tree/ls3/
https://github.com/vrahli/NuprlInCoq/tree/ls3/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Open Bar

knowledge in intuitionistic logic is grounded in Krikpe’s Schema, which in turn relies on the
notion of choice sequences, and is inconsistent with Church’s Thesis [49, Sec.5]. Classical
logic, on the other hand, is time-invariant. That is, its notions of knowledge and truth are
constant and so the aspect of time is, intuitively speaking, flattened. As mentioned by van
Atten, “Many people believe, unlike Brouwer, that mathematical truths are not tensed but
eternal – either because such truths are outside time altogether (atemporal) or because they
hold in all time (omnitemporal)” [47, p.19].

This critical difference between the two philosophies has been used extensively to refute
classical results in intuitionistic logic. Brouwer himself used his concept of choice sequences to
provide weak counterexamples to classical results such as “any real number different from 0 is
also apart from 0” [24, Ch.8]. Those counterexamples are called weak in the sense that they
depend on the existence of formulas that have not been either proven or disproven yet (e.g.,
the Goldbach conjecture). By defining a choice sequence in which the value 1 can only be
picked once such an undecided conjecture has been resolved (proved or disproved), one could
resolve this undecided conjecture using the Law of Excluded Middle (LEM), leading to a weak
counterexample of LEM [12, Ch.1,Sec.1]. Kripke [33, Sec.1.1] also used the unconstrained
nature of choice sequences to refute other classical results, namely Kuroda’s conjecture and
Markov’s principle in Kreisel’s FC system [28].1 A constructive version of LEM in which
the operators are interpreted constructively is also false in realizability theories such as the
CTT constructive type theory [14, 5] because it allows deciding the undecidable halting
problem [40, Sec.6.3] (therefore not relying on undecided conjectures). However, a weaker
version of LEM that does not require providing a realizer of either its left or right disjuncts,
was proved to be consistent with CTT [17, 27, 40].But using a similar technique to Brouwer’s,
even this weak version of LEM was shown to be inconsistent with BITT, an intuitionistic
extension of CTT with a computable notion of choice sequences [8, Appx.A].

The use of the growing-over-time nature of choice sequences to refute classical axioms,
and in particular LEM which is a key component of classical reasoning, seems to indicate an
incompatibility between classical logic and intuitionistic logic. However, in this paper we
show that this does not have to be the case. To this end, we present a relaxed model of time
that mitigates the two approaches. Namely, on one hand it supports the evolving nature of
choice sequences, and on the other hand it enables variants of the classical LEM.

Concretely, we present OpenTT, a novel intuitionistic extensional type theory that
incorporates the Brouwerian notion of choice sequences, and is inspired by BITT [8]. OpenTT
goes beyond and departs from BITT in several ways. First, it is validated w.r.t. a novel
Beth-like model, which we call the open bar model, that is significantly simpler than the one
presented in [8]. Beth models were originally developed to provide meaning to intuitionistic
formulas [51, 7, 21, 19],and they have proven especially well-suited to interpret choice
sequences [49]. In such models, formulas are interpreted w.r.t. infinite trees of elements (such
as numbers). The models are typically formulated using a forcing interpretation where the
forcing conditions are finite elements of those trees that provide meaning to choice sequences
at a given point in time. Allowing access within the logic to the infinitely proceeding
elements of the forcing layer, i.e., the branches of the Beth trees formulas are interpreted
against, enables the use of the undecided nature of those elements to derive the negation of
otherwise classically valid formulas such as LEM. The open bar model sufficiently weakens
the “undecided” nature of those elements to enable validating a variant of LEM.

1 This method to refute classical axioms was reused via forcing methods (see, e.g., [18, Sec.7.2.4] for
the relation between forcing and choice sequences). E.g., the independence of Markov’s Principle with
Martin-Löf’s type theory was proven using a forcing method where the “free” nature of forcing conditions
replaces the “free” nature of free choice sequences in Kripke’s proof [15].

M. Bickford, L. Cohen, R. L. Constable, and V. Rahli 11:3

Another benefit of OpenTT over BITT is that the notion of time induced by the new
model is flexible enough to capture an intuitionistic theory of computable choice sequences,
and in particular the Axiom of Open Data (a continuity axiom) that was missing from
BITT [8] and is a key axiom of choice sequence theories. Therefore, OpenTT provides a
computational setting for exploring the implications of such entities, for example, it can
enable the development of constructive Brouwerian real number theories. At the same time, it
also enables validating variants of the classical LEM. In other words, OpenTT together with
the open bar model presented in the paper enable a more relaxed notion of time, providing a
basis for a more classically-inclined Brouwerian intuitionistic theory.

Contributions and roadmap. Sec. 2 describes the core syntactic components of the type
theory OpenTT. Sec. 3 presents the novel open bar semantic model, which is used to validate
OpenTT. Then, OpenTT is shown to capture both a theory of choice sequences (Sec. 4),
as well as a variant of LEM (Sec. 5). Sec. 6 concludes by discussing related and future
work. All the results in the paper are formalized in Coq, see https://github.com/vrahli/
NuprlInCoq/tree/ls3/, and we provide clickable hyperlinks to the formalization throughout
the paper.

2 OpenTT and Choice Sequences

OpenTT is an intuitionistic extensional dependent type theory. It is composed of an untyped
programming language, and a dependent type system that associates types with programs.
A type T , viewed as a proposition, is said to be true if it is inhabited, i.e., if some program t

has type T – in which case t is said to realize T . This connection is made formal through a
realizability model described in Sec. 3, where types are interpreted as partial equivalence
relations on programs. In addition to standard program constructs, OpenTT contains
computable choice sequences.

Choice sequences are the seminal component in Brouwer’s intuitionistic theory, and
the one manifesting notions of time and growth over time. Choice sequences are infinitely
proceeding sequences of elements, which are chosen over time from a previously well-defined
collection. There are two main classes of choice sequences, which are often referred to as
lawlike and lawless [45]. The lawlike ones are “completed constructions” [45, Sec.1.2], where
the choices must be chosen w.r.t. a pre-determined “law” (e.g., a general recursive program).
The lawless ones, by contrast, are never fully completed and can always be extended over
time with further choices that are not constrained by any law, that is, they can be chosen
“freely” (hence the name free choice sequences). In this paper we focus on a theory with free
choice sequences, which is a key distinguishing feature in Brouwer’s intuitionistic logic, and
a manifestation of the fact that time is an essential component of Brouwer’s logic because
unlike lawlike sequences that are time-invariant, lawless ones keep on evolving over time.

The notion of time in OpenTT is captured through the use of worlds. The worlds
discussed in Sec. 2.2 constitute, as is standard practice, a poset, and are concretely defined
as states that store definitions as well as choice sequences’ choices. Thus, a world captures a
state at a given point in time. The evolving nature of time is then captured via a notion of
world extension, allowing to add new definitions, choice sequences, and choices.

OpenTT is inspired by BITT [8]. To make the paper self-contained we shall also review the
components that are identical to those in BITT, noting the differences, which we summarize
here. In addition to the standard inference rules for the standard types that are listed in
Fig. 1 (which are discussed in Appx. B), OpenTT also contains inference rules that capture

CSL 2021

https://github.com/vrahli/NuprlInCoq/tree/ls3/
https://github.com/vrahli/NuprlInCoq/tree/ls3/

11:4 Open Bar

Figure 1 Syntax of OpenTT.
η ∈ CSName (C.S. name) δ ∈ Abstraction (abstraction)
v ∈ Value ∶∶= vt (type) ∣ λx.t (lambda) ∣ ⟨t1, t2⟩ (pair)

∣ ⋆ (axiom) ∣ inl(t) (left injection) ∣ inr(t) (right injection)
∣ i (integer) ∣ η (choice sequence)

vt ∈ Type ∶∶= Πx∶t1.t2 (product) ∣ Σx∶t1.t2 (sum)
∣ Ui (universe) ∣ t1 = t2 ∈ t (equality)
∣ t1+t2 (disjoint union) ∣ {x ∶ t1 ∣ t2} (set)
∣ N (numbers) ∣ t1 < t2 (less than)
∣ N� (T.S. numbers) ∣ t1 <� t2 (T.S. less than)
∣ t1#t2 (free from definitions) ∣ Free (choice sequences)
∣ �t (time squashing)

t ∈ Term ∶∶= x (variable) ∣ t1 t2 (application)
∣ v (value) ∣ let x, y = t1 in t2 (spread)
∣ fix(t) (fixpoint) ∣ case t1 of inl(x)⇒ t2 | inr(y)⇒ t3 (decide)
∣ wDepth (world depth) ∣ if t1=t2 then t3 else t4 (equality test)
∣ δ (abstraction)

a theory of choice sequences, as described in Sec. 4. Among those, the Axiom of Open Data
is new compared to BITT. Another key difference between OpenTT and BITT is that the
former also contains a variant of the Law of Excluded Middle (the salient principle of classical
logic), described in Sec. 5, which is not valid in the latter.2

2.1 Syntax
OpenTT’s programming language is an untyped, call-by-name λ-calculus, whose syntax is
given in Fig. 1, and operational semantics in Sec. 2.3. For simplicity, numbers are considered
to be primitive, and we write n for an OpenTT number, where n is a metatheoretical number.
A term is either (1) a variable; (2) a canonical term, i.e., a value; or (3) a non-canonical
term. Non-canonical terms are evaluated according to the operational semantics presented in
Sec. 2.3. As discussed below, abstractions of the form δ can be unfolded through definitions,
and are otherwise left abstract for the purpose of this paper. In what follows, we use all
letters as metavariables and their types can be inferred from the context.

Choice sequences. A choice sequence is identified with its name, of the form η, which
for the purpose of this paper is an abstract type equipped with a decidable equality. For
simplicity we only discuss choice sequences of numbers, while our Coq formalization supports
more kinds of choice sequences. OpenTT includes a comparison operator on choice sequences,
if t1=t2 then t3 else t4, which as defined in Sec. 2.3 reduces to the then branch if t1 and t2
are two choice sequences with the same name, and otherwise reduces to the else branch.

Types. Types are syntactic forms that are given semantics in Sec. 3 via a realizability
interpretation. The type system contains standard types such as dependent products of the
form Πx∶t1.t2 and dependent sums of the form Σx∶t1.t2. For convenience we often write

2 Precisely establishing the relationship between the two systems is left for future work.

M. Bickford, L. Cohen, R. L. Constable, and V. Rahli 11:5

a =T b for the type a = b ∈ T ; t ∈ T for t =T t; Πx1, . . . , xn∶t1.t2 for Πx1∶t1. . . .Πxn∶t1.t
(and similarly for the other operators with binders); t1 → t2 for the non-dependent Π type;
True for (0 = 0 ∈ N); False for (0 = 1 ∈ N); and ¬T for (T → False).

OpenTT also includes types that allow capturing specific aspects of choice sequences. In
particular, OpenTT includes a type Free of free choice sequences. It also includes the type
t#T that indicates that t is a sealed member of T in the sense that it is equivalent to a term
u in T , which is syntactically free from abstractions and choice sequences, which we denote
by synSealed(u) here (see Sec. 3 for more details). Those types are used to state axioms of
the theory of choice sequences in Sec. 4.1.

2.2 Worlds
OpenTT’s computation system is equipped with a library of definitions in which we also
store choice sequences. We here call the library a world. A definition entry is a pair of an
abstraction δ and a term t, written δ == t, which stipulates that δ unfolds to t.3 A choice
sequence entry is a pair of a choice sequence name, and a list of choices (i.e. terms).4 For
example, the pair ⟨η, [4, 8, 15]⟩ is an entry for the choice sequence named η, where [4, 8, 15]
is its list of choices so far. A world is therefore a state that records, at a given point in time,
all the current definitions together with all the choice sequences that have been started so
far, along with the choices that have been made so far for those choice sequences.

I Definition 1 (Worlds). A world w is a list of entries, where an entry is either a definition
entry or a choice sequence entry. We denote by World the type of worlds.

Next we introduce some necessary operations and properties on worlds.

I Definition 2 (World operations and properties). Let w ∈ World. (1) ∣w∣ denotes w’s depth,
that is the number of choices of its longest choice sequence. (2) w is called singular, denoted
sing(w), if it does not have two entries with the same name.

The depth of worlds is used in Sec. 4.1 to approximate the modulus of continuity of a
predicate at a choice sequence; while sing is used in Lem. 14.

A world (or a particular snapshot of the library) can be seen as a the state of knowledge at
a given point in time. It may grow over time by adding new definitions, new choice sequence
entries, or more terms to an already existing choice sequence entry. Accordingly, a world w2
is said to extend a world w1 if it contains more entries and choices, without overriding the
ones in w1. Note that the extension relation on worlds defines a partial order on World.

I Definition 3 (World extension). A world w2 is said to extend w1, denoted w2 ⪰ w1, if w1 is
a list of the form [e1, . . . , en] and w2 is a concatanation of some world w and [e′1, . . . , e′n],
where for all 1 ≤ i ≤ n, either ei = e

′
i or ei and e

′
i are choice sequence entries with the same

name such that the list in ei is an initial segment of that in e′i.

2.3 Operational Semantics
Fig. 2 presents OpenTT’s small-step operational semantics. It defines the t1 ↦w t2 ternary
relation between two terms and a world, which expresses that t1 reduces to t2 in one step of
computation w.r.t. the world w. We omit the congruence rules that allow computing within
terms such as: if t1 ↦w t2 then t1(u)↦w t2(u).

3 As the precise form of definitions is irrelevant here, we refer the interested reader to [41].
4 Our formalization also includes mechanisms to impose further restrictions on choice sequences which

are not discussed here. See computation/library.v for further details.

CSL 2021

https://github.com/vrahli/NuprlInCoq/blob/ls3/computation/library.v

11:6 Open Bar

Figure 2 Operational semantics of OpenTT.
(λx.F) a ↦w F[x\a]
fix(v) ↦w v fix(v)

η(i) ↦w w[η][i], if η has a i’s choice in w
wDepth ↦w ∣w∣

let x, y = ⟨t1, t2⟩ in F ↦w F[x\t1; y\t2]
case inl(t) of inl(x)⇒ F | inr(y)⇒ G ↦w F[x\t]
case inr(t) of inl(x)⇒ F | inr(y)⇒ G ↦w G[y\t]
if η1=η2 then t1 else t2 ↦w ti, where i = 1 if η1 = η2, and i = 2 otherwise

The application η(i) of a choice sequence η to a number i reduces to w[η][i], i.e., η’s i’s
choice recorded in w, if such a choice exists, and otherwise the computation gets stuck. Note
that even though this is a call-by-name calculus, it includes the following congruence rule to
access choices of choice sequences: if t1 ↦w t2 then η(t1)↦w η(t2).

In OpenTT we also allow computing the depth of a world w, that is, the number of
choices recorded in its longest choice sequence entry (this is an addition to BITT). The
nullary expression wDepth reduces to ∣w∣ in one computation step. It is used to realize an
axiom of the theory of choice sequences in Sec. 4.1.2. It is important to note that before
introducing this new computation, all computations were time-invariant computations in the
sense that if a term t computes to a value v in a world w1, then it will compute to a value
computationally equivalent5 to v in any world w2 ⪰ w1. For example, for numbers, if a term
t computes to a number n in some world w, then it also computes to n in all extensions of w.
Such terms are called time-invariant terms. It is straightforward to see that wDepth is not
time-invariant, as it can compute to different numbers in different extensions of a world. For
example, if w1 contains only one choice sequence η for which 4 choices have been made, then
the expression wDepth reduces to 4 in w1. Now, adding another choice to η gives us a world
w2 ⪰ w1 in which wDepth reduces to 5. This operator is said to be weakly monotonic in the
sense that if it returns k in w1, and w2 ⪰ w1, then it can only return a value k′ ≥ k in w2.
We next introduce types capturing the concept of time-invariance.

2.4 Space Squashing and Time Squashing
OpenTT includes a squashing mechanism, which we use (among other things) to validate some
of the axioms in Sec. 4 and 5. It erases the evidence that a type is inhabited by squashing it
down to a single constant inhabitant using set types [14, pp.60]: ↓T = {x ∶ True ∣ T}. The
only member of this type is the constant ⋆, which is True’s single inhabitant. The constant ⋆
inhabits ↓T if T is true/inhabited, but we do not keep the proof that it is true. See Appx. C
or [39] for more details on squashing.

In addition to the space squashing operator OpenTT also features another form of
squashing called time squashing. As discussed in Sec. 2.3, some computations are time-
invariant, while others, such as wDepth, are not. These two kinds of computations have
different properties,6 and this distinction should be captured at the level of types. To this
end, OpenTT includes type constructors such as the time-squashing operator �. Given a
type T , one can build the type �T , that in addition to T ’s members also contains terms that
behave like members of T at a particular instant of time (in a particular world).

5 For a precise definition of computational equivalence, see [25].
6 E.g., if t is a time-invariant term that computes to a number m less than n in a world w, then t will

also be less than n in all w ′
⪰ w. However, if t is a non-time-invariant number, t might be less than n in

some extensions of w, and larger in others.

M. Bickford, L. Cohen, R. L. Constable, and V. Rahli 11:7

For the purpose of this paper, we only focus on a particular form of time-squashing for
numbers, omitting the general construction.7 Accordingly, OpenTT features a N� type of
non-time-invariant (or time-squashed) numbers. While N is required to only be inhabited
by time-invariant terms, N� is not, and allows for terms (such as wDepth) to compute to
different numbers in different world extensions. For example, N� is allowed to be inhabited
by a term t that computes to 3 in some world w, and to 4 in some world w ′

⪰ w. This
distinction between N and N� will be critical in the validation of one of the choice sequence
axioms in Sec. 4.1.2, where we make use of the depth of worlds which is not time-invariant.

In addition to the time-squashed N� type, OpenTT features a less than relation t1 <� t2
on time-squashed numbers, whose semantics is described in Sec. 3. Although similar to the
t1 < t2 type, as for N�, t1 <� t2 differs by not requiring t1 and t2 to be time-invariant.

3 Open Bar Realizability Model

This section presents a novel Beth-style model, called the open bar model, used below to
validate OpenTT, which as mentioned above contains both a theory of choice sequences and a
weak version of the classical LEM. As is standard in Beth models (or Kripke models [32, 33]),
formulas are interpreted w.r.t. worlds. Using Beth models such as the one used in [8], a
syntactic expression T is given meaning at a world w if there exists a collection B of worlds
that covers all possible extensions of w, such that T corresponds to a legal type in all worlds
in B. Such a collection is called a bar of w. In these models one has to construct such bars
to prove that expressions are types or that types are inhabited. For example, to prove that
choice sequences have type N → N, given a choice sequence η and a number n, one must
exhibit a bar where η(n) indeed computes to a number.

In this paper we take a different approach, one that avoids having to build bars altogether,
and only requires building individual extensions of worlds. Intuitively, instead of requiring
that a property P be true at a bar of a given world w, we require that for each extension w ′

of w, P holds for some extension of w ′. Therefore, a major distinction between standard Beth
models and our model is that in the former the semantics of a logical formula is computed
based on the interpretation of that formula at a bar for the current world, while the latter only
requires that in any possible extension of the current world there is always a further extension
where the formula is given some meaning. Thus, our model only requires exhibiting open
bars in the sense that not all infinite extensions of the current world necessarily have a finite
prefix in the bar. Therefore, open bars are derivable from “standard” bars, but the converse
does not hold. For the proof that choice sequences have type N→ N, this means that given
an extension w ′ of the current world w, one must exhibit a further extension w ′′ where η(n)
computes to a number, which can be done by constructing w ′′ in which η contains at least
n + 1 choices.8 As mentioned, in standard Beth models, in addition to this construction one
has to also construct the bar. Thus, the notion of open bars seems to provide a more relaxed
connection between truth and constructions than in the traditional Beth-like interpretation
of intuitionistic logic, where one must construct bars to establish validity. By not having
to make the full construction, the open bar model provides some middle ground between
classical and intuitionistic logic. Furthermore, note that in a standard Beth model, depending
on how the bar is defined, it is not always possible to constructively exhibit a point in the

7 See per_qtime in per/per.v for further details on �’s sematics.
8 See rules/rules_choice1.v for a proof of this statement.

CSL 2021

https://github.com/vrahli/NuprlInCoq/blob/ls3/per/per.v
https://github.com/vrahli/NuprlInCoq/tree/ls3/rules/rules_choice1.v

11:8 Open Bar

bar, whereas in the open bar model, the existence of the open bar directly gives a point at
the open bar. This makes the construction of building bars from other bars generally simpler.

We start by introducing the concept of open bars, which is used below to interpret types.

I Definition 4 (Open Bars). Let w be a world and f be a (metatheoretical) predicate on
worlds. We say that f is true at an open bar of w if:

O(w, f) = ∀EXT(w, λw ′
.∃EXT(w ′

, λw ′′
.∀EXT(w ′′

, f)))
where ∀EXT(w, f) = ∀w ′

. w ′
⪰ w ⇒ f(w ′)

∃EXT(w, f) = ∃w ′
. w ′

⪰ w ∧ f(w ′)

Informally, an open bar can be thought of as an object such as the one depicted above.
There, the large solid blue nodes indicate worlds which we already know to be at the bar,
while the small hollow nodes indicate worlds not yet at the bar from which the open bar
provides a way to obtain worlds at the bar. For example, given the root of the tree, the open
bar might give us the lowest solid blue world w. Given a world w ′, such as the one left to w,
where different choices have been made from w, we can ask the bar to produce another world
at the bar compatible with w ′ (i.e., that extends w ′), and we might get the middle solid blue
world.

The open bar semantics bears resemblance to the well known double negation transla-
tion [23] in standard Kripke models [32, 33]. Informally, in Kripke interpretations, A→ B is
interpreted as follows: JA → BKw = ∀EXT(w, λw ′

.JAKw′ ⇒ JBKw′). In such a semantics, the
formula ¬¬A is then interpreted as ∀EXT(w, λw ′

.¬∀EXT(w ′
, λw ′′

.¬JAKw′′)), which is classically
equivalent to ∀EXT(w, λw ′

.∃EXT(w ′
, λw ′′

.JAKw′′)). Nonetheless, our interpretation has two
benefits over such a double negation translation: it is fully constructive, and it internalizes
this double-negation/open-bar operator within the semantics, thereby avoiding having to use
it explicitly in the theory. Note that this correspondence is unique to the open bar models,
and does not hold in BITT’s closed-bar model.

We now use open bars to provide meaning to OpenTT’s types. As was done for similar
theories [3, 4, 17, 6, 8], types are interpreted here by Partial Equivalence Relations (PERs)
on closed terms. This PER semantics can be seen as an inductive-recursive definition
of (see [20, 16] for similar construction methods):9 (1) an inductive relation T1≡wT2 that
expresses type equality; (2) a recursive function t1≡wt2∈T that expresses equality in a type.
The inductive definition T1≡wT2 has one constructor per OpenTT type plus one additional
constructor giving meaning to a type at a world w, based on its interpretation at an open
bar of w (see Def. 6). Therefore, the recursive function t1≡wt2∈T has as many cases as there
are constructors for T ≡wT

′. The rest of this section presents some of these constructors and

9 Due to the limited support for induction-recursion in Coq, our formalization instead combines these
two definitions into a single inductive definition following the method described in [4, 13], which results
in the same theory, however defined in a slightly more convoluted way that the one defined here.

M. Bickford, L. Cohen, R. L. Constable, and V. Rahli 11:9

cases that illustrate key aspects of the new semantics. For simplicity we present them as
equivalences, which are derivable from the formal definition. The others are defined similarly
in Appx. A or in per/per.v. We first define some useful abstractions.

I Definition 5. A term t is said to inhabit or realize a type T at w if t≡wt∈T . We further
use the following notations: inh(w, T) for ∃t. t≡wt∈T ; a ⇓w b for ‘a computes to b w.r.t.
w’, i.e., the reflexive and transitive closure of ↦; and a ⤋w b for ∀EXT(w, λw ′

.a ⇓w′ b) which
captures that a is time-invariant.10

As mentioned above, a key aspect of our open bar model is that it is defined to be closed
under open bars, allowing interpreting all types and their PERs in terms of open bars.

I Definition 6 (Open Bar Closure). OpenTT’s semantics is closed under open bars as follows:

T1≡wT2 ⟺ O(w, λw ′
.∃T ′1, T

′
2. T1 ⤋w′ T

′
1 ∧ T2 ⤋w′ T

′
2 ∧ T

′
1≡w′T

′
2)

t1≡wt2∈T ⟺ O(w, λw ′
.∃T ′. T ⤋w′ T

′ ∧ t1≡w′t2∈T
′)

Let us now turn to the semantics of key types of OpenTT under the open bar semantics.
We start with demonstrating the N type which is in the core types of CTT.

I Definition 7 (Time-Invariant Numbers). The N type is interpreted as follows:

N≡wN ⟺ True t≡wt
′
∈N ⟺ O(w, λw ′

.∃n. t ⤋w′ n ∧ t′ ⤋w′ n)

Note the use of ⤋ above, since such numbers are required to be time-invariant (see Sec. 2.4).
In the next definition the time-invariant constraint is relaxed, allowing inhabitants of N�

to compute to different numbers in different world extensions. For example, a term that
computes to 3 in the current world w and to 4 in all (strict) extensions of w, inhabits N�
but not N. While N is a subtype of N�, in the sense that all equal members of N are equal
members of N�, the converse does not hold. For example, wDepth is in N� but not in N.

I Definition 8 (Time-Squashed Numbers). The N� type is interpreted as follows:

N�≡wN� ⟺ True t≡wt
′
∈N� ⟺ O(w, λw ′

.sameNats(w ′
, t, t

′))
where sameNats(w, t, t′) = ∃k. t ⇓w k ∧ t′ ⇓w k

As mentioned in Sec. 2.4, in addition to the N� type, OpenTT also provides a “less-than”
operator on such numbers, which we interpret as follows.

I Definition 9 (Time-Squashed Less-Than). The t1 <� t2 type is interpreted as follows:

t1 <� t2≡wt
′
1 <� t

′
2 ⟺ O(w, λw ′

.sameNats(w ′
, t1, t

′
1) ∧ sameNats(w ′

, t2, t
′
2))

t≡wt
′
∈t1 <� t2 ⟺ O(w, λw ′

.∃k1, k2. t1 ⇓w′ k1 ∧ t2 ⇓w′ k2 ∧ k1 < k2)

Note that given t1 and t2 in N� that compute to 3 and 4 respectively in some world, one
cannot derive t1 <� t2 as t1 and t2 could keep alternating between 3 and 4 such that t2
computes to 4 when t1 computes to 3, and vice versa. Though general rules for inferring such
inequalities can be formalized11, in what follows we only need a concrete instance of t1 <� t2

10We here omit some technical details; see ccomputes_to_valc_ext in per/per.v for the full definition.
11Technically, our formalization includes both weakly monotonically increasing and decreasing numbers
(denoted here N∧� and N∨� , respectively) allowing one to derive t1 <� t2 in w when t1 ∈ N∨� , t2 ∈ N∧� , and
t2 computes to a number larger than t1 in w.

CSL 2021

https://github.com/vrahli/NuprlInCoq/tree/ls3/per/per.v
https://github.com/vrahli/NuprlInCoq/tree/ls3/per/per.v

11:10 Open Bar

in which t1 ∈ N and t2 = wDepth ∈ N� (see Sec. 4.1.2, which makes use of wDepth ∈ N� to
capture the modulus of continuity of a predicate at a choice sequence). In this case such
alternations are avoided since wDepth is weakly monotonically increasing.

OpenTT also includes a type of free choice sequences, interpreted as follows.

I Definition 10 (Choice Sequences). The Free type is interpreted as follows:

Free≡wFree ⟺ True t≡wt
′
∈Free ⟺ O(w, λw ′

.∃η. t ⤋w′ η ∧ t′ ⤋w′ η)

As mentioned in Sec. 2.1, OpenTT includes a t#T type, which states that the term t is a
sealed member of T . For example True#Ui, False#Ui, and N#Ui are all inhabited types,
whereas (η ∈ Free)#Ui is not inhabited because this type mentions the choice sequence η.
Note that t#T and synSealed(t) did not appear in BITT.

I Definition 11 (Free From Definitions). The a#A type is interpreted as follows:

a#A≡wb#B ⟺ A≡w′B ∧ a≡w′b∈A

t≡wt
′
∈a#A ⟺ O(w, λw ′

.∃x. a≡w′x∈A ∧ synSealed(x))

As mentioned above, the other type operators of OpenTT are interpreted in a similar
fashion. This semantics of OpenTT satisfies the following properties, which are the standard
properties expected for such a semantics [3, 17], including the monotonocity and locality
properties expected for a possible-world semantics [51, 21, 19] – heremonotonicity refers to
types, and not to computations.12

I Proposition 12 (Type System Properties). The T1≡wT2 and a≡wb∈T relations satisfy the
following properties (where free variables are universally quantified):

transitivity: T1≡wT2 ⇒ T2≡wT3 ⇒ T1≡wT3 t1≡wt2∈T ⇒ t2≡wt3∈T ⇒ t1≡wt3∈T

symmetry: T1≡wT2 ⇒ T2≡wT1 t1≡wt2∈T ⇒ t2≡wt1∈T

computation: T ≡wT ⇒ T ⤋w T
′
⇒ T ≡wT

′
t≡wt∈T ⇒ t ⤋w t

′
⇒ t≡wt

′
∈T

monotonicity: T1≡wT2 ⇒ w ′
⪰ w ⇒ T1≡w′T2 t1≡wt2∈T ⇒ w ′

⪰ w ⇒ t1≡w′t2∈T

locality: O(w, λw ′
.T1≡w′T2)⇒ T1≡wT2 O(w, λw ′

.t1≡w′t2∈T)⇒ t1≡wt2∈T

Using these properties, it follows that OpenTT is consistent w.r.t. the open bar model.

I Theorem 13 (Soundness & Consistency). OpenTT’s inference rules are all sound w.r.t. the
open bar model, which entails that OpenTT is consistent.13

4 A Theory of Choice Sequences

This section focuses on OpenTT’s inference rules that provide an axiomatization of a theory
of choice sequences. This theory includes two variants of the Axiom of Open Data (Sec. 4.1.1
and 4.1.2), a density axiom (Sec. 4.2), and a discreteness axiom (Sec. 4.3). We focus our
attention on the variants of the Axiom of Open Data that captures a form of continuity
which is the core essence of choice sequences, as those where not handled in BITT.

12 See per/nuprl_props.v for proofs of these properties.
13 See rules.v and per/weak_consistency.v for more details.

https://github.com/vrahli/NuprlInCoq/tree/ls3/per/nuprl_props.v
https://github.com/vrahli/NuprlInCoq/tree/ls3/rules.v
https://github.com/vrahli/NuprlInCoq/tree/ls3/per/weak_consistency.v

M. Bickford, L. Cohen, R. L. Constable, and V. Rahli 11:11

4.1 The Axiom of Open Data (AOD)
The Axiom of Open Data (AOD) is perhaps the seminal axiom in the theory of choice
sequences. It is a continuity axiom that states that the validity of properties of free
choice sequences (with certain side conditions) can only depend on finite initial segments
of these sequences. Let P be a sealed predicate on free choice sequences of numbers (i.e.,
P#(Free→ Ui) for some universe i), Nn the type {x ∶ N ∣ x < n} of natural number strictly
less than n, and Bn = Nn → N. The Axiom of Open Data can be formalized as follows:

Πα∶Free.P(α)→ Σn∶N.Πβ∶Free.(α =Bn
β → P(β)) (AOD)

Since AOD is a form of continuity principle, and the non-squashed Continuity Principle
is incompatible with CTT [39, 40] as well as with other computational theories [29, 46, 22],
we only attempt to validate a squashed version of AOD. That is, since there is no way to
compute the modulus of continuity of P at α, which is preserved over world extensions (as
required by the semantics of N), we instead validate versions of AOD where the sum type is
squashed. But there are two ways to squash it, as described in Sec. 4.1.1 and 4.1.2.

There are two additional restrictions we impose in order to validate the squashed variants
of AOD. First, to validate the axiom we swap α and β in P(α). This has an impact on
both the PER of this type and the world w.r.t. which it is validated. Given an inhabitant t
of P(α), we can easily build a proof of P(β) by swapping α and β in t. This is however
a metatheoretical operation. Therefore, in our variants of AOD the P(β) is squashed.
Second, note that when swapping one needs to swap α and β in all definitions and choice
sequences’ choices in the world w.r.t. which it is validated, leading to a different world.
Therefore, we require that choice sequences cannot occur in definitions and choice sequences’
choices to ensure that swapping α and β in a world w leads to an equivalent world if α
and β have the same choices. To see why this is necessary take P to be the predicate
P = λy.{x ∶ Free ∣ x =Free y}, and the world w to contain the definition δ == α. Then,
P(α) is equivalent to {x ∶ Free ∣ x =Free α} and δ is a member of P(α) in w, while P(β) is
equivalent to {x ∶ Free ∣ x =Free β} in this world, and therefore δ is not a member of P(β) if
α and β are two different choice sequences.

Before presenting and validating the variants of AOD, we present a few intermediate
results. First, we prove that from α =Bn

β, we can always construct a world in which α

and β contain exactly the same choices.14

I Lemma 14 (Intermediate World). Let w1 and w2 be two worlds such that w2 ⪰ w1 and
sing(w1) (see Def. 2). If η1 and η2 are two free choice sequences that have the same choices
up to ∣w1∣ in w2, then there must exist a world w, such that w2 ⪰ w ⪰ w1, both η1 and η2
occur in w, they have the exact same choice in w, and all these choices are numbers.

Furthermore, the following swapping operator swaps α and β in P(α) to obtain P(β).15

I Definition 15 (Swapping). Let X⋅(η1∣η2) be a swapping operation that swaps η1 and η2
everywhere in X, where X ranges over all the syntactic forms presented above.

We can then prove that the various relations introduced in Sec. 3 are preserved by the
above swapping operator. For example, crucially, we can prove that the t1≡wt2∈T relation,
which expresses that t1 and t2 are equal members in T , is preserved by swapping.16

14 See Lemma to_library_with_equal_cs in rules/rules_choice_util4.v.
15 See for example swap_cs_term in terms/swap_cs.v, which swaps two choice sequence names in a term.
16 See implies_equality_swap_cs in rules/rules_choice_util4.v for the formal statement and proof.

CSL 2021

https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_choice_util4.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/terms/swap_cs.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_choice_util4.v

11:12 Open Bar

I Lemma 16 (Swapping PERs). If t1≡wt2∈T then t1⋅(η1∣η2)≡w⋅(η1∣η2)t2⋅(η1∣η2)∈T ⋅(η1∣η2).

4.1.1 The Space-Squashed Axiom of Open Data (AOD↓)

The first variant of AOD we validate is the a space-squashed one, called AOD↓.

I Proposition 17. The following rule of OpenTT is valid w.r.t. the open bar model (where
H is an arbitrary list of hypotheses):

H ⊢ Πα∶Free.P(α)→ ↓Σn∶N.Πβ∶Free.(α =Bn
β → ↓P(β))

Proof. We here outline the proof, see rules/rules_ls3_v0.v for full details. Since the sum
type is ↓-squashed, a realizer for this formula can simply be λα, x.⋆ (see Sec. 2.4). Let P
be a sealed predicate on free choice sequences, α a free choice sequence, and instantiate n
with ∣w∣, the depth of the current world w. From α =Bn

β, we get that α and β have the
same choices up to ∣w∣ in the extension w ′ of w, and we have to show that P(β) is true in w ′.
Lem. 14 entails that α and β have exactly the same choices in some world w ′′ between w
and w ′. Using Lem. 16 we swap α and β in P(α) and w ′′. Thus, because choice sequences
cannot occur in definitions and choices, P(β) is valid in a world equivalent to w ′′ and hence in
w ′′ too.17 Finally, using monotonicity (Lem. 12), we obtain that P(β) is true also in w ′. J

4.1.2 The Time-Squashed Axiom of Open Data (AOD�)

Next, we present a time-squashed version of AOD, where instead of ↓-squashing the sum type
the N� time-squashed type is used, and B�n = {x ∶ N ∣ x <� n}→ N Is used instead of Bn.

18

Πα∶Free.P(α)→ Σn∶N�.Πβ∶Free.(α =B�n β → ↓P(β)) (AOD�)

Note that because n is not a member of N anymore but of N�, we use B�n instead of
Bn here to state that α and β are equal sequences up to n. If n ∈ N� then x < n, where
x ∈ N, and Bn are not types anymore: the semantics of x < n requires both x and n to be
time-invariant numbers (see Sec. 2.4). Therefore, we use x <� n here instead, which does not
require numbers to be time-invariant as per its semantics presented in Def. 9.

Before diving into the proof of AOD�’s validity, we first present a few intermediate results.

I Lemma 18. The N type is a subtype of N�, in the sense that all equal members in N
are also equal members in N� (which implies that t1 <� t2 is a type even when t1 ∈ N and
t2 ∈ N�), and the wDepth expression is a member of N� (i.e., it is equal to itself in N�).

19

I.e. the following rules are valid in OpenTT.

H ⊢ t1 =N t2
H ⊢ t1 =N� t2 H ⊢ wDepth =N� wDepth

17 See Lemma member_swapped_css_libs in rules/rules_choice_util4.v.
18Note that as in AOD↓, P(β) is also ↓-squashed here. We leave for future work to derive a version where

P(β) is not squashed. Note also that the modulus of continuity n is here in N�. We have validated
another version of this axiom in rules/rules_ls3_v1.v where n ∈ N∧� , i.e., where n is required to be
weakly monotonically increasing, which is true about wDepth (see Sec. 2.3 and 2.4).

19See rule_qnat_subtype_nat_true in rules/rules_ref.v and rule_depth_true
in rules/rules_qnat.v.

https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_ls3_v0.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_choice_util4.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_ls3_v1.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_ref.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_qnat.v

M. Bickford, L. Cohen, R. L. Constable, and V. Rahli 11:13

For AOD↓, because its Σ type is ↓-squashed, we did not have to provide a witness for the
modulus of continuity of P at α. Instead, we could simply find a suitable metatheoretical
number in the proof of its validity, without having to provide an expression from the object
theory that computes that number. In the metatheoretical proof, we computed the depth
of the current world, which is a metatheoretical number k, and simply used k, which is a
number in the object theory, as an approximation of the modulus of continuity of P at α. The
situation is different in AOD� because the Σ type is no longer ↓-squashed. We now have to
provide an expression from the object theory that computes that modulus of continuity. As
mentioned, we use wDepth, which is an expression of OpenTT , the object theory. Thus, we
now have to prove that wDepth has the right type, namely, N�, which we proved in Lem. 18.

Using these results we prove that AOD� is valid w.r.t. the semantics presented in Sec. 3.

I Proposition 19. The following rule of OpenTT is valid w.r.t. the open bar model:

H ⊢ Πα∶Free.P(α)→ Σn∶N�.Πβ∶Free.(α =B�n β → ↓P(β))
Proof. We here outline the proof (which is similar to that of Prop.17), while full details are
in rules/rules_ls3_v2.v. Since now the sum type is not ↓-squashed, we have to provide a
witness for it. The realizer we provide for this formula is: λα, x.⟨wDepth, λβ, y.⋆⟩. Let P
be a sealed predicate on free choice sequences, and let α be a free choice sequence. We now
have to prove that wDepth ∈ N�, which follows from Lem. 18. Since wDepth computes to ∣w∣,
where w is the current world, we can then use ∣w∣ as an approximation of the modulus of
continuity of P at α, as in Prop. 17’s proof. One difference with Prop. 17’s proof is that we
have here that α =B�n β (which we prove to be a type using Lem. 18) instead of α =Bn

β.
This however still suffices to show that α and β have the same choices up to ∣w∣ in the
extension w ′ of w. From here, the proof proceeds just as that of Prop. 17. J

4.2 The Density Axiom (DeA)
Another common free choice sequence axiom, sometimes called the density axiom [42], states
that for any finite sequence of numbers f , there is a free choice sequence that contains f as
initial segment (this is Axiom 2.1 in [30, Sec.2], also referred to as LS1 in [49]).

In BITT the following Density Axiom (DeA) was validated:
Πn∶N.Πf ∶Bn.Σα∶Free.(f =Bn

α) [8]. The proof of its validity was by generating
an appropriate choice sequence space that contains the values of the finite sequence f as
part of its name. More precisely, given a finite sequence f of n terms in N from the object
theory, BITT includes computations to extract those n numbers, say k1, . . . , kn, and build a
choice sequence with the metatheoretical list of numbers [k1, . . . , kn] as part of its name,
and which is used to witness DeA’s Σ type. In OpenTT we opted against including such
names for two reasons. First, in the open bar model it is possible to validate a squashed
version of DeA (where the Σ type is squashed) without including lists of numbers in choice
sequence names. This is because the open bar model allows for internal choices to be made
(see Prop. 20 below). Moreover, deterministically generating choice sequence names is not
preserved by swapping (which would be required for example for Lem. 16 to hold). Given a
term t that deterministically generates η1, it might be that swapping η1 for η2 turns η1 into
η2 and leaves t unchanged, while t does not generate η2.

Therefore, we do not include metatheoretical lists of numbers as part of choice sequence
names in OpenTT and only validate the following ↓-squashed version of DeA, called DeA↓.

I Proposition 20. The following rule of OpenTT is valid w.r.t. the open bar model:

H ⊢ Πn∶N.Πf ∶Bn.↓Σα∶Free.(f =Bn
α)

CSL 2021

https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_ls3_v2.v

11:14 Open Bar

Proof. As this axiom is ↓-squashed, we realize it using λn, f.⋆. To prove its validity in some
world w, assume n ∈ N and f ∈ Bn in some w ′

⪰ w. We have to exhibit some w ′′
⪰ w ′ that

contains a free choice sequence that has f as its initial segment. This world w ′′ can simply be
w ′ augmented with a fresh (w.r.t. w ′) choice sequence that has f as its initial segment.20 J

Note that the Beth model in [8] requires exhibiting a choice sequence such that DeA
holds at a bar b of w. Without a mechanism to enforce initial segments, it could be that
the choice sequence picked to witness α does not include the correct choices in some of b’s
branches. This is why BITT features choice sequence names that enforce initial segments.
Thanks to open bars, OpenTT is able to do without enforcing initial segments within choice
sequence names while still featuring a version of DeA, at the detriment of requiring its Σ
type be ↓-squashed. (Troelstra calls the free choice sequences that enforce initial segments
lawless, and the ones where no initial segment is enforced proto-lawless [42, Sec.2.4].)

4.3 The Discreteness Axiom (DiA)
One final common free choice sequence axiom, sometimes called the discreteness axiom [37],
states that equality between free choice sequences is decidable (it is Axiom 2.2 in [30, Sec.2],
also referred to as LS2 in [49]). As for BITT, OpenTT features intensional and extensional
versions of the Discreteness Axiom (DiA), which we have proven to be valid w.r.t. the open
bar model (we only present the extensional version here due to space constraints).21

I Proposition 21. The following rule of OpenTT is valid w.r.t. the open bar model (the
conclusion is inhabited by λα, β.if α=β then tt else ff):

H ⊢ Πα, β∶Free.α =B β+¬α =B β

5 The Law of Excluded Middle

This section demonstrates that OpenTT provides a key axiom from classical logic, namely
the Law of Excluded Middle (LEM). Even though various other classical principles could
be considered here (and will be considered in future work), we focus on LEM as it is the
central axiom differentiating classical logic from intuitionistic logic. Thus, we show that in
addition to capturing the intuitionistic concept of choice sequences, OpenTT also includes
the following ↓-squashed version of LEM, called LEM↓, that is validated w.r.t. the open bar
model: ΠP ∶Ui.↓(P+¬P).

For BITT, even this weak LEM↓ axiom, that does not have any computational content
(as it is realized by λP.⋆), is inconsistent [8]. More precisely, ¬LEM↓ is valid w.r.t. the
Beth metatheory presented in [8]. Intuitively, this is because LEM↓ states that there exists
a bar of the current world such that either: (1) P is true at the bar, or (2) it is false in
all extensions of the bar. This is false (i.e., the negation is true) because, for example, for
P = (Σn∶N.η(n) =N 1), where η is a free choice sequence, (1) is false because η could be
the sequence that never chooses 1, and (2) is false because there is an extension of the bar
where η chooses 1. Stronger versions of this axiom, such as the non-↓-squashed version, are
therefore also false. This counterexample for BITT does not serve as a counterexample for
OpenTT because given a world w it is always possible to find an extension where η eventually

20 See rules/rules_choice1.v for more details.
21 See rules/rules_choice2.v and rules/rules_choice5.v for further details.

https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_choice1.v
https://github.com/vrahli/NuprlInCoq/tree/ls3/rules/rules_choice2.v
https://github.com/vrahli/NuprlInCoq/tree/ls3/rules/rules_choice5.v

M. Bickford, L. Cohen, R. L. Constable, and V. Rahli 11:15

holds 1. Hence, OpenTT is more amenable to classical logic than theories based on standard
Beth models, such as BITT. As illustrated in Prop. 22’s proof below, intuitively, this is
due to the fact that the open bar model implements a notion of time which allows to select
futures (i.e., extensions), thereby allowing for some internal choices to be made.

I Proposition 22. The following rule of OpenTT is valid w.r.t. the open bar model (using
LEM in the metatheory).

H ⊢ ΠP ∶Ui.↓(P+¬P)

Proof. We have to show that for every world w ′ that extends the current world w, there
exists a world w ′′ that extends w ′ such that P+¬P is inhabited in all extensions of w ′′. Let w ′

be an extension of w. We need to find a w ′′
⪰ w ′ that makes the above true. Using classical

logic we assume that ∃EXT(w ′
, λw ′′

.inh(w ′′
, P)) is either true of false. If it is true, we obtain

a w ′′
⪰ w ′ at which P is inhabited, and we therefore conclude. Otherwise, we use w ′, which is

a trivial extension of w ′. We must now show that P+¬P is inhabited in all extensions of w ′.
We prove that it is inhabited by inr(⋆) by showing that in all w ′′

⪰ w ′, P is not inhabited at
w ′′. Assuming that P is inhabited at w ′′, we get that ∃EXT(w ′

, λw ′′
.inh(w ′′

, P)) is true, which
contradicts our assumption.22 J

6 Conclusion and Related Work

The paper presents OpenTT, a novel intuitionistic type theory that features both a theory
of choice sequences and a variant of the classical Law of Excluded Middle. This was made
possible thanks to the open bar model, which internalizes a more relaxed notion of time than
traditional Beth models that allows selecting futures. Thus, OpenTT provides a theoretical
framework for studying the interplay between intuitionistic and classical logic.

Much work has been done on combining classical and constructive logics. One standard
method is to use double negation translations [23] to embed classical logic in constructive
logic. Another approach is to mix the two logics within the same framework. For example,
PIL [35] mixes both logics through a polarization mechanism. Of particular relevance is
Moschovakis’s theory that includes choice sequences and is consistent with all classically true
arithmetic sentences via a Kripke model [38].

As mentioned in the Introduction, there is a long line of work on providing intuitionistic
counterexamples to classically valid axioms using variants of choice sequences. For example,
in [15] Markov’s Principle is proved to be false in a Martin-Löf type theory extended with a
“generic” element, which behaves as a free choice sequence of Booleans. Since we have shown
that OpenTT is compatible with a variant of LEM, we plan to investigate the status of other
classically valid principles, such as Markov’s Principle and the Axiom of Choice.

As for the open bar model, Kripke (and Beth) models are often used to model stateful
theories. For example, in [34] the Kripke semantics of function types allows the returned
values of functions to extend the state at hand. In contrast, the open bar model allows
all computations to extend worlds. Other examples include [1, 2, 11, 10], where Kripke
semantics are used to interpret theories with reference cells. We leave the study of other
forms of stateful computations for future work.

22 See rules/rules_classical.v for more details.

CSL 2021

https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_classical.v

11:16 Open Bar

Unlike Kripke models, Beth models can interpret formulas that only eventually hold. The
notion of “eventuality” in the open bar model slightly differs from the one in Beth models,
and as hinted at in Sec. 3, is related to the “possibility” operator of modal logic [32]. A
formal study of these connections is left for future work.

Several forms of choice sequence axioms have been studied in the literature. Some of them
are currently time or space squashed in OpenTT. We plan on exploring versions of these
axioms that are “less squashed” in the sense that they have more computational content.

Finally, the comprehensive account of choice sequences in OpenTT also opens the door
for the exploration of the computational implications of the existence of such entities. For
one, Brouwer used choice sequences to define the constructive real numbers as sequences
of nested rational intervals. The computational account of choice sequences in OpenTT
provides a framework for the formalization of Brouwerian constructive real analysis, and
then comparing it to the more standard formalizations.

References
1 Amal J. Ahmed, Andrew W. Appel, and Roberto Virga. A stratified semantics of general

references embeddable in higher-order logic. In LICS, page 75. IEEE Computer Society, 2002.
doi:10.1109/LICS.2002.1029818.

2 Amal Jamil Ahmed. Semantics of Types for Mutable State. PhD thesis, Princeton University,
2004.

3 Stuart F. Allen. A non-type-theoretic definition of Martin-Löf’s types. In LICS, pages 215–221.
IEEE Computer Society, 1987.

4 Stuart F. Allen. A Non-Type-Theoretic Semantics for Type-Theoretic Language. PhD thesis,
Cornell University, 1987.

5 Stuart F. Allen, Mark Bickford, Robert L. Constable, Richard Eaton, Christoph Kreitz, Lori
Lorigo, and Evan Moran. Innovations in computational type theory using Nuprl. J. Applied
Logic, 4(4):428–469, 2006. doi:10.1016/j.jal.2005.10.005.

6 Abhishek Anand and Vincent Rahli. Towards a formally verified proof assistant. In Gerwin
Klein and Ruben Gamboa, editors, ITP 2014, volume 8558 of LNCS, pages 27–44. Springer,
2014. doi:10.1007/978-3-319-08970-6_3.

7 Evert Willem Beth. The foundations of mathematics: A study in the philosophy of science.
Harper and Row, 1966.

8 Mark Bickford, Liron Cohen, Robert L. Constable, and Vincent Rahli. Computability beyond
church-turing via choice sequences. In Anuj Dawar and Erich Grädel, editors, LICS 2018,
pages 245–254. ACM, 2018. doi:10.1145/3209108.3209200.

9 Mark Bickford, Liron Cohen, Robert L. Constable, and Vincent Rahli. Open bar — a
brouwerian intuitionistic logic with a pinch of excluded middle. Extended version of our CSL
2021 paper avaible at https://vrahli.github.io/articles/open-bar-long.pdf, 2020.

10 Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Støvring, Jacob Thamsborg,
and Hongseok Yang. Step-indexed kripke models over recursive worlds. In Thomas Ball and
Mooly Sagiv, editors, POPL, pages 119–132. ACM, 2011. doi:10.1145/1926385.1926401.

11 Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. Realisability semantics of parametric
polymorphism, general references and recursive types. Mathematical Structures in Computer
Science, 20(4):655–703, 2010. doi:10.1017/S0960129510000162.

12 Douglas Bridges and Fred Richman. Varieties of Constructive Mathematics. London
Mathematical Society Lecture Notes Series. Cambridge University Press, 1987. URL:
http://books.google.com/books?id=oN5nsPkXhhsC.

13 Venanzio Capretta. A polymorphic representation of induction-recursion, 2004. URL: www.cs.
ru.nl/~venanzio/publications/induction_recursion.ps.

https://doi.org/10.1109/LICS.2002.1029818
https://doi.org/10.1016/j.jal.2005.10.005
https://doi.org/10.1007/978-3-319-08970-6_3
https://doi.org/10.1145/3209108.3209200
https://vrahli.github.io/articles/open-bar-long.pdf
https://doi.org/10.1145/1926385.1926401
https://doi.org/10.1017/S0960129510000162
http://books.google.com/books?id=oN5nsPkXhhsC
www.cs.ru.nl/~venanzio/publications/induction_recursion.ps
www.cs.ru.nl/~venanzio/publications/induction_recursion.ps

M. Bickford, L. Cohen, R. L. Constable, and V. Rahli 11:17

14 Robert L. Constable, Stuart F. Allen, Mark Bromley, Rance Cleaveland, J. F. Cremer,
Robert W. Harper, Douglas J. Howe, Todd B. Knoblock, Nax P. Mendler, Prakash Panangaden,
James T. Sasaki, and Scott F. Smith. Implementing mathematics with the Nuprl proof
development system. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986.

15 Thierry Coquand and Bassel Mannaa. The independence of markov’s principle in type theory.
In Delia Kesner and Brigitte Pientka, editors, FSCD 2016, volume 52 of LIPIcs, pages 17:1–
17:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.FSCD.
2016.17.

16 Thierry Coquand, Bassel Mannaa, and Fabian Ruch. Stack semantics of type theory. In LICS
2017, pages 1–11. IEEE Computer Society, 2017. doi:10.1109/LICS.2017.8005130.

17 Karl Crary. Type-Theoretic Methodology for Practical Programming Languages. PhD thesis,
Cornell University, Ithaca, NY, August 1998.

18 Jacques Dubucs and Michel Bourdeau. Constructivity and Computability in Histor-
ical and Philosophical Perspective, volume 34. Springer, January 2014. doi:10.1007/
978-94-017-9217-2.

19 Michael A. E. Dummett. Elements of Intuitionism. Clarendon Press, second edition, 2000.
20 Peter Dybjer. A general formulation of simultaneous inductive-recursive definitions in type

theory. J. Symb. Log., 65(2):525–549, 2000. URL: http://projecteuclid.org/euclid.jsl/
1183746062.

21 VH Dyson and Georg Kreisel. Analysis of Beth’s semantic construction of intuitionistic logic.
Stanford University. Applied Mathematics and Statistics Laboratories, 1961.

22 Martín H. Escardó and Chuangjie Xu. The inconsistency of a Brouwerian continuity principle
with the Curry-Howard interpretation. In TLCA 2015, volume 38 of LIPIcs, pages 153–164.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.TLCA.2015.
153.

23 Gilda Ferreira and Paulo Oliva. On various negative translations. In Steffen van Bakel,
Stefano Berardi, and Ulrich Berger, editors, CL&C, volume 47 of EPTCS, pages 21–33, 2010.
doi:10.4204/EPTCS.47.4.

24 Arend Heyting. Intuitionism: an introduction. North-Holland Pub. Co., 1956.
25 Douglas J. Howe. Equality in lazy computation systems. In LICS 1989, pages 198–203. IEEE

Computer Society, 1989.
26 Stephen C. Kleene and Richard E. Vesley. The Foundations of Intuitionistic Mathematics,

especially in relation to recursive functions. North-Holland Publishing Company, 1965.
27 Alexei Kopylov and Aleksey Nogin. Markov’s principle for propositional type theory. In CSL

2001, volume 2142 of LNCS, pages 570–584. Springer, 2001. doi:10.1007/3-540-44802-0_40.
28 Georg Kreisel. A remark on free choice sequences and the topological completeness proofs. J.

Symb. Log., 23(4):369–388, 1958. doi:10.2307/2964012.
29 Georg Kreisel. On weak completeness of intuitionistic predicate logic. J. Symb. Log., 27(2):139–

158, 1962. doi:10.2307/2964110.
30 Georg Kreisel. Lawless sequences of natural numbers. Compositio Mathematica, 20:222–248,

1968.
31 Georg Kreisel and Anne S. Troelstra. Formal systems for some branches of intuitionistic analysis.

Annals of Mathematical Logic, 1(3):229–387, 1970. doi:10.1016/0003-4843(70)90001-X.
32 Saul A. Kripke. Semantical analysis of modal logic i. normal propositional calculi. Zeitschrift

fur mathematische Logik und Grundlagen der Mathematik, 9(5-6):67–96, 1963. doi:10.1002/
malq.19630090502.

33 Saul A. Kripke. Semantical analysis of intuitionistic logic i. In J.N. Crossley and M.A.E.
Dummett, editors, Formal Systems and Recursive Functions, volume 40 of Studies in Logic and
the Foundations of Mathematics, pages 92–130. Elsevier, 1965. doi:10.1016/S0049-237X(08)
71685-9.

CSL 2021

https://doi.org/10.4230/LIPIcs.FSCD.2016.17
https://doi.org/10.4230/LIPIcs.FSCD.2016.17
https://doi.org/10.1109/LICS.2017.8005130
https://doi.org/10.1007/978-94-017-9217-2
https://doi.org/10.1007/978-94-017-9217-2
http://projecteuclid.org/euclid.jsl/1183746062
http://projecteuclid.org/euclid.jsl/1183746062
https://doi.org/10.4230/LIPIcs.TLCA.2015.153
https://doi.org/10.4230/LIPIcs.TLCA.2015.153
https://doi.org/10.4204/EPTCS.47.4
https://doi.org/10.1007/3-540-44802-0_40
https://doi.org/10.2307/2964012
https://doi.org/10.2307/2964110
https://doi.org/10.1016/0003-4843(70)90001-X
https://doi.org/10.1002/malq.19630090502
https://doi.org/10.1002/malq.19630090502
https://doi.org/10.1016/S0049-237X(08)71685-9
https://doi.org/10.1016/S0049-237X(08)71685-9

11:18 Open Bar

34 Paul Blain Levy. Possible world semantics for general storage in call-by-value. In Julian C.
Bradfield, editor, CSL 2002, volume 2471 of LNCS, pages 232–246. Springer, 2002. doi:
10.1007/3-540-45793-3_16.

35 Chuck Liang and Dale Miller. Kripke semantics and proof systems for combining intuitionistic
logic and classical logic. Ann. Pure Appl. Log., 164(2):86–111, 2013. doi:10.1016/j.apal.
2012.09.005.

36 Joan R. Moschovakis. An intuitionistic theory of lawlike, choice and lawless sequences. In Logic
Colloquium’90: ASL Summer Meeting in Helsinki, pages 191–209. Association for Symbolic
Logic, 1993.

37 Joan Rand Moschovakis. Choice sequences and their uses, 2015. URL: https://www.math.
ucla.edu/~joan/stockholm2015handout.pdf.

38 Joan Rand Moschovakis. Intuitionistic analysis at the end of time. Bulletin of Symbolic Logic,
23(3):279–295, 2017. doi:10.1017/bsl.2017.25.

39 Vincent Rahli and Mark Bickford. A nominal exploration of intuitionism. In Jeremy Avigad
and Adam Chlipala, editors, CPP 2016, pages 130–141. ACM, 2016. Extended version: http:
//www.nuprl.org/html/Nuprl2Coq/continuity-long.pdf. doi:10.1145/2854065.2854077.

40 Vincent Rahli and Mark Bickford. Validating brouwer’s continuity principle for numbers
using named exceptions. Mathematical Structures in Computer Science, pages 1—-49, 2017.
doi:10.1017/S0960129517000172.

41 Vincent Rahli, Liron Cohen, and Mark Bickford. A verified theorem prover backend supported
by a monotonic library. In Gilles Barthe, Geoff Sutcliffe, and Margus Veanes, editors,
LPAR-22., volume 57 of EPiC Series in Computing, pages 564–582. EasyChair, 2018. URL:
http://www.easychair.org/publications/paper/hp5j.

42 A. S. Troelstra. Analysing choice sequences. J. Philosophical Logic, 12(2):197–260, 1983.
doi:10.1007/BF00247189.

43 Anne S. Troelstra. Choice sequences: a chapter of intuitionistic mathematics. Clarendon Press
Oxford, 1977.

44 Anne S. Troelstra. Choice sequences and informal rigour. Synthese, 62(2):217–227, 1985.
45 A.S. Troelstra. Choice Sequences: A Chapter of Intuitionistic Mathematics. Clarendon Press,

1977.
46 A.S. Troelstra. A note on non-extensional operations in connection with continuity and

recursiveness. Indagationes Mathematicae, 39(5):455–462, 1977. doi:10.1016/1385-7258(77)
90060-9.

47 Mark van Atten. On Brouwer. Wadsworth Philosophers. Cengage Learning, 2004.
48 Mark van Atten and Dirk van Dalen. Arguments for the continuity principle. Bulletin

of Symbolic Logic, 8(3):329–347, 2002. URL: http://www.math.ucla.edu/~asl/bsl/0803/
0803-001.ps.

49 Dirk van Dalen. An interpretation of intuitionistic analysis. Annals of mathematical logic,
13(1):1–43, 1978.

50 Wim Veldman. Understanding and using Brouwer’s continuity principle. In Reuniting the
Antipodes — Constructive and Nonstandard Views of the Continuum, volume 306 of Synthese
Library, pages 285–302. Springer Netherlands, 2001. doi:10.1007/978-94-015-9757-9_24.

51 Beth E. W. Semantic construction of intuitionistic logic. Journal of Symbolic Logic, 22(4):363–
365, 1957.

A OpenTT’s Semantics

Sec. 3 provided part of OpenTT’s semantics. We presented there the semantics of distinguish-
ing features of OpenTT. Let us now present the rest of its semantics. As mentioned in Sec. 3,
this semantics has been formalized in Coq, and can be found in per/per.v and per/nuprl.v.
Moreover, as the Coq formalization follows a slightly different presentation (as mentioned in

https://doi.org/10.1007/3-540-45793-3_16
https://doi.org/10.1007/3-540-45793-3_16
https://doi.org/10.1016/j.apal.2012.09.005
https://doi.org/10.1016/j.apal.2012.09.005
https://www.math.ucla.edu/~joan/stockholm2015handout.pdf
https://www.math.ucla.edu/~joan/stockholm2015handout.pdf
https://doi.org/10.1017/bsl.2017.25
http://www.nuprl.org/html/Nuprl2Coq/continuity-long.pdf
http://www.nuprl.org/html/Nuprl2Coq/continuity-long.pdf
https://doi.org/10.1145/2854065.2854077
https://doi.org/10.1017/S0960129517000172
http://www.easychair.org/publications/paper/hp5j
https://doi.org/10.1007/BF00247189
https://doi.org/10.1016/1385-7258(77)90060-9
https://doi.org/10.1016/1385-7258(77)90060-9
http://www.math.ucla.edu/~asl/bsl/0803/0803-001.ps
http://www.math.ucla.edu/~asl/bsl/0803/0803-001.ps
https://doi.org/10.1007/978-94-015-9757-9_24
https://github.com/vrahli/NuprlInCoq/blob/ls3/per/per.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/per/nuprl.v

M. Bickford, L. Cohen, R. L. Constable, and V. Rahli 11:19

Sec. 3 it combines the inductive relation T1≡wT2 and the recursive function t1≡wt2∈T into a
single inductive definition following the method described in [4, 13]). An inductive-recursive
formalization of the open bar semantics of OpenTT in Agda can be found in [9, Appx.D].

I Definition 23 (Products). Product types are interpreted as follows:

Πx1∶A1.B1≡wΠx2∶A2.B2

⟺ ∀EXT(w, λw ′
.A1≡w′A2 ∧∀a1, a2. a1≡w′a2∈A1 ⇒ B1[x1\a1]≡w′B2[x2\a2])

f1≡wf2∈Πx∶A.B ⟺ O(w, λw ′
.∀a1, a2. a1≡w′a2∈A⇒ f1(a1)≡w′f2(a2)∈B[x1\a1])

I Definition 24 (Sums). Sum types are interpreted as follows:

Σx1∶A1.B1≡wΣx2∶A2.B2

⟺ ∀EXT(w, λw ′
.A1≡w′A2 ∧∀a1, a2. a1≡w′a2∈A1 ⇒ B1[x1\a1]≡w′B2[x2\a2])

t1≡wt2∈Σx∶A.B ⟺ O(w, λw ′
.∃a1, a2, b1, b2. t1 ⤋w′ ⟨a1, b1⟩ ∧ t2 ⤋w′ ⟨a2, b2⟩

∧ a1≡w′a2∈A ∧ b1≡w′b2∈B[x1\a1]
)

I Definition 25 (Universes). To interpret universes, we need to use parameterized (by a
universe level) T1≡i,wT2 and t1≡i,wt2∈T relations instead of the ones used so far. We can then
define T1≡wT2 as ∃i. T1≡i,wT2 and t1≡wt2∈T as ∃i. t1≡i,wt2∈T . We do not present the full
construction here as it is standard. However, let us point out that using the above definitions
we can then interpret universes inductively over i, resulting in the following interpretations:

Ui≡j,wUi ⟺ i < j T1≡j,wT2∈Ui ⟺ T1≡j,wT2

I Definition 26 (Equality). Equality types are interpreted as follows:

(a1 = a2 ∈ A)≡w(b1 = b2 ∈ B) ⟺ A≡wB ∧ a1≡wb1∈A ∧ a2≡wb2∈A

t1≡wt2∈(a = b ∈ A) ⟺ O(w, λw ′
.t1 ⤋w′ ⋆ ∧ t2 ⤋w′ ⋆ ∧ a≡w′b∈A)

I Definition 27 (Disjoint Union). Disjoint union types are interpreted as follows:

A1+A2≡wB1+B2 ⟺ A1≡wB1 ∧A2≡wB2

t1≡wt2∈A+B ⟺ O(w, λw ′
. (∃x, y. t1 ⤋w′ inl(x) ∧ t2 ⤋w′ inl(y) ∧ x≡w′y∈A)
∨ (∃x, y. t1 ⤋w′ inr(x) ∧ t2 ⤋w′ inr(y) ∧ x≡w′y∈B)

)

I Definition 28 (Sets). Set types are interpreted as follows:

{x1 ∶ A1 ∣ B1}≡w{x2 ∶ A2 ∣ B2}
⟺ ∀EXT(w, λw ′

.A1≡w′A2 ∧∀a1, a2. a1≡w′a2∈A1 ⇒ B1[x1\a1]≡w′B2[x2\a2])
t1≡wt2∈{x ∶ A ∣ B} ⟺ O(w, λw ′

.t1≡w′t2∈A ∧ inh(w ′
, B[x\t1]))

I Definition 29 (Less Than). Less than types are interpreted as follows:

t1 < t2≡wu1 < u2 ⟺ t1≡wu1∈N ∧ t2≡wu2∈N

t1≡wt2∈(u1 < u2) ⟺ O(w, λw ′
.∃k1, k2. t1 ⇓w k1 ∧ t2 ⇓w k2 ∧ k1 < k2)

The time squashing type �T is defined using Howe’s computational equivalence [25],
which is omitted from this paper for space reasons (see [25] for a definition of this relation,
as well as cequiv/cequiv.v). It turns out that OpenTT is not only closed under computation
but more generally under Howe’s computational equivalence ∼, which we have proved to be
a congruence following Howe’s method [25]. We define t1 ≈w t2 as ∀EXT(w, λw ′

.t1 ∼w t2).

CSL 2021

https://github.com/vrahli/NuprlInCoq/blob/ls3/cequiv/cequiv.v

11:20 Open Bar

I Definition 30 (Time Squashing). Time squashing types are interpreted as follows:

�T ≡w�U ⟺ T ≡wU∈N

t1≡wt2∈(�T) ⟺ O(w, λw ′
.∃u1, u2. w ∼ t1u1 ∧ w ∼ t2u2 ∧ t1 ≈w t2 ∧ u1≡w′u2∈T)

B OpenTT’s Inference Rules

In OpenTT, sequents are of the form h1, . . . , hn ⊢ T ⌊ext t⌋. Such a sequent denotes that,
assuming h1, . . . , hn, the term t is a member of the type T , and that therefore T is a type. The
term t in this context is called the extract or evidence of T . Extracts are sometimes omitted
when irrelevant to the discussion. In particular, we typically do so when the conclusion T of a
sequent is an equality type of the form a = b ∈ A, since equality types can only be inhabited
by the constant ⋆, we then typically omit the extract in such sequents. An hypothesis h is of
the form x ∶ A, where the variable x stands for the name of the hypothesis and A its type. A
rule is a pair of a conclusion sequent S and a list of premise sequents, S1,⋯, Sn (written as
usual using a fraction notation, with the premises on top). Let us now provide a sample of
OpenTT’s key inference rules for some of its types not discussed above. The reader is invited
to check https://github.com/vrahli/NuprlInCoq/blob/ls3/ for a complete list of rules,
as well as [14], from which OpenTT borrowed most of its rules for its standard types.

B.1 Products
The following rules are the standard Π-elimination rule, Π-introduction rule, type equality
for Π types, and λ-introduction rule, respectively.

H , f ∶ Πx∶A.B, J ⊢ a ∈ A H , f ∶ Πx∶A.B, J , z ∶ f(a) ∈ B[x\a] ⊢ C ⌊ext e⌋
H , f ∶ Πx∶A.B, J ⊢ C ⌊ext e[z\⋆]⌋

H , z ∶ A ⊢ B[x\z] ⌊ext b⌋ H ⊢ A ∈ Ui
H ⊢ Πx∶A.B ⌊ext λz.b⌋

H ⊢ A1 = A2 ∈ Ui H , y ∶ A1 ⊢ B1[x1\y] = B2[x2\y] ∈ Ui
H ⊢ Πx1∶A1.B1 = Πx2∶A2.B2 ∈ Ui

H , z ∶ A ⊢ t1[x1\z] = t2[x2\z] ∈ B[x\z] H ⊢ A ∈ Ui
H ⊢ λx1.t1 = λx2.t2 ∈ Πx∶A.B

Note that the last rule requires to prove that A is a type because the conclusion requires to
prove that Πx∶A.B is a type, and the first hypothesis only states that B is a type family
over A, but does not ensures that A is a type.

The following rule is the standard function extensionality rule:

H , z ∶ A ⊢ f1(z) = f2(z) ∈ B[x\z] H ⊢ A ∈ Ui
H ⊢ f1 = f2 ∈ Πx∶A.B

The following captures that PERs are closed under β-reductions:

H ⊢ t[x\s] = u ∈ T
H ⊢ (λx.t) s = u ∈ T

https://github.com/vrahli/NuprlInCoq/blob/ls3/

M. Bickford, L. Cohen, R. L. Constable, and V. Rahli 11:21

B.2 Sums
The following rules are the standard Σ-elimination rule, Σ-introduction rule, type equality
for the Σ type, and pair-introduction rule, respectively.

H , p ∶ Σx∶A.B, a ∶ A, b ∶ B[x\a], J[p\⟨a, b⟩] ⊢ C[p\⟨a, b⟩] ⌊ext e⌋
H , p ∶ Σx∶A.B, J ⊢ C ⌊ext let a, b = p in e⌋

H ⊢ a ∈ A H ⊢ b ∈ B[x\a] H , z ∶ A ⊢ B[x\z] ∈ Ui
H ⊢ Σx∶A.B ⌊ext ⟨a, b⟩⌋

H ⊢ A1 = A2 ∈ Ui H , y ∶ A1 ⊢ B1[x1\y] = B2[x2\y] ∈ Ui
H ⊢ Σx1∶A1.B1 = Σx2∶A2.B2 ∈ Ui

H , z ∶ A ⊢ B[x\z] ∈ Ui H ⊢ a1 = a2 ∈ A H ⊢ b1 = b2 ∈ B[x\a1]
H ⊢ ⟨a1, b1⟩ = ⟨a2, b2⟩ ∈ Σx∶A.B

The following rule states that PERs are closed under spread-reductions:

H ⊢ u[x\s; y\t] = t2 ∈ T
H ⊢ let x, y = ⟨s, t⟩ in u = t2 ∈ T

B.3 Equality
The following rules are the standard equality-introduction rule:23, equality-elimination rule
(which states that equality types are inhabited by the ⋆ constant), hypothesis rule, symmetry
and transitivity rules, respectively.

H ⊢ A = B ∈ Ui H ⊢ a1 = b1 ∈ A H ⊢ a2 = b2 ∈ B

H ⊢ a1 = a2 ∈ A = b1 = b2 ∈ B ∈ Ui

H , z ∶ a = b ∈ A, J[z\⋆] ⊢ C[z\⋆] ⌊ext e⌋
H , z ∶ a = b ∈ A, J ⊢ C ⌊ext e⌋

H , x ∶ A, J ⊢ x ∈ A

H ⊢ b = a ∈ T
H ⊢ a = b ∈ T

H ⊢ a = c ∈ T H ⊢ c = b ∈ T
H ⊢ a = b ∈ T

The following rule allows fixing the extract of a sequent:

H ⊢ T ⌊ext t⌋
H ⊢ t ∈ T

The following rule allows rewriting with an equality in an hypothesis:

H , x ∶ B, J ⊢ C ⌊ext t⌋ H ⊢ A = B ∈ Ui
H , x ∶ A, J ⊢ C ⌊ext t⌋

23The actual rule is slightly more general as it allows a1 and b1 to be “computationally equivalent” (and
similarly for a2 and b2). However, since we have not introduced this concept here, we present a simpler
version of this rule only.

CSL 2021

11:22 Open Bar

B.4 Universes
Let i is a lower universe than j. The following rules are the standard universe-introduction
rule and the universe cumulativity rule, respectively.

H ⊢ Ui = Ui ∈ Uj
H ⊢ T ∈ Uj
H ⊢ T ∈ Ui

B.5 Sets
The following rule is the standard set-elimination rule:

H , z ∶ {x ∶ A ∣ B}, a ∶ A, b ∶ B[x\a] , J[z\a] ⊢ C[z\a] ⌊ext e⌋
H , z ∶ {x ∶ A ∣ B}, J ⊢ C ⌊ext e[a\z]⌋

Note that we have used a new construct in the above rule, namely the hypothesis b ∶ B[x\a] ,
which is called a hidden hypothesis. The main feature of hidden hypotheses is that their
names cannot occur in extracts (which is why we “box” those hypotheses). Intuitively, this
is because the proof that B is true is discarded in the proof that the set type {x ∶ A ∣ B} is
true and therefore cannot occur in computations. Hidden hypotheses can be unhidden using
the following rule:

H , x ∶ T, J ⊢ a = b ∈ A ⌊ext ⋆⌋
H , x ∶ T , J ⊢ a = b ∈ A ⌊ext ⋆⌋

which is valid since the extract is ⋆ and therefore does not make use of x.
The following rules are the standard set-introduction rule, type equality for the set type,

and introduction rule for members of set types, respectively.

H ⊢ a ∈ A H ⊢ B[x\a] H , z ∶ A ⊢ B[x\z] ∈ Ui
H ⊢ {x ∶ A ∣ B} ⌊ext a⌋

H ⊢ A1 = A2 ∈ Ui H , y ∶ A1 ⊢ B1[x1\y] = B2[x2\y] ∈ Ui
H ⊢ {x1 ∶ A1 ∣ B1} = {x2 ∶ A2 ∣ B2} ∈ Ui

H , z ∶ A ⊢ B[x\z] ∈ Ui H ⊢ a = b ∈ A H ⊢ B[x\a]
H ⊢ a = b ∈ {x ∶ A ∣ B}

B.6 Disjoint Unions
The following rules are the standard disjoint union-elimination rule, disjoint union-
introduction rules, type equality for the disjoint union type, and injection-introduction
rules, respectively.

H , d ∶ A+B, x ∶ A, J[d\inl(x)] ⊢ C[d\inl(x)] ⌊ext t⌋
H , d ∶ A+B, y ∶ B, J[d\inr(y)] ⊢ C[d\inr(y)] ⌊ext u⌋

H , d ∶ A+B, J ⊢ C ⌊ext case d of inl(x)⇒ t | inr(y)⇒ u⌋

H ⊢ A ⌊ext a⌋ H ⊢ B ∈ Ui
H ⊢ A+B ⌊ext inl(a)⌋

H ⊢ B ⌊ext b⌋ H ⊢ A ∈ Ui
H ⊢ A+B ⌊ext inr(b)⌋

M. Bickford, L. Cohen, R. L. Constable, and V. Rahli 11:23

H ⊢ A1 = A2 ∈ Ui H ⊢ B1 = B2 ∈ Ui
H ⊢ A1+B1 = A2+B2 ∈ Ui

H ⊢ a1 = a2 ∈ A H ⊢ B ∈ Ui
H ⊢ inl(a1) = inl(a2) ∈ A+B

H ⊢ b1 = b2 ∈ B H ⊢ A ∈ Ui
H ⊢ inr(b1) = inr(b2) ∈ A+B

The following rules state that PERs are closed under decide-reductions:

H ⊢ t[x\s] = t2 ∈ T
H ⊢ (case inl(s) of inl(x)⇒ t | inr(y)⇒ u) = t2 ∈ T

H ⊢ u[y\s] = t2 ∈ T
H ⊢ (case inr(s) of inl(x)⇒ t | inr(y)⇒ u) = t2 ∈ T

C Squashing

As mentioned in Sec. 2.4, OpenTT includes a squashing mechanism, which is used to erase
the computational content of a type by turning its PER into a trivial one.24 More precisely,
given a type T , the type ↓T , defined as {x ∶ True ∣ T}, is true iff T is true. However, while
the type T might have a trivial PER, i.e., it might be inhabited by arbitrarily complex
programs, ↓T can only be inhabited by ⋆, which is True’s only inhabitant. Indeed, as shown
in Def. 28 and Appx. B.5, a member of {x ∶ True ∣ T} is a member of True, such that T is
true. However, T ’s realizer is thrown away and is not part of {x ∶ True ∣ T}’s realizer.

More precisely, one can derive ↓T from T because given a member t of T , one can trivially
show that that ⋆ is a member of ↓T . We can capture this by the following derived rule:

H ⊢ T ⌊ext t⌋
H ⊢ ↓T ⌊ext ⋆⌋

However, the opposite is not true in general. One cannot in general derive T from ↓T because
given the realizer ⋆ of ↓T , it is not always possible to recover a realizer of T . We can capture
this by the following derived rule:

H , z ∶ ↓T, x ∶ T , J[z\⋆] ⊢ C[z\⋆] ⌊ext e⌋
H , z ∶ ↓T, J ⊢ C ⌊ext e⌋

To illustrate the point that we cannot in general derive T from ↓T , let us see how far we
can go when trying to prove:

x ∶ ↓T ⊢ T

Using the above squash-elimination derived rule, we have to prove:

x ∶ ↓T, z ∶ T ⊢ T

However, we are now stuck, as we have in general no way of deriving an extract of T given
these hypotheses. The unhiding rule mentioned Appx. B.5 can only be used when the
conclusion is an equality type, and the hypothesis rule mentioned in Appx. B.3, requires the
z hypothesis to be “visible” (not hidden) in order to use z as a realizer of the conclusion.

24 See for example [39] for more details on squashing.

CSL 2021

Discounted-Sum Automata with Multiple Discount
Factors
Udi Boker
The Interdisciplinary Center, Herzliya, Israel
udiboker@idc.ac.il

Guy Hefetz
The Interdisciplinary Center, Herzliya, Israel
ghefetz@gmail.com

Abstract
Discounting the influence of future events is a key paradigm in economics and it is widely used
in computer-science models, such as games, Markov decision processes (MDPs), reinforcement
learning, and automata. While a single game or MDP may allow for several different discount
factors, discounted-sum automata (NDAs) were only studied with respect to a single discount factor.
For every integer λ ∈ N \ {0, 1}, as opposed to every λ ∈ Q \ N, the class of NDAs with discount
factor λ (λ-NDAs) has good computational properties: it is closed under determinization and under
the algebraic operations min, max, addition, and subtraction, and there are algorithms for its basic
decision problems, such as automata equivalence and containment.

We define and analyze discounted-sum automata in which each transition can have a different
integral discount factor (integral NMDAs). We show that integral NMDAs with an arbitrary choice
of discount factors are not closed under determinization and under algebraic operations. We then
define and analyze a restricted class of integral NMDAs, which we call tidy NMDAs, in which the
choice of discount factors depends on the prefix of the word read so far. Tidy NMDAs are as
expressive as deterministic integral NMDAs with an arbitrary choice of discount factors, and some of
their special cases are NMDAs in which the discount factor depends on the action (alphabet letter)
or on the elapsed time.

We show that for every function θ that defines the choice of discount factors, the class of
θ-NMDAs enjoys all of the above good properties of integral NDAs, as well as the same complexities
of the required decision problems. To this end, we also improve the previously known complexities
of the decision problems of integral NDAs, and present tight bounds on the size blow-up involved in
algebraic operations on them.

All our results hold equally for automata on finite words and for automata on infinite words.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Automata, Discounted-sum, Quantitative verification, NMDA, NDA

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.12

Related Version A full version of the paper is available at https://www.idc.ac.il/en/schools/
cs/research/documents/thesis-guy-hefetz.pdf ([24]).

Funding Udi Boker : Israel Science Foundation grant 1373/16.

1 Introduction

Discounted summation is a central valuation function in various computational models,
such as games (e.g., [39, 2, 17]), Markov decision processes (e.g, [23, 30, 15]), reinforcement
learning (e.g, [34, 37]), and automata (e.g, [19, 11, 13, 14]), as it formalizes the concept
that an immediate reward is better than a potential one in the far future, as well as that a
potential problem (such as a bug in a reactive system) in the far future is less troubling than
a current one.

© Udi Boker and Guy Hefetz;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 12; pp. 12:1–12:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:udiboker@idc.ac.il
mailto:ghefetz@gmail.com
https://doi.org/10.4230/LIPIcs.CSL.2021.12
https://www.idc.ac.il/en/schools/cs/research/documents/thesis-guy-hefetz.pdf
https://www.idc.ac.il/en/schools/cs/research/documents/thesis-guy-hefetz.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Discounted-Sum Automata with Multiple Discount Factors

A Nondeterministic Discounted-sum Automaton (NDA) is an automaton with rational
weights on the transitions, and a fixed rational discount factor λ > 1. The value of a (finite
or infinite) run is the discounted summation of the weights on the transitions, such that the
weight in the ith position of the run is divided by λi. The value of a (finite or infinite) word
is the minimal value of the automaton runs on it. An NDA A realizes a function from words
to real numbers, and we write A(w) for the value of A on a word w.

In the Boolean setting, where automata realize languages, closure under the basic
Boolean operations of union, intersection, and complementation is desirable, as it allows
to use automata in formal verification, logic, and more. In the quantitative setting, where
automata realize functions from words to numbers, the above Boolean operations are naturally
generalized to algebraic ones: union to min, intersection to max, and complementation to
multiplication by −1 (depending on the function’s co-domain). Likewise, closure under these
algebraic operations, as well as under addition and subtraction, is desirable for quantitative
automata, serving for quantitative verification. Determinization is also very useful in
automata theory, as it gives rise to many algorithmic solutions, and is essential for various
tasks, such as synthesis and probabilistic model checking1.

NDAs cannot always be determinized [14], they are not closed under basic algebraic
operations [6], and basic decision problems on them, such as universality, equivalence, and
containment, are not known to be decidable and relate to various longstanding open problems
[7]. However, restricting NDAs to an integral discount factor λ ∈ N provides a robust class
of automata that is closed under determinization and under the algebraic operations, and for
which the decision problems of universality equivalence, and containment are decidable [6].

Various variants of NDAs are studied in the literature, among which are functional,
k-valued, probabilistic, and more [21, 20, 12]. Yet, to the best of our knowledge, all of these
models are restricted to have a single discount factor in an automaton. This is a significant
restriction of the general discounted-summation paradigm, in which multiple discount factors
are considered. For example, Markov decision processes and discounted-sum games allow for
multiple discount factors within the same entity [23, 2].

A natural extension to NDAs is to allow for different discount factors over the transitions,
providing the ability to model systems in which each action (alphabet letter in the automaton)
causes a different discounting, systems in which the discounting changes over time, and more.
As integral NDAs provide robust automata classes, whereas non-integral NDAs do not, we
look into extending integral NDAs into integral NMDAs (Definition 1), allowing multiple
integral discount factors in a single automaton.

As automata are aimed at modeling systems, NMDAs significantly extend the system
behaviors that can be modeled with discounted-sum automata. For an intuitive example,
consider how the value of used vehicles changes over time: It decreases a lot in the first year,
slightly less rapidly in the next couple of years, and significantly less rapidly in further years.
An NDA cannot model such a behavior, as the discount factor cannot change over time,
whereas an NMDA provides the necessary flexibility of the discount factor.

On a more formal level, NMDAs may allow to enhance formal verification of reinforcement
learning applications. In the reinforcement learning process, the expected return value is
the discounted-summation of the accumulated future rewards. In classic reinforcement
learning, the discounted summation uses a single discount factor, whereas novel approaches

1 In some cases, automata that are “almost deterministic”, such as limit-deterministic [36] or good-for-
games automata [25, 8] suffice.

U. Boker and G. Hefetz 12:3

in reinforcement learning study how to enhance the process to allow multiple discount
factors [28, 22, 37, 32, 27]. This enhancement of reinforcement learning parallels our extension
of discounted-sum automata to support multiple discount factors.

We start with analyzing NMDAs in which the integral discount factors can be chosen arbi-
trarily. Unfortunately, we show that this class of automata does not allow for determinization
and is not closed under the basic algebraic operations.

For more restricted generalizations of integral NDAs, in which the discount factor depends
on the transition’s letter (letter-oriented NMDAs) or on the elapsed time (time-oriented
NMDAs), we show that the corresponding automata classes do enjoy all of the good properties
of integral NDAs, while strictly extending their expressiveness.

We further analyze a rich class of integral NMDAs that extends both letter-oriented and
time-oriented NMDAs, in which the choice of discount factor depends on the word-prefix
read so far (tidy NMDAs). We show that their expressiveness is as of deterministic integral
NMDAs with an arbitrary choice of discount factors and that for every choice function
θ : Σ+ → N \ {0, 1}, the class of θ-NMDAs enjoys all of the good properties of integral NDAs.
(See Figure 1.)

Considering closure under algebraic operations, we further provide tight bounds on the
size blow-up involved in the different operations (Table 1). To this end, we provide new lower
bounds also for the setting of NDAs, by developing a general scheme to convert every NFA
to a corresponding NDA of linearly the same size, and to convert some specific NDAs back
to corresponding NFAs.

As for the decision problems of tidy NMDAs, we provide a PTIME algorithm for emptiness
and PSPACE algorithms for the other problems of exact-value, universality, equivalence, and
containment. The complexities are with respect to the automaton (or automata) size, which
is considered as the maximum between the number of transitions and the maximal binary
representation of any discount factor or weight in it. These new algorithms also improve the
complexities of the previously known algorithms for solving the decision problems of NDAs,
which were PSPACE with respect to unary representation of the weights.

As general choice functions need not be finitely represented, it might upfront limit the
usage of tidy NMDAs. Yet, we show that finite transducers suffice, in the sense that they
allow to represent every choice function θ that can serve for a θ-NMDA. We provide a PTIME
algorithm to check whether a given NMDA is tidy, as well as if it is a T -NMDA for a given
transducer T .

We show all of our results for both automata on finite words and automata on infinite
words. Whenever possible, we provide a single proof for both settings. Due to lack of space,
some of the full proofs appear in the appendix, while the rest can be found in [24].

2 Discounted-Sum Automata with Multiple Integral Discount Factors

We define a discounted-sum automaton with arbitrary discount factors, abbreviated NMDA,
by adding to an NDA a discount factor in each of its transitions. An NMDA is defined on
either finite or infinite words. The formal definition is given in Definition 1, and an example
in Figure 2.

An alphabet Σ is an arbitrary finite set, and a word over Σ is a finite or infinite sequence of
letters in Σ, with ε for the empty word. We denote the concatenation of a finite word u and a
finite or infinite word w by u·w, or simply by uw. We define Σ+ to be the set of all finite words
except the empty word, i.e., Σ+ = Σ∗ \ {ε}. For a word w = w(0)w(1)w(2) . . ., we denote the
sequence of its letters starting at index i and ending at index j as w[i..j] = w(i)w(i+1) . . . w(j).

CSL 2021

12:4 Discounted-Sum Automata with Multiple Discount Factors

7 Arbitrary integral

3
per word prefix

(tidy)
3

per-time
3

per-letter
3

single

Figure 1 Classes of integral NMDAs, defined according to the flexibility of choosing the discount
factors. The class of NMDAs with arbitrary integral factors is not closed under algebraic operations
and under determinization. The other classes (for a specific choice function) are closed under both
algebraic operations and determinization. Tidy NMDAs are as expressive as deterministic NMDAs
with arbitrary integral discount factors.

A : q0 q1 q2

a, 1, 3 a, 1
2 , 2

a, 1
4 , 2

b, 1
4 , 2a, 1, 3

a, 1
2 , 2

b, 2, 5

b, 3
2 , 4

Figure 2 An NMDA A. The labeling on the transitions indicate the alphabet letter, the weight
of the transition, and its discount factor.

I Definition 1. A nondeterministic discounted-sum automaton with multiple discount factors
(NMDA), on finite or infinite words, is a tuple A = 〈Σ, Q, ι, δ, γ, ρ〉 over an alphabet Σ, with
a finite set of states Q, an initial set of states ι ⊆ Q, a transition function δ ⊆ Q×Σ×Q, a
weight function γ : δ → Q, and a discount-factor function ρ : δ → Q ∩ (1,∞), assigning to
each transition its discount factor, which is a rational greater than one. 2

A walk in A from a state p0 is a sequence of states and letters, p0, σ0, p1, σ1, p2, · · · , such
that for every i, (pi, σi, pi+1) ∈ δ. For example, ψ = q1, a, q1, b, q2 is a walk of the NMDA
A of Figure 2 on the word ab from the state q1 .
A run of A is a walk from an initial state.
The length of a walk ψ, denoted by |ψ|, is n for a finite walk ψ = p0, σ0, p1, · · · , σn−1, pn,
and ∞ for an infinite walk.
The i-th transition of a walk ψ = p0, σ0, p1, σ1, · · · is denoted by ψ(i) = (pi, σi, pi+1).

The value of a finite or an infinite walk ψ is A(ψ) =
∑|ψ|−1
i=0

(
γ
(
ψ(i)

)
·
∏i−1
j=0

1
ρ
(
ψ(j)
)).

For example, the value of the walk r1 = q0, a, q0, a, q1, b, q2 (which is also a run) of A
from Figure 2 is A(r1) = 1 + 1

2 ·
1
3 + 2 · 1

2·3 = 3
2 .

The value of A on a finite or infinite word w is A(w) = inf{A(r) | r is a run of A on w}.
In the case where |ι| = 1 and for every q ∈ Q and σ ∈ Σ, we have |{q′

∣∣ (q, σ, q′) ∈ δ}| ≤ 1,
we say that A is deterministic, denoted by DMDA, and view δ as a function to states.
When all the discount factors are integers, we say that A is an integral NMDA.

2 Discount factors are sometimes defined in the literature as numbers between 0 and 1, under which
setting weights are multiplied by these factors rather than divided by them.

U. Boker and G. Hefetz 12:5

In the case where for every q ∈ Q and σ ∈ Σ, we have |{q′ | (q, σ, q′) ∈ δ}| ≥ 1, intuitively
meaning that A cannot get stuck, we say that A is complete. It is natural to assume that
discounted-sum automata are complete, and we adopt this assumption, as dead-end states,
which are equivalent to states with infinite-weight transitions, break the property of the
decaying importance of future events.

Automata A and A′ are equivalent, denoted by A ≡ A′, if for every word w, A(w) = A′(w).
For every finite (infinite) walk ψ = p0, σ0, p1, σ1, p2, · · · , σn−1, pn (ψ = p0, σ0, p1, · · ·),

and all integers 0 ≤ i ≤ j ≤ |ψ| − 1 (0 ≤ i ≤ j), we define the finite sub-walk from i

to j as ψ[i..j] = pi, σi, pi+1, · · · , σj , pj+1. For an infinite walk, we also define ψ[i..∞] =
pi, σi, pi+1, · · · , namely the infinite suffix from position i. For a finite walk, we also define
the target state as δ(ψ) = pn and the accumulated discount factor as ρ(ψ) =

∏n−1
i=0 ρ

(
ψ(i)

)
.

We extend the transition function δ to finite words in the regular manner: For a word
u ∈ Σ∗ and a letter σ ∈ Σ, δ(ε) = ι; δ(u · σ) =

⋃
q∈δ(u) δ(q, σ). For a state q of A, we denote

by Aq the automaton that is identical to A, except for having q as its single initial state.
An NMDA may have rational weights, yet it is often convenient to consider an analo-

gous NMDA with integral weights, achieved by multiplying all weights by their common
denominator.

I Proposition 2. For all constant 0 < m ∈ Q, NMDA A = 〈Σ, Q, ι, δ, γ, ρ〉, NMDA
A′ = 〈Σ, Q, ι, δ,m · γ, ρ〉 obtained from A by multiplying all its weights by m, and a finite or
infinite word w, we have A′(w) = m · A(w).

Size. We define the size of A, denoted by |A|, as the maximum between the number of
transitions and the maximal binary representation of any discount factor or weight in it. For
rational weights, we assume all of them to have the same denominator. The motivation for a
common denominator stems from the determinization algorithm (Theorem 8). Omitting this
assumption will still result in a deterministic automaton whose size is only single exponential
in the size of the original automaton, yet storing its states will require a much bigger space,
changing our PSPACE algorithms (Section 4) into EXPSPACE ones.

Algebraic operations. Given automata A and B over the same alphabet and a non-negative
scalar c ∈ Q, we define an algebraic operation op ∈ {min,max,+,−} on A and B as
C ≡ op(A,B) iff ∀w.C(w) = op

(
A(w),B(w)

)
, and op ∈ {c·,−} as C ≡ op(A) iff ∀w.C(w) =

op
(
A(w)

)
.

Decision problems. Given automata A and B and a threshold ν ∈ Q, we consider the
following properties, with strict (or non-strict) inequalities: Nonemptiness: There exists a
word w, s.t. A(w) < ν (or A(w) ≤ ν); Exact-value: There exists a word w, s.t. A(w) = ν;
Universality: For all words w, A(w) < ν (or A(w) ≤ ν); Equivalence: For all words w,
A(w) = B(w); Containment: For all words w, A(w) > B(w) (or A(w) ≥ B(w)). 3

Finite and infinite words. Results regarding NMDAs on finite words that refer to the
existence of an equivalent automaton (“positive results”) can be extended to NMDAs on
infinite words due to Lemma 3 below. Likewise, results that refer to non-existence of an

3 Considering quantitative containment as a generalization of language containment, and defining the
“acceptance” of a word w as having a small enough value on it, we define that A is contained in B if
for every word w, A’s value on w is at least as big as B’s value. (Observe the > and ≥ signs in the
definition.)

CSL 2021

12:6 Discounted-Sum Automata with Multiple Discount Factors

B : q0 q2 q1

a, 1
2 , 2 a, 2

3 , 3a, 0, 2
b, 0, 2
c, 0, 2

b, 1
2 , 2

c, 2, 2
b, 2, 3
c, 4

3 , 3

Figure 3 An integral NMDA B on infinite words that cannot be determinized.

equivalent automaton (“negative results”) can be extended from NMDAs on infinite words to
NMDAs on finite words. Accordingly, if not stated otherwise, we prove the positive results
for automata on finite words and the negative results for automata on infinite words, getting
the results for both settings.

I Lemma 3. For all NMDAs A and B, if for all finite word u ∈ Σ+, we have A(u) = B(u),
then also for all infinite word w ∈ Σω, we have A(w) = B(w).

The proof is a simple extension of the proof of a similar lemma in [6] with respect to NDAs.
Notice that the converse does not hold, namely there are automata equivalent w.r.t.

infinite words, but not w.r.t. finite words. (See an example in Figure 4.)

3 Arbitrary Integral NMDAs

Unfortunately, we show that the family of integral NMDAs in which discount factors can be
chosen arbitrarily is not closed under determinization and under basic algebraic operations.

I Theorem 4. There exists an integral NMDA that no integral DMDA is equivalent to.

Proof sketch. Consider the integral NMDA B depicted in Figure 3. We show that for every
n ∈ N, B(anbω) = 1− 1

2n+1 and B(ancω) = 1 + 1
3n+1 .

An integral DMDA D that is equivalent to B will intuitively need to preserve an accumu-
lated discount factor Πn and an accumulated weight Wn on every an prefix, such that both
suffixes of bω and cω will match the value of B. Since the difference between the required
value of each pair 〈anbω, ancω〉 is “relatively large”, Πn must have “many” small discount
factors of 2 to compensate this difference. But too many discount factors of 2 will not
allow to achieve the “delicate” values of 1 + 1

3n+1 . In the full proof, we formally analyze the
mathematical properties of Πn, showing that its prime-factor decomposition must indeed
contain mostly 2’s, “as well as” mostly 3’s, leading to a contradiction. J

In the following proof that integral NMDAs are not closed under algebraic operations,
we cannot assume toward contradiction a candidate deterministic automaton, and thus, as
opposed to the proof of Theorem 4, we cannot assume a specific accumulative discount
factor for each word prefix. Yet, we analyze the behavior of a candidate nondeterministic
automaton on an infinite series of words, and build on the observation that there must be a
state that appears in “the same position of the run” in infinitely many optimal runs of the
automaton on these words.

I Theorem 5. There exist integral NMDAs (even deterministic integral NDAs) A and B
over the same alphabet, such that no integral NMDA is equivalent to max(A,B), and no
integral NMDA is equivalent to A+ B.

U. Boker and G. Hefetz 12:7

q0B : q1

q3

q2p1p0A :

p2

a, 1
3 , 3

a,−1, 3a, 0, 3
b, 0, 3

b, 0, 3

a, 0, 3
b, 0, 3

a, 1
2 , 2

a,−1, 2
b, 0, 2

b, 0, 2

a, 0, 2
b, 0, 2

Figure 4 Deterministic integral NDAs that no integral NMDA is equivalent to their max or
addition.

C : q
an,Wn,Πn

bω, Ub,−

a · bω, Ua,−

Figure 5 The state q and the notations from the proof of Theorem 5, for two different even n ∈ N
such that δ(rn[1..n]) = q. The labels on the walks indicate the input word and the accumulated
weight and discount factors.

Proof. Consider the NMDAs A and B depicted in Figure 4, and assume towards contradiction
that there exists an integral NMDA C′ such that for every n ∈ N,

C′(anbω) = max(A,B)(anbω) =
(
A+ B

)
(anbω) =

{
1

2n n is odd
1

3n n is even

Let d ∈ N be the least common denominator of the weights in C′, and consider the NMDA
C = 〈Σ, Q, ι, δ, γ, ρ〉 created from C′ by multiplying all its weights by d. Observe that
all the weights in C are integers. According to Proposition 2, for every n ∈ N, we have

C(anbω) = d · C′(anbω) =
{

d
2n n is odd
d

3n n is even
For every even n ∈ N, let wn = anbω, and rn a run of C on wn that entails the minimal

value of d
3n . Since C is finite, there exists a state q ∈ Q such that for infinitely many even

n ∈ N, the target state of rn after n steps is q, i.e, δ(rn[0..n− 1]) = q. We now show that the
difference between Ub = Cq(bω) and Ua = Cq(a · bω), the weights of the bω and a · bω suffixes
starting at q, discounted by Πn = ρ(rn[0..n− 1]), which is the accumulated discount factor
of the prefix of rn up to q, is approximately 1

2n (See Figure 5 for the notations). Since the
weights of the prefixes are constant, for large enough n we will conclude that m1 · 2n ≥ Πn

for some positive constant m1.
For every such n ∈ N, let Wn = C(rn[0..n− 1]), and since C(rn) = d

3n , we have

Wn + Ub
Πn

= d

3n (1)

Since the value of every run of C on an+1bω is at least d
2n+1 , we have Wn+ Ua

Πn
≥ d

2n+1 . Hence,
d

3n − Ub

Πn
+ Ua

Πn
≥ d

2n+1 resulting in Ua−Ub

Πn
≥ d ·

(
1

2n+1 − 1
3n

)
. But for large enough n, we have

3n > 2n+2, hence we get 1
2n+1 − 1

3n > 1
2n+1 − 1

2n+2 = 1
2n+2 , resulting in Ua−Ub

d · 2n+2 ≥ Πn.
And indeed, there exists a positive constant m1 = Ua−Ub

d · 22 such that m1 · 2n ≥ Πn.
Now, Ub is a rational constant, otherwise Equation (1) cannot hold, as the other elements

are rationals. Hence, there exist x ∈ Z and y ∈ N such that Ub = x
y , and

1
3n = Wn·Πn+Ub

d·Πn
=

CSL 2021

12:8 Discounted-Sum Automata with Multiple Discount Factors

Wn·Πn+ x
y

d·Πn
= Wn·Πn·y+x

d·y·Πn
. Since the denominator and the numerator of the right-hand side are

integers, we conclude that there exists a positive constant m2 = d · y, such that m2 ·Πn ≥ 3n.
Eventually, we get m1 ·m2 ·2n ≥ 3n, for some positive constants m1 and m2, and for infinitely
many n ∈ N. But this stands in contradiction with limn→∞

(
2
3

)n
= 0. J

4 Tidy NMDAs

We present the family of “tidy NMDAs” and show that it is as expressive as deterministic
NMDAs with arbitrary integral discount factors. Intuitively, an integral NMDA is tidy if
the choice of discount factors depends on the word prefix read so far. We further show that
for every choice function θ, the class of all θ-NMDAs is closed under determinization and
algebraic operations, and enjoys decidable algorithms for its decision problems.

The family of tidy NMDAs contains various other natural subfamilies, such as integral
NMDAs in which the discount factors are chosen per letter (action) or per the elapsed time,
on which we elaborate at the end of this section. Each of these subfamilies strictly extends
the expressive power of integral NDAs.

I Definition 6. An integral NMDA A over an alphabet Σ and with discount-factor function
ρ is tidy if there exists a function θ : Σ+ → N \ {0, 1}, such that for every finite word
u = σ1 . . . σn ∈ Σ+, and every run q0, σ1, · · · , qn of A on u, we have ρ(qn−1, σn, qn) = θ(u).

In this case we say that A is a θ-NMDA.

I Definition 7. For an alphabet Σ, a function θ : Σ+ → N \ {0, 1} is a choice function if
there exists an integral NMDA that is a θ-NMDA.

For choice functions θ1 and θ2, the classes of θ1-NMDAs and of θ2-NMDAs are equivalent
if they express the same functions, namely if for every θ1-NMDA A, there exists a θ2-NMDA
B equivalent to A and vice versa.

For every tidy NMDA A and finite word u, all the runs of A on u entail the same
accumulated discount factor. We thus use the notation ρ(u) to denote ρ(r), where r is any
run of A on u.

Observe that a general function θ : Σ+ → N\{0, 1}might require an infinite representation.
Yet, we will show in Theorem 9 that every choice function has a finite representation.

Determinizability

We determinize a tidy NMDA by generalizing the determinization algorithm presented in
[6] for NDAs. The basic idea in that algorithm is to extend the subset construction, by not
only storing in each state of the deterministic automaton whether or not each state q of
the original automaton A is reachable, but also the “gap” that q has from the currently
optimal state q′ of A. This gap stands for the difference between the accumulated weights
for reaching q and for reaching q′, multiplied by the accumulated discounted factor. Since we
consider tidy NMDAs, we can generalize this view of gaps to the setting of multiple discount
factors, as it is guaranteed that the runs to q and to q′ accumulated the same discount factor.

I Theorem 8. For every choice function θ and a θ-NMDA A, there exists a θ-DMDA D ≡ A
of size in 2O(|A|). Every state of D can be represented in space polynomial in |A|.

U. Boker and G. Hefetz 12:9

T :

q0 q1

a, 2 a, 3

b, 2

b, 4

p0 p1

p2 p3

A :

a, 1, 2 a, 1
2 , 2 b, 2, 4

a, 1, 2

b, 1
2 , 4 b, 2

3 , 2
b, 1, 4

a, 3
2 , 2

b, 3
4 , 2 a, 1, 3

Figure 6 A transducer T and a T -NMDA.

Representing Choice Functions
We show that, as opposed to the case of a general function f : Σ+ → N \ {0, 1}, every choice
function θ can be finitely represented by a transducer.

A transducer T (Mealy machine) is a 6-tuple 〈P,Σ,Γ, p0, δ, ρ〉, where P is a finite set of
states, Σ and Γ are finite sets called the input and output alphabets, p0 ∈ P is the initial
state, δ : P × Σ→ P is the total transition function and ρ : P × Σ→ Γ is the total output
function.

A transducer T represents a function, to which for simplicity we give the same name
T : Σ+ → Γ, such that for every word w, the value T (w) is the output label of the last
transition taken when running T on w. The size of T , denoted by |T |, is the maximum
between the number of transitions and the maximal binary representation of any output in
the range of ρ.

Since in this work we only consider transducers in which the output alphabet Γ is the
natural numbers N, we omit Γ from their description, namely write 〈P,Σ, p0, δ, ρ〉 instead of
〈P,Σ,N, p0, δ, ρ〉. An example of a transducer T and a T -NMDA is given in Figure 6.

I Theorem 9. For every function θ : Σ+ → N \ {0, 1}, θ is a choice function, namely there
exists a θ-NMDA, if and only if there exists a transducer T such that θ ≡ T .

Closure under Algebraic Operations
I Theorem 10. For every choice function θ, the set of θ-NMDAs is closed under the
operations of min, max, addition, subtraction, and multiplication by a rational constant.

Proof. Consider a choice function θ and θ-NMDAs A and B.
Multiplication by constant c ≥ 0: A θ-NMDA for c·A is straightforward from Proposition 2.
Multiplication by −1: A θ-NMDA for −A can be achieved by first determinizing A, as
per Theorem 8, into a θ-DMDA D and then multiplying all the weights in D by −1.
Addition: Considering A = 〈Σ, Q1, ι1, δ1, γ1, ρ1〉 and B = 〈Σ, Q2, ι2, δ2, γ2, ρ2〉, a θ-NMDA
for A+ B can be achieved by constructing the product automaton C = 〈Σ, Q1 ×Q2, ι1 ×
ι2, δ, γ, ρ〉 such that δ =

{(
(q1, q2), σ, (p1, p2)

) ∣∣ (q1, σ, p1) ∈ δ1 and (q2, σ, p2) ∈ δ2
}
,

γ
(
(q1, q2), σ, (p1, p2)

)
= γ1(q1, σ, p1)+γ2(q2, σ, p2), ρ

(
(q1, q2), σ, (p1, p2)

)
= ρ1(q1, σ, p1) =

ρ2(q2, σ, p2). The latter must hold since both ρ1 and ρ2 are compliant with θ.
Subtraction: A θ-NMDA for A − B can be achieved by i) Determinizing B to B′; ii)
Multiplying B′ by −1, getting B′′; and iii) Constructing a θ-NMDA for A+ B′′.
min: A θ-NMDA for min(A,B) is straightforward by the nondeterminism on their union.
max : A θ-NMDA for max(A,B) can be achieved by i) Determinizing A and B to A′ and
B′, respectively; ii) Multiplying A′ and B′ by −1, getting A′′ and B′′, respectively; iii)
Constructing a θ-NMDA C′′ for min(A′′,B′′); iv) Determinizing C′′ into a θ-DMDA D;
and v) Multiplying D by −1, getting θ-NMDA C, which provides max(A,B). J

CSL 2021

12:10 Discounted-Sum Automata with Multiple Discount Factors

Table 1 The size blow-up involved in algebraic operations on tidy NMDAs.

c · A (for c ≥ 0) min(A,B) A+ B −A max(A,B) A− B

Linear Quadratic Single Exponential

We analyze next the size blow-up involved in algebraic operations. Most results in
Table 1 are straightforward from the constructions presented in the proof of Theorem 10,
however the size blow-up of the max operation is a little more involved. At a first glance,
determinizing back and forth might look like requiring a double-exponential blow-up, however
in this case an optimized procedure for the second determinization can achieve an overall
single-exponential blow-up: Determinizing a tidy NMDA that is the union of two DMDAs,
in which the transition weights are polynomial in the number of states, is shown to only
involve a polynomial size blow-up.

I Theorem 11. The size blow-up involved in the max operation on tidy NMDAs is at most
single-exponential.

We are not aware of prior lower bounds on the size blow-up involved in algebraic operations
on NDAs. For achieving such lower bounds, we develop a general scheme to convert every
NFA to a λ-NDA of linearly the same size that defines the same language with respect to a
threshold value 0, and to convert some specific λ-NDAs back to corresponding NFAs.

The conversion of an NFA to a corresponding λ-NDA is quite simple. It roughly uses the
same structure of the original NFA, and assigns four different transitions weights, depending
on whether each of the source and target states is accepting or rejecting.

I Lemma 12. For every λ ∈ N \ {0, 1} and NFA A with n states, there exists a λ-NDA Ã
with n+ 2 states, such that for every word u ∈ Σ+, we have u ∈ L(A) iff Ã(u) < 0. That is,
the language defined by A is equivalent to the language defined by Ã and the threshold 0.

Converting an NDA to a corresponding NFA is much more challenging, since a general
NDA might have arbitrary weights. We develop a conversion scheme, whose correctness proof
is quite involved, from every NDA Ḃ that is equivalent to −Ã, where Ã is generated from an
arbitrary NFA as per Lemma 12, to a corresponding NFA B. Notice that the assumption that
Ḃ ≡ −Ã gives us some information on Ḃ, yet Ḃ might a priori still have arbitrary transition
weights. Using this scheme, we provide an exponential lower bound on the size blow-up
involved in multiplying an NDA by (−1). The theorem holds with respect to both finite and
infinite words.

I Theorem 13. For every n ∈ N and λ ∈ N \ {0, 1}, there exists a λ-NDA A with n states
over a fixed alphabet, such that every λ-NDA that is equivalent to −A, w.r.t. finite or infinite
words, has Ω(2n) states.

Proof sketch. NFA complementation is known to impose an exponential state blow-up
[33, 26]. Hence, a conversion of an NFA A to a λ-NDA Ã as per Lemma 12, and a polynomial
conversion of every λ-NDA Ḃ ≡ −Ã to a corresponding NFA B, will show the required lower
bound.

We provide such a back-conversion for NDAs whose values on the input words converge
to some threshold as the words length grow to infinity, which is the case with every such Ḃ.

We first construct from Ḃ a similar equivalent λ-NDA B′ whose initial states have no
incoming transitions. This eliminates the possibility that one run is a suffix of another,
allowing to simplify some of our arguments. We then define δ̂ to be the transitions of B′ that
participate in some minimal run of B′ on a word whose value is smaller than 0, and ˆ̂δ ⊆ δ̂ to
have those of them that are the last transition of such runs.

U. Boker and G. Hefetz 12:11

We define the NFA B to have the states of B′, but only the transitions from δ̂. Its
accepting states are clones of the target states of transitions in ˆ̂δ, but without outgoing
transitions. We then prove that B accepts a word u iff B′(u) = − 1

λ|u| .
The first direction is easy: if B′(u) = − 1

λ|u| , we get that all the transitions of a minimal
run of B′ on u are in δ̂, and its final transition is in ˆ̂δ, hence there exists a run of B on u
ending at an accepting state.

For the other direction, we assume towards contradiction that there exists a word u, such
that B′(u) 6= − 1

λ|u| , while there is an accepting run ru of B on u. We define the “normalized
value” of a run r′ of B′ as the value of B′ multiplied by the accumulated discount factor,
i.e., B′(r′) · λ|r′|. According to the special values assigned by B′, whenever the normalized
value reaches −1, we have an “accepting” run. We show that ru and the structure of B imply
the existence of two “accepting” runs r′1, r′2 ∈ R− that intersect in some state q, such that
taking the prefix of r′1 up to q results in a normalized value λkW1 that is strictly smaller
than the normalized value λjW2 of the prefix of r′2 up to q. Since r′2 is an “accepting” run,
the suffix of r′2 reduces λjW2 to −1 and therefore it will reduce λkW1 to a value strictly
smaller than −1, and the total value of the run to a value strictly smaller than − 1

λn , which
is not a possible value of B′.

For showing the lower bound for NDAs that run on infinite words, we properly adjust the
proof to consider words of the form u ·#ω, for a fresh letter #, rather than finite words. J

Basic Subfamilies
Tidy NMDAs constitute a rich family that also contains some basic subfamilies that are still
more expressive than integral NDAs. Two such subfamilies are integral NMDAs in which the
discount factors depend on the transition letter or on the elapsed time.

Notice that closure of tidy NMDAs under determinization and under algebraic operations
is related to a specific choice function θ, namely every class of θ-NMDAs enjoys these closure
properties (Theorems 8 and 10). Since the aforementioned subfamilies of tidy NMDAs
also consist of θ-NMDA classes, their closure under determinization and under algebraic
operations follows. For example, the class of NMDAs that assigns a discount factor of 2 to
the letter “a” and of 3 to the letter “b” enjoys these closure properties.

Letter-Oriented Discount Factors
Allowing each action (letter) to carry its own discount factor is a basic extension of discounted
summation, used in various models, such as Markov decision processes [29, 38].

A θ-NMDA over an alphabet Σ is letter oriented if all transitions over the same alphabet
letter share the same discount factor; that is, if θ : Σ+ → N \ {0, 1} coincides with a
function Λ : Σ→ N \ {0, 1}, in the sense that for every finite word u and letter σ, we have
θ(uσ) = Λ(σ). (See an example in Figure 7.) Notice that every choice function θ for a
letter-oriented θ-NMDA can be defined via a simple transducer of a single state, having a
self loop over every letter with its assigned discount factor.

We show that letter-oriented NMDAs indeed add expressiveness over NDAs.

I Theorem 14. There exists a letter-oriented NMDA that no integral NDA is equivalent to.

Proof sketch. In the proof we consider the NMDA A depicted in Figure 7, and assume
towards contradiction that there exists an integral λ-DDA B which is equivalent to A. Since
B is deterministic and has finitely many states, after reading only a letters some cycle will
be eventually reached. We analyze the runs on words of the form anbω for values of n such

CSL 2021

12:12 Discounted-Sum Automata with Multiple Discount Factors

A :

q0 q1q2
a, 1

2 , 2 a,− 1
2 , 2

b, 0, 3
b, 1

3 , 3a, 0, 2
b,− 2

3 , 3

Figure 7 A letter-oriented discounted-sum automaton, for the discount factor function Λ(a) = 2;
Λ(b) = 3, that no integral NDA is equivalent to.

q0A : q1 q2T :
Σ, 2

Σ, 3

a, 1
6 , 2

b, 0, 2

a, 0, 3
b, 0, 3

a,− 5
6 , 2

b, 0, 2

Figure 8 A time-oriented NMDA that no integral NDA is equivalent to, and a transducer that
defines its choice function.

that the cycle in B is not taken at all, such that it is taken once, and such that it is taken
twice. Since the accumulated discount factor added by the cycle is a constant equals to λi,
where i is the length of the cycle, in order for B to have values of B(anbω) = 1

2n on these
words, we conclude that λ must equal 2. We now apply similar analysis regarding words of
the form bnaω, for which B should have values of B(bnaω) = 1

3n , and a cycle for the b letter,
to conclude that λ must equal 3, and reach a contradiction. J

Time-Oriented Discount Factors
Allowing the discount factor to change over time is a natural extension of discounted
summation, used in various disciplines, such as reinforcement learning [28, 22].

A θ-NMDA over an alphabet Σ is time oriented if the discount factor on a transition is
determined by the distance of the transition from an initial state; that is, if θ : Σ+ → N\{0, 1}
coincides with a function Λ : N \ {0} → N \ {0, 1}, in the sense that for every finite word u,
we have θ(u) = Λ

(
|u|
)
.

For example, the NMDA A of Figure 8 is time-oriented, as all transitions taken at odd
steps, in any run, have discount factor 2, and those taken at even steps have discount factor
3. The transducer T in Figure 8 represents its choice function.

Time-oriented NMDAs extend the expressiveness of NDAs, as proved for the time-oriented
NMDA depicted in Figure 8.

I Theorem 15. There exists a time-oriented NMDA that no integral NDA is equivalent to.

5 Tidy NMDAs – Decision Problems

We show that all of the decision problems of tidy NMDAs are in the same complexity classes
as the corresponding problems for discounted-sum automata with a single integral discount
factor. That is, the nonemptiness problem is in PTIME, and the exact-value, universality,
equivalence, and containment problems are in PSPACE (see Table 2). In the equivalence
and containment problems, we consider θ-NMDAs with the same choice function θ. In
addition, the problem of checking whether a given NMDA is tidy, as well as whether it is a

U. Boker and G. Hefetz 12:13

Table 2 The complexities of the decision problems of tidy NMDAs.

Finite words Infinite words

Non-emptiness (<) PTIME (Theorem 19) PTIME (Theorem 18)
Non-emptiness (≤) PTIME (Theorem 20)
Containment (>) PSPACE-complete (Theorem 24)

PSPACE (Theorem 26)
Containment (≥) PSPACE-complete (Theorem 25)

Equivalence PSPACE-complete (Corollary 27)
Universality (<) PSPACE-complete (Theorem 28)

PSPACE (Theorem 28)
Universality (≤) PSPACE-complete (Theorem 28)

Exact-value PSPACE-complete (Theorem 29) PSPACE (Theorem 29)

θ-NMDA, for a given choice function θ, is decidable in PTIME. The complexities are w.r.t.
the automata size (as defined in Section 2), and when considering a threshold ν, w.r.t. its
binary representation.

Tidiness
Given an NMDA A, one can check in PTIME whether A is tidy. The algorithm follows by
solving a reachability problem in a Cartesian product of A with itself, to verify that for every
word, the last discount factors are identical in all runs.

I Theorem 16. Checking if a given NMDA A is tidy is decidable in time O
(
|A|2

)
.

Given also a transducer T , one can check in polynomial time whether A is a T -NMDA.

I Theorem 17. Checking if a given NMDA A is a T -NMDA, for a given transducer T , is
decidable in time O

(
|A| · |T |

)
.

Proof sketch. We construct a nondeterministic weighted automaton that resembles the
input NMDA and a deterministic weighted automaton that resembles the input transducer,
replacing the original discount factors with weights. We then construct the product of the
two automata, setting the transition weights to be the difference between the corresponding
weights in the two automata, and check whether the weights on all reachable transitions are
zero. J

Nonemptiness
We start with nonemptiness with respect to infinite words, for which there is a simple
reduction to one-player discounted-payoff games. Notice that it applies to arbitrary NMDAs,
not only to tidy ones.

I Theorem 18. The nonemptiness problem of NMDAs w.r.t. infinite words is in PTIME for
both strict and non-strict inequalities.

For nonemptiness with respect to finite words, we cannot directly use the aforementioned
game solution, as it relies on the convergence of the values in the limit. However, for
nonemptiness with respect to strict inequality, we can reduce the finite-words case to the
infinite-words case: If there exists an infinite word w such that A(w) is strictly smaller than
the threshold, the distance between them cannot be compensated in the infinity, implying
the existence of a finite prefix that also has a value smaller than the threshold; As for the
other direction, we add to every state a 0-weight self loop, causing a small-valued finite word
to also imply a small-valued infinite word.

CSL 2021

12:14 Discounted-Sum Automata with Multiple Discount Factors

I Theorem 19. The nonemptiness problem of NMDAs w.r.t. finite words and strict inequality
is in PTIME.

For nonemptiness with respect to finite words and non-strict inequality, we cannot use the
construction used in the proof of Theorem 19, since its final part is inadequate: It is possible
to have an infinite word with value that equals the threshold, while every finite prefix of
it has a value strictly bigger than the threshold. Yet, when considering integral NMDAs,
we can use a different approach for resolving the problem, applying linear programming to
calculate the minimal value of a finite run ending in every state.

I Theorem 20. The nonemptiness problem of integral NMDAs w.r.t. finite words and
non-strict inequality is in PTIME.

Exact-Value, Universality, Equivalence, and Containment
We continue with the PSPACE-complete problems, to which we first provide hardness proofs,
by reductions from the universality problem of NFAs, known to be PSPACE-complete [31].
Notice that the provided hardness results already stand for integral NDAs, not only to tidy
NMDAs.

PSPACE-hardness of the containment problem for NDAs with respect to infinite words
and non-strict inequalities is shown in [3]. We provide below more general hardness results,
considering the equivalence problem, first with respect to finite words and then with respect
to infinite words, as well as the exact-value, universality(≤) and universality(<) problems
with respect to finite words.

I Lemma 21. The equivalence and universality(≤) problems of integral NDAs w.r.t. finite
words are PSPACE-hard.

Proof sketch. Given an NFA A, we construct in polynomial time an NDA B such that A is
universal if and only if B gets a value of 0 on all finite words. B has the same structure as A,
and we assign weights on the transitions to guarantee that the value of B on every word u
is at most 1

2|u| . In addition, we have in B a new “good” state qacc, and for every original
transition to an accepting state q of A, we add in B a new “good” transition to qacc, such
that its weight allows B to have a value of 0 on a word that reaches q in A. Finally, we add
a “bad” transition out of qacc, such that its weight ensures a total positive value, in the case
that B continues the run out of qacc. J

I Lemma 22. The equivalence and universality(≤) problems of integral NDAs w.r.t. infinite
words are PSPACE-hard.

Proof sketch. The reduction from the universality problem of an NFA A is similar to the
one provided in the proof of Lemma 21, with intuitively the following adaptations of the
constructed NDA B to the case of infinite words: We add a new letter # to the alphabet,
low-weighted #-transitions from the accepting states, and high-weighted #-transitions from
the non-accepting states.

By this construction, the value of B on an infinite word u ·# ·w, where u does not contain
#, will be 0 if and only if A accepts u.

Notice that the value of B on an infinite word that does not contain # is also 0, as it is
limn→∞

1
2n . J

I Lemma 23. The universality(<) and exact-value problems of integral NDAs w.r.t. finite
words are PSPACE-hard.

U. Boker and G. Hefetz 12:15

We continue with the PSPACE upper bounds. The containment problem of NDAs
was proved in [3] to be in PSPACE, using comparators to reduce the problem to language
inclusion between Büchi automata. Our approach for the containment problem of NMDAs
is different, and it also improves the complexity provided in [3] for NDAs (having a single
discount factor), as we refer to binary representation of weights, while [3] assumes unary
representation.4

Our algorithm for solving the containment problem between θ-NMDAs A and B is a
nondeterministic polynomial space algorithm that determines the opposite, meaning whether
there exists a word w such that A(w)−B(w) < 0 for containment(≥) or A(w)−B(w) ≤ 0 for
containment(>), to conclude that the problems are in co-NPSPACE and hence in PSPACE.
We perform the determinization of B on-the-fly into a DMDA D, and simulate on the fly a
θ-NMDA for the difference between A and D. We then non-deterministically guess a run r
that witnesses a negative value of the difference automaton, while ensuring that the entire
process only uses space polynomial in the size of the input automata. For meeting this space
requirement, after each step of the run r, the algorithm maintains a local data consisting
of the current state of A, the current state of D and a “normalized difference” between the
values of the runs of A and D on the word generated so far. When the normalized difference
goes below 0, we have that the generated word w is a witness for A(w) < D(w), when it gets
to 0 we have a witness for A(w) = D(w), and when it exceeds a certain maximal recoverable
difference, which is polynomial in |A|+ |B|, no suffix can be added to w for getting a witness.

I Theorem 24. For every choice function θ, the containment problem of θ-NMDAs w.r.t.
finite words is PSPACE-complete for both strict and non-strict inequalities.

The algorithm for determining containment(≥) in the infinite-words settings is similar to
the one presented for finite words, with the difference that rather than witnessing a finite
word w, such that A(w)−B(w) < 0, we witness a finite prefix u (of an infinite word w), such
that the normalized difference between A(u) and B(u) (taking into account the accumulated
discount factor on u) is bigger than some fixed threshold.

I Theorem 25. For every choice function θ, the containment problem of θ-NMDAs w.r.t.
infinite words and non-strict inequality is PSPACE-complete.

To find a witness for strict non-containment in the infinite-words setting, we adapt the
proof of Theorem 25 by adding an accept condition for detecting convergence of the difference
between the two automata values to the threshold value, which is the existence of a cycle
with the same normalized difference.

I Theorem 26. For every choice function θ, the containment problem of θ-NMDAs w.r.t.
infinite words and strict inequality is in PSPACE.

A PSPACE algorithm for equivalence directly follows from the fact that A ≡ B if and
only if A ≥ B and B ≥ A.

I Corollary 27. The equivalence problem of tidy NMDAs is PSPACE-complete.

We continue with the universality problems which are special cases of the containment
problems.

4 Rational weights are assumed to have a common denominator, both by us and by [3], where in the
latter it is stated implicitly, by providing the complexity analysis with respect to transition weights that
are natural numbers.

CSL 2021

12:16 Discounted-Sum Automata with Multiple Discount Factors

I Theorem 28. The universality problems of tidy NMDAs are in PSPACE. The
universality(<) w.r.t. finite words, universality(≤) w.r.t. finite words, and universality(≤)
w.r.t. infinite words are PSPACE-complete.

I Theorem 29. The exact-value problem of tidy NMDAs is in PSPACE (and PSPACE-
complete w.r.t. finite words).

6 Conclusions

The measure functions most commonly used in the field of quantitative verification, whether
for describing system properties [9, 17, 30], automata valuation schemes [5, 6, 14, 3], game
winning conditions [2, 18, 39], or temporal specifications [1, 4, 16, 35], are the limit-average
(mean payoff) and the discounted-sum functions.

Limit-average automata cannot always be determinized [14] and checking their (non-strict)
universality is undecidable [18]. Therefore, the tendency is to only use deterministic such
automata, possibly with the addition of algebraic operations on them [10].

Discounted-sum automata with arbitrary rational discount factors also cannot always
be determinized [14] and are not closed under algebraic operations [6]. Yet, with integral
discount factors, they do enjoy all of these closure properties and their decision problems
are decidable [6]. They thus provide a very interesting automata class for quantitative
verification. Yet, they have a main drawback of only allowing a single discount factor.

We define a rich class of discounted-sum automata with multiple integral factors (tidy
NMDAs) that strictly extends the expressiveness of automata with a single factor, while
enjoying all of the good properties of the latter, including the same complexity of the required
decision problems. We thus believe that tidy NMDAs can provide a natural and useful
generalization of integral discounted-sum automata in all fields, and especially in quantitative
verification of reinforcement learning applications, as novel approaches in this field extend
the single discount factor that is used in the calculation of the expected return value to
multiple ones [28, 22, 32].

References
1 Shaull Almagor, Udi Boker, and Orna Kupferman. Discounting in LTL. In proceedings of

TACAS, volume 8413 of LNCS, pages 424–439, 2014. doi:10.1007/978-3-642-54862-8_37.
2 Daniel Andersson. An improved algorithm for discounted payoff games. In proceedings of

ESSLLI Student Session, pages 91–98, 2006.
3 Suguman Bansal, Swarat Chaudhuri, and Moshe Y. Vardi. Comparator automata in quanti-

tative verification. In proceedings of FoSSaCS, volume 10803 of LNCS, pages 420–437, 2018.
doi:10.1007/978-3-319-89366-2_23.

4 Udi Boker, Krishnendu Chatterjee, Thomas A. Henzinger, and Orna Kupferman. Temporal
specifications with accumulative values. ACM Trans. Comput. Log., 15(4):27:1–27:25, 2014.
doi:10.1145/2629686.

5 Udi Boker and Thomas A. Henzinger. Approximate determinization of quantitative automata.
In proceedings of FSTTCS, volume 18 of LIPIcs, pages 362–373, 2012. doi:10.4230/LIPIcs.
FSTTCS.2012.362.

6 Udi Boker and Thomas A. Henzinger. Exact and approximate determinization of discounted-
sum automata. Log. Methods Comput. Sci., 10(1), 2014. doi:10.2168/LMCS-10(1:10)2014.

7 Udi Boker, Thomas A. Henzinger, and Jan Otop. The target discounted-sum problem. In
proceedings of LICS, pages 750–761, 2015. doi:10.1109/LICS.2015.74.

https://doi.org/10.1007/978-3-642-54862-8_37
https://doi.org/10.1007/978-3-319-89366-2_23
https://doi.org/10.1145/2629686
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.362
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.362
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.1109/LICS.2015.74

U. Boker and G. Hefetz 12:17

8 Udi Boker, Orna Kupferman, and Michal Skrzypczak. How deterministic are good-for-
games automata? In proceedings of FSTTCS, volume 93 of LIPIcs, pages 18:1–18:14, 2017.
doi:10.4230/LIPIcs.FSTTCS.2017.18.

9 Krishnendu Chatterjee. Markov decision processes with multiple long-run average objectives.
In proceedings of FSTTCS, volume 4855 of LNCS, pages 473–484. Springer, 2007. doi:
10.1007/978-3-540-77050-3_39.

10 Krishnendu Chatterjee, Laurent Doyen, Herbert Edelsbrunner, Thomas A. Henzinger, and
Philippe Rannou. Mean-payoff automaton expressions. In proceedings of CONCUR, volume
6269 of LNCS, pages 269–283, 2010. doi:10.1007/978-3-642-15375-4_19.

11 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Alternating weighted
automata. In proceedings of FCT, volume 5699 of LNCS, pages 3–13, 2009. doi:10.1007/
978-3-642-03409-1_2.

12 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Probabilistic weighted
automata. In proceedings of CONCUR, volume 5710 of LNCS, pages 244–258, 2009. doi:
10.1007/978-3-642-04081-8_17.

13 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Expressiveness and
closure properties for quantitative languages. Log. Methods Comput. Sci., 6(3), 2010. URL:
http://arxiv.org/abs/1007.4018.

14 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.
ACM Trans. Comput. Log., 11(4):23:1–23:38, 2010. doi:10.1145/1805950.1805953.

15 Krishnendu Chatterjee, Vojtech Forejt, and Dominik Wojtczak. Multi-objective discounted
reward verification in graphs and mdps. In proceedings of LPAR, volume 8312 of LNCS, pages
228–242, 2013. doi:10.1007/978-3-642-45221-5_17.

16 Luca de Alfaro, Marco Faella, Thomas A. Henzinger, Rupak Majumdar, and Mariëlle Stoelinga.
Model checking discounted temporal properties. Theor. Comput. Sci., 345(1):139–170, 2005.
doi:10.1016/j.tcs.2005.07.033.

17 Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. Discounting the future
in systems theory. In proceedings of ICALP, volume 2719, pages 1022–1037, 2003. doi:
10.1007/3-540-45061-0_79.

18 Aldric Degorre, Laurent Doyen, Raffaella Gentilini, Jean-François Raskin, and Szymon
Torunczyk. Energy and mean-payoff games with imperfect information. In proceedings
of CSL, volume 6247 of LNCS, pages 260–274, 2010. doi:10.1007/978-3-642-15205-4_22.

19 Manfred Droste and Dietrich Kuske. Skew and infinitary formal power series. Theor. Comput.
Sci., 366(3):199–227, 2006. doi:10.1016/j.tcs.2006.08.024.

20 Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin. Finite-valued weighted
automata. In proceedings of FSTTCS, volume 29 of LIPIcs, pages 133–145, 2014. doi:
10.4230/LIPIcs.FSTTCS.2014.133.

21 Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin. Quantitative languages defined
by functional automata. Log. Methods Comput. Sci., 11(3), 2015. doi:10.2168/LMCS-11(3:
14)2015.

22 Vincent François-Lavet, Raphaël Fonteneau, and Damien Ernst. How to discount deep
reinforcement learning: Towards new dynamic strategies. CoRR, 2015. URL: http://arxiv.
org/abs/1512.02011.

23 Hugo Gimbert and Wieslaw Zielonka. Limits of multi-discounted markov decision processes.
In proceedings of LICS, pages 89–98, 2007. doi:10.1109/LICS.2007.28.

24 Guy Hefetz. Discounted-sum automata with multiple discount factors. Master’s thesis, IDC,
Herzliya, Israel, 2020. URL: https://www.idc.ac.il/en/schools/cs/research/documents/
thesis-guy-hefetz.pdf.

25 Thomas A. Henzinger and Nir Piterman. Solving games without determinization. In proceedings
of CSL, volume 4207 of LNCS, pages 395–410, 2006. doi:10.1007/11874683_26.

26 Galina Jirásková. State complexity of some operations on binary regular languages. Theor.
Comput. Sci., 330(2):287–298, 2005. doi:10.1016/j.tcs.2004.04.011.

CSL 2021

https://doi.org/10.4230/LIPIcs.FSTTCS.2017.18
https://doi.org/10.1007/978-3-540-77050-3_39
https://doi.org/10.1007/978-3-540-77050-3_39
https://doi.org/10.1007/978-3-642-15375-4_19
https://doi.org/10.1007/978-3-642-03409-1_2
https://doi.org/10.1007/978-3-642-03409-1_2
https://doi.org/10.1007/978-3-642-04081-8_17
https://doi.org/10.1007/978-3-642-04081-8_17
http://arxiv.org/abs/1007.4018
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1007/978-3-642-45221-5_17
https://doi.org/10.1016/j.tcs.2005.07.033
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/978-3-642-15205-4_22
https://doi.org/10.1016/j.tcs.2006.08.024
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.133
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.133
https://doi.org/10.2168/LMCS-11(3:14)2015
https://doi.org/10.2168/LMCS-11(3:14)2015
http://arxiv.org/abs/1512.02011
http://arxiv.org/abs/1512.02011
https://doi.org/10.1109/LICS.2007.28
https://www.idc.ac.il/en/schools/cs/research/documents/thesis-guy-hefetz.pdf
https://www.idc.ac.il/en/schools/cs/research/documents/thesis-guy-hefetz.pdf
https://doi.org/10.1007/11874683_26
https://doi.org/10.1016/j.tcs.2004.04.011

12:18 Discounted-Sum Automata with Multiple Discount Factors

27 Yafim Kazak, Clark W. Barrett, Guy Katz, and Michael Schapira. Verifying deep-rl-driven
systems. In proceedings of NetAI@SIGCOMM, pages 83–89, 2019. doi:10.1145/3341216.
3342218.

28 Tor Lattimore and Marcus Hutter. Time consistent discounting. In proceedings of ALT, volume
6925 of LNCS, pages 383–397, 2011. doi:10.1007/978-3-642-24412-4_30.

29 Fernando Luque-Vásquez and J. Adolfo Minjárez-Sosa. Iteration Algorithms in Markov Decision
Processes with State-Action-Dependent Discount Factors and Unbounded Costs, chapter 4,
pages 55–69. Operations Research: the Art of Making Good Decisions. IntechOpen, 2017.
doi:10.5772/65044.

30 Omid Madani, Mikkel Thorup, and Uri Zwick. Discounted deterministic markov decision
processes and discounted all-pairs shortest paths. ACM Trans. Algorithms, 6(2):33:1–33:25,
2010. doi:10.1145/1721837.1721849.

31 Albert R. Meyer and Larry J. Stockmeyer. The equivalence problem for regular expressions
with squaring requires exponential space. In proceedings of 13th IEEE Symp. on Switching
and Automata Theory, pages 125–129, 1972. doi:10.1109/SWAT.1972.29.

32 Chris Reinke, Eiji Uchibe, and Kenji Doya. Average reward optimization with multiple
discounting reinforcement learners. In proceedings of ICONIP, volume 10634 of LNCS, pages
789–800, 2017. doi:10.1007/978-3-319-70087-8_81.

33 William J. Sakoda and Michael Sipser. Nondeterminism and the size of two way finite automata.
In proceedings of STOC, pages 275–286, 1978. doi:10.1145/800133.804357.

34 Richard S. Sutton and Andrew G.Barto. Introduction to Reinforcement Learning. MIT Press,
1998. URL: http://dl.acm.org/doi/book/10.5555/551283.

35 Takashi Tomita, Shin Hiura, Shigeki Hagihara, and Naoki Yonezaki. A temporal logic with
mean-payoff constraints. In proceedings of ICFEM, volume 7635 of LNCS, pages 249–265.
Springer, 2012. doi:10.1007/978-3-642-34281-3_19.

36 Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In
proceedings of FOCS, pages 327–338, 1985. doi:10.1109/SFCS.1985.12.

37 Yufei Wang, Qiwei Ye, and Tie-Yan Liu. Beyond exponentially discounted sum: Automatic
learning of return function. CoRR, 2019. URL: http://arxiv.org/abs/1905.11591.

38 Xiao Wu and Xianping Guo. Convergence of Markov decision processes with constraints
and state-action dependent discount factors. Sci. China Math., 63:167–182, 2020. doi:
10.1007/s11425-017-9292-1.

39 Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs. Theor.
Comput. Sci., 158:343–359, 1996. doi:10.1016/0304-3975(95)00188-3.

A Selected Proofs

This appendix presents some of the omitted proofs. All the full proofs can be found in [24].

Proof of Lemma 12. Given an NFA A = 〈Σ, Q, ι, δ, F 〉 and a discount factor λ ∈ N \ {0, 1},
we construct a λ-NDA Ã = 〈Σ, Q′, {p0}, δ′, γ′〉 for which there exists a bijection f between
the runs of A and the runs of Ã such that for every run r of Ã on a word u,

r is an accepting run of A iff f(r) is a run of Ã on u with the value Ã
(
f(r)

)
= − 1

λ|r| .
r is a non-accepting run of A iff f(r) is a run of Ã on u with the value Ã

(
f(r)

)
= 1

λ|r| .
We first transform A to an equivalent NFA A′ = 〈Σ, Q′, {p0}, δ′, F 〉 that is complete and
in which there are no transitions entering its initial state, and later assign weights to its
transitions to create Ã.

To construct A′ we add two states to Q, having Q′ = Q ∪ {p0, qhole}, duplicate all the
transitions from ι to start from p0, and add a transition from every state to qhole, namely
δ′ = δ ∪

{
(p0, σ, q)

∣∣ ∃p ∈ ι, (p, σ, q) ∈ δ
}
∪
{

(q, σ, qhole)
∣∣ q ∈ Q′, σ ∈ Σ

}
. Observe that

|Q′| = |Q|+ 2, and L(A) = L(A′). Next, we assign the following transition weights:

https://doi.org/10.1145/3341216.3342218
https://doi.org/10.1145/3341216.3342218
https://doi.org/10.1007/978-3-642-24412-4_30
https://doi.org/10.5772/65044
https://doi.org/10.1145/1721837.1721849
https://doi.org/10.1109/SWAT.1972.29
https://doi.org/10.1007/978-3-319-70087-8_81
https://doi.org/10.1145/800133.804357
http://dl.acm.org/doi/book/10.5555/551283
https://doi.org/10.1007/978-3-642-34281-3_19
https://doi.org/10.1109/SFCS.1985.12
http://arxiv.org/abs/1905.11591
https://doi.org/10.1007/s11425-017-9292-1
https://doi.org/10.1007/s11425-017-9292-1
https://doi.org/10.1016/0304-3975(95)00188-3

U. Boker and G. Hefetz 12:19

For every t = (p0, σ, q) ∈ δ′, γ′(t) = − 1
λ if q ∈ F and γ′(t) = 1

λ if q /∈ F .
For every t = (p, σ, q) ∈ δ′ such that p 6= p0, γ′(t) = λ−1

λ if p, q ∈ F ; γ′(t) = λ+1
λ if p ∈ F

and q /∈ F ; γ′(t) = −λ+1
λ if p /∈ F and q ∈ F ; and γ′(t) = −λ−1

λ if p, q /∈ F .
By induction on the length of the runs on an input word u, one can show that for every
u ∈ Σ+, Ã(u) = − 1

λ|u| if u ∈ L(A) and Ã(u) = 1
λ|u| if u /∈ L(A). J

Proof of Theorem 13.
Consider n ∈ N and λ ∈ N \ {0, 1}. By [33, 26] there exists an NFA A with n states over

a fixed alphabet of two letters, such that any NFA for the complement language L(A) has at
least 2n states.
Finite words.

Let Ã be a λ-NDA that is correlated to A as per Lemma 12, and assume towards
contradiction that there exists a λ-NDA Ḃ = 〈Σ, QḂ, ιḂ, δḂ, γḂ〉 with less than 2n

4 states such
that Ḃ ≡ −Ã.

We provide below a conversion opposite to Lemma 12, leading to an NFA for L(A)
with less than 2n states, and therefore to a contradiction. The conversion of Ḃ back to
an NFA builds on the specific values that Ḃ is known to assign to words, as opposed to
the construction of Lemma 12, which works uniformly for every NFA, and is much more
challenging, since Ḃ might have arbitrary transition weights. This conversion scheme can
only work for λ-NDAs whose values on the input words converge to some threshold as the
words length grow to infinity.

For simplification, we do not consider the empty word, since one can easily check if the
input NFA accepts it, and set the complemented NFA to reject it accordingly.

By Lemma 12 we have that for every word u ∈ Σ+, Ã(u) = − 1
λ|u| if u ∈ L(A) and

Ã(u) = 1
λ|u| if u /∈ L(A). Hence, Ḃ(u) = − 1

λ|u| if u /∈ L(A) and Ḃ(u) = 1
λ|u| if u ∈ L(A).

We will show that there exists an NFA B, with less than 2n states, such that u ∈ L(B) iff
Ḃ(u) = − 1

λ|u| , implying that L(B) = L(A).
We first construct a λ-NDA B′ = 〈Σ, QB′ , ι, δ, γ〉 that is equivalent to Ḃ, but has no

transitions entering its initial states. This construction eliminates the possibility that one run
is a suffix of another, allowing to simplify some of our arguments. Formally, QB′ = QḂ ∪ ι,
ι = ιḂ × {1}, δ = δḂ ∪

{(
(p, 1), σ, q

) ∣∣ (p, σ, q) ∈ δḂ
}
, and weights γ(t) = γḂ(t) if t ∈ δḂ and

γ
(
(p, 1), σ, q

)
= γḂ(p, σ, q) otherwise.

Let R− be the set of all the runs of B′ that entail a minimal value which is less than 0, i.e.,
R− = {r

∣∣ r is a minimal run of B′ on some word and B′(r) < 0}. Let δ̂ ⊆ δ be the set of all
the transitions that take part in some run in R−, meaning δ̂ = {r(i)

∣∣r ∈ R− and 0 ≤ i < |r|},
and ˆ̂δ ⊆ δ the set of all transitions that are the last transition of those runs, meaning
ˆ̂δ =

{
r
(
|r| − 1

) ∣∣ r ∈ R−}.
We construct next the NFA B = 〈Σ, QB, ι, δB, FB〉. Intuitively, B has the states of B′,

but only the transitions from δ̂. Its accepting states are clones of the target states of the
transitions in ˆ̂δ, but without outgoing transitions. We will later show that the only runs of B
that reach these clones are those that have an equivalent run in R−. Formally, QB = Q′B∪FB,
FB =

{
(q, 1)

∣∣ ∃p, q ∈ Q′B and (p, σ, q) ∈ ˆ̂δ
}
, and δB = δ̂ ∪

{(
p, σ, (q, 1)

) ∣∣ (p, σ, q) ∈ ˆ̂δ
}
.

Observe that the number of states in B is at most 3 times the number of states in Ḃ, and
thus less than 2n. We will now prove that for every word u, B accepts u iff B′(u) = − 1

λ|u| .
The first direction is easy: if B′(u) = − 1

λ|u| , we get that all the transitions of a minimal
run of B′ on u are in δ̂, and its final transition is in ˆ̂δ, hence there exists a run of B on u
ending at an accepting state.

CSL 2021

12:20 Discounted-Sum Automata with Multiple Discount Factors

r′1(0) r′1(k − 1)

r′u(i) =
r′1(k)

r′u(|u| − 1) =
r′1(k + x− 1)

r′2(0)
r′u(i− 1) =
r′2(j − 1)

r′2(j) r′2(j + y − 1)

r′u(0)

W1

X

Y

W2

Figure 9 The runs and notations used in the proof of Theorem 13.

For the other direction, assume towards contradiction that there exists a word u, such
that B′(u) = 1

λ|u| , while there is an accepting run ru of B on u.
Intuitively, we define the “normalized value” of a run r′ of B′ as the value of B′ multiplied

by the accumulated discount factor, i.e., B′(r′) ·λ|r′|. Whenever the normalized value reaches
−1, we have an “accepting” run. We will show that ru and the structure of B imply the
existence of two “accepting” runs r′1, r′2 ∈ R− that intersect in some state q, such that taking
the prefix of r′1 up to q results in a normalized value λkW1 that is strictly smaller than the
normalized value λjW2 of the prefix of r′2 up to q. Since r′2 is an “accepting” run, the suffix of
r′2 reduces λjW2 to −1 and therefore it will reduce λkW1 to a value strictly smaller than −1,
and the total value of the run to a value strictly smaller than − 1

λn , which is not a possible
value of B′.

Formally, let ru(|u|−1) =
(
p′, u(|u|−1), (q′, 1)

)
be the final transition of ru. We replace it

with the transition t′ =
(
p′, u(|u|−1), q′

)
. The resulting run r′u = ru[0..|u|−2] ·t is a run of B′

on u, and therefore B′(r′u) ≥ 1
λ|u| . Since (q′, 1) is an accepting state, we get by the construction

of B that t′ is in ˆ̂δ. Consider a run r′1 ∈ R− that shares the maximal suffix with r′u, meaning
that if there exist r′ ∈ R− and x > 0 such that r′[|r′| − x..|r′| − 1] = r′u[|u| − x..|u| − 1] then
also r′1[|r′1| − x..|r′1| − 1] = r′u[|u| − x..|u| − 1].

Recall that all the initial states of B′ have no transitions entering them and B′(r′1) 6= B′(r′u),
hence r′1 is not a suffix of r′u and r′u is not a suffix of r′1. Let i be the maximal index of r′u
such that r′u[i..|u| − 1] is a suffix of r′1, but r′u[i− 1..|u| − 1] is not a suffix of r′1. Let k be the
index in r′1 such that r′1[k..|r′1| − 1] = ru[i..|u| − 1], and let x = |r′1| − k (see Figure 9).

Since r′u(i− 1) ∈ δ̂, there exists r′2 ∈ R− and index j such that r′2(j − 1) = r′u(i− 1). Let
y = |r′2| − j (see Figure 9). Consider the run r′3 = r′2[0..j − 1] · r′u[i..|u| − 1], starting with
the prefix of r′2 up to the shared transition with r′u, and then continuing with the suffix of
r′u. Observe that B′(r′3) > − 1

λ
|r′

3| as otherwise r′3 ∈ R− and has a larger suffix with r′u than
r′1 has.

Let W1 = B′
(
r′1[0..k − 1]

)
, W2 = B′

(
r′2[0..j − 1]

)
, X = B′

(
r′1[k..k + x− 1]

)
(which is also

B′
(
r′u[i..|u| − 1]

)
), and Y = B′

(
r′2[j..j + y − 1]

)
(see Figure 9). The following must hold:

1. W1 + X
λk = B′(r′1) = − 1

λk+x . Hence, λkW1 = − 1
λx −X .

2. W2 + X
λj = B′(r′3) > − 1

λj+x . Hence, λjW2 > − 1
λx − X, and after combining with the

previous equation, λjW2 > λkW1.
3. W2 + Y

λj = B′(r′2) = − 1
λj+y . Hence, λjW2 + Y = − 1

λy

Consider now the run r′4 = r′1[0..k − 1] · r′2[j..j + y − 1], and combine Items 2 and 3 above to
get that λkW1 + Y < − 1

λy . But this leads to B′(r′4) = W1 + Y
λk < − 1

λk+y = − 1
λ

|r′
4| , and this

means that there exists a word w of length k + y such that B′(w) < − 1
λk+y , contradicting

the assumption that B′ ≡ Ḃ ≡ −Ã.

U. Boker and G. Hefetz 12:21

Infinite words.
For showing the lower bound for the state blow-up involved in multiplying an NDA by

(−1) w.r.t. infinite words, we add a new letter # to the alphabet, and correlate every finite
word u to an infinite word u ·#ω. The proof is similar, applying the following modifications:

The scheme presented in the proof of Lemma 12 now constructs a λ-NDA Ã over the
alphabet Σ ∪ {#}, adding a 0-weighted transition from every state of Ã to qhole. The
function f that correlates between the runs of A and Ã is still a bijection, but with a
different co-domain, correlating every run r of A on a finite word u ∈ Σ+ to the run f(r)
of Ã on the word u ·#ω.
With this scheme, we get that Ḃ(u ·#ω) = − 1

λ|u| if u /∈ L(A) and Ḃ(u ·#ω) = 1
λ|u| if

u ∈ L(A), hence replacing all referencing to B′(u) with referencing to B′(u ·#ω).
R− is defined with respect to words of the form u ·#ω, namely R− = {r

∣∣ u ∈ Σ+, r is a
minimal run of B′ on u ·#ω and B′(r) < 0}.
R−p is a new set of all the maximal (finite) prefixes of the runs of R− without any transitions
for the # letter, meaning R−p = {r[0..i − 1]

∣∣ r ∈ R−, r(i − 1) = (p, σ, q) for some σ ∈
Σ, and r(i) = (q,#, s)}. δ̂ and ˆ̂δ are defined with respect to R−p instead of R−.
Defining r′u, we consider a run r′t ∈ R− that is a witness for t′ ∈ ˆ̂δ, meaning there
exists i ∈ N for which r′t(i) = t′, and r′t(i + 1) is a transition for the # letter. Then
r′u = ru[0..|u| − 2] · t · r′[i+ 1..∞] = ru[0..|u| − 2] · r′[i..∞], is a run of B′ on u ·#ω.
For choosing r′1 that “shares the maximal suffix” with r′u, we take r′1 ∈ R− such that for
every r′ ∈ R− and x > 0, if r′u[i..∞] is a suffix of r′ then it is also a suffix of r′1.
For the different runs and their parts, we set X = B′

(
r′1[k..∞]

)
, Y = B′

(
r′2[j..∞]

)
,

r′3 = r′2[0..j − 1] · r′u[i..∞] and r′4 = r′1[0..k − 1] · r′2[j..∞]. J

Proof of Theorem 24. PSPACE hardness directly follows from Lemmas 21 and 23.
We provide a PSPACE upper bound. Consider a choice function θ, and θ-NMDAs

A = 〈Σ, QA, ι, δA, γA, ρA〉 and B. We have that

∀w.A(w) > B(w)⇔6 ∃w.A(w) ≤ B(w)⇔6 ∃w.A(w)− B(w) ≤ 0

and

∀w.A(w) ≥ B(w)⇔6 ∃w.A(w) < B(w)⇔6 ∃w.A(w)− B(w) < 0

We present a nondeterministic algorithm that determines the converse of containment,
namely whether there exists a word w such that A(w)− B(w) ≤ 0 for continament(>) or
A(w)− B(w) < 0 for continament(≥), while using polynomial space w.r.t. |A| and |B|, to
conclude that the problems are in co-NPSPACE and hence in PSPACE.

Let D = 〈Σ, QD, {p0}, δD, γD, ρD〉 be a θ-DMDA equivalent to B, as per Theorem 8.
Observe that the size of D can be exponential in the size of B, but we do not save it all,
but rather simulate it on the fly, and thus only save a single state of D at a time. We will
later show that indeed the intermediate data we use in each iteration of the algorithm only
requires a space polynomial in |A| and |B|.

We consider separately non-strict containment (≥) and strict containment (>).
Non-strict containment(≥).

For providing a word w ∈ Σ+, such that A(w)− B(w) < 0, we nondeterministically
generate on the fly a word w, a run rw of A on w, and the single run of D on w, such that
A(rw)−B(w) = A(rw)−D(w) < 0. Observe that A(w) ≤ A(rw), hence the above condition
is equivalent to A(w)− B(w) < 0.

Let MA, MB, and MD be the maximal absolute weights in A, B, and D, respectively.

CSL 2021

12:22 Discounted-Sum Automata with Multiple Discount Factors

We start by guessing an initial state qin of A and setting a local data storage of 〈qin, p0, 0〉.
The local data will maintain the current state of A and D respectively, and a “normalized
difference” between the value of the run in A generated so far and the value of D on the
word generated so far, as formalized below. The algorithm iteratively guesses, given a local
data 〈q, p, d〉, a letter σ ∈ Σ and a transition t = (q, σ, q′) ∈ δA(q, σ), and calculates the
normalized difference d′ = ρA(t)

(
d+ γA(t)− γD(p, σ)

)
between the values A(rw) and B(w),

w.r.r. the word w and the run rw generated so far. If d′ is bigger than the maximal recoverable
difference 2S, where S = MA + 3MB, we abort, if d′ < 0, we have that the generated word w
indeed witnesses that A(w) < D(w) (the accept condition holds), and otherwise we continue
and update the local data to 〈q′, δ(p, σ), d′〉. Observe that by the construction in the proof
of Theorem 8, for every weight W in D we have that |W | ≤ 2T +MB ≤ 3MB, where T is
the maximal difference between the weights in B. Hence S > MA +MD is polynomial w.r.t.
|A| and |B|, and can be calculated in polynomial space w.r.t. |A| and |B|.

We show by induction on the length of the word w that whenever a word w and a run
rw are generated, the value d in the corresponding local data 〈q, p, d〉 indeed stands for the
normalized difference between A(rw) and D(w), namely

d = ρA(rw)
(
A(rw)−D(w)

)
(2)

For the base case we have a single-letter word w = σ, and a single-transition run rw = t.
Hence, d′ = ρA(t)

(
d+ γA(t)− γD(p, σ)

)
= ρA(rw)

(
0 +A(rw)−D(w)

)
= ρA(rw)

(
A(rw)−

D(w)
)
.

For the induction step, consider an iteration whose initial local data is 〈q, p, d〉, for a
generated word w and run rw, that guessed the next letter σ and transition t, and calculated
the next local data 〈q′, p′, d′〉. Then we have d′ = ρA(t)

(
d + γA(t) − γD(p, σ)

)
. By the

induction assumption, we get:

d′ = ρA(t)
(
ρA(rw)

(
A(rw)−D(w)

)
+ γA(t)− γD(p, σ)

)
= ρA(rw)ρA(t)

(
A(rw) + γA(t)

ρA(rw) −D(w)− γD(p, σ)
ρA(rw)

)
= ρA(rw · t)

(
A(rw · t)−

(
D(w) + γD(p, σ)

ρA(rw)

))
,

and since the discount-factor functions of A and D both agree with θ, we have

d′ = ρA(rw · t)
(
A(rw · t)−

(
D(w) + γD(p, σ)

ρD(w)

))
= ρA(rw · t)

(
A(rw · t)−D(w · σ)

)
,

which provides the required result of the induction claim.
Next, we show that the accept condition holds iff there exist a finite word w and run rw

of A on w such that A(rw)−D(w) < 0. Since for every finite word w we have ρA(w) > 0,
we conclude from Equation (2) that if d′ < 0 was reached for a generated word w and a run
rw, we have that A(rw)−D(w) < 0. For the other direction, assume toward contradiction
that there exist finite word w and run rw of A on w such that A(rw) − D(w) < 0, but
the algorithm aborts after generating some prefixes w[0..i] and rw[0..i]. Meaning that
ρA(rw[0..i])

(
A(rw[0..i])−D(w[0..i])

)
> 2MA + 2MD. Let W1 = A(rw[i+ 1..|rw| − 1]) and

W2 = DδD(w[0..i])(w[i+ 1..|rw| − 1]). Observe that

0 > A(rw)−D(w) > ρA
(
rw[0..i]

)(
A(rw)−D(w)

)
= ρA

(
rw[0..i]

)
A
(
rw[0..i]

)
+W1 −

(
ρA(rw[0..i])D(w[0..i]) +W2

)
> 2MA + 2MD +W1 −W2

U. Boker and G. Hefetz 12:23

But since all the discount factors applied by θ are greater or equal to 2, we have that
|W1| ≤ 2MA and |W2| ≤ 2MB, leading to a contradiction.

To see that the algorithm indeed only uses space polynomial in |A| and |B|, observe that
the first element of the data storage is a state of A, only requiring a space logarithmic in |A|,
the second element is a state of D, requiring by Theorem 8 a space polynomial in B, and the
third element is a non-negative rational number bounded by 2S, whose denominator is the
multiplication of the denominators of the weights in A and D, and as shown in the proof of
Theorem 8, also of the multiplication of the denominators of the weights in A and B, thus
requires a space polynomial in |A| and |B|. Finally, in order to compute this third element,
we calculated a weight of a transition in D, which only requires, by the proof of Theorem 8,
a space polynomial in |B|.
Strict Containment(>).

The algorithm is identical to the one used for the containment(≥) problem with changing
the accept condition d′ < 0 to d′ ≤ 0. This condition is met iff there exists a finite word w
such that A(w)− B(w) ≤ 0. The proof is identical while modifying “< 0” to “≤ 0” in all of
the equations. J

CSL 2021

Reachability in Distributed Memory Automata
Benedikt Bollig
CNRS, LSV, ENS Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
bollig@lsv.fr

Fedor Ryabinin
IMDEA Software Institue, Madrid, Spain
fedor.ryabinin@imdea.org

Arnaud Sangnier
IRIF, Université de Paris, CNRS, France
sangnier@irif.fr

Abstract
We introduce Distributed Memory Automata, a model of register automata suitable to capture
some features of distributed algorithms designed for shared-memory systems. In this model, each
participant owns a local register and a shared register and has the ability to change its local value,
to write it in the global memory and to test atomically the number of occurrences of its value in
the shared memory, up to some threshold. We show that the control-state reachability problem for
Distributed Memory Automata is Pspace-complete for a fixed number of participants and is in
Pspace when the number of participants is not fixed a priori.

2012 ACM Subject Classification Theory of computation → Concurrency

Keywords and phrases Distributed algorithms, Atomic snapshot objects, Register automata, Reach-
ability

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.13

Related Version A full version of the paper is available at https://hal.archives-ouvertes.fr/
hal-02983089.

Funding Partly supported by ANR FREDDA (ANR-17-CE40-0013).

1 Introduction

Distributed algorithms are nowadays building blocks of modern systems in almost all
computer-aided areas. One can find them in ad-hoc networks, telecommunication pro-
tocols, cache-coherence protocols, swarm robotics, or biological models. Such systems often
consist of small components that solve subtasks such as mutual exclusion, leader election, or
spanning trees [9, 12].

One way to classify distributed algorithms is according to how processes communicate
with each other. Among the most popular classes are message-passing algorithms or shared-
memory systems. In the latter case, processes write to a global memory that can be read
by other processes. An important instance of a global memory are atomic snapshot objects,
where every process has a dedicated global memory cell it can write to and, as the name
suggests, can “snapshot” the current state of all global memory cells. Snapshot objects are
exploited in renaming algorithms whose aim is to assign to every process a unique id from
a small1 namespace [6]. In a snapshot algorithm, every process may choose a value that
is currently not in the global memory, and write it in its local memory. These two steps
are non-atomic so that, in principle, other processes may simultaneously choose the same

1 but unbounded, as it may depend on the number of processes

© Benedikt Bollig, Fedor Ryabinin, and Arnaud Sangnier;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 13; pp. 13:1–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bollig@lsv.fr
mailto:fedor.ryabinin@imdea.org
mailto:sangnier@irif.fr
https://doi.org/10.4230/LIPIcs.CSL.2021.13
https://hal.archives-ouvertes.fr/hal-02983089
https://hal.archives-ouvertes.fr/hal-02983089
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Reachability in Distributed Memory Automata

value. A process may then examine the snapshot (for example, check whether it contains its
local value) and decide how to proceed (for example, overwrite its global memory cell by the
contents of its local memory cell).

In view of their widespread use, distributed algorithms are often subject to strong
correctness requirements. However, they are inherently difficult to verify. One reason is
that they are usually designed for an unbounded number of participants manipulating data
from an unbounded domain. That is, we have to deal with two sources of infinity during
their analysis. In this paper, we take a further step towards the modeling and verification of
algorithms involving atomic snapshot objects.

The Model. We introduce distributed memory automata (DMAs), which feature some of
the above-mentioned communication primitives of snapshot objects. Our model is based
on register automata, which have been used as a general formal model of systems that
involve (unbounded or infinite) data. Register automata go back to the work of Kaminski
and Francez [10] and have recently sparked new interest leading to extensions with various
applications [2,4,7,13]. In a network of a DMA, every process is equipped with two registers,
one representing its local memory cell, and one representing its global memory cell that
every other process can read. Just like register automata, we allow registers to carry data
values, i.e., values from an infinite domain (such as process identifiers), albeit comparison
is only possible wrt. equality. Both, write and read operations, are restricted though. A
process can perform three types of actions, which are all inspired by snapshot algorithms.
It may (i) write a new value, currently not present in any global register, into its local
register, (ii) copy the value from its local into its global register, and (iii) test how often
its local value already occurs in the overall global memory. Note that (i) and (iii) indeed
correspond to a scan operation followed by a test in atomic-snapshot algorithms. Variants
of register automata have already been used to model distributed algorithms, but in a
round-based setting with peer-to-peer communication [1, 5], whereas DMAs can be classified
as asynchronous shared-memory systems.

Parameterized Verification. The vast majority of register-automata models impose a bound
on the number of registers. In the execution of a DMA, on the other hand, the number of
registers is not fixed in advance: it is parameterized. Indeed, distributed algorithms are often
characterized by the fact that they run on systems with any number of, a priori identical,
processes. Since, in many applications, the number of components varies or is unknown,
these algorithms must be working on an architecture of any size. Such systems are called
parameterized, where the parameter is the number of processes or components. Just like
register automata, parameterized verification has had a long history and continues to be an
active research area. We refer to [3, 8] for overviews.

In this paper, we consider a simple reachability question for DMAs, which amounts to
safety verification (is a “bad” control state reachable?). In general, there are (at least) two
ways to analyze parameterized systems. In the “fixed-process case”, we know in advance how
many processes are involved. This problem often reduces to solving reachability questions in
standard models. The parameterized reachability problem, on the other hand, asks whether a
given control state is reachable in some execution, involving an arbitrary number of processes.
In general, this requires different techniques. Some systems, however, enjoy cut-off and
monotonicity properties. In that case, the number of processes that allow for reaching a
given state can be found by solving finitely many fixed-process instances [3].

B. Bollig, F. Ryabinin, and A. Sangnier 13:3

Results for Distributed Memory Automata. In the fixed-process case, a standard argument
allows us to restrict the problem to a bounded number of data values and to show membership
in Pspace. We also provide a matching lower bound. The Pspace-complete intersection
emptiness problem for a collection of finite-state automata is an evident starting point [11].
However, the reduction turns out to be subtle due to the fact that all processes in a DMA
look the same. In particular, we have to use guards in a nested fashion to “separate” these
processes so that each of them can simulate a different finite automaton.

In the case of parameterized reachability, we show that control-state reachability is in
Pspace, too, leaving tightness of this upper bound as an open problem. The proof proceeds
in two steps. We first show Pspace membership of a “subproblem”, which we name train
reachability. As a model of shared ressources with a parameterized number of processes,
it is of independent interest. This algorithm is then called repeatedly within a saturation
procedure that allows us to gradually compute the set of all reachable control states.

Outline. The paper is organized as follows. In Section 2, we define our model of DMAs.
In Section 3, we consider the case of a fixed number of processes, for which control-state
reachability is Pspace-complete. We then move on to the case of a parameterized number
of processes. The proof spans over two sections: In Section 4, we introduce and solve
parameterized train reachability. This is exploited, in Section 5, to show decidability, and
Pspace membership, for parameterized reachability in DMAs. Missing proofs can be
found in the long version of the paper, available at https://hal.archives-ouvertes.fr/
hal-02983089.

2 Reachability in Distributed Memory Automata

We start with a few preliminary definitions. For n ∈ N, we let [0, n] := {0, . . . , n} and
[1, n] := {1, . . . , n}. For a set A, a natural number n ≥ 1, a tuple a ∈ An, and i ∈ [1, n], we
let a[i] refer to the i-th component of a. For d ∈ A, we let |a|d = |{i ∈ [1, n] | a[i] = d}|
denote the number of occurrences of d in a. Accordingly, we write d ∈ a if |a|d ≥ 1, and
d 6∈ a if |a|d = 0.

Suppose we have a system with n ≥ 1 processes. Processes are referred to by their index
p ∈ [1, n]. In the global memory, every process has a dedicated memory cell, holding a
natural number (which may be a process identifier, a sequence number, etc.). Thus, the state
of the global memory is a tuple M ∈ Nn. Similarly, every process has a local memory cell.
The contents of all local memory cells is also described by a tuple ` ∈ Nn. A process p can
take a snapshot of the global memory M and examine its contents. More precisely, p can

test how often its local value `[p] occcurs in M, up to some threshold,
modify its local memory cell by assigning it some new value that is currently not present
in the whole of M, or
modify its global memory cell by assigning it its local value (and thus overwriting the old
value of M[p]).

Accordingly, T = {=t, <t, >t | t ∈ N} is the set of tests and Σ = {new,write} ∪ T the set of
actions. For k ∈ N and ./t ∈ T with ./ ∈ {=, <,>}, we write k |= ./t if k ./ t. We are now
prepared to define distributed memory automata.

I Definition 1. A distributed memory automaton (DMA) is a tuple A = (S, ι,∆, F) where
S is the finite set of states, ι ∈ S is the initial state, ∆ ⊆ S × Σ × S is the finite set of
transitions, and F is the set of final states.

CSL 2021

https://hal.archives-ouvertes.fr/hal-02983089
https://hal.archives-ouvertes.fr/hal-02983089

13:4 Reachability in Distributed Memory Automata

For a test ./t ∈ T , we let |./t| = max{1, t}. Moreover, |new| = |write| = 1. The size of A
is defined as |A| := |S|+

∑
(s,σ,s′)∈∆ |σ|. Note that we assume a unary encoding of tests.

For n ≥ 1, an n-configuration (shortly a configuration) is a tuple γ = (s, `,M) ∈
Sn ×Nn ×Nn. Given a process p ∈ [1, n], we consider that s[p] is the current state of p, `[p]
is the content of its local memory, and M[p] is the entry of p in the global memory. We use
states(γ) to denote the set {s[p] | p ∈ [1, n]} and |γ| to represent the number of processes n
of the configuration γ.

We say that γ is initial if, for all p ∈ [1, |γ|], we have s[p] = ι and `[p] /∈M, and for all
p, q ∈ [1, |γ|], `[p] = `[q] implies p = q. Hence, in an initial configuration, each process has a
different value in its local register and none of these values appears in the shared memory.
Moreover, configuration γ is called final if s[p] ∈ F for some p ∈ [1, |γ|], i.e., if one of its
processes is in a state of F .

Let CA,n be the set of n-configurations and CA :=
⋃
n≥1 CA,n be the set of all con-

figurations. We define a global transition relation =⇒A ⊆ CA × (Σ × N) × CA. Suppose
γ = (s, `,M) and γ′ = (s′, `′,M′) are two configurations and let σ ∈ Σ and p ∈ [1, |γ|]. We
let γ (σ,p)===⇒A γ′ if the following hold:
|γ| = |γ′| and
(s[p], σ, s′[p]) ∈ ∆,
s[q] = s′[q] and `[q] = `′[q] and M[q] = M′[q] for all q ∈ [1, |γ|] \ {p},
if σ = new, then `′[p] 6∈M and M = M′,
if σ = write, then `[p] = `′[p] = M′[p],
if σ ∈ T , then ` = `′ and M = M′ and |M|`[p] |= σ.

We write =⇒A for the union of all relations (σ,p)===⇒A and denote by =⇒∗A the reflexive and
transitive closure of =⇒A. Note that if γ =⇒A γ′ then there exists n ≥ 1 such that
γ, γ′ ∈ CA,n. In fact, the transition relation =⇒A does not change the number of involved
processes. If we have (s, `,M) (new,p)=====⇒A (s′, `′,M′) with `′[p] = d, we will sometimes write
(s, `,M) (new(d),p)======⇒A (s′, `′,M′) to provide explicitly the new local value. A run ρ of A is a
finite sequence of the form γ0

(σ0,p0)=====⇒A γ1
(σ1,p1)=====⇒A γ2 · · ·

(σk−1,pk−1)========⇒A γk where γi ∈ CA
for all i ∈ [0, k] and γ0 is initial. It is said to be final if γk is final.

ι

s1write

s2
new

s3
=1

s4
write

s5
=5

f
=2

s6

new
s7

=3
s8

write
s9

=4
s10

new
s11

=2
s12

write

s13

=
4

s14
new

s15
write

Figure 1 An example DMA.

I Example 2. In the example presented in Figure 1, the final state f is reachable and
we shall see in the development of the paper how we can prove this, since it is not ob-
vious at first sight. We present here an execution to reach s9 with four processes. As-
sume that the initial configuration is

(
[ι, ι, ι, ι], [0, 1, 2, 3], [4, 4, 4, 4]

)
. From this configur-

B. Bollig, F. Ryabinin, and A. Sangnier 13:5

ation, if one process performs a write going to s1, then the system will not be able to
reach s9, because no other processes will be able to choose the same value (with a new)
since the value is written in the global memory and the consecutive test =4 (necessary
to reach s9) will never be available. Instead, to reach s9, we perform the following step:(
[ι, ι, ι, ι], [0, 1, 2, 3], [4, 4, 4, 4]

) (new,2)=====⇒A
(
[ι, s2, ι, ι], [0, 0, 2, 3], [4, 4, 4, 4]

)
. Here the second

process can choose the same local value as the first one since it is not yet written in
the memory. Thanks to the sequence (new,3)=====⇒A

(new,4)=====⇒A
(write,1)=====⇒A, we reach the configura-

tion
(
[s1, s2, s2, s6], [0, 0, 0, 0], [0, 4, 4, 4])

)
, from which we can perform the transition sequence

(=1,2)====⇒A
(=1,3)====⇒A

(write,2)=====⇒A
(write,3)=====⇒A to reach the configuration

(
[s1, s4, s4, s6], [0, 0, 0, 0], [0, 0,

0, 4]) from which it is possible to perform (=3,4)====⇒A
(write,4)=====⇒A

(=4,4)====⇒A making the fourth pro-
cess reach s9. Note that we could build a similar execution with 5 processes to reach the
configuration

(
[s1, s4, s4, s4, s9], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]) by adding an extra process that

behaves as process two but writes its value after the last process reaches s9. We have then
five times the value 0 in the global memory. But from this configuration, it is not possible
to reach f since, to pass the sequence of transitions (s4,=5, s5), (s5,=2, f), at least three
processes have to delete the value 0 from their global memory and this is not possible.

The main problem we study in the paper is the reachability problem, in which we check
whether a state of a given DMA can be reached without specifying the number of processes.
In other words, the number of processes is a parameter that needs to be instantiated.

Reachability
I: DMA A

Q: γ =⇒∗A γ′ for some initial γ ∈ CA and some final γ′ ∈ CA ?

In order to understand the above problem, it is important to also know how to solve the
respective problem where the number of processes is imposed.

Fixed-Reachability
I: DMA A and n ≥ 1 (encoded in unary)

Q: γ =⇒∗A γ′ for some initial γ ∈ CA,n and some final γ′ ∈ CA,n ?

Hence, Reachability consists in checking the existence of a final run and Fixed-
Reachability seeks for a final run with an initial n-configuration.

3 Considering a fixed number of processes

In this section, we show that Fixed-Reachability is Pspace-complete.
First we explain how we obtain the upper bound. We consider a DMA A = (S, ι,∆, F)

and a fixed number of processes n ≥ 1. Note that, for any configuration γ = (s, `,M) ∈
Sn×Nn×Nn, the number of different values in the local memory ` and in the global memory
M is at most 2n. Hence, if there is a run γ0

(σ0,p0)=====⇒A γ1
(σ1,p1)=====⇒A γ2 · · ·

(σk−1,pk−1)========⇒A γk
such that γi ∈ CA,n for all i ∈ [0, k] and γ0 is initial and γk is final, then there is a run
γ′0

(σ0,p0)=====⇒A γ′1
(σ1,p1)=====⇒A γ′2 · · ·

(σk−1,pk−1)========⇒A γ′k such that γ′i ∈ Sn × [0, 2n]n × [0, 2n]n for
all i ∈ [0, k] and γ′0 is initial and γ′k is final. In fact, the set of values [0, 2n]n is enough to
define an initial configuration in CA,n since we can pick 2n different values. Since there are
2n+ 1 different values in [0, 2n], when performing an action new, it is always possible to pick

CSL 2021

13:6 Reachability in Distributed Memory Automata

a value in [0, 2n] that appears neither in the local memory nor in the global memory. To
solve Fixed-Reachability for n processes, we then check whether a final configuration is
reachable from an initial one in the graph where the set of vertices is Sn × [0, 2n]n × [0, 2n]n
and the edges are defined by the transition relation =⇒A. This graph having an exponential
number of vertices, the search can be performed in NPspace, i.e., in Pspace thanks to
Savitch’s theorem. Note that we could obtain the same upper bound by reducing our problem
to the non-emptiness problem for non-deterministic register automata with 2n registers and
Sn as a set of states and then use the fact that the non-emptiness problem for such automata
is in Pspace [7]. The 2n registers will correspond to the local and global memory and the
different actions of the DMA can be simulated by a register automaton.

I Proposition 3. Fixed-Reachability is in Pspace.

To show the lower bound, we do a reduction from the intersection emptiness problem of
many non-deterministic finite state automata. A non-deterministic finite state automaton
(FSA) A over a finite alphabet Λ is a tuple (Q, qι, δ, F) where Q is a finite set of states, qι ∈ Q
is an initial state, δ ⊆ Q× Λ×Q is the transition relation and F ⊆ Q is the set of accepting
states. A finite word w = w0w1 . . . wk−1 in Λ∗ is accepted by A if there exists a sequence
of states (qi)0≤i≤k such that q0 = qι, qk ∈ F , and (qi, wi, qi+1) ∈ δ for all i ∈ [0, k − 1]. We
denote by L(A) the language of A, i.e., the set of words {w ∈ Λ∗ | w is accepted by A}. The
emptiness intersection problem asks, given m FSA A1, . . . , Am over the alphabet Λ, whether⋂

1≤i≤m L(Ai) = ∅. This problem is known to be Pspace-complete [11].

ι
new =0

=
1

=
2

=
3

write

write

write

write

=4

=4

=4

=4

=1

=2

=3

new

new

new

write

write

write

new

new

new

new

write

q2′write

q3′write

q4′write

q1
=4

q2
=4

q3
=4

q4
=4

Figure 2 Gadget to isolate 4 processes.

In order to reduce the intersection emptiness problem for FSA to Fixed-Reachability,
we first need a gadget to bring different processes to different parts of the DMA so that each
of these processes can simulate a particular finite automaton. This gadget is necessary since
in DMA all processes begin in the same initial state. An example of this gadget for four
processes is depicted in Figure 2. At the beginning, all the processes are in the initial state ι
and we claim that if a process reaches the state q1 then there is one process in q2 or in q2′
(because at this stage we cannot force the transition labeled with the test =4 leading to q2 to
be taken), one process in q3 or in q3′ and one process in q4 or in q4′. In fact, if one process
is in q1, then it has to first write its local value and the only way to do this is to take the
upper branch of the DMA and, after writing, wait for the other processes to write their value
in order to pass the test =4. Because of this test, all the processes have to choose the same
value with the first new. One way to pass the test =4 for the first process is that all the
processes take the upper branch as follows: they all choose the same new value, then they all
pass the test =0 then they all write their value and they all pass the test =4. However this
execution will then stop because of the following test =1 which could not be taken because,

B. Bollig, F. Ryabinin, and A. Sangnier 13:7

at this stage, none of the processes can rewrite its value in the global memory. The same
reasoning can be iterated to show that the only way to pass the test =1 in the upper branch
is to have one process per branch, the first one writes its value, then the second one can pass
the first test =1 in the second branch and writes the same value, the third one passes the
test =2 in the third branch and writes its value and the last one can pass the test =3 in
the last branch and writes its value. Each process can then pass, in its branch, the test =4
but only the fourth process can perform a new followed by a write to overwrite its value in
the global memory (the other ones have to wait because of the tests =3,=2,=1). Hence the
fourth process overwrites its value, then the third one, then the second one and finally the
first process can pass the test =1. After that all the processes can again perform a new and
write to choose the same new value and write it to the memory to allow the first process to
reach q1.

We consider now an instance of the intersection emptiness problem with m FSA Ai =
(Qi, q(i)

ι , δi, Fi) for i ∈ [1,m] working over the finite alphabet Λ = {a1, a2, . . . , ak}. Without
loss of generality, we can assume that, for each i ∈ [1,m], the set Fi = {q(i)

f } is a singleton
and furthermore the only way to reach this state is to read the letter ak that is not present in
any other transitions. Hence all the words accepted by Ai end with ak and if an automaton
reads a word until its last letter ak, then the automaton accepts this word.

q new =i new =k−i new write
q′

=k+m

(a) Simulating a transition q ai−→ q′.

qlet
new write

new
write

=k+m

(b) Simulating the k letters.

Figure 3 Encoding intersection emptiness of finite automata into DMA.

To check whether
⋂

1≤i≤m L(Ai) = ∅, we build a DMA and consider m + k processes.
The first m processes simulate the automata (Ai)1≤i≤m and the k last processes simulate the
read letters. First we use the gadget presented previously to separate these m+ k processes
in different parts of the DMA. For i ∈ [1,m], the i-th process will be brought to the initial
state q(i)

ι of each NFA whereas the last k processes are brought to the state qlet leading to
the part of the DMA depicted in Figure 3b.

We show then on Figure 3a how we simulate each transition q ai−→ q′ of the finite state
automata in the DMA. A process p ∈ [1,m], in order to simulate the transition q ai−→ q′, first
takes a new value and waits until this value appears i times in the global memory. At this
stage only the k last processes are able to write, so i of these last processes take the same
new value and write it to the global memory. There possibly remain at most k − i processes
that did not take the same new value. But the process p then takes a new value and it has
to appear k − i times in the global memory, so the k − i processes that did not write their
value to the memory can do it now. Finally, after this, each process can take a new value and
write it to the global memory and if they all have taken the same new value, they can all
pass the test =k+m. This ensures that all the processes simulating the automata have read
the same letter and, moreover, that the different processes are synchronized. For instance,
imagine that a process simulating the automaton takes the transitions =1−−→ new−−→ =k−1−−−→ and
another one at the same stage of the simulation goes through =2−−→ new−−→ =k−2−−−→. This is possible:
a process p1 simulating a letter writes its value to the memory allowing the test =1, then a
second process simulating a letter writes the same value to the memory allowing the test =2,
then the k − 2 remaining last processes take the same new value and so does the process p1

CSL 2021

13:8 Reachability in Distributed Memory Automata

(by taking the third transition labelled by new in the loop starting in qlet), then the k− 2 last
processes write their value allowing the test =k−2 and finally the process p1 writes its value
allowing the test =k−1. But after this, the different processes are blocked because p1 cannot
take a new value anymore and write it to allow the test =k+m for which all the processes
need to choose the same new value and write it to the global memory.

To finalize our reduction we choose {q(1)
f } as the set of final states of the DMA. Since the

size of the DMA we build is polynomial in the size of the m automata, we can deduce the
lower bound for Fixed-Reachability.

I Theorem 4. Fixed-Reachability is Pspace-complete.

4 The parameterized train problem

We introduce in this section a simpler parameterized problem whose resolution will help in
solving the reachability problem in DMA.

4.1 Definition
As for DMA, we will use here the set of tests T := {=t, <t, >t | t ∈ N}. Our problem consists
in modelling a set of passengers who can enter a train and leave it. Each passenger enters
the train at most once and has the ability to test how many passengers are in the train and
to change its state accordingly. Furthermore, there is a distinguished passenger, called the
controller.

I Definition 5. A train automaton is a tuple TA = (S, ιc, ι, Sout, Sin,∆, sf) where S is
the finite set of states partitioned into S = Sout] Sin] {sf}, ιc ∈ Sout is the initial state
for the controller, ι ∈ Sout is the initial state for the passengers, sf is the final state, and
∆ ⊆ (Sout × T × Sout) ∪ (Sin × T × Sin) ∪ (Sout × {E} × Sin) ∪ (Sin × {Q} × {sf}) is the
finite set of transitions.

Intuitively, when a passenger (or the controller) is in a state from Sout or in sf , he stands
outside the train, and when he is in Sin, he is inside the train. A passenger enters the train
thanks to the action E. He can leave the train with action Q and, in doing so, enters the
state sf from which he cannot perform any test or action. We now detail the semantics
induced by TA.

For n ≥ 1, an n-train configuration is a pair θ = (s, c) ∈ Sn × N such that s[1] is the
controller state and c = |{p ∈ [1, n] | s[p] ∈ Sin}|. Note that we identify the controller with
the first passenger. Formally, we could get rid of the c since we can deduce it from s, but it
eases the writing of our results to keep it. A train configuration is an n-train configuration
for some n ≥ 1. For an n-train configuration θ, we denote by |θ| = n its size. We say that θ
is initial if s[1] = ιc, s[p] = ι for all p ∈ [2, |θ|], and c = 0. We define a transition relation
−→TA as follows. Let θ = (s, c) and θ′ = (s′, c′) be two train configurations, a ∈ T ∪ {E,Q},
and p ∈ [1, |θ|]. We let θ (a,p)−−−→TA θ′ if |θ| = |θ′|, s[p′] = s′[p′] for all p′ ∈ [1, |θ|] \ {p},
(s[p], a, s′[p]) ∈ ∆, and the following hold:

if a = E then c′ = c+ 1 (passenger p enters the train),
if a = Q then c′ = c− 1 (passenger p leaves the train), and
if a ∈ T then c = c′ and c |= a.

We write θ −→TA θ′ if there exist a ∈ T ∪{E,Q} and p ∈ [1, |θ|] such that θ (a,p)−−−→TA θ′. An
execution of TA is a finite sequence ρ = θ0

(a0,p0)−−−−→TA θ1
(a1,p1)−−−−→TA θ2 . . .

(ak−1,pk−1)−−−−−−−−→TA θk
(or ρ = θ0 −→TA θ1 −→TA θ2 . . . −→TA θk if we do not need the action and test labellings).

B. Bollig, F. Ryabinin, and A. Sangnier 13:9

We denote by −→∗TA the reflexive and transitive closure of −→TA. If θ −→∗TA θ′, then we say
that there exists an execution from θ to θ′ in TA. Note that the number of passengers does
not change during an execution, just like the number of processes does not change in an
execution of a DMA.

The problem we study in this section can be formalized as follows:

Train-Reachability
I: A train automaton TA = (S, ιc, ι, Sout, Sin,∆, sf) and a state s ∈ S

Q: Are there an initial train configuration θ and a configuration θ′ = (s′, c′) such that
θ −→∗TA θ′ and s′[p] = s for some p ∈ [1, |θ|] ?

We let TrainReach(TA) denote the set of states s ∈ S such the answer to the Train-
Reachability with TA and s is positive.

ιc s1
E

ι s2
=0

s3
=1

s4
E

s5
=5

s
=2

s6

=
0

s7
=3

s8
E

s9
=4

sf

Q

Figure 4 An example of train automaton.

I Example 6. In Figure 4, we have drawn a train automaton inspired (we shall see the
connection later) from the DMA given in Figure 1. In this train automaton, the state s is
not reachable. In fact, to reach it, the controller would have to go to state s1 and at least
two passengers to s4. But then, there are at least three passengers in the train that cannot
leave it anymore. Hence, the test =2 can never be satisfied.

Train automata will help us to simulate part of the executions of DMAs where all the
processes except one (the controller) begin by choosing a new value identical to the one of
the controller (the idea being that this value corresponds to the identity of the train). Then,
when a process performs a write, this corresponds to a passenger entering the train. Moreover,
when, thanks to a sequence of actions, it overwrites its value in the global memory, this
corresponds to a passenger leaving the train. This also explains why we need a controller in
train automata: it helps to simulate a process which did not perform a new. Since, initially,
all the processes have a different value in their global memory, there can be, for each value d,
at most one process which did not perform a new(d) and has d in its local register.

4.2 Bounding the number of passengers
We will see here that in order to solve Train-Reachability, we can bound the number
of passengers present in the train at any moment. Consider a train automaton TA =
(S, ιc, ι, Sout, Sin,∆, sf). We let cap ∈ N be the maximal constant appearing in the transitions
of ∆. Hence we have t ≤ cap for all (s, ./t, s′) ∈ ∆. Given an n-train configuration θ = (s, c)
and a bound b ∈ N, we say that θ is b-bounded if c ≤ b. An execution θ0 −→TA θ1 −→TA
θ2 . . . −→TA θk is called b-bounded if θi is b-bounded for all i ∈ [0, k].

Finally, we introduce a relation � beween two train configurations θ = (s, c) and θ′ =
(s′, c′) defined as follows: θ � θ′ if |θ| = |θ′| and c = c′ and for all p ∈ [1, |θ|], if s[p] 6= s′[p]
then s[p] = sf and s′[p] ∈ Sout. In other words, if a passenger is not in the same state in θ

CSL 2021

13:10 Reachability in Distributed Memory Automata

and in θ′, it means he is in its final state in θ and he is out of the train in θ′. We need a first
technical result stating that the relation � is a simulation relation for −→TA. The result of
this lemma is a direct consequence of the definition of � and of the fact that, in TA, when
the controller or a passenger is in its final state, he cannot do anything anymore.

I Lemma 7. If θ1 � θ′1 and θ1
(a,p)−−−→TA θ2 then there exists a configuration θ′2 such that

θ2 � θ′2 and θ′1
(a,p)−−−→TA θ′2.

The following lemma shows us how to bound locally the capacity of the train. The idea
is that if the capacity of the train goes above cap + 2, it is not necessary to make more
passengers enter the train to satisfy the subsequent tests before the capacity goes back to a
value smaller than cap + 2.

I Lemma 8. Let M > cap. If there is an execution θ0 −→TA θ1 −→TA . . . −→TA θk with
θi = (si, ci) for all i ∈ [0, k] and such that c0 = cK = M and ci = M + 1 for all i ∈ [1, k− 1],
then there is an M -bounded execution from θ0 to some θ′ with θk � θ′.

Proof. Let ρ = θ0
(a0,p0)−−−−→TA θ1

(a1,p1)−−−−→TA θ2 . . .
(ak−1,pk−1)−−−−−−−−→TA θk be an execution with

θi = (si, ci) for all i ∈ [0, k] and such that c0 = ck = M and ci = M + 1 for all i ∈ [1, k − 1].
By definition of the transition relation −→TA and of cap, we have necessarily a0 = E and
ak−1 = Q and ai = >t with M > cap ≥ t for all i ∈ [1, k − 2]. We distinguish two cases:
1. Case p0 = pk−1, i.e., it is the same process that enters and leaves the train. In

that case, we let that process never enter the train and we consider the execution
θ0 −→TA θ′1 . . . −→TA θ′` = (s′`, c′`), obtained from ρ by deleting all the transitions (a, p)
with p = p0. During this execution the number of passengers in the train remains the
same and is equal to c0 = M and, for all p ∈ [1, |θ0|] \ {p0}, we have s′`[p] = sk[p] and
s′`[p0] = s0[p0]. Since s0[p0] ∈ Sout (because at the first step of ρ the passenger p0 enters
the train) and sk[p0] = sf (because in the last step of ρ, passenger p0 leaves the train),
we deduce that θk � θ′`.

2. Case p0 6= pk−1. In that case, we reorder the execution ρ as follows. First we execute
all the transitions (a, p) with p = pk−1 leading to a configuration θ′′ = (s′′, c′′) such that
s′′[p] = s0[p] for all p ∈ [1, |θ0|] \ {pk−1} and s′′[pk−1] = sk[pk−1] = sf and c′′ = M − 1.
Then from θ′′ we execute, in the same order, the remaining transition of ρ (the first being
labelled with (E, p0)) which leads exactly to the configuration θk. Hence we obtain an
M -bounded execution from θ0 to θk. J

Using iteratively this last lemma allows us to bound the number of passengers in the
train to reach a specific control state s.

I Proposition 9. Let s ∈ S. Let θ be an initial configuration and p ∈ [1, |θ|]. If there
is an execution from θ to some configuration θ′ = (s′, c′) with s′[p] = s, then there is a
(cap + 2)-bounded execution from θ to some configuration θ′′ = (s′′, c′′) with s′′[p] = s.

4.3 Solving Train-Reachability
We shall see now how Proposition 9 allows us to build a finite abstract graph in which the
reachability problem provides us with a solution for Train-Reachability. We consider
a train automaton TA = (S, ιc, ι, Sout, Sin,∆, sf) and, as in the previous section, we let
cap ∈ N be the maximal constant appearing in the transitions of ∆. In order to solve our
reachability problem, we build a graph of abstract configurations which keep track of the
states of the controller, of the states in Sout that can be reached, and of the number of people

B. Bollig, F. Ryabinin, and A. Sangnier 13:11

in the train up to cap + 2. As we shall see, such an abstract graph will suffice to obtain a
witness for Train-Reachability thanks to the Proposition 9 and to the following Copycat
Lemma.

I Lemma 10 (Copycat Lemma). Let s ∈ Sout and M > 0. Assume an M -bounded execution
from an initial train configuration θ0 to a configuration θ = (s, c) with s[p] = s for some
p ∈ [2, |θ0|]. Then, for all b ≥ 0, there exists an M -bounded execution from θ′0 to θ′ = (s′, c)
where θ′0 is the initial train configuration with |θ′0| = |θ0|+ b, s′[p] = s[p] for all p ∈ [1, |θ0|],
and s′[p] = s for all p ∈ [|θ0|+ 1, |θ0|+ b].

Proof. Let ρ = θ0
(a0,p0)−−−−→TA θ1

(a1,p1)−−−−→TA θ2 . . .
(ak−1,pk−1)−−−−−−−−→TA θk be an execution with

θi = (si, ci) for all i ∈ [0, k] and sk[p] ∈ Sout for p ∈ [2, |θ0|]. Since, in TA, a passenger
can never go to a state in Sout once he has entered the train, pi = p implies ai ∈ T for all
i ∈ [0, k − 1]. In other words, all the actions performed by passenger p along ρ are tests.
Hence from θ′0, we can reproduce ρ and each time we have pi = p, passengers |θ0| + 1 to
|θ0|+ b take the same transition as passenger p. As a consequence, at the end of this run, all
these passengers will be in the same state as passenger p, and extending ρ in such a way is
possible because the actions of passenger p never change the capacity of the train, as they
are just tests. J

An abstract train configuration ξ of TA is a triple (sc,Out, In) where sc ∈ S, Out ⊆
Sout ∪ {sf} and In ∈ NSin is a multiset of elements of Sin such that

∑
s∈Sin

In(s) ≤ cap + 1
if sc ∈ Sin and

∑
s∈Sin

In(s) ≤ cap + 2 otherwise. Given an abstract configuration ξ =
(sc,Out, In), we define inside(ξ) ∈ [0, cap + 2] describing the number of passengers in the
train: it is equal to

∑
s∈Sin

In(s) if sc 6∈ Sin and 1 +
∑
s∈Sin

In(s) otherwise. Indeed, by
definition, we have inside(ξ) ≤ cap + 2 for all abstract train configurations ξ. The initial
abstract train configuration ξι is then equal to (ιc, {ι}, Inι) with Inι(s) = 0 for all s ∈ Sin.
We denote by Ξ the set of abstract train configurations of TA. Note that by definition Ξ is
finite.

We define now a transition relation between abstract configurations. Let ξ1 =
(sc1,Out1, In1) and ξ2 = (sc2,Out2, In2) be two abstract train configurations and δ = (s, a, s′) ∈
∆ and mc = {>,⊥}. The value mc indicates whether the controller moves (>) or another
passenger (⊥). We have ξ1

δ,mc
 ξ2 if one of the following cases holds:

1. mc = > and s = sc1 and s′ = sc2 and Out1 = Out2 and In1 = In2 and if a = E then
inside(ξ1) < cap + 2 and if a ∈ T then inside(ξ1) |= a (move of the controller);

2. mc = ⊥ and sc1 = sc2 and s ∈ Out and a ∈ T and inside(ξ1) |= a and Out2 = Out1 ∪ {s′}
and In2 = In1 (move of a passenger outside the train);

3. mc = ⊥ and sc1 = sc2 and s ∈ Sin and In1(s) > 0 and a ∈ T and inside(ξ1) |= a and
Out2 = Out1 and

In2(s) = In1(s)− 1 and In2(s′) = In1(s′) + 1 if s 6= s′,
In2(s) = In1(s) if s = s′

and In2(s′′) = In1(s′′) for all s′′ ∈ Sin \ {s, s′} (move of a passenger in the train);
4. mc = ⊥ and sc1 = sc2 and s ∈ Out and a = E and inside(ξ1) < cap + 2 and Out2 = Out1

and In2(s′) = In1(s′) + 1 and In2(s′′) = In1(s′′) for all s′′ ∈ Sin \ {s′} (a passenger enters
the train);

5. mc = ⊥ and sc1 = sc2 and s ∈ Sin and In1(s) > 0 and a = Q and Out2 = Out1 ∪ {sf}
and In2(s) = In1(s)− 1 and In2(s′′) = In1(s′′) for all s′′ ∈ Sin \ {s} (a passenger leaves
the train).

CSL 2021

13:12 Reachability in Distributed Memory Automata

We write ξ1 ξ2 if there exist δ ∈ ∆ and mc = {>,⊥} such that ξ1
δ,mc
 ξ2, and we

denote by ∗ the reflexive and transitive closure of .
We shall now see how we can reduce Train-Reachability to a reachability query in the

transition system (Ξ,). In other words, we shall prove in which matters our abstraction
is sound and complete for Train-Reachability. The results of the two next lemmas
need to be combined with the result of Proposition 9 which states that we can restrict our
attention to (cap + 2)-bounded executions to solve Train-Reachability. First we give the
lemma needed to ensure completeness of our abstraction. For this, given an abstract train
configuration ξ = (sc,Out, In), we define JξK, a set of configurations described by ξ. For a
train configuration θ = (s, c), we let θ ∈ JξK if the following conditions hold:

c = inside(ξ),
s[1] = sc,
for all p ∈ [2, |θ|], if s[p] ∈ Sout ∪ {sf} then s[p] ∈ Out, and
In(s) = |{p ∈ [2, |θ|] | s[p] = s}| for all s ∈ Sin.

In other words, the control state of the controller is the same in θ and ξ, the states of the
passengers in the train are the same in ξ and θ, and all the states present in θ from passengers
outside the train are present in Out. This interpretation of abstract configurations allows us
to state our first property.

I Lemma 11. Let θ and θ′ be two configurations such that θ is initial. If there is a (cap + 2)-
bounded execution from θ to θ′ then there exists an abstract train configuration ξ′ such that
θ′ ∈ Jξ′K and ξι ∗ ξ′.

To ensure the soundness of our method, for an abstract train configuration ξ =
(sc,Out, In), we need to identify in JξK the configurations for which all the states in Out
are present. We say that a configuration θ = (s, c) is a witness for ξ if θ ∈ JξK and, for all
s ∈ Out, there exists p ∈ [2, |θ|] such that s[p] = s. This new notion combined with the result
of the Copycat Lemma 10 allows us to state the following property of our abstraction.

I Lemma 12. Let ξ′ ∈ Ξ. If ξι ∗ ξ′ then there exist an initial configuration θ and θ′ ∈ Jξ′K
such that there is a (cap + 2)-bounded execution from θ to θ′ and θ′ is a witness for ξ′.

Now to solve Train-Reachability for the train automaton TA and a state s ∈ S,
thanks to Proposition 9, we know it is enough to consider only (cap + 2)-bounded executions.
Lemmas 11 and 12 tell us that we have to seek in the graph (Ξ,) a path between ξι and an
abstract train configuration ξ = (sc,Out, In) such that s = sc or s ∈ Out or In(s) > 0. Note
that by definition |Ξ| ≤ |Sc| · 2|Sout|+1 · |Sin|cap+2 hence the size of (Ξ,) is exponential
in the size of TA and the transition relation can be built on-the-fly (as it is done in its
definition). Using that the reachability problem in a graph can be solved in NLOGspace,
we deduce that we can solve Train-Reachability in NPspace (by solving a reachability
query in (Ξ,)). Thanks to Savitch’s theorem we deduce our Pspace upper bound.

I Theorem 13. Train-Reachability is in Pspace.

5 An algorithm for reachability

In this section, we provide an algorithm to solve Reachability using, as an internal
procedure, the algorithm proposed in the previous section for Train-Reachability.

We consider a DMA A = (S, ι,∆, F). Without loss of generality, we assume that in A
when a process p performs a write action, then it will not do so again until it performs a
new action. This restriction makes sense, since when it has written its local value once, it

B. Bollig, F. Ryabinin, and A. Sangnier 13:13

does not change anything to the behavior of the global system to rewrite it. One can easily
modify A to respect this property by adding a boolean flag to the states which is set to true
after a write and set back to false after a new. Moreover, when an edge labelled with write
leaves a state while the newly introduced boolean is true, then write is replaced by the test
>0 (which will be necessarily evaluated to true since the global memory contains at least the
local value of the process). Before presenting our method to solve Reachability, we state
a technical lemma similar to the Copycat Lemma 10, but this time for DMA instead of train
automata. The idea here is that we can join two distinct executions of the DMA using the
fact that in DMA, the precise values of the data written in the global or local memory do
not really matter but only the occurrences of the same values are important.

I Lemma 14 (Copycat Lemma II). If there exists an execution γ0 =⇒∗A γ1 with γ0 initial
and γ1 = (s1, `1,M1) and an execution γ′0 =⇒∗A γ′1 with γ′0 initial and γ′1 = (s′1, `

′
1,M

′
1),

then there exists an execution γ′′0 =⇒∗A γ′′1 with γ′′0 initial and such that |γ′′1 | = |γ1| + |γ′1|
and γ′′1 = (s′′1 , `

′′
1 ,M

′′
1) with s′′1 [p] = s1[p] for all p ∈ [1, |γ1|] and s′′1 [|γ1|+ p] = s′1[p] for all

p ∈ [1, |γ′1|] .

As a consequence of this lemma, if at some point we reach a configuration γ1 in a DMA,
we know that any configuration with as many copies as one may desire of the states of γ1 is
reachable. Our algorithm for Reachability then computes, iteratively, the two following
subsets of the set of states S:

New is the set of reachable states s ∈ S from which an action new is feasible. Formally,
s ∈ New if there exist γ, γ′ ∈ CA such that γ is initial and γ′ and γ =⇒∗A γ′ and
s ∈ states(γ′) and (s, new, u) ∈ ∆ for some u ∈ S.
OWrite is the set of states s ∈ S that occur in some execution where the process being
in s performs new and eventually write (hence the set of states from which a process
can overwrite its value in the global memory). Formally, s ∈ OWrite if there exist a run
ρ of A of the form γ0

(σ0,p0)=====⇒A γ1
(σ1,p1)=====⇒A γ2 · · ·

(σ`,p`)====⇒A γ`+1 and p ∈ [1, |γ0|] and
0 ≤ j < k ≤ ` such that γj = (sj , `j ,Mj) with sj [p] = s and (σj , pj) = (new, p) and
(σk, pk) = (write, p) and, for all i ∈ [j + 1, `− 1], if pi = p then σi 6∈ {new,write}.

First, note that OWrite ⊆ New. We will see now how to compute these two sets of states
and how our method exploits the result of the previous section on the train problem. The
intuition to link the reachability in DMA with this latter problem is the following: each
process in a DMA is associated to a train whose number is the value stored in its local
register. When a process writes its value to the global memory, it enters the corresponding
train and it stays in it until it overwrites this value by another one (by entering a new train).

We first explain, given two sets of states N ⊆ New and OW ⊆ OWrite, how to build a
train automaton TAN(N ,OW) to check whether new states can be added to N . We define
TAN(N ,OW) = (ST , ιcT , ιT , Sout, Sin,∆T , sf) with:

ST = (S × {out, in}) ∪ {ιT , sf},
Sout = (S × {out}) ∪ {ιT },
Sin = S × {in},
ιcT = (ι, out),
∆T is the set of transitions verifying:

(ιT ,=0, (u, out)) ∈ ∆T for all u ∈ S such that there is (s, new, u) ∈ ∆ with s ∈ N ,
((s, out),E, (s′, in)) ∈ ∆T for all (s,write, s′) ∈ ∆,
((s, in),Q, sf) ∈ ∆T for all s ∈ OW,
((s, out), a, (s′, out)), ((s, in), a, (s′, in)) for all (s, a, s′) ∈ ∆ with a ∈ T .

CSL 2021

13:14 Reachability in Distributed Memory Automata

In a DMA, when a process performs a new, it is always possible that it chooses the initial
value of another process that has not been written yet to the global memory. However, for a
given value, there is at most one such process since, initially, all the processes have pairwise
different values in their local memory. Such a process is represented in TAN(N ,OW) by the
distinguished controller. Hence, the initial state of the controller is (ι, out). All the other
processes have to perform a new and are represented by the other passengers. To participate
in the train automaton, they have to go through the transitions (ιT ,=0, (u, out)) such that
there is (s, new, u) ∈ ∆ with s ∈ N . The train automaton TAN(N ,OW) then simulates the
DMA with the following rules: When a passenger enters the train with E, the associated
process writes its value to the current memory, and when he leaves the train with Q, the
associated process has been able to choose a new value and to write it to the global memory,
so intuitively it was in a state of OW.

ιT (s6, out)
=0 (s7, out)

=3 (s8, in)E (s9, in)
=4

(s10, out)
=

0
(s11, out)

=2 (s12, in)E (s13, in)
=4

(s2, out)

=
0

(s3, out)
=1 (s4, in)E (s5, in)

=5 (f, in)
=2

sf
Q

Q

(s14, out)=0 (s15, in)E
ιcT (s1, in)E

Figure 5 Train Automaton TAN({ι, s9, s13}, {ι, s9, s13}) for the DMA of Figure 1.

I Example 15. Figure 5 depicts the train automaton TAN(N ,OW) associated to the DMA
of Figure 1 with N = {ι, s9, s13} and OW = {ι, s9, s13}. Thanks to this train automaton,
we deduce that f is reachable in the DMA because (f, in) ∈ TrainReach(TAN(N ,OW)). We
have indeed the following execution with five passengers (numbered from 1 to 5, where 1 is
the controller): First, passengers 2 to 4 move to (s10, out), and passenger 5 moves to (s2, out).
Then, the controller enters the train and arrives in (s1, in). After that, passenger 5 can go to
(s4, in) entering the train. There are now two passengers in the train, so passengers 2 to 4
can go to (s11, out) and passengers 2 to 3 can enter the train and move to (s13, in) since there
will be four passengers in the train. Finally, passenger 4 enters the train. There are now five
passengers in the train allowing passenger 5 to move to (s5, in). After that, passenger 2 in
(s13, in) can leave the train, and passenger 4 can move to (s13, in). Now, passengers 3 and 4
from (s13, in)) can leave the train bringing the number of passengers to two which allows
passenger 5 to reach (f, in).

Thanks to Lemma 14 (Copycat Lemma) and to the semantics of train automata, we
deduce the following:

I Lemma 16. Let N ⊆ New, OW ⊆ OWrite, and s ∈ S. If we have {(s, in), (s, out)} ∩
TrainReach(TAN(N ,OW)) 6= ∅ and (s, new, u) ∈ ∆ for some u ∈ S, then s ∈ New.

Hence this last lemma allows us to add new states from New to N . We will now see how
to increase the set of states OW. The idea is similar but we give as input a state sn in N
from which we want to check whether an action write can be reached. In the train automaton,
we hence have to check which states are reachable from this state sn. For this matter, we
use an extra symbol, > or ⊥, to track the path coming from sn (this symbol equals > when
the state is reachable from sn). Given two sets of states N ⊆ New and OW ⊆ OWrite and

B. Bollig, F. Ryabinin, and A. Sangnier 13:15

sn ∈ N , we build a train automaton TAOW(N ,OW, sn) to check whether sn can be added
to OW. We let TAOW(N ,OW, sn) = (ST , ιcT , ιT , Sout, Sin,∆T , sf) with:

ST = (S × {out, in} × {>,⊥}) ∪ {ιT , sf}
Sout = (S × {out} × {>,⊥}) ∪ {ιT },
Sin = S × {in} × {>,⊥},
ιcT = (ι, out,⊥),
∆T is the set of transitions verifying:

(ιT ,=0, (u, out,⊥)) ∈ ∆T for all u ∈ S such that there is (s, new, u) ∈ ∆ with s ∈ N ,
(ιT ,=0, (u, out,>)) ∈ ∆T for all u ∈ S such that (sn, new, u) ∈ ∆,
((s, out, v),E, (s′, in, v)) ∈ ∆T for all (s,write, s′) ∈ ∆ and v ∈ {>,⊥},
((s, in, v),Q, sf) ∈ ∆T for all s ∈ OW and v ∈ {>,⊥},
((s, out, v), a, (s′, out, v)), ((s, in, v), a, (s′, in, v)) for all (s, a, s′) ∈ ∆ with a ∈ T and
all v ∈ {>,⊥}.

Hence in this train automaton, if a state (s, in,>) or (s, out,>) is reached, the passenger
reaching this state necessarily went through the state (sn, out,>). We have the following
result whose correcteness can be proved the same way as for Lemma 16.

I Lemma 17. Let N ⊆ New, OW ⊆ OWrite, and sn ∈ N . If there exists s ∈ S such that
(s, out,>) ∈ TrainReach(TAOW(N ,OW, sn)) and such that (s,write, u) ∈ ∆ for some u ∈ S,
then sn ∈ OWrite.

These two last lemmas give us a technique to compute the sets New and OWrite. We
present a procedure that computes iteratively two families of sets of states (Ni)i∈N and
(OWi)i∈N such that Ni ⊆ Ni+1 ⊆ New and OWi ⊆ OWi+1 ⊆ OWrite for all i ∈ N. We set
N0 = OW0 = ∅ and, for all i ∈ N:

Ni+1 = Ni ∪
{
s ∈ S

∣∣∣∣ {(s, in), (s, out)} ∩ TrainReach(TAN(Ni,OWi)) 6= ∅ and
(s, new, u) ∈ ∆ for some u ∈ S

}

OWi+1 = OWi ∪

sn ∈ Ni+1

∣∣∣∣∣∣
∃s ∈ S.
(s,out,>) ∈ TrainReach(TAOW(Ni+1,OWi,sn)) and

(s,write, u) ∈ ∆ for some u ∈ S

Note that, since the set of states S is finite, these computations terminate and, thanks to

Theorem 13, we know they are in Pspace. We define N =
⋃
i∈NNi and OW =

⋃
i∈NOWi.

Due to Lemmas 16 and 17, we have N ⊆ New and OW ⊆ OWrite. We can also obtain the
inclusion in the other directions by reasoning by induction on the length of the executions of
the DMA and looking at the processes that can create a new value or can overwrite their
value in the global memory in such executions.

I Lemma 18. We have N = New and OW = OWrite.

Now, to conclude, we can assume w.l.o.g. that, from each of the final states s in F , there
is a transition (s, new, s′) in ∆ (if not we can add one) and hence solving Reachability
amounts at verifying whether F ∩N 6= ∅. Since, as said earlier, N and OW can be computed
in PSpace, this allows us to deduce the following theorem:

I Theorem 19. Reachability is in Pspace.

CSL 2021

13:16 Reachability in Distributed Memory Automata

6 Conclusion

We have shown that the control-state reachability problem for DMAs is in Pspace when the
number of processes is a parameter and is Pspace-complete when this number is fixed. The
upper-bound for the parameterized case is obtained thanks to an algorithm which uses as a
sub-routine a polynomial-space solution for the control-state reachability in train automata.
If we could find a better complexity bound, such as P or NP, for Train-Reachability, this
bound will also apply to Reachability in DMAs. Similarly, if we find another algorithm
to solve Reachability in DMAs with a better upper bound, this would lead to a better
solution for Train-Reachability (which can easily be encoded into Reachability for
DMAs). In fact, we currently do not have any lower bound for these two problems and the
proof to obtain the lower bound for Fixed-Reachability crucially depends on the fact
that we know the number of involved processes. In the future, we plan to further study
the Train-Reachability problem and some of its extensions to see how the reasoning
presented here can be applied to verify concrete distributed algorithms.

References
1 C. Aiswarya, Benedikt Bollig, and Paul Gastin. An automata-theoretic approach to the

verification of distributed algorithms. Inf. Comput., 259(Part 3):305–327, 2018.
2 Henrik Björklund and Thomas Schwentick. On notions of regularity for data languages. In

Erzsébet Csuhaj-Varjú and Zoltán Ésik, editors, Fundamentals of Computation Theory, 16th
International Symposium, FCT 2007, volume 4639 of Lecture Notes in Computer Science,
pages 88–99. Springer, 2007.

3 Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut Veith, and
Josef Widder. Decidability of Parameterized Verification. Synthesis Lectures on Distributed
Computing Theory. Morgan & Claypool Publishers, 2015.

4 Mikolaj Bojanczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.
Two-variable logic on data words. ACM Trans. Comput. Log., 12(4):27:1–27:26, 2011.

5 Benedikt Bollig, Patricia Bouyer, and Fabian Reiter. Identifiers in registers - describing
network algorithms with logic. In Mikolaj Bojanczyk and Alex Simpson, editors, Foundations
of Software Science and Computation Structures - 22nd International Conference, FOSSACS
2019, volume 11425 of Lecture Notes in Computer Science, pages 115–132. Springer, 2019.

6 Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. The renaming problem in shared
memory systems: An introduction. Comput. Sci. Rev., 5(3):229–251, 2011.

7 Stéphane Demri and Ranko Lazic. LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log., 10(3):16:1–16:30, 2009.

8 Javier Esparza. Keeping a crowd safe: On the complexity of parameterized verification (invited
talk). In Ernst W. Mayr and Natacha Portier, editors, 31st International Symposium on
Theoretical Aspects of Computer Science (STACS 2014), volume 25 of LIPIcs, pages 1–10.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014.

9 Wan Fokkink. Distributed Algorithms: An Intuitive Approach. MIT Press, 2013.
10 Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci.,

134(2):329–363, 1994.
11 Dexter Kozen. Lower bounds for natural proof systems. In FOCS’77, pages 254–266. IEEE

Computer Society, 1977.
12 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996.
13 Nikos Tzevelekos. Fresh-register automata. In Thomas Ball and Mooly Sagiv, editors,

Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2011, pages 295–306. ACM, 2011.

Pregrammars and Intersection Types
Sabine Broda
CMUP, Departamento de Ciência de Computadores, Faculdade de Ciências,
University of Porto, Portugal

Abstract
A representation of intersection types in terms of pregrammars is presented. Pregrammar based
rewriting relations, corresponding respectively to type checking and inhabitation are defined and
the latter is used to implement a Wajsberg/Ben-Yelles style alternating semi-decision algorithm for
inhabitation. The usefulness of the framework is illustrated by revisiting and partially extending
standard inhabitation related results for intersection types, as well as establishing new ones. It is
shown how the notion of bounded multiset dimension emerges naturally and the relation between
the two settings is clarified. A meaningful rank independent superset of the set of rank 2 types
is identified for which EXPSPACE-completeness for inhabitation as well as for counting is proved.
Finally, a standard result on negatively non-duplicated simple types is extended to intersection
types.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Logic; Theory of computation → Lambda calculus

Keywords and phrases Intersection Types, Pregrammars, Inhabitation

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.14

Funding The author was partially supported by CMUP, which is financed by national funds
through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the project with reference
UIDB/00144/2020.

1 Introduction

1.1 Contribution and Related Work
Intersection type systems [12, 13] play an important role in the theory of typed λ-calculus [5].
They characterise exactly the set of strongly normalising terms and are closely related to the
model theory of λ-calculus [33, 25, 14]. Applications in programming language theory cover a
variety of diverse topics including the design of programming languages [36], program analysis
and model checking [30, 31, 34], synthesis [15, 21], and related systems such as refinement
and union types [22, 19, 20]. But the enormous expressive power of intersection types also
comes with a major drawback. Standard type theoretic problems such as type checking and
inhabitation are undecidable in general [5]. For inhabitation, undecidability is known for
about twenty years [42]. More recently [37, 38] the problem was shown to be equivalent to
the undecidable problem of λ-definability [32, 29]. Over the years attempts have been made
in various directions with the purpose of identifying and studying the complexity of decidable
fragments or variants of the system. Those include restrictions by rank [28, 27, 43], restrictions
of admissible type inference rules [26, 35, 11], calculi of bounded dimension [16, 18], as well
as systems of non-idempotent intersection types [10, 9]. In terms of rank the dividing line
between decidable and undecidable cases was established in [27, 43] and complexity results
were given for the decidable cases. As such, inhabitation was shown to be PSPACE-complete
for rank 1, EXPSPACE-complete for rank 2, and undecidable for types of rank ≥ 3. Recently,
the notion of dimension was introduced [16, 17] measuring intersection introduction as a
resource. The inhabitation problem was shown to be decidable and EXPSPACE-complete in

© Sabine Broda;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 14; pp. 14:1–14:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3798-9348
https://doi.org/10.4230/LIPIcs.CSL.2021.14
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Pregrammars and Intersection Types

bounded multiset dimension, exposing thereby a rank independent calculus with a decidable
inhabitation problem. In particular, it was shown to subsume the same result for rank 2
inhabitation.

The present work borrows some inspiration from [40] and aims to contribute to this line of
research providing a simple tool for addressing inhabitation related problems. Lower bounds
of specific problems are typically established using reductions from problems for which a
bound (resp. undecidability) is already known. For upper bounds the standard procedure is
based on the implementation of a Wajsberg/Ben-Yelles style search algorithm [6, 23, 11, 43].
The algorithm looks for inhabitants in β-normal form and operates on a set of pairs, each
consisting of a context and a type. Depending on the rule used in each step the algorithm
manipulates the set of pairs accordingly. The present work was motivated by the desire to
provide a simple formalisation of this transformation process, expounding changes in each
execution step in a clear and organised manner. The primary goal was to facilitate reasoning
about inhabitation problems for intersection types, as well as to provide a clean framework
in which proofs can be presented. Additionally, a graphical representation of intersection
types exposes their fine underlying structure contributing to the end of clarification. That
insight enables us to add further to the knowledge on decidable fragments of the intersection
type system. From a practical point of view, we believe this work, and in particular
pregrammar based implementations of a Wajsberg/Ben-Yelles search algorithm, to be of
importance for applications in proof/inhabitant search based program synthesis in systems
with intersection [21].

Picking up on work in [1, 2, 3] we here extend the notion of pregrammar to the entire
system of intersection types. In [1] pregrammars were introduced in the context of (principal)
inhabitation of simple types. Later [2] PSPACE upper bounds were (re-)proved for different
inhabitation related problems for simple types in the framework of pregrammars. A first
attempt to generalise those concepts to apply to intersection types was made in [3] and
covered a restricted fragment of rank 2 types, therein denoted by T −2 . Additionally, the
notion of pregrammar was extended to apply to the set of finite intersections of T −2 -types,
which properly contains the set of strict intersection types [44] of rank 2 (but not all rank
2 types). For T −2 -types it is sufficient to consider a type inference system without the
intersection introduction rule (∩I), which was the approach taken in [3]. Intersections of
T −2 -types introduce new intersections at the top level only and could therefore be handled by
considering products of pregrammars. Neither considering a system without rule (∩I), nor
using products of pregrammars, works if one wants to cover the entire system, for which a
different approach has to be taken. In the present work we consider a type inference system
for terms in β-normal form, equivalent to that in [43], with rule (∩I) but without an explicit
intersection elimination rule (∩E). This enables us to avoid the restriction to strict types,
which was the approach taken in [18], and still handle the case of application in our search
algorithm strictly syntax driven, contrasting with the `-based condition in [43].

1.2 Outline
The paper is organised as follows. Section 2 contains the necessary definitions and results
on the system of intersection types and sets the ground for subsequent developments. The
definition of pregrammars for intersection types is in Section 3. In Sections 4 and 5 we define
sound and complete rewriting relations based on pregrammars, corresponding respectively
to type checking and inhabitation. Transformation in contexts during proof search are
therein captured in terms of operations (update and replication) on tuples of integers. A
Wajsberg/Ben-Yelles style alternating semi-decision algorithm for inhabitation is defined in

S. Broda 14:3

Section 6. In the remaining of that section the usefulness of our framework is demonstrated by
revisiting and partially extending standard inhabitation related results, as well as establishing
new ones. It is shown how the notion of bounded multiset dimension emerges naturally in
this setting and the relation between the two is clarified. A meaningful rank independent
superset of the set of rank 2 types is identified for which EXPSPACE-completeness is proved.
Making use of the aforementioned operations on tuples, EXPSPACE-completess of counting
in this fragment is also shown. Finally, a standard result on negatively non-duplicated simple
types is extended to intersection types. A compilation of complexity results for different
families of types can be found in the conclusions.

It is important to note that the majority of the discussed results can be obtained by
the classical method. Nonetheless, it is our belief that the work in this paper constitutes
further a step towards a better understanding of inhabitation in the intersection type system
by highlighting how intersections at different depth and of different polarity contribute
differently to the complexity of the inhabitation problem.

2 Preliminaries

We consider the basic system of intersection types, with no constants nor subtyping, cf. [43].
Type variables are ranged over by a, b, c, . . . and arbitrary types by lower-case Greek letters.
The set of simple types. i.e. types without occurrences of the intersection operator, is denoted
by T .

I Definition 1 (Intersection Types). T∩ 3 σ, τ ::= a | σ → τ | σ1 ∩ · · · ∩ σn (n ≥ 2).

We write σ ∈ τ , if σ is an occurrence of a subtype of τ , where the notion of occurrence
is the usual one, cf. [23, Definition 9A2]. For instance, type α = (a → a) → a → a has
three different subtypes α, a→ a and a, which have respectively 1, 2 and 4 occurrences in α.
We assume that the intersection operator is associative, and that it binds stronger than →.
Furthermore, we always identify maximal subtypes containing intersections, that is, when
we write τ1 ∩ · · · ∩ τn, then none of the τi is itself an intersection. The notion of rank stems
from [28] and is defined by rank(τ) = 0 if τ ∈ T , by rank(σ → τ) = max(1 + rank(σ), rank(τ))
if rank(σ)+ rank(τ) > 0, and by rank(τ1∩· · ·∩τn) = max(1, rank(τ1), . . . , rank(τn)) for n ≥ 2.
Considering the syntactic tree of a type θ, its rank equals the maximal number of implications,
to which an intersection occurs to the left, plus one. In general, given a particular occurrence
of a subtype τ ∈ θ we denote by depth(τ, θ) the number of implications in θ to which τ occurs
to the left and call it the depth of τ in θ. Then, we have that rank(θ) ≥ r ≥ 1 if and only
if there exists an intersection at depth ≥ r − 1. Formally, depth can be defined (top-down)
by depth(θ, θ) = 0, by depth(σ, θ) = depth(σ → τ, θ) + 1 and depth(τ, θ) = depth(σ → τ, θ),
and by depth(τi, θ) = depth(τ1 ∩ · · · ∩ τn, θ) for 1 ≤ i ≤ n and n ≥ 2. Another meaningful
notion is the degree of an occurrence τ ∈ θ, which measures the number of consecutive
implications, ignoring intersections in that counting, to which τ occurs to the right. Formally,
we have deg(θ, θ) = 0, if deg(σ → τ, θ) = n then deg(σ, θ) = 0 and deg(τ, θ) = n + 1, and
finally deg(τi, θ) = deg(τ1 ∩ · · · ∩ τn, θ) for 1 ≤ i ≤ n and n ≥ 2. In particular, θ is a strict
intersection type [44] if and only if all intersections in θ occur at degree 0.

The notion of polarity of an occurrence τ ∈ θ is defined as usual by: τ occurs positively
in τ ; if τ occurs positively (resp. negatively) in θ then it occurs positively (resp. negatively)
in σ → θ and in τ1 ∩ · · · ∩ θ ∩ · · · ∩ τn, and negatively (resp. positively) in θ → σ. As an
alternative, one can define that τ occurs positively in θ if depth(τ, θ) is even, and negatively
otherwise.

CSL 2021

14:4 Pregrammars and Intersection Types

Γ ∪ {x :σ} `∩ N : τ
(I→)

Γ `∩ λx.N :σ → τ

Γ `∩ xN1 · · ·Ns :σ → τ Γ `∩ Ns+1 :σ
(E→)

Γ `∩ xN1 · · ·NsNs+1 : τ

(var)
Γ ∪ {x : τ} `∩ x : τ

Γ `∩ M : τ1 · · · Γ `∩ M : τn (I∩)
Γ `∩ M : τ1 ∩ · · · ∩ τn

Γ `∩ M : τ1 ∩ · · · ∩ τn (E∩)
Γ `∩ M : τi (1 ≤ i ≤ n)

Figure 1 Intersection Type Assignment for Terms in Normal Form.

Every type τ can be uniquely written as τ = τ1 → · · · → τn → θ (n ≥ 0), where θ is a
type variable or an intersection θ1 ∩ · · · ∩ θm (m ≥ 2). If n ≥ 1, then τ1, . . . , τn are called
the arguments of τ . An occurrence of σ in τ is called a negative subpremise of τ iff it is the
argument of a positive occurrence of a subtype in τ . We write σ �∩ β and say that σ is a
component of β if and only if β = β1 ∩ · · · ∩ βn and σ = βi, for some i ∈ [1..n] and n ≥ 1. By
our convention on intersections this implies that a component is never an intersection itself.

I Example 2. Let α = α1 ∩ α2, where α1 = 1 → (0 → 0) ∩ (1 → 1) → (1 → 0) → 0
and α2 = 1 → (1 → 0) → (0 → 1) → 0, and 0 and 1 denote type variables. This type
belongs to the family used in the reduction of the halting problem for bus machines to rank
2 inhabitation in [43], showing thereby EXPSPACE-hardness of the problem. Furthermore,
consider β = o ∩ β1 → o, where β1 = ((o→ (o→ o) ∩ (o→ o))→ o)→ (o→ o) ∩ (o→ o).
We have rank(α) = 2 and rank(β) = 4. Moreover, α is strict, while β is not, since both
intersections in β1 occur at degree 1 in β. Types α and β will be our running examples
throughout the paper.

We denote λ-terms by M,N, . . ., which are built from an infinite countable set of term
variables V. We identify terms modulo α-equivalence. For type assignment we consider a
system equivalent to the one presented in [27, 43], but restricted to β-normal forms, which is
the usual choice when addressing inhabitation related problems. Unless stated otherwise, all
λ-terms considered in the remainder of this paper are supposed to be in β-normal form.

A (consistent) context is a finite set Γ of declarations of the form x :σ, where x ∈ V
and σ ∈ T∩, such that all term variables occurring in Γ are distinct from each other. The
domain of Γ, denoted by dom(Γ), is the set of term variables occurring in Γ. For (x :σ) ∈ Γ,
let Γ(x) = σ. Furthermore, Types(Γ) = { σ | x :σ ∈ Γ }. The rules of the type assignment
system are given in Figure 1. Formulas (judgements) in derivations are of the form Γ `∩ M : θ.
Symbol ` will be used for the inference of formulas in a second equivalent system without
explicit ∩-elimination, whose rules are given in Figure 2. We say that type θ ∈ T∩ can
be assigned to a normal form M in context Γ, and write Γ `∩ M : θ, if and only if this
formula can be obtained by applying the rules in Figure 1 a finite number of times. For
the parameters in these rules we suppose that s ≥ 0, n ≥ 2 and i ∈ [1..n]. Similarly, we
write Γ `M : θ if that formula can be derived by the inference rules in Figure 2. We draw
attention to the fact that for `, dropping the ∩-elimination rule was achieved by, in some
sense, incorporating quasi-order v in [35, Lemma 20] directly into rules (var) and (E→), and
facilitates handling types with intersections at degree ≥ 1, i.e. non-strict types.

For . ∈ {`∩,`}, it is easy to verify that Γ .M : θ implies that the set of term variables in
Γ contains the set of free variables in M , i.e. dom(Γ) ⊇ FV(M). A derivation of a formula
Γ.M : θ can be represented as a derivation tree Π, in which all nodes are labelled by formulas,
such that Γ . M : θ is the root of Π, every internal node is obtained from its children by one
of the type assignment rules different from (var), and every leaf is labelled with an instance
of (var).

S. Broda 14:5

(var)
Γ ∪ {x : τ} ` x : τi (τi �∩ τ)

Γ ∪ {x :σ} ` N : τ
(I→)

Γ ` λx.N :σ → τ

Γ ` xN1 · · ·Ns :σ → τ Γ ` Ns+1 :σ
(E→)

Γ ` xN1 · · ·NsNs+1 : τi (τi �∩ τ)
Γ `M : τ1 · · · Γ `M : τn (I∩)

Γ `M : τ1 ∩ · · · ∩ τn

Figure 2 Type Assignment without an explicit ∩-elimination rule.

I Lemma 3. We have Γ `∩ M : θ if and only if there is a derivation of Γ `M : θ, such that
for every formula Γ′` N : τ in that derivation, either

τ is an intersection and Γ′ ` N : τ1∩· · ·∩τn (n ≥ 2) was derived from Γ′ ` N : τ1, . . . ,Γ′ `
N : τn by one application of rule (I∩);
or Γ′ ` N : τ was derived using one of the rules (var), (I→), or(E→).

From now on we will only consider `-derivations satisfying the conditions in Lemma 3.
The set of β-normal terms M such that Γ `M : τ is denoted by Nhabs(Γ, τ). If Γ = ∅, then
we also write `M : τ instead of Γ `M : τ and say that M is an inhabitant of type τ . The
set of all β-normal inhabitants of τ is denoted by Nhabs(τ) = Nhabs(∅, τ). The inhabitation
problem for intersection types is the problem of deciding if, for a given type τ ∈ T∩ (input)
one has Nhabs(τ) 6= ∅, and denoted by INH.

3 Pregrammars for Intersection Types

Given τ ∈ T∩, let occT(τ) denote the set of all occurrences of subtypes of τ , i.e. occT(τ) =
{ σ | σ ∈ τ }. Consider N(τ) = [0..(|occT(τ)| − 1)] as well as an (arbitrary) bijection
n : occT(τ) −→ N(τ). We call n(σ) the identifier of σ ∈ τ . The type of identifier k ∈ N(τ)
is t(k) = n−1(k) ∈ occT(τ). Relation �∩ transfers to elements in N(τ) in the obvious way,
by n �∩ m iff t(n) �∩ t(m). In order to deal correctly with the correspondence between
occurrences of subtypes and occurrences of subterms, polarities have to be taken into account.
With this purpose, and whenever convenient, we might superscript an integer n with ’+’ if n
corresponds to a positive occurrence of a subtype and with ’−’ if it corresponds to a negative
subpremise. Integers that correspond to a negative occurrence, which is no subpremise, will
not be superscripted. We write m ≡occT n if and only if the type occurrences corresponding
to m and n, i.e. t(m) and t(n), are identical1, i.e. are (not necessarily different) occurrences
of the same subtype. The relation T (τ) ⊆ N(τ)3 is defined by (n, k,m) ∈ T (τ), abbreviated
by n�k m, iff t(m) = t(k)→ t(n) for m,n, k ∈ N(τ). We will display relevant information
about relations T and �∩ in the dependency graph G(τ), whose set of vertices is N(τ) and
that consists of trees such that:

If t(m) = t(n1) ∩ · · · ∩ t(nk), then node m has children n1, . . . , nk, connected by dotted
edges.
If n�k m, then node m has one child n and a firm edge between them labelled with k.

In light of this last observation we define lab(n,m) = k whenever n�k m, meaning that the
edge between n and m is labelled by k.

I Example 4. Consider α from Example 2, let n(α) = 26, n(α1) = 24, n(α2) = 25 and
the remaining identifiers of subformulas of α1 and α2 respectively assigned as follows:
10 → [((01 → 02)14 ∩ (13 → 14)15)19 → ((15 → 06)16 → 07)20]22, and 18 → [(19 → 010)17 →
((011 → 112)18 → 013)21]23. The dependency graph of α is the following.

1 Abusing on the notation, we will occasionally abbreviate this and simply write t(m) = t(n).

CSL 2021

14:6 Pregrammars and Intersection Types

Depth 0:

26+

24+ 25+

22+

20+

7+

23+

21+

13+

Depth 1:

19−

14 15

2 4

0− 16−

6

8− 17−

10

18−

12

Depth 2:

3+1+ 5+ 9+ 11+

0− 8−

19− 17−

16− 18−

1+ 3+

5+ 9+ 11+

Degrees of occurrences of subtypes are clearly visible in the dependency graph, since they
coincide with the number of firm edges between their identifier and the top node in the sub-
graph of G in which they occur. As such, the occurrences corresponding to 22, 23, 2, 4, 6, 10, 12
have degree 1 (their distance to the top node in the corresponding subgraph is by one firm
edge), those corresponding to 20 and 21 are of degree 2 (distance by two firm edges), and
those to 7 and 13 are of degree 3. All other occurrences are of degree 0, including the
intersections (which correspond respectively to 26 and 19). We conclude that α is strict. On
the other hand, its rank is 2 since there is an intersection at depth 1.

For β consider an attribution of identifiers to occurrences of type variable o suggested by
β = o0∩β1 → o11, where β1 = ((o1 → (o2 → o3)∩(o4 → o5))→ o6)→ (o7 → o8)∩(o9 → o10).
Furthermore, n(β) = 22, n(o0 ∩ β1) = 21, and n(β1) = 20. The remaining of this attribution
n should be clear from G(β) depicted below. The graph shows clearly that β is not a strict
intersection type, since both intersections t(17) = t(14)∩ t(15), as well as t(16) = t(12)∩ t(13)
occur at degree 1. Since the depth of t(16) is 3, we have that β is of rank 4.

Depth 1:Depth 0: Depth 2: Depth 3:

9+7+ 19+

6+

22+

11+

21−

0 20

17

14 15

8 10

Depth 4:

18−

16

12 13

2+1+ 4+

3 5

19+

7+

18−

9+

21− 1+

2+ 4+

Positive and negative identifiers play opposite roles during the process of inhabitant
search. A positive identifier m+ represents a goal of constructing a term of type t(m),
while a negative identifier m− represents a (possibly available) variable of type t(m). As
such, if one has t(m+) = t(m1) ∩ t(m2), then in order to construct a term of type t(m) one
has to find an inhabitant that has simultaneously types t(m1) and t(m2). On the other
hand, t(m−) = t(m1) ∩ t(m2) represents an alternative (the variable can be used either with
type t(m1) or t(m2)). Similarly, if one has t(m+) = t(k−) → t(n+), i.e. n �k m, then

S. Broda 14:7

one possibility (other than to construct an applicational term using one of the available
variables) is to add a variable of type t(k−) to the context and search for a term of type
t(n+). Conversely, an available variable of type t(m−) = t(k+)→ t(n), i.e. n�k m−, allows
to transform the goal of finding a term of type t(n) into a new goal of finding a term of type
t(k). These concepts are captured in the definition of pregrammars.

I Definition 5 (Pregrammar). The pregrammar pre(τ) of τ is the smallest set of rules
satisfying the following conditions.

m := (n1, . . . , ns) ∈ pre(τ), if t(m+) = t(n1) ∩ · · · ∩ t(ns), (s ≥ 2).
m := λk.n ∈ pre(τ), if n�k m+.
m := p0 n1 · · ·ns ∈ pre(τ), if m+ ≡occT cs for s ≥ 0 and there exists an ascending path
from node cs to node p−0 in G(τ), satisfying

cs �∩ ps�
ns cs−1 �∩ . . . �∩ p1 �

n1 c0 �∩ p−0 .

The size of a type τ , denoted by |τ |, is the total number of occurrences of variables and of
symbols → and ∩ in τ . Then, the number (of occurrences) of subformulas is |N(τ)| ≤ |τ | and
consequently the size of G(τ), i.e. the total number of nodes and edges, is at most 2|τ | − 1.
Let |τ |→ and |τ |∩ denote respectively the number of occurrences of → and of ∩ in τ . Then,
the number of rules in pre(τ) is at most |τ |∩ + |τ |→ + |τ | · |τ | < 3|τ |2. Each of the rules
contains at most |τ | identifiers. Hence, the size of pre(τ), i.e. the total number of occurrences
of identifiers in pre(τ), is |pre(τ)| < 3|τ |3.

I Example 6. Consider α and β from Example 2. Equivalence classes in N(α)/≡occT that
are not singletons are {0−, 3+, 4, 5+, 8−, 9+, 12}, {1+, 2, 6, 7+, 10, 11+, 13+}, and {16−, 17−}.
The pregrammar of α has size |pre(α)| = 87 (|α| = 27) and contains thirty-one rules:

26 := (24, 25)
24 := λ0.22
22 := λ19.20

20 := λ16.7
25 := λ8.23
23 := λ17.21

21 := λ18.13
1, 7, 11, 13 := 19 1 | 16 5 | 17 9

3, 5, 9 := 19 3 | 18 11 | 0 | 8

Moreover, the equivalence relation ≡occT partitions N(β) into eight classes {12, 13, 14, 15},
{0, 1+, 2+, 3, 4+, 5, 6+, 7+, 8, 9+, 10, 11+}, {16, 17}, {18−}, {19+}, {20}, {21−}, and {22+}.
Pregrammar pre(β) contains the following rules.

22 := λ21.11 1, 2, 4, 6, 7, 9, 11 := 21 | 21 19 7 | 21 19 9 | 18 1 2 | 18 1 4
19 := λ18.6

For instance, we have rule 6 := 21 19 9 in pre(β), because a) 6+ ≡occT 10, i.e. identifiers
6 and 10 represent the same type, and b) in G(β) there is an ascending path from node
(component) 10 to node 21− whose nodes satisfy 10 �∩ 10�9 15 �∩ 17�19 20 �∩ 21−,
i.e. a variable of type t(21) applied successively to a term of type t(19) and to a term of type
t(9) has type t(10) (which equals t(6)).

4 Type Checking

In the following we describe a rewriting algorithm that, given a type τ and a term M , verifies
if `M : τ , i.e. checks if M ∈ Nhabs(τ). During the rewriting process we use objects with the
structure of λ-terms, but such that tuples of integers can figure as variable names and are
also referred to as placeholders. We refer to these objects as extended terms. We denote by
N [~k/x] the (extended) term obtained from N by replacing all free occurrences of variable x
in N by placeholder ~k.

CSL 2021

14:8 Pregrammars and Intersection Types

I Definition 7 (Update, Replication). The update of ~m = (m1, . . . ,mt) with ~n = (n1, . . . , nk)
at position i, where i ∈ [1..t] and t ≥ 1, is defined by

~m[~n/i] = (m1, . . . ,mi−1, n1, . . . , nk,mi+1, . . . ,mt).

Replicating a value k ≥ 2 times at position i in ~m is denoted by ~m[i, k] and defined by

~m[i, k] = (m1, . . . ,mi−1,mi, . . . ,mi︸ ︷︷ ︸
k

,mi+1, . . . ,mt).

Given an object E, possibly containing placeholders, let E[~n/i] (resp. E[i, k]) denote the
result of applying operation [~n/i] (resp. [i, k]) to all placeholders in E. Given an extended
term N , a tuple ~k, i ∈ N and x ∈ V , let N [~k/x] be the result of replacing all free occurrences
of x in N by placeholder ~k, while N [~k/i] is obtained by updating all placeholders in N at
position i with ~k.

I Definition 8 (Type Checking Relation). Given a type τ , an extended term M , ~m =
(m1, . . . ,mt) ∈ Nt, t ≥ 1, and s ≥ 0, we write (M : ~m) ↪→ (N1 : ~n1), . . . , (Ns : ~ns), if one of
the following applies.

If mi := ~n ∈ pre(τ), for some i ∈ [1..t], ~n = (n1, . . . , nk), and k ≥ 2, then
(M : ~m) ↪→ (M [i, k] : ~m[~n/i]).
If mi := λki.ni ∈ pre(τ), for all i ∈ [1..t], ~k = (k1, . . . , kt), and ~n = (n1, . . . , nt), then
(λx.N : ~m) ↪→ (N [~k/x] :~n).
If mi := ki n

i
1 · · ·nis ∈ pre(τ), for all i ∈ [1..t], ~nj = (n1

j , . . . , n
t
j), for j ∈ [1 . . . s], and

~k = (k1, . . . , kt), then (~k N1 · · ·Ns : ~m) ↪→ (N1 : ~n1), . . . , (Ns : ~ns).
The definition of ↪→ extends, in the usual way, to rewriting of sequences. Then, ↪→∗ denotes
the reflexive, transitive closure of ↪→.

I Example 9. Consider α from Example 2 and M = λxyz.y(z(yx)). Then,

(M : 26) ↪→ (λxyz.y(z(yx)) : (24, 25)) ↪→ (λyz.y(z(y(0, 8))) : (22, 23))
↪→ (λz.(19, 17)(z((19, 17)(0, 8))) : (20, 21)) ↪→ ((19, 17)((16, 18)((19, 17)(0, 8))) : (7, 13))
↪→ ((16, 18)((19, 17)(0, 8)) : (1, 9)) ↪→ ((19, 17)(0, 8) : (5, 11)) ↪→ ((0, 8) : (3, 9)) ↪→ ε.

The proof of the following theorem, stating correctness of ↪→, is mainly technical and can
be found in the appendix.

I Theorem 10. Nhabs(τ) = {M | (M : n(τ)) ↪→∗ ε }.

5 Inhabitation

In this section we define a rewriting relation for type inhabitation.

I Definition 11 (Inhabitation Relation). Let τ ∈ T∩, ~m = (m1, . . . ,mt) ∈ Nt, t ≥ 1, ~V ⊆ Nt,
and s ≥ 0. We write

(~V : ~m) (~V ′ : ~n1), . . . , (~V ′ : ~ns),

if one of the following applies.
1. If mi := ~n ∈ pre(τ), for some i ∈ [1..t], where ~n = (n1, . . . , nk) and k ≥ 2, then

(~V : ~m) (~V [i, k] : ~m[~n/i]).

S. Broda 14:9

2. If mi := λki.ni ∈ pre(τ), for all i ∈ [1..t], where ~k = (k1, . . . , kt) and ~n = (n1, . . . , nt),
then

(~V : ~m) (~V ∪ {~k} :~n).

3. If mi := ki n
i
1 · · ·nis ∈ pre(τ), for all i ∈ [1..t], and ~k = (k1, . . . , kt) ∈ ~V , where

~nj = (n1
j , . . . , n

t
j), (1 ≤ j ≤ s), then

(~V : ~m) (~V : ~n1), . . . , (~V : ~ns).

The definition of extends, in the usual way, to rewriting of sequences. Then, ∗ denotes
the reflexive, transitive closure of .

I Example 12. For α from Example 2 we have the following, where ~V =
{(0, 8), (19, 17), (16, 18)}.

(∅ : 26) (∅ : (24, 25)) ({(0, 8)} : (22, 23)) ({(0, 8), (19, 17)} : (20, 21))
 (~V : (7, 13)) (~V : (1, 9)) (~V : (5, 11)) (~V : (3, 9)) ε,

The following theorem, stating correctness of , is proved in the appendix.

I Theorem 13. Nhabs(τ) 6= ∅ if and only if (∅ : n(τ)) ∗ ε.

5.1 Intersections at different depth or degree
We want to examine more closely how intersections at different depth or degree in a type
contribute differently to the complexity of type checking and inhabitation. To that end we
analyse, where in a grammar rule, their identifiers can occur and what consequences that
might have in terms of applications of ↪→ and . Let r(i) stand for an arbitrary identifier of
a subtype at depth i. Then each rule in a pregrammar respects one of the following patterns,
where i, j ≥ 0.

(1) r(i) := (r(i), . . . , r(i)) (2) r(i) := λr(i+ 1).r(i) (3) r(i) := r(j) r(j + 1) · · · r(j + 1)
We observe the following:
if m is the identifier of a positive intersection, then there is exactly one rule for m in
pre(τ) and that rule respects pattern (1); consequently rule 1 is incompatible with the
other two rules in Definition 11;
if m occurs at depth 0, then M cannot occur on the right side of a rule of pattern (3)
in pre(τ); consequently a pair (~V , ~m), such that m is one of the coordinates of vector ~m
(possibly ~m itself), occurs at most once in a rewriting sequence starting with (∅ : n(τ)); in
particular intersections at depth 0 may contribute to the growth of tuples at most once;
there can be two different rules m := k n1 · · ·ns and m′ := k n′1 · · ·n′s′ in pre(τ) such
that m = m′ or (m 6= m′ ∧ s = s′), only if k is the identifier of a negative subtype and
there is at least one (at any degree) intersection in the tree in G(τ) that is rooted in
k; consequently type checking is deterministic if there are no negative intersections in
τ ; in terms of inhabitation negative intersections may increase the combinatorics of the
problem, but don’t seem to cause undecidability on their own2;

2 This is in accordance with the fact that there is no gap between ranks 3 and 4, which differ by negative
intersections at depth 3 only. Both have undecidable inhabitation problems, shown by Urzyczyn in 1999
for rank 3 and in 2009 for rank 4 [42, 43].

CSL 2021

14:10 Pregrammars and Intersection Types

in principle, there is no relation between depths i and j in a rule of pattern (3); consequently
it seems as if negative intersections at different depth contribute to the same extent to
the complexity of inhabitation;
the degree at which an intersection occurs seems to have no particular influence on the
problem and similar results should be expected regardless of considering strict intersection
types or not.

6 Algorithm I

A Wajsberg/Ben-Yelles style alternating semi-decision algorithm I for inhabitation of in-
tersection types, following [43], can be implemented based on relation . Every rewriting
sequence starting in (∅ : n(τ)) corresponds to a unique computation tree Π, whose nodes are
labelled with occurrences of pairs (~V : ~m) in the rewriting sequence. The root of Π is (∅ : n(τ))
and each node (~V : ~m), that was rewritten by (~V : ~m) (~V ′ : ~n1), . . . , (~V ′ : ~ns), has s children,
respectively labelled with (~V ′ : ~n1), . . . , (~V ′ : ~ns). The rewriting sequence terminates with the
empty sequence, i.e. (∅ : n(τ)) ∗ ε, if and only if in Π all leafs are labelled with (~V : ~m) such
that (~V : ~m) ε. In this case the computation tree is called an accepting computation tree
for τ .

I Definition 14 (Algorithm I). Algorithm I, starting with (∅ : n(τ)), aims to construct an
accepting computation tree for τ , operating in each step on a pair (~V : ~m). The proced-
ure non-deterministically chooses a combination of rules in pre(τ), such that (~V : ~m)
(~V ′ : ~n1), . . . , (~V ′ : ~ns). If s = 0, then the algorithm accepts, otherwise it universally applies
to (~V ′ : ~n1), . . . , (~V ′ : ~ns). It rejects, if there is no such combination of rules in pre(τ).

Note that rules 1, 2, and 3 in Definition 11 correspond respectively to rules 1, 2, and 3 in
the definition of Urzyczyn’s algorithm in [43]. While rule 1 is not compatible with the other
two, rules 2 and 3 may both apply at some point. If one gives priority to rule 2 whenever
possible, then the algorithm is customised to find only long solutions/inhabitants in the sense
of Definition 8 in [27]. We denote this variant by I long.

In order to guarantee termination, i.e. convert I into a decision algorithm, we need to
restrict the search space, for instance by limiting the maximal height of computation trees.
A tree is called non-repeating if it has no branch containing two different nodes with the
same label. Clearly, there is an accepting computation tree with root (∅ : n(τ)) iff there
is a non-repeating accepting computation tree with root (∅ : n(τ)). This fact can be used
to establish upper bounds for the complexity of inhabitation for different subfamilies of
intersection types. Whenever there is a function D : N −→ N such that any branch in a
computation tree of length ≥ D(n) has a repetition, where n = |τ | is the size of the input,
then I can be transformed into a decision algorithm ID, which rejects when operating on
nodes of depth ≥ D(|τ |). In that case we have an upper bound (alternating O(D(n))-time) for
deciding the inhabitation problem. This is the usual approach for obtaining upper bounds,
cf. [6, 16, 27, 43].

The existence of a measure D as above depends on the maximal number of distinct nodes
in a path. Such a value does not exist in general for types of rank ≥ 3 because of the
possibility of having continuously growing dimension of nodes in a path. Here the dimension
of a node labelled with (~V : ~m) is a synonym for the arity of ~m (or of tuples in (~V : ~m)) and
denoted by dim(~V : ~m) = dim(~V). The dimension of a tree, dim(Π), is the maximal dimension
of its nodes. We write (~V : ~m)� (~V ′ :~n) if (~V ′ :~n) is a descendant of (~V : ~m) in Π. In that
case, it follows directly from Definition 11, that either dim(~V : ~m) < dim(~V ′ :~n) or ~V ⊆ ~V ′.

S. Broda 14:11

If dim(~V : ~m) = p then ~V ∪ {~m} ⊆ N(τ)p and the number of tuples of arity ≤ p is less than
(|N(τ)|+ 1)p. Since |N(τ)| = |τ |, we conclude that the length of a non-repeating branch with
a leaf of dimension p ≥ 1 is < (|τ |+ 1)2p. In light of the above we consider the problem of
deciding, if for a given type τ ∈ T∩ (input) there exists an accepting computation tree of
dimension ≤ p, and denote this decision problem by INHp.

I Proposition 15. For each p ≥ 1 the problem INHp is PSPACE-complete.

Proof. PSPACE-hardness is a consequence of that result for simple types, whose computation
trees have dimension 1. For the upper bound one may consider decision procedure ID, where
D(n) = (n+ 1)2p. J

As foreseeable, the dimension of a computation tree relates to the notion of dimension,
considered in [16, 18] for strict types. More precisely, to the multiset setting for which we
have the following result. The proof of this result relies heavily on notions defined in [16]
and is therefore included in the appendix.

I Proposition 16. Let τ be a strict intersection type. Then, there exists M such that M can
be typed with τ at bounded multiset dimension ≤ p if and only if τ ∈ INHp.

On account of this result, Proposition 15 is in fact a reformulation of Proposition 32
in [16], here extended to the entire set of intersection types.

We want to identify causes for the existing gap between the complexity of the inhabitation
problem for different families of intersection types in terms of structural properties of their
dependency graphs. The first observation is that the growing of dimension along a path is
exclusively due to positive subtypes of the form τ1 ∩ · · · ∩ τk with k ≥ 2. Let T −∩ denote the
set of intersection types without positive occurrences of intersections, i.e. all intersections
occur at an odd depth. Computation trees for types in T −∩ have always dimension 1. Since
this fragment falls within the scope of Proposition 15 for p = 1, and since T ⊆ T −∩ , we
obtain PSPACE-completeness for T −∩ , which is a generalisation of the same result for simple
types [39, 41] and includes T −2 -types considered in [3], i.e. intersection types where all
intersections occur at depth 1. More generally we have the following.

I Corollary 17. For each p ≥ 1 the inhabitation problem for types of the form τ = ∩pi=1τi,
where τi ∈ T −∩ for i ∈ [1..p], is PSPACE-complete.

Proof. PSPACE-hardness follows from the same result for T ⊆ T −∩ . Just consider for
σ ∈ T the intersection type ∩pi=1σi, where each σi is a fresh copy of σ (obtained for
instance by indexing all variables in σ with i). On the other hand, for τ = ∩pi=1τi, we have
n(τ) := (n(τ1), . . . , n(τp)), but no other rule of that form in pre(τ). So rule 1 will be applied
exactly once, producing pair (∅ : (n(τ1), . . . , n(τp)). Hence, any accepting computation tree is
of dimension p and it suffices to apply decision procedure ID, where D(n) = n2p. J

Urzyczyn’s proof for rank 2 inhabitation in [43] also shows EXPSPACE-completeness for
finite intersections of T −∩ -types. We denote the rank independent set of these types by⋂

T −∩ = { ∩pi=1τi | p ≥ 1 ∧ ∀i ∈ [1..p] τi ∈ T −∩ }.

This set properly contains the set of strict rank 2 types.

I Proposition 18. The inhabitation problem for
⋂
T −∩ is EXPSPACE-complete.

CSL 2021

14:12 Pregrammars and Intersection Types

Proof (from Urzyczyn [43]). The set of strict rank 2 types is a proper subset of
⋂
T −∩ and

EXPSPACE-hardness for rank 2 was shown by reduction from the halting problem for bus
machines to strict rank 2 types. For the upper bound one may consider decision procedure
ID, where D(n) = n+ nn · nn. This stems from the fact that for a

⋂
T −∩ -type τ algorithm I

starting with (∅ : n(τ)) will initially apply rule 1 at most n times, expanding the dimension
of nodes up to at most n, where n = |τ |. After that phase rule 1 will no longer apply. Given
two nodes of dimension n such that (~V : ~m)� (~V ′ : ~m′) we have necessarily ~V ⊆ ~V ′. Thus,
there are at most nn different sets of dimension n in a path of a computation tree, as well as
at most nn different tuples ~m of dimension n. Finally, n+ nn · nn = n+ 22n logn ≤ n+ 2n2 ,
for n ≥ 4. J

In [16, Proposition 24] a not rank-bounded family of types, ranged over by T and U ,
where

T ::= a | U → T and U ::= A | (∩ni=1Ti)→ U

was considered. More precisely it was shown that every normal inhabitant of an intersection
of the form ∩ni=1Ui can be typed at multiset dimension n. Note that the set of types ranged
over by U is a proper subset of T −∩ . On the other hand, the set of types of the form ∩ni=1Ui
properly includes the family of types used to show EXPSPACE-hardness for rank 2 [43].
Consequently, the proof of Proposition 18 still works and we have EXPSPACE-hardness also
for this proper subclass. We apply this line of reasoning to another rank independent set of
types, which is a superset of

⋂
T −∩ and contains types with positive intersections at depth

≥ 2.

I Definition 19. For m,n ∈ N(τ) we define m � n iff one of the following holds:
m := (n1, . . . , ns) ∈ pre(τ) and n = ni for some i ∈ [1..s];
m := λk.n ∈ pre(τ);
m := k n1 · · ·ns ∈ pre(τ) and n = ni for some i ∈ [1..s].

Then, �+ denotes the transitive closure of �. A type τ ∈ T∩ is called growth restrained if
there is no identifier m with m := (n1, . . . , ns) ∈ pre(τ) and such that m�+m.

I Proposition 20. Inhabitation for growth restrained types is EXPSPACE-complete.

Proof. If τ has rank 2, then m := (n1, . . . , ns) ∈ pre(τ) implies that t(m) occurs at depth
0 in τ and consequently m appears nowhere else in pre(τ). Hence, τ is growth restrained
and EXPSPACE-hardness follows from that result for rank 2. If τ is growth restrained then
any rule m := (n1, . . . , ns) ∈ pre(τ) applies at most once in a path of a computation tree
for τ , whose dimension can for that reason not exceed n, where n = |τ |. Again, there are
at most (n+ 1)n tuples of dimension ≤ n. We conclude that the length of a non-repeating
branch with a leaf of dimension ≤ n is < (n+ 1)2n and consider decision procedure ID, where
D(n) = (n+ 1)2n. But (n+ 1)2n = 22n log(n+1) < 2n2 , for n ≥ 6. J

The set of growth restrained types contains properly the set of types in which positive
occurrences of intersections are only allowed at depth 0. This set, on the other hand contains
properly the set of rank 2 types, as well as

⋂
T −∩ . Since all the aforementioned type classes

contain the set of strict rank 2 types, for which Urzyczyn showed EXPSPACE-hardness, one
obtains as a corollary EXPSPACE-completeness for all these classes.

Wajsberg/Ben-Yelles style search algorithms are the established vehicle to implement
counting algorithms [6, 23, 24, 8]. We follow that direction and use algorithm I to show
that the problem of counting for growth restrained types is EXPSPACE-complete. Counting

S. Broda 14:13

means to decide, if for a given type τ , the set of normal inhabitants Nhabs(τ) is empty, finite
or infinite. Following the usual approach we provide limits d(|τ |) and D(|τ |), such that: (i)
|Nhabs(τ)| 6= 0 iff there is an accepting computation tree of height lower than D(|τ |); (ii)
|Nhabs(τ)| =∞ iff there is an accepting computation tree of height between d(|τ |) and D(|τ |).
Condition (i) is decided by ID(|τ |). For (ii) we use a customised version of ID(|τ |), that in
each step remembers the highest depth the algorithm operated on so far and accepts the
whole computation only if that value is ≥ d(|τ |).

I Proposition 21. Counting for growth restrained types is EXPSPACE-complete.

Proof. EXPSPACE-hardness follows from Proposition 20. To show that the problem can be
solved in exponential space we consider d(n) = (n+ 1)n and D(n) = (n+ 1)3n. Let τ be a
growth restrained type with |τ | = n. The proof of Proposition 20 shows that Nhabs(τ) 6= ∅
iff there is an accepting computation tree for τ of height ≤ (n + 1)2n < D(n). It remains
to show that |Nhabs(τ)| =∞ iff there is an accepting computation tree of height between
d(n) and D(n). Consider an accepting computation tree Π for τ , which we know to have
dimension ≤ n. Given two nodes ι� ι′, labelled respectively with (~V : ~m) and (~V ′ :~n), there
is a possibly empty sequence ζι,ι′ of replications that have been applied on the path from
ι to ι′ (corresponding to applications of rule 1, Definition 11). Let ~V ζι,ι′ denote the result
of applying the replications in ζι,ι′ successively to ~V . Then, ~V ζι,ι′ ⊆ ~V ′. Now, suppose
that Π has a branch of length ≥ d(n) = (n+ 1)n, which is the maximal number of tuples
of dimension ≤ n. Thus, there must be two distinct nodes (of equal dimension) such that
(~V1 : ~m)� (~V2 : ~m) and ~V1 ⊆ ~V2. Let Π1 be the subtree of Π rooted in node ι labelled with
(~V1 : ~m). For each other node ι′ in Π1 consider the corresponding sequence ζι,ι′ of replications
from ι to ι′. We denote by Π1ζ the tree obtained from Π1 by replacing the label of each node
ι′ = (~V ′ :~n) by (~V ′ ∪ ~V2 ζι,ι′ :~n). An accepting tree of bigger height can now be obtained
replacing in Π the subtree rooted in (~V2 : ~m) by Π1ζ. |Nhabs(τ)| =∞ follows by repetition.
This part of the proof corresponds to the Stretching Lemma in [23]. It remains to show
that the existence of a tree Π of height ≥ D(n) = (n + 1)3n implies that there is a tree
of height in [d(n),D(n)[. This last part corresponds to the Shrinking Lemma [23] and is
achieved by successively shortening subtrees in Π by a controlled amount, such that the
final result is an accepting tree of height < D(n), but still ≥ d(n). Consider a branch in
Π of length > D(n) > d(n). There must be two distinct nodes (a repetition) such that
ι = (~V : ~m) � (~V : ~m) = ι′ and such that the path from ι to ι′ has length l ≤ (n + 1)2n.
Now, consider the tree Π′ obtained by replacing in Π the subtree rooted in ι by the subtree
rooted in ι′. All paths starting in ι are now shortened by length l ≥ (n + 1)2n. However,
(n+ 1)3n − l ≥ (n+ 1)n and the result is a tree of height ≥ d(n). It remains to repeat this
process as long as there are paths of length > D(n). J

Changing the limits in the previous proof to d(n) = (n+ 1)p and D(n) = (n+ 1)3p suffices to
show a similar result for counting in bounded dimensions.

I Corollary 22. For each p ≥ 1, counting the number of accepting computation trees of
dimension ≤ p is PSPACE-complete.

Some studies consider fragments where the amount of positive and/or negative occurrences of
subtypes is constrained. In [4] it was proved that in the simple type system all inhabitants of
a given negatively non-duplicated type τ are βη-equivalent. Here, negatively non-duplicated
means that every type variable occurs at most once negatively in τ . Bourreaux and Salvati
adapted this correspondence to the case of λ-terms containing occurrences of constants in [7].
The following result shows that the same is true for the intersection type system.

CSL 2021

14:14 Pregrammars and Intersection Types

T

R≤1
⋂p T −∩ (p ∈ N)

R≤2

R≤p (p≥3)

⋂
T −∩

GR

NND

Figure 3 Intersection Type Families.

I Proposition 23. Deciding inhabitation for negatively non-duplicated intersection types is
in PSPACE. Furthermore, if M,N ∈ Nhabs(τ), then M =βη N .

Proof. We know that τ has a normal inhabitant if and only if it has a long one. Suppose
that Π is an accepting non-repeating computation tree for τ obtained by algorithm I long.
We show that Π has height ≤ |τ |2, i.e. Π can be obtained by I long

D , where D(n) = n2.
If τ is negatively non-duplicating, then for every m+

i ∈ N(τ) there is at most one rule
of the form mi := ki n

i
1 · · ·nis ∈ pre(τ). Given a pair (~V : ~m), such that neither rule 1

nor rule 2 in Definition 11 apply, there is at most one ~k = (k1, . . . , kt) ∈ ~V such that
mi := ki n

i
1 · · ·nis ∈ pre(τ), for all i ∈ [1..|~m|]. We conclude that any run of I long on (∅, n(τ))

is deterministic (up to the order in which identifiers in a tuple, to which rule 1 applies, are
chosen) and that there is at most one accepting computation tree (up to that order), implying
that the number of long inhabitants is finite. Consider any branch (~V1 : ~m1), . . . , (~Vs : ~ms) in
Π, where (~V1 : ~m1) = (∅, n(τ)). We associate a tree π to this branch whose root is labelled by
n(τ) and such that at depth i−1 nodes are labelled by mi

1, . . . ,m
i
ti , where ~mi = (mi

1, . . . ,m
i
ti)

and have children defined by the following. If (~Vi+1 : ~mi+1) was obtained by rule 1, because
mi
j := (n1, . . . , nk) ∈ pre(τ), for some j ∈ [1..ti], ~n = and k ≥ 2, then mi

j has k children
labelled respectively with n1, . . . , nk. Every other node mi

l at depth i − 1 has one child
labelled with mi

l. If (~Vi+1 : ~mi+1) was obtained by rule 2 or by rule 3, then each node has
one child labelled respectively with k1, . . . , kti , for ~k = (k1, . . . , kti) as in Definition 11 (rules
2 and 3). Consider two nodes at different depth in a branch of π, which are labelled with the
same identifier m. Since Π is accepting and the rewriting process deterministic (up to order
of application of rule 1) all nodes between them are also labelled by m, corresponding to
successive applications of rule 1. Otherwise, the algorithm would have entered an infinite
loop. But rule 1 can be applied successively at most |τ | times. On the other hand, there are
at most |τ | different identifiers in N(τ). We conclude that s ≤ |τ |2. On the other hand, this
means that whenever (~Vi : ~mi) (~Vi ∪ {~k} : ~mi+1) by rule 2, then ~k 6∈ ~Vi. Consequently, an
accepting tree Π corresponds to exactly one long normal inhabitant M and any other normal
inhabitant can be obtained from M by η-expansion, cf. proof of Lemma 9 in [27]. J

7 Conclusions

We presented a pregrammar based framework for addressing inhabitation related problems
in the intersection type system. In that setting types are first represented by dependency
graphs, which expose their underlying structure and thereby reveal properties related to
(the complexity of) intersection type inhabitation. Rewriting relations corresponding to type
checking and inhabitation for normal forms were given. These operate solely on sets of tuples
in terms of simple operations, update and replication. After proving the correctness of those

S. Broda 14:15

relations, which involves some bureaucracy, the method became available to be implemented
in a Wajsberg/Ben-Yelles style search algorithm and any forthcoming reasoning could be
expressed in terms of rewriting of pairs (consisting of a set of tuples and a tuple). That was
illustrated by revisiting and partially extending some well-known problems. An overview of
results is given in Table 1. The relation between the different sets of type families, regarding
inclusion, is displayed in an Hasse diagram in Figure 3. There T denotes the set of simple
types, R≤n the set of types of rank at most n,

⋂p T −∩ the set of types of the form ∩pi=1τi for
some fixed p, GR the set of groth restrained bypes, and finally NND the set of negatively
non-duplicated intersection types. The set of types inhabited in (some) bounded multiset
dimension is orthogonal to the remaining families, c.f. [16], and therefore not included in the
diagram.

Studying further applications of the method is left for future work. For instance, the
amount of complexity caused by negative intersections should be placed under more careful
observation. As such, one could wonder about strictly positive fragments.

Table 1 Complexity Results for Inhabitation and Counting.

Problem Complexity

Inhabitation of Simple Types PSPACE-complete [39, 41]

Counting of Simple Types PSPACE-complete [24]

Rank 1 Inhabitation PSPACE-complete [43]

Rank 2 Inhabitation EXPSPACE-complete [27, 43]

Rank ≥ 3 Inhabitation undecidable [43, 42]

Inhabitation in Bounded Multiset Dimension EXPSPACE-complete [16]

Inhabitation in Fixed Bounded Multiset Dimension PSPACE-complete [16]

INHp for fixed p PSPACE-complete3 [Proposition 15]

Counting in Fixed Bounded Multiset Dimension PSPACE-complete [Corollary 22]

Inhabitation of τ = ∩p
i=1τi (τi ∈ T −∩ , fixed p) PSPACE-complete [Corollary 17]⋂

T −∩ Inhabitation EXPSPACE-complete [43, Proposition 18]

Inhabitation for growth restrained types EXPSPACE-complete [Proposition 20]

Counting for growth restrained types EXPSPACE-complete [Proposition 21]

Inhabitation for negatively non-duplicated intersection types PSPACE [Proposition 23]

References
1 S. Alves and S. Broda. Inhabitation machines: determinism and principality. In Ninth

Workshop on Non-Classical Models of Automata and Applications, NCMA 2017, pages 57–70,
2017.

2 S. Alves and S. Broda. A unifying framework for type inhabitation. In 3rd International
Conference on Formal Structures for Computation and Deduction (FSCD 2018), Leibniz
International Proceedings in Informatics (LIPIcs), 2018.

3 The problem is EXPSPACE-complete if p isn’t fixed beforehand, corresponding then to inhabitation in
bounded multiset dimension.

CSL 2021

14:16 Pregrammars and Intersection Types

3 Sandra Alves and Sabine Broda. Pre-grammars and inhabitation for a subset of rank 2
intersection types. Electr. Notes Theor. Comput. Sci., 344:25–45, 2019.

4 T. Aoto. Uniqueness of normal proofs in implicational intuitionistic logic. Journal of Logic,
Language and Information, 8(2):217–242, 1999.

5 Hendrik Pieter Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus with Types.
Perspectives in logic. Cambridge University Press, 2013.

6 Ch. Ben-Yelles. Type Assignment in the Lambda-Calculus: Syntax and Semantics. PhD thesis,
University College of Swansea, September 1979.

7 P. Bourreau and S. Salvati. A datalog recognizer for almost affine -cfgs. In MOL, pages 21–38,
2011.

8 Sabine Broda and Luís Damas. Counting a type’s principal inhabitants. In Typed Lambda
Calculi and Applications, 4th International Conference, TLCA’99, L’Aquila, Italy, April 7-9,
1999, Proceedings, pages 69–82, 1999.

9 Antonio Bucciarelli, Delia Kesner, and Simona Ronchi Della Rocca. Inhabitation for non-
idempotent intersection types. Logical Methods in Computer Science, 14(3), 2018.

10 Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types for
the lambda-calculus. Logic Journal of the IGPL, 25(4):431–464, 2017.

11 Martin W. Bunder. The inhabitation problem for intersection types. In Theory of Computing
2008. Proc. Fourteenth Computing: The Australasian Theory Symposium (CATS 2008),
Wollongong, NSW, Australia, January 22-25, 2008. Proceedings, pages 7–14, 2008.

12 Mario Coppo and Mariangiola Dezani-Ciancaglini. A new type assignment for λ-terms. Arch.
Math. Log., 19(1):139–156, 1978.

13 Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic functionality
theory for the λ-calculus. Notre Dame Journal of Formal Logic, 21(4):685–693, 1980.

14 Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Functional characters of
solvable terms. Math. Log. Q., 27(2-6):45–58, 1981.

15 Boris Düdder, Moritz Martens, and Jakob Rehof. Staged composition synthesis. In Program-
ming Languages and Systems - 23rd European Symposium on Programming, ESOP 2014, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5-13, 2014, Proceedings, pages 67–86, 2014.

16 Andrej Dudenhefner and Jakob Rehof. Intersection type calculi of bounded dimension. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017, pages 653–665, 2017.

17 Andrej Dudenhefner and Jakob Rehof. Typability in bounded dimension. In 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June
20-23, 2017, pages 1–12, 2017.

18 Andrej Dudenhefner and Jakob Rehof. Principality and approximation under dimensional
bound. PACMPL, 3(POPL):8:1–8:29, 2019.

19 Joshua Dunfield. Elaborating intersection and union types. J. Funct. Program., 24(2-3):133–165,
2014.

20 Joshua Dunfield and Frank Pfenning. Type assignment for intersections and unions in call-
by-value languages. In Foundations of Software Science and Computational Structures, 6th
International Conference, FOSSACS 2003 Held as Part of the Joint European Conference on
Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings,
pages 250–266, 2003.

21 Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. Example-directed
synthesis: a type-theoretic interpretation. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg,
FL, USA, January 20 - 22, 2016, pages 802–815, 2016.

22 Timothy S. Freeman and Frank Pfenning. Refinement types for ML. In Proceedings of the
ACM SIGPLAN’91 Conference on Programming Language Design and Implementation (PLDI),
Toronto, Ontario, Canada, June 26-28, 1991, pages 268–277, 1991.

S. Broda 14:17

23 J.R. Hindley. Basic Simple Type Theory, volume 42 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1997.

24 S. Hirokawa. Infiniteness of proof (α) is polynomial-space complete. Theoretical Computer
Science, 206(1-2):331–339, 1998.

25 Jean-Louis Krivine. Lambda-calculus, types and models. Ellis Horwood series in computers
and their applications. Masson, 1993.

26 Toshihiko Kurata and Masako Takahashi. Decidable properties of intersection type systems.
In Typed Lambda Calculi and Applications, Second International Conference on Typed Lambda
Calculi and Applications, TLCA ’95, Edinburgh, UK, April 10-12, 1995, Proceedings, pages
297–311, 1995.

27 D. Kusmierek. The inhabitation problem for rank two intersection types. In Typed Lambda
Calculi and Applications, 8th International Conference, TLCA 2007, Paris, France, June
26-28, 2007, Proceedings, pages 240–254, 2007.

28 D. Leivant. Polymorphic type inference. In Proceedings of Principles of Programming Languages
(POPL’83), pages 88–98, New York, NY, USA, 1983. ACM Press.

29 Ralph Loader. The undecidability of lambda-definability.
30 Christian Mossin. Exact flow analysis. Mathematical Structures in Computer Science, 13(1):125–

156, 2003.
31 Jens Palsberg and Christina Pavlopoulou. From polyvariant flow information to intersection

and union types. J. Funct. Program., 11(3):263–317, 2001.
32 G. Plotkin. Lambda definability and logical relations, Technical Report Memorandum SAI-

RM-4, School of Artificial Intelligence, University of Edingburgh, (1973).
33 G. Pottinger. A type assignment for the strongly normalizable lambda-terms. In J. Hindley

and J. Seldin, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 561–577. Academic Press, 1980.

34 Steven J. Ramsay. Exact intersection type abstractions for safety checking of recursion schemes.
In Proceedings of the 16th International Symposium on Principles and Practice of Declarative
Programming, Kent, Canterbury, United Kingdom, September 8-10, 2014, pages 175–186, 2014.

35 Jakob Rehof and Pawel Urzyczyn. The complexity of inhabitation with explicit intersection.
In Logic and Program Semantics - Essays Dedicated to Dexter Kozen on the Occasion of His
60th Birthday, pages 256–270, 2012.

36 John C. Reynolds. Design of the Programming Language FORSYTHE, page 173–233.
Birkhauser Boston Inc., USA, 1997.

37 Sylvain Salvati. Recognizability in the simply typed lambda-calculus. In Logic, Language,
Information and Computation, 16th International Workshop, WoLLIC 2009, Tokyo, Japan,
June 21-24, 2009. Proceedings, pages 48–60, 2009.

38 Sylvain Salvati, Giulio Manzonetto, Mai Gehrke, and Henk Barendregt. Loader and urzyczyn
are logically related. In Automata, Languages, and Programming - 39th International Col-
loquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part II, pages 364–376,
2012.

39 R. Statman. Intuitionistic propositional logic is polynomial-space complete. Theoretical
Computer Science, 9:67–72, 1979.

40 M. Takahashi, Y. Akama, and S. Hirokawa. Normal proofs and their grammar. Information
and Computation, 125(2):144–153, 1996.

41 P. Urzyczyn. Inhabitation in typed lambda-calculi (a syntactic approach). In TLCA’97,
volume 1210 of LNCS, pages 373–389. Springer, 1997.

42 P. Urzyczyn. The emptiness problem for intersection types. Journal of Symbolic Logic,
64(3):1195–1215, 1999.

43 P. Urzyczyn. Inhabitation of low-rank intersection types. In TLCA’09, volume 5608 of LNCS,
pages 356–370. Springer, 2009.

44 Steffen van Bakel. Strict intersection types for the lambda calculus. ACM Comput. Surv.,
43(3):20:1–20:49, 2011.

CSL 2021

14:18 Pregrammars and Intersection Types

A Appendix

Proof of Lemma 3
Lemma 3. We have Γ |= M : θ if and only if there is a derivation of Γ `M : θ, such that
for every formula Γ′` N : τ in that derivation, either

τ is an intersection and Γ′ ` N : τ1∩· · ·∩τn (n ≥ 2) was derived from Γ′ ` N : τ1, . . . ,Γ′ `
N : τn by one application of rule (I∩);
or Γ′ ` N : τ was derived using one of the rules (var), (I→), or(E→).

Proof. For the if -part of the proof note that the resulting formula of an application of rule
(var) (resp. (E→)) in a `-derivation can be obtained by one derivation step with rule (var)
(resp. (E→)), followed by zero or one application of rule (E∩) in a |=-derivation. On the
other hand, rules (I→) and (I∩) are identical in both systems.

For the only if -part of the proof we proceed by induction on the length of the |=-derivation.
Suppose that Γ′ |= N : τ1 ∩ · · · ∩ τn was obtained by rule (var) because (x : τ1 ∩ · · · ∩ τn) ∈ Γ′.
If n = 1, then Γ′ ` N : τ1 can also be obtained by rule (var). Otherwise, Γ′ ` N : τ1 ∩ · · · ∩ τn
can be obtained by n applications of rule (var) followed by one application of (I∩). Since rules
(I→) and (I∩) are identical in both systems, it remains to consider a formula of the form
Γ′ |= xN1 · · ·NsNs+1 : ρ1 ∩ · · · ∩ ρn obtained from Γ′ |= xN1 · · ·Ns :σ → ρ1 ∩ · · · ∩ ρn and
Γ′ |= Ns+1 :σ by rule (E→). The corresponding formula Γ′ ` xN1 · · ·NsNs+1 : ρ1∩· · ·∩ρn can
be obtained by considering n copies of the derivations for Γ′ ` xN1 · · ·Ns :σ → ρ1 ∩ · · · ∩ ρn
and for Γ′ ` Ns+1 :σ. To each pair rule (E→) is applied, leading to derivations of Γ′ `
xN1 · · ·NsNs+1 : ρ1, . . . ,Γ′ ` xN1 · · ·NsNs+1 : ρn. Finally, Γ′ ` xN1 · · ·NsNs+1 : ρ1∩· · ·∩ρn
follows in one step using (I∩) for n > 1. J

In order to prove correctness of our method we first need to establish the precise cor-
respondence that exists between occurrences of subtypes and of variables and subterms in
inhabitants.

Variables, Subterms and Occurrences of Subtypes
Consider a term M , a type τ , and a derivation of ` M : τ . In the following we assign
occurrences of subtypes of τ to variables and terms in formulas Γ ` N :σ in that derivation.
This assignment will be used to establish the correctness of the pregrammars, that are defined
in the next section. Every x ∈ dom(Γ) is assigned a negative subpremise nsp(x) of τ . Term
N is assigned a positive subtype pst(N) of τ . Additionally, if Γ ` N :σ was derived by rule
(var) or (E→), then N is also assigned a negative subtype nst(N) of τ . The assignment is
such that pst(N) and nst(N) are occurrences of σ and for x ∈ dom(Γ) we have nsp(x) = Γ(x).

I Definition 24 (pst, nst, nsp). Consider a term M , a type τ ∈ T∩, and a derivation of
`M : τ with derivation tree Π. The assignment of nsp, nst and pst to occurrences of variables
and terms in the formulas, that appear in Π, is bottom-up, starting with `M : τ .

For the root `M : τ of Π, let pst(M) = τ3.
Consider Γ ` x : τi obtained by (var), where τ1 ∩ · · · ∩ τn = Γ(x), n ≥ 1 and i ∈ [1..n],
with nsp(x) = τ1 ∩ · · · ∩ τn and pst(x) = τi. We assign nst(x) to x on the right side of `,
choosing the negative occurrence of τi in nsp(x).

3 M is necessarily of the form λx.N , thus nst(M) is not defined.

S. Broda 14:19

Next, consider a formula Γ ` xN1 · · ·Nk : τi derived by (I→), with k > 0. Let Π′ be
the subtree of Π that derives that formula, pst(xN1 · · ·Nk) = τi and suppose that nsp(y)
is defined for all y ∈ dom(Γ). Consider the declaration x : ρ0 ∈ Γ. Then, there are
subtypes σ1, . . . , σk, ρ1, . . . , ρk, such that σj → ρj �∩ ρj−1 for j ∈ [1..k] and τi �∩ ρk.
Furthermore, formula Γ ` x :σ1 → ρ1 is first combined with a derived formula Γ ` N1 :σ1
(by some subtree Π1 of Π′). The resulting formula Γ ` xN1 :σ2 → ρ2 is then combined
with a derived formula Γ ` N2 :σ2 (by some subtree Π2 of Π′), etc. Contexts of formulas
in Π′ always contain Γ and the negative subpremises to variables in Γ in these formulas
will be those assigned to variables in the root of Π′, which is Γ ` xN1 · · ·Nk : τi. We now
successively assign, operating top down, negative subtypes to terms x, xN1, . . . , xN1 · · ·Nk,
as well as positive subtypes to terms N1, . . . , Nk, in the formulas in this part of the
tree. For x on the right side of Γ ` x :σ1 → ρ1 let nst(x) be the occurrence of σ1 → ρ1
in nsp(x) = ρ0. Now, suppose that formula Γ ` xN1 · · ·Nj−1 :σj → ρj is combined
with Γ ` Nj :σj, deriving Γ ` xN1 · · ·Nj : ρ′j, where ρ′j �∩ ρj and j ∈ [1..k]. Consider
nst(xN1 · · ·Nj−1) = σj → ρj (which is already assigned). Then, let pst(Nj) be the
occurrence of σj in nst(xN1 · · ·Nj−1) and let nst(xN1 · · ·Nj) be the negative occurrence
of the component ρ′j in σj → ρj (note that ρ′j �∩ ρj).
Consider Γ ` λx.N :σ → ρ derived from Γ ∪ {x :σ} ` N : ρ by (I→) and pst(λx.N) =
σ → ρ. Then, for Γ ∪ {x :σ} ` N : ρ let pst(N) be the occurrence of ρ in pst(λx.N).
If x ∈ dom(Γ), then nsp(x) is already defined. Otherwise, let nsp(x) be the negative
occurrence of σ in pst(λx.N).
Now, consider Γ ` N : τ1 ∩ · · · ∩ τn derived from Γ ` N : τ1, . . . ,Γ ` N : τn, (n > 1) by rule
(I∩). Then, nsp(x) is already defined for all x ∈ dom(Γ), as well as pst(N) = τ1 ∩ · · · ∩ τn.
To the occurrence of N in Γ ` N : τi we assign the positive occurrence of τi in pst(N).

Besides of the operations on tuples of updating and replication we also need to define an
operation of contraction.

I Definition 25 (Contraction). Contracting k ≥ 2 positions starting at position i in ~m =
(m1, . . . ,mt) is denoted by ~m[i, k ↓] for i+ k ≤ t and defined by

~m[i, k ↓] = (m1, . . . ,mi,mi+k, . . . ,mt).

Given an object E, possibly containing placeholders, let E[i, k ↓] denote the result of applying
operation [i, k ↓] to all placeholders in E. Then, E[i, k][i, k ↓] = E.

Proof of Theorem 10
Theorem 10 shows correctness of ↪→, where ~k|i denotes the projection of the ith coordinate
of a tuple ~k.
Theorem 10. Nhabs(τ) = {M | (M : n(τ)) ↪→∗ ε }.

Proof.
(⊆) Consider a derivation tree of ` M : τ and an occurrence of a formula Ψ of the form
Γ ` N : ρ in derivation tree Π, where Γ = {x1 :σ1, . . . , xs :σs}. Let n−i = n(nsp(xi)) ∈ N(τ)
for i ∈ [1..s], and m+ = n(pst(N)), according to Definition 24. Then, t(ni) = σi for i ∈ [1..s]
and t(m) = ρ. We show by induction that (N [Γ] :m) ↪→∗ ε, using N [Γ] as an abbreviation
for N [n1/x1, · · · , ns/xs].

Suppose that Ψ was obtained by rule (var), i.e. N = xi, σi = σ1
i ∩ · · · ∩ σli and ρ = σji

for some j ∈ [1..l]. For ni = n(σi) and nji = n(σji), we have m+ ≡occT n
j
i and n

j
i �∩ ni, and

consequently m := ni ∈ pre(τ). Thus, (N [Γ] :m) = (ni :m) ↪→ ε.

CSL 2021

14:20 Pregrammars and Intersection Types

Next, consider a formula Ψ of the form Γ ` xiN1 · · ·Nk : ρ derived by (I→), with k > 0.
The derivation of Ψ results from successively applying rule (I→) to Γ ` xi : δ1 → ρ1 and
Γ ` N1 : δ1, to Γ ` xN1 : δ2 → ρ2 and Γ ` N2 : δ2, . . . , to Γ ` xN1 · · ·Nk−1 : δk → ρk
and Γ ` Nk : δk. Then, δ1 → ρ1 �∩ σi, δj → ρj �∩ ρj−1 for j ∈ [2..k], and ρ �∩ ρk.
Consider the identifiers of the subtypes assigned to terms in these formulas according to
Definition 24. Let cj = n(nst(xiN1 . . . Nj)) for j ∈ [0..k], and qj = n(pst(Nj)) for j ∈ [1..k].
Furthermore, let pj be the identifier of the occurrence of ρj in t(cj−1) = δj → ρj for j ∈ [1..k].
Then, m+ ≡occT ck �∩ pk �qk ck−1 �∩ . . . �∩ p2 �q2 c1 �∩ p1 �q1 c0 �∩ ni. We
conclude that m := ni q1 · · · qk ∈ pre(τ). Thus, (N [Γ] :m) = (ni(N1[Γ]) · · · (Nk[Γ]) :m) ↪→
(N1[Γ] : q1), . . . , (Nk[Γ] : qk)
↪→∗ ε.

Let Ψ be Γ ` λx.N ′ :σ → δ obtained by rule (I→) from Γ′ ` N ′ : δ, where Γ′ = Γ∪{x :σ}.
For Ψ we have m+ = n(pst(λx.N ′)). Consider for Γ′ ` N ′ : δ the identifiers k− = n(nsp(x))
and n+ = n(pst(N)). Then, n �k m, and consequently m := λk.n ∈ pre(τ). Thus,
((λx.N ′)[Γ] :m) ↪→ (N ′[Γ][k/x] :n) = (N ′[Γ′], n) ↪→∗ ε.

Finally, consider Γ ` N : τ1 ∩ · · · ∩ τk derived from Γ ` N : τ1, . . . ,Γ ` N : τk by rule by
(I∩), for some k > 1. Let m+ = n(pst(N)) and ni = n(pst(N)) in formulas Γ ` N : τi, for
i ∈ [1..k]. Then, m := (n1, . . . , nk) ∈ pre(τ). Thus, (N [Γ] :m) ↪→ (N [Γ][1, k] : (n1, . . . , nk)).
By induction (N [Γ] :ni) ↪→∗ ε, for i ∈ [1..k]. These rewriting sequences are, but for
applications of rule 1 which creates replications in corresponding places, determined by the
structure of N [Γ] and can be combined to a rewriting sequence from (N [Γ][1, k] : (n1, . . . , nk))
to ε.

(⊇) For the other inclusion consider a term M , such that (M : n(τ)) ↪→∗ ε. Let (E : ~m)
be any pair appearing in the corresponding rewriting sequence, where E is an extended term
and ~m = (m1, . . . ,mk). Furthermore, consider ~P = {~p1, . . . , ~pl}, the set of placeholders that
occur in E, and let us interpret each tuple in ~P as the name of a term variable. We will show,
by induction on the length of (E, ~m) ↪→∗ ε, that for all i ∈ [1..k] we have Γi ` E : t(~m|i),
where the projection |i is defined by (s1, . . . , sk)|i = si and Γi = {~p1 : t(~p1|i), . . . , ~pl : t(~pl|i)}.
In particular, it follows that `M : τ .

Suppose that (E : ~m) ↪→ (E[j, t] : ~m′), with ~m′ =
~m[(s1, . . . , st)/j] = (m1, . . . ,mj−1, s1, . . . , st,mj+1, . . . ,mk), because mj := (s1, . . . , st) ∈
pre(τ), for some j ∈ [1..k]. For this last pair the set of placeholders is now ~P ′ =
= {~p1[j, t], . . . , ~pl[j, t]}. If j 6= i, let i′ be the new position of mi in ~m′, which is i if i < j,
and equal to i+ t− 1 if i > j. Then, Γi′ = {~p1[j, t] : t(~p1[j, t]|i′), . . . , ~pl[j, t] : t(~pl[j, t]|i′)} =
{~p1[j, t] : t(~p1|i), . . . , ~pl[j, t] : t(~pl|i)}. By the induction hypothesis, Γi′ ` E[j, t] : t(~m′|i′). This,
means that Γi ` E : t(~m|i), because ~m|i = ~m′|i′ and the only change in both formulas
is the name of variables (from ~ph to ~ph[j, t]). If i = j, then we have Γi ` E : t(~m|i) if
Γ′i ` E[i, t] : t(sr) for all r ∈ [1..t], where Γ′i = {~p1[i, t] : t(~p1|i), . . . , ~pl[i, t] : t(~pl|i)}. It follows
from the induction hypothesis (note that the position of sr in ~p[i, t] is i+ r − 1) that for
Γri = {~p1[i, t] : t(~p1[i, t]|i+r−1), . . . , ~pl[i, t] : t(~pl[i, t]|i+r−1)} we have Γri ` E[i, t] : t(sr) for all
r ∈ [1..t]. But, Γ′i = Γri and the result holds.

Now, suppose that (λx.E : ~m) ↪→ (N [~v/x] :~n) because mj := λvj .nj ∈ pre(τ), for all
j ∈ [1..k], where ~v = (v1, . . . , vk) and ~n = (n1, . . . , nk). In particular, mi := λvi.ni ∈ pre(τ)
and t(mi) = t(vi)→ t(ni). By the induction hypothesis Γi ∪{~v : t(vi)} ` E[~v/x] : t(ni). Thus,
Γi ` λ~v.E[~v/x] : t(~m|i), but λ~v.E[~v/x] ≡α λx.E.

Finally, consider (~v E1 · · ·Es : ~m) ↪→ (E1 : ~n1), . . . , (Es : ~ns) with s ≥ 0, because ~v =
(v1, . . . , vk), and mj := vj n

j
1 · · ·njs ∈ pre(τ), for all j ∈ [1..k]. In particular, we have

~m|i = mi := vi n
i
1 · · ·nis ∈ pre(τ). It follows from Definition 5 that there is a sequence of

identifiers such that

m+
i ≡occT cs �∩ qs� cs−1 �∩ . . . �∩ q1 � c0 �∩ v−i ,

S. Broda 14:21

and lab(qt, ct−1) = nit for t ∈ [1..s]. Then, t(mi) = t(cs) �∩ t(qs), t(cs−1) = (t(nis) →
t(qs)), . . . , t(c0) = (t(ni1) → t(q1)) �∩ t(vi). We have ~v : t(vi) ∈ Γi. Thus, Γi ` ~v : t(ni1) →
t(q1) by (var). By the induction hypothesis, ΓE1 ` E1 : t(ni1), where ΓE1 is the restriction of
Γi to the free variables (placeholders) in E1. Thus we also have Γi ` E1 : t(ni1) and by rule
(E→) and (t(ni2)→ t(q2)) �∩ t(q1) it follows that Γi ` ~v E1 : t(ni2)→ t(q2), etc. Repeating
this process we conclude that Γi ` ~v E1 · · ·Es : t(cs) = t(mi) = t(~m|i). J

Proof of Theorem 13
I Definition 26. For a particular rewriting sequence of
(∅ : n(τ)) ∗ ε, where in each step the combination of rewriting rules applied is given, we
define a function pair that computes for each (~V : ~m) in that rewriting sequence a tuple
(~Γ,M) = pair(~V : ~m), where M is an extended term and ~Γ a set of placeholders with the arity
of ~m. The function pair is recursively defined as follows.
1. Let ~n = (n1, . . . , nk) and suppose that

(~V : ~m) (~V [i, k] : ~m[~n/i]) because mi := ~n ∈ pre(τ), for some i ∈ [1..t] and k ≥ 2. If
pair((~V [i, k] : ~m[~n/i]) = (~Γ,M), then pair(~V : ~m) = (~Γ[i, k ↓],M [i, k ↓]).

2. If (~V : ~m) (~V ∪{~k} :~n) because mi := λki.ni ∈ pre(τ), for all i ∈ [1..t], ~k = (k1, . . . , kt)
and ~n = (n1, . . . , nt), then pair(~V : ~m) = (~Γ\{~k}, λ~k.N), where (~Γ, N) = pair(~V ∪{~k} :~n).

3. If (~V : ~m) (~V : ~n1), . . . , (~V : ~ns), because
mi := ki n

i
1 · · ·nis ∈ pre(τ), for all i ∈ [1..t], ~k = (k1, . . . , kt) ∈ ~V , and ~nj = (n1

j , . . . , n
t
j),

then pair(~V : ~m) = ({~k} ∪ ~Γ1 ∪ · · · ∪ ~Γs ,~k N1 · · ·Ns), where (~Γj , Nj) = pair(~V : ~nj), for
1 ≤ j ≤ s (s ≥ 0).

The correctness of function pair is stated in the following lemma.

I Lemma 27. Suppose that (~V : ~m) ∗ ε for ~m = (m1, . . . ,mt), (t ≥ 1), and for some
particular rewriting sequence (~Γ,M) = pair(~V : ~m). Let ~Γ|i denote the context { ~p|i : t(~p|i) |
~p ∈ ~Γ }. Furthermore, let M |i be the result obtained by replacing every placeholder ~v in M
by ~v|i. Then, ~Γ|j `M |j : t(~m|j), for all j ∈ [1..t].

Proof. By induction on the length of the rewriting sequence. Let ~n = (n1, . . . , nk) and
suppose that (~V : ~m) (~V [i, k] : ~m[~n/i]) because mi := ~n ∈ pre(τ), for some i ∈ [1..t]
and k ≥ 2. Furthermore, let pair(~V : ~m) = (~Γ[i, k ↓],M [i, k ↓]), for pair(~V [i, k] : ~m[~n/i]) =
(~Γ,M). First, consider j 6= i (j ∈ [1..t]) and let j′ be the position of mj in ~m[~n/i] =
(m1, . . . ,mi−1, n1, . . . , nk,mi+1, . . . ,mt). By induction, we have ~Γ|j′ ` M |j′ : t(~m[~n/i]|j′).
But (~Γ|j′ ,M |j′) = (~Γ[i, k ↓]|j ,M [i, k ↓]|j) and t(~m[~n/i]|j′) = t(~m|j). For j = i note
that t(mi) = t(n1) ∩ · · · ∩ t(nk). It follows from the induction hypothesis that ~Γ|i+r−1 `
M |i+r−1 : t(~m[~n/i]|i+r−1) for all r ∈ [1..k]. But, (~Γ|i+r−1,M |i+r−1) = (~Γ[i, k ↓]|i,M [i, k ↓]|i)
and t(~m[~n/i]|i+r−1) = t(nr). Thus, by rule (∩I) we have ~Γ[i, k ↓]|i `M [i, k ↓] : t(mi).

Now suppose that (~V : ~m) (~V ∪ {~k} :~n), where ~k = (k1, . . . , kt) and ~n = (n1, . . . , nt)
and such that mi := λki.ni ∈ pre(τ), for all i ∈ [1..t]. For j ∈ [1..t] we have t(~m|j) = t(~k|j)→
t(~n|j). Let pair(~V ∪ {~k} :~n) = (~Γ, N) and consider pair(~V : ~m) = (~Γ \ {~k}, λ~k.N). By the
induction hypothesis ~Γ|j ` N |j : t(~n|j). Since ~Γ|j ∪ {~k|j : t(~k|j)} is consistent by definition, it
follows that ~Γ|j\{~k|j : t(~k|j)} ` λ~k|j .(N |j) : t(~k|j)→ t(~n|j). But ~Γ|j\{~k|j : t(~k|j)} = (~Γ\{~k})|j
and λ~k|j .(N |j) = (λ~k.N)|j .

Finally suppose that (~V : ~m) (~V : ~n1), . . . , (~V : ~ns), because mi := ki n
i
1 · · ·nis ∈ pre(τ),

for all i ∈ [1..t], ~k = (k1, . . . , kt) ∈ ~V , and ~nj = (n1
j , . . . , n

t
j), (Â§1 ≤ j ≤ s). Let (~Γh, Nh) =

pair(~V : ~nh), for 1 ≤ h ≤ s (s ≥ 0). Consider pair(~V : ~m) = (~Γ,~k N1 · · ·Ns), where ~Γ =

CSL 2021

14:22 Pregrammars and Intersection Types

{~k}∪ ~Γ1∪· · ·∪ ~Γs. By definition ~Γ|j is consistent. It follows from the induction hypothesis that
~Γh|j ` Nh|j : t(~nh|j). On the other hand, ~Γ|j ` ~k|j : t(~k|j). Now, it remains to apply the same
argument as in the proof of Theorem 10 to conclude that ~Γ|j ` (~k N1 · · ·Ns)|j : t(~m|j). J

Theorem 13. Nhabs(τ) 6= ∅ if and only if (∅ : n(τ)) ∗ ε.

Proof. The ’if’ part follows from Lemma 27. For the ’only if’ part consider a term P such
that ` P : τ . By Theorem 10 there exists a ↪→-rewriting sequence, such that (P : n(τ)) ↪→∗ ε.
We show, by induction on its length, that for each pair (M : ~m) in that sequence we have
(FV(M) : ~m) ∗ ε, where M is an extended term with placeholders figuring as names for
term variables. In this part of the proof we also use the fact that (~V , ~p) ∗ ε implies
(~V ′, ~p) ∗ ε, whenever ~V ⊆ ~V ′. If (M : ~m) ↪→ (M [i, k] : ~m[~n/i]), then (FV(M) : ~m)
(FV(M)[i, k] : ~m[~n/i]) = (FV(M [i, k]) : ~m[~n/i]) and the result follows from the induction
hypothesis. If (λx.N : ~m) ↪→ (N [~k/x] :~n), then (FV(λx.N) : ~m) (FV(λx.N) ∪ {~k} :~n). But
FV(N [~k/x]) ⊆ FV(λx.N)∪ {~k} and the result follows from the induction hypothesis. Finally,
if (~k N1 · · ·Ns : ~m) ↪→ (N1 : ~n1), . . . , (Ns : ~ns), then (FV(~k N1 · · ·Ns) : ~m)
 (FV(~k N1 · · ·Ns) : ~n1), . . . , (FV(~k N1 · · ·Ns) : ~ns). Again FV(Nj) ⊆ FV(~k N1 · · ·Ns) and
the result holds by induction. J

Proof of Proposition 16
Proposition 16. Let τ be a strict intersection type. Then, there exists M such that M
can be typed with τ at bounded multiset dimension ≤ p (denoted by p M : τ) if and only if
τ ∈ INHp.

Proof. We consider the decision procedure J given in [16], Section 6.1. The procedure
transforms multisets of constraints of the form C = 〈Γ1 `? : γ1, . . . ,Γn `? : γn〉, where all
Γi’s have the same domain and each γi is strict and not an intersection. Such a multiset
is referred to as a configuration of the decision procedure. Consider a configuration C as
above with dom(Γi) = {x1, . . . , xk}. Regarding some particular order in the multiset (for
instance 1, . . . , n) we associate the pair C∇ = (~V : ~m), where ~m = (n(γ1), . . . , n(γn)) and
~V = { (n(Γ1(xi)), . . . , n(Γn(xi))) | xi ∈ [1..k] }. In the other direction, let (~V : ~m)4 =
({~v1, . . . , ~vk} : (m1, . . . ,mn))4 = 〈Γ1 `? : t(m1), . . . ,Γn `? : t(mn)〉, where Γi(xj) = t(~vj |i),
for i ∈ [1..n] and j ∈ [1..k]. We have that dim(C∇) equals the number of constraints in
multiset C, and the same is true for a pair (~V , ~m) and configuration (~V , ~m)4.

Transformation step 1 of procedure J corresponds to an application of rule 2 by algorithm
I. Since in strict types intersections are not allowed on the right side of →, rule 1 never
applies right after rule 2. On the other hand, transformation step 2 in J corresponds to an
application of rule 3, followed subsequently by all possible applications of rule 1 (which is
incompatible with the remaining two rules) by algorithm I.

Now, using these conversions from configurations4 to pairs and back, it remains to show
by induction on the height of trees that for every accepting computation tree TJ〈`? : τ1,...,`? : τn〉
determined by a run of J (cf. [16]) there is an accepting computation tree Π for τ = τ1∩· · ·∩τn
by I, and vice-versa. The height of Π is typically O(|τ |) · h, where h is the height of TJ〈`? : τ〉,
due to the fact that each step 2 of J corresponds to an application of rule 3 followed by all
possible (≤ |τ |) applications of rule 1 by I. J

4 For conversion ·∇ one has to consider in each step a convenient order in C.

Learning Automata and Transducers:
A Categorical Approach
Thomas Colcombet
IRIF, CNRS, Paris, France
https://www.irif.fr/~colcombe/
thomas.colcombet@irif.fr

Daniela Petrişan
IRIF, Université de Paris, France
https://www.irif.fr/~petrisan/
daniela.petrisan@irif.fr

Riccardo Stabile
Università degli Studi di Milano, Dipartimento di Matematica, Italy
riccardo.stabile@yahoo.com

Abstract
In this paper, we present a categorical approach to learning automata over words, in the sense of the
L∗-algorithm of Angluin. This yields a new generic L∗-like algorithm which can be instantiated for
learning deterministic automata, automata weighted over fields, as well as subsequential transducers.
The generic nature of our algorithm is obtained by adopting an approach in which automata
are simply functors from a particular category representing words to a “computation category”.
We establish that the sufficient properties for yielding the existence of minimal automata (that
were disclosed in a previous paper), in combination with some additional hypotheses relative to
termination, ensure the correctness of our generic algorithm.

2012 ACM Subject Classification Theory of computation → Algebraic language theory; Theory of
computation → Transducers

Keywords and phrases Automata, transducer, learning, category

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.15

Related Version A full version of the paper is available at [14], https://arxiv.org/abs/2010.13675.

Funding Thomas Colcombet: Supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No.670624)
and the DeLTA ANR project (ANR-16-CE40-0007).
Daniela Petrişan: Supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No.670624) and the DeLTA
ANR project (ANR-16-CE40-0007).
Riccardo Stabile: Supported by the European Commission under the Erasmus+ programme for a
five-month study period at Université de Paris.

1 Introduction

Learning automata is a classical subject at the intersection of machine learning and automata
theory. It has found a wide range of applications spanning from adaptive model checking,
compositional verification to learning network invariants or interface specifications for Java
classes. We refer the reader to [18] and the references therein for a survey of such applications.

The most famous learning algorithm for automata is certainly the L∗-algorithm of Angluin
[1]. Its goal is to learn a regular language of words L. For this, the algorithm interacts with
a teacher (an oracle) who knows L by asking two kinds of queries:

© Thomas Colcombet, Daniela Petrişan, and Riccardo Stabile;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 15; pp. 15:1–15:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-6529-6963
https://www.irif.fr/~colcombe/
mailto:thomas.colcombet@irif.fr
https://orcid.org/0000-0001-9712-930X
https://www.irif.fr/~petrisan/
mailto:daniela.petrisan@irif.fr
mailto:riccardo.stabile@yahoo.com
https://doi.org/10.4230/LIPIcs.CSL.2021.15
https://arxiv.org/abs/2010.13675
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Learning Automata and Transducers: A Categorical Approach

Membership query it can ask whether a given word belongs to L, or
Equivalence query it can provide a hypothesis automaton and ask the teacher whether this

automaton recognizes L or not. If the answer is no, the teacher is bound to provide a
counter-example word, witnessing the non-equivalence.

The algorithm stops when the teacher agrees that the hypothesis automaton recognizes the
language L. A key property of the L∗-algorithm is that it terminates in time polynomial in
the size of the alphabet, of the minimal deterministic automaton for L, and of the longest
counter-example. Furthermore, all candidate automata appearing during its execution (and
hence in particular the final one) are deterministic, complete, and minimal.

The L∗-algorithm

Let us illustrate the behaviour of this algorithm when it tries to learn the language {a} over
the alphabet Σ = {a}. At each step, the algorithm maintains two sets of words Q,T , starting
with Q = {ε}, T = {ε}. One can understand Q as a set of words which identify states of the
hypothesis automaton under construction. The set T is used in order to discover if words
need to be distinguished by the automaton: two words u, v ∈ Σ∗ are T -equivalent if for
all t ∈ T , ut ∈ L if and only if vt ∈ L.

At the beginning, the algorithm attempts to construct an automaton with as sole state
ε ∈ Q, which has to be initial. In particular, the target of the transition labelled a issued
from ε has to be determined. Such a transition should go to a state in Q which has to be
T -equivalent to εa = a. It fails since there are no such states in Q (we say that the pair Q,T
fails to have the closedness property). The algorithm corrects it by adding the word a to Q.
We reach Q = {ε, a}, T = {ε}. The algorithm now tries to construct an automaton with
states Q = {ε, a}: this time, it is possible to construct an a-labelled transition from ε ∈ Q
to a ∈ Q. What should now be the a-labelled transition issued from a? It should be
some state q ∈ Q which is T -equivalent to aa. Luckily, there is one, namely ε. Hence,
we succeed in constructing the left hypothesis automaton in Figure 1. The algorithm now

ε a

a

a

ε a aa
a a

a

Figure 1 Two successive hypothesis automata.

queries for equivalence of the language of this automaton with the language. This fails
since a(aa)∗ 6= L = {a}, and hence the teacher answers in return a counter-example word,
say aaa. The algorithm then adds (for reasons that are not detailed here) the prefix aa of aaa
to Q, yielding Q = {ε, a, aa}, T = {ε}. Here, ε and aa are T -equivalent, but constructing an
a-labeled transition from ε would yield a, while constructing one from aa would yield aaa,
which is T -equivalent to ε. Hence, ε and aa cannot be merged as a same state (we say that
Q,T fails to have the consistency property). The algorithm compensates it by adding a to T ,
thus yielding Q = {ε, a, aa} and T = {ε, a}. Now, Q,T are both closed and consistent, and
the right hypothesis automaton in Figure 1 is constructed. It recognizes {a}, and thus the
teacher agrees and the algorithm terminates. It has constructed the minimal deterministic
and complete automaton for the language L = {a}.

This example witnesses the different steps involved in the algorithm: (a) if (Q,T) is not
closed, a word is added to Q, (b) if (Q,T) is not consistent, a word is added to T , and (c)
when (Q,T) is both closed and consistent, it is possible to construct a hypothesis automaton

T. Colcombet, D. Petrişan, and R. Stabile 15:3

and perform an equivalence query: if this automaton happens to not accept the expected
language, the teacher provides a counter-example word from which words to add to Q are
constructed. The algorithm functions by performing the operation until the teacher agrees.

The correctness of the algorithm bears many resemblances with the question of minimizing
deterministic automata. This can be witnessed in the fact that the L∗-algorithm automatically
constructs minimal deterministic and complete automata. It can also be witnessed in the
fact that the T -equivalences induce along the run finer and finer partitions of the words that
converge eventually to the Myhill-Nerode equivalence, another notion highly connected to
minimization questions.

The L∗-algorithm turns out to be extremely robust, and has been extended to various
other forms of automata (weighted automata over fields [5, 6], nominal automata [19],
omega automata [3], non-deterministic automata [9], alternating automata [2], symbolic
automata [15], subsequential transducers [24,25], transducers of trees [7,8]). Although with a
focus on concrete implementations, Bollig et al. [10] emphasize that “the need for a unifying
framework collecting various types of learning techniques is, thus, beyond all questions.”

Contributions

The aim of this paper is to present such a unifying framework for learning word automata
using the toolkit of category theory. Concretely, we provide an abstract categorical version
of Angluin’s L∗-algorithm, called FunL∗ (Algorithm 1), we prove its correctness and termina-
tion (Theorem 26), and we give three running instantiations for it, namely in the case of
deterministic automata, field weighted automata and subsequential transducers.

To this end, we reuse the framework developed in [13] which models automata as functors
from an input category I (describing the structure of the computation) to an output category
C. For example, to model word automata, the input category is a fixed three-object category
IA∗ , that we will recall in Section 2. By varying the category C, this definition captures several
forms of automata, and in particular the ones mentioned above. In [13], we present sufficient
conditions on C that guarantee the existence of minimal automata. These conditions are
quite mild: C should have certain products and coproducts, on one hand, and a factorization
system, on the other. Apart from these three conditions on the output category, Theorem 26
– which states that our new algorithm computes the minimal automaton for the language to
be learned – requires only one additional assumption which ensures termination, namely a
‘finiteness’ hypothesis (using the notion of noetherianity).

In order to describe our generic FunL∗ algorithm we provide abstract versions of the steps
of the L∗-algorithm described above. These are obtained as follows:

We describe the pair of sets of words (Q,T) using a four-object category IQ,T , introduced
in Definition 15. This category is a modification of IA∗ , which allows us to obtain a
partial view of the language, namely only its values on words of the form qt and qat with
q ∈ Q, t ∈ T and a a letter in the alphabet.
Computing the approximations of the Myhill-Nerode equivalence (that is, the T -
equivalence relations) roughly corresponds in our generic setting to performing a
minimization-like computation. This is achieved using off-the-shelf results from [13]
by changing the input category from IA∗ to IQ,T . We obtain a form of minimal “biauto-
maton” featuring an ε-transition between its two state objects.
The pair (Q,T) being closed and consistent amounts to the ε-transition of the above
biautomaton being an isomorphism between the two state objects. We then say that the
pair (Q,T) is L-automatable. Under this assumption, it is meaningful to collapse the
two state objects, defining in this way the hypothesis automaton (represented now as a
functor IA∗ → C).

CSL 2021

15:4 Learning Automata and Transducers: A Categorical Approach

What is interesting about our FunL∗-algorithm – compared to previous approaches – is
that it highlights the strong relationship between learning and minimizing automata. Each
elementary step of the algorithm involves performing a minimization-like computation and
leverages the modularity of our previous work [13], this time by varying the input category.
In contrast to other category theoretic approaches to learning, FunL∗ does not rely neither on
algebras nor on coalgebras. Instead, we exploit the symmetry of the word automata model.
This is reflected by the self-duality of the input category IA∗ , which is underpinning the well
known duality between observability and reachability.

Finally, a prominent instantiation of the FunL∗-algorithm is Vilar’s learning algorithm
of subsequential transducers [24]. Our notion of L-automatable pairs (Q,T) perfectly
instantiates to the conditions considered by Vilar to construct a hypothesis transducer. A
coalgebraic modelisation of subsequential transducers was provided in [16], but, to the best
of our knowledge, this example is not featured in the category theoretic learning literature.

Related works

We briefly review the (co)algebraic approaches to automata learning that have been proposed
in recent years. The paper [17] was the first to recast key ingredients of Angluin’s algorithm
in a coalgebraic setting. This line of work was continued with the CALF framework of van
Heerdt et.al [22], which models automata as triples consisting of an algebra for a functor, an
initial map and an output map. In [22, Section 5] a connection between minimization and
learning is mentioned and formalized for DFAs. More precisely, the main theorem proving the
correctness of the learning algorithm [22, Theorem 16] can be used to show the correctness
of the minimization algorithm for DFA, with reachability and observability playing a crucial
role. The same authors proposed in [23] a learning algorithm for automata with side-effects.
These are extensions of DFAs to automata interpreted in a category of Eilenberg-Moore
algebras for a Set monad T – used to represent a certain side effect. For example, the finite
powerset monad corresponds to non-determinism and the ensuing automata model serves
to represent non-deterministic automata. In order to prove the termination of the learning
algorithm, the monad T above is assumed to preserve finite sets. Hence the monad that we
use in the present work to model subsequential transducers does not fit in the scope of [23].
Another small difference is that we work within the Kleisli category.

Another category theoretic learning algorithm was proposed in [4] and provides a coal-
gebraic and duality theoretic foundation for learning bisimilarity quotients of state-based
transition systems. The core idea is to use logical formulas as tests, taking stock of dual
adjunctions between states and logical theories, formalized as algebra-coalgebra dualities.

The recent paper [21] gives a learning algorithm for automata whose transitions can be
encoded both as algebras for a functor F on a category C, and as coalgebras for the right
adjoint of F (assumed to exist). The approximations of the Myhill-Nerode equivalence present
in the learning algorithm are computed using factorizations of morphisms from approximations
of an initial algebra (obtained using an initial chain) to approximations of a final coalgebra
(obtained using a final co-chain). Some of the ingredients of this category theoretic algorithm
are similar to ours, e.g. the heavy use of factorization systems or the notion of “finite” object
in a category, however, there are more assumptions on the underlying category and on the
preservation properties of the adjoint functors considered in the (co)-algebraic definition of
the automata, see [21, Assumption 3.5] and [21, Assumption 4.1].

T. Colcombet, D. Petrişan, and R. Stabile 15:5

Structure of the paper

In Section 2, we present necessary material from [13], which includes in particular the
categorical modeling of automata, its instantiation for deterministic finite automata, for
field weighted automata and for subsequential transducers, and how to minimize them. This
material is key in our description of the algorithm in Section 3. For simplicity, we describe
first a slightly simplified version of the algorithm. The optimized version is the presented
in [14, Appendix C]. Section 4 concludes.

2 Minimization

In this section, we recall the categorical approach to automata minimization from [12,13].

2.1 Languages and automata as functors
We first recall the notion of automata as functors. We consider an arbitrary small category
I, called the input category, and one of its full subcategories O, denoting by i the inclusion
functor: O I.i Intuitively, I represents the the inner computations performed by
an automaton, and in particular its internal behaviour, while O represents the observable
behaviour of the automaton and is used to define the language it accepts.

We consider another category C, called the output category, which models the output
computed by the automaton (e.g., a boolean value, probabilities, words over an alphabet).

I Definition 1. A C-automaton (or simply an automaton) A is a functor from I to C. A
C-language (or simply a language) L is a functor from O to C. A C-automaton A accepts a
C-language L if A ◦ i = L.

We denote by Auto(L) the subcategory of the functor category [I, C]:
whose objects are all C-automata A accepting L;
whose arrows are C-automata morphisms, meaning natural transformations α : A1 ⇒ A2
such that α ◦ idi = idL.

In this paper, we will instantiate the input category I in two ways. The first one, IA∗ , is
used in [12] to model different forms of word automata; we describe it in this section and use
it for modeling the three running instantiations. In Section 3, we will consider another input
category, IQ,T , which we use in the process of constructing our hypothesis automata.

in st out..

a

/

We define now the input category IA∗ used for describing word automata. Here A is a
finite alphabet, fixed for the rest of the paper, and A∗ the set of words over it. The input
category IA∗ is the category freely generated by the graph on the right, where a ranges over
A: That is, IA∗ is the three-object category with arrows spanned by ., / and a for all a ∈ A,
so that the composition st st stw w′ is given by the concatenation ww′. So, for
example, the morphisms in IA∗ from in to st are of the form .w with w ∈ A∗, while the
morphisms on the object st are of the form w with w ∈ A∗.

Let OA∗ denote the full subcategory of IA∗ on the objects in and out. Its morphisms are
of the form in out.w/ for w ∈ A∗.

CSL 2021

15:6 Learning Automata and Transducers: A Categorical Approach

Hereafter, by a language we mean a functor from OA∗ to C and by an automaton we
mean a functor from IA∗ to C. If L(in) = X and L(out) = Y , a language L will be referred
to as a (C, X, Y)-language; if A(in) = X and A(out) = Y , an automaton A will be called a
(C, X, Y)-automaton. We provide three running instantiations of the output category C and
of the objects X and Y , in order to model deterministic automata, field weighted automata
and subsequential transducers.

I Example 2 (Deterministic automata). A deterministic and complete automaton is a
(Set, 1, 2)-automaton. Indeed, we can see a functor A : IA∗ → Set with A(in) = 1 and
A(out) = 2 as a deterministic automaton by interpreting
A(st) as its set of states,
A(.) : 1→ A(st) as choosing the initial state,
A(a) : A(st)→ A(st) as the transition map for the letter a ∈ A,
A(/) : A(st)→ 2 as the characteristic map of the subset of accepting states.

I Example 3 (Weighted automata over a field). Let K be a field and let Vec denote the
corresponding category of K-vector spaces and linear transformations. A weighted automaton
over the field K (in the sense of [20]) is a (Vec,K,K)-automaton. Indeed, a functor A : IA∗ →
Vec with A(in) = K and A(out) = K is seen as a weighted automaton over K by interpreting
A(st) as the vector space spanned by its states,
A(.) : K→ A(st) as the linear transformation mapping the unit of K to the initial vector,
A(a) : A(st)→ A(st) as the linear transformation transition for the letter a ∈ A,
A(/) : A(st)→ K as the output linear transformation.

I Example 4 (Subsequential transducers). The aim is to represent what we call transductions
in this paper, which are partial maps from A∗ to B∗, where B is some fixed output alphabet.
Roughly, a subsequential transducer [11] is a deterministic automaton which, at each step,
while reading an input letter from A, either has no transition or has a unique transition
which changes deterministically the state and outputs a word from B∗. In this paper, we
define subsequential transducers as (Kl(T), 1, 1)-automata [13], for a definition of Kl(T) that
we give now.

The output category Kl(T). Let T be the monad defined by T X = B∗ × X + 1
and let Kl(T) denote the Kleisli category for T . Concretely, the objects of Kl(T) are sets,
while its morphisms, denoted by negated arrows, are of the form f : X 9 Y for a function
f : X → T Y , that is, a partial function from X to B∗ × Y . We write ⊥ for the element of
the singleton 1 and think of it as the undefined element. Given f : X 9 Y and g : Y 9 Z,
their composite g ◦ f : X 9 Z is defined on x ∈ X by (uv, z), when f(x) = (u, y) ∈ B∗ × Y
and g(y) = (v, z) ∈ B∗ × Z (with uv denoting the concatenation of u and v in B∗) and
f(x) = ⊥ in all other cases. Note that with this definition, a transduction can be identified
in an obvious manner with a map from A∗ to arrows of the form 1 9 1.

We now recall that (Kl(T), 1, 1)-automata are equivalent to subsequential transducers in
the sense of Choffrut’s definition [11]. Indeed, we can see a functor A : IA∗ → Kl(T) with
A(in) = 1 and A(out) = 1 as a subsequential transducer by interpreting
A(st) as the set of states,
A(.) : 1 9 A(st) as either choosing an initial state together with an initial output in B∗
or having an undefined initial state,
A(a) : A(st) 9 A(st) as the transition map for the letter a which associates to a given
state either undefined or a pair consisting of an output word in B∗ and a successor state,
A(/) : A(st) 9 1 as the final map which associates to a state either its output in B∗ or
undefined when it is non-accepting.

T. Colcombet, D. Petrişan, and R. Stabile 15:7

2.2 Minimization of automata
Now we describe what it means to be minimal in a category (Definition 5) together with an
abstract result of existence of such an object (Lemma 6). We then provide sufficient material
for our three running instantiations to be covered.

Let K be a category endowed with a factorization system (E ,M). We write
for arrows belonging to E and we will call them E-quotients; we write for arrows
belonging toM and we will call themM-subobjects.

I Definition 5. Consider two objects X,Y of K. We say that X (E ,M)-divides Y whenever
X is an E-quotient of anM-subobject of Y , that is, we have a span of the form:

X · Y .

An object Z in K is (E ,M)-minimal if it (E ,M)-divides all the objects in K.

As shown in the following lemma, having an initial and a final object turns out to be a
sufficient condition for the minimal object to exist and be unique up to isomorphism.

I Lemma 6. Let K be a category endowed with an initial object I, a final object F and a
factorization system (E ,M). Let Min be the factorization of the unique arrow from I to F :

I Min F.

Then Min is (E ,M)-minimal.

We apply this lemma when K is instantiated with a category of automata Auto(L).

I Corollary 7. If the category Auto(L) has an initial automaton Ainit(L), a final automaton
Afinal(L) and a factorization system, then the minimal automaton Min(L) for the language
L is obtained via the following factorization: Ainit(L) Min(L) Afinal(L).

Notice that this notion of minimization is parametric in the factorization system. In all
our examples, we obtain a suitable factorization system on Auto(L) from one on C, as follows.

I Lemma 8. If a category C has a factorization system (E ,M), then the category Auto(L)
has a factorization system (EAuto(L),MAuto(L)), where EAuto(L) consists of all natural trans-
formations with components in E andMAuto(L) consists of all natural transformations with
components inM.

I Example 9 (factorization systems). There exists a factorization system in our three running
examples. For Set, this is the well known factorization system (Surjections, Injections).
Similarly in Vec, (Surjective linear maps, Injective linear maps) is a factorization system.

In the case of Kl(T), the factorization system does not follow from general arguments. We
define now the factorization system (EKl(T),MKl(T)) for Kl(T). Given a morphism f : X 9 Y

in Kl(T), we write π1(f) : X → B∗ + {⊥} and π2(f) : X → Y + {⊥} for the projections:
if f(x) = ⊥ then π1(x) = π2(x) = ⊥, otherwise f(x) = (π1(f)(x), π2(f)(x)).

The class EKl(T) consists of all the morphisms of the form e : X 9 Y such that π2(e) is
surjective (i.e. for every y ∈ Y there exists x ∈ X so that π2(e)(x) = y) and the classMKl(T)
consists of all the morphisms of the form m : X 9 Y such that π2(m) is injective and π1(m)
is the constant function mapping every x ∈ X to ε.

By [13, Lemma 4.8], (EKl(T),MKl(T)) is a factorization system.

We specialize the result of Corollary 7 to the case of word automata IA∗ → C. Due to
the special shape of the category IA∗ , we can compute the initial and the final automata,
provided the output category satisfies some mild assumptions, recalled in Lemmas 10 and 12.

CSL 2021

15:8 Learning Automata and Transducers: A Categorical Approach

I Lemma 10. Fix a language L : OA∗ → C. If the category C has countable copowers of
L(in), the initial automaton Ainit(L) exists and is given by the following data:
Ainit(L)(st) =

∐
A∗

L(in);

Ainit(L)(.) : L(in)→
∐
A∗

L(in) is given by the coproduct injection corresponding to ε, for

this reason we will denote this map by ε;
Ainit(L)(a) :

∐
A∗

L(in) →
∐
A∗

L(in) is given on the w-component L(in) by the coproduct

injection corresponding to wa;
Ainit(L)(/) :

∐
A∗

L(in) → L(out) is the coproduct of the morphisms L(.w/) : L(in) →

L(out) with w ∈ A∗, that is, it computes the value of the language on a given word, for
this reason we will also denote this map by L?.

I Example 11. Since the categories Set, Vec and Kl(T) have all copowers, the initial
automaton for a given language can be easily computed in these cases as an instance of the
above lemma. We recall the details for Set and Kl(T).

1 A∗ 2ε

w 7→wa

L? 1 A∗ 1/
(ε,ε)

/w 7→(ε,wa)

/L?

Given a language L : OA∗ → Set, the initial deterministic automaton accepting L is
described above in the left diagram. Its state space is the set of all words, with ε being
the initial one. A word is accepted if and only if it belongs to the language.
For a language L : OA∗ → Kl(T), the initial subsequential transducer accepting L is as
depicted in the right diagram. Its state space is A∗, the initial state is ε ∈ A∗ with initial
output ε ∈ B∗. For an input letter a ∈ A, the corresponding transition maps w to wa
and produces output ε ∈ B∗. Finally, the map L?, which is in fact a function from A∗ to
B∗+ 1, associates to a word w the value of the language at w, that is, the value computed
by L(.w/).

I Lemma 12. Fix a language L : OA∗ → C. If the category C has countable powers of L(out),
the final automaton Afinal(L) exists and is given by the following data:
Afinal(L)(st) =

∏
A∗

L(out);

Afinal(L)(.) : L(in)→
∏
A∗

L(out) is the product of the morphisms L(.w/) : L(in)→ L(out)

with w ∈ A∗, for this reason we will also denote this map by L;
Afinal(L)(a) :

∏
A∗

L(out) →
∏
A∗

L(out) is the product over w ∈ A∗ of the aw-projections∏
A∗

L(out)→ L(out);

Afinal(L)(/) :
∐
A∗

L(out) → L(out) is given by the ε-projection, for this reason we will

also denote this map by ε?.

I Example 13 (the final automata in Set, Vec and Kl(T)). Since the categories Set and Vec
have all products, the final automaton for a given language can be computed using Lemma 12.
We illustrate this for Set and Kl(T).

T. Colcombet, D. Petrişan, and R. Stabile 15:9

1 2A∗ 2L

K 7→a−1K

K 7→K(ε) 1 Irr(A∗, B∗) 1/
(lcp(L),red(L))

/K 7→(lcp(K),red(K))

/
K 7→K(ε)

Given a language L : OA∗ → Set, the final deterministic automaton accepting L is
described above in the left diagram. Its state space is the set of all languages over the
alphabet A. The initial state is the language L itself. A language is an accepting state if
and only if it contains ε. Given a language K, while reading letter a, the automaton goes
to the residual language a−1K = {u ∈ K | au ∈ K}.
Somewhat suprisingly, Kl(T)-automata also fit in the scope of Lemma 12, as we can
prove that the object Irr(A∗, B∗) (which we will define next) is the power of A∗-many
copies of 1 in Kl(T). Define first, given a transduction K, lcp(K) to be undefined if K
is nowhere defined, and the longest common prefix of the words in {K(u) | u ∈ A∗}
otherwise. A transduction K is irreducible if lcp(K) = ε. We denote by Irr(A∗, B∗) the
set of irreducible transductions. For all K not nowhere defined, we put red(K) to be the
only irreducible transduction such that K(u) = lcp(K)red(K)(u), i.e. the transduction in
which the prefix lcp(K) has been stripped away from all outputs. For K nowhere defined,
let red(K) be also nowhere defined.
We can describe now the final automaton for a transduction L as an automaton that
has irreducible transductions as states. The initial map is the constant map equal
to (lcp(L), red(L)) (or undefined if L is nowhere defined). When reading the letter a from
state K, the automaton jumps to red(K(a−)) in which K(a−) is such that K(a−)(u) =
K(au) (or undefined if K(a−) is nowhere defined). The final map sends an irreducible
transduction to K(ε).

∐
A∗

L(in)

L(in) Min(L)(st) L(out)

∏
A∗

L(out)

emin

L?

L

ε

mmin

ε?

Combining Lemmas 8, 10 and 12 with Corollary 7, we obtain the following result.

I Theorem 14. Let C be a category with a factorization system (E ,M) and let L : OA∗ → C
be a language. Suppose C has all countable copowers of L(in) and all countable powers of
L(out). The minimal C-automaton Min(L) accepting L is obtained via the factorization in
the commuting diagram to the right.

3 The basic FunL∗ algorithm

In this section, we provide our generic FunL∗-algorithm for learning word automata. Just as
in Angluin’s algorithm, there are a teacher and a learner. Throughout this section we fix the
alphabet A, the output category C and its factorization systems (E ,M), all known to both

CSL 2021

15:10 Learning Automata and Transducers: A Categorical Approach

teacher and learner. The teacher knows a language L : OA∗ → C, hereafter called the target
language. The learner wants to find this language, the output of the algorithm being the
minimal automaton Min(L) accepting L. The learner can ask two kinds of queries, which
can be thought as high-level generalizations of Angluin’s original ones in the special case of
deterministic automata (see [1]).

Evaluation queries: given a certain word w, what is L(.w/)?
Equivalence queries: does a certain automaton accept the target language? If it does not,
what is a counterexample for it not doing that?

Let A be an automaton which is incorrect, that is, such that A◦ i 6= L, L being the target
language; a word w is said to be a counterexample if A◦ i(.w/) 6= L(.w/). In other words, a
counterexample witnesses the incorrectness of a certain automaton proposed by the learner.

In order to formulate the generic algorithm, we still need to generalize the notions of
table and hypothesis automaton from Angluin’s original algorithm. We do this in Section 3.1.
We provide the generic algorithm and prove its correctness and termination in Section 3.2.

3.1 Hypothesis automata
Just as in Angluin’s L∗-algorithm, the learner keeps in memory a pair (Q,T) of subsets of
A∗ such that Q is prefix-closed, i.e. it contains the prefixes of all its elements, while T is
suffix-closed, the same for the suffixes; in particular, ε ∈ Q∩ T . Using the evaluation queries,
the learner produces an approximation of Min(L), explicitly a hypothesis automaton, to be
introduced in Definition 22.

It turns out that the category Auto(L) does not suffice to capture the whole learning
process. At a given stage of the algorithm, the learner has access, via evaluation queries, only
to a part of L: specifically, he knows the values of L(.qt/) and L(.qat/), where q ∈ Q, t ∈ T
and a ∈ A. This leads us to consider a restriction of the language L to a subcategory of OA∗

whose arrows are of the form .qt/ or .qat/ as above. To produce a hypothesis automaton
consistent with this partial view of L, we would also need to adapt the input category. A
first attempt would be to discard some of the arrows of IA∗ from in to st, respectively from
st to out. Explicitly, we would like to keep only the arrows of the form .q : in→ st for the
state words q ∈ Q and, respectively, t/ : st → out for the test words t ∈ T . However, this
is not feasible: we would also need the transition maps a : st→ st, and via composition we
would generate, for example, all arrows .w : in→ st. The solution is to “dissociate” the state
object st in IA∗ and consider a four-state input category.

I Definition 15. The input category IQ,T is the free category generated by the graph

in st1 st2 out.q a

ε

t/

for all q ∈ Q, a ∈ A, t ∈ T and with ε a fixed symbol (informally representing the empty
word) such that the following coherence diagrams commute for all a ∈ A, for all q ∈ Q such
that qa ∈ Q, and for all t ∈ T such that at ∈ T :

st1 st2

in st2; st1 out.
st1 st2

a t/.q

.qa

a

εε at/

Furthermore, let OQ,T denote the full subcategory of IQ,T on the objects in and out.

T. Colcombet, D. Petrişan, and R. Stabile 15:11

The two coherence diagrams in the definition of IQ,T , as well as the prefix-closure of Q
and the suffix-closure of T , ensure that we have a functor

i∗ : IQ,T → IA∗

which merges st1 and st2 sending both of them to st, maps ε : st1 → st2 to the identity on st
and maps all the other morphisms of IQ,T to the homonymous ones in IA∗ .

I Lemma 16. The functor i∗ : IQ,T → IA∗ is well defined and, furthermore, OQ,T is a
subcategory of OA∗ . That is, we have the following commuting diagram:

OQ,T OA∗

IQ,T IA∗ .
i∗

The partial knowledge of the language L the learner has access to at this given stage of
the algorithm is captured by the restriction LQ,T of L to OQ,T :

LQ,T : OQ,T OA∗ C.L

Hence, to a pair (Q,T) we can associate the category Auto(LQ,T) obtained by instantiating
in Definition 1 the input category I with IQ,T and its observable behaviour subcategory
with OQ,T IQ,T .

I Definition 17. We call a functor B in Auto(LQ,T) a (Q,T)-biautomaton B or a CQ,T -
biautomaton, if we want to underline the dependence on C. We say that B is consistent with
the C-language L.

In the L∗-algorithm, the learner constructs a table associated to each pair of subsets
(Q,T). This is done essentially by computing the quotient of the state words in Q by an
approximation ∼T of the Myhill-Nerode equivalence for a language L given by: w ∼T v iff
for all t ∈ T we have wt ∈ L⇔ vt ∈ L. This leads us to consider as a generalization of the
notion of table the minimal biautomaton Min(LQ,T) in the category Auto(LQ,T). In order to
compute it, we use Corollary 7. To this end, we first exhibit explicitly the initial and the
final objects of Auto(LQ,T), assuming that the output category C has got certain products
and coproducts.

We will use the following notation. Given two subsets R and S of A∗, let RS denote the
set {xy : x ∈ R, y ∈ S}.

I Lemma 18. Assume C has all countable copowers of L(in). The initial CQ,T -biautomaton
is the functor Ainit(LQ,T) : IQ,T → C described in the next diagram

L(in)
∐
Q

L(in)
∐

Q∪QA

L(in) L(out),.qinit ainit

εinit

t/init

where, explicitly:
Ainit(LQ,T)(st1) =

∐
Q

L(in) and Ainit(LQ,T)(st2) =
∐

Q∪QA

L(in);

.qinit := Ainit(LQ,T)(.q) is the coproduct injection jq of L(in) into
∐
Q

L(in);

εinit := Ainit(LQ,T)(ε) is the canonical inclusion between the two coproducts;

CSL 2021

15:12 Learning Automata and Transducers: A Categorical Approach

ainit := Ainit(LQ,T)(a) is obtained via the universal property as the coproduct over q ∈ Q
of the canonical injections jqa : L(in)→

∐
Q∪QA

L(in);

t/init := Ainit(LQ,T)(t/) is obtained via the universal property as the coproduct over
w ∈ Q ∪QA of the morphims L(.wt/) : L(in)→ L(out).

Dually, we can describe the final CQ,T -biautomaton as follows.

I Lemma 19. Assume C has all countable powers of L(out). The final CQ,T -biautomaton is
the functor Afinal(LQ,T) : IQ,T → C described in the next diagram

L(in)
∏

T∪AT

L(out)
∏
T

L(out) L(out),.qfinal
afinal

εfinal

t/final

where, explicitly:
Afinal(LQ,T)(st1) =

∏
T∪AT

L(out) and Ainit(LQ,T)(st2) =
∐
T

L(out);

.qfinal := Afinal(LQ,T)(.q) is obtained via the universal property as the product over
w ∈ T ∪AT of the morphisms L(.qw/) : L(in)→ L(out);
εfinal := Afinal(LQ,T)(ε) is the canonical restriction between the two products;
afinal := Afinal(LQ,T)(a) is obtained via the universal property of

∏
T

L(out) as the product

over t ∈ T of the canonical projections πat :
∏

T∪AT

L(out)→ L(out);

t/final := Afinal(LQ,T)(t/) is the projection πt :
∏
T

L(out)→ L(out).

Combining Corollary 7 with Lemmas 8, 18 and 19, we obtain the minimal biautomaton
Min(LQ,T) in Auto(LQ,T).

I Theorem 20. Assume that C is equipped with a factorization system (E ,M) and has
countable copowers of L(in) and countable powers of L(out). Then the minimal CQ,T -
biautomaton Min(LQ,T) is obtained as the unique up to isomorphism factorization of the
unique morphism from Ainit(LQ,T) to Afinal(LQ,T).∐

Q

L(in)
∐

Q∪QA

L(in)

L(in) Min(LQ,T)(st1) Min(LQ,T)(st2) L(out)

∏
T∪AT

L(out)
∏
T

L(out)

e1
min

ainit

εinit

e2
min

t/init

.qmin

.qinit

.qfinal

m1
min

amin

εmin

t/min

m2
min

afinal

εfinal

t/final

Notice that the arrows .qmin , amin , εmin and t/min are obtained using the diagonal fill-in
property of the factorization system. Let us now see how this theorem instantiates in the
case of deterministic automata.

I Example 21. Assume the target language L is a (Set, 1, 2)-language, so the learner wants
to learn the minimal deterministic automaton accepting L. For a given couple (Q,T), the
minimal biautomaton is obtained as the following factorization.

T. Colcombet, D. Petrişan, and R. Stabile 15:13

Q Q ∪QA

1 Q/∼T∪AT (Q ∪QA)/∼T 2

2T∪AT 2T

e1
min

ainit

εinit
e2

min

t/init

.qmin

.qinit

.qfinal

m1
min

amin

εmin

t/min

m2
min

afinal

εfinal

t/final

Hence, the first set of states of the minimal biautomaton is the set Q quotiented by the
T ∪AT -approximation ∼T∪AT of the Myhill-Nerode equivalence. The second set of states
is the quotient of Q ∪QA by ∼T . These kinds of quotients are also needed in the classical
Angluin’s algorithm, when building the table corresponding to the couple (Q,T).

Let us now understand when the map εmin is an isomorphism, that is, in this case, a
bijection. We can verify that εmin being a surjection is equivalent to the table in L∗-algorithm
being closed, that is, for all q ∈ Q and a ∈ A there exists q′ ∈ Q such that q′ ∼T qa. On
the other hand, εmin being an injection is equivalent to the consistency of the table from
Angluin’s L∗-algorithm. It means that if q and q′ are such that q ∼T q′ then q ∼T∪AT q′.

If the table from Angluin’s algorithm is generalized via the minimal biautomaton
Min(LQ,T), the above example suggests that the conditions that make possible the gen-
eration of a hypothesis automaton from a table can be stated at this abstract level by
requiring the morphism εmin be an isomorphism. In this way, we can identify Min(L)(st1)
and Min(L)(st2) to obtain the state space of the hypothesis automaton.

I Definition 22. If the map εmin is an isomorphism, we say that (Q,T) is L-automatable.
The hypothesis automaton H(Q,T) associated to a L-automatable couple (Q,T) is the
C-automaton with state space Min(LQ,T)(st1) described on the generator arrows of IA∗ by

L(in) Min(LQ,T)(st1) L(out)..εmin

εmin
−1◦amin

ε/min◦εmin

The uniqueness up to isomorphism of the hypothesis automaton H(Q,T) is an easy
consequence of the uniqueness up to isomorphism of the minimal biautomaton in Auto(LQ,T).

It is important to remark that, when passing from a biautomaton to an automaton, the
consistency with the language is preserved, in the sense of the lemma below.

I Lemma 23. Let (Q,T) be an L-automatable couple and let H(Q,T) be its associated
hypothesis automaton. Then the next diagram commutes:

OQ,T IA∗ C.

LQ,T

H(Q,T)

3.2 The learning algorithm
We now have all the necessary ingredients to state the FunL∗-algorithm. Our algorithm
takes as input a target language L and outputs its minimal automaton, provided some
mild assumptions listed in Theorem 26 are satisfied. We start by instantianting the couple
(Q,T) by (ε, ε). As long as this couple is not L-automatable, further words are added to the

CSL 2021

15:14 Learning Automata and Transducers: A Categorical Approach

subsets Q and T to force εmin to become an isomorphism. Once this is achieved, we obtain
a hypothesis automaton. If this automaton does not recognize the target language, then the
provided counterexample and its prefixes are added to Q, in order to let the learner progress
in learning.

While the role played by equivalence queries is self-evident, notice that evaluation queries
are necessary in order to build up the category Auto(LQ,T) and analyse its minimal automaton.

Algorithm 1 The basic FunL∗learning algorithm.
input :minimally adequate teacher of the target language L
output : Min(L)

1 Q := T := {ε}
2 repeat
3 while (Q,T) is not L-automatable do
4 if εmin /∈ E then
5 add QA to Q
6 end
7 if εmin /∈M then
8 add AT to T
9 end

10 end
11 ask an equivalence query for the hypothesis automaton H(Q,T)
12 if the answer is no then
13 add the provided counterexample and all its prefixes to Q
14 end
15 until the answer is yes;
16 return H(Q,T)

In order for this generic algorithm to work, we need several mild assumptions on the
output category C and on the target language. First, in order to compute the hypothesis
automaton we need the existence of the minimal automaton in the category Auto(LQ,T). For
this reason, we will assume the hypothesis of Theorem 20, pertaining to the existence of
certain powers, certain copowers and a factorization system. Furthermore, in order to ensure
the termination of our algorithm, a noetherianity condition is required on the language L,
akin to the regularity of the language in the L∗-algorithm. This notion, also used in [21], can
be understood as a finiteness assumption as shown in Example 25.

I Definition 24. An object X of C is called (E ,M)-noetherian when the following conditions
hold.

There does not exist an infinite co-chain of E-quotients of X as in the left commutative
diagram below and such that the arrows e1, e2 . . . ∈ E are not isomorphisms.
There does not exist an infinite chain ofM-subobjects of X as in the right commutative
diagram below and such that the arrows m1,m2 . . . ∈M are not isomorphisms.

X X

· · . . . · · . . .

...

e1 e2

m1 m2

...

I Example 25. Let us see now what noetherianity means for the factorization systems
of our running instantiations (Example 9). It is easy to see that in Set, an object X is
(Surjections, Injections)-noetherian if and only if it is finite in the usual sense. Similarly,

T. Colcombet, D. Petrişan, and R. Stabile 15:15

an object of Vec is (Surjective linear maps, Injective linear maps)-noetherian if and only if
it is a finite dimension vector space. With a bit more thoughts, one can establish that an
object X of Kl(T) is (EKl(T),MKl(T))-noetherian if and only if it is finite.

In order to guarantee the termination of our algorithm, we require the (E ,M)-noetherianity
of the state space of the minimal automaton of the target language. This is a natural condition,
generalizing the regularity of the target language in the L∗-algorithm. If (E ,M)-noetherian
objects are closed under E-quotients andM-subobjects – as it is the case in all our examples
– we could also replace this hypothesis by assuming the existence of an automaton with
(E ,M)-noetherian state space which accepts the target language.

I Theorem 26. We consider a target language L : OA∗ → C such that:
the output category C is endowed with a factorization system (E ,M);
C has all copowers of L(in) and all powers of L(out);
the state space Min(L)(st) of the minimal automaton for L is (E ,M)-noetherian.

Then the FunL∗-algorithm terminates, eventually producing the minimal automaton Min(L)
accepting the target language.

The proof of this theorem relies on a careful analysis of the factorizations∐
Q L(in) =Q,T

∏
T L(out)

of the canonical maps
∐

Q L(in)→
∏

T L(out) obtained by taking the coproduct over q ∈ Q
of the product over t ∈ T of L(.qt/). We can prove that the state spaces of the biautomata
featured while running the algorithm are precisely of the form =Q,T , while the state space of
the minimal automaton accepting L is =A∗,A∗ .

We prove that the while loop terminates in [14, Proposition 35]. In [14, Lemma 36] we
show that only finitely many counterexamples can be added, hence the algorithm terminates.
Finally, the fact that the outcome automaton is minimal is shown in [14, Lemma 38].

Next, we see how the FunL∗-algorithm instantiates to the case of subsequential transducers.
We need to understand what it means for εmin to be an isomorphism.

I Example 27 (Learning algorithm for subsequential transducers). Assume the target language L
is a (Kl(T), 1, 1)-language, so the learner wants to learn the minimal subsequential transducer
accepting L. We need to extend the notions of lcp and red to a generic partial map g whose
domain is T ⊆ A∗ and whose codomain is B∗ as follows: lcp(g) is undefined if g is nowhere
defined, and denotes the longest common prefix of the words in {g(u) | u ∈ T} otherwise;
analogously, red(g) : T → B∗ ∪{⊥} is nowhere defined if g is nowhere defined, and is the only
partial map such that g(u) = lcp(g)red(g)(u) otherwise. Thinking of the language to learn
as a transduction f : A∗ → B∗ + {⊥}, let’s define the following equivalence relation for all
q1, q2 ∈ Q: q1 ∼T q2 if and only if red(f(q1−)|T)(t) = red(f(q2−)|T)(t) for all t ∈ T , f(q−)|T
being the restriction of f(q−) to T . For a couple (Q,T), εmin in Auto(LQ,T) turns out to be
the map Q/∼T∪AT 9 (Q ∪ QA)/∼T , [q] 7→ (lcp(f(q−)|T∪AT)−1lcp(f(q−)|T), [q]), the first
set of states being Q quotiented by ∼T∪AT , the second set of states being the quotient of
Q ∪QA by ∼T . Let’s understand the word a class [q] is mapped to: with lcp(f(q−)|T), we
mean the lcp of the function f(q−) restricted to the domain T , that is, the longest common
prefix of the subset {f(qt)|t ∈ T}; with lcp(f(q−)|T∪AT)−1lcp(f(q−)|T), we mean the word
lcp(f(q−)|T) from which lcp(f(q−)|T∪AT) (one of its prefixes, as it is the longest common
prefix of a bigger set of words) has been stripped away; when one of the lcps is undefined, [q]
is mapped to undefined.

CSL 2021

15:16 Learning Automata and Transducers: A Categorical Approach

εmin is an isomorphism if and only if π2(εmin) is a bijection and π1(εmin) is the constant
function mapping every x ∈ X to ε. We can verify that π2(εmin) being a surjection is
equivalent to the condition that for all q ∈ Q and a ∈ A there exists q′ ∈ Q such that
q′ ∼T qa, whereas π2(εmin) being an injection is equivalent to the condition that if q and q′
are such that q ∼T q′, then q ∼T∪AT q′. Finally, the condition on π1(εmin) is true if and only
if lcp(f(q−)|T∪AT) = lcp(f(q−)|T). Remarkably, these three naturally arising conditions
turn out to be equivalent to the ones required in Vilar’s learning algorithm for subsequential
transducers (see [24]).

Every time the while cycle runs, our algorithm adds either all words QA to Q or all
words AT to T : this is not strictly necessary. We show next that it is sufficient to add
just one properly chosen single word qa ∈ QA or at ∈ AT , preserving the correctness of
the algorithm. The canonical inclusion

∐
Q L(in) →

∐
Q∪{qa} L(in) induces a canonical

morphism between the factorizations =Q,T � =Q∪{qa},T . Similarly, the canonical restriction∏
T∪{at} L(out) →

∏
T L(out) induces a canonical morphism between the factorizations

=Q,T � =Q,T∪{at}, which will be featured in the optimized algorithm.

I Theorem 28. Algorithm 1 can be optimized by replacing lines 5 and 8 respectively by:
add to Q a qa ∈ QA s.t. =Q,T � =Q∪{qa},T is not an isomorphism;
add to T an at ∈ AT s.t. =Q,T � =Q,T∪{at} is not an isomorphism.

4 Conclusion and future work

In this paper, we described the abstract algorithm FunL∗, a categorical version of Angluin’s
L∗-algorithm for learning word automata. The focus was on providing a minimalistic category
theoretic framework for learning, with as few assumptions as possible, emphasizing along the
way the deep connection between learning and minimization.

So far, FunL∗ does not cover instances of the L∗-like algorithms such as nominal automata,
or automata/transducers over trees. A natural continuation is to develop these generalizations.
Another aspect to understand abstractly is the complexity of this algorithm in terms of
number of evaluation and equivalence queries.

References
1 Dana Angluin. Learning regular sets from queries and counterexamples. Inf. Comput., 75,

87-106, 1987.
2 Dana Angluin, Sarah Eisenstat, and Dana Fisman. Learning regular languages via alternating

automata. In IJCAI, pages 3308–3314. AAAI Press, 2015.
3 Dana Angluin and Dana Fisman. Learning regular omega languages. Theor. Comput. Sci.,

650:57–72, 2016. doi:10.1016/j.tcs.2016.07.031.
4 Simone Barlocco, Clemens Kupke, and Jurriaan Rot. Coalgebra learning via duality. In

FoSSaCS, volume 11425 of Lecture Notes in Computer Science, pages 62–79. Springer, 2019.
5 Francesco Bergadano and Stefano Varricchio. Learning behaviors of automata from multiplicity

and equivalence queries. In CIAC, volume 778 of Lecture Notes in Computer Science, pages
54–62. Springer, 1994.

6 Francesco Bergadano and Stefano Varricchio. Learning behaviors of automata from multiplicity
and equivalence queries. SIAM J. Comput., 25(6):1268–1280, 1996.

7 Adrien Boiret, Aurélien Lemay, and Joachim Niehren. Learning rational functions. In
Developments in Language Theory, volume 7410 of Lecture Notes in Computer Science, pages
273–283. Springer, 2012.

https://doi.org/10.1016/j.tcs.2016.07.031

T. Colcombet, D. Petrişan, and R. Stabile 15:17

8 Adrien Boiret, Aurélien Lemay, and Joachim Niehren. Learning top-down tree transducers
with regular domain inspection. In ICGI, volume 57 of JMLR Workshop and Conference
Proceedings, pages 54–65. JMLR.org, 2016.

9 Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker. Angluin-style learning of
NFA. In IJCAI, pages 1004–1009, 2009. URL: http://ijcai.org/Proceedings/09/Papers/
170.pdf.

10 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker, Daniel Neider, and
David R. Piegdon. libalf: The automata learning framework. In Tayssir Touili, Byron Cook,
and Paul Jackson, editors, Computer Aided Verification, pages 360–364, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

11 Christian Choffrut. A generalization of Ginsburg and Rose’s characterization of G-S-M
mappings. In ICALP, volume 71 of Lecture Notes in Computer Science, pages 88–103.
Springer, 1979.

12 Thomas Colcombet and Daniela Petrişan. Automata minimization: a functorial approach. In
7th Conference on Algebra and Coalgebra in Computer Science, CALCO 2017, June 12-16,
2017, Ljubljana, Slovenia, pages 8:1–8:16, 2017. doi:10.4230/LIPIcs.CALCO.2017.8.

13 Thomas Colcombet and Daniela Petrişan. Automata minimization: a functorial ap-
proach. Logical Methods in Computer Science, Volume 16, Issue 1, 2020. URL: https:
//lmcs.episciences.org/6213.

14 Thomas Colcombet, Daniela Petrişan, and Riccardo Stabile. Learning automata and trans-
ducers: a categorical approach. CoRR, 2020. arXiv:2010.13675.

15 Samuel Drews and Loris D’Antoni. Learning symbolic automata. In TACAS (1), volume
10205 of Lecture Notes in Computer Science, pages 173–189, 2017.

16 Helle Hvid Hansen. Subsequential transducers: a coalgebraic perspective. Inf. Comput.,
208(12):1368–1397, 2010.

17 Bart Jacobs and Alexandra Silva. Automata learning: A categorical perspective. In Horizons
of the Mind, volume 8464 of Lecture Notes in Computer Science, pages 384–406. Springer,
2014.

18 Martin Leucker. Learning meets verification. In Frank S. de Boer, Marcello M. Bonsangue,
Susanne Graf, and Willem-Paul de Roever, editors, Formal Methods for Components and
Objects, pages 127–151, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

19 Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, and Michal Szynwelski.
Learning nominal automata. In POPL, pages 613–625. ACM, 2017. URL: http://dl.acm.
org/citation.cfm?id=3009879.

20 M.P. Schützenberger. On the definition of a family of automata. Information and Control,
4(2):245–270, 1961. doi:10.1016/S0019-9958(61)80020-X.

21 Henning Urbat and Lutz Schröder. Automata learning: An algebraic approach. In LICS,
pages 900–914. ACM, 2020.

22 Gerco van Heerdt, Matteo Sammartino, and Alexandra Silva. CALF: categorical automata
learning framework. In CSL, volume 82 of LIPIcs, pages 29:1–29:24. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017.

23 Gerco van Heerdt, Matteo Sammartino, and Alexandra Silva. Learning automata with
side-effects. In CMCS, 2020.

24 Juan Miguel Vilar. Query learning of subsequential transducers. In Grammatical Inference:
Learning Syntax from Sentences, 3rd International Colloquium, ICGI-96, Montpellier, France,
September 25-27, 1996, Proceedings, pages 72–83, 1996. doi:10.1007/BFb0033343.

25 Juan Miguel Vilar. Improve the learning of subsequential transducers by using alignments
and dictionaries. In Grammatical Inference: Algorithms and Applications, 5th International
Colloquium, ICGI 2000, Lisbon, Portugal, September 11-13, 2000, Proceedings, pages 298–311,
2000. doi:10.1007/978-3-540-45257-7_24.

CSL 2021

http://ijcai.org/Proceedings/09/Papers/170.pdf
http://ijcai.org/Proceedings/09/Papers/170.pdf
https://doi.org/10.4230/LIPIcs.CALCO.2017.8
https://lmcs.episciences.org/6213
https://lmcs.episciences.org/6213
http://arxiv.org/abs/2010.13675
http://dl.acm.org/citation.cfm?id=3009879
http://dl.acm.org/citation.cfm?id=3009879
https://doi.org/10.1016/S0019-9958(61)80020-X
https://doi.org/10.1007/BFb0033343
https://doi.org/10.1007/978-3-540-45257-7_24

Game Comonads & Generalised Quantifiers
Adam Ó Conghaile
Department of Computer Science and Technology, University of Cambridge, UK
ac891@cl.cam.ac.uk

Anuj Dawar
Department of Computer Science and Technology, University of Cambridge, UK
anuj.dawar@cl.cam.ac.uk

Abstract
Game comonads, introduced by Abramsky, Dawar and Wang and developed by Abramsky and Shah,
give an interesting categorical semantics to some Spoiler-Duplicator games that are common in
finite model theory. In particular they expose connections between one-sided and two-sided games,
and parameters such as treewidth and treedepth and corresponding notions of decomposition. In
the present paper, we expand the realm of game comonads to logics with generalised quantifiers.
In particular, we introduce a comonad graded by two parameter n ≤ k such that isomorphisms in
the resulting Kleisli category are exactly Duplicator winning strategies in Hella’s n-bijection game
with k pebbles. We define a one-sided version of this game which allows us to provide a categorical
semantics for a number of logics with generalised quantifiers. We also give a novel notion of tree
decomposition that emerges from the construction.

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Theory of
computation → Abstraction

Keywords and phrases Logic, Finite Model Theory, Game Comonads, Generalised Quantifiers

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.16

Related Version A full version of the paper is available at https://www.arxiv.org/abs/2006.16039.

Funding Research funded in part by EPSRC grant EP/T007257/1.

1 Introduction

Model-comparison games, such as Ehrenfeucht-Fraïssé games and pebble games, play a
central role in finite model theory. Recent work by Abramsky et al. [3, 4] provides a category-
theoretic view of such games which yields new insights. In particular, the pebbling comonad
Pk introduced in [3] reveals an interesting relationship between one-sided and two-sided
pebble games. The morphisms in the Kleisli category associated with Pk correspond exactly
to winning strategies in the existential positive k-pebble game. This game was introduced by
Kolaitis and Vardi [18] to study the expressive power of Datalog. A winning strategy for
Duplicator in the game played on structures A and B implies that all formulas of existential
positive k-variable logic true in A are also true in B. The game has found widespread
application in the study of database query languages as well as constraint satisfaction
problems. Indeed, the widely used k-local consistency algorithms for solving constraint
satisfaction can be understood as computing the approximation to homomorphism given by
such strategies [19]. At the same time, isomorphisms in the Kleisli category associated with
Pk correspond to winning strategies in the k-pebble bijection game. This game, introduced
by Hella [16], characterises equivalence in the k-variable logic with counting. This gives
a family of equivalence relations (parameterised by k) which has been widely studied as
approximations of graph isomorphism. It is often called the Weisfeiler-Leman family of
equivalences and has a number of characterisations in logic, algebra and combinatorics (see
the discussion in [13]).

© Adam Ó Conghaile and Anuj Dawar;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 16; pp. 16:1–16:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3032-5514
mailto:ac891@cl.cam.ac.uk
https://orcid.org/0000-0003-4014-8248
mailto:anuj.dawar@cl.cam.ac.uk
https://doi.org/10.4230/LIPIcs.CSL.2021.16
https://www.arxiv.org/abs/2006.16039
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Game Comonads & Generalised Quantifiers

The bijection game introduced by Hella is actually the initial level of a hierarchy of
games that he defined to characterise equivalence in logics with generalised (i.e. Lindström)
quantifiers. For each n, k ∈ N we have a k-pebble n-bijection game that characterises
equivalence with respect to an infinitary k-variable logic with quantifiers of arity at most n.
In the present paper, we introduce a graded comonad associated with this game. Our comonad
Gn,k is obtained as a quotient of the comonad Pk and we are able to show that isomorphisms
in the associated Kleisli category correspond to winning strategies for Duplicator in the
k-pebble n-bijection game. The morphisms then correspond to a new one-way game we
define, which we call the k-pebble n-function game. We are able to show that this relates
to a natural logic: a k-variable positive infinitary logic with n-ary homomorphism-closed
quantifiers.

This leads us to a systematic eight-way classification of model-comparison games based on
what kinds of functions Duplicator is permitted (arbitrary functions, injections, surjections
or bijections) and what the partial maps in game positions are required to preserve: just
atomic information or also negated atoms. We show that each of these variations correspond
to preservation of formulas in a natural fragment of bounded-variable infinitary logic with
n-ary Lindström quantifiers. Moreover, winning strategies in these games also correspond to
natural restrictions of the morphisms in the Kleisli category of Gn,k that are well-motivated
from the category-theoretic point of view.

Another key insight provided by the work of Abramsky et al. is that coalgebras in the
pebbling comonad Pk correspond exactly to tree decompositions of width k. Similarly,
the coalgebras in the Ehrenfeucht-Fraïssé comonad introduced by Abramksy and Shah
characterise the treedepth of structures. This motivates us to look at coalgebras in Gn,k and
we show that the yield a new and natural notion of generalised tree decomposition.

In what follows, after a review of the necessary background in Section 2, we introduce the
various games and logics in Section 3 and establish the relationships between them. Section 4
contains the definition of the comonad Gn,k and shows that interesting classes of morphisms
in the associated Kleisli category correspond to winning strategies in the games. Section 5
defines a new class of extended tree decompositions and traversals and relates them to the
coalgebras of the comonad Gn,k. Proofs are omitted due to lack of space and may be found
in the appendix.

2 Background

In this section we introduce notation that we use throughout the paper and give a brief
overview of background we assume.

For a positive integer n, we write [n] for the set {1, . . . , n}.
A tree T is a set with a partial order ≤ such that for all t ∈ T , the set {x | x ≤ t} is

linearly ordered by ≤ and such that there is an element r ∈ T called the root such that r ≤ t
for all t ∈ T . If t < t′ in T and there is no x with t < x < t′, we call t′ a child of t and t the
parent of t′.

For X a set, we write X∗ for the set of lists over elements of X and X+ for the set of
non-empty lists. We write the list with elements x1, . . . xm in that order as [x1, . . . xm]. For
two lists s1, s2 ∈ X∗ we write s1 · s2 for the list formed by concatenating s1 and s2. For
x ∈ X and s ∈ X∗ we write x; s for the list [x] · s and s;x for the list s · [x]. We occasionally
underline the fact that s1 · s2, x; s, and s;x are lists by writing them enclosed in square
brackets, as [s1 · s2], [x; s], and [s;x].

A.Ó. Conghaile and A. Dawar 16:3

2.1 Logics
We work with finite relational signatures and assume a fixed signature σ. Unless stated
otherwise, the structures we consider are finite σ-structures. We write A,B, C etc. to denote
such structures, and the corresponding roman letters A,B,C etc. to denote their universes.

We assume a standard syntax and semantics for first-order logic (as in [20]), which we
denote FO. We write L∞ for the infinitary logic that is obtained from FO by allowing
conjunctions and disjunctions over arbitrary sets of formulas. We write ∃+L∞ and ∃+FO for
the restriction of L∞ and FO to existential positive formulas, i.e. those without negations or
universal quantifiers. We use natural number superscripts to denote restrictions of the logic
to a fixed number of variables. We write C to denote the extension of L∞ with counting
quantifiers. We are mainly interested in the k-variable fragments of this logic Ck.

2.2 Generalised quantifiers
We use the term generalised quantifer in the sense of Lindström [21]. These have been
extensively studied in finite model theory (see [16, 8, 5]). In what follows, we give a brief
account of the basic variant that is of interest to us here. For more on Lindström quantifiers,
consult [11, Chap. 12]. We only consider quantifiers without relativisation, vectorisation or
taking quotients in the interpretation.

Any isomorphism-closed class of structures K over a signature τ gives rise to a generalised
quantifier QK . For a logic L, we write L(QK) for its extension with the quantifier QK . We
define the arity of the quantifier QK to be the maximum arity of any relation in τ . For QK
with arity m, the formula QKx1, . . . xm.(ψR(xR1 , . . . xRl , zR))R∈τ where xRi ∈ x and zR ⊂ z
is true on A,a if the τ -structure 〈A, (ψR(·,aR))R∈τ 〉 is in K. We write Lk∞(Qn) for the
extension of Lk∞ with all quantifiers of arity n. This is only of interest when n ≤ k. Kolaitis
and Väänänen [17] showed that Lk∞(Q1) is equivalent to Ck. However, allowing quantifiers
of higher arity gives logics of considerably more expressive power. In particular, if σ is a
signature with all relations of arity at most n, then any property of σ-structures is expressible
in Ln∞(Qn). Thus, all properties of graphs, for instance, are expressible in L2

∞(Q2).

2.3 Games
For a pair of structures A and B and a logic L, we write A VL B to denote that every
sentence of L that is true in A is also true in B. When the logic is closed under negation, as
is the case with FO and L∞, for instance, AVL B implies B VL A. In this case, we have
an equivalence relation between structures and we write A ≡L B. When A and B are finite
structures, AVFO B implies AVL∞ B, and the same holds for the k-variable fragments of
these logics (see [10]).

The relations VL are often characterised in terms of games which we generically call
Spoiler-Duplicator games. For instance, the existential-positive k-pebble game introduced
by Kolaitis and Vardi [18], which we denote ∃Pebk, characterises the relation V∃+Lk

∞
. In

this game, Spoiler and Duplicator each has a collection of k pebbles indexed 1, . . . , k. In
each round Spoiler places one of its pebbles on an element of A and Duplicator responds by
placing its corresponding pebble (i.e. the one of the same index) on an element of B. Note
the game can go on for more than k rounds and pebbles can be repositioned throughout. If
the partial map taking the element of A on which Spoiler’s pebble i sits to the element of B
on which Duplicator’s pebble i is, fails to be a partial homomorphism, then Spoiler has won
the game. Duplicator wins by playing forever without losing. We get a game characterising

CSL 2021

16:4 Game Comonads & Generalised Quantifiers

≡Lk
∞

if (i) Spoiler is allowed to choose, at each move, on which of the two structures it places
a pebble and Duplicator is required to respond in the other structure; and (ii) Duplicator is
required to ensure that the pebbled positions form a partial isomorphism.

Hella [16] introduced a bijection game which characterises the equivalence ≡Ck . We write
Bijk(A,B) for the bijection game played on A and B. At each move, Spoiler chooses an
index i ∈ [k] and Duplicator is required to respond with a bijection f : A→ B. Spoiler then
chooses an element a ∈ A and pebbles indexed i are placed on a and f(a). If the partial
map defined by the pebbled positions is not a partial isomorphism, then Spoiler has won.
Duplicator wins by playing forever without losing.

In Hella’s original work, the bijection games appear as a special case of the n-bijective
k-pebble game, which we denote Bijkn(A,B) when played on structures A and B. This
characterises the equivalence relation ≡Lk

∞(Qn). Once again, we have a set of k pebbles
associated with each of the structures A and B and indexed by [k]. At each move, Duplicator
is required to give a bijection f : A → B and Spoiler chooses a set of up to n pebble
indices p1, . . . , pn ∈ [k] and moves the corresponding indices to elements a1, . . . , an ∈ A and
f(a1), . . . , f(an) in B. If the partial map defined by the pebbled positions is not a partial
isomorphism, then Spoiler has won. Duplicator wins by playing forever without losing. Note,
in particular, that for Duplicator to have a winning strategy it is necessary that the reducts
of A and B to relations of arity at most n are isomorphic. For example, on graphs Spoiler
wins any game on non-isomorphic graphs with n, k ≥ 2.

2.4 Comonads
We assume that the reader is familiar with basic definitions from category theory, in particular
the notions of category, functor and natural transformation. For a finite signature σ, we are
interested in the category R(σ) of relational structures over σ. The objects of the category
are such structures and the maps are homomorphisms between structures.

Comonads on a category C are triples (T, ε, δ) where T is an endofunctor on C and ε and
δ are natural transformations of type T → 1 and TT → T respectively, satisfying certain
comonad laws. The Kleisli category K(T) is the category with the same objects as C where
K(T)-morphisms are C-morphisms of type TA→ B. Composition is defined with the help of
δ. A T -coalgebra on an object A ∈ C is a C-map α : A→ TA such that εA ◦ α = 1A.

Abramsky et al. [3] describe the construction of a comonad Pk, graded by k, on the
category R(σ) which exposes an interesting relationship between the games ∃Pebk(A,B)
and Bijk(A,B). Specifically, this construction shows that Duplicator winning strategies in
the latter are exactly the isomorphisms in a category in which the morphisms are winning
strategies in the former.

For any A, PkA is an infinite structure (even when A is finite) with universe (A× [k])+.
The counit εA takes a sequence [(a1, p1), . . . , (am, pm)] to am, i.e. the first component of the
last element of the sequence. The comultiplication δA takes a sequence [(a1, p1), . . . , (am, pm)]
to the sequence [(s1, p1), . . . , (sm, pm)] where si = [(a1, p1), . . . , (ai, pi)]. The relations are
defined so that (s1, . . . , sr) ∈ RPkA if, and only if, the si are all comparable in the prefix
order of sequences, RA(εA(s1), . . . , εA(sr)) and whenever si is a prefix of sj and ends with
the pair (a, p), there is no prefix of sj properly extending si which ends with (a′, p) for any
a′ ∈ A.

It is convenient to consider structures over a signature σ ∪ {I} where I is a new binary
relation symbol. An I-structure is a structure over this signature which interprets I as
the identity relation. Note that even when A is an I-structure, PkA is not one. The key
results from [3] relating the comonad with pebble games can now be stated as establishing a

A.Ó. Conghaile and A. Dawar 16:5

precise translation between (i) K(Pk)-morphisms A - B for I-structures A and B; and
(ii) winning strategies for Duplicator in ∃Pebk(A,B); and similarly a precise translation
between (i) isomorphisms in K(Pk) between A and B for I-structures A and B; and (ii)
winning strategies for Duplicator in Bijk(A,B).

A key result from the construction of the comonad Pk is the relationship between the
coalgebras of this comonad and tree decompositions. In particular, it is shown that a structure
A has a Pk-coalgebra if, and only if, the treewidth of A is at most k − 1. This relationship
between coalgebras and tree decompositions is established through a definition of a tree
traversal which we review in Section 5 below.

3 Games and Logic with Generalised Quantifers

Hella’s n-bijective k-pebble game, Bijkn is a model-comparison game which captures
equivalence of structures over the logic Lk∞(Qn), i.e. k-variable infinitary logic where the
allowed quantifiers are all generalised quantifiers with arity ≤ n. This game generalises
the bijection game Bijk which captures equivalence over Ck, k-variable infinitary logic with
counting quantifiers (which is equivalent to Lk∞(Q1) as shown by Kolaitis and Väänänen[17]).
In this section, we introduce a family of games which relax the rules of Bijkn and show their
correspondence to different fragments of Lk∞(Qn). In particular, we introduce a “one-way”
version of Bijkn which is crucial to our construction of a generalised version of the Pk comonad.

3.1 Relaxing Bijkn
Recall that each round of Bijkn(A,B) involves Duplicator selecting a bijection f : A → B

and ends with a test of whether for the pebbled positions (ai, bi)i∈[k] it is the case that, for
any {i1, . . . ir} ⊂ [k], (ai1 , . . . air) ∈ RA ⇐⇒ (bi1 , . . . bir) ∈ RA where Duplicator loses if
the test is failed. For the rest of the round, Spoiler rearranges up to n pebbles on A with
the corresponding pebbles on B moved according to f .

So, to create from Bijkn a “one-way” game from A to B we need to relax the condition
that f be a bijection and the ⇐⇒ in the final test. The following definition captures the
most basic such relaxation:

I Definition 1. For two relational structures A, B, the positive k-pebble n-function game,
+Funkn(A,B) is played by Spoiler and Duplicator. Prior to the jth round the position consists
of partial maps πaj−1 : [k] ⇀ A and πnj−1 : [k] ⇀ B. In Round j

Duplicator provides a function hj : A → B such that for each i ∈ [k], hj(πaj−1(i)) =
πbj−1(i).
Spoiler picks up to n distinct pebbles, i.e. elements p1, . . . pm ∈ [k](m ≤ n) and m

elements x1, . . . xm ∈ A.
The updated position is given by πaj (pl) = xl and πbj(pl) = hj(xl) for l ∈ [m]; and
πaj (i) = πaj−1(i) and πbj(i) = πbj−1(i) for i 6∈ {p1, . . . , pm}.
Spoiler has won the game if there is some R ∈ σ and (i1, . . . ir) ∈ [k]r with
(πaj (i1), . . . , πaj (ir)) ∈ RA but (πbj(i1), . . . , πbj(ir)) 6∈ RB.

Duplicator wins by preventing Spoiler from winning.

As this game is to serve as the appropriate one-way game for Bijkn, it is worth asking why
this game is a reasonable generalisation of ∃Pebk (the one-way game for Bijk). The answer
comes in recalling Abramsky et al.’s presentation of a (deterministic) strategy for Duplicator
in ∃Pebk(A,B) as a collection of branch maps φs,i : A→ B for each s ∈ (A× [k])∗, a history

CSL 2021

16:6 Game Comonads & Generalised Quantifiers

of Spoiler moves and i ∈ [k] a pebble index. These branch maps tell us how Duplicator would
respond to Spoiler moving pebble i to any element in A given the moves s that Spoiler has
played in preceding rounds. The functions hj in Definition 1 serve as just such branch maps.

In addition to this game, we now define some other relaxations of Bijkn which are important.
In particular we define the following positive games by retaining that the pebbled position
need only preserve positive atoms at the end of each round but varying the condition on f .

I Definition 2. For two relational structures A, B, the positive k-pebble n-injection (resp.
surjection, bijection) game, +Injkn(A,B) (resp. +Surjkn(A,B), +Bijkn(A,B)) is played by
Spoiler and Duplicator. Prior to the jth round the position consists of partial maps πaj−1 :
[k] ⇀ A and πnj−1 : [k] ⇀ B. In Round j

Duplicator provides an injection (resp. a surjection, bijection) hj : A→ B such that for
each i ∈ [k], hj(πaj−1(i)) = πbj−1(i).
Spoiler picks up to n distinct pebbles, i.e. elements p1, . . . pm ∈ [k](m ≤ n) and m

elements x1, . . . xm ∈ A.
The updated position is given by πaj (pl) = xl and πbj(pl) = hj(xl) for l ∈ [m]; and
πaj (i) = πaj−1(i) and πbj(i) = πbj−1(i) for i 6∈ {p1, . . . , pm}.
Spoiler has won the game if there is some R ∈ σ and (i1, . . . ir) ∈ [k]r with
(πaj (i1), . . . , πaj (ir)) ∈ RA but (πbj(i1), . . . , πbj(ir)) 6∈ RB.

Duplicator wins by preventing Spoiler from winning.

Strengthening the test condition in each round so that Spoiler wins if there is some R ∈ σ
and (i1, . . . ir) ∈ [k]r with (πaj (i1), . . . , πaj (ir)) ∈ RA if, and only if, (πbj(i1), . . . , πbj(ir)) 6∈ RB,
we get the definitions for the games Funkn, Injkn, Surjkn and Bijkn where the latter is precisely
the n-bijective k-pebble game of Hella. We recap the poset of the games we’ve just defined
ordered by strengthening of the rules/restrictions on Duplicator in the leftmost Hasse diagram
in Figure 1. Here a game G is above G′ if a Duplicator winning strategy in G is also one in
G′.

Bijk
n

Injk
n +Bijk

n Surjk
n

+Injk
n Funk

n +Surjk
n

+Funk
n

Lk(Qb
n)

Lk(Qi
n) +Lk(Qb

n) Lk(Qs
n)

+Lk(Qi
n) Lk(Qh

n) +Lk(Qs
n)

+Lk(Qh
n)

(1, 1, 1)

(1, 0, 1) (1, 1, 0) (0, 1, 1)

(1, 0, 0) (0, 0, 1) (0, 1, 0)

(0, 0, 0)

Figure 1 Hasse Diagrams of Games and Logics with Labels For Reference.

3.2 Logics with generalised quantifiers
In Section 2, we introduce for each n, k ∈ N the logics, Lk∞(Qn) as the infinitary logic
extended with all generalised quantifiers of arity n. For n = 1 this logic leads somewhat of a
double life. Kolaitis and Väänänen [17] show that this logic is equivalent to Ck, the infinitary
logic with counting quantifiers and at most k variables.

A.Ó. Conghaile and A. Dawar 16:7

In this section we explore fragments of Lk∞(Qn) defined by restricted classes of generalised
quantifiers, which we introduce next.

I Definition 3. A class of σ-structures K is homomorphism-closed if for all homomorphisms
f : A → B we have that A ∈ K =⇒ B ∈ K. Similarly, we say K is injection-closed
(resp. surjection-closed, bijection-closed) if for all injective homomorphisms (resp. surjective,
bijective homomorphisms) f : A → B, we have A ∈ K =⇒ B ∈ K.

We write Qh
n for the class of all generalised quantifiers QK of arity n where K is

homomorphism-closed. Similarly, we write Qi
n, Qs

n and Qb
n for the collections of n-ary

quantifiers based on injection-closed, surjection-closed and bijection-closed classes.

In order to define logics which incorporate these restricted classes of quantifiers, we first
define a base logic without quantifiers or negation.

I Definition 4. We denote by +Lk the class of positive infinitary k-variable quantifier-free
formulas. That means the k-variable fragment of the class of formulas +L[σ] (for any
signature σ), given by the grammar

φ ::= R(x1, . . . xm) |
∧
I
φ |

∨
J
φ

for R ∈ σ. We use Lk to denote a similar class of formulas but with negation permitted on
atoms.

This basic set of formulas can be extended into a logic by adding some set of quantifiers
as described here:

I Definition 5. For Q some collection of generalised quantifiers, we denote by +Lk(Q) the
smallest extension of +Lk to include the all quantifiers QK ∈ Q, closed under quantification
and ordinary boolean operations (excluding negation). Lk(Q) is the same logic but with
negation on atoms. Note that ∃+Lk∞ ≡ +Lk(∃) and, as we can always push negation down
to the level of atoms in Lk∞, Lk∞ ≡ Lk(∃,∀).

With this definition we are ready to introduce our logics. These are Lk(Qh
n), Lk(Qi

n),
Lk(Qs

n) and Lk(Qb
n) and their positive counterparts +Lk(Qh

n), +Lk(Qi
n), +Lk(Qs

n) and
+Lk(Qb

n). The obvious inclusion relationships between these logics are given by the middle
Hasse diagram in Figure 1. As we shall see, these logics are governed exactly by the games
pictured in the leftmost diagram in Figure 1.

Here we highlight two results relating this family of logics with more familiar infinitary
logics. These results classify the two extreme logics in the diagram from Figure 1, namely
Lk(Qb

n) and +Lk(Qh
n).

I Lemma 6. For all n, k ∈ N, Lk(Qb
n) ≡ Lk∞(Qn).

I Lemma 7. +Lk(Qh
1) ≡ +Lk(∃)

3.3 Games and logics correspond
So far we have introduced a series of games and logics which are all variations on Hella’s
n-bijection k-pebble game, Bijkn, and the corresponding logic Lk∞(Qn). Here we show that
these games and logics match up in the way as one would expect looking at the respective
refinement posets in Figures 1.

CSL 2021

16:8 Game Comonads & Generalised Quantifiers

In order to present the proof of this in a uniform fashion, we label the corners of these
cubes by three parameters xi, xs, xn ∈ {0, 1}, standing for injection, surjection and negated
atoms respectively. This can be seen in Figure 1.

Now we define the aliases of each of the games which modify Funkn as follows, with the
games defined lining up with the games defined in Section 3.1.

I Definition 8. For two σ-structures A and B, the game (xi, xs, xn)-Funkn(A,B) is played
by Spoiler and Duplicator in the same fashion as the game Funkn(A,B) with the following
additional rules:
1. When Duplicator provides a function f : A→ B at the beginning of a round, f is required

to be injective if xi = 1 and surjective if xs = 1.
2. If xn = 1, Spoiler wins at move j if the partial map taking πaj (i) to πbj(i) fails to preserve

negated atoms as well as atoms.

Similarly, we define parameterised aliases for the logics introduced in Section 3.2. To
lighten our notational burden, we use Hn,k to denote the logic +Lk(Qh

n) throughout this
section.

I Definition 9. We define Hn,kx to be the logic Hn,k extended by
1. all n-ary generalised quantifiers closed by all homomorphisms which are injective, if

xi = 1; and surjective, if xs = 1.
2. if xn = 1, negation on atoms.
For example, Hn,k001 extendsHn,k with negation on atoms but contains no additional quantifiers
as all n-ary quantifiers closed under homomorphisms are already in Hn,k. On the other
hand, Hn,k110 does not allow negation on atoms but allows all quantifiers that are closed under
bijective homomorphisms.

Now to prove the desired correspondence between x-Funkn and Hn,kx , we adapt a proof
from Hella[16] to work for this parameterised set of games. For this we need the language of
back-and-forth systems which Hella uses as an explicit representation of a Duplicator winning
strategy. We provide the appropriate generalised definition here:

I Definition 10. Let Partkxn
(A,B) be the set of all partial functions A ⇀ B which preserve

atoms (i.e. are partial homomorphisms) and, if xn = 1 additionally preserve negated atoms.
A set S ⊂ Partkxn

(A,B) is a back-and-forth system for the game (xi, xs, xn)-Funkn(A,B)
if it satisfies the following properties:

Closure under subfunction: If f ∈ S then g ∈ S for any g ⊂ f
(xi, xs)-forth property For any f in S s.t. |f | < k, there exists a function φf : A→ B,
which is injective if xi = 1 and surjective if xs = 1 s.t. for every C ⊂ dom(f), D ⊂ A

with |D| ≤ n we have (f � C) ∪ (φf � D) ∈ S.

As this definition is essentially an unravelling of a Duplicator winning strategy for the
game (xi, xs, xn)-Funkn(A,B) we see that

I Lemma 11. There is a back-and-forth system S containing the empty partial homomorphism
∅ if, and only if, Duplicator has a winning strategy for the game (xi, xs, xn)-Funkn(A,B)

Following Hella, we define the canonical back-and-forth system for a game as follows:

I Definition 12. The canonical back-and-forth system for (xi, xs, xn)-Funkn(A,B) is denoted
In,kx (A,B) and is given by the intersection

⋂
m I

n,k,m
x (A,B), whose conjuncts are defined

inductively by setting In,k,0x (A,B) := Partkxn
(A,B) and letting In,k,m+1

x (A,B) be the set
of ρ ∈ In,k,mx (A,B) such that ρ satisfies the (xi, xs)-forth condition with respect to the set
In,k,mx (A,B)

A.Ó. Conghaile and A. Dawar 16:9

It is not difficult to see that for any back-and-forth system S for x-Funkn(A,B) we have
S ⊂ In,kx (A,B). This means that there is a winning strategy for Duplicator in the game
x-Funkn(A,B) if, and only if, In,kx (A,B) is not empty.

To complete the vocabulary needed to emulate Hella’s proof in this setting we introduce
the following generalisations of Hella’s definitions.

I Definition 13. Denote by Jn,kx (A,B) the set of all ρ ∈ Partkxn
(A,B) which preserve the

validity of all Hn,kx formulas in elements of dom(ρ). Let ∃+FOn,k
x denote the fragment of

Hn,kx with only finitary conjunctions and disjunctions. Denote by Kn,k
x (A,B) the set of all

ρ ∈ Partkxn
(A,B) which preserve the validity of all ∃+FOn,k

x formulas in elements of dom(ρ).

An adaptation of Hella’s argument yields the following Lemma:

I Lemma 14. For A,B finite relational structures, In,kx (A,B) = Jn,kx (A,B) = Kn,k
x (A,B)

We conclude this section by showing the desired correspondence for the whole family of
games and logics we have introduced.

I Theorem 15. For x ∈ {0, 1}3 and all n, k ∈ N the following are equivalent:
Duplicator has a winning strategy for x-Funkn(A,B)
AVHn,k

x
B

AV∃+FOn,k
x
B

The case of n = 1 for this correspondence is particularly interesting as we can show
that unary injection-closed and surjection-closed quantifiers are generated by all counting
quantifiers and the quantifiers {∃,∀} respectively.

4 The Comonad and Kleisli Category

In this section, we show how to construct a game comonad Gn,k which captures the strategies
of +Funkn in the same way that Pk captures the strategies of ∃Pebk. We do this using a
new technique for constructing new game comonads from old based on strategy translation.
We then show that different types of morphism in the Kleisli category of this new comonad
correspond to Duplicator strategies for the games introduced in Section 3.

4.1 Translating between games
The pebbling comonad is obtained by defining a structure PkA for each A whose universe
consists of (non-empty) lists in (A × [k])∗ which we think of as sequences of moves by
Spoiler in a game Pebk(A,B), with B unspecified. With this in mind, we call a sequence
in (A × [k])∗ a k-history (allowing the empty sequence). In contrast, a move in the game
+Funkn(A,B) involves Spoiler moving up to n pebbles and therefore a history of Spoiler
moves is a sequence in ((A× [k])≤n)∗. We call such a sequence an n, k-history. With this
set-up, (deterministic) strategies are given by functions ((A × [k])∗ × [k]) → (A → B) for
Pebk(A,B) and ((A× [k])≤n)∗ → (A→ B) for +Funkn(A,B).

A winning strategy for Duplicator in +Funkn(A,B) can always be translated into one in
Pebk(A,B). We aim now to establish conditions when a translation can be made in the
reverse direction. For this, it is useful to establish some machinery.

There is a natural flattening operation that takes n, k-histories to k-histories. We denote
the operation by F , so F ([s1, s2, . . . , sm]) = s1 · s2 · · · sm, where s1, . . . sm ∈ (A× [k])≤n. Of
course, the function F is not injective and has no inverse. It is worth, however, considering

CSL 2021

16:10 Game Comonads & Generalised Quantifiers

functions G from k-histories to n, k-histories that are inverse to F in the sense that F (G(t)) =
t. One obvious such function takes a k-history s1, . . . , sm to the n, k-history [[s1], . . . , [sm]],
i.e. the sequence of one-element sequences. This is, in some sense, minimal in that imposes
the minimal amount of structure on G(t). We are interested in a maximal such function. For
this, recall that the sequences in (A× [k])≤n that form the elements of an n, k-history have
length at most n and do not have a repeated index from [k]. We aim to break a k-history t
into maximal such blocks. This leads us to the following definition.

I Definition 16. A list s ∈ (A× [k])∗ is called basic if it contains fewer than or equal to n
pairs and the pebble indices are all distinct.

The n-structure function Sn : (A× [k])∗ → ((A× [k])≤n)∗ is defined recursively as follows:
Sn(s) = [s] if s is basic
otherwise, Sn(s) = [a];Sn(t) where s = a · t such that a is the largest basic prefix of s.

It is immediate from the definition that F (Sn(t)) = t. It is useful to characterise the range
of the function Sn, which we do through the following definition.

I Definition 17. An n, k-history t is structured if whenever s and s′ are successive elements
of t, then either s has length exactly n or s′ begins with a pair (a, p) such that p occurs in s.

It is immediate from the definitions that Sn(s) is structured for all k-histories s and that
an n, k-history is structured if, and only if, Sn(F (s)) = s.

We are now ready to characterise those Duplicator winning strategies for ∃Pebk that can
be lifted to +Funkn. First, we define a function that lifts a position in ∃Pebk that Duplicator
must respond to, i.e. a pair (s, p) where s is a k-history and p a pebble index, to a position
in +Funkn, i.e. an n, k-history.

I Definition 18. Suppose s is a k-history and s′ is the last basic list in Sn(s), so Sn(s) = t; [s′].
Let p ∈ [k] be a pebble index.

Define the n-structuring αn(s, p) of (s, p) by

αn(s, p) =
{
t; [s′] if |s′| = n or p occurs in s′

t otherwise.

I Definition 19. Say that a Duplicator strategy Ψ : ((A× [k])∗ × [k])→ (A→ B) in ∃Pebk
is n-consistent if for all k-histories s and s′ and all pebble indices p and p′:

αn(s, p) = αn(s′, p′) ⇒ Ψ(s, p) = Ψ(s′, p′).

Intuitively, an n-consistent Duplicator strategy in the game ∃Pebk(A,B) is one where
Duplicator plays the same function in all moves that could be part of the same Spoiler move
in the game +Funkn(A,B). We are then ready to prove the main result of this subsection.

I Lemma 20. Duplicator has an n-consistent winning strategy in ∃Pebk(A,B) if, and only
if, it has a winning strategy in +Funkn(A,B).

4.2 Lifting the comonad Pk to Gn,k

Central to Abramsky et al.’s construction of the pebbling comonad is the observation that
for I-structures (defined in Section 2), maps in the Kleisli category K(Pk) correspond to
Duplicator winning strategies in ∃Pebk(A,B).

A.Ó. Conghaile and A. Dawar 16:11

I Lemma 21 ([3]). For A and B I-structures over the signature σ, there is a homomorphism
PkA → B if and only if there is a (deterministic) winning strategy for Duplicator in the game
∃Pebk(A,B)

The relation to strategies is clear in the context of elements s ∈ PkA representing histories
of Spoiler moves up to and including the current move in the game ∃Pebk(A,B). The
relational structure given to this set by Abramsky, Dawar and Wang ensures that pebbled
positions preserve relations in σ, while the caveat here about I-structures is a technicality to
ensure that the pebbled positions when “playing” according to a map f all define partial
homomorphisms, in particular they give well defined partial maps from A to B.

As we saw in Lemma 20 a Duplicator winning strategy in +Funkn(A,B) is given by an
n-consistent strategy in ∃Pebk(A,B). The n-consistency condition can be seen as saying
that the corresponding map f : PkA → B must, on certain “equivalent” elements of PkA
give the same value. We can formally define the equivalence relation as follows.

I Definition 22. For n ∈ N and A a relational structure. Define ≈n on the universe of PkA
as follows:

[s; (a, i)] ≈n [t; (b, j)] ⇐⇒ a = b and αn((s, i)) = αn((t, j))

In general, for any structured n, k-history t, we write [t|a] to denote the ≈n-equivalence class
of an element [s; (a, i)] ∈ PkA with αn(s, i) = t.

This allows us to define the main construction of this section as a quotient of the
relational structure PkA. Note that the relation ≈n is not a congruence of this structure, so
there is not a canonical quotient. This is because don’t have that a ≈n b does not imply
a ∈ RA ⇐⇒ b ∈ RA. Given an arbitrary equivalence relation ∼ over a relational structure
M, there are two standard ways to define relations in a quotientM/∼. We could say that a
tuple (c1, . . . cr) of equivalence classes is in a relation RM/∼ if, and only if, every choice of
representatives is in RM or if some choice of representatives is in RM. The latter definition
has the advantage that the quotient map fromM toM/∼ is a homomorphism.

I Definition 23. For n, k ∈ N, k ≥ n and σ a relational signature, we define the functor
Gn,k : R(σ)→ R(σ) by:

On objects Gn,kA := PkA/≈n.
On morphisms Pkf/≈n is well-defined as Pkf only changes the elements not the pebble
indices.

Writing qn : PkA → Gn,kA for the quotient map enables us to establish the following
useful property.

I Observation 24. f : Gn,kA → B is a homomorphism if, and only if, f ◦ qn : PkA → B is
a homomorphism.

Combining this with Lemma 20, we have the appropriate generalisation of Lemma 21.

I Lemma 25. For I-structures A and B, there is a homomorphism f : Gn,kA → B if, and
only if, there is a winning strategy for the Duplicator in the game +Funkn

Furthermore, we can see that

I Lemma 26. The counit ε and comultiplication δ for Pk lift to well-defined natural
transformations for Gn,k

CSL 2021

16:12 Game Comonads & Generalised Quantifiers

We will call these lifted natural transformations εn,k : Gn,k → 1 and δn,k : Gn,k →
Gn,kGn,k. As qn ◦ Pkqn = Gn,kqn ◦ qn, we have that for any t ∈ (Pk)mA the notion of
“the” equivalence class of t, qn(t) ∈ (Gn,k)mA is well-defined. So for any term T built from
composing ε, δ and Pk we have that the term T̃ , obtained by replacing ε by εn,k, δ with δn,k
and Pk with Gn,k satisfies qn(T (t)) = T̃ (qn(t)) by the above proof. Now as the counit and
coassociativity laws are equations in ε and δ which remain true on taking the quotient we
have the following result.

I Theorem 27. (Gn,k, εn,k, δn,k) is a comonad on R(σ)

4.3 Classifying the morphisms of K(Gn,k)
In Abramsky et al.’s treatment of the Kleisli category of Pk [3] they classify the morphisms
according to whether their branch maps are injective, surjective or bijective. We extend this
definition to the comonad Gn,k. This gives us a way of classifying the morphisms to match
the classification of strategies given in Section 3.

I Definition 28. For f : Gn,kA → B a Kleisli morphism of Gn,k, the branch maps of f are
defined as the following collection of functions A→ B, indexed by the structured n, k-histories
t ∈ ((A× [k])≤n)∗ and defined as φft (x) := f([t|x]). We say that such an f is branch-bijective
(resp. branch-injective, -surjective) if for every t φft is bijective (resp. injective, surjective).
We denote these maps by A →b

n,k (resp. B A →i
k B and A →s

k B)

Informally, the branch map φgs is the response given by Duplicator in the +Funkn(A,B)
when playing according to the strategy represented by g after Spoiler has made the series of
plays in s. This gives us another way of classifying the Duplicator winning strategies for the
games from Section 3.

I Lemma 29. There is a winning strategy for Duplicator in the game +Bijkn(A,B) (resp.
+Injkn(A,B), +Surjkn(A,B)) if and only if A →b

n,k B (resp. A →i
n,k B, A →s

n,k B).

Expanding this connection between Kleisli maps and strategies, we define the following:

I Definition 30. We say a a Kleisli map f : Gn,kA → B is strongly branch-
bijective (resp. strongly branch-injective, -surjective) if the strategy for +Bijkn(A,B) (resp.
+Injkn(A,B),+Surjkn(A,B)) is also a winning strategy for the game Bijkn(A,B) (resp.
Injkn(A,B),Surjkn(A,B)) and we denote these maps by A _b

n,k (resp. B A _i
k B and

A_s
k B)

Now we generalise a result of Abramsky, Dawar and Wang to the Kleisli category K(Gn,k).

I Lemma 31. For A,B finite relational structures,

A�i
n,k B ⇐⇒ A�s

n,k B ⇐⇒ A_b
n,k B ⇐⇒ A ∼=K(Gn,k) B

This lemma allows us to conclude that the isomorphisms in the category K(Gn,k)
correspond with equivalence of structures up to k variable infinitary logic extended by
all generalised quantifiers of arity at most n and thus with winning strategies for Hella’s
n-bijective k-pebble game.

I Theorem 32. For two finite relational structures A and B the following are equivalent:
A ∼=K(Gn,k) B
Duplicator has a winning strategy for Bijkn(A,B)
A ≡Lk(Qn) B

Proof. Immediate from Lemma 31 and Hella [15]. J

A.Ó. Conghaile and A. Dawar 16:13

5 Coalgebras and Decompositions

Abramsky et al. [3] show that the coalgebras of the comonad Pk are, in fact, objects of
great interest to finite model theorists. That is, a coalgebra α : A → PkA gives a tree
decomposition of A of width at most k − 1. Moreover, any such tree decomposition can be
turned into a coalgebra. This result works, in essence, because PkA has a treelike structure
where any pebble history, or branch, s ∈ PkA only witnesses the relations from the ≤ k

elements of A which make up the pebbled position on s. So a homomorphism A → PkA
witnesses a sort of treelike k-locality of the relational structure of A and the extra conditions
of being a Pk-coalgebra ensure this can be presented as a tree decomposition (of width < k).

In generalising this comonad to Gn,k, we have given away some of the restrictive k-local
nature of Pk which makes this argument work. For example, we note that the substructure
induced on elements of the form {[ε|x] | x ∈ A} witnesses all relations in A which have arity
≤ n. So, in particular, if the maximum arity of σ the signature of A is less than n, then it
is not hard to see how to construct a homomorphism, indeed a coalgebra, A→ Gn,kA. So
our notion of n-generalised tree decomposition should clearly be more permissive than the
notion of tree decomposition, collapsing for n ≥ arity(σ) and otherwise allowing a controlled
amount of non-locality (parameterised by n). The correct definition, as we prove in this
section, is the following.

I Definition 33. An extended tree decomposition of a σ-structure A is a triple (T, β, γ)
with β, γ : T → 2A such that:
1. (T,B) with B : T → 2A given by B(t) = β(t) ∪ γ(t) is a tree-decomposition of A; and
2. if a ∈ γ(t) and a ∈ B(t′) then t ≤ t′.

Thus, we can see an extended tree decomposition as a tree decomposition (T,B) where,
additionally, at each node t we pick out a subset γ(t) of B(t) with the property that every
element a of A appears in at most one γ(t) and when it does, this t is the root of the
subtree of T in which a appears. We next define the width and arity of an extended tree
decomposition.

I Definition 34. The width of an extended tree decomposition (T, β, γ) is maxt∈T |β(t)|.
The arity of an extended tree decomposition (T, β, γ) of width k is the least n ≤ k such

that:
1. if t < t′ then |β(t′) ∩ γ(t)| ≤ n; and
2. for every tuple (a1, . . . , am) in every relation R of A, there is a t ∈ T such that
{a1, . . . , am} ⊆ B(t) and |{a1, . . . , am} ∩ γ(t)| ≤ n.

Any extended tree decomposition T (β, γ) of a structure A can be transformed into one
in which each a ∈ A appears in exactly one γ(t). Indeed, suppose there is some a for which
this is not true and let t be the order minimal element such that s ∈ B(t). We simply
split t into two nodes adding a parent ta (with no other children) with γ(ta) = {a} and
β(ta) = β(t) \ {a}. This is easily seen to be an extended tree decomposition with the same
width and arity. We call such a tree decomposition one in normal form.

We are particularly interested in extended tree decompositions that are further well-
structured, in the sense that is related to the definition of structured n, k-histories in Section 4.

I Definition 35. An extended tree decomposition with width k and arity n is structured if
for every a ∈ A there is a t ∈ T s.t. a ∈ γ(t), for every node t, γ(t) 6= ∅, for any child t′ of t
β(t′) ∩ γ(t) 6= ∅ and for any t′′ a child of t′ we have that either:

CSL 2021

16:14 Game Comonads & Generalised Quantifiers

|β(t′) ∩ γ(t)| = n; or
|β(t′)| < k; or
γ(t) ∩ β(t′) \ β(t′′) 6= ∅

For a node t in an extended tree decomposition, we call β(t) the fixed bag at t and γ(t)
the floating bag at t.

In general, extended tree decompositions of width k and arity 1 correspond exactly with
tree decompositions of width k.

I Lemma 36. A relational structure A has a tree decomposition of width k if, and only if, it
has an extended tree decomposition of width k and arity 1

Relating extended tree decompositions to our construction in Section 4, we note the
following easy but important result.

I Lemma 37. For any finite A, there is a structured extended tree decomposition of Gn,kA
of width k and arity n for some k, n ∈ N

We now prove the main claim of this section, that the Gn,k-coalgebras are in
correspondence with structured extended tree decompositions of width k and arity n. The
correspondence between tree decompositions and coalgebras of Pk was established in [3]
through a partial order on a structure A called a tree traversal. We now introduce an
analogous traversal structure to link Gn,k-coalgebras and extended tree decompositions of
width k and arity n. The following definitions provide precisely such a structure.

I Definition 38. An n-tree order is a triple (X,<,∼) where < is a partial order and ∼ an
equivalence relation, both on the set X, such that:
1. for all x, y, z ∈ X, x < y and y ∼ z implies x < z;
2. (X/∼, <) is a tree order; and
3. for each x ∈ X and each ∼-equivalence class η, there are at most n elements y ∈ η such

that y < x.

An n-tree order provides the order structure allowing us to define the traversals we need.

I Definition 39. For a σ-structure A, let (A,<,∼) be an n-tree order and ι : O → 2[k] a
function, where O = {(a, b) | a < b} such that
1. if b < b′ or b ∼ b′, then ι(a, b) = ι(a, b′); and
2. if a 6= a′ and a ∼ a′ then ι(a, b) ∩ ι(a′, b) = ∅.
3. if C is a ∼-equivalence class then |

⋃
a∈C ι(a, b)| ≤ n

This is an n, k-traversal of A if, for each tuple (a1, . . . , am) in any relation R of A, we have:
1. for each i, j ∈ [m] either ai < aj, aj < ai or ai ∼ aj;
2. no more than n elements of {a1, . . . , am} belong to any one ∼-equivalence class; and
3. if ai < aj, there exists pi ∈ ι(ai, aj) such that for all c ∈ A with ai < c < aj then

pi 6∈ ι(c, aj).

An n, k-traversal is structured if for any a < b < c such that there is no d with a < d < b,
we have that either:
|
⋃
{a′|a∼a′and a′<c} ι(a′, c)| = n; or⋃
{a′|a∼a′and a′<c} ι(a′, c) ∩

⋃
{b′|b∼b′and b′<c} ι(b′, c) 6= ∅

We establish the relationship between extended tree decompositions and n, k-traversals
in the following lemma.

A.Ó. Conghaile and A. Dawar 16:15

I Lemma 40. For a finite structure A, if A has an extended tree decomposition of width k
and arity n then it has an n, k-traversal. Furthermore, if the extended tree decomposition is
structured then there is a structured n, k-traversal.

We are ready to establish the relationship between n, k traversals and coalgebras of Gn,k.

I Lemma 41. There is a coalgebra α : A → Gn,kA if, and only if, there is a structured
n, k-traversal of A

We finish this section by putting together these results into a single theorem.

I Theorem 42. For A a finite relational structure the following are equivalent:
1. there is a Gn,k-coalgebra α : A → Gn,kA
2. there is a structured extended tree decomposition of A with width k and arity n
3. there is a structured n, k-traversal of A

6 Concluding Remarks

The work of Abramsky et al., giving comonadic accounts of pebble games and their relationship
to logic has opened up a number of avenues of research. It raises the possiblilty of studying
logical resources through a categorical lens and introduces the notion of coresources. This
view has been applied to pebble games [3], Ehrenfeucht-Fraïssé games, bisimulation games [4]
and also to quantum resources [1, 2]. In this paper we have extended this approach to logics
with generalised quantifiers.

The construction of the comonad Gn,k introduces interesting new techniques to this
project. The pebbling comonad Pk is graded by the value of k which we think of as a
coresource increasing which constrains the morphisms. The new parameter n provides
a second coresource, increasing which further constrains the moves of Duplicator. It is
interesting that the resulting comonad can be obtained as a quotient of Pk and the strategy
lifting argument developed in Section 4 could prove useful in other contexts. The morphisms
in the Kleisli category correspond to winning strategies in a new game we introduce which
characerises a natural logic: the positive logic of homomorphism-closed quantifiers. The
isomorphisms correspond to an already established game: Hella’s n-bijective game with k
pebbles. This relationship allows for a systematic exploration of variations characterising a
number of natural fragments of the logic with n-ary quantifiers. One natural fragment that
is not yet within this framework and worth investigating is the logic of embedding-closed
quantifiers of Haigora and Luosto [14].

This work opens up a number of perspectives. Logics with generalised quantifiers have
been widely studied in finite model theory. They are less of interest in themselves and more
as tools for proving inexpressibility in specific extensions of first-order or fixed-point logic.
For instance, the logics with rank operators [7, 12], of great interest in descriptive complexity,
have been analysed as fragments of a more general logic with linear-algebraic quantifiers [6].
It would be interesting to explore whether the comonad Gn,k could be combined with a
vector space construction to obtain a categorical account of this logic.

More generally, the methods illustrated by our work could provide a way to deconstruct
pebble games into their component parts and find ways of constructing entirely new forms of
games and corresponding logics. The games we consider and classify are based on Duplicator
playing different kinds of functions (i.e. morphisms on finite sets) and maintaining different
kinds of homomorphisms (i.e. morphisms in the category of σ-structures). Could we build
reasonable pebble games and logics on other categories? In particular, can we bring the
algebraic pebble games of [9] into this framework?

CSL 2021

16:16 Game Comonads & Generalised Quantifiers

References
1 Samson Abramsky, Rui Soares Barbosa, Nadish de Silva, and Octavio Zapata. The Quantum

Monad on Relational Structures. In Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois
Raskin, editors, 42nd International Symposium on Mathematical Foundations of Computer
Science (MFCS 2017), volume 83 of LIPIcs, pages 35:1–35:19, 2017. doi:10.4230/LIPIcs.
MFCS.2017.35.

2 Samson Abramsky, Rui Soares Barbosa, Martti Karvonen, and Shane Mansfield. A comonadic
view of simulation and quantum resources. In 34th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS, 2019. doi:10.1109/LICS.2019.8785677.

3 Samson Abramsky, Anuj Dawar, and Pengming Wang. The pebbling comonad in finite model
theory. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 1–12, June 2017. doi:10.1109/LICS.2017.8005129.

4 Samson Abramsky and Nihil Shah. Relating structure and power: Comonadic semantics for
computational resources. In 27th EACSL Annual Conference on Computer Science Logic, CSL
2018, September 4-7, 2018, Birmingham, UK, volume 119 of LIPIcs, pages 2:1–2:17, 2018.
doi:10.4230/LIPIcs.CSL.2018.2.

5 Anuj Dawar. Generalized Quantifiers and Logical Reducibilities. Journal of Logic and
Computation, 5(2):213–226, 1995. doi:10.1093/logcom/5.2.213.

6 Anuj Dawar, Erich Grädel, and Wied Pakusa. Approximations of isomorphism and logics
with linear-algebraic operators. In 46th International Colloquium on Automata, Languages,
and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages
112:1–112:14, 2019. doi:10.4230/LIPIcs.ICALP.2019.112.

7 Anuj Dawar, Martin Grohe, Bjarki Holm, and Bastian Laubner. Logics with rank operators.
In Proceedings of the 2009 24th Annual IEEE Symposium on Logic In Computer Science, LICS
’09, pages 113–122, Washington, DC, USA, 2009. IEEE Computer Society. doi:10.1109/LICS.
2009.24.

8 Anuj Dawar and Lauri Hella. The expressive power of finitely many generalized quantifiers.
Information and Computation, 123(2):172–184, 1995.

9 Anuj Dawar and Bjarki Holm. Pebble games with algebraic rules. Fundamenta Informaticae,
Vol. 150, nr 3/4:281–316, 2017.

10 Anuj Dawar, Steven Lindell, and Scott Weinstein. Infinitary logic and inductive definability
over finite structures. Information and Computation, 119(2):160–175, 1995.

11 Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. Springer, 2nd edition, 1999.
12 Erich Grädel and Wied Pakusa. Rank logic is dead, long live rank logic! The Journal of

Symbolic Logic, 84(1):54–87, 2019. doi:10.1017/jsl.2018.33.
13 Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory,

volume 47 of Lecture Notes in Logic. Cambridge University Press, 2017.
14 Jevgeni Haigora and Kerkko Luosto. On logics extended with embedding-closed quantifiers,

2014. arXiv:1401.6682.
15 Lauri Hella. Definability hierarchies of generalized quantifiers. Annals of Pure and Applied

Logic, 43(3):235–271, 1989. doi:10.1016/0168-0072(89)90070-5.
16 Lauri Hella. Logical hierarchies in PTIME. Information and Computation, 129(1):1–19, 1996.

doi:10.1006/inco.1996.0070.
17 Phokion G. Kolaitis and Jouko A. Väänänen. Generalized quantifiers and pebble games

on finite structures. Annals of Pure and Applied Logic, 74(1):23–75, 1995. doi:10.1016/
0168-0072(94)00025-X.

18 Phokion G. Kolaitis and Moshe Y. Vardi. Infinitary logic for computer science. In Automata,
Languages and Programming, pages 450–473, 1992.

19 Phokion G. Kolaitis and Moshe Y. Vardi. A game-theoretic approach to constraint satisfaction.
In Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth
Conference on on Innovative Applications of Artificial Intelligence, pages 175–181, 2000.

https://doi.org/10.4230/LIPIcs.MFCS.2017.35
https://doi.org/10.4230/LIPIcs.MFCS.2017.35
https://doi.org/10.1109/LICS.2019.8785677
https://doi.org/10.1109/LICS.2017.8005129
https://doi.org/10.4230/LIPIcs.CSL.2018.2
https://doi.org/10.1093/logcom/5.2.213
https://doi.org/10.4230/LIPIcs.ICALP.2019.112
https://doi.org/10.1109/LICS.2009.24
https://doi.org/10.1109/LICS.2009.24
https://doi.org/10.1017/jsl.2018.33
http://arxiv.org/abs/1401.6682
https://doi.org/10.1016/0168-0072(89)90070-5
https://doi.org/10.1006/inco.1996.0070
https://doi.org/10.1016/0168-0072(94)00025-X
https://doi.org/10.1016/0168-0072(94)00025-X

A.Ó. Conghaile and A. Dawar 16:17

20 Leonid Libkin. Elements Of Finite Model Theory (Texts in Theoretical Computer Science. An
Eatcs Series). SpringerVerlag, 2004.

21 Per Lindström. First order predicate logic with generalized quantifiers. Theoria, 32(3):186–195,
1966. doi:10.1111/j.1755-2567.1966.tb00600.x.

CSL 2021

https://doi.org/10.1111/j.1755-2567.1966.tb00600.x

Semiring Provenance for Fixed-Point Logic
Katrin M. Dannert
RWTH Aachen University, Germany
dannert@logic.rwth-aachen.de

Erich Grädel
RWTH Aachen University, Germany
graedel@logic.rwth-aachen.de

Matthias Naaf
RWTH Aachen University, Germany
naaf@logic.rwth-aachen.de

Val Tannen
University of Pennsylvania, Philadelphia, PA, USA
val@cis.upenn.edu

Abstract

Semiring provenance is a successful approach, originating in database theory, to providing detailed
information on how atomic facts combine to yield the result of a query. In particular, general
provenance semirings of polynomials or formal power series provide precise descriptions of the
evaluation strategies or “proof trees” for the query. By evaluating these descriptions in specific
application semirings, one can extract practical information for instance about the confidence of a
query or the cost of its evaluation.

This paper develops semiring provenance for very general logical languages featuring the full
interaction between negation and fixed-point inductions or, equivalently, arbitrary interleavings of
least and greatest fixed points. This also opens the door to provenance analysis applications for
modal µ-calculus and temporal logics, as well as for finite and infinite model-checking games.

Interestingly, the common approach based on Kleene’s Fixed-Point Theorem for ω-continuous
semirings is not sufficient for these general languages. We show that an adequate framework for the
provenance analysis of full fixed-point logics is provided by semirings that are (1) fully continuous, and
(2) absorptive. Full continuity guarantees that provenance values of least and greatest fixed-points
are well-defined. Absorptive semirings provide a symmetry between least and greatest fixed-points
and make sure that provenance values of greatest fixed points are informative.

We identify semirings of generalized absorptive polynomials S∞[X] and prove universal properties
that make them the most general appropriate semirings for our framework. These semirings have
the further property of being (3) chain-positive, which is responsible for having truth-preserving
interpretations that give non-zero values to all true formulae. We relate the provenance analysis of
fixed-point formulae with provenance values of plays and strategies in the associated model-checking
games. Specifically, we prove that the provenance value of a fixed point formula gives precise
information on the evaluation strategies in these games.

2012 ACM Subject Classification Theory of computation → Finite Model Theory

Keywords and phrases Finite Model Theory, Semiring Provenance, Absorptive Semirings, Fixed-
Point Logics

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.17

Related Version Due to space reasons, a number of technical details and proofs have been omitted.
They are available in the full version of this paper at https://arxiv.org/abs/1910.07910.

© Katrin M. Dannert, Erich Grädel, Matthias Naaf, and Val Tannen;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 17; pp. 17:1–17:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dannert@logic.rwth-aachen.de
mailto:graedel@logic.rwth-aachen.de
mailto:naaf@logic.rwth-aachen.de
mailto:val@cis.upenn.edu
https://doi.org/10.4230/LIPIcs.CSL.2021.17
https://arxiv.org/abs/1910.07910
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Semiring Provenance for Fixed-Point Logic

1 Introduction

Provenance analysis for a logical statement ψ, evaluated on a finite structure A, aims
at providing precise information why ψ is true or false in A. The approach of semiring
provenance, going back to [16] relies on the idea of annotating the atomic facts by values
from a commutative semiring, and to propagate these values through the statement ψ,
keeping track whether information is used alternatively (as in disjunctions or existential
quantifications) or jointly (as in conjunctions or universal quantifications). Depending on
the chosen semiring, the provenance value may then give practical information for instance
concerning the confidence we may have that A |= ψ, the cost of the evaluation of ψ on A,
the number of successful evaluation strategies for ψ on A in a game-theoretic sense, and
so on. Beyond such provenance evaluations in specific application semirings, more general
and more precise information is obtained by evaluations in so-called provenance semirings
of polynomials or formal power series. Take, for instance, an abstract set X of provenance
tokens that are used to label the atomic facts of a structure A, and consider the semiring N[X]
of polynomials with indeterminates in X and coefficients from N, which is the commutative
semiring that is freely generated (“most general”) over X. Such a labelling of the atomic facts
then extends to a provenance valuation π[[ψ]] ∈ N[X] for every Boolean query ψ from positive
relational algebra RA+ and, indeed, every negation-free first-order sentence ψ ∈ FO+. This
provenance valuation gives precise information about the combinations of atomic facts that
imply the truth of ψ in A. Indeed, we can write π[[ψ]] as a sum of monomials m xe1

1 · · ·x
ek

k .
Each such monomial indicates that we have precisely m evaluation strategies (or “proof
trees”) to determine that A |= ψ that make use of the atoms labelled by x1, . . . xk, and the
atom labelled by xi is used precisely ei times by the strategy, see [16, 13].

Provenance for least fixed points. A similar analysis has been carried out for Datalog
[6, 16]. Due to the need of unbounded least fixed-point iterations in the evaluation of
Datalog queries, the underlying semirings have to satisfy the additional property of being
ω-continuous. By Kleene’s Fixed-Point Theorem, systems of polynomial equations then
have least fixed-point solutions that can be computed by induction, reaching the fixed-point
after at most ω stages. Most of the common application semirings are ω-continuous, or can
easily be extended to one that is so; however, the most general ω-continuous provenance
semiring over X is no longer a semiring of polynomials but the semiring of formal power
series over X, denoted N∞[[X]], with coefficients in N∞ := N ∪ {∞}. As above, provenance
valuations π[[ψ]] ∈ N∞[[X]] give precise information about the possible evaluation strategies
for a Datalog query ψ on A. Even though A is assumed to be finite there may be infinitely
many such strategies, but each of them can use each atomic fact only a finite number of
times; to put it differently, “proof trees” for A |= ψ are still finite. This is closely related to
the provenance analysis of reachability games on finite graphs [6, 14].

Negation: a stumbling block for wider applications. Semiring provenance has been
applied to a number of other scenarios, such as nested relations, XML, SQL-aggregates,
graph databases (see, e.g., the survey [17] as well as [21, 22]), and it is fair to say that in
databases, semiring provenance analysis has been rather successful. However, its impact
outside of databases has been very limited, despite the fact that the main questions addressed
by provenance analysis, namely which parts of a large heterogeneous input structure are
responsible for the evaluation of a logical statement, and the applications to cost, confidence,
access control and so on are clearly interesting and relevant in many other branches of logics

K.M. Dannert, E. Grädel, M. Naaf, and V. Tannen 17:3

in computer science. The main obstacle for extending semiring provenance to such fields have
been difficulties with handling negation. For a long time, semiring provenance has essentially
been restricted to negation-free query languages, and although there have been algebraically
interesting attempts to cover difference of relations [1, 10, 11, 15], they have not resulted in a
systematic tracking of negative information. While there are many applications in databases
where one can get quite far with using positive information only, logical applications in
most other areas are based on formalisms that use negation in an essential way, often in
combination with recursion or fixed-points.

Provenance semirings for logics with negation and recursion. This paper is part of a
larger project with the objectives to

develop semiring provenance systematically for a wide range of logics, including those
featuring the notoriously difficult interaction between full negation and recursion,
to employ algebraic methods for provenance analysis, in particular universal semirings of
polynomials to obtain the most general provenance information,
to exploit the connections between logics and various kinds of games and to use semiring
valuations for an analysis of strategies in such games, and
to explore practical applications of semiring provenance in new areas of logics in computer
science, where this has not been used so far, such as knowledge representation, verification,
and machine learning.

This project has been initiated in [13], where a provenance analysis of full first-order
logic has been proposed. In this approach, negation is dealt with by transformation into
negation normal form and, algebraically, by new provenance semirings of dual-indeterminate
polynomials, which are obtained by taking quotients of traditional semirings of polynomials,
such as N[X], by congruences generated by products of positive and negative provenance
tokens, see Sect. 2 for details. In particular, the semiring N[X, X̄] of dual-indeterminate
polynomials is the most general provenance semiring for full first-order logic FO. These ideas
have been used in [3, 4] to provide a provenance analysis of modal and guarded fragments
of first-order logic, and to explore applications in description logic. Further, this approach
has been applied to database repairs in [23], and it has been shown how this treatment of
negation, or absent information, can be used to explain and repair missing query answers
and the failure of integrity constraints in databases.

While the connection between provenance analysis of first-order logic and semiring
valuations of games had only been hinted at in [13], it has then been developed more
systematically in [14], first for games on acyclic graphs, which admit only finite plays, and
then also for reachability games on acyclic game graphs. The latter are tightly connected
with least fixed-point inductions, used positively. Combining the approach from [13] with
the provenance analysis of least fixed-point inductions in ω-continuous semirings of formal
power series, one obtains, by an analogous quotient construction, the semiring N∞[[X, X̄]]
of dual-indeterminate power series [14]. This is the most general provenance semiring for
Datalog with negated input predicates and, more generally, also for posLFP, the fragment
of the full fixed-point logic LFP that consists of formulae in negation normal form such
that all its fixed-point operators are least fixed-points. This is a powerful fixed-point
calculus, which suffices to capture all polynomial-time computable properties of ordered finite
structures [12]. An important simplification of dealing with posLFP is that the game-based
analysis of model checking only requires reachability games rather than the much more
complicated parity games that are needed for full LFP. At the end of [14] the problem of
generalising semiring valuations and strategy analysis to infinite games with more general

CSL 2021

17:4 Semiring Provenance for Fixed-Point Logic

objectives than reachability has been discussed. In particular, a provenance approach for
safety games has been proposed, with absorptive semirings as the central algebraic tools,
and absorption-dominant strategies as a relevant game-theoretic notion.

Greatest fixed points. What has been missing so far, and what we want to provide in
this paper, is an adequate and systematic treatment of greatest fixed points. There is a
strong motivation for this: If provenance analysis should ever have an impact in fields such
as verification (and we strongly believe it should) then dealing with greatest fixed points,
e.g. for safety conditions or bisimulation, and with alternations between least and greatest
fixed points is indispensable. The relevant formalisms in verification (such as LTL, CTL,
µ-calculus etc.) are negation closed and based on both least and greatest fixed-points, with
strict alternation hierarchies (even for finite structures), and without possibilities to eliminate
greatest fixed-points. Even in finite model theory, where greatest fixed points can in principle
be eliminated from LFP by means of the Stage Comparison Theorem [20, 12], it is usually
not desirable to do so. Natural properties involving greatest fixed points (such as bisimilarity)
would become very complicated to express, with the need to double the arity of the fixed-point
variables. In addition, provenance valuations provide a refined semantics, and statements
that are equivalent in the Boolean sense need not have the same provenance value. Therefore,
we do not propose an approach that first tries to simplify formulae (e.g. by eliminating
fixed-point alternations) and then computes semiring valuations for the translated formulae,
but instead lay foundations of a provenance analysis for the general logics with arbitrary
interleavings of least and greatest fixed points, such as full LFP or the modal µ-calculus (and
for infinite games with more general objectives than reachability).

Provenance semirings for arbitrary fixed points. We first address the question, what
kind of semirings are adequate for a meaningful and informative provenance analysis of
unrestricted fixed point logics (Sect. 4). The common approach for dealing with least fixed
point inductions, based on ω-continuous semirings and Kleene’s Fixed-Point Theorem, is not
sufficient to guarantee that both least and greatest fixed point are well-defined. Instead, we
require that the semirings are fully continuous which means that every chain C has not only a
supremum

⊔
C, but also an infimum

d
C, and that both semiring operations are compatible

with these suprema and infima. For an informative provenance semantics, there is a second
important condition that is connected with the symmetry between least and greatest fixed
point computations. In the Boolean setting, fixed-point logic is based on complete lattices
which are inherently symmetric. Moreover, conjunction and disjunction are dual in the sense
that one leads to larger lattice elements while the other is decreasing. In the semiring setting,
we compute fixed points with respect to the natural order induced by addition. The only
constraint that relates this order with multiplication is distributivity, but this alone does not
suffice to ensure a similar duality. We achieve this by requiring that the semiring is absorptive.
This means that a+ ab = a for all a, b, and we shall see that this is equivalent with 1 being
the greatest element or with multiplication being decreasing, giving us the desired duality
with 0 and addition. As a result, absorptive and fully continuous semirings guarantee a
well-defined and informative provenance semantics for arbitrary fixed-point formulae.

Generalized absorptive polynomials. For a most general provenance analysis, we further
want the semiring semantics to be truth-preserving, which means that it gives non-zero values
to true formulae. In positive semirings, this is guaranteed if infima of non-zero values are
also non-zero, which we call chain-positivity. Our fundamental examples of absorptive, fully

K.M. Dannert, E. Grädel, M. Naaf, and V. Tannen 17:5

continuous, and chain-positive semirings are the semirings S∞[X] of generalized absorptive
polynomials and its dual-indeterminate version S∞[X, X̄], as introduced in [14]. Informally
such a polynomial is a sum of monomials, with possibly infinite exponents, that are maximal
with respect to absorption. For instance a monomial x2y∞z occurring in a provenance
value π[[ψ]] indicates an absorption-dominant evaluation strategy that uses the atom labelled
by x twice, the atom labelled by y an infinite number of times, and the atom labelled
by z once. This monomial absorbs all those that have larger exponents for all variables,
such as for instance x3y∞z∞u, but not, say, x∞y3. Absorptive polynomials thus describe
model-checking proofs or evaluation strategies with a minimal use of atomic facts. A precise
definition and analysis of these semirings will be given in Sect. 5. We prove that they do
indeed have universal properties (see Theorem 17) that make S∞[X, X̄] the most general
absorptive semiring for LFP and thus also an indispensable tool to prove general results
about provenance semantics in absorptive, fully continuous semirings.

Game-theoretic analysis. In the final Sect. 6 we illustrate the power of provenance inter-
pretations for LFP in absorptive, fully-continuous semirings, and particularly in S∞[X, X̄] by
relating them to provenance values of plays and strategies in the associated model-checking
games which in this case are parity games. Specifically we prove that, as in the case of FO
and posLFP, the provenance value of an LFP-formula ϕ gives precise information on the
evaluation strategies in these games.

2 Preliminaries: Commutative Semirings

I Definition 1. A commutative semiring is an algebraic structure (K,+, ·, 0, 1), with 0 6= 1,
such that (K,+, 0) and (K, ·, 1) are commutative monoids, · distributes over +, and 0 · a =
a · 0 = 0. It is naturally ordered if the relation a ≤ b :⇐⇒ a + c = b for some c ∈ K is a
partial order. Further, a commutative semiring is positive if a + b = 0 implies a = 0 and
b = 0 and if it has no divisors of 0 (i.e., a · b = 0 implies that a = 0 and b = 0).

All semirings considered in this paper are commutative and naturally ordered (which excludes
rings). In the following we just write “semiring” to denote a commutative, naturally ordered
semiring. Standard semirings considered in provenance analysis are in fact also positive,
but for an appropriate treatment of negation we need semirings (of dual-indeterminate
polynomials or power series) that have divisors of 0.

Elements of semirings will be used as truth values for logical statements. The intuition
is that + describes the alternative use of information, as in disjunctions or existential
quantifications, whereas · stands for the joint use of information, as in conjunctions or
universal quantifications. Further, 0 is the value of false statements, whereas any element
a 6= 0 of a semiring K stands for a “nuanced” interpretation of true. We briefly discuss some
specific semirings that provide interesting information about a logical statement.

The Boolean semiring B = ({0, 1},∨,∧, 0, 1) is the standard habitat of logical truth.
N = (N,+, ·, 0, 1) is used for counting evaluation strategies for a logical statement.
T = (R∞+ ,min,+,∞, 0) is called the tropical semiring. It can be used for measuring the
cost of evaluation strategies.
The Viterbi semiring V = ([0, 1],max, ·, 0, 1) is used to compute confidence scores for
logical statements. It is in fact isomorphic to T.
The min-max semiring on a totally ordered set (A,≤) with least element a and greatest
element b is the semiring (A,max,min, a, b).

CSL 2021

17:6 Semiring Provenance for Fixed-Point Logic

Beyond these application semirings, (most general) abstract provenance can be calculated
in freely generated (universal) provenance semirings of polynomials or formal power series.
The abstract provenance can then be specialised via homomorphisms to provenance values
in different application semirings as needed.

For any set X, the semiring N[X] = (N[X],+, ·, 0, 1) consists of the multivariate poly-
nomials in indeterminates from X with coefficients from N. This is the commutative
semiring freely generated by X. Admitting also infinite sums of monomials we obtain the
semiring N∞[[X]] of formal power series over X, with coefficients in N∞ := N ∪ {∞}.
Given two disjoint sets X, X̄ of “positive” and “negative” provenance tokens, together with
a one-to-one correspondence X ↔ X̄, mapping each positive token x to its corresponding
negative token x̄, the semiring N[X, X̄] is the quotient of the semiring of polynomials
N[X ∪ X̄] by the congruence generated by the equalities x · x̄ = 0 for all x ∈ X. This is
the same as quotienting by the ideal generated by the polynomials xx̄ for all x ∈ X. The
congruence classes in N[X, X̄] are in one-to-one correspondence with the polynomials in
N[X ∪ X̄] such that none of their monomials contain complementary tokens. We call these
dual-indeterminate polynomials. N[X, X̄] is freely generated by X∪X̄ for homomorphisms
such that h(x) · h(x̄) = 0. By a completely analogous quotient construction, we obtain
the semiring N∞[[X, X̄]] of dual-indeterminate power series.

3 Provenance Semantics for Fixed-Point Logic

Semiring provenance is well understood for first-order logic and for logics with only least
fixed points, used positively. To extend it to logics with arbitrary interleavings of least and
greatest fixed points, we discuss the general fixed-point logic LFP that extends first-order
logic by least and greatest fixed-point operators, but our insights also apply to weaker logics
such as the modal µ-calculus, dynamic logics, or temporal logics such as CTL.

Least Fixed-Point Logic. Least fixed-point logic, denoted LFP, extends first order logic by
least and greatest fixed points of definable monotone operators on relations: If ψ(R,x) is
a formula of vocabulary τ ∪ {R}, in which the relational variable R occurs only positively
and the length of x matches the arity of R, then [lfpRx . ψ](x) and [gfpRx . ψ](x) are also
formulae (of vocabulary τ). The semantics of these formulae is that x is contained in the
least (respectively the greatest) fixed point of the update operator Fψ : R 7→ {a : ψ(R,a)}.
Due to the positivity of R in ψ, any such operator Fψ is monotone and has, by the Knaster-
Tarski-Theorem, a least fixed point lfp(Fψ) and a greatest fixed point gfp(Fψ). See e.g. [12]
for background on LFP. The duality between least and greatest fixed points implies that
[gfpRx . ψ](x) ≡ ¬[lfpRx .¬ψ[R/¬R]](x). By this duality together with de Morgan’s laws,
every LFP-formula can be brought into negation normal form, where negation applies to
atoms only. The fragment posLFP of LFP consists of the formulae in negation normal form
in which all fixed-point operators are least fixed points. It is well-known that LFP, and even
posLFP, captures all polynomial-time computable properties of ordered finite structures [12].

Provenance Semantics. Instead of truth-values, we now assign semiring values to literals.
For a finite universe A and a finite relational vocabulary τ we denote the set of atoms as
AtomsA(τ) = {Ra : R ∈ τ, a ∈ Aarity(R)}. The set NegAtomsA(τ) contains all negations
¬Ra of atoms in AtomsA(τ) and we define the set of τ -literals on A as

LitA(τ) := AtomsA(τ) ∪NegAtomsA(τ) ∪ {a = b : a, b ∈ A} ∪ {a 6= b : a, b ∈ A}.

K.M. Dannert, E. Grädel, M. Naaf, and V. Tannen 17:7

I Definition 2. For any semiring K, a K-interpretation (for A and τ) is a function
π : LitA(τ)→ K mapping true equalities and inequalities to 1 and false ones to 0.

For a finite universe A, we can extend K-interpretations π to provide provenance values
π[[ϕ]] for any first-order formula ϕ in a natural way [13], by interpreting disjunctions and
existential quantification via addition, and conjunctions and universal quantification via
multiplication. Negation is not interpreted directly by an algebraic operation. We deal
with it syntactically, by evaluating the negation normal form nnf(ψ) instead. To interpret
fixed-point formulae [lfpRx . ψ](a) and [gfpRx . ψ](a), we generalize the update operators
Fψ to semiring semantics. If R has arity m, then its K-interpretations on A are functions
g : Am → K. These functions are ordered, by g ≤ g′ if, and only if, g(a) ≤ g′(a) for
all a ∈ Am (recall that our semirings are naturally ordered). Given a K-interpretation
π : LitA(τ) → K, we denote by π[R 7→ g] the K-interpretation of LitA(τ) ∪ AtomsA({R})
obtained from π by adding values g(c) for the atoms Rc. (Notice that R appears only
positively in ϕ, so negated R-atoms are not needed). The formula ϕ(R,x) now defines,
together with π, a monotone update operator Fϕπ on functions g : Am → K. More precisely,
it maps g to the function

Fϕπ (g) : a 7→ π[R 7→ g][[ϕ(R,a)]].

We obtain a well-defined provenance semantics for LFP if we can make sure that the
update operators Fϕπ have least and greatest fixed points lfp(Fϕπ), gfp(Fϕπ) : Am → K.
However, this is not guaranteed in all semirings, and also the common approach to least
fixed-point inductions based on ω-continuous semirings is not sufficient here, as these, in
general, do not guarantee the existence of greatest fixed points. This raises the fundamental
question: which semirings are really appropriate for LFP? We shall discuss this in detail in
the next section. Once we have fixed a notion of appropriate semirings for LFP, we obtain a
provenance semantics for LFP as follows.

I Definition 3. A K-interpretation π : LitA(τ)→ K (for finite A and τ) in an appropriate
semiring K extends to a K-valuation π : LFP(τ)→ K by mapping an LFP-sentence ψ(a) to
a value π[[ψ]] using the following rules

π[[ψ ∨ ϕ]] := π[[ψ]] + π[[ϕ]] π[[ψ ∧ ϕ]] := π[[ψ]] · π[[ϕ]] π[[∃xψ(x)]] :=
∑
a∈A

π[[ϕ(a)]]

π[[∀xψ(x)]] :=
∏
a∈A

π[[ϕ(a)]] π[[[lfpRx.ϕ(R,x)](a)]] := lfp(Fϕπ)(a)

π[[¬ψ]] := π[[nnf(¬ψ)]] π[[[gfpRx.ϕ(R,x)](a)]] := gfp(Fϕπ)(a).

We remark that there is an important difference between the classical Boolean semantics
and provenance semantics concerning the relationship of fixed-point logics with first-order
logic. The (Boolean) evaluation of a fixed-point formula on a finite structure is computed
by fixed-point inductions that terminate after a polynomial number of stages (with respect
to the size of the structure). Hence, on any fixed finite universe, a fixed-point formula can
be unraveled to an equivalent first-order formula. This is not the case for the provenance
valuations in infinite semirings. Even for very simple Datalog queries, a fixed-point induction
need not terminate after a finite number of steps. Provenance valuations provide more
information than just the truth or falsity of a statement, and in a general setting, this
provenance information, for instance about the number and properties of successful evaluation
strategies, may also be infinite.

CSL 2021

17:8 Semiring Provenance for Fixed-Point Logic

4 Semirings for Fixed-Point Logic

Given a naturally ordered semiring K, a chain is a totally ordered subset C ⊆ K. For
◦ ∈ {+, ·} we write a◦C for {a◦c | c ∈ C}. Provided they exist, we write

⊔
C and

d
C for the

supremum (least upper bound) and infimum (greatest lower bound) of C ⊆ K, and further
⊥ and > for the least and greatest elements of K. We say that a function f : K1 → K2 is
fully chain-continuous or, for short, fully continuous if it preserves suprema and infima of
nonempty chains, i.e., f(

⊔
C) =

⊔
f(C) and f(

d
C) =

d
f(C) for all chains ∅ 6= C ⊆ K1.

I Definition 4. A naturally ordered semiring K is fully chain-complete if every chain
C ⊆ K has a supremum

⊔
C and an infimum

d
C in K. It is additionally fully continuous

if its operations are fully continuous in both arguments, i.e., a ◦
⊔
C =

⊔
(a ◦ C) and

a ◦
d
C =

d
(a ◦ C) for all a ∈ K, chains ∅ 6= C ⊆ K and ◦ ∈ {+, ·}.

Examples of fully continuous semirings include the Viterbi semiring, the semiring N∞
of natural numbers extended by infinity, and semirings of formal power series N∞[[X]] and
N∞[[X, X̄]]. For positive least fixed-point inductions, as in Datalog [16] or posLFP [14], the
common approach is to use ω-continuous semirings. There, only suprema of ω-chains are
required and both operations must preserve suprema. It would be tempting to work with a
minimal generalization that imposes similar properties for descending ω-chains, using a dual
version of Kleene’s Fixed-Point Theorem. However, the following example shows that this
approach will not work in general with alternating fixed points.

I Example 5. Let K be a naturally ordered semiring that has both suprema of ascending
ω-chains and infima of descending ω-chains and let f : K × K → K be a function that
preserves these suprema and infima in each argument. For each x ∈ K, we can consider the
function gx : K → K, gx(y) = f(x, y) and, further, the function G : K → K, G(x) = gfp(gx).
Note that G is well-defined due to the preservation property of f and a dual version of
Kleene’s Fixed-Point Theorem. Now consider lfp(G). To guarantee the existence of this
fixed point via Kleene’s theorem, G has to preserve suprema of ω-chains. This is, however,
not the case, in general. One counterexample is the the function f(x, y) = x � y in the (fully
continuous) Łukasiewicz semiring L = ([0, 1],max, �, 0, 1) with a � b = max(0, a+ b− 1) on
the ω-chain (xn)n<ω defined by xn = 1 − 1

1+n . Then G(
⊔
n<ω xn) = G(1) = gfp(g1) = 1,

whereas
⊔
n<ω G(xn) =

⊔
n<ω gfp

(
gxn

)
=
⊔
n<ω 0 = 0. Hence Kleene’s theorem is not

applicable (although the least fixed point exists with lfp(G) = 0). y

Instead, we rely on K being fully chain-complete to guarantee the existence of fixed points
of monotone functions. We can then extend [20] the Kleene iteration ⊥, f(⊥), f2(⊥), f3(⊥),
. . . for lfp(f) to a transfinite fixed-point iteration (xβ)β∈On by setting x0 = ⊥, xβ+1 = f(xβ)
for ordinals β and xλ =

⊔
{xβ | β < λ} for limit ordinals λ. If f is monotone, this iteration

forms a chain and is well-defined due to the chain-completeness of K. The iteration for gfp(f)
can be defined analogously by xλ =

d
{xβ | β < λ} for limit ordinals and it follows that both

lfp(f) and gfp(f) exist for any monotone function f : K → K on a fully chain-complete
semiring K. Coming back to the question of appropriate semirings for LFP, we observe that
the update operators Fϕπ are always monotone (this can be seen by structural induction on
ϕ, using the monotonicity of · and +).

I Theorem 6. Semiring semantics for LFP is well-defined for fully chain-complete semirings.

We further remark that full chain-completeness is more general than the common notion
of complete lattices, used in the Knaster-Tarski fixed-point theory, as we only require suprema
(and infima) of chains instead of arbitrary sets. However, based on results in [19] it follows

K.M. Dannert, E. Grädel, M. Naaf, and V. Tannen 17:9

that every idempotent, fully chain-complete semiring is in fact a complete lattice (under
its natural order); this applies in particular to the absorptive, fully continuous semirings
discussed below.

The following fundamental property for provenance analysis (cf. [13]) establishes a closer
connection between logic (the semantics of ϕ) and algebra (the semiring homomorphism h)
and enables us to compute provenance information in a general semiring and then specialize
the result to application semirings by applying homomorphisms.

I Proposition 7 (Fundamental Property). Let K1, K2 be fully chain-complete semirings and
let h : K1 → K2 be a fully continuous semiring homomorphism with h(>) = >. Then for
every K1-interpretation π, the mapping h ◦ π is a K2-interpretation and for every ϕ ∈ LFP,
we have h(π[[ϕ]]) = (h ◦ π)[[ϕ]]. In diagrammatic form:

LitA(τ)

K1 K2

LFP

K1 K2

=⇒π h ◦ π

h

π h ◦ π

h

Fully continuous semirings. While fully chain-complete semirings suffice to guarantee
well-defined semantics, our main results (the universal property in Theorem 17 and the
connection to games in Sect. 6) require the technically slightly stronger notion of fully
continuous semirings, in which addition and multiplication preserve suprema and infima of
chains. This is an adaption of the standard notion of ω-continuity to our setting and all
natural examples of fully chain-complete semirings we are aware of are in fact fully continuous.
On a different note, the notion of chain-completeness is based on chains of arbitrary length.
We do not know whether working with ascending and descending ω-chains would suffice in
all cases, but we show in Sect. 5 that it suffices in absorptive, fully continuous semirings.

Absorptive and chain-positive semirings. Although the existence of fixed points is guar-
anteed in fully continuous semirings, we observe (in Example 10 below) that one may have
valuations of greatest fixed-point formulae in such semirings that are not really informative
and do not provide useful insights why a formula holds. This can be tied to two separate
problems: the lack of symmetry between least and greatest fixed-point inductions in some
such semirings, and the fact that such semirings are not necessarily truth-preserving, i.e. they
may evaluate true statements to 0. To deal with these problems we propose to work with
fully continuous semirings that are absorptive, to provide useful provenance information for
greatest fixed points, and chain-positive, to guarantee truth-preservation.

We first address the issue of symmetry between least and greatest fixed points. In the
Boolean setting, these are computed in the complete lattice of subsets which is inherently
symmetric. For instance, a greatest fixed point of a monotone operator is the complement of
the least fixed point of the dual operator (which is essential for a negation normal form).
Moreover, conjunction and disjunction are symmetric in the sense that one increases values,
acting as set union in the lattice of subsets, while the other is decreasing. In the semiring
setting, we compute fixed points with respect to the natural order induced by addition. This
order is always a complete lattice in absorptive semirings (in fact, idempotent semirings
suffice) and it is clear that addition is increasing in the sense that a + b ≥ a for all a, b.
The issue is with multiplication: The only constraint relating addition and multiplication is
distributivity, but this alone does not ensure a symmetry similar to the Boolean setting. We
achieve a sufficient degree of symmetry by requiring that the semiring is absorptive.

CSL 2021

17:10 Semiring Provenance for Fixed-Point Logic

I Definition 8. A semiring K is absorptive if a+ ab = a for all a, b ∈ K, which is equivalent
to saying that 1 + b = 1, for all b ∈ K.

Clearly, every absorptive semiring is idempotent: a+a = a for all a. For naturally ordered
semirings, absorption indeed provides symmetry: multiplication becomes decreasing and 1
becomes the greatest element, symmetric to addition and the least element 0. We remark that
while this adds a certain, fruitful degree of symmetry, it does not enforce complete symmetry
of addition and multiplication (as in the Boolean setting). For instance, multiplication need
not be idempotent. In particular, absorptive semirings need not be lattices (with + and · as
lattice operations), even if the natural order is always a complete lattice.

I Proposition 9. In a naturally ordered semiring K, the following are equivalent:
1. K is absorptive,
2. K has the greatest element > = 1, i.e., a ≤ 1 for all a ∈ K,
3. multiplication in K is decreasing, i.e., a · b ≤ b for all a, b ∈ K.

This symmetry helps, for instance, to avoid problems of increasing multiplication as in N∞.
Fixed-point theory often relies on symmetry and it is thus no surprise that more symmetry
leads to more useful provenance information. This can be seen in Example 10 below when
comparing the computations of greatest fixed points in the non-absorptive semiring N∞ and
the more informative Viterbi semiring.

A further motivation for absorptive semirings is that they give information about reduced
proofs of a formula. The property a+ ab = a implies, for example, that a proof containing
two literals mapped to a and b, thus having the value ab, is absorbed by a proof only using
one literal, with provenance value a. This has the further benefit that, unlike formal power
series N∞[[X]], provenance information is always finitely representable (see Sect. 5).

We next address the issue of truth-preservation, which is defined as follows. As in [13],
we say that a K-interpretation π : LitA(τ)→ K is model-defining if for all atoms Ra exactly
one of the two values π[[Ra]] and π[[¬Ra]] is zero. A model-defining K-interpretation induces
a unique structure Aπ with universe A and a ∈ RA if, and only if, π(Ra) 6= 0. For a truthful
provenance analysis for a logic L, this should lift to arbitrary sentences ϕ ∈ L, so that Aπ |= ϕ

if, and only if, π[[ϕ]] 6= 0. If this is indeed the case for all model-defining K-interpretations π,
we say that K is truth-preserving for L. This is illustrated in the following example.

I Example 10. The existence of an infinite path from u in a graph G is expressed by the
LFP-formula

ϕ(u) = [gfpRx . ∃y(Exy ∧Ry)](u)
u v

For the Boolean semiring B = {0, 1} there is a unique B-interpretation π that defines the
displayed graph G. Provenance semantics in B coincides with standard semantics and we
indeed obtain π[[ϕ(u)]] = 1. The Viterbi semiring V instead allows us to assign confidence
scores to the edges. If we set π(Euv) = π(Evv) = 1 as in the Boolean interpretation, we
again obtain an overall confidence of π[[ϕ(u)]] = 1. However, if we instead lower the score
of the self-loop to π(Evv) = 1 − ε, we obtain an overall confidence of π[[ϕ(u)]] = 0 due
to the fixed-point iteration 1, 1− ε, (1− ε)2, So while π still defines the model shown
above, the formula evaluates to 0 which we usually interpret as false, illustrating that the
Viterbi semiring is not truth-preserving. Since the loop occurs infinitely often in the unique
infinite path from u, the value 0 makes sense as a confidence score. Thus, although it is not
truth-preserving, the Viterbi semiring does provide useful information.

K.M. Dannert, E. Grädel, M. Naaf, and V. Tannen 17:11

Consider next the semiring of formal power series N∞[[X]]. If we choose π(Euv) = x and
π(Evv) = y (and keep the values 0 or 1 for the remaining literals), then π[[ϕ(u)]] = 0, as
result of the infinite iteration >, y · >, y2 · >, y3 · >, . . . with infimum 0 at node v (here, >
is the power series in which all monomials have coefficient ∞). Thus, the semiring N∞[[X]] is
not truth-preserving either.

In the semiring N∞, used to count proofs of formulae in FO and posLFP, the consideration
of greatest fixed points imposes problems: Intuitively, the graph only has one infinite path
that we would view as a proof of ϕ(u). But setting π(Euv) = π(Evv) = 1 results in
π[[ϕ(u)]] =∞, since the iteration for the evaluation of ϕ at v is ∞, 1 · ∞, 1 · ∞, . . . which
stagnates immediately. Although N∞ is truth-preserving, the example hints at another
general issue: Multiplication with non-zero values in N∞ always increases values. The same
is true for addition, so fixed-point iterations of gfp-formula are likely to result in ∞ and
do not give meaningful provenance information, e.g. about the number of proofs. Since the
computation in N∞[[X]] yields 0, we further see that we cannot obtain the result in N∞ from
the computation in N∞[[X]] by polynomial evaluation. Hence evaluation of formal power
series does not preserve provenance semantics in general. This is a further reason why formal
power series are not the right provenance semirings for LFP. y

We shall define and investigate in the next section the semiring of generalized absorptive
polynomials S∞[X] which, contrary to other fully continuous and absorptive semirings, is
truth-preserving due to the following algebraic property.

I Definition 11. A fully chain-complete semiring K is chain-positive if for each non-empty
chain C ⊆ K of non-zero elements, the infimum

d
C is non-zero as well.

I Proposition 12. Every chain-positive, positive semiring is truth-preserving for LFP.

Chain-positivity is not an indispensable requirement for provenance analysis, as shown
by the Viterbi semiring (which is absorptive and fully continuous). However, we need
this property for provenance semirings which should give insights into proofs or evaluation
strategies and thus have to preserve truth.

5 Generalized Absorptive Polynomials

We now discuss the semirings S∞[X] and S∞[X, X̄] of generalized absorptive polynomials.
They were introduced in [14] and generalize the semiring of absorptive polynomials Sorp(X)
from [6] by admitting exponents in N∞ to guarantee chain-positivity. We show that these
semirings are, in a well-defined sense, the most general absorptive, fully continuous semirings
and we argue that S∞[X, X̄] is the right provenance semiring for LFP.

I Definition 13. Let X be a finite set of provenance tokens. We generalize the notion of a
monomial over X to admit exponents from N∞. Monomials are here functions m : X → N∞,
written xm(x1)

1 · · ·xm(xn)
n . Multiplication adds the exponents, and x∞ ·xn = x∞. We say that

m2 absorbs m1, denoted m2 � m1, if m2 has smaller exponents than m1, i.e., m2(x) ≤ m1(x)
for all x ∈ X. This is the pointwise partial order given by the reverse order on N∞.

The set of monomials inherits a lattice structure from N∞ and is, of course, infinite.
However, it has some crucial finiteness properties.

I Proposition 14. Every antichain of monomials is finite. Further, while there are infinitely
descending chains of monomials, such as 1 = x0 � x1 � x2 � . . . there are no infinitely
ascending such chains.

CSL 2021

17:12 Semiring Provenance for Fixed-Point Logic

Indeed, (N∞,≤) is a well-order. The set of monomials m : X → N∞ with the reverse
order of the absorption order is isomorphic to (N∞)k with k = |X| and with the component-
wise order inherited from (N∞,≤). This is a well-quasi-order and therefore has no infinite
descending chains and no infinite antichains. This implies that in the set of monomials over
X with the absorption order, all ascending chains and all antichains are finite.

I Definition 15. We define S∞[X] as the set of antichains of monomials with indeterminates
fromX and exponents in N∞. We write such antichains as formal sums of their monomials and
call them (generalized absorptive) polynomials. Addition and multiplication of polynomials
proceed as usual, but keeping only the maximal monomials (w.r.t. �) in the result (and
disregarding coefficients).

Since antichains of monomials are finite, there is no difference between polynomials and
power series here. The natural order on S∞[X] can be characterized by monomial absorption:
P ≤ Q if, and only if, for each m ∈ P there is m′ ∈ Q with m′ � m. With Proposition 14,
it follows that there are no infinitely ascending chains of polynomials, and further that the
supremum of S ⊆ S∞[X] is

⊔
S = maximals (

⋃
S) which is the set of �-maximal monomials

in
⋃
S. Due to the exponent∞ and the finiteness of X, there is a smallest monomial m∞ 6= 0

with m∞(x) =∞ for all x ∈ X. This ensures chain-positivity of S∞[X].

I Proposition 16. (S∞[X],+, ·, 0, 1) is absorptive, fully continuous, and chain-positive.

The central property of S∞[X] is the following universal property which says that it
is the absorptive, fully continuous semiring freely generated by X w.r.t. fully continuous
homomorphisms. These homomorphisms enable us to apply the fundamental property.

I Theorem 17 (Universality). Every mapping h : X → K into an absorptive, fully continuous
semiring K uniquely extends to a fully continuous semiring homomorphism h : S∞[X]→ K.

In absorptive semirings, the powers of an element a form a descending ω-chain 1 ≥ a ≥
a2 ≥ · · · whose infimum we denote by a∞. Since we want h to be fully continuous, the
mapping h(x) = a implies h(x∞) = h(

d
n x

n) =
d
n h(x)n = a∞. By similar arguments, it is

straightforward to see that h is uniquely defined. The nontrivial part of the proof is that the
induced homomorphism h is fully continuous. Ascending chains are finite and thus impose
no difficulties, so what remains is to prove that h(

d
C) =

d
h(C) for chains C 6= ∅. Our

proof constructs from
d
C a canonical chain and makes use of Kőnig’s lemma (recall that

polynomials are finite) to relate the original chain C to the canonical chain, in a way that is
preserved by h (see Appendix A for the full proof).

The fact that the universal property guarantees fully continuous homomorphisms should
not be taken lightly: We have seen in Example 10 that this is not the case for formal power
series. There, polynomial evaluation induces homomorphisms that are, in general, not fully
continuous and hence do not preserve greatest fixed points. The following example shows
how we can specialize provenance values in S∞[X] to application semirings.

I Example 18. We recall the setting from Example 10 and first consider the model-defining
S∞[X]-interpretation tracking the two edges labelled x and y, as indicated in the left graph.

ϕ(u) = [gfpRx . ∃y(Exy ∧Ry)](u)
u v

x y
u v

x yz

We obtain π[[ϕ(u)]] = xy∞ corresponding to the infinite path uvvv The confidence values
from Example 10 can be obtained by polynomial evaluation: For h(x) = h(y) = 1, we get
(h◦π)[[ϕ(u)]] = 1·1∞ = 1 and for h′(x) = 1, h′(y) = 1−ε we get (h′◦π)[[ϕ(u)]] = 1·(1−ε)∞ = 0.

K.M. Dannert, E. Grädel, M. Naaf, and V. Tannen 17:13

We next consider the graph on the right by setting π(Euu) = z. There are now infinitely
many infinite paths from u to v. However, we obtain only finitely many monomials due to
absorption: π[[ϕ(u)]] = xy∞ + z∞. These correspond to the simplest infinite paths since
monomials such as z2xy∞ (corresponding to the path uuuvvv . . .) are absorbed by xy∞. y

One consequence of the universal property is the existence of a most general S∞[X]-
interpretation π0 by introducing variables X = {xL | L ∈ AtomsA(τ)∪NegAtomsA(τ)} for all
literals and setting π0(L) = xL. Any other K-interpretation π (where K is fully continuous
and absorptive) results from π0 by the evaluation xL 7→ π(L) which lifts to a fully continuous
homomorphism h. After computing π0[[ϕ]] once, the computation for any K-interpretation π
is then simply a matter of applying polynomial evaluation, since π[[ϕ]] = h(π0[[ϕ]]).

The most general S∞[X]-interpretation can also be used to prove that the update operators
Fϕπ induced by LFP-formulae in S∞[X] are fully continuous. Hence Kleene’s Fixed-Point
Theorem applies and guarantees that the fixed-point iterations for lfp(Fϕπ) and gfp(Fϕπ)
have closure ordinal at most ω. Using the universal property, the statement on the closure
ordinal generalizes to all absorptive, fully continuous semirings – even to semirings in which
update operators are not continuous in general (such as the semiring L in Example 5).

I Proposition 19. Given a K-interpretation π into an absorptive, fully continuous semiring,
all fixed-point iterations for lfp(Fϕπ) and gfp(Fϕπ) have closure ordinal at most ω.

What we still have to provide for an adequate provenance analysis is a proper treatment
of negation: If we track a literal and its negation by different variables x and y, respectively,
we may obtain inconsistent monomials such as xy. As in other semirings of polynomials
and power series we can also here take pairs of positive and negative indeterminates, with a
correspondence X ↔ X̄, and build the quotient with respect to the congruence generated by
the equation x · x̄ = 0. We thus obtain a new semiring S∞[X, X̄] which, as a quotient, retains
the properties of being absorptive, fully continuous and chain-positive. Of course, S∞[X, X̄]
is no longer positive, as x and x̄ are divisors of 0. Most importantly, S∞[X, X̄] inherits the
universal property: If h : X ∪ X̄ → K respects dual-indeterminates, so h(x) · h(x̄) = 0 for all
x ∈ X, then it extends uniquely to a fully continuous homomorphism h : S∞[X, X̄] → K.
Together with the fundamental property, S∞[X, X̄] is thus the most general appropriate
provenance semiring for LFP that can represent negation, hence providing a natural framework
for a provenance analysis for LFP and other fixed-point calculi.

Instead of model-defining interpretations, we consider model-compatible interpretations π.
That is, for each atom Ra we either have π(Ra) = x and π(¬Ra) = x̄, or {π(Ra), π(¬Ra)} =
{0, 1}. Additionally, π must not use the same indeterminate for two different atoms. We say
that a model A is compatible with π if A |= L for all literals L with π(L) = 1 and denote the
set of compatible models by Modπ. Model-compatible interpretations can be used to reason
about several models at once. Mapping certain literals to indeterminate pairs x and x̄ leaves
open the truth of these literals, but still encodes the semantics of opposing literals:

I Proposition 20. Let π be a model-compatible S∞[X, X̄]-interpretation. An LFP-formula
ϕ is Modπ-satisfiable (Modπ-valid) if, and only if, π[[ϕ]] 6= 0 (π[[¬ϕ]] = 0).

6 Game-theoretic analysis

It has been shown in [14] that the provenance analysis for FO and posLFP is intimately
connected with the provenance analysis of reachability games. Evaluation strategies to
establish the truth of first-order formulae are really winning strategies for reachability games

CSL 2021

17:14 Semiring Provenance for Fixed-Point Logic

on acyclic game graphs. For posLFP the situation is similar, but the associated model-
checking games may have cycles and thus admit infinite plays, but the winning plays for the
verifying player have to reach a winning position (a true literal) in a finite number of steps.
By annotating such terminal positions with semiring values and propagating these values
along the edges to the remaining positions, one obtains provenance values that coincide with
the syntactically defined semantics π[[ψ]].

For full LFP or the modal µ-calculus, the model-checking games are parity games which
are considerably more complex and do not allow for a simple propagation of values from
terminal positions. We do not present here a general provenance analysis of parity games,
but we show how provenance values π[[ϕ]] for fixed-point formulae can be understood from
a game-theoretic point of view. For first-order logic or posLFP, provenance values π[[ϕ]] in
N[X, X̄] or N∞[[X, X̄]] are sums of monomials that correspond to the evaluation strategies
for ϕ and provide information about the literals used by these strategies. We present an
analogue of this statement for full fixed-point logic and the semiring S∞[X, X̄].

Model-checking games for LFP. Model-checking games are classically defined for a formula
and a fixed structure A (see e.g. [2, Chap. 4]). However, the game graph of such a game
depends only on the formula ψ and the universe of the given structure, and it is only the
labelling of the terminal positions as winning for either the Verifier (Player 0) or the Falsifier
(Player 1), that depends on which of the literals in LitA(τ) are true in A. Hence the definition
readily generalizes to a more abstract provenance scenario where we instead label terminal
positions by semiring values. As the definition of the model-checking game G(A,ψ) itself is
standard, we refer to the full version [5] or [2] for details. Most importantly, positions in the
game G(A,ψ) correspond to subformulae of ψ and terminal positions are literals in LitA(τ).
The game may have cycles that admit infinite plays which are won according to the parity
condition: We assign to each fixed-point variable a priority, and an infinite play is then won
by Verifier precisely if the least priority occurring infinitely often is even.

Provenance values for plays and strategies. Given a parity game G(A,ψ), every K-
interpretation π : LitA(τ)→ K provides a valuation of the terminal positions. Based on this,
we define provenance values for plays and strategies.

I Definition 21. A finite play ρ = (ϕ0, . . . , ϕt) ends in a terminal position ϕt ∈ LitA(τ)
which we call the outcome of ρ. We simply identify the provenance value of ρ with the value
of its outcome, i.e. we put π[[ρ]] := π[[ϕt]]. For an infinite play ρ we put π[[ρ]] := 1 if ρ is a
wining play for the Verifier, and π[[ρ]] := 0 otherwise.

We denote by Strat(ϕ) the set of evaluation strategies for the subformula ϕ of ψ, i.e. the
set of all (not necessarily positional) strategies that the Verifier has from position ϕ in the
parity game G(A,ψ). Every strategy S ∈ Strat(ϕ) induces the set Plays(S) of plays that
are consistent with S. Intuitively, the provenance value of a strategy is simply the product
over the provenance values of all plays that it admits. However, a strategy may well admit
an infinite set of plays and while it is possible to define infinite products in our setting, we
instead observe that the set of possible outcomes is of course finite, since there exist only
finitely many literals. As a consequence, we define the provenance value for a strategy by
grouping those plays with identical outcome.

I Definition 22. The provenance value of a strategy S is π[[S]] :=
∏
L∈LitA(τ) π(L)#S (L) if

all infinite ρ ∈ Plays(S) are winning for Verifier, and π[[S]] := 0 otherwise. Here, #S(L) ∈
N ∪ {∞} denotes the number of plays ρ ∈ Plays(S) with outcome L.

K.M. Dannert, E. Grädel, M. Naaf, and V. Tannen 17:15

The case for #S(L) = ∞ is well-defined, as the infinitary power a∞ =
d
n a

n can be
defined in all absorptive, fully continuous semirings. For model-compatible interpretations
in S∞[X, X̄], the value π[[S]] is a single monomial. The following central result justifies our
game-theoretic analysis and precisely characterizes provenance semantics π[[ψ]] in terms of
strategies in the associated model-checking game.

I Theorem 23. Let ψ ∈ LFP, and and let π : LitA(τ)→ K be a K-interpretation into an
absorptive, fully continuous semiring K. Then π[[ψ]] =

⊔
{π[[S]] | S ∈ Strat(ψ)}.

Model-checking games become large even for simple formulae over a small universe A; we
thus refer to Appendix B and [5, Sect. 6.1] for examples. The proof of this result [5, Sect. 6.2]
is not short either. The key idea is to view strategies S in the game of, say, [gfpRx . ϕ](a) as
trees and then define prefixes S|n of these trees based on the number of fixed-point literals
Rb along a path. We prove by induction that these prefixes of increasing size correspond
exactly to the steps of the fixed-point iteration via Fϕπ . For greatest fixed points, strategies
can be infinite which leads to subtle obstacles. Perhaps the most challenging step is the
so-called puzzle lemma which shows that, roughly speaking, computing infima of strategy
prefixes leads to meaningful values corresponding to actual (infinite) strategies.

Consider now specifically the semiring S∞[X, X̄] and model-compatible interpretations.
By the above theorem, the provenance value of a sentence ψ is then a sum of monomials
xe1

1 · · ·x
ek

k , each of which corresponds to a strategy S for Verifier that uses precisely the
literals labelled by x1, . . . , xk, and each literal xi is used precisely ei many times, that is,
there are ei plays consistent with S that have outcome xi. By using dual indeterminates, we
make sure that these literals are consistent and hence represent actual evaluation strategies.

In this sense, provenance semantics in absorptive, fully continuous semirings, and most
prominently in S∞[X, X̄], provide detailed information about evaluation strategies. Because
of absorption, we do not obtain information about all evaluation strategies, as in first-order
logic and N[X, X̄], but instead only about the absorption-dominant strategies, corresponding
to absorption-maximal monomials. These are strategies that allow the fewest different
possible outcomes and are thus the simplest or canonical evaluation strategies.

7 Related Work

While our approach and our general project, as outlined in the introduction, is rooted in the
work on semiring provenance in databases, there have also been a number of other areas of
logic in computer science where semiring semantics have been used.

A prominent instance is the work on weighted automata (see, e.g., the Handbook [8]).
In particular, weighted automata over finite and infinite words are discussed in [7, 9], and
their expressive power is related to weighted monadic second-order logic (MSO) on words.
In this setting, the weight of a word is defined as the sum over the weights of accepting
paths, and the overall behaviour of an automaton is described by a formal power series
over a semiring. To deal with infinite words, infinite sum and product operations of the
semiring are assumed [9], roughly comparable to our assumptions on suprema and infima.
Whereas the power series assign semiring values to words, we instead use indeterminates to
track (combinations of) literals which then provide us with provenance information. As we
have seen, formal power series are not the right tool for this purpose when confronted with
greatest fixed points, so we consider absorptive polynomials S∞[X] instead. Moreover, in our
setting the sum-of-strategies characterization is not a definition, but a non-trivial result. The
definition of weighted MSO is similar to our semiring semantics for LFP and is also based

CSL 2021

17:16 Semiring Provenance for Fixed-Point Logic

on negation normal form. Main differences are that only logics over words are considered,
and that semiring values are part of the formulae, whereas we assign values to literals. This
reflects the different point of view: Weighted MSO is used to define series recognizable by
weighted automata, whereas our goal is the provenance analysis of the logic itself.

Lluch-Lafuente and Montanari [18] have studied a semantics of CTL and µ-calculus in
so-called constraint semirings, to reason about issues of quality of service such as delay or
bandwidth. The choice of constraint semirings is motivated by applications for a particular
class of constraint satisfaction problems, called soft CSP, and by useful closure properties,
such as closure under Cartesian products, exponentials, and power constructions. Although
this is not mentioned explicitly, constraint semirings are in fact also absorptive and satisfy a
continuity requirement for suprema. However, the approach to negation is different from
ours, requiring the extension of the semiring by new functions, and they do not have an
abstract approach on the basis of polynomials with universal properties and reasoning over
multiple constraint semirings. A main result of [18] is that the usual embedding of CTL
into the µ-calculus fails for this semantics, which is another instance showing that a refined
semiring semantics may distinguish between formulae that are equivalent under Boolean
semantics.

8 Conclusion and Outlook

Let us summarize the contributions of this paper: We have laid foundations for the semiring
provenance analysis of full fixed-point logics, with arbitrary interleavings of least and greatest
fixed points, as part of the general project of developing provenance semantics of logical
languages used in various branches of computer science. We have seen that absorptive
and fully continuous semirings provide an adequate framework for this. We have identified
the semiring of dual-indeterminate generalized absorptive polynomials S∞[X, X̄] as the
“right” provenance semiring for LFP. It satisfies the further algebraic property of chain-
positivity which guarantees that provenance interpretations are truth-preserving, and we
have established an important universal property of this semiring. Finally, we have shown
how provenance for LFP is related to strategies in model-checking games.

Next steps will include the specific analysis of important logics such as temporal logics,
dynamic logics, the modal µ-calculus, description logics (see initial work in [3]) etc. Ap-
plications require in particular the study of algorithms for computing provenance values
– a non-trivial task, considering that greatest fixed-point iterations in semirings such as
S∞[X, X̄] can be infinite. Nevertheless, absorption and the infinitary power a∞ can be used
to short-circuit these iterations; forthcoming work will include results that show how an
effective, and in important cases also efficient, computation of provenance values is possible
in absorptive, fully continuous semirings.

References
1 Y. Amsterdamer, D. Deutch, and V. Tannen. On the limitations of provenance for queries

with difference. In 3rd Workshop on the Theory and Practice of Provenance, TaPP’11, 2011.
See also CoRR abs/1105.2255.

2 K. Apt and E. Grädel, editors. Lectures in Game Theory for Computer Scientists. Cambridge
University Press, 2011. doi:10.1017/CBO9780511973468.

3 K. Dannert and E. Grädel. Provenance analysis: A perspective for description logics? In
C. Lutz et al., editor, Description Logic, Theory Combination, and All That, Lecture Notes in
Computer Science Nr. 11560. Springer, 2019. doi:10.1007/978-3-030-22102-7_12.

https://doi.org/10.1017/CBO9780511973468
https://doi.org/10.1007/978-3-030-22102-7_12

K.M. Dannert, E. Grädel, M. Naaf, and V. Tannen 17:17

4 K. Dannert and E. Grädel. Semiring provenance for guarded logics. In Hajnal Andréka and
István Németi on Unity of Science: From Computing to Relativity Theory through Algebraic
Logic, Outstanding Contributions to Logic. Springer, 2021.

5 K. Dannert, E. Grädel, M. Naaf, and V. Tannen. Generalized absorptive polynomials and
provenance semantics for fixed-point logic. arXiv: 1910.07910 [cs.LO], 2019. URL: https:
//arxiv.org/abs/1910.07910.

6 D. Deutch, T. Milo, S. Roy, and V. Tannen. Circuits for datalog provenance. In Proc. 17th
International Conference on Database Theory ICDT, pages 201–212. OpenProceedings.org,
2014. doi:10.5441/002/icdt.2014.22.

7 M. Droste and P. Gastin. Weighted automata and weighted logics. In Handbook of weighted
automata, pages 175–211. Springer, 2009. doi:10.1007/978-3-642-01492-5_5.

8 M. Droste, W. Kuich, and H. Vogler, editors. Handbook of Weighted Automata. Springer, 2009.
doi:10.1007/978-3-642-01492-5.

9 M. Droste and G. Rahonis. Weighted automata and weighted logics on infinite words. In
International Conference on Developments in Language Theory, pages 49–58. Springer, 2006.
doi:10.1007/11779148_6.

10 F. Geerts and A. Poggi. On database query languages for K-relations. J. Applied Logic,
8(2):173–185, 2010. doi:10.1016/j.jal.2009.09.001.

11 F. Geerts, T. Unger, G. Karvounarakis, I. Fundulaki, and V. Christophides. Algebraic
structures for capturing the provenance of SPARQL queries. J. ACM, 63(1):7:1–7:63, 2016.
doi:10.1145/2810037.

12 E. Grädel, P. G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Y. Vardi, Y. Venema, and
S. Weinstein. Finite Model Theory and Its Applications. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2007. doi:10.1007/3-540-68804-8.

13 E. Grädel and V. Tannen. Semiring provenance for first-order model checking. arXiv:1712.01980
[cs.LO], 2017. URL: https://arxiv.org/abs/1712.01980.

14 E. Grädel and V. Tannen. Provenance analysis for logic and games. Moscow Journal of
Combinatorics and Number Theory, 9(3):203–228, 2020. doi:10.2140/moscow.2020.9.203.

15 T. Green, Z. Ives, and V. Tannen. Reconcilable differences. In Database Theory - ICDT 2009,
pages 212–224, 2009. doi:10.1145/1514894.1514920.

16 T. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In Principles of Database
Systems PODS, pages 31–40, 2007. doi:10.1145/1265530.1265535.

17 T. Green and V. Tannen. The semiring framework for database provenance. In Proceedings of
PODS, pages 93–99. ACM, 2017. doi:10.1145/3034786.3056125.

18 A. Lluch-Lafuente and U. Montanari. Quantitative mu-calculus and CTL defined over constraint
semirings. Theoretical Compututer Science, 346(1):135–160, 2005. doi:10.1016/j.tcs.2005.
08.006.

19 G. Markowsky. Chain-complete posets and directed sets with applications. Algebra universalis,
6(1):53–68, 1976.

20 Y. Moschovakis. Elementary induction on abstract structures. North Holland, 1974.
21 Y. Ramusat, S. Maniu, and P. Senellart. Semiring provenance over graph databases. In 10th

USENIX Workshop on the Theory and Practice of Provenance (TaPP 2018), London, 2018.
22 P. Senellart. Provenance and probabilities in relational databases: From theory to practice.

SIGMOD Record, 46(4):5–15, 2017. doi:10.1145/3186549.3186551.
23 J. Xu, W. Zhang, A. Alawini, and V. Tannen. Provenance analysis for missing answers and

integrity repairs. IEEE Data Eng. Bull., 41(1):39–50, 2018.

A Proofs

This appendix contains proofs of two key results, the Fundamental Property (Proposition 7)
and the Universality (Theorem 17) of the semiring S∞[X]. Proofs of all remaining results, in
particular for Sect. 6, are available in the full version of this paper [5].

CSL 2021

https://arxiv.org/abs/1910.07910
https://arxiv.org/abs/1910.07910
https://doi.org/10.5441/002/icdt.2014.22
https://doi.org/10.1007/978-3-642-01492-5_5
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1007/11779148_6
https://doi.org/10.1016/j.jal.2009.09.001
https://doi.org/10.1145/2810037
https://doi.org/10.1007/3-540-68804-8
https://arxiv.org/abs/1712.01980
https://doi.org/10.2140/moscow.2020.9.203
https://doi.org/10.1145/1514894.1514920
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/3034786.3056125
https://doi.org/10.1016/j.tcs.2005.08.006
https://doi.org/10.1016/j.tcs.2005.08.006
https://doi.org/10.1145/3186549.3186551

17:18 Semiring Provenance for Fixed-Point Logic

A.1 Fundamental Property
I Proposition 7 (Fundamental Property). Let K1, K2 be fully chain-complete semirings and
let h : K1 → K2 be a fully continuous semiring homomorphism with h(>) = >. Then for
every K1-interpretation π, the mapping h ◦ π is a K2-interpretation and for every ϕ ∈ LFP,
we have h(π[[ϕ]]) = (h ◦ π)[[ϕ]]. In diagrammatic form:

LitA(τ)

K1 K2

LFP

K1 K2

=⇒π h ◦ π

h

π h ◦ π

h

Proof. The proof is a mostly straightforward induction on the structure of ϕ. For fixed-
point formulae, we proceed by transfinite induction on the fixed-point iterations and rely
on full continuity of the homomorphism h for limit ordinals. Formally, we prove that for
all LFP-formulae ϕ(x) in negation normal form, h(π[[ϕ(a)]]) = (h ◦ ϕ)[[ϕ(a)]] holds for all
K-interpretations π and all tuples a from the universe A.

For literals, we trivially have h(π[[Ra]]) = h(π(Ra)) = (h ◦ π)(Ra) = (h ◦ π)[[Ra]].
For ϕ = ϕ1 ∧ ϕ2 we use that h is a semiring homomorphism:

h(π[[ϕ]]) = h(π[[ϕ1]] ·π[[ϕ2]]) = h(π[[ϕ1]]) ·h(π[[ϕ2]]) = (h◦π)[[ϕ1]] ·(h◦π)[[ϕ2]] = (h◦π)[[ϕ]].

The proof for ∨, ∃ and ∀ is analogous (recall that we assume a finite universe, so quantifiers
translate to finite sums or products).
For ϕ = [gfpRx . ϑ](y) with R of arity k, we consider the fixed-point iteration (gβ)β∈On
for π in K1 and the iteration (fβ)β∈On for h ◦ π in K2. We show by induction that
h ◦ gβ = fβ for all ordinals β ∈ On, so h preserves all steps of the fixed-point iteration.

Initially, g0 : Ak → K1, a 7→ > and f0 : Ak → K2, a 7→ >. So h ◦ g0 = f0 by h(>) = >.
For successor ordinals, we can apply the induction hypothesis. By definition,

gβ+1(a) = Fϑπ (gβ)(a) = π[R 7→ gβ][[ϑ(a)]],

fβ+1(a) = Fϑh◦π(fβ)(a) = (h ◦ π)[R 7→ fβ][[ϑ(a)]] (∗)= (h ◦ π[R 7→ gβ])[[ϑ(a)]].

In (∗), we use the induction hypothesis h ◦ gβ = fβ . Using the (outer) induction
hypothesis on ϑ in (†), we obtain

(h ◦ gβ+1)(a) = h(π[R 7→ gβ][[ϑ(a)]]) (†)= (h ◦ π[R 7→ gβ])[[ϑ(a)]] = fβ+1(a).

For limit ordinals, we exploit that h is fully continuous:

h(gλ(a)) = h(
l
{gβ(a) | β < λ})

=
l
{h(gβ(a)) | β < λ} =

l
{fβ(a) | β < λ} = fλ(a).

This closes the proof for gfp-formulae, as for sufficiently large β, we have

h(π[[ϕ(a)]]) = h(gβ(a)) = fβ(a) = (h ◦ π)[[ϕ(a)]].

The proof for lfp-formulae is analogous. J

K.M. Dannert, E. Grädel, M. Naaf, and V. Tannen 17:19

A.2 Universal Property of Absorptive Polynomials
I Theorem 17 (Universality). Every mapping h : X → K into an absorptive, fully continuous
semiring K uniquely extends to a fully continuous semiring homomorphism h : S∞[X]→ K.

Towards the proof, we need an auxiliary lemma on descending ω-chains, that is, sequences
of the form (ai)i<ω with a0 ≥ a1 ≥ . . . of elements from an absorptive, fully continuous
semiring. For instance, the powers of an element a form a descending ω-chain, since
a ≥ a2 ≥ a3 ≥ We refer to the infimum of this chain as infinitary power a∞ =

d
n a

n.

I Lemma A1 (Splitting Lemma). Let K be a fully continuous semiring and let (ai)i<ω and
(bi)i<ω be two descending ω-chains. Then,

d
i<ω(ai ◦ bi) =

(d
i<ω ai

)
◦
(d

j<ω bj
)
, with

◦ ∈ {+, ·}. Analogous statements hold for suprema.

Proof. We only show the statement for infima, the proof for suprema is analogous. We have
the following equality, where (∗) holds since K is fully continuous:

l

i<ω

ai ◦ bi
(1)=

l

i<ω

l

j<ω

ai ◦ bj
(∗)=

l

i<ω

(ai ◦
l

j<ω

bj)
(∗)=

l

i<ω

ai ◦
l

j<ω

bj

We prove both directions of (1). Fix i, j and let k = max(i, j). Then ai ◦ bj ≥ ak ◦ bk ≥d
k ak ◦ bk by monotonicity of ◦. As i, j are arbitrary, this proves

d
i

d
j ai ◦ bj ≥

d
k ak ◦ bk.

For the other direction, we have ai ◦ bi ≥ ai ◦
d
j bj for every i by monotonicity of ◦. By

continuity, ai ◦ bi ≥
d
j ai ◦ bj for every i, and thus

d
i ai ◦ bi ≥

d
i

d
j ai ◦ bj . J

Recall that full continuity of the induced homomorphism h means that it preserves
suprema and infima of all chains, i.e., of all totally ordered sets. By observing that S∞[X]
is countable (given that X is finite), it in fact suffices to show that suprema and infima of
ω-chains are preserved:

I Lemma A2 (Countable Chains). Let K, K ′ be fully chain-complete semirings and C ⊆ K
a countable chain. Then there is a descending ω-chain (xi)i<ω such that

d
C =

d
i xi.

Moreover, if f : K → K ′ is a monotone function, then additionally
d
f(C) =

d
i f(xi).

Analogous statements hold for suprema.

Proof. We only show the statement involving f , as it implies the first, and only consider
infinite C (otherwise the statement is trivial). Fix a bijection g : ω → C and recursively
define x0 = g(0) and xi+1 = min(g(i+ 1), xi). This defines an ω-chain with xi ∈ C and thusd
i f(xi) ≥

d
f(C). Conversely, for every c ∈ C there is an i with g(i) = c and thus c ≥ xi.

By monotonicity, f(c) ≥ f(xi) and thus
d
f(C) ≥

d
i f(xi). J

We are now ready to prove the universal property. The main difficulty is to show that
h preserves infima of chains; we achieve this by simplifying the chain to a well-behaved
canonical chain with similar convergence properties, as illustrated in Figure 1.

Proof of Theorem 17. Due to the additivity and multiplicity requirements for homomorph-
isms, h uniquely extends to monomials. For the exponent ∞, notice that continuity requires
h(x∞) =

d
n<ω h(x)n for x ∈ X. It further follows that h(m1 + m2) = h(m1) + h(m2),

hence h is uniquely defined on S∞[X]. Care has to be taken regarding absorption: If
m1 � m2, then m1 + m2 = m2. Since h is order-preserving and K is absorptive, we also
have h(m1 +m2) = h(m1) + h(m2) = h(m2) and it follows that h is well-defined.

CSL 2021

17:20 Semiring Provenance for Fixed-Point Logic

P0 : x y+

P1 : x∞ y+

P2 : x∞ y2z+ xy+

P3 : x∞ y2z+

P4 : x∞ y3z2+ xy2z+

Pω : x∞ y∞z2+

≥
≥

≥
≥

P ∗0 : 1

P ∗1 : x yz+

P ∗2 : x2 y2z2+

P ∗3 : x3 y3z2+

P ∗4 : x4 y4z2+

P ∗ω : x∞ y∞z2+
≥

≥
≥

≥

Figure 1 An example of an ω-chain of polynomials (left) and the corresponding canonical chain
(right) for the proof of Theorem 17. The arrows indicate absorption between monomials of consecutive
polynomials and induce a directed graph on which we then apply Kőnig’s lemma.

It remains to show that h is fully continuous. Ascending chains are always finite (because
of
⊔
S = maximals (

⋃
S)), so we only have to consider descending chains. By Lemma A2, it

further suffices to consider ω-chains. Hence it suffices to prove that
l

i<ω

h(Pi) = h
(l

i<ω

Pi
)

for any descending ω-chain (Pi)i<ω of polynomials in S∞[X]. The homomorphism h preserves
addition and is thus monotone, which entails the direction “≥”.

For the other direction, we first consider the case of single monomials. Let (mi)i<ω be a
descending ω-chain of monomials. Recall that X is finite, so we can write mi =

∏
x∈X x

mi(x).
As the mi form a descending chain, the exponents (mi(x))i<ω form an ascending chain for
each x ∈ X. By Lemma A1 and the definition of h,

l

i<ω

h(mi) =
∏
x∈X

l

i<ω

h(x)mi(x) (∗)=
∏
x∈X

h(x)(
⊔

i<ω
mi(x)) = h(

l

i<ω

mi).

where (∗) can easily be seen by case distinction whether
⊔
i<ωmi(x) is finite or ∞.

For the general case of polynomials, let Pω =
d
i<ω Pi be the infimum, which is of the

form Pω = m1 + · · ·+ mn. We define a second, canonical ω-chain (P ∗i)i<ω with the same
infimum. To this end, we define the canonical monomial chain (m∗j)j<ω of a given monomial
m as follows (see Figure 1 for an example),

m∗j (x) = min(j,m(x)), for all x ∈ X,

which satisfies the following properties needed for the proof:

1. If m, v are two monomials with m � v, then m∗j � v∗j for all j < ω.
2. If m =

d
i<ωmi for an ω-chain (mi)i<ω of monomials, then ∀j ∃i : m∗j � mi.

3. In particular,
d
j<ωm

∗
j = m.

The canonical polynomial chain (P ∗j)j<ω is then defined by P ∗j = (m1)∗j + · · ·+ (mn)∗j
for each j < ω. We make the following observation:

B Claim.

∀j ∃i : P ∗j ≥ Pi.

K.M. Dannert, E. Grädel, M. Naaf, and V. Tannen 17:21

We first show that the claim implies the theorem:

l

i<ω

h(Pi)
(1)
≤

l

j<ω

h(P ∗j) =
l

j<ω

(
h((m1)∗j) + · · ·+ h((mn)∗j)

)
(2)=

l

j<ω

h((m1)∗j) + · · ·+
l

j<ω

h((mn)∗j)

(3)= h
(l

j<ω

(m1)∗j
)

+ · · ·+ h
(l

j<ω

(mn)∗j
)

(4)= h(m1) + · · ·+ h(mn) = h(Pω),

where (1) follows from the claim, (2) holds by Lemma A1, (3) was shown above and (4) holds
due to property 3 above. Hence the claim suffices to prove the theorem.

To prove the claim, assume towards a contradiction that there is a j such that P ∗j � Pi
for all i < ω. Let us fix an i < ω for the moment. Because of P ∗j � Pi, there is a monomial
mi ∈ Pi with P ∗j � mi. Because of Pi−1 ≥ Pi, there is further mi−1 ∈ Pi−1 with mi−1 � mi.
But then also P ∗j � mi−1 (as otherwise P ∗j ≥ mi−1 ≥ mi). By repeating this argument, we
obtain a finite chain m0 � m1 � · · · � mi of monomials with the property that mk ∈ Pk and
P ∗j � mk for all 0 ≤ k ≤ i.

This argument applies to all i < ω, so we obtain arbitrarily long finite chains with this
property. By Kőnig’s lemma (recall that all polynomials Pi are finite), there must be an
infinite monomial chain (mi)i<ω with mi ∈ Pi and P ∗j � mi for all i < ω. Let mω =

d
i<ωmi.

Because of mi ≤ Pi for all i, we have mω ≤ Pω, so there is a monomial v ∈ Pω with mω � v.
By considering the corresponding canonical monomial chains (v∗k)k<ω and ((mω)∗k)k<ω at
k = j, we obtain a contradiction: We know from the above properties that there is an i with
(mω)∗j � mi and further v∗j ≥ (mω)∗j . Because of v∗j ∈ P ∗j , we obtain P ∗j ≥ v∗j ≥ (mω)∗j ≥ mi,
contradicting our assumption. The claim follows, closing the overall proof. J

B Example of a Model-Checking Game

The proof of the main result in Sect. 6 requires some preparations and is deferred to the
full version [5]. Here, we attempt to convince the reader by an example instead of rigorous
arguments. Due to space reasons, we consider a small graph comprised of only two nodes.
The formula ϕ(u), on the other hand, features alternating least and greatest fixed points
and is thus non-trivial to analyse. It expresses that there is a path from u on which P holds
infinitely often. We evaluate ϕ(u) using the model-compatible S∞[X, X̄]-interpretation π
over A = {u, v} indicated on the right, with π(Pu) = 0 and π(Pv) = 1.

ϕ(u) = [gfpXx . [lfpY x .∃y
(
Exy ∧ ((Xy ∧ Py) ∨ Y y)

)
](x)](u)

u v
P

x2

y2
x1 y1

Intuitively, witnesses for ϕ(u) are infinite paths that infinitely often visit v. There are
infinitely many such paths, but the simplest ones (in terms of the different edges they use) are
the paths uvvvv . . . and uvuvuv . . . which correspond to the monomials x2y

∞
1 and x∞2 y∞2 .

And indeed, π[[ϕ(u)]] = x2y
∞
1 + x∞2 y

∞
2 . Notice that the edge x1 does not appear in the result

and we can conclude that its existence does not affect the truth of ϕ(u).
Let us now consider the evaluation strategies for ϕ(u) from the game-theoretic perspective.

The complete model-checking game is shown in Figure 2, where rounded nodes belong
to Verifier, rectangular nodes to Falsifier, and the small numbers indicate the priorities

CSL 2021

17:22 Semiring Provenance for Fixed-Point Logic

[gfp . . .](u)

[lfp . . .](u)

∃y(Euy ∧ . . .) Euu ∧ . . .

Euv ∧ . . .

(Xu ∧ Pu) ∨ Y u

Xu ∧ Pu

Xu Pu : 0

Euu : x1

Euv : x2

Y u

(Xv ∧ Pv) ∨ Y v

Xv ∧ Pv

XvPv : 1

Evv ∧ . . .

Evu ∧ . . .

Evv : y1

Evu : y2

Y v

∃y(Evy ∧ . . .)

[lfp . . .](v)

[gfp . . .](v)

1 1

0

0

Figure 2 Model-checking game for ϕ(u), with highlighted winning strategy.

assigned to fixed-point relations. Terminal positions have dashed borders and include the
value assigned by π. Verifier can make decisions at four positions (two nodes labelled
∃y(. . .) and two disjunctions in the center), hence there are 16 positional strategies in total.
One of these strategies is highlighted (yellow color) and has the provenance value x2y

∞
1 ,

having one play ending in Euv and arbitrarily long plays ending either in Evv or in Pv

(depending on the choices of Falsifier). Most of the other strategies allow infinite plays
with least priority 1 which lead to provenance value 0 (for instance by choosing the cycle
∃y(. . .) → Euu ∧ . . . → (Xu ∧ Pu) ∨ Y u → Y u). The only remaining strategy has the
provenance value x∞2 y∞2 . One can further observe that non-positional strategies only lead to
monomials with additional variables which are then absorbed, so summing over all strategies
gives x2y

∞
1 + x∞2 y

∞
2 as expected.

Extension Preservation in the Finite and Prefix
Classes of First Order Logic
Anuj Dawar
Department of Computer Science and Technology, University of Cambridge, UK
anuj.dawar@cl.cam.ac.uk

Abhisekh Sankaran
Department of Computer Science and Technology, University of Cambridge, UK
abhisekh.sankaran@cl.cam.ac.uk

Abstract
It is well known that the classic Łoś-Tarski preservation theorem fails in the finite: there are
first-order definable classes of finite structures closed under extensions which are not definable (in the
finite) in the existential fragment of first-order logic. We strengthen this by constructing for every n,
first-order definable classes of finite structures closed under extensions which are not definable with
n quantifier alternations. The classes we construct are definable in the extension of Datalog with
negation and indeed in the existential fragment of transitive-closure logic. This answers negatively
an open question posed by Rosen and Weinstein.

2012 ACM Subject Classification Theory of computation → Finite Model Theory

Keywords and phrases finite model theory, preservation theorems, extension closed, composition,
Datalog, Ehrenfeucht-Fraisse games

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.18

Funding Research supported by the Leverhulme Trust through a Research Project Grant on “Logical
Fractals”

1 Introduction

The failure of classical preservation theorems of model theory has been a topic of persistent
interest in finite model theory. In the classical setting, preservation theorems provide a
tight link between the syntax and semantics of first-order logic (FO). For instance, the
Łoś-Tarski preservation theorem (see [8]) implies that any sentence of first-order logic whose
models are closed under extensions is equivalent to an existential sentence. This, like many
other classical preservation theorems, is false when we retrict ourselves to finite structures.
Tait [17] and Gurevich [7] provide examples of sentences whose finite models are closed under
extensions, but which are not equivalent, over finite structures, to any existential sentence.
Many other classical preservation theorems have been studied in the context of finite model
theory (e.g. [12, 14]), but our focus in this paper is on extension-closed properties.

The failure of the Łoś-Tarski theorem in the finite opens a number of different avenues of
research. One line of work has sought to investigate restricted classes of structures on which
a version of the preservation theorem holds (see [2, 4]). Another direction is prompted by
the question of whether we can identify some proper syntactic fragment of FO, beyond the
existential, which contains definitions of all extension-closed FO-definable properties. For
instance, the examples from Tait and Gurevich are both Σ3 sentences. Could it be that every
FO sentence whose finite models are closed under extensions is equivalent to a Σ3 sentence?
Or, indeed, a Σn sentence for some constant n? We answer these questions negatively in this
paper. That is, we show that we can construct, for each n, a sentence ϕ whose finite models
are extension closed but which is not equivalent in the finite to a Σn sentence.

© Anuj Dawar and Abhisekh Sankaran;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 18; pp. 18:1–18:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-4014-8248
mailto:anuj.dawar@cl.cam.ac.uk
https://orcid.org/0000-0003-4474-3562
mailto:abhisekh.sankaran@cl.cam.ac.uk
https://doi.org/10.4230/LIPIcs.CSL.2021.18
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Extension Preservation and Prefix Classes of FO

A related question is posed by Rosen and Weinstein [13]. They observe that the con-
structions due to Tait and Gurevich both yield classes of finite structures that are definable
in Datalog(¬), the existential fragment of fixed-point logic in which only extension-closed
properties can be expressed. They ask if it might be the case that FO ∩ Datalog(¬) is
contained in some level of the first-order quantifier alternation hierarchy, be it not the lowest
level. That is, could it be that every property that is first-order definable and also definable
in Datalog(¬) is definable by a Σn sentence for some constant n? Our construction answers
this question negatively as we show that the sentences we construct are all equivalent to
formulas of Datalog(¬).

Our result also greatly strengthens a previous result by Sankaran [15] which showed that
for each k there is an extension-closed property of finite structures definable in FO but not
in Π2 with k leading universal quantifiers. Indeed, our result answers (negatively) Problem 2
in [15].

In Section 2 we give the necessary background definitions. We construct the sentences in
Section 3 and show that they can all be expressed in Datalog(¬). Section 4 contains the
proof that the sequence of sentences contains, for each n, a sentence that is not equivalent to
any Σn sentence. We conclude with some suggestions for further investigation.

2 Preliminaries

We work with logics: first-order logic (FO) and extensions of Datalog over finite relational
vocabularies. We assume the reader is familiar with the basic definitions of first-order logic
(see, for instance [10]). A vocabulary τ is a set of predicate and constant symbols. In the
vocabularies we use, all predicate symbols are either unary or binary. We denote by FO(τ)
the set of all FO formulas over the vocabulary τ . A sequence (x1, . . . , xk) of variables is
denoted by x̄. We use ψ(x̄) to denote a formula ψ whose free variables are among x̄. A
formula without free variables is called a sentence. A formula which begins with a string
of quantifiers that is followed by a quantifier-free formula, is said to be in prenex normal
form (PNF). The string of quantifiers in a PNF formula is called the quantifier prefix of
the formula. It is well known that every formula is equivalent to a formula in PNF. We
denote by Σn, the collection of all formulas in PNF whose quantifier prefix contains at most
n blocks of quantifiers beginning with a block of existential quantifiers. Equivalently, a PNF
formula is in Σn if it starts with a block of existential quantifiers and contains at most n− 1
alternations in its quantifier prefix. Similarly, a formula is Πn if it begins with a block of
universal quantifiers and contains at most n− 1 alternations in its quantifier prefix. We write
Σn,k for the subclass of Σn consisting of those formulas in which every quantifier block has
at most k quantifiers. Similarly, Πn,k is the subclass of Πn where each block has at most k
quantifiers. Thus Σn =

⋃
k≥1 Σn,k and Πn =

⋃
k≥1 Πn,k.

We use standard notions concerning τ -structures as defined in [3]. We denote τ -structures
as A,B etc., and refer to them simply as structures when τ is clear from the context. We
denote by A ⊆ B that A is a substructure of B, and by A ∼= B that A is isomorphic to B.

We now introduce some notation with respect to the classes of formulas Σn,k and Πn,k.

I Definition 1. We say A Vn,k B if every Σn,k sentence true in A is also true in B.
We say A and B are ≡n,k-equivalent, and write A ≡n,k B, if A Vn,k B and B Vn,k A.

By extension, for tuples ā and b̄ of elements of A and B respectively, we also write (A, ā) Vn,k

(B, b̄) to indicate that every formula ϕ which is satisfied in A when its free variables are
instantiated with ā is also satisfied in B when they are instantiated by b̄, and similarly for
≡n,k. Note that A Vn,k B holds if every Πn,k sentence true in B is also true in A. The
following useful fact is now immediate from the definition.

A. Dawar and A. Sankaran 18:3

I Lemma 2. A Vn+1,k B if, and only if, for every k-tuple ā of elements of A, there is a
k-tuple b̄ of elements of B such that (B, b̄) Vn,k (A, ā).

We assume the reader is familiar with the standard Ehrenfeucht-Fraïssé game charac-
terizing the equivalence of two structures with respect to sentences of a given quantifier
nesting depth (see for example [10, Chapter 3]). In this paper, we use a “prefix” variant of
this Ehrenfeucht-Fraïssé game. For n, k ≥ 1, the (n, k)-prefix Ehrenfeucht-Fraïssé game on a
pair (A,B) of structures, is the usual Ehrenfeucht-Fraïssé game on A and B but with two
restrictions: (i) In every odd round, the Spoiler plays on A and in every even round, on B,
and (ii) in each round the Spoiler chooses a k-tuple of elements from the relevant structure (as
opposed to a single element in the usual Ehrenfeucht-Fraïssé game). The winning condition
for the Duplicator is the same as that in the usual Ehrenfeucht-Fraïssé game: Duplicator
wins at the end of n rounds, if when ā1, . . . , ān are the k-tuples picked in A and b̄1, . . . , b̄n are
the k-tuples picked in B, then the map taking the nk-tuple (ā1 · · · ān) to (b̄1 · · · b̄n) pointwise
is a partial isomorphism from A to B. Entirely analogously to the usual Ehrenfeucht-Fraïssé
game theorem (see [10, Theorem 3.18]), we have the following.

I Theorem 3. Duplicator has a winning strategy in the (n, k)-prefix Ehrenfeucht-Fraïssé
game on a pair (A,B) of structures if, and only if, A Vn,k B

Note in particular that, given the fact that any two linear orders of length ≥ 2n are equivalent
with respect to all sentences of quantifier nesting depth n [10, Theorem 3.6], it follows
that there is a winning strategy for the Duplicator in the (n, k)-prefix Ehrenfeucht-Fraïssé
game on any pair of linear orders, each of length ≥ 2n·k and any two such linear orders are
≡n,k-equivalent.

Where it causes no confusion, we still use ≡m to denote the usual equivalence up to
quantifier rank m. Note that A ≡m B implies A ≡n,k B whenever m ≥ nk.

Formulas in Σ1 are said to be existential. A Σ1 formula that also contains no occurrences
of the negation symbol is said to be existential positive. It is easy to see that the class of
models of any Σ1 sentence ϕ is closed under extensions: if A |= ϕ and A ⊆ B, then B |= ϕ.
Dually, the class of models of any Π1 sentence is closed under taking substructures. Similarly,
the class of models of any existential positive sentence is closed under homomorphisms.

Datalog is a database query language which can be seen as an extension of existential
positive first-order logic with a recursion mechanism. Equivalently, it can be seen as the
existential positive fragment of the logic of least fixed points LFP (see [10, Chapter 10]). We
briefly review the definitions of this language, along with its extension Datalog(¬).

A Datalog program is a finite set of rules of the form T0 ← T1, . . . , Tm, where each Ti is an
atomic formula. T0 is called the head of the rule, while the right-hand side is called the body.
These atomic formulas use relational symbols from a vocabulary σ ∪ τ , where the symbols in
σ are called extensional predicates and those in τ are intensional predicates. Every symbol
that occurs in the head of a rule is an intensional predicate, while both intensional and
extensional predicates can occur in the body of a rule. The semantics of such a program
is defined with respect to a σ-structure A. Say that a rule T0 ← T1, . . . , Tm is satisfied
in a σ ∪ τ expansion A′ of A if A′ |= ∀x̄

(
(
∧

1≤i≤m Ti) → T0
)
, where x̄ enumerates all the

variables occurring in the rule. The interpretation of a Datalog program in A is the smallest
expansion of A (when ordered by pointwise inclusion of the relations interpreting τ) satisfying
all the rules in the program. This is uniquely defined as it is obtained as the simultaneous
least fixed-point of the existential closure of the right-hand side of the rules. We distinguish
one intensional predicate G and call it the goal predicate. Then, the query computed by a
program π is the interpretation of G in the interpretation of π in A. In particular, if G is a
0-ary predicate symbol (i.e. a Boolean variable), π defines a Boolean query, i.e. a class of
structures.

CSL 2021

18:4 Extension Preservation and Prefix Classes of FO

Since the interpretation of π is obtained as the least fixed-point of an existential positive
formula, it is easily seen that the query defined is closed under homomorphisms and hence
also under extensions. We can understand Datalog as the existential positive fragment of
the least-fixed point logic LFP, though it is known that there are homomorphism-closed
properties definable in LFP that are not expressible in Datalog (see [5]).

We get more general queries by allowing limited forms of negation. Specifically, in
Datalog(¬), in a rule T0 ← T1, . . . , Tm, each Ti on the right-hand side is either an atom or
a negated atom involving an extensional predicate symbol or equality. In short, we allow
negation on the predicate symbols in σ and on equalities but the fixed-point variables (i.e.
the predicate symbols in τ) still only appear positively, so the least fixed-point is still well
defined. As it is still the least-fixed point of existential formulas, the formula still defines
a property closed under extensions. For more on the extensions of Datalog with negation,
see [1, 9].

3 The Extension-Closed Properties

We now construct a family of properties, each of which is definable in first-order logic
and closed under extensions. Indeed, we show that each of the properties is definable in
Datalog(¬).

3.1 First-Order Definitions

To begin, we define, for each n ∈ N, a vocabulary σn. These are defined by induction on
n. The vocabulary σ1 consists of three binary relation symbols ≤, S,R. For all n > 1,
σn = σn−1 ∪ {Sn, Rn, Pn} where Sn and Rn are binary relation symbols and Pn is a unary
relation symbol.

Consider first the sentence NLO of FO which asserts that ≤ is not a linear order. This is
easily seen to be an existential sentence and so also definable in Datalog(¬). Suppose now
that ϕ is any sentence whose models, restricted to ordered structures (i.e. those structures
which interpret ≤ as a linear order), are extension closed. Then, it follows that NLO ∨ ϕ
defines an extension-closed class of structures. Moreover, this class is FO or Datalog(¬)
definable if ϕ is in the respective logic. Also, if ϕ is a Σn sentence, then so is NLO ∨ ϕ, and
if n > 1 and ϕ is a Πn sentence then so is NLO ∨ ϕ. Thus, in what follows, we restrict our
attention to the class of ordered structures. We construct our sentences on the assumption
that structures are ordered, and show that they define extension-closed classes on ordered
structures.

With this in mind, we use some convenient notational abbreviations. We write x < y as
short-hand for x ≤ y ∧ x 6= y. We also write “y is the successor of x”, “x is the minimum
element”, etc. with their obvious meanings. Also, let ϕ be any formula of FO, and x and y
be variables not occuring in ϕ. We write ϕ[x,y] for the formula x ≤ y ∧ ϕ? where ϕ? is the
formula obtained by relativizing every quantifier in ϕ to the interval [x, y]. That is to say,
inductively, every subformula ∃zθ is replaced by ∃z(x ≤ z ∧ z ≤ y)∧ θ? and every subformula
∀zθ by ∀z(x ≤ z ∧ z ≤ y)→ θ?. Where the variables x and y do appear in ϕ, the formula
ϕ[x,y] is defined by first renaming variables in ϕ to avoid clashes and then applying the
relativization.

Next, consider the sentence PartialSucc defined as follows.

PartialSucc := ∀x∀y S(x, y)→ “y is the successor of x”.

A. Dawar and A. Sankaran 18:5

This is a Π1 sentence, asserting that the relation S is a “partial successor” relation. Its
negation is an existential sentence and hence closed under extensions. Thus, if ϕ defines an
extension-closed class of structures when restricted to ordered structures in which S is a
partial successor relation, then NLO ∨ ¬PartialSucc ∨ ϕ defines an extension-closed class.

We write Total(x, y) for the formula that asserts, on structures in which PartialSucc is
true, that in the interval [x, y], S is, in fact, total. That is:

Total(x, y) := x < y ∧ ∀z
(
x ≤ z ∧ z < y

)
→ ∃w

(
z < w ∧ w ≤ y ∧ S(z, w)

)
.

Now, we can define the sentence SomeTotalR1.

SomeTotalR1 := ¬PartialSucc ∨ ∃x∃y
(
R(x, y) ∧ Total(x, y)

)
.

Note that Total(x, y) is a Π2 formula, and SomeTotalR1 is a Σ3 sentence. The latter is
the first in our family of sentences. To see why this sentence is closed under extensions on
ordered structures, suppose A is an ordered model of SomeTotalR1 on which S is a partial
successor. Thus, there is an interval [x, y] in A on which S is total. Let B be an extension of
A. If B contains no additional elements in the interval [x, y], then Total(x, y) still holds in
B and therefore B is a model of SomeTotalR1. On the other hand, suppose B contains an
additional element w in the interval [x, y]. Let a and b be the two successive elements of A
between which w appears. Since S is total in the interval [x, y] in A, we know that S(a, b)
holds in A and, by extension, in B. Since b is not the successor of a in B, we conclude that
¬PartialSucc is true in B and therefore the structure is a model of SomeTotalR1.

The sentence SomeTotalR1 is essentially the example constructed by Tait that exhibits
an existential-closed first-order property that is not expressible by an existential sentence.
We now define σn-sentences SomeTotalRn, for n > 0 by induction.

First, we define a formula Succn(x, y) as follows.

Succn(x, y) := Pn(x) ∧ Pn(y) ∧ Sn(x, y) ∧ SomeTotalR[x,y]
n−1 .

We further define the formula PartialSuccn which asserts that Succn is a partial successor
relation when restricted to the elements in the relation Pn. That is,

PartialSuccn := ∀x∀y Succn(x, y)→ ∀z(Pn(z)→ z ≤ x ∨ y ≤ z).

We can now define the formula Totaln(x, y) which defines, in those structures in which
PartialSuccn is true, those intervals [x, y] where the successor defined by Succn is total. That
is,

Totaln(x, y) := x < y ∧ ∀z
(
Pn(z)∧ x ≤ z ∧ z < y

)
→ ∃w

(
z < w ∧w ≤ y ∧ Succn(z, w)

)
.

Finally, we define the sentence

SomeTotalRn := ¬PartialSuccn ∨ ∃x∃y
(
Rn(x, y) ∧ Totaln(x, y)

)
.

Note that, SomeTotalRn is a Σ2n+1 sentence. This can be established by induction on
n. Indeed, as we noted, SomeTotalR1 is a Σ3 sentence. Assuming SomeTotalRn is a Σ2n+1
sentence for some n, we note that Succn+1 is a Σ2n+1 formula, and so is ¬PartialSuccn+1.
Then Totaln+1 is a Π2n+2 formula and SomeTotalRn+1 is Σ2n+3.

CSL 2021

18:6 Extension Preservation and Prefix Classes of FO

3.2 Datalog Definitions
Next, we show that these formulas also admit a definition in Datalog(¬), which establishes,
in particular, that they define extension-closed classes. We use the same names for formulas
in Datalog(¬) as we used for FO formulas above, when they define the same property. As we
noted, the sentences NLO and ¬PartialSucc are both Σ1 sentences and we therefore assume
they are available as Datalog(¬) predicates. We now define Total by the following rules.

Total(x, y) ←− S(x, y)
Total(x, y) ←− S(x, z),Total(z, y)

This just defines Total as the transitive closure of S. It is clear that, in ordered structures
where S is a partial successor relation, the pair (x, y) is in the transtive closure of S precisely
when x < y and S is total in the interval [x, y). Thus, we can now define:

RTotal1(x, y) ←− x ≤ u, v ≤ y,R(u, v),Total(u, v)

This defines those pairs (x, y) such that for some u, v in the interval [x, y], R(u, v) holds and
the successor relation is total. In other words, it defines SomeTotalR[x,y]

1 . We can obtain
SomeTotalR1 as the existential closure of this. For the inductive definition, the predicate
RTotaln is useful.

Inductively, we define the relation, Succn as follows.

Succn(x, y) ←− Pn(x), Pn(y), Sn(x, y),RTotaln−1(x, y)

The negation of PartialSuccn is now defined by the following

NotPartialSuccn ←− Succn(x, y), Pn(z), x ≤ z, z ≤ y, x 6= z, y 6= z

Now, entirely analogously to Total above, we can give a definition of Totaln as the
transitive closure of Succn and this is equivalent to the FO definition given above on ordered
structures on which PartialSuccn is true.

Totaln(x, y) ←− Succn(x, y)
Totaln(x, y) ←− Succn(x, z),Totaln(z, y)

Inductively we define the relation RTotaln, and its existential closure, giving the sentence
SomeTotalRn.

RTotaln(x, y) ←− x ≤ u, v ≤ y,Rn(u, v),Totaln(u, v)

It should be noted that the only use of the recursive features of Datalog(¬) that we
made use in writing the formulas above was to define the transitive closure of the relations
Total and Totaln. Thus, the definitions could equally well be formalized in the existential
fragment of transitive closure logic.

4 Proof of the Main Result

In this section, we establish our main result. We establish that SomeTotalRn, which we
noted is a Σ2n+1 sentence, is not equivalent to a Π2n+1 sentence. To do this, we construct
ordered structures Mn,k and Nn,k for every k such that Mn,k is a model of SomeTotalRn,
Nn,k is not a model of SomeTotalRn but Nn,k V2n+1,k Mn,k. The main lemma establishing
this is Lemma 5 below. Here we state the theorem that is a consequence.

A. Dawar and A. Sankaran 18:7

I Theorem 4. For every n, there is a Σ2n+1 sentence whose finite models are closed under
extensions and which is equivalent to a Datalog(¬) program, but which is not equivalent over
finite structures to any Π2n+1 sentence.

Proof. The sentence is NLO∨SomeTotalRn which we have already noted is a Σ2n+1 sentence,
expressible as a Datalog(¬) program and its models are extension-closed. Suppose it were
expressible as a Π2n+1 sentence. Then, since it is satisfied in Mn,k as we show in Section 4.1
and since Nn,k V2n+1,k Mn,k by Lemma 5 we have that the sentence is true in Nn,k. But,
as we show in Section 4.1, Nn,k is not a model of SomeTotalRn, yielding a contradiction. J

4.1 Construction of the Structures
We describe the construction of structures Mn,k and Nn,k for each n and k. The construction
is by induction on n, simultaneously for all k. In the course of the construction we also
define, for all n and k structures Totn,k and Gapn,k which we use as auxilliary structures.
For all n and k, Mn,k,Nn,k,Totn,k and Gapn,k are structures over the vocabulary σn.

All structures we consider interpret the relation symbol ≤ as a linear order of the universe
and S as a partial successor relation. It is useful to formally define the notion of an ordered
sum of structures. For a pair A and B of ordered structures the ordered sum A ⊕ B is
a structure whose universe is the disjoint union of the universes of A and B except that
the maximum element of A is identified with the minimum element of B. The relation ≤
is interpreted in A ⊕B by taking the union of its interpretations in A and B and letting
a ≤ b for all a in A and b in B. All other relation symbols are interpreted in A⊕B by the
union of their interpretations in the two structures. The operation of ordered sum is clearly
associative and we can thus write

⊕
i∈I Ai for the ordered sum of a sequence of structures

indexed by an ordered set I. Note that our use of the term “ordered sum” differs somewhat
from its use, say by Ebbinghaus and Flum [6, Sec. 1.A.3]. The key difference is that in their
definition we do not identify the maximum element of A with the minimum element of B
but rather simply take the disjoint union of the two universes.

The structure Tot1,k has m = 6(k + 2)2 elements which we identify with the initial
segment of the positive integers [1, . . . ,m] with ≤ the natural linear order on these, S the
successor relation and the relation R containing just the pair (1,m). The structure Gap1,k

is obtained from Tot1,k by removing from the relation S the central pair of elements, i.e.
(m/2,m/2 + 1).

We now obtain N1,k as the ordered sum of 4(k + 3)3 + 2k + 1 copies of Gap1,k. That
is N1,k =

⊕
i∈[4(k+3)3+2k+1] Gi where each Gi is isomorphic to Gap1,k. We also let M1,k =⊕

i∈[2(k+3)3+k] Gi ⊕ Tot1,k ⊕
⊕

i∈[2(k+3)3+k] Gi. In short, M1,k is obtained from N1,k by
replacing the central copy of Gap1,k with a copy of Tot1,k.

Let now n ≥ 2 and suppose we have defined the σn−1-structures Nn−1,k,Mn−1,k,Totn−1,k

and Gapn−1,k. Write N+
n−1,k and M+

n−1,k for the σn-structures that are obtained from Nn−1,k

and Mn−1,k respectively by interpreting Pn as the two element set {min,max} containing
the minimum and maximum elements of the structure and Sn as the relation containing the
single pair (min,max) (Rn is empty in both these structures). Now, Totn,k is the structure
obtained from

⊕
i∈[4(k+3)2n+2k+1] M

+
n−1,k (i.e. the ordered sum of 4(k + 3)2n + 2k + 1 copies

of M+
n−1,k) by adding to the relation Rn the pair relating the minimum and maximum

elements of the linear order. Similarly Gapn,k is obtained from
⊕

i∈[2(k+3)2n+k] M
+
n−1,k ⊕

N+
n−1,k⊕

⊕
i∈[2(k+3)2n+k] M

+
n−1,k by adding to the relation Rn the pair relating the minimum

and maximum elements of the linear order. Equivalently, Gapn,k is obtained from Totn,k by
replacing the central copy of Mn−1,k by a copy of Nn−1,k.

CSL 2021

18:8 Extension Preservation and Prefix Classes of FO

Finally, we can define Nn,k as the ordered sum of 4(k + 3)2n+1 + 2k + 1 copies of Gapn,k

and Mn,k as the structure obtained from Nn,k by replacing the central copy of Gapn,k by a
copy of Totn,k. This completes the definition of the structures.

We now argue that for all values of n and k, Mn,k is a model of SomeTotalRn and Nn,k is
not. This is an easy induction on n. For n = 1, every interval [x, y] of N1,k for which R(x, y)
holds induces a copy of Gap1,k. By construction S is not a complete successor relation in
Gap1,k, and so N1,k does not satisfiy SomeTotalR1. On the other hand, M1,k contains an
interval [x, y] with R(x, y) that induces a copy of Tot1,k and so M1,k |= SomeTotalR1.

Inductively, assume that Mn−1,k |= SomeTotalRn−1 and Nn−1,k 6|= SomeTotalRn−1.
Now, in both Totn,k and Gapn,k, the relation Sn relates successive elements that are in Pn.
If x, y is a pair of such successive elements then in Totn,k the interval [x, y] always induces
a structure whose σn−1-reduct is a copy of Mn−1,k and therefore satisfies SomeTotalRn−1.
Hence Succn(x, y) is satisfied in Totn,k for all such pairs. On the other hand, in Gapn,k there
is an interval [x, y] with Sn(x, y) which induces a structure whose σn−1-reduct is a copy of
Nn−1,k and therefore fails to satisfy SomeTotalRn−1. Hence Totaln(x0, y0) is true in Totn,k

and false in Gapn,k when x0 and y0 are interpreted as the minimum and maximum elements
in the structure respectively. Since in Nn,k all intervals [x, y] for which Rn(x, y) holds induce
a copy of Gapn,k and in Mn,k there is such an interval which induces a copy of Totn,k, we
conclude that Mn,k |= SomeTotalRn and Nn,k 6|= SomeTotalRn.

4.2 The Game Argument
Our aim in this section is to establish the following lemma using an Ehrenfeucht-Fraïssé
game argument:

I Lemma 5. For each n, k, Nn,k V2n+1,k Mn,k.

Our development of the Duplicator winning strategy in the game follows the inductive
construction of the structures themselves. For this, we first develop some tools for constructing
strategies on ordered sums and expansions of structures from strategies on their component
parts. First, we introduce some useful notation.

For any ordered structure A, write A∗ for the expansion of A with constants min and
max interpreted by the minimum and maximum elements of the structure. The main reason
for introducing these is that we generally want to restrict attention to Duplicator strategies
that respect the minimum and maximum elements and a notationally convenient way to do
this is to have constants for these elements.

It is a standard fact that the equivalence relation ≡m is a congruence with respect to
various ways of combining structures. In particular, it is so with respect to the notion
of ordered sum defined by Ebbinghaus and Flum [6, Prop. 2.3.10]. The same method of
composition of strategies can be used to show the following.

I Lemma 6. If A1,A2,B1,B2 are ordered structures and ā1, ā2, b̄1, b̄2 tuples of elements
from A1,A2,B1 and B2 respectively, such that (A1, ā1)∗ Vn,k (B1, b̄1)∗ and (A2, ā2)∗ Vn,k

(B2, b̄2)∗, then

(A1 ⊕ A2, ā1ā2)∗ Vn,k (B1 ⊕B2, b̄1b̄2)∗.

Note that it is an immediate consequence that the same is true with ≡n,k in place of Vn,k.
Furthermore, this also extends to ordered sums of sequences. Moreover, we do not have to

match the lengths of the sequences as long as they are long enough. Again, this is standard
for the equivalence relation ≡m [6, Ex. 2.3.13], for sequences of length at least 2m and a

A. Dawar and A. Sankaran 18:9

slightly different notion of ordered sum. For our relations we obtain a tighter bound, so we
prove this explicitly as the proof is instructive.

Define the following function ρ on pairs of natural numbers by recursion.

ρ(1, k) = 2k + 2
ρ(n+ 1, k) = (k + 2)(ρ(n, k) + 1).

A simple induction on n shows that 2(k + 3)n > ρ(n, k) for all k, n ≥ 1.

I Lemma 7. If A and B are ordered structures, A∗ Vn,k B∗ and s, t ≥ ρ(n, k), then(⊕
1≤i≤s Ai

)∗
Vn,k

(⊕
1≤j≤t Bi

)∗, where Ai ≡n,k A and Bi ≡n,k B for all i.

Proof. The proof is by induction on n. Suppose n = 1 and Spoiler plays a move choosing k
elements from

⊕
1≤i≤s Ai. Suppose these are chosen from Ai1 , . . . ,Ail

with 1 ≤ i1 < · · · <
il ≤ s for some l ≤ k. Further, let i0 = 0 and il+1 = t. Since l+2 ≤ k+2 < 2k+2 = ρ(1, k) ≤ s,
there is some p such that ip+1 > ip+1. Duplicator must choose structures (Bjq

)1≤q≤l in which
to respond. Moreover, since Ai and Ai+1 share an element for all i, whenever iq+1 = iq + 1,
we must choose jq+1 = jq + 1.

Duplicator chooses values 0 = j0 < j1 < · · · < jl ≤ jl+1 = t as follows. For all values of q
from 0 to p − 1, choose jq+1 = jq + 1 if iq+1 = iq + 1 and choose jq+1 = jq + 2 otherwise.
For all values of q from l down to p + 1, choose jq = jq+1 − 1 if iq = iq+1 − 1 and choose
jq = jq+1 − 2 otherwise. Because t ≥ 2k + 2, this guarantees that jp+1 > jp + 1. Thus,
Duplicator can respond to the elements picked in Aip

with elements in Bjp
by composing the

winning strategies for Aip ≡1,k A V1,k B ≡1,k Bjp and this is a winning response. Moreover,
by construction, this strategy maps the minimum and maximum elements of

⊕
1≤i≤s Ai to

the corresponding elements of
⊕

1≤i≤t Bj .
Now suppose n ≥ 2 and the statement has been proved for n− 1. Let Spoiler play a move

choosing k elements from
⊕

1≤i≤s Ai, and again say these are chosen from Ai1 , . . . ,Ail
with

1 ≤ i1 < · · · < il ≤ s for some l ≤ k. Further, define i0 = 0 and il+1 = s. Since l + 2 ≤ k + 2
and t ≥ ρ(n, k) = (k+2)(ρ(n−1, k)+1), Duplicator can choose indices 0 = j0 < j1 · · · < jl <

jl+1 = t so that for all p either jp+1−jp = ip+1− ip or (jp+1−jp), (ip+1− ip) ≥ ρ(n−1, k)+1.
Now choose, for each p with 1 ≤ p ≤ l a response b̄p for Duplicator in Bjp

to the elements
āp chosen by Spoiler in Aip . We claim that(⊕

1≤j≤t

Bj , (b̄p)1≤p≤l

)∗
Vn−1,k

(⊕
1≤i≤s

Ai, (āp)1≤p≤l

)∗
.

To prove this, it suffices to show for each p with 0 ≤ p ≤ l that

B Claim 8.(⊕
jp<j≤jp+1

(Bj , b̄p)
)∗

Vn−1,k

(⊕
ip<i≤ip+1

(Ai, āp)
)∗
,

for then the claim follows by l applications of Lemma 6. Note that we have,
1. for all i, j that Bj Vn−1,k Ai by the assumption that A Vn,k B; and
2. for all p we have (Bjp , b̄p) Vn−1,k (Aip , āp) by the choice of b̄p as Duplicator’s winning

response to Spoiler’s choice of āp.
Now, for each value of p there are two possibilities:
case (i): jp+1 − jp = ip+1 − ip. In this case, the two sides of Claim 8 are the ordered sums

of sequences of equal length. The corresponding pieces are all related by Vn−1,k, either
by 1. above for all except the last piece or by 2. for the last piece. Thus, Claim 8 is
established by application of Lemma 6;

CSL 2021

18:10 Extension Preservation and Prefix Classes of FO

case (ii): (jp+1−jp), (ip+1−ip) ≥ ρ(n−1, k)+1. In this case, the structures on the two sides of
Claim 8 can be expressed as

(⊕
jp<j≤jp+1−1 Bj

)
⊕(Bjp+1 , b̄p+1) and

(⊕
ip<i≤ip+1−1 Ai

)
⊕

(Aip+1 , āp+1), respectively. Since (jp+1 − jp − 1), (ip+1 − ip − 1) ≥ ρ(n− 1, k), we have by
the induction hypothesis and 1. that

(⊕
jp<j≤jp+1−1 Bj

)∗
Vn−1,k

(⊕
ip<i≤ip+1−1 Ai

)∗.
This, together with 2. and Lemma 6 establishes Claim 8, and hence the inductive step of
the proof.

J

Besides ordered sums, another key step in the inductive constructions of our structures is
adding unary relations which include the minimum and maximum elements of a structure and
adding binary relations which relate the minimum and maximum elements. These operations
also behave well with respect to games. To be precise, suppose U is a unary relation symbol
and T a binary relation symbol. Let A be an ordered structure with minimum and maximum
elements min and max respectively. Write AU for the structure obtained from A by including
min and max in the interpretation of U . Similarly, write AT for the structure obtained from
A by adding the pair (min,max) to the interpretation of T . Note that we do not assume
that U or T are in the vocabulary of A. If they are not, then their interpretations in AU and
AT respectively contain nothing other than the elements added.

I Lemma 9. Let n, k ≥ q. If A and B are ordered structures for which A∗ Vn,k B∗ then
AU Vn,k BU and AT Vn,k BT .

Proof. This is immediate from the fact that a Duplicator winning strategy between A∗ and
B∗ must map the minimum elements of the two structures to each other, and similarly for
the maximum. J

We are now ready to start inductively constructing the Duplicator winning strategy that
establishes Lemma 5. We begin with games on some simple structures. For any m ≥ 1 write
Lm for the structure with exactly m elements and two binary relations ≤ and S where ≤ is
a linear order and S the corresponding successor relation.

I Lemma 10. If m1,m2 > ρ(n, k) then L∗m1
Vn,k L

∗
m2

.

Proof. Note that Lm is the ordered sum of a sequence of m− 1 copies of L2, so the result
follows immediately from Lemma 7. J

Without loss of generality, assume that the universe of Lm is {1, . . . ,m} and write Gm for
the structure obtained from Lm+1 by deleting the element dm

2 e. Note that Gm is isomorphic
to the structure obtained from Lm by removing from the relation S the pair (dm

2 e − 1, dm
2 e).

I Lemma 11. If m1,m2 ≥ 2k + 2 then G∗m1
V1,k L

∗
m2

.

Proof. Since G∗m1
is a substructure of L∗m1+1, every existential sentence true in the former is

also satisfied in the latter. Now, since L∗m1+1 V1,k L
∗
m2

by Lemma 10, the result follows. J

The next two lemmas give us the base case of the inductive proof of Lemma 5.

I Lemma 12. Tot1,k V2,k Gap1,k

Proof. Recall that the {≤, S}-reduct of Tot1,k is the structure Lm for m = 6(k + 2)2. Note
that m > 2ρ(2, k) + (k+ 2)(2k+ 4). We think of this as composed of three segments: the first
ρ(2, k) elements; the last ρ(2, k) elements and a middle segment containing the remainder.
Suppose now that Spoiler chooses k elements a1 < · · · < ak from Tot1,k in the first round of

A. Dawar and A. Sankaran 18:11

the game. Since the middle segment contains more than (k + 2)(2k + 4) elements, it must
contain an interval [x, y] of 2k + 2 consecutive elements which are not chosen. Let us say
that ai < x and y < ai+1. Thus, we can write the {≤, S}-reduct of Tot1,k with the chosen
elements as

(Lm1 , a1, . . . , ai)⊕ Lm2 ⊕ (Lm3 , ai+1, . . . , ak),

where m1,m3 ≥ ρ(2, k) and m2 ≥ 2k + 2.
Consider now Gap1,k. The {≤, S}-reduct of this structure is Gm, which can also

be written as Lm
2 −k−1 ⊕ G2k+2 ⊕ Lm

2 −k−1. Since m
2 − k − 1 > ρ(2, k), we have by

Lemma 10 that L∗m1
V2,k L

∗
m
2 −k−1 and hence there is a choice of elements b1, . . . , bi such

that (Lm
2 −k−1, b1, . . . , bi)∗ V1,k (Lm1 , a1, . . . , ai)∗. Similarly, there is a choice of elements

bi+1, . . . , bk such that (Lm
2 −k−1, bi+1, . . . , bk)∗ V1,k (Lm3 , ai+1, . . . , ak)∗. Further, we know

that G∗2k+2 V1,k L∗m3
by Lemma 11. Hence, by Lemma 6 we have that L∗m V2,k G∗m.

The result now follows by Lemma 9 as Tot1,k and Gap1,k are obtained from Lm and Gm

respectively by relating the minimum and maximum elements with the relation R. J

A similar pattern of argument is repeated in the second base case, and we will be less
detailed in spelling it out.

I Lemma 13. N∗1,k V3,k M∗1,k.

Proof. Recall that N1,k is the ordered sum of m = 4(k + 3)3 + 2k + 1 copies of Gap1,k. So
N1,k =

⊕
i∈[m] Gi. Note that m > 2ρ(3, k) + k + 1. Suppose now that Spoiler chooses k

elements a1 < · · · < ak in the first round of the game. Thus, there is an index i in the middle
segment of [m] of length k+1 such that Gi does not contain a chosen element and we can write
N1,k with the chosen elements as (

⊕
i∈[m1] Gi, a1, . . . , aj)⊕Gap1,k⊕(

⊕
i∈[m2] Gi, aj+1, . . . , ak),

where m1,m2 > ρ(3, k).
On the other side, M1,k =

⊕
i∈[(m−1)/2] Gi ⊕ Tot1,k ⊕

⊕
i∈[(m−1)/2] Gi. Since

(m − 1)/2 > ρ(3, k), by Lemma 7 we have
(⊕

i∈[m1] Gi

)∗
V3,k

(⊕
i∈[(m−1)/2] Gi

)∗ and(⊕
i∈[m2] Gi

)∗
V3,k

(⊕
i∈[(m−1)/2] Gi

)∗. Thus, we can find elements b1, . . . , bk such that

(⊕
i∈[m−1

2]

Gi, b1, . . . , bj

)∗
V2,k (

⊕
i∈[m1]

Gi, a1, . . . , aj)∗

and(⊕
i∈[m−1

2]

Gi, bj+1, . . . , bk

)∗
V2,k (

⊕
i∈[m2]

Gi, aj+1, . . . , ak)∗.

Combining this with the fact that Tot1,k V2,k Gap1,k by Lemma 12, we get by Lemma 6
that (M1,k, b1, . . . , bk)∗ V2,k (N1,k, a1, . . . , ak)∗ and the result follows. J

These last two lemmas form the base case of the induction that establishes the main
result. Where the argument is analogous to the previous ones, we skim over the details.

Proof of Lemma 5. We prove the following two statements by induction for all n, k ≥ 1.
1. Totn,k V2n,k Gapn,k

2. N∗n,k V2n+1,k M∗n,k

CSL 2021

18:12 Extension Preservation and Prefix Classes of FO

The case of n = 1 is established in Lemmas 12 and 13 respectively. Suppose now n ≥ 2 and
we have established both statements for n− 1.

First, recall that M+
n−1,k and N+

n−1,k are obtained from Mn−1,k and Nn−1,k respectively
by including their minimum and maximum elements in the unary relation Pn and the binary
relation Sn. Thus, by the induction hypothesis and Lemma 9, we have N+

n−1,k V2n−1,k

M+
n−1,k.
Totn,k consists of the ordered sum of a sequence ofm = 4(k+3)2n+2k+1 > 2ρ(2n, k)+k+1

copies of M+
n−1,k, along with a relation Rn containing just the pair with the minumum and

maximum elements. When Spoiler chooses k elements from this structure, we can find a copy
of M+

n−1,k in the middle k+ 1 copies that has no element chosen and there are m1 > ρ(2n, k)
copies before it and m2 > ρ(2n, k) copies after it. We can similarly express Gapn,k as the
ordered sum of a sequence of (m− 1)/2 > ρ(2n, k) copies of M+

n−1,k, followed by a copy of
N+

n−1,k and a further (m− 1)/2 > ρ(2n, k) copies of M+
n−1,k. Lemma 7 tells us that we can

find a response to the chosen elements in the first and third parts. This combined with the
fact that N+

n−1,k V2n−1,k M+
n−1,k and using Lemma 9 to expand to the relation Rn gives us

the desired result.
The argument for the second statement is entirely analogous. Nn,k is the ordered sum of

a sequence of m = 4(k + 3)2n+1 + 2k + 1 > 2ρ(2n + 1, k) + k + 1 copies of Gapn,k. When
Spoiler chooses k elements from this structure, we can find a copy of Gapn,k in the middle
k + 1 copies that has no element chosen and there are m1 > ρ(2n+ 1, k) copies before it and
m2 > ρ(2n+ 1, k) copies after it. Since Mn,k has (m− 1)/2 > ρ(2n+ 1, k) copies of Gapn,k

followed by a copy of Totn,k and a further (m − 1)/2 > ρ(2n + 1, k) copies of Gapn,k, by
Lemma 7 we can find responses to the chosen elements in the first and third parts. We have
already proved that Totn,k V2n,k Gapn,k. We can combine these to complete the proof. J

5 Concluding Remarks

We have established in this paper that the extension-closed properties of finite structures
that are definable in first-order logic are not contained in any fixed quantifier-alternation
fragment of the logic. The construction of the sentences demonstrating this is recursive. It
builds on a base of known counter-examples for the Łoś-Tarski theorem in the finite and lifts
them up inductively. Also, the argument for showing inexpressibility in fixed levels of the
quantifier-alternation hierarchy builds on the game arguments used with previously known
examples and builds on them systematically using a form of Feferman-Vaught decomposition
(see [11]) for ordered sums of structures.

Our result actually establishes that for all odd n > 1, there is a Σn-definable property
that is closed under extensions but not definable by a Πn sentence. Interestingly, this is not
true for even values of n. In particular, it is known that every Σ2-definable extension-closed
property is already definable in Σ1. This observation is credited to Compton in [7] and may
also be found in [16]. We do not know, however, whether for even n > 2, the extension closed
properties in Σn can all be expressed in Πn or even Σn−1. On the other hand, we are able
to observe that for all even n > 1, there is a Πn-definable extension-closed property that
is not in Σn. This is a direct consequence of our proof. Indeed, consider the sentence ϕn

obtained from SomeTotalRn by removing the two outer existential quantifiers and replacing
the resulting free variables with new constants a and b. This is a Π2n sentence and is easily
seen to define an extension-closed class. By our construction, ϕn is satisfied in the expansion
of Totn,k where a and b are the minimum and maximum elements respectively. At the same
time ϕn is false in the similar expansion of Gapn,k. Since we showed that Tot∗n,k V2n,k Gap∗n,k,

A. Dawar and A. Sankaran 18:13

it follows that ϕn is not equivalent to a Σ2n sentence. It would be interesting to complete
the picture of extension-closed properties in the remaining quantifier-alternation fragments,
specifically Σn for even values of n and Πn for odd values of n.

It is a feature of our construction that the vocabulary σn in which we construct the
sentences which separate extension-closed Σ2n+1 from Π2n+1 grows with n. Could our results
be established in a fixed vocabulary? Indeed, does something like Theorem 4 hold for finite
graphs?

Another interesting direction left open from our work is the relation with Datalog(¬). All
the extension-closed FO-definable properties we construct are also definable in Datalog(¬).
Rosen and Weinstein [13] ask whether this is true for all FO-definable extension-closed
properties, and this remains open. Indeed, it is conceivable that we have an extension-
preservation theorem for least fixed-point logic in the finite, so that even all LFP-definable
extension-closed properties are in Datalog(¬).

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases, volume 8.

Addison-Wesley Reading, 1995.
2 Albert Atserias, Anuj Dawar, and Martin Grohe. Preservation under extensions on well-behaved

finite structures. SIAM Journal on Computing, 38:1364–1381, 2008.
3 Chen C. Chang and Howard J. Keisler. Model Theory, volume 73. Elsevier, 1990.
4 Anuj Dawar. Finite model theory on tame classes of structures. In MFCS, volume 4708 of

Lecture Notes in Computer Science, pages 2–12. Springer, 2007.
5 Anuj Dawar and Stephan Kreutzer. On Datalog vs. LFP. In International Colloquium on

Automata, Languages, and Programming, pages 160–171. Springer, 2008.
6 Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Springer Science & Business

Media, 2005.
7 Yuri Gurevich. Toward logic tailored for computational complexity. In M. Richter et al., editors,

Computation and Proof Theory, pages 175–216. Springer Lecture Notes in Mathematics, 1984.
8 Wilfrid Hodges. Model theory, volume 42. Cambridge University Press, 1993.
9 Phokion G Kolaitis and Moshe Y Vardi. On the expressive power of Datalog: tools and a case

study. Journal of Computer and System Sciences, 51(1):110–134, 1995.
10 Leonid Libkin. Elements of Finite Model Theory. Springer-Verlag, 2004.
11 Johann A. Makowsky. Algorithmic uses of the Feferman-Vaught theorem. Ann. Pure Appl.

Log., 126:159–213, 2004. doi:10.1016/j.apal.2003.11.002.
12 Eric Rosen. Some aspects of model theory and finite structures. Bulletin of Symbolic Logic,

8:380–403, 2002.
13 Eric Rosen and Scott Weinstein. Preservation theorems in finite model theory. In Lo-

gical and Computational Complexity. Selected Papers., pages 480–502, 1994. doi:10.1007/
3-540-60178-3_99.

14 Benjamin Rossman. Homomorphism preservation theorems. Journal of the ACM, 55, 2008.
15 Abhisekh Sankaran. Revisiting the generalized Łoś-Tarski theorem. In Logic and Its

Applications - 8th Indian Conference, ICLA 2019, pages 76–88, 2019. doi:10.1007/
978-3-662-58771-3_8.

16 Abhisekh Sankaran, Bharat Adsul, Vivek Madan, Pritish Kamath, and Supratik Chakraborty.
Preservation under substructures modulo bounded cores. In Logic, Language, Information
and Computation - 19th International Workshop, WoLLIC 2012, pages 291–305, 2012. doi:
10.1007/978-3-642-32621-9_22.

17 William W. Tait. A counterexample to a conjecture of Scott and Suppes. J. Symb. Logic,
24(1):15–16, 1959.

CSL 2021

https://doi.org/10.1016/j.apal.2003.11.002
https://doi.org/10.1007/3-540-60178-3_99
https://doi.org/10.1007/3-540-60178-3_99
https://doi.org/10.1007/978-3-662-58771-3_8
https://doi.org/10.1007/978-3-662-58771-3_8
https://doi.org/10.1007/978-3-642-32621-9_22
https://doi.org/10.1007/978-3-642-32621-9_22

Realizability with Stateful Computations for
Nonstandard Analysis
Bruno Dinis
Faculdade de Ciências, University of Lisbon, Portugal
bmdinis@fc.ul.pt

Étienne Miquey
ÉNS de Lyon, Université de Lyon, LIP, France
etienne.miquey@ens-lyon.fr

Abstract
In this paper we propose a new approach to realizability interpretations for nonstandard arithmetic.
We deal with nonstandard analysis in the context of intuitionistic realizability, focusing on the
Lightstone-Robinson construction of a model for nonstandard analysis through an ultrapower. In
particular, we consider an extension of the λ-calculus with a memory cell, that contains an integer
(the state), in order to indicate in which slice of the ultrapowerMN the computation is being done.
We shall pay attention to the nonstandard principles (and their computational content) obtainable in
this setting. We then discuss how this product could be quotiented to mimic the Lightstone-Robinson
construction.

2012 ACM Subject Classification Theory of computation → Proof theory; Theory of computation
→ Constructive mathematics

Keywords and phrases realizability, nonstandard analysis, states, glueing, ultrafilters, Łoś ’ theorem

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.19

Funding Bruno Dinis: The author acknowledges the support of FCT - Fundação para a Ciência e
Tecnologia under the projects UIDB/04561/2020 and UIDP/04561/2020, and the research center
Centro de Matemática, Aplicações Fundamentais e Investigação Operacional, Universidade de Lisboa.
Étienne Miquey: The author was supported by the Paris Ile-de-France Region and the Inria research
team Deducteam (LSV, ÉNS Paris-Saclay).

Acknowledgements The authors would like to thank Alexandre Miquel for suggesting several ideas
at the root of this work and Valentin Blot and Mikhail Katz, as well as the anonymous reviewers,
for their accurate remarks and suggestions.

1 Introduction

In this paper we propose a new approach to realizability interpretations for nonstandard
arithmetic. On the one hand, we deal with nonstandard analysis in the context of intuitionistic
realizability. On the other hand, we focus on Lightstone and Robinson’s construction of a
model for nonstandard analysis through an ultrapower [23].

Throughout the history of mathematics, infinitesimals were crucial for the intuitive
development of mathematical knowledge by authors such as Archimedes, Stevin, Fermat,
Leibniz, Euler and Cauchy, to name but a few (see e.g. [15, 4, 3]). In particular, in Leibniz’s
Calculus one may recognize calculation rules – sometimes called the Leibniz rules [24, 7, 10] –
which correspond to heuristic intuitions for how the infinitesimals should operate under
calculations: the sum and product of infinitesimals is infinitesimal, the product of a limited
number (i.e. not infinitely large) with an infinitesimal is infinitesimal, . . .

© Bruno Dinis and Étienne Miquey;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 19; pp. 19:1–19:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2143-3289
mailto:bmdinis@fc.ul.pt
https://orcid.org/0000-0002-5987-6547
mailto:etienne.miquey@ens-lyon.fr
https://doi.org/10.4230/LIPIcs.CSL.2021.19
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Realizability with Stateful Computations for Nonstandard Analysis

In [35, 36] Robinson showed that, in the setting of model theory, it is possible to extend
usual mathematical sets (N, R, etc.) witnessing the existence of new elements, the so-called
nonstandard individuals. In this way, it is possible to deal consistently with infinitesimal
and infinitely large numbers via ultraproducts and ultrapowers, in a way that is consistent
with the Leibniz rules. Since the extended structures are nonstandard models of the original
structures, this new setting was dubbed nonstandard analysis.

These constructions are meant to simplify doing mathematics: notions like limits or
continuity can for instance be given a simpler form in nonstandard analysis. Later in the 70s,
Nelson developed a syntactical approach to nonstandard analysis, introducing in particular
three key principles: idealization, standardization and transfer [31]. The validity of these
principles for constructive mathematics has been studied in many different settings, in
particular, following some pioneer work by Moerdijk, Palmgren and Avigad [29, 30, 2] in
nonstandard intuitionistic arithmetic, several recent works, inspired by Nelson’s approach,
lead to interpretations of nonstandard theories in intuitionistic realizability models [6, 8, 13, 9].

The very first ideas of realizability are to be found in the Brouwer-Heyting-Kolmogorov
interpretation [14, 17], which identifies evidences and computing proofs (the realizers).
Realizability was designed by Kleene to interpret the computational content of the proofs of
Heyting arithmetic [16], and was later extended to more expressive frameworks [11, 18, 20].
While the Curry-Howard isomorphism focuses on a syntactical correspondence between proofs
and programs, realizability rather deals with the (operational) semantics of programs: a
realizer of a formula A is a program which computes adequately with the specification that
A provides. As such, realizability constitutes a technique to develop new models of a wide
class of theories (from Heyting arithmetic to Zermelo-Fraenkel set theory), whose algebraic
structures has been studied in [38, 22, 27].

With the development of his classical realizability, Krivine evidences the fact that extend-
ing the λ-calculus with new programming instructions may result in getting new reasoning
principles: call/cc to get classical logic [12, 20], quote for dependent choice [19], etc. In
this paper, we follow this path to show how the addition of a monotonic reference allows us
to get a realizability interpretation for nonstandard analysis. The realizability interpretation
proposed here can be understood as a computational interpretation of the ultraproduct
construction in [23], where the value of the reference indicates the slice of the product in which
the computation takes place. In particular, we obtain a realizer for the idealization principle
whose computational behaviour increases the reference in the manner of a diagonalization
process.

Outline

We start this paper by recalling the main ideas of the ultraproduct construction (Section 2)
and the definition of a standard realizability interpretation for second-order Heyting arithmetic
(Section 3). We then introduce stateful computations and our notion of realizability with
slices in Section 4. As shown in Section 5, this interpretation provides us with realizers
for several nonstandard reasoning principles. Finally, we discuss the possibility of taking a
quotient for this interpretation in Section 6.1 and we conclude the paper in Section 6.2 with
a comparison to related works and questions left for future work.

N.B.: due to the page limit, proofs sketches are given in the appendices.

B. Dinis and É. Miquey 19:3

2 The ultrapower construction

The main contribution of this paper consists in defining a realizability interpretation to give
a computational content to the ultrapower construction of Robinson and Lightstone in [23].
We shall begin by briefly explaining how this construction works in the realm of model theory.

First, recall that an ultrafilter over a set I is a filter U ⊆ P(I) such that for any F ∈ P(I),
either F or its complement F are in U . For instance, the set of cofinite subsets of N defines
the so-called Fréchet filter, which is not an ultrafilter since it contains neither the set of
even natural numbers nor the set of odd natural numbers. Nonetheless, it is well-known
that any filter F over an infinite set I is contained in an ultrafilter U over I: this is the
so-called ultrafilter principle. An ultrafilter that contains the Fréchet filter is called a free
ultrafilter. The existence of free ultrafilters was proved by Tarski in 1930 [37] and is in fact a
consequence of the axiom of choice.

Given two sets V and I and an ultrafilter U over I, we can define an equivalence relation
∼=U over V I by u ∼=U v , {i ∈ I : ui = vi} ∈ U . We write V I/U for the set obtained
by performing a quotient on the set V I by this equivalence relation, which is called an
ultrapower.

Consider a theory T (say ZFC) and its language L, for which we assume the existence of
a modelM. The goal is to build a nonstandard modelM∗ of the theory T that validates
new principles. Let us denote by V the set which interprets individuals inM, and let us
fix a free ultrafilter U over N. Roughly speaking, the new model M∗ is defined as the
ultrapower MN/U . Individuals are interpreted by functions in VN while the validity of a
relation R(x1, ..., xk) (where the xi are interpreted by fi, for i ∈ {1, ..., k}) is defined by

M∗ � R(f1, ..., fk) iff {n ∈ N :M � R(f1(n), ..., fk(n))} ∈ U .

We can now extend the language with a new predicate st(x) to express that x is standard.
Standard elements are defined as the ones that, with respect to ∼=U , are equivalent to constant
functions, i.e. M∗ � st(f) if and only if there exists p ∈ N such that {n ∈ N : f(n) = p} ∈ U .
Formulas that involve this new predicate are called external, while formulas of the original
language L are called internal.

Lightstone and Robinson’s construction relies on the well-known Łoś ’ theorem [33] which
states that if ϕ is an internal formula (with parameters in VN), then M∗ � ϕ if and only
{n ∈ N : M � ϕn} ∈ U , where ϕn refers to the formula ϕ whose parameters have been
replaced by their values in n. This construction indeed defines a model of T which satisfies
other relevant properties, namely transfer, idealization and standardization. As a consequence
of Łoś ’ theorem, to see that an internal formula ϕ(x) holds for all elements, it is enough
to see that it holds for all standard elements: this is the transfer principle. In our setting,
idealization amounts to a diagonalization process: it is for instance easy to see that if one
defines δ : n 7→ n (where we, with abuse of notation, write n for both the natural number n
and its interpretation in V), thenM∗ � ∀x.(st(x) → x < δ). Finally, standardization is a
sort of “comprehension scheme” which states that we can specify subsets of standard sets by
giving a membership criterion for standard elements (by means of an internal formula).

3 Realizability in a nutshell

3.1 Heyting second-order arithmetic
We start by introducing the terms and formulas of Heyting second-order arithmetic (HA2),
for which we follow Miquel’s presentation [25]. Second-order formulas are build on top of
first-order arithmetical expressions, by means of logical connectives, first- and second-order

CSL 2021

19:4 Realizability with Stateful Computations for Nonstandard Analysis

quantifications and primitive predicates. We use upper case letters for second-order variables
and lower case for first-order ones. We use a primitive predicate Nat(e) to denote that e is a
natural number (0 then has type Nat(0) and the term s t has type Nat(S(e)) provided that t
has type Nat(e)). We consider the usual λ-calculus terms extended with pairs, projections
(written πi), injections (written ιi), case analysis, natural numbers and a recursion operator:

1st-order expressions e ::= x | 0 | S(e) | f(e1, . . . , en)
Formulas A,B ::= Nat(e) | X(e1, . . . , en) | A→ B | A ∧B | A ∨B

| ∀x.A | ∃x.A | ∀X.A | ∃X.A
Terms t, u ::= x | 0 | s | rec | λx.t | t u | (t, u) | π1(t) | π2(t)

| ι1(t) | ι2(t) | case t {ι1(x1) 7→ t1|ι2(x2) 7→ t2}

where f : Nn → N is any arithmetical function. We write Λ for the set of all closed λ-terms.
As in Miquel’s presentation, we consider formulas up to the following congruences:

(∃x.A)→ B ∼= ∀x.(A→ B) (∃X.A)→ B ∼= ∀X.(A→ B) (1)

These congruences allow us to avoid having elimination rules for the existential quantifiers,
thus simplifying the resulting type system. The type system, which is given in Figure 1,
corresponds to the usual rules of natural deduction. The reader may observe that we do not
give computational content to quantifications.

In the sequel, we make use of the following usual abbreviations:

sn+10 , s (sn0)
n , sn0

> , ∃X.X
⊥ , ∀X.X
¬A , A→ ⊥

e = e′ , ∀Z.(Z(e)→ Z(e′))
∀Nx.A , ∀x.(Nat(x)→ A)
∃Nx.A , ∃x.(Nat(x) ∧A)

It is well-known that the above definition of equality (often called Leibniz law) enjoys the usual
expected properties (reflexivity, symmetry, transitivity) and allows to perform substitution of
equal terms. The quantifications ∀Nx.A and ∃Nx.A are often said to be relativized to natural
numbers.

The one-step (weak) reduction over terms is defined by the following rules:

(λx.t)u .β t[u/x] rec u0 u1 0 .β u0 rec u0 u1 (s t) .β u1 t (rec u0 u1 t)

π1(t, u) .β t π2(t, u) .β u case ιi(t) {ι1(x1) 7→ t1|ι2(x2) 7→ t2} .β ti[t/xi]

We write →β for the congruent reflexive-transitive closure of .β . The reduction →β is known
to be confluent, type-preserving and normalizing on typed terms [5].

3.2 Realizability interpretation of HA2
In this subsection we define the realizability interpretation of the type system defined in
Figure 1, in which formulas are interpreted as saturated sets of terms, i.e. as sets of closed
terms S ⊆ Λ such that t→β t

′ and t′ ∈ S imply that t ∈ S. We write SAT to denote the set
of all saturated sets and, given a formula A, we call truth value its realizability interpretation.

I Definition 1 (Valuation). A valuation is a function ρ that associates a natural number ρ(x)
to every first-order variable x and a truth value function ρ(X), i.e. a function in Nk → SAT
to every second-order variable X of arity k.
1. Given a valuation ρ, a first-order variable x and a natural number n, we denote by

ρ, x 7→ n the valuation defined by (ρ, x 7→ n) , ρ| dom(ρ)\{x} ∪ {x 7→ n} .

B. Dinis and É. Miquey 19:5

Γ ` 0 : Nat(0)
(0)

Γ ` s : ∀Nx.Nat(S(x))
(S)

Γ ` rec : ∀Z.Z(0)→ (∀Ny.(Z(y)→ Z(S(y))))→ ∀Nx.Z(x)
(rec)

(x : A) ∈ Γ
Γ ` x : A

(Ax)

Γ, x : A ` t : B
Γ ` λx . t : A→ B

(→I) Γ ` t : A→ B Γ ` u : A
Γ ` t u : B

(→E)
Γ ` t : A Γ ` u : B

Γ ` (t, u) : A ∧B
(∧I)

Γ ` t : A ∧B
Γ ` π1(t) : A

(∧1
E) Γ ` t : A ∧B

Γ ` π2(t) : B
(∧2

E) Γ ` t : A
Γ ` ι1(t) : A ∨B

(∨1
I) Γ ` t : B

Γ ` ι2(t) : A ∨B
(∨2

I)

Γ ` t : A1 ∨A2 Γ, xi : Ai ` ti : C
Γ ` case t {ι1(x1) 7→ t1|ι2(x2) 7→ t2} : C

(∨E)
Γ ` t : A[x := n]

Γ ` t : ∃x.A
(∃1

I)
Γ ` t : ∀x.A

Γ ` t : A[x := n]
(∀1

E)

Γ ` t : A x /∈ FV (Γ)
Γ ` t : ∀x.A

(∀1
I)

Γ ` t : A[X(x1, . . . , xn) := B]
Γ ` t : ∃X.A

(∃2
I)

Γ ` t : ∀X.A
Γ ` t : A[X(x1, . . . , xn) := B]

(∀2
E)

Γ ` t : A X /∈ FV (Γ)
Γ ` t : ∀X.A

(∀2
I)

Γ ` t : A′ A ∼= A′

Γ ` t : A
(∼=)

Figure 1 Type system.

2. Given a valuation ρ, a second-order variable X of arity k and a truth value function
F : Nk → SAT, the valuation defined by (ρ,X 7→ F) , ρ| dom(ρ)\{X} ∪ {X 7→ F} will
be denoted by ρ,X 7→ F .

We say that a valuation ρ is closing the formula A if FV (A) ⊆ dom(ρ).

I Definition 2 (Realizability interpretation). We interpret closed arithmetical expressions e in
the standard model of first-order Peano arithmetic N. Given a valuation ρ and a first-order
expression e (whose variables are in the domain of ρ) we denote its interpretation by JeKρ.
The interpretation of a formula A together with a valuation ρ closing A is the set |A|ρ defined
inductively according to the following clauses:

|Nat(e)|ρ , {t ∈ Λ : t→β sn0, where n = JeKρ}
|X(e1, . . . , en)|ρ , ρ(X)(Je1Kρ, . . . , JenKρ)

|A→ B|ρ , {t ∈ Λ : ∀u ∈ |A|ρ.(t u ∈ |B|ρ)}
|A1 ∧A2|ρ , {t ∈ Λ : π1(t) ∈ |A1|ρ ∧ π2(t) ∈ |A2|ρ}
|A1 ∨A2|ρ , {t ∈ Λ : ∃i ∈ {1, 2}. case t {ι1(x1) 7→ x1|ι2(x2) 7→ x2} ∈ |Ai|ρ}
|∀x.A|ρ ,

⋂
n∈N |A|ρ,x7→n |∀X.A|ρ ,

⋂
F :Nk→SAT |A|ρ,X 7→F

|∃x.A|ρ ,
⋃
n∈N |A|ρ,x7→n |∃X.A|ρ ,

⋃
F :Nk→SAT |A|ρ,X 7→F

Observe that in the previous definition, the universal quantifications cannot be seen as
generalized conjunctions. Indeed, the conjunction is given computational content through
pairs, while the universal quantifications are defined as intersections of truth values.

It is easy to see that for any formula A and any valuation ρ closing A, one has |A|ρ ∈ SAT.
As it turns out, the congruences defined by Equation (1) are sound w.r.t. the interpretation.

I Proposition 3 ([25]). If A and A′ are two formulas of HA2 such that A ∼= A′, then for all
valuations ρ closing both A and A′ we have |A|ρ = |A′|ρ.

In order to show that the realizability interpretation is adequate with respect to the type
system we need the following preliminary notions.

CSL 2021

19:6 Realizability with Stateful Computations for Nonstandard Analysis

I Definition 4 (Substitution). A substitution is a finite function σ from λ-variables to
closed λ-terms. Given a substitution σ, a λ-variable x and a closed λ-term u, we denote by
(σ, x := u) the substitution defined by (σ, x := u) , σ| dom(σ)\{x} ∪ {x := u}.

I Definition 5. Given a context Γ and a valuation ρ closing the formulas in Γ, we say that
a substitution σ realizes ρ(Γ) and write σ ρ(Γ) if dom(Γ) ⊆ dom(σ) and σ(x) ∈ |A|ρ for
every declaration (x : A) ∈ Γ.

I Definition 6. A typing judgement Γ ` t : A is adequate if for all valuations ρ closing A
and Γ and for all substitutions σ ρ(Γ) we have σ(t) ∈ |A|ρ. More generally, we say that an

inference rule
J1 · · · Jn

J0 is adequate if the adequacy of all typing judgements J1, . . . , Jn
implies the adequacy of the typing judgement J0.

I Theorem 7 (Adequacy [25]). The typing rules of Figure 1 are adequate.

I Corollary 8. If Γ ` t : A is derivable, then it is adequate.

The adequacy theorem is the key result when defining realizability interpretations in that
fundamental properties stem from it. For example, we have the following corollary.

I Corollary 9 (Consistency). There is no proof term t such that ` t : ⊥.

We would like to point out that the proof of adequacy is very flexible. Indeed, if one
wants to add a new instruction to the language of terms via its typing rule, it is enough to
check that this typing rule is adequate while the remainder of the proof is exactly the same.

3.3 Introducing value restrictions
The realizability interpretation of Definition 2 is also flexible regarding the set of formulas that
are interpreted. We illustrate this point here by introducing a new construction extending
formulas. For these formulas we shall not give any typing rule, instead we will see how
this construction allows us to enforce value restrictions, which will turn out to be crucial
afterwards in a setting where stateful computations occur. We start by defining the subset
V ⊆ Λ of values by the following grammar:

Values V ::= 0 | sV | λx.t | (V1, V2) | ιi(V)

Observe that variables are not values, otherwise the system would not be stable by substitution.
In the remainder of this paper, we adopt the convention that λ-terms are denoted by lowercase
letters t, u, ... while uppercase letters V,W, ... refer to values.

Distinguishing the set of values allows for instance to restrict the β-reduction rule to
applications of functions to values:

(λx.t)V .v t[V/x]
t .v t

′

t u .v t
′ u

u .v u
′

V u .v V u
′

The reflexive transitive closure →v of the one-step reduction .v is known as the (left-to-right)
call-by-value evaluation strategy. While it is well-known that the reduction system of the
λ-calculus is confluent, so that the choice of a particular evaluation strategy does not have
any consequence in terms of expressiveness, this is no longer the case when side effects (such
as stateful computations in the next sections) come into play.

B. Dinis and É. Miquey 19:7

To enforce value restrictions, let us now extend the language of formulas with a new
construction {A} 7→ B and the realizability interpretation accordingly by

|{A} 7→ B|ρ , {t ∈ Λ : ∀V ∈ |A|ρ.(t V ∈ |B|ρ)}

In particular, we have |{Nat(e)} 7→ B|ρ = {t ∈ Λ : t n ∈ |B|ρ, where n = JeKρ}. It is easy
to check that for any formulas A and B, |{A} 7→ B|ρ is a saturated set, and the adequacy of
the (∀2

E)-rule is thus preserved.
While there is currently no rule to type a term t with a formula of the shape {A} 7→ B,

we can nonetheless extend the type system with any rule as long as it is adequate (see
Proposition 45). We can also extend, maintaining the adequacy of the interpretation of
{A} 7→ B (see Proposition 46), the congruence relation with the following rules:

{∃x.A} 7→ B ∼= ∀x.{A} 7→ B {∃X.A} 7→ B ∼= ∀X.{A} 7→ B

We will make use of the following abbreviations:

∀{N}x.A , ∀x.({Nat(x)} 7→ A) ∃{N}x.A , ∀X.(∀{N}x.(A→ X))→ X

While the first definition is natural, the second one may be a bit more puzzling at first
sight. As we saw, the truth value of any formula has to be a saturated set. However, given
a formula A(x), the set {(n, t) : t ∈ |A(n)|ρ} is not saturated, and so we cannot define a
formula ∃x.{Nat(x)} ∧A(x) whose realizers would be this set. Nonetheless, the definition of
∃{N}x.A is somehow doing the trick in continuation-passing style, in the sense that we have:

I Proposition 10. For any formula A, any valuation ρ and any term t, if t ∈ |∃{N}x.A|ρ then
there exists a natural number n ∈ N and a term u ∈ |A[x := n]|ρ s.t.: t (λxy.(x, y))→β (n, u).

I Definition 11. We define T , λzx.(rec (λy.y 0) (λxyz.y (λx.z (sx)))x) z.

The next proposition relates these new quantifications with the relativized quantifications
∀Nx.A and ∃Nx.A using the term T .

I Proposition 12. We have
1. T ∀{N}x.A→ ∀Nx.A
2. λx.x ∀Nx.A→ ∀{N}x.A
3. λz.z λxy.(x, y) ∃{N}x.A→ ∃Nx.A
4. λxy.T y π1(x)π2(x) ∃Nx.A→ ∃{N}x.A

The term T , which forces the evaluation of an argument of type Nat(n) to get the
underlying value n to make it compatible with a function ∀{N}x.A, is somehow simulating
a call-by-value evaluation (for natural numbers). Such a term is usually called a storage
operator [20].

While Proposition 12 indicates that the different ways of relativizing the quantifiers
are equivalent (in the sense that one admits a realizer if and only if the other does), it is
important to keep in mind that this result is peculiar to the current effect-free settings. In
particular, this result no longer holds once stateful computations are allowed.

CSL 2021

19:8 Realizability with Stateful Computations for Nonstandard Analysis

4 Realizability with slices

4.1 Stateful computations
The first step in the Lightstone-Robinson construction aims at getting a productMN of the
(initial) modelM. In order to achieve this goal in our setting, we add a memory cell to our
calculus that contains an integer, which we call the state. The purpose of the state is to keep
track of which “slice” of the product is the interpretation being done. This product allows us
to interpret first-order individuals as functions in NN, so that the interpretation accounts for
new elements – the so-called nonstandard elements – for instance the diagonal function (see
Proposition 30).

In our extended calculus, the first-order expressions are the same, while second-order
formulas now use a value restriction for natural numbers and include a predicate st(e), as
per usual in nonstandard analysis, denoting that the expression e is standard. This means
that in our framework we will also have two types of nonstandard quantifications: the usual
∀st,∃st and the relativised ∀{st},∃{st}x. We say that a formula is internal if it does not contain
the predicate st(·), and external otherwise. Terms are extended with two new instructions
get and set. The former allows to obtain the content of the current state while the latter
allows to increase its content. Formally, we extend the different grammars as follows:

Formulas A,B ::= st(e) | X(e1, . . . , en) | {Nat(e)} 7→ A | A→ B

| A ∧B | A ∨B | ∀x.A | ∃x.A | ∀X.A | ∃X.A
Terms t, u ::= ... | get | set
States S , N

Since the formulas no longer include an unrestricted constructor Nat(e), the typing rules
for 0, s and rec are no longer required1. Other than that, the type system is unchanged. In
particular, the get and set instructions are not given any typing rule. We will make use of
the following abbreviations:

∀stx.A , ∀x.(st(x)→ A)
∀{st}x.A , ∀x.(st(x)→ ({Nat(x)} 7→ A))

∃stx.A , ∃x.(st(x) ∧A)
∃{st}x.A , ∀X.((∀{st}x.(A→ X))→ X)

With the exception of the get / set instructions, the syntax of terms does not account
for states. In fact, only the reduction rule for the set instruction allows to change the
state. Nonetheless, states play a crucial role in the reduction system. In particular, one-step
reductions are now defined for terms together with a state. We write t .ss′ t′ to denote that
the term t in state s reduces to the term t′ in state s′. The one-step reduction over terms is
defined by the following rules:

t .β t
′

t .ss t
′ get .ss s

s′′ = max(s, s′)
set s t .s′s′′ t

t .ss′ t
′

C[t] .ss′ C[t′]

where C[] ::= rec u0 u1 [] | []u | πi([]) | case [] {ι1(x1) 7→ t1|ι2(x2) 7→ t2} | s [] | set []u.
We write t s↓s′ t′ for the reflexive-transitive closure of this relation.
Since we now consider effectful computations, we have to fix an evaluation strategy in

order to ensure the confluence of the reduction system2. Here we follow a call-by-name
evaluation strategy (we substitute unevaluated arguments), while for rec and set one of their
arguments must be reduced.

1 In Proposition 29, we show how these terms define realizers for the value restricted natural numbers.
2 Observe that our definition for C[] ensures that our reduction system has no critical pair. We refer the

reader unfamiliar with side effects to Example 47, given in the appendices.

B. Dinis and É. Miquey 19:9

4.2 Stateful realizability interpretation
The fact that our syntax now includes states allows us to interpret formulas as terms-with-
states3. Truth values are then defined as saturated sets in P(Λ×S). Individuals are now
individuals with states, so elements of NS, and similarly predicates of arity k are elements of
the set of functions from Nk to P(Λ×S). This creates a mismatch in the sense that predicates
are no longer shaped to be applied to individuals4. In order to define our interpretation,
we need to deal with this mismatch between the structure of individuals and the one of
predicates, by defining a suitable notion of application.

I Definition 13. Let F : Nk → P(Λ×S) be a predicate. We define the application of F to
individuals f1, . . . , fk ∈ NS by F@(f1, . . . , fk) , {(t; s) : (t; s) ∈ F (f1(s), . . . , fk(s))}.

I Definition 14. An individual f ∈ NS is said to be standard if it is a constant function,
i.e. if there exists n ∈ N such that ∀s ∈ S.(f(s) = n). We then write f = n∗.

I Definition 15. We define saturated sets with respect to the stateful reduction to be sets
S ∈ Λ ×S s.t. for any terms t, t′ ∈ Λ and any states s, s′ ∈ S, if (t′; s′) ∈ S and t s↓s′ t′
then (t; s) ∈ S. With abuse of notation we denote the set of these saturated sets by SAT.

In the realizability interpretation with slices below, truth values are defined as saturated
sets. This allows us to reason by anti-reduction (sometimes also called expansion) in any
fixed state. By anti-reduction, we mean that to show that a term t with a state s belongs to
such a saturated set S, it is enough to find s′ and t′ such that t s↓s′ t′ and (t′; s′) ∈ S.

We now consider valuations which are functions that associate a function in NS to every
first-order variable x and a truth value function from Nk to SAT to every second-order
variable X of arity k. Again, with abuse of notation we denote such valuation by ρ.

We also extend the usual interpretation of first-order expressions to range over NS. To
that end, we simply define arithmetical functions pointwise on the domain. For instance, if
f ∈ NS, we write S∗(f) for the function s 7→ (S(f(s))). When it is clear from the context,
we abuse the notation by writing 0, S, J·Kρ, etc. instead of 0∗, S∗, J·K∗ρ.

I Definition 16 (Realizability with slices). The interpretation of a formula A together with a
valuation ρ is the set |A|Sρ defined inductively according to the following clauses:

|st(e)|Sρ ,

{
Λ×S if JeKρ is standard
∅ otherwise

|X(e1, . . . , en)|Sρ , ρ(X)@(Je1Kρ, . . . , JenKρ)
|{Nat(e)} 7→ A|Sρ , {(t; s) ∈ Λ×S : (t n; s) ∈ |A|Sρ , where n = JeKρ(s)}

|A→ B|Sρ , {(t; s) ∈ Λ×S : ∀u.
(
(u; s) ∈ |A|Sρ ⇒ (t u; s) ∈ |B|Sρ

)
}

|A1 ∧A2|Sρ , {(t; s) ∈ Λ×S : (π1(t); s) ∈ |A1|Sρ ∧ (π2(t); s) ∈ |A2|Sρ
)
}

|A1 ∨A2|Sρ , {(t; s) ∈ Λ×S : ∃i ∈ {1, 2}.(case t {ι1(x1) 7→ x1|ι2(x2) 7→ x2}; s) ∈ |Ai|Sρ }
|∀x.A|Sρ ,

⋂
f∈NS |A|Sρ,x7→f |∀X.A|Sρ ,

⋂
F :Nk→SAT |A|Sρ,X 7→F

|∃x.A|Sρ ,
⋃
f∈NS |A|Sρ,x 7→f |∃X.A|Sρ ,

⋃
F :Nk→SAT |A|Sρ,X 7→F

We write (t; s) A (resp. t � A) to denote that (t; s) ∈ |A|S (resp. ∀s ∈ S.(t; s) ∈ |A|S).
Realizers of the type t � A are called universal.

3 A realizability interpretation with a similar structure, although with a different notion of state, can be
found in [28]. The perspective of the latter is also different in that it aims at proving the normalization
of a classical call-by-need calculus.

4 This phenomenon also occurs in the Lightstone-Robinson construction of an ultrapower [23].

CSL 2021

19:10 Realizability with Stateful Computations for Nonstandard Analysis

Observe that this stateful interpretation has the structure of a product of the interpretation
given by Definition 2. The interpretation corresponding to a given state can thus be seen as
a slice of this product. However, it is important to keep in mind that the set instruction
still allows terms to change the value of the state, therefore the slices are not completely
independent. We write |A|sρ to denote the truth value {(t; s) ∈ |A|Sρ } in the slice induced
by s. We first verify that truth values are indeed saturated sets and that the interpretation
validates the congruence rules.

I Proposition 17. Let A be a formula and ρ a valuation closing A. Then |A|Sρ ∈ SAT.

I Proposition 18. If A and A′ are two formulas of HA2 such that A ∼= A′, then for all
valuations ρ closing both A and A′ we have |A|Sρ = |A′|Sρ .

We need to adapt a few definitions to prove the adequacy theorem in this setting.

I Definition 19. Given a context Γ, a state s and a valuation ρ closing the formulas
in Γ, we say that a substitution σ realizes ρ(Γ) in the state s and write (σ; s) ρ(Γ) if
dom(ρ(Γ)) ⊆ dom(σ) and (σ(x); s) ∈ |A|Sρ , for every declaration (x : A) ∈ Γ.

I Definition 20. We say that a typing judgement Γ ` t : A is adequate w.r.t. a state s

in the stateful system if for any valuation ρ and any substitution (σ; s) ρ(Γ) we have
(σ(t); s) ∈ |ρ(A)|. An inference rule is adequate w.r.t. a state s if the adequacy (w.r.t. s) of
all its premises implies the adequacy (w.r.t. s) of its conclusion.

We are now able to show that, with the exception of the (∀2
E)/(∃2

I)-rules, our rules are
adequate. The (∀2

E)/(∃2
I)-rules are shown to be adequate, for internal formulas only, in

Proposition 27.

I Theorem 21 (Adequacy). The typing rules of Figure 1, except the (∀2
E)/(∃2

I)-rules, are
adequate.

I Remark 22. Let us explain why the (∀2
E)-rule is not adequate in general (the same argument

applies to the (∃2
I)-rule). As emphasized at the beginning of this section, we interpret

predicates by functions from Nk to SAT, while the truth values of formulas may vary in
the set of functions from (NS)k to SAT. Theorem 26 will make this more precise: internal
formulas correspond to functions from Nk to SAT while external formulas correspond to
functions from (NS)k to SAT. Therefore, in general we cannot substitute a second-order
variable by any formula. Indeed, in the second-order elimination rule (for universal quantifiers)
variables can only be instantiated by internal formulas. Moreover, if the formula B that we
want to substitute is a proposition (i.e. if its arity k is equal to 0), then the substitution is
valid since the interpretations of internal and external formulas coincide. This means that
we could have chosen to work with impredicative encodings of the conjunction (or other
connectives) as in the Russell-Prawitz translation [34]. Indeed, such an encoding relies on
the use of propositions, which are thus compatible with the elimination rule:

A ∧B , ∀X.(A→ B → X)→ X A ∨B , ∀X.(A→ X)→ (B → X)→ X

We show that rec realizes a formula that emulates its former typing rule by using
quantifiers relativized with a value restriction.

I Proposition 23. We have rec � ∀X.X(0)→ ∀{N}x.(X(x)→ X(S(x)))→ ∀{N}x.X(x).

B. Dinis and É. Miquey 19:11

I Remark 24. Regarding the necessity of restricting the relativization of quantifiers to
values, the proof of Proposition 23 is enlightening. Indeed, given a state s, two terms
(uS ; s) ∀{N}y.(X(y)→ X(S(y))) and (u0; s) X(0) and an individual f ∈ NS to instantiate
x, if instead of a value we were only given a term reducing to a value witnessing Nat(f), this
term may change the value of the state, say to some s′, before reducing to the value of f(s′).
This would break the proof since nothing is assumed on u0 and uS in this new state s′.

4.3 Glueing
An important property of our interpretation (which also reflects a similar property in the
Lightstone-Robinson construction) is that the interpretation of internal formulas can be
decomposed as the product of its slices. In other words, internal formulas can only access
information in the current state. In particular, and as expected, this means that it is
impossible to express standardness by means of internal formulas. To state this formally, we
first define the restriction of formulas and truth values with respect to a slice.

I Definition 25. Given an internal formula A, we define As as the formula whose individuals
are all applied in s. Formally, it amounts to replacing each individual by the standard
individual with which it coincides in the state s:

F (e1, ..., ek)
s
, F ((e1(s))∗, . . . , (ek(s))∗)

A→ B
s
, A

s → B
s

{Nat(e)} 7→ B
s
, {Nat((e(s))∗)} 7→ B

s

A ∧Bs
, A

s ∧Bs

A ∨Bs
, A

s ∨Bs

∀x.As
, ∀x.As

∃x.As
, ∃x.As

∀X.As
, ∀X.As

∃X.As
, ∃X.As

The next result ensures that truth values of internal formulas can be split into slices.

I Theorem 26 (Glueing). For any internal formula A and valuation ρ closing A, we have
that (t; s) ∈ |A|Sρ ⇔ t ∈ |As|sρ.

Let B(x) be a formula whose only free variable is x, and ρ a valuation. In general, the
function FB that associates to any individual f the truth value |B(f)|Sρ is a function from
NS to SAT. If B is internal, by the glueing theorem, to determine FB it is enough to know
its value for standard individuals. This means that we only need to know a function from N
to SAT. As such, we can now formally state the intuition developed in Remark 22.

I Proposition 27. The elimination rule (∀2
E) for the 2nd-order universal quantification and

the introduction rule (∃2
I) for the 2nd-order existential quantification are adequate for any

internal formula B whose only free variables are (x1, ..., xk).

I Remark 28. Observe that external formulas such as st(x)→ ⊥ cannot be defined by glueing.
Consider for instance a nonstandard element τ . Then |st(τ)→ ⊥|S = Λ×S, while for any
state s ∈ S we have |st(τ)→ ⊥

s
|s = |st(τ(s)∗)→ ⊥|s = |> → ⊥|s = ∅.

It is well-known that the comprehension scheme CAB , ∃X.∀x.(X(x)⇔ B) is a logical
consequence of the elimination principle ElimB

A , (∀X.A) ⇒ A[X(x) := B] (by taking
A = ∃Y.∀x.(Y (x) ⇔ X(x))). Since we have the (∀2

E)-rule restricted to internal formulas
B, the comprehension scheme is also valid for these formulas. In particular, this implies
standardization for internal formulas, i.e. ∀stX.∃stY.∀stz.(Y (z)⇔ X(z) ∧B(z)) holds for B
an internal formula. The usual standardization scheme, formulated for all formulas, requires
further investigation and is left for future work. Of course, the comprehension scheme does
not hold for external formulas, so the relativization on the quantifiers in standardization is
in this sense necessary.

CSL 2021

19:12 Realizability with Stateful Computations for Nonstandard Analysis

5 Nonstandard principles in realizability with slices

5.1 Natural numbers
Observe that the language of HA2 does not express the existence of specific nonstandard
elements, e.g. δ is not in the language. However, to refer to some nonstandard element τ , we
can always consider a valuation that maps a variable x to τ . With abuse of notation, in the
remainder of this paper, we will write nonstandard elements directly in formulas as if they
were in the language. Also, we will use the notation † to refer to an arbitrary λ-term with
no further assumption.

In the stateful interpretation (Definition 16), we considered a value restriction to natural
numbers. Nonetheless, we can assert that an expression is a natural number through the
formula Nat′(e) , ∀X.({Nat(e)} 7→ X)→ X. It is easy to see, by an argument similar to
Proposition 10, that for any individual f ∈ NS, if t is a term such that (t; s) ∈ |Nat′(f)|S,
then t λx.x s↓s n where n = f(s). In other words, t is an effect-free term producing n. This
is to be compared with Nat(f), for which the requirement for its truth value to be saturated,
would have entailed its interpretation to reduce to a natural number f(s′) in a possibly
different state. We show that (by-value) natural numbers, i.e. Nat′, contain 0, and are closed
under the successor and recursion for internal formulas.
I Proposition 29. Let A be an internal formula.We have
1. λx.x 0 � Nat′(0)
2. λxy.y (sx) � ∀{N}x.Nat′(S(x))
3. rec � A(0)→

(
∀{N}y.(A(y)→ A(S y))

)
→ ∀{N}x.A(x))

The interpretation now witnesses the existence of new elements. The canonical example
is the diagonal, i.e. the function δ : n 7→ n. Indeed, the diagonal is a nonstandard natural
number which is realized by the get instruction.
I Proposition 30. We have that
1. † � ¬st(δ)
2. † � ∃x.¬st(x)
3. λx.T x get � Nat′(δ)
4. λx.T x get † � ∃{N}x.¬st(x)

Part 2 in Proposition 30 is sometimes referred to as the ENS0 (existence of nonstandard
elements) principle [6]. As a consequence of Proposition 27, Leibniz equality is only compatible
with the (∀2

E)-rule restricted to internal formulas. In our setting, this encoding only reflects
equality in the current state, i.e. a local knowledge of individuals (slice by slice), while the
usual notion of equality (for NS) requires a global knowledge (on all the slices). If A(x) is
an external formula, we cannot hope to have an internal definition of equality such that its
elimination principle x = y → A(x)→ A(y) is valid.
I Example 31. Consider an individual f , equal to 1 everywhere except for some state s0
where it is equal to 0. Then by considering the formula A(x) , (st(x)→ ⊥)→ ⊥, it is easy
to get a realizer of ⊥ out of any realizer of (∀Z.(Z(1∗)→ Z(f)))→ A(1∗)→ A(f).

Nonetheless, the elimination of Leibniz equality is realizable for standard individuals or
for internal formulas.
I Proposition 32. Let f and g be individuals in NS, then
1. For any formula A(x), λx.x � st(f)→ st(g)→ (∀Z.(Z(f)→ Z(g)))→ A(f)→ A(g)
2. If A(x) is an internal formula, then λx.x � (∀Z.(Z(f)→ Z(g)))→ A(f)→ A(g)

B. Dinis and É. Miquey 19:13

5.2 Nonstandard reasoning principles

In this section, we prove some properties which are usual in frameworks that use nonstandard
analysis: transfer, overspill, external induction, idealization, etc.

Theorem 33 below indicates that the transfer property (for internal formulas) is devoid
of computational content. This is a somewhat reassuring fact: properties that are true for
standard individuals are automatically true for all individuals.

I Theorem 33 (Transfer). For any internal formula A we have:
1.
⋂
f∈NS |A|Sx 7→f =

⋂
n∈N |A|Sx 7→n∗

2. λxy.x � ∀x.A(x)→ ∀stx.A(x)
3. λx.x † � ∀stx.A(x)→ ∀x.A(x)
4.
⋃
f∈NS |A|Sx 7→f =

⋃
n∈N |A|Sx 7→n∗

5. λx.(†, x) � ∃x.A(x)→ ∃stx.A(x)
6. λx.π2(x) � ∃stx.A(x)→ ∃x.A(x)

As expected, transfer does not hold for all formulas. A counter-example is given in the
next proposition by the external formula stating that all individuals are (not not) standard.

I Proposition 34. Let A(x) be the formula ¬st(x). The formulas ∀stx.¬A(x)→ ∀x.¬A(x)
and ∃x.A(x)→ ∃stx.A(x) have no realizer.

The principle of external induction [32] allows to prove that a certain property is valid
for all standard natural numbers, for instance, that every nonstandard element is larger than
all standard natural numbers5. We show that in our context, this principle can be realized
using the rec instruction.

I Proposition 35 (External induction). For any formula A(x) whose only free variable is x

rec � A(0∗)→ ∀{st}x.(A(x)→ A(S(x)))→ ∀{st}x.A(x).

The next two propositions, show that one cannot separate standard natural numbers from
nonstandard natural numbers using an internal formula [36]. We first show that overspill
can be realized by combining the realizers for ENS0 and for the transfer principle.

I Proposition 36 (Overspill). For any internal formula A, we have

λx.(x †, †) � ∀stx.A(x)→ ∃x.(¬st(x) ∧A(x)).

The usual proof of underspill is by contradiction, hence using classical logic, which we do
not have here. Nevertheless, we can obtain the following version in which a double-negation
occurs.

I Proposition 37 (Underspill). For any internal formula A, we have

λxy.(λz.y (†, z))(x †) � (∀x.¬st(x)→ A(x))→ ¬¬∃stx.A(x).

5 Actually, this requires to consider a quotiented definition of the standardness predicate, see Proposi-
tion 42.

CSL 2021

19:14 Realizability with Stateful Computations for Nonstandard Analysis

5.3 Idealization
We first extend the realizability interpretation to take into account relations R : N2 → N on
the natural numbers:

|R(e1, e2)|Sρ , {(t; s) : R(Je1Kρ(s), Je2Kρ(s)) holds}

This coincides with the interpretation of the relation R through a second-order variable and
the corresponding semantic relation from N2 to SAT in the interpretation.

Let us now briefly illustrate the main idea behind the proof of idealization by showing
that there exists a (nonstandard) natural number greater than or equal to any standard
number. The usual proof relies on the fact that δ is such a number, since for any standard
number n, in any slice greater than or equal to n, the relation n ≤ δ holds. In our setting,
we use the set instruction to reach such a state.

I Proposition 38 (Diagonalization). We have λz.T z get (λxy. set y †) � ∃{N}x.∀{st}y.y ≤ x.

I Remark 39. Consider a term loop+ such that for any state s ∈ S, loop+ s↓s incr loop+

where incr , λx. set (s get)x. Observe that loop+ � ∀stx.x < δ where the quantifier does
not need to be relativized since the value of x is not required. Yet, the computation never
terminates and we do not even know when the computation reaches a correct state.

As mentioned above, the idea to prove the general case of idealization is very similar. If
for any n ∈ N there exists τn ∈ N such that for any m ≤ n, R(τn,m) holds, we can consider
the nonstandard natural number τ , (τs)s∈S ∈ NS. As shown by the following lemma, we
can compute τ from any realizer of ∀{st}n.∃{st}x.∀{st}y.(y ≤ n→ R(x, y)).

I Lemma 40. For any formula A, any valuation ρ, any state s and any term t such
that (t; s) ∈ |∃{st}x.A|Sρ , there exists a natural number n ∈ N and a term u such that
(u; s) ∈ |A|Sρ,x 7→n and t (λxyz.(y, z)) s↓s (n, u).

The term ideal , λx.λy.T y (π1(T (x †) get (λwyz.(y, z)))) (λyz. set z y) is a realizer for
the idealization principle. Indeed, in any state s the first component of ideal computes τ(s),
using Lemma 40, while the second component increases the state to ensure the validity of
the relation (as in Proposition 38).

I Theorem 41 (Idealization). ideal � ∀{st}n.∃{st}x.∀{st}y.(y ≤ n → R(x, y)) →
∃{N}x.∀{st}y.R(x, y)

6 Conclusion and future work

6.1 Towards a quotient
In order to fully mimic Lightstone and Robinson’s construction, an extra step would be
required where one would take a quotient of the interpretation with slices. The study of
such an interpretation is outside the scope of this paper6. Let us nevertheless comment on a
possibility. Fix a free ultrafilter U over the set of states. Given any set V , let us denote by
∼= the equivalence relation over V S defined by f ∼= g , {s ∈ S : f(s) = g(s)} ∈ U .

First, we can, within the realizability with slices, change the way st(f) is interpreted to
consider standardness up to the ultrafilter. In this way, f ∈ NS is said to be standard if and
only if there exists n ∈ N s.t. f ∼= n∗. As a consequence, we for instance get that:

6 We leave it for future work, but more details sketching this construction are given in Appendix C.

B. Dinis and É. Miquey 19:15

I Proposition 42. λxy.loop+ � ∀x, y.¬st(x)→ st(y)→ y < x

We then need to define a new notion of realizability in which realizers are also considered
up to the equivalence relations induced by U . To that end, a natural attempt consists in
considering Łoś ’ theorem as a guideline. For the sake of clarity, let us denote by |A|∗ the
truth values in this interpretation, which we shall call realizability up to U .

I Definition 43. We say that a formula A is Łoś -reducible if for any valuation ρ closing A,
t ∈ |A|∗ if and only if {s ∈ S : (t; s) ∈ |A|Sρ } ∈ U .

We actually define the interpretation of connectives by this equivalence (e.g., we define
|A → B|∗ρ , {t ∈ Λ : {s ∈ S : (t; s) ∈ |A → B|Sρ } ∈ U , }) while the interpretation of
the quantifiers is still defined via intersections (resp. unions) over the same domain as in
the interpretation with slices (e.g., |∀x.A|∗ρ ,

⋂
f∈NS |A|∗ρ,x7→f). As shown in the following

theorem, first-order quantifiers behave well with respect to the ultrafilter.

I Theorem 44 (Łoś ’ theorem). First-order internal formulas as well as arbitrary disjunctions,
conjunctions and implications are Łoś -reducible.

Theorem 44 implies that if a term t is a realizer of a first-order internal formula A “often
enough” in the interpretation with slices, then t is still a realizer in the interpretation up
to U . Since all the realizers in Section 5 were universal, they are still realizers in this new
setting, meaning that all the results from that section remain valid in the interpretation up
to U . In particular, Theorem 44 applies to transfer, idealization, overspill or underspill.

A simple example illustrating this new interpretation is the formula ∀stx.x < δ, which was
realized by loop+ in the interpretation with slices and is now realized by any term (because
for any n ∈ N, the set of states such that n < δ is equal to [n; +∞[which belongs to U).
Similarly, loop+ can be replaced by † in Proposition 42.

However, this construction is still prospective and it raises several questions. On the
one hand, such a definition is not as compositional as one usually expects in realizability.
Indeed, while we have that |A→ B|∗ρ ⊆ {t : ∀u ∈ |A|∗ρ.t u ∈ |B|∗ρ} for any internal formulas
A and B and any valuation ρ, this inclusion is strict in general (see Remark 52) . In other
words, we can compose a realizer t ∈ |A→ B|∗ρ with a realizer in u ∈ |A|∗ρ to get t u ∈ |B|∗ρ,
but the (→I)-rule is not adequate when considering substitutions of variables by realizers in
the quotiented truth values. More generally, such a definition does not exactly match the
intuition of the quotient in the Lightstone-Robinson construction, just like the interpretation
with slices does not exactly define a product due to the ability to change the state via set.

On the other hand, the interpretation up to U is indeed a new and more flexible inter-
pretation in that it allows us to get realizers for principles that were inaccessible in the
interpretation with slices (e.g., ∀x, y.¬st(x)→ st(y)→ y < x). We would like to determine
whether it allows us to realize other, more involved, nonstandard reasoning principles such
as standardization but prima facie this principle does not seem to be realizable with the
current definitions.

6.2 Related and future work
Some related works concern notions of realizability for nonstandard arithmetic which are
variants of Kreisel’s modified realizability [6, 9]. These notions of realizability are more
inspired by Nelson’s syntactical approach to nonstandard analysis. In particular, they rely
on translations of formulas inducing conservative extensions of Heyting arithmetic. An
important difference with our work is that we are able to give non-trivial computational

CSL 2021

19:16 Realizability with Stateful Computations for Nonstandard Analysis

content to idealization. It could be interesting to better understand the relation between this
approach and the approaches based on Kreisel’s realizability. In particular, we would like to
know whether we can obtain a preservation result for some class of formulas (e.g. internal,
quantifier-free, ∃-free formulas).

It seems that our interpretation with slices can be adapted without difficulty to Krivine’s
classical realizability. In particular, a similar interpretation (but with a very different purpose)
for a classical calculus with a global environment is given in [28]. This setting could possibly
allow to validate new principles by taking advantage of the computational power brought by
control operators.

Finally, similar ideas have been adressed by Aschieri. In [1] the author uses a notion of
state which allows to construct a forcing model. In particular, natural numbers are interpreted
as functions from states to N. Yet, his work does not pay attention to the nonstandard
principles that can be obtained in his setting but rather to forcing. It would be natural
to investigate whether our setting also allows for forcing techniques. This connection with
forcing is reinforced by the fact that in the realm of Krivine’s realizability, which generalizes
Cohen’s forcing, the latter is given a computational content via the addition of a monotone
memory cell to the abstract machine in order to store forcing conditions [21, 26].

References

1 Federico Aschieri. Constructive forcing, CPS translations and witness extraction in interactive
realizability. Mathematical Structures in Computer Science, 27(6):993–1031, 2017. doi:
10.1017/S0960129515000468.

2 Jeremy Avigad. Weak theories of nonstandard arithmetic and analysis. In Reverse mathematics
2001, volume 21 of Lect. Notes Log., pages 19–46. Assoc. Symbol. Logic, La Jolla, CA, 2005.

3 Jacques Bair, Piotr Błaszczyk, Elías Guillén, Peter Heinig, Vladimir Kanovei, and Mikhail G.
Katz. Continuity between Cauchy and Bolzano: issues of antecedents and priority. British
Journal for the History of Mathematics, pages 1–18, 2020. doi:10.1080/26375451.2020.
1770015.

4 Jacques Bair, Piotr Błaszczyk, Robert Ely, Peter Heinig, and Mikhail Katz. Leibniz’s well-
founded fictions and their interpetations. Mat. Stud., 49(2):186–224, 2018.

5 Henk Barendregt. Lambda calculi with types. In S. Abramsky, Dov M. Gabbay, and S. E.
Maibaum, editors, Handbook of Logic in Computer Science (Vol. 2), pages 117–309. Oxford
University Press, Inc., New York, NY, USA, 1992.

6 Benno van den Berg, Eyvind Briseid, and Pavol Safarik. A functional interpretation for
nonstandard arithmetic. Ann. Pure Appl. Logic, 163(12):1962–1994, 2012.

7 Jean-Louis Callot. Trois leçons d’analyse infinitésimale. In J.M. Salanskis and H. Sinaceur,
editors, Le labyrinthe du continu, pages 369–381. Springer-Verlag, Paris, 1992.

8 Bruno Dinis and Fernando Ferreira. Interpreting weak Kőnig’s lemma in theories of nonstand-
ard arithmetic. Mathematical Logic Quarterly, 63(1-2):114–123, 2017. doi:10.1002/malq.
201600066.

9 Bruno Dinis and Jaime Gaspar. Intuitionistic nonstandard bounded modified realisability and
functional interpretation. Ann. Pure Appl. Logic, 169(5):392–412, 2018. doi:10.1016/j.apal.
2017.12.004.

10 Bruno Dinis and Imme van den Berg. Neutrices and external numbers: A flexible number
system. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2019.
With a foreword by Claude Lobry. doi:10.1201/9780429291456.

11 Kurt Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes.
Dialectica, 12(3-4):280–287, 1958. doi:10.1111/j.1746-8361.1958.tb01464.x.

https://doi.org/10.1017/S0960129515000468
https://doi.org/10.1017/S0960129515000468
https://doi.org/10.1080/26375451.2020.1770015
https://doi.org/10.1080/26375451.2020.1770015
https://doi.org/10.1002/malq.201600066
https://doi.org/10.1002/malq.201600066
https://doi.org/10.1016/j.apal.2017.12.004
https://doi.org/10.1016/j.apal.2017.12.004
https://doi.org/10.1201/9780429291456
https://doi.org/10.1111/j.1746-8361.1958.tb01464.x

B. Dinis and É. Miquey 19:17

12 Timothy Griffin. A formulae-as-type notion of control. In Proceedings of the 17th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’90, pages
47–58, New York, NY, USA, 1990. ACM. doi:10.1145/96709.96714.

13 Amar Hadzihasanovic and Benno van den Berg. Nonstandard functional interpretations and
categorical models. ND Journal of Formal Logic, 58(3), 2017.

14 Arend Heyting. Mathematische Grundlagenforschung. Intuitionismus. Beweistheorie. Springer-
Verlag, Berlin, 1934. doi:10.1007/978-3-642-65617-0.

15 Mikhail Katz and David Sherry. Leibniz’s infinitesimals: their fictionality, their modern
implementations, and their foes from Berkeley to Russell and beyond. Erkenntnis, 78(3):571–
625, 2013. doi:10.1007/s10670-012-9370-y.

16 Stephen Kleene. On the interpretation of intuitionistic number theory. Journal of Symbolic
Logic, 10:109–124, 1945.

17 Andrey Kolmogorov. Zur Deutung der intuitionistischen Logik. Mathematische Zeitschrift,
35(1):58–65, 1932. doi:10.1007/BF01186549.

18 Georg Kreisel. On the interpretation of non-finitist proofs, I. J. Symb. Log., 16:241–267, 1951.
19 Jean-Louis Krivine. Typed lambda-calculus in classical Zermelo-Fraenkel set theory. Arch.

Math. Log., 40(3):189–205, 2001.
20 Jean-Louis Krivine. Realizability in classical logic. In Interactive models of computation and

program behaviour. Panoramas et synthèses, 27, 2009.
21 Jean-Louis Krivine. Realizability algebras: a program to well order R. Logical Methods in

Computer Science, 7(3), 2011. doi:10.2168/LMCS-7(3:2)2011.
22 Jean-Louis Krivine. Bar Recursion in Classical Realisability: Dependent Choice and Continuum

Hypothesis. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual Conference
on Computer Science Logic (CSL 2016), volume 62 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 25:1–25:11, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.CSL.2016.25.

23 Albert Lightstone and Abraham Robinson. Nonarchimedean Fields and Asymptotic Expansions.
North-Holland mathematical library. North-Holland, 1975.

24 Robert Lutz. Rêveries infinitésimales. Gazette des mathématiciens, 34:79–87, 1987.
25 Alexandre Miquel. Existential witness extraction in classical realizability and via a negative

translation. Logical Methods in Computer Science, 7(2):188–202, 2011. doi:10.2168/LMCS-7(2:
2)2011.

26 Alexandre Miquel. Forcing as a program transformation. In Proceedings of the 2011 IEEE
26th Annual Symposium on Logic in Computer Science, LICS ’11, page 197–206, USA, 2011.
IEEE Computer Society. doi:10.1109/LICS.2011.47.

27 Alexandre Miquel. Implicative algebras: A new foundation for realizability and forcing. ArXiv
e-prints, 2020. arXiv:1802.00528.

28 Étienne Miquey and Hugo Herbelin. Realizability interpretation and normalization of typed
call-by-need λ-calculus with control. In Foundations of software science and computation
structures, volume 10803 of Lecture Notes in Comput. Sci., pages 276–292. Springer, Cham,
2018. doi:10.1007/978-3-319-89366-2_1.

29 Ieke Moerdijk. A model for intuitionistic non-standard arithmetic. Ann. Pure Appl. Logic,
73(1):37–51, 1995. A tribute to Dirk van Dalen. doi:10.1016/0168-0072(93)E0071-U.

30 Ieke Moerdijk and Erik Palmgren. Minimal models of Heyting arithmetic. J. Symbolic Logic,
62(4):1448–1460, 1997. doi:10.2307/2275651.

31 Edward Nelson. Internal set theory: A new approach to nonstandard analysis. Bull. Amer.
Math. Soc, 1977.

32 Edward Nelson. Radically Elementary Probability Theory. Annals of Mathematical Studies,
vol. 117. Princeton University Press, Princeton, N. J., 1987.

33 Jerzy Łoś. Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres.
Journal of Symbolic Logic, 25(2):168–168, 1960. doi:10.2307/2964232.

CSL 2021

https://doi.org/10.1145/96709.96714
https://doi.org/10.1007/978-3-642-65617-0
https://doi.org/10.1007/s10670-012-9370-y
https://doi.org/10.1007/BF01186549
https://doi.org/10.2168/LMCS-7(3:2)2011
https://doi.org/10.4230/LIPIcs.CSL.2016.25
https://doi.org/10.2168/LMCS-7(2:2)2011
https://doi.org/10.2168/LMCS-7(2:2)2011
https://doi.org/10.1109/LICS.2011.47
http://arxiv.org/abs/1802.00528
https://doi.org/10.1007/978-3-319-89366-2_1
https://doi.org/10.1016/0168-0072(93)E0071-U
https://doi.org/10.2307/2275651
https://doi.org/10.2307/2964232

19:18 Realizability with Stateful Computations for Nonstandard Analysis

34 Dag Prawitz. Natural deduction. A proof-theoretical study. Acta Universitatis Stockholmiensis.
Stockholm Studies in Philosophy, No. 3. Almqvist & Wiksell, Stockholm, 1965.

35 Abraham Robinson. Non-standard analysis. Proc. Roy. Acad. Sci., 1961.
36 Abraham Robinson. Non-standard analysis. North-Holland Publishing Co., Amsterdam, 1966.
37 Alfred Tarski. Une contribution à la théorie de la mesure. Fundamenta Mathematicae,

15(1):42–50, 1930. URL: http://eudml.org/doc/212372.
38 Jaap van Oosten. Realizability: an introduction to its categorical side, volume 152 of Studies

in Logic and the Foundations of Mathematics. Elsevier B. V., Amsterdam, 2008.

A Proofs of Section 3

A.1 Realizability interpretation
Proof of Proposition 3. By induction on A ∼= A′. The interesting case is for proving the
equality |(∃x.A)→ B|Sρ = |∀x.(A→ B)|Sρ . J

Proof of Theorem 7 (Adequacy). The proof is standard, by case analysis. J

Proof of Corollary 9 (Consistency). If ` t : ⊥, then by Theorem 7 one has t ∈ |⊥| =
|∀X.X| =

⋂
S∈SAT S = ∅. To see that this intersection is indeed empty, one may take for

example S0 = {t ∈ Λ : t → 0} ∈ SAT and S1 = {t ∈ Λ : t → s0} ∈ SAT, and clearly
S0 ∩ S1 = ∅. J

A.2 Introducing value restrictions
I Proposition 45. The following typing rules are adequate:

Γ ` t : A→ B
Γ ` t : {A} 7→ B

(7→I)
Γ ` t : {A} 7→ B Γ ` V : A

Γ ` t V : B
(7→E)

Proof. For the first rule it suffices to see that for any valuation ρ, we have:

{t ∈ Λ : ∀u ∈ |A|Sρ .(t u ∈ |B|Sρ)} ⊆ {t ∈ Λ : ∀V ∈ |A|Sρ .(t V ∈ |B|Sρ)}

For the second one, the proof is analogous to the adequacy of the (→E)-rule. J

I Proposition 46. For any formulas A and B, we have

1. |{∃x.A} 7→ B|Sρ = |∀x.{A} 7→ B|Sρ 2. |{∃X.A} 7→ B|Sρ = |∀X.{A} 7→ B|Sρ

Proof. The proof is analogous to the proof of Proposition 3. J

Proof of Proposition 10. Let t be a term in |∃{N}x.A|Sρ . For any X ∈ SAT and any v ∈
|∀{N}x.(A→ X)|ρ,X 7→X, we have that t v ∈ X. Let us define the set X = {w ∈ Λ : ∃n, u.w →β

(n, u) ∧ u ∈ |A[x := n]|Sρ }, which is obviously saturated. It is clear that λxy.(x, y) ∈
|∀{N}x.(A → X)|ρ,X 7→X since for any n ∈ N and any u ∈ |A[x := n]|Sρ }, it holds that
(λxy.(x, y))nu→β (n, u) ∈ X. We conclude that t (λxy.(x, y))→β (n, u). J

Proof of Proposition 12. Easy realizability proofs by anti-reduction. J

http://eudml.org/doc/212372

B. Dinis and É. Miquey 19:19

B Proofs of Section 4

B.1 Stateful computations

We illustrate the need for an evaluation strategy to ensure confluence in the presence of
states by giving a simple example of stateful computation whose result is not the same using
call-by-name and call-by-value strategies.

I Example 47. Let us write x+ y for a term that computes the addition of x and y (such
term is easily definable via rec). Let us define incr0 , set (s get) 0 (which increases the
state and reduces to 0) and t , (λx.(get +x) + x) incr0. If we reduce the argument of the
functions first (call-by-value) we obtain t 0↓1 (λx.(get +x) + x)) 0 1↓1 (get +0) + 0 1↓1 1. In
turn, if we perform the β-reduction without reducing the argument (call-by-name), we get
t 0↓0 (get + incr0) + incr0

0↓1 (get + incr0) + 0 1↓2 get +0 2↓2 2. In the absence of an evaluation
strategy, the system would thus have admitted unsolvable critical pairs.

B.2 Realizability interpretation

Proof of Proposition 17. By a straighforward induction on the structure of A. Observe
for instance that the case st(f) follows from the definition and that the case X(e1, . . . , en)
follows from the fact that, by definition, ρ(X) takes values in SAT. J

Proof of Proposition 18. The proof, by induction on A ∼= A′, is similar to the proof of
Proposition 3. J

Proof of Theorem 21 (Adequacy). The proof, by case analysis, is essentially the same as
the usual adequacy proof for HA2, since none of the instructions involved in the typing
rules allows to change the value of the state. Let us prove the case (→I). Writing Γ for the
typing context, ρ for a valuation closing all the considered formulas, s for the considered
state and σ for a substitution such that (σ; s) ρ(Γ), by assumption, for any substitution
σ′ such that (σ′; s) ρ(Γ), x : ρ(A), we have that (σ(t); s) ∈ |B|Sρ . We have to prove that
(λx.σ(t); s) ∈ |A→ B|Sρ . Let then u be a term such that (u; s) ∈ |A|Sρ . By definition, we have
λx.σ(t)u s↓s σ(t)[u/x]. Since σ(t)[u/x] = (σ, x := u)(t) and (σ, x := u; s) ρ(Γ, x : A), we
obtain (σ(t)[u/x]; s) ∈ |B|Sρ . We conclude that (λx.σ(t)u; s) ∈ |B|Sρ by anti-reduction. J

Proof of Proposition 23. Let X : N→ SAT be a predicate, s ∈ S, f ∈ NS, u0 and uS be
terms, and V be a value such that (u0; s) ∈ X(0), (uS ; s) ∈ |∀Ny.(X(y)→ X(S(y)))|SX 7→X and
(n; s) ∈ |Nat(f)|S. The latter implies that n = f(s). The result follows from the fact that
rec u0 uS n ∈ X(n), which is proved by induction on n. J

B.3 Glueing

Proof of Theorem 26 (Glueing). The proof is by induction on the structure of A. J

Proof of Proposition 27. We consider F : (n1, ..., nk) 7→ |B[x1 := n∗1, ..., xk := n∗k]|Sρ which
defines a function from Nk to SAT. By an easy induction on A, we show using the glueing
theorem and Definition 13 that |A|Sρ,X 7→F = |A[X(x1, ..., xk) := B]|Sρ . J

CSL 2021

19:20 Realizability with Stateful Computations for Nonstandard Analysis

B.4 Natural numbers
I Proposition 48. Let f ∈ NS and s ∈ S. If t is a term such that (t; s) ∈ |Nat′(f)|S, then
t λx.x s↓s n, where n = f(s).

Proof. Let us define X , {(t; s′) : t s↓′ sn}. This set is clearly saturated, and it is easy
to see that (λx.x; s) ∈ |{Nat(f)} 7→ X|S (since λx.x n s ↓s n). Therefore, we have that
t ∈ |({Nat(f)} 7→ X)→ X|S and then (t λx.x; s) ∈ X, that is t λx.x s↓s n. J

Proof of Proposition 29. Easy realizability proofs by anti-reduction. J

I Lemma 49. Let s ∈ S and t, u be terms.
1. For any n ∈ N, if u s↓s n, then T t u s↓s t n.
2. For any f ∈ NS, if u s↓s f(s) and (t; s) ∈ |∀{N}x.A(x)|S, then T t u ∈ |A(f)|S.

Proof. The first part is an easy induction on n, and the second part follows from the first
by anti-reduction. J

Proof of Proposition 30. The first three parts are easy, and the fourth one is similar to
Proposition 12 using Lemma 49. J

Proof of Proposition 32. 1. If either f or g is not standard, the result is trivial. Assume
that f and g are standard. If f 6= g, we have |(∀Z.(Z(f) 7→ Z(g))|S = |> 7→ ⊥|S, while
the case f = g is trivial.

2. The result easily follows from Proposition 27. J

B.5 Nonstandard reasoning principles
Proof of Theorem 33 (Transfer). Parts 1 and 4 follow from the glueing theorem, while
parts 2 and 3 (resp. 5, 6) are direct consequences of the first (resp. fourth) part. J

Proof of Proposition 34. Both statements follow by unfolding the definitions. J

Proof of Proposition 35. Let s be a state, n ∈ N and u0, uS be terms and V be a value
such that (u0; s) ∈ |A(0∗)|S, (uS ; s) ∈ |∀sty.(A(y) → A(S(y))|S and (V ; s) ∈ |Nat(n∗)|S.
The latter implies that V = n. The result follows from the fact that rec u0 uS n ∈ |A(n∗)|S,
which is proved by induction on n. J

Proof of Proposition 36 (Overspill). We show that ((λx.(x t, t))u; s) ∃x.(¬st(x) ∧A(x))
where (u; s) ∀stx.A(x). Following the proof of part 3 in Theorem 33, we obtain that
(u t; s) ∀x.A(x) and consequently (u t; s) A(δ). By ENS0 (Proposition 30), we have
(t; s) ¬st(δ). Then ((u t, t); s) ∃x.(¬st(x)∧A(x)) and we conclude by anti-reduction. J

Proof of Proposition 37 (Underspill). Let u and v be terms s.t. (u; s) ∀x.¬st(x)→ A(x)
and (v; s) ¬∃stx.A(x). Using Proposition 18, we get that (v; s) ∀x.((st(x) ∧A(x))→ ⊥),
and by currying (λwz.v (w, z); s) ∀stx.A(x)→ ⊥.

Since A is internal, by transfer, we obtain that(λz.v (t, z); s) ∀x.A(x) → ⊥. By the
hypothesis on u and ENS0, we have (u t; s) A(δ), hence (λz.v (t, z))(u t); s) ⊥, and we
can conclude by anti-reduction. J

B. Dinis and É. Miquey 19:21

B.6 Idealization
Proof of Proposition 38 (Diagonalization). Let s be an arbitrary state. Following the proof
of part 2 of Lemma 49, it is clearly enough to prove that (λxy. set y †; s) ∀{st}y.y ≤ δ (the
rest of the proof is exactly the same replacing ¬st(δ) by ∀{st}y.y ≤ δ). Let n ∈ N and t an
arbitrary term. Then

(λxy. set y t) t n s↓s set n t s↓s
′
t

where s′ = max(n, s). In particular, n ≤ δ(s′) holds, hence (t; s′) ∈ |n ≤ δ|S and we can
conclude by anti-reduction. J

Proof of Lemma 40. The proof is analogous to the proof of Proposition 10. J

Recall that we define ideal , λx.λy.T y (π1(T (x †) get (λwyz.(y, z))) (λyz. set z y).

Proof of Theorem 41 (Idealization). Let s be any state and let u be a term such that
(u; s) ∈ |∀{st}n.∃{st}x.∀{st}y.(y ≤ n→ R(x, y))|S. By part 2 of Lemma 49, this entails that

(T (u †) get; s) ∈ |∃{st}x.∀{st}y.(y ≤ s→ R(x, y))|Sρ .

By Lemma 40, we know that there exists a natural number ps ∈ N and a term vs ∈ Λ
such that T (u †) get (λzxy.(x, y)) s ↓s (ps, vs) and (vs; s) ∈ |∀{st}y.(y ≤ s → R(ps, y))|S.
The latter implies that for any m ∈ N such that m ≤ s and any term t, it holds that
(vs tm t; s) ∈ |R(ps,m)|S and hence R(ps,m) holds (otherwise |R(ps,m)|s = ∅).

Consider the (nonstandard) individual τ ∈ NS defined by τ(s) = ps . We have

ideal u s↓s λy.T y (π1(T (u †) get (λwyz.(y, z)))) (λyz. set z y)

hence, by part 2 of Lemma 49, to conclude by anti-reduction it suffices to prove that
1. π1(T (u †) get (λwyz.(y, z))) s↓s τ(s). Indeed, we know that this term reduces as follows:

π1(T (u †) get (λwyz.(y, z))) s↓s π1(ps, vs) s↓s ps

and by definition τ(s) = ps.
2. (λyz. set z y; s) ∀{st}y.R(τ, y). To prove this, it suffices to show that for any m ∈ N

and any t ∈ Λ, we have ((λyz. set z y) tm; s) R(τ,m∗). With s′ , max(s,m), we have
that (λyz. set z y) tm s↓s set mt s↓s′ t. By construction, since m ≤ s′, we know that
R(τ(s′),m) holds, hence (t; s′) ∈ |R(τ(s′),m)|Sρ and we conclude by anti-reduction. J

C Realizability up to U

Proof of Proposition 42. Follows from the fact that for any nonstandard f ∈ NS, any n ∈ N
and any s ∈ S, there exists s′ ∈ S such that s′ > s and n < f(s′). The result then follows
by anti-reduction from the fact that loop+ s↓s′ loop+. J

We give here the quotiented interpretation referred to in Section 6.1.

I Definition 50 (Realizability up to U). The interpretation of a formula A together with a
valuation ρ is the set |A|∗ρ defined inductively according to the following clauses:

CSL 2021

19:22 Realizability with Stateful Computations for Nonstandard Analysis

|st(f)|∗ρ ,

{
Λ if f ∼= n∗, for some n ∈ N
∅ otherwise

|X(e1, . . . , en)|∗ρ , {t ∈ Λ : {s ∈ S : (t; s) ∈ ρ(X)@(Je1Kρ, . . . , JenKρ)} ∈ U}
|{Nat(e)} 7→ A|∗ρ , {t ∈ Λ : {s ∈ S : (t; s) ∈ |{Nat(e)} 7→ A|Sρ } ∈ U}}

|A→ B|∗ρ , {t ∈ Λ : {s ∈ S : (t; s) ∈ |A→ B|Sρ } ∈ U}
|A1 ∧A2|∗ρ , {t ∈ Λ : {s ∈ S : (π1(t); s) ∈ |A1|Sρ ∧ (π2(t); s) ∈ |A2|Sρ } ∈ U}

|A1 ∨A2|∗ρ , {t ∈ Λ : {s ∈ S : ∃i ∈ {1, 2}. case t {ι1(x1) 7→ x1|ι2(x2) 7→ x2} ∈ |Ai|Sρ } ∈ U}
|∀x.A|∗ρ ,

⋂
f∈NS |A|∗ρ,x7→f |∀X.A|∗ρ ,

⋂
F :Nk→SAT |A|

∗
ρ,X 7→F

|∃x.A|∗ρ ,
⋃
f∈NS |A|∗ρ,x 7→f |∃X.A|∗ρ ,

⋃
F :Nk→SAT |A|

∗
ρ,X 7→F

We write t * A if t ∈ |A|∗.

As explained in Section 6.1, this definition is meant to satisfy a counterpart of Łoś ’
theorem in our setting.

Proof of Theorem 44 (Łoś ’ theorem). The proof goes by induction on the structure of A.
In the cases {Nat(e)} 7→ A, X(e1, . . . , en), A → B, A ∨ B and A ∧ B, the result follows
directly from the definitions. The proof for quantifiers is similar to the usual proof of Łoś ’
theorem, we only give here the case of the existential quantifier.

Case ∃x.A By the induction hypothesis, we have that for any f ∈ NS,

|A|∗ρ,x 7→f = {t : {s ∈ S : t; s ∈ |A|Sρ,x 7→f} ∈ U}

By glueing, we have that |A|Sρ,x 7→f = |As|sρ,x7→f = |As|sρ,x7→(f(s))∗ . We want to prove that for
any t ∈ Λ

∃f ∈ NS.t ∈ |A|∗ρ,x 7→f iff {s ∈ S : t; s ∈ |∃x.A|Sρ } ∈ U

Observe that, by glueing, the right-hand side is equivalent to {s ∈ S : ∃n ∈ N.t ∈
|A|sρ,x 7→n∗} ∈ U .
⇒c If there exists f ∈ NS such that t ∈ |A|∗ρ,x7→f . We easily see that

{s ∈ S : t ∈ |A|sρ,x 7→(f(s))∗} ⊆ {s ∈ S : ∃n ∈ N.t ∈ |A|sρ,x7→n∗}

hence we can conclude by upwards closure of the ultrafilter.
⇐c Assume that E , {s ∈ S : ∃n ∈ N.t ∈ |A|sρ,x7→n∗} ∈ U

For any s ∈ E, using countable choice we can pick an integer ns such that t ∈ |A|sρ,x7→n∗s .
We may then define the function g ∈ NS by g(s) , ns if s ∈ E, 0 otherwise. By definition,
E ⊆ {s ∈ S : t ∈ |A|sρ,x7→(g(s))∗}, hence this set belongs to U by upwards closure. Therefore
we can conclude by induction hypothesis that t ∈ |A|∗ρ,x 7→f . J

I Proposition 51. For any internal formulas A and B, and any valuation ρ closing both A
and B, we have |A→ B|∗ρ ⊆ {t : ∀u ∈ |A|∗ρ.t u ∈ |B|∗ρ}.

Proof. For any term t and any formula A, let us denote by SAt the set {s ∈ S : (t; s) ∈ |A|Sρ }.
Let t ∈ Λ be such that SA→Bt ∈ U and u ∈ |A|∗ρ. By hypothesis, SAu ∈ U . We need to show
that tu ∈ |B|∗ρ. Again, for any s ∈ SA→Bt ∩ SAu ∈ U , we have tu; s ∈ |B|Sρ . By upwards
closure, we deduce that {s : (tu; s) ∈ |B|Sρ } ∈ U , hence tu ∈ |B|∗ρ, and the result follows from
Theorem 44. J

B. Dinis and É. Miquey 19:23

I Remark 52. One could have been tempted to define the truth value |A→ B|∗ρ as the set of
terms t such that for any u ∈ |A|∗ρ, t u ∈ |B|∗ρ, as is usual in realizability. Unfortunately, such
a definition is incompatible with Theorem 44, as the other inclusion in Proposition 51 does
not hold. To see this, let A , Nat′(τ) and B , ⊥ where τ is a non-computable function7
τ : S→ N for which there is no term u such that ∀s.u s↓s τ(s). By construction, we have that
|A|∗ = ∅, so that obviously for any u ∈ |Nat′(τ)|∗, the function (λx.x)u ∈ |⊥|∗. Yet, for each
state s the truth value |Nat′(τ)|Sρ is not empty (it contains at least (n, s), for n = τ(s)) and
therefore (λx.x; s) /∈ |Nat′(τ)→ ⊥|Sρ (since for any (u; s) ∈ |Nat′(τ)|S, (λx.x u; s) /∈ |⊥|∗).

We want to point out that Remark 52 highlights the “counter-intuitive” peculiarities of the
interpretation up to U with respect to the quotient in the Lightstone-Robinson construction.
The latter indeed appears to be more regular, seemingly for two main reasons. First, as
we highlight in Section 4, in the stateful interpretation the set instruction allows terms to
change the value of the states during computations, and thus of the slices. This phenomenon
does not occur in the Lightstone-Robinson construction where slices of the product are
complety isolated between them. Second, while the Lightstone-Robinson construction is
based on Boolean-valued models, realizability interpretations associate to each formula a set
of realizers (instead of one unique Boolean). Besides, the use of relativized quantifiers (for
instance in the statement for idealization) forces us to use only computable functions8.

7 To that end, one can for instance consider the function τ which to each s ∈ S associates the smallest
natural number n ∈ N such that there is no term of size smaller than or equal to s that computes n the
state s: τ(s) , inf{n ∈ N : ¬∃t.|t| ≤ s ∧ t s↓s n} .

8 This is the reason why, for instance, the premise of idealization needs to be restricted to the existence
of a standard natural number x, instead of any natural number as is usually the case.

CSL 2021

Decidable Entailments in Separation Logic with
Inductive Definitions: Beyond Establishment
Mnacho Echenim
Université Grenoble Alpes, CNRS, LIG, F-38000 Grenoble, France

Radu Iosif
Université Grenoble Alpes, CNRS, VERIMAG, F-38000 Grenoble, France

Nicolas Peltier
Université Grenoble Alpes, CNRS, LIG, F-38000 Grenoble, France

Abstract
We define a class of Separation Logic [10, 16] formulæ, whose entailment problem given formulæ
φ, ψ1, . . . , ψn, is every model of φ a model of some ψi? is 2-EXPTIME-complete. The formulæ in
this class are existentially quantified separating conjunctions involving predicate atoms, interpreted
by the least sets of store-heap structures that satisfy a set of inductive rules, which is also part of the
input to the entailment problem. Previous work [8, 12, 15] consider established sets of rules, meaning
that every existentially quantified variable in a rule must eventually be bound to an allocated location,
i.e. from the domain of the heap. In particular, this guarantees that each structure has treewidth
bounded by the size of the largest rule in the set. In contrast, here we show that establishment,
although sufficient for decidability (alongside two other natural conditions), is not necessary, by
providing a condition, called equational restrictedness, which applies syntactically to (dis-)equalities.
The entailment problem is more general in this case, because equationally restricted rules define
richer classes of structures, of unbounded treewidth. In this paper we show that
(1) every established set of rules can be converted into an equationally restricted one and
(2) the entailment problem is 2-EXPTIME-complete in the latter case, thus matching the complexity

of entailments for established sets of rules [12, 15].

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Separation logic, Induction definitions, Inductive theorem proving, Entail-
ments, Complexity

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.20

Related Version A full version of the paper is available at https://arxiv.org/abs/2007.00502.

1 Introduction

Separation Logic (SL) [10, 16] is widely used to reason about programs manipulating re-
cursively linked data structures, being at the core of several industrial-scale static program
analysis techniques [3, 2, 5]. Given an integer K ≥ 1, denoting the number of fields in a
record datatype, and an infinite set L of memory locations (addresses), the assertions in
this logic describe heaps, that are finite partial functions mapping locations to records, i.e.,
K-tuples of locations. A location ` in the domain of the heap is said to be allocated and
the points-to atom x 7→ (y1, . . . , yK) states that the location associated with x refers to the
tuple of locations associated with (y1, . . . , yK). The separating conjunction φ ∗ ψ states that
the formulæ φ and ψ hold in non-overlapping parts of the heap, that have disjoint domains.
This connective allows for modular program analyses, because the formulæ specifying the
behaviour of a program statement refer only to the small (local) set of locations that are
manipulated by that statement, with no concern for the rest of the program’s state.

Formulæ consisting of points-to atoms connected with separating conjunctions describe
heaps of bounded size only. To reason about recursive data structures of unbounded sizes
(lists, trees, etc.), the base logic is enriched by predicate symbols, with a semantics specified

© Mnacho Echenim, Radu Iosif, and Nicolas Peltier;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 20; pp. 20:1–20:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CSL.2021.20
https://arxiv.org/abs/2007.00502
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Decidable Entailments in Separation Logic with Inductive Definitions

by user-defined inductive rules. For instance, the rules: excls(x, y)⇐ ∃z . x 7→ (z, y) ∗ z 6l c
and excls(x, y) ⇐ ∃z∃v . x 7→ (z, v) ∗ excls(v, y) ∗ z 6l c describe a non-empty list segment,
whose elements are records with two fields: the first is a data field, that keeps a list of
locations, which excludes the location assigned to the global constant c, and the second is
used to link the records in a list whose head and tail are pointed to by x and y, respectively.

An important problem in program verification, arising during construction of Hoare-style
correctness proofs, is the discharge of verification conditions, that are entailments of the form
φ ` ψ1, . . . , ψn, where φ and ψ1, . . . , ψn are separating conjunctions of points-to, predicates
and (dis-)equalities, also known as symbolic heaps. The entailment problem then asks if every
model of φ is a model of some ψi? In general, the entailment problem is undecidable and
becomes decidable when the inductive rules used to interpret the predicates satisfy three
restrictions [8]:
(1) progress, stating that each rule allocates exactly one memory cell,
(2) connectivity, ensuring that the allocated memory cells form a tree-shaped structure, and
(3) establishment, stating that all existentially quantified variables introduced by an inductive

rule must be assigned to some allocated memory cell, in every structure defined by that
rule.

For instance, the above rules are progressing and connected but not established, because the
∃z variables are not explicitly assigned an allocated location, unlike the ∃v variables, passed
as first parameter of the excls(x, y) predicate, and thus always allocated by the points-to
atoms x 7→ (z, y) or x 7→ (z, v), from the first and second rule defining excls(x, y), respectively.

The argument behind the decidability of a progressing, connected and established entail-
ment problem is that every model of the left-hand side is encoded by a graph whose treewidth1
is bounded by the size of the largest symbolic heap that occurs in the problem [8]. Moreover,
the progress and connectivity conditions ensure that the set of models of a symbolic heap
can be represented by a Monadic Second Order (MSO) logic formula interpreted over graphs,
that can be effectively built from the symbolic heap and the set of rules of the problem. The
decidability of entailments follows then from the decidability of the satisfiability problem for
MSO over graphs of bounded treewidth (Courcelle’s Theorem) [4]. Initially, no upper bound
better than elementary recursive was known to exist. Recently, a 2-EXPTIME algorithm was
proposed [12, 14] for sets of rules satisfying these three conditions, and, moreover, this bound
was shown to be tight [6].

Several natural questions arise: are the progress, connectivity and establishment conditions
really necessary for the decidability of entailments? How much can these restriction be
relaxed, without jeopardizing the complexity of the problem? Can one decide entailments that
involve sets of heaps of unbounded treewidth? In this paper, we answer these questions by
showing that entailments are still 2-EXPTIME-complete when the establishment condition is
replaced by a condition on the (dis-)equations occurring in the symbolic heaps of the problem.
Informally, such (dis-)equations must be of the form x l c (x 6l c), where c ranges over some
finite and fixed set of globally visible constants (including special symbols such as nil, that
denotes a non-allocated address, but also any free variable occurring on the left-hand side of
the entailment). We also relax slightly the progress and connectivity conditions, by allowing
forest-like heap structures (instead of just trees), provided that every root is mapped to a
constant symbol. These entailment problems are called equationally restricted (e-restricted,
for short). For instance, the entailment problem excls(x, y) ∗ excls(y, z) ` excls(x, z), with the
above rules, falls in this category.

1 The treewidth of a graph is a parameter measuring how close the graph is to a tree, see [7, Ch. 11] for
a definition.

M. Echenim, R. Iosif, and N. Peltier 20:3

We prove that the e-restricted condition loses no generality compared to establishment,
because any established entailment problem can be transformed into an equivalent e-restricted
entailment problem. E-restricted problems allow reasoning about structures that contain
dangling pointers, which frequently occur in practice, especially in the context of modular
program analysis. Moreover, the set of structures considered in an e-restricted entailment
problem may contain infinite sequences of heaps of strictly increasing treewidths, that are
out of the scope of established problems [8].

The decision procedure for e-restricted problems proposed in this paper is based on a
similar idea as the one given, for established problems, in [14, 15]. We build a suitable
abstraction of the set of structures satisfying the left-hand side of the entailment bottom-up,
starting from points-to and predicate atoms, using abstract operators to compose disjoint
structures, to add and remove variables, and to unfold the inductive rules associated with
the predicates. The abstraction is precise enough to allow checking that all the models of the
left-hand side fulfill the right-hand side of the entailment and also general enough to ensure
termination of the entailment checking algorithm.

Although both procedures are similar, there are essential differences between our work
and [14, 15]. First, we show that instead of using a specific language for describing those
abstractions, the considered set of structures can themselves be defined in SL, by means of
formulæ of some specific pattern called core formulæ. Second, the fact that the systems are
not established makes the definition of the procedure much more difficult, due to the fact that
the considered structures can have an unbounded treewidth. This is problematic because,
informally, this boundedness property is essential to ensure that the abstractions can be
described using a finite set of variables, denoting the frontier of the considered structures,
namely the locations that can be shared with other structures. In particular, the fact that
disjoint heaps may share unallocated (or “unnamed”) locations complexifies the definition
of the composition operator. This problem is overcome by considering a specific class of
structures, called normal structures, of bounded treewidth, and proving that the validity of
an entailment can be decided by considering only normal structures.

In terms of complexity, we show that the running time of our algorithm is doubly
exponential w.r.t. the maximal size among the symbolic heaps occurring in the input
entailment problem (including those in the rules) and simply exponential w.r.t. the number
of such symbolic heaps (hence w.r.t. the number of rules). This means that the 2-EXPTIME
upper bound is preserved by any reduction increasing exponentially the number of rules, but
increasing only polynomially the size of the rules. On the other hand, the 2-EXPTIME-hard
lower bound is proved by a reduction from the membership problem for exponential-space
bounded Alternating Turing Machines [6].

2 Separation Logic with Inductive Definitions

Let N denote the set of natural numbers. For a countable set S, we denote by ||S|| ∈ N∪{∞}
its cardinality. For a partial mapping f : A ⇀ B, let dom(f) def= {x ∈ A | f(x) ∈ B} and
rng(f) def= {f(x) | x ∈ dom(f)} be its domain and range, respectively. We say that f is total
if dom(f) = A, written f : A→ B and finite, written f : A ⇀fin B if ||dom(f)|| <∞. Given
integers n and m, we denote by Jn . . mK the set {n, n+ 1, . . . ,m}, so that Jn . . mK = ∅ if
n > m. For a relation C ⊆ A×A, we denote by C∗ its reflexive and transitive closure.

For an integer n ≥ 0, let An be the set of n-tuples with elements from A. Given a tuple
a = (a1, . . . , an) and i ∈ J1 . . nK, we denote by ai the i-th element of a and by |a| def= n

its length. By f(a) we denote the tuple obtained by the pointwise application of f to the

CSL 2021

20:4 Decidable Entailments in Separation Logic with Inductive Definitions

elements of a. If multiplicity and order of the elements are not important, we blur the
distinction between tuples and sets, using the set-theoretic notations x ∈ a, a ∪ b, a ∩ b and
a \ b.

Let V = {x, y, . . .} be an infinite countable set of logical first-order variables and P =
{p, q, . . .} be an infinite countable set (disjoint from V) of relation symbols, called predicates,
where each predicate p has arity #p ≥ 0. We also consider a finite set C of constants, of
known bounded cardinality, disjoint from both V and P. Constants will play a special rôle in
the upcoming developments and the fact that C is bounded is of a particular importance. A
term is either a variable or a constant and we denote by T def= V ∪ C the set of terms.

Throughout this paper we consider an integer K ≥ 1 that, intuitively, denotes the number
of fields in a record datatype. Although we do not assume K to be a constant in any of the
algorithms presented in the following, considering that every datatype has exactly K records
simplifies the definition. The logic SLK is the set of formulæ generated inductively by the
syntax:

φ := emp | t0 7→ (t1, . . . , tK) | p(t1, . . . , t#p) | t1 ≈ t2 | φ1 ∗ φ2 | φ1 ∧ φ2 | ¬φ1 | ∃x . φ1

where p ∈ P, ti ∈ T and x ∈ V. Atomic propositions of the form t0 7→ (t1, . . . , tK) are called
points-to atoms and those of the form p(t1, . . . , t#p) are predicate atoms. If K = 1, we write
t0 7→ t1 for t0 7→ (t1).

The connective ∗ is called separating conjunction, in contrast with the classical conjunction
∧. The size of a formula φ, denoted by size(φ), is the number of occurrences of symbols
in it. We write fv(φ) for the set of free variables in φ and trm(φ) def= fv(φ) ∪ C. A formula
is predicate-free if it has no predicate atoms. As usual, φ1 ∨ φ2

def= ¬(¬φ1 ∧ ¬φ2) and
∀x . φ def= ¬∃x . ¬φ. For a set of variables x = {x1, . . . , xn} and a quantifier Q ∈ {∃,∀},
we write Qx . φ

def= Qx1 . . . Qxn . φ. By writing t1 = t2 (φ1 = φ2) we mean that the terms
(formulæ) t1 and t2 (φ1 and φ2) are syntactically the same.

A substitution is a partial mapping σ : V⇀ T that maps variables to terms. We denote by
[t1/x1, . . . , tn/xn] the substitution that maps the variable xi to ti, for each i ∈ J1 . . nK and
is undefined elsewhere. By φσ we denote the formula obtained from φ by substituting each
variable x ∈ fv(φ) by σ(x) (we assume that bound variables are renamed to avoid collisions
if needed). By abuse of notation, we sometimes write σ(x) for x, when x 6∈ dom(σ).

To interpret SLK formulæ, we consider an infinite countable set L of locations. The
semantics of SLK formulæ is defined in terms of structures (s, h), where:

s : T⇀ L is a partial mapping of terms into locations, called a store, that interprets at
least all the constants, i.e. C ⊆ dom(s) for every store s, and
h : L⇀fin LK is a finite partial mapping of locations into K-tuples of locations, called a
heap.

Given a heap h, let loc(h) def= {`0, . . . , `K | `0 ∈ dom(h), h(`0) = (`1, . . . , `K)} be the set of
locations that occur in the heap h. Two heaps h1 and h2 are disjoint iff dom(h1)∩dom(h2) = ∅,
in which case their disjoint union is denoted by h1] h2, otherwise undefined. The frontier
between h1 and h2 is the set of common locations Fr(h1, h2) def= loc(h1) ∩ loc(h2). Note that
disjoint heaps may have nonempty frontier. The satisfaction relation |= between structures
(s, h) and predicate-free SLK formulæ φ is defined recursively on the structure of formulæ:

(s, h) |= t1 ≈ t2 ⇔ t1, t2 ∈ dom(s) and s(t1) = s(t2)
(s, h) |= emp ⇔ h = ∅
(s, h) |= t0 7→ (t1, . . . , tK) ⇔ t0, . . . , tK ∈ dom(s), dom(h) = {s(t0)} and h(s(t0)) = (s(t1), . . . , s(tK))
(s, h) |= φ1 ∧ φ2 ⇔ (s, h) |= φi, i = 1, 2
(s, h) |= ¬φ1 ⇔ fv(φ1) ⊆ dom(s) and (s, h) 6|= φ1
(s, h) |= φ1 ∗ φ2 ⇔ there exist heaps h1, h2 such that h = h1] h2 and (s, hi) |= φi, i = 1, 2
(s, h) |= ∃x . φ ⇔ (s[x← `], h) |= φ, for some location ` ∈ L

M. Echenim, R. Iosif, and N. Peltier 20:5

where s[x← `] is the store, with domain dom(s) ∪ {x}, that maps x to ` and behaves like s

over dom(s) \ {x}. For a tuple of variables x = (x1, . . . , xn) and locations l = (l1, . . . , ln), we
call the store s[x← l] def= s[x1 ← l1] . . . [xn ← ln] an x-associate of s. A structure (s, h) such
that (s, h) |= φ, is called a model of φ. Note that (s, h) |= φ only if fv(φ) ⊆ dom(s).

The fragment of symbolic heaps is obtained by confining the negation and conjunction to
the formulæ t1 l t2

def= t1 ≈ t2 ∧ emp and t1 6l t2
def= ¬t1 ≈ t2 ∧ emp, called equational atoms,

by abuse of language. We denote by SHK the set of symbolic heaps, formally defined below:

φ := emp | t0 7→ (t1, . . . , tK) | p(t1, . . . , t#p) | t1 l t2 | t1 6l t2 | φ1 ∗ φ2 | ∃x . φ1

Given quantifier-free symbolic heaps φ1, φ2 ∈ SHK, it is not hard to check that ∃x . φ1∗∃y . φ2
and ∃x∃y . φ1 ∗φ2 have the same models (provided x 6= y). Consequently, each symbolic heap
can be written in prenex form, as φ = ∃x1 . . . ∃xn . ψ, where ψ is a quantifier-free separating
conjunction of points-to atoms and (dis-)equalities. A variable x ∈ fv(ψ) is allocated in φ
iff there exists a (possibly empty) sequence of equalities x l . . . l t0 and a points-to atom
t0 7→ (t1, . . . , tK) in ψ.

The predicates from P are intepreted by a given set S of rules p(x1, . . . , x#p)⇐ ρ, where
ρ is a symbolic heap, such that fv(ρ) ⊆ {x1, . . . , x#p

}. We say that p(x1, . . . , x#p) is the
head and ρ is the body of the rule. For conciseness, we write p(x1, . . . , x#p)⇐S ρ instead of
p(x1, . . . , x#p)⇐ ρ ∈ S. In the following, we shall often refer to a given set of rules S.

I Definition 1 (Unfolding). A formula ψ is a step-unfolding of a formula φ ∈ SLK, written
φ ⇒S ψ, if ψ is obtained by replacing an occurrence of an atom p(t1, . . . , t#p) in φ with
ρ[t1/x1, . . . , t#p/x#p], for a rule p(x1, . . . , x#p) ⇐S ρ. An unfolding of φ is a formula ψ
such that φ⇒∗S ψ.

It is easily seen that any unfolding of a symbolic heap is again a symbolic heap. We implicitly
assume that all bound variables are α-renamed throughout an unfolding, to avoid name
clashes. Unfolding extends the semantics from predicate-free to arbitrary SLK formulæ:

I Definition 2. Given a structure (s, h) and a formula φ ∈ SLK, we write (s, h) |=S φ iff
there exists a predicate-free unfolding φ⇒∗S ψ such that (s, h) |= ψ. In this case, (s, h) is an
S-model of φ. For two formulæ φ, ψ ∈ SLK, we write φ |=S ψ iff every S-model of φ is an
S-model of ψ.

Note that, if (s, h) |=S φ, then dom(s) might have to contain constants that do not occur in
φ. For instance if p(x)⇐S x 7→ a is the only rule with head p(x), then any S-model (s, h)
must map a to some location, which is taken care of by the assumption C ⊆ dom(s), that
applies to any store.

I Definition 3 (Entailment). Given symbolic heaps φ, ψ1, . . . , ψn, such that φ is quantifier-
free and fv(φ) = fv(ψ1) = . . . = fv(ψn) = ∅, the sequent φ ` ψ1, . . . , ψn is valid for S iff
φ |=S

∨n
i=1 ψi. An entailment problem P = (S,Σ) consists of a set of rules S and a set Σ

of sequents, asking whether each sequent in Σ is valid for S.

Note that we consider entailments between formulæ without free variables. This is not
restrictive, since any free variable can be replaced by a constant from C, with no impact
on the validity status or the computational complexity of the problem. We silently assume
that C contains enough constants to allow this replacement. For conciseness, we write
φ `P ψ1, . . . , ψn for φ ` ψ1, . . . , ψn ∈ Σ, where Σ is the set of sequents of P. The following
example shows an entailment problem asking whether the concatenation of two acyclic lists
is again an acyclic list:

CSL 2021

20:6 Decidable Entailments in Separation Logic with Inductive Definitions

I Example 4. The entailment problem below consists of four rules, defining the predicates
ls(x, y) and sls(x, y, z), respectively, and two sequents:

ls(x, y) ⇐ x 7→ y ∗ x 6l y | ∃v . x 7→ v ∗ ls(v, y) ∗ x 6l y
sls(x, y, z) ⇐ x 7→ y ∗ x 6l y ∗ x 6l z | ∃v . x 7→ v ∗ sls(v, y, z) ∗ x 6l y ∗ x 6l z

ls(a, b) ∗ ls(b, c) ` ∃x . a 7→ x ∗ ls(x, c) ∗ a 6l c sls(a, b, c) ∗ ls(b, c) ` ∃x . a 7→ x ∗ ls(x, c) ∗ a 6l c
Here ls(x, y) describes non-empty acyclic list segments with head and tail pointed to by x
and y, respectively. The first sequent is invalid, because c can be allocated within the list
segment defined by ls(a, b), in which case the entire list has a cycle starting and ending with
the location associated with c. To avoid the cycle, the left-hand side of the second sequent
uses the predicate sls(x, y, z) describing an acyclic list segment from x to y that skips the
location pointed to by z. The second sequent is valid. y

The complexity analysis of the decision procedure described in this paper relies on two
parameters. First, the width of an entailment problem P = (S,Σ) is (roughly) the maximum
among the sizes of the symbolic heaps occurring in P and the number of constants in C.
Second, the size of the entailment problem is (roughly) the number of symbols needed to
represent it, namely:

width(P) def= max
(
{size(ρ) + #p | p(x1, . . . , x#p)⇐S ρ} ∪ {size(ψi) | ψ0 `P ψ1, . . . , ψn} ∪ {||C||}

)
size(P) def=

∑
p(x1,...,x#p) ⇐S ρ

(size(ρ) + #p) +
∑

ψ0 `P ψ1,...,ψn

∑n

i=1 size(ψi)

In the next section we give a transformation of entailment problems with a time complexity
that is bounded by the product of the size and a simple exponential of the width of the
input, such that, moreover, the width of the problem increases by a polynomial factor only.
The latter is instrumental in proving the final 2-EXPTIME upper bound on the complexity
of the entailment problem.

To alleviate the upcoming technical details, we make the following assumption:

I Assumption 1. Distinct constants are always associated with distinct locations: for all
stores s, and for all c, d ∈ C, we have c 6= d only if s(c) 6= s(d).

This assumption loses no generality, because one can enumerate all the equivalence relations
on C and test the entailments separately for each of these relations, by replacing all the
constants in the same class by a unique representative2, while assuming that constants in
distinct classes are mapped to distinct locations. The overall complexity of the procedure
is still doubly exponential, since the number of such equivalence relations is bounded by
the number of partitions of C, that is 2O(||C||·log ||C||) = 2O(||width(P)||·log ||width(P)||), for any
entailment problem P. Thanks to Assumption 1, the considered symbolic heaps can be,
moreover, safely assumed not to contain atoms c ./ d, with ./∈ {l, 6l} and c, d ∈ C, since
these atoms are either unsatisfiable or equivalent to emp.

3 Decidable Classes of Entailments

In general, the entailment problem (Definition 3) is undecidable and we refer the reader to
[9, 1] for two different proofs. A first attempt to define a naturally expressive class of formulæ
with a decidable entailment problem was reported in [8]. The entailments considered in [8]
involve sets of rules restricted by three conditions, recalled below, in a slightly generalized
form.

2 The replacement must be performed also within the inductive rules, not only in the considered formulæ.

M. Echenim, R. Iosif, and N. Peltier 20:7

First, the progress condition requires that each rule adds to the heap exactly one location,
associated either to a constant or to a designated parameter. Formally, we consider a
mapping root : P → N ∪ C, such that root(p) ∈ J1 . . #pK ∪ C, for each p ∈ P. The
term root(p(t1, . . . , t#p)) denotes either ti if root(p) = i ∈ J1 . . #pK, or the constant
root(p) itself if root(p) ∈ C. The notation root(α) is extended to points-to atoms α as
root(t0 7→ (t1, . . . , tK)) def= t0. Second, the connectivity condition requires that all locations
added during an unfolding of a predicate atom form a set of connected trees (a forest) rooted
in locations associated either with a parameter of the predicate or with a constant.

I Definition 5 (Progress & Connectivity). A set of rules S is progressing if each rule in S
is of the form p(x1, . . . , x#p)⇐ ∃z1 . . . ∃zm . root(p(x1, . . . , x#p)) 7→ (t1, . . . , tK) ∗ ψ and ψ
contains no occurrences of points-to atoms. Moreover, S is connected if root(q(u1, . . . , u#q)) ∈
{t1, . . . , tK}∪C, for each predicate atom q(u1, . . . , u#q) occurring in ψ. An entailment problem
P = (S,Σ) is progressing (connected) if S is progressing (connected).

The progress and connectivity conditions can be checked in polynomial time by a syntactic
inspection of the rules in S, even if the root(.) function is not known a priori. Note that
this definition of connectivity is less restrictive that the definition from [8], that asked
for root(q(u1, . . . , u#q)) ∈ {t1, . . . , tK}. For instance, the set of rules {p(x) ⇐ ∃y . x 7→
y ∗ p(y) ∗ p(c), p(x)⇐ x 7→ nil}, where c ∈ C is progressing and connected (with root(p) = 1)
in the sense of Definition 5, but not connected in the sense of [8], because c 6∈ (y). Note
also that nullary predicate symbols are allowed, for instance q() ⇐ c 7→ nil is progressing
and connected (with root(q) = c). Further, the entailment problem from Example 4 is both
progressing and connected.

Third, the establishment condition is defined, slightly extended from its original state-
ment [8]:

I Definition 6 (Establishment). Given a set of rules S, a symbolic heap ∃x1 . . . ∃xn . φ,
where φ is quantifier-free, is S-established iff every xi for i ∈ J1 . . nK is allocated in each
predicate-free unfolding φ⇒∗S ϕ. A set of rules S is established if the body ρ of each rule
p(x1, . . . , x#p)⇐S ρ is S-established. An entailment problem P = (S,Σ) is established if S
is established, and strongly established if, moreover, φi is S-established, for each sequent
φ0 `P φ1, . . . , φn and each i ∈ J0 . . nK.

For example, the entailment problem from Example 4 is strongly established.
In this paper, we replace establishment with a new condition that, as we show, preserves

the decidability and computational complexity of progressing, connected and established
entailment problems. The new condition can be checked in time linear in the size of the
problem. This condition, called equational restrictedness (e-restrictedness, for short), requires
that each equational atom occurring in a formula involves at least one constant. We will
show that the e-restrictedness condition is more general than establishment, in the sense that
every established problem can be reduced to an equivalent e-restricted problem (Theorem
13). Moreover, the class of structures defined using e-restricted symbolic heaps is a strict
superset of the one defined by established symbolic heaps.

I Definition 7 (E-restrictedness). A symbolic heap φ is e-restricted if, for every equational
atom t ./ u from φ, where ./∈ {l, 6l}, we have {t, u} ∩ C 6= ∅. A set of rules S is e-
restricted if the body ρ of each rule p(x1, . . . , x#p) ⇐S ρ is e-restricted. An entailment
problem P = (S,Σ) is e-restricted if S is e-restricted and φi is e-restricted, for each sequent
φ0 `P φ1, . . . , φn and each i ∈ J0 . . nK.

CSL 2021

20:8 Decidable Entailments in Separation Logic with Inductive Definitions

For instance, the entailment problem from Example 4 is not e-restricted, because several rule
bodies have disequalities between parameters, e.g. ls(x, y)⇐ x 7→ y ∗ x 6l y. However, the
set of rules {lsc(x)⇐ x 7→ c ∗ x 6l c, lsc(x)⇐ ∃y . x 7→ y ∗ lsc(y) ∗ x 6l c}, where c ∈ C and
lsc is a new predicate symbol, denoting an acyclic list ending with c, is e-restricted. Note
that any atom ls(x, y) can be replaced by lsy(x), provided that y occurs free in a sequent
and can be viewed as a constant.

We show next that every established entailment problem (Definition 6) can be reduced to
an e-restricted entailment problem (Definition 7). The transformation incurs an exponential
blowup, however, as we show, the blowup is exponential only in the width and polynomial in
the size of the input problem. This is to be expected, because checking e-restrictedness of
a problem can be done in linear time, in contrast with checking establishment, which is at
least co-NP-hard [11].

We begin by showing that each problem can be translated into an equivalent normalized
problem:

I Definition 8 (Normalization).
(1) A symbolic heap ∃x . ψ ∈ SHK, where ψ is quantifier-free, is normalized iff for every

atom α in ψ:
a. if α is an equational atom, then it is of the form x 6l t (t 6l x), where x ∈ x,
b. every variable x ∈ fv(ψ) occurs in a points-to or predicate atom of ψ,
c. if α is a predicate atom q(t1, . . . , t#q), then {t1, . . . , t#q} ∩ C = ∅ and ti 6= tj, for all
i 6= j ∈ J1 . . #qK.

(2) A set of rules S is normalized iff for each rule p(x1, . . . , x#p)⇐S ρ, the symbolic heap
ρ is normalized and, moreover:
a. For every i ∈ J1 . . #pK and every predicate-free unfolding p(x1, . . . , x#p) ⇒∗S ϕ, ϕ

contains a points-to atom t0 7→ (t1, . . . , tK), such that xi ∈ {t0, . . . , tK}.
b. There exist sets pallocS(p) ⊆ J1 . . #pK and callocS(p) ⊆ C such that, for each

predicate-free unfolding p(x1, . . . , x#p)⇒∗S ϕ:
i ∈ pallocS(p) iff ϕ contains an atom xi 7→ (t1, . . . , tK), for every i ∈ J1 . . #pK,
c ∈ callocS(p) iff ϕ contains an atom c 7→ (t1, . . . , tK), for every c ∈ C.

c. For every predicate-free unfolding p(x1, . . . , x#p)⇒∗S ϕ, if ϕ contains an atom t0 7→
(t1, . . . , tK) such that t0 ∈ V \ {x1, . . . , x#p}, then ϕ also contains atoms t0 6l c, for
every c ∈ C.

(3) An entailment problem P = (S,Σ) is normalized if S is normalized and, for each sequent
φ0 `P φ1, . . . , φn the symbolic heap φi is normalized, for each i ∈ J0 . . nK.

The intuition behind Condition (2a) is that no term can “disappear” while unfolding an
inductive definition. Condition (2b) states that the set of terms eventually allocated by
a predicate atom is the same in all unfoldings. This allows to define the set of symbols
that occur freely in a symbolic heap φ and are necessarily allocated in every unfolding of φ,
provided that the set of rules is normalized:

I Definition 9. Given a normalized set of rules S and a symbolic heap φ ∈ SHK, the set
allocS(φ) is defined recursively on the structure of φ:

allocS(t0 7→ (t1, . . . , tK)) def= {t0} allocS(p(t1, . . . , t#p))
def= {ti | i ∈ pallocS(p)}

allocS(t1 ./ t2) def= ∅, ./∈ {l, 6l} ∪ callocS(p)
allocS(φ1 ∗ φ2) def= allocS(φ1) ∪ allocS(φ2) allocS(∃x . φ1) def= allocS(φ1) \ {x}

M. Echenim, R. Iosif, and N. Peltier 20:9

I Example 10. The rules p(x, y) ⇐ ∃z . x 7→ z ∗ p(z, y) ∗ x 6l y and p(x, y) ⇐ ∃z . x 7→ z

are not normalized, because they contradict Conditions (1a) and (2a) of Definition 8,
respectively. A set S containing the rules q(x, y)⇐ ∃z . x 7→ y ∗ q(y, z) and q(x, y)⇐ x 7→ y

is not normalized, because it is not possible to find a set pallocS(q) satisfying Condition
(2b). Indeed, if 2 ∈ pallocS(q) then the required equivalence does not hold for the second
rule (because it does not allocate y), and if 2 6∈ pallocS(q) then it fails for the first one
(since the predicate q(y, z) allocates y). On the other hand, S ′ = {p(x, y) ⇐ ∃z . x 7→
z ∗ p(z, y) ∗ z 6l x ∗ z 6l nil, p(x, y) ⇐ x 7→ y, q(x, y) ⇐ ∃z . x 7→ y ∗ q(y, z) ∗ z 6l nil
, q(x, y) ⇐ x 7→ y ∗ r(y), r(x) ⇐ x 7→ nil} is normalized (assuming C = {nil}), with
pallocS′(p) = pallocS′(r) = {1}, pallocS′(q) = {1, 2} and callocS′(π) = ∅, for all π ∈ {p, q, r}.
Then allocS′(p(x1, x2) ∗ q(x3, x4) ∗ r(x5)) = {x1, x3, x4, x5}. y

The following lemma states that every entailment problem can be transformed into a
normalized entailment problem, by a transformation that preserves progress, connectivity,
e-restricted-ness and (strong) establishment.

I Lemma 11. A progressing and connected entailment problem P can be translated to
an equivalent progressing, connected and normalized problem Pn, such that width(Pn) =
O(width(P)2) in time size(P) · 2O(width(P)2). Further, Pn is e-restricted if P is e-restricted
and (strongly) established if P is (strongly) established.

I Example 12. The entailment problem P = (S, {p(a, b) ` ∃x, y . q(x, y)}) with:

S def=
{

p(x, y) ⇐ ∃z . x 7→ z ∗ p(z, y) ∗ x 6l y q(x, y) ⇐ ∃z . x 7→ y ∗ q(y, z) ∗ z 6l a ∗ z 6l b
p(x, y) ⇐ ∃z . x 7→ z q(x, y) ⇐ x 7→ y

}
may be transformed into (S ′, {p1() ` ∃x, y . q1(x, y),∃x, y . q2(x, y)}), where S ′ is the set:

p1() ⇐ ∃z . a 7→ z ∗ p2(z) ∗ z 6l a ∗ z 6l b p2(x) ⇐ x 7→ b ∗ p3()
p1() ⇐ a 7→ b ∗ p3() p2(x) ⇐ ∃z . x 7→ z ∗ p2(z) ∗ z 6l a ∗ z 6l b
p1() ⇐ ∃z . a 7→ z p2(x) ⇐ ∃z . x 7→ z

p3() ⇐ ∃z . b 7→ z q1(x, y) ⇐ ∃z . x 7→ y ∗ q1(y, z) ∗ z 6l a ∗ z 6l b
q2(x, y) ⇐ x 7→ y q1(x, y) ⇐ ∃z . x 7→ y ∗ q2(y, z) ∗ z 6l a ∗ z 6l b

The predicate atoms p1(), p2(x) and p3() are equivalent to p(a, b), p(x, b) and p(b, b),
respectively. q(x, y) is equivalent to q1(x, y) ∨ q2(x, y). Note that p2(x) is only used in a
context where x 6l b holds, thus the atom x 6l b may be omitted from the rules of p2().
Recall that a and b are mapped to distinct locations, by Assumption 1. y

We show that every established problem P can be reduced to an e-restricted problem in
time linear in the size and exponential in the width of the input, at the cost of a polynomial
increase of its width:

I Theorem 13. Every progressing, connected and established entailment problem P = (S,Σ)
can be reduced in time size(P) · 2O(width(P)2) to a normalized, progressing, connected and
e-restricted problem Pr, such that width(Pr) = O(width(P)).

The class of e-restricted problems is more general than the class of established problems, in
the following sense: for each established problem P = (S,Σ), the treewidth of each S-model
of a S-established symbolic heap φ is bounded by width(P) [8], while e-restricted symbolic
heaps may have infinite sequences of models with strictly increasing treewidth:

I Example 14. Consider the set of rules {lls(x, y) ⇐ x 7→ (y, nil), lls(x, y) ⇐ ∃z∃v . x 7→
(z, v) ∗ lls(z, y)}. The existentially quantified variable v in the second rule in never allocated
in any predicate-free unfolding of lls(a, b), thus the set of rules is not established. However,

CSL 2021

20:10 Decidable Entailments in Separation Logic with Inductive Definitions

it is trivially e-restricted, because no equational atoms occur within the rules. Among the
models of lls(a, b), there are all n × n-square grid structures, known to have treewidth n,
for n > 1 [17] (such a grid can be represented as a list of length n2, with additional links
between the elements at positions i and i+ n). y

4 Normal Structures

The decidability of e-restricted entailment problems relies on the fact that, to prove the
validity of a sequent, it is sufficient to consider only a certain class of structures, called
normal, that require the variables not mapped to the same location as a constant to be
mapped to pairwise distinct locations:

I Definition 15. A structure (s, h) is a normal S-model of a symbolic heap φ iff there exists:
1. a predicate-free unfolding φ⇒S ∃x . ψ, where ψ is quantifier-free, and
2. an x-associate s of s, such that (s, h) |=S ψ and s(x) = s(y) ∧ x 6= y ⇒ s(x) ∈ s(C), for

all x, y ∈ fv(ψ).

I Example 16. Consider the formula ϕ = p(x1) ∗ p(x2), with p(x) ⇐S ∃z . x 7→ z and
C = {a}. Then the structures: (s, h) and (s, h′) with s = {(x1, `1), (x2, `2), (a, `3)}, h =
{(`1, `3), (`2, `3)} and h′ = {(`1, `4), (`2, `5)} are normal models of ϕ. On the other hand,
if h′′ = {(`1, `4), (`2, `4)} (with `4 6= `3) then (s, h′′) is a model of ϕ but it is not normal,
because any associate of s will map the existentials from the predicate-free unfolding of
p(x1) ∗ p(x2) into the same location, different from s(a). y

Since the left-hand side symbolic heap φ of each sequent φ ` ψ1, . . . , ψn is quantifier-free
and has no free variables (Definition 3) and moreover, by Assumption 1, every constant is
associated a distinct location, to check the validity of a sequent it is enough to consider only
structures with injective stores. We say that a structure (ṡ, h) is injective if the store ṡ is
injective. As a syntactic convention, by stacking a dot on the symbol denoting the store, we
mean that the store is injective.

The key property of normal structures is that validity of e-restricted entailment problems
can be checked considering only (injective) normal structures. The intuition is that, since
the (dis-)equalities occurring in the considered formula involve a constant, it is sufficient
to assume that all the existential variables not equal to a constant are mapped to pairwise
distinct locations, as all other structures can be obtained from such structures by applying a
morphism that preserves the truth value of the considered formulæ.

I Lemma 17. Let P = (S,Σ) be a normalized and e-restricted entailment problem and let
φ `P ψ1, . . . , ψn be a sequent. Then φ `P ψ1, . . . , ψn is valid for S iff (ṡ, h) |=S

∨n
i=1 ψi, for

each normal injective S-model (ṡ, h) of φ.

5 Core Formulæ

Given an e-restricted entailment problem P = (S,Σ), the idea of the entailment checking
algorithm is to compute, for each symbolic heap φ that occurs as the left-hand side of
a sequent φ `P ψ1, . . . , ψn, a finite set of sets of formulæ F(φ) = {F1, . . . , Fm}, of some
specific pattern, called core formulæ. The set F(φ) defines an equivalence relation, of finite
index, on the set of injective normal S-models of φ, such that each set F ∈ F(φ) encodes an
equivalence class. Because the validity of each sequent can be checked by testing whether
every (injective) normal model of its left-hand side is a model of some symbolic heap on

M. Echenim, R. Iosif, and N. Peltier 20:11

the right-hand side (Lemma 17), an equivalent check is that each set F ∈ F(φ) contains a
core formula entailing some formula ψi, for i = 1, . . . , n. To improve the presentation, we
first formalize the notions of core formulæ and abstractions by sets of core formulæ, while
deferring the effective construction of F(φ), for a symbolic heap φ, to the next section (§6).
In the following, we refer to a given entailment problem P = (S,Σ).

First, we define core formulæ as a fragment of SLK. Consider a formula loc(x) def=
∃y0 . . . ∃yK . y0 7→ (y1, . . . , yK) ∗

∨K
i=0 x ≈ yi. Note that a structure is a model of loc(x) iff

the variable x is mapped to a location from the domain or the range of the heap. We define
also the following bounded quantifiers:

∃̇x . φ def= ∃x .
∧
t∈(fv(φ)\{x})∪C ¬x ≈ t ∧ φ ∃hx . φ

def= ∃̇x . loc(x) ∧ φ
∃¬hx . φ

def= ∃̇x . ¬loc(x) ∧ φ ∀¬hx . φ
def= ¬∃¬hx . ¬φ

In the following, we shall be extensively using the ∃hx . φ and ∀¬hx . φ quantifiers. The
formula ∃hx . φ states that there exists a location ` which occurs in the domain or range of
the heap and is distinct from the locations associated with the constants and free variables,
such that φ holds when x is associated with `. Similarly, ∀¬hx . φ states that φ holds if x is
associated with any location ` that is outside of the heap and distinct from all the constants
and free variables. The use of these special quantifiers will allow us to restrict ourselves to
injective stores (since all variables and constants are mapped to distinct locations), which
greatly simplifies the handling of equalities.

The main ingredient used to define core formulæ are context predicates. Given a tuple
of predicate symbols (p, q1, . . . , qn) ∈ Pn+1, where n ≥ 0, we consider a context predicate
symbol Γp,q1,...,qn

of arity #p +
∑n

i=1 #qi. The informal intuition of a context predicate
atom Γp,q1,...,qn(t,u1, . . . ,un) is the following: a structure (s, h) is a model of this atom if
there exist models (s, hi) of qi(ui), i ∈ J1 . . nK respectively, with mutually disjoint heaps,
an unfolding ψ of p(t) in which the atoms qi(ui) occur, and an associate s′ of s such that
(s′, h]

⊎n
i=1 hi) is a model of ψ.

For readability’s sake, we adopt a notation close in spirit to SL’s separating implication
(known as the magic wand), and we write ∗n

i=1qi(yi) −−• p(x) for Γp,q1,...,qn(x,y1, . . . ,yn)
and emp −−• p(x), when n = 03. The set of rules defining the interpretation of context
predicates is the least set defined by the inference rules below, denoted CS :

p(x) −−• p(y)⇐CS x l y
x ∩ y = ∅

(I)

p(x)⇐S ∃z . ψ ∗∗mj=1pj(wj) ∗ni=1qi(yi) =∗mj=1γj

∗ni=1qi(yi) −−• p(x)⇐CS ∃v . ψσ ∗∗mj=1 (γj −−• pj(σ(wj)))

x, z,y1, . . . ,yn pairwise disjoint
σ : z ⇀ x ∪

⋃n

i=1 yi
v = z \ dom(σ)

(II)

Note that CS is not progressing, since the rule for p(x) −−• p(y) does not allocate any
location. However, if S is progressing, then the set of rules obtained by applying (II) only is

3 Context predicates are similar to the strong magic wand introduced in [13]. A context predicate α −−• β
is also related to the usual separating implication α −−∗ β of separation logic, but it is not equivalent.
Intuitively, −−∗ represents a difference between two heaps, whereas−−• removes some atoms in an unfolding.
For instance, if p and q are defined by the same inductive rules, up to a renaming of predicates, then
p(x) −−∗ q(x) always holds in a structure with an empty heap, whereas p(x) −−• q(x) holds if, moreover,
p(x) and q(x) are the same atom.

CSL 2021

20:12 Decidable Entailments in Separation Logic with Inductive Definitions

also progressing. Rule (I) says that each predicate atom p(t) −−• p(u), such that t and u are
mapped to the same tuple of locations, is satisfied by the empty heap. To understand rule
(II), let (s, h) be an S-model of p(t) and assume there are a predicate-free unfolding ψ of p(t)
and an associate s′ of s, such that q1(u1), . . . , qn(un) occur in ψ and (s′, h) |=S ψ. If the
first unfolding step is an instance of a rule p(x)⇐S ∃z . ψ ∗∗m

j=1pj(wj) then there exist a
z-associate s of s and a split of h into disjoint heaps h0, . . . , hm such that (s, h0) |= ψ[t/x] and
(s, hj) |=S pj(wj)[t/x], for all j ∈ J1 . . mK. Assume, for simplicity, that u1∪. . .∪un ⊆ dom(s)
and let h1, . . . , hn be disjoint heaps such that (s, hi) |=S qi(ui). Then there exists a partition{
{ij,1, . . . , ij,kj

} | j ∈ J1 . . mK
}
of J1 . . nK, such that hij,1 , . . . , hij,kj

⊆ hj , for all j ∈ J1 . . mK.

Let γj
def= ∗kj

`=1q`(u`), then (s, hj \ (hij,1 ∪ . . . ∪ hij,kj
)) |=CS γj −−• pj(wj)[t/x], for each

j ∈ J1 . . mK. This observation leads to the inductive definition of the semantics for∗n

i=1qi(ui) −−• p(t), by the rule that occurs in the conclusion of (II), where the substitution
σ : z ⇀ x ∪

⋃n
i=1 yi is used to instantiate4 some of the existentially quantified variables from

the original rule p(x)⇐S ∃z . ψ ∗∗m

j=1pj(wj).

I Example 18. Consider the set S = {p(x)⇐ ∃z1, z2 . x 7→ (z1, z2)∗q(z1)∗q(z2), q(x)⇐ x 7→
(x, x)}. We have (s, h) |=S p(x) with s = {(x, `1)} and h = {(`1, `2, `3), (`2, `2, `2), (`3, `3, `3)}.
The atom q(y) −−• p(x) is defined by the following non-progressing rules (we only consider the
rules corresponding to the case where σ is the identity, since the other rules are redundant):

q(y) −−• p(x) ⇐ ∃z1, z2 . x 7→ (z1, z2) ∗ q(y) −−• q(z1) ∗ emp −−• q(z2) q(y) −−• q(x) ⇐ x l y

q(y) −−• p(x) ⇐ ∃z1, z2 . x 7→ (z1, z2) ∗ emp −−• q(z1) ∗ q(y) −−• q(z2) emp −−• q(x) ⇐ x 7→ (x, x)

The two rules for q(y) −−• p(x) correspond to the two ways of distributing q(y) over q(z1),
q(z2). We have h = h1] h2, with h1 = {(`1, `2, `3), (`2, `2, `2)} and h2 = {(`3, `3, `3)}. It is
easy to check that (s[y ← `3], h1) |=CS q(y) −−• p(x), and (s[y ← `3], h2) |=CS q(y). Note that
we also have (s[y ← `2], h′1) |=CS q(y) −−• p(x), with h′1 = {(`1, `2, `3), (`3, `3, `3)}. y

Having introduced context predicates, the pattern of core formulæ is defined below:

I Definition 19. A core formula ϕ is an instance of the pattern:

∃hx∀¬hy . ∗n

i=1

(∗ki

j=1q
i
j(ui

j) −−• pi(ti)
)
∗∗m

i=n+1t
i
0 7→ (ti1, . . . , tiK) such that:

(i) each variable occurring in y also occurs in an atom in ϕ;
(ii) for every variable x ∈ x, either x ∈ ti \

⋃ki

i=1 ui
j for some i ∈ J1 . . nK, or x = tij, for

some i ∈ Jn+ 1 . . mK and some j ∈ J0 . . KK;
(iii) each term t occurs at most once as t = root(α), where α is an atom of ϕ.
We also define the set of terms roots(ϕ) def= rootslhs(ϕ) ∪ rootsrhs(ϕ), with rootslhs(ϕ) def=
{root(qi

j(ui
j)) | i ∈ J1 . . nK, j ∈ J1 . . kiK} and rootsrhs(ϕ) def= {root(pi(ti)) | i ∈ J1 . . nK} ∪ {ti0 |

i ∈ Jn+ 1 . . mK}.

Note that an unfolding of a core formula using the rules in CS is not necessarily a core
formula, because of the unbounded existential quantifiers and equational atoms that occur in
the rules from CS . Note also that a core formula cannot contain an occurrence of a predicate
of the form p(t) −−• p(t) because otherwise, Condition (iii) of Definition 19 would be violated.

Lemma 20 shows that any symbolic heap is equivalent to an effectively computable finite
disjunction of core formulæ, when the interpretation of formulæ is restricted to injective

4 Note that this instantiation is, in principle, redundant (i.e. the same rules are obtained if dom(σ) = ∅
by chosing appropriate z-associates) but we keep it to simplify the related proofs.

M. Echenim, R. Iosif, and N. Peltier 20:13

structures. For a symbolic heap φ ∈ SHK, we define the set T (φ), recursively on the structure
of φ, implicitly assuming w.l.o.g. that emp ∗ φ = φ ∗ emp = φ:

T (emp) def= {emp} T (t0 7→ (t1, . . . , tK)) def= {t0 7→ (t1, . . . , tK)}
T (p(t)) def= {emp −−• p(t)} T (φ1 ∗ φ2) def= {ψ1 ∗ ψ2 | ψi ∈ T (φi) , i = 1, 2}

T (t1 l t2) def=
{
{emp} if t1 = t2
∅ if t1 6= t2

T (t1 6l t2) def=
{

∅ if t1 = t2
{emp} if t1 6= t2

T (∃x . φ1) def= {∃hx . ψ | ψ ∈ T (φ1)} ∪ {ψ | ψ ∈ T (φ1[t/x]) , t ∈ (fv(φ1) \ {x}) ∪ C}

For instance, if φ = ∃x . p(x, y) ∗ x 6l y and C = {c}, then T (φ) = {∃hx . emp −−•
p(x, y), emp −−• p(c, y)}. Note that T (y 6l y) = ∅, thus emp −−• p(y, y) 6∈ T (φ).

I Lemma 20. Assume S is normalized. Consider an e-restricted normalized symbolic heap
φ ∈ SHK with no occurrences of context predicate symbols, and an injective structure (ṡ, h),
such that dom(ṡ) = fv(φ) ∪ C. We have (ṡ, h) |=S φ iff (ṡ, h) |=CS ψ, for some ψ ∈ T (φ).

Next, we give an equivalent condition for the satisfaction of a context predicate atom,
that relies on an unfolding of a symbolic heap into a core formula:

I Definition 21. A formula ϕ is a core unfolding of a predicate atom ∗n

i=1qi(ui) −−• p(t),
written ∗n

i=1qi(ui) −−• p(t) CS ϕ, iff there exists:
1. a rule ∗n

i=1qi(yi) −−• p(x)⇐CS ∃z . φ, where φ is quantifier free, and
2. a substitution σ = [t/x,u1/y1, . . . ,un/yn] ∪ ζ, ζ ⊆ {(z, t) | z ∈ z, t ∈ t ∪

⋃n
i=1 ui}, such

that ϕ ∈ T (φσ).
A core unfolding of a predicate atom is always a quantifier-free formula, obtained from the
translation (into a disjunctive set of core formulæ) of the quantifier-free matrix of the body
of a rule, in which some of the existentially quantified variables in the rule occur instantiated
by the substitution σ. For instance, the rule emp −−• p(x) ⇐CS ∃y . x 7→ y induces the
core unfoldings emp −−• p(a) S a 7→ a and emp −−• p(a) S a 7→ u, via the substitutions
[a/x, a/y] and [a/x, u/y], respectively. Note that a core unfolding of an atom φ may contain
variables not occurring in φ, corresponding to the existential variables occurring in the rules,
such as the variable u in the previous example.

We now define an equivalence relation, of finite index, on the set of injective structures.
Intuitively, an equivalence class is defined by the set of core formulæ that are satisfied by all
structures in the class (with some additional conditions). First, we introduce the overall set
of core formulæ, over which these equivalence classes are defined:

I Definition 22. Let VP
def= V1

P ∪ V2
P , such that V1

P ∩ V2
P = ∅ and ||Vi

P || = width(P), for
i = 1, 2 and denote by Core(P) the set of core formulæ ϕ such that roots(ϕ) ∩ fv(ϕ) ⊆ V1

P ,
roots(ϕ) \ fv(ϕ) ⊆ V2

P ∪ C and no variable in V1
P is bound in ϕ.

Note that Core(P) is a finite set, because both VP and C are finite. Intuitively, V1
P will

denote “local” variables introduced by unfolding the definitions on the left-hand sides of the
entailments, whereas V2

P will denote existential variables occurring on the right-hand sides.
The sets V1

P and V2
P can be chosen arbitrarily, provided the conditions of Definition 22 are

satisfied. Second, we characterize an injective structure by the set of core formulæ it satisfies:

I Definition 23. For a core formula ϕ = ∃hx∀¬hy . ψ, we denote by WS(ṡ, h, ϕ) the set of
stores ṡ that are injective (x ∪ y)-associates of ṡ, and such that:
(1) (ṡ, h) |=CS ψ,
(2) ṡ(x) ⊆ loc(h), and
(3) ṡ(y) ∩ loc(h) = ∅.

CSL 2021

20:14 Decidable Entailments in Separation Logic with Inductive Definitions

The elements of this set are called witnesses for (ṡ, h) and ϕ.
The core abstraction of an injective structure (ṡ, h) is the set CP(ṡ, h) of core formulæ ϕ ∈

Core(P) for which there exists a witness ṡ ∈ WS(ṡ, h, ϕ) such that ṡ(rootslhs(ϕ))∩dom(h) = ∅.

An injective structure (ṡ, h) satisfies each core formula ϕ ∈ CP(ṡ, h), a fact that is witnessed
by an extension of the store assigning the universally quantified variables random locations
outside of the heap. Further, any core formula ϕ such that (ṡ, h) |= ϕ and rootslhs(ϕ) = ∅
occurs in CP(ṡ, h).

Our entailment checking algorithm relies on the definition of the profile of a symbolic heap.
Since each symbolic heap is equivalent to a finite disjunction of existential core formulæ,
when interpreted over injective normal structures, it is sufficient to consider only profiles of
core formulæ:

I Definition 24. The profile of an entailment problem P = (S,Σ) is the relation F ⊆
Core(P)× 2Core(P) such that, for any core formula φ ∈ Core(P) and any set of core formulæ
F ∈ 2Core(P), we have (φ, F) ∈ F iff F = CP(ṡ, h), for some injective normal CS-model (ṡ, h)
of φ, with dom(ṡ) = fv(φ) ∪ C.

Assuming the existence of a profile, the effective construction of which will be given in Section
6, the following lemma provides an algorithm that decides the validity of P:

I Lemma 25. Let P = (S,Σ) be a normalized e-restricted entailment problem and F ⊆
Core(P)× 2Core(P) be a profile for P. Then P is valid iff, for each sequent φ `P ψ1, . . . , ψn,
each core formula ϕ ∈ T (φ) and each pair (ϕ, F) ∈ F , we have F ∩ T (ψi) 6= ∅, for some
i ∈ J1 . . nK.

The proof relies on Lemma 17, according to which entailments can be tested by considering
only normal models. As one expects, Lemma 20 is used in this proof to ensure that the
translation T (.) of symbolic heaps into core formulæ preserves the injective models.

6 Construction of the Profile Relation

For a given normalized entailment problem P = (S,Σ), we describe the construction of a
profile FP ⊆ Core(P)× 2Core(P), recursively on the structure of core formulæ. We assume
that the set of rules S is progressing, connected and e-restricted. The relation FP is the least
set satisfying the recursive constraints (1), (2), (3) and (4), given in this section. Since these
recursive definitions are monotonic, the least fixed point exists and is unique.

Points-to Atoms. For a points-to atom t0 7→ (t1, . . . , tK), with t0, . . . , tK ∈ V1
P ∪C, we have:

(t0 7→ (t1, . . . , tK), F) ∈ FP , iff F is the set containing t0 7→ (t1, . . . , tK) and all core formulæ

of the form ∀¬hz . ∗ni=1 qi(ui) −−• p(t) ∈ Core(P), where z = (t ∪ u1 ∪ . . . ∪ un) \ ({t0, . . . , tK} ∪ C)

such that emp −−• p(t) CS t0 7→ (t1, . . . , tK) ∗∗ni=1 emp −−• qi(ui)
(1)

For instance, if S = {p(x) ⇐ ∃y, z . x 7→ y ∗ q(y, z), q(x, y) ⇐ x 7→ y}, with V1
P =

{u, v} and V2
P = {z}, then FP contains the pair (u 7→ v, F) with F = {u 7→ v, emp −−•

q(u, v),∀¬hz . q(v, z) −−• p(u)}.

M. Echenim, R. Iosif, and N. Peltier 20:15

Predicate Atoms. Since profiles involve only the core formulæ obtained by the syntactic
translation of a symbolic heap, the only predicate atoms that occur in the argument of a
profile are of the form emp −−• p(t). We consider the constraint:
(emp −−• p(t), F) ∈ FP if (∃hy . ψ, F) ∈ FP , emp −−• p(t) CS ψ ∈ Core(P) and y = fv(ψ)\t (2)

Separating Conjunctions. Computing the profile of a separating conjunction is the most
technical point of the construction. To ease the presentation, we assume the existence of a
binary operation called composition:

I Definition 26. Given a set D ⊆ V1
P∪C, a binary operator ~D : 2Core(P)×2Core(P) → 2Core(P)

is a composition if CP(ṡ, h1)~D CP(ṡ, h2) = CP(ṡ, h), for any injective structure (ṡ, h), such
that
(i) dom(ṡ) ⊆ V1

P ,
(ii) h = h1] h2,
(iii) Fr(h1, h2) ⊆ ṡ(V1

P ∪ C),
(iv) Fr(h1, h2) ∩ dom(h) ⊆ ṡ(D) ⊆ dom(h).
We recall that Fr(h1, h2) = loc(h1) ∩ loc(h2). If S is a normalized set of rules, then for any
core formula φ whose only occurrences of predicate atoms are of the form emp −−• p(t), we
define allocCS (φ) as the homomorphic extension of allocCS (emp −−• p(t)) def= allocS(p(t)) to
φ (see Definition 9). Assuming that S is a normalized set of rules and that a composition
operation ~D (the construction of which will be described below, see Lemma 30) exists, we
define the profile of a separating conjunction:

(φ1 ∗ φ2, add(X1, F1)~D add(X2, F2)) ∈ FP , if (φi, Fi) ∈ FP Xi
def= fv(φ3−i) \ fv(φi), i = 1, 2

allocCS (φ1) ∩ allocCS (φ2) = ∅, D
def= allocCS (φ1 ∗ φ2) ∩ (fv(φ1) ∩ fv(φ2) ∪ C)

add(x, F) def= {∃hy∀¬hz . ψ | ∃hy∀¬hz∀¬hx̂ . ψ[x̂/x] ∈ F}, add({x1, . . . , xn}, F) def= add(x1, . . . add(xn, F))
(3)

The choice of the set D above ensures (together with the restriction to normal models)
that ~D is indeed a composition operator. Intuitively, since the considered models are
normal, every location in the frontier between the heaps corresponding to φ1 and φ2 will
be associated with a variable, thus D denotes the set of allocated locations on the frontier.
Note that, because P is normalized, allocCS (φ1 ∗ φ2) is well-defined. Because the properties
of the composition operation hold when the models of its operands share the same store
(Definition 26), we use the add(x, F) function that adds free variables (mapped to locations
outside of the heap) to each core formula in F .

Existential Quantifiers. Since profiles involve only core formulæ obtained by the syntactic
translation of a symbolic heap (Lemma 25), it is sufficient to consider only existentially
quantified core formulæ, because the syntactic translation T (.) does not produce universal
quantifiers. The profile of an existentially quantified core formula is given by the constraint:

(∃hx
′ . φ[x′/x], rem(x, F)) ∈ FP , if x ∈ fv(φ), x′ ∈ V2

P , x′ not bound in φ, (φ, F) ∈ FP ,

rem(x, F) def= {∃hx̂ . ψ[x̂/x] | ψ ∈ F, x ∈ fv(ψ), x̂ not in ψ} ∩ Core(P) ∪ {ψ | ψ ∈ F, x 6∈ fv(ψ)}

rem({x1, . . . , xn}, F) def= rem(x1, . . . rem(xn, F) . . .)

(4)

Note that x̂ is a fresh variable, which is not bound or free in ψ. In particular, if x ∈ roots(ψ),
then we must have x̂ ∈ V2

P , so that ∃hx̂ . ψ[x̂/x] ∈ Core(P). Similarly the variable x is
replaced by a fresh variable x′ ∈ V2

P in ∃hx
′ . φ[x′/x] to ensure that ∃hx

′ . φ[x′/x] is a core
formula.

CSL 2021

20:16 Decidable Entailments in Separation Logic with Inductive Definitions

The Profile Function. Let FP be the least relation that satisfies the constraints (1), (2),
(3) and (4). We prove that FP is a valid profile for P, in the sense of Definition 24:

I Lemma 27. Given a progressing and normalized entailment problem P = (S,Σ), a
symbolic heap ϕ ∈ SHK with fv(ϕ) ⊆ V1

P , a core formula φ ∈ T (ϕ) and a set of core formulæ
F ⊆ Core(P), we have (φ, F) ∈ FP iff F = CP(ṡ, h), for some injective normal CS-model
(ṡ, h) of φ, with dom(ṡ) = fv(ϕ) ∪ C.

The composition operation ~D works symbolically on core formulæ, by saturating the
separating conjunction of two core formulæ via a modus ponens-style consequence operator.

IDefinition 28. Given formulæ φ, ψ, we write φ ψ if φ = ϕ∗[α −−• p(t)]∗[(β∗p(t)) −−• q(u)]
and ψ = ϕ ∗ [(α ∗ β) −−• q(u)] (up to the commutativity of ∗ and the neutrality of emp) for
some formula ϕ, predicate atoms p(t) and q(u) and conjunctions of predicate atoms α and β.

I Example 29. Consider the structure (s, h) and the rules of Example 18. We have h = h1]h2,
with (s[y ← `3], h1) |=CS q(y) −−• p(x) and (s[y ← `3], h2) |=S q(y), i.e., (s[y ← `3], h2) |=CS

emp −−• q(y), thus (s[y ← `3], h) |=CS q(y) −−• p(x) ∗ emp −−• q(y) emp −−• p(x). y

We define a relation on the set of core formulæ Core(P), parameterized by a set D ⊆ V1
P ∪C:

∃hx1∀¬hy1 . ψ1, ∃hx2∀¬hy2 . ψ2 �D ∃hx∀¬hy . ψ

if ψ1 ∗ ψ2
∗ ψ,x1 ∩ x2 = ∅,x = (x1 ∪ x2) ∩ fv(ψ),y = ((y1 ∪ y2) ∩ fv(ψ)) \ x, rootslhs(ψ) ∩D = ∅.

(5)

The composition operator is defined by lifting the � relation to sets of core formulæ:

F1 ~D F2
def= {ψ | φ1 ∈ F1, φ2 ∈ F2, φ1, φ2 �D ψ} (6)

We show that ~D is indeed a composition, in the sense of Definition 26:

I Lemma 30. Let S be a normalized, progressing, connected and e-restricted set of rules,
D ⊆ V1

P ∪ C be a set of terms and (ṡ, h) be an injective structure, with dom(ṡ) ⊆ V1
P ∪ C.

Let h1 and h2 be two disjoint heaps, such that:
(1) h = h1] h2,
(2) Fr(h1, h2) ⊆ ṡ(V1

P ∪ C) and
(3) Fr(h1, h2) ∩ dom(h) ⊆ ṡ(D) ⊆ dom(h).
Then, we have CP(ṡ, h) = CP(ṡ, h1)~D CP(ṡ, h2).

7 Main Result

In this section, we state the main complexity result of the paper. As a prerequisite, we prove
that the size of the core formulæ needed to solve an entailment problem P is polynomial in
width(P) and the number of such formulæ is simply exponential in width(P) + log(size(P)).

I Lemma 31. Given an entailment problem P, for every formula φ ∈ Core(P), we have
size(φ) = O(width(P)2) and ||Core(P)|| = 2O(width(P)3×log(size(P))).

I Theorem 32. Checking the validity of progressing, connected and e-restricted entailment
problems is 2-EXPTIME-complete.

Proof. 2-EXPTIME-hardness follows from [6]; since the reduction in [6] involves no (dis-
)equality, the considered systems are trivially e-restricted. We now prove 2-EXPTIME-
membership. Let P be an e-restricted problem. By Lemma 11, we compute, in time
size(P) · 2O(width(P)2), an equivalent normalized e-restricted problem Pn of size(Pn) =

M. Echenim, R. Iosif, and N. Peltier 20:17

size(P)× 2O(width(P)2) and width(Pn) = O(width(P)2). We fix an arbitrary set of variables
VPn

= V1
Pn
] V2
Pn

with ||Vi
Pn
|| = width(Pn), for i = 1, 2 and we compute the relation FPn

,
using a Kleene iteration, as explained in Section 6 (Lemma 27). By Lemma 31, if ψ ∈ Core(Pn)
then size(ψ) = O(width(P)2) and if (ψ,F) ∈ FPn then ||F || = 2O(width(Pn)3×log(size(Pn))) =
2O(width(P)8×log(size(P))), hence FP can be computed in 22O(width(P)8×log(size(P))) steps. It thus
suffices to check that each of these steps can be performed in polynomial time w.r.t. Core(Pn)
and size(Pn). This is straightforward for points-to atoms, predicate atoms and existential
formulæ, by iterating on the rules in Pn and applying the construction rules (1), (2) and
(4) respectively. For the disjoint composition, one has to compute the relation ∗, needed
to build the operator ~D, according to (5) and (6). We use again a Kleene iteration. It
is easy to check that φ ψ ⇒ size(ψ) ≤ size(φ), furthermore, one only needs to check
relations of the form φ1 ∗ φ2 ψ with φ1, φ2, ψ ∈ Core(Pn). This entails that the number of
iteration steps is 2O(width(P)8×log(size(P))) and, moreover, each step can be performed in time
polynomial w.r.t. Core(Pn). Finally, we apply Lemma 25 to check that all the entailments in
Pn are valid. This test can be performed in time polynomial w.r.t. ||FPn

|| and size(Pn). J

8 Conclusion and Future Work

We presented a class of SL formulæ built from a set of inductively defined predicates, used to
describe pointer-linked recursive data structures, whose entailment problem is 2-EXPTIME-
complete. This fragment, consisting of so-called e-restricted formulæ, is a strict generalization
of previous work defining three sufficient conditions for the decidability of entailments between
SL formulæ, namely progress, connectivity and establishment [8, 12, 14]. On one hand, every
progressing, connected and established entailment problem can be translated into an e-
restricted problem. On the other hand, the models of e-restricted formulæ form a strict
superset of the models of established formulæ. The proof for the 2-EXPTIME upper bound
for e-restricted entailments leverages a novel technique used to prove the upper bound of
established entailments [12, 14]. A natural question is whether the e-restrictedness condition
can be dropped. We conjecture that this is not the case, and that entailment is undecidable for
progressing, connected and non-e-restricted sets. Another issue is whether the generalization
of symbolic heaps to use guarded negation, magic wand and septraction from [15] is possible
for e-restricted entailment problems. The proof of these conjectures is on-going work.

References
1 Timos Antonopoulos, Nikos Gorogiannis, Christoph Haase, Max I. Kanovich, and Joël Ouak-

nine. Foundations for decision problems in separation logic with general inductive predicates.
In Anca Muscholl, editor, FOSSACS 2014, ETAPS 2014, Proceedings, volume 8412 of Lecture
Notes in Computer Science, pages 411–425, 2014.

2 Josh Berdine, Byron Cook, and Samin Ishtiaq. Slayer: Memory safety for systems-level
code. In Ganesh Gopalakrishnan andShaz Qadeer, editor, Computer Aided Verification - 23rd
International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings,
volume 6806 of LNCS, pages 178–183. Springer, 2011.

3 Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter Hooimeijer, Martino
Luca, Peter W. O’Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma Rodriguez. Moving
fast with software verification. In Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi,
editors, NASA Formal Methods - 7th International Symposium, NFM 2015, Pasadena, CA,
USA, April 27-29, 2015, Proceedings, volume 9058 of LNCS, pages 3–11. Springer, 2015.

4 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990.

CSL 2021

20:18 Decidable Entailments in Separation Logic with Inductive Definitions

5 Kamil Dudka, Petr Peringer, and Tomás Vojnar. Predator: A practical tool for checking
manipulation of dynamic data structures using separation logic. In Ganesh Gopalakrishnan
and Shaz Qadeer, editors, Computer Aided Verification - 23rd International Conference, CAV
2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of LNCS, pages 372–378.
Springer, 2011.

6 Mnacho Echenim, Radu Iosif, and Nicolas Peltier. Entailment checking in separation logic
with inductive definitions is 2-exptime hard. In Elvira Albert and Laura Kovács, editors,
LPAR 2020: 23rd International Conference on Logic for Programming, Artificial Intelligence
and Reasoning, Alicante, Spain, May 22-27, 2020, volume 73 of EPiC Series in Computing,
pages 191–211. EasyChair, 2020. URL: https://easychair.org/publications/paper/DdNg.

7 J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag New York, Inc.,
2006.

8 Radu Iosif, Adam Rogalewicz, and Jiri Simacek. The tree width of separation logic with
recursive definitions. In Proc. of CADE-24, volume 7898 of LNCS, 2013.

9 Radu Iosif, Adam Rogalewicz, and Tomás Vojnar. Deciding entailments in inductive separation
logic with tree automata. In Franck Cassez and Jean-François Raskin, editors, ATVA 2014,
Proceedings, volume 8837 of Lecture Notes in Computer Science, pages 201–218. Springer,
2014.

10 Samin S Ishtiaq and Peter W O’Hearn. Bi as an assertion language for mutable data structures.
In ACM SIGPLAN Notices, volume 36, pages 14–26, 2001.

11 Christina Jansen, Jens Katelaan, Christoph Matheja, Thomas Noll, and Florian Zuleger.
Unified reasoning about robustness properties of symbolic-heap separation logic. In Hongseok
Yang, editor, Programming Languages and Systems (ESOP’17), pages 611–638. Springer Berlin
Heidelberg, 2017.

12 Jens Katelaan, Christoph Matheja, and Florian Zuleger. Effective entailment checking for
separation logic with inductive definitions. In Tomás Vojnar and Lijun Zhang, editors, TACAS
2019, Proceedings, Part II, volume 11428 of Lecture Notes in Computer Science, pages 319–336.
Springer, 2019.

13 Koji Nakazawa, Makoto Tatsuta, Daisuke Kimura, and Mitsuru Yamamura. Cyclic Theorem
Prover for Separation Logic by Magic Wand. In ADSL 18 (First Workshop on Automated
Deduction for Separation Logics), July 2018. Oxford, United Kingdom.

14 Jens Pagel, Christoph Matheja, and Florian Zuleger. Complete entailment checking for
separation logic with inductive definitions, 2020. arXiv:2002.01202.

15 Jens Pagel and Florian Zuleger. Beyond symbolic heaps: Deciding separation logic with
inductive definitions. In LPAR-23, volume 73 of EPiC Series in Computing, pages 390–408.
EasyChair, 2020. URL: https://easychair.org/publications/paper/VTGk.

16 J.C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In Proc. of
LICS’02, 2002.

17 Neil Robertson and P.D Seymour. Graph minors. III. Planar tree-width. Journal of Combina-
torial Theory, Series B, 36(1):49–64, 1984.

https://easychair.org/publications/paper/DdNg
http://arxiv.org/abs/2002.01202
https://easychair.org/publications/paper/VTGk

Church’s Thesis and Related Axioms
in Coq’s Type Theory
Yannick Forster
Universität des Saarlandes, Saarland Informatics Campus, Saarbrücken, Germany
forster@cs.uni-saarland.de

Abstract
“Church’s thesis” (CT) as an axiom in constructive logic states that every total function of type
N→ N is computable, i.e. definable in a model of computation. CT is inconsistent both in classical
mathematics and in Brouwer’s intuitionism since it contradicts weak Kőnig’s lemma and the fan
theorem, respectively. Recently, CT was proved consistent for (univalent) constructive type theory.

Since neither weak Kőnig’s lemma nor the fan theorem is a consequence of just logical axioms or
just choice-like axioms assumed in constructive logic, it seems likely that CT is inconsistent only
with a combination of classical logic and choice axioms. We study consequences of CT and its
relation to several classes of axioms in Coq’s type theory, a constructive type theory with a universe
of propositions which proves neither classical logical axioms nor strong choice axioms.

We thereby provide a partial answer to the question as to which axioms may preserve computa-
tional intuitions inherent to type theory, and which certainly do not. The paper can also be read as
a broad survey of axioms in type theory, with all results mechanised in the Coq proof assistant.

2012 ACM Subject Classification Theory of computation → Constructive mathematics; Theory of
computation → Type theory

Keywords and phrases Church’s thesis, constructive type theory, constructive reverse mathematics,
synthetic computability theory, Coq

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.21

Supplementary Material https://github.com/uds-psl/churchs-thesis-coq

Acknowledgements I want to thank Gert Smolka, Andrej Dudenhefner, Dominik Kirst, and Domin-
ique Larchey-Wendling for discussions and feedback on drafts of this paper. Special thanks go to
the anonymous reviewers for their helpful ideas, constructive comments, and editorial suggestions.

1 Introduction

The intuition that the concept of a constructively defined function and a computable function
can be identified is prevalent in intuitionistic logic since the advent of recursion theory and
is maybe most natural in constructive type theory, where computation is primitive.

A formalisation of the intuition is the axiom CT (“Church’s thesis”), stating that every
function is computable, i.e. definable in a model of computation. CT is well-studied as part
of Russian constructivism [34] and in the field of constructive reverse mathematics [11,25].

CT allows proving results of recursion theory without extensive references to a model of
computation, since one can reason with functions instead. While such synthethic developments
of computability theory [1, 7, 37] can be carried out in principle without assuming any
axioms [14], assuming CT allows stronger results: CT essentially provides a universal machine
w.r.t. all functions in the logic, allowing to show the non-existence of certain deciding
functions – whose existence is logically independent with no axioms present.

It is easy to see that CT is in conflict with traditional classical mathematics, since the
law of excluded middle LEM together with a form of the axiom of countable choice ACN,N
allows the definition of non-computable functions [46]. This observation can be sharpened
in various ways: To define a non-computable function directly, the weak limited principle
of omniscience WLPO and the countable unique choice axiom AUCN,B suffice. Alternatively,

© Yannick Forster;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 21; pp. 21:1–21:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8676-9819
mailto:forster@cs.uni-saarland.de
https://doi.org/10.4230/LIPIcs.CSL.2021.21
https://github.com/uds-psl/churchs-thesis-coq
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Church’s Thesis and Related Axioms in Coq’s Type Theory

Kleene noticed that there is a decidable tree predicate with infinitely many nodes but no
computable infinite path [28]. If functions and computable functions are identified via CT, a
Kleene tree is in conflict with weak Kőnig’s lemma WKL and with Brouwer’s fan theorem.

It is however well-known that CT is consistent in Heyting arithmetic with Markov’s
principle MP [27] which given CT states that termination of computation is stable under
double negation. Recently, Swan and Uemura [43] proved that CT is consistent in univalent
type theory with propositional truncation and MP.

While predicative Martin-Löf type theory as formalisation of Bishop’s constructive
mathematics proves the full axiom of choice AC, univalent type theory usually only proves
the axiom of unique choice AUC. But since AUCN,B suffices to show that LEM implies ¬CT,
classical logic is incompatible with CT in both predicative and in univalent type theory.

In the (polymorphic) calculus of (cumulative) inductive constructions, a constructive
type theory with a separate, impredicative universe of propositions as implemented by the
proof assistant Coq [44], none of AC, AUC, and AUCN,B are provable. This is because large
eliminations on existential quantifications are not allowed in general [35], meaning one can
not recover a function in general from a proof of ∀x.∃y. Rxy. However, choice axioms as well
al LEM can be consistently assumed in Coq’s type theory [47]. Furthermore, it seems likely
that the consistency proof for CT in [43] can be adapted for Coq’s type theory.

This puts Coq’s type theory in a special position: Since to disprove CT one needs a (weak)
classical logical axiom and a (weak) choice axiom, assuming just classical logical axioms
or just choice axioms might be consistent with CT. This paper is intended to serve as a
preliminary report towards this consistency question, approximating it by surveying results
from intuitionistic logic and constructive reverse mathematics in constructive type theory
with a separate universe of propositions, with a special focus on CT and other axioms based
on notions from computability theory. Specifically, we discuss these propositional axioms:

computational enumerability axioms (EA,EPF) and Kleene trees (KT) in Section 5
extensionality axioms like functional extensionality (Fext), propositional extensionality
(Pext), and proof irrelevance (PI) in Section 6
classical logical axioms like the principle of excluded middle (LEM, WLEM), independence
of premises (IP), and limited principles of omniscience (LPO, WLPO, LLPO) in Section 7
axioms of Russian constructivism like Markov’s principle (MP) in Section 8
choice axioms like the axiom of choice (AC), countable choice (ACC, ACN,N, ACN,B),
dependent choice (ADC), and unique choice (AUC,AUCN,B) in Section 9
axioms on trees like weak Kőnig’s lemma (WKL) and the fan theorem (FAN) in Section 10
axioms regarding continuity and Brouwerian principles (Homeo, Cont, WC-N) in Section 11

The following hyper-linked diagram displays provable implications and incompatible axioms.

DNE LEM DGP WLEM ADC AC

MP LPO WLPO LLPO ACC ACN→N,N

Homeo(BN,NN) Homeo(NN,BN) WKL ACN,N WC-N

KT FAN AUCN,B

EPF EA CT

Fext

MP

PFP S-ACN,B

Fext

Cont

WLPO

Figure 1 Overview of results. → are implications, denotes incompatible axioms.

Y. Forster 21:3

All results in this paper are mechanised in the Coq proof assistant and the proof scripts
are accessible at https://github.com/uds-psl/churchs-thesis-coq. The statements in
this document are hyperlinked to their Coq proof, indicated by a -symbol.

Outline. Section 2 establishes necessary preliminaries regarding Coq’s type theory and intro-
duces the notions of (synthetic) decidability, enumerability, and semi-decidability. Section 3
introduces CT formally, together with the related synthetic axioms EA and EPF. Section 4
contains undecidability proofs based on CT. Section 5 introduces decidable binary trees and
constructs a Kleene tree. The connection of CT to the classes of axioms as listed above is
surveyed in Sections 6 to 11. Section 12 contains concluding remarks.

2 Preliminaries

We work in the polymorphic calculus of cumulative inductive constructions as implemented by
the Coq proof assistant [44], which we will refer to as “Coq’s type theory”. The calculus is a
constructive type theory with a cumulative hierarchy of types Ti (where i is a natural number,
but we leave out the index from now on), an impredicative universe of propositions P ⊆ T,
and inductive types in every universe. The inductive types of interest in this paper are

n : N ::= 0 | Sn b : B ::= false | true
o : OA ::= None | Some a where a : A l : LA ::= [] | a :: l where a : A
A+B := inl a | inr b where a : A and b : B A×B := (a, b) where a : A and b : B

One can easily construct a pairing function 〈_ , _〉 : N→ N→ N and for all f : N→ N→ X

an inverse construction λ〈n,m〉. fnm of type N→ X s.t. (λ〈n,m〉. fnm)〈n,m〉 = fnm.
We write n =B m for the boolean equality decider on N, and ¬B for boolean negation.
If l : LA then l[n] : OA denotes the n-th element of l. If n < |l| we can assume l[n] : A.
We write ∀x : X. Ax for both dependent functions and logical universal quantification, ∃x :

X. Ax where A : X → P for existential quantification and Σx : X. Ax where A : X → T for
dependent pairs, with elements (x, y). Dependent pairs can be eliminated into arbitrary types,
i.e. there is an elimination principle of type ∀p : (Σx. Ax)→ T. (∀(x : X)(y : Ax). p(x, y))→
∀(s : Σx. Ax). ps. We call such a principle eliminating a proposition into arbitrary types
a large elimination principle, following the terminology “large elimination” for Coq’s case
analysis construct match [35]. Crucially, Coq’s type theory proves a large elimination principle
for the falsity proposition ⊥, i.e. explosion applies to arbitrary types: ∀A : T. ⊥ → A. In
contrast, existential quantification can only be eliminated for p : (∃x. Ax) → P, but the
following more specific large elimination principle is provable:

Lemma 1. There is a guarded minimisation function µN of the following type:

µN : ∀f : N→ B. (∃n. fn = true)→ Σn. fn = true ∧ ∀m. fm = true→ m ≥ n.

There are various implementations of such a minimisation function in Coq’s Standard
Library.1 One uses a (recursive) large elimination principle for the accessibility predicate, see
e.g. [32, §2.7, §4.1, §4.2] and [6, §14.2.3, §15.4] for a contemporary overview how to implement
large eliminations principles. We will not need any other large elimination principle in this
paper. A restriction of large elimination in general is necessary for consistency of Coq [8]. As
a by-product, the computational universe T is separated from the logical universe P, allowing
classical logic in P to be assumed while the computational intuitions for T remain intact.

1 The idea was conceived independently by Benjamin Werner and Jean-François Monin in the 1990s.

CSL 2021

https://github.com/uds-psl/churchs-thesis-coq
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.axioms.html#mu_nat
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.axioms.html#mu_nat
https://coq.inria.fr/library/Coq.Logic.ConstructiveEpsilon.html
https://coq.inria.fr/library/Coq.Logic.ConstructiveEpsilon.html

21:4 Church’s Thesis and Related Axioms in Coq’s Type Theory

partA : T partial values over A : T
!= : partA→ A→ P definedness of values x

!= a1 → x
!= a2 → a1 = a2

(x : partA) ↓ : P x ↓ := ∃a. x != a

≡part A : partA→ partA→ P equivalence x ≡part A y := (∀a. x != a↔ y
!= a)

ret : A→ partA monadic return ret a != a

undef : partA undefined value @a.undef != a

>>=: partA→ (A→ partB)→ partB monadic bind x >>= f
!= b↔ (∃a. x != a ∧ fa != b)

µ : (N→ B)→ partN unbounded search µf
!= n↔ fn = true∧

∀m < n. fm = false
seval : partA→ N→ OA step-indexed evaluation x

!= a↔ ∃n. sevalxn = Some a

Figure 2 A monad for partial values.

2.1 Partial Functions
All definable functions in type theory are total by definition. To model partiality, one often
resorts to functional relations R : A→ B → P or step-indexed functions A→ N→ OB, as
for instance pioneered by Richman [37] in constructive logic, see e.g. [12] for a comprehensive
overview.

For our purpose, we simply assume a type partA for A : T and a definedness relation
!= : partA → A → P and write A 9 B for A → partB. We assume monadic structure
for part (ret and >>=), an undefined value (undef), a minimisation operation (µ), and a
step-indexed evaluator (seval). The operations and their specifications are listed in Figure 2.

2.2 Equivalence relations on functions
Besides intensional equality (=), we will consider other more extensional equivalence re-
lations in this paper. For instance, extensional equality of functions f, g (∀x. fx = gx),
extensional equivalence of predicates p, q (∀x. px↔ qx), or range equivalence of functions
f, g (∀x. (∃y. fy = x)↔ (∃y. gy = x)). We will denote all of these equivalence relations with
the symbol ≡ and indicate what is meant by an index. For discrete X (e.g. N, ON, LB, . . .),
≡

X
denotes equality, ≡P denotes logical equivalence, ≡

A→B
denotes an extensional lift of ≡

B
,

≡
A→P denotes extensional equivalence, and ≡ran denotes range equivalence.
Assuming the existence of surjections A → (A → B) may or may not be consistent,

depending on the particular equivalence relation. We introduce the notion of surjection w.r.t.
≡

B
as ∀b : B. ∃a : A.fa ≡

B
b. We call a function f : A→ B an injection w.r.t. ≡

A
and ≡

B

if ∀a1a2. fa1 ≡B
fa2 → a1 ≡A

a2 and a bijection if it is an injection and surjection.
One formulation of Cantor’s theorem is that there is no surjection N→ (N→ N) w.r.t. =.

However, the same proof can be used for the following strengthening of Cantor’s theorem:

Fact 2 (Cantor). There is no surjection N→ (N→ N) w.r.t. ≡N→N .

2.3 Decidability, Semi-decidability, Enumerability, Reducibility
We define decidability, (co-)semi-decidability, and enumerability for predicates p : X → P:

Dp := ∃f : X → B. ∀x. px↔ fx = true (“p is decidable”)
Sp := ∃f : X → N→ B. ∀x. px↔ ∃n.fxn = true (“p is semi-decidable”)
Sp := ∃f : X → N→ B. ∀x. px↔ ∀n.fxn = false (“p is co-semi-decidable”)
Ep := ∃f : N→ OX. ∀x. px↔ ∃n.fn = Somex (“p is enumerable”)

https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.axioms.html#Cantor
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.axioms.html#Cantor

Y. Forster 21:5

Although all notions are defined on unary predicates, we use them on n-ary relations via
(implicit) uncurrying. We write p for the complement λx. ¬px of p. We call a type X discrete
if its equality relation =X is decidable and enumerable if the predicate λx.> is enumerable.

Traditionally, propositions P s.t. P ↔ (∃n. fn = true) for some f are often called Σ0
1

or “simply existential”, and P s.t. P ↔ (∀n. fn = false) are called Π0
1 or “simply universal”.

Semi-decidable predicates are pointwise Σ0
1, and co-semi-decidable predicates are pointwise

Π0
1. Note that neither Sp→ Sp nor the converse is provable, only the following connections:

Lemma 3. The following hold:
1. Decidable predicates are semi-decidable and co-semi-decidable.
2. Semi-decidable predicates on enumerable types are enumerable.
3. Enumerable predicates on discrete types are semi-decidable.
4. The complement of semi-decidable predicates is co-semi-decidable.

Lemma 4. Decidable predicates are closed under complementation. Decidable, enumerable,
and semi-decidable predicates are closed under (pointwise) conjunction and disjunction.

3 Church’s thesis in type theory

Church’s thesis for total functions (CT) states that every function of type N→ N is algorithmic.
Thus CT is a relativisation of the function space N → N w.r.t. a given (Turing-complete)
model of computation, reminiscent of the axiom V = L in set theory [29].

We first define CT by abstracting away from a concrete model of computation and work
with an abstract model of computation, consisting of an abstract computation function Tcxn
(with T : N → N → N → ON), assigning to a code c (to be interpreted as the code of a
partial recursive function in a model of computation), an input number x, and a step index n
an output number y if the code terminates in n steps on x with value y. The function Tcx is
assumed to be monotonic, i.e. increasing the step index does not change the potential value:

Tcxn1 = Some y → ∀n2 ≥ n1. T cxn2 = Some y.

Based on T we define a computability relation between c : N and f : N→ N:

c ∼ f := ∀x.∃n. Tcxn = Some (fx).

Since T is monotonic, ∼ is extensional, i.e. n ∼ f1 → n ∼ f2 → ∀x. f1x = f2x. We define
Church’s thesis for total functions relative to an abstract computation function T :

CTT := ∀f : N→ N.∃n : N. n ∼ f

Note that CTT is clearly not consistent for every choice of T . If we write CT without index,
we mean T to be the step-indexed evaluation function of a concrete, Turing-complete model
of computation. For the mechanisation we could for instance pick the equivalent models of
Turing machines [17], λ-calculus [21], µ-recursive functions [30], or register machines [18, 31].
It seems likely that the consistency proof of CT in [43] can be adapted to Coq.

Since specific properties of the model of computation are not needed, we develop and
mechanise all results of this paper parameterised in an arbitrary T . Thus, we could also
state all results in terms of a fully synthetic Church’s thesis axiom ΣT.CTT .

I Fact 5. CT→ ΣT.CTT

Note that the implication is strict: An abstract computation function does not rule out
oracles for e.g. the halting problem of Turing machines, whereas CT – with T defined in
terms of a standard, Turing-complete model of computation – proves the undecidability of
the Turing machine halting problem.

CSL 2021

https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Synthetic.SemiDecidabilityFacts.html#decidable_semi_decidable
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Synthetic.SemiDecidabilityFacts.html#decidable_semi_decidable
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Synthetic.SemiDecidabilityFacts.html#decidable_semi_decidable
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Synthetic.EnumerabilityFacts.html#semi_decidable_enumerable
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Synthetic.EnumerabilityFacts.html#enumerable_semi_decidable
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Synthetic.SemiDecidabilityFacts.html#sdec_co_sdec_comp
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Synthetic.DecidabilityFacts.html#dec_compl
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Synthetic.DecidabilityFacts.html#dec_compl

21:6 Church’s Thesis and Related Axioms in Coq’s Type Theory

3.1 Bauer’s enumerability axiom EA
In proofs of theorems with CTT as assumption, T can be used as replacement for a universal
machine. Bauer [1] develops computability theory synthetically using the axiom “the set
of enumerable sets of natural numbers is enumerable”, which is equivalent to ΣT.CTT and
thus strictly weaker than CT, but can also be used in place of a universal machine. We
introduce Bauer’s axiom in our setting as EA′ and immediately introduce a strengthening EA
s.t. (ΣT.CTT)↔ EA and EA→ EA′:

EA′ := ΣW : N→ (N→ P).∀p : N→ P. Ep↔ ∃c. Wc ≡N→P p

That is, EA′ states that there is an enumerator W of all enumerable predicates, up to exten-
sionality. In contrast, EA poses the existence of an enumerator of all possible enumerators,
up to range equivalence:

EA := Σϕ : N→ (N→ ON).∀f : N→ ON.∃c. ϕc ≡ran f

That is, ϕ is a surjection w.r.t. range equivalence f ≡ran g, where ϕc ≡ran f ↔
∀x.(∃n.ϕcn = Somex)↔ (∃n.fn = Somex).

Note the two different roles of natural numbers in the two axioms: If we would consider
predicates over a general type X we would have W : N→ (X → P) and ϕ : N→ (N→ OX),
i.e. Wc would be an enumerable predicate and ϕc an enumerator of a predicate X → P.

We start by proving CTT → EA by constructing ϕ from an arbitrary T :

ϕc〈n,m〉 := if Tcnm is Somex then Sx else 0

Lemma 6. If CTT then ∀f : N→ ON.∃c. ϕc ≡ran f .

Proof. The direction from left to right to establish ≡ran is based on the fact that if Tcxn1 =
Some y1 and Tcxn2 = Some y2 then y1 = y2. The other direction is straightforward. J

Theorem 7. ∀T. CTT → EA

We now prove EA→ EA′ by constructing W from ϕ: Wcx := ∃n.ϕcn = Somex.

Lemma 8. If EA then ∀p : N→ P. Ep↔ ∃c. Wc ≡N→P p.

Proof. Ep↔ ∃f : N→ ON.∀x. px↔ ∃n. fn = Somex (def. E)
↔ ∃c.∀x. px↔ ∃n. ϕcn = Somex (EA)
↔ ∃c.Wc ≡N→P p (def. ≡N→P) J

Theorem 9. EA→ EA′

3.2 Richman’s Enumerability of Partial Functions EPF
Richman [37] introduces a different purely synthetic axiom as replacement for a universal
machine and assumes that “partial functions are countable”, which is equivalent to EA.

EPF := Σe : N→ (N 9 N).∀f : N 9 N.∃n. en ≡N9N f

Theorem 10. EPF→ EA

Proof. Let e be given. ϕc〈n,m〉 := seval (ecn) m is the wanted enumerator. J

https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.axioms.html#CT_to_EA'
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.axioms.html#CT_to_EA'
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.axioms.html#CT_to_EA
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.axioms.html#CT_to_EA
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.axioms.html#EA_to_EA'_prf
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.axioms.html#EA_to_EA'_prf
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.axioms.html#EA_to_EA'
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.axioms.html#EA_to_EA'
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.axioms.html#EPF_to_EA
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.axioms.html#EPF_to_EA

Y. Forster 21:7

Theorem 11. EA→ EPF

Proof. Let ϕ be given. Then

ecx := (µ (λn. if ϕcn is Some 〈x′, y′〉 then x =B x
′ else false)) >>=

λn. if ϕcn is Some 〈x′, y′〉 then ret y′ else undef

is the wanted enumerator. J

EPF implies the fully synthetic version of CT:

Lemma 12. EPF→ ΣT. CTT

Proof. Assume e : N→ (N 9 N) surjective w.r.t. ≡N9N . Define Tcxn := seval (ecx) n. It is
straightforward to prove that T is monotonic and that CT holds. J

The axiom EPF can be weakened to cover just boolean functions:

EPFB := Σe : N→ (N 9 B).∀f : N 9 B.∃n. en ≡N9B f

Lemma 13. EPF→ EPFB

The reverse direction seems not to be provable.

4 Halting Problems

For this section we assume EA, i.e. ϕ : N → (N → ON) s.t. ∀f : N → ON.∃c. ϕc ≡ran f .
Recall Lemma 8 stating that ∀p : N→ P. Ep↔ ∃c. Wc ≡N→P p.

We define K0n :=Wnn and prove our first negative result:

Lemma 14. ¬EK0

Proof. Assume E(λn.¬Wnn). By specification of W there is c s.t. ∀n.Wcn ↔ ¬Wnn. In
particular, Wcc↔ ¬Wcc, which is contradictory. J

Corollary 15. ¬DK0, ¬DK0, ¬DW and ¬DW.

Intuitively, K0 can be seen as analogous to the self-halting problem: K0n states that n
considered as an enumerator outputs itself in its range (rather than halting on itself).

It is also easy to show that W and thus K0 are enumerable:

Lemma 16. EW

Proof. Via f〈n,m〉 := if ϕnm is Some k then Some (n, k) else None. J

Corollary 17. EK0

Since Bauer [1] bases his development on EA′, he needs the axiom of countable choice to
prove that W is enumerable, whereas EA allows an axiom-free proof of this fact.

Another well-known traditional result is that a problem is enumerable if and only if it
many-one reduces to the halting problem K, which can be proved without reference to EA.

p �m q := ∃f : X → Y.∀x. px↔ q(fx) K(f : N→ B) := ∃n. fn = true

Fact 18. For all p : X → P, p �m K↔ Sp.

CSL 2021

https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.axioms.html#EA_to_EPF
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.axioms.html#EA_to_EPF
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.axioms.html#EPF_to_CT
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.axioms.html#EPF_to_CT
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.axioms.html#EPF_to_EPF_bool
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.axioms.html#EPF_to_EPF_bool
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.halting.html#K0_enumerable
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.halting.html#K0_enumerable
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.halting.html#K0_undec
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.halting.html#K0_undec
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.halting.html#enumerable_W
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.halting.html#enumerable_W
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.halting.html#K0_enum
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.halting.html#K0_enum
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Synthetic.reductions.html#semi_decidable_red_K_iff
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Synthetic.reductions.html#semi_decidable_red_K_iff

21:8 Church’s Thesis and Related Axioms in Coq’s Type Theory

Corollary 19. SK
Corollary 20. For all p : N→ P, p �m K↔ Ep.
Using the non-enumerability of K0 we can now prove our first negative result by reduction:

Corollary 21. K0 �m K, and thus ¬EK, ¬DK, and ¬DK.
We can also define KN := λf : N→ N. ∃n. fn 6= 0:

Fact 22. K �m KN, KN �m K, KN ≡(N→N)→P λf. ∀n. fn = 0, and thus ¬D(λf. ∀n. fn = 0).

5 Kleene Trees

In a lecture in 1953 Kleene [28] gave an example how the axioms of Brouwer’s intuitionism fail
if all functions are considered computable by constructing an infinite decidable binary tree
with no computable infinite path. The existence of such a Kleene tree (KT) is in contradiction
to Brouwer’s fan theorem, which we will discuss later. We prove that EPFB implies KT.

For this purpose, we call a predicate τ : LB→ P a (decidable) binary tree if
(a) τ is decidable: ∃f.∀u.τu↔ fu = true
(b) τ is non-empty: ∃u.τu
(c) τ is prefix-closed: If τu2 and u1 v u2 then τu1 (where u1 v u2 := ∃u′. u2 = u1 ++ u′).

We will just speak of trees instead of decidable binary trees in the following.

Fact 23. For every tree τ , τ [] holds.

Furthermore, a decidable binary tree τ . . .
. . . is bounded if ∃n.∀u.|u| ≥ n→ ¬τu
. . . is well-founded if ∀f.∃n.¬τ [f0, . . . , fn]
. . . has an infinite path if ∃f.∀n.τ [f0, . . . , fn]

Fact 24. A tree is not bounded if and only if it is infinite, defined as ∀n.∃u. |u| ≥ n ∧ τu.

Fact 25. Every bounded tree is well-founded and every tree with an infinite path is infinite.

Note that both implications are strict: In our setting we cannot prove bounded-
ness from well-foundedness nor obtain an infinite path from infiniteness, as can
be seen from a Kleene tree:

KT := There exists an infinite, well-founded, decidable binary tree.

We follow Bauer [2] to construct a Kleene tree.

Lemma 26. Given EPFB one can construct d : N 9 B s.t. ∀f : N→ B.∃nb. dn != b∧fn 6= b.

Proof. Define dn := enn >>= λb. ret (¬Bb). J

We define τKu := ∀n < |u|.∀x. seval (dn) |u| = Somex→ u[n] = Somex. Intuitively, τK

contains all paths u = [b0, b1, . . . , bn] which might be prefixes of d given n as step index, i.e.
where n does not suffice to verify that d is no prefix of d. An infinite path through τK would
be a totalisation of d.

Theorem 27. EPFB → KT
Proof. We show that τK is a Kleene tree. That τK is a decidable tree is immedi-
ate. To show that τK is infinite let k be given. We define f0 := [] and f(Sn) :=
fn ++ [if Dkn is Somex then x else false]. We have |fn| = n. In particular, |fk| ≥ k

and τK(fk).
For well-foundedness let f : N → B be given. There is n s.t. dn != b and fn 6= b. Thus

there is k s.t. seval (dn) k = Some b. Now ¬τKu for u := [f0, . . . , f(n+ k)]. J

https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.halting.html#semi_decidable_K
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.halting.html#semi_decidable_K
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.halting.html#enumerable_red_K_iff
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.halting.html#enumerable_red_K_iff
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.halting.html#K0_red_K
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.halting.html#K0_red_K
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.halting.html#K_nat_equiv
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.halting.html#K_nat_equiv
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#tree_nil
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#tree_nil
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#not_bounded_infinite_iff
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#not_bounded_infinite_iff
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#bounded_to_wellfounded
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#bounded_to_wellfounded
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#diag
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#diag
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#T_K
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#T_K

Y. Forster 21:9

6 Extensionality Axioms

Coq’s type theory is intensional, i.e. f ≡
A→B

g and f = g do not coincide. Extensionality
properties can however be consistently assumed as axioms. In this section we briefly discuss
the relationship between CT and functional extensionality Fext, propositional extensionality
Pext and proof irrelevance PI, defined as follows:

Fext := ∀AB.∀fg : A→ B. (∀a.fa = ga)→ f = g

Pext := ∀PQ : P. (P ↔ Q)→ P = Q

PI := ∀P : P.∀(x1x2 : P). x1 = x2

Fact 28. Pext→ PI

Swan and Uemura [43] prove that intensional predicative Martin-Löf type theory remains
consistent if CT, the axiom of univalence, and propositional truncation are added. Since
functional extensionality and propositional extensionality are a consequence of univalence,
and propositions are semantically defined as exactly the irrelevant types, Fext, Pext, and PI
hold in this extension of type theory. It seems likely that the consistency result can then be
adapted to Coq’s type theory, yielding a consistency proof for CT with Fext, Pext, and PI.

It is however crucial to formulate CT using ∃ instead of Σ. The formulation as CTΣ :=
∀f. Σn. n ∼ f is inconsistent with functional extensionality Fext, as already observed in [46].

Lemma 29. CTΣ → Fext→ ⊥

Proof. Since CTΣ implies EA, it suffices to prove that λf.∀n. fn = 0 is decidable by Fact 22.
Assume G : ∀f. Σc. c ∼ f and let Ff := if π1(Gf) = π1(G(λx.0)) then true else false.

If Ff = true, then π1(Gf) = π1(G(λx.0)) and by extensionality of ∼, fn = (λx.0)n = 0.
If ∀n. fn = 0, then f = λx. 0 by Fext, thus π1(Gf) = π1(G(λx. 0)) and Ff = true. J

7 Classical Logical Axioms

In this section we consider consequences of the law of excluded middle LEM. Precisely,
besides LEM, we consider the weak law of excluded middle WLEM, the Gödel-Dummett-
Principle DGP,2 and the principle of independence of premises IP, together with their respective
restriction of propositions to the satisfiability of boolean functions, resulting in the limited
principle of omniscience LPO, the weak limited principle of omniscience WLPO, and the
lesser limited principle of omniscience LLPO.

LEM := ∀P : P. P ∨ ¬P LPO := ∀f : N→ B. (∃n. fn = true) ∨ ¬(∃n. fn = true)
WLEM := ∀P : P. ¬¬P ∨ ¬P WLPO := ∀f : N→ B. ¬¬(∃n. fn = true) ∨ ¬(∃n. fn = true)

DGP := ∀PQ : P.(P → Q) ∨ (Q→ P) LLPO := ∀fg : N→ B. ((∃n. fn = true)→ (∃n. gn = true))
∨ ((∃n. gn = true)→ (∃n. fn = true))

IP := ∀P : P.∀q : N→ P. (P → ∃n.qn)→ ∃n. P → qn

Fact 30. LEM→ DGP, DGP→WLEM, LEM→ IP.

The converses are likely not provable: Diener constructs a topological model where DGP
holds but not LEM, and one where WLEM holds but not DGP [11, Proposition 8.5.3]. Pédrot
and Tabareau [36] construct a syntactic model where IP holds, but LEM does not.

2 We follow Diener [11] in using the abbreviation DGP instead of GDP.

CSL 2021

https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#Pext_to_PI
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#Pext_to_PI
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#CT_Sigma_wrong
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#CT_Sigma_wrong
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#LEM_to_DGP
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#LEM_to_DGP

21:10 Church’s Thesis and Related Axioms in Coq’s Type Theory

Fact 31. LPO→WLPO and WLPO→ LLPO.

The converses are likely not provable: Both implications are strict over IZF with dependent
choice [23, Theorem 5.1].

LPO is Σ0
1-LEM and WLPO is simultaneously Σ0

1-WLEM and Π0
1-LEM, due to the following:

Fact 32. (∀n.fn = false)↔ ¬(∃n.fn = true)

Both can also be formulated for predicates:

Fact 33. The following equivalences hold:
1. LPO ↔ ∀X.∀(p : X → P). Sp→ ∀x. px ∨ ¬px
2. WLPO↔ ∀X.∀(p : X → P). Sp→ ∀x.¬px ∨ ¬¬px
3. WLPO↔ ∀X.∀(p : X → P). Sp→ ∀x. px ∨ ¬px

In our formulation, LLPO is the Gödel-Dummet rule for Σ0
1 propositions. It can also be

formulated as Σ0
1 or S De Morgan rule (2, 3 in the following Lemma), S-DGP (4), or as a

double negation elimination principle on S relations into booleans (5):

Lemma 34. The following are equivalent:
1. LLPO
2. ∀fg : N→ B. ¬((∃n.fn = true) ∧ (∃n.gn = true))→ ¬(∃n.fn = true) ∨ ¬(∃n.gn = true)
3. ∀X.∀(p q : X → P). Sp→ Sq → ∀x. ¬(px ∧ qx)→ ¬px ∨ ¬qx
4. ∀X.∀(p : X → P). Sp→ ∀xy. (px→ py) ∨ (py → px)
5. ∀X.∀(R : X → B→ P). SR→ ∀x. ¬¬(∃b. Rxb)→ ∃b. Rxb
6. ∀f. (∀nm.fn = true→ fm = true→ n = m)→ (∀n.f(2n) = false) ∨ (∀n.f(2n+ 1) = false)

We define the principle of finite possibility as PFP := ∀f.∃g. (∀n. fn = false)↔ (∃n. gn =
true). PFP unifies WLPO and LLPO:

Fact 35. WLPO↔ LLPO ∧ PFP

A principle unifying the classical axioms with their counterparts for Σ0
1 is Kripke’s schema

KS := ∀P : P.∃f : N→ B. P ↔ ∃n. fn = true:

Fact 36. LEM→ KS

Fact 37. Given KS we have LPO→ LEM, WLPO→WLEM, and LLPO→ DGP.

KS could be strengthened to state that every predicate is semi-decidable (to which KS is
equivalent using ACN,N→N). The strengthening would be incompatible with CT.

In general, the compatibility of classical logical axioms (without assuming choice principles)
with CT seems open. We conjecture that Coq’s restriction preventing large elimination
principles for non-sub-singleton propositions makes LEM and CT consistent in Coq.

8 Axioms of Russian Constructivism

The Russian school of constructivism morally identifies functions with computable functions,
sometimes assuming CT explicitly. Another axiom considered valid is Markov’s principle:

MP := ∀f : N→ B. ¬¬(∃n. fn = true)→ ∃n. fn = true

Markov’s principle is consistent with CT [43] and follows from LPO:

Fact 38. LPO↔WLPO ∧MP

https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#LPO_to_WLPO
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#LPO_to_WLPO
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#forall_neg_exists
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#forall_neg_exists
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#LPO_semidecidable_iff
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#LPO_semidecidable_iff
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#LPO_semidecidable_iff
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#WLPO_semidecidable_iff
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#WLPO_cosemidecidable_iff
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#LLPO_to_DM_Sigma_0_1
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#LLPO_to_DM_Sigma_0_1
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#LLPO_to_DM_Sigma_0_1
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#DM_Sigma_0_1_to_LLPO_split
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#DM_Sigma_0_1_iff_DM_sdec
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#LLPO_iff_DGP_sdec
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#DM_Sigma_0_1_iff_totality
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#LLPO_split_to_LLPO
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#WLPO_PFP_LLPO_iff
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#WLPO_PFP_LLPO_iff
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#LEM_to_KS
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#LEM_to_KS
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#KS_LPO_to_LEM
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#KS_LPO_to_LEM
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#LPO_MP_WLPO_iff
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#LPO_MP_WLPO_iff

Y. Forster 21:11

Corollary 39. LPO→ MP.
It seems likely that the converse is not provable: There is a logic where MP holds, but not

LPO [24]. As observed by Herbelin [24] and Pedrót and Tabareau [36], IP ∧MP yields LPO:

Lemma 40. MP→ IP→ LPO
Proof. Given f : N → B there is n0 : N s.t. ∀k. fk = true → fn0 = true using MP and IP:
By MP, ¬¬(∃k. fk = true) → ∃n. fn = true and by IP, ∃n.¬¬(∃k.fk = true) → fn = true,
which suffices. Now fn0 = true↔ ∃n. fn = true and LPO follows. J

A nicer factorisation would be to prove IP→WLPO, but the implication seems unlikely.

Lemma 41. The following are equivalent:
1. MP
2. ∀X.∀p : X → P. Sp→ ∀x. ¬¬px→ px

3. ∀X.∀p : X → P. Sp→ Sp→ ∀x. px ∨ ¬px
4. ∀X.∀p : X → P. Sp→ Sp→ Dp
5. ∀X.∀(R : X → B→ P). SR→ ∀x. ¬¬(∃b. Rxb)→ ∃b. Rxb

Proof. 1→ 2 is immediate.
2→ 3: Since S is closed under disjunctions and since ¬¬(px ∨ ¬px) is a tautology.
3→ 4 is immediate by Lemma 49 with Rxb := (px ∧ b = true) ∨ (¬px ∧ b = false).
4→ 1: Let ¬¬(∃n.fn = true). Let p(x : N) := ∃n.fn = true. Now p is semi-decided by
λx.f , p by λxn.false, and p0 ∨ ¬p0 by 4. One case is easy, the other contradictory. J

Note that 4 is often called “Post’s theorem”. 1↔ 3↔ 4 is already discussed in [14]. 5 is
dual to Lemma 34 (5). Replacing Sp with Sp in 2 does however not result in an equivalent
of LLPO, but turns 2 into an assumption-free fact. While in general Sp↔ Sp does not hold
it seems possible that they can be exchanged in 3 and 4, but we are not aware of a proof.

9 Choice Axioms

We consider the axioms of choice AC, unique choice AUC, dependent choice ADC, and
countable choice ACC. ACN,N and ACN→N,N are often called AC0,0 and AC1,0 in the literature.

ACX,Y := ∀R : X → Y → P.(∀x.∃y.Rxy)→ ∃f : X → Y.∀x. Rx(fx)
AUCX,Y := ∀R : X → Y → P.(∀x.∃!y.Rxy)→ ∃f : X → Y.∀x. Rx(fx)

ADCX := ∀R : X → X → P.(∀x.∃x′.Rxx′)→ ∀x0.∃f : N→ X.f0 = x0 ∧ ∀n. R(fn)(f(n+ 1)))
AC := ∀XY : T. ACX,Y AUC := ∀XY. AUCX,Y ADC := ∀X : T. ADCX ACC := ∀X : T. ACN,X

Fact 42. ACX,X → ADCX , ACX,Y → AUCX,Y , ADC→ ACC, ACC→ ACN,N, and ACN→N,N → ACN,N.

The following well-known fact is due to Diaconescu [10] and Myhill and Goodman [22]:

Fact 43. AC→ Fext→ Pext→ LEM
Given that ACN→N,N turns CT into CTΣ, and that EA↔ ΣT.CTT we have:

Fact 44. ACN→N,N → Fext→ EA→ ⊥
We will later see that LLPO ∧ ACN,N implies weak Kőnig’s lemma, which is incompatible

with KT. Already now we can prove that WLPO ∧ AUCN,B is incompatible with EA:
Fact 45. AUCN,B → (∀n : N. pn ∨ ¬pn)→ Dp

Lemma 46. WLPO→ AUCN,B → EA→ DK0

Proof. WLPO implies ∀n.¬K0n∨¬¬K0n. By AUCN,B and the last lemma K0 is decidable. J

Corollary 47. WLPO→ AUCN,B → EA→ ⊥

CSL 2021

https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#LPO_to_MP
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#LPO_to_MP
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#MP_IP_LPO
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#MP_IP_LPO
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#MP_to_MP_semidecidable
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#MP_to_MP_semidecidable
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#MP_to_MP_semidecidable
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#MP_semidecidable_to_Post_logical
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#Post_logical_to_Post
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#Post_to_MP
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#MP_iff_sdec_weak_total
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#AC_rel_to_ADC
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#AC_rel_to_ADC
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#Diaconescu
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#Diaconescu
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#AC_1_0_Fext_incompat
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#AC_1_0_Fext_incompat
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#AUC_to_dec
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#AUC_to_dec
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#AC_0_0_LPO_incompat'
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#AC_0_0_LPO_incompat'
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#AC_0_0_LPO_incompat
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#AC_0_0_LPO_incompat

21:12 Church’s Thesis and Related Axioms in Coq’s Type Theory

9.1 Provable choice axioms
In contrast to predicative Martin-Löf type theory, Coq’s type theory does not prove the
axiom of choice, nor the axioms of dependent and countable choice. This is due to the fact
that arbitrary large eliminations are not allowed. However, recall that a large elimination
principle for the accessibility predicate is provable, resulting in Lemma 1. Using Lemma 1 we
can then prove D-ACX,N for all X, i.e. choice for decidable relations into natural numbers:

Lemma 48. ∀X.∀R : X → N→ P. DR→ (∀x.∃n.Rxn)→ ∃f : X → N.∀x. Rx(fx).

As a consequence and with no further reference to Lemma 1 we can then prove choice
principles for semi-decidable and enumerable relations, i.e. S-ACX,N and E-ACN,X for all X:

Lemma 49. The following two choice principles are provable3:
1. ∀X.∀R : X → N→ P. SR→ (∀x.∃n. Rxn)→ ∃f : X → N.∀x. Rx(fx)
2. ∀X.∀R : N→ X → P. ER→ (∀n.∃x. Rnx)→ ∃f : N→ X.∀n. Rn(fn)

Principle 2 can be relaxed to arbitrary discrete types instead of N, and in particular
S-ACN,B follows from 1. In Appendix A we discuss consequences of the here mentioned
principles with regards to CT for oracles and in the next section S-ACN,B will be central.

10 Axioms on Trees

We have already introduced (decidable) binary trees and Kleene trees in Section 5. We now
give a broader overview and give formulations of LPO, WLPO, LLPO, and MP in terms of
decidable binary trees, following Berger et al. [5].

Fact 50. Let τ be a tree. Then τuv := τ(u++ v) is a tree if and only if τu.

If τu holds we call τu a subtree of τ and τ[b] a direct subtree of τ .

Lemma 51. The following equivalences hold:
1. LPO↔ every tree is bounded or infinite.
2. WLPO↔ every tree is infinite or not infinite.
3. LLPO↔ every infinite tree has a direct infinite subtree.
4. MP↔ if a tree is not infinite it is bounded.
5. MP↔ if a tree has no infinite path it is well-founded.

Recall Fact 25 stating that every bounded tree is well-founded and that every tree with
an infinite path is infinite. The respective converse implications are known as Brouwer’s fan
theorem FAN and weak Kőnig’s lemma WKL respectively:

FAN := Every well-founded decidable binary tree is bounded.
WKL := Every infinite decidable binary tree has an infinite path.

Fact 52. KT→ ¬FAN and KT→ ¬WKL.

Note that FAN is called FAN′∆ in [26] and FAN∆ in [11], and WKL is called WKLD in [15].
Ishihara [26] shows how to deduce FAN from WKL constructively:

3 A formulation of (1) for disjunctions (equivalently: R : X → B→ P) is due to Andrej Dudenhefner and
was received in private communication. (2) was anticipated by Larchey-Wendling [30], who formulated
it for µ-recursively enumerable instead of synthetically enumerable predicates.

https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#decidable_AC
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#decidable_AC
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#semi_decidable_AC
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#semi_decidable_AC
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#semi_decidable_AC
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#enumerable_AC
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#is_tree_subtree_at
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#is_tree_subtree_at
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#LPO_tree_iff
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#LPO_tree_iff
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#LPO_tree_iff
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#WLPO_tree_iff
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#LLPO_tree_iff
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#MP_tree_iff
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#MP_tree_iff'
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#KT_FAN_contra
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#KT_FAN_contra

Y. Forster 21:13

Fact 53. Bounded trees τ have a longest element, i.e. ∃u. τu ∧ ∀v. τv → |v| ≤ |u|.

Lemma 54. For every tree τ there is an infinite tree τ ′ s.t. for any infinite path f of τ ′
∀u. τu→ τ [f0, . . . , f |u|].

Theorem 55. WKL→ FAN

Proof. Let τ be well-founded. By Lemma 54 and WKL, there is f s.t. ∀a. τu→ τ [f0, . . . , f |u|].
Since τ is well-founded there is n s.t. ¬τ [f0, . . . , fn]. Then n is a bound for τ : For u with
|u| > n and τu we have τ [f0, . . . , fn, . . . , f |u|]. But then τ [f0, . . . , fn], contradiction. J

Corollary 56. KT→ ¬WKL.

Berger and Ishihara [4] show that FAN ↔ WKL!, a restriction of WKL stating that
every infinite decidable binary tree with at most one infinite path has an infinite path.
Schwichtenberg [40] gives a more direct construction and mechanises the proof in Minlog.

Berger, Ishihara, and Schuster [5] characterise WKL as the combination of the logical
principle LLPO and the function existence principle S-ACN,B (called Π0

1-ACC∨ in [5]). We
observe that WKL can also be characterised as one particular choice or dependent choice
principle. The proofs are essentially rearrangements of [5, Theorem 27 and Corollary 5].

Theorem 57. The following are equivalent:
1. WKL
2. LLPO ∧ S-ACN,B
3. ∀R : N→ B→ P. SR→ (∀n.¬¬∃b.Rnb)→ ∃f : N→ B.∀n. R n (fn)
4. ∀R : LB→ B→ P. SR→ (∀u.¬¬∃b.Rub)→ ∃f : N→ B.∀n. R [f0, . . . , f(n− 1)] (fn)

Proof. For WKL→ LLPO we use the characterisation 3 of LLPO from Lemma 51. Let τ be
an infinite tree. By WKL there is an infinite path f . Then τ[f0] is a direct infinite subtree.

For WKL → S-ACN,B let R be total and f s.t. ∀nb. Rnb ↔ ∀m.fnbm = false. Define
the tree τu := ∀i < |u|.∀m < |u|. fi(u[i])m = false. Infinity of τ follows from ∀n.∃u.|u| =
n ∧ ∀i < n.Ri(u[i]), proved by induction on n using totality of R. If g is an infinite path of
τ , Rn(gn) follows from ∀m.τ [g0, . . . , g(n+m+ 1)].

2→ 3 is immediate using characterisation 3 of LLPO from Lemma 34.
For 3→ 4 let F : N→ LB and G : LB→ N invert each other.4 Let R : LB→ B→ P and

f be the choice function obtained from 3 for λnb.R(Fn)b. Then λn.f(G(gn)) where g0 := []
and g(Sn) := gn++ [f(G(gn))] is a choice function for R as wanted.

For 4→ 1 let τ be an infinite tree and let dum := ∃v.|v| = m∧τuv, i.e. dum if τu has depth
at least m and in particular τu is infinite iff ∀m.dum. Define Rub := ∀m.du++[b]m∨¬du++[¬Bb].
R is co-semi-decidable (since d is decidable), and ¬Ru true∧¬Ru false is contradictory. Thus
4 yields a choice function f which fulfils τ [f0, . . . , fn] by induction on n. J

11 Continuity: Baire Space, Cantor Space, and Brouwer’s Intuitionism

The total function space N→ N is often called Baire space, whereas N→ B is called Cantor
space. We will from now on write NN and BN for the spaces.

Constructively, one cannot prove that NN and BN are in bijection. However, KT is
equivalent to the existence of a continuous bijection BN → NN with a continuous modulus of
continuity, i.e. a modulus function which is continuous (in the point) itself [11]. Furthermore,
KT yields a continuous bijection NN → BN [3].

4 These so called coding functions is easy to construct even formally using e.g. techniques from [14].

CSL 2021

https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#bounded_longest_path
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#bounded_longest_path
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#inf_to_longest
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#inf_to_longest
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#WKL_to_FAN
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#WKL_to_FAN
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#KT_WKL_contra
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#KT_WKL_contra
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#WKL_to_LLPO
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#WKL_to_LLPO
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#WKL_to_LLPO
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#LLPO_coS_AC_on_to_coS_AC_on_weak
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#cos_AC_on_weak_to_coS_ADC_on_weak
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.kleenetree.html#coS_ADC_on_weak_to_WKL

21:14 Church’s Thesis and Related Axioms in Coq’s Type Theory

We call a function F : AN → BN continuous if ∀f : AN.∀n : N.∃L : LN.∀g :
AN. (map f L = map g L) → Ffn = Fgn. A function M : AN → N → LN is called the
modulus of continuity for F if ∀n : N.∀fg : AN. map f (Mfn) = map g (Mfn)→ Ffn = Fgn.
We define:

Homeo(AN, BN) := ∃F : AN → BN.∃M. M is a continuous modulus of continuity for F

We start by proving that KT↔ Homeo(BN,NN). To do so, we say that u++ [b] is a leaf
of a Kleene tree τK if τKu, but ¬τK(u++ [b]).

Fact 58. For every τK , there is an injective enumeration ` : N→ LB of the leaves of τK .

We define F (f : N → N)n := (`(f0) ++ · · · ++ `(f(n + 1)))[n]. Since leaves cannot be
empty, the length of the accessed list is always larger than n and F is well-defined.

Lemma 59. F is injective w.r.t. ≡
NB

and ≡
NN
.

Lemma 60. F is continuous with continuous modulus of continuity.

Lemma 61. The following hold for a Kleene tree τK :
1. There is a function `−1 : LB→ N s.t. for all leafs l, `(`−1l) = l.
2. For all l s.t. ¬τK l there exists l′ v l s.t. l′ is a leaf of τK .
3. There is pref : (N→ B)→ LB s.t. pref g is a leaf of τK and ∃n. pref g = map g [0, . . . , n].

We can now define the inverse as G g n := `−1(pref (nxtng)) where nxt g n := g(n+|pref g|).

Lemma 62. F (G g) ≡N→B g

Lemma 63. G is continuous with continuous modulus of continuity.

The following proof is due to Diener [11, Proposition 5.3.2].

Lemma 64. Homeo(BN,NB)→ KT

Proof. Let F be a bijection with continuous modulus of continuity M . Then τu := ∀0 <
i ≤ |u|.∃k < i.k ∈M(λn.if l[n] is Some b then b else false) 0 is a Kleene tree. J

Theorem 65. KT↔ Homeo(BN,NN) and KT→ Homeo(NN,BN).

Deiser [9] proves in a classical setting that Homeo(NN,BN) holds. It would be interesting
to see whether the proof can be adapted to a constructive proof WKL→ Homeo(NN,BN).

We have already seen that CT is inconsistent with FAN. Besides FAN, in Brouwer’s
intuitionism the continuity of functionals NN → N is routinely assumed:

Cont := ∀F : (N→ N)→ N. ∀f : N→ A.∃L : LN.∀g : N→ A. (map f L = map g L)→ Ff ≡B Fg

Since every computable function is continuous, we believe Cont to be consistent with CT.
Combining Cont with ACN→N,N yields Brouwer’s continuity principle,5 called WC-N in [46]:

WC-N := ∀R : (N→ N)→ N→ P.(∀f.∃n.Rfn)→ ∀f.∃Ln.∀g. map f L = map g L→ Rgn

5 But note that Cont→ ACN→N,N → ⊥, since the resulting modulus of continuity function allows for the
construction of a non-continuous function [13].

https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.baire_cantor.html#KT_inj_enum_leafs
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.baire_cantor.html#KT_inj_enum_leafs
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.baire_cantor.html#F_inj
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.baire_cantor.html#F_inj
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.baire_cantor.html#continuous_F
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.baire_cantor.html#continuous_F
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.baire_cantor.html#F_find_pref
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.baire_cantor.html#F_find_pref
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.baire_cantor.html#F_surj
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.baire_cantor.html#F_surj
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.baire_cantor.html#continuous_G
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.baire_cantor.html#continuous_G
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.baire_cantor.html#Homeo_M_Cantor_Baire_to_KT
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.baire_cantor.html#Homeo_M_Cantor_Baire_to_KT
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.baire_cantor.html#KT_iff_Homeo_N_nat_bool
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.baire_cantor.html#KT_iff_Homeo_N_nat_bool

Y. Forster 21:15

Theorem 66. WC-N→ Cont

WC-N is inconsistent with CT, since the computability relation ∼ is not continuous:

Theorem 67. WC-N→ CT→ ⊥

Proof. Recall that if two functions have the same code they are extensionally equal. By CT,
λfc.c ∼ f is a total relation. Using WC-N for this relation and λx. 0 yields a list L and a
code c s.t. ∀g. map g L = [0, . . . , 0]→ c ∼ g.

The functions λx. 0 and λx. if x ∈ L then 0 else 1 both fulfil the hypothesis and thus
have the same code – a contradiction since they are not extensionally equal. J

12 Conclusion

In this paper we surveyed the known connections of axioms in Coq’s type theory, a constructive
type theory with a separate, impredicative universe of propositions, with a special focus on
Church’s thesis CT and formulations of axioms in terms of notions of synthetic computability.
Furthermore, all results are mechanised in the Coq proof assistant.

In constructive mathematics, countable choice is often silently assumed, as critised e.g. by
Richman [38,39]. In contrast, constructive type theory with a universe of propositions seems
to be a suitable base system for matters of constructive (reverse) mathematics sensitive
to applications of countable choice. Due to the separate universe of propositions, such a
constructive type theory neither proves countable nor dependent choice, allowing equivalences
like the one in Theorem 57 to be stated sensitively to choice. We conjecture that Lemma 49
deducing S-ACX,N and E-ACN,X directly from D-ACX,N cannot be significantly strengthened.
The proof of D-ACX,N in turn crucially relies on a large elimination principle for ∃n. fn = true
(Lemma 1). The theory of [5] proves D-ACN,B and thus likely also S-ACN,B.

Predicative Martin-Löf type theory proves AC and type theories with propositional
truncation and a semantic notion of (homotopy) propositions prove AUCN,B, thus LEM
suffices to disprove CT for both these flavours of type theory. Based on the current state of
knowledge in the literature it seems likely that S-ACN,B and LEM together do not suffice to
disprove CT, which seems to require at least classical logic of the strength of LLPO and a
choice axiom for co-semi-decidable predicates. Thus we conjecture that a consistency proof
of e.g. LEM ∧ CT might be possible for Coq’s type theory.

Another advantage of basing constructive investigations on constructive type theory
is that implementations of type theory in proof assistants already exist. For this paper,
mechanising the results in Coq was tremendously helpful in keeping track of all details. For
example, many of the presented proofs are very sensitive to small changes in formulations,
and Coq actually helped in understanding the proofs and getting them right.

Besides consistency, another interesting property of axioms is admissibility. For instance,
Pédrot and Tabareau [36] prove MP admissible in constructive type theory. CT seems to be
admissible in constructive type theory in the sense that for every defined function f : N→ N
one can define a program in a model of computation with the same input output behaviour,
as witnessed by the certifying extraction for a fragment of Coq to the λ-calculus [16]. An
admissibility proof of CT could then serve as a theoretical underpinning of the Coq library of
undecidability proofs [19]. However, any formal admissibility proof would have to deal with
the intricacies of Coq’s type theory. It would be interesting to investigate whether Letouzey’s
semantic proof for the correctness of type and proof erasure [33] can be connected with
the mechanisation of meta-theoretical properties of Coq’s type theory [41] in the MetaCoq
project [42], yielding a mechanised admissibility proof for CT in Coq’s type theory.

CSL 2021

https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#WC_N_to_Cont
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#WC_N_to_Cont
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#WC_N_CT_inc
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.principles.html#WC_N_CT_inc

21:16 Church’s Thesis and Related Axioms in Coq’s Type Theory

References
1 Andrej Bauer. First steps in synthetic computability theory. Electronic Notes in Theoretical

Computer Science, 155:5–31, 2006.
2 Andrej Bauer. König’s lemma and Kleene tree. unpublished notes, 2006.
3 Michael J. Beeson. Foundations of constructive mathematics: Metamathematical studies,

volume 6. Springer Verlag, 1987.
4 Josef Berger and Hajime Ishihara. Brouwer’s fan theorem and unique existence in constructive

analysis. Mathematical Logic Quarterly, 51(4):360–364, 2005.
5 Josef Berger, Hajime Ishihara, and Peter Schuster. The weak König lemma, Brouwer’s fan

theorem, De Morgan’s law, and dependent choice. Reports on Mathematical Logic, (47):63,
2012.

6 Yves Bertot and Pierre Castéran. Interactive theorem proving and program development:
Coq’Art: the calculus of inductive constructions. Springer Science & Business Media, 2013.

7 Douglas Bridges and Fred Richman. Varieties of constructive mathematics, volume 97.
Cambridge University Press, 1987.

8 T. Coquand. Metamathematical investigations of a calculus of constructions. Technical Report
RR-1088, INRIA, September 1989. URL: https://hal.inria.fr/inria-00075471.

9 Oliver Deiser. A simple continuous bijection from natural sequences to dyadic sequences. The
American Mathematical Monthly, 116(7):643–646, 2009.

10 Radu Diaconescu. Axiom of choice and complementation. Proceedings of the American
Mathematical Society, 51(1):176–178, 1975.

11 Hannes Diener. Constructive Reverse Mathematics. arXiv:1804.05495 [math], April 2020.
arXiv:1804.05495.

12 Martín H. Escardó and Cory M. Knapp. Partial Elements and Recursion via Dominances
in Univalent Type Theory. In Valentin Goranko and Mads Dam, editors, 26th EACSL
Annual Conference on Computer Science Logic (CSL 2017), volume 82 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 21:1–21:16, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CSL.2017.21.

13 Martín Hötzel Escardó and Chuangjie Xu. The inconsistency of a Brouwerian continuity prin-
ciple with the Curry–Howard interpretation. In 13th International Conference on Typed Lambda
Calculi and Applications (TLCA 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2015.

14 Yannick Forster, Dominik Kirst, and Gert Smolka. On synthetic undecidability in Coq, with
an application to the Entscheidungsproblem. In Proceedings of the 8th ACM SIGPLAN
International Conference on Certified Programs and Proofs, pages 38–51, 2019.

15 Yannick Forster, Dominik Kirst, and Dominik Wehr. Completeness theorems for first-order
logic analysed in constructive type theory (extended version). arXiv preprint arXiv:2006.04399,
2020.

16 Yannick Forster and Fabian Kunze. A Certifying Extraction with Time Bounds from Coq
to Call-By-Value Lambda Calculus. In John Harrison, John O’Leary, and Andrew Tolmach,
editors, 10th International Conference on Interactive Theorem Proving (ITP 2019), volume
141 of Leibniz International Proceedings in Informatics (LIPIcs), pages 17:1–17:19, Dagstuhl,
Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
ITP.2019.17.

17 Yannick Forster, Fabian Kunze, and Maximilian Wuttke. Verified programming of Turing
machines in Coq. In Proceedings of the 9th ACM SIGPLAN International Conference on
Certified Programs and Proofs, pages 114–128, 2020.

18 Yannick Forster and Dominique Larchey-Wendling. Certified undecidability of intuitionistic
linear logic via binary stack machines and minsky machines. In Proceedings of the 8th ACM
SIGPLAN International Conference on Certified Programs and Proofs, pages 104–117, 2019.

https://hal.inria.fr/inria-00075471
http://arxiv.org/abs/1804.05495
https://doi.org/10.4230/LIPIcs.CSL.2017.21
https://doi.org/10.4230/LIPIcs.ITP.2019.17
https://doi.org/10.4230/LIPIcs.ITP.2019.17

Y. Forster 21:17

19 Yannick Forster, Dominique Larchey-Wendling, Andrej Dudenhefner, Edith Heiter, Dominik
Kirst, Fabian Kunze, Gert Smolka, Simon Spies, Dominik Wehr, and Maximilian Wut-
tke. A Coq library of undecidable problems. In The Sixth International Workshop on Coq
for Programming Languages (CoqPL 2020)., 2020. URL: https://github.com/uds-psl/
coq-library-undecidability.

20 Yannick Forster and Gert Smolka. Weak call-by-value lambda calculus as a model of compu-
tation in coq. In International Conference on Interactive Theorem Proving, pages 189–206.
Springer, 2017.

21 Yannick Forster and Gert Smolka. Call-by-value lambda calculus as a model of computation
in Coq. Journal of Automated Reasoning, 63(2):393–413, 2019.

22 Noah Goodman and John Myhill. Choice implies excluded middle. Mathematical Logic
Quarterly, 24(25-30):461–461, 1978. doi:10.1002/malq.19780242514.

23 Matt Hendtlass and Robert Lubarsky. Separating fragments of WLEM, LPO, and MP. The
Journal of Symbolic Logic, 81(4):1315–1343, December 2016. doi:10.1017/jsl.2016.38.

24 Hugo Herbelin. An intuitionistic logic that proves Markov’s principle. In 2010 25th Annual
IEEE Symposium on Logic in Computer Science, pages 50–56. IEEE, 2010.

25 Hajime Ishihara. Reverse mathematics in Bishop’s constructive mathematics. Philosophia
Scientiæ. Travaux d’histoire et de philosophie des sciences, (CS 6):43–59, 2006.

26 Hajime Ishihara. Weak König’s lemma implies Brouwer’s fan theorem: a direct proof. Notre
Dame Journal of Formal Logic, 47(2):249–252, 2006.

27 Stephen Cole Kleene. On the interpretation of intuitionistic number theory. The journal of
symbolic logic, 10(4):109–124, 1945.

28 Stephen Cole Kleene. Recursive functions and intuitionistic mathematics, 1953.
29 Georg Kreisel. Church’s thesis: a kind of reducibility axiom for constructive mathematics. In

Studies in Logic and the Foundations of Mathematics, volume 60, pages 121–150. 1970.
30 Dominique Larchey-Wendling. Typing total recursive functions in Coq. In International

Conference on Interactive Theorem Proving, pages 371–388. Springer, 2017.
31 Dominique Larchey-Wendling and Yannick Forster. Hilbert’s tenth problem in Coq. arXiv

preprint arXiv:2003.04604, 2020.
32 Dominique Larchey-Wendling and Jean-François Monin. The Braga method: Extracting

certified algorithms from complex recursive schemes in Coq. In Klaus Mainzer, Peter Schuster,
and Helmut Schwichtenberg, editors, Proof and Computation: From Proof Theory and Univalent
Mathematics to Program Extraction and Verification. World Scientific Singapore, 2021.

33 Pierre Letouzey. Programmation fonctionnelle certifiée: l’extraction de programmes dans
l’assistant Coq. PhD thesis, L’Université de Paris-Sud, July 2004. URL: http://www.pps.
jussieu.fr/~letouzey/download/these_letouzey.pdf.

34 Andrei Andreevich Markov. The theory of algorithms. Trudy Matematicheskogo Instituta
Imeni VA Steklova, 42:3–375, 1954.

35 Christine Paulin-Mohring. Inductive definitions in the system Coq rules and properties. In
International Conference on Typed Lambda Calculi and Applications, pages 328–345. Springer,
1993.

36 Pierre-Marie Pédrot and Nicolas Tabareau. Failure is not an option. In European Symposium
on Programming, pages 245–271. Springer, 2018.

37 Fred Richman. Church’s thesis without tears. The Journal of symbolic logic, 48(3):797–803,
1983.

38 Fred Richman. The fundamental theorem of algebra: a constructive development without
choice. Pacific Journal of Mathematics, 196(1):213–230, 2000.

39 Fred Richman. Constructive Mathematics without Choice. In Peter Schuster, Ulrich Berger,
and Horst Osswald, editors, Reuniting the Antipodes — Constructive and Nonstandard Views
of the Continuum, pages 199–205. Springer Netherlands, Dordrecht, 2001. doi:10.1007/
978-94-015-9757-9_17.

CSL 2021

https://github.com/uds-psl/coq-library-undecidability
https://github.com/uds-psl/coq-library-undecidability
https://doi.org/10.1002/malq.19780242514
https://doi.org/10.1017/jsl.2016.38
http://www.pps.jussieu.fr/~letouzey/download/these_letouzey.pdf
http://www.pps.jussieu.fr/~letouzey/download/these_letouzey.pdf
https://doi.org/10.1007/978-94-015-9757-9_17
https://doi.org/10.1007/978-94-015-9757-9_17

21:18 Church’s Thesis and Related Axioms in Coq’s Type Theory

40 Helmut Schwichtenberg. A direct proof of the equivalence between Brouwer’s fan theorem and
König’s lemma with a uniqueness hypothesis. J. UCS, 11(12):2086–2095, 2005.

41 Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster, Fabian
Kunze, Gregory Malecha, Nicolas Tabareau, and Théo Winterhalter. The MetaCoq Project.
Journal of Automated Reasoning, February 2020. doi:10.1007/s10817-019-09540-0.

42 Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo Winterhalter.
Coq Coq correct! verification of type checking and erasure for Coq, in Coq. Proceedings of the
ACM on Programming Languages, 4(POPL):1–28, 2019.

43 Andrew Swan and Taichi Uemura. On Church’s thesis in cubical assemblies. arXiv preprint
arXiv:1905.03014, 2019.

44 The Coq Development Team. The Coq Proof Assistant, version 8.11.0. https://doi.org/10.
5281/zenodo.3744225, jan 2020. doi:10.5281/zenodo.3744225.

45 The Coq std++ Team. An extended "standard library" for Coq. https://gitlab.mpi-sws.
org/iris/stdpp, 2020.

46 Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in mathematics. vol. i, volume 121
of. Studies in Logic and the Foundations of Mathematics, 26, 1988.

47 Benjamin Werner. Sets in types, types in sets. In International Symposium on Theoretical
Aspects of Computer Software, pages 530–546. Springer, 1997.

A Modesty and Oracles

Using D-ACN,N from Lemma 48 allows proving a choice axiom w.r.t. models of computation,
observed by Larchey-Wendling [30] and called “modesty” by Forster and Smolka [20].

I Lemma 68. Let T be an abstract computation function. We have

∀c.(∀n.∃mk. Tcnk = Somem)→ ∃f : N→ N.∀n.∃k. T cnk = Some (fn)

That is, if c is the code of a function inside the model of computation which is provably
total, the total function can be computed outside of the model. This modesty principle
simplifies the mechanisation of computability theory in type theory as e.g. in [21]. For
instance, it allows to prove that defining decidability as “a total function in the model of
computation deciding the predicate” and as “a meta-level function deciding the predicate
which is computable in the model of computation” is equivalent.

However, the modesty principle prevents synthetic treatments of computability theory
based on oracles. Traditionally, computability theory based on oracles is formulated using
a computability function Tp, s.t. for p : N → P there exists a code cp representing a total
function s.t. ∀n.(∃k.T cpnk = Some 0)↔ pn.

Synthetically, we would now like to assume an abstract computability function for every
p as “Church’s thesis with oracles”. “Church’s thesis with oracles” implies CT, and we know
that under CT the predicate K0 is not decidable. However, under the presence of D-ACN,N
we can use TK0 and obtain cK0 which can be turned into a decider f : N→ B for K0 using
the choice principle above – a contradiction.

B Coq mechanisation

The Coq mechanisation of the paper comprises 4250 lines of code, with 3300 lines of proofs
and 950 lines of statements and definitions, i.e. 77% proofs. The mechanisation is based on
the Coq-std++ library [45], plus around 1500 additional lines of code with custom extensions
to Coq’s standard library which are shared with the Coq library of undecidability proofs [19].

https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.5281/zenodo.3744225
https://doi.org/10.5281/zenodo.3744225
https://doi.org/10.5281/zenodo.3744225
https://gitlab.mpi-sws.org/iris/stdpp
https://gitlab.mpi-sws.org/iris/stdpp

Y. Forster 21:19

The 4250 lines of the main development are distributed as follows: The basics of synthetic
computability (decidablility, semi-decidability, enumerability, many-one reductions) need
1150 lines of code. The mechanisation of Section 3, covering CT, EA, and EPF, comprises
400 lines of code. 120 lines of codes are needed for the undecidability results of Section 4.
Section 5 and Section 10, covering trees and in particular Kleene trees, need 1000 lines of
code. Section 11 on continuity is mechanised in 800 lines. The rest, i.e. Sections 6 to 9, needs
750 lines of code.

No advanced mechanisation techniques were needed. Discreteness and enumerability
proofs for types were eased using type classes to assemble proofs for compound types such
as LB×ON, as already done in [14]. Defining the notions of ≡A→B , ≡A→P, and so on was
made possible by using type classes as well.

The technically most challenging mechanised proofs correspond to Lemmas 59 - 63, i.e.
prove KT → Homeo(BN,NN) ∧ Homeo(NN,BN). For these proofs, lots of manipulation of
prefixes of lists was needed, and while the functions firstn and dropn are defined in Coq’s
standard library, the very useful lemmas of Coq-std++ where needed to make the proofs
feasible.

In the development of this paper, the Coq proof assistant, while also acting as proof
checker, was truly used as an assistant: Lots of proofs were developed and understood
directly while working in Coq rather than on paper, allowing to identify for instance the
equivalent characterisations of LLPO, MP, and WKL as in Lemma 34 (5), Lemma 41 (5),
and Theorem 57 (3,4), which are hard to observe on paper because lots of bookkeeping for
side-conditions would have to be done manually then.

CSL 2021

Computing Measure as a Primitive Operation in
Real Number Computation
Christine Gaßner
Universität Greifswald, Germany
gassnerc@uni-greifswald.de

Arno Pauly
Department of Computer Science, Swansea University, UK
https://www.cs.swan.ac.uk/~cspauly/
arno.m.pauly@gmail.com

Florian Steinberg
INRIA, Sophia Antipolis, France
fsteinberg@gmail.com

Abstract
We study the power of BSS-machines enhanced with abilities such as computing the measure of a
BSS-decidable set or computing limits of BSS-computable converging sequences. Our variations
coalesce into just two equivalence classes, each of which also can be described as a lower cone in the
Weihrauch degrees.

We then classify computational tasks such as computing the measure of ∆0
2-set of reals, integrating

piece-wise continuous functions and recovering a continuous function from an L1([0, 1])-description.
All these share the Weihrauch degree lim.

2012 ACM Subject Classification Theory of computation → Abstract machines; Theory of com-
putation → Turing machines; Mathematics of computing → Point-set topology; Mathematics of
computing → Integral calculus

Keywords and phrases BSS-machine, Weihrauch reducibility, integrable function, Lebesgue measure,
computable analysis

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.22

1 Introduction

Computing over abstract data types using register machines makes the fully realistic notion
of computability that computable analysis uses more approachable and easier to use in
applications. This is well known and the central topic of work such as [9, 38]. While the
models we consider in this paper can compute non-computable functions, they still allow us
to discuss algorithms in a general sense as they are used e.g. in numerical analysis/scientific
computing (cf. [30, 25]). We report on two separate but related investigations.

In the first, we consider extensions of the Blum-Shub-Smale (BSS) machines [1] for
computing functions of type f : R∗ → R∗. We explore the strength of a machine that can
compute the measure of a BSS-decidable set in a single step. A concrete inspiration for our
operations is found in the ν-operator studied by Moschovakis [29]. The ability to compute
the measure of a decidable set can also be seen as an analogue to counting classes such as
]P in the context of BSS-computation – except that here, we gain computability-theoretic
strength, rather than just efficiency1.

We also consider adding a command that returns the limit of a BSS-computable converging
sequence as a primitive. It turns out that all our enhanced BSS-machines can already compute
all real functions computable in the sense of computable analysis. We can therefore use the

1 This is a different approach to the one taken by Bürgisser and Cucker [13], though.
© Christine Gaßner, Arno Pauly, and Florian Steinberg;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 22; pp. 22:1–22:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gassnerc@uni-greifswald.de
https://orcid.org/0000-0002-0173-3295
https://www.cs.swan.ac.uk/~cspauly/
mailto:arno.m.pauly@gmail.com
mailto:fsteinberg@gmail.com
https://doi.org/10.4230/LIPIcs.CSL.2021.22
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Computing Measure as a Primitive Operation

framework of Weihrauch reducibility [8] to describe the resulting computational strength.
The usefulness of Weihrauch reducibility to study algebraic computation models had already
been observed in [30]. More generally, the use of topological concepts in this context was
pioneered in [18].

Our second line of investigation looks into representations (in the sense of computable
analysis) of real function classes, continuing a programme initiated in [35]. For example, if we
merely have the information on a function f : R→ R befitting an integrable function, but we
know f to actually be continuous, how complicated is it to obtain the information about f as
a continuous function? Classically, we know that any measurable function f : [0, 1]→ [0, 1]
is already integrable, but already for ∆0

2-measurable functions this implication no longer
holds computably. This is a connecting point to our exploration of BSS-machines, as BSS-
computable functions are ∆0

2-measurable, and the representation of integrable functions
essentially allows us to compute all integrals of this function. Again, Weihrauch reducibility
will be the framework we use to describe the complexity of these translations.

Overview of the paper

Our results are collated in three theorems that can be found in Section 3.1 and in the
introduction of Section 4 respectively. The paper is structured such that either of the
Sections 3 and 4 can be read independently by a reader familiar with the content of Section 2.

The general outline of the paper is as follows: In Section 2 we provide the necessary
background on computable analysis and Weihrauch reducibility. A reader already familiar
with these topics may skip this part.

Section 3 starts off by recollecting the model of computing with generalized register
machines whose registers can hold properly infinite objects. Section 3.1 states our two main
theorems about such algebraic models of computation: Each of Theorem 15 and Theorem
16 describes an equivalence class of computational models. The remainder of the section is
devoted to their proofs.

Section 4 is about measurability and integrability and states our main result Theorem
24 right away. The theorem says that the Weihrauch degree of various operations that
correspond to finding the measure of a set or the integral of a function is lim. The rest of
the section explains and proves the individual parts of theorem.

2 Background from computable analysis

Let us start with some computable analysis as its viewpoint is important throughout the
paper. Introductionary sources on computable analysis that go way beyond what is the scope
of this paper include the seminal textbook [40]. A briefer introduction can be found in [10],
an approach in a language close to that of this paper in [31].

In computable analysis computations on abstract structures like the real numbers R, are
carried out by means of representations. A representation of a set X is a partial surjective
mapping δ : ⊆ NN → X from Baire space to that set. A representation may be understood to
assign to each element x of the mathematical structure X a set δ−1(x) ⊆ NN of names. Each
name of an abstract object x ∈ X encodes this object by providing on demand information
about it. A represented space is a pair X = (X, δX) of a set X and a representation
δX : ⊆ NN → X of that set. For convenience we often replace the two copies of natural
numbers in Baire space with countable sets that come with canonical enumerations.

C. Gaßner, A. Pauly, and F. Steinberg 22:3

I Example 1 (The Cauchy representation). Let (M,d) be a separable metric space with a
distinguished countable dense subset D. The Cauchy representation assigns a mapping
p : Q+ → D as name to x ∈M if each p(ε) is an ε-approximation to x in that d(x, p(ε)) ≤ ε.

The most important instance of this construction is R with the standard enumeration of
the rationals. Other metric spaces in Cauchy representation that we encounter are the
continuous functions on the unit interval C([0, 1]) and the space L1([0, 1]) of equivalence
classes of integrable functions.

Baire space comes with a natural topology and any represented space can be equipped
with the final topology of its representation. The notion of admissibility of a representation,
informally spoken, states that we can identify the represented space with the induced
topological space.

Let us consider two examples of represented spaces whose induced topology is not
metrizable and that can therefore not be constructed using a Cauchy representation. The
first example is a finite non-discrete space that we heavily use:

I Example 2 (Sierpiński space). Sierpiński space S is the set {>,⊥} equipped with the total
representation δS that assigns some p : N→ B (where B is the discrete two point space) as
name to > if and only if ∃n, p(n) = 1.

The representation of Sierpiński space is admissible and induces the topology where
{>} is open but {⊥} is not. Thus, the continuous functions from any topological space to
Sierpiński space are exactly the characteristic functions of the open sets.

The other example is a representation of the real numbers that provides strictly less informa-
tion than the Cauchy representation we usually use.

I Example 3 (The lower reals). The lower reals R< is the set of real numbers equipped
with the representation where a bounded sequence p : N→ Q of rationals is a name of its
supremum x := sup{p(n) | n ∈ N}. Access to a pair of a name of x ∈ R< and one of −x ∈ R<
is the same as having access to a name of x in the space R with the Cauchy representation.

We consider multifunctions between represented spaces as abstractions of computational
tasks. A multifunction f : X⇒ Y assigns to each x ∈ X a set f(x) ⊆ Y of eligible return
values. The domain of f is the set of those x for which f(x) is non-empty and the associated
task is to produce from an x and provided that x ∈ dom(f) some y ∈ f(x).

Computability and continuity of multivalued functions between represented spaces is
defined via realizers: Some F : ⊆ NN → NN is a realizer of a multi-valued function f : X⇒ Y
if it carries names of the input to names of eligible return values, i.e. δX(p) = x implies
F (p) is defined and δY(F (p)) ∈ f(x). A multivalued function is called computable if it
has a computable realizer and continuously realizable if it has a continuous realizer.
Admissibility of the target space implies that a function is topologically continuous if and
only if it is continuously realizable. Computability on Baire space is defined as existence of
an oracle machine that computes the return-value whenever the input is taken as oracle.

A representation δ is called computably translatable to another representation δ′ of
the same set X, if the identity function is computable as a function from (X, δ) to (X, δ′).
Unfolded this means that there exists a translation, i.e. a computable T : ⊆ NN → NN

such that whenever p is a name of x in the first representation, T (p) is a name of x in the
second representation. Intuitively, existence of a computable translation means that a name
in the input representation provides at least as much information about the object as a
name in the output representation. If computable translations in both directions exist the

CSL 2021

22:4 Computing Measure as a Primitive Operation

representations are called equivalent and the identity function is an isomorphism between
the spaces. Moreover we say that a representation is minimal with some property if any
other representation with this property can be computably translated to it.

Finally, a metric space with a distinguished dense sequence is called a computable
metric space if the metric is computable with respect to the Cauchy representation on itself
and on the reals. All metric spaces we encounter in this paper are computable metric spaces.

2.1 Products and exponentials of represented spaces
Given represented spaces X and Y there are standard ways to construct new represented
spaces. To equip the Cartesian product of the underlying spaces with a representation fix a
standard pairing function 〈·, ·〉 of the natural numbers and lift this pairing function to Baire
space by 〈p, q〉(n) := 〈p(n), q(n)〉. A name of (x, y) ∈ X×Y is a pair of names of x and y
respectively. To each A ⊆ X we assign a represented space AX by equipping A with the
corestriction of the representation of X to A.

Finally, we use the function space construction of computable analysis. Namely for
represented spaces X and Y the space C(X,Y) of continuously realizable functions.

If Y is admissible, the continuously realizable functions are exactly the continuous
functions. The computable elements of C(X,Y) are exactly the computable functions. The
function space representation is minimal with the property that evaluation is computable.

The representation is not easy to work with but there often exist simpler equivalent
representations.

I Example 4 (Concrete representations for spaces of functions). The computable Weierstraß
approximation theorem can be understood to say that C([0, 1]) ' C([0, 1],R). Here, C([0, 1],R)
is the space of continuous functions with the function space representation while C([0, 1])
has the same underlying set but in Cauchy representation with respect to the supremum
norm and the rational polynomials as dense subset. More specifically the metric is given by
d(f, g) := ‖f − g‖∞, where ‖f‖∞ := sup{|f(x)| | x ∈ [0, 1]} is the supremum norm.

Finally, for a represented space X we use the space X∗ of finite lists over X. A name of
such a finite word takes the same kind of questions that one can ask about elements of X
but returns a finite list of answers for each of the elements of the list.

2.2 Weihrauch reducibility and Weihrauch degrees
A reasonable notion of comparison of computational tasks f and g is to ask whether a solution
to f can be specified if – in addition to computable operations – an arbitrary solution to g
may be involved once. Weihrauch reductions make this idea formal. Recall that 〈p, q〉 is the
pairing of elements p and q of Baire space.

I Definition 5. Let f and g be multivalued functions between represented spaces. A
Weihrauch reduction of f to g is a pair of computable functions H,K : NN → NN called
pre- and post-processor such that for any realizer G of g the function p 7→ K(〈G(H(p)), p〉)
is a realizer of f .

We write f ≤W g if there exists a Weihrauch reduction and use f ≡W g as abbreviation
for f ≤W g∧ g ≤W f . The Weihrauch degree of f is its equivalence class under Weihrauch
reductions.

For additional information on the theory of Weihrauch degrees we refer the reader to [8].

C. Gaßner, A. Pauly, and F. Steinberg 22:5

name of some y ∈ f(x)

H

name p of x ∈ dom(f)

name H(p)
of z ∈ dom(g)

G

name of g(z)

K F

Figure 1 f ≤W g.

I Example 6 (Weihrauch degrees). The following Weihrauch degrees are important to us:
LPO: By LPO : NN → B we denote the characteristic map of the singleton set containing the

constant zero function and its Weihrauch degree. The name is short for ‘lesser principle
of omniscience’ and originates from constructive mathematics, where this principle often
serves as a Brouwerian counterexample to show that statements are not constructively
provable. Other representatives of LPO include the mapping from S to B that sends >
to 1 and ⊥ to 0 and checking equality of real numbers.

lim and CN: For a represented space X consider the multivalued function limX : XN ⇒ X
that sends a sequence (xn)n∈N to the set {x | limn→∞ xn = x} of its limit points. It holds
that limR ≡W limNN ≡W lim[0,1], and we just write lim for this Weihrauch degree. We
also use the degree of limN, which is equivalent to closed choice on the natural numbers,
CN, to be discussed in Section 2.3.

There are several ways to construct new Weihrauch degrees from known ones, let us go
through some that particularly important for our causes. First consider the parallelization,
where the new task is to solve the original task a countable number of times in parallel. For
a given multivalued function f : X ⇒ Y let f̂ : XN ⇒ YN be the operation of applying f
pointwise, i.e. f̂((xn)n∈N) := {(yn)n∈N | ∀n ∈ N : yn ∈ f(xn)}. One verifies that f ≤W g

implies f̂ ≤W ĝ, and hence the operation lifts to Weihrauch degrees.

I Lemma 7 (Parallelization of Weihrauch degrees [6]). The following equivalences hold:

L̂PO ≡W ĈN ≡W l̂im ≡W lim .

There are some more complicated constructions that we also need, namely the sequential
composition and most prominently the diamond operator where a task can be used sequentially
as many times as needed. However, for a proper discussion of this operator we need register
machines and we thus postpone it to Section 3. An additional operations is the finite parallel
execution f∗ where the task is given any integer n to solve the task corresponding to f in
parallel n-times.

CSL 2021

22:6 Computing Measure as a Primitive Operation

2.3 Spaces of sets and choice principles
Closed choice on the natural numbers, denoted by CN, is the task of selecting an element
of a closed set of natural numbers. To make this formal let us first recall how to introduce
spaces of open and closed subsets of represented spaces.

Recall from Example 2 that the functions from a topological space to Sierpiński space S
are exactly the characteristic functions of the open sets. In analogy to this one may generalize
from topological spaces to an arbitrary represented space X and consider O(X) := C(X,S)
the space of open subsets of X. This means that for an arbitrary represented space X we
consider a subset A ⊆ X to be open if its characteristic function χA : X→ S is continuously
realizable. Similarly, the represented space A(X) of closed sets consists of the complements
of open sets and names them accordingly.

I Lemma 8 ([12]). If X is a metric space in the Cauchy representation, then the information
that a name of A ∈ O(X) provides is exactly a sequence of balls of rational radius around
elements of the dense sequence that exhausts A.

In particular, for a computable metric space the computable elements of O(X) are exactly
those open sets that are computably enumerable in the usual sense. As an example and for
later use recall that R< denotes the lower reals from Example 3.

I Example 9 (Lower approximations to the volume of open sets). The Lebesgue measure is
computable as function λ : O([0, 1])→ R<. This is because according to the previous lemma
a name of an open set is a sequence of rational intervals that exhaust the set.

Closed choice for a space X is the multivalued function CX : A(X)⇒ X where the eligible
return values are the elements of the closed set provided as input. The domain of CX consists
of the non-empty closed sets. Closed sets are encoded as positive information about their
complement, thus CX is usually discontinuous and in particular incomputable. For instance
CN can be reformulated as finding a number not occurring in an enumeration.

We also need the next higher level of complexity, namely the spaces of Σ0
2 and Π0

2 sets. The
jump in complexity can be done using limNN as a jump operator [15] respectively computable
endofunctor [34, 32]. Namely, given a represented space X = (X, δX) define the lim-jump of
X to be the represented space that has the same underlying set but with the representation
δ′X := δ ◦ limNN ◦δ(NN)N . A function f : X→ Y is called lim-computable resp. lim-continuous
if it is computable resp. continuous as a function from X to the lim-jump of Y. If Y is R or
R∗, this is the same as being (effectively) Baire class 1. The notion of lim-computability can
also be expressed through Weihrauch degrees: A function f : X→ Y is lim-computable if
and only if f ≤W lim.

We plan on replacing Sierpiński space S in the definitions of open and closed sets above
by its lim-jump. Before we state these definitions let us specify a space S′ that is isomorphic
to the lim-jump of S but has a more approachable representation and convenient naming of
its elements. Equip the set {>′,⊥′} with the total representation δS′ that assigns p : N→ B
as name to >′ if p(n) = 0 only for finitely many n.

Now that we have fixed S′ we can set Σ0
2(X) := C(X,S′) and let the names of an element

of Π0
2(X) be the Σ0

2(X) names of its complement. As S′ is isomorphic to the lim-jump of
S this means that for an arbitrary represented space X we consider a subset A ⊆ X to
be a Σ0

2-set if its characteristic function χA : X→ S is lim-continuous. Here we follow the
approach of synthetic descriptive set theory suggested in [34]. These definitions recreate more
familiar ones that are only available in special cases. For instance: recall that the Π0

2-subsets
of a metric space are the countable intersections of open subsets. Following Brattka [5]
one would define the names of a Π0

2-set A to be the union of all name sets of sequences
(Un)n∈N ∈ O(X)N such that A =

⋂
n∈N Un.

C. Gaßner, A. Pauly, and F. Steinberg 22:7

I Lemma 10 (proven in [24]). The representation of the Π0
2-sets in the sense of Brattka

as presented above can be computably translated to the representation of Π0
2(X). If X is a

computable metric space, then a translation in the inverse direction is also possible.

Using Π0
2(X) we can introduce another important Weihrauch degree:

I Definition 11 (Π0
2-choice). Let Π0

2CX : Π0
2(X)⇒ X return the elements of A on input A.

The domain of the multifunction Π0
2CX are the non-empty Π0

2-subsets of X. Some other
representatives of the Weihrauch degree Π0

2CN can for instance be found in [7].

3 Algebraic models of computation and the diamond operator

Computation on algebraic structures has been studied in various ways, e.g. [26, 39]. The
most influential approach is by Blum, Shub and Smale [2] introducing the algebraic model
of computation on the reals that came to be named BSS-machines after the authors. We
particularly wish to highlight Moschovakis’ [29] as initial inspiration for our considerations.
We use the notion of a register machine over some algebraic structure, as defined in [30] by
following Gaßner [19, 20, 21] and Tavana and Weihrauch [38].

For us, an algebraic structure is a tuple A = (A, f1, f2, . . . , T1, T2, . . .), where A is a set,
each fi is a (partial) function of type fi : ⊆ Aki → A, and each Ti is a relation of type Ti ⊆ Ali .
A A-register machine computes functions of type g : ⊆ A∗ → A∗. It has registers (Zi)i∈N
holding elements of A, and index registers (In)n∈N holding natural numbers. Programs are
finite lists of commands, consisting of:

standard register machine operations on the index registers
copying the value of the register ZI1 indexed by I1 into ZI0

applying some fi to the values contained in Z1, . . . , Zki
and writing the result into Z0

jumping to a line in the program if the content of Z0, . . . , Zli−1 is an element of Ti
HALT, in which case the values in the registers Z0, . . . , ZI0 constitute the return value

At the start of the computation the register I0 contains the length of the input, all other
Ii start at 0. The input is in Z1, . . . , ZI0 , all other Zi contain some fixed value a0 ∈ A. If
the program either fails to halt on some input – which in particular happens if it invokes a
partial function on some values outside its domain – the computed function is undefined on
these values.

I Definition 12. A BSS-machine is a (R; 0, 1, (q)q∈Q,+,×, <)-register machine.

We can add any constant function c : R0 → R taking a computable value without it making a
difference anywhere in our paper, although this obviously increases the computational power
whenever we add irrational constants. For a more detailed introduction, see [22].

As long as our signatures are finite, with the potential exception of constants, we can
code A-register machine programs as inputs for an A-register machine using the length of the
input for the discrete part, and elements of A for the constants. This in particular ensures
the existence of universal machines, as these codes can be effectively decoded.

In computable analysis register machines whose signature only contains computable
operations are a popular tool for making proofs more accessible [38]. Weihrauch reducibility
has lead to a widespread use of register machines with incomputable signature:

CSL 2021

22:8 Computing Measure as a Primitive Operation

I Example 13 (The diamond operator). The Weihrauch degree f� captures all tasks that we
can solve in a finite computation with oracle access to f . A representative of f� can then be
given as a multifunction that takes as input an index of a register machine M together with
an input x for M , and outputs whatever M would output on x. An equivalent definition in
terms of reduction games was given by Jockusch and Hirschfeldt [27].

A proof that CN ≡W LPO� was given in [30]. Recall that LPO is the Weihrauch degree of
deciding equality of real numbers. As BSS-machines are register machines with the capability
to do branching over equalities of reals this equivalence provides a close link between closed
choice on the natural numbers to the power of BSS-machines.

The composition of Weihrauch degrees is an operation related to the diamond operator
that we need only in the passing. The Weihrauch degree f ? g essentially means “do
something computable, then invoke g, do some more computation, invoke f and after some
more computation return an answer”. We have f ?g ≡W max≤W{F ◦G | F ≤W f ∧G ≤W g},
where the maximum is only taken over f and g that are composable. It is not obvious
that the maximum exists, but a concrete construction of a representative can be found in
[11]. The diamond operation corresponds to the closure under composition in the sense that
idNN ≤W f = f ? f is equivalent to f = f� as proven by Westrick [41].

3.1 Enhancing BSS-machines and statement of our results
In this section we consider functions f : R∗ → R∗, where R∗ is the space of finite sequences
of real numbers as introduced at the very end of Section 2.1. We compare several models of
computation by register machines that may produce incomputable functions. The models
we consider fall into two classes: One adapts BSS-machines with primitive operations for
computing measures and the other adds capabilities of computing limits.

Starting from a BSS-machine, we add the ability to compute the Lebesgue measure of a
given BSS-decidable subset of [0, 1]d to obtain BSS+λ-machines. More specifically the run
of a BSS-machine proceed as follows in evaluating the Lebesgue measure (for more details
see the appendix):

IDefinition 14. If a BSS+λ-machine reaches a λ-command, the content of I0 is interpreted as
a Gödel-number of a BSS-machineM using k constants. The contents a1, . . . , ak of Z1, . . . , Zk
are used as the values for the k constants and the content of I1 as the dimension n of the input.
If M(a1, . . . , ak) halts for every input x ∈ [0, 1]n and outputs either 0 or 1, then we replace
the content of Z0 with the Lebesgue measure of the set {x ∈ [0, 1]n |M(a1, . . . , ak)(x) = 1}
and let the computation continue. If M is not as desired we do not modify the state so that
the computation loops on this command.

As it is also meaningful to talk about indices of BSS+λ-machines, we may iterate this process
once. That is, we use BSS+λ+λ-machines that have an additional primitive operator for
computing the Lebesgue measure of a set decidable by a BSS+λ-machine. One may produce
a more formal definition by replacement of the type of index used in the previous definition.

Motivated by our proofs we also consider machines with access to arbitrary (partial)
computable functions. We call such machines BSS+Comp-machines and as most of the
signature of BSS-machines is computable these machines can just use tests for strict inequality
of real numbers in addition to the computable functions on the reals. We add to these
machines the capability of computing measure very similar to how this was done for BSS-
and BSS+λ-machines. There is a small issue to address here as the infinite signature of
BSS+Comp-machines makes talking about programs slightly more complicated. However,

C. Gaßner, A. Pauly, and F. Steinberg 22:9

we may replace the infinite signature with a finite one by use of a universal computable
function u : ⊆ R→ R. This accounts for all unary computable functions and by the effective
Kolmogorov superposition theorem [4], together with addition this already suffices to construct
all computable functions of arbitrary finite arity. By adding a primitive for the measure of a
set decidable in this setting (which is just a ∆0

2-set), we obtain the BSS+Comp+λ-machines.
Our second class of models adds abilities to compute certain limits. The operator c-lim

(for controlled limit) maps a program for a BSS-machine that computes a sequence of real
numbers xi with |xi − xj | < 2−min{i,j} to the limit of this sequence. The operator u-lim
(uncontrolled limit) accepts a program computing an arbitrary converging sequence of real
numbers, and also outputs the limit. These operators correspond to the strongly and weakly
analytic machines going back to Chadzelek and Hotz [14]. However, in our model the c-lim-
and u-lim-commands can be used multiple times throughout the computation. Analytic
machines only allow one application at the end of the computation. Thus, we consider the
closure of what strongly/weakly analytic machines compute under composition here. We
denote the respective machine models BSS+c-lim and BSS+u-lim and the details of what
the commands do are similar to what was laid out in Definition 14.

In [30] it was shown that BSS-machines and strongly analytic machines can be character-
ized by a complete Weihrauch degree: every function computable in that model is Weihrauch
reducible to the complete degree and the complete degree has a representative computable
in the model. For the models we consider here we obtain the stronger characterization that
the computed functions are exactly those functions from a lower cone in the Weihrauch
degrees that are of suitable type. All of the models mentioned above coalesce into just two
equivalence classes:

I Theorem 15. For a function f : ⊆ R∗ → R∗ the following are equivalent:
1. f ≤W Π0

2CN

2. f is computable by a BSS+λ-machine.
3. f is computable by a BSS+c-lim-machine.
4. f is computable by a BSS+Comp-machine with oracle access to the BSS-Halting problem2.
5. There is a uniform sequence of Π0

2-sets (An)n∈N such that dom(f) =
⋃
n∈NAn and each

f |An
is computable.

Anticipating the notion of being piece-wise continuous as introduced in Section 4.3 the last
item may be reformulated as f being a computable element of the Π0

2-piece-wise continuous
functions. Another equivalent model that we omit here is to be computable by a weakly
non-deterministic Type-2 machine with advice space N as introduced by Ziegler [42].

I Theorem 16. For a function f : ⊆ R∗ → R∗ the following are equivalent:
1. f ≤W lim�

2. f is computable by a BSS+λ+λ-machine.
3. f is computable by a BSS+u-lim-machine.
4. f is computable by a BSS+Comp+λ-machine.
5. There is a uniform cover

⋃
n∈NAn = dom(f) where An is Π0

n, and f |An is of effective
Baire class n.

From known properties of the Weihrauch degrees we can now for instance draw conclusions
about how far computability is preserved point-wise by functions computed in these models:

2 Note that it does not matter whether we use the Halting problem for additive machines or the full
strength, or even just Q as an oracle.

CSL 2021

22:10 Computing Measure as a Primitive Operation

I Corollary 17. A BSS+λ-machine with computable constants on computable input either
diverges or produces a computable value. A BSS+λ+λ-machine with computable constants
can, on computable input, produce outputs in any finite level of the arithmetical hierarchy.

Proof. To see the first claim, we observe that Π0
2CN returns natural numbers. Thus f ≤W

Π0
2CN implies that f can only take computable values on computable inputs. For the second

claim, observe that one the one hand if p ∈ BN is arithmetical, then the constant function
x 7→ p : R∗ → R∗ (where we identify Cantor space BN and the Cantor middle third set) is
Weihrauch reducible to lim�. Conversely, since every computation of lim�-machine involves
only finitely many limits, its output on a computable input is always arithmetical. J

3.2 Measure, controlled limits and the Weihrauch degree of sorting
First, we show how a controlled limit can be reduced to the measure of a decidable set. Note
that strongly analytic machines can compute all computable functions f : R∗ → R∗, so the
following in particular implies that BSS+λ-machines can do the same.

I Lemma 18. From a strongly analytic machine with parameters (a1, . . . , ad) that computes a
function f : Rd → [0, 1] we can compute a BSS-machine (also using (a1, . . . , ad)) that decides
some subset Aa1,...,ad

⊆ [0, 1] such that f(a1, . . . , ad) = λ(Aa1,...,ad
).

Proof. We partition the unit interval into {0} and
(
(2/3)i+1, (2/3)i

]
for i ∈ N. The set

Aa1,...,ad
will be of the form Aa1,...,ad

=
⋃
i∈Ba1,...,ad

(
(2/3)i+1, (2/3)i

]
for some Ba1,...,ad

⊆ N.
A BSS-machine can decide Aa1,...,ad

if and only if it can decide Ba1,...,ad
.

A BSS-machine can simulate the strongly analytic machine for any finite amount of time.
At some point, it can pick a true case out of f(a1, . . . , ad) < 2/3 and 1/3 < f(a1, . . . , ad), and
decides 0 /∈ Ba1,...,ad

and c0 = 0 in the former, and 0 ∈ Ba1,...,ad
and c0 = 1/3 in the latter

case.
In the next step, f(a1, . . . , ad) − c0 ∈ [0, 2/3], and the BSS-machine can simulate the

strongly analytic machine until it determines a true case amongst f(a1, . . . , ad)− c0 < (2/3)2

and 2
32 < f(a1, . . . , ad)− c0, and then sets 1 /∈ Ba1,...,ad

and c1 = c0 in the former, and 1 ∈
Ba1,...,ad

and c1 = c0 + 2/9. The BSS-machine keeps iterating this process until it determines
whether or not i ∈ Ba1,...,ad

for the i it needs to know about to decide membership of the
input in Aa1,...,ad

. It is straight-forward calculation that f(a1, . . . , ad) = λ(Aa1,...,ad
). J

In the next step, we obtain a Weihrauch upper bound for computing measures of BSS-
decidable sets. This involves the Weihrauch degree Sort of the task of sorting infinite binary
sequences. Here, sorting means to return the infinite binary sequence 0n1ω if the input
sequence has exactly n zeros and 0ω if it has infinitely many zeros. It was shown in [30] that
Sort∗ characterizes the strength of strongly analytic machines.

I Lemma 19. The task given a BSS-machine M with constants (a1, . . . , an) that
decides a set A ⊆ [0, 1]d, compute λ(A) is Weihrauch-reducible to LPO ? Sortn.

Proof. Using LPO ? Sortn we can decide whether or not the (a1, . . . , an) are algebraically
independent, and if they are dependent, compute their minimal polynomial (as shown in
[30]). Any test M makes on input (x1, . . . , xd) can be seen as asking whether a polynomial
P (a1, . . . , an, x1, . . . , xd) is negative, positive, or 0. Knowing the minimal polynomial of
(a1, . . . , an) (or that they are algebraically independent) lets us decide whether P is 0
independent of the values of the xi. If yes, we can eliminate the test for P from M . If no,
then the set of (x1, . . . , xd) causing P to be 0 is of measure 0, hence can be safely ignored
for determining λ(A).

C. Gaßner, A. Pauly, and F. Steinberg 22:11

Once we do this procedure for all tests in M , we obtain two open sets U1, U2 (each as
union of the open sets linked to a computation path where tests are yielding positive or
negative answers) such that U1 ⊆ A, U2 ⊆ [0, 1]d \A and λ([0, 1]d \ (U1 ∪ U2)) = 0. As the
measure of open sets is lower-semicomputable, this allows us to compute λ(A). J

The two preceding lemmas, together with the classification of strongly analytic ma-
chines from [30] already tell us that when allowing arbitrary use of the principle in a finite
computation, then computing measures of BSS-computable sets, limits of fast converging
BSS-computable sequences or solving Sort all yields the computational strength of Sort�.

I Proposition 20. Sort� ≡W Π0
2CN.

Proof. We find that isInfinite ≤W Sort ?Sort ≤W Sort�, and by results from [7], also
isInfinite� ≡W Π0

2CN ≡W Π0
2C�N. This shows that Π0

2CN ≤W Sort�. For the other direction,
we just point out that Sort ≤W Π0

2CN is immediate. J

We have now gathered all auxiliary results we need for proving the first of our theorems.

Proof of Theorem 15. 1. ⇒ 3. It was shown in [30] that a strongly analytic machine can
compute a representative of the Weihrauch degree Sort. It follows that a BSS+c-lim-
machine can simulate a Sort�-computation on any valid types. Now, Sort� ≡W Π0

2CN by
Proposition 20, so that our claim follows.

3. ⇒ 2. By Lemma 18, we can replace each c-lim-command by a λ-command.
2. ⇒ 1. By Lemma 19 a Sort�-machine can simulate a BSS+λ-machine. Proposition 20

tells us that Sort� ≡W Π0
2CN.

1. ⇔ 4. This follows from [30, Theorem 21] and Π0
2CN ≡W isInfinite�.

1. ⇔ 5. It was observed by Nobrega [17] that being Weihrauch reducible to Π0
2CN corres-

pondents to a Π0
2-cover of the domain such that all restrictions of the function to a piece

are computable. Essentially, the pieces just are the inputs that lead to some number
n ∈ N being a valid output of Π0

2CN on the instance it is queried on. There is a minor
issue here regarding whether we have a cover of the set of names of inputs, or directly of
the inputs. For R∗ as domain this makes no difference, as explained in [33]. J

3.3 Iterating measure and computable functions as supplement
We can now ask what happens if we allow to nest the λ-operator once.

I Proposition 21. A function f : R∗ → R∗ is computable by a BSS+λ+λ-machine if and
only if f ≤W lim�.

Proof. A representative of the degree of lim is id : [0, 1]< → [0, 1], the identity from the
lower reals in the unit interval to the unit interval. From b ∈ [0, 1]< we can compute
[0, b) ∈ O([0, 1]), and the characteristic function of an open set is computable relative to
LPO, hence in particular relative to Π0

2CN. This establishes together with Theorem 15 that
a BSS+λ+λ-machine can compute everything Weihrauch-reducible to lim, and subsequently
lim�.

For the other direction, assume that the characteristic function χA of A ⊆ [0, 1]d is
computable by a BSS+λ-machine. By Theorem 15 it follows that χA ≤W Π0

2CN. This
in turn tells us that there are Π0

2-sets (Bn)n∈N and (Cn)n∈N such that A =
⋃
n∈NBn and

[0, 1]d \A =
⋃
n∈N Cn. In particular, A is a ∆0

3-set. Using lim ? lim ? lim we can compute the
measure of a Σ0

3-set as a real number, and thus the claim follows. J

CSL 2021

22:12 Computing Measure as a Primitive Operation

Note that for the first direction in the theorem above we only used that BSS+λ-machines
can compute all computable functions, and can decide all computable open sets. This can
already be facilitated by BSS+Comp-machines that can be simulated by BSS+λ-machines:

I Corollary 22. BSS+Comp+λ- and BSS+λ+λ-machines can compute the same functions.

The following is somewhat more general than we need for our theorem.

I Proposition 23. The following are equivalent for f : X ⇒ Y, where X is a effectively
countably based space:
1. f ≤W lim�.
2. There is a uniform cover

⋃
n∈NAn of X where An is Π0

n, and f |An
is of effective Baire

class n.

Proof. Let f ≤W lim�. We point out that using lim, we can chose a canonic name for each
point in an effectively countably-based space. Thus, in the lim�-computation, we can assume
that all names of the same point proceed in the same way through the computation tree
generated by the generalized register machine in the definition of �. The computation tree
has countably many leaves where the computation can terminate and provide an output.
If the path to a particular leaf is using n invocations of lim, then the set of inputs leading
to that leaf is a Π0

n+1-set, and we can obtain this uniformly. Every content of a register at
that moment (thus in particular the output) can be obtained as an effectively Baire class n
function. By padding with empty sets if necessary, we obtain the desired sequence from an
enumeration of the leaves.

Conversely, if we have a uniform cover
⋃
n∈NAn of X where An is Π0

n, then a lim�-
computation can on input x ∈ X find some n such that x ∈ An. Subsequently, a lim�-
computation can simulate any effective Baire class n function. J

Note that in particular the pre-computable Quasi-Polish space from [16] are effectively
countably-based. Finally, we prove our second theorem.

Proof of Theorem 16.
1. ⇔ 2., 2. ⇔ 4. and 1. ⇔ 5. These follow from the Propositions 21 and 23 and Corollary

22 respectively.
1. ⇔ 3. As a BSS+u-lim-machine can compute all computable partial functions on R∗, the

only difference between a BSS+u-lim and a lim�-machine is what are appropriate input
and output types. J

4 Measurability, Integrability and Weihrauch degrees

Classically, any measurable function f : [0, 1]→ [0, 1] is integrable. Computably, this fails to
be true. Rather than dealing with all Borel measurable functions, we restrict our attention to
the lowest non-trivial complexity and explore the ∆0

2-measurable functions. For metric spaces
X and Y, the Jayne-Rogers Theorem gives an alternate description of the ∆0

2-measurable
functions as piece-wise continuous functions [33]. In our setting the piece-wise continuous
functions can be identified with the space C(X,Y∇) of lim∆-continuous functions. Below,
we go into more detail about these spaces and also about the space L1([0, 1]) of integrable
functions. Before we do this recall that R< is the space of real numbers represented as
suprema of sequences of rationals and let us state the main results that we prove.

C. Gaßner, A. Pauly, and F. Steinberg 22:13

I Theorem 24. The following maps are Weihrauch equivalent to lim:
1. Evaluating a continuous function from its description as an integrable function. That is,

the inverse of the inclusion of C([0, 1], [0, 1]) into L1([0, 1]).
2. The Lebesgue measure as function on ∆0

2([0, 1]) with values either in R or in R<, i.e.

λ : ∆0
2([0, 1])→ R and λ : ∆0

2([0, 1])→ R<.

3. Integration taking a piece-wise continuous function on the unit interval and returning an
element of either R or R<, namely the functions∫

: C([0, 1], [0, 1]∇)→ R and
∫

: C([0, 1], [0, 1]∇)→ R<.

4. Translating from piece-wise continuous functions to integrable functions, i.e. the inclusion
of C([0, 1], [0, 1]∇) into L1([0, 1]).

4.1 Integrable functions, L1([0, 1]) and continuous functions
Let us first discuss what the represented space of integrable functions looks like. Recall that
strictly speaking L1([0, 1]) is not a space of functions but instead its elements are equivalence
classes of such. For f : [0, 1]→ R integrable in the sense that

∫ 1
0 |f |dλ <∞, the collection

[f] :=
{
g : [0, 1]→ R |

∫ 1

0
|f − g|dλ = 0

}
of functions that coincide with f almost everywhere is an element of L1([0, 1]). The vector-
space operations factor through the equivalence class and ‖[f]‖1 :=

∫ 1
0 |f |dλ defines a Norm

on L1([0, 1]). For this paper equip L1([0, 1]) with the Cauchy representation with respect to
the metric induced by this norm and choose as dense set the equivalence classes of piece-wise
constant functions with a finite number of rational values and breakpoints.

For more on representing spaces of integrable functions, see [36] and [37]. Integration is
computable as a mapping that takes endpoints of an interval and a function and integrates
it over the interval.

Let us give a name to the restriction of the assignment f 7→ [f] to continuous functions:

ι : C([0, 1], [0, 1])→ L1([0, 1]), f 7→ [f].

As continuous functions that are equal almost everywhere are already equal, ι is an injection.
However, a name of ι(f) provides strictly less information than one of f . Our first lemma
follows from results by Brattka [3] but we provide an elementary direct proof in the appendix.

I Lemma 25 (lim ≤W ι−1). Evaluating an integrable function that happens to be continuous
is enough to compute the limit of a sequence in Baire space.

I Lemma 26 (ι−1 ≤W lim). The inverse of the inclusion of C([0, 1], [0, 1]) into L1([0, 1]) is
Weihrauch reducible to lim.

Proof. 3 Recall that lim ≡W limN
[0,1], so it suffices to produce a Weihrauch reduction of ι−1

to limN
[0,1]. Let us assume we are given ι(f) ∈ L1([0, 1]). Fix some enumeration (Ik)k∈N of

the rational intervals with endpoints in [0, 1]. Assume we are given ε ∈ Q+ and we want to

3 We are grateful to a referee for sketching this simplified proof for us.

CSL 2021

22:14 Computing Measure as a Primitive Operation

produce some rational polynomial p such that ‖f−p‖∞ ≤ ε. Let (pm)m∈N be an enumeration
of the rational polynomials. Note that one easily obtains [pm] as an integrable function and
as we can compute integrals of integrable functions, for each m the sequence (xn)n∈N

xn := 1
λ(In)

∣∣ ∫
In

f − pmdλ
∣∣

is computable. Note that xn ≤ ‖f − pm‖∞ and that we can get xn arbitrary close to
‖f − pm‖∞: As f is continuous there exists an interval where f is almost constantly almost
the value whose absolute value is maximal. Thus, one instance of lim[0,1] can compute
‖f − pm‖∞ = sup{xn | n ∈ N} = lim[0,1]

(
(max{xk | k ≤ n})n∈N

)
. Moreover, using limN

[0,1]
produces (‖f − pm‖∞)m∈N as a sequence. Since f is continuous, we know that there exists
some pm such that ‖f − pm‖∞ < ε. As a test for strict inequality is computable when its
values are taken to be from S, we may find such pm by dovetailing and return it. J

4.2 The Lebesgue measure on the ∆0
2-subsets of the unit interval

Let us now introduce the space ∆0
2(X) of ∆0

2-subsets of a represented space X. First recall
that ∆0

1(X) := C(X,B) is the space of clopen subsets and can alternatively be represented a
pair of names of the characteristic function of both a set and its complement as continuous
functions to Sierpiński space. The space ∆0

2(X) can be introduced the same way but with
Sierpiński space replaced by its lim-jump as introduced in Section 2.3. As the product of
lim-jumps of two spaces is isomorphic to the lim-jump of the product, from ∆0

1(X) = C(X,B)
we get ∆0

2(X) ' C(X,B′), where B′ is the lim-jump of B. As every convergent sequence
in B is already eventually constant, B′ allows for a simpler description using another jump
operator. Let lim∆(pn) := {p ∈ NN | ∃N, ∀n ≥ N, pn = p} be the limit operator with respect
to the discrete topology on Baire space.

I Definition 27 (The lim∆-jump X∇ of a space X). Define the lim∆-jump of a represented
space X = (X, δX) as X∇ := (X, δX ◦ lim∆ ◦δ(NN)N).

Note that the definition of the lim-jump of in Section 2.3 is identical, except that lim∆
replaces limNN . Now, B∇ is isomorphic to the lim-jump of B and ∆0

2(X) ' C(X,B∇).

I Lemma 28. There exists a computable function D : dom(lim[0,1])→ ∆0
2([0, 1]) that maps

each converging x ∈ [0, 1]N to a set D(x) with Lebesgue measure λ(D(x)) = lim[0,1](x).

Proof. Our construction here has some similarities to the proof of Lemma 18. To argue
that we can compute a ∆0

2-set A from the sequence (ai)i∈N means that we can compute its
characteristic function as χA : [0, 1]→ B∆ with access to (ai)i∈N, which in turn is equivalent
to a LPO�-machine being able to compute χA : [0, 1] → B. We give the algorithm for the
latter as Algorithm 1 in the appendix. J

From this Lemma we can draw the conclusion that we need.

I Corollary 29 (
(
λ : ∆0

2([0, 1])→ R
)
≡W lim). The Lebesgue measure as a function from

∆0
2([0, 1]) to R is a representative of the Weihrauch degree lim.

Proof. It suffices to prove λ ≤W limNN and lim[0,1] ≤W λ. The latter of these follows directly
from the previous Lemma 28.

To see that also λ ≤W limNN assume that we are given A ∈ ∆0
2([0, 1]) as input. Recall

that a ∆0
2-set is specified as a pair names of itself and its complement as Π0

2-subsets of
[0, 1]. Now [0, 1] is a computable metric space and according to Lemma 10 we can thus

C. Gaßner, A. Pauly, and F. Steinberg 22:15

computably obtain names of sequences (Un)n∈N, (Vn)n∈N ∈ O([0, 1])N so that
⋂
n∈N Un = A

and
⋂
n∈N Vn = Ac. Thus the sequences xn := λ(

⋂
k≤n Uk) converges to λ(A) from above

and the sequence yn := 1 − λ(
⋂
k≤n Vk) from below. Note that the Lebesgue measure is

computable from open sets to R<. However, it is known that (id : R< → R) ≡W lim and
we know that l̂im ≡W lim from Lemma 7. Therefore, limNN is sufficient to lift both of the
sequences (xn) and (yn) from sequences in R< to sequences of real numbers. These sequences
approximate λ(A) from above and below so that we can compute λ(A) ∈ R. J

4.3 Piece-wise continuous functions and ∆0
2-measurable functions

Before we talk about ∆0
2-measurable functions let us get back to admissibility and continuous

functions for illustration. For any f ∈ C(X,Y) we may consider the pre-image function
f−1 : O(Y)→ O(X) defined by f−1(χ) := χ ◦ f . The above says that continuously realizable
functions between represented spaces are such that the preimage of an open set is not only
open but can continuously be obtained from it. Now, admissibility of the representation of Y
guarantees that the notions coincide in that it assures that the assignment f 7→ f−1 can be
inverted and in particular C(X,Y) is isomorphic to its image in C(O(Y),O(X)) under moving
to the pre-image function. A function is called ∆0

2-measurable if its preimages of open sets
are ∆0

2-sets. We may thus ask whether there is an assumption that allows reconstruction of a
∆0

2-measurable function from its preimage function O(Y)→ ∆0
2(X) just like admissibility did

this for continuity. Indeed, there exists such a condition and it is called lim∆-admissibility.
It implies that C(X,Y∇) is isomorphic to the corresponding subspace of C(O(Y),∆0

2(X)).
Here Y∇ is the lim∆-jump of Y from Definition 27 and as its underlying set is identical to
that of Y, measurable functions are indeed functions from X to Y. We point to [33, 32] for
proofs that all spaces that appear as Y in this paper are lim∆-admissible.

The space C(X,Y∇) can often be understood as the space of piece-wise continuous
functions via the Jayne-Rogers theorem. A function f : X → Y is piece-wise continuous
if there is a sequence (An)n∈N ∈ A(X)N that covers X and such that for each n ∈ N the
function f |An is continuous from An as a subspace of X to Y. Let Cpw(X,Y) be the space
of piece-wise continuous functions represented as expected.

I Lemma 30 (C(X,Y∇) ' Cpw(X,Y), proven in [33]). Let X and Y be a computable metric
spaces such that Y is complete. Then C(X,Y∇) is isomorphic to the space of piece-wise
continuous functions Cpw(X,Y) as introduced above.

Let us give a name to another restriction of the assignment f 7→ [f], namely set

ι∆ : C([0, 1], [0, 1]∇)→ L1([0, 1]), f 7→ [f].

This map is not injective: as piece-wise continuous functions characteristic functions of
singletons are distinct from zero but they produce the same equivalence class in L1([0, 1]).

I Lemma 31 (
(∫

: C([0, 1], [0, 1]∇)→ R
)
≤W lim). Integrating a piece-wise continuous

function over the unit interval is Weihrauch reducible to limR.

Proof. According to Lemma 30, the information that we get about f is a sequence An of
closed sets together with the restrictions f |An

. By Lemma 8, the information contained in a
name of An ∈ A([0, 1]) is an increasing sequence (U in)i∈N of finite unions of rational intervals
such that

⋃
i∈N U

i
n = Acn. Construct a sequence rn ∈ [0, 1] as follows: For each i ≤ 2n set

xi := i · 2−n and pick some canonical name of xi ∈ [0, 1]. For each k ≤ n check whether
xi ∈ Ukn , and if this is not the case evaluate the universal used for function spaces for n steps

CSL 2021

22:16 Computing Measure as a Primitive Operation

in attempt to obtain a 2−n approximation to f |Ak
(xi). Let g(xi) be the first value for which

this succeeds and returns something in [−2−n, 1 + 2−n] and let g(xi) be zero if this never
happens. Set rn :=

∑
i≤2n g(xi) · 2−n and note that our description of this sequence provides

a way to compute it from the input information. To see that the sequence rn converges to
the integral of f one uses the sigma-additivity of the Lebesgue measure and that, as the An
cover [0, 1], it holds that limR(λ(An))n∈N = 1 and also limR(λ(U in))i∈N = 1− λ(An). J

I Corollary 32 (ι∆ ≡W lim). The Weihrauch degree of the mapping from C([0, 1], [0, 1]∇) to
L1([0, 1]) that takes f to its equivalence class is lim.

Proof. Let us first argue that ι∆ ≤W lim and thus assume that we are given an input for
ι∆, i.e. some f ∈ C([0, 1], [0, 1]∇). Let (pk)k∈N be an enumeration of rational piece-wise
constant functions similar to the one we use for defining the Cauchy representation of
L1([0, 1]) but who map to [0, 1]. Note that the sequence (pk)k∈N is computable as sequence in
C([0, 1], [0, 1]∇) and that taking differences and the absolute value are computable operations
on the piece-wise continuous functions as they can be lifted in a pointwise manner from the
continuous functions. Thus, for each fixed k we can compute ‖[f]− [pk]‖1 =

∫ 1
0 |f − pk|dλ

using an invocation of lim by the previous Lemma. As l̂im ≡W lim this means that we can
also compute (‖[f] − [pk]‖1)k∈N as a sequence by one application of lim. Now given some
ε ∈ Q+ we know that there exists some pk such that ‖[f]− [pk]‖1 < ε and may thus search
for it and return it.

To see that also lim ≤W ι∆ note that B∇ is isomorphic to {0, 1} as subspace of [0, 1]∇.
Thus we can computably obtain the characteristic function χA ∈ C([0, 1], [0, 1]∇) from a
A ∈ ∆0

2([0, 1]). As
∫ 1

0 χAdλ = λ(A) we can thus use ι∆ to compute the Lebesgue measure as
function from ∆0

2([0, 1]) to R and get the desired reduction from Lemma 29. J

References
1 Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and Real Computation.

Springer, 1998.
2 Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and complexity over

the real numbers: NP-completeness, recursive functions and universal machines. Bulletin
of the American Mathematical Society, 21(1):1–46, 1989. URL: http://projecteuclid.org/
euclid.bams/1183555121.

3 Vasco Brattka. Computable invariance. Theoretical Computer Science, 210:3–20, 1999.
doi:10.1016/S0304-3975(98)00095-4.

4 Vasco Brattka. A computable Kolmogorov superposition theorem. Informatik Berichte 272,
FernUniversität Hagen, 2000.

5 Vasco Brattka. Effective Borel measurability and reducibility of functions. Mathematical Logic
Quarterly, 51(1):19–44, 2005. doi:10.1002/malq.200310125.

6 Vasco Brattka, Matthew de Brecht, and Arno Pauly. Closed choice and a uniform low basis
theorem. Annals of Pure and Applied Logic, 163(8):968–1008, 2012. doi:10.1016/j.apal.
2011.12.020.

7 Vasco Brattka, Guido Gherardi, Rupert Hölzl, Hugo Nobrega, and Arno Pauly. Borel choice.
in preparation.

8 Vasco Brattka, Guido Gherardi, and Arno Pauly. Weihrauch complexity in computable
analysis, 2017. URL: https://arxiv.org/abs/1707.03202.

9 Vasco Brattka and Peter Hertling. Feasible real random acess machines. Journal of Complexity,
14:490–526, 1998. doi:10.1006/jcom.1998.0488.

10 Vasco Brattka, Peter Hertling, and Klaus Weihrauch. A tutorial on computable analysis. In
Barry Cooper, Benedikt Löwe, and Andrea Sorbi, editors, New Computational Paradigms:

http://projecteuclid.org/euclid.bams/1183555121
http://projecteuclid.org/euclid.bams/1183555121
https://doi.org/10.1016/S0304-3975(98)00095-4
https://doi.org/10.1002/malq.200310125
https://doi.org/10.1016/j.apal.2011.12.020
https://doi.org/10.1016/j.apal.2011.12.020
https://arxiv.org/abs/1707.03202
https://doi.org/10.1006/jcom.1998.0488

C. Gaßner, A. Pauly, and F. Steinberg 22:17

Changing Conceptions of What is Computable, pages 425–491. Springer, 2008. URL: https:
//link.springer.com/chapter/10.1007/978-0-387-68546-5_18.

11 Vasco Brattka and Arno Pauly. On the algebraic structure of Weihrauch degrees. Logical
Methods in Computer Science, 14(4):1–36, 2018. doi:10.23638/LMCS-14(4:4)2018.

12 Vasco Brattka and Gero Presser. Computability on subsets of metric spaces. Theoretical
Computer Science, 305(1-3):43–76, 2003. doi:10.1016/S0304-3975(02)00693-X.

13 Peter Bürgisser and Felipe Cucker. Counting complexity classes for numeric computations
ii: Algebraic and semialgebraic sets. Journal of Complexity, 22(2):147–191, 2006. doi:
10.1016/j.jco.2005.11.001.

14 Thomas Chadzelek and Günter Hotz. Analytic machines. Theoretical Computer Science,
219:151–167, 1999. doi:10.1016/S0304-3975(98)00287-4.

15 Matthew de Brecht. Levels of discontinuity, limit-computability, and jump operators. In Vasco
Brattka, Hannes Diener, and Dieter Spreen, editors, Logic, Computation, Hierarchies, pages
79–108. de Gruyter, 2014. doi:10.1515/9781614518044.79.

16 Matthew de Brecht, Arno Pauly, and Matthias Schröder. Overt choice. Computability, 2020.
available at https://arxiv.org/abs/1902.05926. doi:10.3233/COM-190253.

17 Hugo de Holanda Cunha Nobrega. Game characterizations of function classes and Weihrauch
degrees. M.Sc. thesis, University of Amsterdam, 2013. URL: https://eprints.illc.uva.nl/
905/1/MoL-2013-16.text.pdf.

18 Tobias Gärtner and Martin Ziegler. Real analytic machines and degrees. Logical Methods in
Computer Science, 7:1–20, 2011. doi:10.2168/LMCS-7(3:11)2011.

19 Christine Gaßner. On NP-completeness for linear machines. Journal of Complexity, 13:259–271,
1997. doi:10.1006/jcom.1997.0444.

20 Christine Gaßner. The P-DNP problem for infinite abelian groups. Journal of Complexity,
17:574–583, 2001. doi:10.1006/jcom.2001.0583.

21 Christine Gaßner. A hierarchy below the halting problem for additive machines. Theory
Computing Systems, 17:574–583, 2008. doi:10.1007/s00224-007-9020-y.

22 Christine Gaßner. An introduction to a model of abstract computation: the BSS-RAM model.
In Adrian Rezus, editor, Contemporary Logic and Computing, volume 1 of Landscapes in Logic,
pages 574–603. College Publications, 2020.

23 Christine Gaßner and Pedro F. Valencia Vizcaíno. Operators for BSS RAM’s. In Martin Ziegler
and Akitoshi Kawamura, editors, The Twelfth International Conference on Computability and
Complexity in Analysis, pages 24–26, 2015.

24 Vassilios Gregoriades, Tamás Kispéter, and Arno Pauly. A comparison of concepts from
computable analysis and effective descriptive set theory. Mathematical Structures in Computer
Science, 27(8):1414–1436, 2017. 2015. doi:10.1017/S0960129516000128.

25 Anders C. Hansen. On the solvability complexity index, the n-pseudospectrum and approxim-
ations of spectra of operators. Journal of the AMS, 24:81–124, 2011.

26 Armin Hemmerling. Computability of string functions over algebraic structures. Mathematical
Logic Quarterly, 44(1):1–44, 1998. doi:10.1002/malq.19980440102.

27 Denis R. Hirschfeldt and Carl G. Jockusch. On notions of computability-theoretic reduction
between Π1

2-principles. Journal of Mathematical Logic, 16(1), 2016. 1650002:1-1650002:59.
doi:10.1142/S0219061316500021.

28 Klaus Meer. Counting problems over the reals. Theoretical Computer Science, 242:41–58, 2000.
doi:10.1016/S0304-3975(98)00190-X.

29 Yiannis N. Moschovakis. Abstract first order computability. I. Transactions of the American
Mathematical Society, 138:427–464, 1969. doi:10.2307/1994926.

30 Eike Neumann and Arno Pauly. A topological view on algebraic computations models. Journal
of Complexity, 44:1–22, 2018. doi:10.1016/j.jco.2017.08.003.

31 Arno Pauly. On the topological aspects of the theory of represented spaces. Computability,
5(2):159–180, 2016. doi:10.3233/COM-150049.

CSL 2021

https://link.springer.com/chapter/10.1007/978-0-387-68546-5_18
https://link.springer.com/chapter/10.1007/978-0-387-68546-5_18
https://doi.org/10.23638/LMCS-14(4:4)2018
https://doi.org/10.1016/S0304-3975(02)00693-X
https://doi.org/10.1016/j.jco.2005.11.001
https://doi.org/10.1016/j.jco.2005.11.001
https://doi.org/10.1016/S0304-3975(98)00287-4
https://doi.org/10.1515/9781614518044.79
https://doi.org/10.3233/COM-190253
https://eprints.illc.uva.nl/905/1/MoL-2013-16.text.pdf
https://eprints.illc.uva.nl/905/1/MoL-2013-16.text.pdf
https://doi.org/10.2168/LMCS-7(3:11)2011
https://doi.org/10.1006/jcom.1997.0444
https://doi.org/10.1006/jcom.2001.0583
https://doi.org/10.1007/s00224-007-9020-y
https://doi.org/10.1017/S0960129516000128
https://doi.org/10.1002/malq.19980440102
https://doi.org/10.1142/S0219061316500021
https://doi.org/10.1016/S0304-3975(98)00190-X
https://doi.org/10.2307/1994926
https://doi.org/10.1016/j.jco.2017.08.003
https://doi.org/10.3233/COM-150049

22:18 Computing Measure as a Primitive Operation

32 Arno Pauly and Matthew de Brecht. Towards synthetic descriptive set theory: An instantiation
with represented spaces. http://arxiv.org/abs/1307.1850, 2013.

33 Arno Pauly and Matthew de Brecht. Non-deterministic computation and the Jayne Rogers
theorem. Electronic Proceedings in Theoretical Computer Science, 143:87–96, 2014. DCM
2012. doi:10.4204/EPTCS.143.8.

34 Arno Pauly and Matthew de Brecht. Descriptive set theory in the category of represented
spaces. In 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages
438–449, 2015. doi:10.1109/LICS.2015.48.

35 Arno Pauly and Florian Steinberg. Comparing representations for function spaces in
computable analysis. Theory of Computing Systems, 62(3):557–582, 2018. doi:10.1007/
s00224-016-9745-6.

36 Marian Pour-El and Ian Richards. Computability in analysis and physics. Perspectives in
Mathematical Logic. Springer, 1989.

37 Florian Steinberg. Complexity theory for spaces of integrable functions. Logical Methods in
Computer Science, 13(3):1–39, 2017. doi:10.23638/LMCS-13(3:21)2017.

38 Nazanin Tavana and Klaus Weihrauch. Turing machines on represented sets, a model of
computation for analysis. Logical Methods in Computer Science, 7:1–21, 2011. doi:10.2168/
LMCS-7(2:19)2011.

39 John V. Tucker and Jeffrey I. Zucker. Computable functions and semicomputable sets on
many-sorted algebras. In T.S.E. Maybaum S. Abramsky, D.M. Gabbay, editor, Handbook of
Logic in Computer Science, volume 5 of Oxford Science Publications, pages 317–523, 2000.

40 Klaus Weihrauch. Computable Analysis. Springer-Verlag, 2000.
41 Linda Westrick. A note on the diamond operator. Computability, 202X. to appear. doi:

10.3233/COM-200295.
42 Martin Ziegler. Computability and continuity on the real arithmetic hierarchy and the power

of type-2 nondeterminism. In Barry S. Cooper, Benedikt Löwe, and Leen Torenvliet, editors,
Proceedings of CiE 2005, volume 3526 of Lecture Notes in Computer Science, pages 562–571.
Springer, 2005. URL: https://link.springer.com/chapter/10.1007/11494645_68.

A Proof of Lemma 28

That we have access to LPO is relevant in Lines 5 and 7, where LPO lets us resolve the
if-statements. As we can use arbitrary computable functions, the universal quantifiers ∀i ≥ n
are unproblematic here. Since the sequence (ai)i∈N is guaranteed to converge, the while-loop
will terminate. If b = 0, then for sure limi→∞ ai ∈ [0, 2/3], if b = 1 then limi→∞ ai ∈ [1/3, 1]. In
the latter case, Line 15 adds 1/3 to the measure of A. By moving to the sequence (ai− b/3)i∈N
we then get a sequence guaranteed to have a limit in [0, 2/3], and still have to determine
membership in A for x ∈ (1/3, 1). We rescale this interval up to (0, 1) again, and iterate the
process.

B Proof of Lemma 25

Proof. As lim ≡W L̂PO by Lemma 7 we may solve a countable number of instances of
LPO = χ{k 7→0} instead of one of lim. Thus, our input is a sequence (pn) of elements of Baire
space. Let mn be the least natural number such that pn(mn) 6= 0 if such a number exists
and ∞ otherwise. Define a sequence of functions fn ∈ C([0, 1]) by

fn(x) :=
{

0 if mn =∞
max{0, 1− 2mn+2|x− 3

4 |} otherwise,

https://doi.org/10.4204/EPTCS.143.8
https://doi.org/10.1109/LICS.2015.48
https://doi.org/10.1007/s00224-016-9745-6
https://doi.org/10.1007/s00224-016-9745-6
https://doi.org/10.23638/LMCS-13(3:21)2017
https://doi.org/10.2168/LMCS-7(2:19)2011
https://doi.org/10.2168/LMCS-7(2:19)2011
https://doi.org/10.3233/COM-200295
https://doi.org/10.3233/COM-200295
https://link.springer.com/chapter/10.1007/11494645_68

C. Gaßner, A. Pauly, and F. Steinberg 22:19

Algorithm 1 Computing the characteristic function of A.
1 Function Charac is

input : x ∈ [0, 1], converging sequence (ai)i∈N
output :Boolean indicating whether x ∈ A

2 if x = 0 then return "no";
3 b := −1; n = 0; while b = −1 do
4 if ∀i ≥ n ai ≤ 2

3 then
5 b := 0;
6 else if ∀i ≥ n ai ≥ 1

3 then
7 b := 1;
8 else
9 n := n + 1;

10 end if
11 end while
12 if x ≥ 2

3 then
13 if b = 0 then return "no";
14 if b = 1 then return "yes";
15 else
16 return Charac (3

2x, (3
2ai −

1
2b)i∈N)

17 end if
18 end

and let f be defined by an infinite sum:

f(x) :=
∑
n∈N

2−nfn(2nx).

This sum converges in supremum norm and f is a continuous function. To see that a sequence
of piece-wise linear approximations to f in L1-norm can be computed from p note that∫

2−nfn(2nx)dx = 2−2n
∫
fn(x)dx = 2−2(n+1)−mn .

Thus, the infinite sum may be approximated by the finite sums∑
n s.t. max{n,mn}≤k

2−nfn(2nx)

up to any desired precision ε by choosing an appropriate k. Furthermore, these finite sums
are computable from the input sequence pn. An application of a solution of ι−1 provides
with this function as a continuous function. In particular we may evaluate the values of the
function in the peaks and can read the value of χ{k 7→0}(pn) from these. J

C The BSS RAM model – some details

In the following, an algebraic structure A is a tuple (U ; c1, c2, . . . ; f1, f2, . . . ; r1, r2, . . .) with
universe UA = U , where U is any nonempty set, each ci is an element in U , each fi is
a (partial) function of type fi :⊆ Umi → U (mi ≥ 1), and each ri is a relation of type
ri ⊆ Uki . Here, any A-machine M computes a function of type g :⊆ U∗ → U∗. It has

CSL 2021

22:20 Computing Measure as a Primitive Operation

0 1

1

0 1

1

Figure 2 fn for mn = 1 and f for mn = (0, 3,∞, 1, 6,∞, . . .).

registers (Zi)i≥1 and index registers (Ij)j∈{1,...,kM} and, at any time, the content c(Zi) of
any Zi is an element of U and any Ij holds a natural number c(Ij). Each program PM of any
M is a finite list of labeled commands of the following forms: computation instructions
` : Zj := fmi

i (Zj1 , . . . , Zjmi
) and ` : Zj := c0i , copy instructions ` : ZIj

:= ZIk
, branching

instructions ` : if rki
i (Zj1 , . . . , Zjki

) then goto `1 else goto `2, index instructions ` : if
Ij = Ik then goto `1 else goto `2, ` : Ij := 1, and ` : Ij := Ij + 1, a stop instruction l : stop.

For explaining some details, let (~x . ~y) = (x1, . . . , xn, y1, . . . , ym) ∈ Un+m and (~x . z̄) =
(x1, . . . , xn, z1, z2, . . .) ∈ Uω for n,m ≥ 0 and ~x = (x1, . . . , xn) ∈ Un, ~y = (y1, . . . , ym) ∈
Um, and z̄ = (z1, z2, . . .) ∈ Uω. For any A-machine M, let {(` .~ι . z̄) | ` ∈ LM & ~ι ∈
NkM

+ & z̄ ∈ Uω} be the space of all possible configurations of M with the list LM =df
{1, . . . , `M} of labels. For computing partial functions of the form f :⊆ U∗ → U∗, we use
A-machineM – so-called BSS RAM’s over A – with at least one constant c1 and kM ≥ 2
and an input and an output procedure. Let the input procedure of M be determined
by InputM(x1, . . . , xn) = (1 .~ι . (x1, . . . , xn, xn, xn, . . .)) with ~ι = (n, 1, . . . , 1) ∈ NkM

+ and
InputM(()) = (1 .~ι . (c1, c1, . . .)) with ~ι = (1, 2, 1, . . . , 1) ∈ NkM

+ . Let the output procedure be
given by OutputM(` .~ι . z̄) = (z1, . . . , zι1) if (ι1, ι2) 6= (1, 2) and OutputM(` .~ι . z̄) = () for
(ι1, ι2) = (1, 2). This means, at the start of the computation, the register I1 contains the
length of the input, all other Ij start at 1. The input is in Z1, . . . , Zn, all other Zi contain
the constant c1 ∈ UA. If the program fails to halt on some input, the computed function is
undefined on these values.

For R0 = (R; 0, 1, q1, q2, . . . ;−,+,×;<,=) with {q1, q2, . . .} = Q, let MR0 be the class of
all BSS machines without irrational constants which can be considered to be a BSS RAM
over R0. For a universal register machine, as inputs we use the first part of the code for
encoding the program by means of Gödel numberings gn as given in [22] and the second part
for the constants. For any R0-machineM with the constants in ~c (M) = (cj1 , . . . , cjn1

), let
code(M) = (code(PM) .~a (M,1)) where code(PM) ∈ {1}gn(PM) and ~a (M,a) = (a1, . . . , a`M)
is defined as follows. For any ` ≤ `M, let a` be the ith component cji

in ~c (M) if the `th
instruction of PM is the instruction Zj := c0i for some j and otherwise let a` = a. We know
that there is a universal BSS RAMM0 ∈ MA over R0 satisfyingM0(code(M) . ~x) =M(~x)
for all ~x ∈ U∞A and any BSS RAM M over R0 (U∞A contains all tuples/strings in U∗A

C. Gaßner, A. Pauly, and F. Steinberg 22:21

without the empty string). Any simple 1-tape Turing machine M computing a function
f :⊆ {0, 1}∗ → {0, 1}∗ or f :⊆ N → N can be simulated by A0-machines MT(M) and
MT

N(M), respectively, for A0 = ({0, 1}; 0, 1; ; =) with suitable input and output procedures
(for details see [22]) and thus be encoded by the Gödel number code(M) = gn(PMT(M)).
By analogy, for computing a function f :⊆ R→ R by a type-2 machine M , we can take an
A0-machine with modified input and output for simulating M . A BSS+Comp machine
M is a generalization of a BSS machine that can additionally execute instructions of the
form

Zj := Comp(I1, Z1). (1)

If c(I1) is the code of some type-2 machine M and M computes, on input c(Z1), the name
of a real value, then, by (1), this value is assigned to Zj and, otherwise, (1) causes thatM
does not halt.

Now, we define oracle instructions similar to instructions in Moschovakis’ model using
the ν-oparator (cf. [29]) and use an operator ~ν in order to introduce the deterministic
measure operator λ and other operators (cf. [23]). A consequence is that we can get –
in the same way – a precise definition of oracle instructions that can be considered as a
generalization of instructions introduced in [13, p. 156] for characterizing counting complexity
classes for numeric computations by using classes such as]PR introduced in [28, p. 44]. For
f :⊆ R∞ → R∗, let the ~ν-operator here provide a total function ~ν[f] from R∗ into the power
set P(R∞) of R∞. For ~x ∈ R∗, let ~ν[f](~x) = {~y ∈ R∞ | f(~x . ~y) = 0}. We are interested in
measures of such sets for a universal function fBSS−uni : R∞ → R∗ with fBSS−uni(~z) =M(~y) if
if there are anM∈ MR0 , a k ≥ 1 and a ~y ∈ Rk with ~z = (code(M) . k . ~y) and fBSS−uni(~z) = 0
otherwise. Let λ(A) be the Lebesgue measure of a set A ⊆ Rk if A is in the considered
σ-algebra, and undefined otherwise. The measure operator λ[fBSS−uni] provides, for any
k, a partial function from R∗ into the interval [0,∞]. Let

` : Zj := λ[fBSS−uni](I1, Z1, . . . , ZI2 , I3). (2)

If there is anM∈ MR0 with Gödel number gn(PM) stored in I1 and the constants stored
in Z1, . . . , Zc(I2) that decides, for k = c(I3), A =df ~ν[fBSS−uni](code(M) . k) ∩ [0, 1]k on the
interval [0, 1]k and λ(A) is defined and finite (and, thus, in [0,∞[), then by (2) λ(A) is
assigned to the register Zj . Otherwise, an instruction of the form (2) causes that a machine
trying to execute the instruction and to compute the corresponding measure does not halt.

For determining the limits of sequences (yi)i∈N with elements in R, two further determin-
istic operators, the limit operator lim (resp. the u-limit operator u-lim for uncontrolled
limits) and the c-limit operator c-lim (for controlled limits), are available and they can be
used in executing instructions of the form

` : Zj := [c-] lim[f](I1, Z1, . . . , ZI2), (3)

These operators correspond to the strongly analytic and to the weakly analytic machines
going back to Hotz [14]. The differences between both instructions are partially comparable
to those of weakly analytic and strongly analytic machines over (R;R; +,−, · , /; =, <) that
compute the limits by producing sequences y0, y1, . . . weakly analytically and strongly
analytically, respectively; for details see the paper [18, p. 4] on relationships between the BSS
machines over real numbers (cf. [1]) and the analytic machines (cf. [14]).

For any permitted function f :⊆ R∞ → R∗, [c-] lim[f] is a function of the form g :⊆
R∗ → [−∞,+∞]. For f :⊆ R∞ → R∗ and ~x ∈ R∗, lim[f](~x) is defined if and only if there
are a convergent sequence y0, y1, . . . ∈ R and an M ∈ MR0 whose Gödel number gn(PM)

CSL 2021

22:22 Computing Measure as a Primitive Operation

is stored in I1 and whose constants are stored in Z1, . . . , Zc(I2) that computes yi on i for
all i ∈ N and then lim[f](~x) is the limit of this sequence; c-lim[f](~x) is equal to the limit
if, moreover, |yi − yj | < 2−min{i,j} is satisfied for all i, j ∈ N, and undefined otherwise.
Let fBSS−enu be the function f satisfying f(~z) = 0 if there is a BSS machineM satisfying
(∀i ∈ N)(∃yi ∈ R)(~z = (code(M) . yi) & M(i) = yi) and f(~z) = 1 otherwise. This implies
that {yi | i ∈ N} = ν[fBSS−enu](code(M)) for any BSS machineM. Then, the instructions
(3) with f = fBSS−enu allow to compute the corresponding finite limit if the limit of the
sequence enumerating byM exists and is in R and, otherwise, a machine trying to execute
such an instruction does not halt.

A BSS+λ[fBSS−uni] machine is a generalization of a BSS machine which can additionally
execute instructions of the form (2). A function g is BSS+λ-computable if g is computable
by a BSS+λ[fBSS−uni] machine. A function g is BSS+λ+λ-computable if g is computable
by a BSS+λ[fBSS+λ−uni] machine. In a similar way, we can define the computability by means
of other generalizations of BSS machines as follows. A BSS+[c-] lim[fBSS−enu] machine
is a generalization of a BSS machine which can additionally execute the corresponding
instructions of the form (3). A function g is a BSS+[c-] lim-computable if g is computable
by a BSS+[c-] lim[fBSS−enu] machine. A function g is BSS+lim+c-lim-computable if g is
computable by a BSS+c-lim[f(BSS+lim)−enu] machine.

A Partial Metric Semantics of Higher-Order Types
and Approximate Program Transformations
Guillaume Geoffroy
University of Bologna, Department of Computer Science and Engineering, Italy
guillaume.geoffroy@unibo.it

Paolo Pistone
University of Bologna, Department of Computer Science and Engineering, Italy
paolo.pistone2@unibo.it

Abstract
Program semantics is traditionally concerned with program equivalence. However, in fields like
approximate, incremental and probabilistic computation, it is often useful to describe to which
extent two programs behave in a similar, although non equivalent way. This has motivated the
study of program (pseudo)metrics, which have found widespread applications, e.g. in differential
privacy. In this paper we show that the standard metric on real numbers can be lifted to higher-order
types in a novel way, yielding a metric semantics of the simply typed lambda-calculus in which
types are interpreted as quantale-valued partial metric spaces. Using such metrics we define a class
of higher-order denotational models, called diameter space models, that provide a quantitative
semantics of approximate program transformations. Noticeably, the distances between objects of
higher-types are elements of functional, thus non-numerical, quantales. This allows us to model
contextual reasoning about arbitrary functions, thus deviating from classic metric semantics.

2012 ACM Subject Classification Theory of computation → Denotational semantics

Keywords and phrases Simply typed λ-calculus, program metrics, approximate program transfor-
mations, partial metric spaces

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.23

Funding Guillaume Geoffroy: ERC CoG 818616 “DIAPASoN”, ANR 16CE250011 “REPAS”.
Paolo Pistone: ERC CoG 818616 “DIAPASoN”, ANR 16CE250011 “REPAS”.

1 Introduction

In program semantics one is usually interested in capturing notions of behavioral equivalence
between programs. However, in several fields like approximate [34], incremental [10, 2] and
probabilistic [13] computation, it is often more useful to be able to describe to which extent
two programs behave in a similar, although non equivalent way, so that one can measure the
change in the result produced by replacing one program by the other one.

This idea has motivated much literature on program (pseudo)metrics [4, 41, 5, 19, 6, 13, 11,
14, 21], that is, on semantics in which types are endowed with a notion of distance measuring
the differences in their behaviors. This approach has found widespread applications, for
example in differential privacy [35, 3, 7], where one is interested in measuring the sensitivity of
a program, i.e. its capacity to amplify changes in its inputs, and in the study of probabilistic
processes [16, 43, 11, 42].

Recent literature [44, 32] has highlighted the importance of contextuality to reason about
program similarity: many common situations require to measure the error produced by a
transformation of the form C[t] C[u], which replaces a program t by u within a context
C[], as a function of the mismatch between t and u and of the sensitivity of the context C[]
itself. For instance, the error produced by replacing the program λx. sin(x) by the identity
function λx.x in a given context C will be highly sensitive to how close to 0 these functions are

© Guillaume Geoffroy and Paolo Pistone;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 23; pp. 23:1–23:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guillaume.geoffroy@unibo.it
mailto:paolo.pistone2@unibo.it
https://doi.org/10.4230/LIPIcs.CSL.2021.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 A Partial Metric Semantics of Higher-Order Programs

evaluated in C. Similar cases of contextual reasoning can be found in many areas of computer
science: for example in techniques from numerical analysis (e.g. the Gauss-Newton method),
in which a computationally intensive function is replaced by its Taylor’s expansion around
some given point, or in approximate computing techniques like loop perforation [38], in which
a compiler can be asked to skip a certain number of iterations of a loop in a program.

The Problem of Coupling Program Metrics with Higher-Order Types. While several
frameworks for contextual reasoning have been developed in recent years [35, 20, 5, 44, 32],
these approaches suggest that describing program similarity for a fully higher-order language
in terms of program metrics still constitutes a major challenge.

In particular, when considering higher-order languages with a type Real for real numbers,
it is not clear how to lift the standard metric on Real to higher-order types, e.g. to Real→ Real,
so that the distances between higher-order programs are measured in a contextual way.

A standard solution is to take the sup-distance, that is, to let, for f, g : Real → Real,
d(f, g) = sup{d(f(r), g(r)) | r ∈ Real}. This solution works well in models in which programs
are interpreted as non-expansive or Lipschitz-continuous maps [25, 5]. However such models
are not cartesian-closed1, so they do not account for the simply-typed lambda-calculus
in its full generality, but only for linear or sub-exponential variations of it (such as Fuzz
[35, 20, 5]). Also, it has been shown [13] that in a probabilistic setting the non-linearity of
higher-order programs has the effect of trivialising metrics, that is, of forcing distances to be
either 0 or 1, hence collapsing program distances onto usual notions of program equivalence.
Most importantly, even if one restricts to a sub-exponential language, the sup-distance is
inadequate to account for contextual transformations as the replacement of λx. sin(x) by
λx.x around 0, as the sup-distance between these two programs is infinite (see Fig. 3).

On the other side of the coin, other approaches like [44, 32] are fully contextual and
higher-order, but provide, at best, only weak approximations of a standard notion of metric.
Nonetheless, these approaches introduce the idea, which we retain here, that program
differences must be taken as being themselves some kind of programs, relating errors in input
with errors in output, and that accordingly, programs should be split in two different classes:
exact programs, computing mappings from well-defined inputs to well-defined outputs, and
approximate programs, mapping errors in the input to errors in the output.

Diameter Spaces. In this paper we introduce a new semantic framework to reason about
program similarity and approximate program transformations based on a class of higher-order
denotational models that we call diameter space models. Compared to existing higher-order
frameworks, the main novelty of these models is that program similarities are measured by
associating each simple type with a generalized partial metric space, yielding a lifting of the
standard metric on Real to higher-order types.

Generalized partial metric spaces are a well-investigated class of metric spaces that has
been widely applied in program semantics [8, 9, 33, 37, 36, 26, 23]. Such spaces generalize
standard metric spaces in that distances need not be real numbers, but can be functions or
any other type of object that lives in a suitable quantale [25], and self-distances d(x, x) need
not be 0 (which leads to a stronger triangular inequality: d(x, y) + d(z, z) ≤ d(x, z) + d(z, y)).

In our models a higher-order type A is interpreted as a 4-tuple (|A|, JAK, LAM, δA) called
a diameter space, where |A| is a set of exact values, JAK ⊂ P(|A|) is a complete lattice of
approximate values, LAM is a quantale, and δA : JAK → LAM is a function, called diameter,

1 In fact, cartesian closed categories of metric spaces and non-expansive functions do exist [19, 12], but,
to our knowledge, none of these categories contains the real numbers with the standard metric.

G. Geoffroy and P. Pistone 23:3

xx− ε x+ ε

f(x)

g(x)

f

g

δ2

δ1

(a) In differential logical relations the distance
between two functions f, g : R → R, com-
puted at (x, ε) is the maximum between δ1 =
max{d(f(x), g(y)); y ∈ [x − ε, x + ε]} and δ2 =
max{d(g(x), f(y)); y ∈ [x− ε, x+ ε]}.

xx− ε x+ ε

f(x)

g(x)
h(x)

f

g
h

d(f, g)

d(g, h)
δ = d(g, g)

d(f, h)

(b) The distance arising from differential logical re-
lations is not a partial metric: the example above
shows that d(f, h) > d(f, g) + d(g, h)− d(g, g) (with
all distances computed at (x, ε)).

Figure 1 Differential logical relations do not yield partial metrics.

which provides a quantitative measure of approximate values. The map δA generalizes some
properties of the diameter function of the standard metric on real numbers. In particular, just
like the distance between two real numbers can be described as the diameter of the smallest
interval containing them, the map δA yields a generalized partial metric dA : |A| × |A| → LAM
in which the distance between two exact values of A is measured as the diameter of the
smallest approximate value containing them, i.e. dA(x, y) = δA(x ∨ y).

Measuring Distances between Programs of Functional Type. A primary source of inspira-
tion for our approach is the recent work by Dal Lago, Gavazzo and Yoshimizu on differential
logical relations [32]. This is a semantical framework for higher-order languages in which
a type is interpreted as a set X endowed with a kind of metric structure expressed by a
ternary relation ρ ⊆ X ×Q×X, where Q is an arbitrary quantale. To our knowledge, this
is the first place were the idea of varying the quantales in which distances are measured is
introduced as a key ingredient to obtain a cartesian closed category.

However, although such a relation ρ induces a distance function dρ(x, y) = sup{ε |
ρ(x, ε, y)}, this function is not a (partial) metric. We can show this fact with a simple
example: in this model the distance between two programs f, g : Real → Real is taken
in the quantale of functions from R × R∞+ to R∞+ : intuitively, d(f, g) associates a closed
interval [x− ε, x+ ε] (corresponding to the pair (x, ε)) with the smallest distance δ such that
[f(x)− δ, f(x) + δ] and [g(x)− δ, g(x) + δ] both contain the images of [x− ε, x+ ε] through
g and f respectively (see Fig. 1a). Then, as shown in Fig. 1b, by letting δ = d(g, g)(x, ε),
we have that d(g, g) sends the interval I = [x− ε, x+ ε] onto the interval [g(x)− δ, g(x) + δ],
which has diameter 2δ, while the image of I has diameter δ, making the triangular law of
partial metrics fail.

By contrast, in our model, the distance between two programs f, g : Real → Real lives
in the quantale of monotone maps from approximate values of Real (i.e. closed intervals) to
positive reals. More precisely, this distance is the function that maps a closed interval a to
the diameter of the smallest interval containing both f(a) and g(a). This notion of distance
does satisfy all the axioms of a partial metric, as illustrated in Fig. 2. Observe that we no
longer depict the “center” of the interval [x− ε, x+ ε], and that the triangular inequality
works because in summing d(f, g) and d(g, h) the self-distance d(g, g) is counted twice.

CSL 2021

23:4 A Partial Metric Semantics of Higher-Order Programs

x− ε x+ ε

f

g
h

d(f, g)

d(g, h) d(g, g)

d(f, h)

Figure 2 Our new metric is a partial met-
ric: in the example above it can be seen that
d(f, h) ≤ d(f, g) + d(g, h)− d(g, g) (with all dis-
tances computed in the interval [x− ε, x+ ε]).

−ε +ε

sin(x)

x

δ

δ′

Figure 3 The self-distances δ, δ′ of sin(x) and
x in a small interval [−ε, ε] of 0 are very close.

Note that the distance of f from itself, which needs not be (constantly) 0, provides a
measure of the sensitivity of f , since it associates each interval a with the size of the interval
f(a) spanned by f on a (a similar feature is present in differential logical relations).

The use of partial metrics with functional distances yields a rich and expressive framework
to reason about contextual transformations. For instance, we can express the closeness of
λx. sin(x) and λx.x around 0 by the fact that their distance, applied to a small interval [−ε, ε]
around 0, is very close to the self-distance of λx. sin(x) on the same interval (as illustrated
in Fig. 3). Moreover, the triangular inequality of partial metrics can be used to infer new
bounds from previously established ones in a compositional way.

Diameter Space over a Cartesian Closed Category. Our approach was devised primarily to
account for transformations in higher-order languages designed for real analysis computation
(like e.g. Real PCF [18]). However, diameter spaces can be constructed starting from any
higher-order programming language with a reasonable denotational semantics. In fact, for any
cartesian closed category C, we can construct a cartesian lax-closed category Diam(C), whose
morphisms can be seen as approximate versions of the morphisms of C. The “lax” preservation
of the cartesian closed structure reflects the fact that, by composing approximations in a
higher-order setting, also their error rates compose (typically, approximating non β-normal
λ-terms will lead to higher error-rates than approximating their β-normal forms).

The generality of our construction shows in particular that our partial metric semantics
requires no restrictions (e.g. Lipschitz-continuity) on morphisms, and adapts well to the
model one starts with: for instance, the category Diam(Set) contains a partial metric on
the set of all set-theoretic functions from R to R, while the categories Diam(Eff) (where Eff
is the effective topos [27]) and Diam(Scott) show that our approach scales well to a more
computability-minded setting.

2 Generalized Partial Metric Spaces

Partial metric spaces were introduced in the early nineties as a variant of metric spaces in
which self-distances can be non-zero. Such spaces have attracted much attention in program
semantics [8, 9, 33, 37, 36, 26, 23], due to their compatibility with standard constructions
from both domain theory (since their topology is T0) and usual metric topology (e.g. Cauchy
sequences, completeness, Banach-fixed point theorem) [8, 33]. Generalized partial metric
spaces, i.e. partial metric spaces whose metric takes values over an arbitrary quantale [25],
are well-investigated too [29, 28].

G. Geoffroy and P. Pistone 23:5

In this paper we will only be concerned with partial metrics taking values over a commu-
tative integral quantale [25], of which we recall the definition below.

I Definition 1. A commutative integral quantale is a triple (Q,+,≤) where:
(Q,≤) is a complete lattice,
(Q,+) is a commutative monoid,
+ commutes with arbitrary infs,
the least element of Q is neutral for +.

For readability, we have we have reversed the ordering with respect to the conventional
definition, so that for example, ([0,∞],+,≤) is a commutative integral quantale whose least
element is 0 (as opposed to “([0,∞],+,≥) is a commutative integral quantale whose largest
element is 0”, which is what we would get with the usual definition). It is straightforward to
check that for all commutative integral quantales Q,R, the product monoid Q×R equipped
with the product ordering is also a commutative integral quantale. In addition, for all posets
X, the set of monotone functions from X to Q, equipped with the pointwise monoid operation
and the pointwise ordering, is also a commutative integral quantale. Another example of
commutative integral quantale is given by the lattice of ideals of any commutative ring, with
the product of ideals as the monoid operation.

We recall now the definition of a generalized partial metric space:

I Definition 2. A generalized partial metric space (in short, GPMS) is the data of a set X,
a commutative integral quantale Q and a function d : X ×X → Q such that:

for all x, y ∈ X, d(x, x) ≤ d(x, y),
for all x, y ∈ X, if d(x, x) = d(x, y) = d(y, y), then x = y,
for all x, y ∈ X, d(x, y) = d(y, x),
for all x, y, z ∈ X, d(x, z) + d(y, y) ≤ d(x, y) + d(y, z).

For every metric space (X, d), the structure (X, ([0,∞],+,≤), d) is a GPMS. As is
well-known [8], any real-valued GPMS (X, [0,∞], d) induces a metric d∗ by letting

d∗(x, y) = 2d(x, y)− d(x, x)− d(y, y) (?)

For a more telling and somewhat archetypal example, take any set X and consider the set
X≤ω of all sequences of elements of X indexed by an ordinal less than or equal to ω. For all
such sequences s, t, let d(s, t) = 2−n ∈ [0,∞], where n is the length of the largest common
prefix to s and t: one can check that (X≤ω, [0,∞], d) is indeed a generalized partial metric
space. In fact, if we interpret the prefixes of a sequence as pieces of partial information,
then we have d(s, s) = d(s, t) if and only if t is a refinement of s (i.e. if it contains more
information), and d(s, s) = 0 if and only if s is total (i.e. if it cannot be refined).

One can check that for all partial metric spaces (X,Q, dX) and (Y,R, dY), (X ×
Y,Q × R, dX×Y) is a generalized partial metric space, where dX×Y ((x1, y1), (x2, y2)) =
(dX(x1, x2), dY (y1, y2)). However, in general, it is not clear how one should define a partial
metric on a function space. In Section 3.2 we introduce a construction to obtain partial
metric spaces on function spaces by generalizing some properties of the standard diameter
function on sets of real numbers.

3 Approximate Programs for the Simply-Typed λ-Calculus over Real

To illustrate our construction, we start from a relatively concrete example: we consider a
simply-typed lambda calculus with a base type Real and primitives for real numbers, and we
follow the plan outlined in the introduction, which yields for each simple type a notion of

CSL 2021

23:6 A Partial Metric Semantics of Higher-Order Programs

approximate value, approximate function, diameter and distance between programs. Most
definitions are straightforward and intuitive: the interesting, not immediately obvious point
is that our construction does yield a partial metric on each type.

Simple types are defined as follows: Real is a simple type; if A and B are simple
types, then A → B and A × B are simple types. For all n > 0, we fix a set Fn of
functions from Rn to R. We consider the usual Curry-style simply-typed λ-calculus over
the types defined above (the left and right projection are denoted by πL : A×B → A and
πR : A × B → B respectively, and the constructor for pairs by 〈−,−〉), enriched with the
following constants: for all r ∈ R, a constant r : Real; for all n > 0 and all f ∈ Fn, a constant
f : Real → . . . → Real → Real. We call this calculus STλC(Fn), and its terms are simply
called terms. We write t[x1 := u1, . . . , xn := un] to denote the simultaneous substitution
of u1, . . . , un for x1, . . . , xn in t. For all types A, we denote by ΛA the set of closed terms
of type A. The relation of β-reduction is enriched with the following rule, extended to all
contexts: for all n > 0, f ∈ Fn, and r1, . . . , rn ∈ R, fr1 . . . rn →β s, where s = f(r1, . . . , rn).
By standard arguments [1], this calculus has the properties of subject reduction, confluence
and strong normalisation.
I Remark 3. The class of real-valued functions which can be computed in STλC(Fn) depends
on the choice we make for Fn. With suitable choices (see for instance [40, 17, 18]) one can
obtain that all programs of type Real→ Real compute continuous functions2, that all such
programs are integrable over closed intervals, or that all such programs are continuously
differentiable.

In addition to the usual notion of β-equivalence between terms of STλC(Fn), we will
exploit also a stronger equivalence: given two closed terms t, u of type A, we say that t and u
are observationally equivalent and write t ≈A u if for all terms C such that x : A ` C : Real
is derivable, C[x := t] is β-equivalent to C[x := u] (which amounts to saying that they both
β-reduce to the same real number). It is clear that observational equivalence is a congruence
and that two β-equivalent terms are always observationally equivalent.

3.1 Approximate Values and Approximate Programs
The first step of our construction for STλC(Fn) is to associate to each simple type A a set
JAK whose elements are certain sets of programs of type A that we call approximate values of
type A. A closed term t ∈ ΛA represents a program with return type A and no parameters,
so an approximate value can be thought of as a specification of a program with return type
A and no parameters up to a certain degree of error or approximation.

For each simple type A, the set of approximate values JAK ⊆ P(ΛA) is defined inductively
as follows:

JRealK = {{t ∈ ΛReal | ∃r ∈ I, t→∗β r} | I ⊆ R is a compact interval or ∅ or R},
JA×BK = {a× b | a ∈ JAK, b ∈ JBK}, where a× b = {t ∈ ΛA×B | πLt ∈ a and πRt ∈ b},
JA→ BK = {{t ∈ ΛA→B | ∀u ∈ ΛA, tu ∈ I(u)} | I : ΛA → JBK}.

The approximate values of type Real are sets of closed programs of type Real which
essentially coincide with the compact intervals of R, plus the empty set and R itself. An
approximate value in JA × BK is a “rectangle” a × b, with a ∈ JAK and b ∈ JBK, while an
approximate value in JA → BK is uniquely determined by a function I from closed terms
u ∈ ΛA to approximate values I(u) ∈ JBK.

2 Note that for this to be possible, Fn cannot contain the identity function over Real.

G. Geoffroy and P. Pistone 23:7

sin(x) + 1

cos(x) − 1
sin(x + 1)

(a) λx. sin(x+1) is in [λx. sin(x)+1, λx. cos(x)+
1]Real→Real.

−1 1

−1

1 ε

δu[x]

t[x]

• •

•

•

• r

(b) ε = (∂(u) ◦ ∂(t))([−1, 1]) is bigger than δ = ∂(u ◦
t)([−1, 1]) = [r, r].

Figure 4 Examples of functional approximate values and of approximate programs.

For example, any two terms t, u ∈ ΛReal with normal forms q, r ∈ R induce an approximate
value [t, u]Real = {v ∈ ΛReal | v →∗β s ∧ (q ≤ s ≤ r ∨ q ≥ s ≥ r)} of type Real. Similarly, any
two terms t, u ∈ ΛReal→Real induce an approximate value [t, u]Real→Real = {v ∈ ΛReal→Real |
∀r ∈ ΛReal vr ∈ [tr, ur]Real}. For instance, if t = λx. sin(x) + 1 and u = λx. cos(x)− 1, then
[t, u]Real→Real contains all closed terms corresponding to maps oscillating between sin(x) + 1
and cos(x) + 1 (e.g. the program λx. sin(x+ 1), as illustrated in Fig. 4a).

For all A, the set JAK is a a subset of P(ΛA) closed under arbitrary intersections. We
deduce that JAK has arbitrary meets (given by intersections) and arbitrary joins

∨
i∈I ai =⋂

{a ∈ JAK | ∀i ∈ I ai ⊆ a}, and thus JAK is a complete lattice. In particular, for all t ∈ ΛA,
there is a least element of JAK that contains t, which will be denoted by t. One can check
that t = u if and only if t ≈A u.

Monotone functions from approximate values to approximate values represent approximate
programs. They behave like a model of the simply-typed λ-calculus in a weak sense, namely:

for all monotone functions ~α 7→ c[~α] : JA1K × . . . × JAnK → JB → CK and ~α 7→ b[~α] :
JA1K× . . .× JAnK→ JBK, we can define a monotone function ~α 7→ (c[~α] b[~α]) = sup{vu |
v ∈ c[~α], u ∈ b[~α]} : JA1K× . . .× JAnK→ JCK,
for all monotone functions ~α 7→ c[~α] : JA1K × . . . × JAnK → JCK and all i ≤ n, we can
define a monotone function (αj)j 6=i 7→ (λαi. c[~α]) = {v ∈ ΛAi→C | ∀ti ∈ ΛAi , vti ∈
c[α1, . . . , ti, . . . , αn]} :

∏
j 6=iJAjK→ JAi → CK,

and these two constructions are weakly compatible with β-reduction and η-expansion:

I Proposition 4. For all monotone functions (~α, β) 7→ c[~α, β] : JA1K×. . .×JAnK×JBK→ JCK
and ~α 7→ b[~α] : JA1K × . . . × JAnK → JBK, (~α 7→ (λβ. c[~α, β]) b[~α]) ≤ (~α 7→ c[~α, b[~α]]), and
for all monotone functions ~α 7→ d[~α] : JA1K× . . .× JAnK → JB → CK, (~α 7→ λβ. d[~α] β) ≥
(~α 7→ d[~α]), where functions are ordered by pointwise inclusion. In other words, on approxi-
mate programs, β-reduction and η-expansion discard information, and conversely β-expansion
and η-reduction recover some information.

Proof. Without loss of generality, we can assume n = 0. Let v ∈ λβ. c[β] and u ∈ b. By
definition, tu ∈ c[u], so tu ⊆ c[u] ⊆ c[b]. Therefore, (λβ. c[β]) b ⊆ b. Let v ∈ d. For all
u ∈ ΛB , by definition, vu ∈ du. Therefore, v ∈ λβ. d β. J

Beyond theoretical aspects (which will be made clearer in Section 5) Proposition 4 is also
important in practice because it implies that if we compute an approximation of a program
from approximations of its parts and then simplify the resulting approximate program using
β-reduction and η-expansion, what we obtain is still a valid approximation of the original
program.

CSL 2021

23:8 A Partial Metric Semantics of Higher-Order Programs

We can define a weak embedding from terms into approximate programs, by mapping
each term to its tightest approximation: for all terms t such that α1 : A1, . . . , αn : An ` t : B,
we define a monotone function ∂(t) : JA1K × · · · × JAnK → JBK by ∂(t)(a1, . . . , an) =
sup{tu1 . . . un | u1 ∈ a1, . . . , un ∈ an}.
I Remark 5. The map ∂ is constant on classes of observational equivalence, and one can
check that it is is weakly compatible with the constructions of the λ-calculus, in particular:

∂(αi)(a1, . . . , an) = ai,
∂(tu)(a1, . . . , an) ⊆ ∂(t)(a1, . . . , an) ∂(u)(a1, . . . , an),
∂(λβ.t)(a1, . . . , an) ⊆ λβ. ∂(t)(β, a1, . . . , an).

This map ∂(t) can be taken as a measure of the sensitivity of t, as it maps an interval
a, that is a quantifiably uncertain input, to a quantifiably uncertain output ∂(t)(a). For
instance, if we take the term t[x] = sin(x) + 1 above, then ∂(t) : JRealK→ JRealK sends the
interval [−π, π]Real into [0, 2]Real.
I Remark 6. When composing two maps ∂(t) and ∂(u), we might obtain a worse approxima-
tion than by computing ∂(t[u/x]) directly. For instance, let t[x] and u[x] be, respectively,
the discontinuous and Gaussian functions illustrated in Fig. 4b. If a is the interval [−1,+1],
then ∂(t)(a) = [−1, 1], and since u[x := −1] = u[x := 1] 'β r for some 0 < r < 1, we deduce
that ∂(u)(∂(t)(a)) = [−1, 1]) [r, r] = ∂(u[t/x])(a).

3.2 A Partial Metric on Each Type
So far, we have associated each type A of STλC(Fn) with a complete lattice JAK ⊆ P(ΛA)
of approximate values of type A, and each typed program t : A→ B with an approximate
program ∂(t) (in fact, a monotone function) from approximate values of type A to approximate
values of type B. We will now exploit this structure to define, for each type A of STλC(Fn),
a generalized partial metric on the closed (exact) programs of type A.

The first step is to define, for every simple type A, a commutative integral quantale
(LAM,≤A,+A) of distances of type A:

(LRealM,≤Real,+Real) = ([0,∞],≤,+),
LA×BM = LAM× LBM,
LA→ BM = Poset(JAK, LBM).

where, for two posets Q,R, Poset(Q,R) denotes the set of monotone functions from Q to R.
Observe that the quantale LA→ BM is a set of functions over the approximate values of A.

For all simple types A, we now define a distance function dA : ΛA × ΛA → LAM:
dReal(t, u) = |r − s|, where r, s are the unique elements of R such that t→∗β r and u→∗β s,
dA×B(t, u) = (dA(πLt, πLu), dB(πRt, πRu)),
dA→B(t, u) = a 7→ sup {dB(rv, sw) | r, s ∈ {t, u}, v, w ∈ a}.

It would be tempting to define dA→B(t, u)(a) simply as sup {dB(tv, uw) | v, w ∈ a}, but
then the axiom “dA→B(t, t) ≤ dA→B(t, u)” of partial metric spaces would fail.

The maps dA are clearly compatible with observational equivalence (i.e. if a ≈A a′ and
b ≈A b′, then dA(a, b) = dA(a′, b′)).

Our objective is now to prove that (ΛA/ ≈A, LAM, dA) is a generalized partial metric space.
To this end, we define for all simple types A a monotone diameter function δA : JAK→ LAM
by δA(a) = sup{dA(t, u) | t, u ∈ a}. The key to our objective will be to prove that δA is sub-
modular on intersecting approximate values (henceforth, quasi-sub-modular – see Proposition
7): this generalizes the fact that, on the (real-valued) metric space R, the diameter is modular
over intersecting closed intervals (see Fig. 5).

G. Geoffroy and P. Pistone 23:9

a b

δ(a ∪ b)

δ(a ∩ b)

δ(a)
δ(b)

Figure 5 The diameter function is modular over intersecting real intervals: diam(a∪ b) + diam(a∩
b) = diam(a) + diam(b) for all a, b ∈ [R] such that a ∩ b 6= ∅. This property is at the heart of our
generalization of diameters. Observe that this property fails when a ∩ b is empty.

First, one can check that for all t, u ∈ ΛA, δA
(
t ∨ u

)
= dA(t, u), and that:

δReal(a) = sup{s− r | s, r ∈ R such that s, r ∈ a},
δA×B(p) =

(
δA
(
sup

{
πLt | t ∈ p

})
δB
(
sup

{
πRt | t ∈ p

}))
,

δA→B(b) = a 7→ δB
(
sup

{
vt | t ∈ a, v ∈ b

})
.

This leads then to the following:

I Proposition 7 (δA is quasi-sub-modular). For all simple types A and all a, b ∈ JAK such
that a ∧ b 6= ∅, δ(a ∧ b) + δ(a ∨ b) ≤ δ(a) + δ(b).

Proof. We proceed by induction on types.
Let a, b ∈ JRealK such that a ∧ b 6= ∅. Let I = {r ∈ R | r ∈ a} and J = {s ∈ R | s ∈ b}:

then I (respectively, J , I ∩ J , I ∪ J) is either R or a non-empty compact interval of R,
and its length in the usual sense is equal to δReal(a) (respectively, δReal(b), δReal(a ∧ b),
δReal(a ∨ b)). Note that the only reason we know that I ∪ J is an interval is because
a ∧ b 6= ∅ implies I ∩ J 6= ∅. The length of an interval of R is equal to its Lebesgue measure,
therefore length(I ∩J) + length(I ∪J) = length(I) + length(J), so δReal(a∧ b) + δReal(a∨ b) =
δReal(a) + δReal(b).

Let a, b ∈ JAL×ARK such that a∧b 6= ∅. For all c ∈ JAL×ARK, let cL = sup{πLt | t ∈ c}
and cR = sup{πRt | t ∈ c}. One can check that (a ∧ b)L = aL ∧ bL, (a ∧ b)R = aR ∧ bR,
(a ∨ b)L = aL ∨ bL and (a ∨ b)R = aR ∨ bR, so δ(a ∧ b) + δ(a ∨ b) = (δ(aL ∧ bL) + δ(aL ∨
bL), δ(aR ∧ bR) + δ(aR ∨ bR)) ≤ (δ(aL) + δ(bL), δ(aR) + δ(bR)) = δ(a) + δ(b).

Let f, g ∈ JA → BK and a ∈ JAK. For all h ∈ JA → BK, let ha = sup{vt | v ∈ h, t ∈ a}.
One can check that (f ∧ g)a ⊆ (fa) ∧ (ga) and (f ∨ g)a = (fa) ∨ (ga). As a result,
(δ(f∧g)+δ(f∨g))(a) ≤ δ((fa)∧(ga))+δ((fa)∨(ga)) ≤ δ(fa)+δ(ga) = (δ(f)+δ(g))(a). J

It is well-known [39] that any function δ : L → [0,∞] on a lattice L that is monotone
and sub-modular induces a pseudo-metric d : L × L → [0,∞] by letting d∗(a, b) = 2δ(a ∨
b) − δ(a) − δ(b). In fact, one can decompose this construction: first, one defines a partial
pseudometric d on L by d(a, b) = δ(a∨ b), and then d∗ is just the distance given by equation
(?): d∗(a, b) = 2d(a, b)− d(a, a)− d(b, b). We can use this way of reasoning to establish that
the maps dA are indeed partial metrics:

I Corollary 8. For all simple types A, (ΛA/ ≈A, LAM, dA) is a generalized partial metric
space, that is to say:
1. for all t, u ∈ ΛA, dA(t, t) ≤ dA(t, u),
2. for all t, u ∈ ΛA, if dA(t, t) = dA(t, u) = dA(u, u), then t ≈A u,
3. for all t, u ∈ ΛA, dA(t, u) = dA(u, t),
4. for all t, u, v ∈ ΛA, dA(t, v) + dA(u, u) ≤ dA(t, u) + dA(u, v).

CSL 2021

23:10 A Partial Metric Semantics of Higher-Order Programs

Proof. As mentioned above, for all t, u ∈ ΛA, dA(t, u) = δA(t ∨ u), which immediately gives
point 3. Since δA is monotone and t ∨ t ≤ t ∨ u, we also get point 1.

One can check (by induction on types) that the restriction of δA to the ideal generated
by the t (for t ∈ ΛA) is strictly monotone. Therefore, if dA(t, t) = dA(t, u) = dA(u, u),
i.e. δA(t) = δA(t ∨ u) = δA(u), then t = t ∨ u = u, so t ≈A u.

The triangular inequality is an immediate consequence of the quasi-sub-modularity of δA:
d(t, v)+d(u, u) = δ(t∨v)+δ(u) ≤ δ((t∨u)∨(u∨v))+δ((t∨u)∧(u∨v)) ≤ δ(t∨u)+δ(u∨v) =
d(t, u) + d(u, v). J

4 Computing Program Distances using Partial Metrics

In the previous section we showed how to associate each simple type A with a partial metric
dA over the closed terms of type A. We now illustrate through a few basic examples how
the higher-order and metric features of this semantics can be used to formalize contextual
reasoning about program differences.

To make our examples more realistic, we will consider some natural extensions of
STλC(Fn). It is not difficult to see that all constructions from Section 3 still work if
we add to STλC(Fn) some new base types. For example, we can add to our language a type
Nat for natural numbers, indicating for each n ∈ N, the corresponding normal forms of Nat
as n. A natural choice is to let JNatK = {{t | ∃n ∈ a t n} | a finite subset of N or a = N},
LNatM = [0,∞] and dNat(t, u) = |n−m|, where t→∗β n and u→∗β m.

Moreover, our constructions scale well also to extensions of STλC(Fn) obtained by adding
new program constructors, as soon as these do not compromise the existence and uniqueness
of normal forms (since the fact that closed programs of type Real have a normal form plays
an important role to define JRealK). For instance, if we suppose that all programs of type
Real → Real in STλC(Fn) are either differentiable or integrable (see Remark 3), we can
consider extension of STλC(Fn) with differential or integral operators, as in Real PCF [17, 18].

We start with a classical example from approximate computing that we adapt from [44].

I Example 9 (Loop perforation). We work in the extension of STλC(Fn) with a type Nat.
We discuss a transformation that replaces a program t which performs n iterations by a
program which only performs the iterations 0, k, 2k, 3k, . . . , each repeated k times.

Suppose t : (A × A → A) → Nat → (A → A) → A, for n ≥ 1, is a term such that
thnf computes the n-times iteration of h as follows: th0f = h〈f0, f0〉 and th(n + 1)f =
h〈thnf, f(n + 1)〉. Let Perfk(t), the k-th perforation of t, be the program (Perfk(t))hnf =
t(λx.(h(k)x))bnck(λx.f(x ∗ k), where bnck indicates the least m ≤ n such that m is divisible
by k, and x ∗ k is the multiplication of x by k.

To compute the distance dA(vn, wn) between vn = thnf and its perforation wn =
Perfk(t)hnf we can reason as follows:
i. vn performs n-iterations while wn performs kbnck ≤ n iterations, and we can compute
dA(vn, v(kbnck)) as the diameter of ∂(t)∂(h)([kbnck, n]Nat)∂(f).

ii. If n is divisible by k, then for i ≤ n, at the i-th iteration of vn the function f is applied
to i, while at the i-th iteration of wn, f is applied to bick. Now, the error of replacing
fi by fbjck, with i, j in some a ∈ JNatK, is accounted for by the approximate program
c[y] = ∂(f)(y − k), where y − k = y ∨ {u− k | u ∈ y}. We deduce then that dA(vn, wn)
is bounded by the diameter of ∂(t)∂(h)n(λy.c[y]).

iii. From the fact that wn = w(k·bnck) and the triangular inequality of the partial metric dA
we deduce dA(vn, wn) = dA(vn, w(k·bnck)) ≤ dA(vn, v(k·bnck)) + dA(v(k·bnck), w(k·bnck))−
dA(v(k·bnck), v(k·bnck))

G. Geoffroy and P. Pistone 23:11

From facts i.-iii. we deduce an explicit bound for dA(vn, wn) in terms of ∂(t), ∂(f) and n:
dA(vn, wn) ≤ δA(∂(t)∂(h)([kbnck, n]Nat)∂(f)) + δA(∂(t)∂(h)n(λy.∂(f)(y − k)))− δA(∂(t)∂(h)n∂(f)).

We now show how the partial metric semantics can be used to reason about basic
approximation techniques from numerical analysis.

I Example 10 (Taylor approximation). We assume that all programs of type Real→ Real in
STλC(Fn) are differentiable and that for all n, program t : Real→ Real and real number r,
we can define a term Tn(t, r) : Real→ Real computing the n-th truncated Taylor polynomial
of t at r. The distance dReal→Real(t, Tn(t, 0)) is the map associating an interval a with the
diameter of the smallest interval containing the image of a under both t and Tn(t, 0). This
value will approximately converge to the self-distance of t when a is a small interval of 0,
and will tend to diverge when a contains points which are far enough from 0.

For example, if t is the function t = λx. sin(x), and a is an interval of 0, then using
standard analytic reasoning we can compute a bound dReal→Real(t, Tn(t, 0))(a) ≤ δReal(a)n+1

(n+1)! ,
which tends to 0 as the diameter of a tends to 0.

Observe that if, instead, we used the sup-distance dsup(t, u) = sup{dReal(tr, ur) | r ∈
ΛReal}, then we could not reason as above, since the sup-distance between λx. sin(x) and its
truncated Taylor polynomials is infinite.

I Example 11 (Integral approximation). We now assume that all functions in Fn are integrable
and that we have (see [18]) at our disposal a program λfx.I[0,x](f) : (Real→ Real)→ Real→
Real such that I[0,r](t) computes (a precise enough approximation of) the definite integral∫ |r|

0 tx dx. In many contexts we might prefer to replace the expensive computation of
I[0,r](t) by the (more economical but less precise) computation of a finite Riemann sum
Rn[0,r](t) =

∑n
i=1(txi) · |r|/n, where xi = i · |r|/n.

Suppose now that, in order to approximate the integral of some computationally expensive
program t on [0, r], we replace t by some more efficient program u which, over [0, r], is very
close to t. Let εt(r) indicate the distance between the true integral of t over [0, r] and Rn[0,r](t),
and moreover let ηt,u(r) be the diameter of ∂(t)([0, r]) ∨ ∂(u)([0, r]).

Using the metric structure of Real we can then bound the error we incur in by replacing
the true integral of t with the Riemann sum of u. In fact, by standard calculation we can
compute the bound dReal(Rn[0,r](t),Rn[0,r](u)) ≤ dReal→Real(t, u)([0, r]) · |r| = ηt,u(r) · |r|. Then,
using the triangular inequality of the standard metric on Real we deduce

dReal(I[0,r](t),Rn[0,r](u)) ≤ dReal(I[0,r](t),Rn[0,r](t)) + dReal(R[0,r](t),Rn[0,r](u))

≤ εt(r) + ηt,u(r) · |r|

Using the partial metric on Real→ Real, we can also derive a bound expressing how much
the error above is sensitive to changes of r. First, using standard analytic techniques (under
suitable assumptions for t and its derivatives) one can find a program v : Real→ Real such
that vr computes an upper bound for εt(r). Then, using the triangular inequality of the
partial metric on Real→ Real we deduce, for all interval a, the following bound:

dReal→Real(λx.I[0,x](t), λx.Rn[0,x](u))(a)

≤ dReal→Real(λx.I[0,x](t), λx.Rn[0,x](t))(a) + dReal→Real(λx.R[0,x](t), λx.Rn[0,x](u))(a)

− dReal→Real(λx.R[0,x](t), λx.Rn0,x](t))(a)

≤ dReal→Real(v, v)(a) +
(
dReal→Real(t, u)(a)− dReal→Real(t, t)(a)

)
· δReal(a)

CSL 2021

23:12 A Partial Metric Semantics of Higher-Order Programs

5 Diameter Space Models Over a Cartesian Closed Category

The examples from the last section relied on the fact that our partial metric semantics scales
well to extensions of STλC(Fn) with new base types and new program constructors. In this
section we justify this fact in more general terms. In fact, we show that the constructions
from Section 3 can be reproduced starting from any model of the simply-typed λ-calculus.

First, we need a suitable notion of model of the simply-typed λ-calculus to start with.
Traditionally, one uses cartesian closed categories: cartesian categories where, for all objects
A, the functor A × − has a right adjoint (the exponential functor). However, since many
usual examples are in fact poset-enriched categories (e.g. Scott domains and continuous
functions, coherent spaces and stable functions), and since any (locally small) category can
be poset-enriched by using equality as the ordering, we will consider instead cartesian closed
poset-enriched categories. To give a counterpart to Proposition 4, we also need a notion of
“weak” model of the simply-typed λ-calculus: since poset-enriched categories are a particular
case of 2-categories (with a unique 2-arrow from f to g if and only if f ≤ g), we follow Hilken
[24] and consider cartesian categories where, for all objects A, the functor A×− has a lax
right adjoint (the lax-exponential functor).

Products and exponentials, when they exist, are necessarily unique up to unique iso-
morphism: thus, traditionally, a cartesian closed category is defined as a category in which
all finite products and exponentials exist, rather than a category equipped with products
and exponentials (i.e. it is a category with a given property, rather than a category with
additional structure). However, this is not the case for lax-exponentials, so for consistency
we will adopt the “structure” picture in both cases. Adapting Hilken’s definitions [24] to the
simpler case of poset-enriched categories, we obtain:

I Definition 12. Let (C,×, 1) be a cartesian poset-enriched category. An exponential
(respectively, a lax-exponential) on C is the data of a map exp from Ob(C× C) to Ob(C)
and two families of monotone maps (evW,X,Y : C(W, exp(X,Y)) → C(W × X,Y)) and
(λW,X,Y : C(W ×X,Y)→ C(W, exp(X,Y))) such that:

evW,X,Y and λW,X,Y are natural with respect to W ,
for all g ∈ C(W ×X,Y), ev(λ(g)) = g (respectively, ev(λ(g)) ≤ g),
for all f ∈ C(W, exp(X,Y)), f = λ(ev(f)) (respectively, f ≤ λ(ev(f))).

One can check that this definition makes exp a functor (respectively, a lax-functor)
from Ob(Cop × C) to Ob(C) (with exp(f, g) defined as λ(g ◦ ev(id) ◦ (id×f))). In addition,
this definition implies that ev and λ are natural, in the sense that ev(exp(α, β) ◦ f ◦ γ) =
β◦ev(f)◦(γ×α) and exp(α, β)◦λ(g)◦γ = λ(β◦g◦(γ×α)) (respectively, lax-natural [24], in the
sense that ev(exp(α, β)◦f ◦γ) ≤ β◦ev(f)◦(γ×α) and exp(α, β)◦λ(g)◦γ ≤ λ(β◦g◦(γ×α))).

For the rest of this section, we fix a cartesian poset-enriched category (C,×, 1) (we denote
by 〈−,−〉 the pairing transformation and by πL and πR the projections) and an exponential
(exp, ev, λ) on C. The morphisms of this category represent exact programs, so they play the
role of the terms from Section 3.

I Definition 13. A C-diameter space A is the data of
an object |A| of C. The poset C(1, |A|) will be denoted by ΛA;
a set JAK of downwards-closed subsets of ΛA that is closed under arbitrary intersections.
In particular, JAK is a complete lattice whose meet is given by intersection, and for all
t ∈ ΛA, there is a least element of JAK that contains t, which will be denoted by t;
a commutative integral quantale (LAM,+,≤);

G. Geoffroy and P. Pistone 23:13

a monotone function δA : JAK→ LAM such that

∀a, b ∈ JAK s.t. a ∧ b 6= ∅, δ(a ∧ b) + δ(a ∨ b) ≤ δ(a) + δ(b),

and such that for all t, u ∈ ΛA, if δA(t) = δA(t ∨ u), then t = t ∨ u.

The role of the condition a ∧ b 6= ∅ is illustrated by Fig. 5.

I Example 14. If C is the category whose objects are the simple types from Section 3 and
whose morphisms are the (open) terms modulo β-equivalence, then for all simple types A,
(A, JAK, LAM, δA) defines a C-diameter space.

Following Section 3, for all C-diameter spaces A and B, we define a C-diameter space A×B
such that |A×B| = |A| × |B| and a C-diameter space exp(A,B) such that |exp(A,B)| =
exp(|A| , |B|):

JA × BK = {a × b | a ∈ JAK, b ∈ JBK}, where a × b = {t ∈ C(1, |A| × |B|) | πL ◦ t ∈
a and πR ◦ t ∈ b},
LA×BM = LAM× LBM,
δA×B(c) = (δA({πL ◦ t | t ∈ c}), δB({πR ◦ t | t ∈ c})),
Jexp(A,B)K={{t ∈ C(1, exp(|A| , |B|)) | ∀u ∈ ΛA, ev(t)◦u ∈ I(u)} | I ∈ Poset(ΛA, JBK)},
Lexp(A,B)M = Poset(JAK, LBM),
δexp(A,B)(c) = a 7→ δB

(
sup

{
ev(v) ◦ t | t ∈ a, v ∈ c

})
.

We need a counterpart to Proposition 4. As explained above, we obtain this by organizing
the C-diameter spaces as a cartesian poset-enriched category with a lax-exponential. First,
we need to define a notion of morphisms between two C-diameter spaces A and B (which
represent approximate programs). By analogy with Section 3, these will be monotone functions
from JAK to JBK; however, in order to actually obtain a cartesian category (which was not
an issue in Section 3), we will need to add an extra condition:

I Definition 15. We denote by Diam(C) the poset-enriched category defined as follows:
the objects of Diam(C) are the C-diameter spaces,
for all C-diameter spaces A and B, Diam(C)(A,B) is the set of all monotone functions
ϕ : JAK→ JBK such that there exists f ∈ C(|A| , |B|) such that for all t ∈ ΛA, f ◦ t ∈ ϕ

(
t
)

(ordered by pointwise inclusion).

One can check that the operation −×− defined above on C-diameter spaces is a cartesian
product in Diam(C). In addition, one can check that there exists in Diam(C) a terminal
object 1Diam(C) such that

∣∣1Diam(C)
∣∣ = 1C. In other words, Diam(C) is cartesian. Here too,

we denote by 〈−,−〉 the pairing transformation and by πL and πR the projections.
Now, following Section 3, we can complete the definition of the lax-exponential: let

A,B,C be C-diameter spaces,
for all ϕ ∈ Diam(C)(A, exp(B,C)), we define evA,B,C(ϕ) ∈ Diam(C)(A × B,C) by
evA,B,C(ϕ)(p) = sup

{
ev(v) ◦ u | v ∈ ϕ(πL(p)), u ∈ πR(p)

}
,

for all ψ ∈ Diam(C)(A × B,C), we define λA,B,C(ψ) ∈ Diam(C)(A, exp(B,C)) by
λA,B,C(ψ)(a) = {v ∈ Λexp(B,C) | ∀u ∈ ΛB , ev(v) ◦ u ∈ ψ(a× u)}.

I Proposition 16. The triple (exp, ev, λ) is a lax-exponential on Diam(C).

Proof. Naturality with respect to A is immediate.
Let p = a × b ∈ JA × BK. For all v ∈ λ(ψ)(a) and and u ∈ b, by definition ev(u) ◦ u ∈

ψ(a× u) ⊆ ψ(p). Therefore, ev(λ(ψ))(p) ⊆ p.
Let a ∈ JAK and v ∈ ϕ(a). For all u ∈ ΛB, by definition, ev(v) ◦ u ∈ λ(ϕ)(a × u), so

v ∈ λ(ev(ϕ))(a). J

CSL 2021

23:14 A Partial Metric Semantics of Higher-Order Programs

As in Section 3, we can find a kind of weak embedding from C to Diam(C). Namely, for
all C-diameter spaces A and B, we define a monotone map ∂ : C(|A| , |B|)→ Diam(C)(A,B)
by ∂(f)(a) = sup{f ◦ t | t ∈ a}. The following compatibility result is immediate and offers a
counterpart to Remark 6:

I Proposition 17. For all C-diameter spaces A,B,C, all f ∈ C(|A| , |B|) and all g ∈
C(|B| , |C|), ∂(g ◦ f) ≤ ∂(g) ◦ ∂(f). In addition, ∂(id|A|) = idA.

One way to reformulate this result is that ∂ induces an oplax-functor from the category
with the same objects as Diam(C) and the same morphisms as C, to Diam(C).

One can check that ∂ preserves products, in the sense that ∂(〈f, g〉) = 〈∂(f), ∂(g)〉,
∂(πL) = πL and ∂(πR) = πR. In addition ∂ is weakly compatible with the exponential, which
corresponds to Remark 5:

I Proposition 18. Let A,B,C be C-diameter spaces,
for all f ∈ C(|A| , exp(|B| , |C|)), ∂(ev(f)) ≤ ev(∂(f)),
for all g ∈ C(|A| × |B| , |C|), ∂(λ(g)) ≤ λ(∂(g)).

Finally, following Section 3, for all C-diameter spaces A and all t, u ∈ ΛA, we write t ≈A u
if t = u. In addition, we define a function dA : ΛA×ΛA → LAM by dA(t, u) = δA(t∨u). Then
the same arguments as in Corollary 8 show that:

I Proposition 19. For all C-diameter spaces A, (ΛA/ ≈A, LAM, dA) is a generalized partial
metric space.

One can check that what is described in Section 3 is indeed an instance of this construction.
Here are a couple more examples:

I Example 20. We can take C = Set (with the morphisms ordered by equality): Diam(Set)
contains an object RealSet that represents the real numbers with their standard metric
and the compact intervals (plus ∅ and R) as approximate values, namely |RealSet| = R,
JRealSetK = {the compact intervals, ∅,R}, LRealSetM = [0,∞] and δRealSet(I) = length(I).

In this case, |exp(RealSet,RealSet)| is the set of all functions from R to R, so dRealSet defines
a partial metric on all such functions.

I Example 21. We can take C = Eff, the effective topos [27]: Eff contains an object REff
of recursive reals, and we can define an object RealEff in Diam(Eff) by |RealEff | = REff ,
JRealEffK = {I ∩ REff | I ∈ JRealSetK}, LRealEffM = [0,∞] and δRealEff (I) = length(I).

In this case, |exp(RealEff ,RealEff)| is the set of all recursive functions from RealEff to
RealEff , so dRealEff defines a partial metric on all such functions.

I Example 22. We can take C = Scott, the poset-enriched category of Scott domains and
continuous functions. It contains an object representing the reals: RScott = (R ∪ {⊥},v),
with r v s iff r = s or r = ⊥. Again, we can define in Diam(Scott) an object RealScott that
represents the real numbers with their standard metric, and this defines a partial metric
on |exp(RealScott,RealScott)|, the set of all Scott continuous functions from RScott to RScott,
which are essentially the partial functions from R to R.

6 Conclusions

Related Work. As stated in the introduction, differential logical relations [32] are a primary
source of inspiration for our approach. A related, but more syntactic approach to approximate
program transformations is that of Westbrook and Chauduri [44], who use a System F-based

G. Geoffroy and P. Pistone 23:15

type system with a type of real numbers and an explicit distinction between exact and
approximate programs. Most examples of contextual reasoning from [44] can be reformulated
in our framework (as the case of loop perforation discussed in Section 4).

The literature on program pseudo-metrics is vast. A major distinction can be made
between those approaches in which metrics account for extensional aspects of programs (like
ours), and approaches in which metrics are used to characterize more intensional aspects. To
the first family belong all metric models developed for reasoning about differential privacy
[35, 3, 7], probabilistic computation [13, 14] and co-inductive models [16, 43, 11, 42]. To the
second class belong approaches like [19] which recovers the Scott model of PCF through a
ultrametric semantics, and most models based on partial metric spaces [9, 33], which rely on
a correspondence between continuous Scott domains and the T0 topology of partial metrics.

From a more mathematical viewpoint, [12] discusses a characterization of exponentiable
GPMS, showing that no such category can both be cartesian closed and contain the standard
metric on R. This result seems to add further evidence of the necessity of considering
metrics over varying quantales in order to model higher-order languages. Finally, the elegant
categorical approach to GPMS based on quantaloid-enriched categories from [26] seems to
provide the relevant structure to develop explicit typing rules for our approximate programs.

Future Work. The approach we presented lends itself to further extensions and general-
izations. First, we would like to investigate the interpretation of more type constructions
than those of STλC(Fn) (e.g. coproducts, recursive types, effects). Moreover, we would like
to explore the possibility of exploiting the structure of the category Diam(C) to construct
new and more refined notions of approximations. For example (we work in Diam(Set) for
simplicity), starting from the “standard” set of approximate values I on RX×X (with elements
of I being families of compact intervals Ux,x′ ⊆ R indexed by elements of X and X ′), one
can define a new family ∆∗I of approximate values for RX by “pulling back” the exact map
∆ : RX → RX×X defined by ∆f(x, x′) = f(x′)− f(x), i.e. letting ∆∗I = {∆−1(a) | a ∈ I}.
The new approximate values then correspond to sets of functions f ∈ RX with a controlled
variation, that is, such that f(x′)− f(x) is bounded by some family of intervals Ux,x′ ∈ I.

Another interesting research direction concerns probabilistic extensions of STλC(Fn).
Probabilistic metrics [15, 30, 13, 14] have been the object of much research in recent years, due
to the relevance of metric reasoning in some areas of computer science in which probabilistic
computation plays a key role (e.g. in cryptography [22] and machine learning [31]). A
convenient starting point seems to be the recent generalization of probabilistic (generalized)
metric spaces to the partial metric case [23].

References

1 S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum. Handbook of Logic in Computer Science:
Volume 2. Background: Computational Structures. Handbook of Logic in Computer Science.
Clarendon Press, 1992. URL: https://books.google.fr/books?id=zqkXKMNXVi0C.

2 Mario Alvarez-Picallo and C.-H. Luke Ong. Change actions: models of generalised differentia-
tion. In FOSSACS 2019, volume 11425 of LNCS, pages 45–61, 2019.

3 Mário S. Alvim, Miguel E. Andrés, Konstantinos Chatzikokolakis, Pierpaolo Degano, and
Catuscia Palamidessi. Differential privacy: On the trade-off between utility and information
leakage. In Proceedings of the 8th International Conference on Formal Aspects of Security
and Trust, FAST–11, pages 39–54, Berlin, Heidelberg, 2011. Springer-Verlag. doi:10.1007/
978-3-642-29420-4_3.

CSL 2021

https://books.google.fr/books?id=zqkXKMNXVi0C
https://doi.org/10.1007/978-3-642-29420-4_3
https://doi.org/10.1007/978-3-642-29420-4_3

23:16 A Partial Metric Semantics of Higher-Order Programs

4 A. Arnold and M. Nivat. Metric interpretations of infinite trees and semantics of non
deterministic recursive programs. Theoretical Computer Science, 11(2):181–205, 1980. doi:
10.1016/0304-3975(80)90045-6.

5 Arthur Azevedo de Amorim, Marco Gaboardi, Justin Hsu, Shin-ya Katsumata, and Ikram
Cherigui. A semantic account of metric preservation. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages - POPL 2017. ACM Press,
2017. doi:10.1145/3009837.3009890.

6 Christel Baier and Mila E. Majster-Cederbaum. Denotational semantics in the cpo and metric
approach. Theoretical Computer Science, 135(2):171–220, 1994. doi:10.1016/0304-3975(94)
00046-8.

7 Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. Probabilistic
relational reasoning for differential privacy. In Proceedings of the 39th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages - POPL ’12. ACM Press, 2012.
doi:10.1145/2103656.2103670.

8 Michael Bukatin, Ralph Kopperman, Steve Matthews, and Homeira Pajoohesh. Partial metric
spaces. American Mathematical Monthly - AMER MATH MON, 116:708–718, October 2009.
doi:10.4169/193009709X460831.

9 Michael A. Bukatin and Joshua S. Scott. Towards computing distances between programs via
scott domains. In Sergei Adian and Anil Nerode, editors, Logical Foundations of Computer
Science, pages 33–43, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

10 Y. Cai, P.G. Giarrusso, T. Rendel, and K. Ostermann. A theory of changes for higher-
order languages: incrementalizing λ-calculi by static differentiation. ACM SIGPLAN Not.,
49:145–155, 2014.

11 Konstantinos Chatzikokolakis, Daniel Gebler, Catuscia Palamidessi, and Lili Xu. General-
ized bisimulation metrics. In Paolo Baldan and Daniele Gorla, editors, CONCUR 2014 –
Concurrency Theory, pages 32–46, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

12 Maria Manuel Clementino, Dirk Hofmann, and Isar Stubbe. Exponentiable functors between
quantaloid-enriched categories. Applied Categorical Structures, 17(1):91–101, 2009. doi:
10.1007/s10485-007-9104-5.

13 Raphaëlle Crubillé and Ugo Dal Lago. Metric reasoning about λ-terms: The affine case. In
Proceedings of the 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), LICS ’15, page 633?644, USA, 2015. IEEE Computer Society. doi:10.1109/LICS.
2015.64.

14 Raphaëlle Crubillé and Ugo Dal Lago. Metric reasoning about λ-terms: The general case.
In Hongseok Yang, editor, Programming Languages and Systems, pages 341–367, Berlin,
Heidelberg, 2017. Springer Berlin Heidelberg.

15 J. Desharnais, R. Jagadeesan, V. Gupta, and P. Panangaden. The metric analogue of weak
bisimulation for probabilistic processes. In Proceedings 17th Annual IEEE Symposium on
Logic in Computer Science, pages 413–422, July 2002. doi:10.1109/LICS.2002.1029849.

16 Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics
for labelled markov processes. Theoretical Computer Science, 318(3):323–354, 2004. doi:
10.1016/j.tcs.2003.09.013.

17 Pietro Di Gianantonio and Abbas Edalat. A language for differentiable functions. In Frank
Pfenning, editor, Foundations of Software Science and Computation Structures, pages 337–352,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

18 Abbas Edalat and Martín Hötzel Escardó. Integration in real pcf. Information and Computation,
160(1):128–166, 2000. doi:10.1006/inco.1999.2844.

19 Martín Hötzen Escardó. A metric model of PCF. In Workshop on Realizability Semantics and
Applications, 1999.

20 Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C. Pierce.
Linear dependent types for differential privacy. In Proceedings of the 40th annual ACM

https://doi.org/10.1016/0304-3975(80)90045-6
https://doi.org/10.1016/0304-3975(80)90045-6
https://doi.org/10.1145/3009837.3009890
https://doi.org/10.1016/0304-3975(94)00046-8
https://doi.org/10.1016/0304-3975(94)00046-8
https://doi.org/10.1145/2103656.2103670
https://doi.org/10.4169/193009709X460831
https://doi.org/10.1007/s10485-007-9104-5
https://doi.org/10.1007/s10485-007-9104-5
https://doi.org/10.1109/LICS.2015.64
https://doi.org/10.1109/LICS.2015.64
https://doi.org/10.1109/LICS.2002.1029849
https://doi.org/10.1016/j.tcs.2003.09.013
https://doi.org/10.1016/j.tcs.2003.09.013
https://doi.org/10.1006/inco.1999.2844

G. Geoffroy and P. Pistone 23:17

SIGPLAN-SIGACT symposium on Principles of programming languages - POPL ’13. ACM
Press, 2013. doi:10.1145/2429069.2429113.

21 Francesco Gavazzo. Quantitative behavioural reasoning for higher-order effectful programs:
Applicative distances. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS ’18, page 452?461, New York, NY, USA, 2018. Association for
Computing Machinery. doi:10.1145/3209108.3209149.

22 Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270–299, 1984. doi:10.1016/0022-0000(84)90070-9.

23 Jialiang He, Hongliang Lai, and Lili Shen. Towards probabilistic partial metric spaces:
Diagonals between distance distributions. Fuzzy Sets and Systems, 370:99–119, 2019. Theme:
Topology and Metric Spaces. doi:10.1016/j.fss.2018.07.011.

24 Barnaby P. Hilken. Towards a proof theory of rewriting: the simply typed 2λ-calculus.
Theoretical Computer Science, 170(1):407–444, 1996. doi:10.1016/S0304-3975(96)80713-4.

25 Dirk Hofmann, Gavin J Seal, and W Tholen. Monoidal Topology: a Categorical Approach to
Order, Metric and Topology. Cambridge University Press, New York, 2014.

26 Dirk Hofmann and Isar Stubbe. Topology from enrichment: the curious case of partial metrics.
Cahiers de Topologie et Géométrie DIfférentielle Catégorique, LIX, 4:307–353, 2018.

27 J.M.E. Hyland. The effective topos. In A.S. Troelstra and D. [van Dalen], editors, The L. E.
J. Brouwer Centenary Symposium, volume 110 of Studies in Logic and the Foundations of
Mathematics, pages 165–216. Elsevier, 1982. doi:10.1016/S0049-237X(09)70129-6.

28 Gunther Jäger and T. M. G. Ahsanullah. Characterization of quantale-valued metric spaces and
quantale-valued partial metric spaces by convergence. Applied General Topology, 19(1):129–144,
2018.

29 Ralph Kopperman, Steve Matthews, and Homeira Pajoohesh. Partial metrizability in value
quantales. Applied General Topology, 5(1):115–127, 2004.

30 Dexter Kozen. Semantics of probabilistic programs. Journal of Computer and System Sciences,
22(3):328–350, 1981. doi:10.1016/0022-0000(81)90036-2.

31 Andreas Krause, Brendan McMahan, Carlos Guestrin, and Anupam Gupta. Robust submodular
observation selection. Journal of Machine Learning Research (JMLR), 9:2761–2801, December
2008.

32 Ugo Dal Lago, Francesco Gavazzo, and Akira Yoshimizu. Differential logical relations, part
I: the simply-typed case. In 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, pages 111:1–111:14, 2019.
doi:10.4230/LIPIcs.ICALP.2019.111.

33 S. G. Matthews. Partial metric topology. Annals of the New York Academy of Sciences,
728(1):183–197, 1994. doi:10.1111/j.1749-6632.1994.tb44144.x.

34 Sparsh Mittal. A survey of techniques for approximate computing. ACM Comput. Surv., 48(4),
2016.

35 Jason Reed and Benjamin C. Pierce. Distance makes the types grow stronger: A calculus for
differential privacy. SIGPLAN Not., 45(9):157–168, September 2010. doi:10.1145/1932681.
1863568.

36 Bessem Samet, Calogero Vetro, and Francesca Vetro. From metric spaces to partial
metric spaces. Fixed Point Theory and Applications, 2013(1):5, 2013. doi:10.1186/
1687-1812-2013-5.

37 M. P. Schellekens. The correspondence between partial metrics and semivaluations. Theoretical
Computer Science, 315(1):135–149, 2004.

38 Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard. Manag-
ing performance vs. accuracy trade-offs with loop perforation. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software
Engineering, ESEC/FSE ?11, pages 124–134, New York, NY, USA, 2011. Association for
Computing Machinery.

CSL 2021

https://doi.org/10.1145/2429069.2429113
https://doi.org/10.1145/3209108.3209149
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1016/j.fss.2018.07.011
https://doi.org/10.1016/S0304-3975(96)80713-4
https://doi.org/10.1016/S0049-237X(09)70129-6
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.4230/LIPIcs.ICALP.2019.111
https://doi.org/10.1111/j.1749-6632.1994.tb44144.x
https://doi.org/10.1145/1932681.1863568
https://doi.org/10.1145/1932681.1863568
https://doi.org/10.1186/1687-1812-2013-5
https://doi.org/10.1186/1687-1812-2013-5

23:18 A Partial Metric Semantics of Higher-Order Programs

39 D. A. Simovici. On submodular and supermodular functions on lattices and related structures.
In 2014 IEEE 44th International Symposium on Multiple-Valued Logic, pages 202–207, May
2014. doi:10.1109/ISMVL.2014.43.

40 Paul Taylor. A lambda calculus for real analysis. Journal of Logic and Analysis, 2(5):1–115,
2010.

41 Franck van Breugel. An introduction to metric semantics: operational and denotational models
for programming and specification languages. Theoretical Computer Science, 258(1):1–98,
2001. doi:10.1016/S0304-3975(00)00403-5.

42 Franck van Breugel and James Worrell. Towards quantitative verification of probabilistic
transition systems. In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors,
Automata, Languages and Programming, pages 421–432, Berlin, Heidelberg, 2001. Springer
Berlin Heidelberg.

43 Franck van Breugel and James Worrell. A behavioural pseudometric for probabilistic transition
systems. Theoretical Computer Science, 331(1):115–142, 2005. Automata, Languages and
Programming. doi:10.1016/j.tcs.2004.09.035.

44 Edwin Westbrook and Swarat Chaudhuri. A semantics for approximate program transforma-
tions, 2013. URL: https://arxiv.org/abs/1304.5531.

https://doi.org/10.1109/ISMVL.2014.43
https://doi.org/10.1016/S0304-3975(00)00403-5
https://doi.org/10.1016/j.tcs.2004.09.035
https://arxiv.org/abs/1304.5531

A Deep Quantitative Type System
Giulio Guerrieri
University of Bath, Department of Computer Science, UK

Willem B. Heijltjes
University of Bath, Department of Computer Science, UK
http://willem.heijltj.es/

Joseph W.N. Paulus
Rijksuniversiteit Groningen, The Netherlands

Abstract
We investigate intersection types and resource lambda-calculus in deep-inference proof theory.
We give a unified type system that is parametric in various aspects: it encompasses resource
calculi, intersection-typed lambda-calculus, and simply-typed lambda-calculus; it accommodates
both idempotence and non-idempotence; it characterizes strong and weak normalization; and it does
so while allowing a range of algebraic laws to determine reduction behaviour, for various quantitative
effects. We give a parametric resource calculus with explicit sharing, the “collection calculus”, as a
Curry–Howard interpretation of the type system, that embodies these computational properties.

2012 ACM Subject Classification Theory of computation → Proof theory; Theory of computation
→ Lambda calculus

Keywords and phrases Lambda-calculus, Deep inference, Intersection types, Resource calculus

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.24

Funding This work was supported by EPSRC Project EP/R029121/1 Typed lambda-calculi with
sharing and unsharing.

Acknowledgements We would like to thank Ugo Dal Lago, Delia Kesner, Luc Pelissier, Nicolas Wu,
and the anonymous referees for their constructive engagement with our work.

1 Introduction

Of the various qualitative and quantitative approaches to λ-calculus, which include intersection
types [15, 16, 23], resource calculi [9, 30, 21], and relational models [31, 33], many are known
to be related, often in deep and interesting ways. We are curious if there is a common
foundation, a question that we approach through deep-inference proof theory. Here, we give
a unified, structural perspective on intersection types and resource calculi, in the form of a
deep quantitative proof system. It is both a simple type system for a resource calculus, the
collection calculus that we introduce here, and an intersection type system for an explicit-
substitution calculus, the structural λ-calculus [3, 4]. In both cases, it can be parameterized
in various algebraic laws to obtain different quantitative effects.

The computational side of deep inference

Deep inference, as a family of proof formalisms, has remarkable properties: quasi-polynomial
proof complexity and normalization for propositional classical logic [28, 12], non-elementary
proof compression for first-order classical logic [5], and the ability to express logics for which
no sequent calculus can exist [39], among others. It is a natural question if such striking
features can be put to computational use. In previous work in this direction, the second
author and co-authors derived two atomic λ-calculi, which characterize different versions of
full laziness, from the duplication properties of intuitionistic deep inference [26, 37].

© Giulio Guerrieri, Willem B. Heijltjes, and Joseph W.N. Paulus;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 24; pp. 24:1–24:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0469-4279
http://willem.heijltj.es/
https://doi.org/10.4230/LIPIcs.CSL.2021.24
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 A Deep Quantitative Type System

(λx.N)M (λ〈x1, . . . , xn〉.N) 〈M, . . . ,M〉

Γ
λ

A→ (Γ ∧A)

A→

Γ ∧ A 4
A ∧ . . . ∧A

Γ ∧A ∧ . . . ∧A
N

B

∧
∆
M

A

(A→B) ∧A
@

B

Γ
λ

(A ∧ . . . ∧A)→ (Γ ∧A ∧ . . . ∧A)

(A ∧ . . . ∧A) →
Γ ∧A ∧ . . . ∧A

N

B

∧

∆ 4
∆ ∧ . . . ∧∆

∆
M

A

∧ . . . ∧
∆
M

A

((A ∧ . . . ∧A)→B) ∧A ∧ . . . ∧A
@

B

(1) (3)

Γ
λ

(A ∧ . . . ∧A)→ (Γ ∧A ∧ . . . ∧A)

A ∧ . . . ∧A5

A
→

Γ ∧A ∧ . . . ∧A
N

B

∧
∆
M

A

(A→B) ∧A
@

B

(2)

Γ
λ

(A ∧ . . . ∧A)→ (Γ ∧A ∧ . . . ∧A)

(A ∧ . . . ∧A) →
Γ ∧A ∧ . . . ∧A

N

B

∧

∆
M

A

A 4
A ∧ . . . ∧A

((A ∧ . . . ∧A)→B) ∧A ∧ . . . ∧A
@

B

Figure 1 Deriving resource calculus by proof transformations. The derivation top left is for the
lambda-term (λx.N)M . The blue contraction rule (4) passes through the yellow abstraction rule
(λ) in step (1), ending up as the inverted rule (5) to reflect that (→) reverses “polarity” on the left;
it then passes through the application rule (@) in step (2); and duplicates the argument derivation
M in step (3). The resulting derivation, top right, is for an interpretation of the original term as a
resource term (λ〈x1, . . . , xn〉.N) 〈M, . . . ,M〉, where the variables xi represent the occurrences of x.
Categorically, (λ) and (@) are the η and ε transformations of the adjunction between (→) and (∧),
while (4) is the diagonal map for (∧); the steps (1)–(3) then reflect the (di)naturality of these maps,
and the inversion of (4) to (5) reflects the contravariance of (→) in its first argument.

In this paper, we investigate intersection types [15] and resource lambda-calculi [9] from the
perspective of deep inference. We will work in the formalism open deduction [25]; see Section 3
for an introduction. We start by observing that in lambda-calculus and natural deduction,
duplication and beta-reduction are intimately related: in an abstraction λx.N , the bound
occurrences of x in N represent a potential duplication, which can only be effected by a beta-
step on (λx.N)M . Systems like sequent calculi, proof nets, and explicit-substitution calculi
may separate beta-reduction and duplication by an explicit contraction rule. Deep inference
goes one step further: contraction rules may pass through other proof rules. We illustrate this
in Figure 1. For a simply-typed open-deduction proof, one may carry out all latent duplication
by pushing the contractions through the proof in the way of the example, until they disappear
at the top or bottom of the proof. Doing so transforms a simple type derivation for a lambda-
term into a (non-idempotent) intersection-type derivation, or equivalently into a simple type
derivation for a corresponding resource term. The result is familiar from resource calculi,
which may unfold the redex (λx.N)M to (λ〈x1, . . . , xn〉.N)〈M, . . . ,M〉 where the variables
xi represent the n occurrences of x in N . Crucially, in open deduction this transformation
applies not only to redexes, but to individual abstractions and applications.

G. Guerrieri, W.B. Heijltjes, and J.W. Paulus 24:3

In Figure 1, the conjunction (∧) has two distinct rôles: its standard rôle in the application
rule, in typing NM , plus that of creating a collection of derivations, in typing 〈M, . . . ,M〉.
We separate both rôles by introducing an intersection type operator (+) for collections,
leaving the conjunction in its traditional rôle. We give the operator (+), and the rules for
it to interact with (∧), below: (1) as is characteristic of connectives in open deduction, (+)
applies to derivations as well as formulas, giving a derivation from A+C to B+D; (2) the
contraction rule (4) is modified to transform a conjunction into an intersection; and (3)
conjunction and intersection are interchanged by a (non-invertible) medial rule (m).

(1)
A

B

+
C

D

(2)
A+B

4

A∧B
(3)

(A+B)∧(C+D)
m

(A∧C)+(B∧D)

Our construction makes essential use of the characteristic properties of open deduction.
Firstly, operators apply to derivations as well as formulas, as in (1) above. Via the Curry–
Howard correspondence this gives us a natural, simultaneous treatment of collections of terms
and collections of types, giving a tight correspondence between resource terms and their type
derivations. Secondly, medial-style rules [11, 38, 6] are unique to deep-inference systems, and
are at the root of many of the contributions of the theory, including the complexity results
for classical logic mentioned above, and both atomic lambda-calculi.

The most salient feature of our approach is that the calculus and the type system can be
parameterized in various algebraic laws, which captures for instance the familiar distinction
between idempotent and non-idempotent intersection types. This is made possible by our
structural approach: once the above constructions (1–3) are available, the proof system is in
principle agnostic about the further properties of collections.

Our technical exposition starts with a system of simple types in open deduction, in
Section 3, for the Structural λ-Calculus λj of Accattoli and Kesner [3, 4], which we recall in
Section 2 and here abbreviate SC. The work of Accattoli and Kesner derives the SC, and the
related Linear Substitution Calculus (LSC, [1]), from an extensive search for good reduction
properties in explicit-substitution calculi, inspired by linear logic. Here, we observe that the
SC also arises as a natural Curry–Howard-style interpretation of intuitionistic open deduction.
We view this as further support for our proof-theory based approach. A version of the SC
with linear use of variables was the basis for both atomic λ-calculi [26, 37].

A precursor to the present work is the workshop paper [27]. Proofs are in the Appendix.

Related work. Intersection types, in their idempotent variant, have been studied to charac-
terize several kinds of normalization [15, 16, 36]. The non-idempotent variant introduced in
[23] is strictly related to linear logic [18, 19] and induces a well-known denotational model of
the λ-calculus and linear logic: relational semantics [13, 34]. The literature about intersection
types is huge, let us mention [14] for a survey and [2] for recent developments.

Resource-sensitive calculi [9, 30] can be seen as a “dynamic” counterpart of non-idempotent
intersection types, often inspired by linear logic, see for instance [21, 22, 33].

Approaches to resource calculi and intersection types from a proof-theoretic perspective
are uncommon; for the former, since qualitative and quantitative properties are already
captured through the term calculus, and for the latter since the restriction that intersection
types can only be formed for proofs of the same term is a fundamental departure from
traditional logical systems; exceptions to the latter are [35, 20].

A different unified perspective, via category theory, is given in [32]; the conceptual
difference is that their approach is extensional (characterizing qualitative systems through
their properties) where ours is intensional (we give an underlying syntactic structure).

CSL 2021

24:4 A Deep Quantitative Type System

2 The structural λ-calculus

Our point of departure is the structural λ-calculus (SC) of Accattoli and Kesner [3, 4], an
explicit-substitution λ-calculus where closures are evaluated by decomposition and linear
substitution. This puts the dynamic behaviour of the calculus away from implicit substitution,
and closer to graph reduction; we prefer to call it an explicit-sharing calculus instead.

As an interpretation of deep inference, other calculi with explicit sharing would be equally
suitable, such as λlxr of Kesner and Lengrand [29]; we choose the SC for its concise notation.

I Definition 1. The terms r, s, t of the SC are defined by the grammar

r, s, t ····= x | ts | λx.t | t[x← s]

with from left to right: a variable; an application; an abstraction, which binds x in t; and a
closure, which binds x in t.

We call [x← s] a sharing, abbreviated to [φ], and write [Φ] for a sequence of sharings
[x1 ← s1] . . . [xn ← sn], or t[Φ] when applied as closures to a term t. We write {t/x} for the
(capture-avoiding) substitution of t for x, and |t|x for the number of free occurrences of x
in t. The set of free variables of a term t is denoted by fv(t).

I Definition 2. The reduction rules of the SC are the contextual closure of the rules below.

(λx.t)[Φ]s b t[x← s][Φ] (beta)
t{x/y}[x← s] c t[x← s][y← s] |t|x, |t|y ≥ 1 (copy)

t[x← s] e t{s/x} |t|x = 1 (evaluate)
t[x← s] d t |t|x = 0 (delete)

We set ¬b = c ∪ d ∪ e and sc = b ∪ ¬b.

The beta-rule includes the closures [Φ] so that these do not block the redex: it acts at a
distance. This mimicks graph reduction and obviates the need to permute closures. In the
copy rule, the notation t{x/y} is used to separate the occurrences of x into two (non-empty)
classes: those that occur as x in t and those that occur as y in t. The sharing [x← s] can then
be duplicated and split among them. This is used to isolate a variable with one occurrence,
to which the evaluate rule then applies, whose substitution {s/x} is linear.

For a rewrite relation , we write for its reflexive-transitive closure, and for
reduction to normal form. The λ-calculus embeds into the SC without using a translation,
as λ-terms are the SC-terms that do not have closures. The unfolding t• of a term t, defined
below, evaluates all closures by substitutions, which interprets SC-terms as λ-terms.

x• = x (λx.t)• = λx.t• (ts)• = t•s• (t[x← s])• = t•{s•/x}.

I Proposition 3 (Simulations). Let t be a SC-term and s be a λ-term.
1. From SC to λ-calculus: If t b t

′ then t• β t
′•; if t ¬b t

′ then t• = t′
•.

2. From λ-calculus to SC: If s β s
′ then s b ¬b s

′.

I Proposition 4 (Collated results from [4]). The SC has the following key properties.
1. The normal forms of ¬b are exactly the λ-terms.
2. The normal forms of sc are exactly the β-normal λ-terms.
3. For any SC-term t, one has t ¬b t

•; in particular, t = t• for any λ-term.
4. The relations b, ¬b, and sc are confluent; b and ¬b are strongly normalizing.
5. Preservation of strong normalization: if a λ-term t has an infinite sc-reduction, then it

has an infinite β-reduction.

G. Guerrieri, W.B. Heijltjes, and J.W. Paulus 24:5

3 A deep type system

Open deduction is a dialect of deep-inference proof theory, introduced by Guglielmi, Gun-
dersen, and Parigot [25], where proofs are constructed in two directions: horizontally by
connectives, and vertically by rules. We give a brief formal introduction.

A derivation from a premise formulaX to a conclusion formula Z is constructed inductively
as below, with from left to right: a propositional atom a, where X = Z = a; horizontal
construction with a connective ?, where X = X1 ? X2 and Z = Z1 ? Z2; and vertical
construction with an inference rule r from Y1 to Y2. Boxes serve as parentheses (since
derivations extend in two dimensions) and may be omitted.

X

Z

····= a |
X1

Z1

?

X2

Z2

|

X

Y1
r

Y2

Z

Derivations are considered up to associativity of vertical construction. One may consider
formulas as derivations that omit vertical construction. The binary ? may be generalized to
0-ary, unary, and n-ary operators, and it may have negative arguments where a derivation
becomes inverted, exchanging premise and conclusion, such as to the left of an implication –
though we will avoid the need for these. Composition of a derivation from X to Y and one
from Y to Z, depicted by a dashed line, is a defined operation:

X

Y

Y

Z

··=

a

a

Z

=
a

Z

X

a

a

=
X

a

X1

Y1

?

X2

Y2

Y1

Z1

?

Y2

Z2

=

X1

Y1

Y1

Z1

?

X2

Y2

Y2

Z2

X

Y1
r

Y2

Y3

Y3

Z

=

X

Y1
r

Y2

Y3

Y3

Z

X

Y1

Y1

Y2
r

Y3

Z

=

X

Y1

Y1

Y2
r

Y3

Z

We specialize the above to a proof system for conjunction-implication intuitionistic logic,
similar to that of Brünnler and McKinley [10], through the grammar and inference rules
below. Note the inclusion of the unit > as a 0-ary operator, and the restriction of the left
subderivation of (→) to a formula, to avoid introducing inverted derivations. The rules are:
abstraction (λ), application (@), and n-ary contraction (4) on the left and the invertible rules
for associativity, symmetry, and unitality of conjunction on the right. A 0-ary contraction,
with conclusion >, is a weakening. We will leave the invertible rules implicit in derivations,
and consider conjunction modulo associativity and unitality.

X

Y

····= a | > |
X1

Z1

∧

X2

Z2

| Y →

X2

Z2

|

X

Y1
r

Y2

Z

X
λ

Y → (X ∧ Y)
X ∧(Y ∧Z)

=
(X ∧Y)∧Z

(X → Y) ∧X
@

Y

X ∧Y
=

Y ∧X

X 4
X ∧ · · · ∧X

X ∧>
=

X

CSL 2021

24:6 A Deep Quantitative Type System

Ax

Γ~y
4

Γ~y

t

A→B

∧

Γ~y

s

A
@

B

Γ~y
λ

A→

Γ~y ∧Ax

t

B

Γ~y
4

Γ~y ∧
Γ~y

s

A

Γ~y ∧Ax

t

B

Γ~x

t

A

∧
∆~y

4

>

=
A

x ts λx.t t[x← s] t

Figure 2 An open-deduction system of simple types for the structural λ-calculus. In ts, both t
and s are given the same context Γ~y with ~y = fv(t) ∪ fv(s) by applying the rules 4 and = as in the
rightmost construction, where ~x ∩ ~y = ∅; and similarly for t[x← s].

Typing the structural λ-calculus

We give an open-deduction system of simple types for the SC. Not all derivations correspond
to a term: the calculus picks out a subset of derivations, imposes certain equivalences, and
guides reduction. The latter is essential, since naïve reduction in the proof system creates
cycles of contractions duplicating each other: this example is from [10] – see there for detail.

I Example 5 ([10]). The natural reductions for a contraction or weakening rule are to
duplicate respectively to delete the derivation above it (see also Figure 3). Applied naïvely,
this reduction is non-terminating by the example below (all explicit rules are contractions).

A

A ∧ A>
A

A ∧ A>
A

=

A

A ∧ A>

A
A ∧A

A ∧ A
>

A

A
A ∧A

A

A ∧ A>
∧

A

A ∧ A>

A
>

A

A
A ∧A

A

A ∧ A>
∧ A
>

A

=

A
A ∧A

A ∧ A
>

A

A ∧ A>
A

=

A

A ∧ A>
A

A ∧ A>
A

The type system is in Figure 2. A term t is typed by a derivation from Γ to A, which we
indicate as below left. The structured types A and Γ are respectively a basic type and a context
type, generated by the respective grammars below. A context type Γ = A1 ∧ · · · ∧An in the
premise of the derivation for t types a vector of context variables ~x = x1, . . . , xn, which include
the free variables of t, but may be expanded to include variables not occurring in t via the
rightmost derivation in Figure 2. We make context variables explicit as Γ~x = A

x1
1 ∧ · · · ∧A

xn
n .

A derivation for t:
Γ
t

A

Basic types: A,B,C,D ····= a | A→B

Context types: Γ,∆,Λ,Σ ····= > | A | Γ∧∆

In the calculus, contraction is implicit via the use of variables (and made explicit in the
reduction rules by considering variable occurrences). Correspondingly, we consider derivations
modulo the equivalences (44) and (44) below right, where in (44) both contractions have
the same width (the same number of formulas X respectively Y in the conclusion).

G. Guerrieri, W.B. Heijltjes, and J.W. Paulus 24:7

Γ∧
Λ

[Φ]

Σ
λ

A→

Γ∧Σ∧Ax

t

B

∧

∆
s

A

@
B

(λx.t)[Φ]s b t[x← s][Φ]

Γ∧
Λ

[Φ]

Σ
∧

∆
s

A

Γ∧Σ∧Ax

t

B

Γ~z

s

A

Ax
4

Ax∧Ax

t{x/y}[x← s] c t[x← s][y ← s]

(|t|x, |t|y ≥ 1)

Γ~z
4

Γ~z ∧Γ~z

Γ~z

s

A

Ax

∧

Γ~z

s

A

Ay

Γ
s

A

Ax
4

Ax

t[x← s] e t{s/x}

(|t|x = 1)

Γ
s

A

Ax

Γ~z

s

A

Ax
4

>

t[x← s] d t

(|t|x = 0)

Γ~z
4

>

Figure 3 Subject reduction for the simply-typed structural λ-calculus.

X 4

X ∧ · · · ∧X ∧
Y 4

Y ∧ · · · ∧Y ∼ X ∧Y
4

(X ∧Y)∧ · · · ∧(X ∧Y)
(44)

X 4

X ∧ · · · ∧X ∧X

X ∧ · · · ∧X ∧ X 4

X ∧ · · · ∧X

∼ X 4

X ∧ · · · ∧X ∧X ∧ · · · ∧X (44)

We consider the unary contraction equivalent to an identity (below left), though we may
choose to deploy it as a “marker” to differentiate between an explicit substitution t[x← s]
where |t|x = 1 (with unary contraction) and the implicit substitution t{s/x} to which it
reduces (without). We include a naturality equation for the abstraction (below right), to
capture the equation (λx.t){s/z} = λx.t{s/z} (where x 6= z) for subsitution.

CSL 2021

24:8 A Deep Quantitative Type System

X 4
X

∼ X

Y

Z
λ

X→(Z ∧X)

∼

Y
λ

X→

Y

Z

∧X

Typing derivations for the reduction rules are given in Figure 3. For the rules (c, d, e) we
omit the term t from the derivations, for brevity. The figure witnesses that:

I Proposition 6 (Subject reduction). SC reduction preserves typing.

4 The collection calculus

We extend the SC with an abstract notion of collection, applied to terms, types, and derivations.
The resulting collection calculus (CC) is a resource λ-calculus that is parameterized in a
specific choice of collection, such as sets, multisets, or with a minor modification, sequences.
We generate collections syntactically, by combining empty 〈〉 and singleton 〈t〉 collections
with a binary append operator +, and then consider these modulo standard algebraic laws.

I Definition 7. The collection calculus (CC) is given by the terms and collection terms:

r, s, t ····= x | tτ | λx.t | t[x← τ] ρ, σ, τ ····= 〈〉 | 〈t〉 | σ+τ

where terms are as for the SC, and collection terms are empty, singleton, and append.

The collection calculus is parameterized in a collection algebra, a preorder (≤) over collection
terms generated by a selection of algebraic equalities and inequalities, which governs the
behaviour of collections under reduction. A reduction step on a closure t[x← τ] will treat
the collection τ modulo (≤): it will correspond to a (non-deterministic) syntactic reduction
on t[x←σ] for a chosen σ such that τ ≤ σ. Conceptually, (≤) implements the structural
aspects of reduction, such as duplication, deletion, and exchange.

The algebraic laws are the following, where σ = τ means that both σ ≤ τ and τ ≤ σ.
Commensurate with the intuition of (≤) as a reduction relation, it satisfies reflexivity (τ ≤ τ),
transitivity (if ρ ≤ σ and σ ≤ τ then ρ ≤ τ), and contextual closure (if ρ ≤ σ then τ +ρ ≤ τ +σ

and ρ + τ ≤ σ + τ). The current presentation further assumes associativity, unitality, and
symmetry (below), so that collections are multisets. Relaxing these laws will be discussed in
Section 7. The laws of redundancy, duplicability, and idempotence are optional parameters.

Associativity ρ+(σ+τ) = (ρ+σ)+τ Redundancy τ ≤ 〈〉
Unitality 〈〉+τ = τ = τ +〈〉 Duplicability τ ≤ τ +τ

Symmetry σ+τ = τ +σ Idempotence τ = τ +τ

Reduction is non-deterministic, and produces an (idempotent) formal sum of terms at the
meta-level, distinct from collection terms and the append operator.

I Definition 8. The reduction rules of the CC are the contextual closure of the rules below.

(λx.t)[Φ]τ b t[x← τ][Φ] (beta)

t{x/y}[x← τ] c
∑

τ ≤ ρ+σ

t[x← ρ][y←σ] |t|x, |t|y ≥ 1 (copy)

t[x← τ] e
∑
τ ≤〈s〉

t{s/x} |t|x = 1 (evaluate)

t[x← τ] d
∑
τ ≤〈〉

t |t|x = 0 (delete)

We set ¬b = c ∪ d ∪ e, and cc = b ∪ ¬b.

G. Guerrieri, W.B. Heijltjes, and J.W. Paulus 24:9

Observe that for a closure t[x← τ], the number of occurrences |t|x determines which reduction
step applies, while the collection algebra (≤) determines what reducts are obtained. For the
evaluate and delete steps, the sum implements the possibility of deadlock: the result is either
a singleton or the empty sum 0. The laws of redundancy and duplicability allow deletion
respectively duplication of the terms in a collection.

I Example 9. We have the following ¬b-reductions, writing 〈t1, . . . , tn〉 for 〈t1〉+ · · · +〈tn〉,
where the row (1) gives the reducts for the plain collection algebra (collections as multisets);
(2) gives those with redundancy; (3) those with duplicability; and (4) those with both laws.

x〈x〉[x← 〈s, t〉] ¬b x[x← 〈s, t〉] ¬b x〈x〉[x← 〈s〉] ¬b

s〈t〉+ t〈s〉 0 0 (1)
s〈t〉+ t〈s〉 s+ t 0 (2)
s〈t〉+ t〈s〉 0 s〈s〉 (3)
s〈s〉+ s〈t〉+ t〈s〉+ t〈t〉 s+ t s〈s〉 (4)

Traditionally, intersection type systems have featured idempotence instead of duplicability,
rendering collections as sets. While natural from an algebraic perspective, duplicability and
redundancy are a closer match with the reduction behaviour of contraction and weakening rules.
The missing direction is also derived through redundancy and unitality: τ + τ ≤ τ + 〈〉 = τ .

With duplicability or idempotence, the copy reduction step produces infinite sums, since
the class of collections {σ + ρ | τ ≤ σ + ρ} is infinite as soon as τ is non-empty. However,
most duplication may safely be delayed. Writing σ ⊆ τ for the sub-multiset relation (i.e. each
element of σ occurs at least as many times in τ), the copy rule may be restricted to those
reducts where ρ, σ ⊆ τ . Likewise, with redundancy, deletion may be delayed and relegated to
evaluate and delete steps, restricting copy to reducts where τ ⊆ ρ+ σ. And with both laws,
we only need consider ρ, σ = τ .

I Example 10. We consider the reduction from (λz.z〈z〉)〈x, x, y〉, which starts as follows.

(λz.z〈z〉)〈x, x, y〉 b z〈z〉[z ← 〈x, x, y〉] c
∑

〈x,x,y〉≤ ρ+σ

w〈z〉[w← ρ][z ←σ]

With the plain collection algebra, this sum consists of:

w〈z〉[w← 〈〉][z ← 〈x, x, y〉] + w〈z〉[w← 〈x〉][z ← 〈x, y〉] + w〈z〉[w← 〈y〉][z ← 〈x, x〉]
+ w〈z〉[w← 〈x, x, y〉][z ← 〈〉] + w〈z〉[w← 〈x, y〉][z ← 〈x〉] + w〈z〉[w← 〈x, x〉][z ← 〈y〉]

This reduces to zero, since no summand has both ρ and σ as singletons. With redundancy,
reduction continues as below left – by delaying deletion as discussed previously, the above
copy step is not affected, and recall that the meta-level sum is idempotent. With only
idempotence, both occurrences of x may be collapsed and reduction instead continues as
below right. While we need to consider additional reducts for the copy rule above, such as
w〈z〉[w← 〈x, y〉][z ← 〈y〉], these do not add normal forms, since x and y may not be deleted.
With also redundancy, x〈x〉 or y〈y〉 are added as normal forms.

redundancy: . . . e x〈x〉 + x〈y〉 + y〈x〉 idempotence: . . . e x〈y〉 + y〈x〉

Reduction does not produce x〈x, y〉 or y〈x, y〉, nor does it produce x〈〉 or y〈〉. By contrast,
given idempotence, z〈z, z〉[z ← 〈x, x, y〉] does (non-deterministically) reduce to x〈x, y〉 and
y〈x, y〉. The meaning of the algebraic laws is not to equate terms, as idempotence would

CSL 2021

24:10 A Deep Quantitative Type System

z〈z〉 and z〈z, z〉, but to govern the behaviour of collections under reduction. This is standard
for resource calculi, and the alternative would severely complicate reduction: evaluating a
closure t[x← τ] would require duplication within any collection σ in t where x ∈ fv(σ).

I Proposition 11. The normal forms of ¬b and cc are (non-deterministic sums over)
terms of the form s0 respectively t0 given as follows.

s0 ····= x | s0〈s0, . . . , s0〉 | λx.s0 t1 ····= x | t1〈t0, . . . , t0〉 t0 ····= t1 | λx.t0

I Definition 12. The unfolding t• of a CC-term t and substitution for collections {τ/x}
are defined as follows.

x• = x

(tτ)• = t•τ•

(λx.t)• = λx.t•

(t[x← τ])• = t•{τ•/x}
〈t1, . . . , tn〉• = 〈t•1, . . . , t•n〉

x{σ/x} =
∑
σ≤〈s〉 s

x{σ/y} =
∑
σ≤〈〉 x (if x 6= y)

(tτ){σ/y} =
∑
σ≤σ1+σ2

(t{σ1/y})(τ{σ2/y})

(λx.t){σ/y} = λx.(t{σ/y})

t[x← τ]{σ/y} =
∑
σ≤σ1+σ2

t{σ1/y}[x← τ{σ2/y}]

〈〉{σ/y} =
∑
σ≤〈〉 〈〉

〈t〉{σ/y} = 〈t{σ/y}〉

(τ1 +τ2){σ/y} =
∑
σ≤σ1+σ2

τ1{σ1/y}+τ2{σ2/y}

A single closure t[x← τ] is evaluated by a substitution t{τ/x}, and the unfolding of a term
evaluates all closures, commensurate with ¬b-reduction to normal form in a way that we
make precise below.

I Proposition 13. ¬b-Reduction of a CC-term t is strongly normalizing, and confluent in
the following sense: if t ¬b

∑
s∈S s and t• =

∑
r∈R r then S ⊆ R.

I Proposition 14. Without idempotence and duplicability, CC-terms are strongly normalizing.

A main purpose of resource calculi is to provide quantitative bounds on the length of
reduction sequences. We will measure the length of non-deterministic reduction paths,
which select only one term from a formal sum of reducts, by a reduction weight |t| derived
from the constructors in a term t. With the plain collection algebra, the number of beta
steps is bounded by the number of abstractions and applications. For non-beta steps, a
reduction path t[x← τ] ¬b t{τ/x} where |t|x = n consists of 2n − 1 steps (n − 1 copy
steps and n evaluate steps) if n ≥ 1, or one delete step if n = 0. This gives the constraints
that variables contribute 2 to the reduction weight, weakenings contribute 1, and sharings
otherwise contribute −1. Then |t| is defined as follows, where x /∈ fv(r) but x ∈ fv(s):

|x| = 2 |λx.r| = |r|+ 2 |r[x← τ]| = |r|+ |τ |+ 1
|tτ | = |t|+ |τ | |λx.s| = |s| |s[x← τ]| = |s|+ |τ | − 1 |〈t1, . . . , tn〉| =

n∑
i=1
|ti|

In the absence of further algebraic laws, quantitative bounds are exact; with redundancy,
they are upper bounds; and with duplicability, they are lower bounds.

I Proposition 15. The length of a (non-deterministic) reduction sequence s cc t is:
1. without algebraic laws, exactly |s| − |t|;
2. with only redundancy, at most |s| − |t|;
3. with only duplicability, at least |s| − |t|.

G. Guerrieri, W.B. Heijltjes, and J.W. Paulus 24:11

5 A deep quantitative type system

Figure 4 gives an open-deduction proof system for a logic of quantitative types. Unlike the
two-sorted CC, which has separate sorts for terms and collection terms, the type system is
single-sorted, and the constructors empty 〈〉 and append + are included with the regular
types and derivations. The inference rules include a modified n-ary contraction (4), with the
0-ary case given below, the m×n-ary medial (m), specialized to the dimensions 0×0, 2×0,
1×1, 0×2, and 2×2 below, and the rule (≤) that implements the algebraic laws for types.
The inequality (≤) as a typing rule represents a generalized structural rule, generalizing the
weakening, contraction, and exchange rules familiar from sequent calculi and other proof
systems. A similar algebraic rule appears in the intersection type system of [7].
〈〉

4

>
>

m
〈〉

〈〉∧〈〉
m

〈〉
X

m
X

>
m

>+>
(W +X)∧(Y +Z)

m
(W ∧Y)+(X ∧Z)

The operators append and empty are parameterized by the same algebraic laws as for collection
terms: we assume associativity, unitality, and symmetry, though these can be relaxed without
fear of inconsistency, and optional are redundancy, duplicability, and idempotence (as usual,
(≤) is reflexive, transitive and contextual, and A = B means that A ≤ B and B ≤ A).

Associativity A+(B+C) = (A+B)+C Redundancy A ≤ 〈〉
Unitality 〈〉+A = A = A+〈〉 Duplicability A ≤ A+A

Symmetry A+B = B+A Idempotence A = A+A

Figure 5 presents a type system for the collection calculus within the open-deductive quantit-
ative system. A term t is typed by a derivation over structured types, defined below, with as
conclusion a basic type A and as premise a context type Γ, which is itself a conjunction over
collection types I. The premise Γ of a derivation for t types a vector of context variables ~x
that includes the free variables of t, made explicit by writing Γ~x = I

x1
1 ∧ · · · ∧Ixn

n .

A derivation for t:
Γ~x

t

A

Basic types: A,B,C,D ····= a | I→A
Collection types: I, J,K,L ····= 〈〉 | A | I+J

Context types: Γ,∆,Λ,Σ ····= > | I | Γ∧∆

In typing a collection of terms τ = 〈t1, . . . , tn〉, the medial generates the type of each context
variable x, by combining the types I1 through In for x in each ti into the type I1 + · · · +In.
For convenience, we capture the effect of the n×0-medial by abbreviating contexts of empty
collections by Γ~x〈〉 = 〈〉x1 ∧ · · · ∧〈〉xn , and that of the n×2-medial by an operator (++):

Γ~x〈〉
m

〈〉

(Γ++∆)~x
m

Γ~x +∆~x
with (I1∧ · · · ∧In)++(J1∧ · · · ∧Jn) ∆= (I1 +J1)∧ · · · ∧(In+Jn)

An example is the derivation (5), for the term (λz.z〈z〉)〈x, x, y〉 of Example 10.

>
λ

((A→B)+A)→
((A→B)+A)z

4

(A→B)z ∧Az
@

B

∧

((A→B)+A)x
≤

((A→B)+A+〈〉)x
∧

Ay
≤

(〈〉+〈〉+A)y
m

(A→B)x∧ 〈〉
y

4

>
=

A→B

+
Ax∧

〈〉y
4

>
=

A

+

〈〉x
4

>
∧Ay

=
A

≤
(A→B)+A

@
B

(5)

CSL 2021

24:12 A Deep Quantitative Type System

X

Z

····= a | > |
X1

Z1

∧

X2

Z2

| Y →
X2

Z2

|

X

Y1
r

Y2

Z

| 〈〉 |
X1

Z1

+

X2

Z2

X
λ

Y →(X ∧Y)
(X→Y)∧X

@
Y

X ∧(Y ∧Z)
=

(X ∧Y)∧Z
X ∧Y

=
Y ∧X

X ∧>
=

X

X1 + · · · +Xn
4

X1∧ · · · ∧Xn

(X1
1 + · · · +X

1
n)∧ · · · ∧(Xm

1 + · · · +X
m
n)

m
(X1

1 ∧ · · · ∧X
m
1)+ · · · +(X1

n∧ · · · ∧Xm
n)

X
≤

Y
(X ≤ Y)

Figure 4 An open-deduction system for quantitative types.

The inequality for collection terms τ ≤ σ, which expands during reduction, is captured
in derivations by a permutation across the ≤ inference rule. We give associativity and
duplicability as an example:

X

X ′
+

Y

Y ′
+

Z

Z ′

≤
(X ′ + Y ′) + Z ′

≤

X + (Y + Z)
≤

X

X ′
+

Y

Y ′
+

Z

Z ′

X

Y
≤

Y + Y

≤

X ≤
X

Y

+

X

Y

Typing the collection calculus imposes several equivalences on the quantitative open-deduction
system. In Figure 6 we give the equivalences due to interaction of contraction and medial,
and medial with itself: the first two are the splitting and associativity of contraction (44)
and (44), adjusted from the simple type system for the SC; the latter two (mm) and (mm) are
associativity laws for the medial. We equate the 1×1-medial and the unary contraction with
the identity, illustrated below left, though we may choose to leave these rules as “markers” in
the derivation for the term constructs 〈s〉, respectively t[x← τ] where |t|x = 1, to eliminate
both with the rewrite rule for t[x← 〈s〉], as in Figure 7. We assume the following two
naturality laws, for abstraction and medial.

X m
X

∼ X

X 4
X

∼ X

Y

Z
λ

X→(Z ∧X)

∼

Y
λ

X→

Y

Z

∧X

X1

Z1

+X2 ∧(Y1 +Y2)

m
(Z1∧Y1)+(X2∧Y2)

∼

(X1 +X2)∧(Y1 +Y2)
m

X1

Z1

+X2 (X2∧Y2)

Figure 7 gives typing derivations for the reduction rules of the collection calculus, witnessing
the following proposition.

I Proposition 16 (Subject reduction). The quantitative type system for the collection calculus
satisfies subject reduction.

Typing restricts reduction in the collection calculus: the terms in a collection may have
different types, and only those with the same type as a given variable may be substituted for
it. The example (6) gives the typed ¬b-reduction (omitting the first b-step) of Example 10

G. Guerrieri, W.B. Heijltjes, and J.W. Paulus 24:13

Ax

(Γ++∆)~y
m

Γ~y + ∆~y

4

Γ~y

t

I→A

∧

∆~y

τ

I
@

A

Γ~y
λ

I→

Γ~y ∧Ix

t

A

(Γ++∆)~y
m

Γ~y + ∆~y

4

Γ~y ∧
∆~y

τ

I

Γ~y ∧Ix

t

A

x tτ λx.t t[x← τ]

Γ~y〈〉
m

〈〉

Γ~y
m

Γ~y

t

A

(Γ++∆)~y
m

Γ~y

σ

I

+

∆~y

τ

J

Γ~x

t

A

∧

∆~y
〈〉

m
〈〉

4

>
=

A

〈〉 〈t〉 σ+τ t

Figure 5 Typing the collection calculus in open deduction. In the constructions tτ and t[x← τ]
the contexts of both derivations are expanded to cover the same context variables ~y , using the
bottom-right figure. For non-empty collection derivations the context is expanded for every term,
while empty collections are given for any context variables ~y .

with duplicability and redundancy. The typed reduction results in only two of the four
summands of the untyped reduction: the remaining two, y〈x〉 and y〈y〉, are not well-typed
with respect to this reduction, since the derivation for z〈z〉[z ← 〈x, x, y〉] does not assign y
the correct type to appear in function position.

((A→B)+A)x
≤

((A→B)+A+〈〉)x
∧

Ay
≤

(〈〉+〈〉+A)y
m

(A→B)x∧ 〈〉
y

4

>
=

A→B

+
Ax∧

〈〉y
4

>
=

A

+

〈〉x
4

>
∧Ay

=
A

≤
((A→B)+A)z

4

(A→B)z ∧Az
@

B

((A→B)+A)x
4

(A→B)x ∧ Ax
@

B

+

(A→B)x ∧ Ay
@

B

z〈z〉[z ← 〈x, x, y〉] ¬b x〈x〉 + x〈y〉

(6)

I Theorem 17. A typed CC-term is strongly normalizing.

CSL 2021

24:14 A Deep Quantitative Type System

(X1
1 + · · · +X

1
n)∧ · · · ∧(Xm

1 + · · · +X
m
n)

m
(X1

1 ∧ · · · ∧X
m
1)+ · · · +(X1

n∧ · · · ∧Xm
n)

4

(X1
1 ∧ · · · ∧X

m
1 ∧ · · · ∧X

1
n∧ · · · ∧Xm

n)

∼ X
1
1 + · · · +X

1
n

4

X
1
1 + · · · +X

1
n

∧ · · · ∧
X
m
1 + · · · +X

m
n

4

X
m
1 + · · · +X

m
n

(44)

X1 + · · · +Xn+Y1 + · · · +Ym
4

X1∧ · · · ∧Xn∧
Y1 + · · · +Ym

4

Y1∧ · · · ∧Ym
∼ X1 + · · · +Xn+Y1 + · · · +Ym

4

X1∧ · · · ∧Xn∧Y1∧ · · · ∧Ym
(44)

X1 ++ · · · ++Xn++Y1 ++ · · · ++Ym
m

X1 + · · · +Xn+
Y1 ++ · · · ++Ym

m
Y1 + · · · +Ym

∼ X1 ++ · · · ++Xn++Y1 ++ · · · ++Ym
m

X1 + · · · +Xn+Y1 + · · · +Ym
(mm)

(X1 ++ · · · ++Xn)∧
Y1 ++ · · · ++Yn

m
Y1 + · · · +Yn

m
(X1∧Y1)+ · · · +(Xn∧Yn)

∼ (X1 ++ · · · ++Xn)∧(Y1 ++ · · · ++Yn)
m

(X1∧Y1)+ · · · +(Xn∧Yn)
(mm)

Figure 6 Equivalences for contraction and medial.

6 Intersection types

Resource calculi aim to provide a notion of approximation of λ-terms, as an alternative to that
given by Böhm trees. The purpose of collections in such calculi is to approximate arbitrary
duplication (of a function argument) by a pre-determined, finite amount of duplication.
Figure 1 in the introduction demonstrates how in deep inference, this pre-determined
duplication can be implemented by rewriting. The difference with Böhm trees is exactly that
the latter do not separate duplication from beta-reduction, where resource calculi do.

In our case, a CC-term may approximate an SC-term, which we formalize below by the
relation t � s. Via this approximation the quantitative type system of the CC becomes an
intersection type system for the SC, similar to the approach of Kfoury [30].

I Definition 18. The uniformity law requires CC-terms to be uniform, as follows. A collection
term t flattens to an SC-term s, and s expands to t, by the inductive relation t � s:

x � x
t�s τ�u
tτ � su

t � s
λx.t � λx.s

t � s τ � u
t[x← τ] � s[x←u] 〈〉 � u

t � u
〈t〉 � u

σ�u τ�u
σ+τ � u

A uniform collection term t is one equipped with a flattening s, written as the pair t � s.

Subterms of a uniform term receive their annotation inductively. Observe that s in t � s is
uniquely defined except at subterms of the form 〈〉 in t. During reduction, collections must be
kept uniform: every term ti in a collection 〈t1, . . . , tn〉 � t must be reduced simultaneously,
along a reduction t sc s. We need the following, which is an immediate induction.

I Proposition 19. If t � s sc s
′ then t cc t

′ � s′ for some CC-term t′.

I Definition 20. A uniform reduction step (t � s) (t′ � s′) is a reduction step s s′

lifted to a corresponding reduction t t′ along the inductive definition of �.

G. Guerrieri, W.B. Heijltjes, and J.W. Paulus 24:15

Γ∧
Λ

[Φ]

Σ
λ

Ix→

Γ∧Σ∧Ax

t

A

∧

∆
τ

I

@
A

(λx.t)[Φ]τ b t[x← τ][Φ]

Γ∧
Λ

[Φ]

Σ
∧

∆
τ

I

Γ∧Σ∧Ix

t

A

(Γ++∆)~z
m

Γ~z

σ

I

+

Γ~z

ρ

J

(I +J)x
4

Ix∧Jx

t{x/y}[x←σ+ρ] c t[x←σ][y ← ρ]

(|t|x, |t|y ≤ 1)

(Γ++∆)~z
m

Γ~z +∆~z

4

Γ~z ∧∆~z

Γ~z

σ

I

Ix

∧

∆~z

ρ

J

Jy

Γ
m

Γ
s

A

Ax
4

Ax

t[x← 〈s〉] e t{s/x}

(|t|x = 1)

Γ
s

A

>
m
〈〉

〈〉x
4

>

t[x← 〈〉] d t

(|t|x = 0)
>

Figure 7 Subject reduction for the typed collection calculus.

A derivation for a uniform CC-term u � t is an intersection type derivation for the SC-
term t. With idempotence, we have idempotent intersection types; without, non-idempotent
intersection types. Both characterize weak normalization, since a collection 〈〉 � t may be
equipped with a non-normalizing SC-term t, and nevertheless typed by the empty type 〈〉.
To capture strong normalization, we adjust the type system to ask a typing witness for t.

I Definition 21. The strength law introduces an inference rule s and replaces the typing law
for 〈〉 � t by:

A
s
〈〉

〈〉 � t :

Γ~y
m

Γ~y

r�t

A
s

〈〉

for some uniform CC-term r � t

I Theorem 22. A structural λ-term t is weakly [strongly] normalizing if and only if there is
a typed, [strong,] uniform CC-term u � t.

CSL 2021

24:16 A Deep Quantitative Type System

7 Discussion and future work

Type uniformity and simple types. Analogous to term uniformity, a type uniformity law
may require that a quantitative type comes equipped with a flattening onto a simple type:

a � a
I � B A � C
I→A � B→C 〈〉 � A

I � A J � A
I+J � A > � >

Γ � Σ ∆ � Λ
Γ∧∆ � Σ∧Λ

Without further algebraic laws, type uniformity gives a quantitative version of simple types.
With also redundancy and duplicability quantitative types collapse to simple types, as a
collection and its flattening will behave equivalently. With type uniformity but not term
uniformity, opposite to intersection types, we obtain a typed non-deterministic calculus,
where a collection 〈t1, . . . , tn〉 of type I � A represents a non-deterministic choice over terms
ti of type A. Exploring this connection more deeply is future work.

Relaxing associativity, unitality, symmetry. In the quantitative type system, the laws of
associativity, unitality, and symmetry apply to collections, and separately to the conjunction,
through the corresponding proof rules. These laws can safely be relaxed, though for that to
be meaningful, they must be relaxed for the conjunction as well as for collections.

For the collections of the CC, these laws can likewise be relaxed straightforwardly. However,
corresponding to the conjunction in the type system is the variable policy of the CC, where
associativity, unitality, and symmetry are implicit. Technically, the free variables of a term
form a set, though since their number of occurrences is significant – in particular, it drives the
reduction rules – they morally form a multiset. To relax these laws, then, the calculus must
be reformulated. Consider the following linear variant of the structural λ-calculus, where
variables occur once but abstractions and closures bind a vector ~x = x1 . . . xn of variables:

t ····= x | tτ | λ~x.t | t[~x ← τ]

Symmetry of conjunction becomes explicit in the order of variables in a vector ~x. Relaxing
symmetry of (+) but not (∧) yields a linear λ-calculus for intuitionistic multiplicative linear
logic as in [8], where (→) behaves as ((), and (∧) and (+) together behave as (⊗) (strictly,
also the distinction between terms and collection terms should be collapsed). Symmetry of
conjunction is relaxed by imposing that variables are bound in the same order as they occur;
i.e. the free variables of a term must become a vector, and binding restricted accordingly:

fv(x) = x

fv(tτ) = ~x~y where fv(t) = ~x, fv(τ) = ~y

fv(λ~x.t) = ~y where fv(t) = ~y~x

fv(t[~y1 ← τ]) = ~x~y2~z where fv(t) = ~x~y1~z, fv(τ) = ~y2 .

Such a construction significantly reduces the expressivity of the calculus. However, it is pos-
sible that such non-commutativity can model aspects of sequential (imperative) computation;
investigating this is future work. Going further, associativity or unitality can be relaxed
by replacing vectors ~x with collections over variables, akin to pattern-matching, though the
limited expressiveness casts doubt on how useful this would be.

Further algebraic laws. The present exposition restricts itself to a sample of common
algebraic laws. It is clear that there is potentially a large range of laws that would fit
within the current framework, as long as the fundamental proof rules 4, m, ≤ are unimpeded.
Establishing this range is future work. In a similar direction, connections with the exponentials
of linear logic, and their light versions [24], are also of interest.

G. Guerrieri, W.B. Heijltjes, and J.W. Paulus 24:17

References
1 Beniamino Accattoli. An abstract factorization theorem for explicit substitutions. In 23rd

International Conference on Rewriting Techniques and Applications, RTA 2012, volume 15 of
LIPIcs, pages 6–21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012. doi:10.4230/
LIPIcs.RTA.2012.6.

2 Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner. Tight typings and split
bounds, fully developed. Journal of Functional Programming, 30:e14, 2020. doi:10.1017/
S095679682000012X.

3 Beniamino Accattoli and Delia Kesner. The structural lambda-calculus. In Computer Science
Logic, 24th International Workshop, CSL 2010, 19th Annual Conference, volume 6247 of Lecture
Notes in Computer Science, pages 381–395. Springer, 2010. doi:10.1007/978-3-642-15205-4_
30.

4 Beniamino Accattoli and Delia Kesner. Preservation of strong normalisation modulo permuta-
tions for the structural lambda-calculus. Logical Methods in Computer Science, 8(1), 2012.
doi:10.2168/LMCS-8(1:28)2012.

5 Juan P. Aguilera and Matthias Baaz. Unsound inferences make proofs shorter. Journal of
Symbolic Logic, 84(1):102–122, 2019. doi:10.1017/jsl.2018.51.

6 Andrea Aler Tubella and Alessio Guglielmi. Subatomic proof systems: Splittable systems. ACM
Transactions on Computational Logic (TOCL), 19(1):5:1–5:33, 2018. doi:10.1145/3173544.

7 Hendrik Pieter Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda
model and the completeness of type assignment. The Journal of Symbolic Logic, 48(4):931–940,
1983. doi:10.2307/2273659.

8 Nick Benton, Gavin Bierman, Valeria de Paiva, and Martin Hyland. A term calculus for intu-
itionistic linear logic. In International Conference on Typed Lambda Calculi and Applications,
TLCA ’93, volume 664 of Lecture Notes in Computer Science, pages 75–90. Springer, 1993.
doi:10.1007/BFb0037099.

9 Gérard Boudol. The lambda-calculus with multiplicities. In CONCUR ’93, 4th International
Conference on Concurrency Theory, volume 715 of Lecture Notes in Computer Science, pages
1–6. Springer, 1993. doi:10.1007/3-540-57208-2_1.

10 Kai Brünnler and Richard McKinley. An algorithmic interpretation of a deep inference
system. In Logic for Programming, Artificial Intelligence, and Reasoning, 15th International
Conference, LPAR 2008, volume 5330 of Lecture Notes in Computer Science, pages 482–496.
Springer, 2008. doi:10.1007/978-3-540-89439-1_34.

11 Kai Brünnler and Alwen Tiu. A local system for classical logic. In Logic for Programming,
Artificial Intelligence, and Reasoning, 8th International Conference, LPAR 2001, volume
2250 of Lecture Notes in Computer Science, pages 347–361. Springer, 2001. doi:10.1007/
3-540-45653-8_24.

12 Paola Bruscoli, Alessio Guglielmi, Tom Gundersen, and Michel Parigot. Quasipolynomial
normalisation in deep inference via atomic flows. Logical Methods in Computer Science, 12(2),
2016. doi:10.2168/LMCS-12(2:5)2016.

13 Antonio Bucciarelli and Thomas Ehrhard. On phase semantics and denotational semantics:
the exponentials. Annals of Pure and Applied Logic, 109(3):205–241, 2001. doi:10.1016/
S0168-0072(00)00056-7.

14 Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types for
the lambda-calculus. Logic Journal of the IGPL, 25(4):431–464, 2017. doi:10.1093/jigpal/
jzx018.

15 Mario Coppo and Mariangiola Dezani-Ciancaglini. A new type assignment for lambda-
terms. Archiv für mathematische Logik und Grundlagenforschung, 19(1):139–156, 1978. doi:
10.1007/BF02011875.

16 Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic functionality
theory for the λ-calculus. Notre Dame Journal of Formal Logic, 21(4):685–693, 1980. doi:
10.1305/ndjfl/1093883253.

CSL 2021

https://doi.org/10.4230/LIPIcs.RTA.2012.6
https://doi.org/10.4230/LIPIcs.RTA.2012.6
https://doi.org/10.1017/S095679682000012X
https://doi.org/10.1017/S095679682000012X
https://doi.org/10.1007/978-3-642-15205-4_30
https://doi.org/10.1007/978-3-642-15205-4_30
https://doi.org/10.2168/LMCS-8(1:28)2012
https://doi.org/10.1017/jsl.2018.51
https://doi.org/10.1145/3173544
https://doi.org/10.2307/2273659
https://doi.org/10.1007/BFb0037099
https://doi.org/10.1007/3-540-57208-2_1
https://doi.org/10.1007/978-3-540-89439-1_34
https://doi.org/10.1007/3-540-45653-8_24
https://doi.org/10.1007/3-540-45653-8_24
https://doi.org/10.2168/LMCS-12(2:5)2016
https://doi.org/10.1016/S0168-0072(00)00056-7
https://doi.org/10.1016/S0168-0072(00)00056-7
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1007/BF02011875
https://doi.org/10.1007/BF02011875
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.1305/ndjfl/1093883253

24:18 A Deep Quantitative Type System

17 Ugo Dal Lago, Giulio Guerrieri, and Willem Heijltjes. Decomposing probabilistic lambda-
calculi. In Foundations of Software Science and Computation Structures - 23rd International
Conference, FOSSACS 2020, volume 12077 of Lecture Notes in Computer Science, pages
136–156. Springer, 2020. doi:10.1007/978-3-030-45231-5_8.

18 Daniel de Carvalho. The relational model is injective for multiplicative exponential linear
logic. In 25th EACSL Annual Conference on Computer Science Logic, CSL 2016, volume 62
of LIPIcs, pages 41:1–41:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.CSL.2016.41.

19 Daniel de Carvalho. Execution time of λ-terms via denotational semantics and intersection
types. Mathematical Structures in Computer Science, 28(7):1169–1203, 2018. doi:10.1017/
S0960129516000396.

20 Thomas Ehrhard. Non-idempotent intersection types in logical form. In Foundations of
Software Science and Computation Structures, FoSSaCS 2020, volume 12077 of Lecture Notes
in Computer Science, pages 198–216. Springer, 2020. doi:10.1007/978-3-030-45231-5_11.

21 Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical Computer
Science, 309(1–3):1–41, 2003. doi:10.1016/S0304-3975(03)00392-X.

22 Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor expansion of ordinary
lambda-terms. Theoretical Computer Science, 403:347–372, 2008. doi:10.1016/j.tcs.2008.
06.001.

23 Philippa Gardner. Discovering needed reductions using type theory. In Theoretical Aspects
of Computer Software, International Conference TACS ’94, volume 789 of Lecture Notes in
Computer Science, pages 555–574. Springer, 1994. doi:10.1007/3-540-57887-0_115.

24 Jean-Yves Girard. Light linear logic. Information and Computation, 143(2):175–204, 1998.
doi:10.1006/inco.1998.2700.

25 Alessio Guglielmi, Tom Gundersen, and Michel Parigot. A proof calculus which reduces
syntactic bureaucracy. In 21st International Conference on Rewriting Techniques and Applica-
tions, RTA 2010, volume 6 of LIPIcs, pages 135–150. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2010. doi:10.4230/LIPIcs.RTA.2010.135.

26 Tom Gundersen, Willem Heijltjes, and Michel Parigot. Atomic lambda-calculus: a typed
lambda-calculus with explicit sharing. In 28th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2013, pages 311–320. IEEE Computer Society, 2013. doi:10.1109/
LICS.2013.37.

27 Willem Heijltjes and Joe Paulus. Deep-inference intersection types. Extended abstract,
presented at the workshop Twenty Years of Deep Inference (TYDI), Oxford, 2018. Available
at http://willem.heijltj.es/pdf/2018-heijltjes-paulus.pdf, 2018.

28 Emil Jeřábek. Proof complexity of the cut-free calculus of structures. Journal of Logic and
Computation, 19(2):323–339, 2009. doi:10.1093/logcom/exn054.

29 Delia Kesner and Stéphane Lengrand. Resource operators for lambda-calculus. Information
and Computation, 205(4):419–473, 2007. doi:10.1016/j.ic.2006.08.008.

30 Assaf J. Kfoury. A linearization of the lambda-calculus and consequences. Journal of Logic
and Computation, 10(3):411–436, 2000. doi:10.1093/logcom/10.3.411.

31 Jim Laird, Giulio Manzonetto, Guy McCusker, and Michele Pagani. Weighted relational models
of typed lambda-calculi. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2013, pages 301–310. IEEE Computer Society, 2013. doi:10.1109/LICS.2013.36.

32 Damiano Mazza, Luc Pellissier, and Pierre Vial. Polyadic approximations, fibrations and
intersection types. Proceedings of the ACM on Programming Languages, 2(POPL), 2018.
doi:10.1145/3158094.

33 C.-H. Luke Ong. Quantitative semantics of the lambda-calculus: Some generalisations of the
relational model. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, pages 1–12. IEEE Computer Society, 2017. doi:10.1109/LICS.2017.8005064.

https://doi.org/10.1007/978-3-030-45231-5_8
https://doi.org/10.4230/LIPIcs.CSL.2016.41
https://doi.org/10.4230/LIPIcs.CSL.2016.41
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1007/978-3-030-45231-5_11
https://doi.org/10.1016/S0304-3975(03)00392-X
https://doi.org/10.1016/j.tcs.2008.06.001
https://doi.org/10.1016/j.tcs.2008.06.001
https://doi.org/10.1007/3-540-57887-0_115
https://doi.org/10.1006/inco.1998.2700
https://doi.org/10.4230/LIPIcs.RTA.2010.135
https://doi.org/10.1109/LICS.2013.37
https://doi.org/10.1109/LICS.2013.37
http://willem.heijltj.es/pdf/2018-heijltjes-paulus.pdf
https://doi.org/10.1093/logcom/exn054
https://doi.org/10.1016/j.ic.2006.08.008
https://doi.org/10.1093/logcom/10.3.411
https://doi.org/10.1109/LICS.2013.36
https://doi.org/10.1145/3158094
https://doi.org/10.1109/LICS.2017.8005064

G. Guerrieri, W.B. Heijltjes, and J.W. Paulus 24:19

34 Luca Paolini, Mauro Piccolo, and Simona Ronchi Della Rocca. Essential and relational
models. Mathematical Structures in Computer Science, 27(5):626–650, 2017. doi:10.1017/
S0960129515000316.

35 Elaine Pimentel, Simona Ronchi Della Rocca, and Luca Roversi. Intersection Types from a
proof-theoretic perspective. Fundamenta Informaticae, 121(1-4):253–274, 2012. doi:10.3233/
FI-2012-778.

36 Garrel Pottinger. A type assignment for the strongly normalizable lambda-terms. In J. Hindley
and J. Seldin, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 561–577. Academic Press, 1980.

37 David Sherratt, Willem Heijltjes, Tom Gundersen, and Michel Parigot. Spinal atomic lambda-
calculus. In Foundations of Software Science and Computation Structures - 23rd International
Conference, FOSSACS 2020, volume 12077 of Lecture Notes in Computer Science, pages
582–601. Springer, 2020. doi:10.1007/978-3-030-45231-5_30.

38 Alwen Tiu. A local system for intuitionistic logic. In Logic for Programming, Artificial
Intelligence, and Reasoning, 13th International Conference, LPAR 2006, volume 4246 of Lecture
Notes in Computer Science, pages 242–256. Springer, 2006. doi:10.1007/11916277_17.

39 Alwen Tiu. A system of interaction and structure II: The need for deep inference. Logical
Methods in Computer Science, 2(2):4:1–24, 2006. doi:10.2168/LMCS-2(2:4)2006.

Appendix

A Encoding non-idempotent intersection types and resource calculi

Resource λ-calculus. The λ-calculus with multiplicities by Boudol [9] features two-sorted
collections P,Q with both non-duplicable and duplicable elements, the latter indicated M∞:

M,N ····= x | NP | λx.N | N [P/x] P,Q ····= 1 | M | (P |P) | M∞

It employs weak head reduction, with β-reduction occurring in head context H and closures
evaluated by substituting into head variables H{x}: (borrowing the CC-notation [Φ])

H ····= {} | HP | H[P/x]
H{(λx.N)[Φ]P} b H{N [P/x][Φ]}
H{x}[(N |P)/x] s H{N}[P/x]

Note that s-reduction is non-deterministic. The two-sorted collections can be imported into
the CC ad-hoc by admitting collections t∞ and the law t∞ ≤ 〈t〉+t∞. b-Reduction is as in
the CC, and informally translating N to t, P to τ , and H to h, s-reduction is simulated by:

h{x}[x← 〈t〉+τ] c h{y}[y← 〈t〉][x← τ] e h{t}[x← τ]

Non-idempotent intersection types. Kfoury in [30] gives non-idempotent intersection types
via a resource calculus with uniformity. Resource terms are given below, where a term N is
well-formed if it flattens to a regular λ-term N . β-Reduction on N is defined along N .

M,N,P ····= x | λx.N | N.P1 ∧ · · · ∧ Pn (n ≥ 1)

x = x

N = M

λx.N = λx.M

N = M { Pi = Q}1≤i≤n
N.P1 ∧ · · · ∧ Pn = M Q

A system of simple types λ∧ for the resource calculus, given below, then generates a system
of non-idempotent intersection types λ for the regular λ-calculus by flattening the terms in

CSL 2021

https://doi.org/10.1017/S0960129515000316
https://doi.org/10.1017/S0960129515000316
https://doi.org/10.3233/FI-2012-778
https://doi.org/10.3233/FI-2012-778
https://doi.org/10.1007/978-3-030-45231-5_30
https://doi.org/10.1007/11916277_17
https://doi.org/10.2168/LMCS-2(2:4)2006

24:20 A Deep Quantitative Type System

each typing rule. We use our notational conventions for types, and define the ∪ operator by
letting (Γ~x ∧∆~y) ∪ (Λ~y ∧Σ~z) = Γ~x ∧(∆++Λ)~y ∧Σ~z if ~x and ~z share no variables.

x :A ` x :A
Γ, x : I ` N :B

Γ ` λx.N : I→B
I 6=〈〉

Γ ` N :B
Γ ` λx.N :A→B

Γ ` N : (A1+ . . .+An)→B {∆i ` Pi :Ai}1≤i≤n
Γ ∪∆1 ∪ · · · ∪∆n ` N.P1 ∧ · · · ∧ Pn :B

Systems λ∧ and λ are effectively a restriction of the typed collection calculus to terms without
closures, with the laws of uniformity and strength. Strictly, also symmetry is dropped, but
there is no loss of expressiveness because the conjunction remains symmetric and because of
uniformity. We introduce an admissible proof rule for the ∪ operator:

(Γ~x ∧∆~y) ∪ (Λ~y ∧Σ~z)
∪

(Γ~x ∧∆~y)+(Λ~y ∧Σ~z)
=

Γ~x ∧(∆++Λ)~y ∧Σ~z
m

Γ~x ∧∆~y ∧

Σ~z〈〉
m

〈〉
4

>

+

Γ~x〈〉
m

〈〉
4

>

∧Λ~y ∧Σ~z

Systems λ∧ and λ are then encoded as follows, where N �M is N = M , and where the
constructions for application and collections are kept separate, with ∆ = ∆1 ∪ · · · ∪ ∆n,
P = P1 ∧ · · · ∧ Pn, and I = A1 + · · ·+An.

Ax

Γ
λ

Ix→

Γ∧Ix

N�M

B

Γ
λ

Ax→

Γ∧
Ax

s
〈〉

4

>

Γ
N�M

B

Γ ∪∆
∪

Γ+∆
4

Γ
N�M

I→B

∧

∆
P�Q

I
@

B

∆1 ∪ . . . ∪∆n
∪

∆1

P1�Q

A1

+ . . . +

∆n

Pn�Q

An

B Omitted proofs and lemmas in Section 2

I Remark 23 (Free variable and translation). For every SC-term t, fv(t•) ⊆ fv(t). The proof is
by straightforward induction on t.

I Lemma 24 (Substitution). For any sharing terms t and u, we have (t{u/x})• = t•{u•/x}.

Proof. By straightforward induction on t. The only interesting case is the one with sharing:
if t = r[y← s] (we can suppose without loss of generality that y /∈ fv(u) ∪ {x}), then
t{u/x} = r{u/x}{u/x}[y← s{u/x}] and t• = r•{s•/y}; by induction hypothesis, r′ =
(r{u/x})• = r•{u•/x} and s′ = (s{u/x})• = s•{u•/x} = s′, hence

(t{u/x})• = r′•{s′•/y} = r•{u•/x}{s•{u•/x}/y} = r•{s•/y}{u•/x} = t•{u•/x}. J

I Proposition 3 (Simulations). Let t be a SC-term and s be a λ-term.
1. From SC to λ-calculus: If t b t

′ then t• β t
′•; if t ¬b t

′ then t• = t′
•.

2. From λ-calculus to SC: If s β s
′ then s b ¬b s

′.

Proof. 1. Both proofs are by induction on the SC-term t. We omit some cases that easily
follows from the induction hypothesis.

Let us prove that if t b t
′, then t• β t

′•. Cases of interest:

G. Guerrieri, W.B. Heijltjes, and J.W. Paulus 24:21

If t = (λy.s)[x1 ← r1] . . . [xn ← rn]u b s[y←u][x1 ← r1] . . . [xn ← rn] = t′, then we
can suppose without loss of generality that y /∈

⋃n
i=1 fv(ri) ∪ {x} and so

t• = (λy.s•){r•1/x1} . . . {r•n/xn}u• = (λy.s•{r•1/x1} . . . {r•n/xn})u•

β s
•{r•1/x1} . . . {r•n/xn}{u•/y} = s•{u•/y}{r•1/x1} . . . {r•n/xn}

= (s[y←u])•{r•1/x1} . . . {r•n/xn} = t′•

where the second to last equality holds because of substitution lemma (Lemma 24).
If t = u[x← s] b u[x← s′] = t′ with s b s′ then, by induction hypothesis,
s• ∗

β s
′• and so t• = u•{s•/x} ∗

β u
•{s′•/x} = t′•.

Let us prove that if t ¬b t
′, then t• = t′•. Cases of interest:

Copy: if t = s{x/y}[x←u] c s[x←u][y←u] = t′, we can suppose without loss of
generality that y /∈ fv(u). By Lemma 24, (s{x/y})• = s•{x/y} and (s[x←u])• =
s•{u•/x} = (s{u/x})•. Thus,

t• = (s{x/y})•{u•/x} = s•{x/y}{u•/x} = s•{u•/x}{u•/y} = (s[x←u])•{u•/y} = t′•.

Delete: if t = s[x←u] d s = t′ then x /∈ fv(s) and hence x /∈ fv(s•) by Remark 23,
so t• = s•{u•/x} = s• = t′•.
Evaluate: if t = u[x← s] e u{s/x} = t′ then, by substitution lemma (Lemma 24),

t• = s•{u•/x} = (s{u/x})• = t′•.

2. See [4, proof of Lemma 2.4] and apply Proposition 4.1 below (proved independently). J

I Proposition 4 (Collated results from [4]). The SC has the following key properties.
1. The normal forms of ¬b are exactly the λ-terms.
2. The normal forms of sc are exactly the β-normal λ-terms.
3. For any SC-term t, one has t ¬b t

•; in particular, t = t• for any λ-term.
4. The relations b, ¬b, and sc are confluent; b and ¬b are strongly normalizing.
5. Preservation of strong normalization: if a λ-term t has an infinite sc-reduction, then it

has an infinite β-reduction.

Proof.
1. Clearly, every λ-term is normal for ¬b because there is no sharing. Conversely, if t is a

sharing term that is normal for ¬b then there are no context C and no sharing terms s
and u such that t = C〈s[x←u]〉, otherwise if |s|x = 0 then t would not be normal for d,
if |s|x = 1 then t would not be normal for e, if |s|x > 1 then t would not be normal for

c; therefore, t has no sharings and hence is a λ-term.
2. Since sc= b ∪ ¬b and in SC the normal forms of ¬b are exactly the λ-terms, it is

enough to observe that a λ-term t is normal for b if and only if there are no λ-context C
and λ-terms s and u such that t = C〈(λx.s)u〉, which amounts to say that t is β-normal.

3. First, if t is a λ-term then t• = t since there are no sharings in t. Now, let t be a SC-term,
with t ¬b s (such a s exists because ¬b is strongly normalizing, [4, Lemma 2.10]);
as s is a λ-term (Proposition 4.1), we have just shown that s = s•; by Proposition 3.1,
s• = t• and so t ¬b t

•.

CSL 2021

24:22 A Deep Quantitative Type System

4. Strong normalization of b is trivial (each step decreases the number of applications).
Strong normalization of ¬b is proved in [4, Lemma 2.10]
Accattoli and Kesner [3, 4] already proved confluence of sc (using Tait–Martin-Löf’s
technique based on parallel reduction) and of ¬b (via Newman’s lemma). Here we
present a simpler, modular and more informative proof, which relies on the confluence of
β reduciton.
It is easy to check that b has the diamond property and hence is confluent.
Concerning confluence of ¬b, suppose s ¬b t ¬b u. By Proposition 4.3, s ¬b s

•

and r ¬b r
•. According to Proposition 3.1, s• = t• = r•.

Concerning confluence of sc, suppose s sc t sc u. By Proposition 4.3, s ¬b s
•

and r ¬b r
•. According to Proposition 3.1, s• β t• β r

•. By confluence of β ,
s• β u β r• and so s ¬b s

•
b ¬b u ¬b b r• ¬b r by Proposition 3.2.

5. See [4, Lemma 3.5] J

C Omitted proofs and lemmas in Section 4

Let |t|px be the maximal number of free occurrences of x that may appear in a ¬b-reduction
sequence from the CC-term t. Formally:

|x|px = 1 |y|px = 0 |tτ |px = |t|px + |τ |px |λy.t|px = |t|px

|t[y← τ]|px = |t|px + max{1, |t|py} · |τ |px |〈t1, . . . , tn〉|px =
n∑
i=1
|ti|px

I Remark 25. For any CC-term, |t|px = 0 if and only if |t|x = 0.

I Lemma 26. For any CC-term t, if |t|x, |t|y ≥ 1, then |t{x/y}|px = |t|px + |t|py

Proof. By induction on t. J

Inspired by [4], let us define the size ‖t‖ of a CC-term t the following multiset of natural
numbers (well-ordered by the multiset ordering):

‖x‖ = [] ‖λx.t‖ = ‖t‖ ‖tτ‖ = ‖t‖+ ‖τ‖

‖t[y← τ]‖ = ‖t‖+ [|t|px] + max{1, |t|px} · ‖τ‖ ‖〈t1, . . . , tn〉‖ =
n∑
i=1
‖ti‖

I Lemma 27. Without duplicability, ‖τ‖ ≥ ‖σ‖ for any collection τ ≥ σ

Proof. Trivial. J

I Lemma 28. Let u be a CC-term.
1. If |u|x = 1 then ‖u[x← τ]‖ > ‖u{〈s〉/x}‖ for any CC-term s such that τ ≥ 〈s〉.
2. ‖u{x/y}‖ = ‖u‖.

Proof. Both are by induction on the CC-term t. J

I Proposition 13. ¬b-Reduction of a CC-term t is strongly normalizing, and confluent in
the following sense: if t ¬b

∑
s∈S s and t• =

∑
r∈R r then S ⊆ R.

Proof. Let us prove that t ¬b
∑n
i=1 ti 3 t′ implies ‖t‖ > ‖t′‖, by induction on t. Cases:

Delete: if t = s[x← τ] d
∑
τ≤〈〉 s 3 t′ with |s|x = 0, then t′ = s. By Remark 25, |s|px = 0.

So, ‖t‖ = ‖s‖+ [|s|px] + max{1, |s|px} · ‖τ‖ = ‖s‖+ [|s|px] + ‖τ‖ > ‖s‖ = ‖t′‖.

G. Guerrieri, W.B. Heijltjes, and J.W. Paulus 24:23

Substitution: if t = u[x← τ] e
∑
τ≤〈s〉 u{s/x} 3 t′ with |u|x = 1, then t′ = u{s/x}. By

Lemma 28.1, ‖t‖ = ‖u[x← τ]‖ > ‖u{〈s〉/x}‖ = t′.
Copy: if t = s{x/y}[x← τ] c

∑
τ≤ρ+σ s[x← ρ][y←σ] 3 t′ with |s|x, |s|y ≥ 1, then

t′ = s[x← ρ][y←σ].
‖t‖ = ‖s{x/y}‖+ [|s{x/y}|px] + max{1, |s{x/y}|px} · ‖τ‖

= ‖s‖+ [|s|px + |s|py] + max{1, |s{x/y}|px} · ‖τ‖ L. 28.2 and 26

= ‖s‖+ [|s|px + |s|py] + |s{x/y}|px · ‖τ‖ Rmk. 25

= ‖s‖+ [|s|px + |s|py] + (|s|px + |s|py) · ‖τ‖ L. 26

> ‖s‖+ [|s|px] + |s|px · ‖ρ‖+ [|s|py + |s|px · |ρ|py] + (|s|py + |s|px · |ρ|py) · ‖σ‖ L. 27

= ‖s‖+ [|s|px] + |s|px · ‖ρ‖+ [|s|py + max{1, |s|px} · |ρ|py] + (|s|py + |s|px · |ρ|py) · ‖σ‖ Rmk. 25

= ‖s‖+ [|s|px] + |s|px · ‖ρ‖+ [|s[x← ρ]|py] + (|s|py + max{1, |s|px} · |ρ|py) · ‖σ‖ Rmk. 25

= ‖s‖+ [|s|px] + max{1, |s|px} · ‖ρ‖+ [|s[x← ρ]|py] + max{1, |s[x← ρ]|py} · ‖σ‖ Rmk. 25

= ‖s[x← ρ]‖+ [|s[x← ρ]|py] + max{1, |s[x← ρ]|py} · ‖σ‖
= ‖t′‖

The other cases smoothly follow from the induction hypothesis. J

I Proposition 15. The length of a (non-deterministic) reduction sequence s cc t is:
1. without algebraic laws, exactly |s| − |t|;
2. with only redundancy, at most |s| − |t|;
3. with only duplicability, at least |s| − |t|.

Proof. Recall the definition of reduction weight |t| on page 10, where x /∈ fv(r) but x ∈ fv(s).
We consider each case; for the last two, observe that |t| is always positive.
1. Each rewrite step reduces |t| by exactly one: a step (λx.r)τ b r[x← τ] where x ∈ fv(r)

replaces an abstraction and application (weight zero) by a sharing (weight −1), and
(λx.s)τ b s[x← τ] where x ∈ fv(s) replaces weight 2 by weight 1; a c-step introduces a
sharing of weight −1; an e-step removes a sharing (weight −1) and a variable (weight 1);
and a d-step removes a weakening (weight 1).

2. By 1. above, and the observation that if τ ≤ σ then |τ | ≥ |σ|.
3. By 1. above, and the observation that if τ ≤ σ then |τ | ≤ |σ|. J

D Omitted proofs and lemmas in Section 5

I Theorem 17. A typed CC-term is strongly normalizing.

Proof sketch. We reduce the problem to typed normalization in a non-deterministic (or
probabilistic) λ-calculus, which are known to terminate (see e.g. [17]).

First, the copy rewrite rule is linear for contractions on different types, since no idem-
potence law (≥) applies. This corresponds to the following transformation on derivations:

Γ

A

+

∆

B

(A+B)x
4

A∧B

c

Γ∧∆
4

Γ

A

Ax

∧

∆

B

By

(A 6= B)

The transformation is applied throughout a proof, through abstractions and applications
(which are split, by Currying, into multiple), and is linear and so terminating. The result is
a derivation for a CC-term where every variable has a uniform type. A contraction cannot be
pushed past a (≥) instance of idempotence on the same type. This has the form below left.

CSL 2021

24:24 A Deep Quantitative Type System

We translate the remaining derivation into one for a simply-typed non-deterministic
λ-calculus, with a regular contraction rule and a type operator ⊕ with a co-diagonal rule
from A⊕A to A. The result is below right.

Γ1

A

+ · · · +

Γn

A
≥

A+A
4

A∧A

7→

Γ1

A

⊕ · · ·⊕
Γn

A
⊕

A
4

A∧A

This derivation is for a typed, non-deterministic λ-term, which is strongly normalizing, and
simulates reduction in both CC-terms. Consequently, these are strongly normalizing. J

E Omitted proofs and lemmas in Section 6

I Theorem 22. A structural λ-term t is weakly [strongly] normalizing if and only if there is
a typed, [strong,] uniform CC-term u � t.

Proof sketch. ⇒ Standard: normal forms can be typed, and subject expansion holds.
⇐ By Theorem 17 the typed CC-term s is strongly normalizing; hence t is strongly normalizing
if weakened terms are typed, and weakly normalizing if weakened terms remain untyped. J

Categorifying Non-Idempotent Intersection Types
Giulio Guerrieri
University of Bath, Department of Computer Science, Bath, UK

Federico Olimpieri
Institut de Mathématiques de Marseille (I2M), Aix-Marseille Université, Marseille, France

Abstract
Non-idempotent intersection types can be seen as a syntactic presentation of a well-known denota-
tional semantics for the lambda-calculus, the category of sets and relations. Building on previous
work, we present a categorification of this line of thought in the framework of the bang calculus,
an untyped version of Levy’s call-by-push-value. We define a bicategorical model for the bang
calculus, whose syntactic counterpart is a suitable category of types. In the framework of distributors,
we introduce intersection type distributors, a bicategorical proof relevant refinement of relational
semantics. Finally, we prove that intersection type distributors characterize normalization at depth 0.

2012 ACM Subject Classification Theory of computation→ Lambda calculus; Theory of computation
→ Linear logic; Theory of computation → Categorical semantics

Keywords and phrases Linear logic, bang calculus, non-idempotent intersection types, distributors,
relational semantics, combinatorial species, symmetric sequences, bicategory, categorification

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.25

Funding This work is partially supported by EPSRC Project EP/R029121/1 Typed lambda-calculi
with sharing and unsharing.

Acknowledgements The authors thank Lionel Vaux Auclair for insightful discussions and comments.

1 Introduction

Since Girard’s introduction of linear logic [32], the notion of linearity has played a central
role in the Logic-in-Computer-Science community. A program is linear when it uses its
inputs only once during computation (inputs cannot be copied or deleted); while a non-linear
program may call its inputs at will. Via the exponential modalities ! and ?, linear logic gives
a logical status to the operations of erasing and copying data.

Another way to study linearity is provided by some type systems. Intersection types were
introduced by Coppo and Dezani [14, 15] as an extension of simple types by means of the
(associative, commutative and idempotent) intersection connective a ∩ b: a term of type
a ∩ b can be seen as a program of both type a and type b. This kind of type systems have
proven to be very useful to characterize various notion of normalization in the λ-calculus
[37]. If we impose non-idempotency to the intersection [31, 16] (i.e. a ∩ a 6= a), we get a
“resource-sensitive” intersection type system, in the sense that the arrow type encodes the
exact number of times that a term needs its input during computation: intuitively, a term
typed a ∩ a ∩ b can be used twice as a program of type a and once as a program of type
b. Non-idempotent intersection types allow combinatorial characterization of normalization
properties and of the execution time of programs [9, 16, 4] and proof-nets [19, 20]. Also,
De Carvalho’s non-idempotent intersection type system R is a syntactic presentation of the
categorical semantics of λ-calculus given in the category of sets and relations [16, 17]. There
is a strong connection between linear logic and non-idempotent intersection types [18].

Inspired by [34, 41, 48, 43], we propose here a categorification of this kind of semantics.
Roughly, categorification consists in replacing set-theoretic notions with category-theoretic
ones. In general, this process gives both more fine-grained structures and general points of

© Giulio Guerrieri and Federico Olimpieri;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 25; pp. 25:1–25:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0469-4279
https://doi.org/10.4230/LIPIcs.CSL.2021.25
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Categorifying Non-Idempotent Intersection Types

view. Melliès and Zeilberger [42] followed this approach to present a categorical definition of
what a type system is: a type system is a functor between a category of type derivations and
a category of terms. Since we are interested in categorical semantics with an intersection type
presentation, the first natural thing to do is replacing the category of sets and relations with the
bicategory of distributors [6, 10]. Distributor-induced semantics of programming languages
were already presented in [12, 27]. In particular, Fiore, Gambino, Hyland and Winskel
introduced the bicategory of generalized species of structure [27], a very rich framework that
generalizes both relational semantics and Joyal’s combinatorial species [35, 27, 30, 48]. As
shown in [12, 29], distributors can also lead to a generalization of Scott’s semantics.

Mazza, Pellissier and Vial [41], inspired by [42] and Hyland’s project of categorification
of the theory of the λ-calculus [34], presented a general approach to intersection types rooted
in the notion of multicategory. In their framework, the λ-calculus is seen as a 2-operad,
where 2-cells consist of reduction paths. Intersection type systems are seen as a special
kind of fibrations. Via a Grothendieck construction, with these fibrations they associate
an approximation presheaf that interprets terms as discrete distributors. Thanks to this
categorical approach, they are able to prove a parametric normalization theorem for a class
of intersection type systems in a modular and elegant way. Their method relies on a Curry-
Howard style correspondence between intersection type derivations and a kind of λ-terms
approximants, the polyadic terms. However, their approach does not provide a denotational
model and it does not support subtyping for intersection types. This latter feature is strictly
linked to the fact that approximation presheaves action on types is restricted to discrete
categories [41]. It is then natural to ask what happens when we take the standpoint of
denotational semantics and we take into account categories with non-trivial morphisms.

Recently, Tsukada, Asada and Ong [48, 49] presented the rigid Taylor expansion1 se-
mantics for an η-expanded fragment of non-deterministic simply-typed λ-calculus with fixed
point combinator, then extended to probabilistic and quantum computation: the linear ap-
proximants are still polyadic terms. They proved that this semantics is naturally isomorphic
to the generalized species semantics. This time, the standpoint is the one of denotational
semantics and distributors ranges over groupoids, but subtyping is not taken into account.
The groupoid structure of the model gives the possibility to define an action of type iso-
morphisms on polyadic terms. A quotient induced by this action guarantees the preservation,
up to isomorphism, of the semantics under reduction. Concretely one has that JMK ∼= JNK
whenever M → N and the natural isomorphism is given by reduction of polyadic terms.

Inspired by these lines of thought, Olimpieri [43] introduced intersection type distributors,
a categorified version of intersection type disciplines, where subtyping and denotational
semantics are both taken into account. Intersection type distributors are a syntactic present-
ation of bicategorical denotational semantics for the λ-calculus given by Kleisli bicategories
of distributors for suitable pseudomonads. Each pseudomonad taken into account gives
rise to a notion of intersection type, with specific resource behavior2. The semantics
obtained by this method is proof relevant: given a term M , a type context ∆ and a type

a, we set TU (M)(∆, a) =
{

π̃...
∆ `M : a

∣∣ π is a type derivation for M
}

where TU (M) is the

intersection type distributor that interprets M in an appropriate category U of types, and

1 The rigid Taylor expansion is a deterministic variant of Ehrhard and Regnier’s Taylor expansion [25, 26].
2 It is worth noting that this new semantic setting is not a special case of [41], as standard polyadic terms

fail dramatically subject reduction for intersection type distributors. The failure of subject reduction
happens because standard polyadic terms [48, 41] cannot encode all the qualitative information produced
by the subtyping feature of intersection type distributors. A counterexample is in Appendix A.

G. Guerrieri and F. Olimpieri 25:3

π̃ is an equivalence class of derivations. The equivalence relation on derivations is induced
by the composition of distributors, which generalizes the quotient of [48]. We have that, if
M → N, then TU (M) ∼= TU (N). Categorification then allows us to pass from a semantics of
types to a semantics of derivations. Note that, in our setting, the semantics of a term M

associates with every type context ∆ and type a the set of derivations for M with conclusion
∆ ` M : a; while more coarse-grained models such as relational semantics can only say if
there is a type derivation for M with conclusion ∆ `M : a.

In the present paper, we introduce non-idempotent intersection type distributors in an
untyped call-by-push-value setting [33, 24, 39, 47], the bang calculus. Levy’s call-by-push-value
paradigm subsumes call-by-name (CbN) and call-by-value (CbV), from both the operational
and denotational semantics standpoints [39, 33]. In this respect, our work is more general
than [43] (which considers only the CbN λ-calculus). Moreover, inspired by linear logic, the
bang calculus internalizes in the syntax the !-operator, which semantically corresponds to
the monadic operator to handle resources. In this way, it is more natural to link syntax
and semantics and to disentangle our investigation from the evaluation mechanism. Here we
focus on a particular monadic construction (the symmetric strict monoidal completion, see
Section 2) and we do not extend the more general and abstract method of [43] to the bang
calculus because in this way we can avoid introducing too much categorical background.

Our categorical approach allows the introduction of a suitable category of types, where
morphisms between types are a generalization of subtyping. Given a type morphism a′ → a,
the intuition is that the type a′ somehow refines the type a. We prove that non-idempotent
intersection type distributors characterize normalization at depth 0 in the bang calculus.
Normalization at depth 0 in the bang calculus is a notion that encompasses both CbN
solvability [2, 37] and CbV potential valuability [45, 11]. The argument to prove this result is
combinatorial and standard (similar results for the bang calculus are proved in [24, 8] using
relational semantics), but thanks to the categorified setting we gain a much more fine-grained
understanding of the dynamics of type derivations under reduction. Indeed, in our setting,
subject reduction and expansion (Theorem 12) clearly open the possibility to define an
explicit deterministic reduction relation on (equivalent classes) of type derivations, but the
investigation of this line of thought is left to future work. We just notice that the substitution
operation on type derivations is strictly linked to morphism composition, respecting the basic
intuition of categorical semantics: substitution corresponds to composition.

Outline. Some preliminaries are in Section 2. Section 3 shows how the category of distrib-
utors Dist can be seen as a generalization of the categories Rel of sets and relations and
Polr of preorders. In Section 4 we define a proof-relevant denotational model of the bang
calculus in Dist as a generalization of non-idempotent intersection type systems and we
prove a semantic characterization of depth 0 normalization in the bang calculus. Section 5
concludes. In Appendix A we recall some basic notions for bicategories and coends, we prove
Lemma 11 and we show the failure of subject reduction with subtyping for polyadic terms.

2 Preliminaries

The bang calculus. The syntax and operational semantics of the bang calculus [33] are
defined in Figure 1.3 Terms are built up from a countably infinite set of variables (denoted
by x, y, z, . . .). Terms of the form S! (resp. λx.S; ST) are called boxes (resp. abstractions;

3 Syntax and reduction rule of the bang calculus are presented as in [33], which are slightly different from
[24]. But unlike [33] (and akin to [46]), here we do not use der as a primitive, since der and its associated
rule der(S!) 7→d S can be simulated in our setting by defining der = λx.x, because (λx.x)S! 7→b S.

CSL 2021

25:4 Categorifying Non-Idempotent Intersection Types

Terms: S, T, U ::= x | λx.S | ST | S! (set: !Λ)
Contexts: C ::= [·] | λx.C | CS | SC | C! (set: !ΛC)

Ground Contexts: G ::= [·] | λx.G | GS | SG (set: !ΛG)
Root-step: (λx.S)T ! 7→b S{T/x}

→b -reduction: S →b T ⇔ ∃ C ∈ !ΛC, ∃S′, T ′∈ !Λ : S = C[S′], T = C[T ′], S′ 7→` T
′

→bg -reduction: S →bg T ⇔ ∃ G ∈ !ΛG, ∃S′, T ′∈ !Λ : S = G[S′], T = G[T ′], S′ 7→` T
′

Figure 1 The bang calculus: its syntax and reduction rules.

(linear) applications). The set of boxes is denoted by !Λ!. The set of free variables of a term
S, denoted by fv(S), is defined as expected, λ being the only binding construct. All terms
are considered up to α-conversion. Given S, T ∈ !Λ and a variable x, S{T/x} denotes the
term obtained by the capture-avoiding substitution of T for each free occurrence of x in S.

Contexts C and (with exactly one hole [·]) are defined in Figure 1. We write C[S] for the
term obtained by capture-allowing substitution of the term S for the hole [·] in the context
C. Ground contexts G are the restriction to contexts where the hole is not inside any !.

The bang calculus is the set !Λ endowed with reduction →b (Figure 1), which is confluent
[33]. Intuitively in the root-step 7→b the box-construct ! marks the only terms that can be
erased and duplicated: a β-like redex (λx.S)T can be fired only when its argument is a box,
i.e. T = U !: if it is so, the content U of the box T replaces any free occurrence of x in S.

Reduction →bg ⊆→b is said at depth 0 and defined as the closure of 7→b under ground
contexts (see Figure 1): it does not reduce inside boxes. It has the diamond-property [33].

I Example 1. Let ∆ = λx.xx!. Then ∆∆! →bg ∆∆! →bg . . . (and so ∆∆! →b ∆∆! →b . . .).

I Definition 2 (Clash). A clash is a term of the form S!T or T (λx.S).
Let S ∈ !Λ: S is clash-free if and only if it contains no clash; S is clash-free at depth 0

if and only if each clash occurring in S is under the scope of a !.

For instance, (λz.x)(x!y)! is clash-free at depth 0 but not clash-free. Roughly, a clash is
a “meaningless” term that cannot inherently be typed (see [24, 8]): boxes cannot be applied,
abstractions cannot be the argument of an application.

The bang calculus can be extended (see [24]) with the reduction →σ=→σ1 ∪ →σ2 ∪ →σ3

where →σ1 , →σ2 and →σ3 are the contextual closure of the following rules, respectively:

(λx.S)TU 7→σ1 (λx.SU)T (λy.λx.S)T 7→σ2 λx.(λy.S)T U((λx.S)T) 7→σ3 (λx.US)T

with x /∈ fv(U) in 7→σ1 and 7→σ3 , while x /∈ fv(T)∪{y} in 7→σ2 . We set →bσ =→b ∪ →σ and
→bσg =→bg ∪ →σg , where →σg =→σ1g ∪ →σ2g ∪ →σ3g and →σig is the closure under ground
contexts of 7→σi , for i ∈ {1, 2, 3}. Reductions →σ and →σg are strongly normalizing [24] and
can “unveil” hidden b-redexes and hidden clashes. For instance,

((λx.∆)x)∆! →σ1g (λx.∆∆!)x x((λy.λx.z)y)→σ2g x(λx.(λy.z)y)

where ((λx.∆)x)∆! is b-normal but (λx.∆∆!)x is not (→bg can fire the b-redex ∆∆!), and
x((λy.λx.z)y) is clash-free but x(λx.(λy.z)y) is not (not even at depth 0).

G. Guerrieri and F. Olimpieri 25:5

Integers and Permutations. For n ∈ N, we set [n] = {1, . . . , n}, so [0] = ∅. The set of
permutations over [n] is denoted by Sn. We define the category P of integers and permutations:

the objects of P are ob(P) = {[n] | n ∈ N}; the identity on [n] is denoted by 1n;

the homset from [n] to [m] is P[[n], [m]] =
{
Sn if n = m

∅ otherwise;
the category P is symmetric strict monoidal, with tensor product given by addition:
[n]⊕ [m] = [n+m]. Given σ ∈ Sk1 and τ ∈ Sk2 , we define σ ⊕ τ ∈ Sk1+k2 as

(σ ⊕ τ)(i) =
{
σ(i) if 1 ≤ i ≤ k1

τ(i− k1) + k1 otherwise.

Given k1, . . . , kn ∈ N and σ ∈ Sn, we define σ̄ : [
∑
i∈[n] ki]→ [

∑
i∈[n] kσ(i)] as σ̄(

∑l−1
r=1 kr+

p) =
∑l−1
r=1 kσ(r) + p, where l ∈ [n] and 1 ≤ p ≤ kσ(l).

Symmetric strict monoidal completion. For a list ~a = 〈a1, . . . , ak〉, we set len(~a) = k. Lists
are denoted by ~a,~b,~c . . . , concatenation of two lists ~a and ~b is denoted by ~a⊕~b.

Let A be a small category. For each object a ∈ ob(A), the identity morphism on a is
denoted by 1a. The symmetric strict monoidal completion !A of A is the category where:

ob(!A) = {〈a1, . . . , an〉 | ai ∈ A and n ∈ N};

!A[〈a1, . . . , an〉, 〈a′1, . . . , a′n′〉] =
{
{〈σ, f1, . . . , fn〉 | fi : ai → a′σ(i) , σ ∈ Sn} if n = n′;
∅ otherwise;

for ~a = 〈a1, . . . , an〉 ∈ ob(!A), the identity on ~a is 1~a = 〈1n, 1a1 , . . . , 1an〉;
for f = 〈σ, f1, . . . , fn〉 : ~a→ ~b and g = 〈τ, g1, . . . , gn〉 : ~b→ ~c, the composition is g ◦ f =
〈τσ, gσ(1) ◦ f1, . . . , gσ(n) ◦ fn〉;
the monoidal structure is given by list concatenation. The tensor product is symmetric,
with symmetries given by the morphisms of the shape (where σ : [n]→ [n] is a permutation)

〈σ,~1〉 : 〈a1, . . . , an〉 → 〈aσ(1), . . . , aσ(n)〉

Given a permutation σ : [n] → [n] and ~a1, . . . ,~an ∈ ob(!A) with len(~ai) = ki we define
σ? :

⊕n
i=1 ~ai →

⊕n
i=1 ~aσ(i) as 〈σ̄, 1a1 , . . . , 1ak

〉, where k =
∑
i∈[n] ki.

We use the following shortenings: !An = (!A)n and !Aop = (!A)op.

Bicategory. We assume the reader to be familiar with bicategories [3, 6] and two-dimensional
monads [5]. Some basic notions are briefly recalled in Appendix A. For a diagram F : C → D,
its colimit is denoted by lim−→

c∈C
F (c). Given a bicategory C, Cop is the bicategory obtained by

reversing the 1-cells of C, but not the 2-cells.

3 Rel, Polr, Dist

We sketch the structure of some categories providing denotational models of linear logic. We
use linear logic notations for cartesian products, comonads modelling exponentials, etc.

Rel. A simple model of linear logic is the category Rel of sets and relations. It is a
prototype of quantitative semantics: the interpretation of a program gives information about
its resource consumption during computation. Intuitively, linear logic formulas are interpreted
by sets, linear logic proofs by relations, and an element in a set represents a non-idempotent
intersection type. For the bang calculus, this model has been studied in [24, 33].

CSL 2021

25:6 Categorifying Non-Idempotent Intersection Types

Objects of Rel are sets, and morphisms of Rel are binary relations. Identities are diagonal
relations. Composition of morphisms in Rel is the usual composition of relations

g ◦ f = {〈x, z〉 | ∃ y ∈ Y : 〈x, y〉 ∈ f , 〈y, z〉 ∈ g} for f ⊆ X × Y and g ⊆ Y × Z.

For X1, X2 ∈ ob(Rel), the cartesian product X1 &X2 in Rel is the disjoint union of sets
X1 tX2 = ({1}×X1)∪ ({2}×X2), where projections πi : X1 &X2 → Xi (for i ∈ {1, 2}) are
injections {〈〈i, x〉, x〉 | x ∈ Xi}, and the terminal (and initial) object > is the empty set ∅.

Rel is a symmetric monoidal category, where the tensor X ⊗ Y is the cartesian product
of sets X × Y and its unit 1 is an arbitrary singleton set. It is closed, with X (Y = X × Y
and evaluation evX,Y : (X (Y)×X → Y defined by {〈〈〈x, y〉, x〉, y〉 | x ∈ X, y ∈ Y }.

Rel comes with an exponential comonad 〈!,der,dig〉. The functor ! is given by !X =Mf(X)
(finite multisets over X) and, for a morphism f ∈ Rel[X,Y], !f = {〈[x1, . . . , xn], [y1, . . . , yn]〉 |
n ∈ N, 〈x1, y1〉, . . . , 〈xn, yn〉 ∈ f}. Dereliction derX ∈ Rel[!X,X] is {〈[x], x〉 | x ∈ X}, and
digging digX ∈ Rel[!X, !!X] is {〈m1 + · · · + mk, [m1, . . . ,mk]〉 | m1, . . . ,mk ∈ !X} (for two
finite multisets ā = [a1, . . . , ak] and b̄ = [b1, . . . , bn], we set ā+ b̄ = [a1, . . . , ak, b1, . . . , bn]).

Polr. To work within a more informative setting, providing not only quantitative, but also
qualitative information, consider the category Polr of preordered sets and monotonic relations
[21, 23]. Intuitively, given two types a and b, if a ≤ b then a is an approximant of b. All the
constructions in Polr are a refinement and generalization of the ones for Rel.

In Polr, objects are preordered sets; a morphism f from X = 〈|X |,≤X 〉 to Y = 〈|Y|,≤Y〉
is a monotonic relation4 from |X | to |Y|, i.e., if 〈x, y〉 ∈ f with x′ ≤X x and y ≤Y y′ then
〈x′, y′〉 ∈ f . The identity at X is {〈x, x′〉 | x ≤X x′}. Composition preserves monotonicity.

In Polr the cartesian product X1 & X2 is the disjoint union of sets |X1| t |X2| with the
preorder ≤X1 t ≤X2 defined as 〈i, x〉 ≤X1&X2 〈j, y〉 if i = j and x ≤Xi y. The terminal object
> is ∅ with the empty order. Projections πi : X1 & X2 → Xi are πi = {〈〈i, x〉, x′〉 | x ≤Xi

x′}.
Polr has a symmetric monoidal structure. The tensor X1 ⊗X2 is the cartesian product of

sets with the product order. The endofunctor X ⊗_ admits a right adjoint _(Y defined
as follows: |X (Y| = |X | × |Y| and 〈x, y〉 ≤X(Y 〈x′, y′〉 if x′ ≤X x and y ≤Y y′. The
evaluation morphism evX1,X2 : (X1 (X2) & X1 → X2 is {〈〈〈x, y〉, x′〉, y′〉 | x′ ≤ x, y ≤ y′}.

Polr has exponential comonad 〈!,der,dig〉.5 The endofunctor ! : Polr→ Polr is given by
!X = 〈Mf(|X |),≤X 〉 with [x1, . . . , xn] ≤!X [x′1, . . . , x′n′] if n = n′ and there is σ ∈ Sn such
that xi ≤ x′σ(i) for all 1 ≤ i ≤ n; for f ∈ Polr[X ,Y], we set !f = {〈[x1, . . . , xn], [y1, . . . , yk]〉 |
〈xi, yi〉 ∈ f , k ∈ N}. Dereliction derX : !X → X is {〈[x], x′〉 | x ≤X x′}, and digging
digX : !X → !!X is {〈m, [m1, . . . ,mk]〉 | m ≤!X m1 + · · ·+mk}.

Rel is the full subcategory of Polr where objects are sets equipped with the discrete order.

Polr as a model of the bang calculus. A categorical model of the bang calculus [23, 24]
consists of a ?-autonomous category (A,⊗, I,(, (−)⊥), cartesian with product & and
terminal object > (and, by ?-autonomy, cocartesian with coproduct ⊕ and initial object 0),
endowed with a comonad (!,der,dig) with suitable Seely isomorphisms [23, 33]. Also, we

4 In [21, 23], monotonicity is slightly different, so that the type system generated by the model is covariant
on the left of ` and contravariant on the right of `. With our definition, the type system generated by
the model is contravariant on the left of ` and covariant on the right of `, in accordance with [1].

5 Akin to [21] and unlike [23], our exponential comonad is based on finite multiset construction. But our
preorder on !X is different from [21]: there [a] ≤!X [a, a] (idempotency is a sort of approximation), here
[a] and [a, a] are incomparable, so that approximation is completely independent from idempotence.

G. Guerrieri and F. Olimpieri 25:7

Types:

a := x ∈ X | [a1, . . . , ak](a | [a1, . . . , ak]

Preorder ≤U in U :

x ≤X x′

x ≤U x′

m′ ≤U m a ≤U a′

(m(a) ≤U (m′ (a′)

σ ∈ Sk a1 ≤U a′σ(1)
k∈N. . . ak ≤U a′σ(k)

[a1, . . . , ak] ≤U [a′1, . . . , a′k]

Derivation rules:
a′ ≤U a

x1 : [], . . . , xi : [a′], . . . xn : [] ` xi : a
Γ ` S : m(a Γ′ ` T : m ∆ ≤Un Γ⊗ Γ′

∆ ` ST : a
Γ1 ` S : a1 k∈N. . . Γk ` S : ak ∆ ≤Un

⊗k

i=1 Γi⊗k

i=1 Γi ` S! : [a1, . . . , ak]
∆, x : m ` S : a

∆ ` λx.S : m(a

Figure 2 Non-idempotent intersection type system R≤ associated with the preorder U in Polr.

require that 0 ∼= >. An extensional model of the bang calculus is then an object U ∈ ob(A)
such that U ∼= !U & (!U (U). To have a non-extensional model for the bang calculus a
retraction !U & (!U (U)C U is enough.

We build a retraction in the category Polr. We define a family of preoders as follows:

U0 = X (any preorder) Un+1 = !Un t ((!Un(Un) t X) (1)

We define a family of canonical inclusions (ιn : Un ↪→ Un+1)n∈N as ι0 = ιX (the inclusion
X ↪→ !X t ((!X (X) t X)) and ιn+1 = !ιn t ((!ιn (ιn) t 1X), so the preorder Un is
just the restriction to the elements of Un of the preorder Un+1. We set U = lim−→

n∈N
Un, that

is a directed colimit of the directed diagram 〈ιi〉i∈N. It is easy to check that there exists a
canonical inclusion ι : !U t (!U (U) ↪→ U and that we have a retraction !U & (!U (U)CU .

We can define the interpretation of the terms of the bang calculus in Polr. Let S ∈ !Λ
and fv(S) ⊆ ~x = 〈x1, . . . , xn〉 with the xi’s pairwise distinct. The semantics (or denotation)
of S is a monotonic relation JSK~x : !U⊗n → U defined by induction as follows:

JxiK~x = {〈〈[], . . . , [a′], . . . , []〉, a〉 | a′ ≤ a} ([a′] is in the ith position in 〈[], . . . , [a′], . . . , []〉);
Jλy.T K~x = {〈∆, ι(〈m, a〉)〉 | 〈∆⊕ 〈m〉, a〉 ∈ JT K~x⊕〈y〉}, where y /∈ ~x;
JST K~x =

⋃
m∈!U

⋃
Γ,Γ′∈Un{〈∆, a〉 | 〈Γ, ι(〈m, a〉)〉 ∈ JSK~x , 〈Γ′, ι(m)〉 ∈ JT K~x and ∆ ≤Un

Γ⊗ Γ′};
JT !K~x =

⋃
k∈N

⋃
Γ1,...,Γk∈Un{〈∆, [a1, . . . , ak]〉 | 〈Γi, ai〉 ∈ JT K~x and ∆ ≤Un

⊗k
i=1 Γi}

where if Γ = 〈m1, . . . ,mn〉 and Γ′ = 〈m′1, . . . ,m′n〉 then Γ⊗Γ′ = 〈m1 +m′1, . . . ,mn+m′n〉.

Ehrhard [23] showed this is a denotational semantics. By settingm(a = 〈m, a〉 ∈ !U×U ,
we can give a type-theoretic description of the preorder U as in Figure 2. Such a type system
R≤ is similar to de Carvalho’s non-idempotent intersection type system R [16, 17]. The
main difference is that in R≤ types are elements of a preorder U (an object of Polr), while in
R types are elements of a set U (an object of Rel). The additional information provided by
the preorder accounts for approximation: if a ≤U b then the type a approximates the type b.
This is evident in the rule for the variable in Figure 2: a′ can be seen as a subtype of a.

By easy inspection of the definition, 〈∆, a〉 ∈ JSK~x if and only if ∆ ` S : a. In other
words, the semantics of a term S is the set of conclusions of the type derivations for S. The
semantics is then a semantics of types in the non-idempotent intersection type system R≤.

We now try to shift our standpoint. In system R≤, let us try to define a semantics of

proofs. Given a term S, a context ∆ and type a, we set JSK~x(∆, a) =
{ π...

∆ ` S : a

∣∣π ∈ R≤}.

CSL 2021

25:8 Categorifying Non-Idempotent Intersection Types

It is easy to see that this proof-relevant structure is not a denotational semantics (not
even up to isomorphism). Indeed, reduction over type derivations in system R≤ is non-
deterministic, since it deals with multisets. Take (λz.(yz!)z!)S! →bg (yS!)S! and the following
type derivation:

y : [[a]([a](c] ` y : [a]([a](c

z1
z : [a] ` z : a

z : [a] ` z! : [a]

y : [[a]([a](c], z : [a] ` yz! : [a](c

z2
z : [a] ` z : a

z : [a] ` z! : [a]

y : [[a]([a](c], z : [a, a] ` (yz!)z! : c

y : [[a]([a](c] ` λz.(yz!)z! : [a, a](c

π1...
Γ1 ` S : a

π2...
Γ2 ` S : a

Γ1 ⊗ Γ2 ` S! : [a, a]

Γ1 ⊗ Γ2, y : [[a]([a](c] ` (λz.(yz!)z!)S! : c

Suppose y is not free in S and π1 6= π2 (e.g. take S = wx!). Then if we consider the reduct
(yS!)S! we have two possible choices for the typing, π{π1/z1, π2/z2} or π{π2/z1, π1/z2}. This
non-determinism stems from the multiset structure, but we shall see that simply passing to
a list-oriented framework does not solve the problem. A natural way to make this kind of
structure a denotational semantics is the lifting to Set enriched distributors.

From Rel and Polr to Dist. We recall a basic but pivotal fact: a relation f ⊆ X×Y can be
identified with its characteristic function χf : X ×Y → 2 where 2 = {0, 1} is the two-element
boolean algebra with sum (join) and product (meet). Composition is then defined as

χg◦f (x, z) =
∑
y∈Y

χg(y, z) · χf (x, y) where χf : X × Y → 2 and χg : Y × Z → 2 . (2)

All the constructions in Rel and Polr can be reformulated in this characteristic function
perspective. For instance, in Rel, the identity at X becomes the characteristic function of X.

In Polr, a monotonic relation f from X = 〈|X |,≤X 〉 to Y = 〈|Y|,≤Y〉 can be seen as
a monotonic characteristic function χf : X op × Y → 2, where X op = 〈|X |,≥X 〉 and 2 is
endowed with the boolean order. Any preorder X = 〈|X |,≤X 〉 forms a category where
ob(X) = |X | and X [x, x′] is a singleton (if x ≤X x′) or the empty set (otherwise), so X op is
the opposite category of X . Thus, χf : X op × Y → 2 is a bifunctor, contravariant in X and
covariant in Y . The semantics of a term S is then a Polr morphism JSK~x : (!U⊗n)op×U → 2.

It is then natural to generalize the characteristic function viewpoint to generic categories,
which gives rise to the notion of distributor (also known as profunctors).

Dist. For two small categories A,B, a distributor F : A9 B is a functor F : Aop×B → Set.
Composition of distributors relies on the notion of coend, a kind of colimit (a coequalizer).

I Definition 3 (Coend, [40]). Let F : Cop×C → D be a functor. A cowedge for F is an object
T ∈ D together with a family of morphisms wc : F (c, c) → T such that diagram (3) below
commutes, for f : c→ c′. A coend for F , denoted by

∫ c∈C
F (c, c), is a universal cowedge.

F (c′, c) F (c, c)

F (c′, c′) T

F (f,1)

F (1,f) wc

wc′

(3)

We now define the bicategory Dist of distributors. For a proper presentation of the
structure of this bicategory we refer to [10, 12, 27, 30].

G. Guerrieri and F. Olimpieri 25:9

0-cells are small categories A,B,C . . . ; 1-cells F : A9 B are distributors, i.e. functors
F : Aop ×B → Set; 2-cells α : F ⇒ G are natural transformations.
Given any 0-cells A and B, 1-cells and 2-cells are organized as a category Dist(A,B).
Composition α ? β in Dist(A,B) is called vertical composition. We define the zero
distributor ∅A,B ∈ ob(Dist(A,B)) as ∅A,B(a, b) = ∅ for all a ∈ ob(A) and b ∈ ob(B).
For A ∈ Dist, the identity 1A : A9 A is Yoneda’s embedding 1A(a′, a) = A[a′, a].
For 1-cells F : A9 B and G : B 9 C, their composition is given by

(G ◦ F)(a, c) =
∫ b∈B

G(b, c)× F (a, b)

Note the analogy with (2). Composition is only associative up to canonical isomorphisms.
For this reason Dist is a bicategory [6].
The cartesian product A & B is the disjoint union A t B of categories. The terminal
object > is given by the empty category. The bicategory Dist admits also coproducts,
with A⊕B = A tB (the canonical inclusions are denoted by ιA and ιB) and 0 = >.
There is a symmetric monoidal structure on Dist given by the cartesian product of
categories: A⊗B = A×B, with any one-object category as a unit. The bicategory of
distributors is monoidal closed, with linear exponential object A(B = Aop ×B.

The symmetric strict monoidal completion of a small category A (Section 2) lifts to
an endofunctor in Cat, by setting !F (〈a1, . . . , an〉) = 〈F (a1), . . . , F (an)〉 for any functor
F : A → B. The endofunctor ! can be extended to Dist, determining a pseudocomonad
(!,digA,derA) on Dist [27, 30]. The two components of the pseudocomonad are defined
as follows: digA(~a, 〈 ~a1, . . . , ~an〉) = !A[~a,

⊕n
i=1 ~ai] and derA(~a, a) = !A[~a, 〈a〉]. The Kleisli

bicategory Kl(!)(Dist) is the bicategory of categorical symmetric sequences [30], biequivalent
to the bicategory of generalized species of structure [27, 28]. There are Seely equivalences
!(A&B) ' !A× !B and !> ' 1, pseudonatural in both A and B [27].

4 A Type-Theoretic Non-Extensional Model for the Bang Calculus

Distributors-Induced Model for the Bang Calculus. The bicategory of distributors fulfills
a bicategorical generalization of the categorical model of the bang calculus shown in Section
3.6 However, we leave the proper development of a general notion of bicategorical model for
the bang calculus to future work, since the notion of symmetric monoidal bicategory is highly
non-trivial. For our purpose, it is enough to present a denotational model inside a particular
bicategory, i.e., the bicategory of distributors. A denotational model in this setting will be
an interpretation of bang terms as suitable 1-cells, such that JSK~x ∼= JT K~x if S →` T . In
particular, we want JSK~x : (!U⊗n)op × U → Set (for len(~x) = n), with !U & (!U (U) C U .
The intuition is that, in Dist, 0-cells represent types (and in our untyped setting, they satisfy
a retraction), 1-cells represent type derivations and 2-cells represent reduction on derivations.

We build the retraction in Dist, in analogy with the construction (1) in Polr. Indeed, they
are both special cases of the free-algebra construction for an (unpointed) endofunctor [36]. We
recall that, in Dist, A&B = AtB, A⊗B = A×B (so A⊗n = An) and A(B = Aop ×B.

6 The only delicate point is the ?-autonomy of the bicategory, since it does not exist in the literature
a notion of ?-autonomous bicategory. However it is possible to equip distributors with a dualizing
pseudo-endofunctor, as shown for example in [12, 27].

CSL 2021

25:10 Categorifying Non-Idempotent Intersection Types

Types:

a := x ∈ A | 〈a1, . . . , ak〉 ⇒ a | 〈a1, . . . , ak〉

Morphisms in U :

f ∈A[x, x′]

f ∈U [x, x′]

〈σ, ~f〉 : ~a′ → ~a f : a→ a′

〈σ, ~f〉 ⇒ f : (~a⇒ a)→ (~a′ ⇒ a′)

σ∈Sn f1 : a1 → a′σ(1) · · · fn : an → a′σ(n)

〈σ, f1, . . . , fn〉 : 〈a1, . . . , an〉 → 〈a′1, . . . , a′n〉

Derivation rules:
f : a′ → a

x1 : 〈〉, . . . , xi : 〈a′〉, . . . xn : 〈〉 ` xi : a
Γ ` S : ~a⇒ a Γ′ ` T : ~a η : ∆→ Γ⊗ Γ′

∆ ` ST : a
Γ1 ` S : a1 k∈N. . . Γk ` S : ak η : ∆→

⊗k

i=1Γi

∆ ` S! : 〈a1, . . . , ak〉
∆, x : ~a ` S : a

∆ ` λx.S : ~a⇒ a

Figure 3 Non-idempotent intersection type system R→ associated with the 0-cell U in Dist.

I Definition 4. Let A be a small category. We define a family of small categories (Un)n∈N by:

U0 = A Un+1 = !Un t ((!Uop
n × Un) tA)

We define a family of inclusions (ιn : Un ↪→ Un+1)n∈N in the canonical way:

ι0 = ιA ιn+1 = !(ιn) t ((!(ιn)op × ιn) t 1A)

Then we set UA = lim−→
n∈N

Un. From now on, the 0-cell UA will be simply denoted by U , keeping

the parameter A implicit. We denote by ξn : !Unt (!Uop
n ×Un) ↪→ Un the canonical inclusions.

I Lemma 5 (Inclusion). There exists a canonical inclusion ι : !U t (!Uop × U) ↪→ U.

Proof. Since U is a filtered colimit, we have !U t (!Uop×U) ∼= lim−→
n∈N

!Unt (lim−→
n∈N

!Uop
n × lim−→

n∈N
Un),

and so we can explicitly define the inclusion functor as ι(a) = yj+1(ξj(a)) where j = min{n ∈
N | a ∈ Un t (!Uop

n × Un)} and yj+1 : Uj+1 → U is the canonical injection of Uj+1. J

I Theorem 6 (Retraction). We have that !U & (!U (U)C U in Dist.

So, the 0-cell U is a (non-extensional) denotational model of the bang calculus. By seeing
the objects of A (resp. U) as the atomic types (resp. types) and setting ~a⇒ a = 〈~a, a〉 ∈ !U×U ,
we give in Figure 3 a type-theoretic description of the 0-cell U . This non-idempotent
intersection type system, called R→, is the generalization in Dist of the system R≤ in
Figure 2 associated with Polr. A morphism f : a→ b in Figure 3 can be seen as a witness in
Dist of the subtyping relation between a and b, generalizing a ≤U b of Polr.

Semantics of Bang Terms. We now present the semantics (or denotation) of bang terms
as distributors in the bicategory Dist. We recall that ι : !U & (!Uop × U) ↪→ U . Let
Γ = 〈~b1, . . . , ~bn〉, ∆ = 〈~b′1, . . . , ~b′n〉 ∈ !Un. A morphism η : Γ→ ∆ is a list of morphisms η =
〈〈σ1, ~f1〉, . . . , 〈σn, ~fn〉〉 : Γ→ ∆ where 〈σi, ~fi〉 : ~bi → ~b′i. We set Γ⊗∆ = 〈~b1⊕~b′1, . . . ,~bn⊕~b′n〉.
This tensor product inherits the relevant structure from ⊕. In particular, the symmetries
~σ :
⊗k

i=1 Γi →
⊗k

i=1 Γσ(i) are built from the σ? construction presented in Section 2.

I Definition 7 (Semantics). Let S ∈ !Λ and fv(S) ⊆ ~x = 〈x1, . . . , xn〉, with the xi’s pairwise
distinct. The semantics JSK~x : !U⊗n 9 U of S with respect to ~x is defined by induction on S:

JxiK~x(∆, a) = !Un[∆, 〈〈〉, . . . , 〈a〉, . . . 〈〉〉] (〈a〉 is in the ith position in 〈〈〉, . . . , 〈a〉, . . . , 〈〉〉);

G. Guerrieri and F. Olimpieri 25:11

[g : a→ b]
(

f : a′ → a

x1 : 〈〉, . . . , xi : 〈a′〉, . . . , xn : 〈〉 ` xi : a

)
=

g ◦ f : a′ → b

x1 : 〈〉, . . . , xi : 〈a′〉, . . . , xn : 〈〉 ` xi : b

[〈σ,~g〉 ⇒ g : (~a⇒ a)→ (~b⇒ b)]

.... π

∆, x : ~a ` S : a
∆ ` λx.S : ~a⇒ a

 =

..... [g]π{〈1, 〈σ,~g〉〉}

∆, x : ~b ` S : b

∆ ` λx.S : ~b⇒ b

[g : a→ b]

.... π1

Γ1 ` S : ~a⇒ a

.... π2

Γ2 ` T : ~a η : ∆→ Γ1 ⊗ Γ2

∆ ` ST : a

 =

..... [1⇒ g]π1

Γ1 ` S : ~a⇒ b

.... π2

Γ2 ` T : ~a η : ∆→ Γ1 ⊗ Γ2

∆ ` ST : b

[(σ,~g) : ~a→ ~b]

(.... πi

Γi ` S : ai

)k
i=1 η : ∆→

⊗k
i=1 Γi

∆ ` S! : ~a = 〈a1, . . . , ak〉

 =

 π
′
i

Γσ−1(i) ` S : aσ−1(i)

k

i=1 ~σ−1 ◦ η : ∆→
⊗k

i=1 Γσ−1(i)

∆ ` S! : ~b = 〈b1, . . . , bk〉

Figure 4 Left action on derivations. In the last identity, on the right, π′i = [gσ−1(i)]πσ−1(i).

Jλy.SK~x(∆, a) =
{

JSK~x⊕〈y〉(∆⊕ 〈~a〉, a′) if a = ι(〈~a, a′〉)
∅ otherwise.

, where y /∈ ~x;

JST K~x(∆, a) =
∫ ~a∈!U ∫ Γ1,Γ2∈!Un

JSK~x(Γ1, ι(〈~a, a〉))× JT K~x(Γ2, ι(~a))× (!Un)(∆,Γ1 ⊗ Γ2);

JS!K~x(∆, a) =

∫ Γ1,...,Γk∈!Un k∏

i=1
JSK~x(Γi, ai)× (!Un)(∆,

k⊗
i=1

Γi) if a = ι(〈a1, . . . , ak〉)

∅ otherwise.

Given 〈∆, a〉 ∈ !Un×U we call points the elements of JSK~x(∆, a). From now on, when we
write JSK~x we always assume that fv(S) ⊆ ~x = 〈x1, . . . , xn〉 and the xi’s are pairwise distinct.

The semantics of a term S is a functor JSK~x : (!Un)op × U → Set. As such, it must be
defined on the objects of the category (!Un)op × U (as done in Definition 7) and on the
morphisms of the category (!Un)op×U . The action on morphisms (omitted in Definition 7) is
given by induction on S and, in the application and bang cases, also by the universal property
of the coend construction. The variable case is just the hom-functor. An explicit definition
of the application and bang cases can be given by considering coends as coequalizers [44].

Non-idempotent Intersection Type Distributors. We aim to define the non-idempotent
intersection type distributor TU (S)~x for any term S. Let π be a type derivation in system
R→, as defined in Figure 3. The left and right actions of morphisms on π are defined in
Figures 4 and 5, respectively (by induction on π). Given f : a→ a′ and θ : ∆′ → ∆, the left
and right actions may change the conclusion of a type derivation:

left: [f]
(π...

∆ ` S : a

)

[f]π
...

∆ ` S : a′
right:

(π...
∆ ` S : a

)
{θ}

π{θ}
...

∆′ ` S : a

Notice the contravariance of the right action, and that [f](π{θ}) = ([f]π){θ}.
We define ∼ as the smallest congruence on type derivations generated by the rules in

Figure 6. We denote by π̃ the equivalence class of π modulo ∼. Note that [f]π̃{θ} = ˜[f]π{θ}.

I Example 8. We give a couple of examples of the equivalence ∼ between type derivations
in system R→. The intuition is that ∼ equalizes type derivations for the same term and with
the same conclusion, where the “same” permutations are performed at different moments.

CSL 2021

25:12 Categorifying Non-Idempotent Intersection Types

f : a′ → a

x1 : 〈〉, . . . , xi : 〈a′〉, . . . , xn : 〈〉 ` xi : a
{〈g : b→ a′〉} =

f ◦ g : b→ a

x1 : 〈〉, . . . , xi : 〈b〉, . . . , xn : 〈〉 ` xi : a
π...

∆, x : ~a ` S : a
∆ ` λx.S : ~a⇒ a

 {θ} =

π{θ ⊕ 〈1〉}
...

∆′, x : ~a ` S : a
∆′ ` λx.S : ~a⇒ a

π1...
Γ1 ` S : ~a⇒ a

π2...
Γ2 ` T : ~a η : ∆→ Γ1 ⊗ Γ2

∆ ` ST : a

 {θ} =

π1...
Γ1 ` S : ~a⇒ a

π2...
Γ2 ` T : ~a η ◦ θ : ∆′ → Γ1 ⊗ Γ2

∆′ ` ST : a
(πi...

Γi ` S : ai

)k
i=1 η : ∆→

⊗k
i=1 Γi

∆ ` S! : 〈a1, . . . , ak〉

 {θ} =

(πi...
Γi ` S : ai

)k
i=1 η ◦ θ : ∆′ →

⊗k
i=1 Γi

∆′ ` S! : 〈a1, . . . , ak〉

Figure 5 Right action on derivations, where θ : ∆′ → ∆.

Let f : a′ → a be a morphism between types a′ and a. One can think of them as, e.g.
a = 〈∗, 〈∗〉 ⇒ ∗〉 and a′ = 〈〈∗〉 ⇒ ∗, ∗〉 with f = σ ⇒ 1 being the obvious permutation.
1. Let us type the term xx! with the following type derivation π (where A = 〈〈a〉 ⇒ a, a〉,

A′ = 〈a′, 〈a〉 ⇒ a〉 and (1 2) ∈ S2 is the swap permutation on {1, 2}):

1〈a〉⇒a : (〈a〉 ⇒ a)→ (〈a〉 ⇒ a)

x : 〈〈a〉 ⇒ a〉 ` x : 〈a〉 ⇒ a

1a : a→ a

x : 〈a〉 ` x : a 1〈a〉 : 〈a〉 → 〈a〉

x : 〈a〉 ` x! : 〈a〉 〈(1 2), f, 1〈a〉⇒a〉 : A′→ A

x : 〈a′, 〈a〉 ⇒ a〉 ` xx! : a

Now consider the following type derivation π′ (with A′′ = 〈〈a〉 ⇒ a, a′〉)

1〈a〉⇒a : (〈a〉 ⇒ a)→ (〈a〉 ⇒ a)

x : 〈〈a〉 ⇒ a〉 ` x : 〈a〉 ⇒ a

f : a′ → a

x : 〈a′〉 ` x : a 1〈a′〉 : 〈a′〉 → 〈a′〉

x : 〈a′〉 ` x! : 〈a〉 〈(1 2), 1a′ , 1〈a〉⇒a〉 : A′ → A′′

x : 〈a′, 〈a〉 ⇒ a〉 ` xx! : a

Compared to π, π′ brings forward the morphism f . By the second rule in Figure 6, π ∼ π′.
2. Let us type the term (λx.x)z! (we omit the index on the identity morphisms 1):

π =

f : a′ → a

x : 〈a′〉 ` x : a

` λx.x : 〈a′〉 ⇒ a

1: a′ → a′

z : 〈a′〉 ` z : a′ 1: 〈a′〉 → 〈a′〉

z : 〈a′〉 ` z! : 〈a′〉 1: 〈a′〉 → 〈a′〉

z : 〈a′〉 ` (λx.x)z! : a

Now consider the following derivation (note the different position of f with respect to π)

π′ =

1: a→ a

x : 〈a〉 ` x : a
` λx.x : 〈a〉 ⇒ a

f : a′ → a

z : 〈a′〉 ` z : a 1: 〈a′〉 → 〈a′〉

z : 〈a′〉 ` z! : 〈a〉 1: 〈a′〉 → 〈a′〉

z : 〈a′〉 ` (λx.x)z! : a

According to the first rule in Figure 6, π ∼ π′.

G. Guerrieri and F. Olimpieri 25:13

π1...
Γ1 ` S : ~b⇒ a

[〈σ, ~f〉]π2...
Γ2 ` T : ~b η : ∆→ Γ1 ⊗ Γ2

∆ ` ST : a

∼

[〈σ, ~f〉 ⇒ 1]π1...
Γ1 ` S : ~a⇒ a

π2...
Γ2 ` T : ~a η : ∆→ Γ1 ⊗ Γ2

∆ ` ST : a
π1{θ1}...

Γ1 ` S : ~a⇒ a

π2{θ2}...
Γ2 ` T : ~a η : ∆→ Γ1 ⊗ Γ2

∆ ` ST : a

∼

π1...
Γ′1 ` S : ~a⇒ a

π2...
Γ′2 ` T : ~a θ ◦ η : ∆→ Γ′1 ⊗ Γ′2

∆ ` ST : a πi{θi}...
Γi ` S : ai

k

i=1 η : ∆→
⊗k

i=1 Γi
∆ ` S! : 〈a1, . . . , ak〉

∼

(πi...
Γ′i ` S : ai

)k
i=1

⊗k
i=1 θi ◦ η : ∆→

⊗k
i=1 Γ′i

∆ ` S! : 〈a1, . . . , ak〉

Figure 6 Congruence on type derivations, where 〈σ, ~f〉 : ~a→ ~b and θ = θ1 ⊗ θ2 with θi : Γi → Γ′i.

Let S be a term and fv(S) ⊆ ~x = {x1, . . . , xn} with the xi’s pairwise distinct. With any
〈∆, a〉 ∈ ob((!Un)op×U), the distributor TU (S)~x : !Un 9 U associates the set of (equivalence
classes of) type derivations for S with conclusion ∆ ` S : a. Formally, TU (S)~x is defined by:

1. for 〈∆, a〉 ∈ ob((!Un)op×U), TU (S)~x(∆, a) =
{

π̃...
∆ ` S : a

∣∣ π is a type derivation for S
}
;

2. for f : a→ a′ and η : ∆′ → ∆, TU (S)~x(η, f) : TU (S)~x(∆, a)→ TU (S)~x(∆′, a′) such that
TU (S)~x(η, f)(π̃) = ˜[f]π{η} ∈ TU (S)~x(∆′, a′) for any π̃ ∈ TU (S)~x(∆, a).

I Lemma 9 (Functoriality). For any S ∈ !Λ, TU (S)~x is a functor from (!Un)op × U to Set.

The following theorem states that the distributor semantics induced by our category
of types U can be seen in a completely type-theoretic way. The semantics JSK~x(∆, a) of a
term S is equal to the set of (equivalence classes of) type derivations whose conclusion is the
sequent ∆ ` S : a. For this reason we have a bicategorical proof relevant semantics. This is a
major improvement over relational semantics, where the elements of the denotation of a term
are only witnesses of typability. Said differently, the relational semantics of S is just the set
of conclusions of the type derivations for S, while the distributor semantics of S provides,
for any conclusion, the set of type derivations for S with such a conclusion.

I Theorem 10 (Proof-relevance). Let S ∈ !Λ. There is an isomorphism of functors

ψ : JSK~x ∼= TU (S)~x which is natural in 〈∆, a〉 ∈ ob((!Un)op × U).

Proof. By induction on the structure of S. The core of the proof is the remark that we can
write the equivalence relation induced by the coend in the application and box cases with
the rules in Figure 6. J

For any type derivation π in systemR→ we define its size s (π) in Figure 7 (by induction on
π). It counts the number of rules for application in π. Note that if π ∼ π′ then s (π) = s (π′).
We also have that size is invariant under morphisms action: s ([f]π) = s (π{η}) = s (π).

Let ψ : JSK~x ∼= TU (S)~x be the natural isomorphism of Theorem 10. For α ∈ JSK~x(∆, a)
we set s (α) = s (ψ∆,a(α)), i.e. the size of a point α is the size of its derivation ψ∆,a(α).

Substitution and Reduction. We prove both subject reduction and expansion for non-
idempotent intersection type distributors. We enrich this result with a quantitative flavor,

CSL 2021

25:14 Categorifying Non-Idempotent Intersection Types

s
(

f : a′ → a

x1 : 〈〉, . . . , xi : 〈a′〉, . . . , xn : 〈〉 ` xi : a

)
= 0 s

(πi...

Γi ` S : ai

)k
i=1 θ : ∆→

⊗k
i=1 Γi

∆ ` !S : 〈a1, . . . , ak〉

 =
∑
i∈[k]

s (πi)

s

π′...

∆, x : ~a ` S : a
∆ ` λx.S : ~a⇒ a

 = s (π′) s

π1...

Γ1 ` S : ~a⇒ a

π2...
Γ2 ` T : ~a θ : ∆→ Γ1 ⊗ Γ2

∆ ` ST : a

 = s (π1) + s (π2) + 1

Figure 7 Size of type derivations in system R→.

accounting for how the size of points is affected by a reduction step. In this way, we can give
a combinatorial proof for the characterization of terms that are normalizable at depth 0.

The key ingredient is the substitution lemma below. We set:

SubS,x,T (∆, a) =
∫ ~a∈!U∫ Γ0,Γ1∈!Un

JSK~x⊕〈x〉(Γ0⊕〈~a〉, a)× JT !K~x(Γ1,~a)× !Un(∆,Γ0⊗Γ1).

I Lemma 11 (Substitution). Let S and T be terms. There is an isomorphism of functors

ϕ : SubS,x,T ∼= JS{T/x}K~x

natural in 〈∆, a〉 ∈ ob((!Un)op × U) and such that s
(
ϕ∆,a(˜〈α1, α2, η〉)

)
= s (α1) + s (α2) .

Proof. By induction on the structure of S, via lengthy coend manipulations. The proof of
the application and list cases strongly relies on the fact that the tensor product of !U is
symmetric. The proof of the preservation of sizes relies on the fact that size is invariant
under morphism actions and equivalence. Details are in Appendix A. J

I Theorem 12 (Subject reduction and expansion). Let S, T be two terms.
1. If S →b T then there is a natural isomorphism JSK~x(∆, a) ∼= JT K~x(∆, a).
2. If S →bg T then JSK~x(∆, a) ∼= JT K~x(∆, a) via a natural isomorphism ϕ∆,a such that

s (ϕ∆,a(α)) = s (α)− 1 for any α ∈ JSK~x(∆, a).
3. If S →σ T then JSK~x(∆, a) ∼= JT K~x(∆, a) via a natural isomorphism ϕ∆,a such that

s (ϕ∆,a(α)) = s (α) for any α ∈ JSK~x(∆, a).

Proof. We prove the base case of Item 2, which follows from the substitution lemma
(Lemma 11). Let S = (λx.S1)S!

2 7→b S1{S2/x} = T . By definition, we have

JSK~x(∆, a) =
∫ ~a∈!U ∫ Γ1,Γ2∈!Un

Jλx.S1K~x(Γ1, ι(〈~a, a〉))× JS!
2K~x(Γ2,~a)× !Un(∆,Γ1 ⊗ Γ2).

By definition of an abstraction’s denotation we have Jλx.S1K~x(Γ1, ι(〈~a, a〉)) = JS1K~x⊕〈x〉(Γ1⊕
〈~a〉, a). Then, JSK~x(∆, a) = SubS1,x,S2(∆, a). By Lemma 11, ϕ∆,a : J(λx.S1)S2K~x(∆, a) ∼=
JS1{S2/x}K~x(∆, a). Again by Lemma 11, s (ϕ∆,a(β)) = s (α1) + s (α2) for β = ˜〈α1, α2, η〉 ∈
JSK~x(∆, a). By definition, we have that s (β) = s (α1) + s (α2) + 1. So, we can conclude.

For Item 3, a step →σ just requires to rearrange the rule order in a type derivation. J

Roughly, Theorem 12.2 states that if S →bg T then for every type derivation for S there is
a type derivation for T , with the same conclusion, whose size decreases by 1. In Theorem 12.1
such a quantitative account does not hold. Indeed, consider ((λx.x)y!)! →b y

!: each of the
two terms can be typed with a derivation of size 0 (take the rule for boxes with 0 premises).

G. Guerrieri and F. Olimpieri 25:15

I Example 13. We provide a simple example of reduction of type derivations to ease the
understanding of the congruence’s role in establishing the natural isomorphisms. Consider
S = (λx.x)y!. We type it with the following type derivations:

π1 =

h ◦ f : a→ b

x : 〈a〉 ` x : b
` λx.x : 〈a〉 ⇒ b

g : c→ a

y : 〈c〉 ` y : a 1

y : 〈c〉 ` y! : 〈a〉 1

y : 〈c〉 ` (λx.x)y! : b

π2 =

h ◦ f ′ : a′ → b

x : 〈a〉 ` x : b
` λx.x : 〈d〉 ⇒ b

g′ : c→ a′

y : 〈c〉 ` y : a′ 1

y : 〈c〉 ` y! : 〈a′〉 1

y : 〈c〉 ` (λx.x)y! : b

Suppose that f ◦ g = f ′ ◦ g′ and h : b → b, f : a → b, f ′ : a′ → b. We have that π1 ∼ π2.
Indeed, by the first rule of Figure 6:

π1 ∼

h : b→ b

x : 〈b〉 ` x : b
` λx.x : 〈b〉 ⇒ b

f ◦ g : c→ b

y : 〈c〉 ` y : b 1

y : 〈c〉 ` y! : 〈b〉 1

y : 〈c〉 ` (λx.x)y! : b

π2 ∼

h : b→ b

x : 〈b〉 ` x : b
` λx.x : 〈b〉 ⇒ b

f ′ ◦ g′ : c→ b

y : 〈c〉 ` y : b 1

y : 〈c〉 ` y! : 〈b〉 1

y : 〈c〉 ` (λx.x)y! : b

and, by the hypothesis f ◦ g = f ′ ◦ g′, we conclude that π1 ∼ π2 by transitivity. In particular,
this means that the quotient identify all couple of morphisms leading to the same composition.

Now, we have that S →bg y. Consider the following type derivation of y:

π3 =
h ◦ (f ◦ g) : c→ b

y : 〈c〉 ` y : b
(note that s (π1) = s (π2) = 1 and s (π3) = 0).

By an easy inspection of the definitions we have that for ϕ〈c〉,b : JSK〈y〉(〈c〉, b) ∼= JyK〈y〉(〈c〉, b),
ϕ〈c〉,b(π̃1) = π3, where we keep implicit the isomorphism given by Theorem 10. There is
then a nice correspondence between substitution on the term side and composition on the
morphism side, that validates the basic intuition of categorical semantics7.

We prove that non-idempotent intersection type distributors characterize normalization
at depth 0, when normal forms are clash-free at depth 0. First, we characterize syntactically
the normal forms for →bσg that are clash-free at depth 0. Consider the subsets !Λd, !Λn, !Λ`
(whose elements are denoted by D, N , L, respectively) of !Λ:

(!Λd) D ::= x | DS! | DD′ (!Λn) N ::= S! | D | (λx.N)D (!Λ`) L ::= N | λx.L

All terms in !Λd are not closed (they have a free “head variable”) and are neither a box nor
a β-like redex nor an abstraction. Clearly, !Λd (!Λn and !Λ! (!Λn (!Λ` with !Λd ∩ !Λ! = ∅.

I Proposition 14 (Syntactic characterization of clash-free at depth 0 normal forms for →bσg).
1. A term S is normal for →bσg , clash-free at depth 0 and is neither a box nor a β-like redex

(i.e. nor of the form (λx.S)T) nor an abstraction iff S ∈ !Λd.
2. A term S is normal for →bσg , clash-free at depth 0 and is not an abstraction iff S ∈ !Λn.
3. A term S is normal for →bσg and clash-free at depth 0 iff S ∈ !Λ`.

I Lemma 15 (Semantics vs. clash-free at depth 0). Let S be a term.
1. If JSK~x 6= ∅!Un,U then S is clash-free at depth 0.
2. If S is normal for →bσg and clash-free at depth 0, then JSK~x 6= ∅!Un,U .

Proof. 1. By induction on S ∈ !Λ.

7 The natural isomorphism ϕ〈c〉,b : JSK〈y〉(〈c〉, b) ∼= JyK〈y〉(〈c〉, b) is a particular instance of Yoneda’s lemma
for coends (see Lemma 20 in Appendix A), also known as the density formula for coends [40].

CSL 2021

25:16 Categorifying Non-Idempotent Intersection Types

2. According to Proposition 14, we can proceed by induction on S ∈ !Λ`. J

I Theorem 16 (Normalization at depth 0). Let S be a term. The following are equivalent:
1. S is typable in system R→;
2. JSK~x 6= ∅!Un,U ;
3. S is strongly →bσg-normalizable with a normal form for →bσg that is clash-free at depth 0;
4. S is weakly →bσg-normalizable with a normal form for →bσg that is clash-free at depth 0;
5. S →∗bσ T for some term T that is normal for →bσg and clash free at depth 0.

Proof. The equivalence (1)⇔ (2) is given by Theorem 10. The implication (5)⇒ (2) follows
from Lemma 15.2 and Theorem 12. The implication (4)⇒ (5) holds because →bσg ⊆→bσ.
The implication (3)⇒ (4) is trivial.

For the implication (2)⇒ (3), as JSK~x 6= ∅!Un,U , there is a point α ∈ JSK~x(∆, a) for some
〈∆, a〉 ∈ ob(!Un× U). Let kS be the sum of the lengths of all →σg -reduction sequences from
S to a normal form for →σg (such a kS exists because →σg is strongly normalizing [24]). We
prove (3) by induction on (s (α) , kS) ordered lexicographically. If S is normal for →bσg , we
are done by Lemma 15.1, as α ∈ JSK~x(∆, a) implies JSK~x 6= ∅!Un,U . Suppose S →bσg S

′.
1. If S →σg S

′, let ϕ : JSK~x ∼= JS′K~x be the natural isomorphism of Theorem 12.3. Thus,
ϕ∆,a(α) ∈ JS′K~x(∆, a) and s (α) = s (ϕ∆,a(α)) but kS′ = kS − 1.

2. If S →bg S
′, let ϕ : JSK~x ∼= JS′K~x be the natural isomorphism of Theorem 12.2. Thus,

ϕ∆,a(α) ∈ JS′K~x(∆, a) and s (ϕ∆,a(α)) = s (α)− 1.
In both cases, by i.h., (3) holds for S′. Therefore, (3) holds for S. J

5 Conclusions

In this paper, we recalled some well-known and linear-logic based categorical semantics
with an intersection type presentation. We showed that they can be generalized in the
bicategory of distributors. We defined non-idempotent intersection type distributors in
the bang calculus and provided a syntactic presentation of them as a non-idempotent
intersection type system generalizing De Carvalho’s system R [16, 17]. We proved that non-
idempotent intersection type distributors determine a proof-relevant denotational semantics,
and characterize normalization at depth 0 in the bang calculus via a combinatorial proof.

Perspectives. Reconciling the different methods used here and in [43, 41, 48] to categorify
– non-idempotent or possibly idempotent – intersection types is the first and natural open
question. The (non-trivial) answer should rely on a subtyping-aware polyadic calculus to be
defined. This would allow [41, 48] to have a denotational semantics that supports subtyping.

Another line of research is the study of the extensional collapse [22] in the bicategorical
setting of distributors, which should shed new light on the link between non-idempotent and
idempotent intersection types. Relating the methods of [29, 43] should be a first step.

A relevant question immediately arises also for what concerns typed call-by-push-value
[23, 39]. The extension of our work to that framework is tricky, since the semantics of types
adds technical machinery. Moreover, we believe that difficulties similar to the ones found in
[13] in order to define the Taylor expansion could arise also in our perspective.

Other interesting perspectives are the investigation of the relationship between our
categorified rigid framework and rigid intersection types [50], and an extension of our
approach to probabilistic computation. This extension is far from trivial, but the results
of Tsukada, Asada and Ong [49] are encouraging, and the study of probabilistic Taylor
expansion [38] and probabilistic intersection types [7] might be a starting point.

G. Guerrieri and F. Olimpieri 25:17

References
1 Fabio Alessi, Franco Barbanera, and Mariangiola Dezani-Ciancaglini. Intersection types

and lambda models. Theoretical Computer Science, 355(2):108–126, 2006. Logic, Language,
Information and Computation. doi:10.1016/j.tcs.2006.01.004.

2 Hendrik Pieter Barendregt. The lambda calculus - its syntax and semantics, volume 103 of
Studies in logic and the foundations of mathematics. North-Holland, 1984.

3 Jean Bénabou. Introduction to bicategories. In Reports of the Midwest Category Seminar,
pages 1–77, Berlin, Heidelberg, 1967. Springer Berlin Heidelberg.

4 Alexis Bernadet and Stéphane Jean Lengrand. Non-idempotent intersection types and strong
normalisation. Logical Methods in Computer Science, Volume 9, Issue 4, 2013. doi:10.2168/
LMCS-9(4:3)2013.

5 Robert Blackwell, Gregory Maxwell Kelly, and John Power. Two-dimensional monad theory.
Journal of Pure and Applied Algebra, 59(1):1–41, 1989. doi:10.1016/0022-4049(89)90160-6.

6 Francis Borceux. Handbook of Categorical Algebra, volume 1 of Encyclopedia of Mathematics
and its Applications. Cambridge University Press, 1994. doi:10.1017/CBO9780511525858.

7 Flavien Breuvart and Ugo Dal Lago. On Intersection Types and Probabilistic Lambda Calculi.
In Proceedings of the 20th International Symposium on Principles and Practice of Declarative
Programming, PPDP 2018, Frankfurt am Main, Germany, September 03-05, 2018, pages
8:1–8:13, 2018. doi:10.1145/3236950.3236968.

8 Antonio Bucciarelli, Delia Kesner, Alejandro Ríos, and Andrés Viso. The bang calculus
revisited. In Functional and Logic Programming - 15th International Symposium, FLOPS
2020, volume 12073 of Lecture Notes in Computer Science, pages 13–32. Springer, 2020.
doi:10.1007/978-3-030-59025-3_2.

9 Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types for
the lambda-calculus. Logic Journal of the IGPL, 25(4):431–464, 2017. doi:10.1093/jigpal/
jzx018.

10 Jean Bénabou. Distributors at work. Lecture notes of a course given at TU Darmstadt, 2000.
URL: http://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/DiWo.pdf.

11 Alberto Carraro and Giulio Guerrieri. A Semantical and Operational Account of Call-by-Value
Solvability. In Foundations of Software Science and Computation Structures, FOSSACS 2014,
volume 8412 of Lecture Notes in Computer Science, pages 103–118, Berlin, Heidelberg, 2014.
Springer. doi:10.1007/978-3-642-54830-7_7.

12 Gian Luca Cattani and Glynn Winskel. Profunctors, open maps and bisimulation. Mathematical
Structures in Computer Science, 15(3):553–614, 2005. doi:10.1017/S0960129505004718.

13 Jules Chouquet and Christine Tasson. Taylor expansion for Call-by-Push-Value. In 28th
EACSL Annual Conference on Computer Science Logic, CSL 2020, volume 152 of LIPIcs,
pages 16:1–16:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/
LIPIcs.CSL.2020.16.

14 Mario Coppo and Mariangiola Dezani-Ciancaglini. A new type-assignment for lambda terms.
Arch. Math. Log., 19(1):139–156, 1978. doi:10.1007/BF02011875.

15 Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic functionality
theory for the λ-calculus. Notre Dame Journal of Formal Logic, 21(4):685–693, 1980. doi:
10.1305/ndjfl/1093883253.

16 Daniel de Carvalho. Semantique de la logique lineaire et temps de calcul. PhD thesis, Aix-
Marseille Université, 2007.

17 Daniel de Carvalho. Execution time of λ-terms via denotational semantics and intersection
types. Math. Struct. Comput. Sci., 28(7):1169–1203, 2018. doi:10.1017/S0960129516000396.

18 Daniel de Carvalho. Taylor expansion in linear logic is invertible. Log. Methods Comput. Sci.,
14(4), 2018. doi:10.23638/LMCS-14(4:21)2018.

19 Daniel de Carvalho, Michele Pagani, and Lorenzo Tortora de Falco. A semantic measure of
the execution time in linear logic. Theoretical Computer Science, 412(20):1884–1902, 2011.
doi:10.1016/j.tcs.2010.12.017.

CSL 2021

https://doi.org/10.1016/j.tcs.2006.01.004
https://doi.org/10.2168/LMCS-9(4:3)2013
https://doi.org/10.2168/LMCS-9(4:3)2013
https://doi.org/10.1016/0022-4049(89)90160-6
https://doi.org/10.1017/CBO9780511525858
https://doi.org/10.1145/3236950.3236968
https://doi.org/10.1007/978-3-030-59025-3_2
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1093/jigpal/jzx018
http://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/DiWo.pdf
https://doi.org/10.1007/978-3-642-54830-7_7
https://doi.org/10.1017/S0960129505004718
https://doi.org/10.4230/LIPIcs.CSL.2020.16
https://doi.org/10.4230/LIPIcs.CSL.2020.16
https://doi.org/10.1007/BF02011875
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.23638/LMCS-14(4:21)2018
https://doi.org/10.1016/j.tcs.2010.12.017

25:18 Categorifying Non-Idempotent Intersection Types

20 Daniel de Carvalho and Lorenzo Tortora de Falco. A semantic account of strong normalization
in linear logic. Inf. Comput., 248:104–129, 2016. doi:10.1016/j.ic.2015.12.010.

21 Thomas Ehrhard. Collapsing non-idempotent intersection types. In Computer Science Logic
(CSL’12) - 26th International Workshop/21st Annual Conference of the EACSL, CSL 2012,
volume 16 of LIPIcs, pages 259–273. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012.
doi:10.4230/LIPIcs.CSL.2012.259.

22 Thomas Ehrhard. The Scott model of linear logic is the extensional collapse of its relational
model. Theoretical Computer Science, 424:20–45, 2012. doi:10.1016/j.tcs.2011.11.027.

23 Thomas Ehrhard. Call-by-push-value from a linear logic point of view. In Programming
Languages and Systems - 25th European Symposium on Programming, ESOP 2016, volume
9632 of Lecture Notes in Computer Science, pages 202–228. Springer, 2016. doi:10.1007/
978-3-662-49498-1_9.

24 Thomas Ehrhard and Giulio Guerrieri. The bang calculus: An untyped lambda-calculus gener-
alizing call-by-name and call-by-value. In Proceedings of the 18th International Symposium on
Principles and Practice of Declarative Programming, PPDP 2016, pages 174–187. Association
for Computing Machinery, 2016. doi:10.1145/2967973.2968608.

25 Thomas Ehrhard and Laurent Regnier. Böhm trees, Krivine’s machine and the Taylor expansion
of lambda-terms. In Logical Approaches to Computational Barriers, Second Conference on
Computability in Europe, CiE 2006, volume 3988 of Lecture Notes in Computer Science, pages
186–197. Springer, 2006. doi:10.1007/11780342_20.

26 Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor expansion of ordinary
λ-terms. Theoretical Computer Science, 403(2-3), 2008. doi:10.1016/j.tcs.2008.06.001.

27 Marcelo Fiore, Nicola Gambino, Martin Hyland, and Glynn Winskel. The cartesian closed
bicategory of generalised species of structures. J. of the London Mathematical Society, 77(1):203–
220, 2008. doi:10.1112/jlms/jdm096.

28 Marcelo Fiore, Nicola Gambino, Martin Hyland, and Glynn Winskel. Relative pseudo-
monads, Kleisli bicategories, and substitution monoidal structures. Selecta Mathematica,
24(3):2791–2830, November 2017. doi:10.1007/s00029-017-0361-3.

29 Zeinab Galal. A Profunctorial Scott Semantics. In 5th International Conference on Formal
Structures for Computation and Deduction (FSCD 2020), volume 167 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 16:1–16:18, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.FSCD.2020.16.

30 Nicola Gambino and André Joyal. On operads, bimodules and analytic functors. Memoirs of
the American Mathematical Society, 249(1184):0–0, September 2017. doi:10.1090/memo/1184.

31 Philippa Gardner. Discovering needed reductions using type theory. In Theoretical Aspects
of Computer Software, International Conference TACS ’94, volume 789 of Lecture Notes in
Computer Science, pages 555–574. Springer, 1994. doi:10.1007/3-540-57887-0_115.

32 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987. doi:
10.1016/0304-3975(87)90045-4.

33 Giulio Guerrieri and Giulio Manzonetto. The bang calculus and the two Girard’s translations.
In Proceedings Joint International Workshop on Linearity & Trends in Linear Logic and
Applications, Linearity-TLLA@FLoC 2018, volume 292 of EPTCS, pages 15–30, 2018. doi:
10.4204/EPTCS.292.2.

34 Martin Hyland. Classical lambda calculus in modern dress. Mathematical Structures in
Computer Science, 27(5):762–781, 2017. doi:10.1017/S0960129515000377.

35 André Joyal. Foncteurs analytiques et espèces de structures. In Combinatoire énumérative,
pages 126–159, Berlin, Heidelberg, 1986. Springer Berlin Heidelberg.

36 Gregory Maxwell Kelly. A unified treatment of transfinite constructions for free algebras, free
monoids, colimits, associated sheaves, and so on. Bulletin of the Australian Mathematical
Society, 22(1):1–83, 1980. doi:10.1017/S0004972700006353.

37 Jean-Louis Krivine. Lambda-calculus, types and models. In Ellis Horwood series in computers
and their applications, 1993.

https://doi.org/10.1016/j.ic.2015.12.010
https://doi.org/10.4230/LIPIcs.CSL.2012.259
https://doi.org/10.1016/j.tcs.2011.11.027
https://doi.org/10.1007/978-3-662-49498-1_9
https://doi.org/10.1007/978-3-662-49498-1_9
https://doi.org/10.1145/2967973.2968608
https://doi.org/10.1007/11780342_20
https://doi.org/10.1016/j.tcs.2008.06.001
https://doi.org/10.1112/jlms/jdm096
https://doi.org/10.1007/s00029-017-0361-3
https://doi.org/10.4230/LIPIcs.FSCD.2020.16
https://doi.org/10.1090/memo/1184
https://doi.org/10.1007/3-540-57887-0_115
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.4204/EPTCS.292.2
https://doi.org/10.4204/EPTCS.292.2
https://doi.org/10.1017/S0960129515000377
https://doi.org/10.1017/S0004972700006353

G. Guerrieri and F. Olimpieri 25:19

38 Ugo Dal Lago and Thomas Leventis. On the Taylor expansion of probabilistic lambda-
terms. In Herman Geuvers, editor, 4th International Conference on Formal Structures for
Computation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Germany, volume
131 of LIPIcs, pages 13:1–13:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.FSCD.2019.13.

39 Paul Blain Levy. Call-by-Push-Value: A Subsuming Paradigm. In Typed Lambda Calculi
and Applications, 4th International Conference, TLCA’99, volume 1581 of Lecture Notes in
Computer Science, page 228–242. Springer, 1999. doi:10.1007/3-540-48959-2_17.

40 Fosco Loregian. This is the (co)end, my only (co)friend, 2015. arXiv:1501.02503.

41 Damiano Mazza, Luc Pellissier, and Pierre Vial. Polyadic approximations, fibrations and
intersection types. Proc. ACM Program. Lang., 2(POPL):6:1–6:28, 2018. doi:10.1145/
3158094.

42 Paul-André Melliès and Noam Zeilberger. Functors are type refinement systems. SIGPLAN
Not., 50(1):3–16, January 2015. doi:10.1145/2775051.2676970.

43 Federico Olimpieri. Intersection Type Distributors, 2020. arXiv:2002.01287.

44 Federico Olimpieri. Intersection Types and Resource Calculi in the Denotational Semantics of
Lambda-Calculus. PhD thesis, Aix-Marseille Université, 2020.

45 Luca Paolini and Simona Ronchi Della Rocca. Call-by-value solvability. RAIRO Theor.
Informatics Appl., 33(6):507–534, 1999. doi:10.1051/ita:1999130.

46 José Espírito Santo, Luís Pinto, and Tarmo Uustalu. Modal embeddings and calling paradigms.
In 4th International Conference on Formal Structures for Computation and Deduction, FSCD
2019, volume 131 of LIPIcs, pages 18:1–18:20. Schloss Dagstuhl - Leibniz-Zentrum für Inform-
atik, 2019. doi:10.4230/LIPIcs.FSCD.2019.18.

47 Alex K. Simpson. Reduction in a linear lambda-calculus with applications to operational
semantics. In Term Rewriting and Applications, 16th International Conference, RTA 2005,
volume 3467 of Lecture Notes in Computer Science, pages 219–234. Springer, 2005. doi:
10.1007/978-3-540-32033-3_17.

48 Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong. Generalised Species of Rigid Resource
Terms. In Proceedings of the 32rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2017, pages 1–12. IEEE Computer Society, 2017. doi:10.1109/LICS.2017.
8005093.

49 Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong. Species, profunctors and Taylor
expansion weighted by SMCC: A unified framework for modelling nondeterministic, probab-
ilistic and quantum programs. In Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS ’18, pages 889–898. IEEE Computer Society, 2018.
doi:10.1145/3209108.3209157.

50 Pierre Vial. Infinitary intersection types as sequences: A new answer to Klop’s problem. In
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, pages 1–12.
IEEE Computer Society, 2017. doi:10.1109/LICS.2017.8005103.

CSL 2021

https://doi.org/10.4230/LIPIcs.FSCD.2019.13
https://doi.org/10.1007/3-540-48959-2_17
http://arxiv.org/abs/1501.02503
https://doi.org/10.1145/3158094
https://doi.org/10.1145/3158094
https://doi.org/10.1145/2775051.2676970
http://arxiv.org/abs/2002.01287
https://doi.org/10.1051/ita:1999130
https://doi.org/10.4230/LIPIcs.FSCD.2019.18
https://doi.org/10.1007/978-3-540-32033-3_17
https://doi.org/10.1007/978-3-540-32033-3_17
https://doi.org/10.1109/LICS.2017.8005093
https://doi.org/10.1109/LICS.2017.8005093
https://doi.org/10.1145/3209108.3209157
https://doi.org/10.1109/LICS.2017.8005103

25:20 Categorifying Non-Idempotent Intersection Types

A Appendix

Bicategories in a Nutshell [3, 6]. Intuitively, a bicategory is a category with “morphisms
between morphisms”, that is, where each hom-set itself carries the structure of a category,
but the composition of morphisms is only associative up to an isomorphism, and similarly
for the identities laws. Formally, a bicategory C consists of:

a set ob(C) of objects, also called 0-cells and denoted by A,B,C, . . . ;
for all A,B ∈ ob(C), a category C(A,B); objects in C(A,B) are called 1-cells or morphisms
from A to B; while arrows in C(A,B) (between 1-cells from A to B) are called 2-cells or
2-morphisms; composition of 2-cells is generally called vertical composition;
for every A,B,C ∈ ob(C), a bifunctor

◦A,B,C : C(B,C)× C(A,B)→ C(A,C)

called horizontal composition (often the indices A,B,C in ◦A,B,C are omitted); hence,
for all 1-cells F : A → B, F ′ : A → B and G : B → C, G′ : B → C, and for all 2-cells
α : F ⇒ F ′ and β : G⇒ G′, we have

a 1-cell G ◦A,B,C F : A→ C a 2-cell β ◦A,B,C α : (G ◦A,B,C F)⇒ (G′ ◦A,B,C F ′);

for every A ∈ ob(C) a functor 1A : 1 → C(A,A); with an abuse of notation we identify
1A(?) with 1A and we call it the identity of A;
for all 1-cells F : A→ B, G : B → C and H : C → D, a family of invertible 2-cells

αH,G,F : H ◦ (G ◦ F) ∼= (H ◦G) ◦ F

expressing the associativity laws;
for every 1-cell F : A→ B, two families of invertible 2-cells

λF : 1B ◦ F ∼= F ρF : F ∼= F ◦ 1A

expressing the identity laws.
This data is subject to additional coherence axioms. A 2-category is a bicategory where the
associativity and identities are strict equalities, not only isomorphisms.

I Definition 17 (Retraction). Let D,E be 0-cells in a bicategory C. A retraction of D to E
is a couple of 1-cells i : E → D, j : D → E together with an invertible 2-cell β such that the
diagram below commute. We write E CD is there is a retraction of D to E.

E D

E

i

1E

j
β

Coends. Given a functor F : Cop × C → Set we recall that the coend is the coequalizer of
the following diagram∑

c,c′∈C
C(c′, c)× F (c, c′)⇒

∑
c∈C

F (c, c)→
∫ c∈C

F (c, c)

where the parallel arrows are given by left and right actions of F on morphisms f ∈ C(c′, c).
Since we work with coends in the category of set, we have that this coequalizer is actually
given by the quotient

∑
c∈C F (c, c)/ ∼ where the equivalence relation is generated by the

rule x ∼ y iff F (f, c′)(x) = y, F (c, f)(y) = x, for f : c′ → c.

We list the three fundamental lemmas of coend calculus [40].

G. Guerrieri and F. Olimpieri 25:21

I Lemma 18. Every cocontinuous functor preserves coends.

I Lemma 19 (Fubini [40]). Let F : Cop × C ×Dop ×D → Set be a functor. We have∫ 〈c,d〉∈C×D
F (c, c, d, d) ∼=

∫ c∈C ∫ d

F (c, c, d, d) ∼=
∫ d∈D ∫ c∈C

F (c, c, d, d).

I Lemma 20 (Yoneda Ninja [40]). Let K,H : C → Set be, respectively, a contravariant and
a covariant functor. We have the following natural isomorphisms

K(−) ∼=
∫ c∈C

K(c)× C(−, c) H(−) ∼=
∫ c∈C

H(c)× C(c,−).

Denotation under Reduction. In what follows we do not explicitly state, for readability
reasons, when we apply Lemmas 18 and 19. For ~Γ = 〈Γ1, . . . ,Γn〉 we set

⊗ ~Γ =
⊗n

i=1 Γi.

I Lemma 11 (Substitution). Let S and T be terms. There is an isomorphism of functors

ϕ : SubS,x,T ∼= JS{T/x}K~x

natural in 〈∆, a〉 ∈ ob((!Un)op × U) and such that s
(
ϕ∆,a(˜〈α1, α2, η〉)

)
= s (α1) + s (α2) .

Proof. By induction on the structure of S ∈ !Λ, via lengthy coend manipulations.
If S = x then

SubS,x,T (∆, a) =
∫ Γ0,Γ1∈!Un ∫ ~a∈!U

JxK~x(Γ0 ⊕ 〈~a〉, a)× JT !K~x(Γ1,~a)× !U(∆,Γ0 ⊗ Γ1).

By definition we have

∼=
∫ Γ0,Γ1∈!Un ∫ ~a∈!U

!Un(Γ0 ⊕ 〈~a〉, 〈〈〉, . . . , 〈〉, 〈a〉〉)× JT !K~x(Γ1,~a)× !U(∆,Γ0 ⊗ Γ1).

Then, by the structure of the product category

∼=
∫ Γ0,Γ1∈!Un ∫ ~a∈!U

!Un(Γ0, 〈〈〉, . . . , 〈〉〉)× !U(~a, 〈a〉)× JT !K~x(Γ1,~a)× !U(∆,Γ0 ⊗ Γ1).

Then, by Yoneda (Lemma 20) we have

∼=
∫ Γ1∈!Un ∫ ~a∈!U

!U(~a, 〈a〉)× JT !K~x(Γ1,~a)× !U(∆,Γ1).

Again, by Yoneda (Lemma 20),

∼=
∫ Γ1∈!Un

JT !K~x(Γ1, 〈a〉)× !U(∆,Γ1).

Then, by applying Yoneda one more time on the context Γ and by definition of the denotation
of a box we can conclude. For what concerns the size, simply notice that s (π̃) = s ([f]π̃) .

The abstraction case follows from the i.h. immediately.
We do the application, the box case being similar to it. If S = QR then

SubS,x,T (∆, a) =
∫ Γ1,Γ2

∫ ~a

JQRK~x⊕〈x〉(Γ1 ⊕ 〈~a〉, a)× JT !K~x(Γ2,~a)× !Un(∆,Γ1 ⊗ Γ2).

CSL 2021

25:22 Categorifying Non-Idempotent Intersection Types

We develop JQRK~x⊕〈x〉(Γ1 ⊕ 〈~a〉, a) :

JQRK~x⊕〈x〉(Γ1 ⊕ 〈~a〉, a) =
∫ Γ′1⊕〈~a1〉,Γ′2⊕〈~a2〉∫ ~b

JQK~x⊕〈x〉(Γ′1 ⊕ 〈~a1〉, ι(~b, a))

× JRK~x⊕〈x〉(Γ′2 ⊕ 〈~a2〉,~b)× !Un(Γ1 ⊕ 〈~a〉,Γ′1 ⊕ 〈~a1〉 ⊗ Γ′2 ⊕ 〈~a2〉).

By the structure of the product category, we have

JQRK~x⊕〈x〉(Γ1 ⊕ 〈~a〉, a) =
∫ Γ′1Γ′2 ∫ ~a1,~a2

∫ ~b

JQK~x⊕〈x〉(Γ′1 ⊕ 〈~a1〉, ι(~b, a))

× JRK~x⊕〈x〉(Γ′2 ⊕ 〈~a2〉,~b)× !Un(Γ1,Γ′1 ⊗ Γ′2)× !U(~a,~a1 ⊕ ~a2).

We apply Yoneda (Lemma 20) on Γ1 and on ~a and we get

SubS,x,T (∆, a) ∼=
∫ Γ′1Γ′2,Γ2

∫ ~b,~a1,~a2

JQK~x⊕〈x〉(Γ′1 ⊕ 〈~a1〉, ι(~b, a))× JRK~x⊕〈x〉(Γ′2 ⊕ 〈~a2〉,~b)

×JT !K~x(Γ2,~a1 ⊕ ~a2)× !Un(∆, (Γ′1 ⊗ Γ′2)⊗ Γ2).

By a simple inspection of the definition of the denotation of a box, we can rewrite it as

∼=
∫ Γ′i,Γ~ai

,Γ2
∫ ~b,~a1,~a2

JQK~x⊕〈x〉(Γ′1 ⊕ 〈~a1〉, ι(~b, a))× JRK~x⊕〈x〉(Γ′2 ⊕ 〈~a2〉,~b)× JT !K~x(Γ~a1 ,~a1)

×JT !K~x(Γ~a2 ,~a2)× !Un(,Γ2,
⊗

Γ~a1 ⊗
⊗

Γ~a2)× !Un(∆, (Γ′1 ⊗ Γ′2)⊗ Γ2).

Where, if we set ~ai = 〈ai,1, . . . , ai,ki
〉, JT K~x(Γ~ai

,~ai) =
∏
j∈ki

JT K~x(Γi,j , ai,j) and
⊗

Γ~ai
=⊗

j∈ki
Γi,j with i ∈ {1, 2}. We apply Yoneda on Γ2

∼=
∫ Γ′i,Γ~ai

∫ ~b,~a1,~a2

JQK~x⊕〈x〉(Γ′1 ⊕ 〈~a1〉, ι(~b, a))× JRK~x⊕〈x〉(Γ′2 ⊕ 〈~a2〉,~b)× JT !K~x(Γ~a1 ,~a1)

×JT !K~x(Γ~a2 ,~a2)× !Un(∆, (Γ′1 ⊗ Γ′2)⊗ (
⊗

Γ~a1 ⊗
⊗

Γ~a2)).

Now, by the symmetry of the tensor product ⊗ and by the fact that functors preserves
isomorphisms, we get

∼=
∫ Γ′i,Γ~ai

∫ ~b,~a1,~a2

JQK~x⊕〈x〉(Γ′1 ⊕ 〈~a1〉, ι(~b, a))× JRK~x⊕〈x〉(Γ′2 ⊕ 〈~a2〉,~b)× JT !K~x(Γ~a1 ,~a1)

×JT !K~x(Γ~a2 ,~a2)× !Un(,Γ2,
⊗

Γ~a1 ⊗
⊗

Γ~a2)× !Un(∆, ((Γ′1 ⊗ Γ~a1)⊗ (Γ′2 ⊗ Γ~a2)).

Now, if we apply Yoneda twice to Γ′i ⊗ Γ~ai
, we get

∼=
∫ Γ′i,Γ~ai

,∆i
∫ ~b,~a1,~a2

JQK~x⊕〈x〉(Γ1 ⊕ 〈~a1〉, ι(~b, a))× JRK~x⊕〈x〉(Γ′2 ⊕ 〈~a2〉,~b)× JT !K~x(Γ′~a1
,~a1)

×JT !K~x(Γ~a2 ,~a2)× !Un(∆,∆1 ⊗∆2)⊗ !Un(∆1,Γ′1 ⊗
⊗

Γ~a1)⊗ !Un(∆2,Γ′2 ⊗
⊗

Γ~a2).

By co-continuity and commutativity, and by applying Yoneda (Lemma 20) twice, we have

∼=
∫ ~b ∫ Γ′1,Γ~a1 ,∆1,Φ1

∫ ~a1

JQK~x⊕〈x〉(Γ′1 ⊕ 〈~a1〉, ι(~b, a))× JT !K~x(Φ1,~a1)

×!Un(Φ1,
⊗

Γ′~a1
)× Un(∆1,Γ′1 ⊗ Φ1)

×
∫ Γ′2,Γ~a2 ,∆2,Φ2

∫ ~a2

JRK~x⊕〈x〉(Γ′2 ⊕ 〈~a2〉,~b)× JT !K~x(Φ2,~a2)

×!Un(Φ2,
⊗

Γ′~a2
)× Un(∆2,Γ′2 ⊗ Φ2)× !Un(∆,∆1 ⊗∆2).

G. Guerrieri and F. Olimpieri 25:23

By definition, the former coend is just∫ ~b ∫ ∆1,∆2

SubQ,x,T (∆1, ι(~b, a))× SubR,x,T (∆2,~b)× !Un(∆,∆1 ⊗∆2).

We remark that, forgetting the equivalence relation, the built isomorphism

SubS,x,T (∆, a) ∼=
∫ ~b

SubQ,x,T (∆1, ι(~b, a))× SubR,x,T (∆2,~b)× !Un(∆,∆1 ⊗∆2)

consists of the following map
〈~a, 〈~b, 〈Γ1,Γ2, 〈〈Γ′1⊕〈~a1〉,Γ′2⊕〈~a2〉, 〈α1, α2, η1〉〉, 〈〈~Γ = 〈Γ2,1, . . . ,Γ2,len(~a)〉, ~β = 〈β1, . . . , βlen(~a)〉, η2〉〉〉, θ〉〉〉 7→

〈~b, 〈Γ′1 ⊗
⊗

Γ~a1 , α1, 〈~β~a1 , 1⊗Γ~a1
〉, 1Γ

Γ′1⊗
⊗

Γ~a1

〉, 〈Γ′2 ⊗
⊗

Γ~a2 , α2, 〈~β~a2 , 1⊗Γ~a2
〉, 1Γ′2⊗

⊗
Γ~a2
〉,

((η1 ⊗ (σ? ◦ η2)) ◦ θ) ◦ τ〉

where
θ : ∆→ Γ1 ⊗ Γ2, α1 ∈ JQK~x(Γ′1 ⊕ 〈~a1〉, ι(~b, a)) and α2 ∈ JRK~x(Γ′2 ⊕ 〈~a2〉,~b);
〈η1, f = 〈σ, ~f〉〉 : Γ1 ⊕ 〈~a〉 → Γ′1 ⊕ 〈~a1〉 ⊗ Γ′2 ⊕ 〈~a2〉 and η2 : Γ2 →

⊗ ~Γ, ~β ∈ JT K~x(Γ2,~a);
[f]~Γ = Γ~a1 ⊗ Γ~a2 and [f]~β = ~β~α1 ⊕ ~β~α2 ;
τ : (Γ′1⊗Γ′2)⊗ (

⊗
Γ~a1 ⊗

⊗
Γ~a2)→ (Γ′1⊗

⊗
Γ~a1)⊗ (Γ′2⊗

⊗
Γ~a2) is the obvious symmetry.

By definition, we have (for S = QR)

JS{T/x}K~x(∆, a) =
∫ ~b∫ ∆1,∆2

JQ{T/x}K~x(∆1, ι(~b, a))×JR{T/x}K~x(∆2,~b)×!Un(∆,∆1⊗∆2).

By i.h., we get two isomorphisms JQ{T/x}K~x(∆1, ι(~b, a)) ∼= SubQ,x,T (∆1, ι(~b, a)) and
JR{T/x}K~x(∆2,~b) ∼= SubR,x,T (∆2,~b). We have our isomorphism, since isomorphisms are
preserved by products and coends. Then we can conclude, since morphism actions do not
change size of points and we have s

(
~β
)

= s
(
~β~a1

)
+ s
(
~β~a2

)
. J

Failure of Subject Reduction with Subtyping for Polyadic Terms. In Section 1 (see
Footnote 2), we mentioned that polyadic terms [41, 48] fail dramatically subject reduction
for intersection type distributors. Here we show a counterexample. We recall the definition
of linear polyadic calculus [41] in the framework of bang calculus.

p, q ::= x | λ〈x1, . . . , xk〉.p | pq | 〈p1, . . . , pk〉 | ⊥

Terms are taken up to α-equivalence and up to linearity with respect to ⊥ (i.e., λ~x.⊥ =
p〈⊥〉 = ⊥, etc.8). The reduction →p is the contextual closure of the following base case:

(λ~x.p)~q 7→p

{
p{~q/~x} if len(~q) = len(~x)
⊥ otherwise.

Since we want to link a calculus of approximants to intersection type distributors, the first
thing to check is that the calculus satisfies subject reduction and expansion within our system

8 This is slightly different from the original definition of [41], but being up to linearity simplify calculations.

CSL 2021

25:24 Categorifying Non-Idempotent Intersection Types

R→. Let ζ = 〈~x1, . . . , ~xn〉 and ∆ = 〈~a1, . . . ,~an〉. We write ζ : ∆ for ~x1 : ~a1, . . . , ~xn : ~an. We
give the following naive type assignment:

f : a′ → a

〈〉 : 〈〉, . . . , 〈x〉 : 〈a′〉, . . . , 〈〉 : 〈〉 ` x : a
(ζi : Γi ` qi)ki=1 η : ∆→

⊗k
i=1 Γi

[η](
⊗k

i=1 ζi) : ∆ ` 〈q1, . . . , qk〉 : 〈a1, . . . , ak〉
ζ ⊕ 〈~x〉 : ∆⊕ 〈~a〉 ` p : a
ζ : ∆ ` λ~x.p : ~a⇒ a

ζ0 : Γ0 ` p : ~a⇒ a ζ1 : Γ1 ` q η : ∆→ Γ0 ⊗ Γ1

[η](ζ0 ⊗ ζ1) : ∆ ` pq : a

where in the application case the left action [η]ζ means only that the positions of variables
in ζ are rearranged in accordance with the permutation induced by the morphism η. This
is reasonable and necessary, since the morphism η can in general rearrange the position
of types. This means that if ζ = 〈~x1, . . . , ~xn〉 and η = 〈〈σ1, ~f1〉, . . . , 〈σn, ~fn〉〉 then [η]ζ =
〈[σ1]~x1, . . . , [σn]~xn〉 where [σ]〈x1, . . . , xk〉 = 〈xσ(1), . . . , xσ(k)〉 is just the left action of the
symmetry group. It is easy to see that ⊥ is not typable in the type system above.

I Example 21. We present a counter-example for the subject reduction of the former system.
Take the polyadic term p = (λx.x〈λ〈〉.y1〈〉, λ〈f〉.y2〈f〉〉)〈λ〈z1, z2〉.z1〈z2〉〉. This term clearly
reduces to ⊥, but it is typable in the former type system. Let π =

g : b′ → b

〈x〉 : 〈b′〉, 〈〉 ` x : b 〈〉 : 〈〉, 〈y1〉 : 〈〈〉 ⇒ a〉 ` λ〈〉.y1〈〉 : 〈〉 ⇒ a 〈〉 : 〈〉, 〈y1〉 : 〈〈c〉 ⇒ a〉 ` λ〈f〉.y1〈f〉 : 〈c〉 ⇒ a

〈x〉 : 〈b′〉, 〈y1, y2〉 : 〈〈〉 ⇒ a, 〈c〉 ⇒ a〉 ` x〈λ〈〉.y1〈〉, λ〈f〉.y2〈f〉〉 : a
〈y1, y2〉 : 〈〈〉 ⇒ a, 〈c〉 ⇒ a〉 ` λ〈x〉.x〈λ〈〉.y1〈〉, λ〈f〉.y2〈f〉〉 : 〈b′〉 ⇒ a

Where c = 〈〉 ⇒ a and b′ = 〈〈c〉 ⇒ a, 〈〉 ⇒ a〉 ⇒ a and b = 〈〈〉 ⇒ a, 〈c〉 ⇒ a〉 ⇒ a

the morphism g being of the shape 〈σ, 1〈〉⇒a, 1〈a〉⇒a〉 ⇒ 1 with sigma being the obvious
permutation. Consider ρ =

〈z1〉 : 〈〈c〉 ⇒ a〉 ` z1 : 〈c〉 ⇒ a 〈z2〉 : 〈c〉 ` z2 : c
〈z1, z2〉 : 〈〈c〉 ⇒ a, c〉 ` z1〈z2〉 : a
` λ〈z1, z2〉.z1〈z2〉 : 〈〈c〉 ⇒ a, c〉 ⇒ a

Now take π′ =

π...
〈y1, y2〉 : 〈〈〉 ⇒ a, 〈a〉 ⇒ a〉 ` λ〈x〉.x〈λ〈〉.y1〈〉, λ〈f〉.y2〈f〉〉 : 〈b′〉 ⇒ a

ρ
...

` λ〈z1, z2〉.z1〈z2〉 : b′

〈y1, y2〉 : 〈〈〉 ⇒ a, 〈a〉 ⇒ a〉 ` p : a

The term p reduces to ⊥. Indeed,

p = (λx.x〈λ〈〉.y1〈〉, λ〈f〉.y2〈f〉〉)〈λ〈z1, z2〉.z1〈z2〉〉
→p (λ〈z1, z2〉.z1〈z2〉)〈λ〈〉.y1〈〉, λ〈f〉.y2〈f〉〉
→p (λ〈〉.y1〈〉)〈λ〈f〉.y2〈f〉〉 →p ⊥

Therefore, p→∗p ⊥ and p is typable, while ⊥ it is not. The problem relies completely in
the variable rule: the subtyping feature of the system is not detected by the syntax of the
standard polyadic calculus. If we want to find an appropriate term language for our system,
whose elements are also approximants of ordinary bang terms, we need to take seriously the
qualitative information produced by the subtyping.

The Alternating-Time µ-Calculus with Disjunctive
Explicit Strategies
Merlin Göttlinger
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
merlin.goettlinger@fau.de

Lutz Schröder
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
lutz.schroeder@fau.de

Dirk Pattinson
The Australian National University, Canberra, Australia
dirk.pattinson@anu.edu.au

Abstract
Alternating-time temporal logic (ATL) and its extensions, including the alternating-time µ-calculus
(AMC), serve the specification of the strategic abilities of coalitions of agents in concurrent game
structures. The key ingredient of the logic are path quantifiers specifying that some coalition of
agents has a joint strategy to enforce a given goal. This basic setup has been extended to let
some of the agents (revocably) commit to using certain named strategies, as in ATL with explicit
strategies (ATLES). In the present work, we extend ATLES with fixpoint operators and strategy
disjunction, arriving at the alternating-time µ-calculus with disjunctive explicit strategies (AMCDES),
which allows for a more flexible formulation of temporal properties (e.g. fairness) and, through
strategy disjunction, a form of controlled non-determinism in commitments. Our main result
is an ExpTime upper bound for satisfiability checking (which is thus ExpTime-complete). We
also prove upper bounds QP (quasipolynomial time) and NP ∩ coNP for model checking under
fixed interpretations of explicit strategies, and NP under open interpretation. Our key technical
tool is a treatment of the AMCDES within the generic framework of coalgebraic logic, which in
particular reduces the analysis of most reasoning tasks to the treatment of a very simple one-step
logic featuring only propositional operators and next-step operators without nesting; we give a new
model construction principle for this one-step logic that relies on a set-valued variant of first-order
resolution.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Computing
methodologies → Multi-agent systems

Keywords and phrases Alternating-time logic, multi-agent systems, coalitional strength

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.26

Funding Merlin Göttlinger : Work performed under the DFG Project Reconstructing Arguments
from Noisy Text (RANT), SCHR 1118/14-1 / SCHR 1118/14-2.
Lutz Schröder : Work performed under the DFG Project RANT, SCHR 1118/14-1 / SCHR 1118/14-2.

1 Introduction

Alternating-time temporal logic (ATL) [1] extends computation tree logic (CTL) with path
quantifiers 〈〈A〉〉 read “coalition A of agents has a (long-term) joint strategy to enforce”. It
is embedded into the alternating-time µ-calculus (AMC), which instead of path quantifiers,
features nested least and greatest fixpoints alongside the next-step coalition modalities
〈〈A〉〉© (“A can enforce in the next step”). The AMC is strictly more expressive than ATL,
e.g. supports fairness constraints.

© Merlin Göttlinger, Lutz Schröder, and Dirk Pattinson;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 26; pp. 26:1–26:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2251-8519
mailto:merlin.goettlinger@fau.de
https://orcid.org/0000-0002-3146-5906
mailto:lutz.schroeder@fau.de
https://orcid.org/0000-0002-5832-6666
mailto:dirk.pattinson@anu.edu.au
https://doi.org/10.4230/LIPIcs.CSL.2021.26
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 The Alternating-Time µ-Calculus with Disjunctive Explicit Strategies

Coalitional power in ATL and the AMC is measured without any restrictions on the moves
chosen by the opponents. There has been interest in extensions of ATL where the power of
the opponents can be constrained, e.g. by committing some of them to a particular strategy,
allowing for statements such as “no matter what the other network actors do, Alice and
Bob can collaborate to exchange keys via Server S provided that S adheres to the protocol”.
One such extension is provided in ATL with explicit strategies (ATLES) [29], which has path
quantifiers 〈〈A〉〉ρ additionally parametrized over a commitment ρ of some agents to given
named strategies, read “provided that the commitments ρ are kept, A can enforce . . . ”. This
extension has substantial impact on expressiveness; e.g. unlike in basic ATL, the semantics
of ATLES over history-free strategies differs from the one over history-dependent strategies.

Restricting opponents to fixed moves is, of course, quite drastic; as noted already in the
conclusion of Walther [28, Chapter 4], it is desirable to allow for more permissive restrictions
where the opponents can still pick among several designated moves, as in “Alice has a
strategy to get her print job executed if Bob either cancels his large print job or splits it into
several smaller ones”. In the present paper, we introduce such an extension with disjunctive
commitments. Additionally, we include full support for least and greatest fixpoint operators,
with associated gains in expressivity analogous to the extension from ATL to the AMC. We
thus arrive at the alternating-time µ-calculus with disjunctive explicit strategies (AMCDES).

Our main result on this logic is that satisfiability checking remains only ExpTime-
complete (i.e. no harder than the AMC, or in fact than basic ATL or even CTL). We note
also that (following a distinction made also in work on ATLES [29]) model checking is in
quasipolynomial time QP and in NP∩coNP under fixed interpretation of explicit strategies
(matching the best known bounds for the AMC and in fact even the plain relational µ-calculus),
and in NP under open interpretation; these results are obtained by fairly straightforward
adaptation of results on the AMC [11], and therefore discussed in full only in the appendix.
We obtain our results by casting the AMCDES as an instance of coalgebraic logic [5], a
unifying framework for modal and temporal logics. The driving principle of coalgebraic logic
is to reduce reasoning tasks to the analysis of a simple one-step logic, whose formulae employ
only Boolean connectives and a single layer of next-step modalities [22, 4, 11]. In particular,
the automata- and game-theoretic machinery needed for the treatment of fixpoint logics is
entirely encapsulated in results on the coalgebraic µ-calculus [4, 11]. The actual technical
work then lies in providing algorithms, axiomatizations, and model constructions for the
one-step logic of AMCDES, still posing substantial challenges due to nested quantification
over strategies. The model construction principle for the one-step logic that we employ is
based on a set-valued variant of first-order resolution that we introduce here, along with
an associated notion of equationally complete model that we use to move from (generally
infinite) Herbrand universes to finite models; this principle is the key to supporting strategy
disjunction.

Related Work. Many ATL extensions are concerned with commitments of agents to
strategies. Besides ATL with explicit strategies (ATLES), this includes, e.g., counter-
factual ATL [26], which differs from ATLES by making commitments irrevocable. ATL
with actions (ATL-A) [30] has per-agent disjunctive commitments (while the AMCDES
allows disjunctions over joint commitments). ATL-A admits polynomial-time model checking;
satisfiability checking is not considered (it would be somewhat simpler than in the present
setting, as in ATL-A all actions are named, and hence known in advance). ATL with explicit
actions (ATLEA) [12] features commitments of agents to a given action at only the current
world, and has a fairly straightforward satisfiability-preserving embedding into the AMCDES.

M. Göttlinger, L. Schröder, and D. Pattinson 26:3

Various forms of strategy logic [3, 15, 16] possibly contain ATL∗ with disjunctive explicit
strategies (but presumably not the AMCDES or even the AMC, as they lack fixpoint op-
erators); they tend to be computationally much harder than the AMCDES. Goranko and
Ju [7] discuss various forms of conditional strategic modalities, one of which (Odd) is similar
in spirit to our strategy disjunction in that it restricts the moves of the opposition, however
not to given named moves but rather to moves enforcing a given goal; their main technical
result is a Hennessy-Milner style expressiveness theorem. De Nicola and Vandraager [18]
consider disjunction of named actions in labelled transition systems, which in that setting
can be encoded into next-modalities for single actions using logical disjunction.

Organization. We introduce the syntax and the semantics of the alternating-time µ-calculus
with disjunctive explicit strategies (AMCDES) in Section 2. After recalling the requisite
principles of coalgebraic logic in Section 3 we introduce the method of set-valued first-order
resolution in Section 4. We illustrate these methods on the basic AMC in Section 5, and
establish our main results on satisfiability checking for the AMCDES in Section 6.

2 AMC With Disjunctive Explicit Strategies

We proceed to introduce the syntax and semantics of the alternating-time µ-calculus with
disjunctive explicit strategies (AMCDES). As indicated in Section 1, the logic is inspired by
ATL with explicit strategies (ATLES) [29]. We deviate from the ATLES syntax in that we
express (disjunctive) commitments of agents by means of names for strategies in the syntax.
Also, we shorten the ATL syntax for next-step operators from 〈〈C〉〉© (“C can enforce in the
next step that . . . ”) to [C] as in coalition logic [20]. We thus arrive at modalities [C,O] where
O is a set of named joint strategies for agents in a further coalition D of agents restricted
in their choice of strategies, disjoint from C, read “if the agents in D use one of the joint
strategies in O, then C can enforce that . . . ”. The dual modality 〈C,O〉 is read “even if the
agents in D are limited to the joint strategies in O, C cannot prevent that . . . ”. Formally,
our syntax is defined as follows.

I Definition 2.1. The syntax of the AMCDES is parametrized over a set At of (propositional)
atoms, V of variables, a finite set Σ of agents (for technical simplicity, assumed to be linearly
ordered), and sets Mj of explicit strategies (i.e. names for strategies) per agent j; we fix
these data from now on. A coalition is a subset of Σ. We also (and mainly) refer to explicit
strategies as explicit moves. We write MD =

∏
j∈DMj for the set of joint explicit moves of

a coalition D. Formulae φ, ψ are then given by the grammar

φ, ψ ::= p | ¬p | x | > | ⊥ | φ ∧ ψ | φ ∨ ψ | [C,O]φ | 〈C,O〉φ | µx. φ | νx. φ

where x ∈ V , p ∈ At, and C ⊆ Σ, i.e. a coalition. We generally write C = Σ \ C. Moreover,
O ⊆MD is a set of joint explicit moves, called a disjunctive explicit strategy (or move), for
some coalition D, disjoint from C, that we denote by Ag(O). We call a modality [C,O] or
〈C,O〉 a grand coalition modality if C ∪Ag(O) = Σ, and non-disjunctive if |O| = 1, in which
case we often omit set brackets and just write O as its single element. We restrict grand
coalition modalities to be non-disjunctive (cf. Remark 2.8). As usual, µ and ν take least
and greatest fixpoints, respectively. Negation ¬ is not included but can be defined in the
standard way, taking negation normal forms. The AMC with explicit strategies (AMCES) is
the fragment of the AMCDES allowing only non-disjunctive modalities.

CSL 2021

26:4 The Alternating-Time µ-Calculus with Disjunctive Explicit Strategies

The AMCDES thus subsumes both the standard AMC [1] (with [C] corresponding to [C,O]
with Ag(O) = ∅) and the history-free variant of ATLES [29] (which as we will detail in
Remark 2.7 is the variant to which previous technical results refer).

I Example 2.2. The formula indicated in the introduction,

[Alice, (Bob : {cancelPrint, splitPrint})] printed

says (using hopefully self-explanatory human-readable syntax for disjunctive explicit moves)
that “Alice has a strategy to have her print job executed, provided that Bob opts to either
cancel his print job or to split it into smaller jobs”. The fixpoint formula

νx.¬corrupted ∧ [ECC, (Env : {0-flips, 1-flip})]x

expresses that ECC memory can ensure that the stored data is not corrupted provided that
in each cycle the environment flips either one or zero bits. The formula

νx.¬intrusion ∧ 〈Attacker, (IPS : {dropPackage, blockIP})〉x

expresses that “No matter what an attacker tries, the intrusion prevention system can always
drop suspicious packets or block his IP address to prevent illegitimate access to company
resources”.

I Remark 2.3. One can encode an extension ATLDES of ATL with disjunctive explicit
strategies into the AMCDES, e.g. defining 〈〈C,O〉〉(Gφ) “C can enforce that φ always holds,
provided that Ag(O) are committed to play strategies in O” as

〈〈C,O〉〉(Gφ) := νx. φ ∧ [C,O]x.

The AMCDES is more expressive than ATLDES in this sense; e.g. for C = {client} and
O = (server : {protocol, recover}) the formula νx. µy. (granted ∧ [C,O]x) ∨ [C,O] y says that
“client can enforce that his requests are granted infinitely often, provided that server always
either keeps to the protocol or immediately recovers when failures occur” (a specification that
may, of course, hold or fail in a given system).

Note that the definition of 〈〈C,O〉〉 allows Ag(O) to choose their joint move from O

anew in each step, like in the fixpoint formulae of Example 2.2, which in fact belong to
the ATLDES fragment of the AMCDES. To illustrate that this is really the reasonable
choice of a semantics for ATLDES (as opposed to letting O choose only in the beginning
of a play), consider a situation where players K (Kangaroo) and M (Marc-Uwe) [14] play
rock-paper-scissors (R, P , S) for an indefinite number of rounds, say to determine daily who
does the dishwashing, until someone quits. Let the model include memory for the moves in
the previous round, and atoms p “at least two rounds have been played” and k “K won the
previous round”. Consider the ATL with disjunctive explicit strategies (ATLDES) formula

rigged = 〈〈K, (M : {R,P, S})〉〉G(p→ k)

“K wins all rounds after the first if M keeps playing”. In ATLDES, rigged does not hold in
the model, as one would expect. If M could make his choice of R,P, S only once (in reality,
sadly, he does just that [13]), then rigged would in fact hold.

We proceed to define the semantics, which is based on concurrent game structures [1] extended
with interpretations of explicit moves.

M. Göttlinger, L. Schröder, and D. Pattinson 26:5

I Notation 2.4. For k ∈ N, we write [k] = {1, . . . , k}. For C ⊆ Σ and a tuple (kj)j∈C ∈ NC ,
we put [kC] =

∏
j∈C [kj]. Given m ∈ [kC] and D ⊆ C, we write m|D for the restriction of m

to an element of [kD]. We write n v m if n = m|Ag(n), and n =u m if n|Ag(n)∩Ag(m) =
m|Ag(n)∩Ag(m). We write PX for the powerset of a set X.

I Definition 2.5. A concurrent game structure with explicit strategies (CGSES) is a tuple
(W,k, v, f, ι) consisting of

a finite set W of states,
for each agent j and each state w, a natural number kwj ≥ 1 determining the set of moves
available to agent j at state w to be [kwj],
for each state w ∈W ,

a set v(w) ⊆ At of propositional atoms true at w,
an outcome function fw : [kwΣ]→W , and
for each agent j, a move interpretation ιwj : Mj → [kwj].

For a joint explicit move m ∈MD, we just write ιw(m) for the joint move with components
ιwj (mj) for j ∈ D. We use function image notation ιw[O] to denote the result of applying ιw
to each joint move in the set O. The semantics of the AMCDES is then defined by assigning
to each formula φ an extension JφKσS ⊆ Q, which depends on a CGSES S = (W,k, v, f, ι) and
a valuation σ : V → PW . The propositional cases are standard (e.g. JpKσS = {w ∈W | p ∈
v(w)}, JxKσS = σ(x), J>KσS = W , and Jφ ∧ ψKσS = JφKσS ∩ JψKσS). The remaining clauses are

J[C,O]φKσS = {w ∈W | ∃mC ∈ [kwC].∀mΣ ∈ [kwΣ].
(mC v mΣ ∧mΣ|Ag(O) ∈ ιw[O])⇒ fw(mΣ) ∈ JφKσS}

J〈C,O〉φKσS = {w ∈W | ∀mC ∈ [kwC].∃mΣ ∈ [kwΣ].
mC v mΣ ∧mΣ|Ag(O) ∈ ιw[O] ∧ fw(mΣ) ∈ JφKσS}

Jµx. φ(x)KσS =
⋂
{B ⊆W | Jφ(x)Kσ[x 7→B]

S ⊆ B}

Jνx. φ(x)KσS =
⋃
{B ⊆W | B ⊆ Jφ(x)Kσ[x 7→B]

S }

where σ[x 7→ B] denotes σ updated to return B on input x; and J〈C,O〉φKσS = J¬ [C,O]¬φKσS .
That is, µ and ν take least and greatest fixpoints according to the Knaster-Tarski fixpoint
theorem. At a state w, [C,O]φ holds if the agents in C have a joint move such that a state
satisfying φ is reached no matter what the other agents do, as long as the agents in Ag(O)
play one of the joint moves in O. Dually, 〈C,O〉φ holds at w if whatever the agents in C
do, the other agents have a joint move that leads to an outcome in φ and in which the joint
move of Ag(O) is in O.

I Remark 2.6. In the modal operators [C,O], Ag(O) is in opposition to C. One may envision
an alternative setup where Ag(O) is instead made a part of C. However, then [C,O]φ would
become equivalent to

∨
m∈O [C, {m}]φ, hence expressible already in ATLES. We thus opt for

our present more expressive version where Ag(O) and C are disjoint. Note that [C,O]φ then
is not equivalent to

∧
m∈O [C, {m}]φ: The latter formula allows C to use different moves

against each m ∈ O, while in [C,O]φ, the same joint move of C must work against every
m ∈ O.

I Remark 2.7. The above semantics uses history-free strategies (i.e. ones that look only at
the present state, not the history of previously visited states). While basic ATL is insensitive
to whether it is interpreted over history-free or history-dependent strategies [1], ATLES
does distinguish these semantics [29]. Although this may not be always apparent from the
phrasing, all technical results on ATLES in Walther et al. [29] are meant to apply to the

CSL 2021

26:6 The Alternating-Time µ-Calculus with Disjunctive Explicit Strategies

semantics over history-free strategies only1 (in particular the fixpoint unfolding axioms [29,
Figure 1] clearly hold only over the history-free semantics). Note that the basic AMC, which
the AMCDES extends, similarly is interpreted over history-free strategies (and nevertheless
includes ATL∗, which is history-dependent [1]).

I Remark 2.8. The interdiction of proper strategy disjunction in grand coalition modalities
is needed (only) for the upper bound on satisfiability checking (Section 6); our results on
model checking (Section 2) would actually not need this restriction. The fragment we term
AMCES in Definition 2.1 does include grand coalition modalities with (non-disjunctive)
explicit strategies. It is hence more permissive on these modalities than the original version
of ATLES [29], where the set of agents is made variable, which for purposes of satisfiability
is equivalent to excluding grand coalition modalities.

We note that the axiomatization we present later and its completeness proof become
much simpler if one excludes the grand coalition completely (like, effectively, in ATLES):
E.g. in the rule (C) for basic coalition logic / ATL (Section 5), the literals 〈Σ〉 cj disappear;
and in the proof of one-step tableau completeness (Theorem 5.1), one can, in this simplified
setting, just use a single move ⊥ as witness for all 〈Cj〉 cj in Ξ, using non-determinism to
ensure satisfaction of the 〈Cj〉 cj . This is discussed in detail in Appendix B.

Model Checking

Walther et al. [29] consider two variants of the model checking problem that differ on whether
the interpretation of explicit strategies is considered part of the model (fixed) or to be
found by the model checking algorithm (open). They show for ATLES that if strategies are
restricted to be history-free, then the problem is P-complete under fixed interpretation, and
NP-complete under open interpretation, with the upper bound being by straightforward
guessing of history-free strategies. The complexity for the history-dependent variant remains
open.

We obtain upper bounds for model checking in the AMCDES using generic results on
the coalgebraic µ-calculus [11]:

I Theorem 2.9. Model checking for the full AMCDES is in NP ∩ coNP as well as in QP
under fixed interpretation of explicit strategies, and in NP under open interpretation.

We defer a summary of the requisite results in coalgebraic logic and the proof of Theorem 2.9
to Appendix A, as the details are mostly by simple adaptation from the AMC [11].

3 Preliminaries: Coalgebraic Logic

We will employ the machinery of coalgebraic logic to obtain our main complexity results; we
recall basic definitions and tools, using the standard AMC as our running example.

Coalgebraic logic [5] is a uniform framework for modal and temporal logics interpreted
over state-based systems. It parametrizes the semantics of logics over the type of such
systems, encapsulated in a functor F on the category of sets. Such a functor assigns to each
set X a set FX and to each map f : X → Y a map Ff : FX → FY , preserving identities
and composition. We think of the elements of FX as structured collections over X. Systems
are then F -coalgebras, i.e. pairs (W,γ) consisting of a set W of states and a transition map

1 Personal communication with the authors

M. Göttlinger, L. Schröder, and D. Pattinson 26:7

γ : W → FW , which thus assigns to each state a structured collection of successors. Our
leading example is the functor G that maps a set X to the set

GX = {((kj)j∈Σ, f) | (kj) ∈ NΣ
≥1, f : (

∏
j∈Σ[kj])→ X}

of one-step games over X. G-Coalgebras are essentially concurrent game structures (CGSs) [1]
without the interpretation of propositional atoms, as they assign to each state numbers kj of
available moves for the agents and an outcome function f . Propositional atoms are covered
by extending G to GpX = PAt×GX; although the logic becomes trivial without propositional
atoms, we mostly elide their explicit treatment, which is straightforward and can be dealt
with using fusion results in coalgebraic logic [23]. To obtain CGSESs, we extend G to the
functor GES with GESX consisting of one-step games with explicit strategies ((kj), f, ι) over X,
where ((kj), f) is a one-step game over X and ιj : Mj → [kj] (for j ∈ Σ) interprets explicit
strategies; we use the same notation for ι as introduced for ιw in Section 2.

The syntax of coalgebraic logics is then parametrized over the choice of a set Λ of (next-
step) modal operators with assigned finite arities; nullary modalities are just propositional
atoms. For readability, we assume in the technical treatment that all modalities are unary.
We require that for every ♥ ∈ Λ there is a dual operator ♥ ∈ Λ. The coalgebraic µ-calculus [4]
over Λ then has formulae φ, ψ given by the grammar

φ, ψ ::= > | ⊥ | x | φ ∧ ψ | φ ∨ ψ | ♥φ | µx. φ | νx. φ

where x ranges over a reservoir V of fixpoint variables, and ♥ over Λ. The operators µ and ν
take least and greatest fixpoints, respectively. Again, negation is definable. We assume a
representation of the modalities in Λ as strings over some alphabet, with an ensuing notion
of representation size for formulae and modalities.

Over F -coalgebras, a modal operator ♥ ∈ Λ is interpreted by assigning to it a predicate
lifting J♥K, which is a family of maps J♥KX , indexed over all sets X, that assign to each
subset Y ⊆ X a subset J♥KX(Y) ⊆ FX, subject to a naturality condition. To enable fixpoint
formation, we require J♥KX to be monotone w.r.t. subset inclusion. Moreover, we require
predicate liftings to respect duals, i.e. J♥KX(Y) = FX \ J♥KX(X \ Y). Given an F -coalgebra
C = (W,γ) and a valuation σ : V → PW , the semantic clauses defining the extension
JφKσC ⊆W of a formula φ are then the standard ones for the Boolean connectives; µ and ν
take least and greatest fixpoints in the same way as made explicit for the AMCDES in
Section 2; and

J♥φKσC = γ−1[J♥KW (JφKσC)].

We fix the data F , Λ, J♥K for the remainder of this section.

I Example 3.1. The AMC is cast as a coalgebraic µ-calculus by interpreting the modality [C]
over the functor G by the predicate lifting

J[C]KX(Y) = {((kj), f) ∈ GX | ∃mC ∈ [kC].∀m ∈ [kΣ].mC v m⇒ f(m) ∈ Y }

(using notation introduced in Section 2). The more general modalities [C,O] of AMCDES
are interpreted by a predicate lifting that correspondingly lifts a predicate Y on X to the set
of all one-step games with explicit strategies ((kj), f, ι) ∈ GESX such that there exists a joint
move mC ∈ [kC] such that f(m) ∈ Y for all m ∈ [kΣ] such that mC v m and ι(n) v m for
some n ∈ O.

CSL 2021

26:8 The Alternating-Time µ-Calculus with Disjunctive Explicit Strategies

Satisfiability checking in coalgebraic logics can be based on the provision of a complete
set of tableau rules for the next-step modal operators [22, 4]. The basic example of such a
rule is the tableau rule � a1, . . . ,� an,♦ b/a1, . . . , an, b for standard modal logic, which says
essentially that in order to satisfy � a1 ∧ · · · ∧� an ∧ ♦ b, we need to generate a successor
state satisfying a1 ∧ · · · ∧ an ∧ b. Formal definitions are as follows.

I Definition 3.2 (One-step tableau rules). Fix a supply V of (propositional) variables, serving
as placeholders for formulae in rules. A (monotone) one-step (tableau) rule has the form

Φ
Θ1 | · · · | Θn

(n ≥ 0)

where the conclusions Θ1, . . . ,Θn are finite subsets of V, read as finite conjunctions, and the
premiss Φ is a finite subset of the set Λ(V) = {♥ a | ♥ ∈ Λ, a ∈ V} of modal atoms, also read
conjunctively; additionally, we require that Φ mentions each variable at most once, and the Θi

mention only variables occurring in Φ. Given a set X and a PX-valuation τ : V→ PX, we
interpret such a Θi as JΘiKτ =

⋂
a∈Θi τ(a), and Φ as JΦKτ =

⋂
♥ a∈Φ J♥KX(τ(a)) ⊆ FX.

The rule Φ/Θ1 | · · · | Θn is one-step tableau sound if JΘiKτ 6= ∅ for some i whenever
JΦKτ 6= ∅. Let R be a set of one-step tableau rules, closed under injective renaming of
variables. Then R is one-step tableau complete if the following condition holds: For all X,
τ : V → PX, and Ξ ⊆ Λ(V), whenever for each rule Φ/Θ1 | · · · | Θn ∈ R such that Φ ⊆ Ξ,
we have JΘiKτ 6= ∅ for some i, then JΞKτ 6= ∅.

We will give one-step tableau sound and complete sets of rules for the AMCDES in Section 6.
To obtain complexity results, rule sets formally need to be ExpTime-tractable, meaning that
rule matches are encodable as strings over some alphabet such that all rule matches to a
given set of formulae can be represented by polynomially sized codes and moreover basic
operations on codes (well-formedness check, check for rule matching, access to conclusions)
can be performed in exponential time [22, 4]; we refrain from elaborating details, as all rule
sets we consider here will be clearly computationally harmless. The main benefit that we
draw from these rule sets is the following generic upper complexity bound.

I Theorem 3.3 (Satisfiability checking [4]). If a coalgebraic µ-calculus admits an ExpTime-
tractable one-step tableau complete set of one-step tableau sound rules, then its satisfiability
problem is in ExpTime.

In the algorithm underlying the above theorem, one-step rules combine with standard tableau
rules for propositional and fixpoint operators. The arising tableaux need to be checked
for bad branches (where least fixpoints are unfolded indefinitely) using dedicated parity
automata, which combine with the tableau to form the tableau game, a parity game that is
won by Eloise iff the target formula is satisfiable.

4 Set-Valued First-Order Resolution

For use in completeness proofs of modal rules, we next introduce set-valued first-order
resolution, an adaptation of the standard first-order resolution method [6] to a logic of
outcome models G = ((Sj)j∈Σ, f,W, J−K) where the Sj are sets and W is a finite set, J−K
interprets sorted algebraic operations over the Sj , and f :

(∏
j∈Σ Sj

)
→W is an outcome

function. One-step games in GW are (operation-free reducts of) outcome models where the Sj
are finite; for the time being, we allow infinite Sj for readability, explaining in the proof
sketches in Sections 5 and 6 how finiteness can be regained. Formulae of set-valued first-order

M. Göttlinger, L. Schröder, and D. Pattinson 26:9

logic are clause sets formed over literals of the form A(t̄) where A ⊆W and t̄ is an Σ-tuple of
terms (i.e. a clause is a finite set of literals, read disjunctively, and a clause set is a finite set of
clauses, read conjunctively). Terms live in a sorted setting with one sort j (interpreted as Sj)
for each agent j, and the j-th term in t̄ has sort j. Terms are built from sorted variables and
function symbols with given sort profiles (e.g. g : 1× 0→ 2 takes moves of agents 1 and 0,
and produces a move of agent 2) in the standard way, ensuring well-sortedness. Function
symbols are interpreted as sorted functions on the Sj , respecting the sort profile; this induces
an interpretation of (tuples of) terms depending on sort-respecting valuations of the variables
as usual. We write Jt̄Kη for the interpretation of a tuple t̄ of terms under a valuation η. An
outcome model G as above satisfies a literal A(t̄) under a valuation η (notation: G, η |= A(t̄))
if f(Jt̄Kη) ∈ A, and G satisfies a clause Γ under η (notation: G, η |= Γ) if G, η |= A(t̄) for
some literal A(t̄) in Γ. Finally, G satisfies a clause Γ (notation: G |= Γ) if G, η |= Γ for every
valuation η. A clause set is satisfiable if there exists an outcome model that satisfies all its
clauses. We will generate clauses from modal atoms in Λ(V) (Definition 3.2); e.g. given a
PW -valuation τ : V→ PW , modalized atoms [C] a and 〈C〉 a induce singleton clauses of the
form

{τ(a)(eC , xC)} (for [C] a) (1)
{τ(a)(xC , gC(xC))} (for 〈C〉 a) (2)

respectively, where xC , xC are tuples of variables (implicitly universally quantified, and
representing moves for the agents in C and C, respectively); eC is a family of Skolem constants
witnessing the ability of C to force a; and gC is a family of Skolem functions producing
countermoves gC(xC) for the agents in C that keep C from enforcing ¬a using xC . Of course
these symbols are fresh so that clauses induced by different modalized atoms have disjoint
sets of function symbols and variables, which we will later distinguish via superscripts in
proofs.

We implicitly normalize clauses to mention each tuple of terms at most once (rewriting
A(t̄), B(t̄) into (A ∪B)(t̄)), and operate on clauses using the (set-valued) resolution rule

(SR) Γ, A(t̄) B(ū),∆
Γσ, (A ∩B)(t̄σ),∆σ

where σ is the most general unifier (mgu) of t̄ and ū, with variables in the premises made
disjoint by suitable renaming; as usual, we write “,” for union of clauses and omit set brackets
around singleton clauses (so Γ, A(t̄) is shorthand for Γ ∪ {A(t̄)}). A clause is blatantly
inconsistent if all its literals are of the form ∅(t̄). A clause set φ is blatantly inconsistent if it
contains a blatantly inconsistent clause, and inconsistent if a blatantly inconsistent clause
can be derived from it using the resolution rule; otherwise, φ is consistent.

Recall that unification can fail either due to a clash, i.e. when terms with distinct head
symbols need to be unified, or at the occurs check, which happens when a variable needs to
be unified with a term that contains it. In particular, this happens in clauses (2) associated
to diamonds: E.g. the modal atoms 〈{0}〉 a and 〈{1}〉 b generate clauses {τ(a)(x0, g

1
1(x0))}

and {τ(b)(g2
0(x1), x1)}, whose (tuples of) argument terms fail to unify since no substitution

solves x0 = g2
0(g1

1(x0)).
Set-valued propositional resolution in set-valued propositional logic simplifies the above

setup by replacing tuples t̄ of terms in literals A(t̄) with elements y of some index set Y ;
models are then just functions f : Y → W , and f satisfies a literal A(y) if f(y) ∈ A. The
resolution rule is just like the above but of course does not involve unification and substitution,
i.e. just derives Γ, (A ∩B)(y),∆ from Γ, A(y) and B(y),∆.

CSL 2021

26:10 The Alternating-Time µ-Calculus with Disjunctive Explicit Strategies

I Theorem 4.1 (Soundness and completeness of set-valued resolution). A clause set in
set-valued propositional (first-order) logic is satisfiable iff it is consistent under set-valued
propositional (first-order) resolution.

Proof sketch. Soundness (“only if”) is clear (see Appendix B). Completeness (“if”) of the
propositional variant depends on W being finite. It proceeds via maximally consistent clause
sets (MCS) and a Hintikka lemma stating in particular that an MCS containing (A ∪B)(y)
must also contain one of A(y), B(y). Completeness of the first-order variant is by adaptation
of the completeness proof for standard first-order resolution, going via Herbrand models (i.e.
models having the set of ground terms as the carrier set) and reduction to completeness of
set-valued propositional resolution. J

Of course, the Herbrand models constructed in the proof of Theorem 4.1 are in general
infinite. For purposes of constructing finite models, we identify a property of “sufficient
completeness” of a model for a set of terms.

I Definition 4.2. A set T of (tuples of) terms is closed under unification if whenever t, s ∈ T
are unifiable and σ is an mgu of t, s, then uσ ∈ T for every u ∈ T .

I Remark 4.3. If T is closed under unification, then T is in particular closed under injective
renaming of variables: For u ∈ T , every injective renaming σ is an mgu of u, u, so that
uσ ∈ T .
We will treat tuples of terms like terms in the following, in particular mentioning equa-
tions between tuples of terms and unifiers of such equations; this is to be understood via
componentwise equality in the evident sense.

I Definition 4.4. A solution of an equation t = s in an outcome model G is a valuation η
such that Jt̄Kη = Js̄Kη in G. Let T be a set of tuples of terms. We say that G is T -equationally
complete if whenever an equation t̄ = s̄ with t̄, s̄ ∈ T has a solution in G, then t̄, s̄ are
unifiable, and the mgu σ of t̄, s̄ is a most general solution of t̄ = s̄ in G, i.e. every solution η
of t̄ = s̄ in G has the form η(x) = Jσ(x)Kη′ for some valuation η′; we then say briefly that η
factorizes through σ.

I Theorem 4.5. Let T be a set of tuples of terms that is closed under unification, and
let G be T -equationally complete. Let φ be a clause set such that t̄ ∈ T for every literal B(t̄)
occurring in φ. If φ is consistent under set-valued first-order resolution, then φ is satisfiable
over G.

Proof. By completeness of set-valued propositional resolution (Theorem 4.1), it suffices to
show that the clause set φG consisting of all instances over G of clauses in φ is consistent
under set-valued propositional resolution. Formally, an instance JΓKη over G of a clause Γ is
induced by an A-valuation η, and given as

JΓKη = {B(Jt̄ Kη) | B(t̄) ∈ Γ}.

Since T is closed under unification, we can assume w.l.o.g. that φ is closed under set-valued
first-order resolution (since all terms that appear when closing φ under resolution remain
in T); then it suffices to show that φG is closed under set-valued propositional resolution,
since φ and, hence, φG do not contain blatantly inconsistent clauses.

So let Γ, A(t̄) and B(s̄),∆ be clauses in φ, with variables made disjoint. By the latter
restriction, resolvable instances of these clauses in G can be assumed to use the same valuation;
so let η be a valuation such that Jt̄Kη = Js̄Kη. Then in particular t̄ = s̄ is solvable in G. Since

M. Göttlinger, L. Schröder, and D. Pattinson 26:11

t̄, s̄ ∈ T , it follows by T -equational completeness of G that t̄, s̄ are unifiable, hence have an
mgu σ, and that σ is a most general solution of t̄ = s̄ in G. This implies that η has the
form η(x) = Jσ(x)Kη′ for some A-valuation η′. Thus, the resolvent JΓ, (A ∩B)(t̄),∆Kη of
the two instances has the form JΓσ, (A ∩B)(t̄σ),∆σKη′, and hence is in φG as required since
Γσ, (A ∩B)(t̄σ),∆σ is in φ by closure of φ under resolution. J

5 The AMC, Coalgebraically

To illustrate the use of one-step tableau rules, we briefly indicate how to obtain the ExpTime
upper bound for the AMC by Theorem 3.3. The requisite functor G and the associated
predicate liftings have been recalled in Section 3. We recall the known rule set [22, 4]:

(CD) [D1] a1, . . . , [Dα] aα
a1, . . . , aα

(C) [D1] a1, . . . , [Dα] aα, 〈E〉 b, 〈Σ〉 c1, . . . , 〈Σ〉 cβ
a1, . . . , aα, b, c1, . . . , cβ

where for each j, k, Dj ∩Dk = ∅ and Dj ⊆ E. Soundness of these rules is straightforward
(they say in particular that disjoint coalitions can combine their abilities and that coalitions
inherit the abilities of subcoalitions); for illustration, we show one-step tableau completeness
using set-valued resolution (Section 4), alternative to proofs in the literature [27, 8, 21].

I Theorem 5.1 (One-step tableau completeness). The rules (C), (CD) are one-step tableau
complete w.r.t. AMC.

By Theorem 3.3, this implies the known (tight) ExpTime upper bound for satisfiability
checking in the AMC [21].

Proof. As indicated above, we present a proof producing infinite sets of moves in one-
step games, and then discuss how finiteness of move sets is regained using the notion of
T -equationally complete (finite) model (Theorem 4.5).

Let τ be a PW -valuation, and let Ξ = {[D1] a1, . . . , [Dα] aα, 〈C1〉 c1, . . . , 〈Cβ〉 cβ} such
that for every instance of (C) or (CD) that applies to (some subset of) Ξ, the conclusion Θ
satisfies JΘKτ 6= ∅. We have to show that JΞKτ 6= ∅. To this end, we translate Ξ into a
clause set φ in set-valued first-order logic (Section 4), generating one (singleton) clause for
each modalized atom [Dj] aj and 〈Cj〉 cj according to (1) and (2) (Section 4), with distinct
Skolem constants ejDj and Skolem functions gj

Cj
, respectively. By Theorem 4.1, it suffices to

show that φ is consistent under set-valued resolution. We observe the following.
1. Two clauses bj and bk of shape (1), for j 6= k, resolve only if Dj ∩Dk = ∅ – otherwise,

unification fails due to a clash between eji and eki for each agent i ∈ Dj ∩Dk.
2. Similarly, a clause bj of shape (1) resolves with a clause dk of shape (2) only if Dj∩Ck = ∅,

i.e. Dj ⊆ Ck.
3. Similarly, two clauses dj and dk of shape (2), for k 6= j, resolve only if Cj ∩ Ck = ∅, i.e.

Cj ∪ Ck = Σ
4. Crucially, two clauses dj and dk of shape (2) , for k 6= j, resolve only if at least one of Cj

and Ck is Σ: Assume that p ∈ Cj and q ∈ Ck. By the previous item, p ∈ Ck and q ∈ Cj ,
so xp is an argument in gkq and x′q (renamed for purposes of the resolution step) is an
argument in gjp, implying that unification of dj and dk fails at the occurs check (cf. p. 4).
This explains why only one 〈E〉 with E 6= N is needed in rule (C).

CSL 2021

26:12 The Alternating-Time µ-Calculus with Disjunctive Explicit Strategies

These observations imply that a resolution proof of a blatantly inconsistent (necessarily
singleton) clause from φ will witness a rule match of either (C) or (CD) (depending on
whether clauses of shape (2) are involved), and blatant inconsistency means that JΘKτ = ∅
for the corresponding rule conclusion Θ, contradicting the assumption on Ξ.

Finitely many moves. As indicated in Section 4, the model of Ξ thus produced will
have infinitely many moves per agent, namely the ground terms generated by the Skolem
constants and functions. We can replace these with finitely many moves where agents play
Skolem symbols paired with colours – simulating the effect of the occurs check from the
unification procedure – taken from a finite abelian group U (with neutral element 0 and
group operation +) that contains distinct elements u1, . . . , uβ (e.g. U = Z/βZ). Specifically,
all agents receive (for simplicity) the same moves, namely

moves (ej , 0) for j = 1, . . . , α, intended as witnesses for [Dj] aj , and
moves (gj , u) for j = 1, . . . , β and u ∈ U , intended as witnesses for 〈Cj〉 cj .

We refer to the first component of a move as its move symbol, and to the second as its colour.
By col(mC) we denote the sum of all colours of the moves in a joint move mC for C.

Let T be the unification closure of the set of all tuples of argument terms occuring
in clauses from φ. By the above analysis, all tuples in T essentially have the shape
(xA, eB , gA∪B(xA, eB)) where xA are variables, eB are Skolem constants possibly from
different box modalities, and gA∪B are Skolem functions from a single diamond (as Skolem
functions for different diamonds do not initially occur in the same tuple of terms and such
occurrences are not introduced during unification due to the occurs check); any one of xA,
eB, g may be absent. The (finite) model G is then defined over coloured moves. Skolem
constants ej are interpreted as (ej , 0), and Skolem functions gji for i ∈ Cj are interpreted as
mapping a joint move mCj of Cj to (gj , uj − col(mCj)) if i is the least element of Cj , and
to (gj , 0) otherwise, thus ensuring that col(mCj , g

j(mCj)) = uj . We proceed to show that G
is T -equationally complete, obtaining by Theorem 4.5 and consistency of φ under set-valued
first-order resolution that φ is satisfiable over G.

So let t, u ∈ T such that t = u has a solution η in G. We proceed by case distinction on
the shape of t = u:

(xA, eB) = (x′A′ , e′B′): In the simplest case the terms just consist of variables (xA, x′A′)
and Skolem constants (eB , e′B′). Given the interpretation of the Skolem constants in G, it is
clear that eB and e′B must agree on B ∩B′ so t, u are unifiable. The solution η necessarily
replaces variables in A∩B′ and A′∩B with the respective interpretations of Skolem constants
on the other side of the equality. Hence, the solution η factorizes through the mgu of t and u.

(xA, eB , gjA∪B(x′A, e′B)) = (xA′ , eB′): This case is similar to the previous one, using the
observation that given the interpretation of gj in G, the equation can only have a solution if
(A ∪B) ∩B′ = ∅, i.e. (A ∪B) ⊆ A′.

(xA, eB , gjA∪B(xA, eB)) = (x′A′ , e′B′ , gk
A′∪B′(x′A′ , e′B′)): The interpretations of the terms

gj
A∪B

(xA, eB) and gk
A′∪B′(xA′ , e′B′)) in G (under η) have the form (gj , c) and (gk, d) for

some c and d, respectively. The case where j = k is essentially like the previous cases. The
interesting case is where j 6= k, in which case necessarily A ∪B ⊆ A′ and A′ ∪B′ ⊆ A; this
is the case where unification of t, u fails at the occurs check as explained above. However,
the construction of G ensures that now t = u also has no solution in G, as the respective
interpretations of gj and gk ensure that the colour of the whole joint move is uj on the left
and uk on the right. J

M. Göttlinger, L. Schröder, and D. Pattinson 26:13

The proof for the AMCDES proceeds in a quite similar fashion, and will be presented in less
detail.

6 AMCDES Satisfiability

We now extend this treatment to obtain ExpTime satisfiability checking for AMCDES, cast
coalgebraically using the functor and predicate liftings presented in Section 3. We have
one-step rules (DES0), (DES1), where (DES1) is

(DES1)
[D1, PG1] a1, . . . , [Dα, PGα] aα, 〈E,QK〉 b, 〈C1, rH1〉 c1, . . . , 〈Cβ , rHβ 〉 cβ

(aj)j∈Iq , b, (cj)j∈Jq | · · · for q ∈ QK

(i.e. the rule has one conclusion for each q) where Ag(QK) = K; the rHj are (non-disjunctive)
explicit joint moves for coalitions Hj ; Iq ⊆ {1, . . . , α}, Jq ⊆ {1, . . . , β} for each q ∈ QK ; and
the following side conditions hold, with L :=

⋃α
j=1Gj ∪

⋃β
j=1Hj :

1. For each j, k, Dj ∩Dk = ∅.
2. For each j, Cj ∪Hj = Σ.
3.
⋃α
j=1Dj ∩ L = ∅.

4.
⋃α
j=1Dj ⊆ E.

5. E ∪K ⊇ L.
6. rHj =u q for all q ∈ QK , j ∈ Jq.
7. There is a joint explicit move l for E ∩ L such that rHj =u l for each q ∈ QK , j ∈ Jq,

and moreover for each j ∈ Iq there exists p ∈ PGj such that p =u q and p =u l.
Rule (DES0) is a variant of (DES1) obtained by instantiating to 〈E,QK〉 b = 〈Σ, {()}〉>,
I() = {1, . . . , α}, and J() = {1, . . . , β}, and then omitting the (valid) literal 〈Σ, {()}〉> from
the rule premiss; side conditions 4.–6. then become trivial and can be omitted.

Rule (DES1) extends the rules for the basic AMC as recalled in Section 5. The new
features are intuitively understood as follows. Imagine that D1, . . . , Dn play moves witnessing
their ability to (conditionally) enforce a1, . . . , an. According to 〈E,QK〉, K can then play
some move q ∈ QK additionally ensuring b; the q-th conclusion of (DES1) captures the
constraints on the next state reached in this situation. These additionally depend on the
moves chosen by the remaining agents (those in E \

⋃
Di): If the arising joint move restricts

to one of the moves in PGj , then Dj successfully enforces aj , and if it restricts to rHj , then
the next state must satisfy cj (note that since Cj ∪ Hj = Σ, 〈Ci, rHk〉 cj says that cj is
enforced as soon as Hj play rHj). The index sets Iq and Jq indicate for which j this applies,
and side conditions 6 and 7 ensure that a corresponding joint move actually exists. For
definiteness, we note

I Lemma 6.1 (One-step soundness). The rules (DES0), (DES1) are one-step tableau sound
w.r.t. AMCDES.

Proof. By the above, it suffices to show soundness of (DES1), formalizing the above intuitive
explanation. Write φ for the premiss of the rule, and ψq for the conclusion associated to
q ∈ QK . Let τ be a PW -valuation such that JφKτ 6= ∅, and fix G = ((kj), f, ι) ∈ JφKτ ; we
have to show that JψqKτ 6= ∅ for some q ∈ QK . We refer to side conditions by their numbers:

For each j ∈ {1, . . . , α}, we have a joint move ej for Dj witnessing [Dj , PGj] aj . By 1.,
the ej can be combined into a joint move e for

⋃α
j=1Dj .

CSL 2021

26:14 The Alternating-Time µ-Calculus with Disjunctive Explicit Strategies

By 3., e can be combined with (the interpretation of) the explicit move l postulated
in 7. into a move x0 for (E ∩ L) ∪

⋃α
j=1Dj ⊆ E, where the inclusion is by 4. Extend x0

arbitrarily to a move x for the whole coalition E.
Since G ∈ J〈E,QK〉 bK and Ag(x) = E, there is some q ∈ QK and a joint move mq for Σ
such that x, q v mq and f(mq) ∈ τ(b).
To obtain that f(mq) ∈ JψqKτ for this q, it remains to show that f(mq) satisfies the
remaining literals aj , cj of ψq:

For j ∈ Iq, we have ej v mq and, by 5. and 7., ι[p] v mq for some p ∈ PGj , so that
G ∈ J[Dj , PGj] ajKτ implies f(mq) ∈ τ(aj).
For j ∈ Jq, we have ι[rHj] v mq by 5., 6., and 7. Since Cj ∪Hj = Σ, we thus have
that G ∈ J〈Ck, rHk〉 ckKτ implies f(mj) ∈ τ(ck). J

It remains to prove ompleteness:

I Lemma 6.2 (One-step tableau completeness). The rules (DES0), (DES1) are one-step
tableau complete w.r.t. AMCDES.

Proof. Let τ be a PW -valuation, and let Ξ = {[D1, PG1] a1, . . . , [Dα, PGα] aα,
〈C1, RH1〉 c1, . . . , 〈Cβ , RHβ 〉 cβ} such that every instance of (DES0) or (DES1) whose premise
is contained in Ξ has a conclusion that is non-empty under τ . We have to show that JΞKτ 6= ∅.
We translate Ξ into a clause set φ in set-valued first-order logic by including for each
[Dj , PGj] aj and each p ∈ PGj a singleton clause

{τ(aj)(ejDj , xDj∪Gj , p)}, (3)

(so ejDj witnesses [Dj , PGj] aj), and for each 〈Cj , RHj 〉 cj a clause

{τ(cj)(xCj , g
j

Cj∪Hj
(xCj), r) | r ∈ RHj} (4)

(so the gj
Cj∪Hj

are Skolem functions witnessing 〈Cj , RHj 〉 cj). We now proceed as in the proof
of Theorem 5.1: We first show that φ is consistent under set-valued resolution, obtaining by
Theorem 4.1 that φ is satisfiable in a model that may have infinitely many moves, and then
present a finite T -equationally complete model for the unification closure T of the involved
terms. Write bpj for clauses of type (3) for given j = 1, . . . , α and p ∈ Gj , and dj for the j-th
clause of type (4).

Unlike in the proof of Theorem 5.1, we thus may have non-singleton clauses, of shape (4).
However, we shall see that these non-singleton clauses do not resolve among each other. We
note the following observations.
1. bpj and bqj , for p 6= q, do not resolve (and resolving bpj with itself is pointless).
2. bpj and bqk, for k 6= j, resolve only if Dj ∩Dk = Dj ∩Gk = Dk ∩Gj = ∅, and moreover

p =u q.
3. bpj and dk resolve, at the dk-literal for r ∈ RHk , only if Dj ⊆ Ck, and hence in particular

also Dj ∩Hk = ∅, Dj ∪Gj ⊆ Ck ∪Hk (equivalently Ck ∪Hk ⊆ Dj ∪Gj), and r =u p.
4. dj and dk, for k 6= j, resolve, at the dj-literal for r ∈ Hj and the dk-literal for r′ ∈ Hk,

only if Cj ∪ Ck ∪Hk = Σ (equivalently Ck ∪Hk ⊆ Cj), Ck ∪ Cj ∪Hj = Σ, and r =u r′.
5. Like in the proof of Theorem 5.1, it follows that dj and dk resolve only if at least one of
〈Cj , RHj 〉 and 〈Ck, RHk〉 is a grand coalition modality (since otherwise unification fails
at the occurs check), in which case the corresponding clause is a singleton.

6. Clauses obtained from clauses of shape (4) by resolving with singleton clauses retain
essentially shape (4), only with some of the variables xi replaced with constants. Resolu-
tion of such clauses is thus subject to the same restrictions; in particular, non-singleton
clause of this kind they will not resolve among each other.

M. Göttlinger, L. Schröder, and D. Pattinson 26:15

Thus, a proof of a blatantly inconsistent clause from φ by set-valued resolution will involve
either zero or one clauses dj where Cj ∪Hj 6= Σ. We will refer to resolution proofs of the
first kind as type-0 and to proofs of the second kind as type-1.

Type-0 proofs. We show that in this case, the impossibility of deriving a blatantly incon-
sistent clause is obtained via rule (DES0). To apply (DES0) to the set of modal atoms
involved in the proof, we need to show the side conditions of the rule (1.–3. and 7). Indeed,
condition 2. holds by the definition of type-0 proofs. As no disjunctive diamond is involved
in a type-0 proof, all involved clauses are singletons. Hence, 1., 3., and 7. directly follow from
the observations above. The type-0 proof at hand thus induces a match of rule (DES0) to a
subset of Ξ; the conclusion of this rule match having non-empty extension under τ means
precisely that the resolution proof does not produce a blatantly inconsistent clause.

Type-1 proofs. Those consist in successively resolving all literals of a single clause of the
form dj0 where Cj0 ∪Hj0 6= Σ with suitable singleton clauses, of the form either bpj or dk
where Ck ∪Hk = Σ. We will refer to these resolution steps as “resolving into dj0”, although
of course dj0 will have been modified by previous resolution steps as described above. To
match the notation of rule (DES1), we rename 〈Cj0 , RHj0 〉 into 〈E,QK〉 b (so that all the
〈Cj , RHj 〉 cj that remain have Cj ∪Hj = Σ and hence |RHj | = 1). The literals in dj0 are
then indexed over q ∈ QK . Let Iq be the set of all j such that for some p ∈ Pj , bpj is
resolved into dj0 at the literal for q, and put G =

⋃
q∈QK ,j∈Iq Gj ; similarly, let Jq be the

set of all j such that dj (a singleton clause) is resolved into dj0 at the literal for q, and
put H =

⋃
q∈QK ,j∈Jq Hj . Notice that two clauses resolve only if whenever they both assign a

constant (either a Skolem constant or an explicit move) to a certain agent, then the constant
is the same in both clauses; this implies condition 7. Conditions 1. and 3. are established as in
the type-0 case, condition 2. is ensured by the above renaming, and the remaining conditions
follow directly from the above observations. The type-1 proof at hand thus induces a match
of rule (DES1) to a subset of Ξ; a conclusion of this rule match having non-empty extension
under τ means precisely that the resolution proof does not produce a blatantly inconsistent
clause.

Finitely many moves. As indicated above, we obtain a model with finitely many moves by
constructing a finite T -equationally complete model G, where T is the unification closure of
the tuples of terms occurring in φ. This construction is essentially the same as for the AMC,
up to the presence of additional constant symbols, viz. the explicit strategies occurring in φ.
These constants can be treated exactly like the Skolem constants already present in the proof
of Theorem 5.1. The full proof is available in Appendix B. J

Since the rules (DES1), (DES0) are algorithmically sufficiently harmless, our main result
follows from Lemmas 6.1 and 6.2 by Theorem 3.3:

I Theorem 6.3. Satisfiability checking for the AMCDES is ExpTime-complete.

7 Conclusions

We have introduced the alternating-time µ-calculus with disjunctive explicit strategies
(AMCDES), which extends ATL with explicit strategies (ATLES) [29] with fixpoint operators
and disjunction over explicit strategies of opposing agents in non-grand modalities. We
have employed methods from coalgebraic logic to show that model checking with fixed

CSL 2021

26:16 The Alternating-Time µ-Calculus with Disjunctive Explicit Strategies

interpretation of explicit strategies is in QP as well as in NP∩ coNP, and in NP with open
interpretation of strategies, and moreover that satisfiability checking is in ExpTime.

The coalgebraic treatment in fact implies a whole range of additional results, e.g. reasoning
in the next-step fragment of the logic extended with nominals (ExpTime with global axioms,
and PSpace without) [24, 17, 9]; cut-free sequent systems for the next-step fragment [19];
and completeness of a Kozen-Park axiomatization for flat (i.e. single-variable) fragments of
the AMCDES, e.g. ATL with disjunctive explicit strategies [25]. A special case of the latter
result is completeness of ATLES as proved already in Walther et al. [29].

In ongoing work we are extending our axiomatization and complexity results to allow
strategy disjunction also in grand coalition modalities. A natural but more challenging
further extension would be to add negative strategies prohibiting moves for some agents as
suggested by Herzig et al. [12].

References
1 Rajeev Alur, Thomas Henzinger, and Orna Kupferman. Alternating-time temporal logic. J.

ACM, 49:672–713, 2002. doi:10.1145/585265.585270.
2 Cristian Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding

parity games in quasipolynomial time. In Theory of Computing, STOC 2017, pages 252–263.
ACM, 2017.

3 Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Strategy logic. Inf. Comput.,
208(6):677–693, 2010. doi:10.1016/j.ic.2009.07.004.

4 Corina Cîrstea, Clemens Kupke, and Dirk Pattinson. EXPTIME tableaux for the coalgebraic
µ-calculus. Log. Methods Comput. Sci., 7(3), 2011. doi:10.2168/LMCS-7(3:3)2011.

5 Corina Cîrstea, Alexander Kurz, Dirk Pattinson, Lutz Schröder, and Yde Venema. Modal
logics are coalgebraic. Comput. J., 54(1):31–41, 2011. doi:10.1093/comjnl/bxp004.

6 Melvin Fitting. First-Order Logic and Automated Theorem Proving. Springer, 2nd edition,
1996. doi:10.1007/978-1-4612-2360-3.

7 Valentin Goranko and Fengkui Ju. Towards a logic for conditional local strategic reasoning.
In Patrick Blackburn, Emiliano Lorini, and Meiyun Guo, editors, Logic, Rationality, and
Interaction, LORI 2019, volume 11813 of LNCS, pages 112–125. Springer, October 2019.
doi:10.1007/978-3-662-60292-8_9.

8 Valentin Goranko and Govert van Drimmelen. Complete axiomatization and decidability
of alternating-time temporal logic. Theor. Comput. Sci., 353(1-3):93––117, March 2006.
doi:10.1016/j.tcs.2005.07.043.

9 Rajeev Goré, Clemens Kupke, Dirk Pattinson, and Lutz Schröder. Global caching for coalgeb-
raic description logics. In Automated Reasoning, IJCAR 2010, volume 6173 of LNCS, pages
46–60. Springer, 2010. doi:10.1007/978-3-642-14203-1.

10 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research, volume 2500 of LNCS. Springer, 2002. doi:10.1007/
3-540-36387-4.

11 Daniel Hausmann and Lutz Schröder. Game-based local model checking for the coalgebraic
mu-calculus. In Concurrency Theory, CONCUR 2019, volume 140 of LIPIcs, pages 35:1–
35:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, August 2019. doi:10.4230/LIPIcs.
CONCUR.2019.35.

12 Andreas Herzig, Emiliano Lorini, and Dirk Walther. Reasoning about actions meets strategic
logics. In Logic, Rationality, and Interaction, LORI 2013, volume 8196 of LNCS, pages
162–175. Springer, 2013. doi:10.1007/978-3-642-40948-6_13.

13 Marc-Uwe Kling. Das Känguru-Manifest. Ullstein, Berlin, 2011.
14 Marc-Uwe Kling. The Kangaroo Chronicles. Voland & Quist, 2016. Translated by Sarah

Cossaboon and Paul-Henri Campbell.

https://doi.org/10.1145/585265.585270
https://doi.org/10.1016/j.ic.2009.07.004
https://doi.org/10.2168/LMCS-7(3:3)2011
https://doi.org/10.1093/comjnl/bxp004
https://doi.org/10.1007/978-1-4612-2360-3
https://doi.org/10.1007/978-3-662-60292-8_9
https://doi.org/10.1016/j.tcs.2005.07.043
https://doi.org/10.1007/978-3-642-14203-1
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.4230/LIPIcs.CONCUR.2019.35
https://doi.org/10.4230/LIPIcs.CONCUR.2019.35
https://doi.org/10.1007/978-3-642-40948-6_13

M. Göttlinger, L. Schröder, and D. Pattinson 26:17

15 Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Vardi. Reasoning about
strategies: On the model-checking problem. ACM Trans. Comput. Log., 15(4):34:1–34:47,
2014. doi:10.1145/2631917.

16 Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Vardi. Reasoning about
strategies: on the satisfiability problem. LMCS, 13(1), 2017. doi:10.23638/LMCS-13(1:
9)2017.

17 Robert Myers, Dirk Pattinson, and Lutz Schröder. Coalgebraic hybrid logic. In Foundations
of Software Science and Computational Structures, FOSSACS 2009, volume 5504 of LNCS,
pages 137–151. Springer, 2009. doi:10.1007/978-3-642-00596-1.

18 Rocco De Nicola and Frits W. Vaandrager. Action versus state based logics for transition
systems. In Irène Guessarian, editor, Semantics of Systems of Concurrent Processes, LITP
Spring School on Theoretical Computer Science 1990, volume 469 of LNCS, pages 407–419.
Springer, April 1990. doi:10.1007/3-540-53479-2_17.

19 Dirk Pattinson and Lutz Schröder. Cut elimination in coalgebraic logics. Inf. Comput.,
208(12):1447–1468, 2010. doi:10.1016/j.ic.2009.11.008.

20 Marc Pauly. A modal logic for coalitional power in games. J. Log. Comput., 12(1):149–166,
2002. doi:10.1093/logcom/12.1.149.

21 Sven Schewe. Synthesis of Distributed Systems. PhD thesis, Universität des Saarlandes, 2008.
22 Lutz Schröder and Dirk Pattinson. PSPACE bounds for rank-1 modal logics. ACM Trans.

Comput. Log., 10(2):13:1–13:33, 2009. doi:10.1145/1462179.1462185.
23 Lutz Schröder and Dirk Pattinson. Modular algorithms for heterogeneous modal logics via

multi-sorted coalgebra. Math. Struct. Comput. Sci., 21(2):235–266, 2011. doi:10.1017/
S0960129510000563.

24 Lutz Schröder, Dirk Pattinson, and Clemens Kupke. Nominals for everyone. In International
Joint Conference on Artificial Intelligence, IJCAI 2009, pages 917–922, July 2009. URL:
http://ijcai.org/proceedings/2009.

25 Lutz Schröder and Yde Venema. Completeness of flat coalgebraic fixpoint logics. ACM Trans.
Comput. Log., 19(1):4:1–4:34, 2018. doi:10.1145/3157055.

26 Wiebe van der Hoek, Wojciech Jamroga, and Michael Wooldridge. A logic for strategic
reasoning. In Autonomous Agents and Multiagent Systems, AAMAS 2005, pages 157–164.
ACM, 2005. doi:10.1145/1082473.1082497.

27 Govert van Drimmelen. Satisfiability in alternating-time temporal logic. In Logic in Computer
Science, LICS 2003, pages 208–217. IEEE Comp. Soc., June 2003. doi:10.1109/LICS.2003.
1210060.

28 Dirk Walther. Strategic Logics: Complexity, Completeness and Expressivity. PhD thesis,
University of Liverpool, 2007.

29 Dirk Walther, Wiebe van der Hoek, and Michael Wooldridge. Alternating-time temporal logic
with explicit strategies. In Theoretical Aspects of Rationality and Knowledge, TARK 2007,
pages 269–278. ACM Press, 2007. doi:10.1145/1324249.1324285.

30 Thomas Ågotnes. Action and knowledge in alternating-time temporal logic. Synthese,
149(2):375–407, March 2006. doi:10.1007/s11229-005-3875-8.

CSL 2021

https://doi.org/10.1145/2631917
https://doi.org/10.23638/LMCS-13(1:9)2017
https://doi.org/10.23638/LMCS-13(1:9)2017
https://doi.org/10.1007/978-3-642-00596-1
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1016/j.ic.2009.11.008
https://doi.org/10.1093/logcom/12.1.149
https://doi.org/10.1145/1462179.1462185
https://doi.org/10.1017/S0960129510000563
https://doi.org/10.1017/S0960129510000563
http://ijcai.org/proceedings/2009
https://doi.org/10.1145/3157055
https://doi.org/10.1145/1082473.1082497
https://doi.org/10.1109/LICS.2003.1210060
https://doi.org/10.1109/LICS.2003.1210060
https://doi.org/10.1145/1324249.1324285
https://doi.org/10.1007/s11229-005-3875-8

26:18 The Alternating-Time µ-Calculus with Disjunctive Explicit Strategies

A Appendix: AMCDES Model Checking Details

Summary of Results on Coalgebraic Model Checking
Given a functor F , we assume a representation of the elements of FX, for finite X, as strings
over some alphabet. Specifically, we represent elements of ((kj)j∈Σ, f) ∈ GX as tabulations
of f .

Model checking results [11] for the full coalgebraic µ-calculus require only very simple
properties of the predicate liftings:

I Definition A.1. The one-step satisfaction problem is to determine, given a finite set X,
Y ⊆ X, ♥ ∈ Λ, and t ∈ FX, whether t ∈ J♥KX(Y).

I Theorem A.2 (Model checking via one-step satisfaction [11, Theorem 11]). If the one-step
satisfaction problem is in P, then the model checking problem for the coalgebraic µ-calculus
over this logic is in NP ∩ coNP.

The proof of this upper bound is via parity games, specifically by noting that Cîrstea et al.’s
evaluation games [4] are exponentially large but have only polynomially many Eloise-nodes, so
that winning strategies for Eloise can be guessed and verified in (nondeterministic) polynomial
time.

On the other hand, to obtain a model checking algorithm in QP (deterministic quasipoly-
nomial time 2O((logn)k) for some k; a complexity class not currently known to be comparable
with NP) we need to show that we can design suitable one-step satisfaction arenas for use in
model checking games (we use standard terminology for games, e.g. [10]):

I Definition A.3. A one-step satisfaction arena A for a set X, a modality ♥ ∈ Λ, and
t ∈ FX is an acyclic arena for games with two players Eloise and Abelard (recall that an
arena is like a game in that it specifies nodes, each assigned to one of the players, and allowed
moves between nodes but does not include a winning condition; acyclicity refers to the move
relation), with a single initial node, with X as the set of terminal nodes, and with additional
inner nodes. A one-step game on A additionally specifies a winning condition in the shape of
a subset Y of the terminal nodes; then, Eloise wins plays that either get stuck at an inner
Abelard node without successors or terminate in a node in Y . We say that A is sound and
complete if for every Y ⊆ X, Eloise wins (the initial node of) the one-step game on A with
winning condition Y iff t ∈ J♥KX(Y).

I Theorem A.4 (Model checking via one-step games [11, Corollary 18]). If for every set X,
♥ ∈ Λ, and t ∈ FX, there is a sound and complete one-step satisfaction arena with
polynomially many inner nodes in the representation size of ♥ and t, then the model checking
problem for the µ-calculus over this logic is in QP.

The model checking procedure underlying this theorem is to construct a polynomial-size
model checking parity game using one-step games as building blocks; by well-known recent
advances in parity game solving [2], these games can be solved in quasipolynomial time.

Proof of Theorem 2.9
Proof. The one-step satisfaction problem for the AMCDES is to check whether ((kj), f, ι) ∈
J[C,O]KX(Y) can be decided in P for given C,O, Y ⊆ X, and a one-step game with explicit
strategies ((kj), f, ι) ∈ GESX. This can be done by iterating over joint moves of C in an outer
loop and over joint moves of C in an inner loop. Since f needs to tabulate the outcomes of

M. Göttlinger, L. Schröder, and D. Pattinson 26:19

all joint moves of Σ, both loops have at most linearly many (in the size of f) iterations per
invocation, making for a quadratic overall number of iterations of the inner loop, and hence
polynomial run time.

Algorithm 1 One-step Satisfaction Algorithm.

for mC ← [kC] do
x := >
for o← O,mC̄ ← [kΣ\C\Ag(O)] do

if f(mc,mC̄ , ι[o]) /∈ Y then x := ⊥
if x then return >

return ⊥

By Theorem A.2, we thus obtain the NP ∩ coNP bound for the fixed case. The NP
bound for the open case follows by guessing history-free strategies.

For the QP bound, we use Theorem A.4 and adapt the one-step satisfaction arenas for
the AMC [11, Example 15.5] to obtain small one-step satisfaction arenas for the AMCDES:

The one-step satisfaction arena A[C,O],w = (V[C,O],w, E[C,O],w) for X, [C,O], and a one-
step game ((kj), f, ι) ∈ GESX for disjoint C,D ⊆ Σ, O ⊆

∏
a∈DMa is constructed as

follows. The node set V[C,O],w consists of an initial node ([C,O], w) belonging to Eloise, and
additionally a set of inner nodes I[C,O],w := [kC] belonging to Abelard i.e. one node for each
joint move of C. The set E[C,O],w(x) of moves available at a node x is

E[C,O],w(x) =
{
I[C,O],w if x = ([C,O], w)
{f(x,mC̄ , o) | mC̄ ∈ [kC∪D], o ∈ ι[O]}

It is easy to see that the size of the arena is thus linear in the tabulation size of f . The
soundness and completeness of the resulting one-step satisfaction game stems from the fact
that the moves of Eloise and Abelard essentially construct the witnessing moves from the
original game. J

B Appendix: Omitted Proofs and Further Details

Proof of Theorem 4.1
Soundness. It suffices to show that the rule (SR) is sound. Let Γ, A(t̄) and B(ū),∆ be two
clauses such that t̄ and ū are unifiable, and let σ = mgu(t̄, ū). Let G = ((Sj)j∈N , f,W, J−K)
be an outcome model satisfying both Γ, A(t̄) and B(ū),∆. Let η be a valuation such
that G, η 6|= Γσ,∆σ; we have to show G, η |= (A ∩ B)(t̄σ). By the evident substitution
lemma, G, ησ 6|= Γ,∆ where ησ(x) = Jσ(x)Kη for all x; hence necessarily G, ησ |= A(t̄) and
G, ησ |= B(ū). Again by the substitution lemma, G, η |= A(t̄σ) and G, η |= B(ūσ). Since
t̄σ = ūσ, our goal G, η |= (A ∩B)(t̄σ) follows by the semantics of literals.

Completeness. The completeness proof for the propositional variant proceeds via maximally
consistent clause sets, defined in the expected way. By Zorn’s lemma, we have

I Lemma B.1 (Lindenbaum lemma for set-valued propositional resolution). Every consistent
clause set in set-valued propositional logic is contained in a maximally consistent set.

Moreover, we have the following set of Hintikka properties:

CSL 2021

26:20 The Alternating-Time µ-Calculus with Disjunctive Explicit Strategies

I Lemma B.2 (Hintikka lemma for set-valued propositional resolution). Let φ be a maximally
consistent clause set in set-valued propositional logic. Then
1. A clause Γ,∆ is in φ iff Γ ∈ φ or ∆ ∈ φ.
2. A clause Γ, (A ∪B)(y) is in φ iff one of Γ, A(y) and Γ, B(y) is in φ.
3. For every y ∈ Y , W (y) ∈ φ.

Proof. 1, “if”: Assume w.l.o.g. that Γ ∈ φ. By maximality, it suffices to show that φ∪{Γ,∆}
remains consistent. So assume that a blatantly inconsistent clause can be derived from
φ ∪ {Γ,∆}. Then by removing literals from the clauses in this derivation, we obtain a
derivation of a blatantly inconsistent clause from φ ∪ {Γ}, contradiction.

1, “only if”: By maximality, it suffices to show that one of φ ∪ {Γ} and φ ∪ {∆} is
consistent. Assume the contrary. Then one can derive a blatantly inconsistent clause Γ′
from φ ∪ {Γ}. Adding ∆ to all clauses in the derivation (that is, to the original Γ and
then to all clauses newly produced by the resolution rule), we obtain a derivation of Γ′,∆
from φ ∪ {Γ,∆}. Similarly, we have a derivation of a blatantly inconsistent clause ∆′ from
φ ∪ {∆}, from which we obtain a derivation of Γ′,∆′ from φ ∪ {Γ′,∆}. Chaining the two
derivations, we obtain a derivation of the blatantly inconsistent clause Γ′,∆′ from φ∪{Γ,∆},
contradiction.

2, “if”: Assume w.l.o.g. that Γ, A(y) is in φ. By maximality, it suffices to show that
φ ∪ {Γ, (A ∪ B)(y)} is consistent. Assume the contrary, i.e. we can derive a blatantly
inconsistent clause from Γ, (A ∪ B)(y). Tracing (A ∪ B)(y) through the derivation in the
obvious sense (with A∪B possibly transformed into strictly smaller subsets by the resolution
rule) and intersecting with A at each occurrence, we obtain a derivation of a blatantly
inconsistent clause from φ ∪ {Γ, A(y)} = φ, contradiction.

2, “only if”: By contraposition, again using maximality: assume that both φ ∪ {Γ, A(y)}
and φ ∪ {Γ, B(y)} are inconsistent; we have to show that φ ∪ {Γ, (A ∪B)(y)} is inconsistent.
By assumption, we can derive from φ ∪ {Γ, A(y)} a blatantly inconsistent clause, necessarily
of the form Γ′, ∅(y) (since no y ∈ Y can be made to disappear by the resolution rule).
Tracing A(y) through the derivation and taking unions with B at each occurrence, we obtain
a derivation of Γ′, B(y) from φ ∪ {Γ, (A ∪ B)(y)}. Similarly, we can derive a blatantly
inconsistent clause from φ ∪ {Γ, B(y)}. Replacing literals C(z) with ∅(z) and adding new
literals of the form ∅(z), we obtain a derivation of a blatantly inconsistent clause Θ from
φ ∪ {Γ′, B(y)}. Chaining derivations, we obtain a derivation of Θ from φ ∪ {(A ∪ B)(y)},
showing the required inconsistency.

3: Clear. J

Now fix a maximally consistent clause set φ, and assume that W is finite; we construct a
model, i.e. a function fφ : Y →W , from φ as follows. For y ∈ Y , we have W (y) ∈ φ by the
Hintikka lemma, and then, again by the Hintikka lemma and by finiteness of W , {wy}(y) ∈ φ
for some wy ∈W , which by consistency of φ is moreover unique; we put fφ(y) = wy.

I Lemma B.3 (Truth lemma for set-valued propositional resolution). Given a maximally
consistent clause set φ in set-valued propositional logic over a finite set W , the function fφ
constructed above satisfies φ.

Proof. Induction over the size of clauses Γ, measured as the sum of the cardinalities of the
subsets of W occurring in Γ. The inductive step makes a case distinction over whether there
is more than one or exactly one literal in Γ (the case of zero literals does not occur, as a
clause without literals is blatantly inconsistent), and then proceeds according to the relevant
clause of the Hintikka lemma. We are left with the induction base, where Γ has the form
{w}(y); in this case, the claim holds by construction of fφ. J

M. Göttlinger, L. Schröder, and D. Pattinson 26:21

In combination with Lemma B.1, this proves completeness of the propositional variant.
Completeness for the first-order variant is then shown via a form of Herbrand theory. We
build a Herbrand universe where the moves of each agent i are ground terms of sort i. We
denote these sets of moves by Si. A ground substitution replaces variables by ground terms,
respecting sorts. Ground instances of literals A(t̄), clauses, and clause sets are obtained by
applying a ground substitution.

Now let φ be a clause set in set-valued first-order logic that is closed under set-valued
first-order resolution and not blatantly inconsistent; it suffices to show that such φ are
satisfiable. We denote by I(φ) the set of ground instances of clauses in φ. To show that φ is
satisfiable over the Herbrand universe, it suffices to establish that I(φ) is satisfiable. Clearly,
I(φ) is not blatantly inconsistent. We show that it is moreover closed under set-valued
propositional resolution (implying that I(φ) is satisfiable, and hence that φ is satisfiable). A
pair of resolvable clauses in I(φ) has the form Γθ,A(t̄θ) and B(ūθ),∆θ where Γ, A(t̄) and
B(ū),∆ are in φ, w.l.o.g. with disjoint sets of variables, and θ is a ground substitution such
that t̄θ = ūθ. In particular, t̄ and ū are unifiable, and thus have a most general unifier σ; by
definition of the latter, there exists θ′ such that θ = σθ′. Since φ is closed under resolution,
it follows that the resolvent Γσ, (A∩B)(t̄σ),∆σ is in φ. Applying the ground substitution θ′
to this clause, we obtain that the propositional resolvent Γθ, (A ∩B)(t̄θ),∆θ is in I(φ), as
required. J

Remarks on One-step Tableau Completeness for the AMC (Theorem 5.1)

In the proof of Theorem 5.1, one could equally well have used previous one-step model
constructions implicit in van Drimmelen, Goranko, and Schewe [27, 8, 21]; we provide our
construction for illustration, in preparation for the treatment of disjunctive explicit strategies,
to which, as far as we can see, the previous constructions do not adapt (they do extend
to explicit strategies without strategy disjunction). We note that the model construction
becomes much simpler if one excludes the grand coalition (as, effectively, in ATLES): In the
rule (C), the literals 〈Σ〉 cj disappear; in the proof of one-step tableau completeness of the
arising rule, one can just use a single move ⊥ as witness for all 〈Cj〉 cj in Ξ (in the notation
of the original proof of Theorem 5.1), using non-determinism to ensure satisfaction of the
〈Cj〉 cj . In detail, this is seen as follows.

As indicated above, in the absence of grand coalition modalities, rule (C) specializes to

(C−) [D1] a1, . . . , [Dα] aα, 〈E〉 b
a1, . . . , aα, b

with the same side conditions as (C). The shorter proof of one-step tableau
completeness then runs as follows. Let τ be a PW -valuation, and let Ξ =
{[D1] a1, . . . , [Dα] aα, 〈C1〉 c1, . . . , 〈Cβ〉 cβ} (where Dj 6= Σ, Cj 6= Σ for all j) be such that
every rule match of (C−) to Ξ has non-empty conclusion under τ . We have to construct an
element of JΞKτ . Give every agent moves ej for j = 1, . . . , n intended as witnesses for [Dj] aj ,
and a single refusal move ⊥; write (slightly abusively) eDj for the joint move of Dj that is ej in
all components. Define a non-deterministic outcome function f by f(mΣ) =

⋂
eDjvmΣ

τ(aj),
noting that this set is non-empty thanks to rule (CD) since for j 6= k, having both eDj v mΣ
and eDk v mΣ implies Dj ∩Dk = ∅. Then f clearly satisfies [Dj] aj under τ . To see that f
also satisfies 〈Cj〉 cj , let mCj be a joint move of Cj . Let mΣ be the joint move of Σ extending
mCj by letting all other agents pick ⊥. We have to show that f(mΣ)∩ τ(cj) 6= ∅. But this is
immediate by rule (C−), since eDk v mΣ implies Dk ⊆ Cj .

CSL 2021

26:22 The Alternating-Time µ-Calculus with Disjunctive Explicit Strategies

We note further that excluding grand coalition modalities is equivalent to making the
outcome function non-deterministic: It is clear that excluding grand coalition modalities
is equivalent to always taking the set of agents to consist of the agents Σφ mentioned in
the target formula φ and one extra agent ∗ (convert models with larger set C of additional
agents into one with only ∗ by taking the previous joint moves of C to be the moves of ∗).
Then, note that φ is satisfiable in a CGS with set Σφ ∪ {∗} of agents iff φ is satisfiable in a
non-deterministic CGS with set Σ = Σφ of agents, where a non-deterministic CGS is defined
like a CGS except that the outcome function fq at a state q returns a non-empty set of
possible post-states rather than just a single post-state. Over such a non-deterministic CGS,
a formula [C]ψ is satisfied at a state q if C has a joint move mC such that for all joint
moves mC of C, all possible post-states of q under the induced joint move of Σ satisfy ψ. A
non-deterministic CGS with set Σ of agents is converted into a CGS with set Σ∪{∗} of agents
by giving ∗ all states as moves, allowing ∗ to pick one of the possible post-states determined
by the other agents (with some possible post-state chosen arbitrarily if ∗ plays a state that is
not a possible post-state). Conversely, a CGS S with set Σ ∪ {∗} of agents is converted into
a non-deterministic CGS with set Σ of agents by taking the possible post-states under a joint
move mΣ of the agents in Σ to be the set of all post-states of joint moves in S extending mΣ.
Both conversions clearly preserve satisfaction of formulae φ mentioning only agents in Σ.

Proof of One-step Tableau Completeness for the AMCDES (Lemma 6.2)
with Finite Sets of Moves
Proof. Similarly to how the finite moves were achieved in the proof of Theorem 5.1, we will
colour the moves to simulate the effect of the occurs check in unification. We use the same
terminology and notation for colours as in the proof of Theorem 5.1, and take the colours
from the same Abelian group U . Let φ be the clause set constructed in the ongoing proof
as shown in the main part of the paper. Now, all agents receive (for simplicity) the same
moves, namely

moves (ej , 0) for j = 1, . . . , α, intended as witnesses for the moves of the agents in Dj in
[Dj , PGj] aj ,
moves (p, 0) for j = 1, . . . , α, p ∈ PGj witnessing explicit moves from [Dj , PGj] aj ,
moves (r, 0) for j = 1, . . . , β, r ∈ RHj witnessing explicit moves from 〈Cj , RHj 〉 cj , and
moves (gj , u) for j = 1, . . . , β and u ∈ U , intended as witnesses for 〈Cj , RHj 〉 cj .

Let T be the unification closure of all argument terms occuring in clauses in φ. All tuples
in T have the shape (xA, eB , pC , rD, gA∪B∪C∪D(xA, eB , pC , rD)) where the xA are variables;
the eB are Skolem constants and pC , rD are constants for named moves, from possibly different
boxes and diamonds; and the gA∪B∪C∪D are Skolem functions from a single diamond, as
Skolem functions from multiple diamonds do not occur together in the starting terms and
such occurrences are not introduced during unification due to the occurs check.

The (finite) model G is then defined over coloured moves. Skolem constants ej are
interpreted as (ej , 0), explicit strategies r and p are interpreted as (r, 0) and (p, 0), and
Skolem functions gji for i ∈ Cj are interpreted as mapping a joint move mCj of Cj to
(gj , uj − col(mCj)) if i is the least element of Cj , and to (gj , 0) otherwise, thus ensuring that
col(mCj , g

j(mCj)) = uj . It remains to show that G is T -equationally complete, obtaining by
Theorem 4.5 and consistency of φ under set-valued first-order resolution that φ is satisfiable
over G. Indeed, observing that the symbols for explicit strategies represent constants in the
unification process and are translated exactly like the Skolem constants, we can treat them
as part of eB and proceed in the same way as in Theorem 5.1. J

On the Complexity of Horn and Krom Fragments
of Second-Order Boolean Logic
Miika Hannula
Department of Mathematics and Statistics, University of Helsinki, Finland
miika.hannula@helsinki.fi

Juha Kontinen
Department of Mathematics and Statistics, University of Helsinki, Finland
juha.kontinen@helsinki.fi

Martin Lück
Institut für Theoretische Informatik, Leibniz Universität Hannover, Germany
lueck@thi.uni-hannover.de

Jonni Virtema
Faculty of Humanities and Human Sciences, Hokkaido University, Sapporo, Japan
jonni.virtema@let.hokudai.ac.jp

Abstract
Second-order Boolean logic is a generalization of QBF, whose constant alternation fragments are
known to be complete for the levels of the exponential time hierarchy. We consider two types of
restriction of this logic: 1) restrictions to term constructions, 2) restrictions to the form of the
Boolean matrix. Of the first sort, we consider two kinds of restrictions: firstly, disallowing nested use
of proper function variables, and secondly stipulating that each function variable must appear with
a fixed sequence of arguments. Of the second sort, we consider Horn, Krom, and core fragments of
the Boolean matrix. We classify the complexity of logics obtained by combining these two types of
restrictions. We show that, in most cases, logics with 𝑘 alternating blocks of function quantifiers are
complete for the 𝑘th or (𝑘 − 1)th level of the exponential time hierarchy. Furthermore, we establish
NL-completeness for the Krom and core fragments, when 𝑘 = 1 and both restrictions of the first
sort are in effect.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic

Keywords and phrases quantified Boolean formulae, computational complexity, second-order logic,
Horn and Krom fragment

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.27

Funding The first and second authors were supported by grant 308712 of the Academy of Finland.
The fourth author was an international research fellow of Japan Society for the Promotion of Science
(Postdoctoral Fellowships for Research in Japan (Standard)).

Acknowledgements We wish to thank the anonymous referees for their very careful and thorough
reviews.

1 Introduction

The canonical complete problem for PSPACE is the quantified Boolean formula problem
(QBF) [17]. This generalization of the Boolean satisfiability problem (SAT) asks whether
a Boolean sentence of the form 𝑄1𝑝1 . . . 𝑄𝑛𝑝𝑛𝜓, where 𝑄𝑖 ∈ {∃,∀}, is true. Today QBF
attracts widespread interest in diverse research communities. In particular, QBF solving
techniques are important in application domains such as planning, program synthesis and
verification, adversary games, and non-monotonic reasoning, to name a few [15]. A further
generalization of QBF is the dependency quantified Boolean formula problem (DQBF) [13, 12].

© Miika Hannula, Juha Kontinen, Martin Lück, and Jonni Virtema;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 27; pp. 27:1–27:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9637-6664
mailto:miika.hannula@helsinki.fi
https://orcid.org/0000-0003-0115-5154
mailto:juha.kontinen@helsinki.fi
mailto:lueck@thi.uni-hannover.de
https://orcid.org/0000-0002-1582-3718
mailto:jonni.virtema@let.hokudai.ac.jp
https://doi.org/10.4230/LIPIcs.CSL.2021.27
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Horn and Krom Fragments of Second-Order Boolean Logic

This problem, complete for nondeterministic exponential time (NEXP), asks whether a
Boolean sentence of the form

∀𝑝1 . . . ∀𝑝𝑛∃𝑞1 . . . ∃𝑞𝑚𝜓

with constraints 𝐶𝑖 ⊆ {𝑝1, . . . , 𝑝𝑛} is true; here, the selection of truth values for 𝑞𝑖 may
only depend on that of those variables that are in 𝐶𝑖. In other words, DQBF enriches QBF
by allowing nonlinear dependency patterns between variables. DQBF-specifications can be
exponentially more succinct compared to that of QBF and have found applications in areas
such as non-cooperative games, SMT, and bit-vector logics. Furthermore, the development
of DQBF-solvers is also well under way [14].

Put in different terms, DQBF instances can be seen as Boolean sentences of the form

∃𝑓1 . . . ∃𝑓𝑚∀𝑝1 . . . ∀𝑝𝑛𝜓,

where each 𝑓𝑖 is a Boolean function variable whose occurrences in 𝜓 are of the form
𝑓𝑖(𝑝𝑖1 , . . . , 𝑝𝑖𝑘

), for some fixed sequence of proposition variables 𝑝𝑖1 , . . . , 𝑝𝑖𝑘
. In previous

studies, extensions of DQBF with alternating function quantification have also been con-
sidered. The so-called alternating dependency quantified Boolean formula problem (ADQBF)
was shown to be complete for alternating exponential time with polynomially many alterna-
tions (AEXP(poly)) in [6]. This work was preceded by the works of Lück [9] and Lohrey
[8] studying second-order Boolean logic with explicit quantification of Boolean functions
(denoted SO2 in this work). Their results showed, e.g., that restricting the alternations of
function quantification to 𝑘− 1 yields complete problems for the 𝑘th levels of the exponential
hierarchy.

In this article we embark on a systematic study of the complexity of fragments of SO2,
defined by combining restrictions on the structure of function terms and the Boolean matrix.
A remarkable fact is that, when restricting attention to Horn formulae, all the complexity
distinctions between SAT, QBF, and DQBF disappear. Bubeck and Büning [4] showed that
those DQBF instances whose quantifier-free part is a conjunction of Horn clauses are solvable
in polynomial time. Consequently, all the aforementioned problems over Horn formulae
are P-complete. This implies that the high complexity of (D)QBF is not a straightforward
consequence of its quantification structure; rather, structural complexity from the quantifier-
free part is also needed. An immediate question is: How complex quantification is required
to neutralize structural limitations, such as the Horn form, on the quantifier-free part? It is
exactly this interplay between quantification and quantifier-free formula structure that will
be the focus of this paper.

A formula of SO2 is in 𝛴𝑘 or in 𝛱𝑘 if it is in prenex normal form with 𝑘 − 1 alternations
for function quantification, with the first quantifier block being respectively existential or
universal. If the quantifier-free part of a formula is in conjunctive normal form, then it
is called (a) Horn if each clause has at most one positive literal, (b) Krom if each clause
contains at most two literals, and (c) core if it is both Horn and Krom. A formula is called
(i) simple if it contains no nested function terms, and (ii) unique if in it each function
variable is associated with a unique argument tuple. These last two criteria, in particular, are
meaningful for formulae involving second-order quantification. Uniqueness and simpleness
are also the characteristics of function terms introduced in the process of Skolemization, and
more importantly, tacitly assumed in the DQBF problem. One of the goals of this paper
is to determine the impact of such restrictions. This way we generalize the aforementioned
results on DQBF, which can be understood in our terms as unique simple 𝛴1.

M. Hannula, J. Kontinen, M. Lück, and J. Virtema 27:3

Table 1 Complexity of fragments of second-order Boolean logic restricted to Horn, Krom, or
core clauses. All entries are completeness results with respect to logspace-reductions. The ⋆ means
“any”. “H”and “∈” are used for references for the hardness and membership results respectively. All
trivial upper bounds, i.e., of the form ΣE

𝑘 /ΠE
𝑘 , are by Theorem 7.

†: Likely identical with first row. ‡: The result follows from some other result in the table.

Simpleness Uniqueness 𝑘 Clauses 𝛴𝑘 𝛱𝑘 Reference

Simple Unique 𝑘 = 1 Horn P ? [4]

Krom/core NL NL H/∈: 18

𝑘 = 2 Horn ΣE
2 ? H/∈: ‡

Krom/core ΣE
2 NL H: 25, ∈: ‡ H/∈: 18

𝑘 ≥ 3 odd ⋆ ΣE
𝑘−1 ΠE

𝑘 H: 26 ∈: ‡ H: 25 ∈: ‡

𝑘 ≥ 4 even ⋆ ΣE
𝑘 ΠE

𝑘−1 H: 25 ∈: ‡ H: 26 ∈: ‡

Non-unique 𝑘 = 1 Horn EXP ΠE
1 H/∈: 30 H/∈: ‡

Krom/core PSPACE ΠE
1 H/∈: 29 H: 28, ∈: ‡

𝑘 ≥ 3 odd ⋆ ΣE
𝑘−1 ΠE

𝑘 H: ‡ , ∈: 19 H/∈: ‡

𝑘 ≥ 2 even ⋆ ΣE
𝑘 ΠE

𝑘−1 H/∈: ‡ H: ‡, ∈: 19

Non-simple Unique 𝑘 = 1 Horn ΣE
1 ?† H/∈: ‡

Krom/core ΣE
1 NL H: 23, ∈: ‡ H/∈: 18

𝑘 ≥ 2 ⋆ ΣE
𝑘 ΠE

𝑘 H: 23 H: 24, ∈: ‡

Non-unique 𝑘 ≥ 1 ⋆ ΣE
𝑘 ΠE

𝑘 H: 23, 24, 28, ∈: [8]

⋆ ⋆ 𝑘 = 𝜔 ⋆ AEXP(poly) AEXP(poly) H: 25, ∈: [6]

Our contributions are the following. We show, on the one hand, that the complexity of
DQBF over Krom or core formulae collapses to NL, and that this result extends to simple
and unique 𝛱1 and 𝛱2. On the other hand, we show that almost all other cases are complete
for the corresponding, or their neighboring, levels of the exponential hierarchy. Some cases
are left open; most intriguing such case is the inverse of the DQBF-Horn problem (i.e., simple
and unique 𝛱1 Horn), which is only known to be between NL and ΠE

1 . A summary of our
results can be found in Table 1.

2 Second-order quantified Boolean formulae

Second-order propositional logic is obtained from usual quantified Boolean formulae by shifting
from quantification over proposition variables to quantification over Boolean functions. We
call this logic SO2, as it essentially corresponds to second-order predicate logic restricted to
the domain {0, 1}.

2.1 Syntax and semantics
Let 𝛷 = {𝑓1, 𝑓2, . . .} denote a countable set of function variables, each with an arity ar(𝑓𝑖) ∈ N.
We assume that there are infinitely many variables of any arity. Variables with arity 0 are
called propositional. Variables with higher arity are called proper function variables. A
𝛷-term is either a propositional variable from 𝛷, or an expression of the form 𝑓(𝑡1, . . . , 𝑡𝑛),
where 𝑓 ∈ 𝛷 is a variable of arity 𝑛 and 𝑡1, . . . , 𝑡𝑛 are 𝛷-terms. The outermost variable in a
term is called its head. The set of subterms st(𝑡) of a term 𝑡 = 𝑓(𝑡1, . . . , 𝑡𝑛) is recursively
defined as {𝑡} ∪

⋃︀𝑛
𝑖=1 st(𝑡𝑖). A term 𝑡 appears nested in a term 𝑡′ if 𝑡 ∈ st(𝑡′) ∖ {𝑡′}. By

CSL 2021

27:4 Horn and Krom Fragments of Second-Order Boolean Logic

identifying a term with its head, we also say that a variable appears nested in another term
or variable. A 𝛷-formula is either a 𝛷-term, or an expression of the form 𝜙 ∧ 𝜙′, ¬𝜙, or
∃𝑓𝜙, where 𝑓 ∈ 𝛷 is a variable and 𝜙,𝜙′ are 𝛷-formulae. We write SO2(𝛷) for the set of all
𝛷-formulae. We often omit 𝛷 if it is clear from the context. The abbreviations ∀𝑓𝜙 := ¬∃𝑓¬𝜙,
𝜙 ∨ 𝜓 := ¬(¬𝜙 ∧ ¬𝜓), 𝜙 → 𝜓 := ¬𝜙 ∨ 𝜓 and 𝜙 ↔ 𝜓 := (𝜙 → 𝜓) ∧ (𝜓 → 𝜙) are defined in
the usual fashion. We sometimes make use of the logical constants 0 and 1, which can be
expressed with quantified propositions that are forced to take the appropriate truth values.
If 𝑓 = (𝑓1, . . . , 𝑓𝑛) is a tuple of variables, we sometimes write ∀�⃗� for ∀𝑓1 . . . ∀𝑓𝑛 and ∃�⃗� for
∃𝑓1 . . . ∃𝑓𝑛. Also, the formula �⃗� ↔ �⃗�, assuming |�⃗� | = |⃗𝑔|, is short for

⋀︀|�⃗� |
𝑖=1(𝑓𝑖 ↔ 𝑔𝑖).

We write Var(𝜙) (Fr(𝜙), resp.) to denote the set of variables that occur (occur freely,
resp.) in 𝜙. A formula with no free variables is closed. A term 𝑡 is free in 𝜙 if Var(𝑡) ⊆ Fr(𝜙).

A 𝛷-interpretation 𝐼 is a function that maps every variable 𝑓 ∈ 𝛷 to its interpretation
𝐼(𝑓) : {0, 1}ar(𝑓) → {0, 1}. If 𝐼 is a 𝛷-interpretation, 𝑓 ∈ 𝛷 has arity 𝑛, and 𝐹 : {0, 1}𝑛 →
{0, 1}, then 𝐼𝑓

𝐹 is the 𝛷-interpretation defined by 𝐼𝑓
𝐹 (𝑓) := 𝐹 and 𝐼𝑓

𝐹 (𝑔) := 𝐼(𝑔) for all 𝑔 ̸= 𝑓 .
The valuation J𝜙K𝐼 ∈ {0, 1} of a formula 𝜙 in 𝐼 is defined as follows:

J𝜙 ∧ 𝜓K𝐼 := J𝜙K𝐼 · J𝜓K𝐼 ,
J¬𝜙K𝐼 := 1 − J𝜙K𝐼 ,
J𝑓(𝜙1, . . . , 𝜙𝑛)K𝐼 := 𝐼(𝑓)(J𝜙1K𝐼 , . . . , J𝜙𝑛K𝐼),

J∃𝑓𝜙K𝐼 := max
{︁

J𝜙K𝐼𝑓
𝐹

⃒⃒⃒
𝐹 : {0, 1}𝑛 → {0, 1}

}︁
.

We often write 𝐼 � 𝜙 instead of J𝜙K𝐼 = 1. We write 𝜙 � 𝜓, if 𝐼 � 𝜙 implies 𝐼 � 𝜓 for all
suitable interpretations 𝐼. We say that 𝜙 and 𝜓 are equivalent and write 𝜙 ≡ 𝜓, if 𝜙 � 𝜓
and 𝜓 � 𝜙. A 𝛷-formula 𝜙 is valid if J𝜙K𝐼 = 1 for all 𝛷-interpretations 𝐼. It is satisfiable if
there is at least one 𝐼 such that J𝜙K𝐼 = 1. Finally, a valid closed formula is called true.

2.2 Syntactic restrictions and normal forms
Next we consider basic normal forms of SO2 such as prenex form and conjunctive normal
form. These are defined as in classical QBF, except that a second-order literal may contain
multiple variables in a nested way. Analogously to the classical case, we show that virtually
all lower bounds already hold for those fragments. Here [𝑛] is used to denote the set of
natural numbers {1, 2, . . . , 𝑛}.

I Definition 1. A literal is a term or the negation of a term. A clause is a disjunction of
literals. A formula in conjunctive normal form (CNF) is a conjunction of clauses. A formula
is a Horn formula if it is a CNF such that every clause contains at most one non-negated
literal. A formula is a Krom formula if it is a CNF such that every clause contains at most
two literals. A formula is a core formula if it is Horn and Krom.

I Definition 2 (𝛴𝑘 and 𝛱𝑘). Let 𝑘 ≥ 1. The set 𝛴𝑘 consists of all formulae of the form
𝑄1𝑓1 · · · 𝑄𝑘𝑓𝑘 𝑄𝑘+1 �⃗� 𝜃, where 𝑄𝑖 = ∃ (𝑄𝑖 = ∀) if 𝑖 is odd (even), 𝜃 is quantifier-free, and
�⃗� is a tuple of propositional variables. Moreover, we insist that all quantified variables are
distinct. The analogous definition of 𝛱𝑘 is achieved by swapping ∃ and ∀.

For unbounded quantifier prefixes, we write 𝛴𝜔 :=
⋃︀

𝑘≥1 𝛴𝑘 and 𝛱𝜔 :=
⋃︀

𝑘≥1 𝛱𝑘. A
formula 𝜙 is in prenex form if it is in 𝛴𝜔 ∪ 𝛱𝜔. A formula in prenex form is called Horn,
Krom, or core, if its quantifier-free part is a CNF of the corresponding form.

Compared to classical QBF, the structure of second-order literals is much richer due
to the ability to use nested Boolean functions, and because we can have function variables
appear with different arguments. In this paper, we explore the complexity landscape that

M. Hannula, J. Kontinen, M. Lück, and J. Virtema 27:5

results from allowing second-order literals to occur only in a controlled fashion. In extension
to the fragments introduced above, we define two classes of formulae that play major roles in
the subsequent results: uniqueness and simpleness.

I Definition 3 (Uniqueness). A formula 𝜙 has uniqueness if for all pairs of terms of the
form 𝑓(𝑡1, . . . , 𝑡𝑛) and 𝑓(𝑡′1, . . . , 𝑡′𝑛) that occur in 𝜙, it holds that 𝑡𝑖 = 𝑡′𝑖 for all 𝑖 ∈ [𝑛].

In other words, a function variable must always appear with the same arguments. For
example, the formulae 𝑓(0) ↔ 𝑓(1) and ∃𝑥∀𝑦(𝑥 ↔ 𝑓(𝑦)) both state that 𝑓 is a constant
function, but only the second one has uniqueness.

I Definition 4 (Simpleness). A formula is simple if functions occurring in it have only
propositions as arguments.

If a formula is not simple, it is not hard to restore simpleness by introducing additional
existential variables. For example, 𝑓(𝑔(𝑥)) is equivalent to ∃𝑦 (𝑔(𝑥) ↔ 𝑦 ∧ 𝑓(𝑦)).

I Proposition 5. For every SO2-formula 𝜙 in prenex form there is a logspace-computable
and simple formula 𝜓 equivalent to 𝜙.

Proof. Suppose 𝜙 = 𝑄1𝑓1 · · ·𝑄𝑛𝑓𝑛 𝜃 with 𝜃 quantifier-free. Let 𝑡1, . . . , 𝑡𝑘 be an enumeration
of all terms in 𝜃. Then 𝜙 is equivalent to the formula

𝑄1𝑓1 · · ·𝑄𝑛𝑓𝑛∃𝑦1 · · · ∃𝑦𝑘

(︁
𝜃* ∧

𝑘⋀︁
𝑖=1

(𝑦𝑖 ↔ 𝑡*𝑖)
)︁
,

where 𝜃* is obtained from 𝜃 by recursively replacing all terms 𝑡𝑗 that occur nested inside
other terms by 𝑦𝑗 . J

I Corollary 6. Let 𝑘 be odd and let 𝛹 ∈ {𝛱𝑘, 𝛴𝑘+1}. Then for every formula 𝜙 ∈ 𝛹 there is
a logspace-computable formula 𝜓 ∈ 𝛹 that is simple and equivalent to 𝜙. Furthermore, this
translation preserves uniqueness, and the Horn, Krom and core property.

If 𝛹 is a set of formulae, then 𝛹 s is its restriction to simple formulae and 𝛹u is its
restriction to formulae with uniqueness, and similarly 𝛹h, 𝛹 k and 𝛹 c for Horn, Krom, and
core. E.g., 𝛴ush

2 is the set of all simple 𝛴2-formulae with uniqueness which are in Horn CNF.

2.3 Known complexity results
We assume the reader to be familiar with basic complexity classes such as PSPACE and
the exponential hierarchy, as well as logspace-reductions and basics of Turing machines. For
a detailed exposition for these topics we refer the reader to [1] and to the complexity toolbox
in Appendix A.

The quantifier alternation hierarchy of second-order Boolean logic is complete for the
respective levels of the exponential time hierarchy, completely analogous to fragments of
ordinary QBF being complete for the levels of the polynomial hierarchy.

I Theorem 7 ([8, 9]). Let 𝑘 ≥ 1. Truth of 𝛴𝑘-formulae is complete for ΣE
𝑘 , and truth of

𝛱𝑘-formulae is complete for ΠE
𝑘 .

The result generalizes to unbounded number of quantifier alternations. The full logic is
complete for the class AEXP(poly), that is, exponential runtime (corresponding to the size
of second-order interpretations) but only polynomially many alternations (corresponding to
the quantifier alternations in a formula with respect to its length).

CSL 2021

27:6 Horn and Krom Fragments of Second-Order Boolean Logic

I Theorem 8 ([6, 9]). Truth of 𝛴us
𝜔 -formulae, of 𝛱us

𝜔 -formulae and of arbitrary SO2-formulae
is each complete for AEXP(poly).

However, as Bubeck and Büning [4] showed, the complexity even of second-order logic
can drop down to tractable classes when the matrix (i.e., the quantifier free part) of the
formula is restricted to Horn clauses:

I Theorem 9 ([4]). Truth of 𝛴ush
1 , that is, 𝛴1-Horn formulae with simpleness and uniqueness,

is P-complete.

2.4 Simplification based on variable dependencies
We conclude this section with a rather technical auxiliary result called argument elision
that will be required in the subsequent sections. It allows to simplify formulae as follows.
For example, the formula ∀𝑥 ∃𝑓

(︀
𝑓(𝑧, 𝑥) ↔ 𝑔(𝑧)

)︀
can be simplified to an equivalent formula

∀𝑥 ∃𝑓𝑧

(︀
𝑓𝑧(𝑥) ↔ 𝑔(𝑧)

)︀
, for as the value of 𝑧 is fixed to some 𝑏 ∈ {0, 1} before 𝑓 is quantified,

the interpretations of 𝑓 and 𝑓𝑧 can be always copied from another such that 𝑓𝑧(𝑥) and 𝑓(𝑏, 𝑥)
are the same functions. Hence the free variable 𝑧 can be elided from the quantified function
variable. Perhaps more relevant is the case where 𝑧 is not free, but simply quantified before 𝑓 .
Indeed, the formulae ∀𝑧∀𝑥∃𝑓

(︀
𝑓(𝑧, 𝑥) ↔ 𝑔(𝑧)

)︀
and ∀𝑧∀𝑥∃𝑓𝑧

(︀
𝑓𝑧(𝑥) ↔ 𝑔(𝑧)

)︀
are equivalent.

Eliding the 𝑖-th position of a function variable 𝑓 in a formula 𝜙 means to replace every
quantifier 𝑄𝑓 by 𝑄𝑔, where 𝑔 is a fresh function variable of arity ar(𝑓) − 1 and 𝑄 ∈ {∃,∀},
and every term 𝑓(𝑡1, . . . , 𝑡𝑛) with 𝑔(𝑡1, . . . , 𝑡𝑖−1, 𝑡𝑖+1, . . . , 𝑡𝑛). If a formula has uniqueness
(i.e., functions always appear with the same arguments 𝑡1, . . . , 𝑡𝑛) then eliding a term 𝑡 from
a function variable 𝑓 means the consecutive elision of all positions 𝑖 such that 𝑡𝑖 = 𝑡.

The following proposition follows via a simple inductive argument (see Appendix B).

I Proposition 10 (Free term elision). Let 𝜙 ∈ SOu
2 be a prenex formula, 𝑓 a function variable

not free in 𝜙, and 𝑡 a term free in 𝜙. Then eliding 𝑡 from 𝑓 yields a formula equivalent to 𝜙.

In particular, it follows that if 𝜙 ∈ 𝛴u
𝜔 is a formula, 𝑓 a function variable quantified in 𝜙,

and 𝑡 a term such that all variables in Var(𝑡) are quantified before 𝑓 , then the elision of 𝑡
from 𝑓 produces an equivalent formula.

3 An NL-complete second-order fragment

In this section, we consider the Krom fragment and obtain tractability results for the first
levels of the propositional second-order quantifier hierarchy. We show completeness for NL,
and hence obtain fragments that are as hard as the ordinary propositional Krom fragment.
In our proofs, we follow the classical approach by Aspvall et al. [2], who showed that classical
QBF with the quantifier-free part consisting of Krom clauses are solvable in NL. The
approach is to interpret the formula as an implication graph 𝐺 = (𝑉,𝐸). The crucial idea of
the approach is that connectedness in the graph corresponds to logical implication. Here,
𝑉 is the set of all literals in 𝜙, closed under negation and ¬¬ℓ identified with ℓ. An edge
(ℓ1, ℓ2) ∈ 𝐸 exists when 𝜙 contains a clause equivalent to ℓ1 → ℓ2, that is, of the form ¬ℓ1 ∨ℓ2.
A unit clause ℓ is identified with (¬ℓ → ℓ). A strongly connected component (or simply a
component) 𝑆 of 𝐺 is a maximal subset of vertices such that for all distinct 𝑣, 𝑣′ ∈ 𝑆 there is
a path from 𝑣 to 𝑣′. sec:lower-bounds

In classical propositional logic, a set of Krom clauses is satisfiable precisely if no cycle of
the implication graph contains some literal ℓ and its negation ¬ℓ [2]. With quantifiers, the
matter complicates and we need to account for the notion of dependency between variables. A

M. Hannula, J. Kontinen, M. Lück, and J. Virtema 27:7

literal 𝑡 is called universal (existential) in 𝜙 if its head is quantified universally (existentially)
in 𝜙. A component is universal (existential) if it contains some (no) universal vertex.

A bit sloppily, we say that a literal ℓ is an argument of a literal ℓ′ if there are 𝑟 ≥ 1, 𝑖 ∈ [𝑟]
and a term 𝑓(𝑡1, . . . , 𝑡𝑟) such that ℓ or ¬ℓ equals 𝑡𝑖, and ℓ′ or ¬ℓ′ equals 𝑓(𝑡1, . . . , 𝑡𝑟). In what
follows, we restrict ourselves to simple fragments, that is, all arguments are propositions.

I Definition 11. A vertex 𝑣 depends on a vertex 𝑣′, in symbols 𝑣 𝑣′, if
a) 𝑣′ is an argument of 𝑣, or
b) 𝑣′ is quantified before 𝑣, and every argument of 𝑣′ is either an argument of 𝑣 or

is quantified before 𝑣, if the argument is universal, and
is quantified before or at the same quantifier block as 𝑣, if the argument is existential.

If 𝑆 and 𝑆′ are components, we write 𝑆 𝑆′ if some universal vertex 𝑢 ∈ 𝑆 depends on
some vertex 𝑣 ∈ 𝑆′ (with possibly 𝑆 = 𝑆′).

For classical Krom formulae, a QBF can be shown to be true if and only if the following
conditions all hold [2]:

(1) There is no path from a universal vertex 𝑢 to another universal vertex 𝑢′ (with 𝑢 ̸= 𝑢′,
but possibly 𝑢 = ¬𝑢′).

(2) No vertices 𝑣 and ¬𝑣 are in the same component.
(3) Every existential vertex 𝑣 in the same component as a universal vertex 𝑢must depend on 𝑢.

Note: For classical QBF, (3) simply means that 𝑣 must be quantified after 𝑢, but in the
general case, we need the more complicated Definition 11. Moreover, we require another
condition in addition to the above (1)–(3):
(4) There is no -cycle among the components (including loops).

I Example 12. One formula that violates (4) is ∀𝑦1∀𝑦2∃𝑥1∃𝑥2(𝑦1(𝑥2) ↔ 𝑥1) ∧ (𝑦2(𝑥1) ↔
𝑥2). The reason is that 𝑦1(𝑥2) 𝑥2 and 𝑦2(𝑥1) 𝑥1, and therefore {𝑦1(𝑥2), 𝑥1}
{𝑥2, 𝑦2(𝑥1)} {𝑥1, 𝑦1(𝑥2)} on the level of components. Indeed, choosing the universal
quantifiers as 𝑦1(𝑥2) = ¬𝑥2, 𝑦2(𝑥1) = 𝑥1 refutes the formula.

I Example 13. Another example is the false formula ∀𝑢∃𝑥(𝑢(𝑥) ↔ 𝑥). Informally, it states
that every Boolean function has a fixed point. Indeed, 𝑢 depends on 𝑥 because 𝑥 is an
argument of 𝑢, and so the only component {𝑢(𝑥), 𝑥} in this formula already forms a -loop.
(Also, 𝑥 depends on 𝑢 as it is quantified after 𝑢, but this fact is not required here. The
formula ∃𝑥∀𝑢(𝑢(𝑥) ↔ 𝑥) is false as well.)

We carry the classical approach to the second-order setting, in particular to the fragment
of formulae introduced next.

I Definition 14 (Braided formulae). Let 𝜙 be a closed prenex formula, i.e., it is of the form
𝑄1𝑓1 · · ·𝑄𝑚𝑓𝑚 𝜃, for 𝜃 quantifier-free. Then 𝜙 is braided if, for every quantifier 𝑄𝑖, the
arguments of each 𝑔 ∈ 𝑓𝑖 are quantified after 𝑔
a) in the quantifier blocks 𝑄𝑖 and 𝑄𝑖+1, if 𝑄𝑖 is existential, and
b) in the quantifier blocks 𝑄𝑖, 𝑄𝑖+1, and 𝑄𝑖+2, if 𝑄𝑖 is universal.

Here, we restrict ourselves to braided 𝛴usk
𝜔 -formulae. That is, we consider only formulae

of the form 𝑄1𝑓1 · · ·𝑄𝑚𝑓𝑚

⋀︀𝑘
𝑖=1 𝐶𝑘, where 𝐶𝑘 = (ℓ1

𝑘 ∨ ℓ2
𝑘) for literals ℓ1

𝑘, ℓ
2
𝑘, and where terms

do not contain nested proper functions.
Next, we prove that the conditions (1)–(4) are necessary for 𝜙 being true in the braided

case. Afterwards, we show that they are also sufficient.

CSL 2021

27:8 Horn and Krom Fragments of Second-Order Boolean Logic

I Lemma 15. Assume 𝜙 ∈ 𝛴usk
𝜔 and braided. If any of (1) to (4) is violated, then 𝜙 is false.

Proof. Let 𝐺 = (𝑉,𝐸) be the implication graph of 𝜙.
(1) Let 𝑢 and 𝑢′ be distinct universal vertices such that (𝑢, 𝑢′) belongs to the transitive

closure of 𝐸. Using an interpretation that maps 𝑢 and 𝑢′ to the constant functions 1
and 0, respectively, we can conclude that 𝜙 cannot be true.

(2) If 𝑣 and ¬𝑣 are vertices from the same component, it follows that 𝜙 can be true only if
𝑣 ↔ ¬𝑣 holds for some interpretation, which is clearly impossible.

(3) Let 𝑣 and 𝑢 be an existential and universal vertex from the same component, respectively,
such that 𝑣 ̸ 𝑢. Hence 𝑢 is not an argument of 𝑣. We proceed to a case distinction:

i) The function 𝑣 is quantified before 𝑢 in 𝜙: By the braided property, all the arguments
of 𝑣 (if there are any) are in the same quantifier block as 𝑣, or in the next one. Since
changing the ordering of quantifiers in a universally quantified block does not have
semantical consequences, we may stipulate that 𝑢 is the final quantifier of its block.
Hence all arguments of 𝑣 are quantified before 𝑢 as well. As a consequence, there is
a fixed interpretation of terms such that 𝑣 fully evaluates to either zero or one, but
still must equal the universal 𝑢 which is quantified later, which is impossible.

ii) The function 𝑢 is quantified before 𝑣: Since 𝑣 ̸ 𝑢, there must exist an argument 𝑧
of 𝑢 that is not an argument of 𝑣 and that is quantified in some block strictly after
the block where 𝑣 is quantified (since 𝑣 is existential). By the braided property, if 𝑢
is quantified in a block 𝑄𝑖 it follows that 𝑣 and 𝑧 are quantified in the blocks 𝑄𝑖+1
and 𝑄𝑖+2 respectively. Hence 𝑧 is universal. Similarly to i), the braided property
also implies that all arguments of 𝑣 are quantified in the quantifier blocks 𝑄𝑖+1 and
𝑄𝑖+2. Hence using the same argument as in i), we may assume that 𝑧 is the final
quantifier in its block. Now by selecting 𝑢 to be the projection function for the
universally quantified 𝑧, we obtain an analogous contradiction as in i).

(4) Suppose there are components 𝑆1, . . . , 𝑆𝑛 such that 𝑆𝑖 𝑆𝑖+1 for 𝑖 ∈ [𝑛 − 1] and
𝑆𝑛 𝑆1. Let each 𝑆𝑖 contain a universal vertex 𝑢𝑖 and a vertex 𝑣𝑖 such that 𝑢𝑖 𝑣𝑖+1
for 𝑖 ∈ [𝑛− 1], and 𝑢𝑛 𝑣1. We describe choices of the universal quantifiers such that
the formula becomes false. For 1 ≤ 𝑖 < 𝑛, we can pick 𝑢𝑖 such that it equals 𝑣𝑖+1; either
as a projection function if 𝑣𝑖+1 occurs among its arguments, or as a restriction of 𝑣𝑖+1 to
the set of common arguments of 𝑢𝑖 and 𝑣𝑖+1. In the second case, every argument of 𝑣𝑖+1
is also one of 𝑢𝑖 or is quantified before 𝑢𝑖. Now the components 𝑆1, . . . , 𝑆𝑛 all have to
receive the same truth value, regardless of the existential choices. Finally, 𝑢𝑛 is picked
as the negation of 𝑣1, which renders the formula false. J

Next we proceed with the converse direction. We assume that the four above conditions
are true, and from this construct a satisfying interpretation.

I Lemma 16. Assume 𝜙 ∈ 𝛴usk
𝜔 . If (1)–(4) are satisfied, then 𝜙 is true.

Proof. For this direction, we can roughly follow Aspvall et al. [2], but have to take into
account that the vertices can also be proper functions.

Let 𝐺 = (𝑉,𝐸) be the implication graph of 𝜙. The idea is to label the graph with truth
values. Each component 𝑆 in the graph is either unmarked, or marked with true, false,
or contingent. Marking a component true or false means that it can in fact receive the
corresponding truth value as a constant function, and contingent means that its truth
depends on other vertices. Universal components are always contingent.

M. Hannula, J. Kontinen, M. Lück, and J. Virtema 27:9

For every component 𝑆, the set ¬𝑆 := {¬𝑣 | 𝑣 ∈ 𝑆} is again a component. Due to (2),
𝑆 and ¬𝑆 are always distinct. Moreover, the implication graph is skew-symmetric in the
sense that there is an automorphism (modulo flipping all edges) mapping any literal to its
negation. The reason is that the implication ℓ → ℓ′ is clearly equivalent to ¬ℓ′ → ¬ℓ.

We are now in the position to construct an assignment. This assignment will be consistent
in the sense that 𝑆 is marked true iff ¬𝑆 is marked false, and such that it satisfies all
clauses due to the property that no path leads from a true component marked to a false one.
First, we mark all universal components as contingent. We then consider the existential
components in a reverse topological ordering with respect to 𝐸 (there exists one, for the
strongly connected components always induce an acyclic graph). The algorithm marks each
component 𝑆 in this order as follows.

i) If 𝑆 is already marked, proceed with the next component.
ii) Otherwise 𝑆 is existential and unmarked, but everything reachable by 𝑆 is already

marked. If 𝑆 reaches any contingent or false component, mark it false; otherwise
mark it true.

iii) Mark ¬𝑆 the opposite of 𝑆.
Now, whenever a component 𝑆 is false, then either (in ii) it reaches some component
marked contingent or false, or (in iii), by skew-symmetry, all components reaching it are
false. Likewise, if 𝑆 is true, then either (in ii) it reaches only components marked true,
or (in iii), by skew-symmetry, it can be reached by a contingent or true component. Also,
by condition (1), there is no path from one contingent component to another. It can be
shown by induction on the steps of the algorithm, that there is no path from a true to a
contingent or false component, and also none from a contingent to a false component.

All components marked true or false consist of existential vertices, so these can be
assigned the corresponding truth assignment. Let us stress that here it suffices to assign
constant functions regardless of the actual dependencies of the variables.

Next, fix some interpretation of the universally quantified variables. We continue the
algorithm and refine the labeling of the universal components. By (4), it holds that there is
no -cycle between the components. This implies that there is again a reverse topological
ordering 𝑆1, 𝑆2, . . . of all components, but now in the sense that 𝑆𝑗 𝑆𝑖 implies 𝑖 < 𝑗. We
process all components in this order as follows.

i’) If 𝑆 is not universal, or if it is already marked, proceed with the next component.
ii’) Otherwise, let 𝑢 be the universal vertex in 𝑆 (which is unique by (1)).
iii’) All dependencies of 𝑢 are already marked true or false; in particular, all arguments

of 𝑢 have a marked truth value. Change 𝑆 to true if 𝑢 evaluates to 1 under the
corresponding assignment, and otherwise to false.

iv’) Mark ¬𝑆 the opposite of 𝑆.

It remains to establish that the interpretations of the existential variables in universal
components can be always selected to mimic the truth value of the universal variable of its
component. Recall that any existential vertex 𝑣 in the component 𝑆 must depend on 𝑢 due to
(3). This means that either (a) 𝑣 is a function with 𝑢 as an argument, or (b) 𝑣 is quantified
after 𝑢 and has as arguments all arguments of 𝑢 that are quantified in quantifier blocks after
𝑣. If (a) is the case, the we interpret 𝑣 as the projection function for 𝑢. If (b) is the case,
then there may be some arguments of 𝑢 which are not arguments of 𝑣, but somewhere in the
same quantifier block as 𝑣. But note that we may stipulate any fixed order of quantification
inside a given quantifier block. Here, we assume that, inside a block, variables are quantified
such that, for 𝑖 < 𝑗, functions in 𝑆𝑖 are quantified before functions in 𝑆𝑗 . Then any variable
that is quantified in the same block as 𝑣 and is an argument of 𝑢 but not of 𝑣 is quantified

CSL 2021

27:10 Horn and Krom Fragments of Second-Order Boolean Logic

before 𝑣, and hence has a fixed truth value when we give 𝑣 its interpretation. Let 𝐴 be the
set of common arguments of 𝑣 and 𝑢, and let �⃗� and �⃗� be the sequence of the arguments
of 𝑢 that are not in 𝐴 and the truth values fixed for those vertices before 𝑣 is interpreted,
respectively. Now interpret 𝑣 as the restriction of 𝑢 to 𝐴 with the determined arguments
fixed �⃗� ↦→ �⃗�. In either case, we assigned 𝑣 such that it equals 𝑢.

Since the above cannot introduce any new paths from a true component to a false
component, all clauses of 𝜙 are satisfied. J

I Theorem 17. The truth problem of braided 𝛴usk
𝜔 -formulae is in NL.

Proof. By the above two lemmas, it suffices to check conditions (1)–(4). But these are simple
reachability tests, which are easily solved in non-deterministic logspace. J

Next we apply the result to the lowest levels of the second-order quantifier hierarchy,
namely 𝛱s

2-formulae and lower. Here, formulae are of the form

∀𝑓1 · · · ∀𝑓𝑛∃𝑔1 · · · ∃𝑔𝑚∀𝑥1 · · · ∀𝑥𝑘 𝜃,

so the only terms violating the braided property could be of the form 𝑣1(. . . , 𝑣2, . . .), where
𝑣2 is quantified before 𝑣1. But then the argument 𝑣2 can be elided from 𝑣1 by Proposition 10.
Only for fragments 𝛴s

2 or higher we can have formulae like ∃𝑓∀𝑔∃𝑥 𝑓(𝑥) which are genuinely
not braided, and which cannot be transformed by term elision. Finally, if the propositional
quantifier block is existential (in the 𝛱s

1 fragment), we can omit the simpleness constraint
due to Corollary 6. This yields the following collection of results, since NL-hardness holds
already for the satisfiability of classical propositional core formulae (see, e.g., [11, Thm 16.3]).

I Corollary 18. Truth of formulae in 𝛴usk
1 , 𝛱uk

1 , 𝛱usk
1 or 𝛱usk

2 , respectively, is NL-complete.
Also, the lower bound still holds for the respective restrictions to core formulae.

Note that the above proof hinges on the fact that Lemma 15 works only for braided
formulae. If we drop this assumption, then the complexity of the truth problem becomes as
hard as for arbitrary formulae, as shown in Section 5.

4 Further Upper Bounds

In the previous section, we showed that the first level of the SOus
2 hierarchy becomes tractable

when restricted to Krom formulae. The same holds when restricted to Horn formulae [4].
Next, we consider the question whether these results can be generalized to higher levels of the
SO2 hierarchy. Indeed, we find several cases where the complexity collapses to a lower class.
It is worthy to note that such a collapse occurs only if the final propositional quantifier block
of a formula is universal, which also is the case, e.g., for the DQBF fragment (cf. Theorem 9).
If the final quantifier block is existential, we show later in the next section that no such
collapse occurs.

I Theorem 19. Let 𝑘 > 0 be even. Then the truth problem of 𝛱sk
𝑘 ∪𝛱sh

𝑘 is in ΠE
𝑘−1 and the

truth problem of 𝛴sk
𝑘+1 ∪𝛴sh

𝑘+1 is in ΣE
𝑘 .

Proof. The following algorithm decides whether a given formula 𝜙 is true, if 𝜙 is simple and
additionally Krom or Horn. Suppose 𝜙 ∈ 𝛱𝑘 (resp. 𝜙 ∈ 𝛴𝑘+1).

First we non-deterministically guess in exponential time a truth table for each quantified
function, except for the final block of existentially quantified functions, performing 𝑘 − 2
(resp. 𝑘 − 1) alternations in this process. All so evaluated quantifiers are deleted, and in

M. Hannula, J. Kontinen, M. Lück, and J. Virtema 27:11

either case we arrive at a formula 𝜙′ of the form ∃𝑓1 · · · ∃𝑓𝑛∀𝑥1 · · · ∀𝑥𝑚 𝜃 for quantifier-free 𝜃,
and some interpretation 𝐼 for the free variables in 𝜙′. It remains to give a procedure that
decides whether 𝐼 � 𝜙′. If this part of the algorithm runs in deterministic exponential time
w. r. t. |𝜙|, then this proves an overall ΠE

𝑘−1 or ΣE
𝑘 bound, respectively.

To do so, we first perform some simplifications. W.l.o.g. 𝑓𝑜+1, . . . , 𝑓𝑛 are propositions
and 𝑓1, . . . , 𝑓𝑜 are proper functions, for some 𝑜 ∈ [𝑛]. We deterministically loop over all
possible values for 𝑓𝑜+1, . . . , 𝑓𝑛, substitute these in the formula, and remove the quantifiers.
This leads only to an exponential factor in the runtime and ensures that all existentially
quantified variables are proper functions. By this, we arrive at a Horn or Krom formula

𝜙′′ = ∃𝑓1 · · · ∃𝑓𝑜∀𝑥1 · · · ∀𝑥𝑚𝜃
′

for quantifier-free 𝜃′. Note that 𝜙′′ may still contain free proper functions. But due to the
simpleness condition, and since the 𝑓𝑖 are functions as well, no existential variable is nested
inside another function. This is crucial for the next step.

We use the universal expansion technique, which has been applied to DQBF as well [4].
The idea is to translate the universal quantifiers into an equivalent large conjunction. Let
𝑟𝑖 := ar(𝑓𝑖). We replace each existential variable 𝑓𝑖 by exponentially many propositions 𝑦𝑖,�⃗�,
one for each possible input tuple �⃗� ∈ {0, 1}𝑟𝑖 . For all possible assignments �⃗� ∈ {0, 1}𝑚 to
the 𝑥𝑖, we create a modified copy 𝜃′ [⃗𝑏] of the matrix 𝜃′ defined as follows. If �⃗� = (𝑏1, . . . , 𝑏𝑚),
then each 𝑥𝑖 is replaced by 𝑏𝑖. Next, all terms 𝑡 in 𝜃′ [⃗𝑏] not containing any 𝑓𝑖 are replaced by
their valuation J𝑡K𝐼 ∈ {0, 1}. Now all terms are either constant, or have the head 𝑓𝑖 and only
constant arguments. Finally, the latter terms 𝑓𝑖(𝑏1, . . . , 𝑏𝑟𝑖) are replaced by the proposition
𝑦𝑖,(𝑏1,...,𝑏𝑟𝑖

). The resulting formula is the following:

𝜓 := ∃
𝑖∈[𝑜]

�⃗�∈{0,1}𝑟𝑖

𝑦𝑖,�⃗�

⋀︁
�⃗�∈{0,1}𝑚

𝜃′ [⃗𝑏]

This formula contains no free variables and is true if and only if 𝐼 � 𝜙′′. In other words,
it is a simple propositional formula with existential proposition quantifiers, and its matrix⋀︀

�⃗�∈{0,1}𝑚 𝜃′ [⃗𝑏] is Krom or Horn. Hence the truth of 𝜓 can be computed in deterministic
polynomial time w. r. t. |𝜓|, and consequently in deterministic exponential time w. r. t. |𝜙|. J

If the non-deterministic part of the algorithm, the guessing of all quantified functions but
the last block, is removed, then we obtain a deterministic exponential time algorithm for
𝛴sh

1 -formulae. the

I Theorem 20. Truth of 𝛴sh
1 is in EXP.

In fact, we can combine this approach with the NL algorithm from Section 3 as well:

I Theorem 21. Truth of 𝛴sk
1 is in PSPACE.

Proof. Given a formula 𝜙 ∈ 𝛴sk
1 , we run the reachability algorithm from Section 3 on

the formula 𝜓 that would result from the translation in Theorem 19. However, instead of
expanding 𝜙 to 𝜓 first, which would require exponential space, we perform the reachability
tests in polynomial space, constructing only the needed parts of 𝜓 on-the-fly. J

Observe why the technique relies on the final quantifier block being universal: otherwise
the resulting formula

⋁︀
�⃗�∈{0,1}𝑚 𝜃′ [⃗𝑏] would not be in CNF, and hence neither Horn nor Krom.

CSL 2021

27:12 Horn and Krom Fragments of Second-Order Boolean Logic

5 Lower bounds

In the previous sections, we showed that the complexity of a fragment sometimes decreases
when restricted to Horn or Krom matrix, when compared to the general fragment with the
same quantifier prefix. However, in many cases the complexity stays the same. Often the
logics are powerful enough to simulate specific Boolean connectives, such as disjunction and
negation, in terms of quantified Boolean functions. In these cases, the whole Boolean part of
the formula can essentially be reduced to unit clauses, which of course renders the Horn and
Krom restriction meaningless.

5.1 Cases with an existential function quantifier
The first result of this section is also the most general; it concerns all non-simple formulae
for quantifier prefixes that include 𝛴1 – that is, everything but 𝛱1. (Recall that simple and
non-simple 𝛱1 are equivalent.) By the introduction of additional existential functions that
simulate disjunction and negation, we bring an arbitrary CNF into core form. This is stated
in the following lemma, of which the proof can be found in Appendix C.

I Lemma 22. Let 𝒬 𝜃 be a formula in CNF, with 𝜃 quantifier-free in CNF and 𝒬 being a
sequence of quantifiers. Then 𝒬 𝜃 is equivalent to a logspace-computable formula ∃�⃗� 𝒬 ∀�⃗� ∃�⃗�𝜃′

in CNF such that 𝜃′ is quantifier-free, �⃗� are function symbols, and �⃗�, �⃗� are propositions.
Moreover, if 𝜃 has uniqueness, then so has 𝜃′.

I Theorem 23. For 𝑘 ≥ 1, truth of 𝛴uc
𝑘 is ΣE

𝑘 -complete.

Proof. The upper bound is due to Theorem 7. For the lower bound, we use Lemma 22 and
reduce from 𝛴𝑘, for which the truth is ΣE

𝑘 -complete by Theorem 7. Let

𝜙 = ∃𝑓1∀𝑓2 · · ·𝑄𝑘𝑓𝑘 𝑄𝑘+1 �⃗� 𝜃

be given, where 𝜃 is quantifier-free, each 𝑓𝑖 is a sequence of functions, and �⃗� is a sequence of
propositions.

The first step is to transform 𝜙 to an equivalent formula with uniqueness. For any
function ℎ that violates uniqueness, we introduce fresh distinct copies ℎ1, . . . , ℎ𝑛 of ℎ, for
each distinct tuple of arguments �⃗�1 . . . �⃗�𝑛 of ℎ occurring in 𝜙, together with distinct fresh
propositional variables �⃗�, �⃗�1, . . . , �⃗�𝑛. We then append subformulae to 𝜙 whose purpose is to
state that the interpretations of ℎ𝑖 and ℎ coincide. If 𝑄𝑘 = ∃ and 𝑄𝑘+1 = ∀, we modify 𝜙
such that ∀�⃗� 𝜃 is replaced with

∃ℎ1 . . . ℎ𝑛∀�⃗� �⃗� �⃗�1 . . . �⃗�𝑛

(︁ ⋀︁
𝑖∈[𝑛]

(︀
(�⃗� ↔ �⃗�𝑖) → (ℎ(�⃗�) ↔ ℎ𝑖(�⃗�𝑖))

)︀)︁
∧

(︁(︀ ⋀︁
𝑖∈[𝑛]

(�⃗�𝑖 ↔ �⃗�𝑖)
)︀

→ 𝜃*
)︁
,

where 𝜃* is obtained from 𝜃 by replacing the occurrences of ℎ(⃗𝑎𝑖) by ℎ𝑖(�⃗�𝑖), for each 𝑖 ∈ [𝑛].
On the other hand, if 𝑄𝑘 = ∀ and 𝑄𝑘+1 = ∃, we modify 𝜙 such that ∃�⃗� 𝜃 is replaced with

∀ℎ1 . . . ℎ𝑛∃�⃗� �⃗� �⃗�1 . . . �⃗�𝑛

(︁ ⋁︁
𝑖∈[𝑛]

(︀
(�⃗� ↔ �⃗�𝑖) ∧ (ℎ(�⃗�) ↔ ¬ℎ𝑖(�⃗�𝑖))

)︀)︁
∨

(︁(︀ ⋀︁
𝑖∈[𝑛]

(�⃗�𝑖 ↔ �⃗�𝑖)
)︀

∧ 𝜃*
)︁
,

where 𝜃* is as above.
The second step is to establish CNF. It is folklore that arbitrary formulae can be

translated into an equivalent CNF with the introduction of additional existentially quantified
propositions after the final quantifier block �⃗�. If 𝑘 is odd, these existential propositions can

M. Hannula, J. Kontinen, M. Lück, and J. Virtema 27:13

be pulled in front of �⃗� (by increasing their arity and adding �⃗� as their parameter) and added
to the (existential) block 𝑓𝑘. If 𝑘 is even this step can be skipped since �⃗� is existential as well.
Hence we can assume that 𝜃 is in CNF and has uniqueness.

It remains to conduct the final translation into core clauses. For any 𝛴u
𝑘-formula 𝜙′ =

∃𝑓1∀𝑓2 · · ·𝑄𝑘𝑓𝑘𝑄𝑘+1 �⃗� 𝜃
′, we can apply Lemma 22 to the subformula after ∃𝑓1 and obtain

an equivalent formula ∃𝑓1∃�⃗� ∀𝑓2 · · ·𝑄𝑘𝑓𝑘𝑄𝑘+1 �⃗�∀�⃗� ∃�⃗� 𝜃′′ where 𝜃′′ is a quantifier-free CNF
with uniqueness. Using the same argument as above, if 𝑄𝑘+1 = ∀, then we can eliminate the
first-order alternation by transforming the �⃗� into existentially quantified functions depending
on both �⃗� and �⃗� and adding them to the block 𝑓𝑘. Otherwise, if 𝑄𝑘+1 = ∃, then we instead
transform the �⃗� into functions depending on �⃗� and move them into the universal block 𝑓𝑘.
In each case, we arrive at an 𝛴uc

𝑘 -formula. Note we do not consider the simpleness property
at this point, since this step may produce new function symbols that appear nested in other
functions. J

I Theorem 24. For 𝑘 ≥ 2, truth of 𝛱uc
𝑘 is ΠE

𝑘 -complete.

Proof. The proof is the same as for Theorem 23, except that in the last step, the formula is
of the form

∀𝑓1∃𝑓2∀𝑓3 · · ·𝑄𝑘𝑓𝑘𝑄𝑘+1 �⃗� 𝜃
′

and we apply the lemma to the subformula after ∃𝑓2. J

Lemma 22, used in the above reductions, introduces existential quantifiers that are not
braided. Compared to the previous section, this small difference leads from NL-membership
to ΣE

𝑘 -completeness. If the final proposition block is existential and there is at least one
existential function block, the result carries over even with simpleness due to Corollary 6:

I Theorem 25. 1. Let 𝑘 > 0 be even. The truth problem of 𝛴usc
𝑘 is ΣE

𝑘 -complete and the
truth problem of 𝛱usc

𝑘+1 is ΠE
𝑘+1-complete.

2. The truth problem of 𝛴usc
𝜔 is AEXP(poly)-complete.

What if the proposition block is universal, i.e., 𝑘 is odd for 𝛴𝑘 and even for 𝛱𝑘? Then,
as shown in Theorem 19, we fall down one level in the hierarchy. Hardness results follow
from the observation that 𝛴𝑘 (𝛱𝑘, resp.) is a syntactic fragment of 𝛴𝑘+1 (𝛱𝑘+1, resp.).

I Theorem 26. Let 𝑘 > 2 be odd. The truth problem of 𝛴usc
𝑘 is ΣE

𝑘−1-complete and the truth
problem of 𝛱usc

𝑘+1 is ΠE
𝑘 -complete.

5.2 The fragment 𝛱1 without uniqueness
We established the NL upper bound of 𝛱1 if we have uniqueness and Krom (Corollary 18);
the case with uniqueness and Horn is open. Here, we proceed with 𝛱1 without uniqueness.
As we have no existential function quantifiers, the reduction from before does not apply.
Nonetheless, it turns out that this fragment is still as hard as the full logic 𝛱1.

I Theorem 27. Truth of 𝛱sc
1 -formulae is ΠE

1 -hard.

Proof. We reduce from the truth of arbitrary 𝛱1-formulae, which by Theorem 7 is ΠE
1 -

complete. Hence let 𝜙 be a 𝛱1-formula, i.e.,

𝜙 = ∀𝑓1 · · · ∀𝑓𝑛∃𝑥1 · · · ∃𝑥𝑚 𝜃

CSL 2021

27:14 Horn and Krom Fragments of Second-Order Boolean Logic

for function variables 𝑓1, . . . , 𝑓𝑛, propositions 𝑥1, . . . , 𝑥𝑚, and 𝜃 quantifier-free. Since the
propositional quantifier block is existential, we can w.l.o.g. assume that 𝜃 is in 3CNF.1

The idea is to add ∀𝑔 to the beginning of the formula, where 𝑔 is a fresh binary function
symbol, and to express in the reduction that 𝑔 is the nand function, i.e., 𝑔(𝑏1, 𝑏2) = 1 − 𝑏1𝑏2.
In what follows, we use the constants 0 and 1, which can easily be simulated by adding new
propositional quantifiers ∃𝑧0∃𝑧1 and unit clauses ¬𝑧0 ∧ 𝑧1. To describe the behaviour of 𝑔,
we add existentially quantified propositions 𝑑, 𝑑′, 𝑒, 𝑒′ and the following core clauses:

𝐷1 := 𝑔(0, 0) → 𝑑, 𝐷2 := 𝑔(0, 0) → 𝑒, 𝐷3 := 𝑔(𝑑, 0) → 𝑑′, 𝐷4 := 𝑔(0, 𝑒) → 𝑒′.

Furthermore, every clause 𝐶 := (ℓ1 ∨ ℓ2 ∨ ℓ3) of 𝜃 is replaced by 𝑒′ → 𝑔(𝑑′, 𝐶*), where 𝐶* is
a nand-expression equivalent to ¬𝐶, using 𝑔 as a symbol for nand.2 𝐶* has length 𝒪(|𝐶|).

Call the resulting formula 𝜃*. To prove the correctness of the reduction, we show that 𝜃
is equivalent to 𝜃′ := ∀𝑔∃𝑑∃𝑑′ ∃𝑒∃𝑒′(

⋀︀4
𝑖=1 𝐷𝑖 ∧ 𝜃*).

The easy direction is from right to left: Since 𝑔 is universal, in particular we can assume
that 𝑔 is nand. As 𝑔(0, 0) = 𝑔(1, 0) = 𝑔(0, 1) = 1, the propositions 𝑑, 𝑒, 𝑑′, 𝑒′ must all be
true. Since also all clauses of the form 𝑒′ → 𝑔(𝑑′, 𝐶*) are true by assumption, 𝐶* is false.
Consequently, 𝐶 is true.

For the converse direction, let 𝑔 be arbitrary. We define suitable witnesses for 𝑑, 𝑒, 𝑑′ and 𝑒′.
If 𝑔(0, 0) = 0, then we set 𝑑, 𝑒, 𝑑′, 𝑒′ := 0, which satisfies all clauses of the form 𝑒′ →
𝑔(𝑑′, 𝐶*), as well as 𝐷1, . . . , 𝐷4.
If 𝑔(0, 1) = 0, then we can similarly set 𝑑, 𝑑′, 𝑒 := 1 and 𝑒′ := 0.
Otherwise 𝑔(0, 0) = 𝑔(0, 1) = 1. Here, we must set 𝑒, 𝑒′, 𝑑 := 1.

If 𝑔(1, 0) = 0, then we set 𝑑′ := 0. Then 𝑔(𝑑′, 𝐶*) = 𝑔(0, 𝐶*) = 1 regardless of 𝐶*.
If 𝑔(1, 0) = 1, then we set 𝑑′ := 1.
∗ If 𝑔(1, 1) = 1, then 𝑔 is constant one, and the terms 𝑔(𝑑′, 𝐶*) are trivially true.
∗ If 𝑔(1, 1) = 0, then 𝑔 is the actual nand function, and 𝑔(𝑑′, 𝐶*) ≡ ¬(1 ∧ 𝐶*) ≡ 𝐶 is

true by assumption.
Finally, we replace 𝜃 by 𝜃′ in 𝜙, move ∀𝑔 to the front of the formula, and obtain simpleness
of the formula by Corollary 6. J

The above results easily “relativize” to the case of more quantifier alternations before the
final universal function quantifier block:

I Theorem 28. Let 𝑘 > 0 be odd. Then the truth of 𝛴sc
𝑘+1 is ΣE

𝑘+1-complete, and the truth
of 𝛱sc

𝑘 is ΠE
𝑘 -complete.

5.3 The 𝛴1 cases with simpleness but no uniqueness
Curiously, while 𝛱sc

1 is ΠE
1 -complete, its dual fragment 𝛴sc

1 is likely easier than ΣE
1 , although

harder than 𝛴usc
1 . We consider these final fragments in this subsection.

I Theorem 29. Truth of formulae in 𝛴sc
1 or 𝛴sk

1 is PSPACE-complete.

Proof. The upper bound is given by Theorem 21. We show the hardness for 𝛴sc
1 , which

implies the lower bound for 𝛴sk
1 . Let 𝑀 be a single-tape Turing machine that decides some

PSPACE-complete problem in deterministic space 𝑝(𝑛), where 𝑝(𝑛) ≥ 𝑛 is some polynomial.

1 The approach is the same as for the classical reduction from SAT to 3SAT and can be found in standard
textbooks (e.g. [1, Lemma 2.14]).

2 We can choose for example 𝐶* := ℎ(𝑔(ℎ(𝑔(ℎ(ℓ1), ℎ(ℓ2))), ℎ(ℓ3))), where ℎ(𝜙) = 𝑔(𝜙, 𝜙).

M. Hannula, J. Kontinen, M. Lück, and J. Virtema 27:15

W.l.o.g., we may assume that the computation of 𝑀 halts in time 𝑔(𝑛) by reaching a unique
rejecting or a unique accepting configuration, where 𝑔(𝑛) is some exponential function. For
each input 𝑥, we compute a formula 𝜙 in logspace that is true iff 𝑀 accepts 𝑥. The formula
𝜙 will be of the form

∃𝑓 ∀𝑣1 · · · ∀𝑣𝑚 𝜃,

where 𝜃 is quantifier-free, simple and core, 𝑓 is a function variable, and the 𝑣𝑖 are propositions.
Thus 𝜙 ∈ 𝛴sc

1 .
If 𝑀 has states 𝑄 and tape alphabet 𝛤 , then a configuration of 𝑀 is a triple (ℎ, 𝑞, 𝑤),

where ℎ ∈ [𝑝(𝑛)] denotes the head position on the tape, 𝑞 ∈ 𝑄 is the state of the machine,
and 𝑤 ∈ 𝛤 𝑝(𝑛) is the tape content. We stipulate an arbitrary coding function ⟨·⟩ : 𝑄 ∪ 𝛤 →
{0, 1}𝑘 that expands each state and each tape symbol to a fixed-width binary vector. For
tape positions 𝑗 ∈ [𝑝(𝑛)], we use the unary encoding bit(𝑗) := (0𝑗−110𝑝(𝑛)−𝑗). Using the
coding function ⟨·⟩ , configurations of 𝑀 can be now presented as binary strings of length
𝑝(𝑛) + 𝑘 + 𝑘𝑝(𝑛).

The idea behind 𝜙 is as follows: The function 𝑓 is used to encode a set of (binary
encodings of) configurations of 𝑀 . In order to take a head position, a state, and a tape
content as an argument, the function 𝑓 will have arity 𝑝(𝑛) + 𝑘 + 𝑘𝑝(𝑛). In 𝜃, we stipulate
that 𝑓 contains the initial configuration and is closed under transitions of 𝑀 , but does not
reach the unique rejecting configuration. Hence it expresses that 𝑀 accepts 𝑥, as desired.

We will next describe 𝜃 more formally. Let 𝑀 have initial state 𝑞0 ∈ 𝑄, and let 𝑥 =
𝑥1 · · ·𝑥𝑛. First, we define the formula 𝜓1 expressing that 𝑓 contains the initial configuration:

𝜓1 := 𝑓(bit(1); ⟨𝑞0⟩ ; ⟨𝑥1⟩ · · · ⟨𝑥𝑛⟩ ⟨�⟩ · · · ⟨�⟩),

where � ∈ 𝛤 denotes the special symbol for blank. Next, 𝜓2 states that 𝑓 is closed under
transitions of 𝑀 (𝑓 may contain superfluous configurations, but this does not hurt the
correctness of the reduction). Let 𝛿 : 𝑄× 𝛤 → 𝑄× 𝛤 × {−1, 0, 1} be the transition function
of 𝑀 ; e.g., if 𝛿(𝑞, 𝑎) = (𝑞′, 𝑏,−1), then 𝑀 upon reading 𝑎 in state 𝑞 writes 𝑏, enters state 𝑞′,
and moves the head to the left. Define

𝜓2 := ∀�⃗�
⋀︁

𝑗∈[𝑝(𝑛)]
𝛿(𝑞,𝑎)=(𝑞′,𝑎′,𝑖)

1≤𝑗+𝑖≤𝑝(𝑛)

(︁
𝑓(bit(𝑗); ⟨𝑞⟩ ; 𝑣1 · · · 𝑣𝑘(𝑗−1) ⟨𝑎⟩ 𝑣𝑘𝑗+1 · · · 𝑣𝑘𝑝(𝑛))

→ 𝑓(bit(𝑗 + 𝑖); ⟨𝑞′⟩ ; 𝑣1 · · · 𝑣𝑘(𝑗−1) ⟨𝑎′⟩ 𝑣𝑘𝑗+1 · · · 𝑣𝑘𝑝(𝑛))
)︁
,

where ∀�⃗� denotes ∀𝑣1 · · · ∀𝑣𝑘𝑝(𝑛).
Finally, it remains to express that the rejecting configuration cannot be reached, which

w.l.o.g. is a blank tape with 𝑀 ’s head on the first position and in a designated state 𝑞𝑟 ∈ 𝑄.

𝜓3 := ¬𝑓(bit(1); ⟨𝑞𝑟⟩ ; ⟨�⟩ · · · ⟨�⟩)

By pulling the quantifiers in 𝜓2 to the front, it is straightforward to see that ∃𝑓(𝜓1∧𝜓2∧𝜓3)
is equivalent to a 𝛴1-formula with only core clauses and with no nesting of functions, i.e., to
a 𝛴sc

1 -formula. J

The proof of the following theorem is similar to that of Theorem 29. However, as an
exponential time computation may require exponential space, some more care is required for
the encodings. The computation is now encoded with a function that takes a tape address
and the current timestep as arguments rather than the whole tape content. A detailed proof
of the theorem can be found in Appendix D.
I Theorem 30. Truth of formulae in 𝛴sh

1 is EXP-complete.

CSL 2021

27:16 Horn and Krom Fragments of Second-Order Boolean Logic

6 Summary

In this article, we studied the second-order quantifier hierarchy of Boolean logic. Boolean
second-order logic, where quantifiers range over Boolean functions instead of mere propositions,
can be seen as a generalization of logics such as DQBF that offer fine-grained control of
dependencies between variables. Here, we turned to certain fragments where the propositional
part is restricted to either Horn, Krom, or core formulae. Moreover, we introduced and
considered two natural restrictions of second-order term constructions, namely simpleness
(where proper function symbols cannot occur nested) and uniqueness (where all occurrences
of a function have the same arguments). Using this terminology, DQBF is simple unique 𝛴1.

We considered all possible combinations of these restrictions with respect to each level of
the quantifier hierarchy, and obtained an almost complete classification of the computational
complexity of the respective decision problem (cf. Table 1 on page 3). In almost all cases
we obtained completeness results (with respect to logspace reductions). We showed that
the complexity of 𝛴1 and 𝛱1 formulae in Horn and/or Krom form collapse down to one
of several classes that range from NL over PSPACE to EXP. Curiously, core 𝛴1 stays
ΣE

1 -hard if we lack simpleness, while core 𝛱1 stays ΠE
1 -hard if we lack uniqueness. Moreover,

𝛱2 stays in NL if simple, unique, and Krom. For 𝑘 ≥ 3, for all considered restrictions to 𝛴𝑘

(𝛱𝑘, resp.) the complexity either stays ΣE
𝑘 -complete (ΠE

𝑘 -complete, resp.) or drops one level
down to ΣE

𝑘−1 (ΠE
𝑘−1, resp.) depending on uniqueness, simpleness, and whether 𝑘 is even or

odd. Furthermore, a direct corollary of the aforementioned results is that the complexity of
𝛴usc

𝜔 -formulae is AEXP(poly)-complete.
For the upper bounds, we mostly utilized generalizations of existing NL or P algorithms

for classical Krom or Horn formulae. For the lower bounds, we introduced a number of
different techniques; the common scheme being that one can exploit the ability to quantify
functions to nullify the Horn and/or Krom restriction.

The most notable open case is that of simple unique Horn 𝛱1, which we conjecture to
be P-complete, dually to the P-complete 𝛴1 case (that is, DQBF-Horn [4]). Moreover, by
Corollary 6, non-simple unique 𝛱1 has the same complexity. The final missing case, simple
unique 𝛱2, likely reduces to these basic cases, but its complexity stays an open question for
now as well.

References
1 Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge

University Press, 2009. URL: http://www.cambridge.org/catalogue/catalogue.asp?isbn=
9780521424264.

2 Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm for
testing the truth of certain quantified boolean formulas. Inf. Process. Lett., 8(3):121–123, 1979.
doi:10.1016/0020-0190(79)90002-4.

3 Herbert Baier and Klaus W. Wagner. The Analytic Polynomial-Time Hierarchy. Mathematical
Logic Quarterly, 44(4):529–544, 1998. URL: http://onlinelibrary.wiley.com/doi/10.1002/
malq.19980440412/abstract.

4 Uwe Bubeck and Hans Kleine Büning. Dependency quantified horn formulas: Models and
complexity. In SAT, volume 4121 of Lecture Notes in Computer Science, pages 198–211.
Springer, 2006.

5 Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. J. ACM, 28(1):114–
133, 1981. doi:10.1145/322234.322243.

6 Miika Hannula, Juha Kontinen, Martin Lück, and Jonni Virtema. On quantified propositional
logics and the exponential time hierarchy. In Domenico Cantone and Giorgio Delzanno, editors,

http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://doi.org/10.1016/0020-0190(79)90002-4
http://onlinelibrary.wiley.com/doi/10.1002/malq.19980440412/abstract
http://onlinelibrary.wiley.com/doi/10.1002/malq.19980440412/abstract
https://doi.org/10.1145/322234.322243

M. Hannula, J. Kontinen, M. Lück, and J. Virtema 27:17

Proceedings of the Seventh International Symposium on Games, Automata, Logics and Formal
Verification, GandALF 2016, Catania, Italy, 14-16 September 2016, volume 226 of EPTCS,
pages 198–212, 2016. doi:10.4204/EPTCS.226.14.

7 Juris Hartmanis, Neil Immerman, and Vivian Sewelson. Sparse sets in NP-P: EXPTIME
versus NEXPTIME. Information and Control, 65(2/3):158–181, 1985.

8 Markus Lohrey. Model-checking hierarchical structures. J. Comput. Syst. Sci., 78(2):461–490,
2012. doi:10.1016/j.jcss.2011.05.006.

9 Martin Lück. Complete problems of propositional logic for the exponential hierarchy. CoRR,
abs/1602.03050, 2016.

10 Pekka Orponen. Complexity classes of alternating machines with oracles. In Josep Díaz, editor,
Automata, Languages and Programming, 10th Colloquium, Barcelona, Spain, July 18-22, 1983,
Proceedings, volume 154 of Lecture Notes in Computer Science, pages 573–584. Springer, 1983.
doi:10.1007/BFb0036938.

11 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
12 Gary L. Peterson and John H. Reif. Multiple-person alternation. In 20th Annual Symposium

on Foundations of Computer Science, San Juan, Puerto Rico, 29-31 October 1979, pages
348–363. IEEE Computer Society, 1979. doi:10.1109/SFCS.1979.25.

13 Gary L. Peterson, John H. Reif, and Salman Azhar. Lower bounds for multiplayer nonco-
operative games of incomplete information. Computers & Mathematics with Applications,
41(7):957–992, 2001. doi:10.1016/S0898-1221(00)00333-3.

14 Christoph Scholl and Ralf Wimmer. Dependency quantified boolean formulas: An overview of
solution methods and applications - extended abstract. In Olaf Beyersdorff and Christoph M.
Wintersteiger, editors, Theory and Applications of Satisfiability Testing - SAT 2018 - 21st
International Conference, SAT 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 9-12, 2018, Proceedings, volume 10929 of Lecture Notes in Computer
Science, pages 3–16. Springer, 2018. doi:10.1007/978-3-319-94144-8_1.

15 Ankit Shukla, Armin Biere, Luca Pulina, and Martina Seidl. A survey on applications of
quantified boolean formulas. In 31st IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2019, Portland, OR, USA, November 4-6, 2019, pages 78–84. IEEE, 2019.
doi:10.1109/ICTAI.2019.00020.

16 Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–22,
1976. doi:10.1016/0304-3975(76)90061-X.

17 Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time:
Preliminary report. In Alfred V. Aho, Allan Borodin, Robert L. Constable, Robert W. Floyd,
Michael A. Harrison, Richard M. Karp, and H. Raymond Strong, editors, Proceedings of the
5th Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1973, Austin, Texas,
USA, pages 1–9. ACM, 1973. doi:10.1145/800125.804029.

A Complexity toolbox

Alternating machines

We assume the reader to be familiar with basic complexity classes and notions such as Turing
machines (TMs). We follow the definition of alternating TMs by Chandra et al. [5]. The
states 𝑄 of such an alternating machine (ATM) are divided into disjoint sets 𝑄∃ of existential
states and 𝑄∀ of universal states. Also, 𝑄 contains a designated initial state 𝑞𝑖, an accepting
state 𝑞𝑎 and a rejecting state 𝑞𝑟, where w.l.o.g. the initial state is always existential. A
transition from an existential to a universal state, or vice versa, is called alternation. In
this setting, a non-deterministic machine is one that never alternates, and a deterministic
machine is one that provides at most one valid transition for every configuration.

A configuration is accepting in 𝑘 steps if it contains no rejecting state, and furthermore
either it contains an accepting state, or, provided 𝑘 > 0, it contains an existential state and
has a valid transition to a configurations that accepts in 𝑘− 1 steps, or contains an universal

CSL 2021

https://doi.org/10.4204/EPTCS.226.14
https://doi.org/10.1016/j.jcss.2011.05.006
https://doi.org/10.1007/BFb0036938
https://doi.org/10.1109/SFCS.1979.25
https://doi.org/10.1016/S0898-1221(00)00333-3
https://doi.org/10.1007/978-3-319-94144-8_1
https://doi.org/10.1109/ICTAI.2019.00020
https://doi.org/10.1016/0304-3975(76)90061-X
https://doi.org/10.1145/800125.804029

27:18 Horn and Krom Fragments of Second-Order Boolean Logic

state and every valid transition leads to a configuration that accepts in 𝑘 − 1 steps. The
language decided by 𝑀 is the set of all inputs such that the initial configuration is accepting
in 𝑘 steps for some 𝑘.

As usual, the classes EXP and NEXP contain those problems which are decidable by a
(non-)deterministic machine in time 2𝑝(𝑛), for some polynomial 𝑝. Given a complexity class
𝒞, its complement class is denoted by co𝒞.

I Definition 31. For 𝑔(𝑛) ≥ 1, the class ATIME(𝑡(𝑛), 𝑔(𝑛)) consists of the problems 𝐴 for
which there is an ATM deciding 𝐴 in time 𝒪(𝑡(𝑛)) with at most 𝑔(𝑛) − 1 alternations on
inputs of length 𝑛.

I Definition 32. For function classes ℱ ,𝒢,

ATIME(ℱ ,𝒢) :=
⋃︁

𝑓∈ℱ,𝑔∈𝒢

ATIME(𝑓(𝑛), 𝑔(𝑛)).

I Definition 33.

AEXP := ATIME(2𝑛𝒪(1)
, 2𝑛𝒪(1)

), AEXP(poly) := ATIME(2𝑛𝒪(1)
, 𝑛𝒪(1)).

Oracle machines

An oracle Turing machine is a Turing machine that additionally has an access to an oracle
set 𝐵. The machine can query 𝐵 by writing an instance 𝑥 on a designated oracle tape and
moving to a query state 𝑞?. In the next configuration one of two states 𝑞+ and 𝑞− is assumed
depending on whether 𝑥 ∈ 𝐵 or not. There is no bound on the number of oracle queries
during a computation of an oracle machine; the machine can erase the oracle tape and pose
more queries.

If 𝐵 is a language, then the usual complexity classes P,NP,NEXP etc. are generalized to
P𝐵 ,NP𝐵 ,NEXP𝐵 etc. where the definition is just changed from ordinary Turing machines
to corresponding oracle machines with an oracle for 𝐵. If 𝒞 is a class of languages, then
P𝒞 :=

⋃︀
𝐵∈𝒞 P𝐵 and so on.

I Definition 34 (The Polynomial Hierarchy [16]). The levels of the polynomial hierarchy are
defined inductively, where 𝑘 ≥ 1:

ΣP
0 = ΠP

0 = ∆P
0 := P.

ΣP
𝑘 := NPΣP

𝑘−1 , ΠP
𝑘 := coNPΣP

𝑘−1 , ∆P
𝑘 := PΣP

𝑘−1 .

I Definition 35 (The Exponential Hierarchy [7]). The levels of the exponential hierarchy are
defined inductively, where 𝑘 ≥ 1:

ΣE
0 = ΠE

0 = ∆E
0 = EXP.

ΣE
𝑘 := NEXPΣP

𝑘−1 , ΠE
𝑘 := coNEXPΣP

𝑘−1 , ∆E
𝑘 := EXPΣP

𝑘−1 .

I Theorem 36 ([5]). For all 𝑘 ≥ 1:

ΣP
𝑘 = ATIME(𝑛𝒪(1), 𝑘), ΠP

𝑘 = coΣP
𝑘 .

Just as for the polynomial hierarchy, two competing definitions of ΣE
𝑘 exist in the literature,

one in terms of oracles and one as the class ATIME(2𝑛𝒪(1)
, 𝑘) [3, 8, 10].

I Theorem 37 ([10]). For all 𝑘 ≥ 1:

ΣE
𝑘 = ATIME(2𝑛𝒪(1)

, 𝑘), ΠE
𝑘 = coATIME(2𝑛𝒪(1)

, 𝑘).

M. Hannula, J. Kontinen, M. Lück, and J. Virtema 27:19

A logspace-reduction from 𝐴 to 𝐵 is a logspace computable function 𝑓 such that 𝑥 ∈ 𝐴 ⇔
𝑓(𝑥) ∈ 𝐵. If such 𝑓 exists then 𝐴 is logspace-reducible to 𝐵, in symbols 𝐴≤log

m 𝐵. If 𝐴 ∈ 𝒞
implies 𝐴≤log

m 𝐵, then 𝐵 is ≤log
m -hard for 𝒞, and 𝐵 is ≤log

m -complete for 𝒞 if 𝐵 ∈ 𝒞 and 𝐵 is
≤log

m -hard for 𝒞. In this paper all reductions are logspace-reductions if not stated otherwise.

B Proof of Proposition 10

I Proposition 10 (Free term elision). Let 𝜙 ∈ SOu
2 be a prenex formula, 𝑓 a function variable

not free in 𝜙, and 𝑡 a term free in 𝜙. Then eliding 𝑡 from 𝑓 yields a formula equivalent to 𝜙.

Proof. Assume that 𝜙, 𝑓 and 𝑡 are as above, and that ar(𝑓) = 𝑛 and 𝑔 is a variable of arity
𝑛 − 1 that does not appear in 𝜙. We prove that eliding the 𝑖-th argument of 𝑓 yields an
equivalent formula, where 𝑖 is any position such that the 𝑖-th argument of 𝑓 is 𝑡.

For a function 𝐹 and 𝑏 ∈ {0, 1}, define the (𝑛− 1)-ary function

𝐹|𝑏(𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖+1, . . . , 𝑎𝑛) := 𝐹 (𝑎1, . . . , 𝑎𝑖−, 𝑏, 𝑎𝑖+1, . . . , 𝑎𝑛).

Also, let 𝜙⋆ be the formula 𝜙 with the 𝑖-th argument of 𝑓 elided, i.e., 𝑓 replaced by 𝑔 and
the 𝑖-th argument deleted in any occurrence of 𝑓 as a term. For an interpretation 𝐼, define
𝐼⋆ like 𝐼 except that 𝐼⋆(𝑔) := 𝐼(𝑓)|𝐼(𝑡). We show by induction on 𝜙 that 𝐼(𝜙) = 𝐼⋆(𝜙⋆) for
all interpretations 𝐼. It is easy to see that this proves the claim from the beginning, where
neither 𝑓 nor 𝑔 appears free.

If 𝜙 does not contain 𝑡, and hence 𝑓 , then we are done. Otherwise, if 𝜙 is of the form
𝑓(𝑡1, . . . , 𝑡𝑖−1, 𝑡, 𝑡𝑖+1, . . . , 𝑡𝑛), then clearly

𝐼(𝜙) = 𝐼(𝑓)(𝐼(𝑡1), . . . , 𝐼(𝑡𝑖−1), 𝐼(𝑡), 𝐼(𝑡𝑖+1), . . . , 𝐼(𝑡𝑛))
= 𝐼(𝑓)|𝐼(𝑡)(𝐼(𝑡1), . . . , 𝐼(𝑡𝑖−1), 𝐼(𝑡𝑖+1), . . . , 𝐼(𝑡𝑛))
= 𝐼⋆(𝑔)(𝐼⋆(𝑡1), . . . , 𝐼⋆(𝑡𝑖−1), 𝐼⋆(𝑡𝑖+1), . . . , 𝐼⋆(𝑡𝑛)) = 𝐼⋆(𝜙⋆).

The inductive steps for applying function variables ℎ ≠ 𝑓 , as well as for the Boolean
connectives ∧ and ¬, are straightforward. Also, the ∀-case can be reduced to ∃. It remains
to consider the ∃-case. We divide this into the case where 𝑓 is quantified and the case where
any other function variable ℎ ̸= 𝑓 is quantified.

First, suppose 𝜙 = ∃ℎ𝜓, where ℎ ̸= 𝑓 . Then whenever 𝐼ℎ
𝐻 � 𝜓 for some 𝐼 and 𝐻 we have

(𝐼⋆)ℎ
𝐻 = (𝐼ℎ

𝐻)⋆ � 𝜓⋆, so 𝐼⋆ � 𝜙⋆. Likewise, whenever 𝐼ℎ
𝐻 � 𝜓

⋆ for some 𝐼, then 𝐼ℎ
𝐻 is of the

form (𝐽⋆)ℎ
𝐻 = (𝐽ℎ

𝐻)⋆ for some 𝐽 , so 𝐽 � 𝜙.
Finally, let 𝜙 = ∃𝑓𝜓. If 𝐼𝑓

𝐹 � 𝜓 for some 𝐼 and 𝐹 , then (𝐼𝑓
𝐹)⋆ � 𝜓⋆ by induction

hypothesis. By definition, 𝐼* and (𝐼𝑓
𝐹)⋆ agree everywhere except on 𝑓 and 𝑔, and 𝑓 does not

occur in 𝜓⋆, so 𝐼* � ∃𝑔𝜓⋆ = 𝜙⋆ follows.
Suppose that conversely 𝐼⋆ � 𝜙⋆ = ∃𝑔𝜓⋆, so (𝐼⋆)𝑔

𝐺 � 𝜓
⋆ for some 𝐼 and 𝐺. As (𝐼⋆)𝑔

𝐺 = 𝐼𝑔
𝐺,

also 𝐼𝑔
𝐺 � 𝜓

⋆. Define a function 𝐹 from 𝐺 as follows: Let 𝐹 (𝑎1, . . . , 𝑎𝑖−1, 𝑏, 𝑎𝑖+1, . . . , 𝑎𝑛) :=
𝐺(𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖+1, . . . , 𝑎𝑛) for both 𝑏 = 0 and 𝑏 = 1. Since 𝑓 does not occur in 𝜓⋆, we can
add it to any interpretation, so clearly (𝐼𝑓

𝐹)𝑔
𝐺 � 𝜓

⋆. Now notice that 𝐺 = 𝐹|0 = 𝐹|1 = 𝐹|𝐼(𝑡).
But then (𝐼𝑓

𝐹)𝑔
𝐺 = (𝐼𝑓

𝐹)⋆, so by induction hypothesis 𝐼𝑓
𝐹 � 𝜓. Hence 𝐼 � ∃𝑓𝜓 = 𝜙. J

C Proof of Lemma 22

I Lemma 22. Let 𝒬 𝜃 be a formula in CNF, with 𝜃 quantifier-free in CNF and 𝒬 being a
sequence of quantifiers. Then 𝒬 𝜃 is equivalent to a logspace-computable formula ∃�⃗� 𝒬 ∀�⃗� ∃�⃗�𝜃′

in CNF such that 𝜃′ is quantifier-free, �⃗� are function symbols, and �⃗�, �⃗� are propositions.
Moreover, if 𝜃 has uniqueness, then so has 𝜃′.

CSL 2021

27:20 Horn and Krom Fragments of Second-Order Boolean Logic

Proof. We begin with the case where 𝒬 is empty. The other cases are proved analogously.
Accordingly, let 𝜃 be of the form

⋀︀
𝑖∈[𝑛] 𝐶𝑖 with clauses 𝐶𝑖 = ℓ𝑖

1 ∨ · · · ∨ ℓ𝑖
𝑟 and the ℓ𝑖

𝑗

being literals (i.e., terms or their negations). The idea of the proof is that all clauses 𝐶𝑖 can
be reformulated in terms of fresh Boolean functions ℎ𝑖 that act as disjunctions. Thus each
clause becomes a single unit (and thus core) clause. Some auxiliary clauses are added in
order to properly fix the disjunction as the interpretation of ℎ𝑖.

We proceed as follows. First, for every literal ℓ in a clause 𝐶𝑖 of 𝜃, we introduce a fresh
proposition 𝑝ℓ that shall mirror ℓ and can appear inside ℎ𝑖, since terms can only have other
terms as their arguments, and not negations thereof. Next, we introduce a single proposition
𝑏 the role of which we will explain below. Any clause 𝐶𝑖 = ℓ𝑖

1 ∨ · · · ∨ ℓ𝑖
𝑟 is now replaced by

the following conjunction 𝜉(𝐶𝑖) of core clauses:

𝜉(𝐶𝑖) := (𝑏 ↔ ℎ𝑖(𝑝ℓ𝑖
1
, . . . , 𝑝ℓ𝑖

𝑟
)) ∧

⋀︁
𝑘∈[𝑟]

(𝑝ℓ𝑖
𝑘

→ ℎ𝑖(𝑝ℓ𝑖
1
, . . . , 𝑝ℓ𝑖

𝑟
))

Let us start with the large conjunction on the right hand side: It ensures that the term
ℎ𝑖(𝑝ℓ𝑖

1
, . . . , 𝑝ℓ𝑖

𝑟
) is true if any of its arguments is true. But in order to truly simulate 𝐶𝑖 with

ℎ𝑖, we also need to achieve the converse. Otherwise ℎ𝑖 could still be a constant. However,
we will quantify 𝑏 universally, with the effect that the left hand side requires ℎ𝑖 to assume
each value, zero and one, for some input. The value ℎ𝑖(𝑝ℓ𝑖

1
, . . . , 𝑝ℓ𝑖

𝑟
) = 0 can then only be

assumed when all 𝑝ℓ𝑖
𝑗
are zero, as required.

Furthermore, we need to impose some constraints on the proxies 𝑝ℓ, so that 𝑝ℓ in fact
mirrors ℓ. In particular, exactly one of 𝑝ℓ and 𝑝¬ℓ must be true. For every term 𝑡 in 𝜃, let 𝑔𝑡

be another fresh binary function variable. Define

𝜏(𝑡) := (𝑏 ↔ 𝑔𝑡(𝑝𝑡, 𝑝¬𝑡)) ∧ (𝑝𝑡 → 𝑔𝑡(𝑝𝑡, 𝑝¬𝑡)) ∧ (𝑝¬𝑡 → 𝑔𝑡(𝑝𝑡, 𝑝¬𝑡))
∧ (¬𝑝𝑡 ∨ ¬𝑝¬𝑡) ∧ (𝑝𝑡 → 𝑡) ∧ (𝑝¬𝑡 → ¬𝑡).

Here, the first line again ensures that 𝑔𝑡(𝑝𝑡, 𝑝¬𝑡) is true if and only if 𝑝𝑡 or 𝑝¬𝑡 is true. So,
when 𝑏 = 1 then 𝑔𝑡(𝑝𝑡, 𝑝¬𝑡) = 1 and hence we know that at least one of 𝑝𝑡 and 𝑝¬𝑡 is true.
The second line claims that at most one of them is true, and that this reflects the actual
value of 𝑡. Observe that all used clauses are in core form.

Let now 𝑡1 · · · 𝑡𝑠 be a list of all terms occurring in the clauses of 𝜃. Altogether, we translate
𝜃 =

⋀︀
𝑖∈[𝑛] 𝐶𝑖 to 𝜙 as follows:

𝜙 := ∃
𝑖∈[𝑛]

ℎ𝑖 ∃
𝑖∈[𝑠]

𝑔𝑡𝑖
∀𝑏 ∃

𝑖∈[𝑠]

𝑝𝑡𝑖 ∃
𝑖∈[𝑠]

𝑝¬𝑡𝑖

⋀︁
𝑖∈[𝑛]

𝜉(𝐶𝑖) ∧
⋀︁

𝑖∈[𝑠]

𝜏(𝑡𝑖)

Claim: 𝜃 and 𝜙 are logically equivalent.
𝜃 � 𝜙: Suppose 𝐼 � 𝜃. We choose each ℎ𝑖 and 𝑔𝑡 as the disjunction. Next, if 𝑏 = 0,
simply set all 𝑝ℓ to zero. In turn, if 𝑏 = 1, set 𝑝ℓ to true if and only if 𝐼 � ℓ. It is easy to
check that this satisfies all 𝜉(𝐶𝑖) and 𝜏(𝑡𝑖). In particular, for each ℎ𝑖(𝑝ℓ𝑖

1
, · · · , 𝑝ℓ𝑖

𝑟
) there

is 𝑘 ∈ [𝑟] such that ℓ𝑖
𝑘 and hence 𝑝ℓ𝑖

𝑘
must be true, as 𝐼 � 𝐶𝑖 by assumption.

𝜙 � 𝜃: Suppose 𝐼 � 𝜙. Then ℎ𝑖 and 𝑔𝑡𝑖
are interpreted by some Boolean functions, and

the 𝑝ℓ by some truth values depending on 𝑏, such that all clauses in 𝜙 are true. In the case
𝑏 = 0, the ℎ𝑖(· · ·) and 𝑔𝑡(· · ·) must be false, and the same holds for all their arguments as
well, due to the implications in 𝜉(· · ·) and 𝜏(· · ·). So ℎ𝑖(0, . . . , 0) = 𝑔𝑡(0, 0) = 0. In turn,
in the case 𝑏 = 1 it holds that ℎ𝑖(· · ·) = 𝑔𝑡(· · ·) = 1, and hence at least one argument
of each must have toggled its value. As a consequence, 𝜏(𝑡) forces that either 𝑝𝑡 or 𝑝¬𝑡

is true for every term 𝑡, and that 𝑝ℓ is true iff 𝐼 � ℓ. Likewise, for each ℎ𝑖(𝑝ℓ𝑖
1
, . . . , 𝑝ℓ𝑖

𝑟
)

there is 𝑘 ∈ [𝑟] such that 𝑝ℓ𝑖
𝑘
and hence ℓ𝑖

𝑘 is true. In other words, all original clauses of
𝜃 are true in 𝐼.

M. Hannula, J. Kontinen, M. Lück, and J. Virtema 27:21

The cases where 𝜃 contains quantifiers is proved analogously: 𝑏 and the propositions 𝑝𝑡𝑖 , 𝑝¬𝑡𝑖

need to be quantified last in the prefix, as they depend on all other variables occurring in
the formula, while the ℎ𝑖 and 𝑔𝑡𝑖

are quantified first, since they can always just be set to the
Boolean disjunction. Hence, the above proof works for arbitrary quantifier sequences 𝒬 and
produces formulae of the form ∃�⃗�𝒬∀�⃗�∃�⃗� as stated in the lemma. J

D Proof of Theorem 30

I Theorem 30. Truth of formulae in 𝛴sh
1 is EXP-complete.

Proof. The upper bound is given by Theorem 20. For the lower bound, we modify the proof
of Theorem 29 and encode all reachable configurations of an EXP computation using a
single function variable 𝑓 . However, since the computation can use exponential space, 𝑓 now
takes a tape address, rather than the whole tape content, as well as a current timestep in
binary as an argument.

Let 𝑀 be a single-tape TM that decides an EXP-complete problem, where 𝑀 has states
𝑄, initial state 𝑞0, accepting state 𝑞𝑓 , rejecting state 𝑞𝑟, tape alphabet 𝛤 , and transition
relation 𝛿. This time, we consider as a configuration a word over 𝛤 ′ := 𝛤 ∪ (𝑄 × 𝛤). For
example, 𝑎(𝑞, 𝑏)𝑐 means that the machine currently is in state 𝑞 and reads 𝑏 at tape position
two. Suppose 𝑀 runs in time 2𝑝(𝑛) for some polynomial 𝑝, 𝑝(𝑛) ≥ 𝑛, and uses the tape
positions {1, . . . , 2𝑝(𝑛)−2}. For technical reasons, we “pad” configurations with blank symbols
� at positions 0 and 2𝑝(𝑛) − 1, but these cells will never be visited. Let ⟨·⟩ : 𝛤 ′ → {0, 1}𝑘

be some fixed encoding. The function 𝑓 is now of arity 𝑘 + 𝑘𝑝(𝑛) + 𝑘𝑝(𝑛). The intended
meaning of 𝑓(⟨𝛼⟩ ; bin(𝑖); bin(𝑗)) is that the 𝑖th symbol of the configuration on timestep 𝑗 is
𝛼.

Let 𝑥 = 𝑥1 · · ·𝑥𝑛 be the input. Let ℓ be minimal such that 𝑛 < 2ℓ. We de-
scribe in the following formula that the first 2ℓ symbols of the initial configuration are
�(𝑞0, 𝑥1)𝑥2 · · ·𝑥𝑛� · · ·� at timestep 0:

𝜓1 :=𝑓(⟨�⟩ ; bin(0); bin(0)) ∧ 𝑓(⟨(𝑞0, 𝑥1)⟩ ; bin(0); bin(1))

∧
𝑛⋀︁

𝑖=2
𝑓(⟨𝑥𝑖⟩ ; bin(0); bin(𝑖)) ∧

2ℓ−1⋀︁
𝑖=𝑛+1

𝑓(⟨�⟩ ; bin(0); bin(𝑖))

Then the next formula also fixes the remaining blank symbols � on tape positions from 2ℓ

to 2𝑝(𝑛) − 1.

𝜓2 := ∀�⃗�
𝑝(𝑛)−ℓ⋀︁

𝑗=1
𝑓(⟨�⟩ ; bin(0); 𝑣1, . . . , 𝑣𝑗−1, 1, 𝑣𝑗+1, . . . , 𝑣𝑝(𝑛))

This is done by the third part of the arguments of 𝑓 ranging over all numbers that have at
least one of the first 𝑝(𝑛) − ℓ bits set, which are {2ℓ, 2ℓ + 1, . . . , 2𝑝(𝑛) − 1}.

Next, we again state that 𝑀 ’s rejecting configuration is not visited:

𝜓3 := ∀⃗𝑡∀�⃗�¬𝑓(⟨(𝑞𝑟,�)⟩ ; �⃗�; �⃗�)

Finally, it remains to express in formulae that 𝑓 is closed under transitions of 𝑀 . As
in Theorem 29, this is the only part of the formula where we introduce non-unit clauses,
which now will rather be Horn instead of core. For this, we use another function variable suc
(“successor”), which has arity 2𝑝(𝑛), and for which every term of the form suc(bin(𝑚), bin(𝑚+
1)) is true. We show how to enforce this later; for now, we use it to impose the aforementioned
closure condition on 𝑓 .

CSL 2021

27:22 Horn and Krom Fragments of Second-Order Boolean Logic

We consider the set of valid windows of 𝑀 . A window is a sixtuple (𝑎1𝑎2𝑎3; 𝑎′
1𝑎

′
2𝑎

′
3) ∈

(𝛤 ′)6. For example, (𝑎(𝑞, 𝑏)𝑐; 𝑎𝑑(𝑞, 𝑐)) means that 𝑀 in state 𝑞 when reading 𝑏 writes 𝑑 and
moves to the right. Cells not currently visited by the head do not change (except for the
head moving onto a cell), so (𝑎𝑏𝑐; 𝑎𝑏𝑐) and (𝑎𝑏𝑐; (𝑞, 𝑎)𝑏𝑐) are valid windows but (𝑎𝑏𝑐; 𝑎𝑏𝑑) is
not. The set 𝑊 of valid windows is finite and only depends on the transition function of 𝑀 .
The following formula states that, whenever (𝑎1𝑎2𝑎3; 𝑎′

1𝑎
′
2𝑎

′
3) is a valid window, the middle

tape cell must become (or stay) 𝑎′
2.

𝜓4 := ∀⃗𝑡𝑠�⃗��⃗��⃗�
⋀︁

(𝑎1𝑎2𝑎3;𝑎′
1𝑎′

2𝑎′
3)∈𝑊

(︁(︀
suc(⃗𝑡; �⃗�) ∧ suc(�⃗�; �⃗�) ∧ suc(�⃗�; �⃗�)

∧ 𝑓(⟨𝑎1⟩ ; �⃗�; �⃗�) ∧ 𝑓(⟨𝑎2⟩ ; �⃗�; �⃗�) ∧ 𝑓(⟨𝑎3⟩ ; �⃗�; �⃗�)
)︀

→ 𝑓(⟨𝑎′
2⟩ ; �⃗�; �⃗�)

)︁
Here, �⃗� and �⃗� encode consecutive timesteps, and �⃗��⃗��⃗� are adjacent positions. The first and
last position must be separately fixed to � because they are never in the middle of a window:

𝜓5 := ∀⃗𝑡
(︀
𝑓(⟨�⟩ ; �⃗�; ⟨0⟩) ∧ 𝑓(⟨�⟩ ; �⃗�;

⟨
2𝑝(𝑛) − 1

⟩
)
)︀

Next, we specify suc and finish the reduction:

𝜙 :=∃suc ∃𝑓
(︁(︀

∀�⃗�
𝑝(𝑛)−1⋀︁

𝑖=0
suc(𝑣1, . . . , 𝑣𝑖, 0, 1𝑝(𝑛)−𝑖−1; 𝑣1, . . . , 𝑣𝑖, 1, 0𝑝(𝑛)−𝑖−1)

)︀
∧

5⋀︁
𝑖=1

𝜓𝑖

)︁
Note that, just like 𝑓 , the relation encoded by suc might contain more tuples than necessary,
but again this does not hurt the reduction. It is easy to see that the formula can be
transformed into a 𝛴1 formula with simple matrix in Horn CNF. The Horn property of the
formula hinges on 𝜓4, for which it is crucial that 𝑀 is deterministic. For this reason, this
reduction cannot be generalized to, say, NEXP. J

Domain Theory in Constructive and Predicative
Univalent Foundations
Tom de Jong
University of Birmingham, UK
https://www.cs.bham.ac.uk/~txd880
t.dejong@pgr.bham.ac.uk

Martín Hötzel Escardó
University of Birmingham, UK
https://www.cs.bham.ac.uk/~mhe
m.escardo@cs.bham.ac.uk

Abstract
We develop domain theory in constructive univalent foundations without Voevodsky’s resizing
axioms. In previous work in this direction, we constructed the Scott model of PCF and proved
its computational adequacy, based on directed complete posets (dcpos). Here we further consider
algebraic and continuous dcpos, and construct Scott’s D∞ model of the untyped λ-calculus. A
common approach to deal with size issues in a predicative foundation is to work with information
systems or abstract bases or formal topologies rather than dcpos, and approximable relations rather
than Scott continuous functions. Here we instead accept that dcpos may be large and work with
type universes to account for this. For instance, in the Scott model of PCF, the dcpos have carriers
in the second universe U1 and suprema of directed families with indexing type in the first universe U0.
Seeing a poset as a category in the usual way, we can say that these dcpos are large, but locally small,
and have small filtered colimits. In the case of algebraic dcpos, in order to deal with size issues, we
proceed mimicking the definition of accessible category. With such a definition, our construction of
Scott’s D∞ again gives a large, locally small, algebraic dcpo with small directed suprema.

2012 ACM Subject Classification Theory of computation → Constructive mathematics; Theory of
computation → Type theory

Keywords and phrases domain theory, constructivity, predicativity, univalent foundations

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.28

Related Version A version of this paper with full proofs is available at https://arxiv.org/abs/
2008.01422.

1 Introduction

In domain theory [1] one considers posets with suitable completeness properties, possibly
generated by certain elements called compact, or more generally generated by a certain
way-below relation, giving rise to algebraic and continuous domains. As is well known,
domain theory has applications to programming language semantics [42, 40, 33], higher-type
computability [27], topology, topological algebra and more [19, 18].

In this work we explore the development of domain theory from the univalent point of
view [46, 49]. This means that we work with the stratification of types as singletons, proposi-
tions, sets, 1-groupoids, etc., and that we work with univalence. At present, higher inductive
types other than propositional truncation are not needed. Often the only consequences of
univalence needed here are functional and propositional extensionality. An exception is the
fundamental notion has size: if we want to know that it is a proposition, then univalence is
necessary, but this knowledge is not needed for our purposes (Section 3). Full details of our
univalent type theory are given in Section 2.

© Tom de Jong and Martín Hötzel Escardó;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 28; pp. 28:1–28:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1585-3172
https://www.cs.bham.ac.uk/~txd880
mailto:t.dejong@pgr.bham.ac.uk
https://orcid.org/0000-0002-4091-6334
https://www.cs.bham.ac.uk/~mhe
mailto:m.escardo@cs.bham.ac.uk
https://doi.org/10.4230/LIPIcs.CSL.2021.28
https://arxiv.org/abs/2008.01422
https://arxiv.org/abs/2008.01422
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Domain Theory in Constructive and Predicative UF

Additionally, we work constructively (we don’t assume excluded middle or choice axioms)
and predicatively (we don’t assume Voevodky’s resizing principles [47, 48, 49], and so, in
particular, powersets are large). Most of the work presented here has been formalized in the
proof assistant Agda [7, 17, 12] (see Section 7 for details). In our predicative setting, it is
extremely important to check universe levels carefully, and the use of a proof assistant such
as Agda has been invaluable for this purpose.

In previous work in this direction [10] (extended by Brendan Hart [20]), we constructed
the Scott model of PCF and proved its computational adequacy, based on directed complete
posets (dcpos). Here we further consider algebraic and continuous dcpos, and construct
Scott’s D∞ model of the untyped λ-calculus [40].

A common approach to deal with size issues in a predicative foundation is to work with
information systems [41], abstract bases [1] or formal topologies [38, 9] rather than dcpos,
and approximable relations rather than (Scott) continuous functions. Here we instead accept
that dcpos may be large and work with type universes to account for this. For instance, in
our development of the Scott model of PCF [42, 33], the dcpos have carriers in the second
universe U1 and suprema of directed families with indexing type in the first universe U0.
Seeing a poset as a category in the usual way, we can say that these dcpos are large, but
locally small, and have small filtered colimits. In the case of algebraic dcpos, in order to deal
with size issues, we proceed mimicking the definition of accessible category [29]. With such a
definition, our construction of Scott’s D∞ again gives a large, locally small, algebraic dcpo
with small directed suprema.

Organization

Section 2: Foundations. Section 3: (Im)predicativity. Section 4: Basic domain theory,
including directed complete posets, continuous functions, lifting, Ω-completeness, exponentials,
powersets as dcpos. Section 5: Limit and colimits of dcpos, Scott’s D∞. Section 6: Way-
below relation, bases, compact element, continuous and algebraic dcpos, ideal completion,
retracts, examples. Section 7: Conclusion and future work.

Related Work

Domain theory has been studied predicatively in the setting of formal topology [38, 9] in
[39, 30, 31, 28] and the more recent categorical paper [24]. In this predicative setting, one
avoids size issues by working with abstract bases or formal topologies rather than dcpos, and
approximable relations rather than Scott continuous functions. Hedberg [21] presented these
ideas in Martin-Löf Type Theory and formalized them in the proof assistant ALF. A modern
formalization in Agda based on Hedberg’s work was recently carried out in Lidell’s master
thesis [26].

Our development differs from the above line of work in that it studies dcpos directly and
uses type universes to account for the fact that dcpos may be large. There are two Coq
formalizations of domain theory in this direction [5, 13]. Both formalizations study ω-chain
complete preorders, work with setoids, and make use of Coq’s impredicative sort Prop. Our
development avoids the use of setoids thanks to the adoption of the univalent point of view.
Moreover, we work predicatively and we work with directed sets rather than ω-chains, as we
intend our theory to be also applicable to topology and algebra [19, 18].

There are also constructive accounts of domain theory aimed at program extraction
[4, 32]. Both [4] and [32] study ω-chain complete posets (ω-cpos) and define notions of
ω-continuity for them. Interestingly, Bauer and Kavkler [4] note that there can only be

T. de Jong and M.H. Escardó 28:3

non-trivial examples of ω-continuous ω-cpos when Markov’s Principle holds [4, Proposition
6.2]. This leads the authors of [32] to weaken the definition of ω-continuous ω-cpo by using
the double negation of existential quantification in the definition of the way-below relation
[32, Remark 3.2]. In light of this, it is interesting to observe that when we study directed
complete posets (dcpos) rather than ω-cpos, and continuous dcpos rather than ω-continuous
ω-cpos, we can avoid Markov’s Principle or a weakened notion of the way-below relation to
obtain non-trivial continuous dcpos (see for instance Examples 58, 59 and 82).

Another approach is the field of synthetic domain theory [37, 36, 22, 34, 35]. Although
the work in this area is constructive, it is still impredicative, based on topos logic, but more
importantly it has a focus different from that of regular domain theory: the aim is to isolate
a few basic axioms and find models in (realizability) toposes where “every object is a domain
and every morphism is continuous”. These models often validate additional axioms, such
as Markov’s Principle and countable choice, and moreover falsify excluded middle. Our
development has a different goal, namely to develop regular domain theory constructively
and predicatively, but in a foundation compatible with excluded middle and choice, while
not relying on them or Markov’s Principle or countable choice.

2 Foundations

We work in intensional Martin-Löf Type Theory with type formers + (binary sum), Π (depend-
ent products), Σ (dependent sum), Id (identity type), and inductive types, including 0 (empty
type), 1 (type with exactly one element ? : 1), N (natural numbers). Moreover, we have
type universes (for which we typically write U , V, W or T) with the following closure
conditions. We assume a universe U0 and two operations: for every universe U a successor
universe U+ with U : U+, and for every two universes U and V another universe U t V
such that for any universe U , we have U0 t U ≡ U and U t U+ ≡ U+. Moreover, (−) t (−)
is idempotent, commutative, associative, and (−)+ distributes over (−) t (−). We write
U1 :≡ U+

0 , U2 :≡ U+
1 , . . . and so on. If X : U and Y : V, then X + Y : U t V and if X : U

and Y : X → V, then the types Σx:XY (x) and Πx:XY (x) live in the universe U t V; finally,
if X : U and x, y : X, then IdX(x, y) : U . The type of natural numbers N is assumed to be in
U0 and we postulate that we have copies 0U and 1U in every universe U . All our examples
go through with just two universes U0 and U1, but the theory is more easily developed in a
general setting.

In general we adopt the same conventions of [46]. In particular, we simply write x = y

for the identity type IdX(x, y) and use ≡ for the judgemental equality, and for dependent
functions f, g : Πx:XA(x), we write f ∼ g for the pointwise equality Πx:Xf(x) = g(x).

Within this type theory, we adopt the univalent point of view [46]. A type X is a
proposition (or truth value or subsingleton) if it has at most one element, i.e. the type
is-prop(X) :≡

∏
x,y:X x = y is inhabited. A major difference between univalent foundations

and other foundational systems is that we prove that types are propositions or properties.
For instance, we can show (using function extensionality) that the axioms of directed complete
poset form a proposition. A type X is a set if any two elements can be identified in at most
one way, i.e. the type

∏
x,y:X is-prop(x = y) is inhabited.

We will assume two extensionality principles:
(i) Propositional extensionality: if P and Q are two propositions, then we postulate that

P = Q exactly when both P → Q and Q→ P are inhabited.
(ii) Function extensionality: if f, g :

∏
x:X A(x) are two (dependent) functions, then we

postulate that f = g exactly when f ∼ g.

CSL 2021

28:4 Domain Theory in Constructive and Predicative UF

Function extensionality has the important consequence that the propositions form an ex-
ponential ideal, i.e. if X is a type and Y : X → U is such that every Y (x) is a proposition,
then so is Πx:XY (x). In light of this, universal quantification is given by Π-types in our
type theory.

In Martin-Löf Type Theory, an element of
∏
x:X

∑
y:Y φ(x, y), by definition, gives us a

function f : X → Y such that
∏
x:X φ(x, f(x)). In some cases, we wish to express the weaker

“for every x : X, there exists some y : Y such that φ(x, y)” without necessarily having an
assignment of x’s to y’s. A good example of this is when we define directed families later
(see Definition 7). This is achieved through the propositional truncation.

Given a type X : U , we postulate that we have a proposition ‖X‖ : U with a function
|−| : X → ‖X‖ such that for every proposition P : V in any universe V, every function
f : X → P factors (necessarily uniquely, by function extensionality) through |−|. Existential
quantification ∃x:XY (x) is given by ‖Σx:XY (x)‖. One should note that if we have ∃x:XY (x)
and we are trying to prove some proposition P , then we may assume that we have x : X
and y : Y (x) when constructing our inhabitant of P . Similarly, we can define disjunction as
P ∨Q :≡ ‖P +Q‖.

3 Impredicativity

We now explain what we mean by (im)predicativity in univalent foundations.

I Definition 1 (Has size, has-size in [16]). A type X : U is said to have size V for some
universe V when we have Y : V that is equivalent to X, i.e. X has-size V :≡

∑
Y :V Y ' X.

Here, the symbol ' refers to Voevodsky’s notion of equivalence [16, 46]. Notice that the type
X has-size V is a proposition if and only if the univalence axiom holds [16].

I Definition 2 (Type of propositions ΩU). The type of propositions in a universe U is
ΩU :≡

∑
P :U is-prop(P) : U+.

Observe that ΩU itself lives in the successor universe U+. We often think of the types
in some fixed universe U as small and accordingly we say that ΩU is large. Similarly, the
powerset of a type X : U is large. Given our predicative setup, we must pay attention to
universes when considering powersets.

I Definition 3 (V-powerset PV(X), V-subsets). Let V be a universe and X : U type. We define
the V-powerset PV(X) as X → ΩV : V+ t U . Its elements are called V-subsets of X.

I Definition 4 (∈,⊆). Let x be an element of a type X and let A be an element of PV(X).
We write x ∈ A for the type pr1(A(x)). The first projection pr1 is needed because A(x),
being of type ΩV , is a pair. Given two V-subsets A and B of X, we write A ⊆ B for∏
x:X(x ∈ A→ x ∈ B).

Functional and propositional extensionality imply that A = B ⇐⇒ A ⊆ B and B ⊆ A.

I Definition 5 (Total type T(A)). Given a V-subset A of a type X, we write T(A) for the
total type

∑
x:X x ∈ A.

One could ask for a resizing axiom asserting that ΩU has size U , which we call the
propositional impredicativity of U . A closely related axiom is propositional resizing, which
asserts that every proposition P : U+ has size U . Without the addition of such resizing
axioms, the type theory is said to be predicative. As an example of the use of impredicativity
in mathematics, we mention that the powerset has unions of arbitrary subsets if and only if
propositional resizing holds [16, existence-of-unions-gives-PR].

https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/index.html#_has-size_
https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#powerset-union-existence.existence-of-unions-gives-PR

T. de Jong and M.H. Escardó 28:5

We mention that the resizing axioms are actually theorems when classical logic is assumed.
This is because if P ∨ ¬P holds for every proposition in P : U , then the only propositions
(up to equivalence) are 0U and 1U , which have equivalent copies in U0, and ΩU is equivalent
to a type 2U : U with exactly two elements. The existence of a computational interpreta-
tion of propositional impredicativity axioms for univalent foundations is an open problem,
however [45, 43].

4 Basic Domain Theory

Our basic ingredient is the notion of directed complete poset (dcpo). In set-theoretic founda-
tions, a dcpo can be defined to be a poset that has least upper bounds of all directed families.
A naive translation of this to our foundation would be to proceed as follows. Define a poset
in a universe U to be a type P : U with a reflexive, transitive and antisymmetric relation
− v − : P × P → U . According to the univalent point of view, we also require that the type
P is a set and the values p v q of the order relation are subsingletons. Then we could say that
the poset (P,v) is directed complete if every directed family I → X with indexing type I : U
has a least upper bound. The problem with this definition is that there are no interesting
examples in our constructive and predicative setting. For instance, assume that the poset 2
with two elements 0 v 1 is directed complete, and consider a proposition A : U and the
directed family A + 1 → 2 that maps the left component to 1 and the right component
to 0. By case analysis on its hypothetical supremum, we conclude that the negation of A is
decidable. This amounts to weak excluded middle, which is known to be equivalent to De
Morgan’s Law, and doesn’t belong to the realm of constructive mathematics. To try to get
an example, we may move to the poset Ω0 of propositions in the universe U0, ordered by
implication. This poset does have all suprema of families I → Ω0 indexed by types I in the
first universe U0, given by existential quantification. But if we consider a directed family
I → Ω0 with I in the same universe as Ω0 lives, namely the second universe U1, existential
quantification gives a proposition in the third universe U2 and so doesn’t give its supremum.
In this example, we get a poset such that
(i) the carrier lives in the universe U1,
(ii) the order has truth values in the universe U0, and
(iii) suprema of directed families indexed by types in U0 exist.
Regarding a poset as a category in the usual way, we have a large, but locally small, category
with small filtered colimits (directed suprema). This is typical of all the examples we have
considered so far in practice, such as the dcpos in the Scott model of PCF and Scott’s D∞
model of the untyped λ-calculus. We may say that the predicativity restriction increases the
universe usage by one. However, for the sake of generality, we formulate our definition of
dcpo with the following universe conventions:
(i) the carrier lives in a universe U ,
(ii) the order has truth values in a universe T , and
(iii) suprema of directed families indexed by types in a universe V exist.
So our notion of dcpo has three universe parameters U ,V, T . We will say that the dcpo is
locally small when T is not necessarily the same as V, but the order has truth values of
size V. Most of the time we mention V explicitly and leave U and T to be understood from
the context.

I Definition 6 (Poset). A poset (P,v) is a set P : U together with a proposition-valued
binary relation v : P → P → T satisfying:
(i) reflexivity:

∏
p:P p v p;

(ii) antisymmetry:
∏
p,q:P p v q → q v p→ p = q;

(iii) transitivity:
∏
p,q,r:P p v q → q v r → p v r.

CSL 2021

28:6 Domain Theory in Constructive and Predicative UF

I Definition 7 (Directed family). Let (P,v) be a poset and I any type. A family α : I → P

is directed if it is inhabited (i.e. ‖I‖ is pointed) and Πi,j:I∃k:Iαi v αk × αj v αk.

I Definition 8 (V-directed complete poset, V-dcpo). Let V be a type universe. A V-directed
complete poset (or V-dcpo, for short) is a poset (P,v) such that every directed family I → P

with I : V has a supremum in P .

We will sometimes leave the universe V implicit, and simply speak of “a dcpo”. On other
occasions, we need to carefully keep track of universe levels. To this end, we make the
following definition.

I Definition 9 (V-DCPOU,T). Let V, U and T be universes. We write V-DCPOU,T for the
type of V-dcpos with carrier in U and order taking values in T .

I Definition 10 (Pointed dcpo). A dcpo D is pointed if it has a least element, which we will
denote by ⊥D, or simply ⊥.

I Definition 11 (Locally small). A V-dcpo D is locally small if we have vsmall : D → D → V
such that

∏
x,y:D(x vsmall y) ' (x vD y).

I Example 12 (Powersets as pointed dcpos). Powersets give examples of pointed dcpos.
The subset inclusion ⊆ makes PV(X) into a poset and given a (not necessarily directed)
family A(−) : I → PV(X) with I : V, we may consider its supremum in PV(X) as given by
λx.∃i:I x ∈ Ai. Note that (∃i:I x ∈ Ai) : V for every x : X, so this is well-defined. Finally,
PV has a least element, the empty set: λx.0V . Thus, PV(X) : V-DCPOV+tU,VtU . When
V ≡ U (as in Example 59), we get the simpler, locally small PU (X) : U-DCPOU+,U . y

Fix two V-dcpos D and E.

I Definition 13 (Continuous function). A function f : D → E is (Scott) continuous if
it preserves directed suprema, i.e. if I : V and α : I → D is directed, then f(

⊔
α) is the

supremum in E of the family f ◦ α.

I Lemma 14. If f : D → E is continuous, then it is monotone, i.e. x vD y implies
f(x) vE f(y).

I Lemma 15. If f : D → E is continuous and α : I → D is directed, then so is f ◦ α.

I Definition 16 (Strict function). Suppose that D and E are pointed. A continuous function
f : D → E is strict if f(⊥D) = ⊥E.

4.1 Lifting
I Construction 17 (LV(X), ηX , cf. [10, 15]). Let X : U be a set. For any universe V, we
construct a pointed V-dcpo LV(X) : V-DCPOV+tU,V+tU , known as the lifting of X. Its
carrier is given by the type

∑
P :V is-prop(P)× (P → X) of partial elements of X.

Given a partial element (P, i, ϕ) : LV(X), we write (P, i, ϕ)↓ for P and say that the
partial element is defined if P holds. Moreover, we often leave the second component implicit,
writing (P,ϕ) for (P, i, ϕ).

The order is given by l vLV (X) m :≡ (l↓ → l = m), and it has a least element given by
(0,0-is-prop, unique-from-0) where 0-is-prop is a witness that the empty type is a proposition
and unique-from-0 is the unique map from the empty type.

T. de Jong and M.H. Escardó 28:7

Given a directed family
(
Q(−), ϕ(−)

)
: I → LV(X), its supremum is given by (∃i:IQi, ψ),

where ψ is such that∑
i:I Qi D

∃i:IQi
|−|

(i,q)7→ϕi(q)

ψ

commutes. (This is possible, because the top map is weakly constant (i.e. any of its values
are equal) and D is a set [25, Theorem 5.4].)

Finally, we write ηX : X → LV(X) for the embedding x 7→ (1,1-is-prop, λu.x). y

Note that we require X to be a set, so that LV(X) is a poset, rather than an ∞-category.
In practice, we often have V ≡ U (see for instance Example 58, Section 5.2, or the Scott
model of PCF [10]), but we develop the theory for the more general case. We can describe
the order on LV(X) more explicitly, as follows.

I Lemma 18. If we have elements (P,ϕ) and (Q,ψ) of LV(X), then (P,ϕ) v (Q,ψ) holds
if and only if we have f : P → Q such that

∏
p:P ϕ(p) = ψ(f(p)).

Observe that this exhibits LV(X) as locally small. We will show that LV(X) is the free
pointed V-dcpo on a set X, but to do that, we first need a lemma.

I Lemma 19. Let D be a pointed V-dcpo. Then D has suprema of families indexed by
propositions in V, i.e. if P : V is a proposition, then any α : P → D has a supremum

∨
α.

Moreover, if E is a (not necessarily pointed) V-dcpo and f : D → E is continuous, then
f(
∨
α) is the supremum of the family f ◦ α.

Proof. Let D be a pointed V-dcpo, P : V a proposition and α : P → D a function. Now
define β : 1V + P → D by inl(?) 7→ ⊥D and inr(p) 7→ α(p). Then, β is easily seen to be
directed and so it has a well-defined supremum in D, which is also the supremum of α. The
second claim follows from the fact that β is directed, so continuous maps must preserve its
supremum. J

I Lemma 20. Let X : U be a set and let (P,ϕ) be an arbitrary element of LV(X). Then
(P,ϕ) =

∨
p:P ηX(ϕ(p)).

I Theorem 21. The lifting LV(X) gives the free V-dcpo on a set X. Put precisely, if X : U
is a set, then for every V-dcpo D : V-DCPOU ′,T ′ and function f : X → D, there is a unique
continuous function f : LV(X)→ D such that

X D

LV(X)
ηX

f

f

commutes.

There is yet another way in which the lifting is a free construction, cf. [10, Section 4.3].
What is noteworthy about this is that freely adding subsingleton suprema automatically
gives all directed suprema.

I Definition 22 (ΩV -complete). A poset (P,v) is ΩV -complete if it has suprema for all
families indexed by a proposition in V.

CSL 2021

28:8 Domain Theory in Constructive and Predicative UF

I Theorem 23. The lifting LV(X) gives the free ΩV -complete poset on a set X. Put precisely,
if X : U is a set, then for every ΩV-complete poset (P,v) with P : U ′ and v taking values
in T ′ and function f : X → P , there exists a unique monotone f : LV(X)→ P preserving
all suprema indexed by propositions in V, such that f ◦ ηX = f .

Finally, a variation of Construction 17 freely adds a least element to a dcpo.

I Construction 24 (L′V(D)). Let D : V-DCPOU,T be a V-dcpo. We construct a pointed V-
dcpo L′V(D) : V-DCPOV+tU,VtT . Its carrier is given by the type

∑
P :V is-prop(P)×(P → D).

The order is given by (P,ϕ) vL′
V (D) (Q,ψ) :≡

∑
f :P→Q

∏
p:P ϕ(p) = ψ(f(p)) and has a

least element (0,0-is-prop, unique-from-0).
Now let α :≡

(
Q(−), ϕ(−)

)
: I → L′V(D) be a directed family. Consider Φ : (

∑
i:I Qi)→ D

given by (i, q) 7→ ϕi(q). The supremum of α is given by (∃i:IQi, ψ), where ψ takes a witness
that

∑
i:I Qi is inhabited to the directed (for which we needed ∃i:IQi) supremum

⊔
Φ in D.

Finally, we write η′D : D → L′V(D) for the continuous map x 7→ (1,1-is-prop, λu.x). y

I Theorem 25. The construction L′V(D) gives the free pointed V-dcpo on a V-dcpo D. Put
precisely, if D : V-DCPOU,T is a V-dcpo, then for every pointed V-dcpo E : V-DCPOU ′,T ′ and
continuous function f : D → E, there is a unique strict continuous function f : L′V(D)→ E

such that f ◦ η′D = f .

4.2 Exponentials
I Construction 26 (ED). Let D and E be two V-dcpos. We construct another V-dcpo ED
as follows. Its carrier is given by the type of continuous functions from D to E.

These functions are ordered pointwise, i.e. if f, g : D → E, then

f vED g :≡
∏
x:D

f(x) vE g(x).

Accordingly, directed suprema are also given pointwise. Explicitly, let α : I → ED be a
directed family. For every x : D, we have the family αx : I → E given by i 7→ αi(x). This is
a directed family in E and so we have a well-defined supremum

⊔
αx : E for every x : D.

The supremum of α is then given by x 7→
⊔
αx, where one should check that this assignment

is indeed continuous.
Finally, if E is pointed, then so is ED, because, in that case, the function x 7→ ⊥E is the

least continuous function from D to E. y

I Remark 27. In general, the universe levels of ED can be quite large and complicated. For if
D : V-DCPOU,T and D : V-DCPOU ′,T ′ , then ED : V-DCPOV+tUtT tU ′tT ′,UtT ′ . Even if
V = U ≡ T ≡ U ′ ≡ T ′, the carrier of ED still lives in the “large” universe V+. (Actually,
this scenario cannot happen non-trivially in a predicative setting, since non-trivial dcpos
cannot be “small” [11].) Even so, as observed in [10], if we take U ≡ T ≡ U ′ ≡ T ′ ≡ U1 and
V ≡ U0, then D,E,ED are all elements of U0-DCPOU1,U1 .

5 Scott’s D∞

We now construct, predicatively, Scott’s famous pointed dcpo D∞ which is isomorphic to its
own function space DD∞

∞ (Theorem 39). We follow Scott’s original paper [40] rather closely,
but with two differences. Firstly, we explicitly keep track of the universe levels to make sure
that our constructions go through predicatively. Secondly, [40] describes sequential (co)limits,
while we study the more general directed (co)limits (Section 5.1) and then specialize to
sequential (co)limits later (Section 5.2).

T. de Jong and M.H. Escardó 28:9

5.1 Limits and Colimits
I Definition 28 (Deflation). Let D be a dcpo. An endofunction f : D → D is a deflation if
f(x) v x for all x : D.

I Definition 29 (Embedding-projection pair). Let D and E be two dcpos. An embedding-
projection pair from D to E consists of two continuous functions ε : D → E (the embedding)
and π : E → D (the projection) such that:
(i) ε is a section of π;
(ii) ε ◦ π is a deflation.

For the remainder of this section, fix the following setup. Let V, U , T and W be type
universes. Let (I,v) be a directed preorder with I : V and v taken values in W. Suppose
that we have:
(i) for every i : I, a V-dcpo Di : V-DCPOU,T ;
(ii) for every i, j : I with i v j, an embedding-projection pair (εi,j , πi,j) from Di to Dj ;
such that
(i) for every i : I, we have εi,i = πi,i = id;
(ii) for every i, j, k : I with i v j v k, we have εi,k ∼ εj,k ◦ εi,j and πi,k ∼ πi,j ◦ πj,k.

I Construction 30 (D∞). Given the above inputs, we construct another V-dcpo
D∞ : V-DCPOUtVtW,UtT as follows. Its carrier is given by the type:∑

σ:
∏

i:I
Di

∏
j:I,ivj

πi,j(σj) = σi.

These functions are ordered pointwise, i.e. if σ, τ : I → Di, then

σ vD∞ τ :≡
∏
i:I
σi vDi τi.

Accordingly, directed suprema are also given pointwise. Explicitly, let α : A → D∞ be a
directed family. For every i : I, we have the family A → Di given by a 7→ (α(a))i, and
denoted by αi. One can show that αi is directed and so we have a well-defined supremum⊔
αi : Di for every i : I. The supremum of α is then given by the function i : I 7→

⊔
αi,

where one should check that πi,j(
⊔
αj) =

⊔
αi holds whenever i v j. y

I Remark 31. We allow for general universe levels here, which is why D∞ lives in the
relatively complicated universe U t V tW . In concrete examples, such as in Section 5.2, the
situation simplifies to V =W = U0 and U = T = U1.

I Construction 32 (πi,∞). For every i : I, we have a continuous function πi,∞ : D∞ → Di,
given by σ 7→ σi. y

I Construction 33 (εi,∞). For every i, j : I, consider the function

κ : Di →

(∑
k:I

i v k × j v k

)
→ Dj

κx(k, li, lj) = πi,j(εi,k(x)).

Using directedness of (I,v), we can show that for every x : Di the map κx is weakly constant
(i.e. all its values are equal). Therefore, we can apply [25, Theorem 5.4] and factor κx through
∃k:I(i v k × j v k). But (I,v) is directed, so ∃k:I(i v k × j v k) is a singleton. Thus, we
obtain a function ρi,j : Di → Dj such that: if we are given k : I with (li, lj) : i v k × j v k,
then ρi,j(x) = κx(k, li, lj).

Finally, this allows us to construct for every i : I, a continuous function εi,∞ : Di → D∞
by mapping x : Di to the function λ(j : I).ρi,j(x). y

CSL 2021

28:10 Domain Theory in Constructive and Predicative UF

I Theorem 34. For every i : I, the pair (εi,∞, πi,∞) is an embedding-projection pair.

I Lemma 35. Let i, j : I such that i v j. Then πi,j ◦ πj,∞ ∼ πi, and εj,∞ ◦ εi,j ∼ εi,∞.

I Theorem 36. The dcpo D∞ with the maps (πi,∞)i:I is the limit of
(

(Di)i:I , (πi,j)ivj
)
.

I Theorem 37. The dcpo D∞ with the maps (εi,∞)i:I is the colimit of
(

(Di)i:I , (εi,j)ivj
)
.

The (co)limit property is in the category of continuous maps of dcpos.

5.2 Scott’s Example Using Self-exponentiation
We now show that we can construct Scott’s D∞ [40] predicatively. Formulated pre-
cisely, we construct a pointed D∞ : U0-DCPOU1,U1 such that D∞ is isomorphic to its
self-exponential DD∞

∞ .
We employ the machinery from Section 5.1. Following [40, pp. 126–127], we inductively

define pointed dcpos Dn : U0-DCPOU1,U1 for every natural number n:
(i) D0 :≡ LU0(1U0);
(ii) Dn+1 :≡ DDn

n .
Next, we inductively define embedding-projection pairs (εn, πn) from Dn to Dn+1:
(i) ε0 : D0 → D1 is given by mapping x : D0 to the continuous function that is constantly x;

π0 : D1 → D0 is given by evaluating a continuous function f : D0 → D0 at ⊥;
(ii) εn+1 : Dn+1 → Dn+2 takes a continuous function f : Dn → Dn to the continuous

composite Dn+1
πn−−→ Dn

f−→ Dn
εn−→ Dn+1;

πn+1 : Dn+2 → Dn+1 takes a continuous function f : Dn+1 → Dn+1 to the continuous
composite Dn

εn−→ Dn+1
f−→ Dn+1

πn−−→ Dn.

In order to apply the machinery from Section 5.1, we will need embedding-projection
pairs (εn,m, πn,m) from Dn to Dm whenever n ≤ m. Let n and m be natural numbers with
n ≤ m and let k be the natural number m− n. We define the pairs by induction on k:
(i) if k = 0, then we set εn,n = πn,n = id;
(ii) if k = l + 1, then εn,m = εn+l ◦ εn,n+l and πn,m = πn,n+l ◦ πn+l.

So, Constructions 30, 32 and 33 give us D∞ : U0-DCPOU1,U1 with embedding-projection
pairs (εn,∞, πn,∞) from Dn to D∞ for every natural number n.

I Lemma 38. Let n be a natural number. The function πn : Dn+1 → Dn is strict. Hence,
so is πn,m whenever n ≤ m.

I Theorem 39. The dcpo D∞ is pointed and isomorphic to DD∞
∞ .

I Remark 40. Of course, Theorem 39 is only interesting in case D∞ 6' 1. Fortunately, D∞
has (infinitely) many elements besides ⊥D∞ . For instance, we can consider x0 :≡ η(?) : D0
and σ0 :

∏
n:N Dn given by σ0(n) :≡ ε0,n(x0). Then, σ0 is an element of D∞ not equal

to ⊥D∞ , because x0 6= ⊥D0 .

6 Continuous and Algebraic Dcpos

We next consider dcpos generated by certain elements called compact, or more generally
generated by a certain way-below relation, giving rise to algebraic and continuous domains.

T. de Jong and M.H. Escardó 28:11

6.1 The Way-below Relation
I Definition 41 (Way-below relation, x � y). Let D be a V-dcpo and x, y : D. We say
that x is way below y, denoted by x� y, if for every I : V and directed family α : I → D,
whenever we have y v

⊔
α, then there exists some element i : I such that x v αi already.

Symbolically,

x� y :≡
∏
I:V

∏
α:I→D

(
is-directed(α)→ y v

⊔
α→ ∃i:I x v αi

)
.

I Lemma 42. The way-below relation enjoys the following properties.
(i) It is proposition-valued.
(ii) If x� y, then x v y.
(iii) If x v y � v v w, then x� w.
(iv) It is antisymmetric.
(v) It is transitive.

I Lemma 43. Let D be a dcpo. Then x v y implies
∏
z:D(z � x→ z � y).

I Definition 44 (Compact). Let D be a dcpo. An element x : D is called compact if x� x.

I Example 45. The least element of a pointed dcpo is always compact.

I Example 46 (Compact elements in LV(X)). Let X : U be a set. An element (P,ϕ) : LV(X)
is compact if and only if P is decidable.

I Definition 47 (Kuratowski finite). A type X is Kuratowski finite if there exists some
natural number n : N and a surjection e : Fin(n)� X.

That is, X is Kuratowski finite if its elements can be finitely enumerated, possibly with
repetitions.

I Example 48 (Compact elements in PU (X)). Let X : U be a set. An element A : PU (X) is
compact if and only if its total type TA is Kuratowski finite.

6.2 Continuous Dcpos
Classically, a continuous dcpo is a dcpo where every element is the directed join of the set of
elements way below it [3]. Predicatively, we must be careful, because if x is an element of a
dcpo D, then

∑
y:D y � x is typically large, so its directed join need not exist for size reasons.

Our solution is to use a predicative version of bases [1] that accounts for size issues. For the
special case of algebraic dcpos, our situation is the poset analogue of accessible categories [2].
Indeed, in category theory requiring smallness is common, even in impredicative settings, see
for instance [23], where continuous dcpos are generalized to continuous categories.

I Definition 49 (Basis, approximating family). A basis for V-dcpo D is a function β : B → D

with B : V such that for every x : D there exists some α : I → B with I : V such that
(i) β ◦ α is directed and its supremum is x;
(ii) β(αi)� x for every i : I.

We summarise these requirements by saying that α is an approximating family for x.
Moreover, we require that � is small when restricted to the basis. That is, we have

�B : B → B → V such that (β(b)� β(b′)) '
(
b�B b′

)
for every b, b′ : B.

I Definition 50 (Continuous dcpo). A dcpo D is continuous if there exists some basis for it.

CSL 2021

28:12 Domain Theory in Constructive and Predicative UF

We postpone giving examples of continuous dcpos until we have developed the theory
further, but the interested reader may look ahead to Examples 58, 59 and 82.

A useful property of bases is that it allows us to express the order fully in terms of the
way-below relation, giving a converse to Lemma 43.

I Lemma 51. Let D be a dcpo with basis β : B → D. Then x v y holds if and only if∏
b:B(β(b)� x→ β(b)� y).

I Lemma 52. Let D be a V-dcpo with a basis β : B → D. Then v is small when restricted
to the basis, i.e. β(b1) v β(b2) has size V for every two elements b1, b2 : B. Hence, we have
vB : B → B → V such that

∏
b1,b2:B

(
b1 vB b2

)
' (β(b1) v β(b2)).

The most significant properties of a basis are the interpolation properties. We consider
nullary, unary and binary versions here. The binary interpolation property actually follows
fairy easily from the unary one, but we still record it, because we wish to show that bases
are examples of the abstract bases that we define later (cf. Example 62). Our proof of unary
interpolation is a predicative version of [14].

I Lemma 53 (Nullary interpolation). Let D be a dcpo with a basis β : B → D. For every
x : D, there exists some b : B such that β(b)� x.

I Lemma 54 (Unary interpolation). Let D be a V-dcpo with basis β : B → D and let x, y : D.
If x� y, then there exists some b : B such that x� β(b)� y.

I Lemma 55 (Binary interpolation). Let D be a V-dcpo with basis β : B → D and let
x, y, z : D. If x, y � z, then there exists some b : B such that x, y � β(b)� z.

6.3 Algebraic Dcpos
We now turn to a particular class of continuous dcpos, called algebraic dcpos.

I Definition 56 (Algebraic dcpo). A dcpo D is algebraic if there exists some basis β : B → D

for it such that β(b) is compact for every b : B.

I Lemma 57. Let D be a V-dcpo. Then D is algebraic if and only if there exists β : B → D

with B : V such that
(i) every element β(b) is compact;
(ii) for every x : D, there exists α : I → B with I : V such that β ◦ α is directed and

x =
⊔
β ◦ α.

I Example 58 (LU (X) is algebraic). Let X : U be a set and consider LU (X) : U-DCPOU+,U+ .
The basis [⊥, ηX] : (1U +X)→ LU (X) exhibits LU (X) as an algebraic dpco.

Proof. By Example 46, the elements ⊥ and ηX(x) (with x : X) are all compact, so it remains
to show that 1U+X is indeed a basis. Recalling Lemmas 19 and 20, we can write any element
(P,ϕ) : LV(X) as the directed join

⊔
([⊥, ηX] ◦ α) with α :≡ [id, ϕ] : (1U + P)→ (1U +X).

By Lemma 57 the proof is finished. C

I Example 59 (PU (X) is algebraic). Let X : U be a set and consider PU (X) : U-DCPOU+,U .
The basis ι : List(X)→ PU (X) that maps a finite list to a Kuratowski finite subset exhibits
PU (X) as an algebraic dpco.

I Example 60 (Scott’s D∞ is algebraic). The pointed dcpo D∞ : U0-DCPOU1,U1 with
D∞ ∼= DD∞

∞ from Section 5.2 is algebraic.

T. de Jong and M.H. Escardó 28:13

6.4 Ideal Completion
Finally, we consider how to build dcpos from posets, or more generally from abstract bases,
using the rounded ideal completion [1, Section 2.2.6]. Given our definition of the notion of
dcpo, the reader might expect us to define ideals using families rather than subsets. However,
we use subsets for extensionality reasons. Two subsets A and B of some X are equal exactly
when x ∈ A ⇐⇒ x ∈ B for every x : X. However, given two (directed) families α : I → X

and β : J → X, it is of course not the case (it does not even typecheck) that α = β when
Πi:I∃j:Jαi = βj and Πj:J∃i:Iβj = αi hold. We could try to construct the ideal completion
by quotienting the families, but then it seems impossible to define directed suprema in the
ideal completion without resorting to choice.

I Definition 61 (Abstract basis). A pair (B,≺) with B : V and ≺ taking values in V is called
a V-abstract basis if:
(i) ≺ is proposition-valued;
(ii) ≺ is transitive;
(iii) ≺ satisfies nullary interpolation, i.e. for every x : B, there exists some y : B with

y ≺ x;
(iv) ≺ satisfies binary interpolation, i.e. for every x, y : B with x ≺ y, there exists some

z : B with x ≺ z ≺ y.

I Example 62. Let D be a V-dcpo with a basis β : B → D, By Lemmas 42, 53 and 55,
the pair

(
B,�B

)
is an example of a V-abstract basis.

I Example 63. Any preorder (P,v) with P : V and v taking values in V is a V-abstract
basis, since reflexivity implies both interpolation properties.

For the remainder of this section, fix some arbitrary V-abstract basis (B,≺).

I Definition 64 (Directed subset). Let A be a V-subset of B. Then A is directed if A is
inhabited (i.e. ∃x:B x ∈ A holds) and for every x, y ∈ A, there exists some z ∈ A such that
x, y v z.

I Definition 65 (Ideal, lower set). Let A be a V-subset of B. Then A is an ideal if A is a
directed subset of B and A is a lower set, i.e. if x ≺ y and y ∈ A, then x ∈ A as well.

I Construction 66 (Rounded ideal completion Idl(B,≺)). We construct a V-dcpo, known as
the (rounded) ideal completion Idl(B,≺) : V-DCPOV+,V of (B,≺). The carrier is given by
the type

∑
I:B→V is-ideal(I) of ideals on (B,≺). The order is given by subset inclusion ⊆.

If we have a directed family α : A→ Idl(B,≺) of ideals (with A : V), then the subset given
by λx.∃a:Ax ∈ αa is again an ideal and the supremum of α in Idl(B,≺). y

I Lemma 67 (Rounded ideals). The ideals of Idl(B,≺) are rounded. That is, if I : Idl(B,≺)
and x ∈ I, then there exists some y ∈ I with x ≺ y.

I Definition 68 (Principal ideal ↓x). We write ↓(−) : B → Idl(B,≺) for the map that takes
x : B to the principal ideal λy.y ≺ x.

I Lemma 69. Let I : Idl(B,≺) be an ideal. Then I may be expressed as the supremum of
the directed family (x, p) : T(I) 7→ ↓x : Idl(B,≺), which we will denote by I =

⊔
x∈I ↓x.

We wish to prove that Idl(B,≺) is continuous with basis ↓ (−) : B → Idl(B,≺). To this end,
it is useful to express �Idl(B,≺) in more elementary terms.

CSL 2021

28:14 Domain Theory in Constructive and Predicative UF

I Lemma 70. Let I, J : Idl(B,≺) be two ideals. Then I � J holds if and only there exists
x ∈ J such that I ⊆ ↓x.

I Theorem 71. The map ↓ (−) : B → Idl(B,≺) is a basis for Idl(B,≺). Thus, Idl(B,≺) is
a continuous V-dcpo.

I Lemma 72. If ≺ is reflexive, then the compact elements of Idl(B,≺) are exactly the
principal ideals and Idl(B,≺) is algebraic.

I Theorem 73. The ideal completion is the free dcpo on a small poset. That is, if we have
a poset (P,v) with P : V and v taking values in V, then for every D : V-DCPOU,T and
monotone function f : P → D, there is a unique continuous function f : Idl(P,v)→ D such
that

P D

Idl(P,v)
↓(−)

f

f

commutes.

I Definition 74 (Continuous retract, section, retraction). A V-dcpo D is a continuous retract
of another V-dcpo E if we have continuous functions s : D → E (the section) and r : E → D

(the retraction) such that r(s(x)) = x for every x : D.

I Theorem 75. If E is a dcpo with basis β : B → D and D is a continuous retract of E
with retraction r, then r ◦ β is a basis for D.

We now turn to locally small dcpos, as they allow us to find canonical approximating families,
which is used in the proof of Theorem 78.

I Lemma 76. Let D be a V-dcpo with basis β : B → D. The following are equivalent:
(i) D is locally small;
(ii) β(b)� x has size V for every x : D and b : B.

I Lemma 77. Let D be a V-dcpo with basis β : B → D. If D is locally small, then an
element x : D is the supremum of the large directed family (

∑
b:B β(b)� x) pr1−−→ B

β−→ D.
Moreover, if D is locally small, then this directed family is small.

I Theorem 78. Let D be a V-dcpo with basis β : B → D and suppose that D is locally small.
Then D is a continuous retract of the algebraic V-dcpo Idl

(
B,vB

)
(recall Lemma 52).

One may wonder how restrictive the condition that D is locally small is. We note that if
X is a set, then LV(X) (by Lemma 18) and PV(X) are examples of locally small V-dcpos.
A natural question is what happens with exponentials. In general, ED may fail to be locally
small even when both D and E are. However, we do have the following result.

I Lemma 79. Let D and E be V-dcpos. Suppose that D is continuous and E is locally small.
Then ED is locally small.

Moreover, the (co)limit of locally small dcpos is locally small.

I Lemma 80. Given a system (Di, εi,j , πi,j) as in Section 5.1, if every Di is locally small,
then so is D∞.

T. de Jong and M.H. Escardó 28:15

Finally, the requirement that D is locally small is necessary, in the following sense.

I Lemma 81. Let D be a V-dcpo with basis β : B → D. Suppose that D is a continuous
retract of Idl

(
B,vB

)
. Then D is locally small.

We end this section by describing an example of a continuous dcpo, built using the ideal
completion, that is not algebraic. In fact, this dcpo has no compact elements at all.

I Example 82 (A continuous dcpo that is not algebraic). We can inductively define a type D
and an order ≺ representing dyadic rationals m/2n in the interval (−1, 1) for integers m,n.
Then we prove that ≺ is proposition-valued, transitive, irreflexive, trichotomous, dense and
that it has no endpoints. Using these properties, we can show that (D,≺) is a U0-abstract
basis. Thus, taking the rounded ideal completion, we get Idl(D,≺) : U0-DCPOU1,U0 , which
is continuous with basis ↓(−) : D → Idl(D,≺) by Theorem 71. But Idl(D,≺) cannot be
algebraic, since none of its elements are compact. Indeed suppose that we had an ideal I
with I � I. By Lemma 70, there would exist x ∈ I with I v ↓x. But this implies x ≺ x,
but ≺ is irreflexive, so this is impossible.

7 Conclusion and Future Work

We have developed domain theory constructively and predicatively in univalent foundations,
including Scott’s D∞ model of the untyped λ-calculus, as well as notions of continuous and
algebraic dcpos. We avoid size issues in our predicative setting by having large dcpos with
joins of small directed families. Often we find it convenient to work with locally small dcpos,
whose orders have small truth values.

In future work, we wish to give a predicative account of the theory of algebraic and
continuous exponentials, which is a rich and challenging topic even classically. We also intend
to develop applications to topology and locale theory. First steps on formal topology and
frames in cubical type theory [6, 8] are developed in Tosun’s thesis [44], and our notion of
continuous dcpo should be applicable to tackle local compactness and exponentiability.

It is also important to understand when classical theorems do not have constructive and
predicative counterparts. For instance, Zorn’s Lemma doesn’t imply excluded middle but it
implies propositional resizing [11] and we are working on additional examples.

We have formalized the following in Agda [12], in addition to the Scott model of PCF
and its computational adequacy [10, 20]:
1. dcpos,
2. limits and colimits of dcpos, Scott’s D∞,
3. lifting and exponential constructions,
4. pointed dcpos have subsingleton joins (in the right universe),
5. way-below relation, continuous, algebraic dcpos, interpolation properties,
6. abstract bases and rounded ideal completions (including its universal property),
7. continuous dcpos are continuous retract of their ideal completion, and hence of algebraic

dcpos,
8. ideal completion of dyadics, giving an example of a non-algebraic, continuous dcpo.
In the near future we intend to complete our formalization to also include Theorems 21, 23
and 25, Examples 59 and 60, and Lemma 79.

CSL 2021

28:16 Domain Theory in Constructive and Predicative UF

References
1 S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay, and T. S. E.

Maibaum, editors, Handbook of Logic in Computer Science, volume 3, pages 1–168. Clarendon
Press, 1994.

2 Jiří Adámek and Jiří Rosický. Locally Presentable and Accessible Categories, volume 189
of London Mathematical Society Lecture Note Series. Cambridge University Press, 1994.
doi:10.1017/CBO9780511600579.

3 Roberto M. Amadio and Pierre-Louis Curien. Domains and Lambda-Calculi, volume 46
of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1998.
doi:10.1017/CBO9780511983504.

4 Andrej Bauer and Iztok Kavkler. A constructive theory of continuous domains suitable for
implementation. Annals of Pure and Applied Logic, 159(3):251–267, 2009. doi:10.1016/j.
apal.2008.09.025.

5 Nick Benton, Andrew Kennedy, and Carsten Varming. Some domain theory and denotational
semantics in Coq. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel,
editors, Theorem Proving in Higher Order Logics (TPHOLs 2009), volume 5674 of Lecture Notes
in Computer Science, pages 115–130. Springer, 2009. doi:10.1007/978-3-642-03359-9_10.

6 Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical Type Theory:
A Constructive Interpretation of the Univalence Axiom. In Tarmo Uustalu, editor, 21st
International Conference on Types for Proofs and Programs (TYPES 2015), volume 69 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 5:1–5:34. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.TYPES.2015.5.

7 The Agda community. Agda wiki. https://wiki.portal.chalmers.se/agda/pmwiki.php.
8 Thierry Coquand, Simon Huber, and Anders Mörtberg. On Higher Inductive Types in

Cubical Type Theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science, pages 255–264. Association for Computing Machinery, 2018. doi:
10.1145/3209108.3209197.

9 Thierry Coquand, Giovanni Sambin, Jan Smith, and Silvio Valentini. Inductively generated
formal topologies. Annals of Pure and Applied Logic, 124(1–3):71–106, 2003. doi:10.1016/
s0168-0072(03)00052-6.

10 Tom de Jong. The Scott model of PCF in univalent type theory, November 2019. arXiv:
1904.09810.

11 Tom de Jong. Domain theory in predicative Univalent Foundations. Abstract for a talk at
HoTT/UF 2020 on 7 July, 2020. URL: https://hott-uf.github.io/2020/HoTTUF_2020_
paper_14.pdf.

12 Tom de Jong. Formalisation of domain theory in constructive and predicative univalent
foundations. https://github.com/tomdjong/TypeTopology, June 2020. Agda development.

13 Robert Dockins. Formalized, Effective Domain Theory in Coq. In Gerwin Klein and Ruben
Gamboa, editors, Interactive Theorem Proving (ITP 2014), volume 8558 of Lecture Notes in
Computer Science, pages 209–225. Springer, 2014. doi:10.1007/978-3-319-08970-6_14.

14 Martín H. Escardó. The proof of the interpolation property of the way-below relation of
a continuous poset. 18 March, 2000. URL: https://www.cs.bham.ac.uk/~mhe/papers/
interpolation.pdf.

15 Martín H. Escardó and Cory M. Knapp. Partial Elements and Recursion via Dominances
in Univalent Type Theory. In Valentin Goranko and Mads Dam, editors, 26th EACSL
Annual Conference on Computer Science Logic (CSL 2017), volume 82 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 21:1–21:16. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/LIPIcs.CSL.2017.21.

16 Martín Hötzel Escardó. Introduction to Univalent Foundations of Mathematics with Agda,
February 2020. arXiv:1911.00580.

17 Martín Hötzel Escardó. Various new theorems in constructive univalent mathematics written in
Agda. https://github.com/martinescardo/TypeTopology, June 2020. Agda development.

https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1017/CBO9780511983504
https://doi.org/10.1016/j.apal.2008.09.025
https://doi.org/10.1016/j.apal.2008.09.025
https://doi.org/10.1007/978-3-642-03359-9_10
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://doi.org/10.1145/3209108.3209197
https://doi.org/10.1145/3209108.3209197
https://doi.org/10.1016/s0168-0072(03)00052-6
https://doi.org/10.1016/s0168-0072(03)00052-6
http://arxiv.org/abs/1904.09810
http://arxiv.org/abs/1904.09810
https://hott-uf.github.io/2020/HoTTUF_2020_paper_14.pdf
https://hott-uf.github.io/2020/HoTTUF_2020_paper_14.pdf
https://github.com/tomdjong/TypeTopology
https://doi.org/10.1007/978-3-319-08970-6_14
https://www.cs.bham.ac.uk/~mhe/papers/interpolation.pdf
https://www.cs.bham.ac.uk/~mhe/papers/interpolation.pdf
https://doi.org/10.4230/LIPIcs.CSL.2017.21
http://arxiv.org/abs/1911.00580
https://github.com/martinescardo/TypeTopology

T. de Jong and M.H. Escardó 28:17

18 G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott. Continu-
ous Lattices and Domains, volume 93 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 2003. doi:10.1017/CBO9780511542725.

19 Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson, Michael W. Mislove,
and Dana S. Scott. A Compendium of Continuous Lattices. Springer Berlin Heidelberg, 1980.
doi:10.1007/978-3-642-67678-9.

20 Brendan Hart. Investigating Properties of PCF in Agda. MSci project, School of Computer
Science, University of Birmingham, 2020. Report and Agda code available at https://github.
com/BrendanHart/Investigating-Properties-of-PCF.

21 Michael Hedberg. A type-theoretic interpretation of constructive domain theory. Journal of
Automated Reasoning, 16(3):369–425, 1996. doi:10.1007/BF00252182.

22 J. M. E. Hyland. First steps in synthetic domain theory. In A. Carboni, M. C. Peddicchio, and
G. Rosolini, editors, Category Theory, volume 1488 of Lecture Notes in Mathematics, pages
131–156. Springer, 1991. doi:10.1007/bfb0084217.

23 Peter Johnstone and André Joyal. Continuous categories and exponentiable toposes. Journal
of Pure and Applied Algebra, 25(3):255–296, 1982. doi:10.1016/0022-4049(82)90083-4.

24 Tatsuji Kawai. Predicative theories of continuous lattices, June 2020. arXiv:2006.05642.
25 Nicolai Kraus, Martín Escardó, Thierry Coquand, and Thorsten Altenkirch. Notions of

Anonymous Existence in Martin-Löf Type Theory. Logical Methods in Computer Science,
13(1), 2017. doi:10.23638/LMCS-13(1:15)2017.

26 David Lidell. Formalizing domain models of the typed and the untyped lambda calculus in
Agda. Master’s thesis, Chalmers University of Technology and University of Gothenburg,
2020. Final version in preparation. Agda code available at https://github.com/DoppeD/
ConsistentCwfsOfDomains.

27 John Longley and Dag Normann. Higher-Order Computability. Springer, 2015. doi:10.1007/
978-3-662-47992-6.

28 Maria Emilia Maietti and Silvio Valentini. Exponentiation of Scott formal topologies. In
A. Jung M. Escardó, editor, Proceedings of the Workshop on Domains VI, volume 73, pages
111–131, 2004. doi:10.1016/j.entcs.2004.08.005.

29 Michael Makkai and Robert Paré. Accessible categories: the foundations of categorical model
theory, volume 104 of Contemporary Mathematics. American Mathematical Society, 1989.
doi:10.1090/conm/104.

30 Sara Negri. Continuous lattices in formal topology. In Eduardo Giménez and Christine
Paulin-Mohring, editors, Types for Proofs and Programs (TYPES 1996), volume 1512 of
Lecture Notes in Computer Science, pages 333–353. Springer, 1998. doi:10.1007/BFb0097800.

31 Sara Negri. Continuous domains as formal spaces. Mathematical Structures in Computer
Science, 12(1):19–52, 2002. doi:10.1017/S0960129501003450.

32 Dirk Pattinson and Mina Mohammadian. Constructive Domains with Classical Witnesses,
June 2020. arXiv:1910.04948.

33 G. D. Plotkin. LCF considered as a programming language. Theoretical Computer Science,
5(3):223–255, 1977. doi:10.1016/0304-3975(77)90044-5.

34 Bernhard Reus. Formalizing synthetic domain theory — the basic definitions. Journal of
Automated Reasoning, 23(3-4):411–444, 1999. doi:10.1023/A:1006258506401.

35 Bernhard Reus and Thomas Streicher. General synthetic domain theory — a logical
approach. Mathematical Structures in Computer Science, 9(2):177—-223, 1999. doi:
10.1017/S096012959900273X.

36 G. Rosolini. Categories and effective computations. In David H. Pitt, Axel Poigné, and
David E. Rydeheard, editors, Category Theory and Computer Science, volume 283 of Lecture
Notes in Computer Science, pages 1–11. Springer, 1987.

37 Giuseppe Rosolini. Continuity and effectiveness in topoi. PhD thesis, University of Oxford,
1986.

CSL 2021

https://doi.org/10.1017/CBO9780511542725
https://doi.org/10.1007/978-3-642-67678-9
https://github.com/BrendanHart/Investigating-Properties-of-PCF
https://github.com/BrendanHart/Investigating-Properties-of-PCF
https://doi.org/10.1007/BF00252182
https://doi.org/10.1007/bfb0084217
https://doi.org/10.1016/0022-4049(82)90083-4
http://arxiv.org/abs/2006.05642
https://doi.org/10.23638/LMCS-13(1:15)2017
https://github.com/DoppeD/ConsistentCwfsOfDomains
https://github.com/DoppeD/ConsistentCwfsOfDomains
https://doi.org/10.1007/978-3-662-47992-6
https://doi.org/10.1007/978-3-662-47992-6
https://doi.org/10.1016/j.entcs.2004.08.005
https://doi.org/10.1090/conm/104
https://doi.org/10.1007/BFb0097800
https://doi.org/10.1017/S0960129501003450
http://arxiv.org/abs/1910.04948
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1023/A:1006258506401
https://doi.org/10.1017/S096012959900273X
https://doi.org/10.1017/S096012959900273X

28:18 Domain Theory in Constructive and Predicative UF

38 Giovanni Sambin. Intuitionistic formal spaces—a first communication. In Mathematical logic
and its applications, pages 187–204. Springer, 1987. doi:10.1007/978-1-4613-0897-3_12.

39 Giovanni Sambin, Silvio Valentini, and Paolo Virgili. Constructive domain theory as a branch
of intuitionistic pointfree topology. Theoretical Computer Science, 159(2):319–341, 1996.
doi:10.1016/0304-3975(95)00169-7.

40 Dana S. Scott. Continuous lattices. In F.W. Lawvere, editor, Toposes, Algebraic Geometry
and Logic, volume 274 of Lecture Notes in Mathematics, pages 97–136. Springer, 1972. doi:
10.1007/BFB0073967.

41 Dana S. Scott. Lectures on a mathematical theory of computation. In Manfred Broy and
Gunther Schmidt, editors, Theoretical Foundations of Programming Methodology: Lecture
Notes of an International Summer School, directed by F. L. Bauer, E. W. Dijkstra and C.
A. R. Hoare, volume 91 of NATO Advanced Study Institutes Series, pages 145–292. Springer,
1982. doi:10.1007/978-94-009-7893-5_9.

42 Dana S. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical Computer
Science, 121(1):411–440, 1993. doi:10.1016/0304-3975(93)90095-B.

43 Andrew W. Swan. Choice, collection and covering in cubical sets. Talk in the electronic
HoTTEST seminar, 6 November. Slides at https://www.uwo.ca/math/faculty/kapulkin/
seminars/hottestfiles/Swan-2019-11-06-HoTTEST.pdf. Video recording at https://www.
youtube.com/watch?v=r9KbEOzyr1g, 2019.

44 Ayberk Tosun. Formal Topology in Univalent Foundations. Master’s thesis, Chalmers
University of Technology and University of Gothenburg, 2020. Agda code available at:
https://github.com/ayberkt/formal-topology-in-UF. doi:20.500.12380/301098.

45 Taichi Uemura. Cubical Assemblies, a Univalent and Impredicative Universe and a Failure
of Propositional Resizing. In Peter Dybjer, José Espírito Santo, and Luís Pinto, editors,
24th International Conference on Types for Proofs and Programs (TYPES 2018), volume
130 of Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1–7:20. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.TYPES.2018.7.

46 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

47 Vladimir Voevodsky. Resizing rules — their use and semantic justification. Slides from a
talk at TYPES, Bergen, 11 September, 2011. URL: https://www.math.ias.edu/vladimir/
sites/math.ias.edu.vladimir/files/2011_Bergen.pdf.

48 Vladimir Voevodsky. An experimental library of formalized mathematics based on the univalent
foundations. Mathematical Structures in Computer Science, 25(5):1278–1294, 2015.

49 Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. UniMath — a computer-checked
library of univalent mathematics. Available at https://github.com/UniMath/UniMath.

https://doi.org/10.1007/978-1-4613-0897-3_12
https://doi.org/10.1016/0304-3975(95)00169-7
https://doi.org/10.1007/BFB0073967
https://doi.org/10.1007/BFB0073967
https://doi.org/10.1007/978-94-009-7893-5_9
https://doi.org/10.1016/0304-3975(93)90095-B
https://www.uwo.ca/math/faculty/kapulkin/seminars/hottestfiles/Swan-2019-11-06-HoTTEST.pdf
https://www.uwo.ca/math/faculty/kapulkin/seminars/hottestfiles/Swan-2019-11-06-HoTTEST.pdf
https://www.youtube.com/watch?v=r9KbEOzyr1g
https://www.youtube.com/watch?v=r9KbEOzyr1g
https://github.com/ayberkt/formal-topology-in-UF
https://doi.org/20.500.12380/301098
https://doi.org/10.4230/LIPIcs.TYPES.2018.7
https://homotopytypetheory.org/book
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/2011_Bergen.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/2011_Bergen.pdf
https://github.com/UniMath/UniMath

A Cyclic Proof System for HFLN

Mayuko Kori
Department of Informatics, The Graduate University for Advanced Studies (SOKENDAI),
Hayama, Japan
National Institute of Informatics, Tokyo, Japan
mkori@nii.ac.jp

Takeshi Tsukada
Graduate School of Science, Chiba University, Japan
tsukada@math.s.chiba-u.ac.jp

Naoki Kobayashi
The University of Tokyo, Japan
koba@is.s.u-tokyo.ac.jp

Abstract
A cyclic proof system allows us to perform inductive reasoning without explicit inductions. We
propose a cyclic proof system for HFLN, which is a higher-order predicate logic with natural numbers
and alternating fixed-points. Ours is the first cyclic proof system for a higher-order logic, to our
knowledge. Due to the presence of higher-order predicates and alternating fixed-points, our cyclic
proof system requires a more delicate global condition on cyclic proofs than the original system of
Brotherston and Simpson. We prove the decidability of checking the global condition and soundness
of this system, and also prove a restricted form of standard completeness for an infinitary variant
of our cyclic proof system. A potential application of our cyclic proof system is semi-automated
verification of higher-order programs, based on Kobayashi et al.’s recent work on reductions from
program verification to HFLN validity checking.

2012 ACM Subject Classification Theory of computation → Proof theory

Keywords and phrases Cyclic proof, higher-order logic, fixed-point logic, sequent calculus

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.29

Related Version A full version of the paper is available at https://arxiv.org/abs/2010.14891.

Funding This work was supported by JSPS KAKENHI Grant Number JP15H05706, JP20H00577,
and JP20H05703.
Mayuko Kori: The first author is supported by ERATO HASUO Metamathematics for Systems
Design Project (No. JPMJER1603), JST.

Acknowledgements We would like to thank anonymous referees for useful comments.

1 Introduction

There have recently been extensive studies on cyclic proof systems. They allow a proof to
be cyclic, as long as it satisfies a certain sanity condition called the “global trace condition.”
Cyclic proofs enable inductive reasoning without explicit inductions, which would be useful
for proof automation. Various cyclic proof systems have been proposed [3, 7, 13] for first-order
logics, and some of them have been applied to automated program verification [1, 2, 14].

In the present paper, we propose a cyclic proof system for HFLN, a higher-order logic
with natural numbers and least/greatest fixpoint operators on higher-order predicates. HFLN
has been introduced by Kobayashi et al. [9, 10] as an extension of HFL [16], and shown to
be useful for higher-order program verification. Verification of various temporal properties of
higher-order programs can naturally be reduced to validity checking for HFLN formulas. For
example, consider the following OCaml program:

© Mayuko Kori, Takeshi Tsukada, and Naoki Kobayashi;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 29; pp. 29:1–29:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8495-5925
mailto:mkori@nii.ac.jp
https://orcid.org/0000-0002-2824-8708
mailto:tsukada@math.s.chiba-u.ac.jp
https://orcid.org/0000-0002-0537-0604
mailto:koba@is.s.u-tokyo.ac.jp
https://doi.org/10.4230/LIPIcs.CSL.2021.29
https://arxiv.org/abs/2010.14891
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 A Cyclic Proof System for HFLN

let rec g n = if n=0 then () else g (n-1) in
let rec f h m = h m; f h (m+1) in f g 0

The property “f is infinitely often called” is then expressed as the following formula:(
νF.λh.λm.h m ∧ F h (m+ 1)

) (
µG.λn.(n = 0 ∨ (n 6= 0 ∧G (n− 1)))

)
0.

Here, νF.λh. · · · and µG.λn. · · · respectively represent the greatest and least predicates such
that F = λh. · · · and G = λn. · · ·. Notice the close correspondence between the program and
the formula: the functions f and g correspond to the predicates F and G, and function calls
correspond to applications of the predicates; an interested reader may wish to consult [9, 10]
to learn how program verification problems can be translated to HFLN formulas. Our cyclic
proof system for HFLN presented in this paper would, therefore, be useful for semi-automated
verification of higher-order programs.

A key issue in the design of our cyclic proof system is how to formalize a decidable “global
trace condition,” to guarantee the soundness of cyclic proofs in the presence of higher-order
predicates and alternating fixed-points. Our global trace condition has been inspired by,
and is actually very similar to that of Doumane [7]. The decidability of our global trace
condition is, however, non-trivial, due to the presence of higher-order predicates. Inspired by
the approach of Brotherston and Simpson [3], we reduce the global trace condition to the
containment problem for Büchi automata.

We also consider an infinitary version of our proof system, and prove that the infinitary
proof system is complete for sequents without higher-order variables. The restriction to
sequents without higher-order variables is sufficient for the aforementioned application of our
proof system to higher-order program verification.

The rest of this paper is structured as follows. Section 2 reviews the syntax and semantics
of HFLN. Section 3 defines our cyclic proof system. Sections 4 and 5 respectively prove
the decidability of the global trace condition and the soundness of our cyclic proof system.
Section 6 discusses the restricted form of completeness of the infinitary variant of our proof
system. Section 7 discusses related work, and Section 8 concludes the paper.

2 HFLN: Higher-Order Fixed-Point Arithmetic

This section introduces the target logic HFLN, which is a higher-order logic with natural
numbers and alternating fixed-points. It has been introduced by Kobayashi et al. [10, 17] as
an extension of higher-order modal fixed-point logic (HFL) [16].

2.1 Syntax of HFLN

HFLN is simply typed. The syntax of types is given as follows:

A ::= N | T T ::= Ω | A→ T.

N is the type of natural numbers, Ω is the type of propositions and A→ T is a function type.
Occurrences of N are restricted to argument positions for a technical reason (see below).

Let V be a countably infinite set of variables, ranged over by x, y, z, f,X, Y, Z, The
syntax of terms and formulas is given by:

term s, t ::= x | Z | St
formula ϕ,ψ ::= s = t | ϕ ∨ ψ | ϕ ∧ ψ | x | λxA.ϕ | ϕψ | ϕ t | µxT .ϕ | νxT .ϕ.

M. Kori, T. Tsukada, and N. Kobayashi 29:3

We shall often omit the type annotations. The syntax of terms is standard: Z represents
zero and S is the successor function. A closed term must be of the form SnZ, which is often
identified with the natural number n. Constructors of formulas are logical ones (s = t, ϕ ∨ ψ
and ϕ ∧ ψ), those from the λ-calculus (variable x, abstraction λx.ϕ, and application ϕψ

and ϕ t), and fixed-point operators (least fixed-point µx.ϕ and greatest fixed-point νx.ϕ).
Some standard constructs such as summation t1 + t2 = s, multiplication t1 × t2 = s, truth >
and quantifiers ∀ and ∃ are definable; see examples later in this subsection. The set of free
variables is defined as usual; the binders are λx, µx and νx.

A sequent is a pair (Γ,∆) of finite sequences of formulas, written as Γ ` ∆. For a finite
sequence Γ of formulas, FV (Γ) denotes the union of the sets of free variables of formulas in
Γ. The free variables of a sequent Γ ` ∆ is FV (Γ) ∪ FV (∆).

The type system is presented in Figure 1. Here H is a type environment, which is a map
from a finite subset of variables to the set of types. The typing rules should be easy to
understand. The types of fixed-point formulas µx.ϕ and νy.ψ, as well as the types of the
variables x and y, are restricted to T (i.e., they cannot be N). A formula ϕ is well-typed if
H ` ϕ : T for some H and T . In the sequel, we shall consider only well-typed formulas.

For a sequent Γ ` ∆, we write H | Γ ` ∆ if H ` ϕ : Ω for every ϕ in Γ or ∆. A sequent
is well-typed if H | Γ ` ∆ for some H.

We give some examples of formulas and explain their intuitive meaning.

I Example 1. The truth > and falsity ⊥ can be defined as fixed-points:

> := νxΩ.x and ⊥ := µxΩ.x.

The former means that > is the greatest element in the set of truth values (i.e. elements
in the semantic domain of Ω) such that x = x. Similarly ⊥ is the least truth value. The
greatest >T and least ⊥T value of type T are defined in a similar way. y

I Example 2. The quantifiers over natural numbers are definable. Let forall be a predicate
of type (N→ Ω)→ N→ Ω defined by

forall := νX.λpN→Ω.λxN.p x ∧X p (Sx).

Then forall ϕn holds if and only if ϕm holds for every m ≥ n. To see this, notice that
(forall ϕn) = (ϕn) ∧ (forall ϕ (n+ 1)) since forall is a fixed-point. By iteratively applying
this equation, we have

(forall ϕn) = (ϕn) ∧ (ϕ (n+ 1)) ∧ (ϕ (n+ 2)) ∧ · · ·

and thus forall ϕn if and only if ∀m ≥ n.ϕm.1 Then the universal quantifier over natural
numbers is defined by

∀x.ϕ := forall (λx.ϕ) Z.

The existential quantifier can be defined similarly. A direct definition is

∃xN.ϕ :=
(
µY N→Ω.λx.ϕ ∨ Y (Sx)

)
Z.

The quantifiers over T are easier because of monotonicity (see next subsection); we define
∀xT .ϕ := (λx.ϕ)⊥T and ∃xT .ϕ := (λx.ϕ)>T . y

1 The reader may notice that this intuitive argument does not explain why we should use ν instead of µ.
Here we skip this subtle issue. An interested reader may compare the interpretations of forall and its
µ-variant, following the definition in the next subsection.

CSL 2021

29:4 A Cyclic Proof System for HFLN

For terms:

H, x : A ` x : A H ` Z : N
H ` t : N
H ` St : N

For formulas:
H ` s : N H ` t : N

H ` s = t : Ω

H ` ϕ : Ω H ` ψ : Ω
H ` ϕ ∨ ψ : Ω

H ` ϕ : Ω H ` ψ : Ω
H ` ϕ ∧ ψ : Ω

H, x : A ` ϕ : T
H ` λxA.ϕ : A→ T

H ` ϕ : T ′ → T H ` ψ : T ′
H ` ϕψ : T

H ` ϕ : N→ T H ` t : N
H ` ϕ t : T

H, x : T ` ϕ : T
H ` µxT .ϕ : T

H, x : T ` ϕ : T
H ` νxT .ϕ : T

Figure 1 Typing Rules for HFLN.

I Example 3. Let sum be the summation, i.e. the predicate such that sum nmk holds if
and only if n+m = k. This predicate can be defined as follows:

µsum. λxN.λyN.λzN.(x = Z ∧ y = z) ∨ (∃x′.∃z′.x = Sx′ ∧ sum x′ y z′ ∧ z = Sz′).

This formula represents the standard inductive definition of the summation: Z + y = y

and x′ + y = z′ =⇒ Sx′ + y = Sz′. One can define the multiplication in a similar way,
representing the standard inductive definition of the multiplication using sum. y

I Example 4. The inequality s < t on terms is also definable. The idea is to appeal to the
following fact: if n < m, then n+ 1 = m or (n+ 1) < m. This justifies

(s < t) :=
(
µX.λyN.(Sy = t) ∨X (Sy)) s.

Here X is a variable of type N→ Ω and X s′ means s′ < t. Then the inequality s 6= t can
be defined as (s < t) ∨ (t < s). y

I Remark 5. HFLN does not have negation ¬. The absence of negation plays an important
role in the interpretation of fixed-point operators, as we shall see in the next subsection.
For a formula ϕ with no free variables except for those of type N, the negation ¬ϕ can be
obtained by replacing each logical connective with its De Morgan dual,

∧! ∨, µ! ν, and = ! 6=,

as discussed in [12]. y

2.2 Semantics of HFLN

This subsection introduces the interpretations of types and formulas.
The interpretation of a type A is a poset JAK = (JAK,≤A). It is inductively defined by

JNK := N x ≤N y :⇔ x = y

JΩK := {>,⊥} x ≤Ω y :⇔ x = ⊥ or y = >
JA→ T K := {f : JAK→ JT K | f is monotone} f ≤A→T g :⇔ ∀x ∈ JAK.f(x) ≤T g(x).

M. Kori, T. Tsukada, and N. Kobayashi 29:5

JH ` x : AK(ρ) = ρ(x)
JH ` Z : NK(ρ) = 0
JH ` St : NK(ρ) = 1 + JH ` t : NK(ρ)

JH ` s = t : ΩK(ρ) = (JH ` s : NK(ρ) = JH ` t : NK(ρ))
JH ` ϕ ∨ ψ : ΩK(ρ) = (JH ` ϕ : ΩK(ρ) ∨ JH ` ψ : ΩK(ρ))
JH ` ϕ ∧ ψ : ΩK(ρ) = (JH ` ϕ : ΩK(ρ) ∧ JH ` ψ : ΩK(ρ))

JH ` λxA.ϕ : A→ T K(ρ) = λv ∈ JAK.JH, x : A ` ϕ : T K(ρ[x 7→ v])
JH ` ϕψ : T K(ρ) = (JH ` ϕ : A→ T K(ρ)) (JH ` ψ : AK(ρ))
JH ` ϕ t : T K(ρ) = (JH ` ϕ : N→ T K(ρ)) (JH ` t : NK(ρ))

JH ` µxT .ϕ : T K(ρ) = lfp(JH ` λxT .ϕ : T → T K(ρ))
JH ` νxT .ϕ : T K(ρ) = gfp(JH ` λxT .ϕ : T → T K(ρ))

Figure 2 Interpretation of terms and formulas.

Note that
JA→ T K is the space of monotone functions, and
JT K is a complete lattice for every T .

On the contrary JAK is not necessarily a complete lattice since JNK is not.
The interpretation JHK of a type environment H is the set of mappings ρ such that

ρ(x) ∈ JH(x)K for every x in the domain of H. The set JHK forms a poset with respect to
the point-wise ordering. An element of JHK is called a valuation. We write ρ[x 7→ v] for the
mapping defined by ρ[x 7→ v](x) = v and ρ[x 7→ v](y) = ρ(y) for y 6= x.

Assume H ` ϕ : A (where ϕ is a formula or a term). Its interpretation JH ` ϕ : AK is a
monotone function JHK −→ JAK. The definition is in Figure 2. Here lfp(f) and gfp(f) are
the least and greatest fixed-points of the function f . The interpretations of the fixed-point
operators are well-defined since every monotone function f : P −→ P on a complete lattice
P has both the least and greatest fixed-points. We shall write JH ` ϕ : AK(ρ) simply JϕKρ
when no confusion can arise.

I Definition 6. Let H | Γ ` ∆ be a sequent and ρ be a valuation in JHK. Then we write
Γ |=ρ ∆ if

∧
ϕ∈ΓJϕKρ ≤

∨
ψ∈∆JψKρ, or equivalently, if JϕKρ = ⊥ for some ϕ ∈ Γ or JψKρ = >

for some ψ ∈ ∆. A sequent H | Γ ` ∆ is valid if Γ |=ρ ∆ for all valuations ρ, and we denote
it briefly by Γ |= ∆.

3 A Cyclic Proof System for HFLN

In this section, we introduce a cyclic proof system for HFLN. A cyclic proof is a proof
diagram which can contain cycles and should satisfy a certain condition in order to ensure
the soundness. Subsection 3.1 describes derivations and the soundness condition to define
cyclic proofs and Subsection 3.2 shows that the induction rule based on prefixed-points is
admissible. In Subsection 3.3, we show some examples of cyclic proofs.

3.1 Definition of the Cyclic Proof System
Figure 3 shows our deduction rules, which are based on Gentzen’s sequent calculus. Here
ϕ[ψ/x] represents the capture-avoiding substitution and Γ[ϕ/x] represents the sequence of
formulas which is the result of applying the substitution [ϕ/x] to all formulas in Γ. The rules

CSL 2021

29:6 A Cyclic Proof System for HFLN

should be easy to understand since most of the rules are standard. We explain uncommon
rules. The rule (Mono) is based on the fact that each formula defines a monotone function,
i.e. JψK v JχK implies Jϕ[ψ/x]K v Jϕ[χ/x]K. Since only a formula of type Ω can appear in a
sequent, JψK v JχK is expressed as ψ ~y ` χ~y for fresh ~y. The rules (λL) and (λR) are justified
by the fact that the β-equivalence (λx.ϕ)ψ = ϕ[ψ/x] preserves semantics. The rules (σL) and
(σR) express the fact that σx.ϕ (where σ is µ or ν) is a fixed-point and thus σx.ϕ = ϕ[σx.ϕ/x].
The rule (Nat) says that a variable of type N indeed represents a natural number, and (P1)
and (P2) correspond to the axioms (Z = Sx)→ ⊥ and (Sx = Sy)→ (x = y).

Identity rules

(Axiom)
ϕ ` ϕ

Γ ` ϕ,∆ Γ, ϕ ` ∆ (Cut)Γ ` ∆
Structural rules

Γ ` ∆ (Wk L)Γ, ϕ ` ∆
Γ ` ∆ (Wk R)Γ ` ϕ,∆

Γ, ϕ, ϕ ` ∆ (Ctr L)Γ, ϕ ` ∆
Γ ` ϕ,ϕ,∆ (Ctr R)Γ ` ϕ,∆

Γ, ψ, ϕ,Γ′ ` ∆ (Ex L)
Γ, ϕ, ψ,Γ′ ` ∆

Γ ` ∆, ψ, ϕ,∆′ (Ex R)
Γ ` ∆, ϕ, ψ,∆′

Γ ` ∆ (Subst)
Γ[ϕ/x] ` ∆[ϕ/x]

Γ, ψ ~y ` χ~y,∆
~y ∩ FV (Γ, ψ, χ,∆) = ∅, (Mono)

Γ, ϕ[ψ/xT] ` ϕ[χ/xT],∆

Logical rules (σ = µ, ν)

Γ[t/x, s/y] ` ∆[t/x, s/y]
(= L)

Γ[s/x, t/y], s = t ` ∆[s/x, t/y]
(= R)Γ ` t = t,∆

Γ, ϕ ` ∆ Γ, ψ ` ∆ (∨L)Γ, ϕ ∨ ψ ` ∆
Γ ` ϕ,ψ,∆ (∨R)Γ ` ϕ ∨ ψ,∆

Γ, ϕ, ψ ` ∆ (∧L)Γ, ϕ ∧ ψ ` ∆
Γ ` ϕ,∆ Γ ` ψ,∆ (∧R)Γ ` ϕ ∧ ψ,∆

Γ, ϕ[ψ/x] ~ψ ` ∆
(λL)

Γ, (λx.ϕ)ψ ~ψ ` ∆
Γ ` ϕ[ψ/x] ~ψ,∆

(λR)
Γ ` (λx.ϕ)ψ ~ψ,∆

Γ, ϕ[σx.ϕ/x] ~ψ ` ∆
(σL)

Γ, (σx.ϕ) ~ψ ` ∆
Γ ` ϕ[σx.ϕ/x] ~ψ,∆

(σR)
Γ ` (σx.ϕ) ~ψ,∆

Natural number rules
N ≡ µX.λx.(x = Z) ∨ (∃x′.x = Sx′ ∧X x′)

Γ, N xN ` ∆ (Nat)Γ ` ∆
(P1)Ss = Z `

Γ, s = t ` ∆ (P2)Γ,Ss = St ` ∆

Figure 3 Deduction Rules.

M. Kori, T. Tsukada, and N. Kobayashi 29:7

Although every leaf of an ordinary proof tree is an axiom, this is not the case in cyclic
proof systems. A (finite) derivation tree is a tree obtained by using the rules in Figure 3,
whose leaves are not necessarily axioms. A leaf that is not an axiom is called open.

I Definition 7 (Pre-proof). A pre-proof consists of a finite derivation tree D and a function
R that assigns to each open leaf n in D a non-leaf node R(n) that has the same sequent as n.

A pre-proof induces the infinite derivation tree by iteratively replacing an open leaf n
with R(n). This correspondence would be helpful to understand the definitions below.

A pre-proof is unsound in general, i.e., the root sequent of a pre-proof may be invalid.
We introduce a sanity condition called the global trace condition, and define cyclic proofs as
pre-proofs that satisfy this condition.

Given a pre-proof (D,R), its path is a (finite or infinite) sequence (ni)i=1,2,... of nodes of
D such that, for every i,

if ni is an open leaf, then ni+1 = R(ni), and
otherwise ni+1 is a premise of ni.

Given a path (ni)i=1,2,..., a pre-trace in this path is a sequence (τi)i=1,2,... of occurrences
of formulas such that, for every i, τi is an occurrence of a formula in the sequent ni and τi+1
is a “relevant occurrence” of τi in the sequent ni+1. The latter condition means that τi+1
originates from τi in a bottom-up construction of the proof. For example, if ni and ni+1
are respectively the conclusion and premise of (∧L), i.e., if ni is the sequent Γ, ϕ ∧ ψ ` ∆
and ni+1 is Γ, ϕ, ψ ` ∆, then (i) ϕ and ψ in ni+1 are relevant occurrences of ϕ ∧ ψ in ni,
and (ii) each formula in Γ (resp. ∆) of ni+1 is a relevant occurrence of the corresponding
formula in Γ (resp. ∆) of ni. For another example, if ni is the conclusion of (∨L), ni+1 is
the left premise and τi is the occurrence of ϕ ∨ ψ, then τi+1 is the occurrence of ϕ. The
concrete definition, which we omit here, is lengthy but straightforward; a possible exception
is (Mono), in which ψ ~y and χ~y are defined as relevant occurrences of ϕ[ψ/x] and ϕ[χ/x]
respectively. See Appendix A for more detail. A pre-trace is a trace if, for infinitely many i,
τi is the principal occurrence2 of a logical rule.

The global trace condition requires existence of a “good” trace for each infinite path.
The appropriate notion of “good” traces depends on the logic. In [3], a trace is “good” if
it contains infinitely many principal occurrences of (µL) or (νR). In other words, a “good”
trace contains infinitely many expansions of µ. This fairly simple condition comes from the
restriction of usage of fixed-points: their logic does not allow alternation of fixed-points,
e.g. µP.ϕ is allowed only if the free predicate variables of ϕ are bound by µ. Allowing nested
fixed-points makes the definition of “good” traces more complicated; the definition in [7]
refers to the most significant fixed-point operator among those that are expanded infinitely
many times. The higher-order nature of HFLN requires us to more precisely track the usage
of fixed-point operators.

The following definition is inspired by the winning criterion of game semantics of HFLN [4,
10, 15]. The idea is to track which occurences of fixed-point operators are unfolded infinitely
in depth by annotating each occurrence with a sequence that grows with each unfolding. By
abuse of notation, a path is written as a sequence (Γi ` ∆i)i=1,2,... of sequents. We often
identify an occurrence of a formula with the formula. For example, τi ≡ ϕ means that τi is
an occurrence of ϕ.

2 An occurrence of a formula in the conclusion of a rule in Figure 3 is principal if it belongs to neither Γ
nor ∆.

CSL 2021

29:8 A Cyclic Proof System for HFLN

I Definition 8 (µ-trace, ν-trace). Let (τi)i≥0 be a trace. We assign a sequence of natural
numbers to every fixed-point operator in τi for all i by the following algorithm. We use σ as
a metavariable of fixed-point operators {µ, ν }. We write σp for the fixed-point operator to
which the sequence p is assigned.

For every σ in τ0, we assign ε to σ.
If τi is the principal occurrence of (σL/R), then τi with annotation is σpx.ϕ (where
fixed-point operators in ϕ are also annotated). Then τi+1 with annotation is ϕ[σp.kx.ϕ/x]
where k is a natural number that has not been used in this annotation process.3
Otherwise, the sequence of a fixed-point operator in τi+1 comes from the corresponding
operator in τi. For example, if τi is the principal occurrence of (λL/R) and τi with
annotation is (λx.ϕ)ψ, then τi+1 with annotation is ϕ[ψ/x].

Let p[0 : n] denote the sequence consisting of the first n elements of p. We call (τi)i≥0 a
µ-trace (resp. ν-trace) if there is an infinite sequence p such that p[0 : n] is assigned to µ
(resp. ν) in some τi for every natural number n.

In the definiton above, for each trace (τi)i≥0, there is at most one infinite trace p that satisfies
the condition above; hence, no trace can be both a µ-trace and a ν-trace; see Lemma 22.

I Example 9. Let us consider the following pre-proof (D,R).

(?) ` (νf.λg.g (f g)) (µx.λa.a)
(λR)

` (λa.a) ((νf.λg.g (f g)) (µx.λa.a))
(µR)

` (µx.λa.a) ((νf.λg.g (f g)) (µx.λa.a))
(λR)

` (λh.h ((νf.λg.g (f g))h)) (µx.λa.a)
(νR)

(?) ` (νf.λg.g (f g)) (µx.λa.a)

In the diagram, the function R is indicated by the ? marks: the open leaf (?) is mapped to
the other node marked (?). This pre-proof has a unique path, and the path has a unique
trace (τi)i≥0 (since each sequent consists of a single formula).

We assign a sequence of natural numbers to each occurrence of a fixed-point operator in
the trace (τi)i≥0. Both fixed-point operators in τ0 are annotated by the empty sequence:

τ0 ≡ (νεf.λg.g (f g)) (µεx.λa.a).

The first rule expands ν, and we annotate the recursive occurrence of this ν with a fresh
natural number, say 0:

τ1 ≡ (λh.h ((ν0f.λg.g (f g))h)) (µεx.λa.a).

The next rule is (λR) and we just substitute the annotated formula (µεx.λa.a) for h:

τ2 ≡ (µεx.λa.a) ((ν0f.λg.g (f g)) (µεx.λa.a)).

Then we expand µ and annotate its recursive occurrences (if there were any) with 1; actually,
since x does not appear in the body λa.a, the resulting formula does not have label 1.

τ3 ≡ (λa.a) ((ν0f.λg.g (f g)) (µεx.λa.a)).

Applying the β-reduction, we have

τ4 ≡ (ν0f.λg.g (f g)) (µεx.λa.a).

3 One can weaken the freshness requirement for k: the minimal requirement is that the sequence p.k has
not been used.

M. Kori, T. Tsukada, and N. Kobayashi 29:9

The current node is the open leaf, and the next node is determined by R. The annotation is
copied: τ5 ≡ τ4. The next rule is (νR) and we name the recursive occurrences 0.2, extending
the annotation 0 by a fresh number 2:

τ6 ≡ (λh.h ((ν0.2f.λg.g (f g))h)) (µεx.λa.a).

By continuing this argument, we have

τ1+5k ≡ (λh.h ((νpf.λg.g (f g))h)) (µεx.λa.a)

where p = 0.2.4.(2k). Note that the annotation of ν grows but that of µ does not. Hence
this trace is a ν-trace but not a µ-trace. y

A trace (τi)i≥0 is a left trace (resp. right trace) if τ0 occurs on the left (resp. right) side
of `. Note that every τi occurs on the same side as τ0.

I Definition 10 (Cyclic proof). A cyclic proof is a pre-proof that satisfies the global trace
condition: for every infinite path, a tail of the path has a left µ-trace or right ν-trace.

I Example 11. The pre-proof in Example 9 is a cyclic proof. y

I Remark 12. One may find our global trace condition (cf. Definitions 8 and 10) complicated
and wonder if it is possible to replace it with a simpler conidition such as the parity condition.
A recent result [15, Theorem 25] suggests a negative answer: It shows that the validity of
HFLN formulas cannot be captured by parity games, but games with more complicated
winning criteria. Our global trace condition is inspired by the criteria. y

3.2 Some Admissible Rules
This subsection shows that some familiar rules for quantifiers and inductions are admissible
in our cyclic proof system.

As we saw in Subsection 2.1, formulas with quantifiers can be expressed by fixed-points.
The proposition below enables us to use quantifier rules in our cyclic proof system.

I Proposition 13. If there is a cyclic proof of Γ ` ∆ derived by the rules in Figure 3 plus
the following quantifier rules, then there exists a cyclic proof of Γ ` ∆ without the quantifier
rules.

Γ, ϕ[ψ/x] ` ∆
(∀L)Γ,∀x.ϕ ` ∆

Γ ` ϕ,∆
x 6∈ FV (Γ,∆) (∀R)Γ ` ∀x.ϕ,∆

Γ, ϕ ` ∆
x 6∈ FV (Γ,∆) (∃L)Γ,∃x.ϕ ` ∆

Γ ` ϕ[ψ/x],∆
(∃R)Γ ` ∃x.ϕ,∆

Proof. See [11]. J

We can also embed explicit induction rules, so-called Park’s fixed-point rules:

Γ, ϕ[χ/x] ~y ` χ~y,∆ Γ, χ ~ψ ` ∆
~y ∩ FV (Γ, ϕ[χ/x],∆) = ∅ (Pre)

Γ, (µx.ϕ) ~ψ ` ∆

Γ, χ ~y ` ϕ[χ/x] ~y,∆ Γ ` χ ~ψ,∆
~y ∩ FV (Γ, ϕ[χ/x],∆) = ∅ (Post)

Γ ` (νx.ϕ) ~ψ,∆

CSL 2021

29:10 A Cyclic Proof System for HFLN

They are inspired by Knaster-Tarski’s fixed-point theorem: these rules replace pre/postfixed-
points with least/greatest fixed-points. The rule (Pre) is sound because χ is a prefixed-point
by the left premise and µx.ϕ is the least one. The same argument holds for (Post).

I Proposition 14. If there is a cyclic proof of Γ ` ∆ derived by the rules in Figure 3 + (Pre)
+ (Post), then there exists a cyclic proof of Γ ` ∆ without (Pre) and (Post).

Proof. Given a cyclic proof Π that may use (Pre) and (Post), we first construct a pre-proof
Π′ by removing (Pre) and (Post). For every instance of (Pre) of the form:

Γ, ϕ[χ/x] ~y ` χ~y,∆ Γ, χ ~ψ ` ∆
(Pre)

Γ, (µx.ϕ) ~ψ ` ∆
we will replace it with the following diagram.

Π
Γ, χ ~ψ ` ∆

(Wk L)
Γ, (µx.ϕ) ~ψ, χ ~ψ ` ∆

(Cut)
Γ, (µx.ϕ) ~ψ ` ∆

Π :=
Γ, ϕ[χ/x] ~y ` χ~y,∆

(Wk L)
Γ, (µx.ϕ) ~y, ϕ[χ/x] ~y ` χ~y,∆

(?) Γ, (µx.ϕ) ~y ` χ~y,∆
(Mono)

Γ, ϕ[µx.ϕ/x] ~y ` ϕ[χ/x] ~y,∆
(Wk R)

Γ, ϕ[µx.ϕ/x] ~y ` χ~y, ϕ[χ/x] ~y,∆
(µL)

Γ, (µx.ϕ) ~y ` χ~y, ϕ[χ/x] ~y,∆
(Cut)

(?) Γ, (µx.ϕ) ~y ` χ~y,∆
(Subst)

Γ, (µx.ϕ) ~ψ ` χ ~ψ,∆

(Post) can also be removed in the same manner.
We show that the resulting pre-proof Π′ is a cyclic proof. For each infinite path π in

Π′, if some tail of π goes through only one cycle as the above one from (?) to (?) then we
can trace the left µ in µx.ϕ or the right ν in νx.ϕ. Otherwise, there exists a corresponding
infinite path in Π, which satisfies the global trace condition. Therefore Π′ is a cyclic proof of
Γ ` ∆. J

3.3 Examples
This subsection presents two examples of cyclic proofs.

I Example 15 (Well-foundedness of a tree). In this example, we write N∗ for the type of
finite sequences of natural numbers. We also use the concatenation operation (−) · (−). This
N∗ can be expressed by N and thus this additional type does not increase the expressivity.

A tree is a subset of finite sequences of natural numbers that represents the complement
of the tree; the idea is to regard ε as the root and p as the parent of p · i. Let fN∗→Ω be a
term representing a tree. We define Φ and Ψ as follows:

Φ := µw(N∗→Ω)→Ω.λkN∗→Ω.k ε ∨ ∀iN.w (λzN∗
.k (i · z))

Ψ := µvN∗→Ω.λzN∗
.f z ∨ ∀iN.v (z · i)

Then both Φ f and Ψ ε represent well-foundedness of f , i.e. whether there is no infinite path
in f . Φ checks whether the tree k satisfies well-foundedness. This returns true if k has only
one node or all the immediate children of the root satisfy well-foundedness. Ψ checks whether
the subtree of f whose root node is z satisfies well-foundedness. This returns true if z is a
leaf or all subtrees under z satisfy well-foundedness.

A cyclic proof of Φ f ` Ψ ε is given as follows:

M. Kori, T. Tsukada, and N. Kobayashi 29:11

(Axiom)
f l ` f l

(†) Φ (λz.f (l · n · z)) ` Ψ (l · n) (?) YΦ (Sn) ` YΨ (Sn)
(∧L,R)

Φ (λz.f (l · n · z)) ∧ YΦ (Sn) ` Ψ (l · n) ∧ YΨ (Sn)
(νL,R)

(?) YΦ n ` YΨ n (Subst)
YΦ Z ` YΨ Z

(∨L,∨R,Wk)
f l ∨ ∀i.Φ (λz.f (l · i · z)) ` f l ∨ ∀i.Ψ (l · i)

(µL,R)
(†) Φ (λz.f (l · z)) ` Ψ l

(Subst) and f ≡ λz.f (ε · z)
Φ f ` Ψ ε

where YΦ ≡ (νY.λi.Φ (λz.f (l · i · z)) ∧ Y (Si)) and YΨ ≡ (νY.λi.Ψ (l · i) ∧ Y (Si)). Here we
omit (Subst) for open leaves; hence cycles of (?) and (†) are valid, although two nodes for
each label have different sequents. Note that YΦ Z ≡ ∀i.Φ (λz.f (l · i · z)) and YΨ ≡ ∀i.Ψ (l · i).

For all infinite paths, if the path includes (†)→ (†) infinitely then we can trace the left µ
in Φ and otherwise we can trace the right ν in ∀i.Ψ (l · i). y

The example below demonstrates an application of our cyclic proof system to program
verification, based on the reduction of Kobayashi et al. [10, 17] from program verification to
HFLN validity checking.

I Example 16 (Example 2.4 and 3.3 in [17]). Consider the following OCaml-like program.

let rec repeat f x =
if x = 0 then () else if * then repeat f (f x) else repeat f (x-1)

in let y = input() in
repeat (fun x -> x-y) n

In this program, * represents a non-deterministic Boolean value and input() means a user
input. We aim to verify that an appropriate input y makes this program eventually terminate.

To verify this, we have to check ` input 0 (g n) where

repeat := µR.λf.λx.(x = 0) ∨ (∃x′.x = x′ + 1 ∧ f x (Rf) ∧Rf x′)
sub := λy.λx.λk.k (x− y)
g := λz.λy.repeat (sub y) z

input := µI.λx.λk.(k x) ∨ (I (x+ 1) k)

where (−) is defined naturally by using µ. Here, functions on integers of type N → N in
the program have been turned into predicates of type N → (N → Ω) → Ω, which are
obtained by CPS translation; for example, the function fun x->x-y has been turned into
sub y (≡ λx.λk.k(x− y)). Note that input 0 (g n) is equivalent to ∃y.g n y, which models an
angelic non-determinsm of input() in the program.

The goal sequent can be proved by the following cyclic proof:
(=R)` 0 = 0 (µR, ∨R)

` repeat (sub 1) 0
(=L)

n = 0 ` repeat (sub 1)n Π
(µL)

(?, †) Nn ` repeat (sub 1)n
(λR, Nat)` g n 1 (Wk R)

` g n 1, input 2 (g n)
(µR, ∨R)

` input 1 (g n)
(Wk R)

` g n 0, input 1 (g n)
(µR, ∨R)

` input 0 (g n)

CSL 2021

29:12 A Cyclic Proof System for HFLN

Π :=

(?) Nn′ ` repeat (sub 1)n′
(λR)

Nn′ ` (sub 1) (n′ + 1) (repeat (sub 1)) (†) Nn′ ` repeat (sub 1)n′
(∧R)

Nn′ ` (sub 1) (n′ + 1) (repeat (sub 1)) ∧ repeat (sub 1)n′
(µR)

Nn′ ` repeat (sub 1) (n′ + 1)
(=L)

Nn′, n = n′ + 1 ` repeat (sub 1)n
(∃L, ∧L)

∃n′.Nn′ ∧ n = n′ + 1 ` repeat (sub 1)n

This satisfies the global trace condition because we can trace the left µ in N for every
infinite path. y

4 Decidability of the Global Trace Condition

For our cyclic proof system to be useful, there should exist an algorithm to check whether a
given proof candidate is indeed a cyclic proof. It is easy to check whether a given candidate
is a pre-proof, but it is non-trivial to check whether the pre-proof also satisfies the global
trace condition. In this section we prove that the global condition is indeed decidable. We
follow the approach in [3], which reduces the global trace condition of a pre-proof to Büchi
automata containment. One automaton accepts all infinite paths of the pre-proof and the
other accepts those that satisfy the global trace condition. Then whether the pre-proof is a
cyclic proof corresponds to the inclusion between these automata.

Let us briefly recall the definition of Büchi automata. A (nondeterministic) Büchi
automaton is a tuple (Q,Σ, δ, Q0, F) where Q is a finite set of elements called states, Σ is a
finite set of symbols, δ : Q× Σ×Q is a transition relation, Q0 ⊆ Q is a set of initial states,
and F ⊆ δ is a set of accepting transition rules.4 Given an infinite word w = (ai)i≥0 ∈ Σω,
a run over w is a sequence (qi)i≥0 of states such that q0 ∈ Q0 and (qi, ai, qi+1) ∈ δ for all
i ≥ 0. This run is accepting if (qi, ai, qi+1) ∈ F for infinitely many i. The automaton accepts
an infinite word if there is an accepting run over the word.

Let (D,R) be a given pre-proof. The alphabet Σ is the set of nodes of D. Then an
infinite path is represented as an infinite word, and it is easy to construct an automaton
Apath that accepts all the paths of D. We define an automaton Agtc that checks if a given
path satisfies the global trace condition.

The idea of the automaton is as follows. Recall Definition 8, in which we assign a sequence
of natural numbers to each occurrence of a fixed-point operator. One cannot directly simulate
the annotation process by an automaton since the set of sequences of natural numbers is
infinite. However, at the end of Definition 8, we focus on an infinite sequence p of natural
numbers, and sequences that are not prefixes of p can be safely ignored. Furthermore, it
suffices to remember exactly one finite sequence by the following argument. Consider the
case that τi ≡ σqx.ϕ where q is a prefix of p, and τi+1 ≡ ϕ[σq.kx.ϕ/x].

If q.k is not a prefix of p, then we can safely forget the annotation q.k.
If q.k is a prefix of p, then we can safely forget the annotation q.

To see the latter, observe that other expansions of σq generate annotations q.k′ with k′ 6= k

by freshness of k′. Hence q.k′ is not a prefix of p and thus we can forget it. So any extension
of q that will be generated afterward can be safely ignored, and thus we can forget q itself.

The above argument motivates the following definition.

4 This differs from the standard definition, in which the acceptance condition is specified by the set of
accepting states. It is not difficult to see that this change does not affect the expressive power.

M. Kori, T. Tsukada, and N. Kobayashi 29:13

I Definition 17. A marked formula ϕ̌ is a formula in which some occurrences of fixed-point
operators σ are marked; a marked fixed-point operator is written as σ•. We write |ϕ̌| for the
(standard) formula obtained by removing marks. An occurrence-with-marks τ̌ is a pair (τ, ϕ̌)
of an occurrence τ and a marked formula ϕ̌ such that τ ≡ |ϕ̌|.

We define Agtc. The set of states of Agtc consists of occurrences-with-marks of D and
a distinguished (initial) state ∗. Most rules just simulate Definition 8. For example, if τ
is the principal occurrence in the conclusion of (λL), (λx.ϕ̌) ψ̌ is a marked formula such
that τ ≡ (λx.|ϕ̌|) |ψ̌| and n is the premise, then ((τ, (λx.ϕ̌) ψ̌), n, (τ ′, ϕ̌[ψ̌/x])) where τ ′ is the
unique occurrence in v that is relevant to τ . Important transition rules are those dealing
with (σL/R). Consider the state τ̌ = (τ, ϕ̌) where τ is the principal occurrence of (σL/R).
Let n be the premise and τ ′ be the unique relevant occurrence in n.

Case ϕ̌ ≡ (σx.ψ̌) ~̌χ: The automaton just unfolds the fixed-point operator, i.e.,

((τ, (σx.ψ̌) ~̌χ), n, (τ ′, ψ̌[(σx.ψ̌)/x] ~̌χ)) ∈ δ.

Case ϕ̌ ≡ (σ•x.ψ̌) ~̌χ: Note that there may be other copies of σ•x.ψ̌ in ~̌χ or ψ̌. So
the automaton has to choose which copy should be tracked, and the transition is non-
deterministic. If the automaton decides to track the occurrence of σ•x.ψ̌ being unfolded,
it removes all marks in ~̌χ and tracks the recursive calls of the head occurrence by marking
them:

((τ, (σ•x.ψ̌) ~̌χ), n, (τ ′, |ψ̌|[(σ•x.|ψ̌|)/x] |~̌χ|)) ∈ δ.

Otherwise it removes the mark of the fixed-point operator being unfolded and unfolds it:

((τ, (σ•x.ψ̌) ~̌χ), n, (τ ′, ψ̌[(σx.ψ̌)/x] ~̌χ)),∈ δ.

If the rule is (µL) or (νR), then the former transition is an accepting transition. All
other transitions for (σL/R) and other rules are not accepting.

The initial state either ignores the input ((∗, n, ∗) ∈ δ) or nondeterministically chooses an
occurrence-with-marks ((∗, n, τ̌) ∈ δ if τ̌ is an occurrence in n and has exactly one marked
fixed-point operator).

I Lemma 18. Let (D,R) be a pre-proof. For every infinite path π, π ∈ L(Agtc) if and only
if π satisfies the global trace condition.

Proof. Assume that π satisfies the global trace condition. Let ((τi)i≥0, p) be the pair of
a trace (with annotations) and an infinite sequence of natural numbers that witnesses the
global trace condition. For each i, let qi be the longest prefix of p among the annotations in
τi. Let us mark σqi in τi and write ϕ̌i for the resulting marked formula. Then (τi, ϕ̌i)i≥0 is
an accepting run.

We prove the converse. Assume a (possibly non-accepting) run, which determines a
trace (τi)i≥0. We annotate (τi)i≥0 following Definition 8. Let qi be the sequence assigned
to the marked operator in τi and p be the limit of (qi)i≥0. The transition rules ensure
the well-definedness of qi and p. If the run is accepting, p is infinite since (qi)i≥0 must
grow infinitely many times. Furthermore it is a left µ-trace or right ν-trace as all accepting
transitions are for (µL) or (νR). J

We have the following theorem as a corollary.

I Theorem 19. The validity checking of a pre-proof (D,R) is decidable.

CSL 2021

29:14 A Cyclic Proof System for HFLN

5 Soundness

The soundness proof follows the proof strategy of [3]. We prove the claim by contraposition.
Assume that the conclusion Γ ` ∆ of a cyclic proof is invalid. Then there exists a valuation
ρ such that Γ 6|=ρ ∆. Since all rules are locally sound (i.e. if the premises are valid under
a valuation, the conclusion is also valid under the valuation), there exists an infinite path
whose sequents are invalid under ρ. Using the global trace condition, we construct an infinite
decreasing chain of ordinals, a contradiction.

To be precise, we impose on the infinite path a condition slightly stronger than the
invalidity under ρ. To describe the condition, we need fixed-point operators µαx.ϕ and ναx.ϕ
annotated by ordinals. The semantics of µαx.ϕ is given by

Jµ0xT .ϕK(ρ) := ⊥T and JµαxT .ϕK(ρ) :=
⊔
β<α

J(λx.ϕ) (µβxT .ϕ)K(ρ).

The definition of ναx.ϕ is similar (but uses the dual operations).
During the construction of the path, we give ordinal annotations to occurrences µ on

the left side of ` and to occurrences of ν on the right side. The annotation processes are
essentially the same as that in Definition 8. Again, the most important case is that τi is
the principal occurrence of (µL) or (νR). Consider the (µL) case. Then τi ≡ (µαx.ϕ) ~ψ
(where µ in ϕ and ~ψ are also annotated). By the assumption of the invalidity of the sequent
under ρ, we have J(µαx.ϕ) ~ψK(ρ) = >. The annotation to τi+1 is ϕ[µβx.ϕ/x] ~ψ where β is
the minimum ordinal such that Jϕ[µβx.ϕ] ~ψK(ρ) = >. By this process, fixed-point operators
annotated with the same sequence of natural numbers have the same ordinal annotation. In
other words, it defines a function from sequences q of natural numbers appearing in the trace
to ordinal numbers αq. Furthermore one can show that αq.k < αq (provided that q.k appears
in the trace). Therefore, if the path has a left µ-trace witnessed by an infinite sequence p,
then αp[0:1] > αp[0:2] > αp[0:3] > . . . is an infinite decreasing chain of ordinals.

The above argument shows the following theorem. A detailed proof is in [11].

I Theorem 20 (Soundness). If there is a cyclic proof of Γ ` ∆, then Γ ` ∆ is valid.

6 Completeness of Infinitary Variant

Our cyclic proof system is incomplete. Existence of a proof in our cyclic proof system is
computably enumerable, but the valid sequents in HFLN are not because HFLN includes
Peano arithmetic. The aim of this section is to find a complete proof system. Following [3],
we study the infinitary variant of our cyclic proof system, in which a proof is an infinite
tree instead of a finite tree with cycles. More precisely, an infinitary proof is a (possibly)
infinite derivation tree (without open leaves) of which all infinite paths satisfy the global
trace condition. Soundness proof of the previous section is applicable to the infinitary system
as well. Here we discuss its completeness.

I Theorem 21. Let Γ ` ∆ be a sequent without higher-order free variables. That means,
every free variable of the sequent is of type N or of type Nk → Ω for some k ≥ 0. If Γ |= ∆,
then Γ ` ∆ is provable in the infinitary proof system.

We give a sketch of the proof. A detailed proof is given in Appendix B. We can assume
without loss of generality that the sequent has no free variable of type N. We start from
a (finite) pre-proof consisting only of the root node, which is an open leaf, and iteratively
expand each open leaf by applying rules (∨L/R), (∧L/R), (λL/R), and (σL/R). The only

M. Kori, T. Tsukada, and N. Kobayashi 29:15

restriction is that the expansion must be “fair”: the fairness condition we impose is that (i)
each open leaf will eventually be expanded, and (ii) for every path, each formula in a sequent
will eventually appear in the principal position (unless the path is terminated by the axiom
rule). This process generates a growing sequence of (finite) pre-proofs, and the infinitary
proof is defined as its limit.

Now it suffices to show the global trace condition of the above constructed candidate
proof, but this is the hardest part of the proof. Assume an infinite path π. Since Γ |= ∆, for
each valuation ρ, there exists ϕ ∈ Γ such that JϕK(ρ) = ⊥ or ψ ∈ ∆ such that JϕK(ρ) = >.
Then, by a similar argument to the proof of soundness, existence of a left ν-trace or a right
µ-trace leads to a contradiction. It is worth noting that the construction is “dual”: whereas
in the soundness proof we ensure JτiK(ρ) = > for a left-trace (τi)i≥0, here JτiK(ρ) = ⊥ is
kept. This difference allows us to construct a trace of the intended path π. By appropriately
choosing ρ, one can ensure that the generated trace is infinite; hence we have constructed an
infinite trace that is not left ν- nor right µ-trace. The proof is completed by the following
lemma, which is technical but often used in the analysis of HFL (cf. [4, Lemma 6 & 7], [10,
Lemma 26, Appendix E.2] and [15, Lemma 14]):

I Lemma 22. Every infinite trace (τi)i≤0 is either a µ-trace or a ν-trace but not both.

I Remark 23. We are not sure if the proof can be extended to sequents with higher-order free
variables. The problem is the construction of ρ. In the current setting, for each free variable
f of type Nk → Ω, the valuation ρ is defined for follows: for each k-tuple ~m of natural
numbers, (i) if f ~m appears on the left side of a sequent in the path, then ρ(f)(~m) := >;
(ii) if f ~m appears on the right side of a sequent in the path, then ρ(f)(~m) := ⊥; and (iii)
otherwise the value of ρ(f)(~m) is arbitrary. The point is that the values of arguments of
each fully-applied occurrence of f is canonically determined. This construction of ρ is no
longer possible in the presence of a higher-order free variable, say g : Ω→ Ω. When g (f ~m)
appears on the left side, there are two assignments that make this formula true, namely
ρ1(g)(⊥) = > with ρ1(f)(~m) = ⊥ and ρ2(g)(>) = > with ρ2(f)(~m) = >. y

7 Related Work

7.1 Cyclic Proof Systems

The idea of cyclic proof can at least be traced back to the work of Sprenger and Dam [13] on
a cyclic proof system called Sglob, where proofs are explicitly annotated with ordinals. The
ordinal annotations are not convenient for automated theorem proving.

Brotherston and Simpson [3] proposed a cyclic proof system called CLKID for a first-order
predicate logic with inductive definitions, which does not require ordinal annotations. They
have proved soundness of CLKID, and also shown that a proof system with explicit induction
rules (called LKID) can be embedded into CLKID; we have shown analogous results in
Theorem 20 and Proposition 14 for HFLN. Doumane [7] formalized a cyclic proof system
for the linear-time (propositional) µ-calculus, which features alternating fixed-points. Our
global trace condition has been inspired by her trace condition.

Besides cyclic proof systems for ordinary first-order logics, cyclic proof systems have also
been proposed for separation logics [1, 2, 14], and automated tools have been developed
based on those cyclic proof systems.

CSL 2021

29:16 A Cyclic Proof System for HFLN

7.2 Proof Systems and Games for HFL
HFL was originally proposed by Viswanathan and Viswanathan [16], and its extensions
with arithmetic (such as HFLN) have recently been drawing attention in the context of
higher-order program verification [10, 17].

For pure HFL (without natural numbers), Kobayashi et al. [8] proposed a type-based
inference system for proving the validity of HFL formulas.5 It is left for future work to
study the relationship between their type system and our cyclic proof system; it would be
interesting to see whether their type system can be embedded in our cyclic proof system.

Tsukada [15] gave a game-based characterization of HFLN. His game may be considered
a special case of the infinitary version of our proof system, where formulas are restricted
to those whose free variables have only natural number types. Burn et al. [5] proposed a
refinement type system for HoCHC, which is closely related to the ν-only fragment of HFLN.
Their proof system is incomplete, and does not support fixed-point alternations.

8 Conclusion

We have proposed a cyclic proof system for HFLN, a higher-order logic with natural numbers
and alternating fixed-points, which we expect to be useful for higher-order program verification.
Our proof system has been inspired by previous cyclic proof systems for first-order logics [3, 7].
We have shown the soundness of the proof system and the decidability of the global trace
condition. We have also shown a restricted form of standard completeness for the infinitary
version of our proof system.

Constructing a (semi-)automated tool based on our cyclic proof system is left for future
work. On the theoretical side, we plan to study whether Henkin completeness and the cut
elimination property hold for (possibly a variation of) our cyclic proof system.

References
1 James Brotherston, Dino Distefano, and Rasmus Lerchedahl Petersen. Automated cyclic

entailment proofs in separation logic. In Nikolaj Bjørner and Viorica Sofronie-Stokkermans,
editors, Automated Deduction - CADE-23 - 23rd International Conference on Automated
Deduction, Wroclaw, Poland, July 31 - August 5, 2011. Proceedings, volume 6803 of Lecture
Notes in Computer Science, pages 131–146. Springer, 2011. doi:10.1007/978-3-642-22438-6_
12.

2 James Brotherston, Nikos Gorogiannis, and Rasmus Lerchedahl Petersen. A generic cyclic
theorem prover. In Ranjit Jhala and Atsushi Igarashi, editors, Programming Languages and
Systems, pages 350–367, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

3 James Brotherston and Alex Simpson. Sequent calculi for induction and infinite descent.
Journal of Logic and Computation, 21(6):1177–1216, December 2011.

4 Florian Bruse. Alternating parity Krivine automata. In Erzsébet Csuhaj-Varjú, Martin
Dietzfelbinger, and Zoltán Ésik, editors, Mathematical Foundations of Computer Science
2014 - 39th International Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014.
Proceedings, Part I, volume 8634 of Lecture Notes in Computer Science, pages 111–122.
Springer, 2014. doi:10.1007/978-3-662-44522-8_10.

5 Toby Cathcart Burn, C.-H. Luke Ong, and Steven J. Ramsay. Higher-order constrained Horn
clauses for verification. PACMPL, 2(POPL):11:1–11:28, 2018. doi:10.1145/3158099.

5 Actually, they formalized a type system for model checking, which can also be used as a proof system
for proving validity of HFLN formulas without natural numbers.

https://doi.org/10.1007/978-3-642-22438-6_12
https://doi.org/10.1007/978-3-642-22438-6_12
https://doi.org/10.1007/978-3-662-44522-8_10
https://doi.org/10.1145/3158099

M. Kori, T. Tsukada, and N. Kobayashi 29:17

6 Patrick Cousot and Radhia Cousot. Constructive versions of Tarski’s fixed point theorems.
Pacific J. Math., 82(1):43–57, 1979. URL: https://projecteuclid.org:443/euclid.pjm/
1102785059.

7 Amina Doumane. On the infinitary proof theory of logics with fixed points. Theses, Université
Sorbonne Paris Cité, June 2017.

8 Naoki Kobayashi, Étienne Lozes, and Florian Bruse. On the relationship between higher-order
recursion schemes and higher-order fixpoint logic. ACM SIGPLAN Notices, 52(1):246–259,
2017.

9 Naoki Kobayashi, Takeshi Nishikawa, Atsushi Igarashi, and Hiroshi Unno. Temporal verification
of programs via first-order fixpoint logic. In International Static Analysis Symposium, pages
413–436. Springer, 2019.

10 Naoki Kobayashi, Takeshi Tsukada, and Keiichi Watanabe. Higher-order program verification
via HFL model checking. In European Symposium on Programming, pages 711–738. Springer,
2018.

11 Mayuko Kori, Takeshi Tsukada, and Naoki Kobayashi. A cyclic proof system for HFLN. CoRR,
2020. A longer version. arXiv:2010.14891.

12 Étienne Lozes. A type-directed negation elimination. In Ralph Matthes and Matteo Mio,
editors, Proceedings Tenth International Workshop on Fixed Points in Computer Science,
FICS 2015, Berlin, Germany, September 11-12, 2015, volume 191 of EPTCS, pages 132–142,
2015. doi:10.4204/EPTCS.191.12.

13 Christoph Sprenger and Mads Dam. On the structure of inductive reasoning: Circular and
tree-shaped proofs in the µ-calculus. In Foundations of Software Science and Computation
Structures, pages 425–440. Springer Berlin Heidelberg, 2003.

14 Gadi Tellez and James Brotherston. Automatically verifying temporal properties of pointer
programs with cyclic proof. J. Autom. Reasoning, 64(3):555–578, 2020. doi:10.1007/
s10817-019-09532-0.

15 Takeshi Tsukada. On computability of logical approaches to branching-time property veri-
fication of programs. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS ’20, page 886–899, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3373718.3394766.

16 Mahesh Viswanathan and Ramesh Viswanathan. A higher order modal fixed point logic. In
International Conference on Concurrency Theory, pages 512–528. Springer, 2004.

17 Keiichi Watanabe, Takeshi Tsukada, Hiroki Oshikawa, and Naoki Kobayashi. Reduction
from branching-time property verification of higher-order programs to HFL validity checking.
In Proceedings of the 2019 ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation, PEPM 2019, page 22–34, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3294032.3294077.

A Definition of relevant occurrences

Here we give a detailed definition of the notion of relevant occurrences introduced after
Definition 7. We have already defined relevant occurrences for the rules (∧L), (∨L), and
(Mono). We give the definition for the other rules. Below, ni refers to the conclusion of each
rule, and ni+1 refers to one of the premises. In all the rules, each formula in Γ or ∆ in ni+1
is a relevant occurrence of the corresponding formula in Γ or ∆ in ni.

In (Cut), ϕ in ni+1 is not relevant to any formula in ni.
In (Ctr L) and (Ctl R), both occurrences of ϕ are relevant to ϕ in ni.
In (Ex L) and (Ex R), ψ (ϕ, resp.) in ni+1 is a relevant occurrence of ψ (ϕ, resp.) in ni.
In (Subst), each formula ψ in Γ (∆, resp.) of ni+1 is relevant to ψ[ϕ/x] in Γ[ϕ/x] (∆[ϕ/x],
resp.) of ni.

CSL 2021

https://projecteuclid.org:443/euclid.pjm/1102785059
https://projecteuclid.org:443/euclid.pjm/1102785059
http://arxiv.org/abs/2010.14891
https://doi.org/10.4204/EPTCS.191.12
https://doi.org/10.1007/s10817-019-09532-0
https://doi.org/10.1007/s10817-019-09532-0
https://doi.org/10.1145/3373718.3394766
https://doi.org/10.1145/3294032.3294077

29:18 A Cyclic Proof System for HFLN

In (=L), each formula ψ[t/x, s/y] in Γ[t/x, s/y] (∆[t/x, s/y], resp.) of ni+1 is relevant to
ψ[s/x, t/y] in Γ[s/x, t/y] (∆[s/x, t/y], resp.) of ni.
In (∨R), ϕ and ψ in ni+1 are relevant to ϕ ∨ ψ in ni.
In (∧R), ϕ and ψ in ni+1 are relevant to ϕ ∧ ψ in ni.
In (λL) and (λR), ϕ[ψ/x] ~ψ in ni+1 is relevant to (λx.ϕ)ψ ~ψ in ni.
In (σL) and (σR), ϕ[σx.ϕ/x] ~ψ in ni+1 is relevant to (σx.ϕ) ~ψ in ni.
In (Nat), N x in ni+1 is not relevant to any formula in ni.
In (P2), s = t in ni+1 is relevant to Ss = St in ni.

B Proof of Theorem 21

Let f be a function on a complete lattice. For each ordinal α, we define fα(⊥) by f0(⊥) = ⊥
and fα(⊥) =

⊔
β<α f(fβ(⊥)). Similarly fα(>) is defined by f0(>) = > and fα(>) =d

β<α f(fβ(>)).

I Lemma 24 (Cousot-Cousot [6]). Let (C,≤) be a complete lattice, f be a monotone function
and γ be an ordinal number greater than the cardinality of C. Then fγ(⊥) is the least
fixed-point of f and fγ(>) is the greatest fixed-point of f .

We extend the definition of formulas by allowing µ and ν to have ordinal numbers like
µα, να. The definition of J.K for µα, να is as follows.

JH ` (µαxT .ϕ) ~ψK(ρ) = ((λv.JH, x : T ` ϕK(ρ[x 7→ v]))α (⊥n)) ρ(~ψ)

JH ` (ναxT .ϕ) ~ψK(ρ) = ((λv.JH, x : T ` ϕK(ρ[x 7→ v]))α (>n)) ρ(~ψ)

I Lemma 25. Let Γ ` ∆ be a sequent and xN ∈ FV (Γ,∆). If (Γ[SnZ/x] ` ∆[SnZ/x]) is
cut-free provable for all n ∈ N then Γ ` ∆ is cut-free provable.

Proof. Assume (Γ[SnZ/x] ` ∆[SnZ/x]) is cut-free provable for all n ∈ N, and let Πn be
the proof. We define (Πi)i≥0 recursively whose root node is (N x,Γ[Six/x] ` ∆[Six/x]) as
follows:

Πi :=

Πi

Γ[SiZ/x] ` ∆[SiZ/x]
(=L)

x = Z,Γ[Six/x] ` ∆[Six/x]

Πi+1

N x,Γ[Si+1x/x] ` ∆[Si+1x/x]
(Subst)

N x′,Γ[SiSx′/x] ` ∆[SiSx′/x]
(=L)

x = Sx′, N x′,Γ[Six/x] ` ∆[Six/x]
(∃L, ∧L)

∃x′.x = Sx′ ∧N x′,Γ[Six/x] ` ∆[Six/x]
(µL)

N x,Γ[Six/x] ` ∆[Six/x]

Then Π :=
Π0

N x,Γ ` ∆ (Nat)Γ ` ∆
is a pre-proof of Γ ` ∆. For all infinite paths π in the

pre-proof Π, if π goes through some Πi then there exists left µ-trace or right ν-trace because
Πi is a proof, and otherwise, we can trace the left µ in N . Therefore, Π is a proof of
Γ ` ∆. J

I Corollary 26. Let Γ ` ∆ be a sequent and ~x are all natural number free variables in Γ∪∆.
If (Γ[~n/~x] ` ∆[~n/~x]) is cut-free provable for all ~n ∈ ~N then Γ ` ∆ is cut-free provable.

M. Kori, T. Tsukada, and N. Kobayashi 29:19

Thanks to this corollary, it suffices to prove completeness of valid sequents whose free
variables have type Nk → Ω for some k ≥ 0. In other words, we can assume without loss of
generality that the sequent of interest has no free variable of type N.

The next two definitions construct a tree Tω of Γ ` ∆ without natural number free
variables. The first definition is needed to deal with all formulas in a fair manner.

I Definition 27 (Schedule). A schedule element is a formula of the form ϕ ∨ ψ,ϕ ∧
ψ, (λx.ϕ)ψ ~ψ, (σx.ϕ) ~ψ. We call (Ei)i≥0 a schedule if Ei is a schedule element for all i
and every schedule element appears infinitely often in (Ei)i≥0.

There exists a schedule and we fix one.

I Definition 28 (Tω). Let Γ ` ∆ be a valid sequent that does not have natural number or
higher-order free variables. That is, the type of each free variable in Γ ` ∆ is Nn → Ω for
some n ∈ N.

Then we will define trees (Ti)i≥0 whose roots are Γ ` ∆ inductively by using a schedule
(Ei)i≥0. First, T0 is defined by T0 := Γ ` ∆.

Assume Ti is already defined. Then we define Ti+1 in Ti by replacing each open leaf
Γ′ ` ∆′ with the following tree:

If there exists a formula ϕ ∈ Γ′ ∩∆′:
(Axiom)

ϕ ` ϕ (Wk)
Γ′ ` ∆′

If (SnZ = SmZ) ∈ Γ′ for some different natural numbers n,m:
(P1)

Z = S|n−m|Z ` (P2)SnZ = SmZ ` (Wk)
Γ′ ` ∆′

If (SnZ = SnZ) ∈ ∆′ for some n:
(=R)` SnZ = SnZ (Wk)

Γ′ ` ∆′
Otherwise: This replacement is performed in such a way that each formula is chosen as
the target of expansion in a fair manner, so that every formula is expanded at some point.

Case (Ei ≡ ϕ ∨ ψ):
∗ if Ei ∈ Γ′:

Γ′, ϕ ` ∆′ Γ′, ψ ` ∆′ (∨L)
Γ′, ϕ ∨ ψ ` ∆′ (Ctr)

Γ′ ` ∆′
∗ if Ei ∈ ∆′:

Γ′ ` ϕ,ψ,∆′ (∨R)
Γ′ ` ϕ ∨ ψ,∆′ (Ctr)

Γ′ ` ∆′
Case (Ei ≡ ϕ ∧ ψ): The tree is defined in the similar way to the case Ei ≡ ϕ ∨ ψ.
Case (Ei ≡ (λx.ϕ)ψ ~ψ):
∗ if Ei ∈ Γ′:

Γ′, ϕ[ψ/x] ~ψ ` ∆′
(λL)

Γ′, (λx.ϕ)ψ ~ψ ` ∆′
(Ctr)

Γ′ ` ∆′
∗ if Ei ∈ ∆′:

Γ′ ` ϕ[ψ/x] ~ψ,∆′
(λR)

Γ′ ` (λx.ϕ)ψ ~ψ,∆′
(Ctr)

Γ′ ` ∆′
Case (Ei ≡ (σx.ϕ) ~ψ):

CSL 2021

29:20 A Cyclic Proof System for HFLN

∗ if Ei ∈ Γ′:
Γ′, ϕ[σx.ϕ/x] ~ψ ` ∆′

(σL)
Γ′, (σx.ϕ) ~ψ ` ∆′

(Ctr)
Γ′ ` ∆′

∗ if Ei ∈ ∆′:
Γ′ ` ϕ[σx.ϕ/x] ~ψ,∆′

(σR)
Γ′ ` (σx.ϕ) ~ψ,∆′

(Ctr)
Γ′ ` ∆′

Note that for all i ≥ 0, Ti ⊆ Ti+1 and each sequent of an open leaf in Ti+1 includes the
sequent of the corresponding leaf in Ti. We define Tω to be limi→∞ Ti.

We aim to prove that Tω is a proof of Γ ` ∆.

I Definition 29 (Γω `n/π ∆ω, ρω). For all open leaves n of Tω, we define Γω `n ∆ω as the
leaf sequent. For all infinite paths π = (πi)i≥0 in Tω, we define Γω `π ∆ω as limi→∞(Γi ` ∆i)
where Γi ` ∆i is the sequent of πi.

A valuation ρω of Γω `n/π ∆ω is defined as below:

ρω(xΩ) :=
{
> if x ∈ Γω
⊥ otherwise

ρω(fNn→Ω) := λ~xNn

.

{
> if f ~x ∈ Γω
⊥ otherwise

I Lemma 30. Tω is a proof.

Proof. We aim to show that Tω is a pre-proof and Tω satisfies the global trace condition.
Assume Tω is not a pre-proof. There exists an open leaf n in Tω, and all formulas of the

leaf are of the form xΩ, f ~t or SmZ = SnZ. Then the definition of ρω of Γω `n ∆ω induces
JϕKρω

= > for all ϕ ∈ Γω and JϕKρω
= ⊥ for all ϕ ∈ ∆ω. This contradicts to Γ |= ∆ because

Γ ⊆ Γω and ∆ ⊆ ∆ω. Therefore Tω is a pre-proof.
We next show that Tω satisfies the global trace condition. For all infinite paths π in Tω,

we define ρω of Γω `π ∆ω as Definition 29. We have Γ |= ∆, Γ ⊆ Γω and ∆ ⊆ ∆ω by the
assumption and the construction of Tω. Therefore, it follows that there exists either (1) a
formula ϕ ∈ Γω such that JϕKρω

= ⊥ or (2) a formula ϕ ∈ ∆ω such that JϕKρω
= >. We now

give the proof only for the case (1). The other case can be also proved by the same method.
Let j be a number such that ϕ ∈ πj . We will show that there exists a left µ-trace (τi)i≥j

in π starting from ϕ.
We define (τi)i≥j and (τ ′i)i≥j which satisfy the following conditions:

1. τi ∈ Γi;
2. we can get τi by forgetting ordinal numbers of τ ′i ;
3. each ν in τ ′i has an ordinal number;
4. Jτ ′iKρω = ⊥;
5. each ordinal number in τ ′i+1 is less than or equal to the corresponding ordinal number in

τ ′i .

The definition of (τi)i≥j and (τ ′i)i≥j as below:
τj := ϕ. Because JϕKρω

= ⊥, we can get ϕ′ which satisfies Jϕ′Kρω
= ⊥ by assigning

ordinal numbers to all ν in ϕ.
Assume τi and τ ′i are defined. Below, ψ′ means the corresponding subformula of τ ′i for
each subformula ψ of τi.

M. Kori, T. Tsukada, and N. Kobayashi 29:21

If τi ≡ x:
Since x ∈ Γi, JxKρω

= > because of the definition of ρω. By the assumption of τ ′i ,
J(x)′Kρω

= JxKρω
= ⊥. This is a contradiction.

If τi ≡ (SnZ = SmZ):
By the assumption of τ ′i , J(SnZ = SmZ)′Kρω

= JSnZ = SmZKρω
= ⊥. Then n 6= m

holds and π is not infinite because of the construction of Tω. This contradicts the fact
that π is an infinite path.
If τi ≡ f ~t:
Since f ~t ∈ Γi, Jf ~tKρω

= > because of the definition of ρω. By the assumption of τ ′i ,
J(f ~t)′Kρω

= Jf ~tKρω
= ⊥. This is a contradiction.

If Ei 6≡ τi then τi+1 := τi and τ ′i+1 := τ ′i .
Otherwise:
∗ Case τi ≡ (ψ ∨ χ):

Since Jψ′ ∨ χ′Kρω
= ⊥, Jψ′Kρω

= Jχ′Kρω
= ⊥. τi+1 := ψ, τ ′i+1 := ψ′ if π goes to the

left leaf, and otherwise τi+1 := χ, τ ′i+1 := χ′. In each case, Jτ ′i+1Kρω = ⊥ holds.
∗ Case τi ≡ (ψ ∧ χ):

Since Jψ′ ∧ χ′Kρω
= ⊥, either Jψ′Kρω

or Jχ′Kρω
is ⊥.

τi+1 := ψ, τ ′i+1 := ψ′ if Jψ′Kρω = ⊥, and otherwise τi+1 := χ, τ ′i+1 := χ′.
∗ Case τi ≡ (λx.ψ)χ ~θ:
τi+1 := ψ[χ/x] ~θ, τ ′i+1 := ψ′[χ′/x] ~θ′
then Jψ′[χ′/x] ~θ′Kρω = J(λx.ψ′)χ′ ~θ′Kρω = ⊥.

∗ Case τi ≡ (µx.ψ) ~θ:
τi+1 := ψ[µx.ψ/x] ~θ, τ ′i+1 := ψ′[µx.ψ′/x] ~θ′
then J(ψ′[µx.ψ′/x]) ~θ′Kρω = J(µx.ψ′) ~θ′Kρω = ⊥.

∗ Case τi ≡ (νx.ψ) ~θ:
Let α be the ordinal number assigned to the head ν of (νx.ϕ) ~ψ. If α = 0 then
J(ν0xT .ϕ′) ~ψ′Kρω

= J(>T) ~ψ′Kρω
= > and this contradicts the assumption.

J(ναx.ψ′) ~θ′Kρω = ((λv.Jψ′Kρω[x 7→v])α (>n)) J~θ′Kρω

= (
l

β<α

(λv.Jψ′Kρω[x 7→v]) ((λv.Jψ′Kρω[x7→v])β (>n))) J~θ′Kρω

= ⊥

There exists β < α such that ((λv.Jψ′Kρω[x 7→v]) ((λv.Jψ′Kρω[x 7→v])β (>n))) J~θ′Kρω
= ⊥.

τi+1 := ψ[νx.ψ/x] ~θ, τ ′i+1 := ψ′[νβx.ψ′/x] ~θ′ then

J(ψ′[νβx.ψ′/x]) ~θ′Kρω
= ((λv.Jψ′Kρω[x7→v]) (Jνβx.ψ′Kρω

)) J~θ′Kρω

= ((λv.Jψ′Kρω[x7→v]) ((λv.Jψ′Kρω[x 7→v])β (>n))) J~θ′Kρω

= ⊥

If this (τi)i≥j is a ν-trace, there is an infinite sequence p of the trace by the definition of
ν-trace. For all n ≥ 1, there is a νp[0:n] in some τi and we denote by αn the ordinal number
assigned to this ν in τ ′i . By the definition of (τ ′i)i≥j , all ordinal numbers assigned to νp[0:n]

is equal to αn. Then for all n ≥ 1, there exists i such that (τi ≡ (νp[0:n]x.ψ) ~θ) → (τi+1 ≡
(ψ[νp[0:n+1]x.ψ/x]) ~θ). Hence αn > αn+1 holds for all n ≥ 1 so (αn)n≥1 is a decreasing
sequence of ordinal numbers. However, such a sequence does not exist, hence a contradiction.
By Lemma 22, it follows that (τi)i≥j is a left µ-trace of π.

Therefore Tω satisfies the global trace condition. J

CSL 2021

29:22 A Cyclic Proof System for HFLN

Proof (Theorem 21). Let ~x be all natural number free variables of Γ ` ∆. By Corollary 26,
it suffices to show that Γ[~n/~x] ` ∆[~n/~x] is cut-free provable for all ~n ∈ ~N. For each ~n ∈ ~N,
we construct Tω for Γ[~n/~x] ` ∆[~n/~x] as Definition 28, then Lemma 30 concludes that Tω is a
proof. Besides, Tω is cut-free by the construction of Tω. J

Compositional Modelling of Network Games
Elena Di Lavore
Department of Software Science, Tallinn University of Technology, Estonia
elena.di@taltech.ee

Jules Hedges
Department of Computer and Information Sciences, University of Strathclyde, Glasgow, UK
jules.hedges@strath.ac.uk

Paweł Sobociński
Department of Software Science, Tallinn University of Technology, Estonia
pawel.sobocinski@taltech.ee

Abstract
The analysis of games played on graph-like structures is of increasing importance due to the
prevalence of social networks, both virtual and physical, in our daily life. As well as being relevant
in computer science, mathematical analysis and computer simulations of such distributed games are
vital methodologies in economics, politics and epidemiology, amongst other fields. Our contribution
is to give compositional semantics of a family of such games as a well-behaved mapping, a strict
monoidal functor, from a category of open graphs (syntax) to a category of open games (semantics).
As well as introducing the theoretical framework, we identify some applications of compositionality.

2012 ACM Subject Classification Theory of computation → Categorical semantics

Keywords and phrases game theory, category theory, network games, open games, open graphs,
compositionality

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.30

Funding Elena Di Lavore and Paweł Sobociński are supported by the ESF funded Estonian IT
Academy research measure (project 2014-2020.4.05.19-0001).

1 Introduction

Compositionality concerns finding homomorphic mappings

Syntax→ Semantics. (1)

This important concept originated in formal logic [20, 21], and is at the centre of formal
semantics of programming languages [23]. In recent years, there have been several 2-
dimensional examples [6, 4, 1], where both Syntax and Semantics are symmetric monoidal
categories. Usually Syntax is freely generated from a (monoidal) signature, possibly modulo
equations. This opens up the possibility of recursive definitions and proofs by structural
induction, familiar from our experience with ordinary, 1-dimensional syntax.

In this paper, we consider an instance of (1) that is—at first sight—quite different from
the usual concerns of programming and logic: network games [5], also known as graphical
games. Network games involve agents that play concurrently, and share information based
on an underlying, ambient network topology. Indeed, the utility of each player typically
depends on the structure of the network. An interesting application is social networks [10],
but they also feature in economics [11], politics [22] and epidemiology [16], amongst other
fields. (These games should not be confused with classes of dynamic games played on graphs,
such as parity games and pursuit games, which are not within the scope of this paper.)

© Elena Di Lavore, Jules Hedges, and Paweł Sobociński;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 30; pp. 30:1–30:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7783-5079
mailto:elena.di@taltech.ee
mailto:jules.hedges@strath.ac.uk
mailto:pawel.sobocinski@taltech.ee
https://doi.org/10.4230/LIPIcs.CSL.2021.30
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Compositional Modelling of Network Games

In formal accounts of network games, graphs represent network topologies. Players are
identified with graph vertices, and their utility is influenced only by their choices and those
of their immediate neighbours. Network games are thus “games on graphs”. An example is
the majority game: players “win” when they agree with the majority of their neighbours.

In what way do such games fit into the conceptual framework of (1)? Our main con-
tribution is the framing of certain network games as monoidal functors from a suitable
category of open graphs Grph [7], our Syntax, to the category of open games Game [13],
our Semantics. Given a network game N (e.g. the majority game), such games are functors

FN : Grph→ Game (2)

that, for any closed graph Γ ∈ Grph, yield the game FN (Γ), which is the game N played on Γ.
However, compositionality means that such games are actually “glued together” from simpler,
open games. In fact, FN maps each vertex of Γ to an open game called the utility-maximising
player, and the connectivity of Γ is mapped, following the rules of N , to structure in Game.

Our contribution thus makes the intuitively obvious idea that the data of network games
is dependent on their network topology precise. Concrete descriptions of network games,
given a fixed topology, are often quite involved: our approach means that they can be derived
in a principled way from basic building blocks. In some cases, the compositional description
can also help in the mathematical analysis of games. For example, in the case of the majority
game, the right decomposition of a network topology Γ as an expression in Grph can yield
a recipe for the Nash equilibrium of FN (Γ) in Game in terms of the equilibria of the open
games obtained via FN from the open graphs in the decomposition. As it happens when
solving optimization problems, a compositional analysis of the equilibria is possible only
when the game has optimal substructure, which is the case for the majority game (but is not
the case in general). Nevertheless, compositional modelling is valuable for the understanding
of the structure of the system. It allows, for example, to modify a part of a system while
keeping the analysis done for the rest of the system, as we show in Example 31.

Technically, we proceed as follows. We introduce monoid network games (Definition 7)
that make common structure of all of our motivating examples explicit, and that we believe
cover the majority of network games studied in the literature. Roughly speaking, monoid
network games are parametrised wrt (i) a monoid that aggregates information from neighbours
and (ii) functions that govern how that information is propagated in the network. While we
are able to model all network games, the structure of monoid network games allows us to
characterise them as functors in a generic fashion.

Our category of open graphs Grph (Definition 18) is an extension of the approach of [7],
from undirected graphs to undirected multigraphs. Multigraphs allow us to model games
on networks where some links are stronger than others, cf. Example 30. Our Grph is
different from other notions of “open graph” in the literature, e.g. via cospans [9], in that
it is centred on the use of adjacency matrices, which are commonly used in graph theory
to encode connectivity. Adjacency matrices give an explicit presentation of the graphs that
allows an explicit description of the games played on them. Moreover, the emphasis on the
matrix algebra means that Grph has the structure of commutative bialgebra—equivalent to
the algebra of ordinary N matrices [15, 24]—but also additional structure that captures the
algebraic content of adjacency matrices. Given that Grph has a presentation in terms of
generators and equations, to obtain (2) it suffices to define it on the generators and check
that Grph-equations are respected in Game. This is our main result, Theorem 27.

E. Di Lavore, J. Hedges, and P. Sobociński 30:3

In addition to the presentation of Grph in terms of generators and equations, we charac-
terise it as another category (Theorem 23) that makes clear its status as a category of “open
graphs”. The result can be understood as a kind of normal form for the morphisms of Grph,
useful to describe concrete instantiations of FN for arbitrary open graphs (Theorem 29).

Our work is a first step towards a more principled way of defining games parametrised
by graphs. We would like to remark that the methodology that we present to define games
on networks is more general than the particular instance worked out in this paper. Indeed,
future work will extend both the notions of graphs (e.g. by considering directed graphs),
as well as the kinds of games played on them (e.g. stochastic games, repeated games).
While we do identify some applications, we believe that compositional reasoning is severely
under-rated in traditional game theory, and that its adoption will lead to both more flexible
modelling frameworks, as well as more scalable mathematical analyses.

Structure of the paper

We introduce our running examples in §2 and unify them under the umbrella of monoid
network games. Next, we recall the basics of open games in §3 and identify the building
blocks needed for (2). In §4 we introduce the category Grph of open, undirected multigraphs,
and give a combinatorial characterisation, which is useful in applications. The construction
of FN is in §5, and several applications of our compositional framework are given in §6.

2 Network games

In this section we introduce motivating examples for our compositional framework and
introduce a notion of game called the monoid network game that unifies them.

Network games [5, 14] are parametric wrt a network topology, usually represented by
a graph. Players are the vertices, and the possible connections between the players are
represented by the edges. Moreover, each player’s payoff is affected only by the choices of
its immediate neighbours on the graph. We use undirected multigraphs to model network
topologies.

I Definition 1. An undirected multigraph is G = (VG, EG), where VG is the set of vertices and
EG is a sym. multi-relation on VG: a function EG : VG × VG → N st EG(vi, vj) = EG(vj , vi).

A common way of capturing the connectivity of a graph is via adjacency matrices, which
play an important role in graph theory. They are also crucial for our compositional account.

Assuming an ordering on the set of vertices of a graph, square matrices A with entries
from N can record connections between vertex i and j in Aij : a 0-entry signifies no edge,
and non-zero entries count the connections. Ordinary matrices are too concrete to uniquely
represent connectivity since edges between i and j can be recorded in the (i, j)th entry or the
(j, i)th entry. One could use symmetric matrices or triangular matrices. For us, it is better
to equate matrices that encode the same connectivity: A ∼ A′ iff A+AT = A′ +A′

T .

I Definition 2. An adjacency matrix is an equivalence class [A] of matrices with entries
in the natural numbers. The equivalence relation is given by

A ∼ A′ ⇐⇒ A+AT = A′ +A′
T
.

A finite multigraph can also be defined as (kG, [A]) where kG ∈ N and [A] a kG×kG adjacency
matrix. Let G(n) be the set of multigraphs with n vertices, enumerated as v1, . . . , vn.

CSL 2021

30:4 Compositional Modelling of Network Games

I Definition 3 (Network game). An n-player network game N consists of, for each player
1 ≤ i ≤ n, a set of choices Xi and a payoff ui : G(n)×

∏n
j=1Xj → R, such that each player’s

payoff is affected only by its own and its neighbours’ choices: for each G ∈ G(n), each player
i, each j 6= i such that (vi, vj) /∈ EG, each x−j ∈

∏n
k 6=j Xk, and each xj , x′j ∈ Xj

ui(G, xj , x−j) = ui(G, x′j , x−j)

(The notation x−j, standard in game theory, means a tuple with the jth element missing.)
The set of strategies is

∏n
i=1Xi and its elements x ∈

∏n
i=1Xi are strategy profiles.

The best response, for a graph G ∈ G(n), is a relation BN on the set of strategies, defined
by

(x, x′) ∈ BN ⇔ ∀1 ≤ i ≤ n. ∀yi ∈ Xi. ui(G, x[i 7→ x′i]) ≥ ui(G, x[i 7→ yi])

A Nash equilibrium, for G ∈ G(n), is a strategy profile x s.t. for each player 1 ≤ i ≤ n,
ui(G, x) ≥ ui(G, x[i 7→ x′i]) for each x′i ∈ Xi. It is a fix-point of the best response relation.

We now recall three important examples of network games.

I Example 4 (Majority game). Each player has two choices, Xi = {Y,N}. A player receives
a utility of 1 if its choice is the majority choice of its neighbours, and 0 otherwise, i.e.

ui(G, x) =
{

1 if |{vj | (vi, vj) ∈ EG and xi = xj}| ≥ |{vj | (vi, vj) ∈ EG and xi 6= xj}|
0 otherwise.

Nash equilibria are strategy profiles where players take the majority choice of their neighbours.

I Example 5 (Best-shot public goods game). Each player has two choices, Xi = {Y,N},
interpreted as investing or not investing in a public good. The investor bears a cost 0 < c < 1,
and gives a utility of 1 to themselves and every neighbour. The players are already partially
satisfied with the current situation and assign a utility of 1− c+ ε, with 0 < ε < c, to the
situation where neither the player nor its neighbours invest. The utility functions thus are:

ui(G, x) =

1− c if xi = Y

1 if xi = N and xj = Y for some (vi, vj) ∈ EG
1− c+ ε otherwise.

The Nash equilibrium is when no player invests, an example of a ‘tragedy of the commons’.

I Example 6 (Weakest-link public goods game). Each player’s choice is an investment,
valued in R+. The cost to the player given by an increasing cost function c : R+ → R+ where
c(0) = 0, and utility is the minimum level of investment of the player and all neighbours:

ui(G, x) = min
j=i or (vi,vj)∈EG

xj − c(xi).

A necessary condition for Nash equilibrium is that no player invests more than its neighbours.

In Examples 4, 5 and 6 every player has the same set of choices, and the utility depends
in a uniform way on neighbours’ choices. We collect these, and other examples in the
literature, under the umbrella of monoid network games. Most examples in the literature can
be collected in two classes [5, ch. 5], namely games on networks with constrained continuous
actions or with binary actions. Provided that weights are natural numbers, the latter can be
expressed as monoid network games. To express the former as monoid network games, we

E. Di Lavore, J. Hedges, and P. Sobociński 30:5

need to additionally ask that the parameters appearing in the utility functions of the players
be constant. However, we can still express games of this class with different parameters for
different players by composing different monoid network games. This is shown in Example 32.

Network games that do not fall into this category can be nevertheless expressed in a
compositional way as illustrated in Fig. 1. If a game can be described in the form of a
a monoid network game, we can say more: such games are a monoidal functor from the
category of syntax to the category of semantics. The details are in Section 5.

To the best of our knowledge, the following has not previously appeared in the literature.

I Definition 7 (Monoid network game). A monoid network game is N = (X,M, f, g) where:
X is the set of choices for each player
M = (M,⊕, e) is a commutative monoid
f : X →M and g : X×M → R are functions such that each utility function has the form

ui(G, x) = g

xi, ⊕
(vi,vj)∈EG

f(xj)

 .

Examples 4, 5, 6 are indeed examples of monoid network games:
The majority game (Example 4) has the monoid (N,+, 0) × (N,+, 0), counting the

Y and N ‘votes’. Define f : {Y,N} → N2 by f(Y) = (1, 0) and f(N) = (0, 1), and
g : {Y,N} × N2 → R is:

g(x, (n1, n2)) =

1 if x = Y and n1 ≥ n2

1 if x = N and n1 ≤ n2

0 otherwise.

The best-shot public goods game (Example 5) is a monoid network game with the
monoid Bool = ({Y,N},∨, N), where ∨ is logical or, f : Bool → Bool is the identity,
and g : Bool×Bool→ R:

g(x, y) =

1− c if x = Y

1 if x = N and y = Y

1− c+ ε if x = N and y = N

The weakest-link public goods game (Example 6) has the monoid R∞+ = ({R+ ∪
{∞},min,∞), f the embedding R+ ↪→ R∞+ , and g : R+×R∞+ → R is g(x, y) = min(x, y)−
c(x).

3 Open games

Open games were introduced in [13] as a compositional approach to game theory.

I Definition 8 (Open game). Let X,Y,R, S,Σ be sets. An open game G : (XS) Σ9 (YR) has:
(i) PG : Σ×X → Y , called play function
(ii) CG : Σ×X ×R→ S, called coplay function
(iii) BG : X × (Y → R)→ P(Σ2), called best response function.

Roughly speaking, an open game is a process that (i) given a strategy and observation,
decides a move, and (ii) given a strategy, observation, and a utility, returns a coutility

CSL 2021

30:6 Compositional Modelling of Network Games

to the environment. Coutility is not a concept of classical game theory, but it enables
compositionality by incorporating the fact that players reason about the future consequences
of their actions. Finally, (iii), the best response function, which, given a context for the
game returns a relation on the set of strategies. A strategy σ is related to another strategy
σ′ if the latter is a best response to the former.

An open game is a process that receives observations (X) “from the past”, and the util-
ity (R) “from the future”. It outputs moves (Y) covariantly and coutility (S) contravariantly.

GX
S

Y
R

Open games are morphisms in a symmetric monoidal category Game. In order to formally
define composition and monoidal product of games, it is useful to rephrase the definition in
terms of lenses [19]. The detailed definitions are given in [13].

I Definition 9 (Game). Game is the symmetric monoidal category with pairs of sets (XS)
as objects and (equivalence classes of) open games G : (XS) Σ9 (YR) as morphisms.

We give some intuitions. Composition, shown below left, is sequential play: H · G is
thought of as H happening after G, observing the moves of G and feeding back its coutility as
G’s utility. The monoidal product of open games represents two games played independently.
The games are placed side by side with no connections, as shown below right.

G HX
S

Z
Q

R

Y
G1

X1

S1

Y1

R1G2

X2

S2

Y2

R2

Classical games are scalars in Game, i.e. open games (1
1) 9 (1

1). The fix-points of
the best response functions of scalars in Game are the Nash equilibria of the games they
represent.

Next we define specific open games used in our compositional account of network games.
The first is the Utility Maximising Player, modelling typical players of classical game theory.

I Definition 10 (Utility Maximising Player). Let X and Y be sets and argmax : RY → P(Y)
take a function κ : Y → R to the subset of Y where κ is maximised. Define D to be:

D : (X1) Y
X

9 (YR)
PD(f, x) = f(x)
CD(f, x, r) = ∗
BD(x, κ) = {(y, y′) ∈ Y X × Y X : y′(x) ∈ argmax(κ)}

maxX Y
R

The category of sets and functions Set embeds into Game in two ways. In our account
of network games, these embeddings encode how neighbours influence each other’s utilities.

I Definition 11. Let X,Y be sets and f : X → Y a function. Its covariant lifting is defined:

f∗ : (X1) 19 (Y1)
Pf∗(∗, x) = f(x)
Cf∗(∗, x, ∗) = ∗
Bf∗(x, ∗) = {(∗, ∗)}

fX Y

E. Di Lavore, J. Hedges, and P. Sobociński 30:7

K

max

max

u1(G)

un(G)

...

...

...

Figure 1 Open game representing a network game N played on a multigraph G

Similarly, its contravariant lifting is the following:

f∗ : (1
Y) 19 (1

X)
Pf∗(∗, ∗) = ∗
Cf∗(∗, ∗, x) = f(x)
Bf∗(∗, x) = {(∗, ∗)}

f XY

To obtain Examples 4, 5 and 6 as scalars in Game, players are taken to be utility-
maximising players. The connectivity of the multigraph G determines their utility functions
as contravariant liftings ui(G), while the context K sends back the choices of all players:

K :
(

Xn

Xn×···×Xn

) 19 (1
1)

CK(x) = (x, . . . , x).

The respective games are then obtained as the composition illustrated in Fig. 1. In this way,
we obtain a compositional description of any network game. If a game can be described in
the form of a a monoid network game, we can say more: such games are a monoidal functor
from Grph, defined in the next section, to Game. The details are in Section 5.

4 Open graphs

We extend the compositional approach to graph theory of [7] from simple graphs to
undirected multigraphs, identifying a “syntax” of network games as the arrows of a prop1
Grph, generated from a monoidal signature and equations. We also provide a characterisation
of Grph that explains its arrows as “open graphs”. Differently from other approaches [3, 9],
Grph uses adjacency matrices (Definition 2). Indeed, the presentation includes generators

: 0→ 1, : 2→ 1, : 1→ 0, : 1→ 2 (BIALG)

and the equations of Fig. 2. The prop B generated by this data is isomorphic [15, 24] to
the prop of matrices with entries from N, with composition being matrix multiplication. To
convert between the two, think of the matrix as recording the numbers of paths: indeed, the
(i, j)th entry in the matrix is the number of paths from the ith left port to the jth right port.

1 A prop [17, 15] is a symmetric strict monoidal category where the objects are N, and m⊗ n := m+ n.

CSL 2021

30:8 Compositional Modelling of Network Games

= =

= =

= =

= =

= =

Figure 2 Commutative bialgebra equations, yielding prop B.

= = =

Figure 3 Equations of ∪, which together with the equations of Fig. 2 yield prop BU.

I Example 12. The following string diagram in B corresponds to the 3× 2 matrix
(

2 1
0 1
1 0

)
.

Next, we add a “cup” generator denoted

: 2→ 0 (U)

with its equations given in Fig. 3.

I Definition 13. Let BU be the prop obtained from (BIALG) and (U), quotiented by
equations in Figs. 2 and 3, where the empty diagram is the identity on the monoidal unit.

Just as B captures ordinary matrices, BU captures adjacency matrices:

I Proposition 14. For n ∈ N, the hom-set [n, 0] of BU is in bijection with n× n adjacency
matrices, in the sense of Definition 2.

We have seen that the relationship between matrices and diagrams in B is that the former
encode the path information from the latter. Thus an m× n matrix is a diagram from m to
n. Adding the cup and the additional equations means that, in general, a diagram from n to
0 in BU “encapsulates” an n× n matrix that expresses connectivity information in a similar
way to adjacency matrices. We now give a concrete derivation to demonstrate this.

E. Di Lavore, J. Hedges, and P. Sobociński 30:9

I Example 15. The equivalence relation of adjacency matrices is captured by the equations
of Fig. 3. Consider matrices A = (0 1

1 0) ∼ (0 2
0 0) = A′. The morphism in BU is obtained by

constructing their diagram in B as in Example 12 and “plugging” them in the following.

2

As shown below, the two diagrams obtained are equated by the axioms of BU.

A2 = = = = = A′2

The prop BU can be given a straightforward combinatorial characterisation as the prop Adj.

I Definition 16 (Adj). A morphism α : m→ n in the prop Adj [7] is a pair (B, [A]), where
B ∈MatN(m,n) is a matrix, while [A], with A ∈MatN(m,m), is an adjacency matrix. The
components of Adj morphisms can be read off a “normal form” for BU arrows, as follows.

B

A

m n

Composition in Adj becomes intuitive when visualised with string diagrams.

(B, [A]) ◦ (B′, [A′]) = (BB′, [A+BA′BT])

B

A

B′

A′
l

m
n =

B

A

B′

A′B BT
l n

=
BB′

A+BA′BT
l n

I Proposition 17. BU is isomorphic to the prop Adj. J

The proof is similar to the case for Z2 [7]. An extension of BU with just one additional
generator and no additional equations yields the prop Grph of central interest for us.

I Definition 18. The prop Grph is obtained from the generators in (BIALG) and (U)
together with a generator : 0→ 1. The equations are those of Figs. 2 and 3.

CSL 2021

30:10 Compositional Modelling of Network Games

As we shall see, arrows 0→ 0 in Grph are precisely finite undirected multigraphs taken up
to isomorphism: the additional generator plays the role of a graph vertex.

I Example 19. For example, the first of the following represents a multigraph with two
vertices, connected by a single edge. The second one, two vertices connected by two edges.
The third one, is a multigraph with three vertices and two edges between them.

While the arrows [0, 0] are (iso classes of) multigraphs, general arrows can be understood
as open graphs. Roughly speaking, they are graphs together with interfaces, and data that
specifies the connectivity of the graph to its interfaces. We make this explicit below. Indeed,
we shall see (Theorem 23) that the prop A, defined below, is isomorphic to Grph – for this
reason we use Grph string diagrams to illustrate its structure.

I Definition 20 (The prop A). A morphism Γ: m→ n in the prop A is defined by

Γ = (k, [A] , B,C,D, [E]) (3)

where k ∈ N, A ∈MatN(m,m), B ∈MatN(m,n), C ∈MatN(m, k), D ∈MatN(k, n) and
E ∈MatN(k, k). Similarly to Adj (Definition 16), the components of (3) can be read off a
“normal form” for arrows of Grph, as visualised below right.

Tuples (3) are taken up to an equivalence re-
lation that captures the fact that the order of
the vertices is immaterial. Let Γ ∼ Γ′ iff they
are morphisms of the same type, Γ,Γ′ : m →
n with k vertices, and there is a permuta-
tion matrix P ∈ Mat(k, k) such that Γ′ =
(k, [A] , B, CPT , PD,

[
PEPT

]
). The justifica-

tion for this equivalence is the equality of the
following two string diagrams in Grph, below
(for the details, see Appendix A on page 18).

A

B

D

C

E

k

m n

A

B

D

C

E

k

m n =

P

A

B

D

C

E

k

m n

It is worthwhile to give some intuition for the components of (3). The idea is that an arrow
Γ specifies a multigraph G = (k, [E]), and:

B specifies connections between the two boundaries, bypassing G
C specifies connections between the left boundary and G
D specifies connections between G and the right boundary
A specifies connections between the interfaces on the left boundary. This allows Γ to
introduce connections between the vertices of an “earlier” open graph ∆. See Example 21.

E. Di Lavore, J. Hedges, and P. Sobociński 30:11

7−→ (0, [()] , ¡, (), ¡, [()]) 7−→ (0, [0] , !, !, (), [()])

7−→ (0, [02] , (1
1) , (), ¡, [()]) 7−→ (0, [0] , (1 1), !, ¡, [()])

7−→ (0, [(0 1
0 0)] , !, !, (), [()]) 7−→ (1, [()] , ¡, ¡, 1, [0])

Figure 4 Image of θ on the generators

Defining composition in A is straightforward, given the above intuitions, but the details
are rather tedious: see Lemma 33 in Appendix A.

I Example 21. In a composite ∆ ; Γ, Γ may introduce edges between the vertices of ∆.
Indeed, the first diagram in Example 19 can be decomposed:

; =

I Example 22. The following show the role of A-morphism components, when isolated. The
leftmost open graph has only left-side ports. It introduces a self-loop and two connections.
The second has only connections between the left and right interfaces; the first left port is
connected twice to the first right port, the second port is disconnected, and the third left
port is connected to the second and third right ports. The third open graph has one vertex
connected to the two left ports. The fourth has three vertices connected to the right ports,
following the specification in the second. The rightmost (closed) multigraph has its vertices
connected according to the specification of the leftmost vertex-less open graph. We write !
for matrices without columns, ¡ for matrices without rows and () for the empty matrix.

(0,[A],!,!,¡,[()]) (0,[0],B,!,¡,[()]) (1,[0],!,C,!,[0]) (3,[()],¡,¡,D,[0]) (2,[()],(),¡,!,[E])

A=(1 0
2 0) B=

(
2 0 0
0 0 0
0 1 1

)
C=(1

1) D=
(

2 0 0
0 0 0
0 1 1

)
E=(1 0

2 0)

The main result in this section is the following.

I Theorem 23. There is an isomorphism of props θ : Grph→ A.

The remainder of this section builds a proof of the above, summarised in the diagram below.

BU

∼= (Proposition 17)

��

// Grph ∼= BU +
{ }

θ

��

{ }
oo

∼= (Lemma 25)

��
Adj // A ∼= Adj + bP (Proposition 26) bPoo

First, note that Grph is the coproduct BU+
{ }

in the category of props, where
{ }

is the free prop on a single generator 0→ 1. Next, we characterise
{ }

as bP, defined

CSL 2021

30:12 Compositional Modelling of Network Games

below, in Lemma 25. Given that BU ∼= Adj, as shown in Proposition 17, to show the
existence of θ it suffices to show that A satisfies the universal property of the coproduct
Adj + bP, which is Proposition 26. The action of θ on the generators of Grph is in Fig. 4.

I Definition 24 (bP). The prop of bound permutations bP has as morphisms m→ m+ k

pairs [(k, P)] where k ∈ N and P ∈ MatN(m + k,m + k) is a permutation matrix. Such
pairs are identified to ensure that the order of the lower k rows of P is immaterial. Roughly
speaking, considering P as a permutation of m+k inputs to m+k outputs, in [(k, P)] the final
k inputs are “bound”. Explicitly, (k, P) ∼ (k, P ′) iff there is a permutation σ ∈MatN(k, k)
st P =

(
1m 0
0 σ

)
P ′. Composition is defined:

(l, Q) ◦ (k, P) = (k + l,
(
P 0
0 1l

)
Q)

P
Q

m

k

l

m

k

l

Identities are identity matrices idn = (0,1n). The fact that bP is a prop is Lemma 34 in
Appendix A.

I Lemma 25. bP is isomorphic to
{ }

.

Proof. Let us call φ = (0, (1)) : 0→ 1, which is a morphism in bP. We show directly that, for
any other prop P that contains a morphism v : 0→ 1, there is a unique prop homomorphism
α# : bP→ P such that α#(φ) = v. The details are given as Lemma 35 in Appendix A. J

Given the results of Proposition 17 and Lemma 25, we obtain the isomorphism θ : Grph→
A, thereby completing the proof of Theorem 23, by showing that:

I Proposition 26. A satisfies the universal property of the coproduct Adj + bP.

Proof. In order to show that A is a coproduct Adj + bP, we define the two inclusions.

i1 : Adj −→ A
n 7−→ n

(B, [A]) 7−→ (0, [A] , B, !, ¡, [()])
B

A
7−→ B

A

i2 : bP −→ A
n 7−→ n

(k, P) 7−→ (k, [0n] , P [1,n]
∗ , 0nk, P

[n+1,n+k]
∗ , [0k])

P

m

k

m

k

7−→ P
k

m m

k

We indicate with P [1,n]
∗ the first n rows of the matrix P and, similarly, with P [n+1,n+k]

∗
the rows between the n+ 1-th and the n+ k-th. It is not difficult to show that these are
indeed homomorphism, the details are given as Claim 36 in Appendix A.

Now, we show that, for any other prop C with prop homomorphisms Adj f1−→ C f2←− bP,
there exists a unique prop homomorphism H : A → C such that H ◦ i1 = f1 and H ◦ i2 = f2.

H : A −→ C
n 7−→ n

(k, [A] , B,C,D, [E]) 7−→ f1 ((BD) , [(A C
0 E)]) ◦ (1m ⊗ f2(k, 1k))

E. Di Lavore, J. Hedges, and P. Sobociński 30:13

We verify that H is a homomorphism in Lemma 37 in Appendix A. Next, we confirm that
H ◦ i1 = f1 and H ◦ i2 = f2, where two functor boxes [8] for f1 and f2 are coloured:

H ◦ i1(B, [A]) = H(0, [A] , B, !, ¡, [()])

= f1(B, [A]) ◦ (1m ⊗ f2(0, 10))

 B

A

f1

f2

 = f1(B, [A])

 B

A

f1

H ◦ i2(k, P) = H(k, [0n] , P [1,n]
∗ , 0nk, P

[n+1,n+k]
∗ , [0k])

= f1(P, [0n+k])◦(1n⊗f2(k, 1k))

P

k

f1

f2

m

n

 = P ◦f2(k, 1n+k)

P

k

f2

m

n

= f2(k, P)

 P
k

f2

m

n

Moreover, H is the unique prop homomorphism with these properties. In fact, suppose

there is H ′ : A → C such that H ′ ◦ i1 = f1 and H ′ ◦ i2 = f2. Then:

H ′(k, [A] , B,C,D, [E]) =H ′(i1((BD) , [(A C
0 E)]) ◦ (1m ⊗ i2(k, 1k)))

=H ′i1((BD) , [(A C
0 E)]) ◦ (H ′(1m)⊗H ′i2(k, 1k))

=f1((BD) , [(A C
0 E)]) ◦ (1m ⊗ f2(k, 1k)) = H(k, [A] , B, C,D, [E]).J

5 Games on graphs via functorial semantics

Here we show that monoid network games N define monoidal functors FN : Grph →
Game, which is our main contribution. To every open graph Γ, FN associates an open game,
where N is played on Γ. We give an explicit account of the FN -image of open graphs Γ,
using Theorem 23. We also explain how FN acts on closed graphs, giving classical games.

Since Grph is given by generators and equations, it suffices to define FN on the generators
and show that the equations are respected. Fix a monoid network game N = (X,M, f, g).

On objects, FN (1) = (MM). Thus, for n ∈ Grph, we have FN (n) =
(
Mn

Mn

)
The vertex : 0→ 1 is mapped to the open game FN () : (1

1) X9 (MM) defined
ΣFN () = X

PFN ()(xi, ∗) = f(xi)
CFN ()(xi, ∗,m) = ∗
(xi, x′i) ∈ BFN ()(∗, κ : M →M)

iff x′i ∈ arg max
x′′

i
:X
g(x′′i , κ(f(x′′i)))

max

f

g

M

M

X

X

R

The generators (BIALG) are mapped to the bialgebra structure on (M,M) induced by
the monoid action of M . Specifically, they are:

CSL 2021

30:14 Compositional Modelling of Network Games

FN () : (M
M) 19

(
M2

M2

){
P(∗,m) = (m,m)
C(∗,m1,m2,m3) = m2 ⊕m3

M

M

M

M

M

M
⊕

FN () : (M
M) 19 (1

1){
P(∗,m) = ∗
C(∗,m, ∗) = e

M

M e

FN () :
(

M2

M2

) 19 (M
M){

P(∗,m1,m2) = m1 ⊕m2

C(∗,m1,m2,m3) = (m1,m1) M

M

M

M

M

M
⊕ FN () : (1

1) 19 (M
M){

P(∗, ∗) = e

C(∗, ∗,m) = ∗

M

M

e

where each of these open games is built from lifted functions (Definition 11).
: 2→ 0 is mapped to the following open game (see [13])

FN () :
(
M2

M2

)
19 (1

1){
P(∗,m1,m2) = ∗
C(∗,m1,m2, ∗) = (m2,m1)

M

M

M

M

To prove that FN is a symmetric monoidal functor it suffices to show that the equations of
Grph are respected; this is a straightforward but somewhat lengthy computation.

I Theorem 27. FN defines a symmetric monoidal functor Grph→ Game.

Proof. See Appendix B, on page 23. J

Note that FN does not respect axioms (C1) or (C2) of [7], so it does not define a
functor ABUV→ Game in the terminology of loc. cit. This, together with the increased
expressivity of multigraphs over simple graphs, motivates our extension from ABUV to
Grph.

Theorem 23 gives a convenient “normal form” for the arrows of Grph, which we use
to give an explicit description of the image of any (open) graph Γ under FN . First, we
specialise to closed graphs that yield ordinary network games. This result—a sanity check
for our compositional framework—is a corollary of the more general Theorem 29, proved
subsequently.

I Corollary 28. Let N = (X,M, f, g) be a monoid network game, and consider Γ : 0→ 0 in
Grph, an undirected multigraph with k vertices. Then the game FN (Γ) : (1

1) X
k

9 (1
1) has:

ΣFN (Γ) = Xk as its strategy profiles,
BFN (Γ)(∗, ∗) ⊆ Xk ×Xk is the best response relation of N played on Γ.

Note that while the expressions in the statement of Theorem 29 below may seem involved,
they are actually derived in an entirely principled, compositional manner from the generators
of Grph. Indeed, the proof is by structural induction on the morphisms of Grph.

I Theorem 29. Let N = (X,M, f, g) be a monoid network game. Let Γ : i → j be a
morphism in Grph with k vertices st θ(Γ) = (k, [A] , B,C,D, [E]), where A : i× i, B : i× j,
C : i× k, D : k × j and E : k × k. Then the open game FN (Γ) :

(
Mi

Mi

)
Xk

9
(
Mj

Mj

)
has:

set of strategy profiles Σ(FN (Γ)) = Xk

play function PFN (Γ) : Xk ×M i →M j given by PFN (Γ)(σ, x) = BTx⊕DT f(σ)
coplay function CFN (Γ) : Xk×M i×M j →M i is CFN (Γ)(σ, x, r) = (A+AT)x⊕Br⊕Cf(σ)

E. Di Lavore, J. Hedges, and P. Sobociński 30:15

best response relation BFN (Γ) : M i × (M j →M j)→ P(Xk ×Xk) is
(σ, σ′) ∈ BFN (Γ)(x, κ) iff, for all k,

σ′k ∈ argmax
s∈X

g
(
s, (CT)k∗x⊕Dk

∗κ
(
BTx⊕DT f(σ [k 7→ s])

)
⊕ (E + ET)k∗f(σ [k 7→ s])

)
Proof. See Appendix B on page 23. J

6 Examples

We return to examples: the majority (Example 4), the best-shot public goods (Example 5)
and the weakest-link public goods (Example 6) games, and demonstrate various applications
of our framework. We first show that to compute the Nash equilibrium of the majority game
played on interconnected cliques is to calculate equilibria of its clique subgames.

I Example 30 (Majority game). In the majority game the best response can be decomposed
into the best responses of its components. Let N be the monoid network game for the
majority game, defined on pg. 5, and consider a graph composed of N cliques, as follows:

each vertex of each clique can be connected to at most one vertex of another clique,
in each clique there is at least one vertex not connected to any vertex outside its clique.

Such graphs decompose as N open graphs, each a clique with some boundary connections.
We omit the details and give, instead, an illustrative example: below left is a picture of three
connected cliques, while the schematic on the right is the corresponding expression in Grph.

 Γ4

Γ3

Γ5

It is easy to show that the choice of each clique does not depend on the choices of other
cliques. Indeed, the Nash equilibria of the majority game played on connected cliques in our
sense are those strategy profiles where, in every clique, all players make the same choice. In
particular, there are 2N Nash equilibria.

In some cases, players can take into account the choice of another player with a different
intensity. This can be modelled by changing the number of edges between the vertices. Let
us consider the above example with some of the vertices connected multiple times. This
modification of the network—illustrated below—reflects in a modification of the equilibria,
which are now strategy profiles in which every player takes the same choice.

In the best-shot public goods game (Example 5), the Nash equilibrium is when no player
invests. In Example 31, we show how the compositional description is useful to adapt the
model to a slightly different situation. We can imagine that one of the players now has access
to incentives to invest in the public good. This scenario is represented by modifying the
game and allowing one player to interact with the environment, which is the source of the
incentives for this player. This modification “opens” the game to one of type (1

1)→ (XR):
as a result, the Nash equilibrium changes. This is a simple model of a common economic
situation, ‘solving’ a social dilemma by external intervention, for example by regulation [12].

CSL 2021

30:16 Compositional Modelling of Network Games

I Example 31 (Best-shot public goods game). Consider the best-shot public goods game
played on a graph that contains a vertex connected to all other vertices. Removing the
central vertex from this graph leaves an open graph that we will call Γ.

p S FN (Γ)

Mk

⊕
Mk

X

R

M

M

Here, FN (Γ) is the best-shot public goods game played on the open graph Γ, p is the
central player that has been substituted, and S is the external open game that influences p.
The utility function of player p and the coplay function of S are as follows.

up(Γ, x) =

1− c+ δ if xp = 1
1− ε if xp = 0 ∧ ∃(p, j) ∈ EΓ xj = 1
1− c if ∀j xj = 0

S : (XR) 19 (1
1)

C(∗, x, ∗) =
{
δ if x = 1
−ε if x = 0

The addition of the open game S and the modification of player p modifies the Nash
equilibrium to be the strategy profile where only the central player invests. The idea is that
the “external” agent S incentivises the central player p to invest.

Our last example illustrates a common situation where the compositional description
of a game does not allow a compositional analysis of the best response. However, in this
case, compositionality can be used to obtain a variant of the weakest-link public goods game
(Example 6) where different cost functions are used in different parts of the graph G. The
desired game is obtained by composing such open games according to the structure of G.

I Example 32 (Weakest-link public goods game). Consider the weakest-link public goods
game played on a connected graph G. Suppose that players have different cost functions.
We partition them according to their cost functions, and use this partition to decompose the
G into an expression in Grph, as illustrated for a particular example below:

 Γ1

Γ2

Γ3

While the definition above uses our compositional techniques, the Nash equilibrium is
calculated on the resulting closed game, and is a strategy profile where every player invests
equally, with utility depending on individual cost functions. While it may be unsatisfying,
this failure of Nash equilibria to be compositional can be seen as an inherent feature of game
theory. In particular it is already present in the theory of open games; the passage from
graphs to games is nevertheless fully compositional.

7 Conclusions

Our contribution is a compositional account of network games via strict monoidal functors.
This adds a class of network games to the games that have been expressed in compositional
game theory [13, 2]. Of independent interest is our work on the category Grph, extending [7].
This is an approach to “open graphs” that, as we have seen, is compatible with the structure
of open games, and in future work we will identify other uses of this category.

E. Di Lavore, J. Hedges, and P. Sobociński 30:17

We also intend to extend the class of open graphs to directed open graphs. The motivation
for this is that, in some network games, interactions between players are not bidirectional.
Consider, for example, a variant of the majority game where there is an “influencer”: a player
whose choice affects the choices of other players, but is not in turn conversely affected.

We will also extend the menagerie of games that can be played on a graph. We plan
to study games with more generic utility functions, incomplete information, and repeated
games. It could also prove interesting to study natural transformations between the functors
that define games, and explore the game theoretical relevance of such transformations.

References
1 John C Baez and Brendan Fong. A compositional framework for passive linear networks, 2015.

arXiv preprint: https://arxiv.org/abs/1504.05625.
2 Joe Bolt, Jules Hedges, and Philipp Zahn. Bayesian open games, 2019. arXiv preprint:

https://arxiv.org/abs/1910.03656.
3 Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski, and Fabio Zanasi. Rewrit-

ing modulo symmetric monoidal structure. In Martin Grohe, Eric Koskinen, and Natarajan
Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 710–719. ACM, 2016.
doi:10.1145/2933575.2935316.

4 Filippo Bonchi, Pawel Sobocinski, and Fabio Zanasi. The calculus of signal flow diagrams I:
linear relations on streams. Inf. Comput., 252:2–29, 2017. doi:10.1016/j.ic.2016.03.002.

5 Yann Bramoullé, Andrea Galeotti, and Brian Rogers. The Oxford handbook of the economics
of networks. Oxford University Press, 2016.

6 Roberto Bruni, Hernán C. Melgratti, and Ugo Montanari. A connector algebra for P/T nets
interactions. In Concurrency Theory (CONCUR ‘11), volume 6901 of LNCS, pages 312–326.
Springer, 2011. doi:10.1007/978-3-642-23217-6_21.

7 Apiwat Chantawibul and Paweł Sobociński. Towards compositional graph theory. In Proceed-
ings of MFPS’15, volume 319 of ENTCS, pages 121–136, 2015. doi:10.1016/j.entcs.2015.
12.009.

8 J. R. B. Cockett and R. A. G. Seely. Linearly distributive functors. Journal of Pure and
Applied Algebra, 143(1-3):155–203, 1999.

9 Brendan Fong. Decorated cospans. Theory and Applications of Categories, 30(33):1096–1120,
2015.

10 James H Fowler and Nicholas A Christakis. Dynamic spread of happiness in a large social
network: longitudinal analysis over 20 years in the framingham heart study. BMJ, 337, 2008.
doi:10.1136/bmj.a2338.

11 Andrea Galeotti. Talking, searching and pricing. International Economic Review, 51(4):1159–
1174, 2010. doi:10.1111/j.1468-2354.2010.00614.x.

12 Andrea Galeotti, Benjamin Golub, and Sanjeev Goyal. Targeting interventions in networks.
Forthcoming in Econometrica, 2019.

13 Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn. Compositional game theory. In
Proceedings of Logic in Computer Science (LiCS) 2018. ACM, 2018. doi:10.1145/3209108.
3209165.

14 Matthew Jackson and Yves Zenou. Games on networks. In Handbook of game theory with
economic applications, volume 4, chapter 3, pages 95–163. Elsevier, 2015. doi:10.1016/
B978-0-444-53766-9.00003-3.

15 Stephen Lack. Composing PROPs. Theor. App. Categories, 13(9):147–163, 2004.
16 Qiu Li, MingChu Li, Lin Lv, Cheng Guo, and Kun Lu. A new prediction model of infectious

diseases with vaccination strategies based on evolutionary game theory. Chaos, Solitons &
Fractals, 104:51–60, 2017. doi:10.1016/j.chaos.2017.07.022.

17 Saunders Mac Lane. Categorical algebra. Bull. Amer. Math. Soc., 71:40–106, 1965.

CSL 2021

https://arxiv.org/abs/1504.05625
https://arxiv.org/abs/1910.03656
https://doi.org/10.1145/2933575.2935316
https://doi.org/10.1016/j.ic.2016.03.002
https://doi.org/10.1007/978-3-642-23217-6_21
https://doi.org/10.1016/j.entcs.2015.12.009
https://doi.org/10.1016/j.entcs.2015.12.009
https://doi.org/10.1136/bmj.a2338
https://doi.org/10.1111/j.1468-2354.2010.00614.x
https://doi.org/10.1145/3209108.3209165
https://doi.org/10.1145/3209108.3209165
https://doi.org/10.1016/B978-0-444-53766-9.00003-3
https://doi.org/10.1016/B978-0-444-53766-9.00003-3
https://doi.org/10.1016/j.chaos.2017.07.022

30:18 Compositional Modelling of Network Games

18 Saunders Mac Lane. Categories for the Working Mathematician. Springer-Verlag New York,
1978.

19 Frank Joseph Oles. A Category-theoretic Approach to the Semantics of Programming Languages.
PhD thesis, Syracuse University, Syracuse, NY, USA, 1982. AAI8301650.

20 Alfred Tarski. The concept of truth in the languages of the deductive sciences. Prace
Towarzystwa Naukowego Warszawskiego, Wydzial III Nauk Matematyczno-Fizycznych, 34(13-
172):198, 1933.

21 Alfred Tarski and Robert L Vaught. Arithmetical extensions of relational systems. Compositio
mathematica, 13:81–102, 1957.

22 Giorgio Topa. Social Interactions, Local Spillovers and Unemployment. The Review of
Economic Studies, 68(2):261–295, April 2001. doi:10.1111/1467-937X.00169.

23 Glynn Winskel. The formal semantics of programming languages: an introduction. MIT press,
1993.

24 Fabio Zanasi. Interacting Hopf Algebras: the theory of linear systems. PhD thesis, École
Normale Supérieure, 2015.

A Proofs for Section 4

Details for definition 20. By naturality of the symmetries, the vertex generators commute
with any permutation matrix P : k

P = k .
Thus, we can show that Γ = (k, [A] , B,C,D, [E]) and Γ′ =

(k, [A] , B, CPT , PD,
[
PEPT

]
) represent the same open graph.

A

B

D

C

E

k

m n =

P

A

B

D

C

E

k

m n =

A

B

D

C

E

k

P

PT

P PT

m n

J

I Lemma 33. A is a prop.

Proof. We start by proving that A is a category. The diagram below can be rewritten, using
the axioms of B, as a diagram of the form shown in Definition 20. The components of the
normal form obtained in this way give the algebraic definition of the composition.

Γ′◦Γ =
(
k + k′,

[
A+BA′BT

]
, BB′,

(
C +B(A′ +A′T)DT |BC ′

)
,
(
DB′

D′

)
,
[(

E+DA′DT DC′

0 E′

)])

A

B

D

C

E

k

m

A′

B′

D′

C ′

E′

k′

n p

Identities are defined in the obvious way: 1n = (0, [0n] ,1n, !, ¡, [()]).
The definition of composition is coherent with the equivalence classes because, whenever

Γ ∼ Γ0 with matrix P and Γ′ ∼ Γ′0 with matrix P ′, Γ′ ◦ Γ ∼ Γ′0 ◦ Γ0 with matrix
(
P 0
0 P ′

)
.

Composition is associative because the matrices relative to the vertices are []-equivalent.
Clearly, composition is unital and we proved that A is a category. Now we prove that it is
monoidal.

https://doi.org/10.1111/1467-937X.00169

E. Di Lavore, J. Hedges, and P. Sobociński 30:19

Lead by the interpretation of the matrices that define a morphism, we define monoidal
product as follows.

Γ⊗ Γ′ =
(
k + k′,

[(
A 0
0 A′

)]
,
(
B 0
0 B′

)
,
(
C 0
0 C′

)
,
(
D 0
0 D′

)
,
[(
E 0
0 E′

)])
The monoidal unit is the empty diagram: I = (0, [()] , (), (), (), [()])

The monoidal product is well-defined on equivalence classes because, whenever Γ ∼ Γ0
with matrix P and Γ′ ∼ Γ′0 with matrix P ′, Γ⊗ Γ′ ∼ Γ0 ⊗ Γ′0 with matrix

(
P 0
0 P ′

)
. Clearly,

monoidal product is strictly associative and unital. Therefore, the pentagon and the triangle
equations [18] hold trivially. The monoidal product is a bifunctor because (Γ0◦Γ)⊗(Γ′0◦Γ0) ∼

(Γ0 ⊗ Γ′0) ◦ (Γ⊗ Γ′) with permutation matrix P =
(

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
.

Thus, A is a monoidal category. Finally, we prove that it is symmetric. Let σm,n indicate
the symmetry: σm,n = (0, [0] ,

(
0 1m

1n 0

)
, !, ¡, [()])

Clearly, the symmetry is its own inverse: σm,n ◦ σn,m = 1m+n.
Moreover, σ is natural as σn,n′ ◦ (Γ ⊗ Γ′) ∼ (Γ′ ⊗ Γ) ◦ σm,m′ with permutation matrix
P = (0 1

1 0).
Lastly, the symmetry satisfies the hexagon equations. Thus, A is a symmetric monoidal
category whose objects are natural numbers. In other words, it is a prop. J

I Lemma 34. bP is a prop.

Proof. The proof proceeds exactly as the previous one. We will use diagrammatic calculus
of Mat for the permutation matrix of the morphisms in order to make the proofs more
readable. We start by proving that bP is a category. Composition is well-defined on
equivalence classes by the monoidal structure of Mat. Let (k, P) ∼ (k,

(
1m 0
0 σ

)
P) = (k, P ′)

and (l, Q) ∼ (l,
(

1m+k 0
0 ρ

)
Q) = (l, Q′).

P ′

Q′

m

k

l

m

k

l

=
P

Qσ

ρ

m

k

l

m

k

l

=
P

Qσ

ρ

m

k

l

m

k

l

∼
P

Q

m

k

l

m

k

l

with permutation matrix
(1m 0 0

0 σ 0
0 0 ρ

)
. Composition is clearly associative and unital because it

is associative and unital in Mat. The monoidal product is defined with a symmetry on the
left because we need to keep track of which of the inputs are bound.

(k, P)⊗ (k′, P ′) = (k + k′,

(
1m 0 0 0
0 0 1m′ 0
0 1k 0 0
0 0 0 1k′

)(
P 0
0 P ′

)
)

P

P ′

m

m′

k

k′

m

k

m′

k′

The monoidal unit is the empty diagram: I = (0, ()). The monoidal product is well-defined
on equivalence classes by naturality of the symmetries in Mat. Let (k, P) ∼ (k,

(
1m 0
0 σ

)
P) =

(k, P ′) and (l, Q) ∼ (l,
(1n 0

0 ρ

)
Q) = (l, Q′).

P ′

Q′

m

n

k

l

m

k

n

l

=
P

Q

σ

ρ

m

n

k

l

m

k

n

l

=
P

Q
σ

ρ

m

n

k

l

m

k

n

l

∼
P

Q

m

n

k

l

m

k

n

l

with permutation matrix
(1m+n 0 0

0 σ 0
0 0 ρ

)
. The monoidal product is a functor because we can

change the order in which we enumerate the vertices and because symmetries are natural in

CSL 2021

30:20 Compositional Modelling of Network Games

Mat.

P
Q

P ′

Q′

m

m′

k′

m

k

lk

l

l′

m′

k′

l′

∼

P
Q

P ′

Q′

m

m′

k

m

k

l

k′

l

l′

m′

k′

l′

=

P
Q

P ′

Q′

m

m′

k

m

k

l

k′

l

l′

m′

k′

l′

with matrix
(

1m+m′+k 0 0 0
0 0 1k′ 0
0 1l 0 0
0 0 0 1l′

)
. The monoidal product is clearly unital. The symmetry is

lifted from Mat: σm,n = (0,
(

0 1m
1n 0

)
). The symmetry is its own inverse and it satisfies the

hexagon equations because it does so in Mat.
Therefore, bP is a prop. J

I Lemma 35. bP is isomorphic to the free prop on one generator 0→ 1.

Proof. Define α# : bP −→ P to be α#(k, P) = P ◦ (1m⊗
⊗

k v), where P ∈ P is the product

of the symmetries that form P in bP. Diagrammatically, P

m

k

m

k

α#

= Pk

m m

k

.

We prove that α# is well-defined on equivalence classes. Let (k, P) ∼ (k,
(

1m 0
0 σ

)
P) = (k, P ′).

P ′
m

k

m

k

α#

= P ′k

m m

k

= P
σ

k

m m

k

= Pk

m m

k

= P

m

k

m

k

α#

We show graphically that α# is a prop homomorphism

α#(I) = = I α#(1n) = n = 1n α#(0, σ) = σ = σ

α#((l, Q) ◦ (k, P)) =
P

Q
k

l

m m

k

l

=
P

Q
k

l

m m

k

l

= α#(l, Q) ◦ α#(k, P)

α#((k, P)⊗ (k′, P ′)) =
P

P ′

k

k′

m

m′

m

k

m′

k′

=
P

P ′

k

k′

m

m′

m

k

m′

k′

= α#(k, P)⊗ α#(k′, P ′)

and, by its definition,
α#(φ) = v

Moreover, α# is the unique morphism bP→ P with this property. In fact, suppose there is
β : bP→ P such that β(φ) = v. Then,

β(k, P) =β((0, P) ◦ ((0,1n)⊗ (k,1k))) = β(0, P) ◦ (β(0,1n)⊗ β(k, 1k))

=P ◦ (1n ⊗
⊗
k

v) = a#(k, P)

Then bP is isomorphic to the free prop over one generator 0→ 1. J

E. Di Lavore, J. Hedges, and P. Sobociński 30:21

B Claim 36. The following are prop homomorphisms.

i1 : Adj −→ A
n 7−→ n

(B, [A]) 7−→ (0, [A] , B, !, ¡, [()])
B

A
7−→ B

A

i2 : bP −→ A
n 7−→ n

(k, P) 7−→ (k, [0n] , P [1,n]
∗ ,0nk, P

[n+1,n+k]
∗ , [0k])

P

m

k

m

k

7−→ Pk

m m

k

Proof. We prove graphically that they are prop homomorphisms.

i1(I) = = I i1(1n) = n = 1n i1(σ, [()]) = σ = σ

i1((B′, [A′]) ◦ (B, [A])) = B

A

B′

A′
= i1(B′, [A′]) ◦ i1(B, [A])

i1((B, [A])⊗ (B′, [A′])) =

B

A

B′

A′

= i1(B, [A])⊗ i1(B′, [A′])

i2(I) = = I i2(1n) = n = 1n i2(0, σ) = σ = σ

i2((l, Q) ◦ (k, P)) =
P

Q
k

l

m m

k

l

=
P

Q
k

l

m m

k

l

= i2(l, Q) ◦ i1(k, P)

i2((k, P)⊗ (k′, P ′)) =
P

P ′

k

k′

m

m′

m

k

m′

k′

=
P

P ′

k

k′

m

m′

m

k

m′

k′

= i2(k, P)⊗ i2(k′, P ′)

J

I Lemma 37. H, defined on page 12, is a prop homomorphism.

Proof. Recall that H : A → C is identity on objects and H(k, [A] , B,C,D, [E]) =
f1 ((BD) , [(A C

0 E)]) ◦ (1m ⊗ f2(k,1k)). By calling w = ((BD) , [(A C
0 E)]), which is a morphism in

Adj, we can depict the image of H diagrammatically.

A

B

D

C

E

k

m n 7−→ wk

f1

f2

m
n w

m

k

n = A

B

D

C

E

m n

k

We need to prove that H is well-defined on equivalence classes. Let Γ =
(k, [A] , B,C,D, [E]) ∼ (k, [A] , B,CPT , PD,

[
PEPT

]
) = Γ′.

H(Γ′) = w′k

f1

f2

m
n = wk

P

f1

f2

m
n = wk

P

f1

f2

m
n

= wk
P

f1

f2

m
n = wk

f1

f2

m
n = H(Γ)

CSL 2021

30:22 Compositional Modelling of Network Games

We prove that H is a prop homomorphism. Clearly, H is identity on objects. Moreover, it
preserves composition, as it is shown by the diagrams.

H(Γ′) ◦H(Γ) = wk

f1

f2

m

w′k′

f1

f2

n
p = wk

f1

f2

m

w′

k′

f1

f2

n
p

= wk

f1

f2

m

w′

k′

n
p = H(Γ′ ◦ Γ)

H preserves identities: H(1n) = f1

f2

n = n = 1n.

H preserves monoidal product. This is also more clearly seen with string diagrams.

H(Γ)⊗H(Γ′) =
wk

f1

f2

m
n

w′k′

f1

f2

m′

n′

=
w

f1

m
n

w′

k

k′

f1
f2

f2

m′

n′

=
w

f1

m
n

w′

k

k′

f2

m′

n′

=
wf1

m
n

w′

k

k′

f2

m′

n′

= H(Γ⊗ Γ′)

It is easy to show that H preserves monoidal unit and symmetries.

H(I) = f1

f2

= = I H(σm,n) =
f1

f2

m

mn

n

=
m

mn

n

= σm,n

J

E. Di Lavore, J. Hedges, and P. Sobociński 30:23

B Proofs for Sections 5

Proof of Theorem 27. FN respects the equations of Grph because both the tuples(
, , ⊕ , e

)
and

(
, , ⊕ , e

)
satisfy the commutative bialgebra

axioms in figure 2, and they both interact as in figure 3 with the cup .

We explain in detail that the functor FN preserves associativity of the black monoid, the
rest of the equations are written with the same convention. We write on the left-most and
right-most sides morphisms in Grph that, by associativity, they must be equal. In the centre,
we write the morphisms in Game to which they are mapped (indicated with 7→) by the
functor FN . These morphisms are equal in Game by associativity of the monoid operation
⊕ on M and coassociativity of copying. Thus, we can say that FN preserves associativity of
the black monoid.

7→

⊕
⊕

=

⊕
⊕

7→ 7→

e

⊕

= 7→

7→

⊕

=

⊕

7→ 7→

⊕

e

=
e

e

7→

and similarly for their transposed versions. J

Proof of Theorem 29. The proof proceeds by structural induction on Γ.
It is straightforward to check from the definition of FN that the generators of Grph are sent
to open games of the required form.
We need to check that composition is of the form as in the statement. We compute explicitly
its play, coplay and best response functions.

PFN (Γ′◦Γ)((σ, σ′), x) = PFN (Γ′)(σ′, BTx⊕DT f(σ)) = (BB′)Tx⊕
(
DB′

D′

)T
f(
(
σ

σ′

)
)

CFN (Γ′◦Γ)((σ, σ′), x, q) = CFN (Γ)(σ, x,CFN (Γ′)(σ′,PFN (Γ)(σ, x), q))

= ((A+BA′BT) + (A+BA′BT)T)x⊕BB′q ⊕ (C +B(A′ +A′T)DT |BC ′)f(
(
σ

σ′

)
)

(ρ, ρ′) ∈ BFN (Γ′◦Γ)(x, κ)
⇔(σ, σ′) ∈ BFN (Γ)(x, κ ◦ FN (Γ′)τ) ∧ (τ , τ ′) ∈ BFN (Γ′)(FN (Γ)σ ◦ x, κ)
⇔∀a = 1, ..., k + k′

s ∈ argmax
s∈X

g
(
s,
(
CT +D(A′+A′T)BT

C′TBT

)a
∗
x

⊕
(
DB′

D′

)a
∗ κ((BB′)Tx⊕ (B′TDT |D′T)f(ρ [a 7→ ρ′a]))

⊕
(
E+ET +D(A′+A′T)DT DC′

C′TDT E′+E′T

)a
∗
f(ρ [a 7→ ρ′a])

)

CSL 2021

30:24 Compositional Modelling of Network Games

Similarly, we show that monoidal product has the desired form.

PFN (Γ⊗Γ′)((σ, σ′), (x, x′)) =
(
B 0
0 B′

)T (x

x′

)
⊕
(
D 0
0 D′

)T
f(
(
σ

σ′

)
)

CFN (Γ⊗Γ′)((σ, σ′), (x, x′), (r, r′))

=
((

A 0
0 A′

)
+
(
A 0
0 A′

)T)(x

x′

)
⊕
(
B 0
0 B′

) (r

r′

)
⊕
(
B 0
0 B′

)
f(
(
σ

σ′

)
)

(ρ, ρ′) ∈ BFN (Γ′⊗Γ)((x, x′), 〈κ, κ′〉)

⇔∀a = ..., k + k′ ρ′a ∈ argmax
s∈X

g
(
s,
((

C 0
0 C′

)T)a
∗

(
x

x′

)
⊕
((

D 0
0 D′

)T)a
∗
〈κ, κ′〉(

(
B 0
0 B′

)T (x

x′

)
⊕
(
D 0
0 D′

)T
f(ρ [a 7→ s]))⊕

((
E 0
0 E′

)
+
(
E 0
0 E′

)T)a
∗
f(ρ [a 7→ s])

)
J

Canonization for Bounded and Dihedral Color
Classes in Choiceless Polynomial Time
Moritz Lichter
TU Kaiserslautern, Germany
lichter@cs.uni-kl.de

Pascal Schweitzer
TU Kaiserslautern, Germany
schweitzer@cs.uni-kl.de

Abstract
In the quest for a logic capturing Ptime the next natural classes of structures to consider are those
with bounded color class size. We present a canonization procedure for graphs with dihedral color
classes of bounded size in the logic of Choiceless Polynomial Time (CPT), which then captures
Ptime on this class of structures. This is the first result of this form for non-abelian color classes.

The first step proposes a normal form which comprises a “rigid assemblage”. This roughly means
that the local automorphism groups form 2-injective 3-factor subdirect products. Structures with
color classes of bounded size can be reduced canonization preservingly to normal form in CPT.

In the second step, we show that for graphs in normal form with dihedral color classes of bounded
size, the canonization problem can be solved in CPT. We also show the same statement for general
ternary structures in normal form if the dihedral groups are defined over odd domains.

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Theory of
computation → Complexity theory and logic

Keywords and phrases Choiceless polynomial time, canonization, relational structures, bounded
color class size, dihedral groups

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.31

Related Version A full version [21] is available at https://arxiv.org/abs/2010.12182.

Funding Received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (EngageS: agreement No. 820148).

1 Introduction

One of the central open questions in the field of descriptive complexity theory asks about the
existence of a logic that captures polynomial time (Ptime) [11]. This question goes back to
Chandra and Harel [5]. They ask whether there is a logic within which we can define exactly
the polynomial-time computable properties of relational structures. For the complexity class
NP such a logic is known, namely existential second order logic. This was shown by Fagin in
his famous theorem [7]. However, for the class Ptime, the question has been open now for
more than 35 years. A fundamental difficulty at its heart is a mismatch between logics and
Turing machines. An input has to be written onto a tape to provide it to a Turing machine.
So all inputs are necessarily ordered by the position of each character on the tape. This is
the case even when there is no natural order to begin with, which for example happens with
the vertices of a graph that is encoded. In contrast to this, such an order is typically not
given for a logic. In fact, if an order is given a priori then there is a logic capturing Ptime,
for example on totally ordered structures. Indeed, IFP (first order logic enriched with a
fixed-point operator) is such a logic as shown by the Immerman-Vardi Theorem [18].

© Moritz Lichter and Pascal Schweitzer;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 31; pp. 31:1–31:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lichter@cs.uni-kl.de
mailto:schweitzer@cs.uni-kl.de
https://doi.org/10.4230/LIPIcs.CSL.2021.31
https://arxiv.org/abs/2010.12182
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Canonization for Dihedral Color Classes

In the ongoing search for a logic for unordered structures, one of the most promising
candidates is the logic Choiceless Polynomial Time (CPT). It manages to capture an important
aspect demanded from a “reasonable logic” in the sense of Gurevich [17], namely that such a
logic cannot make arbitrary choices. Whenever there are multiple indistinguishable elements,
a logic can either process all or none of them. It is impossible to pick one element arbitrarily
and process just that. This is common for many algorithms executed on Turing machines
exploiting the order given by the tape. In the form originally defined by Blass, Gurevich, and
Shelah [3], CPT has a pseudocode-like syntax for processing hereditarily finite sets. Most
importantly there is a construct to process all elements of a set in parallel, because we cannot
choose one to process first. Subsequently, there were definitions by Rossman [27] and Grädel
and Grohe [9] in a more “logical” way using iteration terms or fixed points.

The question of whether a logic capturing Ptime on a class of structures exists is closely
linked to the problem of canonization. Suppose it is possible to canonize input structures
from a particular class in a logic (i.e., to define an isomorphic copy enriched by a total order).
Then the logic (extended by IFP) captures Ptime on this class by the already mentioned
Immerman-Vardi Theorem. This yields a general approach to show that some logic captures
Ptime on a class of structures: proving that canonization of the structures is definable in
this logic. This approach has been the method of choice for numerous results in descriptive
complexity theory. To this end, it was shown that canonization is IFP+C (IFP with counting)
definable on interval graphs [20], graphs with excluded minors [10, 12, 13, 14], and graphs
with bounded rank width [15]. Thus IFP+C captures Ptime on these classes. Regarding
CPT, all CPT-definable properties and transformations (e.g., canonization) are in particular
polynomial-time computable. If canonization is CPT-definable for a graph class then CPT
captures Ptime on this class because CPT subsumes IFP+C.

Closely linked to the problem of canonization is the problem of isomorphism testing. A
polynomial-time canonization algorithm implies a polynomial-time isomorphism test. While
we do not know of a formal reduction the other way around, we usually have efficient
canonization algorithms for all classes for which an efficient isomorphism test is known
(see [28] for an overview). This statement can even be proven unconditionally for classes of
vertex-colored structures with a CPT-definable isomorphism problem [16]. Accepting for
the moment that canonization and isomorphism testing are algorithmically very related, we
arrive at the following observation: if isomorphism testing is polynomial-time solvable on a
class of structures then, to capture Ptime, we must “solve” the isomorphism problem in the
logic anyway. If we do so in CPT we (almost) immediately obtain a logic capturing Ptime.
In summary, it appears the question of a logic for Ptime boils down to isomorphism testing
within a logic.

There is a notable class for which we have polynomial-time isomorphism testing and
canonization algorithms, but for which we do not know how to canonize them in CPT. This is
the class of structures with bounded color class size. Specifically, for an integer q, a q-bounded
structure is a vertex-colored structure, where at most q vertices have the same color and a
total order on the colors is given. Structures with bounded color class size can be canonized
in polynomial time with group-theoretic techniques (see [8, 1, 2]). The introduction of
group-theoretic techniques marks an important step for the design of canonization algorithms.
The use of algorithmic group theory turned out to be very fruitful and subsequently lead to
Luks’s famous polynomial-time isomorphism test for graphs of bounded degree [22]. It uses
a more general and more complicated machinery than needed for bounded color classes.

For the purpose of isomorphism testing, these group-theoretic techniques inherently rely
on choosing generating sets, and it is not clear how this can be done in a choiceless logic.
A well-known construction of Cai, Fürer, and Immerman [4] shows that IFP+C does not

M. Lichter and P. Schweitzer 31:3

provide us with a Ptime logic for 2-bounded structures. Finding a natural, alternative logic
for q-bounded structures is still an open problem. Studying structures with bounded color
class size is a reasonable a next step, because the canonization algorithm for them makes use
of comparatively easy group theory but we still do not know how to transfer these techniques
into logics.

A first result towards the canonization of structures with bounded color class size in CPT
was the canonization of structures with abelian colors, that is the automorphism group of
every color class is abelian, due to Abu Zaid, Grädel, Grohe, and Pakusa [29]. They use a
certain class of linear equation systems to encode the group-theoretic structure of abelian
color classes and solve these systems in CPT. In particular, they show that CPT captures
Ptime on 2-bounded structures. Considering dihedral groups is a next natural step because
dihedral groups are extensions of abelian groups by abelian groups.

Contribution. This paper presents a canonization procedure in CPT for finite q-bounded
structures with dihedral colors. A color class is dihedral (resp. cyclic) if it induces a
substructure whose automorphism group is dihedral (resp. cyclic). A dihedral group is the
automorphism group of a regular n-gon consisting of rotations and reflections and we call it
odd if n is odd. Dihedral groups are non-abelian for n > 2. We thereby provide the first
canonization procedure for a class of q-bounded structures with non-abelian color classes and
in particular show that CPT captures Ptime on it. Overall, we prove the following theorem:

I Theorem 1. The following structures can be canonized in CPT:
1. q-bounded relational structures of arity at most 3 with odd dihedral or cyclic colors
2. q-bounded graphs with dihedral or cyclic colors.

Our approach consists of two steps. As a first step, we propose a normal form for arbitrary
finite q-bounded structures. Then, in a second step, we use group-theoretic arguments to
canonize structures with dihedral colors given in the aforementioned normal form.

Concretely, the first step is a reduction transforming the input structure into a normal
form, which ensures that a color class and its adjacent color classes form a “rigid assemblage”.
That is, locally the automorphism groups form 2-injective 3-factor subdirect products or
are quotient groups of other color classes. In the the case of 2-injective 3-factor subdirect
products, the automorphisms of three adjacent color classes are not independent of each
other. This means that every nontrivial automorphism of the substructure induced by these
three color classes is never constant on two of them. More precisely, we prove the following
theorem (formal definitions and proofs are given later in the paper).

I Theorem 2. For every q and signature τ there is a q′ and another signature τ ′, such that
relational q-bounded τ -structures of arity r can be reduced canonization preservingly in CPT
to q′-bounded 2-injective quotient τ ′-structures.

It was not necessary to consider 2-injective groups for abelian colors yet, but it is for
non-abelian colors. Towards a reduction step, a purely group-theoretic analysis of 2-injective
groups is given in [23]. The main insight is basically that such groups decompose naturally
into structurally simpler parts which are related via a common abelian normal subgroup. We
extend the techniques to canonize abelian color classes and show how they can be combined
with the analysis of 2-injective groups to obtain a canonization procedure for said structures
with dihedral colors in CPT. That is, we provide new methods to integrate group-theoretic
reasoning, which is at the core of canonizing q-bounded structures algorithmically, into logics.

CSL 2021

31:4 Canonization for Dihedral Color Classes

Our Technique. The strategy of our canonization procedure is to reduce the dihedral groups
in some way to abelian groups and then exploit the canonization procedure of [29].

Since the automorphism groups of the color classes are restricted to be dihedral or
cyclic, we can characterize all occurring 2-injective 3-factor subdirect products. Using this
characterization we show that we can partition the input structure into parts we call reflection
components. These reflection components have the property that automorphisms either
simultaneously reflect the points in all color classes of the component or in none. In the
latter case they rotate the points in all color classes. We use this property to force all groups
in a reflection component to become abelian: we prohibit reflections in one color class of
the reflection component and this automatically prohibits reflections in all other classes of
the component, too. Once all reflections are removed, the remaining groups are abelian.
Then we apply the canonization procedure for structures with bounded abelian color classes
from [29] to the entire reflection component.

Not limiting ourselves to dihedral groups but also allowing cyclic groups has the benefit
that the class of occurring groups is closed under quotients and subgroups. Quotient and
subgroups of the input color classes occur naturally in our reduction process to the normal
form. For dihedral groups it turns out that odd dihedral groups are easier to handle than the
other ones. In fact, reflection components are not really independent but can have “global”
dependencies. We show that for “odd” dihedral groups, reflection components can only be
related via color classes with abelian automorphism groups, that is their global dependencies
are abelian. For “even” dihedral groups, there is a single non-abelian exception that can
connect reflection components, which complicates matters. For even dihedral color classes
this restricts us to the treatment of graphs (see Theorem 1 above).

Towards generalization, it unfortunately becomes cumbersome to exploit the group
structure theory in CPT, which is heavily required to execute the approach. Extending
the treatment of linear equation systems, which is a subroutine in [29], to dihedral groups
requires significant work already. We still follow the strategy of [29] and use a certain class
of equation systems to encode the global dependencies. However, we need to generalize the
equation systems. Consequently, we have to adapt all operations used on these equations
systems to work in the more general setting (e.g. the check for consistency). This becomes
technically even more involved than the techniques of [29] already are.

Related Work. There already exist various results for CPT regarding structures with
bounded color class size in addition to the ones mentioned above: Cai, Fürer, and Immerman
introduced the so-called CFI graphs. From every base graph, a pair of two non-isomorphic
CFI graphs is derived. The isomorphism problem on these pairs of graphs is used to separate
IFP+C from Ptime [4]. Dawar, Richerby, and Rossman showed in [6] that the isomorphism
problem for the CFI graphs can be solved in CPT for base graphs of color class size 1.

This result was strengthened by Pakusa, Schalthöfer, and Selman to base graphs with
logarithmic color class size [26]. The techniques of [6] and [26] are used in [29] to solve the
mentioned equation systems.

The logic IFP+C has a strong connection to the higher dimensional Weisfeiler-Leman
algorithm and to an Ehrenfeucht–Fraïssé-like game, the so-called bijective pebble game. They
are often used to show that IFP+C identifies graphs in a given graph class, i.e., that for any
two non-isomorphic graphs of the class there is an IFP+C formula distinguishing them. It
was shown by Otto [24] that if IFP+C captures Ptime on a graph class then IFP+C also
identifies all graphs in this class. The converse direction is open [12]. The capabilities of
IFP+C to detect graph decompositions were recently investigated in [19].

M. Lichter and P. Schweitzer 31:5

Structure of this Paper. We begin with the characterization of 2-injective 3-factor subdirect
products of dihedral and cyclic groups in Section 3. Then we turn to structures and to
permutation groups. We begin with the reduction to the above mentioned normal form in
Section 4 and then preprocess structures with dihedral colors in Section 5. In Section 6 we
introduce tree-like cyclic linear equation systems (TCES) and show that a certain subclass of
them can be solved in CPT. Finally, we define and analyze reflection components in Section 7
and give the CPT-definable canonization procedure for dihedral colors. Full formal proofs
can be found in [21].

2 Preliminaries

Bounded Relational Structures. A (relational) signature τ = {R1, . . . , Rk} is a set of rela-
tion symbols with associated arities ri ∈ N for all i ∈ [k] := {1, . . . , k}. We consider signatures
containing a binary relation symbol �. A τ -structure H is a tuple H = (H,RH1 , . . . , RHk ,�)
where RHi ⊆ Hri for all i ∈ [k] and �⊆ H2 is a total preorder. Unless said otherwise,
all structures considered in this paper will be finite. The preorder � partitions H into
equivalence classes, which we call color classes, and induces a total order on them. We denote
the set of H-color classes by CH. For a set I ⊆ H we denote with H[I] the substructure
induced by I. If I = C is a color class, we just write C for H[C], if the structure H is clear
from the context. If I ⊆ CH we also write H[I] for H[

⋃
I]. Two colors classes C,C ′ ∈ CH

are related, if there is some tuple containing a vertex from C and C ′ in some RHi .
A relation RHi is homogeneous if RHi ⊆ Ck for some C ∈ CH and k ∈ N, otherwise it is

heterogeneous. A structure H is of arity r if the largest arity of a heterogeneous relation
is r. A structure is q-bounded, if |C| ≤ q for all C ∈ CH and the arity of every homogeneous
relation is bounded by q. We write Aut(H) for the automorphism group of H. For two
structures H1 and H2 we write Iso(H1,H2) for the set of isomorphisms between H1 and H2.

An ordered copy of H is a pair (H′, <), such that H′ = (H ′, RH′

1 , . . . , RH
′

k ,�′), H′ ∼= H,
and < is a total order that refines �′. A canonical copy can(H) is an ordered copy of H
obtained in a canonical way, i.e., defined in CPT in the following. For a canonical copy
can(H) we call the set Iso(H, can(H)) the canonical labellings.

Choiceless Polynomial Time. To give a concise definition of CPT, we follow the definition
of [9] and use the same idea of e.g. [25] to enforce polynomial bounds.

For a set of atoms A we denote with HF(A) the hereditarily finite sets over A. This is
the inclusion-wise smallest set with A ⊆ HF(A) and a ∈ HF(A) for every a ⊆ HF(A). A set
a ∈ HF(A) is called transitive, if c ∈ a whenever there is some b with c ∈ b ∈ a. We denote
with TC(a) the transitive closure of a, that is the least transitive set b with a ⊆ b.

Let τ be a signature. We extend τ by adding set-theoretic function symbols to obtain
τHF := τ] {∅,Atoms,Pair,Union,Unique,Card}. For a τ -structure H, the hereditarily finite
expansion HF(H) is a τHF-structure over the universe HF(H) defined as follows: all relations
in τ are interpreted as in H. The other function symbols have the expected interpretation:
∅HF(H) = ∅ and AtomsHF(H) = H,
PairHF(H)(a, b) = {a, b} and UnionHF(H)(a) = {b | ∃c ∈ a. b ∈ c},

UniqueHF(H)(a) =
{
b if a = {b}
∅ otherwise

and CardHF(H)(a) =
{
|a| if a /∈ H
∅ otherwise

,

where the number |a| is encoded as a von Neuman ordinal.
A BGS term is composed as usual from variables and function symbols from τHF. There
are two additional constructs: if s(x̄, y) and t(x̄) are terms and ϕ(x̄, y) is a formula then

CSL 2021

31:6 Canonization for Dihedral Color Classes

Figure 1 Two vertex-colored graphs whose automorphism groups are the CFI group (left) and
the double CFI group (right).

r(x̄) = {s(x̄, y) | y ∈ t(x̄), ϕ(x̄, y)} is a comprehension term. If s(x) is a term with a single
free variable x, then s∗ is an iteration term. BGS formulas are composed of terms t1, . . . , tk
as R(t1, . . . , tk) (for R ∈ τ of arity k), t1 = t2, and the usual boolean connectives.

Let H be a τ structure. BGS terms and formulas are interpreted over HF(H). We
define the denotation JtKH : HF(H)k → HF(H) that for a term t(x̄) with free variables
x̄ = (x1, . . . , xk) maps ā = (a1, . . . , ak) ∈ HF(H)k to the value of t if we replace xi with ai.
For a formula ϕ(x̄) we define JϕKH to be the set of all ā = (a1, . . . , ak) ∈ HF(H)k satisfying ϕ.

For the comprehension term r as above, the denotation is defined as follows: JrKH(ā) ={
JsKH(āb) | b ∈ JtKH(ā), (āb) ∈ JϕKH

}
, where āb = (a1, . . . , ak, b). For an iteration term s∗

we define a sequence of sets via a0 := ∅ and ai+1 := JsKH(ai). Let ` := `(s∗,H) be the least
number with ai+1 = ai. We set Js∗KH := ai if such an ` exists and Js∗KH := ∅ otherwise.

A CPT term (or formula respectively) is a tuple (t, p) (or (ϕ, p) respectively) of a BGS
term (or formula) and a polynomial p(n). CPT has the same semantics as BGS by replacing t
with (t, p) everywhere (or ϕ with (ϕ, p)) with an exception for iteration terms: We set
J(s∗, p)KH := Js∗KH if `(s∗,H) ≤ p(|H|) and |TC(ai)| ≤ p(|H|) for all i, where the ai are
defined as above. Otherwise, we set J(s∗, p)KH := ∅. We use |TC(ai)| as a measure of the size
of ai, because by transitivity of TC(ai), whenever there is a set bk ∈ · · · ∈ b1 ∈ ai, then also
bk ∈ TC(ai) and thus TC(ai) counts all sets occurring somewhere in the structure of ai.

3 Classification of 2-Injective Subdirect Products of Dihedral Groups

We begin with the classification of 2-injective subdirect products of dihedral groups. A group
Γ ≤ G1 ×G2 ×G3 is called a (3-factor) subdirect product if the projection to each factor is
surjective. It is called 2-injective if ker(πi(Γ)) = {1} for all i ∈ [3], where πi is the projection
on the two factors apart the i-th. Another way of looking at this is that two components of
an element of Γ determine the third one uniquely.

For n ≥ 3, the dihedral group Dn of order 2n is the automorphism group of a regular n-gon
in the plane. It consists of n rotations and n reflections and acts naturally on the set of n
vertices of the polygon. We regard the identity 1 as rotation and write Rot(Dn) for the
rotation subgroup consisting only of rotations. It is isomorphic to the cyclic group Cn of
order n. Only in the degenerate cases D1 and D2 the dihedral group is abelian. It holds
that D1 ∼= C2 and D2 ∼= C2

2. Elements in the direct product Dn1 × · · · × Dnk
are rotations

(resp. reflections) if all components are rotations (resp. reflections). For ni ≥ 2 it contains
mixed elements that are neither a reflection nor a rotation. Subgroups of such a group may
or may not contain mixed elements: A group Γ ≤ Dn1 × · · · × Dnk

with ni > 2 for all i ∈ [k]
is called a rotate-or-reflect group if every g ∈ Γ is a rotation or a reflection. Our classification
involved many technical proofs and we only state its result here (proofs can be found in [21]).
Roughly speaking, almost all 2-injective subdirect products of cyclic and dihedral groups are
abelian or rotate-or-reflect groups. There are precisely two exceptions involving the double
CFI group:

M. Lichter and P. Schweitzer 31:7

I Definition 3 (CFI Groups). We call the group ΓCFI :=
{

(g1, g2, g3) ∈ D3
1 | g1g2g3 = 1

}
< D3

1
the CFI group and the wreath product Γ2CFI := ΓCFI o C2 the double CFI group (cf. Figure 1).

I Theorem 4. Let Γ ≤ Dn1 × Dn2 × Dn3 be a 2-injective subdirect product. Then exactly
one of following holds:
1. ni > 2 for all i ∈ [3] and Γ is a rotate-or-reflect group.
2. ni = 4 for all i ∈ [3] and Γ is isomorphic to the double CFI group Γ2CFI.
3. ni ≤ 2, nj = nk > 2 for {i, j, k} = [3], and πi(Γ) is a rotate-or-reflect group.
4. ni ≤ 2 for all i ∈ [3] and Γ is abelian.

I Theorem 5. Let Γ ≤ Cn1 ×Dn2 ×Dn3 be a 2-injective subdirect product. Then exactly one
of the following holds:
1. n1 ≤ 2, n2, n3 > 2, and π1(Γ) is a rotate-or-reflect group.
2. n1 = n2 = n3 = 4 and Γ ∼= Γ2CFI ∩ (Rot(D4)× D4 × D4).
3. n1, n2, n3 ≤ 2 and Γ is abelian.
Furthermore, there are no 2-injective subdirect products of Dn × G2 × G3 for n > 2 if G2
and G3 are abelian groups.

The classification is later used in the canonization of structures with bounded dihedral
colors to analyze how color classes can be connected to others. But first, we make the local
automorphism groups, which form 2-injective 3-factor subdirect products, explicit.

4 Normal Forms for Structures

In this section we describe a normal form for relational structures. We sketch how it can
be obtained in CPT. It is also important that we have means within CPT to translate a
canonical form of the normal form back into a canonical form of the original structure. A
structure H can be reduced to another structure H′ canonization preservingly in CPT, if we
can define the reduction in CPT from H to H′ and if we can define a canonical copy of H
whenever we are given H and a canonical copy of H′. Formally, the reduction is between
classes of structures:

I Definition 6. A canonization-preserving CPT-reduction from a class of structures A to a
class of structures B is a pair of CPT-interpretations (Φ,Ψ) with the following properties:

Φ is a CPT-interpretation from A-structures to B-structures.
Ψ is a CPT-interpretation from pairs of an A-structure and an ordered B-structure to
ordered A-structures.
Given a CPT-interpretation Θ from B-structures to ordered B structures, i.e., a CPT-
definable canonization procedure, then Ψ((H,Θ(Φ(H)))) is an ordered copy of H for every
A-structure H.

We also say that A can be reduced canonization preservingly in CPT to B if there is a
canonization-preserving CPT-reduction from A to B.

As a first step, we are interested in structures those color classes cannot be refined by “local”
properties:

We call a relational structure H transitive on s color classes if for every I ⊆ CH satisfying
|I| ≤ s the group Aut(H[I])|C is transitive for every C ∈ I.
Let H = (H,RH1 , . . . , RHk ,�) be a structure of arity r. We call (C1, . . . , C`) the type
of RHi if RHi ⊆ C1 × · · · × C` and Ci 6= Cj for all i 6= j. We denote with TH the set of
types of all relations that have a type. We say that H has typed relations if every relation
is either homogeneous or has a type.

CSL 2021

31:8 Canonization for Dihedral Color Classes

We can define a CPT reduction from q-bounded structures to q-bounded typed structures
transitive on s color classes, because the additional properties can be checked on substructures
of constant size. If they are violated, we split the affected color classes and relations.
Additionally, we ensure that all color classes are regular, i.e., their automorphism groups are
regular (a color class C is regular if |Aut(C)| = |C| and Aut(C) is transitive, so has only one
C-orbit). This is archived by replacing a color class C by a certain `-orbit of Aut(C) (for
a sufficiently large `). Then we modify the relations to preserve the automorphism groups
of the color classes and the connections between them. The said properties simplify the
following constructions designed to gain more control on local automorphism groups.

We want to reduce certain local automorphism groups to 2-injective subdirect products.
Recall from Section 3 the condition ker(πi(Γ)) = {1} for 2-injective products: If the condition
is violated, we want to factor out a normal subgroup N /Aut(C) (the kernel above) of a color
class C. By factoring N out of C, we obtain a quotient color class:

I Definition 7 (Quotient Color Class). Let H = (H,RH1 , . . . , RHk ,�) be a structure and the
automorphism group of C ∈ CH be regular. Let N / Aut(C). We say that another color
class C ′ is an N -quotient of C if Aut(C′) ∼= Aut(C)/N and there is a function RHj ⊆ C × C ′
determining the orbit partition of N acting on C, i.e., a vertex in C ′ corresponds to an N
orbit and the vertices of C are adjacent to its orbit vertices via RHj . The relation RHj is
called the orbit-map (of C).

Quotient color classes can always be defined: the N -orbits on C become the vertices of the
quotient color class and the orbit-map is given by containment of a C-vertex in an N -orbit.

Now we turn to structures with 2-injective subdirect products as local automorphism
groups. The structures we are aiming for consist of two different kinds of color classes. The
group color classes form 2-injective subdirect products. They are quotient color classes
of extension color classes, which connect different group color classes via the orbit-maps
(cf. Figure 4). Formally:

I Definition 8. Let H = (Hgr]Hex, R
H
1 , . . . , R

H
k ,�) be a structure, where Hgr and Hex are

unions of color classes. We call a color class C ⊆ Hgr (respectively C ⊆ Hex) a group color
class (respectively an extension color class). We define the group types THgr ⊆ TH to be the
set of all types only consisting of group color classes. Let T = (C1, . . . , Cj) ∈ THgr . We set
ΓHT := Aut(H[

⋃
i∈[j] Ci]) ≤

⊗
i∈[j] Aut(Ci). Finally, we call H an (r − 1)-injective quotient

structure if it satisfies the following (cf. Figure 4):
a) H is of arity r, has typed relations, and all color classes are regular.
b) Every group color class C ⊆ Hgr is an N-quotient of exactly one extension color class

C ′ ⊆ Hex, where N / Aut(C′), and not related to any other extension color class apart
from C ′. Moreover, C is only related by the orbit-map to C ′.

c) All relations only between group color classes are of arity exactly r and every group color
class occurs in only one group type.

d) For every T ∈ THgr the group ΓHT is an (r − 1)-injective r-factor subdirect product (for a
straightforward generalization of 2-injective 3-factor subdirect products).

Proof sketch of Theorem 2. We now consider a structure H of arity 3. First, apply the
previous reductions to obtain typed structures that are transitive on 3 color classes and
which have regular color classes. Then consider a type T = (C1, C2, C3) ∈ TH. Let ΓT :=
Aut(H[C1 ∪ C2 ∪ C3]) and NT

i := ker(πΓT
1) for all i ∈ [3]. Then the group ΓT /NT

1 /N
T
2 /N

T
3

is a 2-factor subdirect product. We realize this product in the structure by constructing
the NT

i -quotient color class of Ci and adjusting the relations as required. We perform this
operation for all types T . The constructed quotient color classes form the group color classes
of the output structure and the original ones the extension color classes (cf. Figure 2). J

M. Lichter and P. Schweitzer 31:9

Figure 2 The situation in Theorem 2: On the left the input structure. Each circle represents one
color class with drawn tuples of two relations (red and blue) between two ΓT /NT

1 /NT
2 /NT

3 -orbits
of each color class (where T is different for the red and blue relation). On the right the altered
structure: For the types of the red and blue relations there are new group color classes (on the top
for red and on the bottom for blue), where the orbits are contracted to a single vertex. The “old”
color classes became extension color classes.

For structures of arity r > 3, we also need to reduce the arity. For this, we insert color classes
dividing a relation into two new relations of lower arity. In particular, if the input structure
is of arity 3, the automorphism group of an output color class is a section (a subgroup of a
quotient) of the automorphism group of some input color class (cf. Theorem 38 in [21]). We
reduce to arity 3, because arity 2 does not simplify the problem further.

5 Structures with Dihedral Colors

A structure H = (H,RH1 , . . . , RHk ,�) has dihedral colors if for every H-color class C the
group Aut(C) is a dihedral or cyclic group. We allow cyclic groups to ensure closure under
taking subgroups and quotients. We want to make the dihedral groups explicit as follows: For
cyclic groups we require two relations only to avoid case distinctions. Regular and dihedral
color classes can always be brought in standard form. In fact, it is always possible to pick
two 2-orbits of the color class, that serve as the two required relations. The standard form
cycles will help us later to prohibit the reflections in a color class.

6 Cyclic Linear Equation Systems in CPT

Before we begin to canonize structures with dihedral colors, we need to discuss a special
class of linear equation systems. These systems are later used in the canonization procedure
to encode the canonical labellings. Let V be a set of variables and � be a preorder on V .
The variable classes are the �-equivalence classes and are totally ordered by �. A cyclic
constraint on W ⊆ V is a consistent set of linear equations over Zq containing for each pair
u, v ∈W an equation of the form u− v = d for d ∈ Zq.

I Definition 9 (TCES). A tree-like cyclic linear equation system (TCES) over Zq (q a prime
power) is a tuple (V, S,�) with the following properties:

The variable classes form a rooted tree with respect to being a direct successor in �.
S is a linear equation system on V containing for every variable class a cyclic constraint.
For every constraint

∑
i aiui = d with ui ∈ V and ai, d ∈ Zq in S every pair of variables

ui, uj is �-comparable.
In CPT, a system of linear equations S is represented by a set of constraints, which itself are
encoded as sets. TCESs generalize cyclic linear equations systems (CES) from [29], where �
must be total.

CSL 2021

31:10 Canonization for Dihedral Color Classes

Figure 3 The variable tree (a vertex represents a variable class) of a TCES with all local
components. Reordering variable classes inside a local component does not affect the tree structure.

An important operation on CES is the check for consistency. We sketch the check from [29]
and its extension to TCES only very roughly, since it requires many technical details (see
Section 6 in [21]). In principle, one would like to choose one variable per variable class
and eliminate the others using the u− v = d equations. If this was done, we would be left
with a totally ordered system (in case of CESs). Of course, choosing the variables is not
possible, but the system can be encoded in an equation system of hyperterms, which in some
way encode all possible choices of variables and allow arithmetic manipulation. In these
hyperterms, the variable classes “became the variables” for which we can apply a variant of
Gaussian elimination using a certain kind of hermite normal form. This variant takes care of
the issue that we are working over rings and not over fields: it reorders the variable classes
based on their coefficients in the equations. Only if they have the same, the variable classes
are ordered by the original order.

The translation to hyperterms can be done with TCES exactly as for CES. But the
Gaussian elimination does not work anymore: Reordering a tree by the order of the coefficients
does not necessarily result in a tree anymore (which causes further difficulties). To overcome
this problem, we restrict to TCES, where the reordering does not harm the tree structure but
only happens inside so-called local components (cf. Figure 3). Now, we can apply another
variant of Gaussian elimination, which does not require a total order on the variable classes.
It processes local components from leafs to the root and handles local and global variables
differently. We now define local components and these two kinds of variables.

A local component is a maximal and (in the variable tree) connected set of variable classes,
in which the tree does not branch (see Figure 3). On the local components the preorder �
induces a tree in which every local component has degree > 1 or is a leaf. A variable is local
if in every equation in which it occurs, i.e. it has non-zero coefficient, only variables of the
same local component occur, too. Other variables are called global. An equation is local if it
contains at least one local variable and global otherwise. For the subsequent canonization
the rings Z2` will be of special interest and thus treated differently.

I Definition 10. A TCES T = (V, S,�) over Zq is called weakly global, if
q is a power of an odd prime and every equation (equivalently every variable) is local or
q = 2` is a power of 2 and for every global variable u ∈ V there is an equation 2u = 0 ∈ S.

The definition states that only values of order at most 2 are candidates for solutions of
global variables. The adaption of Gaussian elimination strongly depends on this property, in
particular this restriction guarantees that reordering is only required inside local components.

I Theorem 11. Solvability of weakly global TCESs over Zq is CPT-definable.

The proof follows the same strategy as [25, 29] to solve CESs, but significant adaptations
were required throughout the whole procedure.

M. Lichter and P. Schweitzer 31:11

Finally, we need to form the union of two TCESs. In general, a naive union is not a
TCES anymore if the variable structures of the two systems are incompatible. For a working
solution, we need the following notion: Let T = (V, S,�) be a TCES. We say that V ′ are
the topmost variables of T if V ′ is the set of all variables of the local component containing
the root class of the variable tree Lr (formally V ′ =

⋃
Lr). Let T1 and T2 be two TCESs

over Zq which are CPT distinguishable. That is, there is a CPT term defining the ordered
tuple (T1, T2) or equivalently an order T1 < T2 (e.g. the two TCESs are defined by different
CPT terms or can be ordered by their structure). If their common variables are topmost
in both TCESs and whose order is compatible in them, we can define a TCES T1 <∪ T2 by
joining them together at the topmost variables (cf. Definition 60 in[21]):

I Lemma 12. If T1 and T2 (with variables Vi and topmost variables V ′i) are compatible,
then T1 <∪ T2 is again a TCES with topmost variables V ′1 ∪ V ′2 and it satisfies L(T1 <∪ T2) =⋂
i∈[2] extV1∪V2(L(Ti)). If both T1 and T2 are weakly global then T1 <∪ T2 is weakly global, too.

Here, extV1∪V2(L(Ti)) denotes the set N ⊆ ZV1∪V2
q whose projection to ZVi

q is equal to L(Ti).
We write T = (Tp1 , . . . , Tpk

) for a sequence of TCESs over pairwise coprime prime powers pi
and L(T) for the solution space of T . Lemma 12 generalizes to series of TCESs by making
the assumptions of the lemma for TCESs Tpi , T ′qj

with pi and qi powers of the same prime.

7 Canonization of Structures with Dihedral Color Classes

Recall that for our canonization problem the reduction to normal forms (Theorem 2) shows
that we can assume the input structure to be a dihedral 2-injective quotient structure. Our
further strategy is as follows. We want to reduce canonization of dihedral 2-injective quotient
structures to that of structures with abelian color classes and then apply the canonization
procedure for abelian color classes. The main idea is to artificially prohibit reflections in one
color class and then hope that this prohibits reflections in other color classes as well. For
this, we want to exploit the classification of 2-injective subdirect products of dihedral groups
(Theorems 4 and 5) saying that most 2-injective subdirect products are rotate-or-reflect
groups. In particular, if we prohibit reflections in one color class of a rotate-or-reflect group
then reflections in the other color classes are prohibited, too. This effect of prohibiting
reflections continues through most 2-injective subdirect products and quotient color classes.
However, it does not have to reach all color classes since some 2-injective subdirect product
are not rotate-or-reflect groups (for example if one factor is abelian). We call the parts of
the structure in which reflections are linked in this way and can only occur simultaneously
reflection components. We analyze how reflection components can depend on each other. It
will turn out, that different reflection components can indeed only be connected through
abelian color classes. We call these color classes border color classes. Overall, we will follow
a two-leveled approach: on the top level, we deal with the dependencies between the border
(and all other abelian) color classes, and on the second level we consider each reflection
component on its own and how it is embedded in its border color classes.

To ensure that the border color classes are indeed all abelian we have to forbid the single
exception in Theorem 4, which is not a rotate-or-reflect group, namely the double CFI group.

I Definition 13 (Double-CFI-Free Structure). We call a 2-injective dihedral quotient structure
double-CFI-free, if for every T ∈ Tgr the group ΓT is neither isomorphic to the double CFI
group Γ2CFI nor to Γ2CFI ∩ (Rot(D4)× D4 × D4).

CSL 2021

31:12 Canonization for Dihedral Color Classes

There are two natural classes of structures that are double-CFI-free after applying the
preprocessing: graphs with dihedral colors and structures of arity 3 which are odd dihedral,
that is, for every non-abelian C ∈ CH there is an odd k such that Aut(C) ∼= Dk.

7.1 Reflection Components
Let H = (Hgr] Hex, R

H
1 , . . . , R

H
k ,�) be an arbitrary dihedral 2-injective double-CFI-free

quotient structure. Whenever we construct a CPT term in the following, it does not depend
on H but gets H as input and in particular satisfies the claimed properties for all dihedral
2-injective double-CFI-free quotient structures. We use the set O := {�, �} to denote
orientations. For an orientation o ∈ O we set o := o′ as the reverse orientation, so that
O = {o, o′}.

I Definition 14 (Orientation). We say that a structure H′ = (Hgr]Hex, R
H
1 , . . . , R

H
k ,�′) is

an orientation of H if �′ refines � with the following property: Let C ∈ CH be a color class
that is split by �′, then Aut(H[C]) is a non-abelian dihedral group and C is split into two
color classes C�and C�, such that each of the two classes contains one of the two oriented
cycles inducing the standard form in C. We say that H′ orients C.

By splitting the color class C in the above manner, we precisely prohibit the reflections in C.
Because an orientation modifies only the preorder of the structure, defining an orientation
of H is always canonization preserving. For a color class C with dihedral automorphism
group we can define in CPT two orientations HoC for o ∈ O that only orient C (by the two
possible orders Co ≺′ Co). Of course, we cannot choose one orientation canonically. But the
orientation of C can canonically be propagated to other color classes in the following cases:
a) Whenever C is part of a rotate-or-reflect group (because once we cannot reflect in one

component, we cannot do so in the others), and
b) whenever C ′ is a quotient of C (because once we remove reflections from C we can also

remove remaining reflections from quotient groups).
To prove Case a) we use the classification of 2-injective subdirect products of dihedral groups
(Theorems 4 and 5). We obtain an equivalence relation on the color classes: two classes are
equivalent if an orientation of one color class can be propagated to the other. We define
reflection components as the equivalence classes of said relation, which consists of color classes
with dihedral automorphism group (cf. Definitions 65 and 70 in the full version).

Because all color classes of a reflection component D can be oriented by orienting only a
single color class, we can speak of the two orientations of a reflection component D. We now
analyze how a reflection components can be connected to another one:

I Definition 15 (Color Class in Standard Form). Let H be a structure and C ∈ CH. We say
that a color class C ∈ CH is in standard form if the following holds:

If Aut(C) ∼= C|C| then there are relations RHi , RHj ⊆ C2 of arity 2 each forming a directed
cycle of length |C| on C.
Otherwise Aut(C) ∼= D|C|/2 and there are two relations RHi , RHj ⊆ C2 such that RHj
defines two directed and disjoint cycles of length |C|/2 and RHi connects them by a perfect
matching such that the two cycles are directed into opposite directions (cf. Figure 4).

We say that the relations RHi and RHj induce the standard form of C. The color classes of H
are in standard form, if every color class is in standard form.

I Definition 16 (Border Color Class). Let D ⊆ CH be a reflection component. We call a color
class C ∈ CH a border color class of D if C /∈ D and C is related to a color class contained
in D. We denote with B(D) the set of all border color classes of D.

M. Lichter and P. Schweitzer 31:13

Figure 4 A 2-injective quotient structure with dihedral colors: an abelian color class is drawn as
circle, a non-abelian one as hexagon. The group color classes are at the top, the extension classes
at the bottom. An edge between a group class C and an extension class C′ denotes an orbit-map
and C is a quotient of C′. Edges between group color classes indicate relations of arity 3. The
reflection components are encircled and border color classes are gray. On the left a dihedral color
class in standard form with automorphism group D6.

I Lemma 17. Let D ⊆ CH be a reflection component and C ∈ B(D) a border color class
of D. Then Aut(C) is isomorphic to one of {C1,C2,D2} and C is a group color class.

This lemma is also proven using Theorems 4 and 5. So the border color classes of a reflection
component D are all abelian group color classes. That is, the reflection components are
embedded in a global abelian part of the structure (an example is shown in Figure 4). We
define HD := H[B(D)∪

⋃
D] and denote the two CPT-definable (abelian) orientations of HD

with HoD, o ∈ O. Let can(HoD) be canonizations for all o ∈ O. We denote with can(HoD) the
structure obtained from can(HoD) by undoing the orientation. Then HD ∼= can(HoD). Let <
be the lexicographical order on canonizations. We define the canonization can(HD) to be
the <-minimal canonization can(HoD) with o ∈ O. We analyze the canonical labellings of D.

I Lemma 18. If can(HoD) < can(HoD), then Iso(HD, can(HD)) = Iso(HoD, can(HoD)).

I Lemma 19. If can(H�
D) = can(H�

D), then Iso(HD, can(HD)) =
⋃
o∈O Iso(HoD, can(HoD)).

7.2 Canonizing Abelian Structures
Our canonization procedure strongly depends on the canonization procedure for q-bounded
structured with abelian color classes. This procedure not only outputs a canonization, but
also a CES encoding the canonical labellings. The automorphism group of a color class is
decomposed into a direct sum of cyclic groups, which are used to define variables and cyclic
constraints for this color class. In particular, if the automorphism group of a color class is
the direct product of cyclic groups of prime power order q, then all variables for this color
class range over Zq. A formal statement of the canonization procedure and the notion of
encoding isomorphisms can be found in [29] and in Theorem 81 in the full version of this
paper. It is also possible to start the canonization procedure for abelian color classes with a
TCES that encodes an initial set of allowed labellings (Lemma 83 in [21]).

7.3 Canonization Procedure
For dihedral colors we want to maintain an equation system encoding all canonical labellings
of all abelian color classes (and hence including all border color classes) that extend to
canonical labellings of the input structure. This suffices to encode the dependencies between
different reflection components because – as we have seen in the previous section – they can
only be connected via abelian color classes. As initialization step, we apply the canonization
procedure for abelian colors to all abelian color classes. Then we want to inductively add one

CSL 2021

31:14 Canonization for Dihedral Color Classes

1 Compute the set A ⊆ CH of abelian color classes;
2 Compute all reflection components D1 < · · · < Dm of H;
3 Compute can(H0) := can(H[A]) and Φ0 := Iso(H[A], can(H[A])) using the

canonization procedure for abelian colors;
4 for i ∈ [m] do
5 Set D := Di and define the two orientations HoD;
6 Compute can(HoD) and Φo := Iso(HoD, can(HoD)) such that Φi−1 ∩ extA(Φo) 6= ∅

with the canonization procedure for abelian colors;
7 if can(HoD) < can(HoD) for some o ∈ O then
8 can(Hi) := can(Hi−1) ∪ can(HoD);
9 Φi := Φi−1 ∩ extA(Φo|A);

10 else
11 can(Hi) := can(Hi−1) ∪ can(H�

D) ∪ can(H�
D);

12 Φi := Φi−1 ∩ extA((Φ� ∪ Φ�)|A);
13 can(H) := can(Hm);

Figure 5 Canonizing a 2-injective double-CFI-free structure H with dihedral colors in CPT.

reflection component in each step (possibly restricting the canonical labellings of the border
color classes). To do so, we want to define a canonical copy of the reflection component D
by taking the existing partial canonization into account. That is, given an equation system
encoding all canonical labellings of the partial canonization computed so far, we want to
increase both, the equation system and the canonization, by D in one step.

From now, we assume that the abelian color classes of a structure H are smaller than the
non-abelian ones (according to �). The canonization procedure is given in Figure 5, where we
use extA(Φ) as shorthand for ext⋃A(Φ). We fix the input structure H = (H,RH1 , . . . RHk ,�)
in the following (again, our CPT terms will not depend on H). The algorithm maintains
canonizations can(Hi) of Hi := H[A ∪

⋃
j∈[i]Dj] and sets Φi of canonical labellings.

I Lemma 20. For i ≤ m the following holds: Hi ∼= can(Hi) and Φi = Iso(Hi, can(Hi))|A.

Proof Sketch. The canonization procedure for abelian color classes yields the desired set
of canonical labellings. By Lemmas 18 and 19 the canonical labellings of the (unoriented)
reflection component are computed correctly. J

We cannot compute with the sets Φi directly in CPT because they can be exponentially
large. So we encode them with sequences of weakly global TCESs Ti. We maintain that the
variables VA of the abelian color classes A ⊆ CH are contained in the topmost variables of
the Ti and thus the occurring TCESs will all be compatible. With what we have seen so far,
the canonization procedure can be expressed in CPT apart one exception in Line 12: We have
to show how to define a TCES encoding extA((Φ� ∪ Φ�)|A) = extA(Iso(HD, can(HD))|B(D)).

7.4 Equation Systems for Reflection Components
Let T := Ti−1 for some 1 < i ≤ m be in the series of weakly global TCESs for the canonization
constructed so far, D := Di be the next reflection component to canonize (cf. Figure 5), and
can(H�

D) = can(H�
D). Let So be the series of CESs encoding the sets Φo = Iso(HoD, can(HoD))

and the variables of the (abelian) border color classes of D be B = B1 < · · · < Bk. These
variables are equal for S� and S� and are contained in the topmost variables VA of T .

M. Lichter and P. Schweitzer 31:15

We cannot fix an isomorphism in Iso(H�
D,H

�
D) = Iso(H�

D,H
�
D) canonically, but one

isomorphism contained in Iso(H�
D,H

�
D)|B(D): Note that by Lemma 17 the border color

classes have automorphism groups C`2 for ` ∈ {0, 1, 2}. Hence, all variables for the border
color classes range over Z2. We rename the variables of the two series of CESs, such that
both use different variables, but we still can identify a variable of a border color class of So
with a variable of a border color class of So. Hence, for two vectors xo ∈ ZB

o
i

2 we still can
write x� = x�. We denote with V o (and Bo respectively) the changed variables for o ∈ O.

I Lemma 21. There is a CPT term defining two vectors xo = (xo1, . . . , xok) ∈ ZB
o
1

2 ×· · ·×ZB
o
k

2
for both o ∈ O such that if yo ∈ L(So), then there is a yo ∈ L(So) such that yo|Bo +xo = yo|Bo .

Proof Sketch. Assume we have defined xo for the first i border color classes. We define a
TCES that is consistent if and only if there are yo ∈ L(So) for both o ∈ O that have different
values for exactly the Bj (j ∈ [i+ 1]) with j = i+ 1 or j ≤ i and xo(u) = 1 for all u ∈ Bj . If
the TCES is consistent, we set all entries for Bi+1 in xo to 1 and otherwise to 0. J

We now use the vectors xo to represent the canonical labellings of the border color classes,
which additionally extend to canonical labellings of the reflection component, as a TCES.

I Lemma 22. There is a CPT term defining a series of weakly global TCESs TD with the
following properties: B is contained in the topmost variables of TD, TD encodes the set
Iso(HD, can(HD))|B(D), and the size of TD is polynomial in |D|.

Proof Sketch. Let xo be the two vectors given by Lemma 21. We define a set of two variables
Bα := {α�, α�} (and set αo := HoD), VD := B ∪Bα ∪ V � ∪ V �, and �D such that it respects
the orders on B and V o and B ≺ Bα ≺ V o for all o ∈ O. The variable sets V � and V � are
incomparable. We want to define a TCES TD enforcing that if z ∈ L(TD), then there is an
o ∈ O and a yo ∈ L(So) such that z = yo|B. To do so, we guess two solutions yo ∈ L(So)
(one for each o ∈ O) with the property that yo|B + xo = yo|B (Lemma 21). Then we want
to ensure that z = y�|B or z = y�|B. To allow that one equality does not hold, we use the
additional variables α� to express the constraints z = yo|B + αo · xo. By enforcing that
exactly one of α� and α� is 1, we obtain the desired system. Finally, to make the system
linear, we encode the multiplication αo · xo. This is possible, because xo does not depend
on yo and can be defined before defining the following TCES:

y� ∈ L(S�), y� ∈ L(S�), 1 = α� + α�

z(u) = y�(u) = y�(u) if x�(u) = x�(u) = 0, u ∈ B
z(u) = y�(u) + α� = y�(u) + α� if x�(u) = x�(u) = 1, u ∈ B

where yo is indexed by V o and z is indexed by B and ranges over Z2. If the variable αo is
assigned to 1, then z = yo|Bo + xo and z = yo|Bo otherwise. Because of the cyclic constraint
1 = α� + α�, we add the vector xo to a solution yo of So for exactly one orientation o ∈ O.
One verifies the construction with Lemmas 19 and 21. J

Now, we defined all operation on TCESs needed and conclude:

I Theorem 23. Canonization of 2-injective double-CFI-free q-bounded gadget quotient
structures is CPT-definable.

This proves Theorem 1, because the involved classes of structures are double-CFI-free
after applying Theorem 2. In particular CPT captures Ptime on these classes.

CSL 2021

31:16 Canonization for Dihedral Color Classes

8 Conclusion

We separated a relational structure into 2-injective subdirect products and quotients, gave a
classification of all 2-injective subdirect products of dihedral and cyclic groups, and used
this classification to canonize relational structures with bounded dihedral colors of arity
at most 3. We showed that the structure decomposes into reflection components and that
in these components either all color classes have to be reflected or none. If we exclude a
single 2-injective subdirect product, namely the double CFI group, the reflection components
can only have abelian dependencies. This is always true for graphs, because the said group
cannot be realized by graphs with dihedral colors. In fact, we demonstrated the increase
of complexity when considering structures of arity 3 instead of 2. Apart from the fact
that the double CFI group does not appear, a classification of 1-injective 2-factor subdirect
products of dihedral groups is much easier. Considering higher arity, already 3-injective
4-factor subdirect products of dihedral groups cannot be classified to be (almost) abelian or
reflect-or-rotate groups. If one instead tries to reduce the arity of the structures, one needs
not only to work with a class of groups closed under taking quotients and subgroups (which
is the case for dihedral and cyclic groups), but also closed under taking direct products.

One natural way to exclude the double CFI group is a restriction to odd dihedral colors.
The difficulty with even dihedral groups might indicate that looking at odd (non-dihedral)
groups could be a reasonable next step. A natural graph class with odd automorphism groups
are tournaments. Since such groups are solvable there is hope for an inductive approach
exploiting the abelian case. It could be possible that the techniques developed in this paper
transfer to this case. Just like dihedral groups, odd groups are closed under taking quotients
and subgroups. However, they are also closed under direct products (and are solvable),
which would allow a reduction of the arity. Thus, it is possible to apply our reduction to
quotients and 2-injective groups. As a next step, one could try to follow a similar strategy as
for dihedral colors: identify components of the graph, in which the complexity of all color
classes decreases simultaneously, when a single color class is made easier (similar to reflection
components). This might not immediately result in abelian groups, but recursion on the
complexity of the groups could be a reasonable option, e.g. on the length of the composition
series or on the nilpotency class. All the mentioned avenues remain as future work.

References

1 László Babai. Monte carlo algorithms in graph isomorphism testing. Technical Report
D.M.S. No. 79-10, Université de Montréal, 1979.

2 László Babai and Eugene M. Luks. Canonical labeling of graphs. In David S. Johnson, Ronald
Fagin, Michael L. Fredman, David Harel, Richard M. Karp, Nancy A. Lynch, Christos H.
Papadimitriou, Ronald L. Rivest, Walter L. Ruzzo, and Joel I. Seiferas, editors, Proceedings
of the 15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston,
Massachusetts, USA, pages 171–183. ACM, 1983. doi:10.1145/800061.808746.

3 Andreas Blass, Yuri Gurevich, and Saharon Shelah. Choiceless polynomial time. Ann. Pure
Appl. Log., 100(1-3):141–187, 1999. doi:10.1016/S0168-0072(99)00005-6.

4 Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number
of variables for graph identification. Combinatorica, 12(4):389–410, 1992. doi:10.1007/
BF01305232.

5 Ashok K. Chandra and David Harel. Structure and complexity of relational queries. J. Comput.
Syst. Sci., 25(1):99–128, 1982. doi:10.1016/0022-0000(82)90012-5.

https://doi.org/10.1145/800061.808746
https://doi.org/10.1016/S0168-0072(99)00005-6
https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/BF01305232
https://doi.org/10.1016/0022-0000(82)90012-5

M. Lichter and P. Schweitzer 31:17

6 Anuj Dawar, David Richerby, and Benjamin Rossman. Choiceless polynomial time, counting
and the Cai-Fürer-Immerman graphs. Ann. Pure Appl. Logic, 152(1-3):31–50, 2008. doi:
10.1016/j.apal.2007.11.011.

7 Ronald Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In
Complexity of computation (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1973), pages
43–73. SIAM–AMS Proc., Vol. VII, 1974.

8 Merrick L. Furst, John E. Hopcroft, and Eugene M. Luks. Polynomial-time algorithms
for permutation groups. In 21st Annual Symposium on Foundations of Computer Science,
Syracuse, New York, USA, 13-15 October 1980, pages 36–41. IEEE Computer Society, 1980.
doi:10.1109/SFCS.1980.34.

9 Erich Grädel and Martin Grohe. Is polynomial time choiceless? In Lev D. Beklemishev,
Andreas Blass, Nachum Dershowitz, Bernd Finkbeiner, and Wolfram Schulte, editors, Fields
of Logic and Computation II - Essays Dedicated to Yuri Gurevich on the Occasion of His 75th
Birthday, volume 9300 of Lecture Notes in Computer Science, pages 193–209. Springer, 2015.
doi:10.1007/978-3-319-23534-9_11.

10 Martin Grohe. Isomorphism testing for embeddable graphs through definability. In F. Frances
Yao and Eugene M. Luks, editors, Proceedings of the Thirty-Second Annual ACM Symposium
on Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 63–72. ACM, 2000.
doi:10.1145/335305.335313.

11 Martin Grohe. The quest for a logic capturing PTIME. In Proceedings of the Twenty-
Third Annual IEEE Symposium on Logic in Computer Science, LICS 2008, 24-27 June 2008,
Pittsburgh, PA, USA, pages 267–271. IEEE Computer Society, 2008. doi:10.1109/LICS.2008.
11.

12 Martin Grohe. Fixed-point definability and polynomial time on graphs with excluded minors.
In Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS
2010, 11-14 July 2010, Edinburgh, United Kingdom, pages 179–188. IEEE Computer Society,
2010. doi:10.1109/LICS.2010.22.

13 Martin Grohe. Descriptive Complexity, Canonization, and Definable Graph Structure Theory.
Cambridge University Press, 2017.

14 Martin Grohe and Julian Mariño. Definability and descriptive complexity on databases
of bounded tree-width. In Catriel Beeri and Peter Buneman, editors, Database Theory -
ICDT ’99, 7th International Conference, Jerusalem, Israel, January 10-12, 1999, Proceedings,
volume 1540 of Lecture Notes in Computer Science, pages 70–82. Springer, 1999. doi:
10.1007/3-540-49257-7_6.

15 Martin Grohe and Daniel Neuen. Canonisation and definability for graphs of bounded rank
width. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019,
Vancouver, BC, Canada, June 24-27, 2019, pages 1–13. IEEE, 2019. doi:10.1109/LICS.2019.
8785682.

16 Martin Grohe, Pascal Schweitzer, and Daniel Wiebking. Deep Weisfeiler Leman, 2020.
arXiv:arXiv:2003.10935.

17 Yuri Gurevich. Logic and the challenge of computer science. In Egon Boerger, editor, Current
Trends in Theoretical Computer Science, pages 1–57. Computer Science Press, 1988.

18 Neil Immerman. Languages that capture complexity classes. SIAM J. Comput., 16(4):760–778,
1987. doi:10.1137/0216051.

19 Sandra Kiefer and Daniel Neuen. The power of the Weisfeiler-Leman algorithm to decompose
graphs. In MFCS, volume 138 of LIPIcs, pages 45:1–45:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019.

20 Bastian Laubner. Capturing polynomial time on interval graphs. In Proceedings of the
25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11-14 July 2010,
Edinburgh, United Kingdom, pages 199–208. IEEE Computer Society, 2010. doi:10.1109/
LICS.2010.42.

CSL 2021

https://doi.org/10.1016/j.apal.2007.11.011
https://doi.org/10.1016/j.apal.2007.11.011
https://doi.org/10.1109/SFCS.1980.34
https://doi.org/10.1007/978-3-319-23534-9_11
https://doi.org/10.1145/335305.335313
https://doi.org/10.1109/LICS.2008.11
https://doi.org/10.1109/LICS.2008.11
https://doi.org/10.1109/LICS.2010.22
https://doi.org/10.1007/3-540-49257-7_6
https://doi.org/10.1007/3-540-49257-7_6
https://doi.org/10.1109/LICS.2019.8785682
https://doi.org/10.1109/LICS.2019.8785682
http://arxiv.org/abs/arXiv:2003.10935
https://doi.org/10.1137/0216051
https://doi.org/10.1109/LICS.2010.42
https://doi.org/10.1109/LICS.2010.42

31:18 Canonization for Dihedral Color Classes

21 Moritz Lichter and Pascal Schweitzer. Canonization for bounded and dihedral color classes in
choiceless polynomial time, 2020. arXiv:arXiv:2010.12182.

22 Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time.
J. Comput. Syst. Sci., 25(1):42–65, 1982.

23 Daniel Neuen and Pascal Schweitzer. Subgroups of 3-factor direct products. Tatra Mt. Math.
Publ., 73:19–38, 2019.

24 Martin Otto. Bounded variable logics and counting - a study in finite models, volume 9 of
Lecture Notes in Logic. Springer, 1997.

25 Wied Pakusa. Linear Equation Systems and the Search for a Logical Characterisation of
Polynomial Time. PhD thesis, RWTH Aachen, 2015.

26 Wied Pakusa, Svenja Schalthöfer, and Erkal Selman. Definability of Cai-Fürer-Immerman
problems in choiceless polynomial time. In Jean-Marc Talbot and Laurent Regnier, editors,
25th EACSL Annual Conference on Computer Science Logic, CSL 2016, August 29 - September
1, 2016, Marseille, France, volume 62 of LIPIcs, pages 19:1–19:17. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.CSL.2016.19.

27 Benjamin Rossman. Choiceless computation and symmetry. In Andreas Blass, Nachum
Dershowitz, and Wolfgang Reisig, editors, Fields of Logic and Computation, Essays Dedicated
to Yuri Gurevich on the Occasion of His 70th Birthday, volume 6300 of Lecture Notes in
Computer Science, pages 565–580. Springer, 2010. doi:10.1007/978-3-642-15025-8_28.

28 Pascal Schweitzer and Daniel Wiebking. A unifying method for the design of algorithms
canonizing combinatorial objects. In Moses Charikar and Edith Cohen, editors, Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix,
AZ, USA, June 23-26, 2019, pages 1247–1258. ACM, 2019. doi:10.1145/3313276.3316338.

29 Faried Abu Zaid, Erich Grädel, Martin Grohe, and Wied Pakusa. Choiceless polynomial
time on structures with small abelian colour classes. In Erzsébet Csuhaj-Varjú, Martin
Dietzfelbinger, and Zoltán Ésik, editors, Mathematical Foundations of Computer Science
2014 - 39th International Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014.
Proceedings, Part I, volume 8634 of Lecture Notes in Computer Science, pages 50–62. Springer,
2014. doi:10.1007/978-3-662-44522-8_5.

http://arxiv.org/abs/arXiv:2010.12182
https://doi.org/10.4230/LIPIcs.CSL.2016.19
https://doi.org/10.1007/978-3-642-15025-8_28
https://doi.org/10.1145/3313276.3316338
https://doi.org/10.1007/978-3-662-44522-8_5

Preservation Theorems Through the Lens
of Topology
Aliaume Lopez
Université Paris-Saclay, ENS Paris-Saclay, CNRS, LSV, Gif-sur-Yvette, France
aliaume.lopez@ens-paris-saclay.fr

Abstract
In this paper, we introduce a family of topological spaces that captures the existence of preservation
theorems. The structure of those spaces allows us to study the relativisation of preservation theorems
under suitable definitions of surjective morphisms, subclasses, sums, products, topological closures,
and projective limits. Throughout the paper, we also integrate already known results into this new
framework and show how it captures the essence of their proofs.

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Mathematics of
computing → Discrete mathematics; Mathematics of computing → Point-set topology

Keywords and phrases Preservation theorem, Pre-spectral space, Noetherian space, Spectral space

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.32

Related Version A full version of the paper is available at https://arxiv.org/abs/2007.07879.

Acknowledgements I thank Jean Goubault-Larrecq and Sylvain Schmitz for their help and support
in writing this paper.

1 Introduction

In classical model theory, preservation theorems characterise first-order definable sets enjoying
some semantic property as those definable in a suitable syntactic fragment [6, Section 5.2]. A
well-known instance is the Łoś-Tarski Theorem [37, 28]: a first-order sentence ϕ is preserved
under extensions on all structures – i.e., A |= ϕ and A is an induced substructure of B imply
B |= ϕ – if and only if it is equivalent to an existential sentence.

A major roadblock for applying these results in computer science is that preservation
theorems generally do not relativise to classes of structures, and in particular to the class of
all finite structures (see the discussions in [31, Section 2] and [25, Section 3.4]). In fact, the
only case where a classical preservation theorem was shown to hold on all finite structures is
Rossman’s Theorem [32]: a first-order sentence is preserved under homomorphisms on all finite
structures if and only if it is equivalent to an existential positive sentence. This long-sought
result has applications in database theory, where existential positive formulæ correspond to
unions of conjunctive queries (also known as select-project-join-union queries and arguably
the most common database queries in practice [1]). For instance, it is related in [12,
Theorem 17] to the existence of homomorphism-universal models (as constructed by chase
algorithms) for databases with integrity constraints, in [38, Theorem 3.4] to a characterisation
of schema mappings definable via source-to-target tuple-generating dependencies, and in [18,
Corollary 4.14] to the naïve evaluation of queries over incomplete databases under open-world
semantics. These applications would benefit directly from preservation theorems for more
restricted classes of finite structures or for other semantic properties – corresponding to other
classes of queries and other semantics of incompleteness – and this has been an active area
of research [5, 4, 9, 22, 17]. Like Rossman’s result, these proofs typically rely on careful
model-theoretic arguments – typically using Ehrenfeucht-Fraïsse games and locality – and
each new attempt at proving a preservation theorem seemingly needs to restart from scratch.

© Aliaume Lopez;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 32; pp. 32:1–32:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4205-327X
mailto:aliaume.lopez@ens-paris-saclay.fr
https://doi.org/10.4230/LIPIcs.CSL.2021.32
https://arxiv.org/abs/2007.07879
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Preservation Theorems Through the Lens of Topology

In this paper, we develop a general topological framework for investigating preservation
theorems, where preservation theorems, both old and new, can be obtained as byproducts of
topological constructions.

As pointed out in the literature, the classical proofs of preservation theorems fail in the
finite because the Compactness Theorem does not apply. As we will see in Section 2, one
can reinterpret in topological terms the two applications of the Compactness Theorem in the
classical proofs of preservation theorems like the Łoś-Tarski Theorem. Here, the topology of
interest has the sets of structures closed under extension as its open sets, and one application
of the Compactness Theorem shows that the definable open sets are compact (Claim 2.2)
while the other shows that the sets definable by existential sentences form a base for the
definable open sets (Claim 2.1). In Section 3, we capture these two ingredients in general
through the definitions of logically presented pre-spectral spaces and diagram bases which lead
to a generic preservation theorem (Theorem 3.4): under mild hypotheses – which are met in
all the preservation results over classes of finite structures in the literature – preservation
holds if and only if the space under consideration is logically presented pre-spectral.

The benefit of this abstract, topological viewpoint, is that preservation results can now
be proven by constructing new logically presented pre-spectral spaces from known ones.

Here, the topological core of our definition is the one of pre-spectral spaces, which
generalise both Noetherian spaces and spectral spaces [19, 13]; see Section 4. From this point
onwards the use of the word stability will always be used to describe closure under some
operations and will never be used as the Model Theoretic notion of stability, this choice is
motivated by the fact that in topology closure has a specific meaning, and we already are
using the word preservation to describe preservation theorems. To some extent, we can rely
on the stability of spectral spaces under various topological constructions to investigate the
same constructions for pre-spectral spaces. We focus however in the paper on the logically
presented pre-spectral spaces, which is where the main difficulty lies when attempting to
prove preservation over classes of finite structures, and for which stability must take the
logical aspect into account. Accordingly, Section 5 shows the stability of logically presented
pre-spectral spaces under typical constructions: under a carefully chosen notion of morphisms,
under subclasses provided a sufficient condition is met, and under finite sums and finite
products.

Where the topological viewpoint really shines is when it comes to stability for various
kinds of “limits” of classes of structures enjoying a preservation property. We show in
Section 6 that the limit of a single class of structures, when it can be construed as the
closure in a suitable topology of a logically presented pre-spectral space, is also logically
presented pre-spectral. This allows us to show that Rossman’s Theorem – i.e., homomorphism
preservation in the finite – extends to the class of structures with the finite model property,
and also extends to countable unions of finite structures (the latter was also shown in [30,
Chapter 10]). In Section 7, we show that the limit of a family of pre-spectral spaces, when
built as a projective limit, is also pre-spectral. We use this to show that Rossman’s proof of
homomorphism preservation in the finite can be re-cast in our framework as building exactly
such a projective limit.

Due to space constraints, detailed proofs and additional examples will be found in the
full paper.

A. Lopez 32:3

2 Preservation Theorems

In this section, we revisit classical preservation theorems, whose proofs can be found in
many books such as [6, Section 5.2]. We will recall the needed definitions, and illustrate the
proof techniques in order to highlight the two ingredients that motivate our definitions of
pre-spectral spaces and diagram bases later in Section 3.

2.1 Classical Preservation Theorems
Notations. A σ-structure A over a finite relational signature σ (without constants) is given
by a domain |A| and, for each symbol R ∈ σ of arity n, a relation RA ⊆ |A|n; A is finite if
|A| is finite. The binary symbol “=” will always be interpreted as equality, and will not be
explicitly listed in our signatures. We write Struct(σ) for the set1 of all the σ-structures and
Fin(σ) for the finite ones. We assume the reader is familiar with the syntax and semantics
of first-order logic over σ. We write FO[σ] for the set of first-order sentences over σ. For
such a sentence ϕ, we write JϕKX , {A ∈ X | A |= ϕ} for its set of models over a class of
structures X ⊆ Struct(σ); by extension, we let JFKX , {JϕKX | ϕ ∈ F} denote the collection
of F-definable subsets of X for a fragment F of FO[σ].

Abstract Preservation. A preservation theorem over a class of structures X ⊆ Struct(σ)
shows that first-order sentences enjoying some semantic property are equivalent to sentences
from a suitable a syntactic fragment. More precisely, one can model a semantic property as
a collection O ⊆ ℘(X) of “semantic observations” and consider a fragment F ⊆ FO[σ]: we
will say that X has the (O,F) preservation property if
1. for all ψ ∈ F, JψKX ∈ O, and,
2. for all ϕ ∈ FO[σ] such that JϕKX ∈ O, there exists ψ ∈ F such that JϕKX = JψKX .
In this definition, item 1 is usually proven by a straightforward induction on the formulæ in F,
and the challenge is to establish item 2. Item 2 is also where relativisation to a subset Y ⊆ X
might fail, because a set U 6∈ O might still be such that U ∩ Y ∈ {V ∩ Y | V ∈ O}, and thus
there might be new first-order sentences enjoying the semantic property and requiring an
equivalent sentence in F.

Put more succinctly, X has the (O,F) preservation property if

O ∩ JFO[σ]KX = JFKX . (1)

This formulation explicitly shows how a semantic condition (the left-hand side in (1)) is
matched with a syntactic one (the right-hand side). As preservation is of interest beyond
first-order logic [20, 15, 10, 17], we will say in full generality that a set X equipped with a
lattice L of sets definable in the logic of interest has the (O,L′) preservation property if

O ∩ L = L′ (2)

In the rest of this paper we will assume that O contains ∅, contains X, is closed under
finite intersections and arbitrary unions. This is equivalent to O being a collection of open
sets and defining a topology on X.

1 In order to work over sets instead of proper classes and thereby avoid delicate but out-of-topic foundational
issues, every σ-structure in this paper will be assumed to be of cardinality bounded by some suitable
infinite cardinal. In particular, the Löwenheim-Skolem Theorem justifies that this is at no loss of
generality when working with first-order logic.

CSL 2021

32:4 Preservation Theorems Through the Lens of Topology

Table 1 Classical preservation theorems and their relativisations to the finite case.

preservation theorem quasi-ordering ≤ fragment F holds in Fin(σ)

homomorphism → EPFO yes [32]
Tarski-Lyndon ⊆ EPFO 6= no [3]
Łoś-Tarski ⊆i EFO no [36, 21, 11]
dual Lyndon � NFO no [2, 34]

Monotone Preservation. In a number of cases, which are especially relevant in the ap-
plications to database theory mentioned in the introduction [12, 18], the semantic property
of interest is a form of monotonicity for some quasi-ordering ≤ of Struct(σ). We say that
a sentence ϕ is monotone in X ⊆ Struct(σ) if JϕKX is upwards-closed, meaning that if
A ∈ JϕKX and B is a σ-structure in X such that A ≤ B, then B ∈ JϕKX . In terms of abstract
preservation, this corresponds to choosing O as the collection of upwards-closed subsets of X,
which is also known as the Alexandroff topology and is denoted by τ≤.

The quasi-ordering≤ in question is typically defined through some class of homomorphisms.
Recall that there is a homomorphism between two σ-structures A and B, noted A → B,
if there exists f : |A| → |B| such that, for all relation symbols R of σ and all tuples
(a1, . . . , an) ∈ RA, (f(a1), . . . , f(an)) ∈ RB. When f is injective, this entails that A is
(isomorphic to) a (not necessarily induced) substructure of B and we write A ⊆ B; when f is
furthermore strong – meaning that for all R and (a1, . . . , an) ∈ |A|n, (f(a1), . . . , f(an)) ∈ RB

implies (a1, . . . , an) ∈ RA – , this entails that A is (isomorphic to) an induced substructure
of B and we write A ⊆i B; finally, we write A� B when f is surjective.

Table 1 summarises what is known about monotone preservation theorems. In this table,
EFO denotes the set of existential first-order sentences, NFO the set of negative ones (namely
negative atoms closed under ∨, ∧, ∃, and ∀), EPFO the set of existential positive ones, and
EPFO 6= the set of existential positive ones extended with atoms of the form x 6= y (interpreted
as inequality). Note that Lydon’s Theorem, which states that a first-order sentence closed
under surjective homomorphisms on all structures is equivalent to a positive one, is presented
in Table 1 in its dual form with inverse surjective homomorphisms and negative sentences.
For all these fragments F and associated quasi-orderings ≤, the fact that JFKX ⊆ τ≤ is mostly
straightforward.

2.2 The Łoś-Tarski Theorem in Topological Terms

We propose now to inspect the proof of the Łoś-Tarski Theorem on a finite relational
signature σ, as found for instance in [6, Theorem 3.2.2] or [24, Section 5.4]. We work here
with the collection O , τ⊆i

of upwards-closed subsets of X , Struct(σ) for ⊆i (this is the
Alexandroff topology of the quasi-order ⊆i) and the fragment F , EFO[σ]. The Łoś-Tarski
Theorem corresponds to the following instantiation of (1):

τ⊆i
∩ JFO[σ]KStruct(σ) = JEFO[σ]KStruct(σ) . (3)

The proof of the Łoś-Tarski Theorem can be decomposed into two steps, here corresponding
to the upcoming claims 2.1 and 2.2, and each invoking the Compactness Theorem. When
translated in topological terms, the first shows that EFO defines a base for the definable open
sets, while the second shows that definable open sets are compact.

A. Lopez 32:5

“Syntactic” Base. Recall that a base B of a topology τ is a collection of open sets such
that every open set of τ is a (possibly infinite) union of elements from B. Equivalently, B
is a base of a topology τ whenever ∀U ∈ τ,∀A ∈ U,∃V ∈ B, A ∈ V ⊆ U . A subbase is a
collection of open sets such that every open set of τ is a (possibly infinite) union of finite
intersections of elements of the subbase. The topology 〈O〉 generated by a collection O of
sets is the smallest topology containing those sets; O is then a subbase of 〈O〉.

We first prove a weaker version of Equation (3) by proving the equality on the gener-
ated topologies. Because JFO[σ]KStruct(σ) and JEFO[σ]KStruct(σ) are lattices, those generated
topologies can be seen as generated by infinite disjunctions of sentences in FO[σ] (resp.
EFO[σ]).

B Claim 2.1. The topologies generated by τ⊆i ∩ JFO[σ]KStruct(σ) and JEFO[σ]KStruct(σ) are
the same, i.e.,

〈
τ⊆i
∩ JFO[σ]KStruct(σ)

〉
=
〈
JEFO[σ]KStruct(σ)

〉
.

Proof. First of all, any sentence in EFO[σ] defines an upwards-closed set for ⊆i, and moreover
EFO[σ] ⊆ FO[σ], hence

〈
JEFO[σ]KStruct(σ)

〉
⊆
〈
τ⊆i
∩ JFO[σ]KStruct(σ)

〉
.

For the converse inclusion, it suffices to show that EFO[σ] defines a base of the topology
〈τ⊆i ∩ JFO[σ]KStruct(σ)〉. Consider for this a monotone sentence ϕ ∈ FO[σ] and a structure A
such that A |= ϕ. Following the classical proofs (e.g., [6, Theorem 3.2.2] or [24, Corol-
lary 5.4.3]), define Â as the expansion of A with one additional constant ca for each a ∈ |A|,
interpreted by cÂa , a. The diagram Diag(A) of A is the set of all quantifier-free sentences
over this extended signature that hold in Â. For a structure B̂ ∈ Struct(σ ∪ {ca}a∈A), we
write B for its reduct in Struct(σ) obtained by removing the constants {ca}a∈A.

Let T , Diag(A) ∪ {¬ϕ}, and consider B̂ ∈ Struct(σ ∪ {ca}a∈A) such that B̂ |= T .
Because B̂ |= Diag(A), by construction A ⊆i B (in particular, the sentence ¬(ca = cb)
belongs to Diag(A) for all a 6= b in |A|), and thus B |= ϕ because ϕ is monotone, and finally
B̂ |= ϕ because the constants ca do not occur in ϕ. Therefore, B̂ |= ϕ ∧ ¬ϕ, which is absurd:
the theory T is inconsistent, and by the Compactness Theorem for first-order logic, there
exists a finite conjunction ψ0 of sentences in Diag(A), which is already inconsistent with ¬ϕ.

Let ψA be the existential closure of the formula obtained by replacing each symbol ca
with a variable xa in ψ0; note that ψA is an existential sentence. By construction, A |= ψA,
and if B |= ψA, there exists an interpretation of the constants {ca}a∈A allowing to build an
expansion B̂ such that B̂ |= ψ0. As we just saw that the implication ψ0 =⇒ ϕ is valid,
B̂ |= ϕ, and since no constant symbol occurs in ϕ, B |= ϕ.

To conclude, for any open set U ∈ 〈τ⊆i
∩ JFO[σ]KStruct(σ)〉 and for any A ∈ U , there exists

a monotone sentence ϕ such that A ∈ JϕKStruct(σ), and we have proven that there exists
JψAKStruct(σ) ∈ JEFO[σ]KStruct(σ) such that A ∈ JψAKStruct(σ) ⊆ JϕKStruct(σ) ⊆ U . Therefore,
JEFO[σ]KStruct(σ) is a base of 〈τ⊆i ∩ JFO[σ]KStruct(σ)〉. C

Compactness. The second step relies on the compactness of the sets JϕKStruct(σ) for mono-
tone sentences ϕ. Recall that a subset K is compact in a topological space τ if, for any open
cover (Ui)i∈I of K – i.e., a collection of open sets such that K ⊆

⋃
i∈I Ui – , there exists

a finite subset I0 ⊆ I, such that K ⊆
⋃
i∈I0

Ui (beware that this definition is also called
quasi-compact in the literature, because we do not require any separation property here). If
τ = 〈O〉, by Alexander’s Subbase Lemma, K is compact if and only if, from every open cover of
K using only sets from O, we can extract a finite open cover of K. As open compact sets play
a key role in this paper, we introduce here the notation K◦(X) , {U ∈ τ | U is compact}.
When the topology τ is not clear from the context, we shall write K◦(X, τ).

CSL 2021

32:6 Preservation Theorems Through the Lens of Topology

B Claim 2.2. Every monotone sentence defines a compact open subset in the topology
〈τ⊆i

∩ JFO[σ]KStruct(σ)〉, i.e., τ⊆i
∩ JFO[σ]KStruct(σ) ⊆ K◦

(
Struct(σ), 〈τ⊆i

∩ JFO[σ]KStruct(σ)〉
)
.

Proof. Consider a monotone sentence ϕ ∈ FO[σ]Struct(σ). Let (Ui)i∈I be an open cover of
JϕKStruct(σ). By Alexander’s Subbase Lemma, we can assume that for each i ∈ I, Ui =
JϕiKStruct(σ) for some monotone sentence ϕi. Consider the theory T , {¬ϕi | i ∈ I} ∪ {ϕ}.
Because (Ui)i∈I is an open cover, this theory has no models. By the Compactness Theorem
for first order logic, there exists a finite set I0 such that T0 , {¬ϕi | i ∈ I0} ∪ {ϕ} is not
satisfiable, proving that (Ui)i∈I0 is an open cover of JϕKStruct(σ). C

I Remark 2.3 (Compact sets in τ≤). As we will often deal with the Alexandroff topology τ≤
of a quasi-order (X,≤), it is worth noting that U ∈ τ≤ is compact if and only if it is the
upward closure U = ↑F of some finite subset F ⊆fin X; this is equivalent to saying that U
has finitely many minimal elements up to ≤-equivalence [19, Exercise 4.4.22]. Thus Claim 2.2
states that any monotone sentence has finitely many ⊆i-minimal models in Struct(σ).

Proof of the Łoś-Tarski Theorem. A simple structural induction on the formulæ shows that
JEFO[σ]KStruct(σ) ⊆ τ⊆i

∩ JFO[σ]KStruct(σ). Regarding the converse inclusion in Equation (3),
consider a sentence ϕ ∈ FO[σ] defining an open set in τ⊆i . By Claim 2.1, there exists a family
(ψi)i∈I of existential sentences such that JϕKStruct(σ) =

⋃
i∈IJψiKStruct(σ). By Claim 2.2, there

is a finite set I0 ⊆fin I for which the equality still holds. Because EFO[σ] is a lattice, this proves
the existence of an existential sentence ψ ,

∨
i∈I0

ψi such that JϕKStruct(σ) = JψKStruct(σ). J

The two properties singled out in claims 2.1 and 2.2 are of different nature. Claim 2.2
really holds for any topology τ and not only for the Alexandroff topology τ⊆i

, as opposed
to Claim 2.1. Moreover, Claim 2.1 appears to be the most involved one here, but is often
easily proven on classes of finite structures.

3 Pre-spectral Spaces and Diagram Bases

Following the two-step decomposition of the proof of the Łoś-Tarski Theorem given in
Section 2.2, we define in this section logically presented pre-spectral spaces and diagram bases,
before showing in Theorem 3.4 how they characterise when a preservation theorem holds.

3.1 Pre-spectral Spaces
As a preliminary step toward our main definition, let us first propose a definition of topological
spaces (X, τ) where the compact open sets form a bounded sublattice of ℘(X) (by which we
mean that ∅ and X belong to the lattice) that generates the topology.

I Definition 3.1 (Pre-spectral space). A topological space (X, τ) is a pre-spectral space
whenever K◦(X) is a bounded sublattice of ℘(X) that generates τ, i.e., 〈K◦(X)〉 = τ.

The name “pre-spectral” comes from the theory of spectral spaces [13], for which the definition
is almost identical (see Section 4.2). Pre-spectral spaces will allow us to tap into the rich
topological toolset that has been developed for spectral spaces.

Logical presentations. As seen in Claim 2.2, the topology of interest in a preservation
theorem is generated by combining a topological space (X, τ) with a bounded sublattice L of
subsets of X, which will be called the definable subsets of X. Let us write 〈X, τ,L〉 for the
topological space (X, 〈τ ∩ L〉). The following definition is then a direct generalisation of the
statement of Claim 2.2.

A. Lopez 32:7

I Definition 3.2 (Logically presented pre-spectral space). Let (X, τ) be a topological space and
L be a bounded sublattice of ℘(X). Then 〈X, τ,L〉 is a logically presented pre-spectral space
(a lpps) if its definable open subsets are compact, i.e., if τ ∩ L ⊆ K◦(X).

Whenever σ is a finite relational signature, X ⊆ Struct(σ) for a topological space (X, τ) and
L = JFO[σ]KX , we denote it by 〈X, τ,FO[σ]〉 for simplicity; e.g., 〈Struct(σ), τ⊆i ,FO[σ]〉 is a
lpps by Claim 2.2.

As τ ∩ L is closed under finite intersection, any open set in 〈τ ∩ L〉 is a union of sets
from τ ∩ L, thus any compact open set in K◦(X) is a finite union of sets from τ ∩ L. As
τ ∩ L is also closed under finite unions, this shows the inclusion K◦(X) ⊆ τ ∩ L. Thus, in
a lpps, K◦(X) = τ ∩ L is a bounded lattice and any lpps is indeed a pre-spectral space.
Conversely, 〈X, τ,K◦(X)〉 is well-defined whenever (X, τ) is a pre-spectral space; in this case
〈X, τ,K◦(X)〉 is a lpps and it equals (X, τ) (they have the same points and opens).

Beware however that (X, 〈τ ∩ L〉) = 〈X, τ,L〉 being pre-spectral does not entail that it
is a lpps; see Remark 3.6 at the end of the section. While pre-spectral spaces capture the
topological core behind Claim 2.2 with a simple definition, the logically presented ones are
the real objects of interest as far as preservation theorems are concerned, and most of the
technical difficulties arising in the remainder of the paper will be concerned with those.

3.2 Diagram Bases
Regarding Claim 2.1, we simply turn the statement of the claim into a definition, which is
typically instantiated with L = JFO[σ]KX and L′ = JFKX for a fragment F of FO[σ].

I Definition 3.3 (Diagram base). Let (X, τ) be a topological space, and L be a bounded
sublattice of ℘(X). Then L′ ⊆ L is a diagram base of 〈X, τ,L〉 if 〈τ ∩ L〉 = 〈L′〉.

In particular, if F ⊆ FO[σ] is stable under finite conjunction, this means that any definable
open set in X can be written as an infinite disjunction of F-definable sets. Over Struct(σ),
this was the “difficult” step in the classical proof of the Łoś-Tarski Theorem. When X ⊆
Fin(σ), this becomes considerably simpler: for every fragment F in Table 1 and any finite
structure A, there exists a diagram sentence ψF

A in F such that A ≤ B if and only if B |= ψF
A

for the corresponding quasi-ordering. Therefore, if ϕ is monotone and A ∈ JϕKX , then
A ∈ JψF

AKX ⊆ JϕKX , showing that JFKX is a base of 〈τ≤ ∩ JFO[σ]KX〉.

3.3 A Generic Preservation Theorem
We have already seen in the proof of the Łoś-Tarski Theorem why logically presented pre-
spectral spaces with a diagram base yield preservation. The following theorem also proves
the converse direction, under mild hypotheses on L′: L′ must be a lattice and must define
compact sets in X for the topology generated by L′. We usually instantiate the theorem
with X ⊆ Struct(σ), L = JFO[σ]KX , and L′ = JFKX where F is a fragment of FO[σ].

I Theorem 3.4 (Generic preservation). Let τ be a topology on X, L a bounded sublattice of
℘(X), and L′ a sublattice of L. The following are equivalent:
1. X has the (τ,L′) preservation property and L′ defines only compact sets for the topo-

logy 〈L′〉.
2. 〈X, τ,L〉 is a lpps and L′ defines a diagram base of it.

Proof. We prove the two implications separately.
1 =⇒ 2 Assume that X has the (τ,L′) preservation property. Consider a set U ∈ L ∩ τ:

by the preservation property, U ∈ L′. This already shows that L′ defines a diagram base
of 〈X, τ,L〉. Hence 〈L′〉 = 〈τ∩L〉. Since U ∈ L′, U is compact in 〈L′〉, which means that
U is compact in X. Therefore X is a lpps.

CSL 2021

32:8 Preservation Theorems Through the Lens of Topology

2 =⇒ 1 Assume that L′ defines a diagram base of 〈X, τ,L〉. If U ∈ τ ∩ L, then it can be
written as a possibly infinite union of elements in L′. Also assume that 〈X, τ,L〉 is a lpps:
then by compactness, U can be written as a finite union of elements in L′, hence as a
single element in L′ since L′ is a lattice. This proves that X has the (τ,L′) preservation
property. Finally, sets in L′ define compact sets in 〈L′〉 because it is precisely the topology
of 〈X, τ,L〉. J

The additional hypotheses on L′ in items 1 and 2 above are somewhat at odds. Asking
for L′ to define a diagram base is asking for 〈L′〉 to have enough sets, but asking for L′ to
only define compact sets is asking for 〈L′〉 not to contain too many sets.

I Remark 3.5 (Generic monotone preservation). The condition that F must define compact
sets in X in Theorem 3.4.1 is actually mild. Consider the preservation results from Table 1
for a fragment F and τ = τ≤ the Alexandroff topology of the associated quasi-ordering ≤.
Assume that X is a ≤-downwards-closed subset of Struct(σ) – this is the setting of the known
preservation results for classes of finite structures [5, 4, 32, 9, 22].

Observe that, in each case, JψKStruct(σ) for a sentence ψ ∈ F has finitely many ≤-minimal
models up to ≤-equivalence. Because X is downwards-closed, JψKX has the same finitely
many ≤-minimal models. Thus, by Remark 2.3, JψKX is compact in τ≤, and since JFKX ⊆ τ≤,
it is also compact in the topology generated by JFKX .

In the case of X = Fin(σ), this downward closure condition is fulfilled and F defines a
base, thus (τ≤,F) preservation holds if and only if 〈Fin(σ), τ≤,FO[σ]〉 is a lpps.

Theorem 3.4 is a generic relationship between pre-spectral spaces and preservation
theorems. The downward closure hypothesis in Remark 3.5 is necessary for the equivalence
between the preservation property and pre-spectral spaces to hold, as will be shown later
in Example 4.2.

I Remark 3.6. For each of the fragments F and associated quasi-orderings ≤ of Table 1,
〈Fin(σ), τ≤,FO[σ]〉 = (Fin(σ), 〈τ≤ ∩ JFO[σ]KFin(σ)〉) is a pre-spectral space. Indeed, by
Remark 2.3, any compact open K from K◦(Fin(σ)) is the upward closure K = ↑F of a finite
set F ⊆fin Fin(σ), thus K = J

∨
A∈F ψ

F
AKFin(σ), which shows that K◦(Fin(σ)) ⊆ JFKFin(σ).

As any ψ ∈ F has finitely many ≤-minimal models in Fin(σ), K◦(Fin(σ)) ⊇ JFKFin(σ), and
since F defines a base, 〈Fin(σ), τ≤,FO[σ]〉 is pre-spectral. However, by Remark 3.5 and the
non-preservation results of [36, 21, 3, 2, 34], 〈Fin(σ), τ⊆i ,FO[σ]〉, 〈Fin(σ), τ⊆,FO[σ]〉, and
〈Fin(σ), τ�,FO[σ]〉 are not lpps: the condition τ ∩ L ⊆ K◦(X) is crucial in order to derive
preservation results.

Another way of reaching the topological definitions of this section is to consider a folklore
result employed in several proofs of preservation theorems over classes of finite structures for
fragments F of EFO [32, 4, 5, 7]: if X is downwards-closed for ≤, a monotone sentence ϕ is
equivalent to a sentence from F if and only if it has finitely many ≤-minimal models in X
(up to ≤-equivalence). By Remark 2.3, this says that JϕKX is compact, while the folklore
result itself is essentially using the fact that F defines a base.

4 Related Notions

Pre-spectral spaces generalise two notions arising from order theory, topology, and logics:
Noetherian spaces and spectral spaces.

A. Lopez 32:9

4.1 Well-Quasi-Orderings and Noetherian Spaces

A topological space in which all subsets are compact, or, equivalently, all open subsets are
compact, is called Noetherian [19, Section 9.7]. A Noetherian space (X, τ) and a bounded
sublattice L of ℘(X) always define a lpps 〈X, τ,L〉. A related notion, considering a quasi-
order instead of a topology, leads to the well-known notion of well-quasi-orders [26]: a
quasi-order is a well-quasi-order if and only if its Alexandroff topology is Noetherian [19,
Proposition 9.7.17]. Thus, if (X,≤) is a well-quasi-order and L is a bounded sublattice of
℘(X), then 〈X, τ≤,L〉 is a lpps.

Applications of Noetherian Spaces to Preservation. Let us denote by G the class of finite
simple undirected graphs and by σG the signature with a single binary edge relation E; then
the induced substructure ordering ⊆i coincides with the induced subgraph ordering over G.

I Example 4.1 (Finite graphs of bounded tree-depth). Recall that the tree-depth td(G) of a
graph G is the minimum height of the comparability graphs F of partial orders such that G
is a subgraph of F [30, Chapter 6]. Let T≤n be the set of finite graphs of tree-depth at
most n ordered by the induced substructure relation ⊆i. This is a well-quasi-order [14],
thus 〈T≤n, τ⊆i

,FO[σG]〉 is a lpps, and therefore T≤n enjoys the (τ⊆i
,EFO[σG])-preservation

property by Theorem 3.4.

I Example 4.2 (Finite cycles). Consider the class C ⊆ G of all finite simple cycles. As is well
known, (C,⊆i) is not a well-quasi-order because any two different cycles are incomparable for
the induced substructure ordering [14]. In particular, every singleton is an open set: (C, τ⊆i)
is actually a topological space with the discrete topology, and its only compact sets are the
finite sets: 〈C, τ⊆i

,FO[σG]〉 is not a lpps.
By standard locality arguments, for any sentence ϕ, there exists a finite threshold n0

on the size of cycles, above which ϕ is either always true or always false (see the full paper
for details). Let τn be the topology over C generated by the definable co-finite sets and the
definable sets containing only cycles of size at most n. This is a variation of the co-finite
topology, and is also Noetherian. Hence, 〈T≤n, τ⊆i

,FO[σG]〉 is a lpps, and as EFO[σG] defines
a diagram base of it, we can apply Theorem 3.4 to deduce preservation. Now, given a
monotone sentence ϕ, either ϕ has finitely many models or it has co-finitely many. In both
cases, this sentence defines an open set in τn for some n that is definable in EFO[σG]. Thus
the set of finite cycles has the (τ⊆i

,EFO[σG]) preservation property.

The previous example shows that the closure condition of Remark 3.5 was necessary, by
proving that a space of structures can enjoy a preservation theorem while not defining a lpps.

Relativisation. The following proposition shows that, if we are looking for classes of
structures where preservation theorems always relativise, then we should endow them with a
Noetherian topology.

I Proposition 4.3. Let (X, τ) be a pre-spectral space such that for all Y ⊆ X, Y with the
induced topology is pre-spectral. Then X is Noetherian.

Proof. Consider any subset Y of X: by assumption, Y is pre-spectral, hence compact in the
induced topology, hence compact in (X, τ). J

CSL 2021

32:10 Preservation Theorems Through the Lens of Topology

4.2 Spectral Spaces
Spectral spaces are a class of topological spaces appearing naturally in the study of logics
and algebra as a generalisation of the Stone Duality theory. Throughout this section we refer
to two books and keep the notations consistent with them [19, 13]. A closed subset F of a
topological space X is irreducible whenever F is non-empty and is not the disjoint union of
two non-empty closed sets. The closure of a set Y in a space X is the smallest closed set
containing Y and is denoted by Y X or Y when X is clear from the context. A topological
space X is sober whenever any irreducible closed subset F is the closure of exactly one
point x ∈ X, which translates formally to ∃x ∈ X, {x} = F and ∀y ∈ X, {y} = F ⇒ y = x.
A spectral space is a pre-spectral space that is sober [13, Definition 1.1.5].

When a space (X, τ) is not sober, it is possible to build a sobrified version of this space
as follows [19, Definition 8.2.17]: S (X) is the set of irreducible closed sets of X, and the
topology is generated by the sets ♦U , {F ∈ S (X) | F ∩ U 6= ∅} where U is an open set
of X. It can be shown that this construction leads to a sober space, is idempotent up to
homeomorphism, and constructs the free sober space over X [19, Theorem 8.2.44]. This
leads to the following correspondence between pre-spectral spaces and spectral spaces.

I Fact 4.4 (Spectral versus pre-spectral). A space X is pre-spectral if and only if S (X) is
spectral.

The connection with spectral spaces is of particular interest, because the sobrification
functor gives a tool to translate result from the rich theory of spectral spaces to pre-spectral
spaces which will be extensively used in Section 5.

5 Basic Closure Properties

To study preservation theorems, we not only want to ensure that the space is pre-spectral,
but also to see that the lattice of compact open sets is obtained through a restriction of
the logic. Therefore, one of our main concerns with closure properties is to characterise the
lattice of compact sets, which must use properties of the definable sets and cannot rely solely
on topological constructions.

5.1 Morphisms
Spectral Maps. Let us first introduce the notion of morphism between pre-spectral spaces,
inherited from the case of spectral spaces [13, Definition 1.2.2]. A map f : (X, τ)→ (Y,θ) is
a spectral map whenever it is continuous and the pre-image of a compact-open set of Y is a
compact-open set of X. We will write PreSpec for the category of pre-spectral spaces and
spectral maps.

I Fact 5.1. The image of a pre-spectral space through a spectral map is pre-spectral.

A crucial role of spectral maps is to guard the definition of pre-spectral subspaces, mimicking
the one of spectral subspaces [13, Section 2.1]. A pre-spectral subspace is not only a subset
where the induced topology happens to be pre-spectral, but has the additional property that
the inclusion map is a spectral map.

Logical Maps. In the case of a lpps, a map f : 〈X, τ,L〉 → 〈Y,θ,L′〉 is a logical map
whenever it is continuous and the pre-image of a definable open set of Y is a definable open
set of X. A map between logically defined pre-spectral spaces is logical if and only if it

A. Lopez 32:11

is spectral, since compact open subsets and definable open subsets coincide in that case.
However, the use of logical maps is to prove that some spaces are pre-spectral by transferring
logical properties rather than topological ones.

I Fact 5.2. The image of a lpps 〈X, τ,L〉 through a logical map is a lpps.

Of particular interest are the logical maps obtained through syntactic constructions.
Let us define an FO-interpretation f : X → Y where X ⊆ Struct(σ1) and Y ⊆ Struct(σ2)
through “relation” formulæ ρR for all R ∈ σ2, where ρR has as many free variables as the
arity of R, and an additional “domain” formula δ ∈ FO[σ1] with one free variable. The image
of a σ1-structure A ∈ X is the σ2-structure f(A) with domain |f(A)| , {a ∈ |A| | A |= δ(a)}
and such that (a1, . . . , an) ∈ Rf(A) if and only if A |= ρR(a1, . . . , an). This is a simple model
of logical interpretations: many different notions can be found in the literature [8].

An FO-interpretation f : X → Y allows to transfer logical properties from one class of
structures to another: if ϕ ∈ FO[σ2] is a formula on the structures of Y , then there exists
a formula f−1(ϕ) ∈ FO[σ1] such that A |= f−1(ϕ)(~a) if and only if f(A) |= ϕ(f(~a)) [24,
Section 4.3]; thus, the pre-image of a definable set is definable.

I Fact 5.3. An FO-interpretation is a logical map if and only if it is continuous.

This provides us with a proof scheme to show that a space 〈Y, τ2,FO[σ2]〉 is a lpps: first,
build a lpps 〈X, τ1,FO[σ1]〉, then build a FO-interpetation that is surjective and continuous
from X to Y , and conclude that Y is a lpps. This is used for instance by [30, Corollary 10.7]
to show that the class of all p subdivisions of finite graphs enjoys homomorphism preservation
(using a slightly more general notion of FO-interpretations).

5.2 Relativisation
Preservation theorems do not relativise in general, but the stronger notion of being pre-
spectral shows that non-trivial sufficient conditions for relativisation exists. However, unlike
the theory of spectral spaces, there is not yet a full characterisation of the pre-spectral
subsets of a pre-spectral space; see the full paper for a discussion.

I Proposition 5.4 (Sufficient condition for relativisation). Let 〈X, τ,FO[σ]〉 be a lpps, Y be a
Boolean combination of compact-open subsets of X, and θ be the topology induced by τ on Y .
Then 〈Y, θ,FO[σ]〉 is a lpps.

Proof. It suffices to prove that any definable open set U of Y is the restriction to Y of some
definable open set of X. This stronger hypothesis is stable under finite unions and finite
intersections, thus we only need to deal with the cases where Y is a definable open of X or
the complement of one.

Let us first consider the case where Y is a definable open set of X. Then U = U ∩ Y is
the restriction to Y of an open definable set of X. Let us next consider the case where Y is
a definable closed set of X. Remark that V , U ∪ (X \ Y) is an open set of X, and is still
definable. Therefore U = V ∩ Y with V a definable open set of X. J

5.3 Disjoint Unions and Products
Rather than using an already existing pre-spectral space and considering sub-spaces to build
new smaller ones, it can be a rather efficient method to combine existing spaces to build
bigger spaces. However, to build preservation theorems out of these constructions, it is
necessary to represent those them as spaces of structures over some relational signature,
which will be the role of definitions 5.5 and 5.7.

CSL 2021

32:12 Preservation Theorems Through the Lens of Topology

I Definition 5.5 (Logical sum). Let (〈Xi, τi,FO[σi]〉)i∈I be a family of spaces. The logical
sum 〈X, τ,FO[σ]〉 is defined as follows:
1. The signature σ is the disjoint union of the signatures (σi)i∈I .
2. The set X is the union (disjoint by construction)

⋃
i∈I fi(Xi) where, for all i ∈ I,

fi : Xi → Struct(σ) is defined by |fi(A)| , |A| and (a1, . . . , an) ∈ Rfi(A) if and only if
R ∈ σi and (a1, . . . , an) ∈ RA.

3. The topology τ is generated by the sets fi(U) where U ∈ τi and i ∈ I.

The logical sum space is a simple translation of the topological sum space, which leads to
the following result (see the full paper for a proof).

I Proposition 5.6 (Stability under finite logical sum). Let (〈Xi, τi,FO[σi]〉)i∈I be a finite
family of lpps. The logical sum of those spaces is a lpps homeomorphic to the sum of those
spaces in PreSpec.

In the case of products, a sentence over a product is not simply obtained by projecting
on each component. This is handled in our proof of Proposition 5.8 in the full paper by
reducing the first-order theory of the product to the first-order theories of its components
thanks to Feferman-Vaught decompositions [16, 29].

I Definition 5.7 (Logical product). Let (〈Xi, τi,FO[σi]〉)i∈I be a family of spaces. The logical
product 〈X, τ,FO[σ]〉 is defined as follows:
1. The signature σ is the disjoint union of the signatures (σi)i∈I with additional unary

predicates εi for each i ∈ I.
2. The set X is the image of

∏
i∈I Xi through the map f :

∏
i∈I Xi → Struct(σ) that

associates to each (Ai)i∈I the disjoint union of the structures Ai with εi true on the
structure Ai for i ∈ I.

3. The topology τ generated by the sets U such that f−1(U) is an open set of
∏
i∈I(Xi, τi).

I Proposition 5.8 (Stability under finite logical product). Let (〈Xi, τi,FO[σi]〉)i∈I be a finite
family of lpps. The logical product of those spaces is a lpps homeomorphic to the product of
the spaces Xi in PreSpec.

6 Logical Closure

Consider a set Z equipped with a bounded sublattice L of ℘(Z). In this section, we provide
a way to consider the closure of a space X ⊆ Z in a suitable topology so that if X is a lpps,
then its closure also is. Let us write τL , 〈L ∪ {U c | U ∈ L}〉 for the topology generated by
the sets of L and their complements. We call the closure X of X in (Z, τL) its logical closure.

We show in the full paper that lpps are stable under logical closures. For X ⊆ Z and a
sublattice L of ℘(Z), we write LX , {U ∩X | U ∈ L} for the lattice induced by X.

I Proposition 6.1 (Stability under logical closure). Let X ⊆ Y ⊆ X and τ be a topology on Y .
If 〈X, τX ,LX〉 is a lpps for the topology τX induced by τ on X, then so is 〈Y, τ,LY 〉. If L′
is a sublattice of L and L′X is a diagram base of X then L′Y is a diagram base of Y .

Applications of logical closures. We now show that Proposition 6.1 allows to restate known
preservation theorems and derive new ones. We consider the case where Z = Struct(σ) and
L = JFO[σ]KStruct(σ), and we write τFO for the topology τL.

A. Lopez 32:13

Xi

X Y

Xj

fi,j

fi

fj

g

gi

gj

Figure 1 The commutative diagram of a projective system.

Let us define FMP(σ) ⊆ Struct(σ) as the set of structures whose first-order theory satisfies
the finite model property: any definable subset of FMP(σ) has a finite model. We prove
that homomorphism preservation can be lifted from Fin(σ) (where it holds by Rossman’s
Theorem) to FMP(σ) in Corollary 6.2. To our knowledge this is a new result. This follows
from Proposition 6.1 and the fact that FMP(σ) is the closure of Fin(σ) in the topology τFO
(see the full paper for the proof).

I Corollary 6.2 (Homomorphism preservation for structures with the finite model property).
FMP(σ) has the (τ→,EPFO[σ]) preservation property.

Let Fin](σ) be the set of countable disjoint unions of finite structures over a finite
relational signature σ. We state in Corollary 6.3 another consequence of Rossman’s Theorem
and Proposition 6.1, using the fact Fin(σ) (Fin](σ) (FMP(σ) = Fin(σ); the same result
was first shown by Nešetřil and Ossona de Mendez in [30, Theorem 10.6].

I Corollary 6.3 (Homomorphism preservation for countable unions of finite structures). Fin](σ)
has the (τ→,EPFO[σ]) preservation property.

7 Limits of Projective Systems

A natural construction in the category of topological spaces is the projective limit, and the
category Spec of spectral spaces and spectral maps is closed under this construction [13,
Corollary 2.3.8]. As an illustration, we show in Section 7.2 that 〈Fin(σ), τ→,FO[σ]〉 is the
projective limit of a system of Noetherian spaces, which provides an alternative understanding
of Rossman’s Theorem [32]. In fact, as we show in Section 7.3, any pre-spectral space is the
limit of a projective system of Noetherian spaces.

7.1 Projective Systems
A projective system F in a category C assigns to each element i of a directed partially ordered
set I an object Xi and to each ordered pair i ≤ j a so-called bonding map fi,j : Xi → Xj so
that, for all i, j, k ∈ I with k ≤ j ≤ i, we have fi,i = idXi

and fj,k ◦fi,j = fi,k. The projective
limit of a projective system F is an object X with maps fi : X → Xi compatible with the
system F , which means that, for all i ≥ j, fi,j ◦ fi = fj . Moreover, X satisfies a universal
property: whenever {gi : Y → Xi}i∈I is a family of maps compatible with F , there exists a
unique map g : Y → X such that gi = fi ◦ g for all i ∈ I.

Unfortunately, there exists projective systems in PreSpec that do not have limits, as can
be witnessed by a slight adaptation of [35, Example 3]. Let us introduce here the category of
topological spaces and continuous maps, denoted by Top. A projective system in PreSpec

CSL 2021

32:14 Preservation Theorems Through the Lens of Topology

is a projective system of topological spaces in Top. A projective system in PreSpec always
has a limit when considered as a projective system in Top; we give a sufficient condition for
this space to be the limit in PreSpec (see the full paper for the proof).

I Lemma 7.1 (Transfer of projective limits). Let F be a projective system of pre-spectral
spaces in PreSpec. If {fi : X → Xi}i∈I is the limit of F in Top where the maps
fi : X → Xi are spectral, then it is the limit of F in PreSpec. Moreover, K◦(X) =⋃
i∈I
{
f−1
i (V) | V ∈ K◦(Xi)

}
.

7.2 Application to the Homomorphism Preservation Theorem
Throughout this section, we fix a finite relational signature σ and a downwards-closed subset
X of Fin(σ) for the homomorphism ordering →, i.e., X is co-homomorphism closed. We will
see how Rossman’s Theorem can be explained as the existence of a projective limit.

n-Homomorphisms. Let us define the tree-depth td(A) of a finite structure A as the tree-
depth td(G(A)) of its associated Gaifman graph G(A) [27, Definition 4.1]. Following the idea
of the original proof in [32, Section 3.2], we are going to use quasi-orders that are coarser
than the homomorphism quasi-order, and refine those progressively. For every n ∈ N, we
define A →n B if for every structure C of tree-depth at most n, C → A implies C → B.
Note that on finite structures, A → B if and only if A →td(A) B. Then the intersection
of all the →n relations is →. Let us consider the corresponding Alexandroff topologies:
X , 〈X, τ→,FO[σ]〉 and for n ∈ N, let Xn , 〈X, τ→n ,FO[σ]〉.

Rossman’s Lemma. In his paper [32], Rossman provides a function ρ : N→ N and relates
indistinguishability in the fragment FOn[σ] of first-order logic with quantifier rank at most n to
ρ(n)-homomorphism equivalence [32, Corollary 5.14]. We state this result in a self-contained
manner below (see also [30, Theorem 10.5]).

I Lemma 7.2 (Rossman’s Lemma [32]). There exists ρ : N→ N such that, for all n ∈ N, if
ϕ ∈ FOn[σ] is closed under homomorphisms, then it is closed under ρ(n)-homomorphisms.

Rossman’s Lemma is the combinatorial heart of Rossman’s Theorem, so the developments
in this section are only meant to show how the pre-spectral framework can capture his
arguments translating the technical statement from Lemma 7.2 into a proof of homomorphism
preservation in the finite.

Projective System. We are now ready obtainX as a limit of a projective system in PreSpec.
We are going to exploit Lemma 7.2 through the definition of the topological spaces Yn ,
〈X, τ→,FOn[σ]〉 for all n. We will use the following consequence of Rossman’s Lemma (see
the full paper for a proof).

B Claim 7.3. ∀n ≥ 1,K◦(Yn) ⊆ K◦
(
Xρ(n)

)
⊆ K◦(X).

The following theorem was famously first shown by Rossman in [32, Corollary 7.1]. A
more recent proof in [33] uses lower bounds from circuit complexity. Similar results were
shown in [30, Section 10.7] when assuming essentially the same statement as Lemma 7.2;
in fact, carefully unwrapping the hypotheses of the topological preservation theorem of [30,
Theorem 10.3] leads to the very definition of a projective system.

I Theorem 7.4. Let σ be a finite relational signature and X be a non-empty downwards-closed
subset of Fin(σ) for →. Then X has the (τ→,EPFO[σ]) preservation property.

A. Lopez 32:15

Proof. Consider the projective system F , {idi,j : Yi → Yj}i≤j∈I indexed by I , N \ {0}.
Each space Yi is Noetherian for all i ∈ I because FOi[σ] contains finitely many non-equivalent
sentences, hence Yi contains finitely many open sets. Hence K◦(Yi) = τ→ ∩ JFOi[σ]KX . Also,
the maps idi,j are spectral and F is a projective system in PreSpec. Claim 7.3 shows that
the identity map idi : X → Yi is a spectral map for all i ∈ I.

Assume that {gi : Z → Yi}i∈I is a collection of morphisms in Top such that ∀i ≥ j ∈
I, gj = idi,j ◦ gi. Since idi,j is the identity map, all the maps (gi)i∈I are equal. In particular,
one can build g : Z → X defined by any one of them. Let us show that g is a continuous
map. If U is a definable open set of X, then U is a definable open set in Yn for some n, hence
g−1(U) = g−1

n (U) is open. Since X has a base of definable open sets, this proves that g is
continuous.

Assume that g′ is an other continuous map making the diagram commute. As I is non
empty, consider some i ∈ I, we have gi = idi ◦ g = idi ◦ g′. Since fi is the identity map we
conclude g = g′.

We have shown that X is the limit of F in Top. Since the maps idi : X → Xi are
spectral, Lemma 7.1 shows that X is a pre-spectral space such that K◦(X) =

⋃
i∈I K◦(Yi) =

τ→ ∩ JFO[σ]KX . In particular, X is a lpps. As X is downwards-closed, by Remark 3.5 it has
the (τ→,EPFO[σ])-preservation property. J

7.3 Completeness
We are now going to prove that any pre-spectral space can be obtained as a solution to
a projective system of pre-spectral spaces, showing that the proof method of the previous
sub-section is in some sense complete. In fact, this system is going to contain only Noetherian
spaces (see the full paper). It is analoguous to the fact that any spectral space is a projective
limit of finite T0 spaces [23, Proposition 10].

I Proposition 7.5 (Pre-spectral spaces are limits of Noetherian spaces). Let (X, τ) be a pre-
spectral space, there exists a projective system of Noetherian spaces in PreSpec such that X
is the limit of this projective system.

8 Concluding Remarks

In this paper, we have introduced a general framework for preservation results, mixing
topological and model-theoretic notions. The key notion here is the one of logically presented
pre-spectral spaces, which requires the (topological) compactness of the definable sets of
interest. This definition captures simultaneously the classical proofs of preservation theorems
over the class of all structures (we detailed the case of the Łoś-Tarski Theorem in Section 2.2)
and all the known preservation results over classes of finite structures in the literature (see
Remark 3.5). Our approach is comparable to the one adopted in the topological preservation
theorem of [30, Theorem 10.3], in that we employ topological concepts to present a generic
preservation theorem; however we believe our formulation to be considerably simpler and
more flexible.

We have developed a mathematical toolbox for working with logically presented pre-
spectral spaces, allowing to build new spaces from known ones. Besides relatively mundane
stability properties under suitable notions of morphisms, subspaces, finite sums, and finite
products – which still required quite some care in order to account for first-order definability – ,
we have shown that more exotic constructions through topological closures or projective
limits of topological spaces could also be employed. Those last two constructions give an

CSL 2021

32:16 Preservation Theorems Through the Lens of Topology

alternative viewpoint on Rossman’s proof of homomorphism preservation over the class of
finite structures (Theorem 7.4), and a new homomorphism preservation result over the class
of structures with the finite model property (Corollary 6.2).

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,

1995.
2 Miklós Ajtai and Yuri Gurevich. Monotone versus positive. Journal of the ACM, 34(4):1004–

1015, 1987. doi:10.1145/31846.31852.
3 Miklós Ajtai and Yuri Gurevich. Datalog vs first-order logic. Journal of Computer and System

Sciences, 49(3):562–588, 1994. doi:10.1016/S0022-0000(05)80071-6.
4 Albert Atserias, Anuj Dawar, and Martin Grohe. Preservation under extensions on well-

behaved finite structures. SIAM Journal on Computing, 38(4):1364–1381, 2008. doi:10.1137/
060658709.

5 Albert Atserias, Anuj Dawar, and Phokion G. Kolaitis. On preservation under homomorphisms
and unions of conjunctive queries. Journal of the ACM, 53(2):208–237, 2006. doi:10.1145/
1131342.1131344.

6 Chen Chung Chang and H. Jerome Keisler. Model Theory, volume 73 of Studies in Logic and
the Foundations of Mathematics. Elsevier, 1990.

7 Yijia Chen and Jörg Flum. Forbidden induced subgraphs and the Łoś-Tarski Theorem.
Preprint, 2020. URL: https://arxiv.org/abs/2008.00420.

8 Bruno Courcelle. Monadic second-order definable graph transductions: a survey. Theoretical
Computer Science, 126(1):53–75, 1994. doi:10.1016/0304-3975(94)90268-2.

9 Anuj Dawar. Homomorphism preservation on quasi-wide classes. Journal of Computer and
System Sciences, 76(5):324–332, 2010. doi:10.1016/j.jcss.2009.10.005.

10 Anuj Dawar and Stephan Kreutzer. On Datalog vs. LFP. In Proceedings of ICALP’08,
volume 5126 of Lecture Notes in Computer Science, pages 160–171, 2008. doi:10.1007/
978-3-540-70583-3_14.

11 Anuj Dawar and Abhisekh Sankaran. Extension preservation in the finite and prefix classes of
first order logic. Preprint, 2020. URL: https://arxiv.org/abs/2007.05459.

12 Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. The chase revisited. In Proceedings of
PODS’08, pages 149–158, 2008. doi:10.1145/1376916.1376938.

13 Max Dickmann, Niels Schwartz, and Marcus Tressl. Spectral Spaces, volume 35 of New
Mathematical Monographs. Cambridge University Press, 2019.

14 Guoli Ding. Subgraphs and well-quasi-ordering. Journal of Graph Theory, 16:489–502, 1992.
doi:10.1002/jgt.3190160509.

15 Tomás Feder and Moshe Y. Vardi. Homomorphism closed vs. existential positive. In Proceedings
of LICS’03, pages 311–320, 2003. doi:10.1109/LICS.2003.1210071.

16 Solomon Feferman and Robert Vaught. The first order properties of products of algebraic
systems. Fundamenta Mathematicae, 47(1):57–103, 1959. doi:10.4064/fm-47-1-57-103.

17 Diego Figueira and Leonid Libkin. Pattern logics and auxiliary relations. In Proceedings of
CSL-LICS’14, pages 40:1–40:10, 2014. doi:10.1145/2603088.2603136.

18 Amélie Gheerbrant, Leonid Libkin, and Cristina Sirangelo. Naïve evaluation of queries over
incomplete databases. ACM Transactions on Database Systems, 39(4):1–42, 2014. doi:
10.1145/2691190.2691194.

19 Jean Goubault-Larrecq. Non-Hausdorff Topology and Domain Theory, volume 22 of New
Mathematical Monographs. Cambridge University Press, 2013.

20 Martin Grohe. Existential least fixed-point logic and its relatives. Journal of Logic and
Computation, 7(2):205–228, 1997. doi:10.1093/logcom/7.2.205.

https://doi.org/10.1145/31846.31852
https://doi.org/10.1016/S0022-0000(05)80071-6
https://doi.org/10.1137/060658709
https://doi.org/10.1137/060658709
https://doi.org/10.1145/1131342.1131344
https://doi.org/10.1145/1131342.1131344
https://arxiv.org/abs/2008.00420
https://doi.org/10.1016/0304-3975(94)90268-2
https://doi.org/10.1016/j.jcss.2009.10.005
https://doi.org/10.1007/978-3-540-70583-3_14
https://doi.org/10.1007/978-3-540-70583-3_14
https://arxiv.org/abs/2007.05459
https://doi.org/10.1145/1376916.1376938
https://doi.org/10.1002/jgt.3190160509
https://doi.org/10.1109/LICS.2003.1210071
https://doi.org/10.4064/fm-47-1-57-103
https://doi.org/10.1145/2603088.2603136
https://doi.org/10.1145/2691190.2691194
https://doi.org/10.1145/2691190.2691194
https://doi.org/10.1093/logcom/7.2.205

A. Lopez 32:17

21 Yuri Gurevich. Toward logic tailored for computational complexity. In Computation and Proof
Theory, Proceedings of LC’84, volume 1104 of Lecture Notes in Mathematics, pages 175–216.
Springer, 1984. doi:10.1007/BFb0099486.

22 Frederik Harwath, Lucas Heimberg, and Nicole Schweikardt. Preservation and decomposition
theorems for bounded degree structures. In Proceedings of CSL-LICS’14, pages 49:1–49:10,
2014. doi:10.1145/2603088.2603130.

23 Melvin Hochster. Prime ideal structure in commutative rings. Transactions of the American
Mathematical Society, 142:43–60, 1969. doi:10.1090/S0002-9947-1969-0251026-X.

24 Wilfrid Hodges. A shorter model theory. Cambridge University Press, 1997.
25 Phokion G. Kolaitis. Reflections on finite model theory. In Proceedings of LICS’07, pages

257–269, 2007. doi:10.1109/LICS.2007.39.
26 Joseph B. Kruskal. The theory of well-quasi-ordering: A frequently discovered concept.

Journal of Combinatorial Theory, Series A, 13(3):297–305, 1972. doi:10.1016/0097-3165(72)
90063-5.

27 Leonid Libkin. Elements of finite model theory. Springer, 2012.
28 Jerzy Łoś. On the extending of models (I). Fundamenta Mathematicae, 42(1):38–54, 1955.

doi:10.4064/fm-42-1-38-54.
29 Johann A. Makowsky. Algorithmic uses of the Feferman–Vaught Theorem. Annals of Pure

and Applied Logic, 126(1–3):159–213, 2004. doi:10.1016/j.apal.2003.11.002.
30 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity: Graphs, Structures, and Algorithms.

Springer, 2012.
31 Eric Rosen. Some aspects of model theory and finite structures. Bulletin of Symbolic Logic,

8(3):380–403, 2002. doi:10.2178/bsl/1182353894.
32 Benjamin Rossman. Homomorphism preservation theorems. Journal of the ACM, 55(3):15:1–

15:53, 2008. doi:10.1145/1379759.1379763.
33 Benjamin Rossman. An improved homomorphism preservation theorem from lower bounds in

circuit complexity. ACM SIGLOG News, 3(4):33–46, 2016. doi:10.1145/3026744.3026746.
34 Alexei P. Stolboushkin. Finitely monotone properties. In Proceedings of LICS’95, pages

324–330, 1995. doi:10.1109/LICS.1995.523267.
35 Arthur H. Stone. Inverse limits of compact spaces. General Topology and its Applications,

10(2):203–211, 1979. doi:10.1016/0016-660X(79)90008-4.
36 William W. Tait. A counterexample to a conjecture of Scott and Suppes. Journal of Symbolic

Logic, 24(1):15–16, 1959. doi:10.2307/2964569.
37 Alfred Tarski. Contributions to the theory of models. I. Indagationes Mathematicae (Proceed-

ings), 57:572–581, 1954. doi:10.1016/S1385-7258(54)50074-0.
38 Balder ten Cate and Phokion G. Kolaitis. Structural characterizations of schema-mapping

languages. In Proceedings of ICDT’09, pages 63–72, 2009. doi:10.1145/1514894.1514903.

CSL 2021

https://doi.org/10.1007/BFb0099486
https://doi.org/10.1145/2603088.2603130
https://doi.org/10.1090/S0002-9947-1969-0251026-X
https://doi.org/10.1109/LICS.2007.39
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.4064/fm-42-1-38-54
https://doi.org/10.1016/j.apal.2003.11.002
https://doi.org/10.2178/bsl/1182353894
https://doi.org/10.1145/1379759.1379763
https://doi.org/10.1145/3026744.3026746
https://doi.org/10.1109/LICS.1995.523267
https://doi.org/10.1016/0016-660X(79)90008-4
https://doi.org/10.2307/2964569
https://doi.org/10.1016/S1385-7258(54)50074-0
https://doi.org/10.1145/1514894.1514903

Choiceless Computation and Symmetry:
Limitations of Definability
Benedikt Pago
Mathematical Foundations of Computer Science, RWTH Aachen University, Germany
pago@logic.rwth-aachen.de

Abstract
The search for a logic capturing PTIME is a long standing open problem in finite model theory. One
of the most promising candidate logics for this is Choiceless Polynomial Time with counting (CPT).
Abstractly speaking, CPT is an isomorphism-invariant computation model working with hereditarily
finite sets as data structures.
While it is easy to check that the evaluation of CPT-sentences is possible in polynomial time, the
converse has been open for more than 20 years: Can every PTIME-decidable property of finite
structures be expressed in CPT?
We attempt to make progress towards a negative answer and show that Choiceless Polynomial Time
cannot compute a preorder with colour classes of logarithmic size in every hypercube. The reason is
that such preorders have super-polynomially many automorphic images, which makes it impossible
for CPT to define them.
While the computation of such a preorder is not a decision problem that would immediately separate
P and CPT, it is significant for the following reason: The so-called Cai-Fürer-Immerman (CFI)
problem is one of the standard “benchmarks” for logics and maybe best known for separating
fixed-point logic with counting (FPC) from P. Hence, it is natural to consider this also a potential
candidate for the separation of CPT and P. The strongest known positive result in this regard says
that CPT is able to solve CFI if a preorder with logarithmically sized colour classes is present in the
input structure.
Our result implies that this approach cannot be generalised to unordered inputs. In other words,
CFI on unordered hypercubes is a PTIME-problem which provably cannot be tackled with the
state-of-the-art choiceless algorithmic techniques.

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Mathematics of
computing → Permutations and combinations

Keywords and phrases finite model theory, descriptive complexity, choiceless computation, symmet-
ries of combinatorial objects

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.33

Acknowledgements I would like to thank my advisor Erich Grädel for helpful comments and
discussions.

1 Introduction

One of the big open questions in descriptive complexity theory is whether there exists a logic
capturing PTIME (see [4], [10], [11], [13]). Towards an answer to this question, several logics
of increasing expressive power within PTIME have been devised, the best-studied of which
is probably FPC, fixed-point logic with counting (see [5] for a survey). However, FPC only
corresponds to a strict subset of PTIME because it cannot express the so-called CFI query, a
version of the graph isomorphism problem on certain graphs constructed by Cai, Fürer and
Immerman in 1992 [3]. This problem is in P and has turned out to be extremely valuable as a
benchmark for PTIME-logics as well as for certain classes of graph isomorphism algorithms.

© Benedikt Pago;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 33; pp. 33:1–33:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pago@logic.rwth-aachen.de
https://doi.org/10.4230/LIPIcs.CSL.2021.33
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Limitations of Choiceless Definability

The most important candidate logics for capturing PTIME, which have not yet fallen prey
to the CFI problem, are Rank logic [6] and Choiceless Polynomial Time (CPT). CPT was
introduced in 1999 by Blass, Gurevich and Shelah [2] as a machine model that comes as close
to Turing machines as possible, while enforcing isomorphism-invariance of the computations
– this property is precisely the main difference between logics and classical Turing machines.
Since its original invention, various different formalisations of CPT have emerged but the
underlying principle is always the same: Symmetric computation on polynomially-sized
hereditarily finite sets as data structures.

Not many lower bound results for Choiceless Polynomial Time are known so far, and of
course, no decision problem in P has been shown to be undefinable in CPT. However, what
has been achieved is a non-definability statement for a functional problem: Rossman showed
that CPT cannot define the dual of any given finite vector space [15]. Our contribution
is a result of a similar kind, but stronger in a sense: We show non-definability not only
for a concrete functionally determined object, but for all objects satisfying a certain set of
properties. Concretely, no CPT program can define a hereditarily finite set representing
a preorder with colour classes of logarithmic size in every hypercube. This can be seen –
potentially – as a first step towards a non-definability result for a decision problem: the
already mentioned CFI query; this would separate CPT from PTIME. Let us explain what
undefinable preorders have to do with the CFI problem (see Section 3 for details).

Recall that a preorder in a structure can be seen as a linear order on a collection of
colour classes, which form a partition of the universe: These colour classes are subsets of the
structure whose elements are pairwise indistinguishable. The smaller the colour classes are,
the “finer” is the preorder, and the more closely it resembles a linear order. By the famous
Immerman-Vardi Theorem ([12], [17]), fixed-point logic, and therefore also CPT, captures
PTIME on linearly ordered structures. Therefore, intuitively speaking, hard problems like
CFI should become easier to handle if CPT is able to define a sufficiently fine preorder, or
even a linear order, on the input structure. Indeed, Pakusa, Schalthöfer and Selman showed
that CPT can define the CFI query if a preorder with colour classes of logarithmic size is
available [14]. This is the strongest known positive result concerning the solvability of CFI
in CPT.
Our contribution implies that this result cannot be generalised to the CFI problem on
unordered input structures: Instances of CFI can be obtained by applying the Cai-Fürer-
Immerman construction to any family of connected graphs, in particular also to hypercubes.
Since CPT cannot define a sufficiently fine preorder in all hypercubes, and the CFI construc-
tion preserves the hypercube-structure, the algorithmic technique from [14] which heavily
relies on such preorders cannot be applied to all unordered CFI structures.
Therefore, if CFI on unordered structures is solvable in CPT, entirely new choiceless al-
gorithmic techniques are needed to show this. Otherwise, if CFI is indeed a separating
problem for CPT and P, one possible approach to prove this would be to identify further
hereditarily finite sets over hypercubes which are not CPT-definable.

Technically, what we show in this paper is a statement concerning the orbit size of certain
hereditarily finite objects over hypercubes: For every n ∈ N, fix a h.f. object representing
a preorder in the n-dimensional hypercube. If the colour classes of each preorder are of
logarithmic size w.r.t. the hypercube, then the orbit size (w.r.t. the hypercube-automorphisms)
of these h.f. objects grows super-polynomially in 2n, which is the size of the n-dimensional
hypercube.

Since CPT is a logic and therefore isomorphism-invariant, it has to define any object
together with its entire orbit – if the size of the orbit is not polynomially bounded, then this
is not possible in Choiceless Polynomial Time. In fact, we can interpret this non-definability

B. Pago 33:3

result as an inherent weakness of choiceless polynomial time computation in general: It holds
for any isomorphism-invariant polynomial time (or even polynomial space) computation
model on hereditarily finite sets. Hence, should it be the case that CPT fails to capture
PTIME because of a super-polynomial orbit argument like this one, we could conclude that
the quest for a PTIME-logic should continue with other data structures than hereditarily
finite sets.

Finally, we remark that the main combinatorial tool we use in our proof – so-called
supporting partitions – is taken from [1], where Anderson and Dawar show a correspondence
between FPC and Symmetric Circuits. There, it is used for the calculation of orbit sizes of
circuit gates. The fact that this tool also helps to understand the symmetries of hereditarily
finite objects over hypercubes demonstrates its versatility and usefulness for the study of
symmetric objects in general.

2 Choiceless computation and the undefinability of preorders

In this paper, we will not give a definition of CPT, but only state its properties that our
lower bound depends on. Thereby, our result also holds for a much broader class of choiceless
computation models that includes CPT.
For details on CPT, we refer to the literature: A concise survey on the subject can be found
in [8]. It should be noted that there are multiple different ways to formalise CPT: The
original definition was via abstract state machines [2], but there are also more “logic-like”
presentations such as Polynomial Interpretation Logic (see [9], [16]) and BGS-logic [15]. The
latter is essentially a fixed-point logic that allows for the isomorphism-invariant creation
and manipulation of hereditarily finite sets over the input structure. In fact, it has been
shown in [7] that any CPT-program (the words “program” and “sentence” are often used
interchangeably in the context of CPT) is equivalent to a sentence in FPC (fixed-point logic
with counting) evaluated in the input structure enriched with all the necessary hereditarily
finite sets. Therefore, let us make this notion precise.

Hereditarily finite sets and choiceless computation

Let A be a nonempty set. The set of hereditarily finite objects over A, HF(A), is defined as⋃
i∈N HFi(A), where HF0(A) := A ∪ {∅},HFi+1(A) := HFi(A) ∪ 2HFi(A). The size of an h.f.

set x ∈ HF(a) is measured in terms of its transitive closure tc(x): The set tc(x) is the least
transitive set such that x ∈ tc(x). Transitivity means that for every a ∈ tc(x), a ⊆ tc(x).
If the atom set A is the universe of a structure A, then the action of Aut(A) ⊆ Sym(A), the
automorphism group of A, extends naturally to HF(A): For x ∈ HF(A), π ∈ Aut(A), xπ is
obtained from x by replacing each occurrence of an atom a in x with π(a).
The orbit (w.r.t. the action of Aut(A)) of an object x ∈ HF(A) is the set of all its automorphic
images, i.e. {xπ | π ∈ Aut(A)}. The stabiliser Stab(x) of x is the subgroup {π ∈ Aut(A) |
xπ = x}.

I Definition 1. Let A be a finite relational structure with universe A, and p : N −→ N a
polynomial. We say that a h.f. object x ∈ HF(A) is

symmetric (w.r.t. A) if x is stabilised by all automorphisms of A, i.e. Stab(x) = Aut(A);
p-bounded if |tc(x)| ≤ p(|A|).

Every CPT-program comes with an explicit polynomial bound p that limits both the
length of its runs as well as the size of the h.f. sets that it may use in the computation.
Further, due to its nature as a logic, all operations of CPT are symmetry-invariant. This is

CSL 2021

33:4 Limitations of Choiceless Definability

already everything that our lower bound depends on. The following abstract view on the
execution of CPT-programs is true regardless of the concrete presentation of CPT, and this
level of abstraction is sufficient for the purposes of this paper:

Let Π be a CPT-program with bound p, and A be a structure of matching signature. Then
the run of Π on A is a sequence of h.f. sets x1, x2, ... ∈ HF(A), each of which is symmetric
and p-bounded w.r.t. A.

Consequently, no CPT-program – and generally, no computation model operating on
symmetric p-bounded h.f. sets – can compute a h.f. set x with super-polynomial orbit size
because the corresponding stage of the run must contain x along with its entire orbit in order
to fulfil the symmetry-condition. Now, we are almost ready to state our general lower bound
theorem, which applies to CPT as a special case by the facts just mentioned.

Preorders and colour classes

A preorder ≺ on a set A induces a partition of A into colour classes C1, ..., Cm. A colour class
is a set of ≺-incomparable elements, and ≺ induces a linear order on the colour classes. The
canonical representation of such a preorder as a h.f. set is {C1, {C2, {C3, {...}}}}. However,
our lower bound holds for any representation that places elements from the same colour class
at the same “nesting depth” within the h.f. set (see Section 4 for the formal definition). This
is sufficient because even a representation that does not distinguish colour classes by nesting
depth can easily be transformed into the canonical representation above by a CPT-program.

I Theorem 2. Let (Hn)n∈N be the sequence of n-dimensional hypercubes. In each Hn, fix
any preorder ≺n on the vertex set with colour classes of size O(n) = O(log |Hn|). Let xn be
any symmetric (w.r.t. Hn) h.f. set over Hn that contains a h.f. representation of ≺n. Then
there exists no polynomial p such that xn is also p-bounded w.r.t. the corresponding Hn.

The proof can be found in Section 6. As already explained, this implies the following
nondefinability statement for CPT.

I Corollary 3. There is no CPT-program that computes in every hypercube Hn a (h.f. set
representation of a) total preorder with colour classes of size O(n).

3 Previous work and the significance of undefinable preorders

As already mentioned, our contribution is a non-definability result for a functional problem,
the computation of certain preorders.
However, our research is motivated by the study of a decision problem which is seen as a
potential candidate for the separation of CPT from PTIME: The so-called CFI problem, that
we briefly introduce next. Whether CFI in its general version is solvable in CPT is an open
question, but at least for restricted versions, where the structures possess a certain degree of
built-in order, it is known to be in CPT. Our non-definability result implies that being able
to solve the restricted version of CFI in CPT is of no help for solving CFI in the general case.

The CFI problem

For a detailed account of the CFI problem and the construction of the so-called CFI graphs,
we refer the reader to the original paper [3] by Cai, Fürer and Immerman. Here, we only
review it to an extent sufficient for our purposes.

Essentially, CFI is the Graph Isomorphism problem on specific pairs of graphs that are
obtained by applying the so-called CFI construction to a family of connected graphs, for
example, to hypercubes. These are referred to as the underlying graphs. The construction

B. Pago 33:5

replaces every edge and every vertex of the underlying graph with a gadget. Importantly, the
symmetries of the underlying graph are preserved this way. Any underlying graph G can be
transformed into an odd and an even CFI graph, G0 and G1. It holds G0 6∼= G1, and there is
a simple polynomial time algorithm which can determine, given a CFI graph Gx, whether it
is odd or even, i.e. if Gx ∼= G0, or Gx ∼= G1. This is what the CFI problem asks for.
However, on the logical side, that is, in FO with counting, G0 andG1 can only be distinguished
with a linear number of variables. As a consequence, no FPC-sentence can solve the CFI-
problem (on a suitable class of underlying graphs). Since this very expressive “reference logic”
within PTIME fails to solve CFI, this raises the question whether CPT is strong enough to
achieve this, or if CFI is indeed a problem that separates CPT from P.

Solving CFI in CPT

If the underlying graphs of the CFI construction satisfy certain properties, then CFI can be
solved in CPT:

I Theorem 4 ([14]). Let K be the class of connected, preordered graphs G = (V,E,≺) where
the size of each colour class is bounded by log |V |. The CFI problem on underlying graphs in
K can be solved in Choiceless Polynomial Time.

This is the strongest known positive result concerning CFI and CPT. It is a generalisation
of the CPT-algorithm by Dawar, Richerby and Rossman from [7] for the CFI problem on
linearly ordered graphs. Note that not the CFI graphs G0, G1 are ordered/preordered in
these settings, but only the underlying graph G (otherwise, the Immerman-Vardi Theorem
could be applied). The order/preorder on G allows for the algorithmic creation of a so-called
“super-symmetric” h.f. object with polynomial orbit which makes it possible to determine the
parity of the input CFI graph Gx. This object reflects in its structure the preorder on the
input, and is therefore not definable in unordered inputs according to our Theorem 2: It
can be checked that Theorem 2 not only holds for hypercubes but also for the CFI graphs
obtained from them; this is true because Aut(G) embeds into Aut(Gx) for any graph G

and corresponding CFI graph Gx. Hence, the algorithmic technique that proves Theorem 4
cannot be generalised to the CFI problem on unordered graphs. In fact, any CPT algorithm
that is to solve the unordered CFI problem must avoid the construction of a h.f. object whose
nesting structure induces a too fine preorder on the input.

We remark that there are of course families of graphs where the undefinability of such
preorders is much easier to show than on hypercubes. For instance, on complete graphs, it is
clear that the orbit of a preorder with logarithmic colour classes grows super-polynomially.
However, the size of any CFI graph G0 is exponential in the maximal degree of G. Therefore,
the polynomial resources of CPT suffice to solve CFI on unordered graphs of linear maximal
degree (this is another result from [14]). Hence, complete graphs do not yield hard CFI
instances. In contrast, CFI on hypercubes is well-suited as a benchmark for CPT because
their degree is logarithmic and thus the CFI construction only increases the size polynomially.

Our lower bound is a first piece of evidence that the CFI problem on hypercubes is hard
(and maybe even unsolvable) for CPT and we believe that it deserves further investigation.
The results in [7] indirectly suggest a systematic way to do so: Namely, Dawar, Richerby
and Rossman showed that – as long as the CFI structures satisfy a certain homogeneity
condition – solving the CFI problem in CPT always requires the construction of a h.f. set
which contains a large subset of the input structure as atoms. If it were possible to show
that no sufficiently large h.f. object over hypercubes has a polynomial orbit, then this could
be used to separate CPT from PTIME. Our result is a step in that direction as it suggests
that this large object cannot be structurally similar to a preorder.

CSL 2021

33:6 Limitations of Choiceless Definability

4 Analysing orbits of hereditarily finite objects over hypercubes

Let Hn = (Vn, En) be the n-dimensional hypercube, i.e. Vn = {0, 1}n,
En = {{u, v} ∈ V 2

n | d(u, v) = 1}, where d(u, v) is the Hamming-distance.
It is well-known that its automorphism group Aut(Hn) is isomorphic to the semidirect
product of Symn and ({0, 1}n,⊕), where Symn is the symmetric group on [n] = {1, 2, ..., n},
and ({0, 1}n,⊕) is the group formed by the length-n binary strings together with the bitwise
XOR-operation. More precisely, any automorphism σ ∈ Aut(Hn) corresponds to the pair
(π,w) ∈ Symn × {0, 1}n with σ(v) = vπ ⊕ w, where vπ = vπ−1(1)vπ−1(2)...vπ−1(n) (i.e. vπ
is obtained from v by permuting the positions of the word according to π). This means:
|Aut(Hn)| = n! · 2n. Note that it is the factor n! which makes the size of this group
super-polynomial in |Vn| = 2n.

Our main technical theorem, Theorem 13 concerns a fixed sequence of h.f. objects over
the n-dimensional hypercubes, (xn)n∈N, where xn ∈ HF(Vn). We aim for a lower bound
on the orbit size of the objects xn w.r.t. the action of Aut(Hn) extended to HF(Vn). For
our purposes, it only matters whether this lower bound is super-polynomial in 2n = |Vn|,
or not. For this question, we can restrict ourselves to automorphisms corresponding to
permutation-word pairs of the form (π, 0n), for π ∈ Symn. Therefore, for the rest of this
paper, we simply let Symn act on Vn by permuting the positions of the binary strings as
described above. In this sense, Symn embeds into Aut(Hn), and hence, whenever an object
x ∈ HF(Vn) has a super-polynomial orbit with respect to this action of Symn, this is also
true with respect to the action of Aut(Hn).

To sum up, our task is to lower-bound the orbit-sizes of h.f. objects over length-n binary
strings with respect to Symn acting on the positions of the strings. We do this via the
Orbit-Stabiliser Theorem. Let ρ : Symn −→ Aut(Hn) denote the aforementioned embedding.
For the rest of the paper, let Stabn(xn) and Orbitn(xn) denote the stabiliser and orbit,
respectively, of xn w.r.t. the action of Symn on the string positions:

Stabn(xn) := {π ∈ Symn | xρ(π)
n = xn}, Orbitn(xn) := {xρ(π)

n | π ∈ Symn}.

(we will usually write xπ instead of xρ(π)).

I Proposition 5 (Orbit-Stabiliser).

|Orbitn(xn)| = |Symn|
|Stabn(xn)| = n!

|Stabn(xn)| .

This means that we have to upper-bound |Stabn(xn)|. As arbitrary nested sets are not easy to
handle, we will not analyse xn directly, but work with an abstraction that is just a collection
of sets over Vn = {0, 1}n. We call these sets the levels of xn. To define them formally, let
HFn := (HF(Vn),∈) be the directed acyclic graph whose nodes are all h.f. objects over Vn
and whose edges are given by the element-relation. Then,

Leveli(xn) := {v ∈ Vn | in HFn there is an ∈ -path of length i from xn to v}.

We let I(xn) ⊆ N be the index-set of the non-empty levels of xn, i.e. I(xn) := {i ∈ N |
Leveli(xn) 6= ∅}. It is easy to see that any automorphism that stabilises xn must stabilise
each of its levels (not necessarily pointwise, but as a set).

I Proposition 6.

Stabn(xn) ⊆
⋂

i∈I(xn)

Stabn(Leveli(xn)).

B. Pago 33:7

In other words, we have reduced our problem to upper-bounding the size of the simultaneous
stabiliser group of a collection of sets of bitstrings. In the next section, we introduce a tool
that we need in order to accomplish this: So-called supporting partitions.

5 Approximating permutation groups with supporting partitions

The notions and results in this section are mostly taken from the paper on Symmetric Circuits
and FPC by Anderson and Dawar [1].

I Definition 7. Let P be a partition of [n].
The pointwise stabiliser of P is Stab•n(P) := {π ∈ Symn | π(P) = P for all P ∈ P}.
The setwise stabiliser of P is Stabn(P) := {π ∈ Symn | π(P) ∈ P for all P ∈ P} (these
are all π ∈ Symn that induce a permutation on the parts of P).

I Definition 8 (Supporting Partition, [1]). Let G ⊆ Symn be a group. A supporting partition
P of G is a partition of [n] such that Stab•n(P) ⊆ G.

A group G ⊆ Symn may have several supporting partitions but there always exists a unique
coarsest supporting partition. A partition P ′ is as coarse as a partition P, if every part in P
is contained in some part in P ′. For any two partitions P,P ′ there exists a finest partition
E(P,P ′) that is as coarse as either of them:

I Definition 9 ([1]). Let P,P ′ be partitions of [n]. Let ∼ be a binary relation on [n] such
that x ∼ y iff there exists a part P ∈ P or P ∈ P ′ such that x, y ∈ P . Then E(P,P ′) is the
partition of [n] whose parts are the equivalence classes of [n] under the transitive closure of
∼.

As shown in [1], the property of being a supporting partition of a group G ⊆ Symn is
preserved under the operation E . Therefore it holds:

I Lemma 10 ([1]). Each permutation group G ⊆ Symn has a unique coarsest supporting
partition, denoted SP(G).

When we write SP(a) for a ∈ HF({0, 1}n), we mean SP(Stabn(a)), that is, the coarsest
supporting partition of the stabiliser of a, where – as in the previous section – we consider
the stabiliser as the subgroup of Symn acting on the positions of the binary strings. Note
that if a ∈ {0, 1}n, then SP(a) is just the partition of [n] into {k ∈ [n] | ak = 0} and
{k ∈ [n] | ak = 1}.

The reason why coarsest supporting partitions are useful for estimating the sizes of certain
stabiliser subgroups is the following result:

I Lemma 11 ([1]). Let G ⊆ Symn be a group. Then:

Stab•n(SP(G)) ⊆ G ⊆ Stabn(SP(G)).

This lemma enables us to upper-bound stabilisers of arbitrary objects in HF({0, 1}n) by the
stabilisers of their supporting partitions.
Finally, because we will frequently need it later in our proof, we define the operation u as
the “intersection” of two partitions:

I Definition 12 (Intersection of partitions). Let P,P ′ be partitions of [n]. The intersection
P u P ′ is defined like this:

P u P ′ := {P(k) ∩ P ′(k) | k ∈ [n]}.

Here, P(k),P ′(k) denote the parts of the respective partition that contain k.

CSL 2021

33:8 Limitations of Choiceless Definability

6 The Super-Polynomial Orbit Theorem

Our main technical theorem reads as follows:

I Theorem 13. Let (xn)(n∈N) be a sequence with xn ∈ HF(Vn) (recall that Vn = {0, 1}n).
Assume that the xn satisfy the following two properties:
1. In each xn, every v ∈ Vn occurs as an atom.
2. The function maxi∈I(xn) |Leveli(xn)| is in O(n).

Then, |Orbitn(xn)| (as defined in Section 4) grows asymptotically faster than any polynomial
in 2n = |Vn|.

From this, Theorem 2 follows because – as discussed in Section 2 – the canonical h.f. set
representation of a preorder with logarithmic colour classes satisfies the two conditions of
Theorem 13, and because any symmetric (see Definition 1) h.f. object that contains xn must
necessarily contain Orbitn(xn), too.
We start to explain the proof idea of Theorem 13 by stating the following summary of
Proposition 6 and Lemma 11:

I Corollary 14.

Stabn(xn) ⊆
⋂

i∈I(xn)

Stabn(Leveli(xn))) ⊆
⋂

i∈I(xn)

Stabn(SP(Leveli(xn))).

We are going to employ the Orbit-Stabiliser Theorem in order to obtain our lower bound for
the orbit size. Hence, we need to bound |Stabn(xn)| from above, and Corollary 14 already
indicates the basic principle of our proof: Splitting up xn into its levels and analysing the
stabilisers of their respective supporting partitions.
Our analysis of |Stabn(xn)| is divided into two main cases that we treat separately. The
distinction is with respect to the maximum size of the coarsest support of any level of xn,
viewed as a function of n:

Let Bn ⊆ {0, 1}n be the level of xn such that |SP(Bn)| (i.e. its number of parts) is maximal
in {|SP(Leveli(xn))| | i ∈ I(xn)}. Then the two cases we distinguish are:
(1) The maximal level-support size grows sublinearly: |SP(Bn)| ∈ o(n).
(2) The maximal level-support size grows linearly: |SP(Bn)| ∈ Θ(n).

We deal with the two cases in the next two subsections. Their results are summarised in
Lemma 15 and Lemma 21. Together they imply the theorem. Due to space restrictions, we
can only give proof sketches for most lemmas; for some of them, full proofs can be found
in the appendix. In the following lemmas, we always refer to the objects and the setting of
Theorem 13, as well as to the set level Bn just defined.

6.1 The case of sublinearly bounded supports
The result of this subsection is:

I Lemma 15. Assume the following three conditions hold:
1. In each xn, every v ∈ Vn occurs as an atom.
2. The function maxi∈I(xn) |Leveli(xn)| is in O(n).
3. |SP(Bn)| ∈ o(n).
Then the orbit size of xn w.r.t. Symn acting on the positions of the binary strings grows
faster than any polynomial in 2n.

B. Pago 33:9

We prove this lemma on the next few pages. From now on, we use the abbreviation
SPi(xn) := SP(Leveli(xn)). Let us begin by outlining the proof idea. We have to bound
Stabn(xn) ⊆

⋂
i∈I(xn) Stabn(SPi(xn)) (see Corollary 14). Hence, we have to count the

permutations in Symn that simultaneously stabilise the supports of the levels of xn.
For a level i ∈ I(xn), Sym(SPi(xn)) denotes the symmetric group on the parts of SPi(xn)
(in contrast, Symn is the symmetric group on the set [n] that underlies this partition). Every
π ∈ Symn that stabilises SPi(xn) as a set induces (or realises) a σ ∈ Sym(SPi(xn)) in
the sense that σ(P) = {π(k) | k ∈ P} ∈ SPi(xn) for all P ∈ SPi(xn). This can also be
extended to a set J ⊆ I(xn) of several levels: Every π ∈

⋂
i∈J Stabn(SPi(xn)) induces a

σ ∈×i∈J Sym(SPi(xn)). Here, σ is the tuple of permutations that π realises simultaneously
on the parts of the respective SPi(xn).

Now in order to bound |Stabn(xn)|, we will choose a subset J ⊆ I(xn) with certain
properties that will enable us to bound two quantities: Firstly, each σ ∈×i∈J Sym(SPi(xn))
that can be realised by a π ∈ Stabn(xn) will only have a small number of distinct such
realisations. Secondly, there will be a bound on the number of such σ that can be realised
by a π ∈ Stabn(xn) at all. The product of these two bounds is then an upper bound for
|Stabn(xn)|.

We begin with a lemma that generally relates the number of possible distinct realisa-
tions of a given σ ∈×i∈[m] Sym(SP(Ai)), for sets A1, ..., Am ⊆ {0, 1}n, with the partition
dm
i=1 SP(Ai) (recall Definition 12 for the meaning of u).

I Lemma 16. Let A1, ..., Am ⊆ {0, 1}n be a collection of sets of bitstrings. Fix any
simultaneous permutation σ of the parts of the supports of the sets, i.e. σ ∈×m

i=1 Sym(SP(Ai)).
There exists a ϑσ ∈ Sym(

dm
i=1 SP(Ai)) such that every π ∈ Symn that realises σ also realises

ϑσ.

Proof sketch. Via induction on m. If m = 1, then the desired ϑσ is just σ ∈ Sym(SP(A1)).
For the induction step, let there be m+ 1 sets A1, ..., Am+1, and let σ ∈×m+1

i=1 Sym(SP(Ai))
be fixed. Since every π ∈ Symn that realises σ in particular realises the first m entries in σ,
the induction hypothesis gives us a fixed permutation in Sym(

dm
i=1 SP(Ai)) that each such π

has to realise. Further, π has to realise σm+1 ∈ Sym(SP(Am+1)). Putting these constraints
on π together, the desired ϑσ ∈ Sym(

dm+1
i=1 SP(Ai)) is obtained. J

So, intuitively speaking, the finer the partition
dm
i=1 SP(Ai) is, the fewer realisations

exist for any σ ∈×m

i=1 Sym(SP(Ai)). Therefore, we will aim to select a subset of the levels
of xn such that the intersection over the supports is as fine as possible. More precisely, we
would like it to consist of many singleton parts. For the rest of this subsection we denote by
Sn ⊆ [n] the set of positions which are in singleton parts in

d
i∈I(xn) SPi(xn), i.e.

Sn := {k ∈ [n] | {k} ∈
l

i∈I(xn)

SPi(xn)}.

It turns out that there can only be few positions which are not in singleton parts ind
i∈I(xn) SPi(xn); this is a consequence of the assumption that xn contains every element of
{0, 1}n, together with the size bound on the levels:

I Lemma 17. Assume that |Leveli(xn)| ∈ O(n) for each level i of xn. Further, assume that
in each xn, every element of {0, 1}n occurs as an atom. Then, for large enough n:

|[n] \ Sn| < 8 logn.

CSL 2021

33:10 Limitations of Choiceless Definability

Proof sketch. Assume: |[n] \Sn| ≥ 8 logn. We show that this entails the existence of a level
A ⊆ {0, 1}n in the object xn such that |A| is greater than O(n), which is a contradiction.
The partition SP(A) is as least as coarse as

d
i∈I(xn) SPi(xn) and has therefore a certain

number of positions within non-singleton parts according to our assumption. Permuting the
positions within the non-singleton parts of SP(A) leaves the set A intact, by definition of
supporting partitions. Hence, if A contains a string a with a balanced number of zeroes and
ones within each P ∈ SP(A) with |P | ≥ 2, it can be calculated that a has more than O(n)
images under the mentioned permutations. Because every a ∈ {0, 1}n occurs somewhere in
xn, such a level A of xn indeed exists. J

We proceed to construct the announced subset J ⊆ I(xn) of the levels of xn. Its two
properties that are stated in the next lemma are crucial to bound |

⋂
i∈J Stabn(SPi(xn))|. A

full proof of the lemma is included in the appendix.

I Lemma 18. Let f(n) ∈ o(n) such that for all levels i ∈ I(xn), |SPi(xn)| ≤ f(n).
There exists a subset J ⊆ I(xn) of the levels of xn with the following two properties:
(1) Every position in Sn is also in a singleton part of

d
j∈J SPj(xn).

(2) The following bound for the number of realisable simultaneous permutations of the
supporting partitions holds:∣∣∣{σ ∈×

j∈J
Sym(SPj(xn)) | there is a π ∈ Symn that realises σ}

∣∣∣≤ (f(n)!)n/(f(n)−1) ·2n

Proof sketch. Construct the set J stepwise, starting with J0 = ∅, and adding a new level ji
in each step i, such that

d
j∈Ji SPj(xn) is a strict refinement of

d
j∈Ji−1 SPj(xn). This is

done until property (1) is satisfied. Let

ki :=
∣∣∣ l

j∈Ji

SPj(xn)
∣∣∣−∣∣∣ l

j∈Ji−1

SPj(xn)
∣∣∣.

The main part of the proof is to show that in step i + 1, there are at most (ki+1 + 1)!
permutations in Sym(SPji+1(xn)) that can be realised by some π ∈ Symn simultaneously
with any other given σ ∈×j∈Ji Sym(SPj(xn)). Once this is established, we know that the
set of simultaneous permutations from property (2) has size at most

∏s
i=1(ki + 1)!. Further,

for all i we have |Sym(SPi(xn))| ≤ f(n)!. Using the fact that
∑s
i=1 ki ≤ n, one can now make

a typical “redistribute weight argument” to show that the mentioned product of factorials
is maximised if each ki is either 1 or f(n)− 1. This leads to the bound stated in property
(2). J

I Corollary 19. Assume the following three conditions hold:
1. In each xn, every v ∈ Vn occurs as an atom.
2. The function maxi∈I(xn) |Leveli(xn)| is in O(n).
3. |SP(Bn)| ∈ o(n).
Then, for sufficiently large n:

|Stabn(xn)| ≤ (f(n)!)n/(f(n)−1) · 2n · (8 logn)!

Proof. Consider the set J ⊆ I(xn) that exists by Lemma 18. By Corollary 14, every
π ∈ Stabn(xn) induces a tuple of permutations σ ∈×i∈I(xn) Sym(SPi(xn)), so in particular it
also induces a σ ∈×i∈J Sym(SPi(xn)). By Lemma 18, there are at most (f(n)!)n/(f(n)−1) ·2n
possibilities for such a σ. Furthermore, each such σ can be realised by at most (8 logn)!

B. Pago 33:11

distinct permutations π ∈ Stabn(xn): Due to Lemma 16 and property (1) of J (see Lemma 18),
every π realising σ permutes the positions in Sn in the same way, and according to Lemma 17,
there remain at most 8 logn positions which may be permuted arbitrarily by π (that is, if all
positions in [n] \ Sn form a single part in

d
i∈J SPi(xn)). J

With this, we can estimate the asymptotic behaviour of |Orbitn(xn)|, which proves Lemma 15.

I Lemma 20. Under the assumptions of Corollary 19, |Orbitn(xn)| can be estimated as
follows: For any k ∈ N, the limit

lim
n→∞

|Orbitn(xn)|
2kn = lim

n→∞

n!
|Stabn(xn)| · 2kn ≥ lim

n→∞

n!
(f(n)!)n/(f(n)−1) · 2n · (8 logn)! · 2kn

does not exist. That is to say, the orbit of xn w.r.t. the action of Symn grows super-
polynomially in 2n.

Proof sketch. Replace all factorials with the Stirling Formula n! ≈
√

2πn ·
(
n
e

)n. With this,
compute a lower bound for the above fraction that can be seen to tend to infinity as n
grows. J

6.2 The case of linearly-sized supports

This subsection is dedicated to proving the following result for the case that |SP(Bn)| ∈ Θ(n).
In this case, we only need to analyse the orbit size of the level Bn of xn with the largest
supporting partition (see the beginning of Section 6 again for the definition of Bn).

I Lemma 21. Assume that the following conditions hold for Bn:
1. |Bn| ∈ O(n).
2. |SP(Bn)| ∈ Θ(n).
Then the orbit size of Bn (and therefore also of xn) w.r.t. the action of Symn on the positions
of the binary strings grows faster than any polynomial in 2n.

Proving this lemma requires a case distinction again. The relevant measure here is the
number of singleton parts in SP(Bn). Firstly, we show that if the number of singleton parts
in SP(Bn) grows sublinearly in n, while the total number of parts |SP(Bn)| is linear, the
stabiliser of SP(Bn) is small enough. This can be seen solely from the properties of the
partition SP(Bn).

The difficult part of the proof is the case where the number of singleton parts grows
linearly. In the worst case, SP(Bn) consists only of singletons; then, Stabn(SP(Bn)) = Symn.
We solve this by not only looking at the partition SP(Bn) itself but also at properties of the
set Bn that can be inferred from its supporting partition.
In the following, we always denote by Sn ⊆ [n] the set of positions that are in singleton parts
of SP(Bn), i.e.

Sn := {k ∈ [n] | {k} ∈ SP(Bn)}.

(note that the definition of Sn was slightly different in the last subsection).

CSL 2021

33:12 Limitations of Choiceless Definability

Subcase 1: Sublinear number of singleton parts

Let us begin with the easier case, where the number of singleton parts in SP(Bn) grows
sublinearly. The size of Stabn(SP(Bn)) can generally be bounded as follows:

I Lemma 22. Let sn := |Sn|, and tn := |SP(Bn)| − sn.

|Stabn(SP(Bn))| ≤ sn! · tn! · (n− 2(tn − 1))! · 2tn .

Proof. The factors sn! and tn! account for the possible permutations of the parts: All the
singleton parts of SP(Bn) can be mapped to each other, and every non-singleton part can
at most be mapped to every other non-singleton part. An upper bound on the number of
permutations within the non-singleton parts is `1! · `2! · ... · `tn !, where the `i are the sizes of
these parts. This product of factorials is maximised if one value `p is as large as possible
(≤ n− 2(tn− 1)), and `i = 2 for all i 6= p. This is a standard “redistribute weight argument”,
which is also used in [1] multiple times. J

I Corollary 23. Let f(n) ∈ o(n) be a function such that sn ≤ f(n) and let c ≤ 1 be a
positive constant such that |SP(Bn)| ≥ c · n for large enough n. Then, for large enough n,
the following bound holds:

|Stabn(SP(Bn))| ≤ f(n)! · 2n ·max
{

(n/2)! · 2, (cn− f(n))! · ((1− 2c)n+ 2f(n) + 2)!
}
.

Proof. We plug in the right values for sn and tn = |SP(Bn)| − sn into Lemma 22, and use
the simple bound 2tn ≤ 2n. We have sn ≤ f(n) by assumption. As |SP(Bn)| ≥ c · n, and
because every non-singleton part has at least two elements, we can bound tn as follows:

c · n− f(n) ≤ tn ≤
n

2 .

The bound from Lemma 22 contains a product of two factorials which both depend on tn. By
a redistribute-weight argument, one can see that this product is maximised if the two factorials
are maximally imbalanced. This happens if tn attains its maximum or minimum. J

This directly leads to a super-polynomial orbit: In the next lemma, we calculate the growth
of |Orbitn(xn)| ≥ n!

|Stabn((SP(Bn))| (this is due to Lemma 11), using the stabiliser-bound from
Corollary 23.

I Lemma 24. Let f(n) ∈ o(n) be a function such that sn ≤ f(n) and c ≤ 1 be a positive
constant such that |SP(Bn)| ≥ c · n for large enough n. Then for any k ∈ N, the limit

lim
n→∞

n!
f(n)! · 2n ·max

{
(n/2)! · 2, (cn− f(n))! · ((1− 2c)n+ 2f(n) + 2)!

}
· 2kn

does not exist. That is to say, the orbit of Bn w.r.t. the action of Symn grows super-
polynomially in 2n.

Proof sketch. Similar to Lemma 20. J

This proves Lemma 21 under the assumption that |Sn| ∈ o(n).

B. Pago 33:13

Subcase 2: Linear number of singleton parts

The idea for this case is similar to how we solved the case of sublinear supports. There, we
related simultaneous permutations of the parts of the supports SPi(xn) to their realisations in
Symn. Now we do the same with respect to permutations of the elements of Bn: Let Sym(Bn)
be the group of all permutations of the strings in Bn. For π ∈ Symn and σ ∈ Sym(Bn), we
say that π realises or induces σ, if bπ = σ(b) for every b ∈ Bn. The aim is to show that only
a bounded number of σ ∈ Sym(Bn) can be realised by a permutation π ∈ Stabn(Bn) at all,
and that each such σ only has a small number of realisations. In total, this yields a bound
on |Stabn(Bn)|.

We will construct a subset A ⊆ Bn such that: Any σ ∈ Sym(Bn) whose preimages are
fixed on A can only be realised by few π ∈ Symn, and A is small compared to Bn. This
ensures that there are not too many ways to specify a σ ∈ Sym(Bn) on A (if |Bn| ∈ O(n),
there are ≤ n|A| options to fix σ−1(a) for all a ∈ A).
First of all, we show how to bound the number of possible realisations of any σ ∈ Sym(Bn)
if σ is fixed on some subset A ⊆ Bn. The next lemma is similar to Lemma 16. We omit the
proof as it is quite analogous.

I Lemma 25. Let B ⊆ {0, 1}n, A ⊆ B. Let an injective mapping p : A −→ B be given.
Write

d
A :=

d
a∈A SP(a).

There is an assignment of positions to parts Qp : [n] −→
d
A with the property that

|Q−1
p (P)| = |P | for every P ∈

d
A, and such that:

Every π ∈ Symn realising any σ ∈ Sym(B) with σ−1(a) = p(a) (if such a π exists) satisfies:
π(k) ∈ Qp(k) for all k ∈ [n].

We will mainly need this lemma for the restriction of the parts in
d
A to the positions in Sn.

Therefore, we state the following important corollary:

I Corollary 26. Let A ⊆ Bn be arbitrary, and let an injective mapping p : A −→ Bn be given.
Then every π ∈ Symn that realises a σ ∈ Sym(Bn) with σ−1(a) = p(a) for all a ∈ A satisfies:

π−1(P ∩ Sn) = Q−1
p (P) ∩ Sn for all P ∈

l
A,

where Qp : [n] −→
d
A is the assignment that exists by the preceding lemma.

Proof. Lemma 25 says that π−1(P) = Q−1
p (P). Since π realises a permutation in Sym(Bn),

π ∈ Stabn(Bn). Hence, by Lemma 11, π ∈ Stabn(SP(Bn)). This means that π(Sn) = Sn, as
singleton parts can only be mapped to singleton parts. Consequently, it must be the case
that π−1(P ∩ Sn) = Q−1

p (P) ∩ Sn. J

Next, we select our desired subset A ⊆ Bn. It will be such that the partition
d
A =d

a∈A SP(a) is quite fine on Sn. In order to guarantee that A is much smaller than Bn, we
only require a relaxed, but more complicated, notion of “fineness” here. The proof of the
next lemma can be found in the appendix.

I Lemma 27. There exists a subset A ⊆ Bn of size |A| ≤ |Sn|
2 such that for each part

P ∈
d
A, one of the following two statements is true:

1. |P ∩ Sn| ≤ 2; or:
2. |P ∩ Sn| > 2 and for every b ∈ Bn \A, one of these two conditions holds:

b is constant on P ∩ Sn; or
b[P ∩ Sn] is imbalanced and, for every P ′ ∈

d
A with P ′ 6= P , |P ′ ∩ Sn| > 2, b is

constant on P ′ ∩ Sn.

CSL 2021

33:14 Limitations of Choiceless Definability

By b[P ∩ Sn] we mean the substring of b at the positions in P ∩ Sn, and being imbalanced
means that b[P ∩ Sn] contains exactly one 0 and there is a 1 at all other positions, or vice
versa (exactly one 1 and the rest 0).

Proof sketch. Construct A stepwise, starting with A0 = ∅ and adding a new string ai in
each step i. Choose ai+1 such that progress is made. That means, ai+1 should split some
part (P ∩ Sn), for a P ∈

d
Ai with |P ∩ Sn| > 2 (“split” means, ai+1 is non-constant on

P ∩ Sn). However, we take care that ai+1 either splits two parts, or if it splits only one part,
it does not split off a singleton part. This ensures that at most |Sn|/2 such construction
steps can be performed. If no such ai+1 ∈ Bn \Ai exists, then the constructed set fulfils the
properties stated in the lemma. J

Before we can use this to bound |Stabn(Bn)|, we need one more lemma concerning those parts
P ∈

d
A with |P ∩ Sn| > 2. We show that any π ∈ Stabn(Bn) is already fully determined

when it is specified only on the parts P ∈
d
A with |P ∩ Sn| ≤ 2. The full proof of this is

also in the appendix.

I Lemma 28. Let A ⊆ Bn be the subset that exists by Lemma 27, and let p : A −→ Bn be
an injective function. Let

Γp := {π ∈ Stabn(Bn) | p(a)π = a for all a ∈ A}.

Further, let

P>2 := {k ∈ Sn | |P (k) ∩ Sn| > 2, where P (k) ∈
l
A is the part that k is in}.

Then for any π, π′ ∈ Γp such that π−1|([n]\P>2) = π′−1|([n]\P>2), it also holds π−1|P>2 =
π′−1|P>2 .

Proof sketch. Assume for a contradiction the existence of π, π′ ∈ Γp such that their preimages
are the same on [n] \ P>2 but there is a position x such that π(x) ∈ P>2 and π(x) 6= π′(x).
It can then be shown – using the second statement of Lemma 27 and the fact that π, π′ ∈
Stabn(Bn) – that the transposition (π(x) π′(x)) is also an element of Stabn(Bn). This,
however, is a contradiction to the fact that π(x), π′(x) are in distinct singleton parts in
SP(Bn), which is the coarsest possible supporting partition. J

I Lemma 29. Let c be a constant such that |Bn| ≤ c · n (for large enough n). Then, for
large enough n, it holds:

|Stabn(Bn)| ≤ (2cn)|Sn|/2 · (n− |Sn|)!

Proof. Let A ⊆ Bn be the subset of Bn whose existence is stated in Lemma 27. Fix any
injective function p : A −→ Bn. Let Γp and P>2 be as in Lemma 28.
We bound |Γp| by counting the number of possible π ∈ Γp. We know by Lemma 28 that
we only have to count the number of possibilities to choose the preimages of the elements
in [n] \ P>2. For every part P ∈

d
A with |P ∩ Sn| ≤ 2, we know by Corollary 26 that

π−1(P ∩Sn) ⊆ Sn is the same fixed set of size ≤ 2 for all π ∈ Γp, so we only have two options
how π−1 can behave on P ∩ Sn. The number of such parts P is at most |Sn|/2.
For i ∈ [n] \ Sn, we can only say that π−1(i) /∈ Sn (by Lemma 11). Hence, every π ∈ Γp can
in principle permute the set [n] \ Sn arbitrarily. In total, we conclude:

|Γp| ≤ 2(|Sn|/2) · (n− |Sn|)!

B. Pago 33:15

This is for a fixed function p. The number of possible choices for p is bounded by (cn)|Sn|/2,
since |A| ≤ |Sn|/2 (Lemma 27) and we are assuming |Bn| ≤ cn.
Every π ∈ Stabn(Bn) must occur in at least one of the sets Γp for some choice of p, so indeed,
(2cn)|Sn|/2 · (n− |Sn|)! is an upper bound for |Stabn(Bn)|. J

Based on Lemma 29, the orbit size of Bn can be estimated:

I Lemma 30. Let c be a constant such that |Bn| ≤ c · n, and δ > 0 be a constant such that
|Sn| ≥ δ · n (for large enough n). Then for any k ∈ N, the limit

lim
n→∞

|Orbitn(Bn)|
2kn = lim

n→∞

n!
|Stabn(Bn)| · 2kn ≥ lim

n→∞

n!
(2cn)(δn)/2 · ((1− δ)n)! · 2kn

does not exist. That is to say, the orbit of Bn w.r.t. the action of Symn grows super-
polynomially in 2n.

Proof sketch. Again a calculation using Stirling’s approximation for the factorials. J

This lemma together with Lemma 24 proves Lemma 21.

7 Concluding remarks and future research

A question that remains open is what exactly is the threshold of “fineness” of a preorder
where the orbit size changes from super-polynomial to polynomial. In other words: What is
the largest colour class size for which our Super-Polynomial Orbit Theorem for hypercubes
still holds?
One can check that all parts of our proof can be modified such that it also goes through if
we allow colour classes (i.e. levels) of size o(n2). If the size is in Θ(n2), though, the bound in
Lemma 29 becomes too large for Lemma 30 to hold.
On the other hand, the finest preorder with a polynomial orbit that we know so far is one where
the colour class sizes are in O(2n/

√
n): It corresponds to the partition of {0, 1}n according

to Hamming-weight. Obviously, this is precisely the orbit-partition of the vertex-set (w.r.t.
the action of Symn on the positions). Its largest colour class has size

(
n
n/2
)
∈ Θ(2n/

√
n).

Determining the finest preorder that is in principle CPT-definable in hypercubes would
potentially allow to better judge whether a preorder-based CPT-algorithm like the one in
[14] can at all be a candidate for a solution of the unordered CFI problem.
Moreover, it would be helpful to identify further h.f. objects that are undefinable in hypercubes
for symmetry reasons.

References
1 Matthew Anderson and Anuj Dawar. On symmetric circuits and fixed-point logics. Theory of

Computing Systems, 60(3):521–551, 2017. doi:10.1007/s00224-016-9692-2.
2 Andreas Blass, Yuri Gurevich, and Saharon Shelah. Choiceless polynomial time. Annals of

Pure and Applied Logic, 100(1-3):141–187, 1999. doi:10.1016/S0168-0072(99)00005-6.
3 Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of

variables for graph identification. Combinatorica, 12:389–410, 1992. doi:10.1007/BF01305232.
4 Ashok K Chandra and David Harel. Structure and complexity of relational queries. In 21st

Annual Symposium on Foundations of Computer Science (sfcs 1980), pages 333–347. IEEE,
1980. doi:10.1109/SFCS.1980.41.

5 Anuj Dawar. The nature and power of fixed-point logic with counting. ACM SIGLOG News,
2(1):8–21, 2015.

CSL 2021

https://doi.org/10.1007/s00224-016-9692-2
https://doi.org/10.1016/S0168-0072(99)00005-6
https://doi.org/10.1007/BF01305232
https://doi.org/10.1109/SFCS.1980.41

33:16 Limitations of Choiceless Definability

6 Anuj Dawar, Martin Grohe, Bjarki Holm, and Bastian Laubner. Logics with rank operators.
In 2009 24th Annual IEEE Symposium on Logic In Computer Science, pages 113–122. IEEE,
2009. doi:10.1109/LICS.2009.24.

7 Anuj Dawar, David Richerby, and Benjamin Rossman. Choiceless polynomial time, counting
and the Cai–Fürer–Immerman graphs. Annals of Pure and Applied Logic, 152(1-3):31–50,
2008. doi:10.1016/j.apal.2007.11.011.

8 Erich Grädel and Martin Grohe. Is Polynomial Time Choiceless? In Fields of Logic and
Computation II, pages 193–209. Springer, 2015. doi:10.1007/978-3-319-23534-9_11.

9 Erich Grädel, Wied Pakusa, Svenja Schalthöfer, and Łukasz Kaiser. Characterising Choice-
less Polynomial Time with First-order Interpretations. In Proceedings of the 30th An-
nual ACM/IEEE Symposium on Logic in Computer Science, pages 677–688, 2015. doi:
10.1109/LICS.2015.68.

10 Martin Grohe. The quest for a logic capturing PTIME. In 2008 23rd Annual IEEE Symposium
on Logic in Computer Science, pages 267–271. IEEE, 2008. doi:10.1109/LICS.2008.11.

11 Yuri Gurevich. Logic and the Challenge of Computer Science. In Current Trends in Theoretical
Computer Science. Computer Science Press, 1988.

12 Neil Immerman. Relational queries computable in polynomial time. In Proceedings of the
fourteenth annual ACM symposium on Theory of computing, pages 147–152, 1982. doi:
10.1145/800070.802187.

13 Wied Pakusa. Linear Equation Systems and the Search for a Logical Characterisation of
Polynomial Time. PhD thesis, RWTH Aachen, 2015.

14 Wied Pakusa, Svenja Schalthöfer, and Erkal Selman. Definability of Cai-Fürer-Immerman
problems in Choiceless Polynomial Time. ACM Transactions on Computational Logic (TOCL),
19(2):1–27, 2018. doi:10.1145/3154456.

15 Benjamin Rossman. Choiceless computation and symmetry. In Fields of Logic and Computation,
Essays Dedicated to Yuri Gurevich on the Occasion of His 70th Birthday, volume 6300 of Lecture
Notes in Computer Science, pages 565–580. Springer, 2010. doi:10.1007/978-3-642-15025-8_
28.

16 Svenja Schalthöfer. Choiceless Computation and Logic. PhD thesis, RWTH Aachen, 2020.
17 Moshe Y Vardi. The complexity of relational query languages. In Proceedings of the fourteenth

annual ACM symposium on Theory of computing, pages 137–146, 1982. doi:10.1145/800070.
802186.

8 Appendix

8.1 Proof of Lemma 18
I Lemma 18. Let f(n) ∈ o(n) such that for all levels i ∈ I(xn), |SPi(xn)| ≤ f(n).
There exists a subset J ⊆ I(xn) of the levels of xn with the following two properties:
(1) Every position in Sn is also in a singleton part of

d
j∈J SPj(xn).

(2) The following bound for the number of realisable simultaneous permutations of the
supporting partitions holds:∣∣∣{σ ∈×

j∈J
Sym(SPj(xn)) | there is a π ∈ Symn that realises σ}

∣∣∣≤ (f(n)!)n/(f(n)−1) ·2n

Proof. We construct J stepwise, starting with J0 := ∅ and adding one new level ji ∈ I(xn)
in each step i ≥ 1 in such a way that∣∣∣ l

j∈Ji−1

SPj(xn) u SPji(xn)
∣∣∣> ∣∣∣ l

j∈Ji−1

SPj(xn)
∣∣∣.

https://doi.org/10.1109/LICS.2009.24
https://doi.org/10.1016/j.apal.2007.11.011
https://doi.org/10.1007/978-3-319-23534-9_11
https://doi.org/10.1109/LICS.2015.68
https://doi.org/10.1109/LICS.2015.68
https://doi.org/10.1109/LICS.2008.11
https://doi.org/10.1145/800070.802187
https://doi.org/10.1145/800070.802187
https://doi.org/10.1145/3154456
https://doi.org/10.1007/978-3-642-15025-8_28
https://doi.org/10.1007/978-3-642-15025-8_28
https://doi.org/10.1145/800070.802186
https://doi.org/10.1145/800070.802186

B. Pago 33:17

Let s be the number of construction steps needed, i.e. J := Js is such that property (1) of
the lemma holds for this subset of I(xn). By definition of Sn, it is clear that such a subset
exists because I(xn) itself satisfies property (1).
For each construction step i, we let

Γi := {σ ∈×
j∈Ji

Sym(SPj(xn)) | there is a π ∈ Symn that realises σ}.

Furthermore, for each step i we let ki be the increase in the number of parts in the intersection
that is achieved in this step:

ki := |
l

j∈Ji

SPj(xn)| − |
l

j∈Ji−1

SPj(xn)|.

The main part of the proof consists in showing the following

B Claim 31. For each step i, the size of |Γi| is bounded by

|Γi| ≤
i∏

j=1
(min{(kj + 1), f(n)})!

Proof. Via induction on i. For i = 1, we have k1 = |SPj1(xn)| ≤ f(n), where j1 is the level
chosen in the first step of the construction of J . The group Γ1 is a subgroup of Sym(SPj1(xn)),
whose size is bounded by |SPj1(xn)|!. Therefore, the claim holds. For the inductive step,
consider the step i+ 1 of the construction. Let ji+1 be the level that is added in this step.
In order to bound the size of Γi+1, we consider for each σ ∈ Γi the following set:

Γσi+1 := {σ ∈ Sym(SPji+1(xn)) | there is a π ∈ Symn that realises σ and σ}.

We need to show that for each σ ∈ Γi, it holds |Γσi+1| ≤ (min{(ki+1 + 1), f(n)})!.
Since |SPji+1(xn)| ≤ f(n), the bound |Γσi+1| ≤ f(n)! is clear. It remains to show that for an
arbitrary fixed σ ∈ Γi, it holds |Γσi+1| ≤ (ki+1 + 1)!.
For a part P ∈ SPji+1(xn), let

Q(P) := {Q ∈
l

j∈Ji

SPj(xn) | Q ∩ P 6= ∅}.

We define an equivalence relation ∼⊆ (SPji+1(xn))2: For parts P, P ′ ∈ SPji+1(xn) we let

P ∼ P ′ iff Q(P) = Q(P ′).

The images of each part SPji+1(xn) under permutations in Γσi+1 are contained in a single
equivalence class of ∼: Every π ∈ Symn that realises any σ ∈ Γσi+1 also realises σ ∈ Γi.
Hence, by Lemma 16, all such π induce the same ϑσ ∈ Sym(

d
j∈Ji SPj(xn)). This means

that for any σ ∈ Γσi+1, and every part P ∈ SPji+1(xn), Q ∈
d
j∈Ji SPj(xn),

σ(P) ∩ ϑσ(Q) 6= ∅ iff Q ∈ Q(P).

Therefore, all possible images σ(P) ∈ SPji+1(xn), for all σ ∈ Γσi+1 must be in the same
equivalence class of ∼. Consequently, we can bound |Γσi+1| as follows: Let m be the number
of equivalence classes of ∼ and let `1, .., `m denote the sizes of the respective classes. Then
from our observations so far it follows:

|Γσi+1| ≤
∏
t∈[m]

`t! (?)

CSL 2021

33:18 Limitations of Choiceless Definability

Next, we establish a relationship between the properties of ∼ and the number ki+1:

ki+1 =
∣∣∣SPji+1(xn) u

l

j∈Ji

SPj(xn)
∣∣∣−∣∣∣ l

j∈Ji

SPj(xn)
∣∣∣

=
∑

Q∈
d

j∈Ji SPj(xn)

(|{P ∈ SPji+1(xn) | Q ∈ Q(P)}| − 1)

≥
∑

[P]∼,

P∈SPji+1 (xn)

(|[P]∼| − 1)

= |SPji+1(xn)| −m

The first equality is due to the fact that each part Q ∈
d
j∈Ji is split into as many parts as

there are parts in SPji+1(xn) intersecting Q.
To see why the inequality holds, fix a choice function g that maps each equivalence class
[P]∼ to a part Q ∈ Q(P). By definition of ∼, we have g([P]∼) ∈ Q(P ′) for every P ′ ∈ [P]∼.
Hence, for every Q ∈

d
j∈Ji SPj(xn), it holds:

|{P ∈ SPji+1(xn) | Q ∈ Q(P)}| − 1 ≥
∑

[P]∼∈g−1(Q)(|[P]∼| − 1).
We can sum up the result of these considerations like this:

m ≥ |SPji+1(xn)| − ki+1. (??)

Let us now finish the proof of the claim:

We have already established the upper bound (?) for |Γσi+1|. Let p ∈ [m] be such that `p ≥ `t
for all t ∈ [m]. A consequence of (??) is: `p ≤ ki+1 + 1. It can be checked that the values
`1, ...`m that maximise the bound in (?) and satisfy (??) are such that `t = 1 for all t 6= p.
Therefore, (?) becomes:

|Γσi+1| ≤ `p! ≤ (ki+1 + 1)!

This concludes the proof of the claim. C
Hence, in order to finish the proof of the lemma, we have to bound

|Γs| ≤
s∏
i=1

(min{(ki + 1), f(n)})!

from above (recall that s is the number of steps needed to construct J satisfying property
(1)). We know that

∑s
i=1 ki is some fixed value ≤ n. The value of the above product and

the sum solely depends on the sequence (ki)i∈[s]. One can see by a “redistribute-weight
argument” that the value of the product is maximised for a sequence (ki)i∈[s], where every
ki is either 1 or ki = f(n)− 1 (and there may be exactly one ki with 1 < ki < f(n)− 1). For
such a sequence of kis, the value of the product is at most

|Γs| ≤
s∏
i=1

(min{(ki + 1), f(n)})! ≤ f(n)!n/(f(n)−1) · 2n J

8.2 Proof of Lemma 27
For the proof of Lemma 27, we make use of the following small observation.

I Lemma 32. Let B ⊆ {0, 1}n. The partition
d
B =

d
b∈B SP(b) is a supporting partition

for B.

B. Pago 33:19

Proof. By the definition of the intersection, every string b ∈ Bn is constant on every
part P ∈

d
B. Hence, Stab•n(

d
B) ⊆ Stabn(Bn). This is the definition of a supporting

partition. J

I Lemma 27. There exists a subset A ⊆ Bn of size |A| ≤ |Sn|
2 such that for each part

P ∈
d
A, one of the following two statements is true:

1. |P ∩ Sn| ≤ 2; or:
2. |P ∩ Sn| > 2 and for every b ∈ Bn \A, one of these two conditions holds:

b is constant on P ∩ Sn; or
b[P ∩ Sn] is imbalanced and, for every P ′ ∈

d
A with P ′ 6= P , |P ′ ∩ Sn| > 2, b is

constant on P ′ ∩ Sn.
By b[P ∩ Sn] we mean the substring of b at the positions in P ∩ Sn, and being imbalanced
means that b[P ∩ Sn] contains exactly one 0 and there is a 1 at all other positions, or vice
versa (exactly one 1 and the rest 0).

Proof. We construct A stepwise, starting with A0 := ∅, and adding one string ai ∈ Bn in
step i. For step i+ 1 of the construction, assume we have constructed Ai. For k ∈ [n], we
write Pi(k) for the part of

d
Ai =

d
a∈Ai SP(a) that k is in. Now we let

Ki := {k ∈ Sn | |Pi(k) ∩ Sn| > 2}.

This is the set of positions whose parts need to be refined more. If Ki = ∅, then the
construction is finished because all parts of

d
Ai satisfy condition 1 of the lemma. So assume

Ki 6= ∅. By Lemma 32,
d
Bn is a supporting partition for Bn and therefore at most as coarse

as SP(Bn). Hence, all positions in Sn are in singleton parts of
d
Bn.

We conclude that for all k ∈ Ki, there must be a string b ∈ Bn \Ai that can be added to Ai
in order to make Pi(k) ∩ Sn smaller when it is intersected with SP(b). In fact, there may be
several such strings b that we could choose to add in this step of the construction. So let

Ck := {b ∈ Bn \Ai | b is non-constant on Pi(k) ∩ Sn}

be the non-empty set of such candidate strings. We restrict our candidate set further:

Ĉk := {b ∈ Ck | there are two distinct parts P, P ′ ∈
l
Ai

s.t. b is non-constant on P ∩ Sn and P ′ ∩ Sn, and
|P ∩ Sn| > 2 and |P ′ ∩ Sn| > 2}

∪{b ∈ Ck | b[Pi(k) ∩ Sn] is not imbalanced}.

We pick our next string ai+1 that is added in this step of the construction from one of the
sets Ĉk, where k ranges over all positions in Ki. If Ĉk = ∅ for all these k, then Ai is already
the desired set A because it satisfies the conditions of the lemma.
Otherwise, we choose ai+1 arbitrarily from one of the Ĉk and set Ai+1 := Ai ∪ {ai+1}. Then
we proceed with the construction until Ki = ∅ or all Ĉk are empty. In both cases, the
constructed set is as required by the lemma.
It remains to show: |A| ≤ |Sn|

2 , i.e. that the construction process consists of at most |Sn|
2

steps. We do this by defining a potential function Φ that associates with any partition P of
[n] a natural number ≤ n that roughly says how many further refinement steps of P are at
most possible. Concretely:

Φ(P) :=
∑
P∈P

max{(|P ∩ Sn| − 2), 0}.

CSL 2021

33:20 Limitations of Choiceless Definability

If P contains as its only part the whole set [n], then Φ(P) = |Sn| − 2. Now observe that
a necessary condition for adding a new string ai+1 to A is the existence of a part P with
|P ∩ Sn| > 2 in the current partition P =

d
Ai. This is the case if and only if Φ(P) > 0.

Therefore, all that remains to show is:

Φ
(l

Ai
)
− Φ

(l
Ai+1

)
≥ 2 (?)

for all construction steps i. Consider step i + 1: We add ai+1 ∈ Ĉk (for some k ∈ Ki)
to Ain. It can be checked that the definition of Ĉk ensures that (?) holds for

d
Ai andd

Ai+1 =
d
Ai u ai+1: The new string ai+1 either splits two distinct parts, or, if it only

splits one part, it splits it into two parts of size at least two. J

8.3 Proof of Lemma 28
I Lemma 28. Let A ⊆ Bn be the subset that exists by Lemma 27, and let p : A −→ Bn be
an injective function. Let

Γp := {π ∈ Stabn(Bn) | p(a)π = a for all a ∈ A}.

Further, let

P>2 := {k ∈ Sn | |P (k) ∩ Sn| > 2, where P (k) ∈
l
A is the part that k is in}.

Then for any π, π′ ∈ Γp such that π−1|([n]\P>2) = π′−1|([n]\P>2), it also holds π−1|P>2 =
π′−1|P>2 .

Proof. For a contradiction, we assume that there exist π, π′ ∈ Γp such that π−1|([n]\P>2) =
π′−1|([n]\P>2), but π−1|P>2 6= π′−1|P>2 . Then there is x ∈ [n] such that π(x) ∈ P>2, and
π′(x) 6= π(x) (i.e. π(x) is the point where π−1 and π′−1 differ). Let y := π(x), y′ := π′(x).
Let P (y) ∈

d
A be the part that y is in, and let P̂ (y) := P (y)∩Sn. We know that y′ ∈ P (y),

too, because π, π′ ∈ Γp, so this follows from Lemma 25. As y ∈ P>2, in particular, y ∈ Sn.
Hence, also x, y′ ∈ Sn because π, π′ ∈ Stabn(Bn), and by Lemma 11, singleton parts must
be mapped to singleton parts. We conclude that we even have y′ ∈ P̂ (y).
Now, our goal is to show that the transposition τ := (y y′) is contained in Stabn(Bn). This
is a contradiction because in SP(Bn), y, y′ are both in singleton parts, but if τ ∈ Stabn(Bn),
then the coarsest supporting partition SP(Bn) can be coarsened to another supporting
partition by letting {y, y′} be one single part.
In order to show τ ∈ Stab(Bn), we only need to deal with those strings in Bn which are not
constant on the positions {y, y′}. More precisely, we have to show that every b ∈ Bn with
by 6= by′ has a “swapping partner” b′ ∈ Bn where b′y = by′ and vice versa, and b′i = bi for all
other i.
So take any b ∈ Bn such that w.l.o.g. by = 0, by′ = 1. Note that b /∈ A, as every string in
A is constant on P (y) (otherwise, P (y) would not be a single part in

d
A). Furthermore,

|P̂ (y)| > 2, since y ∈ P>2. Therefore, Lemma 27 implies that the substring b[P̂ (y)] is
imbalanced and b is constant on every P ′∩Sn, for all P ′ ∈

d
A with P ′ 6= P (y), |P ′∩Sn| > 2.

W.l.o.g. let the imbalance of b[P̂ (y)] be such that bi = 1 for every position i ∈ P̂ (y), i 6= y.
We claim that b′ := bπ

′◦π−1 is the desired swapping partner of b, i.e. bτ = b′ and vice versa.
Note that b′ ∈ Bn because π, π′ stabilise the set Bn.
To see that b′ = bτ , consider firstly bπ−1 ∈ Bn. Obviously, (bπ−1)x = 0. Hence, (bπ′◦π−1)y′ = 0.
Moreover, the substring bπ−1 [π−1(P̂ (y))] is imbalanced just like b[P̂ (y)], so (bπ−1)j = 1 for
all j ∈ π−1(P̂ (y)) \ {x}. As a consequence of Corollary 26, we have π−1(P̂ (y)) = π′−1(P̂ (y)),

B. Pago 33:21

so (π′ ◦ π−1)(P̂ (y)) = P̂ (y). Therefore, the substring bπ′◦π−1 [P̂ (y)] is also imbalanced and
has a 1 at each position except y′.
This shows that (bτ)[P̂ (y)] = b′[P̂ (y)]. It remains to show that bi = b′i for all i ∈ [n] \ P̂ (y).
We have (π′ ◦ π−1)(i) = i for i ∈ [n] \ P>2, because π−1|([n]\P>2) = π′−1|([n]\P>2), so bi = b′i
for i ∈ [n] \ P>2.
For i ∈ P>2 \ P̂ (y), let P̂ (i) be the part of

d
A that i is in, intersected with Sn. As already

said, we know from Lemma 27 that b is constant on P̂ (i). Analogously to what we argued
already for P̂ (y), we get that (π′ ◦ π−1)(P̂ (i)) = P̂ (i), so also for i ∈ P>2 \ P̂ (y), we have
bi = b′i.
In total, this shows that indeed, b′ = bτ , and since b′ ∈ Bn, we have τ ∈ Stabn(Bn). This is
a contradiction and finishes the proof of the lemma. J

CSL 2021

Typable Fragments of Polynomial Automatic
Amortized Resource Analysis
Long Pham
Carnegie Mellon University, Pittsburgh, PA, USA
longp@andrew.cmu.edu

Jan Hoffmann
Carnegie Mellon University, Pittsburgh, PA, USA
janh@andrew.cmu.edu

Abstract
Being a fully automated technique for resource analysis, automatic amortized resource analysis
(AARA) can fail in returning worst-case cost bounds of programs, fundamentally due to the
undecidability of resource analysis. For programmers who are unfamiliar with the technical details of
AARA, it is difficult to predict whether a program can be successfully analyzed in AARA. Motivated
by this problem, this article identifies classes of programs that can be analyzed in type-based
polynomial AARA. Firstly, it is shown that the set of functions that are typable in univariate
polynomial AARA coincides with the complexity class PTime. Secondly, the article presents a
sufficient condition for typability that axiomatically requires every sub-expression of a given program
to be polynomial-time. It is proved that this condition implies typability in multivariate polynomial
AARA under some syntactic restrictions.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases Resource consumption, Quantitative analysis, Amortized analysis, Typability

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.34

Related Version A full version of the paper is available at https://arxiv.org/abs/2010.16353 [30].

Funding This article is based on research supported by DARPA under AA Contract FA8750-18-
C-0092 and by the National Science Foundation under SaTC Award 1801369, CAREER Award
1845514, and SHF Awards 1812876 and 2007784. Any opinions, findings, and conclusions contained
in this document are those of the authors and do not necessarily reflect the views of the sponsoring
organizations. Long Pham gratefully acknowledges the support of the Funai Overseas Scholarship
by the Funai Foundation of Information Technology, Japan.

1 Introduction

There exists a wide range of effective techniques for automatically or semi-automatically
analyzing the resource consumption of programs. These techniques derive symbolic bounds
on the worst-case [24], best-case [10, 28], or expected [7, 29] resource consumption and are
based on type systems [8, 33, 9, 26, 2, 6, 12], recurrence relations [34, 11, 1, 25, 23], relational
reasoning [6, 31], and term rewriting [3, 5, 19].

State-of-the-art resource analyses can automatically derive complex bounds for large
programs, and making analyses more practical by improving their efficiency and range is a
main driving force in this area. However, resource analysis for Turing-complete languages
is undecidable, and even for the most sophisticated tools there will remain programs that
cannot be analyzed automatically. Diagnosing the cause and modifying the program so
that the analysis can derive a bound often require in-depth knowledge of the implemented
techniques. As a result, the usability of more sophisticated analysis tools is hampered by
their complexity.

© Long Pham and Jan Hoffmann;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 34; pp. 34:1–34:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5153-8140
mailto:longp@andrew.cmu.edu
https://orcid.org/0000-0001-8326-0788
mailto:janh@andrew.cmu.edu
https://doi.org/10.4230/LIPIcs.CSL.2021.34
https://arxiv.org/abs/2010.16353
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Typable Fragments of Polynomial Automatic Amortized Resource Analysis

To improve the usability of automatic resource analysis for non-experts, this article
develops easy-to-understand characterizations of the programs that can be analyzed with
automatic amortized resource analysis (AARA). Such characterizations can serve as explana-
tions for an unsuccessful resource analysis and guide program development without revealing
technical details of the underlying analysis.

AARA is a type-based analysis that is based on the potential method of amortized analysis.
It has been first introduced by Hofmann and Jost [18] for deriving linear heap-space bounds
for a first-order language with lists. AARA has subsequently been extended to univariate
polynomial bounds [16], multivariate polynomial bounds [13, 14], and exponential bounds
[22]. Furthermore, AARA has been extended to other language features such as higher-order
and polymorphic functions [20, 15], lazy evaluation [21], and probabilistic programming
[29]. The analysis has been implemented in the programming language Resource-Aware ML
(RaML) [15]. An overview of polynomial AARA can be found in Section 2. We are not aware
of previous work that studies the characterization of typable fragments of AARA.

Our first contribution (Section 3) is a characterization of the (mathematical) functions
that can be implemented in AARA. We demonstrate that it is possible to embed every
polynomial-time Turing machine in AARA. That is, for every such Turing machine, there
exists an equivalent polynomial-time program that is typable in polynomial AARA. This
result shows that polynomial AARA corresponds to the complexity class PTime and is in
the tradition of implicit computational complexity (ICC) [4, 27, 17], which studies linguistic
characterizations of complexity classes. For a user of RaML, this result means that an
implementation of a PTime function can always be rewritten so that a worst-case cost bound
can be automatically derived. However, it does not provide guidance on how to rewrite an
implementation.

An ideal resource analysis should automatically derive a cost bound for every program
that has a polynomial bound. However, such an analysis does not exist, because the
problem of deciding whether a given program runs in polynomial time is undecidable [13].
Moreover, AARA is a type-based analysis that derives the bound of an expression from
its sub-expressions. So we can only expect to derive a bound for an expression which is
inherently polynomial time, that is, every subexpression is in PTime if viewed as a function.

Our second contribution is an axiomatic definition of inherently polynomial time that
implies typability in multivariate polynomial AARA for a Turing-complete first-order language
with lists (Section 2) under some restrictions: Programs can only use primitive recursion
instead of general recursion, some variables are affine, and the use of nested lists is restricted.
Although this characterization is far from being a necessary condition, we believe that it can
be a valuable guide to users. A key concept is the notion of uniform resource annotations
which is essential in the proof that inherently polynomial time is a sufficient condition for
typability in multivariate polynomial AARA.

2 Automatic Amortized Resource Analysis (AARA)

Among approaches to resource analysis is AARA. Given a program P , consider its history of
execution, that is, a sequence of transitioning program states. As in Sleator and Tarjan’s
potential method in amortized analysis [32], we assign a certain (non-negative) amount
of potential to the initial state of this sequence. If we can ensure that (i) the amount of
potential never becomes negative throughout P ’s run and (ii) the actual computational cost
in each transition of P is less than or equal to the change in the amount of potential, then
we know that the total resource usage of P is bounded above by the initial potential. This is
essentially how AARA works.

L. Pham and J. Hoffmann 34:3

More concretely, each sub-expression of P is assigned a resource-annotated type: a con-
ventional (i.e. simple) type augmented with an expression that indicates how much potential
is stored. In polynomial AARA [16, 14], we use polynomial functions to express potential.
Initially, AARA only assigns templates of resource-annotated types where coefficients of
polynomials are left blank. AARA then collects constraints on these coefficients that respect
the cost semantics of P . Finally, as these constraints are all linear, we can simply solve them
using an off-the-shelf liner program solver, thereby inferring resource-annotated types. A
worst-case cost bound of P can be extracted from its resource-annotated type.

2.1 Resource-Aware ML
Resource-Aware ML (RaML) is a Turing-complete functional programming language used in
the study of AARA [16].

The original version of RaML is first-order (i.e. no higher-order types or functions appear
in RaML) and only offers a relatively small set of language features. Subsequent versions
of RaML support more language features such as higher-order functions and polymorphic
functions [15]. In this section, we describe a variant of RaML that only differs from the
original version in a few minor details; e.g. the tick construct and the support for sum types.

The base types (denoted by b) and simple types (denoted by τ) of RaML are formed by

b ::= 1 unit type τ ::= b base type
b1 + b2 sum type b1 → b2 arrow type
b1 × b2 product type
L(b) list type.

The set of all base types will be denoted by B.
Fix a set V = {x, y, x1, x2, . . .} of variable symbols and a set F = {f, . . .} of function

symbols. The grammar of RaML is

e ::= x variable
| 〈 〉 unit element
| ` · x | r · x | case x {` · y ↪→ e` | r · y ↪→ er} sum constructors and destructor
| 〈x1, x2〉 | case x {〈x1, x2〉 ↪→ e} pair constructor and destructor
| [] | x1 :: x2 | case x {[] ↪→ e0 | (x1 :: x2) ↪→ e1} list constructors and destructor
| fun f x = e function definition
| f x function application
| tick q resource consumption; q ∈ Q
| let x = e1 in e2 let-binding
| share x as x1, x2 in e variable sharing.

In a function definition, e is allowed to mention f . Therefore, we can implement not only
primitive recursion but also general recursion. As standard, we use the let-normal form,
where we only permit function application of the form x1 x2 as opposed to e1 e2. For
convenience in resource analysis, we require each variable symbol to be used in a affine
manner (i.e. can only be used at most once). To use a variable symbol multiple times, we
duplicate the symbol with the share construct.

In the interest space, we will not present a type system of this language here. It is
available in Appendix B.1 of the full version of this article [30].

CSL 2021

34:4 Typable Fragments of Polynomial Automatic Amortized Resource Analysis

RaML programs are evaluated using the call-by-value strategy. Computational costs
accrue only when tick q is executed, and this cost metric is known as the tick metric. The
general cost semantics of RaML can be found in [16]. In the case of the running time, which
is a specific cost metric, of RaML, the judgment of the cost semantics has the form

V ` e ⇓ v | n,

where V is an environment (i.e. a set of pairs of variable symbols and semantic values), v is
a semantic value, and n ∈ N is the running time of evaluating program e to v. The running
time is formally defined in Appendix B.2 of [30].

2.2 Univariate AARA
In univariate AARA, each list is annotated with a polynomial indicating the amount of the
potential stored in the list. Univariate AARA does not let us mix potential of two lists,
that is, multiply polynomials of two lists’ potential. This is why univariate AARA is called
univariate.

Resource-annotated base types (denoted by b) and resource-annotated simple types
(denoted by τ) are formed by the following grammar:

b ::= 1 unit type B ::= 〈b, q〉 q ∈ Q≥0

b1 + b2 sum type τ ::= b base type
b1 × b2 product type B1 → B2 arrow type
L~q(b) list type.

Here, ~q is a finite vector of Q≥0.
Given a semantic value v : b, where b is a resource-annotated base type, the potential

stored in v is inductively defined as

Φ(v : 1) := 0 Φ([] : L~q(b)) := 0
Φ(` · v : b1 + b2) := Φ(v : b1) Φ(v1 :: v2 : L~q(b)) := Φ(v1 : b) + φ(|v1 :: v2|, ~q)
Φ(r · v : b1 + b2) := Φ(v : b2),

where |·| denotes the length of an input list. Given n ∈ N and ~q = (q1, . . . , qk), φ(n, ~q) is
defined as φ(n, ~q) :=

∑k
i=1 qi

(
n
i

)
. If n < i, then

(
n
i

)
= 0.

The typing judgment of univariate AARA has the form

Γanno; p ` e : B,

where Γanno is a resource-annotated typing context and p ∈ Q≥0. We sometimes write
Σanno; Γanno; p ` e : B, where a resource-annotated typing context is split into Σanno for
arrow-type variables and Γanno for base-type variables. The type system of univariate AARA
is available in Appendix C.1 of [30].

To give examples of judgments in univariate AARA, consider two programs: (i) append
that appends the first input list to the second, and (ii) quicksort that performs quicksort.
The running time of append is proportional to the size of the first input, and the running
time of quicksort is bounded by the square of the input size. For simplicity, we will not work
out the exact coefficients of polynomial bounds. Instead, we simply assume that the running
time of append is bounded by the function n,m 7→ n, where n and m are the lengths of
the two input lists. Likewise, we assume that the running time of quicksort is bounded by

L. Pham and J. Hoffmann 34:5

n 7→ n2, respectively. It then makes sense that these two programs can be typed in univariate
AARA as

append : 〈〈L1(b), L0(b)〉, 0〉 → 〈L0(b), 0〉 quicksort : 〈L(1,2)(b), 0〉 → 〈L0(b), 0〉.

The univariate resource annotation (1, 2) of quicksort represents polynomial n 7→ 1 ·
(

n
1
)

+ 2 ·(
n
2
)

= n2. The implementations of append and quicksort are given in Appendix C.3 of [30].
Univariate AARA is sound with respect to the cost semantics (specifically, the running

time) of RaML:

I Theorem 1 (Soundness of univariate AARA [16]). Given term e, suppose Γanno; p ` e :
〈banno, q〉 is derived in univariate AARA. Let V be an environment such that V ` e ⇓ v | n;
that is, e runs in n units of time under V . We then have

n ≤ p+ Φ(V : Γanno)− q − Φ(v : banno),

where Φ(V : Γanno) =
∑

x∈dom(Γanno) Φ(V (x) : Γanno(x)).

2.3 Multivariate AARA
In contrast to univariate AARA, multivariate AARA allows us to mix potential of different
lists. For example, we can have |`1| · |`2|’s worth of potential, where |·| denotes the length of a
list, in multivariate AARA. Due to this multivariate nature, multivariate AARA has a single
global resource annotation represented by a multivariate polynomial over all size variables
occurring in a given term. This global resource annotation is separate from individual types
in a typing context.

Multivariate AARA is strictly more expressive than univariate one. This is surprising
in light of the fact that multivariate polynomials can always be bounded by univariate
polynomials; e.g. xy is bounded by x2 + y2. Examples of programs that cannot be typed in
univariate AARA but are typable in multivariate AARA are in Section 4.1 and Section 5.

Resource-Annotated Types

Resource-annotated types in multivariate AARA are formed by

b ::= 1 unit type B ::= 〈b,Q〉
b1 + b2 sum type τ ::= b base type
b1 × b2 product type B1 → B2 arrow type
L(b) list type.

In 〈b,Q〉, Q is a multivariate resource annotation over the size variables inside b. This will
be formalized shortly.

Given a base type b ∈ B, its base polynomial is a function of type JbK → N, where JbK
is the set of semantic values of type b. The set of base polynomials associated with type b,
denoted by B(b), is inductively defined as follow:

B(1) := {λv.1}
B(b1 + b2) := {λ(` · v).p(v) | p ∈ B(b1)} ∪ {λ(r · v).p(v) | p ∈ B(b2)}
B(b1 × b2) := {λ〈v1, v2〉.p1(v1) · p2(v2) | pi ∈ B(bi)}

B(L(b)) := {λ[v1, . . . , vn].
∑

1≤j1<···<jk≤n

∏
1≤i≤k

pi(vji) | k ∈ N, pi ∈ B(b)}.

CSL 2021

34:6 Typable Fragments of Polynomial Automatic Amortized Resource Analysis

For b1 + b2, we have a set of base polynomials for the `-tag and another set for the r-tag. If
a base polynomial is applied to a value with a wrong tag, we assume that the output is 0.
For instance, if we feed a value ` · 〈 〉 to λ(r · v).1, the output should be 0. In the definition
of B(L(b)), if n < k, the function should return 0 since it is the identity of summation.

Given base type b, a resource polynomial p : JbK→ Q≥0 is a non-negative linear combina-
tion of finitely many base polynomials from B(b). It is straightforward to prove that B(b)
for any b contains λv.1. Therefore, a resource polynomial is always capable of expressing
constant potential.

For convenience, it is desirable to have a succinct notation for base polynomials. This is
achieved by introducing indexes of base polynomials:

I(1) := {∗}
I(b1 + b2) := {` · i | i ∈ I(b1)} ∪ {r · i | i ∈ I(b2)}
I(b1 × b2) := {〈i1, i2〉 | i1 ∈ I(b1), i2 ∈ I(b2)}
I(L(b)) := {[i1, . . . , ik] | k ∈ N, ij ∈ I(b)}.

An index is usually used as a subscript for a (meta)-variable representing a coefficient of
a base polynomial. For instance, q〈∗,∗〉 ∈ Q≥0 is a meta-variable representing a coefficient of
base polynomial λ〈v1, v2〉.1. For any base type b, we will write 0b for the index λv.1.

For example, consider I(L(1)) = {∗, [∗], [∗, ∗], [∗, ∗, ∗], . . .}. The index [∗, ∗] represents the
polynomial function

λ[v1, . . . , vn].
∑

1≤j1<j2≤n

∏
1≤i≤2

((λv.1) vji
) = λ[v1, . . . , vn].

∑
1≤j1<j2≤n

1

= λ[v1, . . . , vn].
(
n

2

)
.

Thus, the multivariate index [∗, ∗] represents a quadratic function on the input list’s length.
The degree of an index is defined by

deg(∗) := 0 deg(〈i1, i2〉) := deg(i1) + deg(i2)

deg(` · i), deg(r · i) := deg(i) deg([i1, . . . , ik]) := k +
∑

1≤j≤k

deg(ij).

Intuitively, deg(i) is equal to the degree of the polynomial function that index i represents.
Because a resource polynomial can only have non-zero coefficients for finitely many base
polynomials, any resource polynomial (or a finite set of resource polynomials) has a bounded
degree. In practice, we ask a user of AARA to supply an upper bound on the degree of base
polynomials.

Resource Annotations of Typing Contexts

Given a base-type typing context Γ = {x1 : b1, . . . , xn : bn}, its multivariate resource
annotation is given by a resource polynomial of type b1 × · · · × bn. In other words, we treat
a typing context as one big tuple and assign a single multivariate annotation to this tuple.

With regard to an arrow-type typing context Σ = {f1 : b1,1 → b1,2, . . . , fm : bm,1 → bm,2},
its multivariate resource annotation has the form

Σanno = {f1 : B1,1 → B1,2, . . . , fm : Bm,1 → Bm,2},

where each Bi,j is a pair 〈bi,j , Q〉 such that Q is a multivariate resource annotation of bi,j .

L. Pham and J. Hoffmann 34:7

Typing Judgment

The typing judgment of multivariate AARA takes the form

Γ;P ` e : 〈b,Q〉,

where Γ and b are free of resource annotations. P and Q are multivariate annotation over Γ
and b, respectively. The type system of multivariate AARA is available in Appendix D.2 of
[30].

To give examples of judgments in multivariate AARA, consider append 〈`1, `2〉, which
appends `1 to `2. Suppose that the output must store n 7→ n2 much potential, where n is
the output’s length. It is reasonable that the total potential required for this program is
|`1|+ (|`1|+ |`2|)2, out of which |`1| is used to account for the running time. This can be
expressed by the judgment `1 : L(1), `2 : L(1);P ` append 〈`1, `2〉 : 〈L(1), Q〉, where the
positive coefficients of P and Q are

P (〈[∗], ∗〉) = P (〈[∗, ∗], ∗〉) = P (〈[∗], [∗]〉) = P (〈∗, [∗, ∗]〉) = 2 P (〈∗, [∗]〉) = 1
Q([∗, ∗]) = 2 Q([∗]) = 1.

P amounts to 2 ·
((|`1|

1
)

+
(|`1|

2
)

+
(|`1|

1
)
·
(|`2|

1
)

+
(|`2|

2
))

+ 1 ·
(|`2|

1
)
, which is equal to |`1| +

(|`1| + |`2|)2 as desired. Similarly, Q amounts to 2 ·
(

n
2
)

+ 1 ·
(

n
1
)

= n2 as desired, where
n = |`1|+ |`2|.

The multivariate equivalent of the soundness theorem (Theorem 1) holds [14].

3 Embedding Polynomial-Time Turing Machines in AARA

In this section, we show that every polynomial-time Turing machine can be expressed as a
typable RaML program while preserving the semantics and worst-case cost bounds. More
formally, we have

I Theorem 2 (Embedding of polynomial-time Turing machines in RaML). Let M be a
polynomial-time Turing machine that inputs and outputs bit strings from {0, 1}∗. There
exists a RaML program M ′ : {0, 1}∗ → {0, 1}∗ such that

For every input w ∈ {0, 1}∗, we have M(w) = M ′(w);
The computational cost of M ′ (according to the tick metric) is larger than or equal to the
running time of M ;
Univariate AARA can infer a polynomial upper bound of the computational cost of M ′.
Theorem 2 only tells us the existence of a RaML program M ′ that is typable in univariate

AARA and that simulates M faithfully. In our proof of the theorem, we assume that a
polynomial bound on the running time of M is known. Thus, if we do not have access to this
polynomial bound, we cannot construct M ′. In fact, the problem of determining whether a
given Turing machine runs in polynomial time or not is undecidable [13].

It is fairly easy to prove that the cost of any program according to the tick metric is
asymptotically bounded by its running time. Therefore, in the statement of Theorem 2, we
can replace the “tick metric” with the “running time” of RaML.

A detailed proof of Theorem 2 is available in Appendix A of [30].

3.1 Preliminaries
I Definition 3 (Turing machine). A (deterministic) Turing machine M is specified by an
8-tuple (Q,Σ,Γ,`,t, δ, q0, qfinal), where

Q is a finite set of machine states.

CSL 2021

34:8 Typable Fragments of Polynomial Automatic Amortized Resource Analysis

Σ is a finite input alphabet. Γ is a finite alphabet for symbols written on M ’s tape. Since
an input will be initially placed on the tape, every input symbol is also a tape symbol.
` ∈ Γ \ Σ is the left end marker that demarcates the left end of a semi-infinite working
tape, and t ∈ Γ \ Σ is the blank symbol for the tape.
δ : Q× Γ→ Q× Γ× {L,R} is the transition function.
q0 ∈ Q is the initial state, and qfinal ∈ Q is the final state.
In the initial configuration of a Turing machine, an input string w is placed immediately

after the left end marker ` on the tape. The state of the machine is initially q0, and the
read/write head is positioned on the first symbol of w. The rest of the tape is filled with t.

The Turing machine first (i) reads the content of the cell currently under the tape head
and (ii) identifies the current state of the machine. The machine then overwrites the current
cell (if necessary), updates the machine’s state, and moves the head to the left or right
according to the transition function δ. The machine terminates as soon as it enters qfinal.
Upon termination, the content of the tape before the first blank symbol is considered as the
machine’s output. The running time is defined as the number of steps the Turing machine
makes before termination.

Without loss of generality, we will henceforth only consider Turing machines with Σ =
{0, 1} and Γ = Σ ∪ {`,t}.

To enhance clarity, we will introduce two type aliases, State and Sym, which are defined
as L(1 + 1); i.e. bit strings or natural numbers. The type State represents machine states of
M , and Sym represents tape symbols of M . In fact, because M has finitely many machine
states and tape symbols, State and Sym can alternatively be encoded as 1 + · · ·+ 1.

3.2 Embedding
Fix a polynomial-time Turing machine M = (Q,Σ,Γ,`,t, δ, q0, qfinal). Assume that the
running time of M is bounded above by p(n) for some polynomial p : N→ N. The target
program of the translation will be denoted by M ′, and this is what we are about to define.
M ′ works as described in Algorithm 1. A RaML implementation of M ′ is available in
Appendix A.3 of [30].

Algorithm 1 Operational working of target RaML program M ′.
Require: w ∈ {0, 1}∗
1: procedure M ′(w)
2: Create a singleton list `1 : L(Sym) containing `
3: Create a list `2 : L(Sym) of size p(|w|) filled with t
4: Prepend `2 with w
5: Create a list ps : L(1) of size p(|w|) . Reservoir of potential
6: s← q0 . Initialize the current state
7: while s 6= qfinal ∧ ps 6= [] do
8: ps← tail ps . Potential is released
9: Compute δ(s, `2[0])
10: Update s and `2[0] appropriately
11: Update the tape head’s position by moving the head of `1 or `2 to the other
12: return append(reverse `1, `2)

The list `1 represents the region on M ’s tape to the left of the tape head (in the reverse
order and excluding the cell where the tape head is currently on), and `2 represents the
region to the right of the head (including the current cell). Since it is assumed that p(|w|),

L. Pham and J. Hoffmann 34:9

where |w| denotes the length of input list w, is an upper bound on M ’s running time, we
are assured that M requires at most p(|w|) many cells on the working tape. This is why `2
initially has size p(|w|). In fact, because we prepend `2 with w in line 4, we have |w| more
cells than necessary.

The list ps acts as a reservoir of potential, storing constant potential in each element. As
the head of ps is removed in line 8, the potential stored in this element is freed and will be
consumed in subsequent lines inside the loop’s body.

It is technically possible to store potential directly in `1 and `2, which together simulate
M ’s working tape. However, not all cells on the working tape of M are accessed equally
often – some cells are accessed more often than others, and the maximum number of accesses
to a given cell may not be bounded by a constant. If we are to store potential in `1 and `2,
each cell of `1 and `2 needs to store p(n) units of potential at the beginning. As a result, the
total amount of potential supplied to M ′ is p2(n), which is a gross over-approximation of the
actual running time. Therefore, to have a tighter cost bound, a separate list, namely ps, is
employed as a reservoir of potential.

4 Inherently Polynomial Time

Section 3 investigates the expressive power of AARA from the viewpoint of programming
language semantics, disregarding the issue of how to algorithmically turn an arbitrary Turing
machine into a typable RaML program. By contrast, in this section, we aim to identify
a typable fragment of AARA that is defined statically/axiomatically. Henceforth, we will
call the sufficient condition corresponding to the typable fragment that this section presents
inherently polynomial time.

A key requirement is that the typable fragment should not resemble AARA’s type system,
which itself is also defined axiomatically. Otherwise, it would be trivial to prove that any
term in this fragment is typable in AARA. Because we want users of AARA to benefit from
our findings of the present work, another requirement is that the definition (or at least the
informal definition) of inherently polynomial time should be easy to convey to users of AARA.
On the other hand, it is not our priority to find as large a typable fragment as we can.

In the remaining of the article, we will focus on the running time as a cost metric of
RaML, unless stated otherwise.

4.1 High-Level Design
By Theorem 1 (and its multivariate equivalent), AARA is sound: if a program is typable in
AARA, its resource-annotated type is a correct upper bound on the running time. Hence, to
be typable in AARA, the worst-case running time of a program must be polynomial. To
ensure termination of programs, we first restrict recursion to primitive recursion.

Furthermore, the type system of AARA is compositional: if term e is typable, so is
every sub-expression of e. Hence, in order for e to be typable, not only e but also all of its
sub-expressions must be polynomial-time. This suggests that we should define the sufficient
condition inductively, hence the name inherently polynomial time.

It is straightforward to determine whether each of the base cases of the inductive definition
is typable or not. It remains to work out inductive cases in the inductively defined sufficient
condition for typability. The most interesting case is primitive recursion. A primitive
recursion will be written as

e := rec x {[] ↪→ e0 | (y :: ys) with z ↪→ e1},

CSL 2021

34:10 Typable Fragments of Polynomial Automatic Amortized Resource Analysis

where x is matched against y :: ys in the second branch, and z is the result of a recursive call.
The stepping function e1 can only contain y, ys, and z as free variables; i.e. FV(e1) ⊆ {y, ys, z}.
From compositionality, we know that e0 and e1 are both typable and hence run in polynomial
time. Under what condition does the entire e run in polynomial time as well?

To answer this question, we first observe the following. Without any restrictions on e0
and e1 apart from that they should be typable, AARA may project e’s worst-case time
complexity to be exponential even if the actual running time of e is polynomial. To illustrate
this, consider

e := rec x {[] ↪→ [] | (y :: ys) with z ↪→ share z as z1, z2 in append 〈z1, z2〉}. (4.1)

Although the actual running time of e is O(|x|) and hence is linear, e is untypable in
polynomial AARA. The problem of (4.1) is that the stepping function doubles the input size.
This makes AARA conclude (naïvely) that the worst-case total running time is O(2|x|), and
this cost bound is beyond the expressive power of AARA (exponential AARA [22], however,
can handle exponential cost bounds).

To preclude the example (4.1), it is reasonable to require the running time of e1 (i.e. a
stepping function inside primitive recursion) to be constant in the size of z (i.e. the result
of a recursive call). More concretely, if T (|y|, |ys|, |z|) is the running time of a stepping
function, we demand T (|y|, |ys|, |z|) ≤ p(|y|, |ys|), where p(|y|, |ys|) is a polynomial in |y| and
|ys| (i.e. the sizes of y’s and ys’s semantic values1). We will adopt this idea in the formulation
of inherently polynomial time.

Although this idea results in a fairly simple inductive definition of inherently polynomial
time, a major drawback is that some realistic programs are not admitted by the current
formulation of inherently polynomial time. For instance, consider multiply that, given input
lists `1 and `2, produces a list of size |`1| · |`2|:

multiply := λ`1.λ`2.rec `1 {[] ↪→ 〈`2, []〉 | (y :: ys) with z ↪→ e1}, (4.2)

where the stepping function of primitive recursion is

e1 ≡ case z {〈z1, z2〉 ↪→ share z1 as z1,1, z1,2 in 〈z1,1, append 〈z1,2, z2〉〉}.

The first component of z stores `2, while the second component of z acts as an accumulator.
The running time of e1 is polynomial in |z1| but constant in |z2|. Therefore, e1’s running
time is only polynomial partially in |z|. This is why the overall time complexity of e remains
polynomial instead of becoming exponential. Nonetheless, (4.2) is not inherently polynomial
time according to the current formulation, since the formulation does not allow e1’s running
time to have any dependence on |z|.

Furthermore, (4.2) can only be typed in multivariate AARA and not in univariate AARA.
This means our formulation of inherently polynomial time fails to capture some of the realistic
programs that are typable only in multivariate AARA. In view of this, one might wonder
whether inherently polynomial time is completely encapsulated by univariate AARA; that
is, every inherently polynomial-time RaML program is typable in univariate AARA. The
answer is negative.

As a counterexample, consider the standard append defined as

append := λ`1.λ`2.rec `1 {[] ↪→ `2 | (y :: ys) with z ↪→ y :: z}. (4.3)

1 A formal definition of the size of RaML’s base-type semantic values is not provided in this article.
However, the idea is intuitive. For example, the size of a list is given by the sum of all elements’ sizes.

L. Pham and J. Hoffmann 34:11

Note that it is inherently polynomial time. append alone is typable in univariate AARA as
well as multivariate AARA. However, if we require the output of append to carry quadratic
potential (because it will be later fed to a function that demands quadratic potential from
inputs, for example), then univariate AARA cannot type append – we need to resort to
multivariate AARA to type it.

In summary, our formulation of inherently polynomial time goes beyond the remit of
univariate AARA, but does not capture the full range of realistic programs that require
multivariate potential.

4.2 Formulation of Inherently Polynomial Time
Restricting the Syntax of Resource-Aware ML

To ensure termination of programs, we require programs to use primitive recursion in place
of general recursion. Hence, we will from now on work with a fragment of RaML wherein
general recursion is replaced by primitive recursion. This fragment removes fun f x = e from
the original RaML (Section 2.1) and adds the following:
1. λ(x : b).e for a lambda abstraction, where b ∈ B;
2. rec x {[] ↪→ e0 | (y :: ys) with z ↪→ e1}, where z denotes the result of the recursive call.
In primitive recursion, e1 is only allowed to mention {y, ys, z}. If e1 needs access to a global
variable v (i.e. a variable from outside the primitive recursion), v should be transferred to e1
by placing v inside z.

The reason why we deny e1 access to a global variable is that every variable symbol can
only be accessed at most once in RaML. However, this is in fact already violated by e1 having
access to ys (because this means some elements of the input x are accessed multiple times
during primitive recursion). Further, even if we let e1 access global variables, AARA can be
easily adapted. Also, it will result in a less strict formulation of inherently polynomial time
that admits multiply in (4.2). Nonetheless, for simplicity, this article assumes that e1 can
only mention y, ys, and z.

Primitive recursion can be encoded using general recursion as

fun f 〈x,Γ〉 = case x {[] ↪→ e0 | y :: ys ↪→ share ys as ys1, ys2 in let z = f 〈ys1,Γ〉 in e1}.

Here, Γ is a set/sequence of those variables that do not appear in e1, but e0. Variable ys1 is
passed to the recursive call, and ys2 is used in e1 (if e1 mentions ys).

Judgments

The primary judgment of inherently polynomial time is

∆; Γ ` e inhpoly(V), (4.4)

where
Γ is a typing context containing both base-type and arrow-type variables such that
Γ ` e : b for base type b.
V ⊆ dom(Γ) is a set of variables.
∆ is a set of f time, where f ∈ dom(Γ) is an arrow-type variable and time ∈ {const, poly}.

Sometimes we split Γ into Σ for arrow-type variables and Γ for base-type variables, writing
the judgment as ∆; Σ; Γ ` e inhpoly(V). (4.4) is only applicable to base-type expressions e.

An informal interpretation of (4.4) is

CSL 2021

34:12 Typable Fragments of Polynomial Automatic Amortized Resource Analysis

f const denotes that the running time of f is constant with respect to the input size, and
likewise, f poly denotes that f ’s running time is polynomial2 in the input size.
The running time of e is (i) polynomial3 in the sizes of those variables in V but (ii)
constant in the sizes of dom(Γ) \ V .
Every sub-expression of e runs in polynomial time.

The judgments for an arrow-type expression e are

∆; Γ ` e const ∆; Γ ` e poly, (4.5)

∆; Γ ` e const means e runs in constant time with respect to the input size, and ∆; Γ ` e poly
likewise means e’s running time is polynomial in the input size.

Inference Rules

The most important inference rules defining (4.4) are displayed in Figure 1. Throughout
these rules, b denotes a base type, time is drawn from {const, poly}, and V is a set of variables.
The remaining rules are deferred to Figure 10 in Appendix E of [30].

In (IP:Case-Sum), the notation V [x 7→ y] refers to the result of replacing x in V with y
(if x ∈ V); otherwise, V remains intact. If the running time of case x {` · y ↪→ e` | r · y ↪→ er}
in the rule’s conclusion is allowed to be polynomial in |x| (i.e. x ∈ V), then ei∈{`,r} in the
two premises is allowed to run in polynomial time in |y| = |x| − 1.

Similarly, in (IP:Case-Prod), V [x 7→ x1, x2] means (V \ {x}) ∪ {x1, x2} if x ∈ V ;
otherwise, V remains unchanged.

(IP:Rec) is the crux of the notion of inherently polynomial time. Observe that the
stepping function e1 must be constant-time in |z| (i.e. the size of z’s semantic value).

In (IP:Let-Base), we use a finer-grained notation where the typing context of e1 is split
into Σ1 for arrow-type variables and Γ1 for base-type variables. V3 is determined by

V3 :=
{
dom(Γ1) ∪ (V2 \ {x}) if x ∈ V2;
V1 ∪ V2 otherwise.

If x ∈ V2, it means that e2 runs in polynomial time in |x|. In the worst case, not only the
running time of e1 but |e1| (i.e. the output size of e1) is polynomial in the sizes of those
variables in V1. Hence, in the worst case, the overall running time of let x = e1 in e2 is
polynomial in dom(Γ1), which contains all base-type variables appearing in e1, and V2 \ {x}.
Note that (IP:Let-Base) considers the worst case – if we had information about the output
size, we might be able to derive a more precise judgment.

Finally, the judgment (4.5) is defined by the following inference rules:

∆;x : b ` e inhpoly(∅)
(IP:Const)

∆; · ` λ(x : b).e const
∆;x : b ` e inhpoly({x})

(IP:Poly)
∆; · ` λ(x : b).e poly

In (IP:Const), because the conclusion indicates that the λ-abstraction’s running time is
constant in the input size, the premise states that the running time of the body e can only
be polynomial in dom(Γ), which excludes x. By contrast, in the premise of (IP:Poly), the
set of variables contains x.

2 f ’s running time being polynomial does NOT mean that it is strictly polynomial – it can also be constant
in the input size.

3 Again, the running time of e may be constant as well as polynomial in the size of any v ∈ V .

L. Pham and J. Hoffmann 34:13

(IP:Base)
·; x : b ` x inhpoly(∅)

∆ = {f time}
(IP:Arrow)∆; f : b1 → b2 ` f time

·; x : b ` x inhpoly(∅)
(IP:SumL)

·; x : b ` ` · x inhpoly(∅)
·; x : b ` x inhpoly(∅)

(IP:SumR)
·; x : b ` r · x inhpoly(∅)

·; x1 : b1 ` x1 inhpoly(∅) ·; x2 : b2 ` x2 inhpoly(∅)
(IP:Pair)

·; x1 : b1, x2 : b2 ` 〈x1, x2〉 inhpoly(∅)

(IP:Unit)
·; · ` 〈 〉 inhpoly(∅)

∆ = {x1 const}
(IP:App-Const)

∆; x1 : b1 → b2, x2 : b1 ` x1 x2 inhpoly(∅)

(IP:Nil)
·; · ` [] inhpoly(∅)

∆ = {x1 poly}
(IP:App-Poly)

∆; x1 : b1 → b2, x2 : b1 ` x1 x2 inhpoly({x2})

·; x1 : b ` x1 inhpoly(∅) ·; x2 : L(b) ` x2 inhpoly(∅)
(IP:Cons)

·; x1 : b, x2 : L(b) ` x1 :: x2 inhpoly(∅)

∆; Γ, y : b1 ` e` inhpoly(V [x 7→ y]) ∆; Γ, y : b2 ` er inhpoly(V [x 7→ y])
(IP:Case-Sum)

∆; Γ, x : b1 + b2 ` case x {` · y ↪→ e` | r · y ↪→ er} inhpoly(V)

∆; Γ, x1 : b1, x2 : b2 ` e inhpoly(V [x 7→ x1, x2])
(IP:Case-Prod)

∆; Γ, x : b1 × b2 ` case x {〈x1, x2〉 ↪→ e} inhpoly(V)

∆; Γ ` e0 inhpoly(V \ {x}) ∆; Γ, x1 : b, x2 : L(b) ` e1 inhpoly(V [x 7→ x1, x2])
(IP:Case-List)

∆; Γ, x : L(b) ` case x {[] ↪→ e0 | (x1 :: x2) ↪→ e1} inhpoly(V)

∆; Γ ` e0 inhpoly(V) ·; y : b, ys : L(b), z : b2 ` e1 inhpoly({y, ys})
(IP:Rec)

∆; Γ, x : L(b) ` rec x {[] ↪→ e0 | (y :: ys) with z ↪→ e1} inhpoly(V ∪ {x})

∆1; Σ1; Γ1 ` e1 inhpoly(V1) ∆2; Γ2, x : b ` e2 inhpoly(V2)
(IP:Let-Base)

∆1 ∪∆2; Σ1 ∪ Γ1 ∪ Γ2 ` let x = e1 in e2 inhpoly(V3)

∆; Γ, x1 : b, x2 : b ` e inhpoly(V [x 7→ x1, x2])
(IP:Share-Base)

∆; Γ, x : b ` share x as x1, x2 in e inhpoly(V)

Figure 1 Key inference rules of inherently polynomial time.

5 Typable Fragment of Resource-Aware ML

It is nontrivial to prove that inherently polynomial time (Section 4.2) implies typability
in multivariate AARA. The chief challenge is to come up with a suitable statement of a
typability theorem (i) that we can prove by induction and (ii) that satisfies the following two
requirements. Firstly, because a term e may later be used as an input to a function, it must
be possible to type e such that a user-specified (i.e. arbitrary) amount of potential remains
in e’s output. Secondly, to type primitive recursion, we need to establish an invariant of
resource annotations that is analogous to a loop invariant in Hoare logic. Specifically, given a
primitive recursion rec x {[] ↪→ e0 | (y :: ys) with z ↪→ e1}, we must give an (almost) identical
annotation to both z, which is the result of a recursive call, and e1, which is a stepping
function.

CSL 2021

34:14 Typable Fragments of Polynomial Automatic Amortized Resource Analysis

Typability Theorem

We have partially overcome this challenge, and this section presents the result that inherently
polynomial time implies typability in multivariate AARA under some restrictions. Detailed
proofs of Theorem 6 and Theorem 9 are available in Appendix E of [30].

I Definition 4 (Variables with zero potential). Let Γ ∪ {v : b} be a base-type typing context
and P be its multivariate annotation. Variable v is said to contain zero potential in P if and
only if P (i, j) = 0 for every i ∈ I(Γ) and j ∈ I({v : b}) such that j 6= 0b. In other words, the
potential represented by P is constant with respect to |v|.

I Assumption 5. Suppose we are given ∆; Σ; Γ ` e t for t ∈ {inhpoly(V), const, poly}. For
every sub-derivation ∆s; Σs; Γs ` es inhpoly(Vs) inside the derivation of ∆; Σ; Γ ` e t, we
assume the following:

If es ≡ share v as v1, v2 in · · · , then v must be in Vs;
If es ≡ case x {[] ↪→ · · · | (y :: ys) ↪→ · · · }, then the type of x is of the form L(b) where
b ∈ B does not contain a list type; that is, x cannot be a nested list.

The next theorem establishes that inherently polynomial time implies typability in
multivariate AARA under Assumption 5, which restricts variable sharing and pattern
matching on nested lists.

I Theorem 6 (Inherently polynomial time implies typability). Suppose we are given a term
Σ; Γ ` e : b with base type b ∈ B, where ∆; Σ; Γ ` e inhpoly(V) holds for some V ⊆ dom(Γ).
Additionally, assume Assumption 5. There exist P and Q satisfying Σ; Γ;P ` e : 〈b,Q〉 such
that each v ∈ dom(Γ) \ V contains zero potential (Definition 4).

Consider an arrow-type term Σ; · ` e : b1 → b2 and assume Assumption 5. There exist
P and Q such that Σ; ·; 1 ` e : 〈b1, P 〉 → 〈b2, Q〉. Additionally, if ∆; ·; Γ ` e const is true, P
contains constant potential; i.e. b1 stores zero potential in P .

Given a base-type expression e, if ∆; Σ; Γ ` e inhpoly(V) holds, the running time of e is
constant in the size of any v ∈ dom(Γ) \ V . In other words, such v does not contribute to
the computational cost of e. Therefore, it intuitively makes sense that such v contains zero
potential in Theorem 6.

However, Theorem 6 cannot be immediately proved by induction on inhpoly(V), since
the statement of the theorem is not strong enough for an inductive proof to go through.
Specifically, a problem arises in the inductive case for (IP:Let-Base). In a let-binding
let x = e1 in e2, e1 must carry sufficient potential to be transferred to e2. However, Theorem 6
does not allow us to specify how much potential will remain available in the output of e.

Prior to remedying this issue, we first introduce the notion of uniform resource annotations
for multivariate AARA.

I Definition 7 (Uniform resource annotations for base types in multivariate AARA). Given a
base type b ∈ B, let P be a multivariate resource annotation of b. P is said to be a uniform
multivariate annotation with degree d ∈ N and number n ∈ N if and only if the following
conditions hold
1. The maximum degree of P is at most d;
2. P (i) = n for every i ∈ I(b) such that deg(i) = d.
In words, all coefficients of base polynomials with degree d (which should be the maximum
degree) are equal to n. This will be denoted by a judgment P uniform(d, n).

L. Pham and J. Hoffmann 34:15

I Definition 8 (Uniform annotations for typing contexts in multivariate AARA). Consider
a term Σ; Γ ` e : b of base type. Suppose that ∆; Σ; Γ ` e inhpoly(V) holds. Let P be a
multivariate annotation for the base-type typing context Γ. We say that P is uniform with
respect to degree d ∈ N, number n ∈ N, and set V of variables if and only if the following
conditions hold:
1. For any base-type variable v ∈ dom(Γ) \ V of type bv, we have

∀i ∈ I({v : bv}), j ∈ I(Γ \ {v : bv}).deg(i) > d =⇒ P (i, j) = 0.

In words, for any base polynomial with a non-zero coefficient in P , its projection on v
must have degree at most d.

2. For any v ∈ dom(Γ) \ V of base type bv, we have

∀i ∈ I({v : bv}), j ∈ I(Γ \ {v : bv}).(deg(i) = d ∧ j 6= 0) =⇒ P (i, j) = 0.

In words, if a base polynomial has a non-zero coefficient and its projection on v has degree
d, then the base polynomial is not allowed to involve size variables of any other base-type
variables from dom(Γ).

3. For any v ∈ dom(Γ) \ V of base type bv, we have

∀i ∈ I({v : bv}).deg(i) = d =⇒ P (i, 0) = n.

That is, every base polynomial whose projection on v has degree d has coefficient n.
If these conditions hold, we denote P being a uniform annotation by a judgment
P uniform(d, n, V).

Note that Definition 8 is a generalization of Definition 7. P uniform(d, n) in Definition 7
is equivalent to P uniform(d, n, ∅) in Definition 8.

Now that we have the notion of uniform annotations in place, we next present Theorem 9
that allows us to specify the amount of potential remaining in the output of a program.
The major difficulty of the proof lies in establishing an invariant for primitive recursion
as explained at the start of Section 5. We employ the notion of uniform annotations to
characterize this invariant.

I Theorem 9 (Existence of a multivariate annotation with arbitrary potential in the output).
Given a term Σ; Γ ` e : b with b ∈ B, suppose that ∆; Σ; Γ ` e inhpoly(V) holds, where
V ⊆ dom(Γ). Also, assume Assumption 5. Fix a multivariate annotation Q for the base
type b such that Q uniform(d, n). Then there exists a multivariate annotation P such that
Σ; Γ;P ` e : 〈b,Q〉 under the cost-free metric. Furthermore, P uniform(d, n, V) holds.

Consider an arrow-type term Σ; · ` e : b1 → b2 and assume Assumption 5. Fix a
multivariate annotation Q for base type b2 such that Q uniform(d, n). Then there exists
P such that Σ; ·; 0 ` e : 〈b1, P 〉 → 〈b2, Q〉 under the cost-free metric. Furthermore, if
∆; Σ; · ` e const is true, P uniform(d, n) holds.

The cost-free metric in Theorem 9 refers to the cost metric in which all evaluation costs
are zero. For instance, if f : L(1) → L(1) is a function that doubles the size of an input
list, it can be typed as f : 〈L2(1), 0〉 → 〈L1(1), 0〉 under the cost-free metric4. That is, the
potential stored in each element is halved because the length of the list is doubled. If the cost

4 For readability, I use univariate AARA instead of multivariate AARA to denote resource-annotated
types, although Theorem 9 concerns multivariate AARA

CSL 2021

34:16 Typable Fragments of Polynomial Automatic Amortized Resource Analysis

metric is the running time, we instead have f : 〈L2+c(1), 0〉 → 〈L1(1), 0〉, where c is the cost
of processing each list element. The type system of multivariate AARA under the cost-free
metric is provided in Appendix D.2 of [30]. Theorem 9 uses the cost-free metric (as opposed
to the running time) since Theorem 6 has already considers the cost of evaluating programs.

Theorem 9 assumes Assumption 5 as the proof of the theorem poses technical challenges
in variable sharing and pattern matching on nested lists. We will now look at these challenges
more closely.

Variable Sharing

Theorem 9 is false if we impose no restrictions on variable sharing. To illustrate this, consider
e defined as

e := rec x {[] ↪→ 〈`, `〉 | (y :: _) with z ↪→ e1}, (5.1)

where the stepping function is e1 ≡ case z {〈z1, z2〉 ↪→ share z1 as z1,1, z1,2 in 〈z1,1, z1,2〉}.
The typing context of e in (5.1) is Γ = {x : L(1), ` : L(1)}. The stepping function satisfies
e1 inhpoly({y, ys}). Hence, (5.1) is indeed inherently polynomial time. However, inside e1,
we have share z1, which Assumption 5 forbids.

Let 〈`1, `2〉 be the output of (5.1). Suppose that both `1 and `2 are to be annotated with
L1(1). To type (5.1) under the cost-free metric such that `1, `2 : L1(1), the typing context
Γ of e needs to be annotated with 2|`|+ |x| · |`|, where |·| denotes the size of an input list.
Observe that we need to use multivariate AARA rather than univariate AARA to type (5.1).

In the notation5 of univariate AARA, the stepping function of (5.1) can be typed as

y : 1, ys : L0(1), z : L2(1)× L0(1); 0 ` e1 : 〈L1(1)× L1(1), 0〉.

Here, the maximum degree is d = 1. It is impossible for both z and e1 to have the same
coefficient for all base polynomials of degree d = 1. Therefore, Theorem 9 is false for (5.1).
To accommodate the multivariate annotation of (5.1), it is necessary to relax the notion of
uniform resource annotations, but this will make the typability proof more challenging.

Nested Lists in Pattern Matching

Theorem 9 is false for pattern matching on nested lists. For example, consider e defined as

e := case x {[] ↪→ _ | (y :: ys) ↪→ 〈y, ys〉},

where the first branch is unimportant in the present discussion. The typing context of e
is Γ = {x : L(L(1))}. Assume that we consider multivariate annotations of degree up to
d = 2. Let P denote a multivariate annotation of Γ. The multivariate annotation for context
{y : L(1), ys : L(L(1))} as a result of pattern matching on x : L(L(1)) is given by the additive
shift of P , denoted by C(P). It is defined as

C(P)(i, j) :=
{
P (0L(1) :: j) + P (j) if i = 0L(1);
P (i :: j) otherwise,

(5.2)

where i ∈ I({y : L(1)}) and j ∈ I({ys : L(L(1))}). The problem is that the base polynomial
(i, j) on the left hand side of (5.2) has degree deg(i)+deg(j), while (i :: j) in the second branch

5 Although we are concerned with multivariate AARA, I will use univariate AARA to denote the resource
annotation of e1 because it happens to be describable by univariate AARA and it is easier to read.

L. Pham and J. Hoffmann 34:17

of the right hand side has degree 1+deg(i)+deg(j). As a consequence, if 1+deg(i)+deg(j) = 2,
P (i :: j) is required to be equal to n because Theorem 9 requires P uniform(d, n) to be
true. This means C(P)(i, j) = n must hold as well. But C(P)(i, j) = n is not necessarily
the case, since Theorem 9 imposes no requirements on the coefficients of lower-degree base
polynomials.

6 Conclusion

In this work, we have shown that polynomial-time Turing machines can be embedded in a
typable fragment of RaML in such a way that the semantics and worst-case cost bounds are
preserved. Moreover, we have proved that if a first-order program P satisfies the following
conditions, it is guaranteed to be typable in multivariate polynomial AARA:
1. P uses primitive recursion instead of general recursion;
2. P is (axiomatically) inherently polynomial-time;
3. No variable sharing is applied to variable v, where P ’s running time is (axiomatically)

constant in v;
4. No pattern matching is applied to a nested list.

We have neither found a counterexample to the full typability theorem (i.e. Theorem 6
without Assumption 5) nor proved it. As future work, we are looking to investigate how
to prove or disprove the full typability theorem. To lift the restriction on nested lists, we
expect that it suffices to modify the statement of the theorem such that we can keep track
of the largest coefficient. However, lifting the restriction on variable sharing will be more
challenging because it certainly requires a drastically different inductive hypothesis.

References
1 Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and Damiano Zanardini. Cost

Analysis of Java Bytecode. In 16th Euro. Symp. on Prog. (ESOP’07), 2007.
2 Martin Avanzini and Ugo Dal Lago. Automating sized-type inference for complexity analysis.

Proc. ACM Program. Lang., 1(ICFP), August 2017. doi:10.1145/3110287.
3 Martin Avanzini and Georg Moser. A Combination Framework for Complexity. In 24th

International Conference on Rewriting Techniques and Applications (RTA’13), 2013.
4 Spephen Bellantoni and Stephen Cook. A new recursion-theoretic characterization of the poly-

time functions. computational complexity, 2(2):97–110, June 1992. doi:10.1007/BF01201998.
5 Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and Jürgen Giesl. Altern-

ating Runtime and Size Complexity Analysis of Integer Programs. In 20th Int. Conf. on Tools
and Alg. for the Constr. and Anal. of Systems (TACAS’14), 2014.

6 Ezgi Çiçek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan Hoffmann. Relational cost
analysis. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, page 316–329, New York, NY, USA, 2017. Association for Computing
Machinery. doi:10.1145/3009837.3009858.

7 Krishnendu Chatterjee, Hongfei Fu, and Aniket Murhekar. Automated Recurrence Analysis
for Almost-Linear Expected-Runtime Bounds. In Computer Aided Verification - 29th Int.
Conf. (CAV’17), 2017.

8 Karl Crary and Stephnie Weirich. Resource bound certification. In Proceedings of the 27th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’00,
page 184–198, New York, NY, USA, 2000. Association for Computing Machinery. doi:
10.1145/325694.325716.

CSL 2021

https://doi.org/10.1145/3110287
https://doi.org/10.1007/BF01201998
https://doi.org/10.1145/3009837.3009858
https://doi.org/10.1145/325694.325716
https://doi.org/10.1145/325694.325716

34:18 Typable Fragments of Polynomial Automatic Amortized Resource Analysis

9 Nils Anders Danielsson. Lightweight semiformal time complexity analysis for purely functional
data structures. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’08, page 133–144, New York, NY, USA, 2008.
Association for Computing Machinery. doi:10.1145/1328438.1328457.

10 Florian Frohn, M. Naaf, Jera Hensel, Marc Brockschmidt, and Jürgen Giesl. Lower Runtime
Bounds for Integer Programs. In Automated Reasoning - 8th International Joint Conference
(IJCAR’16), 2016.

11 Bernd Grobauer. Cost recurrences for dml programs. In Proceedings of the Sixth ACM
SIGPLAN International Conference on Functional Programming, ICFP ’01, page 253–264, New
York, NY, USA, 2001. Association for Computing Machinery. doi:10.1145/507635.507666.

12 Martin A. T. Handley, Niki Vazou, and Graham Hutton. Liquidate your assets: Reasoning
about resource usage in liquid haskell. Proc. ACM Program. Lang., 4(POPL), December 2019.
doi:10.1145/3371092.

13 Jan Hoffmann. Types with potential: polynomial resource bounds via automatic amortized
analysis. PhD thesis, Ludwig Maximilians University Munich, 2011. URL: http://edoc.ub.
uni-muenchen.de/13955/.

14 Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate amortized resource analysis.
ACM Trans. Program. Lang. Syst., 34(3), November 2012. doi:10.1145/2362389.2362393.

15 Jan Hoffmann, Ankush Das, and Shu-Chun Weng. Towards automatic resource bound analysis
for ocaml. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, page 359–373, New York, NY, USA, 2017. Association for Computing
Machinery. doi:10.1145/3009837.3009842.

16 Jan Hoffmann and Martin Hofmann. Amortized resource analysis with polynomial potential.
In Andrew D. Gordon, editor, Programming Languages and Systems, pages 287–306, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

17 Martin Hofmann. The strength of non-size increasing computation. In Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’02,
pages 260–269, New York, NY, USA, 2002. ACM. doi:10.1145/503272.503297.

18 Martin Hofmann and Steffen Jost. Static prediction of heap space usage for first-order
functional programs. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’03, page 185–197, New York, NY, USA, 2003.
Association for Computing Machinery. doi:10.1145/604131.604148.

19 Martin Hofmann and Georg Moser. Amortised Resource Analysis and Typed Polynomial
Interpretations. In Rewriting and Typed Lambda Calculi (RTA-TLCA;14), 2014.

20 Steffen Jost, Kevin Hammond, Hans-Wolfgang Loidl, and Martin Hofmann. Static determ-
ination of quantitative resource usage for higher-order programs. In Proceedings of the
37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’10, page 223–236, New York, NY, USA, 2010. Association for Computing Machinery.
doi:10.1145/1706299.1706327.

21 Steffen Jost, Pedro B. Vasconcelos, Mário Florido, and Kevin Hammond. Type-based cost
analysis for lazy functional languages. Journal of Automated Reasoning, 59:87–120, 2017.
doi:10.1007/s10817-016-9398-9.

22 David M. Kahn and Jan Hoffmann. Exponential automatic amortized resource analysis. In
Jean Goubault-Larrecq and Barbara König, editors, Foundations of Software Science and
Computation Structures, pages 359–380, Cham, 2020. Springer International Publishing.

23 G. A. Kavvos, Edward Morehouse, Daniel R. Licata, and Norman Danner. Recurrence
extraction for functional programs through call-by-push-value. Proc. ACM Program. Lang.,
4(POPL), December 2019. doi:10.1145/3371083.

24 Zachary Kincaid, Jason Breck, Ashkan Forouhi Boroujeni, and Thomas Reps. Compositional
recurrence analysis revisited. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017, page 248–262, New York,
NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3062341.3062373.

https://doi.org/10.1145/1328438.1328457
https://doi.org/10.1145/507635.507666
https://doi.org/10.1145/3371092
http://edoc.ub.uni-muenchen.de/13955/
http://edoc.ub.uni-muenchen.de/13955/
https://doi.org/10.1145/2362389.2362393
https://doi.org/10.1145/3009837.3009842
https://doi.org/10.1145/503272.503297
https://doi.org/10.1145/604131.604148
https://doi.org/10.1145/1706299.1706327
https://doi.org/10.1007/s10817-016-9398-9
https://doi.org/10.1145/3371083
https://doi.org/10.1145/3062341.3062373

L. Pham and J. Hoffmann 34:19

25 Zachary Kincaid, John Cyphert, Jason Breck, and Thomas Reps. Non-linear reasoning for
invariant synthesis. Proc. ACM Program. Lang., 2(POPL), December 2017. doi:10.1145/
3158142.

26 Ugo Dal Lago and Marco Gaboardi. Linear Dependent Types and Relative Completeness. In
26th IEEE Symp. on Logic in Computer Science (LICS’11), 2011.

27 Daniel Leivant and Jean-Yves Marion. Lambda calculus characterizations of poly-time. In
Marc Bezem and Jan Friso Groote, editors, Typed Lambda Calculi and Applications, pages
274–288, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

28 V. C. Ngo, M. Dehesa-Azuara, M. Fredrikson, and J. Hoffmann. Verifying and synthesizing
constant-resource implementations with types. In 2017 IEEE Symposium on Security and
Privacy (SP), pages 710–728, 2017.

29 Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. Bounded expectations: Resource
analysis for probabilistic programs. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2018, page 496–512, New York,
NY, USA, 2018. Association for Computing Machinery. doi:10.1145/3192366.3192394.

30 Long Pham and Jan Hoffmann. Typable fragments of polynomial automatic amortized resource
analysis, 2020. arXiv:2010.16353.

31 Ivan Radiček, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Florian Zuleger. Monadic
refinements for relational cost analysis. Proc. ACM Program. Lang., 2(POPL), December 2017.
doi:10.1145/3158124.

32 Robert E. Tarjan. Amortized computational complexity. SIAM Journal on Matrix Analysis and
Applications, 6(2):306–13, April 1985. Copyright - Copyright] © 1985 © Society for Industrial
and Applied Mathematics; Last updated - 2012-02-28. URL: https://search-proquest-com.
proxy.library.cmu.edu/docview/923648267?accountid=9902.

33 Pedro B. Vasconcelos. Space cost analysis using sized types. PhD thesis, University of St
Andrews, UK, 2008. URL: http://hdl.handle.net/10023/564.

34 Ben Wegbreit. Mechanical program analysis. Commun. ACM, 18(9):528–539, September 1975.
doi:10.1145/361002.361016.

CSL 2021

https://doi.org/10.1145/3158142
https://doi.org/10.1145/3158142
https://doi.org/10.1145/3192366.3192394
http://arxiv.org/abs/2010.16353
https://doi.org/10.1145/3158124
https://search-proquest-com.proxy.library.cmu.edu/docview/923648267?accountid=9902
https://search-proquest-com.proxy.library.cmu.edu/docview/923648267?accountid=9902
http://hdl.handle.net/10023/564
https://doi.org/10.1145/361002.361016

The Yoneda Reduction of Polymorphic Types
Paolo Pistone
DISI, University of Bologna, Italy
paolo.pistone2@unibo.it

Luca Tranchini
Wilhelm-Schickard-Institut, Universität Tübingen, Germany
luca.tranchini@gmail.com

Abstract
In this paper we explore a family of type isomorphisms in System F whose validity corresponds,
semantically, to some form of the Yoneda isomorphism from category theory. These isomorphisms
hold under theories of equivalence stronger than βη-equivalence, like those induced by parametricity
and dinaturality. We show that the Yoneda type isomorphisms yield a rewriting over types, that
we call Yoneda reduction, which can be used to eliminate quantifiers from a polymorphic type,
replacing them with a combination of monomorphic type constructors. We establish some sufficient
conditions under which quantifiers can be fully eliminated from a polymorphic type, and we show
some application of these conditions to count the inhabitants of a type and to compute program
equivalence in some fragments of System F.

2012 ACM Subject Classification Theory of computation Ñ Type theory; Theory of computation
Ñ Program semantics

Keywords and phrases System F, Type isomorphisms, Yoneda isomorphism, Program equivalence

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.35

Related Version A full version of the paper is available at https://arxiv.org/abs/1907.03481.

Funding Paolo Pistone: ERC CoG 818616 “DIAPASoN”.
Luca Tranchini: DFG TR1112/4-1 “Falsity and Refutation. On the negative side of logic”.

1 Introduction

The study of type isomorphisms is a fundamental one both in the theory of programming
languages and in logic, through the well-known proofs-as-programs correspondence: type
isomorphisms supply programmers with transformations allowing them to obtain simpler
and more optimized code, and offer new insights to understand and refine the syntax of type-
and proof-systems.

Roughly speaking, two types A,B are isomorphic when one can transform any call by
a program to an object of type A into a call to an object of type B, without altering the
behavior of the program. Thus, type isomorphisms are tightly related to theories of program
equivalence, which describe what counts as the observable behavior of a program, so that
programs with the same behavior can be considered equivalent.

The connection between type isomorphisms and program equivalence is of special impor-
tance for polymorphic type systems like System F (hereafter Λ2). In fact, while standard
βη-equivalence for Λ2 and the related isomorphisms are well-understood [10, 12], stronger
notions of equivalence (as those based on parametricity or free theorems [37, 19, 1]) are often
more useful in practice but are generally intractable or difficult to compute, and little is
known about the type isomorphisms holding under such theories.

© Paolo Pistone and Luca Tranchini;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 35; pp. 35:1–35:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:paolo.pistone2@unibo.it
mailto:luca.tranchini@gmail.com
https://doi.org/10.4230/LIPIcs.CSL.2021.35
https://arxiv.org/abs/1907.03481
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 The Yoneda Reduction of Polymorphic Types

@X.X ñ X ñ A ” ArX ÞÑ 1` 1s (˚)
@X.pAñ Xq ñ pB ñ Xq ñ C ” CrX ÞÑ µX.A`Bs (˚˚)
@X.pX ñ Aq ñ pX ñ Bq ñ D ” DrX ÞÑ νX.AˆBs (˚ ˚ ˚)

Figure 1 Other examples of Yoneda type isomorphisms, where X only occurs positively in A,B,C
and only occurs negatively in D.

@X.X ñ X ñ @Y.p@Z.pZ ñ Xq ñ p@W.pW ñ Zq ñW ñ Xq ñ Z ñ Y q ñ pX ñ Y q ñ Y
p˚q
” @Y.p@Z.pZ ñ 1` 1q ñ p@W.pW ñ Zq ñW ñ 1` 1q ñ Z ñ Y q ñ p1` 1 ñ Y q ñ Y
(‹)
” @Y.p@Z.pZ ñ 1` 1q ñ pZ ñ 1` 1q ñ Z ñ Y q ñ p1` 1 ñ Y q ñ Y
p˚˚˚q
” @Y.ppνZ.p1` 1q ˆ p1` 1qq ñ Y q ñ p1` 1 ñ Y q ñ Y

p˚˚q
” µY.pνZ.p1` 1q ˆ p1` 1qq ` p1` 1q ” 1` 1` 1` 1` 1` 1

Figure 2 Short proof that a Λ2-type has 6 inhabitants, using type isomorphisms.

Type Isomorphisms with the Yoneda Lemma. Our starting point is the observation that
the Yoneda lemma, a cornerstone of category theory, is sometimes invoked [5, 16, 7, 35, 17]
to justify some type isomorphisms in Λ2 like e.g.

@X.pAñ Xq ñ pB ñ Xq ” B ñ A @X.pX ñ Aq ñ pX ñ Bq ” Añ B (‹)

which do not hold under βη-equivalence, but only under stronger equivalences. Such
isomorphisms are usually justified by reference to the interpretation of polymorphic programs
as (di)natural transformations [5], a well-known semantics of Λ2 related to both parametricity
[28] and free-theorems [36], and yielding a not yet well-understood equational theory over
the programs of Λ2 [15, 11, 23], that we call here the ε-theory. Other isomorphisms, like
those in Fig. 1, can be justified in a similar way as soon as the language of Λ2 is enriched
with other type constructors like 1, 0,`,ˆ,ñ and least/greatest fixpoints µX.A, νX.A.

All such type isomorphisms have the effect of eliminating a quantifier, replacing it with a
combination of monomorphic type constructors, and can be used to test if a polymorphic
type has a finite number of inhabitants (as illustrated in Fig. 2) or, as suggested in [7], to
devise decidable tests for program equivalence.

In this paper we develop a formal study of the elimination of quantifiers from polymorphic
types using a class of type isomorphisms, that we will call Yoneda type isomorphisms, which
generalize the examples above, and we explore its application for counting type inhabitants
as well as to establish properties of program equivalence in Λ2.

Eliminating Quantifiers with Yoneda Reduction. To give the reader a first glimpse of
our approach, we compare the use of Yoneda type isomorphisms to count type inhabitants
with some well-known sufficient conditions for a simple type A to have a unique or finitely
many inhabitants [2, 9]: we show that whenever a simple type A satisfies either of these
conditions, its universal closure @ ~X.A can be converted (as in Fig. 2) to either 1 or 1`¨ ¨ ¨` 1
by applying Yoneda type isomorphisms and usual βη-isomorphisms.

We then turn to investigate the quantifier-eliminating rewriting over types arising from
the left-to-right orientation of Yoneda type isomorphisms. A major obstacle here is that the
rewriting must take into account possible applications of βη-isomorphisms, whose axiom-
atization is challenging in presence of the constructors `, 0 [13, 18] (as well as µ, ν). For
this reason we introduce a family of rewrite rules, that we call Yoneda reduction, defined
not directly over types but over a class of finite trees which represent the types of Λ2 (but
crucially not those made with 0,`, . . .) up to βη-isomorphism.

P. Pistone and L. Tranchini 35:3

Using this rewriting we establish some sufficient conditions for eliminating quantifiers,
based on elementary graph-theoretic properties of such trees, which in turn provide some new
sufficient conditions for the finiteness of type inhabitants of polymorphic types. First, we
prove quantifier-elimination for the types satisfying a certain coherence condition which can
be seen as an instance of the 2-SAT problem. We then introduce a more refined condition
by associating each polymorphic type A with a value κpAq P t0, 1,8u, that we call the
characteristic of A, so that whenever κpAq ‰ 8, A rewrites into a monomorphic type, and
when furthermore κpAq “ 0, A converges to a finite type. In the last case our method
provides an effective way to count the inhabitants of A. The computation of κpAq is somehow
reminiscent of linear logic proof-nets, as it is obtained by inspecting the existence of cyclic
paths in a graph obtained by adding some “axiom-links” to the tree-representation of A.

Program Equivalence in System F with Finite Characteristic. Computing program equiva-
lence under the ε-theory can be a challenging task, as this theory involves global permutations
of rules which are difficult to detect and apply [11, 23, 34, 27, 36]. Things are even worse at
the semantic level, since computing with dinatural transformations can be rather cumbersome,
due to the well-known fact that such transformations need not compose [5, 21].

Nevertheless, our approach to quantifier-elimination based on the notion of characteristic
provides a way to compute program equivalence without the appeal to ε-rules, free theorems
and parametricity, since all polymorphic programs having types of finite characteristic can be
embedded inside well-known monomorphic systems. To demonstrate this fact, we introduce
two fragments Λ2κď0 and Λ2κď1 of Λ2 in which types have a fixed finite characteristic, and
we prove that these are equivalent, under the ε-theory, respectively, to the simply typed
λ-calculus with finite products and co-products (or, equivalently, to the free bicartesian
closed category B), and to its extension with µ, ν-types (that is, to the free cartesian closed
µ-bicomplete category µB [29, 6]). Using well-known facts about B and µB [31, 6, 22], we
finally establish that the ε-theory is decidable in Λ2κď0 and undecidable in Λ2κď1.

Preliminaries and Notations

We will presuppose familiarity with the syntax of Λ2 (in the version à la Church) and its
extensions Λ2p,Λ2pµν with sum and product types, as well as µ and ν-types. We indicate by
Λ,Λp,Λpµν their respective quantifier-free fragments. The syntax of these systems is recalled
in App. A. We let V “ tX,Y, Z, . . . u indicate the countable set of type variables.

Let S indicate any of the type systems above. We let Γ $S t : A indicate that the
judgement Γ $ t : A is derivable in S. We indicate as trxs a term with a unique free variable
x, and we let trxs : A $Γ

S B be shorthand for Γ, x : A $S t : B.
A theory of S is a class of equations over well-typed terms satisfying usual congruence

rules. Standard theories of Λ2,Λ2p,Λ2pµν are those generated by βη-equivalence and by
contextual equivalence, recalled in App. A. We will also consider a less standard theory, the
ε-theory, described in App. B. For all theory T including βη-equivalence, we let CTpSq be
the category whose objects are the types of S and whose arrows are the T-equivalence classes
of terms trxs : A $S B. CTpSq is cartesian closed as soon as S contains products, meaning in
particular that CTpSqpAˆB,Cq » CTpSqpA,B ñ Cq.

By a T-isomorphism, indicated as A ”T B, we mean a pair of terms trxs : A $S B,
urxs : B $T A such that trurxss »T x and urtrxss »T x (where trurxss is trx ÞÑ us).

CSL 2021

35:4 The Yoneda Reduction of Polymorphic Types

2 Yoneda Type Isomorphisms

In this section we introduce an axiomatization for a class of type isomorphisms that we
call Yoneda type isomorphisms. For this we will rely on the well-known distinction between
positive and negative occurrences of a variable X in a type A.

I Notation 2.1. Throughout the text we indicate as X (resp. X) a positive (resp. negative)
occurrence of X. When B occurs within a larger type A, we often note B as B xXy to indicate
that all occurrences of the variable X in B are positive occurrences in A, or as B xXy to
indicate that all occurrences of the variable X in B are negative occurrences in A. So for
instance, when B only contains positive occurrences of X, we write the type A “ X ñ B

as X ñ B xXy (since all positive occurrences of X in B are positive in A) and the type
A1 “ B ñ X as B xXy ñ X (since all positive occurrences of X in B are negative in A).

The focus on positive/negative occurrences highlights a connection with to the so-called
functorial semantics of Λ2 [5, 15], in which types are interpreted as functors and typed
programs as (di)natural transformations between such functors. More precisely, any positive
type A xXy gives rise to a functor ΦXA : CTpSq Ñ CTpSq, any negative type A xXy gives rise
to a functor ΦXA : CTpSqop Ñ CTpSq and, more generally, any type A gives rise to a functor
ΦX
A : CTpSqop ˆ CTpSq Ñ CTpSq. In all such cases, the action of the functor on a type A is

obtained by replacing positive/negative occurrences of X by A, and the action on programs
can be defined inductively (we recall this construction in App. A, see also [11, 24]).

With types being interpreted as functors, a polymorphic term trxs : A $Λ2 B is interpreted
as a transformation satisfying an appropriate naturality condition: when A and B have the
same variance, trxs is interpreted as an ordinary natural transformation; instead, if A and B
have mixed variances, then trxs is interpreted as a dinatural transformation.

Such (di)naturality conditions can be described syntactically through a class of equational
rules over typed programs [11, 23] generating, along with the usual βη-equations, a theory of
program equivalence that we call the ε-theory.1 These equational rules are usually interpreted
as parametricity conditions [28], or as instances of free theorems [36].

As mentioned in the introduction, our goal here is not that of investigating the ε-theory
directly, but rather to explore a class of type isomorphisms that hold under this theory (that
is, of isomorphisms in the syntactic categories CεpSq, with S “ Λ2,Λ2p,Λ2pµν). For example,
in functorial semantics a type of the form @X.A xXy ñ B xXy is interpreted as the set of
natural transformations between the functors A xXy and B xXy. Now, if A xXy is of the form
A0 ñ X (i.e. it is a representable functor), using the ε-theory we can deduce (see App. B) a
“Yoneda lemma” in the form of the quantifier-eliminating isomorphism below:

@X.pA0 ñ Xq ñ B xXy ” B xX ÞÑ A0y (1)

Similarly, if A xXy , B xXy are both negative and A xXy is of the form X ñ A0 (i.e. it is a
co-representable functor), we can deduce another quantifier-eliminating isomorphism:

@X.pX ñ A0q ñ B xXy ” B xX ÞÑ A0y (2)

Observe that both isomorphisms (‹) from the Introduction are instances of (1) or (2).

1 We define this theory formally in App. B, but this is not necessary to understand this paper.

P. Pistone and L. Tranchini 35:5

As we admit more type-constructors in the language, we can use the ε-theory to deduce
stronger schemas for eliminating quantifiers. For instance, using least and greatest fixed points
µX.A xXy , νX.A xXy of positive types, we can deduce the stronger schemas [35] below.

@X.pA xXy ñ Xq ñ B xXy ” B xX ÞÑ µX.A xXyy (3)
@X.pX ñ A xXyq ñ C xXy ” C xX ÞÑ νX.A xXyy (4)

Note that (1) and (2) can be deduced from (3) and (4) using the isomorphisms µX.A ”βη
νX.A ”βη A, when X does not occur in A. Moreover, adding sum and product types enables
the elimination of the quantifier @X also from a type of the form A “ @X.pA11 xXy ñ

A12 xXy ñ Xq ñ pA21 xXy ñ A22 xXy ñ Xq ñ B xXy by using βη-isomorphisms:

A ”βη @X.
´´

ř

i“1,2
ś

j“1,2Aij xXy
¯

ñ X
¯

ñ B xXy ” B
A

X ÞÑ µX.
´

ř

i“1,2
ś

j“1,2Aij xXy
¯E

These considerations lead to introduce the following class of isomorphisms:

I Definition 1. A Yoneda type isomorphism is any instance of the schemas ”X , ”X below

@X.@~Y.
A

@~Zk.xAjk xXyyj ñ X
E

k
ñ B xXy ”X @~Y.B

A

X ÞÑ tµX.u
ř

k

´

D~Zk.
ś

j Ajk xXy
¯E

@X.@~Y.
A

@~Zk.X ñ Aj xXy
E

k
ñ B xXy ”X @~Y.B

A

X ÞÑ tνX.u@~Zk.
ś

j Aj xXy
E

where, given a list L “ xi1, . . . , iky, and an L-indexed list of types pAiqiPL, xAiyiPL ñ B is a
shorthand for Ai1 ñ . . .ñ Aik ñ B, the expressions tµX.u, tνX.u indicate that the binder
µX. (resp. νX.) is applied only if X (resp. X) actually occurs in some of the Ajk (resp. Aj),
and D~Y.A is a shorthand for @Y 1.p@~Y.Añ Y 1q ñ Y 1).

For all types A,B of Λ2pµν , we write A ”Y B when A can be converted to B using
”X ,”X and the partial2 axiomatization of βη-isomorphisms in Fig. 9-11 (App. A).

Since ”X and ”X are ε-isomorphisms (see App. B), whenever A ”Y B, A and B are
interpreted as isomorphic objects in all dinatural and parametric models of Λ2.

3 Counting Type Inhabitants with Yoneda Type Isomorphisms

A first natural application of Yoneda type isomorphisms is to count the inhabitants of a
simple type: given such a type A, with free variables ~X, if @ ~X.A ”Y 0` 1` ¨ ¨ ¨ ` 1 “

řk
i“1 1,

then A has exactly k proofs (up to ε-equivalence). Let us start with a “warm-up” example.

I Example 2. In [9] it is proved that the type A “ ppppX ñ Y q ñ X ñ Zq ñ pY ñ Zq ñ

W q ñ pY ñ Zq ñW has a unique inhabitant. Here’s a quick proof of @XY ZW.A ”Y 1:

@XY ZW.ppppX ñ Y q ñ X ñ Zq ñ pY ñ Zq ñW q ñ pY ñ Zq ñW

”W @XY Z.pY ñ Zq ñ
´

`

pX ñ Y q ñ X ñ Z
˘

ˆ
`

Y ñ Z
˘

¯

”Z @XY.
`

pX ñ Y q ñ X ñ Y
˘

ˆ
`

Y ñ Y
˘

”βη

´

@XY.
`

pX ñ Y q ñ X ñ Y
˘

¯

ˆ

´

@Y.Y ñ Y
¯

”X

´

@Y.Y ñ Y
¯

ˆ

´

@Y.Y ñ Y
¯

”Y 1ˆ 1 ”βη 1

2 The axiomatization in Fig. 9-11 is complete for the βη-isomorphisms of Λ2 [12], but fails to be complete
(already at the propositional level) in presence of sums and the empty type [13, 18].

CSL 2021

35:6 The Yoneda Reduction of Polymorphic Types

The literature on counting simple type inhabitants is vast (e.g. [2, 9, 8, 32]) and includes
both complete algorithms and simpler sufficient conditions for a given type to have a unique
or finite number of inhabitants. The latter provide then an ideal starting point to test our
axiomatic theory of type isomorphisms, as several of these conditions are based on properties
like the number of positive/negative occurrences of variables.

We tested Yoneda type isomorphisms on two well-known sufficient conditions for unique
inhabitation. A simple type A is balanced when any variable occurring free in A occurs
exactly once as X and exactly once as X. A is negatively non-duplicated if no variable occurs
twice in A as X. An inhabited simple type which is balanced or negatively duplicated has
exactly one inhabitant [2]. The theory ”Y subsumes these conditions in the following sense:

I Proposition 3. Let ArX1, . . . , Xns be an inhabited simple type with free variables X1, . . . , Xn.
If ArX1, . . . , Xns is either balanced or negatively non-duplicated, then @X1 . . .@Xn.A ”Y 1.

Observe that, since the type in Example 2 is neither balanced nor negatively non-
duplicated, type isomorphisms provide a stronger condition than the two above.

We tested another well-known property, dual to one of the previous ones: a simple type A
is positively non-duplicated if no variable occurs twice in A as X. A positively non-duplicated
simple type has a finite number of proofs [9]. We reproved this fact using type isomorphisms,
but this time only in a restricted case. Let the depth dpAq of a simple type A be defined by
dpXq “ 0, dpAñ Bq “ maxtdpAq ` 1, dpBqu.

I Proposition 4. Let ArX1, . . . , Xns be an inhabited simple type with free variables X1, . . . , Xn.
If A is positively non-duplicated and dpAq ď 2, then @X1 . . .@Xn.A ”Y 0` 1` ¨ ¨ ¨ ` 1.

4 From Polymorphic Types to Polynomial Trees

Read from left to right, the schemas ”X ,”X yield rewriting rules over Λ2pµν-types which
eliminate occurrences of polymorphic quantifiers. Yet, a major obstacle to study this rewriting
is that the application of ”X ,”X might depend on the former application of βη-isomorphisms
(as we did for instance in the previous section). Already for the propositional fragment
Λp, the βη-isomorphisms are not finitely axiomatizable and it is not yet clear if a decision
algorithm exists at all (see [13, 18]). This implies in particular that a complete criterion for
the conversion of a Λ2-type to a monomorphic (or even finite) type can hardly be computable.

For this reason, we restrict our goal to establishing some efficiently recognizable (in
fact, polytime) sufficient conditions for quantifier-elimination. Moreover, we will exploit the
well-known fact that the constructors 0, 1,`,ˆ, µ, ν can be encoded inside Λ2 to describe our
rewriting entirely within (a suitable representation of) Λ2-types, for which βη-isomorphisms
are completely axiomatized by the rules in Fig. 9 (see [12]).

Even if one restricts to Λ2-types, recognizing if one of the schemas ”X ,”X applies to a
Λ2-type @X.A might still require to first apply some βη-isomorphisms. For example, consider
the Λ2-type A “ @X.ppY ñ Xq ñ Y q ñ pY ñ Xq ñ Y . In order to eliminate the quantifier
@X using ”X , we first need to apply the βη-isomorphism A ñ pB ñ Cq ”βη B ñ pA ñ

Cq, turning A into @X.pY ñ Xq ñ ppY ñ Xq ñ Y q ñ Y , which is now of the form
@X.pB xXy ñ Xq ñ C xXy, with B xXy “ Y and C xXy “ ppY ñ Xq ñ Y q ñ Y . We can
then apply ”X , yielding ppY ñ Y q ñ Y q ñ Y .

To obviate this problem, we introduce below a representation of Λ2-types as labeled
trees so that βη-isomorphic types are represented by the same tree. In the next section
we will reformulate the schemas ”X ,”X as reduction rules over such trees. This approach
drastically simplifies the study of this rewriting, and will allow us to establish conditions for
quantifier-elimination based on elementary graph-theoretic properties.

P. Pistone and L. Tranchini 35:7

A βη-invariant representation of Λ2-types. We introduce a representations of Λ2-types as
rooted trees whose leaves are labeled by colored variables, with colors being any c P Colors “
tblue, redu. We indicate such variables as either Xc or simply as X,X. Moreover, we indicate
as c the unique color different from c.

By a rooted tree we indicate a finite connected acyclic graph with a chosen vertex, called

its root. If pGiqiPI is a finite family of rooted trees, we indicate as

Gi
(

iPI

u

the tree with root

u obtained by adding an edge from any of the roots of the trees Gi to u.

I Definition 5. The sets E and E of positive and negative Λ2-trees are inductively defined
by:

E :“
!

Ei
)

iPI
X

~Y

E :“
!

Ei
)

iPI
X

~Y

where X is a variable, ~Y indicates a finite set of variables, and the edge in E (resp. E) with

label X (resp. X) is called the head of E (resp. of E). The trees
t uH X

H

and
t uH X

H

are

indicated simply as X and X.

Free and bound variables of a tree E “
!

Ei
)

iPI
X

~Y

are defined by fVpEq “
Ťn
i“1 fVpEiqY

tXu ´ ~Y and bVpEq “
Ťn
i“1 bVpEiq Y ~Y .

We can associate a positive and a negative Λ2-tree to any Λ2-type as follows. Let us say
that a type A of Λ2 is in normal form (shortly, in NF) if A “ @~Y.A1 ñ . . . ñ An ñ X

where each of the variables in ~Y occurs in A1 ñ . . .ñ An ñ X at least once, and the types
A1, . . . , An are in normal form. It can be checked that any Λ2-type is βη-isomorphic to a
type in NF, that we indicate as NFpAq.

I Definition 6. For all A P Λ2, with NFpAq “ @~Y.A1 ñ . . .ñ An ñ X, let

tpAq “

!

tpAiq
)

i“1,...,n
X

~Y

tpAq “

!

tpAiq
)

i“1,...,n
X

~Y

The tree-representation of Λ2-types captures βη-isomorphism classes, in the sense that
A ”βη B iff tpAq “ tpBq (this is proved in detail in [26]). For instance, the two βη-isomorphic
types @XY.pX ñ Xq ñ p@Z.X ñ Zq ñ pY ñ Xq ñ Y and @X.pX ñ Xq ñ @Y.pY ñ

Xq ñ pX ñ @Z.Zq ñ Y translate into the same Λ2-tree, shown in Fig. 4b (where underlined
node labels and dashed edges can be ignored, for now).

Polynomial Trees. To formulate the schemas ”X ,”X in the language of rooted trees
we exploit an encoding of the types of the form µX.D~Y.

ř

kPK

ś

jPJk
Ajk xXy and

νX.@~Y.
ś

jPJ Aj xXy as certain special trees employing two new constants ‚ and N. This
encoding is easily seen to be a small variant, in the language of finite trees, of the usual
second-order encodings.

We first introduce a handy notation for “polynomial” types, i.e. types corresponding to
a generalized sum of generalized products. Following [14], any such type A is completely
determined by a diagram of finite sets I f

Ð J
g
Ñ K and a I-indexed family of types pAiqiPI ,

so that A “
ř

kPK

ś

jPJk
Afpjq, where Jk :“ g´1pkq. In the following, we will call the given

of a finite diagram I
f
Ð J

g
Ñ K, and an I-indexed family paiqiPI a polynomial family, and

indicate it simply as pajkqkPK,jPJk (in fact, we already implicitly used this notation in Def. 1).

CSL 2021

35:8 The Yoneda Reduction of Polymorphic Types

τpXq “ X τ

¨

˝

!

Ei
)

iPI
F

~Y

˛

‚“ @ ~X.τpE1q ñ . . .ñ τpEnq ñ τpFq

τ

¨

˚

˚

˚

˚

˚

˝

$

’

’

&

’

’

%

!

EjkrX ÞÑ ‚s

)

j
‚

~Yk

,

/

/

.

/

/

-

k
‚

‚

˛

‹

‹

‹

‹

‹

‚

“ µX.D~Yk.
ř

kPK

ś

jPJk
τpEjkrXsq τ

¨

˚

˚

˚

˚

˚

˝

!

EjrX ÞÑ Ns
)

j
N

~Y N

N

˛

‹

‹

‹

‹

‹

‚

“ νX.@~Y.
ś

jPJ τpEjrXsq

Figure 3 Translation of simple polynomial trees into monomorphic types.

We now enrich the class of Λ2-trees as follows:

I Definition 7 (Polynomial trees). Let ‚,N indicate two new constants.
the set P of positive polynomial trees is defined by adding to the clauses defining positive
Λ2-trees two new clauses:

$

’

’

&

’

’

%

!

Ejk xX ÞÑ ‚y

)

j
‚

~Xk

,

/

/

.

/

/

-

k
‚

‚

!

Ej xX ÞÑ Ny
)

j
N

~X N

N

where X is some variable, pEjk xXyqk,j (resp. pEj xXyqj) is a polynomial family (resp. a
family) of positive polynomial trees with no occurrence of X, and p ~XkqkPK is a K-indexed
family of finite sets of variables.
the set P of negative polynomial trees is defined by adding to the clauses defining negative
Λ2-trees two new clauses:

$

’

’

&

’

’

%

!

Ejk xX ÞÑ ‚y

)

j
‚

~Xk

,

/

/

.

/

/

-

k
‚

‚

!

Ej xX ÞÑ Ny
)

j
N

~X N

N

where X is some variable, pEjk xXyqk,j (resp. pEj xXyqj) is a polynomial family (resp. a
family) of negative polynomial trees with no occurrence of X, and p ~XkqkPK is a K-indexed
family of finite sets of variables.

We indicate by P the set of all polynomial trees, and by P0 the set of all polynomial trees
with no bound variables, which are called simple.

Any polynomial tree E P P can be converted into a type τpEq of Λ2pµν as illustrated in
Fig. 3. It is easily checked that, whenever E is simple, τpEq has no quantifier. Moreover, one
can check that for all Λ2-type, τptpAqq “ A.

We conclude this section with some basic example of polynomial trees.

I Example 8. The constant types 0 and 1 are represented as positive/negative trees by

0 “
‚

‚
, 0 “

‚

‚
and 1 “

‚ ‚

‚
, 1 “

‚ ‚

‚
.

The diagram t1, 2u 1,3 ÞÑ1;2 ÞÑ2
Ð t1, 2, 3u 1,2 ÞÑ1;3 ÞÑ2

Ñ t1, 2u, along with the family pXiqiPt1,2u,
yields the polynomial family pEjkqk,j , with E11 “ E32 “ X1 and E21 “ X2, and yields the

polynomial tree
‚ X2 ‚

H

‚ ‚

H ‚

‚

encoding the type µX1.pX1 ˆX2q `X1.

The diagram t1, 2u id
Ð t1, 2u Ñ t1u with the same family as above yields the polynomial

tree
N N

H

X2 N

H N
N

encoding the type νX1.X1 ˆX2.

P. Pistone and L. Tranchini 35:9

E1 “

X X

H

X Y

Y X

X

(a) @X.pX ñ Xq ñ p@Y.X ñ Y q ñ X.

E2 “

X X

H

X Z

Z

Y X

H Y

XY

(b) @XY.pX ñ Xq ñ p@Z.X ñ Zq ñ pY ñ Xq ñ Y .

Figure 4 Polynomial trees with highlighted modular nodes and modular pairs.

5 Yoneda Reduction

In this section we introduce a family of rewriting rules X , X over polynomial trees, that
we call Yoneda reduction, which correspond to the left-to-right orientation of the isomorphisms
”X ,”X . We will adopt the following conventions:

I Notation 5.1. We make the assumption that all bound variables of a polynomial tree E
are distinct. More precisely, for any X P bVpEq, we suppose there exist unique nodes rX and
hX such that rX : ~X, for some set of variable ~X such that X P ~X, and hX is the head of the
sub-tree whose root is rX .

We will call two distinct nodes parallel if they are immediate successors of the same node,
and we let the distance dpα, βq between two nodes in a polynomial tree be the number of
edges of the unique path from α to β.

Using polynomial trees we can identify when a quantifier can be eliminated from a
type independently from βη-isomorphisms, by inspecting a simple condition on the tree-
representation of the type based on the notion of modular node, introduced below.

I Definition 9. For all X P bVpEq, a terminal node α : Xc in E is said modular if α ‰ hX ,
1 ď dpα, rXq ď 2 and α has no parallel node of label Xc. A pair of nodes of the form
pα : X,β : Xq is called a X-pair, and a X-pair is said modular if one of its nodes is modular.

In the trees in Fig. 4 the modular nodes are underlined and the modular pairs are
indicated as dashed edges.

I Definition 10. A variable X P bVpEq is said eliminable when every X-pair of E is modular.
For every color c, we furthermore call X c-eliminable if every node α : Xc is modular.

We let eliminable be a shorthand for “blue-eliminable” and eliminable be a shorthand
for “red-eliminable”. These notions are related as follows:

I Lemma 11. X is eliminable iff it is either eliminable or eliminable.

Proof. If X is neither eliminable nor eliminable, then there exist non-modular nodes α :
X,β : X, whence the X-pair pα, βq is not modular. Conversely, suppose X is eliminable but
not eliminable. Hence there is a non modular node α : X. For all node β : X, since the
X-pair pα, βq is modular, β is modular. We deduce that X is eliminable. J

I Example 12. The variable X is eliminable but not eliminable in the tree in Fig. 4a, and
it is both eliminable and eliminable in the tree in Fig. 4b.

The proposition below shows that a variable X is eliminable (resp. eliminable) in the tree
of a Λ2-type @X.A exactly when @X.A matches, up to βη-isomorphisms, with the left-hand
type of the schema ”X (resp. ”X).

CSL 2021

35:10 The Yoneda Reduction of Polymorphic Types

E “

$

’

’

&

’

’

%

!

DjkxXy
)

j
X

~Zk

,

/

/

.

/

/

-

k

!

FlxXy
)

l Y

~Y X

 X

!

FlxXθy
)

l
Y θ

~Y

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

θ : X ÞÑ

$

’

’

’

&

’

’

’

%

!

DjkxX ÞÑ ‚y

)

j
‚

~Zk

,

/

/

/

.

/

/

/

-

k
‚

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(a) X eliminable in E.

E “

$

’

’

&

’

’

%

X

!

DjkxXy
)

j
EkxXy

~Zk

,

/

/

.

/

/

-

k

!

FlxXy
)

lY ‰ X

~Y X

 X

!

FlxXθy
)

l
Y

~Y

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

θ : X ÞÑ

$

’

’

’

&

’

’

’

%

!

DjkxX ÞÑ Ny
)

j
EkxX ÞÑ Ny

~Zk

,

/

/

/

.

/

/

/

-

k
N

H N

N

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(b) X eliminable in E.

E “

$

’

’

&

’

’

%

X

!

DjkxXy
)

j
EkxXy

~Zk

,

/

/

.

/

/

-

k

!

FlxXy
)

lY ‰ X

~Y X

 X

!

FlxXθy
)

l
Y

~Y

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

θ : X ÞÑ

$

’

’

’

&

’

’

’

%

!

DjkxX ÞÑ Ny
)

j
EkxX ÞÑ Ny

~Zk

,

/

/

/

.

/

/

/

-

k
N

H N

N

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(c) X eliminable in E.

E “

$

’

’

&

’

’

%

!

DjkxXy
)

j
X

~Zk

,

/

/

.

/

/

-

k

!

FlxXy
)

l Y

~Y X

 X

!

FlxXθy
)

l
Y θ

~Y

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

θ : X ÞÑ

$

’

’

’

&

’

’

’

%

!

DjkxX ÞÑ ‚y

)

j
‚

~Zk

,

/

/

/

.

/

/

/

-

k
‚

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(d) X eliminable in E.

Figure 5 Yoneda reduction of X-eliminable trees.

I Proposition 13. X is eliminable in E iff E is as in Fig. 5a left, for some polynomial
family pDjkxXyqkPK,jPJk , family pFlxXyqlPL and blue variable Y (possibly X itself).
X is eliminable in E iff E is as in Fig. 5b left, for some polynomial family
pDjkxXyqkPK,jPJk , family pEkxXyqkPK , family pFlxXyqlPL and blue variable Y ‰ X.
X is eliminable in E iff E is as in Fig. 5c left, for some polynomial family
pDjkxXyqkPK,jPJk , family pEkxXyqkPK , family pFlxXyqlPL and red variable Y ‰ X.
X is eliminable in E iff E is as in Fig. 5d left, for some polynomial family
pDjkxXyqkPK,jPJk , family pFlxXyqlPL and red variable Y (possibly X itself).

For all four cases of Prop. 13 we define a rewriting rule which eliminates X.

I Definition 14 (Yoneda reduction). Let F P P and X P bVpFq be an eliminable variable. The
rules F Xc F1 consist in replacing the subtree E of F rooted in rX as illustrated in Fig. 5.

I Example 15. The tree in Fig. 4b rewrites as illustrated in Fig. 6.

By inspecting the rules in Fig. 5 one can check that E Xc E1 implies τpEq ”Y τpE1q.
From this we can deduce by induction:

I Lemma 16. For all Λ2-type A, if tpAq ˚ E P P0, then A ”Y τpEq P Λpµν .

The lemma above suggests to study the elimination of quantifiers from Λ2-types by studying
the convergence of Λ2-trees onto simple polynomial trees. This will be our next goal.

P. Pistone and L. Tranchini 35:11

E2 X

µ` Y Z

Z Y

Y

 Z

µ` Y 0

H Y

Y

 Y

µ` 0 0

H 0

H

¨

˚

˝

µ` E “
‚ ‚

H

E ‚

H ‚

‚

˛

‹

‚

Figure 6 Yoneda reduction of the polynomial tree E2 from Fig. 4b.

6 The Characteristic of a Polymorphic Type

In this section we exploit Yoneda reduction to establish two sufficient conditions to convert a
Λ2-type A into a quantifier-free type A1 such that A ”Y A

1.

The Coherence Condition. When a reduction is applied to E, several sub-trees of E can be
either erased or copied and moved elsewhere. Hence, the resulting tree E1 might well have a
greater size and even a larger number of bound variables than E. Nevertheless, sequences of
Yoneda reductions always terminate, as one can define a measure which decreases at each
step (see [26]).

I Proposition 17. There is no infinite sequence of Yoneda reductions.

Although sequences of reductions always terminate, they need not terminate on a simple
polynomial tree, that is, on the encoding of a monomorphic type. This can be due to
several reasons. Firstly, one bound variable might not be eliminable. Secondly, even if all
variables are eliminable, this property need not be preserved by reduction. For example,
take the type A “ @X.@Y.pX ñ Y ñ Xq ñ ppY ñ Xq ñW q ñ Z: although X and Y are
both eliminable (in the associated tree), if we apply a reduction to X, then Y ceases to be
eliminable, and similarly if we reduce Y first. Such conflicts can be controlled by imposing a
suitable coherence relation on variables.

I Definition 18. Let E be a polynomial tree, X,Y P bVpEq and c, d P Colors. Xc and Y d are
said coherent if there exists no parallel modular nodes of the form α : Xc, β : Y d in E.

I Example 19. In the tree in Fig. 4b, Y and Z are coherent, while X and Y are not.

I Definition 20 (coherence condition). Let E be a polynomial tree. A valuation of E is any
map φ : bVpEq Ñ Colors. For all valuation φ of E, we call E φ-coherent if for all X P bVpEq,
X is φpXq-eliminable, and moreover for all Y ‰ X P bVpEq, XφpXq is coherent with Y φpY q.
We call E coherent if it is φ-coherent for some valuation φ of E.

I Remark 21 (Coherence is an instance of 2-SAT). The problem of checking if a polynomial tree
E is coherent can be formulated as an instance of 2-SAT (a well-known polytime problem):
consider n Boolean variables x1, . . . , xn (one for each bound variable of E), and let aci be xi if
c “ blue and xi if c “ red. Consider then the 2-CNF A^B, where A is the conjunction of
all aci _ aci such that Xi is not c-eliminable in E, and B is the conjunction of all aci _ adj , for
all incoherent Xc

i and Xd
j . Then a coherent valuation of E is the same as a model of A^B.

As observed before, a reduction E X E1 might copy or erase some bound variables
of E. One can then define a map g : bVpE1q Ñ bVpEq associating any variable in E1
with the corresponding variable in E of which it is a copy. A sequence of reductions
E0 X

c1
1
¨ ¨ ¨ Xcnn En induces then, for 1 ď i ď n, maps gi : bVpEiq Ñ bVpEi´1q, and we let

Gi : bVpEiq Ñ bVpE0q be g1 ˝ g2 ˝ ¨ ¨ ¨ ˝ gi.
The rewriting properties of coherent trees are captured by the following notion:

CSL 2021

35:12 The Yoneda Reduction of Polymorphic Types

X X

H

X Z

Z

Y X

H Y

XY

(a) Alternate path in
@XY.pX ñ Xq ñ p@Z.X ñ Zq ñ pY ñ Xq ñ Y .

Y X

H

Z X

H Z Y

Z Y

XY

(b) Cyclic alternate path in
@XY.pY ñ Xq ñ p@Z.pZ ñ Xq ñ pZ ñ Y qq ñ Y .

Figure 7 Examples of alternate paths.

I Definition 22 (standard reduction). A sequence of reductions E0 X
c1
1
¨ ¨ ¨ Xcnn En is

said standard if for all i, j “ 1, . . . , n, GipXiq
ci is coherent with GjpXjq

cj in E0. We say
that E strongly converges under standard reduction if all standard reductions starting from E
terminate on a simple polynomial tree.

Using the fact that coherence is stable under standard reduction (see [26]) we obtain:

I Theorem 23. E is coherent iff E strongly converges under standard reduction.

Using Lemma 16 we further deduce:

I Corollary 24. Let A be a type of Λ2. If tpAq is coherent, then there exists a Λpµν-type A1
such that A ”Y A

1.

The Characteristic. We now introduce a refined condition for coherent trees, which can be
used to predict whether a type rewrites into a finite type (i.e. one made up from 0, 1,`,ˆ,ñ
only) or into one using µ, ν-constructors.

An intuition from Section 2 is that, for a type of the form @X.pA xXy ñ Xq ñ B xXy

(which rewrites into B xX ÞÑ µX.A xXyy) to reduce to one without µ, ν-types, the variable
X must not occur in A at all. However, the property “X does not occur in A” need not be
preserved under reduction. Instead, we will define a stronger condition that is preserved by
standard reduction by inspecting a class of paths in the tree of a type.

I Definition 25. Let E be a polynomial Λ2-tree and let ĺ indicate the natural order on the
nodes of E having the root of E as its minimum. A down-move in E is a pair α B β, such
that, for some bound variable X P bVpEq, pα, βq is an X-pair and β is modular. An up-move
in E is a pair α B β such that α ‰ β, α is a modular node with immediate predecessor γ,
β : X for some X P bVpEq, and γ ĺ β. An alternating path in E is a sequence of nodes
α0 . . . α2n such that α2i B α2i`1 is a down-move and α2i`1 B α2i`2 is an up-move.

In Fig. 7b are illustrated some alternating paths. Observe that whenever X occurs in
A xXy, we can construct a cyclic alternate path in the tree of @X.pA xXy ñ Xq ñ B xXy:
down-move from an occurrence of X in A to the modular node labeled X, then up-move
back to X. We deduce that if no cyclic alternate path exists, then any subtype of the form
above must be such that X does not occur in A. This leads to introduce the following:

I Definition 26. For any polynomial tree E, the characteristic of E, κpEq P t0, 1,8u is
defined as follows: if E is coherent, then κpEq “ 0 if it has no cyclic alternating path, and
κpEq “ 1 if it has a cyclic alternating path; if E is not coherent, κpEq “ 8.

The characteristic is indeed stable under standard reduction (see [26]).

P. Pistone and L. Tranchini 35:13

I Lemma 27. For all E,E1, if E reduces to E1 by standard reduction, then κpE1q ď κpEq.

Using the observation above and Lemma 27 we can easily prove:

I Proposition 28. Suppose κpEq P t0, 1u and E reduces to E1 P P0 by standard reduction. If
κpEq “ 0, then τpE1q P Λp, and if κpEq “ 1, then τpE1q P Λpµν .

For a Λ2-type A, we can define its characteristic as κpAq “ κptpAqq. From Prop. 28 and
Lemma 16 we deduce then a new criterion for finiteness:

I Corollary 29. Let A be a closed Λ2-type. If κpAq “ 0, then A ”Y 0` 1` ¨ ¨ ¨ ` 1.

The criterion based on the characteristic can be used to capture yet more finite Λ2-types.
In fact, whenever a type A reduces to a type with characteristic 0, we can deduce that
A ”Y 0` 1` ¨ ¨ ¨ ` 1. Note that such a type A need not even be coherent. For instance, the
(tree of) the type A “ @XY.p@Z.ppZ ñ Zq ñ Xq ñ Xq ñ Y ñ Y , is not coherent (since
the variable Z is not eliminable), but reduces, by eliminating X, to (the tree of) @Y.Y ñ Y ,
which has characteristic 0, and in fact we have that A ”Y 1.

As this example shows, a type A can reduce to a finite sum 0` 1` ¨ ¨ ¨ ` 1 even if some
of its subtypes cannot be similarly reduced. In fact, while we can eliminate all quantifiers
from the type A above, we cannot do this from its subtype @Z.ppZ ñ Zq ñ Xq ñ Xq. By
contrast, in the next section we show that the characteristic satisfies nice compositionality
conditions that will allow us to define suitable fragments of Λ2.

7 System F with Finite Characteristic

In this section we explore the use of Yoneda reduction to compute program equivalence in
Λ2. We introduce two fragments of Λ2 in which types have a fixed finite characteristic, and
we show that the ε-theory for such fragment can be computed by embedding polymorphic
programs into well-known monomorphic systems.

First, we have to check that the types with a fixed finite characteristic do yield well-defined
fragments of Λ2. This requires to check two properties. First, the characteristic has to be
compositional: a subtype of a type of characteristic k cannot have a higher characteristic,
since every subtype of a type of the fragment must be in the fragment itself. Second, since a
universally quantified variable can be instantiated with any other type of the fragment, the
characteristic must be closed by instantiation: if @X.A and B have characteristic k, then
ArB{Xs must have characteristic (at most) k.

I Lemma 30. (compositionality) If A is a sub-type of B, then κpAq ď κpBq.
(closure by instantiation) κpArB{Xsq ď maxtκp@X.Aq, κpBqu.

Thanks to Lemma 30 the following fragments can be seen to be well-defined.

I Definition 31 (Systems Λ2κďk). For k “ 0, 1, let Λ2κďk be the subsystem of Λ2 with same
typing rules and types restricted to the types of Λ2 of characteristic k.

We recall that the free bicartesian closed category is the category B “ CβηpΛpq and the
free cartesian closed µ-bicomplete category µB [29, 6] is the category CβηpΛpµνq. The β and
η-rules for Λp and Λpµν are recalled in App. A.

B and µB can be embedded in Λ2 by the usual second order encoding (that we note 7
and recall in [26]). In fact, it is easily seen that any type of Λp (resp. of Λpµν) is encoded by
a type of Λ2κď0 (resp. of Λ2κď1). Moreover, it is well-known (see [28, 16]) that the η-rules of

CSL 2021

35:14 The Yoneda Reduction of Polymorphic Types

Λpµν are preserved in Λ2 only up to dinaturality (i.e. up to the ε-theory). This embedding
yields then a functor 7 : µBÑ CεpΛ2κď1q, which restricts to a functor from B to CεpΛ2κď0q.

Conversely, from Proposition 28, we already know that the types of Λ2κď0 (resp. Λ2κď1)
are isomorphic, modulo the ε-theory, to types of Λp (resp. Λpµν).

I Proposition 32. For all Λ2κď0-type (resp. Λ2κď1-type) A there exists a type A5 of Λp
(resp. Λpµν) such that A ”ε A5.

Proof. Since all isomorphisms ”Y are valid under the ε-theory, we can obtain A5 from any
standard reduction of the tree of A, using Prop. 28. For technical reasons we will consider a
particular reduction, described in detail in [26]. J

In [26] we show that the embedding of types above scales to an embedding of terms: for all
term t such that Γ $Λ2κď1 t : A, we define a term t5 such that Γ5 $Λpµν t

5 : A5 holds (with the
construction scaling well to Λ2κď0 and Λp). This yields then a functor 5 : CεpΛ2κď1q Ñ µB.
restricting to a functor from CεpΛ2κď0q to B.

The two functors 7 and 5 preserve all the relevant structure (products, coproducts,
exponentials, initial algebras, final coalgebras), but they are not strictly inverse: pA5q7 is not
equal to A, but only ε-isomorphic to it (e.g. for A “ @X.pp@Y.Y ñ Y q ñ Xq ñ X, we have
A5 “ 1 and pA5q7 “ @X.X ñ X). Nevertheless, the following equivalences of categories hold:

I Theorem 33. CεpΛ2κď0q – B, CεpΛ2κď1q – µB.

The proof of Theorem 33 (in [26]) is done by checking (by way of β-, η- and ε-rules, see
App. B) that both Λ2κď1 and Λpµν embed fully in a suitable fragment of Λ2pµν , using the
lemma below (with C “ CεpΛ2κď1q, D “ µB and fpAq “ A5):

I Lemma 34. Let C,D be full subcategories of a category E. Let f : ObpCq Ñ ObpDq be
surjective and suppose there is a map u associating each object a of C with an isomorphism
ua : aÑ fpaq in E. Then f extends to an equivalence of categories F : CÑ D.

Theorem 33 can be used to deduce properties of program equivalence in Λ2κď0 and Λ2κď1

from well-known properties of program equivalence for B and µB. In fact, it is known that
βη-equivalence in Λp (i.e. arrow equivalence in B) is decidable and coincides with contextual
equivalence [31], while contextual equivalence for µB is undecidable [6]. Using Theorem 33
we can deduce similar facts for Λ2κď0 and Λ2κď1:

I Theorem 35. The ε-theory for Λ2κď0 is decidable and coincides with contextual equivalence.
Both the ε-theory and contextual equivalence for Λ2κď1 are undecidable.

The first claim of Theorem 35 is proved by defining a new embedding t ÞÑ t6 of Λ2κď0

into Λp, exploiting the well-known fact that for the terms of the system Λ2p one can obtain a
normal form under β-reduction and commutative conversions [33]3. Using the isomorphisms
dArxs, d´1

A rxs between A and A5, a term t such that Γ $Λ2κď0 t : A holds is first translated
into u “ dArtrxi ÞÑ d´1

Ai
rxisss (where Γ “ x1 : A1, . . . , xn : An), and then t6 is defined as the

normal form of u. From the fact that Γ5 $Λ2p t
6 : A5 and that t6 is in normal form, we can

deduce that Γ5 $Λp t
6 : A5 holds, so the embedding is well-defined.

Using the embedding t ÞÑ t6 we establish the proposition below, from which the first
claim of Theorem 35 descends (since »βη and »ctx coincide and are decidable in Λp).

3 Actually, [33] does not consider commuting conversions for 0, but these can be added without altering
the existence of normal forms.

P. Pistone and L. Tranchini 35:15

I Proposition 36. Γ $Λ2κď0 t »ε u : A iff Γ $Λ2κď0 t »ctx u : A iff Γ5 $Λp t
6 »βη u

6 : A5.

For the second claim of Theorem 35, the undecidability of contextual equivalence in
Λ2κď1 immediately follows from its undecidability in µB by the encoding 7. Instead, we do
not know if the ε-theory and contextual equivalence coincide in this case, as it is not clear
whether the embedding t ÞÑ t6 scales to Λ2κď1: this depends on the existence of normal
forms for commutative conversions, which are not known to hold in presence of µ, ν-types
(although this is conjectured in [20]).

The undecidability of the ε-theory is proved in [26] following a different strategy: we first
observe that the ε-rules for Λ2κď1 imply some uniqueness rule for inductively/co-inductively
defined functions. For instance, under the ε-theory, the usual type of natural numbers
int “ @X.pX ñ Xq ñ pX ñ Xq is associated with a uniqueness rule for functions defined
by iteration of the following form: for any type C and functions f : int ñ C and h : C ñ C,
if fpx ` 1q » hpfpxqq, then f is equivalent to the function defined by iterating h on fp0q,
i.e. f » λx.xChpfp0qq. Similarly, the type of the usual recursor of Λ2 is associated with a
uniqueness rule for functions defined by recursion.

It is well-known that any equational theory over a system containing the simply typed
λ-calculus, a type of natural numbers and a recursion operator, and satisfying a uniqueness
rule for recursively defined functions as above, is undecidable [22]. It suffices then to check
that Λ2κď1, under the ε-theory, provides such a system.

8 Conclusion

Related Work. The connection between parametricity, dinaturality and the Yoneda iso-
morphism is well-known [5, 28, 16]. The extension of this correspondence to initial algebras
comes from [35]. [7] exploits this connection to define a schema to test the equivalence of two
programs t, u of type @X.pF xXy ñ Xq ñ pG xXy ñ X 1q ñ H xXy by first instantiating X
as α “ µX.F xXy and then applying t, u to the canonical morphism F xX ÞÑ αy ñ α (in
fact, this is exactly how one side of the isomorphisms ”X are constructed). The possibility
of expressing program equivalence through naturality conditions has recently attracted new
attention due to [3], where these are investigated using ideas from homotopy type theory.
Type isomorphisms in Λ2 with the Yoneda lemma are also discussed in [17]. In [25] a similar
restriction based on the Yoneda isomorphism is used by the first author to describe a fragment
of second order multiplicative linear logic with a decidable program equivalence.

Future Work. The definition of the characteristic employs an acyclicity condition which is
reminiscent of linear logic proof-nets. In particular, we would like to investigate whether the
alternating paths can be related to the cyclic proofs for linear logic systems with µ, ν-types
[4]. Moreover, the notion of characteristic seems likely to scale to second order multiplicative-
exponential linear logic, an extension which might lead to better expose the intrinsic duality
in the tree-shapes in Fig. 5.

The application of Yoneda isomorphisms to count type inhabitants suggests that these
can be related to some canonical proof-search strategy, as already suggested in [30], that we
would like to investigate further. Moreover, the appeal to least/greatest fixpoints suggests a
connection with the proof-technique to count inhabitants by computing fixpoints of polynomial
equations [38]. For example, given A “ pY 1 ñ Xq ñ pX ñ Y 2 ñ Xq ñ X, one can show by
proof-theoretic reasoning that the number |A| of inhabitants of A is a solution of the fixpoint
equation |A| “ |AY1 | ` p|A| ˆ |AY2 |q, where AYi “ pY 1 ñ Xq ñ pX ñ Y 2 ñ Xq ñ Y i,
which implies |A| “ 0, since |AYi | “ 0. On the other hand, Yoneda type isomorphisms yield
the strikingly similar computation @~Y X.A ”X @~Y.µX.Y 1`pXˆY 2q ”~Y µX.0`pXˆ0q ” 0.

CSL 2021

35:16 The Yoneda Reduction of Polymorphic Types

References
1 Amal Ahmed, Dustin Jamner, Jeremy G. Siek, and Philip Wadler. Theorems for free for free:

parametricity, with and without types. In Proceedings of the ACM on Programming Languages,
volume 1 of ICFP, page Article No. 39, New York, 2017.

2 T. Aoto. Uniqueness of normal proofs in implicational intuitionistic logic. Journal of Logic,
Language and Information, 8:217–242, 1999.

3 Steve Awodey, Jonas Frey, and Sam Speight. Impredicative encodings of (higher) inductive
types. In LICS 2018, 2018.

4 David Baelde, Amina Doumane, and Alexis Saurin. Infinitary proof theory: the multiplicative-
additive case. In 25th EACSL Annual Conference on Computer Science Logic (CSL 2016),
volume 62 of Leibniz International Proceedings in Informatics (LIPIcs), pages 42:1–42:17,
Germany, 2016. Dagstuhl.

5 E.S. Bainbridge, Peter J. Freyd, Andre Scedrov, and Philip J. Scott. Functorial polymorphism.
Theoretical Computer Science, 70:35–64, 1990.

6 Henning Basold and Helle Hvid Hansen. Well-definedness and observational equivalence for
inductive-coinductive programs. Journal of Logic and Computation, exw091, 2016.

7 Jean-Philippe Bernardy, Patrik Jansson, and Koen Claessen. Testing Polymorphic Properties.
In ESOP 2010: Programming Languages and Systems, volume 6012 of Lecture Notes in
Computer Science, pages 125–144. Springer Berlin Heidelberg, 2010.

8 P. Bourreau and S. Salvati. Game semantics and uniqueness of type inhabitance in the
simply-typed λ-calculus. In TLCA 2011, volume 6690 of LNCS, pages 61–75. Springer Berlin
Heidelberg, 2011.

9 S. Broda and L. Damas. On long normal inhabitants of a type. Journal of Logic and
Computation, 15:353–390, 2005.

10 Kim B. Bruce, Roberto Di Cosmo, and Giuseppe Longo. Provable isomorphisms of types.
Mathematical Structures in Computer Science, 1:1–20, 1991.

11 Joachim de Lataillade. Dinatural terms in System F. In Proceedings of the Twenty-Fourth
Annual IEEE Symposium on Logic in Computer Science (LICS 2009), pages 267–276, Los
Angeles, California, USA, 2009. IEEE Computer Society Press.

12 Roberto Di Cosmo. A short survey of isomorphisms of types. Mathematical Structures in
Computer Science, 15:825–838, 2005.

13 Fiore, Roberto Di Cosmo, and Vincent Balat. Remarks on isomorphisms in typed lambda
calculi with empty and sum types. Annals of Pure and Applied Logic, 141(1–2):35–50, 2006.

14 Nicola Gambino and Joachim Kock. Polynomial functors and polynomial monads. Mathematical
Structures in Computer Science, 154(1):153–192, 2013.

15 Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Normal forms and cut-free proofs as
natural transformations. In Y. Moschovakis, editor, Logic from Computer Science, volume 21,
pages 217–241. Springer-Verlag, 1992.

16 Ryu Hasegawa. Categorical data types in parametric polymorphism. Mathematical Structures
in Computer Science, 4(1):71–109, 1994.

17 Ralf Hinze and Daniel W.H. James. Reason isomorphically! In WGP 2010, pages 85–96, 2010.
18 Danko Ilik. Axioms and decidability for type isomorphism in the presence of sums. In

Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), 2014.

19 Patricia Johann. On proving the correctness of program transformation based on free theorems
for higher-order polymorphic calculi. Mathematical Structures in Computer Science, 15:201–229,
2005.

20 Ralph Matthes. Extensions of System F by Iteration and Primitive Recursion on Monotone
Inductive Types. PhD thesis, Ludwig-Maximilians-Universität München, 1998.

P. Pistone and L. Tranchini 35:17

21 Guy McCuscker and Alessio Santamaria. On compositionality of dinatural transformations.
In CSL 2018, volume 119 of LIPIcs, pages 33:1–33:22, Dagstuhl, Germany, 2018. Schloss
Daghstuhl–Leibinz-Zentrum fuer Informatik.

22 M. Okada and P.J. Scott. A note on rewriting theory for uniqueness of iteration. Theory and
Applications of Categories, 6:47–64, 1999.

23 Paolo Pistone. On dinaturality, typability and βη-stable models. In Schloos Dagstul-Leibniz-
Zentrum fuer Informatik, editor, 2nd International Conference on Formal Structures for
Computation and Deduction (FSCD 2017), volume 84 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 29:1–29:17, Dagstuhl, Germany, 2017.

24 Paolo Pistone. On completeness and parametricity in the realizability semantics of System F .
Logical Methods in Computer Science, 15(4):6:1–6:54, 2019.

25 Paolo Pistone. Proof nets, coends and the Yoneda isomorphism. In Thomas Ehrhard,
Maribel Fernández, Valeria de Paiva, and Lorenzo Tortora de Falco, editors, Proceedings Joint
International Workshop on Linearity & Trends in Linear Logic and Applications (Linearity-
TLLA 2018), volume 292 of EPTCS, pages 148–167, 2019.

26 Paolo Pistone and Luca Tranchini. The Yoneda Reduction of Polymorphic Types, extended
version, 2020. URL: https://arxiv.org/abs/1907.03481.

27 Paolo Pistone, Luca Tranchini, and Mattia Petrolo. The naturality of natural deduction (II).
Some remarks on atomic polymorphism, 2020. URL: https://arxiv.org/abs/1908.11353.

28 Gordon Plotkin and Martin Abadi. A logic for parametric polymorphism. In TLCA ’93,
International Conference on Typed Lambda Calculi and Applications, volume 664 of Lecture
Notes in Computer Science, pages 361–375. Springer Berlin Heidelberg, 1993.

29 Luigi Santocanale. Free µ-lattices. Journal of Pure and Applied Algebra, 9:166–197, 2002.
30 Gabriel Scherer. Which types have a unique inhabitant? Focusing on pure program equivalence.

PhD thesis, Université Paris-Diderot, 2016.
31 Gabriel Scherer. Deciding equivalence with sums and the empty type. In Proceedings of the

44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, pages
374–386, New York, NY, USA, 2017. ACM.

32 Gabriel Scherer and Didier Rémy. Which simple types have a unique inhabitant? SIGPLAN
Not., 50(9):243–255, 2015.

33 Makoto Tatsuta. Second order permutative conversions with Prawitz’s strong validity. Progress
in Informatics, 2:41–56, 2005.

34 Luca Tranchini, Paolo Pistone, and Mattia Petrolo. The naturality of natural deduction.
Studia Logica, 107(1):195–231, 2019.

35 Tarmo Uustalu and Varmo Vene. The Recursion Scheme from the Cofree Recursive Comonad.
Electronic Notes in Theoretical Computer Science, 229(5):135–157, 2011.

36 Janis Voigtländer. Free theorems simply, via dinaturality. In Declarative Programming and
Knowledge Management, pages 247–267, Cham, 2020. Springer International Publishing.

37 Philip Wadler. Theorems for free! In Proceedings of the fourth international conference on
functional programming languages and computer architecture - FPCA ’89, 1989.

38 Marek Zaoinc. Fixpoint technique for counting terms in typed lambda-calculus. Technical
report, State University of New York, 1995.

A Type Systems, Type Isomorphisms and Equational Theories

The typing rules and β-, η-rules of Λ2,Λ2p,Λ2pµν are recalled in Fig. 8. The standard
axiomatization of βη-isomorphisms for Λ2 and Λ2p are recalled in Fig. 9 and 10, and a
“minimalistic” axiomatization of βη-isomorphisms for µ, ν-types is illustrated in Fig. 11.

The contextual equivalence relation for Λ2pµν and Λp is defined by

Γ $ t »ctx u : A iff for all context C : pΓ $ Aq ñ p$ 1` 1q, Crts »βη Crus

The contextual equivalence relation for Λ2 is defined by

CSL 2021

https://arxiv.org/abs/1907.03481
https://arxiv.org/abs/1908.11353

35:18 The Yoneda Reduction of Polymorphic Types

Γ, x : A $ x : A
Γ, x : A $ t : B

Γ $ λx.t : AÑ B

Γ $ t : AÑ B Γ $ u : A
Γ $ tu : B

Γ $ t : A
X R FV pΓq

Γ $ ΛX.t : @X.A
Γ $ t : @X.A

Γ $ tB : ArB{Xs

(a) Typing rules for Λ2.

Γ $ t : A Γ $ u : B
Γ $ xt, uy : AˆB

Γ $ t : A1 ˆA2

Γ $ πAii t : Ai Γ $ ‹ : 1

Γ $ t : Ai
Γ $ ιit : A1 `A2

Γ $ t : A1 `A2 pΓ, y : Ai $ ui : Cqi“1,2

Γ $ δCpt, y.u1, y.u2q : C
Γ $ t : 0

Γ $ ξAt : A

Γ $ t : A xX ÞÑ µX.A xXyy

Γ $ inAt : µX.A xXy
Γ $ t : A xX ÞÑ By ñ B

Γ $ foldAptq : µX.A xXy ñ B

Γ $ t : νX.A xXy
Γ $ outAt : A xX ÞÑ νX.A xXyy

Γ $ t : B ñ A xX ÞÑ By

Γ $ unfoldAptq : B ñ νX.A xXy

(b) Typing rules for `,ˆ, 0, 1, µ, ν.

pλx.tqu »β tru{xs pΛX.tqB »β trB{Xs

Γ $ t : AÑ B
Γ $ t »η λx.tx : AÑ B

Γ $ t : @X.A
Γ $ t »η ΛX.tX : @X.A

(c) β and η-rules for Λ2.

´

πAii xt1, t2y »β ti

¯

i“1,2

´

δCpιit, y.u1, y.u2q »β uirt{ys
¯

i“1,2

Γ $ t : AˆB
Γ $ t »η xπ

A
1 t, π

B
2 ty : AˆB

Γ $ t : 1
Γ $ t »η ‹ : 1

Γ $ t : A`B urxs : A`B $Γ C

Γ $ urts »η δCpt, y.urι1ys, y.urι2ysq : C
Γ $ t : 0 urxs : 0 $Γ A

Γ $ urts »η ξAt : A

(d) β and η-rules for `,ˆ, 0, 1.

foldP ptqpinPuq »β tpΦXP pfoldP ptqxqrx ÞÑ usq

outP punfoldP ptquq »β ΦXP punfoldP ptqxqrx ÞÑ tus

Γ $ u : A xX ÞÑ Cy ñ C trxs : µX.A xXy $Γ C trinAxs » uΦXA ptq : A xX ÞÑ µX.A xXyy $Γ C

trxs »η foldApuqx : µX.A xXy $Γ C

Γ $ u : C ñ A xX ÞÑ Cy trxs : C $Γ νX.A xXy ΦXA ptqrx ÞÑ uxs » outAt : C $Γ A xX ÞÑ νXA xXyy

trxs »η unfoldApuqx : C $Γ νX.A xXy

(e) β and η-rules for µ, ν.

Figure 8 Typing rules and βη-rules.

P. Pistone and L. Tranchini 35:19

Añ pB ñ Cq ” B ñ pAñ Cq

@X.@Y.A ” @Y.@X.A

A ” @X.A pX R FV pAqq Añ @X.B ” @X.Añ B

Figure 9 Axiomatization of βη-isomorphisms for Λ2.

Aˆ 1 ” A 1 ñ A ” A

Aˆ pB ˆ Cq ” pAˆBq ˆ C AˆB ” B ˆA

pAˆBq ñ C ” Añ pB ñ Cq @X.AˆB ” @X.Aˆ @X.B

A` 0 ” A Aˆ 0 ” 0 0 ñ A ” 1

A` pB ` Cq ” pA`Bq ` C A`B ” B `A

Aˆ pB ` Cq ” pAˆBq ` pAˆ Cq pA`Bq ñ C ” pAñ Cq ˆ pB ñ Cq

Figure 10 Axiomatization of βη-isomorphisms for Λ2p.

Γ $ t »ctx u : A iff for all context C : pΓ $ Aq ñ p$ @X.X ñ X ñ Xq, Crts »βη Crus

It is a standard result that contextual equivalence (for either Λ2pµν or Λ2) is closed under
congruence rules and thus generates an equational theory ctx.

For all positive typeA xXy and negative typeB xXy the functors ΦXA : CβηpΛ2q Ñ CβηpΛ2q
and ΦXB : CβηpΛ2qop Ñ CβηpΛ2q are defined by letting ΦXA pCq “ ArC{Xs, ΦXB pCq “ BrC{Xs

and for all trxs : C $ D,

ΦXXptq “ t (5)
ΦXY ptq “ x (6)

ΦXpCñDqptq “ λy.ΦXDptrΦXC pyqsq (7)

ΦXp@X.Cqptq “ ΛY.ΦXC ptY q (8)

One can check that ΦXA pxq »η x and ΦXA ptrurxssq »β ΦXA ptq
”

x ÞÑ ΦXA puq
ı

.
The definition above can be extended to the types defined using all other constructors,

yielding functors ΦXA : CβηpΛ2pµνq Ñ CβηpΛ2pµνq and ΦXB : CβηpΛ2pµνqop Ñ CβηpΛ2pµνq.

B The ε-Theory and the Yoneda Isomorphisms

In this section we describe the equational theory induced by the interpretation of polymorphic
programs as dinatural transformations (for a suitable fragment of Λ2pµν), that we call the
ε-theory, and we show that the type isomorphisms ”X and ”X from Section 2 hold under
this theory.

We will work for simplicity in an ad-hoc fragment Λ2p˚µ,ν of Λ2pµν , in which we require

CSL 2021

35:20 The Yoneda Reduction of Polymorphic Types

µX.A ” νX.A ” A pX R FV pAqq

µX.A xXy ” A xX ÞÑ µX.A xXyy νX.A xXy ” A xX ÞÑ νX.A xXyy

Figure 11 Axiomatization of βη-isomorphisms for µ, ν-types.

that all universal types are of one of the two forms below:

@X.
A

@~Yk.
@

Ajk xXy
D

j
ñ X

E

k
ñ B xXy @X.

A

@~Yj .X ñ Aj xXy
E

j
ñ B xXy (9)

As this set of types is stable by substitution, all type rules and equational rules of Λ2pµν
scale well to Λ2p˚µ,ν .

To each universal type @X.C of Λ2p˚µ,ν as in Eq. (9) left (resp. Eq. (9) right) we associate
the ε-rule illustrated in Fig. 12a (resp. Fig. 12b).4 From the viewpoint of category theory,
the two ε-rules express strong dinaturality conditions [35] for the transformations induced by
polymorphic programs (illustrated in Fig. 12c and Fig. 12d).

I Definition 37 (ε-theory). The ε-theory of Λ2p˚µ,ν is the smallest congruent equational
theory closed under β-, η-equations as well as ε-rules.

We will show that the isomorphism schema ”X , that we recall below, holds under the
ε-theory (a similar argument can be developed for the isomorphism schema ”X , see [26]).

@X.
A

@~Yk.
@

Ajk xXy
D

j
ñ X

E

k
ñ B xXy ” B

C

X ÞÑ tµX.u
ÿ

k

˜

D~Yk.
ź

j

Ajk xXy

¸G

(10)

I Notation B.1. Let L “ xi1, . . . , iky be a list. If ptkqiPL is a L-indexed list of terms, we let
for any term u, uxtkyiPL be shorthand for uti1 . . . tik ; if xxi1 , . . . , xiky is a L-indexed list of
variables, we let for any term u, λxxkyiPL.u be shorthand for λxi1 . . . λxik .u.

In the case of Eq. (10) we can construct terms

akrxzjyjs “ in7Kk ppackr~Ykspprod7Jkj xzjyjqq :
@

Ajk xX ÞÑ αy
D

j
$ T xX ÞÑ αy

âk “ Λ~Yk.λxzjyj .inT pakrxzjyjsq : @~Yk.xAjkxX ÞÑ αyyj ñ α

where T xXy “
ř

k D
~Yk.

ś

j Ajk xXy and α “ µX.T xXy, in7Ik : Xk ñ
ř7I
k Xk and prodj :

xXjyj ñ
ś7Jk
j Xj are defined composing usual sum and product constructors, and pack is

defined as follows:

packrB1, . . . , Bks “ λx.ΛZ.λf.xB1 . . . Bkf : ArB1{Y1, . . . , Bk{Yks ñ D~Y.A

With such terms we can then construct a term

sAjk,Brxs “ xxâkyk :
A

@~Yk.
@

Ajk xX ÞÑ αy
D

j
ñ α

E

k
ñ B xX ÞÑ αy $ B xX ÞÑ αy

Moreover, using sum and product destructors we can construct terms

brx, Zs : T xX ÞÑ Zy $∆ Z

tAjk,Brx, Zs : B xX ÞÑ αy $

A

@~Yk.
@

Ajk xX ÞÑ Zy
D

j
ñ Z

E

k
ñ B xX ÞÑ Zy

4 Observe that @X.C might well be of both forms (9) left and right

P. Pistone and L. Tranchini 35:21

t : @X.C
´

ek : @~Yk.xAjk xEyyj ñ E
¯

k
´

fk : @~Yk.xAjk xF yyj ñ F
¯

k

vrxs : E $ F

vrek~Ykxzjyjs » fk~YkxΦXAjkpvqrzjsyj : xAjk xX ÞÑ Eyyj $ F

Γ $ ΦXB pvq
”

x ÞÑ tExekyk

ı

» tF xfkyk : B xX ÞÑ F y

(a) ε-rule for the left-hand type in Eq. (9).

t : @X.C
´

ej : @~Yk.E ñ Aj xEy
¯

j
´

fj : @~Yk.F ñ Aj xF y
¯

j

vrxs : E $ F

ΦXAj pvrxsqrejxs » fjvrxs : E $ Aj xX ÞÑ F y

Γ $ ΦXB pvq
”

x ÞÑ tF xfjyj

ı

» tExejyj : B xX ÞÑ Ey

(b) ε-rule for the left-hand type in Eq. (9).

@

@~Yk.xAjkxEyyj ñ E
D

k
BxEy

1 x@~Yk.xAjkxEyyj ñ F yk

@

@~Yk.xAjkxF yyj ñ F
D

k
BxF y

xykyk ÞÑtExykyk

x@~Yk.xAjkxEyyjñvyk

Bpvq

xekyk

xfkyk

xykyk ÞÑtF xykyk

x@~Yk.xAjkxvyyjñF yk

(c) Strong dinaturality diagram for the ε-rule (a).

x@~Yj .E ñ AjxEyyj BxEy

1 x@~Yj .E ñ AjxF yyj

x@~Yj .F ñ AjxF yyj BxF y

xyjyj ÞÑtExyjyj

@~Yj .xEñAjxvyyjxejyj

xfjyj

xyjyj ÞÑtF xyjyj

@~Yj .xvñAjxF yyj

Bpvq

(d) Strong dinaturality diagram for the ε-rule (b).

Figure 12 ε-rules and their associated strong dinaturality diagrams.

where ∆ “ txfk : @~Yk.xAjk xX ÞÑ Zyyj ñ Zyku and

brx, Zs “ δ7K
´

x,
A

z.unpackpzq
`

Λ~Yk.λy.fk~Ykxπ7Jkj pyqyj
˘

E

k

¯

tAjk,Brx, Zs “ λxfkyk.ΦXB
`

foldT pλx.brx, Zsqx
˘

where πji and δ7Kpt, xz.ukykq indicate suitable generalized product and sum destructors which
can be defined inductively using product and sum destructors, and the term unpack is defined
as follows:

unpack “ ΛZ.λx.λf.fZx : @Z.
´

D~Y.A
¯

ñ p@~Y.Añ Zq ñ Z

CSL 2021

35:22 The Yoneda Reduction of Polymorphic Types

One can check that brx, αs
“

xfk ÞÑ âkyk
‰

: T xX ÞÑ αy $ α is βη-equivalent to inTx, from
which we deduce

foldT
´

λx.brx, αs
“

xfk ÞÑ âkyk
‰

¯

x »βη foldT pλx.inTxqx »η x

In this way the isomorphism ”X are realized in CεpΛ2p˚µ,νq by the two terms below:5

srxs “ sAjk,Brxαs trxs “ ΛX.tAjk,Brx,Xs

We can compute then

srtrxss »β ΦXB
´

foldT
`

λx.brx, αs
“

xfk ÞÑ xâkyk
‰˘

x
¯

»βη ΦXB pxq »η x

and

trsrxss »β ΛX.λxfkyk.ΦXB
´

foldT pλx.brx,Xsqx
¯”

x ÞÑ xαxâkyk
ı

»ε ΛX.λxfkyk.xXxfkyk »η x

where the central ε-equivalence is justified using the ε-rule in Fig. 12a with E “ α, F “ X,
ek “ âk and vrxs “ foldT pλx.brx,Xsqx, with the last premise given by the computation
below:

´

foldT pλx.brx,Xsqx
¯”

x ÞÑ âk~Ykxzjyj
ı

»β

´

foldT pλx.brx,Xsq
¯

inT pakrxzjyjsq

»β
`

λx.brx,Xs
˘

´

`

ΦXT pfoldT pλx.brx,Xsqxq
˘

”

x ÞÑ akrxzjyjs
ı¯

»β fk~Yk

A

ΦXAjkpfoldT pλx.brx,Xsqxqrx ÞÑ zjs
E

j

where the last β-equation can be checked by unrolling the definition of ΦXT :

ΦXT ptq “ δ7K
´

x,
A

z.unpackpzq
`

Λ~Yk.λx.in7Kk ppackr~Ykspprod7JkxΦXAjk ptrx ÞÑ π
7Jk
j pxqsqyjqq

˘

E

k

¯

5 We are here supposing that X does occur in at least some of the Ajk (so that µX. actually occurs in the
left-hand type of ”X). If this is not the case, the construction can be done in a similar (and simpler)
way.

Degrees of Ambiguity for Parity Tree Automata
Alexander Rabinovich
Tel Aviv University, Israel
https://www.cs.tau.ac.il/~rabinoa/
rabinoa@tauex.tau.ac.il

Doron Tiferet1

Tel Aviv University, Israel
sdoron5.t2@gmail.com

Abstract
An automaton is unambiguous if for every input it has at most one accepting computation. An
automaton is finitely (respectively, countably) ambiguous if for every input it has at most finitely
(respectively, countably) many accepting computations. An automaton is boundedly ambiguous if
there is k ∈ N, such that for every input it has at most k accepting computations. We consider Parity
Tree Automata (PTA) and prove that the problem whether a PTA is not unambiguous (respectively,
is not boundedly ambiguous, not finitely ambiguous) is co-NP complete, and the problem whether a
PTA is not countably ambiguous is co-NP hard.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases automata on infinite trees, degree of ambiguity, omega word automata, parity
automata

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.36

Funding Supported in part by Len Blavatnik and the Blavatnik Family foundation.

Acknowledgements We would like to thank the reviewers for their useful suggestions. The first
author is grateful to Michał Skrzypczak for very fruitful discussions.

1 Introduction

Degrees of Ambiguity

The relationship between deterministic and nondeterministic machines plays a central role
in computer science. An important topic is the comparison of expressiveness, succinctness
and complexity of deterministic and nondeterministic models. Various restricted forms of
nondeterminism were suggested and investigated (see [3, 4] for recent surveys).

Probably, the oldest restricted form of nondeterminism is unambiguity. An automaton is
unambiguous if for every input there is at most one accepting run. For automata over finite
words there is a rich and well-developed theory on the relationship between deterministic,
unambiguous and nondeterministic automata [4]. All three models have the same expressive
power. Unambiguous automata are exponentially more succinct than deterministic ones, and
nondeterministic automata are exponentially more succinct than unambiguous ones [6, 7].

Some problems are easier for unambiguous than for nondeterministic automata. As shown
by Stearns and Hunt [13], the equivalence and inclusion problems for unambiguous automata
are in polynomial time, while these problems are PSPACE-complete for nondeterministic
automata.

1 corresponding author

© Alexander Rabinovich and Doron Tiferet;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 36; pp. 36:1–36:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1460-2358
https://www.cs.tau.ac.il/~rabinoa/
mailto:rabinoa@tauex.tau.ac.il
mailto:sdoron5.t2@gmail.com
https://doi.org/10.4230/LIPIcs.CSL.2021.36
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Degrees of Ambiguity for Parity Tree Automata

q0start

q1

f

a

b

a

a

a

q0start

q1

f

a

b

a

b

a

Figure 1 Finitely ambiguous and 2-ambiguous Büchi automata.

The complexity of basic regular operations on languages represented by unambiguous
finite automata was investigated in [5], and tight upper bounds on state complexity of inter-
section, concatenation and many other operations on languages represented by unambiguous
automata were established. It is well-known that the tight bound on the state complexity
of the complementation of nondeterministic automata is 2n. In [5], it was shown that the
complement of the language accepted by an n-state unambiguous automaton is accepted by
an unambiguous automaton with 20.79n+logn states.

Many other notions of ambiguity were suggested and investigated. A recent paper [4]
surveys works on the degree of ambiguity and on various nondeterminism measures for finite
automata on words.

An automaton is k-ambiguous if on every input it has at most k accepting runs; it is
boundedly ambiguous if it is k-ambiguous for some k; it is finitely ambiguous if on every input
it has finitely many accepting runs.

It is clear that an unambiguous automaton is k-ambiguous for every k > 0, and a
k-ambiguous automaton is finitely ambiguous. The reverse implications fail. For ε-free
automata over words (and over finite trees), on every input there are at most finitely many
accepting runs. Hence, every ε-free automaton on finite words and on finite trees is finitely
ambiguous. However, over ω-words there are nondeterministic automata with uncountably
many accepting runs. Over ω-words and over infinite trees, finitely ambiguous automata are
a proper subclass of the class of countably ambiguous automata, which is a proper subclass
of nondeterministic automata.

Weber and Seidl [15] investigated several classes of ambiguous automata on words, and
obtained polynomial time algorithms for deciding the membership in each of these classes.
Their algorithms were derived from structural characterizations of the classes.

In particular, they proved that the following Bounded Ambiguity Criterion (BA) charac-
terizes whether there is a bound k such that a nondeterministic automaton on words has at
most k accepting runs on each word.
Forbidden Pattern for Bounded Ambiguity: There are distinct useful2 states p, q ∈ Q such

that for some word u, there are runs on u from p to p, from p to q and from q to q.

Weber and Seidl [15] proved that an NFA is not boundedly ambiguous iff it contains the
forbidden pattern for bounded ambiguity. This pattern is testable in polynomial time; hence,
it can be decided in polynomial time whether the degree of ambiguity of an NFA is bounded.

Seidl [12] provided a structural characterization of bounded ambiguity for automata on
finite trees, and derived a polynomial algorithm to decide whether such an automaton is
boundedly ambiguous.

2 A state is useful if it is on an accepting run.

A. Rabinovich and D. Tiferet 36:3

Löding and Pirogov [8] and Rabinovich [10] provided structural characterizations and
polynomial algorithms for bounded, finite and countable ambiguity of Büchi automata on
ω-words.

Rabinovich and Tiferet [11] provided a structural characterizations and polynomial time
algorithms for bounded, finite and countable ambiguity of Büchi automata on infinite trees.

Over infinite trees, Büchi tree automata are less expressive than Monadic Second-Order
Logic which is equivalent to parity tree automata. Our main result is:

I Theorem 1 (Main).
1. The problem whether a parity tree automaton is not unambiguous (respectively, not

boundedly ambiguous, or not finitely ambiguous) is co-NP-complete.
2. The problem whether a parity tree automaton is not countably ambiguous is co-NP hard.

The paper’s organization. The next section contains standard definitions and notations
about tree automata. The proof of Theorem 1 relies on the complexity of many-dimensional
parity games. In Sect. 3, we first recall many-dimensional parity games, introduced by
Chatterjee, Henzinger, and Piterman in [2]. We provide reductions between the emptiness
problem for multidimensional parity tree automata and multidimensional parity games. Then,
we show that the non-emptiness problem for intersection of PTA is polynomial time reducible
to the non-emptiness problem of multi-dimensional PTA, and therefore is in co-NP.

In Sect. 4, we prove co-NP-hardness for the degrees of ambiguity of a PTA. This establishes
the lower bounds stated in Theorem 1. The proof of the upper bounds of Theorem 1 is
based on structural characterizations of degrees of ambiguity for PTA. In Sect. 5 we lift the
structural characterizations of Büchi ω-word automata [8, 10] to structural characterizations
of parity ω-word automata and provide a polynomial algorithm for the degrees of ambiguity
of parity ω-word automata. In Sect. 6 we present characterizations for the finite and bounded
ambiguity of PTA. Finally, in Sect. 7 we prove the co-NP upper bounds of the Main Theorem.
The last section presents the conclusion.

2 Preliminaries

We recall here standard terminology and notations about trees and automata [14, 9].

Trees. We view the set {l, r}∗ of finite words over alphabet {l, r} as the domain of a
full-binary tree, where the empty word ε is the root of the tree, and for each node v ∈ {l, r}∗,
we call v · l the left child of v, and v · r the right child of v.

We define a tree order “≤” as a partial order such that ∀u, v ∈ {l, r}∗ : u ≤ v iff u is a
prefix of v. Nodes u and v are incomparable - denoted by u ⊥ v - if neither u ≤ v nor v ≤ u.

We say that an infinite sequence π = v0, v1, . . . is a tree branch if v0 = ε and ∀i ∈ N :
vi+1 = vi · l or vi+1 = vi · r.

If Σ is a finite alphabet, then a Σ-labeled full-binary tree t is a labeling function
t : {l, r}∗ → Σ. We denote by TωΣ the set of all Σ-labeled full-binary trees. We often use
“tree” for “labeled full-binary tree.”

Given a Σ-labeled tree t and a node v ∈ {l, r}∗, the tree t≥v (called the subtree of t,
rooted at v) is defined by t≥v(u) := t(v · u) for each u ∈ {l, r}∗.

A tree language L over an alphabet Σ is a set of Σ-labeled trees.

CSL 2021

36:4 Degrees of Ambiguity for Parity Tree Automata

Automata on ω-words and on infinite trees. An automaton on ω-words is a tuple A :=
(QA,Σ, QI , δ, Acc) where Σ is a finite alphabet, QA is a finite set of states, QI ⊆ QA is a
set of initial states, δ ⊆ QA × Σ × QA is a transition relation, and Acc is an acceptance
condition. A run of A on an ω-word y = a0a1 . . . is an infinite sequence ρ = q0, q1, . . . such
that q0 ∈ QI , and for all i ∈ N : (qi, ai, qi+1) ∈ δ.

The Büchi acceptance conditions are given by a set F ⊆ QA. We say that a run ρ is
accepting if there is a state f ∈ F which appears infinitely often in ρ.

The parity acceptance conditions are given by a function C : QA → N. We say that a
run ρ is accepting if the maximal number which appears infinitely often in C(q0),C(q1), . . .
is even.

We denote the set of all accepting runs of A on an ω-word y by ACC(A, y). The language
of A is defined as L(A) := {y ∈ Σω | ACC(A, y) 6= ∅}.

An automaton on infinite trees is a tuple A := (QA,Σ, QI , δ, Acc) where QA, Σ, QI
are as in an automaton on ω-words, δ ⊆ QA × Σ ×QA ×QA is a transition relation, and
Acc is an acceptance condition. A computation of A on a Σ-labeled tree t is a function
φ : {l, r}∗ → QA such that φ(ε) ∈ QI , and ∀v ∈ {l, r}∗ : (φ(v), t(v), φ(v · l), φ(v · r)) ∈ δ.

The Büchi acceptance conditions are given by a set F ⊆ QA. We say that φ is accepting if
for each branch π = v0, v1, . . . there is a state f ∈ F such that the sequence φ(v0), φ(v1), . . .
contains infinitely many occurrences of f . The parity acceptance conditions are given by
a function C : QA → N. We say that φ is accepting if for each branch π = v0, v1, . . . the
maximal number which appears infinitely often in C(φ(v0)),C(φ(v1)), . . . is even.

We denote the set of all accepting computations of A on t by ACC(A, t). The language
of A is defined as L(A) := {t | ACC(A, t) 6= ∅}.

A state q ∈ QA of A is useful if it appears on an accepting computation.
Given an automaton A = (QA,Σ, QI , δ, Acc) and a state q ∈ QA, Aq is defined as

Aq := (QA,Σ, {q}, δ, Acc), by replacing the set of initial states of A by {q}.
We will use PTA for Parity Tree Automata, BTA for Büchi Tree Automata, PWA for

Parity Word Automata, and BWA for Büchi Word Automata.

Degree of Ambiguity of an Automaton. We denote by |X| the cardinality of a set X. An
automaton A is k-ambiguous if |ACC(A, t)| ≤ k for all t ∈ L(A). A is unambiguous if it is
1-ambiguous. A is boundedly ambiguous if there is k ∈ N such that A is k-ambiguous, A is
finitely ambiguous if ACC(A, t) is finite for all t, A is countably ambiguous if ACC(A, t)
is countable for all t. The set ACC(A, t) is definable in the Monadic Second-Order logic
(MSO). The results of Bárány et al. in [1] imply that every uncountable MSO-definable (in
the full-binary tree) set has cardinality 2ℵ0 .

The degree of ambiguity of A (notation da(A)) is defined by da(A) := k if A is k-
ambiguous and either k = 1 or A is not k − 1 ambiguous, da(A) := finite if A is finitely
ambiguous and not boundedly ambiguous, da(A) := ℵ0 if A is countably ambiguous and not
finitely ambiguous, and da(A) := 2ℵ0 if A is not countably ambiguous.

3 Non-Emptiness Problem for Intersection of PTA

In this section we will prove that deciding the non-emptiness of the intersection of k PTA
is in co-NP. Our proof relies on a reduction from k-dimensional parity tree automata to
k-dimensional parity games. We first recall k-dimensional parity games [2] and introduce
k-dimensional parity automata.

A. Rabinovich and D. Tiferet 36:5

I Definition 2. A k-dimensional parity game is a tuple G = (S1, S2, E,P), where (S1, S2, E)
is a directed bipartite graph: Si the set of states of Player i, E a set of edges such that each
state s ∈ S1 ∪S2 has at least one outgoing edge (s, s′) ∈ E; and P : S1 ∪S2 → Nk a (priority)
function. The game starts at some state s ∈ S. The players construct an infinite sequence
of states (called a play) as follows: Let s be the last state in the sequence. If s ∈ Si, then
Player i chooses an edge (s, s′) ∈ E and the state s′ is added to the sequence. Since each
state has at least one successor, the sequence can always be continued.

Let s1, s2, . . . be the play which is constructed by the selections of the two players, and let
P(s1),P(s1), . . . be a sequence of priorities in (Nk)ω. We say Player 1 wins the play if for
every i ≤ k the maximal value which is seen infinitely often in the i-th coordinates is even.
Otherwise, we say that Player 2 wins the play.

A strategy for Player i specifies for each sequence s1, . . . sm where sm ∈ Si, the next state
s′ such that (sm, s′) ∈ E. A play is consistent with a strategy of Player i if each move of
Player i in the play is according to the strategy.

The winning region of Player 1 is a subset S′ ⊆ S1 ∪ S2, for which there exists a strategy
of Player 1 such that each play from s′ ∈ S′ which is consistent with it is winning for Player
1. The winning region of Player 2 is defined similarly.

Notice that each play s1, s2, . . . could equivalently be represented by a sequence of edges
e1, e2, . . . such that ei = (si, si+1).

I Definition 3 (k-dimensional PTA). A k-dimensional PTA is a tuple A = (Q,Σ, QI , δ,C)
where Q,Σ, QI , and δ are as in PTA, and C : Q → Nk is a function which assigns a
k-dimensional color vector to each state in Q. A computation φ of A on t is accepting if
for each branch π = v0, v1, . . . and each coordinate i ≤ k, the maximal color which occurs
infinitely often in the i-th coordinate of C(φ(v0)),C(φ(v1)), . . . is even.

I Theorem 4 (Chatterjee, Henzinger and Piterman [2]). Let G = (S1, S2, E,P) be a k-
dimensional parity game, for k > 1. The problem of deciding whether a node s ∈ S1 is in the
winning region of Player 1 is co-NP-complete.

We use Theorem 4 to obtain the following result regarding the non-emptiness problem of
k-dimensional parity tree automata:

I Proposition 5. (1) The non-emptiness problem for k-dimensional PTA is in co-NP. (2)
The non-emptiness problem for deterministic 2-dimensional PTA is co-NP-hard.

Proof. (1) We use the standard reduction from the emptiness problem for automata to
games; it works also for k-dimensional parity conditions. Given a k-dimensional PTA
A = (Q,Σ, QI , δ,C), we define a k-dimensional parity game G(A) = (S1, S2, E,P) as follows:

S1 = Q

S2 = δ

(q, (p, a, p1, p2)) ∈ E iff (p, a, p1, p2) ∈ δ and p = q

((p, a, p1, p2), q) ∈ E iff q = p1 or q = p2
∀s ∈ S1 : P(s) := C(s), and ∀s ∈ S2 : P(s) := (0, . . . , 0︸ ︷︷ ︸

k times

)

Recall that for s ∈ Q an automaton As is defined by replacing the set of initial states of A
by {s}. For every state s ∈ Q, L(As) is non-empty iff Player 1 has a winning strategy from
s. Hence, by Theorem 4 we conclude that deciding the non-emptiness of A is in co-NP.

(2) We prove this using a reduction from the problem of deciding whether Player 1 has a
winning strategy from state s ∈ S1 in a 2-dimensional parity game. Since this problem is
co-NP-hard (by Theorem 4), the result will follow.

CSL 2021

36:6 Degrees of Ambiguity for Parity Tree Automata

Let G = (S1, S2, E,P) be a 2-dimensional parity game with priority function P : S1∪S2 →
N2. We will assume without restriction that:

The out degree of each node in G is 2.
∀s ∈ S2 : P(s) = (0, 0).

For each node s ∈ S1, we denote one of its successors by Ea(s) and the other by Eb(s), and
for each node s ∈ S2 we denote one of its successors by El(s) and the other by Er(s). We
refer to the selection of edge (s′, Eh(s′)) ∈ E for h ∈ {a, b, l, r} by Player i as the h move
of Player i. Notice that a sequence of states in the game could equivalently be represented
using a sequence of h moves.

We construct a deterministic 2-dimensional parity automaton A := A(G) =
(Q,Σ, QI , δ,C) as follows:

Q := S1
Σ := {a, b}
QI := S1
∀c ∈ Σ,∀q ∈ Q : δ(q, c) = (El(Ec(q)), Er(Ec(q)))
C := P|S1 (the restriction of P onto S1)

We will prove that Player 1 has a winning strategy from a state s ∈ S1 iff As is non-empty.
This implies the co-NP-hardness of deciding whether As is non-empty.
⇒: A strategy of Player 1 from a state s can be represented as a function from a

sequence of moves of Player 2 to a move of Player 1. Assume Player 1 has a winning strategy
strategy1 : {l, r}∗ → {a, b} from a state s. We will use strategy1 to construct a tree t ∈ L(A)
and an accepting computation φ ∈ ACC(As, t).

Define t(d1 . . . dn) := stategy1(d1, . . . , dn). Define a computation φ on t as φ(ε) := s and
φ(v · dn+1) := Edn+1(Et(v)(φ(v)) for v ∈ {l, r}n and dn+1 ∈ {l, r}. It is easy to verify that φ
is a computation of As on t (this holds even for the non-winning strategies of Player 1).

A proof that φ is an accepting computation of As on t is also simple. Let π = v1, v2, . . .

be a tree branch such that v1 = ε and ∀i ∈ N : vi+1 = vi · di where di ∈ {l, r}. By definition
of φ, φ(π) corresponds to the states of Player 1 in a play which is consistent with winning
strategy strategy1, and with Player 2 choosing move di on his i-th turn. This play is winning
for Player 1; hence, it satisfies the 2-dimensional parity condition; therefore, φ(π) satisfies the
acceptance conditions. Since π was an arbitrary branch, this implies that φ ∈ ACC(As, t),
and As is non-empty.
⇐: Assume that As is non-empty. Therefore, there exists φ ∈ ACC(As, t). We use t

to define a strategy strategy1 : {l, r}∗ → {a, b} for Player 1, by strategy1(d1, . . . , dn) :=
t(d1 . . . dn). We leave to the reader the verification that strategy1 is winning for Player 1
from s. J

We will now proceed to show the connection between k-dimensional automata and the
intersection of parity automata.

I Definition 6 (Product of PTA). Given two PTA A = (QA,Σ, QAI , δA,CA) and B =
(QB,Σ, QBI , δB,CB) we define the 2-dimensional PTA A× B := (Q×,Σ, Q×I , δ×,C×) where:

Q× := QA ×QB
Q×I := QAI ×QBI
((p, q), a, (pl, ql), (pr, qr)) ∈ δ× iff (q, a, ql, qr) ∈ δA and (p, a, pl, pr) ∈ δB
∀(q, p) ∈ QA ×QB : C×(q, p) = (CA(q),CB(p))

The product automata of k PTA is defined similarly, as a k-dimensional PTA.

I Lemma 7. Let A1, . . . ,Ak be parity tree automata, and define A× as the k-dimensional
product automaton A1 × · · · × Ak. Then L(A1) ∩ · · · ∩ L(Ak) 6= ∅ iff L(A×) 6= ∅.

A. Rabinovich and D. Tiferet 36:7

Proof. ⇒: Assume that L(A1) ∩ · · · ∩ L(Ak) 6= ∅. Therefore, there is an infinite tree
t ∈ L(A1)∩· · ·∩L(Ak) and accepting computations φi ∈ ACC(Ai, t) for all 1 ≤ i ≤ k. Define
a computation φ× such that φ×(u) := (φ1(u), . . . , φk(u)) for all u ∈ {l, r}∗. By definition of
A× we conclude that φ× ∈ ACC(A×, t), and therefore t ∈ L(A×) and L(A×) 6= ∅
⇐: Assume that L(A×) 6= ∅. Therefore, there is a tree t ∈ L(A×) and an accepting

computation φ× ∈ ACC(A×, t). For each u ∈ {l, r}∗ there are k states qu1 , . . . , quk such
that φ×(u) = (qu1 , . . . , quk). Define a computation φi by φi(u) := qui . By definition of A×
it follows that φi ∈ ACC(Ai, t). We conclude that for each automaton Ai there is an
accepting computation φi of Ai on t, and therefore t ∈ L(A1) ∩ · · · ∩ L(Ak) and we obtain
L(A1) ∩ · · · ∩ L(Ak) 6= ∅. J

I Lemma 8. For every k ∈ N, the problem of deciding whether the intersection of k PTA is
non-empty is in co-NP.

Proof. Given k PTA A1, . . . ,Ak, the product automaton A1 × · · · × Ak can be computed
in polynomial time in the size of A1, . . . ,Ak. By Lemma 7 we conclude that deciding
the non-emptiness of L(A1) ∩ · · · ∩ L(Ak) is equivalent to deciding the non-emptiness of
L(A1 × · · · ×Ak). A1 × · · · ×Ak is a k-dimensional PTA and therefore, by Proposition 5(1),
this problem is in co-NP. J

4 co-NP-hardness of Deciding the Degree of Ambiguity of a PTA

In this section we will use the results of Sect. 3 and prove the co-NP hardness lower bounds
stated in Theorem 1. We will first prove the co-NP-hardness of deciding whether a PTA is
ambiguous, and then use a polynomial time reduction to show that co-NP-hardness holds for
other ambiguity degree problems (Proposition 10).

I Lemma 9. The problem of deciding whether a PTA is ambiguous is co-NP-hard.

Proof. We will use a reduction from the problem of deciding the non-emptiness of determ-
inistic 2-dimensional PTA (which is co-NP-hard, by Proposition 5(2)), to the problem of
deciding whether a PTA is ambiguous.

Let D = (Q,Σ, qinit, δ,C) be a deterministic 2-dimensional PTA. Define Di :=
(Q,Σ, qinit, δ,Ci) for i = 1, 2 as the deterministic PTA obtained from D by defining a
coloring function Ci such that Ci(q) returns the i-th coordinate of C(q) for each q ∈ Q.

Let D′2 be an automaton which is isomorphic to D2, and does not share common states
with D1 (this could be achieved by renaming the states of D2). Since D1 and D′2 are
deterministic, it easily follows that L(D) 6= ∅ iff L(D1) ∩ L(D′2) 6= ∅.

Given two PTA A = (QA,Σ, QAI , δA,CA) and B = (QB,Σ, QBI , δB,CB) such that QA ∩
QB = ∅, we define the parity automaton A∪B := (QA ∪QB,Σ, QAI ∪QBI , δA ∪ δB,CA ∪CB).
Notice that L(A ∪ B) = L(A) ∪ L(B).

We will prove that da(D1 ∪ D′2) > 1 iff L(D1) ∩ L(D′2) is non-empty:
⇒: Assume that da(D1 ∪ D′2) > 1. Then, there exist two accepting computations

φ1, φ2 ∈ ACC(D1 ∪D′2, t). Since D1 and D′2 are deterministic, each of them has at most one
accepting computation, and therefore, if φ1 ∈ ACC(D1, t) then φ2 ∈ ACC(D′2, t). Hence,
t ∈ L(D1) ∩ L(D′2).
⇐: Assume t ∈ L(D1) ∩ L(D′2). Therefore, there are computations φ1 ∈ ACC(D1, t),

φ2 ∈ ACC(D′2, t). By definition of D1 ∪D′2 we have φ1, φ2 ∈ ACC(D1 ∪D′2, t). Since D1 and
D′2 have no common states, we have φ1 6= φ2 and therefore da(D1 ∪ D′2) > 1.

We conclude that L(D) 6= ∅ iff da(D1 ∪ D′2) > 1, and therefore deciding whether a PTA
is ambiguous is co-NP-hard. J

CSL 2021

36:8 Degrees of Ambiguity for Parity Tree Automata

I Proposition 10. The problem of deciding whether a PTA is not countably ambiguous
(respectively, is not finitely ambiguous, or is not boundedly ambiguous) is co-NP-hard.

Proof. We will prove it using a reduction from the problem of deciding whether a parity
tree automaton is ambiguous, which is co-NP-hard by Lemma 9.

Let A = (Q,Σ, QI , δ,C) be a PTA, and let a ∈ Σ. Construct an automaton B :=
(QB,Σ, QBI , δB,CB), where:

QB := Q ∪ {f} and f 6∈ Q is a new state,
QBI := {f},
δB = δ ∪ {(f, a, f, q) | q ∈ QI},
CB(f) := 0 and for all q ∈ Q : CB(q) := C(q).

B Claim 11. 1. If A is ambiguous, then B is not countably ambiguous.
2. If B is ambiguous, then A is ambiguous.

Proof. (1) Assume that A is ambiguous. Therefore, there is a tree t ∈ L(A) and two
computations φ1, φ2 ∈ ACC(A, t) such that φ1 6= φ2. Let t′ be a tree such that ∀v ∈ l∗ :
t′(v) = a and t′≥v·r = t. For each S ⊆ N, define a computation φS by

φS(u) :=

f u ∈ l∗

φ1(v) u = li · r · v for i ∈ S
φ2(v) u = li · r · v for i /∈ S

It is easy to see that ∀S ⊆ N : φS ∈ ACC(B, t′), and that ∀S1, S2 ⊆ N : S1 6= S2 → φS1 6= φS2 .
Therefore, ACC(B, t′) is not countable, and B is not countably ambiguous.

(2) Assume that B is ambiguous. Therefore, there is a tree t ∈ L(B) and computations
φ′, φ′′ ∈ ACC(B, t) such that φ′ 6= φ′′. Let v ∈ {l, r}∗ such that φ′(v) 6= φ′′(v). By definition
of B we have ∀u ∈ l∗ : φ′(u) = φ′′(u) = f , and therefore, v /∈ l∗. Hence, there is w ∈ l∗ · r
such that v ≥ w. Let φ′≥w and φ′′≥w be the restrictions of φ′ and φ′′, respectively, on t≥w.
It is clear that φ′≥w 6= φ′′≥w. By definition of B we obtain φ′≥w, φ′′≥w ∈ ACC(A, t≥w), and
therefore A is ambiguous. C
The parity tree automaton B can be constructed in a polynomial time in the size of A. By
Claim 11 we obtain that the following conditions are equivalent:
A is not unambiguous
B is not countably ambiguous
B is not finitely ambiguous
B is not boundedly ambiguous

Therefore, there are polynomial time reductions from the problem of deciding whether a PTA
is not unambiguous (which is co-NP-hard, by Lemma 9), to the problems of deciding whether
a PTA is not countably ambiguous/not finitely ambiguous/not boundedly ambiguous. Hence,
those problems are co-NP-hard. J

5 Degree of Ambiguity for Parity Automata on ω-words

In this section we will present structural characterizations and polynomial algorithms for
deciding the degree of ambiguity of parity automata on ω-word (PWA). These character-
izations and algorithms are derived from similar characterizations for Büchi automata on
ω-words (BWA) given in [8, 10]. Throughout this section we will assume all states of the
automata are useful (it is computable in polynomial time whether a state of a PWA/BWA is
useful).

A. Rabinovich and D. Tiferet 36:9

p q
u (ρ2)

u (ρ1) u (ρ3)

Figure 2 Forbidden Pattern for Finite Ambiguity of PWA. The runs ρ1 and ρ2 are distinct, C(q)
is even, and C(q) is maximal among the colors which C assigns to the states in ρ3.

The next definition and theorem are taken from [8, 10]. They provide a forbidden pattern
characterization of the degrees of ambiguity of BWA.

I Definition 12 (Forbidden pattern for BWA). Let B be a BWA such that all its states are
useful.
B contains a forbidden pattern for countable ambiguity, if there is a final state f and
there are two distinct runs of Bf on the same word u from f to f .
B contains a forbidden pattern for finite ambiguity, if it contains the forbidden pattern
for countable ambiguity or there is a final state f , a state q 6= f , and a word u such that
there are runs of Bq on u from q to q and from q to f , and a run of Bf on u from f to f .
B contains a forbidden pattern for bounded ambiguity, if there are distinct states p, q
such that for a (finite) word u, there are runs of Bp on u from p to p and from p to q,
and there is a run of Bq on u from q to q.

I Theorem 13 (Structural characterization). Let B be a BWA.
1. B has uncountably many accepting runs on some ω-word iff B contains the forbidden

pattern for countable ambiguity.
2. B has infinitely many accepting runs on some ω-word iff B contains the forbidden pattern

for finite ambiguity.
3. B is not boundedly ambiguous iff it contains the forbidden pattern for bounded ambiguity.
Now, we define forbidden patterns for PWA. Then, Proposition 16 proves their correctness.

I Definition 14 (Forbidden pattern for PWA). Let A be a PWA such that all its states are
useful.
A contains a forbidden pattern for countable ambiguity, if there is a state q such that
C(q) is even, and two distinct runs ρ1 and ρ2 of Aq from q to q on the same finite word
y such that ∀p ∈ ρ1 : C(q) ≥ C(p) and ∀p ∈ ρ2 : C(q) ≥ C(p).
A contains a forbidden pattern for finite ambiguity, if there is a state q such that C(q) is
even, a state p (which can be equal to q), and a word y such that there is a run ρ1 of Ap
on y from p to p, a run ρ2 of Ap on y from p to q, and a run ρ3 of Aq on y from q to q
such that max{C(p′) | p′ ∈ ρ3} is even, and ρ1 6= ρ2.
A contains a forbidden pattern for bounded ambiguity, if there are two states p 6= q and
a finite word y such that there are runs of Ap on y from p to p and from p to q, and a
run of Aq on y from q to q.

First, we prove that the forbidden patterns provide sufficient conditions for the corres-
ponding ambiguity.

I Lemma 15 (Sufficient conditions for degrees of ambiguity). Let A be a PWA.
1. If A contains the forbidden pattern for countable ambiguity, then it is not countably

ambiguous.
2. If A contains the forbidden pattern for finite ambiguity, then it is not finitely ambiguous.
3. If A contains the forbidden pattern for bounded ambiguity, then it is not boundedly

ambiguous.

CSL 2021

36:10 Degrees of Ambiguity for Parity Tree Automata

Proof. (1) Let y be a finite word, and let q be a state of A such that C(q) is even and there
are two distinct runs ρ1 and ρ2 of Aq from q to q on y where ∀p ∈ ρ1 : C(q) ≥ C(p) and
∀p ∈ ρ2 : C(q) ≥ C(p).

We will show that there are infinitely many accepting runs of Aq on yω. Denote by ρ′1
and ρ′2 the runs ρ1 and ρ2, respectively, with the last state removed. For each B ⊆ N, let
ρB := ρB0 · ρB1 · · · ∈ Qω, where ρBi := ρ′1 if i ∈ B, and ρBi := ρ′2 otherwise. It is clear that
ρB is a computation of Aq on yω. Notice that q occurs infinitely often in ρB, and by the
definition of ρ1 and ρ2 we conclude that C(q) is the maximal color which is assigned to a
state in ρB .

Let B1, B2 ⊆ N such that ∃b ∈ B1 \B2. We obtain ρB1
b = ρ′1 6= ρ′2 = ρB2

b , and therefore
ρB1 6= ρB2 . There are uncountably many subsets of N, and therefore there are uncountably
many accepting computation of Aq on yω. Since q is a useful state we conclude that A is
uncountably ambiguous.

(2) Let y be a finite word, q a state such that C(q) is even, and p a state such that there
are three runs on y: a run ρ1 of Ap from p to p, a run ρ2 of Ap from p to q, and a run ρ3 of
Aq from q to q such that max{C(p′) | p′ ∈ ρ} is even and ρ1 6= ρ2.

We will show that there are infinitely many accepting runs of Ap on yω. Denote by ρ′1,
ρ′2 and ρ′3 the runs ρ1, ρ2 and ρ3, respectively, with the last state removed. For each k ∈ N,

define a computation ρk := ρk0 · ρk1 . . . , where ρki :=

ρ′1 i < k

ρ′2 i = k

ρ′3 i > k

It is easy to verify that ρk is a run of Ap on yω. Notice that q occurs infinitely often in
ρk. Since each state which occurs infinitely often in ρk is in ρ′3, we conclude that C(q) is the
maximal color among the colors which are assigned to states which occurs infinitely often in
ρk; hence, ρk is accepting. Let k1 < k2 ∈ N. We obtain ρk1

k1
= ρ′2 6= ρ′1 = ρk2

k1
, and therefore,

ρk1 6= ρk2 and we conclude that A is not finitely ambiguous.
(3) Let y be a finite word such that there are two states p 6= q, and three runs: a run ρ1

of Ap on y from p to p, a run ρ2 of Ap from p to q, and a run ρ3 of Aq from q to q.
Since q is a useful state, there is an ω-word ŷ ∈ L(Aq), and an accepting run ρ̂ of Aq on

ŷ. We will prove that for each k ∈ N, there are at least k accepting runs of Ap on yk · ŷ.
Denote by ρ′1, ρ′2 and ρ′3 the runs ρ1, ρ2 and ρ3, respectively, with the last state removed.

For each 0 ≤ j < k we define a run ρj := ρj0 · ρ
j
1 . . . ρ

j
k, where

ρji :=

ρ′1 i < j

ρ′2 i = j

ρ′3 i > j

It is easy to verify that ρj is a run of Ap on yk from p to q, and therefore, ρj · ρ̂ is an
accepting run of Ap on yk · ŷ. Moreover, for each j1 < j2 < k we have ρj1

j1
= ρ′2 6= ρ′1 = ρj2

j1
,

and therefore, ρj1 6= ρj2 . We conclude that for each k ∈ N there are at least k different
accepting computation of Ap on yk · ŷ, and therefore Ap is not boundedly ambiguous. Since
p is useful, we conclude that A is not boundedly ambiguous. J

I Proposition 16 (Structural characterization). Let A be a PWA.
1. A has uncountably many accepting runs on some ω-word iff A contains the forbidden

pattern for countable ambiguity.
2. A has infinitely many accepting runs on some ω-word iff A contains the forbidden pattern

for finite ambiguity.

A. Rabinovich and D. Tiferet 36:11

3. A is not boundedly ambiguous iff it contains the forbidden pattern for bounded ambiguity.
The ⇐ direction of the proposition was proved in Lemma 15. To prove the ⇒ direction of
Proposition 16 we will use the standard reduction of PWA to BWA.

Let A = (Q,Σ, QI , δ,C) be a PWA, and let Ceven := {C(q) | q ∈ Q and C(q) is even}.
Define a BWA B := (Q′,Σ, Q′I , δ′, F), where:
Q′ := Q ∪ {(c, p) ∈ Ceven ×Q | c ≥ C(p)}
Q′I := QI ∪ {(c, p) ∈ Q′ | p ∈ QI}
δ′ is the union of the following sets:
δ

{(p, a, (c, p′)) | (p, a, p′) ∈ δ,C(p) > c and (c, p′) ∈ Q′}
{((c, p), a, (c, p′)) | (p, a, p′) ∈ δ and (c, p′) ∈ Q′}

F := {(c, q) | C(q) = c}

Proposition 16 immediately follows from Theorem 13, Lemma 17 and Lemma 18.

I Lemma 17. |ACC(A, y)| ≤ |ACC(B, y)|

Proof. By the definition of PWA, for each accepting run ρ := p0, . . . pi, . . . of A on y there is
i ∈ N such that pi occurs infinitely often in ρ, c := C(pi) is even and ∀j > i : C(pi) ≥ C(pj).

If C(pi) ≥ C(p) for all p ∈ ρ then define g(ρ) := (c, p0), (c, p1), Otherwise, let k be such
that C(pk) > c and ∀j > k : c ≥ C(pj), and define g(ρ) := p0, . . . pk, (c, pk+1), (c, pk+2),
By the definition of B we conclude that g(ρ) is an accepting computation of B on y, since
(c, pi) occurs infinitely often in g(ρ). It is easy to verify that g is injective, and therefore, we
obtain |ACC(A, y)| ≤ |ACC(B, y)|. J

I Lemma 18. 1. If B contains the forbidden pattern for countable ambiguity (of BWA)
then A contains the forbidden pattern for countable ambiguity (of PWA).

2. If B contains the forbidden pattern for finite ambiguity (of BWA) then A contains the
forbidden pattern for finite ambiguity (of PWA).

3. If B contains the forbidden pattern for bounded ambiguity (of BWA) then A contains the
forbidden pattern for bounded ambiguity (of PWA).

Proof. The lemma is proved by inspecting the transition relations of A and the corresponding
Büchi automaton B.
1. By definition of the forbidden pattern of countable ambiguity we conclude that there

is a final state f and two distinct runs ρ1 and ρ2 of Bf on the same finite word y from
f to f . By the definition of B there is a state q ∈ Q with even color c := C(q) such
that f = (c, q), the run ρ1 is of the form (c, p0), . . . , (c, pn) and the run ρ2 is of the form
(c, q0), . . . , (c, qn), where p0 = pn = q0 = qn = q.
The runs ρ1 and ρ2 are distinct, and therefore there is 0 < i < n such that pi 6= qi. We
conclude that q0, . . . , qn and p0, . . . , pn are two distinct runs of A on y from q to q such
that C(q) is even, ∀p ∈ ρ1 : C(q) ≥ C(p) and ∀p ∈ ρ2 : C(q) ≥ C(p). Therefore, A has a
forbidden pattern for countable ambiguity.

2. If B contains the forbidden pattern for countable ambiguity, then by (1) we conclude
that A contains the forbidden pattern for countable ambiguity. Hence, there is a state q
such that C(q) is even, and there are two distinct runs ρ1 and ρ2 of Aq from q to q on
the same finite word y, and for the run ρ3 := ρ1 we have ∀p ∈ ρ3 : C(q) ≥ C(p). That is,
A contains the forbidden pattern for finite ambiguity.
Otherwise, B has a final state f , a state q 6= f , and a finite word y such that there are
runs ρ1 of Bq on y from q to q, ρ2 of Bq on y from q to f , and ρ3 of Bf on y from f to f .

CSL 2021

36:12 Degrees of Ambiguity for Parity Tree Automata

Since f ∈ F , we conclude that there is a state q′ ∈ Q with even color c := C(q′)
such that f = (c, q′). The run ρ3 is therefore of the form (c, p0), . . . , (c, pn) where
p0 = pn = q′. Hence, p0, . . . , pn is a run of A on y from q′ to q′ such that C(q′) is even
and ∀i ≤ n : c ≥ C(pi).
Case 1: q ∈ Q′ \Q. By the definition of Q′ we have q = (c′, p′) for c′ ∈ Ceven and p′ ∈ Q.

Notice that the run ρ2 is from (c′, p′) to (c, q′). By the definition of δ′ we conclude
that c = c′, and since q 6= f we obtain p′ 6= q′. By the definition of ρ1 and ρ2 we
conclude that there are runs of Ap′ on y from p′ to p′ and from p′ to q′, where p′ 6= q′.
Along with the run p0, . . . , pn from q′ to q′, we conclude that A contains the forbidden
pattern for finite ambiguity.

Case 2: q ∈ Q. Notice that the run ρ2 of B is from q to (c, q′). Therefore, by the
definition of δ′, there is a run ρA of A on y from q to q′ which passes through a state
with priority greater than c. If q = q′, then we conclude that there are two distinct
runs of Aq on y from q to q: The run ρ′1 := ρA, which visits a state with a color
greater than c, and the run ρ′2 := p0, . . . , pn which only visits states of color at most c.
Taking ρ′3 := ρ2, we conclude that A has the forbidden pattern for finite ambiguity.
Otherwise, q 6= q′ and by the definition of ρ1 and ρ2 we conclude that there are runs
of Aq from q to q and from q to q′, and together with the run p0, . . . , pn from q′ to q′,
we conclude that A contains the forbidden pattern for finite ambiguity.

3. B contains the forbidden pattern for bounded ambiguity. Therefore, there are distinct
states p 6= q and a finite word y such that there are runs of Bp on y from p to p and from
p to q, and there is a run of Bq on y from q to q.
Case 1: q ∈ Q. Notice that there is a run of B from p to q, and by the definition of δ′

we obtain p ∈ Q. Therefore, there are runs of Ap on y from p to p and from p to q,
and a run of Aq on y from q to q. Hence, A contains a forbidden pattern for bounded
ambiguity.

Case 2: q ∈ Q′ \Q. By the definition of Q′, there are c ∈ Ceven and q′ ∈ Q such that
q = (c, q′). If p ∈ Q′ \Q then there are c′ ∈ Ceven and p′ ∈ Q such that p = (c′, p′).
Notice that there is a run from (c′, p′) to (c, q′) and by the definition of δ′ we have
c = c′. Since p 6= q we conclude that p′ 6= q′. Therefore, there are runs of Ap′ on y
from p′ to p′ and from p′ to q′, and a run of Aq′ on y from q′ to q′. We conclude that
A contains the forbidden pattern for bounded ambiguity.
If p ∈ Q and p 6= q′, then there are runs of Ap on y from p to p and from p to q′, and
a run of Aq′ on y from q′ to q′. We conclude that A contains the forbidden pattern
for bounded ambiguity. Otherwise, we have p = q′. The run ρ2 is from a state in
Q to a state in Q′ \Q. By the definition of δ′ we conclude that there is a run ρ′ of
Ap on y from p to p which passes though a state with color greater than C(q). The
run ρ3 is from a state in Q′ \ Q to a state in Q′ \ Q, and by the definition of δ′ we
conclude that there is a run ρ′′ of Ap on y from p to p which only visits states with
color not greater than C(q). Let ρ′ = p0, . . . , pn and ρ′′ = q0, . . . , qn. We conclude
that p0 = pn = q0 = qn = p, and ρ′ 6= ρ′′. Therefore, there is 0 < i < n such that
pi 6= qi. Let y1, y2 be two finite words such that y1 is the prefix of y of length i, and
y1 · y2 = y. We conclude that there are runs of Api

on y2 · y1 from pi to pi and from
qi to qi, and there is a run of Aqi on y2 · y1 from qi to qi. Therefore, A contains the
forbidden pattern for bounded ambiguity, as requested. J

We will now show that the problem of deciding the degree of ambiguity of PWA is in PTIME
(in fact, this problem is even in NL).

A. Rabinovich and D. Tiferet 36:13

I Definition 19. Given a PWA A = (Q,Σ, QI , δ,C) and k > 0, we define a graph GkA where
the set of nodes is Qk, and there is an edge from (q1, . . . , qk) to (p1, . . . , pk) iff there is a ∈ Σ
such that (qi, a, pi) ∈ δ for all 1 ≤ i ≤ k.

The following lemma supplies equivalent conditions to the forbidden patterns presented in
Definition 14:

I Lemma 20.
A contains a forbidden pattern for countable ambiguity iff there is a state q such that C(q)
is even, and G2

A contains a path from (q, q) to itself which passes through a node (p, p′)
where p 6= p′, and for each node (p1, p2) in the path, C(q) ≥ C(p1) and C(q) ≥ C(p2).
A contains a forbidden pattern for finite ambiguity iff there are states q and p such
that C(q) is even, and G3

A contains a path from (p, p, q) to (p, q, q) such that C(q) is the
maximal color which is assigned to a state in the third coordinate of each node in the
path, and the path contains a node (p1, p2, p3) where p1 6= p2.
A contains a forbidden pattern for bounded ambiguity, if there are two states p 6= q such
that G3

A contains a path from (p, p, q) to (p, q, q).

I Proposition 21. There is a polynomial time algorithm for deciding the degree of ambiguity
of PWA.

Proof. Let A = (Q,Σ, QI , δ,C) be a PWA. By Lemma 20, it is sufficient to show that the
equivalent conditions on G2

A and G3
A are decidable in polynomial time.

Indeed, each of the conditions in Lemma 20 can be reduced to polynomially many
reachability problems in G2

A and G3
A. Constructing G2

A and G3
A can be done in polynomial

time in the size of A, and the proposition follows. J

6 Finite Ambiguity and Bounded Ambiguity of PTA

In this section we will provide characterizations for finite ambiguity and bounded ambiguity
of PTA. These characterizations are similar to the characterizations for finite ambiguity and
bounded ambiguity of BTA (see Propositions 17 and 18 in [11]).

I Definition 22 (Projection of a computation on a branch). Let φ ∈ ACC(A, t) and let
π := v0, v1, . . . be a tree branch. We say that φ(π) := φ(v0), φ(v1), · · · ∈ QωA is the projection
of φ on π, and define ACC(A, t, π) := {φ(π) | φ ∈ ACC(A, t)}.

I Definition 23 (Branch ambiguity). A is at most n branch-ambiguous if |ACC(A, t, π)| ≤ n
for every t and branch π. A is bounded branch ambiguous if it is at most n branch ambiguous
for some n. A is finitely (respectively, countably) branch ambiguous if |ACC(A, t, π)| is finite
(respectively, countable) for every t and π.

Let A be a PTA. We define a PWA AB which has the same ambiguity as the branch ambiguity
of A:

I Definition 24 (Branch automaton). For a PTA A = (Q,Σ, QI , δ,C), the corresponding
branch automaton is a PWA AB := (Q,ΣB , QI , δB ,C), where
1. ΣB := Σ× Σd × Σcons with

a. Σd := {l, r} - directions alphabet (left/right).
b. Σcons := {S ⊆ Q | ∩

q∈S
L(Aq) 6= ∅} - sets of states, which we consider “consistent.”

2. (q, a, q′) ∈ δB iff a = (σ, l, S) and ∃p ∈ S : (q, σ, (q′, p)) ∈ δ or a = (σ, r, S) and
∃p ∈ S : (q, σ, (p, q′)) ∈ δ.

CSL 2021

36:14 Degrees of Ambiguity for Parity Tree Automata

The following lemma reduces the branch ambiguity to the ambiguity of branch automaton.

I Lemma 25. The branch ambiguity of a PTA A is bounded (respectively, finite, countable)
iff the ambiguity of the corresponding branch ω-automaton AB is bounded (respectively, finite,
countable).

The proof of the lemma, which appears in the appendix, is a minor modification of the
proof of Lemma 11 in [11] which reduces the branch ambiguity of BTA to the ambiguity of
the corresponding branch automaton.

I Definition 26 (Ambiguous Transition Pattern). Let A = (Q,Σ, QI , δ,C) be a PTA with cor-
responding branch automaton AB = (Q,ΣB , QI , δB ,C). A has a q-ambiguous transition
pattern if q ∈ Q and there are p1, p2 ∈ Q and y1 ∈ Σ∗B, y2 ∈ Σ+

B with runs of AB from q to
p1 on y1 and from p2 to q on y2 such that at least one of the following holds:
1. There are two transitions (p1, (a, d, {q1}), p2), (p1, (a, d, {q2}), p2) ∈ δB with q1 6= q2 and

L(Aq1) ∩ L(Aq2) 6= ∅, or
2. There is a transition (p1, (a, d, {q1}), p2) ∈ δB with da(Aq1) > 1.
A q-ambiguous transition pattern is said to be fine if C(q) is even, and C(q) ≥ C(p) for each
state p in the runs of AB from q to p1 on y1 and from p2 to q on y2.
A is said to have an ambiguous transition pattern if there is q ∈ Q such that A has

a q-ambiguous transition pattern. A is said to have a fine ambiguous transition pattern
if there is q ∈ Q such that A has a fine q-ambiguous transition pattern.

We are now ready to provide the characterization of finite and bounded ambiguity of parity
tree automata.

I Proposition 27 (Bounded ambiguity of parity automata). The following are equivalent:
1. A PTA A is not boundedly ambiguous.
2. At least one of the following conditions holds:

a. A is not bounded branch ambiguous.
b. A has an ambiguous transition pattern.

I Proposition 28 (Finite ambiguity of parity automata). The following are equivalent:
1. A PTA A is not finitely ambiguous.
2. At least one of the following conditions holds:

a. A is not finitely branch ambiguous.
b. A has a fine ambiguous transition pattern.
The proofs of Propositions 28 and 27 are simple variations of the proofs of Propositions

17 and 18 of [11], which deal with the characterization of bounded and finite ambiguity of
Büchi tree automata. See the appendix for the proof of Prop. 28.

In Section 7 we use Propositions 27 and 28 to show that the problems of deciding whether
a PTA is not boundedly ambiguous/not finitely ambiguous are in co-NP.

7 co-NP Upper Bound of Theorem 1

Let A = (Q,Σ, QI , δ,C) be a PTA. Deciding whether a state q ∈ Q of a PTA is useful is
reducible to the emptiness problem of PTA, and can be tested in NP∩ co-NP as follows:
Let Qnon−empty := {p | L(Ap) 6= ∅}. If q /∈ Qnon−empty, then q is not useful. Otherwise, let
B be the restriction of the branch automaton AB to the transitions over one state letters
in Σ× Σd × {{p} | p ∈ Qnon−empty}. Now, q is reachable from an initial state of B iff it is
useful.

A. Rabinovich and D. Tiferet 36:15

Therefore, we will assume in the rest of the proof that all states in A are useful.
It is easy to verify that A is ambiguous iff there exist two states p, q ∈ QI such that

L(Ap) ∩ L(Aq) 6= ∅ or there exist two transitions (q, a, q1, q2), (q, a, q′1, q′2) ∈ δ from a state q
such that L(Aq1) ∩ L(Aq′

1
) 6= ∅ and L(Aq2) ∩ L(Aq′

2
) 6= ∅.

Since deciding whether L(Ap) ∩ L(Aq) 6= ∅ is in co-NP (by Lemma 8), and the number
of pairs p, q ∈ Q is polynomial in |A|, we conclude:

I Lemma 29. Deciding whether a PTA is ambiguous is in co-NP.
The following Lemma easily follows from Definition 24 of the branch automaton.

I Lemma 30. Let AB be the branch automaton of A. Assume that ri ∈ Ql+1 for i = 1, . . . , k
are runs of AB on u = (σ1, d1, S1) . . . (σl, dl, Sl) ∈ Σ∗B. Then, for i = 1, . . . , l there are S′i ⊆ Si
such that |S′i| ≤ k and ri for i = 1, . . . , k are runs of AB on u = (σ1, d1, S

′
1) . . . (σl, dl, S′l).

A letter (σ, d, S) ∈ ΣB is called a k-state letter if S has at most k states. If A has n states,
then the alphabet ΣB of the branch automaton AB might be of size 2|Σ| × 2n, yet the
number of k-state letters is bounded by 2|Σ| ×

∑k
i=1
(
n
i

)
≤ 2|Σ|nk. To test whether a k-state

letter (σ, d, S) is in ΣB, we can check whether the intersection of the tree languages L(Aq)
for q ∈ S is non-empty. By Lemma 8, this is in co-NP for every fixed k ∈ N. We denote by
A(k)
B the restriction of the branch automaton AB to k-state letters.

I Lemma 31 (Computability of branch ambiguity). The problem whether the branch ambiguity
of A is not bounded (respectively, not finite, not countable) is in co-NP.

Proof. By Lemma 25 and Proposition 16, deciding whether AB is not finitely/not boundedly
ambiguous is equivalent to deciding whether AB has a forbidden pattern for finite/bounded
ambiguity. The forbidden patterns involve conditions on at most three runs on the same
word. By Lemma 30, we conclude that AB has a forbidden pattern for finite/bounded
ambiguity iff A(3)

B has a forbidden pattern for finite/bounded ambiguity. Finding A(3)
B

requires deciding the non-emptiness of L(Aq1)∩L(Aq2)∩L(Aq3) for all triplets q1, q2, q3 ∈ Q.
This problem is in co-NP by Lemma 8; hence, A(3)

B can be constructed in co-NP and its size
is polynomial in the size of A. The problem of deciding if A(3)

B has a forbidden pattern for
bounded/finite/countable ambiguity is in PTIME in the size of A(3)

B (by Lemma 21). All
these imply the co-NP bound of Lemma 31. J

I Lemma 32 (Computability of q-ambiguous pattern). Deciding whether A has a q-ambiguous
(respectively, fine q-ambiguous) transition for a state q ∈ Q is in co-NP.

Proof. Deciding if item (1) or (2) of Definition 26 holds for a fixed pair of states requires
testing the non-emptiness of PTA intersection, which is in co-NP by Lemma 8. A has a
q-ambiguous transition pattern iff there is a path in AB from q to p1 and from p1 to q, such
that items (1) or (2) hold for (p1, p2). If, additionally, C(q) is even and all states in the paths
have a color which is not greater than C(q), then A has a fine q-ambiguous transition. Both
these cases are reducible to the reachability problem in A(1)

B . Assuming all states are useful,
finding A(1)

B can be done in polynomial time. J

Lemmas 25, 31 and 32 imply that deciding whether condition 2(a) and 2(b) of Propositions
28 and 27 are in co-NP. Therefore, the problem whether a PTA is not boundedly (respectively,
finitely) ambiguous is in co-NP. This together with Lemma 29 prove the upper bounds of
Theorem 1.

CSL 2021

36:16 Degrees of Ambiguity for Parity Tree Automata

8 Conclusion

We investigated the complexity of deciding the degree of ambiguity for PTA. The co-NP
hardness lower bound was obtained by reductions from multi-dimensional parity games [2].
The co-NP upper bound was obtained by structural characterizations of degrees of ambiguity
for PTA which is similar to the corresponding characterizations for BTA [11]. Unfortunately,
we have not succeeded to find a characterization and an upper bound for countable ambiguity.
It is also interesting to find natural problems for PTA/BTA which are easier for PTA/BTA
with small degrees of ambiguity than for arbitrary PTA/BTA.

References
1 Vince Bárány, Łukasz Kaiser, and Alex Rabinovich. Expressing cardinality quantifiers in

monadic second-order logic over trees. Fundamenta Informaticae, 100(1-4):1–17, 2010.
2 Krishnendu Chatterjee, Thomas A Henzinger, and Nir Piterman. Generalized parity games. In

International Conference on Foundations of Software Science and Computational Structures,
pages 153–167. Springer, 2007.

3 Thomas Colcombet. Unambiguity in automata theory. In International Workshop on Descrip-
tional Complexity of Formal Systems, pages 3–18. Springer, 2015.

4 Yo-Sub Han, Arto Salomaa, and Kai Salomaa. Ambiguity, nondeterminism and state complexity
of finite automata. Acta Cybernetica, 23(1):141–157, 2017.

5 Jozef Jirásek, Galina Jirásková, and Juraj Šebej. Operations on unambiguous finite automata.
In International Conference on Developments in Language Theory, pages 243–255. Springer,
2016.

6 Ernst Leiss. Succinct representation of regular languages by boolean automata. Theoretical
computer science, 13(3):323–330, 1981.

7 Hing Leung. Descriptional complexity of nfa of different ambiguity. International Journal of
Foundations of Computer Science, 16(05):975–984, 2005.

8 Christof Löding and Anton Pirogov. On finitely ambiguous büchi automata. In Mizuho
Hoshi and Shinnosuke Seki, editors, Developments in Language Theory - 22nd Interna-
tional Conference, DLT 2018, Tokyo, Japan, September 10-14, 2018, Proceedings, volume
11088 of Lecture Notes in Computer Science, pages 503–515. Springer, 2018. doi:10.1007/
978-3-319-98654-8_41.

9 Dominique Perrin and Jean-Éric Pin. Infinite words: automata, semigroups, logic and games,
volume 141. Academic Press, 2004.

10 Alexander Rabinovich. Complementation of finitely ambiguous Büchi automata. In Interna-
tional Conference on Developments in Language Theory, pages 541–552. Springer, 2018.

11 Alexander Rabinovich and Doron Tiferet. Degrees of ambiguity of büchi tree automata. In
Arkadev Chattopadhyay and Paul Gastin, editors, 39th IARCS Annual Conference on Found-
ations of Software Technology and Theoretical Computer Science, FSTTCS 2019, December
11-13, 2019, Bombay, India, volume 150 of LIPIcs, pages 50:1–50:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.FSTTCS.2019.50.

12 Helmut Seidl. On the finite degree of ambiguity of finite tree automata. Acta Informatica,
26(6):527–542, 1989.

13 Richard Edwin Stearns and Harry B Hunt III. On the equivalence and containment problems
for unambiguous regular expressions, regular grammars and finite automata. SIAM Journal
on Computing, 14(3):598–611, 1985.

14 Wolfgang Thomas. Automata on infinite objects. In Formal Models and Semantics, pages
133–191. Elsevier, 1990.

15 Andreas Weber and Helmut Seidl. On the degree of ambiguity of finite automata. Theoretical
Computer Science, 88(2):325–349, 1991.

https://doi.org/10.1007/978-3-319-98654-8_41
https://doi.org/10.1007/978-3-319-98654-8_41
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.50

A. Rabinovich and D. Tiferet 36:17

A Selected Proofs

A.1 Proof of Lemma 25
I Lemma 25. The branch ambiguity of a PTA A is bounded (respectively, finite, countable)
iff the ambiguity of the corresponding branch ω-automaton AB is bounded (respectively, finite,
countable).

The proof will make use the following two lemmas, which deals with the connection
between computations of A and runs of AB :

I Lemma 33. Let t ∈ L(A), and let π = v0, v1, . . . be a tree branch. Then there exists
y ∈ L(AB) such that ACC(A, t, π) ⊆ ACC(AB , y).

Proof. Let y := (a1, d1, S1) . . . (ai, di, Si) . . . be an ω-word over alphabet ΣB , such that:
di ∈ {l, r} and di := l iff vi is the left child of vi−1
ai := t(vi−1)
Si := {φ(v′i) | φ ∈ ACC(A, t)} where v′i is the child of vi−1 which is not vi

Let φ ∈ ACC(A, t). We will prove that ρ := φ(π) is a run of AB on y. Assume that
ρ = p0, p1, For each 1 ≤ i ≤ n we have pi−1 = φ(vi−1) and pi = φ(vi). If vi is
the left child of vi−1 then we obtain (φ(vi−1), t(vi−1), φ(vi), φ(v′i−1)) ∈ δ, and otherwise
(φ(vi−1), t(vi−1), φ(v′i−1), φ(vi)) ∈ δ. By definition of Si we obtain φ(v′i−1) ∈ Si. Notice
that ai = t(vi−1), and di = l iff vi is the left child of vi−1. Therefore, by definition of AB,
we conclude that (φ(vi−1), (ai, di, Si), φ(vi)) = (pi−1, (ai, di, Si), pi) ∈ δB, and the lemma
follows. J

I Lemma 34. Let A be a PTA with corresponding branch automaton AB. If y = (a1, d1, S1)
. . . (ai, di, Si) . . . is an ω-word over alphabet ΣB such that y ∈ L(AB), then there exist a tree
t ∈ L(A) and a tree branch π = v0, v1, . . . such that:

t(vi) = ai+1
vi+1 is the left child of vi iff di = l

For each run ρ ∈ ACC(AB , y) there is a computation φ ∈ ACC(A, t) such that φ(π) = ρ.

Proof. For each Si, let ti ∈ ∩
q∈Si

L(Aq) (there is such ti, since Si ∈ Σcons).

Let π := v0, v1, . . . where v0 := ε and ∀i ∈ N : vi+1 := vi · di; and denote by v′i be the
child of vi which is not vi+1.

We define a Σ-labeled full-binary tree t by t(u) :=
{
ai+1 ∃i : u = vi

ti+1(w) ∃i : u = v′i · w
Let ρ := p0, p1, . . . be an accepting run of AB on y. By definition of AB , for each i ∈ N

there is a state qi ∈ Q such that (pi, ai, pi+1, qi) ∈ δ if di = l or (pi, ai, qi, pi+1) ∈ δ if di = r.
Recall that ti ∈ L(Aqi), and therefore there is a computation φi ∈ ACC(Aqi , ti). We use ρ
and φi to define a computation φ of A on t, as follows:

φ(u) :=
{
pi ∃i : u = vi

φi+1(w) ∃i : u = v′i · w
It is easy to see that φ is a computation of A on t. We will show that φ is accepting.

For each tree branch π′, if π′ = π then φ(π′) = φ(π) = ρ and since ρ ∈ ACC(AB , y) we
conclude that the maximal color which is assigned infinitely often to a state in φ(π′) is even.
Otherwise, by definition of t, there is i ∈ N such that v′i ∈ π′. By the definition of φ we
obtain φ(u) = φi(w) for all nodes u = v′i · w, and since φi is accepting we conclude that
the maximal color which is assigned infinitely often to a state in φ(π′) is also even. Hence,
φ ∈ ACC(A, t) as requested. J

CSL 2021

36:18 Degrees of Ambiguity for Parity Tree Automata

Figure 3 The tree t.

We are now ready to prove Lemma 25.
⇒: By Lemma 33, for each tree t ∈ L(A) and a tree branch π there is an ω-word

y ∈ L(AB) such that ACC(A, t, π) ⊆ ACC(AB , y). Therefore, if A is not boundedly
(respectively, finitely, countably) branch ambiguous then AB is not boundedly (respectively,
finitely, countably) ambiguous.
⇐: By Lemma 34, for each y ∈ L(AB) there is a tree t ∈ L(A) and a tree branch π such

that ACC(AB , y) ⊆ ACC(A, t, π). Therefore, if AB is not boundedly (respectively, finitely,
countably) ambiguous then A is not boundedly (respectively, finitely, countably) branch
ambiguous. J

A.2 Proof of Proposition 28
I Proposition 28 (Finite ambiguity of parity automata). The following are equivalent:
1. A PTA A is not finitely ambiguous.
2. At least one of the following conditions holds:

a. A is not finitely branch ambiguous.
b. A has a fine ambiguous transition pattern.

We will first prove the following auxiliary lemma:

I Lemma 35. If a PTA A has a fine ambiguous transition pattern then its ambiguity degree
is not countable.

Proof. Let AB = (Q,ΣB , QI , δB , F) be the corresponding branch automaton of A, and let
q be a state such that A has a fine q-ambiguous transition pattern. Therefore, there exist
p′1, p

′
2 ∈ Q and z1 ∈ Σ∗B, z2 ∈ Σ+

B such that there is a run ρ1 of (AB)q on z1 from q to p′1,

A. Rabinovich and D. Tiferet 36:19

and a run ρ2 of (AB)p′
2
on z2 from p′2 to q; C(q) is even, and C(q) > C(p) for each state p in

the runs ρ1 and ρ2.
We choose z′ ∈ ΣB as follows:
If there are transitions (p′1, (a′, d′, {q1}), p′2), (p′1, (a′, d′, {q2}), p′2) ∈ δB with L(Aq1) ∩
L(Aq2) 6= ∅, then by definition of AB there exists a transition (a′, d′, {q1, q2}) ∈ δB . Let
z′ := (a′, d′, {q1, q2}).
Otherwise, by definition of fine q-ambiguous transition, there exists a transition:
(p′1, (a′, d′, {q1}), p′2) ∈ δB with da(Aq1) > 1. In this case, let z′ := (a′, d′, {q1}).

Define a word y := z1 · z′ · z2 over alphabet ΣB, and let ρ := ρ1 · ρ2. Notice that ρ is a
run of AB on y from q to q.

yω is an ω-word in ΣωB . Denote by ρ′ the run ρ without the last state. By definition of ρ
we conclude that (ρ′)ω is a run of (AB)f on yω. Notice that ρ′ contains a final state, and
therefore (ρ′)ω is an accepting run, and yω ∈ L((AB)f).

yω is of the form (a1, d1, S1) . . . (ai, di, Si) . . . where ai ∈ Σ, di ∈ {l, r} and Si ⊆ Q.
Assume z′ = (az, dz, Sz), and let tz ∈ ∩

q′∈Sz

L(Aq′) such that there are two accepting

computations φ1 and φ2 on tz, where φ1(ε), φ2(ε) ∈ Sz (there is such tz by definition of z′).
By Lemma 34, there is a tree t ∈ L(Aq), a computation φ ∈ ACC(Aq, t) and a tree

branch π = v0v1 . . . such that φ(π) = (ρ′)ω; and for each i ∈ N we have t(vi) = ai, and vi+1
is the left child of vi iff di = l.

Let J := {i | the i-th transition of (ρ′)ω is from p′1 to p′2 over z′}. By definition of ρ we
conclude that J is an infinite subset of N.

Define a tree t′ by t′(u) =
{
tz(w) ∃i : u = v′i · w
t(u) otherwise

For each B ⊆ A, we define a computation φB by:

φB(u) =

φ1(w) ∃i : u = v′i · w and v′i ∈ A \B
φ2(w) ∃i : u = v′i · w and v′i ∈ B
φ(u) otherwise

It is routine to verify that φB is an accepting computation of Aq on t′, and that
B1 6= B2 → φB1 6= φB2 . Since the number of subsets of A is uncountable, and each subset B
yields a unique accepting computations φB of Aq on t′, it follows that ACC(Aq, t′) is not
countable, and since q is useful, we conclude that A is not countably ambiguous. J

We are now ready to proceed with the proof of Prop. 28. The (2)⇒ (1) direction follows
from Lemma 25 and Lemma 35. Below we prove the (1) ⇒ (2) direction.

Let t be a tree such that ACC(A, t) is not finite. We define a branch π := v0, . . . , vi, . . .

in t and an ω-sequence of states q0 . . . qi . . . such that for every i:
1. From qi there are infinitely many accepting computations of Aqi

on the subtree t≥vi
.

2. There is an accepting computation φi on t such that φi(vj) = qj for every j ≤ i.
Define v0 as the root of t and q0 as an initial state from which there are infinitely many
accepting computations.

Assume that vi and qi were defined. Since there are infinitely many accepting computations
from the state qi on the subtree t≥vi , infinitely many of them take the same first transition
from qi to 〈ql, qr〉 and either there are infinitely many accepting computations from state ql
on the subtree rooted at the left child of vi, or from state qr on the subtree rooted at the
right child of vi. Define vi+1 and qi+1 according to these cases.

If |ACC(A, t, π)| is infinite, then by the definition of branch ambiguity we have that A is
not finitely branch ambiguous, and 2(a) holds. Otherwise, there exist φ1, . . . , φk ∈ ACC(A, t)
such that ACC(A, t, π) = {φi(π) | 1 ≤ i ≤ k}. Choose n such that for all 1 ≤ i < j ≤ k :
φi(v0) . . . φi(vn) 6= φj(v0) . . . φj(vn).

CSL 2021

36:20 Degrees of Ambiguity for Parity Tree Automata

There is 1 ≤ j ≤ k such that φj(v0) . . . φj(vn) = q0 . . . qn. Notice that by definition of
n, each computation φ ∈ ACC(A, t) which assigns q0, . . . , qn to the nodes v0, . . . , vn must
also agree with φj on each node vi for i ∈ N. Therefore, again by the definition of π and
q0, . . . qi, . . . , we conclude that φj(π) = q0, q1,

Let q be a state which occurs infinitely often in φj(π) such that C(q) is even, and C(q) is
maximal among the colors which C assigns to states which occurs infinitely often in φj(π).

Choose N > n such that φj(vN) = qN = q, and each state qi where i ≥ N occurs infinitely
often in φj(π). By selection of qN , there are infinitely many accepting computations of Aq
on t≥vN

. Take two different accepting computations φ′, φ′′ ∈ ACC(Aq, t≥vN
). Note that

∀i ≥ N : φj(vi) = φ′(vi) = φ′′(vi) = qi. Therefore, φ′ and φ′′ differ at some node w /∈ π, and
there exists M > N such that φj(vM) = q = φ′(vM) = φ′′(vM) and vM ⊥ w.

Let u be the node of maximal depth on the path from vN to vM such that w > u. Let u′,
u′′ be the children of u such that w ≥ u′. Assume w.l.o.g. that u′ is the left child of u.

Look at the transitions (φ′(u), t(u), φ′(u′), φ′(u′′)), (φ′′(u), t(u), φ′′(u′), φ′′(u′′)) ∈ δ. Since
u′′ ∈ π, we have φ′(u′′) = φ′′(u′′). If φ′(u′) = φ′′(u′) then the restriction of φ′ and φ′′

on t≥u′ are two different computations in ACC(Aφ(u′), t≥u′) and therefore da(Aφ(u′)) > 1
and condition 2 of q-ambiguous transition pattern definition applies. Otherwise, we have
φ′(u′) 6= φ′′(u′) and t≥u′ ∈ L(Aφ(u′)) ∩ L(Aφ′(u′)) and therefore condition 1 of q-ambiguous
transition pattern definition applies. By selection of q we conclude that A has a fine
q-ambiguous transition pattern, and condition 2(b) of Prop. 28 holds. J

On Flat Lossy Channel Machines
Philippe Schnoebelen
LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay
http://www.lsv.fr/~phs
phs@lsv.fr

Abstract
We show that reachability, repeated reachability, nontermination and unboundedness are NP-complete
for Lossy Channel Machines that are flat, i.e., with no nested cycles in the control graph. The
upper complexity bound relies on a fine analysis of iterations of lossy channel actions and uses
compressed word techniques for efficiently reasoning with paths of exponential lengths. The lower
bounds already apply to acyclic or single-path machines.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Infinite state systems, Automated verification, Flat systems, Lossy channels

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.37

Funding Supported by ANR project BRAVAS (grant ANR-17-CE40-0028).

Acknowledgements We thank A. Finkel who raised the issue of flatness in lossy channel systems.
We also thank J. Leroux and S. Halfon for useful comments that helped improve this paper.

1 Introduction

Lossy channel machines. Lossy channel machines, aka LCMs, are FIFO automata, i.e.,
finite-state machines operating on buffers with FIFO read/write discipline, where the buffers
are unreliable, or lossy, in the sense that letters (or “messages”) in a buffer can be lost
nondeterministically at any time.

LCMs were first introduced as a model for communication protocols designed to work
properly in unreliable environments. They immediately attracted interest because, unlike
FIFO automata with reliable buffers, they have decidable safety and termination problems [21,
4, 11, 2]. It was later found that LCMs are a relevant computational model per se, useful for
verifying timed automata [3, 34], modal logics [26], etc., and connected to other problems in
computer science [31, 14, 39].

Flat LCMs. In this paper we consider the case of flat LCMs, i.e., LCMs where the control
graph has no nested cycles. In the area of infinite-state systems verification, flat systems
were first considered in [25, 15] for counter systems1. In addition, some earlier “loop
acceleration” results, e.g. [6], where one can compute reachability sets along a cycle, can
often be generalised to flat systems. Positive results on flat counter systems can be found
in [36, 9, 18, 8, 35, 17], and in [27] for counter systems with recursive calls. Regarding flat
FIFO automata, verification was shown decidable by Bouajjani and Habermehl [7] who
improved on earlier results by Boigelot [5], and the main verification problems were only
recently proven to be NP-complete [20, 22]. These results have applications beyond flat
systems in the context of bounded verification techniques, where one analyses a bounded
subset of the runs of a general system [20].

1 Flatness remains relevant with finite-state systems, see e.g., [33]. This is especially true when one is
considering the verification of properties expressed in a rich logic as in, e.g., [16]. In language theory,
flat finite-state automata correspond to regular languages of polynomial density, sometimes called sparse
languages, or also bounded languages.

© Philippe Schnoebelen;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 37; pp. 37:1–37:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8180-2686
http://www.lsv.fr/~phs
mailto:phs@lsv.fr
https://doi.org/10.4230/LIPIcs.CSL.2021.37
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 On Flat Lossy Channel Machines

Flat LCMs have not been explicitly considered in the literature. They are implicit in
forward analysis methods based on loop acceleration, starting with [2], but these works
do not address the overall complexity of the verification problem, only the complexity of
elementary operations.

It is not clear whether one should expect flat LCMs to be simpler than flat FIFO automata
(on account of unrestricted LCMs being simpler than the Turing powerful, unrestricted
FIFO automata), or if they could be more complex since message losses introduce some
nondeterminism that does not occur when one follows a fixed cycle in a FIFO system. Indeed,
message losses can be seen as hidden implicit loops that disrupt the apparent flatness of the
LCM.

Our contribution. We analyse the behaviour of the backward-reachability algorithm on
cycles of lossy channel actions and establish a bilinear upper bound on its complexity. As
a consequence, reachability along runs of the form ρ1σ

∗
1ρ2σ

∗
2 . . . ρmσ

∗
m where the ρi, σi are

sequences of channel actions, can be decided in time nO(m), where n is the size of the
instance. While shortest reachability witnesses can be exponentially long when the number
m of cycles is not bounded, techniques based on SLP-compressed words allow handling and
checking these witnesses in polynomial time, leading to an NP algorithm for flat LCMs.
This easily translates into NP algorithms for nontermination, repeated reachability, and
unboundedness, and in fact all four problems are NP-complete. Thus the restriction to
flat systems really brings some simplification when compared to the very high complexity –
sometimes undecidability as is the case for unboundedness – of verification for unrestricted
LCMs [13, 40, 39].

I Remark 1.1 (Lossy channel machines vs. lossy channel systems). In line with most works on
loop acceleration and verification of flat systems, we consider lossy channel “machines” instead
of the more usual lossy channel “systems”, i.e., systems where several independent concurrent
machines communicate via shared channels. This is because a combination of individually
flat machines does not lead to a “flat” system. Additionally, finite-state concurrent systems
typically have PSPACE-hard verification problems already when they have no channels and
run synchronously, or when they only synchronise via bounded channels that can hold at
most one message [19]. y

Outline. After some technical preliminaries (Section 2), we present our main technical
contribution (Section 3): we analyse the computation of predecessors (of some given con-
figuration) through a cycle iterated arbitrarily many times. In particular we show that the
backward-reachability analysis of a single cycle reaches its fixpoint after a bilinear number
of iterations. This leads to an effective bound on the length of the shortest runs between
two configurations. In Section 4 we show how the previous analysis can be turned into
a nondeterministic polynomial-time algorithmic via the use of SLP-compressed words for
efficiently computing intermediary channel contents along a run. In Section 5 we show how
our main results also apply to termination, repeated reachability, and boundedness. Finally
Appendix C presents reductions showing how the problems we considered are NP-hard, even
for acyclic LCMs or single-path LCMs.

Related work. After we circulated our draft proof, we became aware that a related NP-
membership result will be found in [23]. There the authors adapt the powerful technique
from [20] and encode front-lossy channel systems into multi-head pushdown automata, from
which an NP-algorithm for control-state reachability in flat machines ensue. Our approach

P. Schnoebelen 37:3

is lower level, providing a tight bilinear bound on the number of times a cycle must be
visited in the backward-reachability algorithm. Once these bounds are established, our NP
algorithm only needs to guess the number of times each cycle is visited and perform the
polynomial-time verification described in Section 4.

2 Preliminaries

We consider words u, v, w, x, y, z, . . . over a finite alphabet Σ = {a, b, . . .}. We write |u|
for the length of a word and ε for the empty word. The set of letters that occur in u is
written alph(u). For a n-letter word u = a1 · · · an and some index ` ∈ {0, 1, . . . , n}, we write
u≤`

def= a1 · · · a` and u>`
def= a`+1 · · · an for the `-th prefix and the `-th suffix of u. We write

u(`)
def= u>` · u≤` for the `-th cyclic shift of u.
Exponents are used to denote the concatenation of multiple copies of a same word, i.e.,

u3 denotes uuu. A fractional exponent p ∈ Q can be used for up if p · |u| is a natural number.
E.g., when a, b, c are letters, (abc) 11

3 , or equivalently (abc)3+ 2
3 , denotes abc abc abc ab.

We write u 4 v to denote that u is a (scattered) subword of v, i.e., there exist 2m+1 words
u1, . . . , um, x0, x1, . . . , xm such that u = u1 · · ·um and v = x0u1x1 . . . umxm. It is well-known
that 4 is a well-founded partial ordering. For a word x ∈ Σ∗, we write ↑x def= {y ∈ Σ∗ |x 4 y}
to denote the upward-closure of x, i.e., the set of all words that contain x as a (scattered)
subword.

LCMs. In this paper we consider channel machines with a single communication channel2.
A lossy channel machine (LCM) is a tuple S = 〈Q,Σ,∆〉 where Q = {p, q, . . .} is a finite set
of control locations, or just “locations”, Σ = {a, b, . . .} is the finite message alphabet, and
∆ ⊆ Q× ({!, ?} × Σ∗)×Q is a finite set of transition rules. A rule δ = 〈q, (d,w), q′〉 has a
start location q, an end location q′ and a channel action (d,w). We write ActΣ

def= {!, ?}×Σ∗
for the set of channel actions over Σ, and often omit the Σ subscript when it can be inferred
from the context. We use θ, θ′, . . . to denote actions and σ, ρ, . . . to denote sequences of
channel actions.

We will constantly refer to the written part and the read part of some channel action (or
sequence of such). These are formally defined via

wri(!w) def= w ,

rea(!w) def= ε ,

wri(?w) def= ε ,

rea(?w) def= w ,

wri(θ1 · · · θm) def= wri(θ1) · · · wri(θm) ,

rea(θ1 · · · θm) def= rea(θ1) · · · rea(θm) .
(1)

Semantics. The operational semantics of LCMs is given via transition systems. Fix some
LCM S = 〈Q,Σ,∆〉. Actions in ActΣ induce a ternary relation −→ ⊆ Σ∗ × ActΣ × Σ∗ on
channel contents:

x
! w−→ y

def⇐⇒ y 4 x w , x
? w−→ y

def⇐⇒ w y 4 x . (2)

Observe how Equation (2) includes the subword relation in the definition of the operational
semantics. This models the fact that messages in the channel can be lost nondeterministically
during any single computation step. A consequence is the following monotonicity property:
if x′ < x and y < y′ then x θ−→ y implies x′ θ−→ y′.

2 See Appendix D for a generalisation of our results to multi-channel machines.

CSL 2021

37:4 On Flat Lossy Channel Machines

A configuration of S is a pair c = (q, x) ∈ Q× Σ∗ that denotes a current situation where
the control of S is set at q while the contents of the channel is x. We let Conf S

def= Q× Σ∗
denote the set of configurations. The set of rules ∆ induces a labelled transition relation
−→ ⊆ Conf S ×∆× Conf s between configurations defined by

(q, x) δ−→ (q′, y) def⇐⇒ δ ∈ ∆ has the form 〈q, θ, q′〉 and x θ−→ y . (3)

Several convenient notations are derived from the main transition relation: we write c θ−→ c′

when c δ−→ c′ for a rule δ that carries action θ. When σ = θ1θ2 · · · θm is a sequence of actions,
we write c σ−→ c′ when there is a sequence of steps c0

θ1−→ c1
θ2−→ c2 · · ·

θm−→ cm with c0 = c and
cm = c′. Then c ∗−→c′ means that c σ−→c′ for some sequence σ. Similar notations, e.g., “x θ1 θ2−−→y”
or “x θ∗−→ y”, are used for channel contents. In fact, since we shall mostly consider fixed paths,
or paths of a fixed shape, we will usually concentrate on the channel contents and leave the
visited locations implicit.

Flat LCMs. An elementary cycle of length m in a LCM S is a non-empty set C =
{〈pi, θi, qi〉 |i = 1, . . . ,m} of rules from ∆ such that qm = p1 and pi = qi−1 when 2 ≤ i ≤ m,
and such that the pi’s are all distinct. A cycle of length 1 is a self-loop. The set {p1, . . . , pm}
is the set of locations visited by C. Note that two distinct cycles may have the same visited
set if they use different transition rules.

We say that S is flat if no control location is visited by two different elementary cycles.
An extreme case of flat machines are the machines having no cycles whatsoever, called acyclic
machines.3

When S is flat, there is (at most) one cycle around any location q and we write σq for
the sequence of actions along this cycle, making sure that σq starts with the action leaving q
(so that if q, q′ are two locations visited by the same cycle, σq′ will be a cyclic shift of σq).
When there is no cycle visiting q we let σq = ε by convention.

Vector Addition Systems with States, aka VASSes. When |Σ| = 1, the information stored
in a channel is completely captured by the length of its contents: we may then speak of
“counters” rather than “channels” and end up with a model essentially equivalent to the
VASSes from [30]. Of course, VASSes, be they reliable or lossy, are really interesting when
several counters are considered.

NP-hardness. It is known that reachability and other verification problems are NP-hard
for (reliable) FIFO automata: see [20, App. C] and [22]. We strengthen these results in Ap-
pendix C with the following theorems that cover reliable and unreliable channels indifferently
(recall that nontermination is the existence of an infinite run, while unboundedness is the
existence of arbitrarily large reachable configurations).

I Theorem 2.1 (Hardness for acyclic channel machines). Reachability, nontermination and
unboundedness are NP-hard for acyclic channel machines, with reliable or with unreliable
channels. Hardness already holds for a single channel and a binary alphabet. It also holds
for a unary alphabet (i.e., for acyclic VASSes, reliable or lossy) provided one allows several
channels (or counters).

3 In the finite-automata literature, “acyclic automata” sometimes allow self-loops.

P. Schnoebelen 37:5

NP-hardness for acyclic machines uses the nondeterminism allowed in channel machines.
It is thus interesting to consider single-path machines where the control graph is a single line
possibly carrying cycles on some locations, as is done in [33] or [17].4 In such a machine,
nondeterminism only occurs in choosing how many times a cycle is visited (and what messages
are lost in unreliable systems).

I Theorem 2.2 (Hardness for single-path channel machines). Reachability, nontermination
and unboundedness are NP-hard for single-path channel machines, with reliable or with
unreliable channels. Hardness already holds for a single channel. It also holds for single-path
VASSes, reliable or lossy, provided one allows several counters.

The above NP-hardness does not apply to bounded path schemes with a fixed number of
cycles and indeed we show in Section 3 that reachability along path schemes with m cycles
can be verified in polynomial-time nO(m).

3 Backward reachability in flat LCMs

In this section we consider a generic flat single-channel LCM S with channel alphabet Σ and
investigate the complexity of backward-reachability analysis.

3.1 Computing predecessors
The classical approach to deciding reachability in LCMs is the backward-reachability algorithm
proposed by Abdulla and Jonsson. They first developed it for lossy channel systems [4]
before generalising it to the larger class of Well-Structured Systems [1, 24].

For backward reachability, we write Pre[σ](x) for {y ∈ Σ∗ | y σ−→ x}, the set of σ-
predecessors of x, and Pre[σ](↑x) for {y ∈ Σ∗ | ∃x′ ∈ ↑x : y σ−→ x′}, the set of σ-predecessors
of x “and larger contents”. A consequence of the monotonicity of steps is that Pre[σ](↑x) is
upward-closed set and, unless σ is the empty sequence, coincides with Pre[σ](x).

I Definition 3.1 (pr[σ](x)). For a channel content x ∈ Σ∗ and a sequence σ of channel
actions, we write pr[σ](x) = y when Pre[σ](↑x) = ↑ y.

In the case of lossy channels, Pre[σ](↑x) always has a single minimal element, hence pr[σ](x)
is always defined. We now explain how to compute it.

For two words x, v we define x/v as the prefix of x that remains when we remove from
x its longest suffix that is a subword of v. This operation is always defined and can be
computed using the following rules where a, b are letters:

x/ε = x , ε/v = ε , (x a)/(v b) =
{
x/v if a = b,
(x a)/v if a 6= b.

(4)

This immediately entails (x/v)/v′ = x/(v′ v). We’ll also use the following properties:

if x′/v 6= ε then x(x′/v) = (x x′)/v , if |x′| > |v| then x′/v 6= ε . (5)

We may now compute pr[σ](x) with:

pr[?u](x) = u · x , pr[!v](x) = x/v ,

pr[ε](x) = x , pr[σ1 · σ2](x) = pr[σ1]
(
pr[σ2](x)

)
.

(6)

4 Equivalently, one can analyze general machines “modulo bounded expressions” as is done in [20].

CSL 2021

37:6 On Flat Lossy Channel Machines

W.r.t. subword ordering, the / operation is monotonic in its first argument and contra-
monotonic in the second : u 4 u′ implies u/v 4 u′/v and x/u < x/u′. Concatenation too is
monotonic. This generalises to the following useful lemma:

I Lemma 3.2. Assume pr[σ](x) = y and pr[σ](x′) = y′ where σ is some sequence of actions.
Then x 4 x′ implies y 4 y′.

Proof. By induction on σ, using Equations (4) and (6). J

3.2 Cycles: repeating a given sequence of actions
We now focus on computing pr[σk](x) for σ a sequence of actions and some k ∈ N.

Without any loss of generality, σ can be written in the general form ?a1 !b1 ?a2 !b2 · · ·?ar !br
where each ai and bi is a letter or the empty word ε. Then rea(σ) = a1a2 · · · ar and
wri(σ) = b1b2 · · · br.

To fix notation, we define “the small-step sequence for pr[σ](x)”, or just “the SSS”, as
the sequence yr, y′r, yr−1, y′r−1, . . ., y1, y′1, y0 of 2r + 1 words given by

yr = x , y′i = yi/bi , yi−1 = ai y
′
i . (7)

Clearly, the SSS lists all the intermediary steps in the computation of pr[σ](x) as dictated
by Equation (6), and thus it yields y0 = pr[σ](x).

Our first lemma handles the special case where x is made of copies of rea(σ).

I Lemma 3.3. Let u = rea(σ).
(i) If x is a fractional power up of u, then y = pr[σ](x) is also a fractional power of u,

written y = um.
(ii) Furthermore, if m > 1, then pr[σ](up+n) = um+n for all n ∈ N.
(iii) Finally, for all n ∈ N, if m > n+ 1, then pr[σ](up−n) = um−n.

Proof. The lemma holds spuriously if u = ε, so we assume |u| > 0. Let us write σ in the
general form ?a1 !b1 ?a2 !b2 · · ·?ar !br, so that u = a1a2 · · · ar. To simplify notation we will
write u(i) for the shift ai+1 · · · ar · a1 . . . ai that really should be written u(|a1···ai|) (remember
that aj = ε is possible).

We now claim that, in the SSS (yi, y′i)i for σ and x, each yi and y′i is a fractional power
of u(i), written yi = upi

(i) and y′i = u
p′i
(i).

The proof is by induction on r− i. For yi, there are two cases: (1) yr = x is a power of u
by assumption, hence of u(r), with pr = p; (2) yi−1 is ai y′i, i.e., ai u

p′i
(i) by ind. hyp., hence a

power of u(i−1) with pi−1 = p′i + |ai|
|u| . For y

′
i the proof is simpler: by ind. hyp. it is upi

(i)/bi
and, as a prefix of a power of u(i), is itself a power of u(i), albeit with a perhaps smaller
exponent, i.e., pi − |bi|

|u| ≤ p
′
i ≤ pi.

(i) Since y coincide with y0, we obtain y = um as required by letting m = p0.
(ii) Equation (8) gathers the (in)equalities we just established:

pr = p , pi−1 = p′i + |ai|
|u|

, max
(

0, pi −
|bi|
|u|

)
≤ p′i ≤ pi , p0 = m . (8)

Thus the assumption m > 1 entails p′i > 0, i.e. y′i 6= ε, for all i = r, r − 1, . . . , 2, 1. Let
us now consider the SSS (zi, z′i)i for pr[σ](up+1). We claim that for all i, zi = u(i)yi
and z′i = u(i)y

′
i, as is easily proven by induction on r− i. The crucial case is z′i, defined

as zi/bi and equal to (u(i)yi)/bi by ind. hyp. Since yi/bi = y′i 6= ε as just observed, we

P. Schnoebelen 37:7

deduce (u(i)yi)/bi = u(i)(yi/bi) from Equation (5). This is u(i)y
′
i as required. Finally

we end up with pr[σ](up+1) = z0 = u(0)y0 = u um = um+1, and this generalises to
pr[σ](up+n) = um+n.

(iii) With Equation (8), the assumption m > n+ 1 now entails pi, p′i ≥ n+ 1
|u| for all i. We

claim that the SSS (zi, z′i)i for pr[σ](up−n) satisfies un(i)zi = yi and un(i)z′i = y′i for all i,
as can be proved by induction on r − i. The base case unzr = unup−n = up = yr is
clear. Let us now consider un(i)z′i. It is un(i)(zi/bi), that is un(i)(u

pi−n
(i) /bi) since un(i)zi = yi

by ind. hyp. and yi = upi

(i) by (i). Now |upi−n
(i) | = |u|(pi − n) ≥ 1 ≥ |bi|, so Equation (5)

applies and we deduce un(i)(zi/bi) = (un(i)zi)/bi = yi/bi (by ind. hyp.) = y′i. We have
proved un(i)z

′
i = y′i as required. Finally, proving un(i)zi = yi is handled in a similar

way. J

Note that m > 1 is required for part (ii) of the Lemma. For example, with σ =?a !b?c !c !a one
has u = rea(σ) = ac and pr[σ](u 1

2) = u1. However one can check that pr[σ](u 3
2) = aca = u

3
2 .

Equipped with Lemma 3.3, we turn to the general case for pr[σk](x).

I Theorem 3.4. Let σ ∈ Act∗Σ be a sequence of actions and write u for rea(σ). Let x ∈ Σ∗
be some channel content and write yk for pr[σk](x).
(i) For every k ∈ N, yk has the form upk · x<`k

for some fractional power pk and some
length `k ∈ {0, 1, . . . , |x|}.

(ii) Furthermore, computing pk and `k can be done in time poly(|σ|+ |x|+ log k).

Proof.
(i) Write v for wri(σ) and consider the sequence (xk)k∈N given by x0

def= x and xk+1
def= xk/v.

Note that |xk+1| ≤ |xk| for all k and write κ for the largest index with xκ 6= ε. We let
κ = −1 if already we started with x = ε, and κ = ω if all xk’s are non-empty, which
happens iff alph(x) 6⊆ alph(v).
If k ≤ κ, pr[σk](x) = uk · xk and xk is a prefix of x, so taking pk = k and `k = |xk|
works.
If k = κ+ 1, yk is pr[σ](uκ · x<`κ). Since x<`κ/v = ε, the result is a prefix of uκ+1, so
has the form upκ+1 for some pκ+1. One also lets lκ+1 = 0.
Finally, if k > κ+ 1, we have yk = pr[σk−κ−1](yκ+1) = pr[σk−κ−1](upκ+1) and we just
have to invoke Lemma 3.3 (and set lk = 0).

(ii) Computing κ takes time O(|x|+ |σ|).
If k ≤ κ, comparing k with κ and computing pk and `k takes additional time O(|x|+
|σ|+ log k).
If k = κ+ 1, we need to compute pr[σ](uκ x<κ) in order to extract pκ+1. This uses
Equation (6) for O(|σ|) small steps. Note that we do not build uκ explicitly: once x
has been consumed, we work on some up(i) and just update p and i when applying some
pr[?a], or only update p when applying some pr[!b], for which we only need to know
where are the occurrences of b in u. For each small step, the updates can be computed
in time O(|u|+ |x|), hence pκ+1 is computable in quadratic time.
If k > κ + 1, we set q0 = pκ+1, k′ = k − κ − 1 and aim for pr

[
σk
′](x′), starting

from x′ = uq0 . We need to compute uqk′ in the sequence uq0 , uq1 , . . . , defined by
uqi+1 def= pr[σ](uqi). Let us first compute q1 and consider the three possibilities:
(1) If q0 = q1, yp is a fixpoint for pr[σ] and we know pk = p.
(2) If q0 < q1, the exponents increase under pr[σ] and after computing at most |u|+ 1

consecutive values, we’ll find two indexes 1 ≤ i < j ≤ |u|+ 1 such that qi and qj

CSL 2021

37:8 On Flat Lossy Channel Machines

have the same fractional parts, i.e., differ by some natural number. We can then
use Lemma 3.3.(ii) and compute q

j+
⌊

k′−j
j−i

⌋ = qj +
⌊
k′−j
j−i

⌋
. From there, we’re just

at most |u| steps from qk′ , i.e., pk.
(3) Finally, if q0 > q1 a similar technique, now relying on Lemma 3.3.(iii), will let us

compute qk′ in polynomial time. J

The next step is to compute Pre[σ∗](↑x), that is, ↑x ∪ Pre[σ](↑x) ∪ Pre[σ2](↑x) ∪ · · · .
Like Pre[σ](↑x), this set is upward-closed. However it may have several minimal elements
(see Example 3.8) and one needs to collect all of them in order to represent the set faithfully.

I Definition 3.5 (Iteration number). The iteration number L(σ, x) associated with a sequence
of actions σ and a channel content x is the smallest integer such that there exists ` ≤ L(σ, x)
with pr[σ`](x) 4 pr[σL(σ,x)+1](x). Note that, by Higman’s Lemma, such an integer always
exists.

The point of Definition 3.5 is that it captures the number of iterations that are sufficient
to compute Pre[σ∗](↑x).

I Lemma 3.6. Pre[σ∗](↑x) =
⋃L(σ,x)
i=0 ↑ pr[σi](x).

Proof. Write yk for pr[σk](x) and L for L(σ, x). By definition there is some ` ≤ L with
y` 4 yL+1. By Lemma 3.2, this continues into y`+1 4 yL+2, y`+2 4 yL+3, etc., implying
↑ y` ⊇ ↑ yL+1, ↑ y`+1 ⊇ ↑ yL+2, ↑ y`+2 ⊇ ↑ yL+3, . . . Finally Pre[σ∗](↑x), which is

⋃
i∈N ↑ yi

coincides with the finite union
⋃L(σ,x)
i=0 ↑ yi. J

I Theorem 3.7 (Bounding iteration numbers). L(σ, x) ≤ |x|(| rea(σ)| + 1) for any action
sequence σ and channel contents x.

Proof. We write u for rea(σ). Using Theorem 3.4, we write yk = pr[σk](x) = upk · x<`k
and

observe that pi ≤ pj and `i ≤ `j imply yi 4 yj . Recall from the proof of Theorem 3.4 that
|x| = `0 ≥ `1 ≥ · · · ≥ `i ≥ · · · is a decreasing sequence and that pk = k when `k > 0.

There are two cases:
1. If (`k)k stabilises with some limit value `∞ that is strictly positive, then `|x|−1 = `|x| and

we deduce y|x|−1 4 y|x|, entailing L(σ, x) < |x|.
2. If `∞ = 0 then, writing k0 for the first index with `k0 = 0, we know that k0 ≤ |x| and

pk0 = k0. If pk0+1 ≥ pk0 then yk0 4 yk0+1. Otherwise pk0 > pk0+1 and as a consequence
of Lemma 3.2 the suffix sequence pk0 > pk0+1 ≥ pko+2 ≥ pk0+3 ≥ · · · is decreasing. Since
the pk fractions are multiples of 1

|u| , the sequence (pk)k≥k0 can only take 1+ |u|k0 different
values and eventually yield pk = pk+1 for some k ≤ k0 + k0|u| ≤ |x|(|u|+ 1), entailing
L(σ, x) ≤ |x|(|u|+ 1) as claimed. J

The bound given by Theorem 3.7 is tight as the next simple example shows.

I Example 3.8 (Bounds for L(σ, x) are tight.). For σ = !ab5 ?b4 and x = a4, the (yk)k
sequence with yk

def= pr[σk](x) is:

a4,
y0

b4a3,
y1

b8a2,
y2

b12a,
y3

b16,
y4

b15,
y5

b14,
y6

b13,
y7

b,
y19

ε,
y20

ε,
y21

.

|x|=l0>l1>···>l4=0︷ ︸︸ ︷ k0=4=pk0∧p4≥p5≥p6···︷ ︸︸ ︷

Since y20 4 y21 is the earliest increasing pair, Definition 3.5 gives L(!ab5 ?b4, a4) = 20.
This generalises to L(!abn+1 ?bn, am) = m(n+ 1) for any n,m ∈ N, which is exactly the

|x|(| rea(σ)|+ 1) bound given by Theorem 3.7. y

P. Schnoebelen 37:9

3.3 Bounding runs
Let Post∗(c) denote the reachability set {c′ | c ∗−→ c′}. Assume that a flat LCM S is such
that (q′, y) ∈ Post∗(q, x). Since S is flat, the run (q, x) ∗−→ (q′, y) has the following shape:

(q, x) = (q0, z0)
σ

n0
0−−→ (q0, z

′
0) θ1−→ (q1, z1)

σ
n1
1−−→ (q1, z

′
1) θ2−→ (q2, z2)

σ
n2
2−−→ · · ·

· · · (qm−1, z
′
m−1) θm−→ (qm, zm) σ

nm
m−−→ (qm, z′m) = (q′, y) .

(9)

In Equation (9), the control locations (q =)q0, q1, . . . , qm(= q′) are all distinct, σi is the
sequence of actions performed along the (unique) cycle on qi, and ni is the number of times
this cycle has been traversed along the run. We use σi = ε when there is no cycle on qi, and
we use ni = 0 when the cycle is not traversed at all. For i = 1, . . . ,m, θi is the sequence of
actions that labels the transition from qi−1 to qi.

We say that the run in Equation (9) is minimal if for all i = 1, . . . ,m, zi is a minimal
element in Pre[σ∗i](↑ z′i) and ni is the smallest such zi = pr[σni

i](z′i), and if zi = pr[σni
i](z′i)

for i = 0, . . . ,m. By allowing z0 4 x, it is always possible to associate a minimal run with
some reachability statement “(q, x) ∗−→ (q′, y)” and use the tuple

〈q0, z0, n0, z
′
0, q1, z1, n1, z

′
1, . . . , qm, zm, nm, y〉 (10)

as a witness of reachability.
We now try to bound the size of such a witness. One has

|z′m| = |y| , |zi| ≤ |z′i|+ ni| rea(σi)| , |z′i−1| ≤ |zi|+ | rea(θi)| , (11)

for all i. We further know from Theorem 3.7, that ni ≤ |z′i|(1 + | rea(σi)|) for i = 0, . . . ,m.
Thus, writing n for the size |S| + |x| + |y| of the instance (so that m ≤ n, and

| rea(σi)|, | rea(θi)| ≤ n for all i), we have quadratic bounds O(n2) for nm and |zm|, cubic
bounds O(n3) for nm−1 and |zm−1|, . . . , etc., so that the witness has size O(nm), hence
2O(n).

Unfortunately, as Example 3.9 shows, these bounds cannot be much improved upon.

I Example 3.9. Consider the flat LCM S depicted in Figure 1. In S, (q0, ε)
∗−→ (q′0, ε) is

witnessed by the following run schema

(q0, ε)−→ (q1, ab)
∗−→ (q1, ba

2)−→ (q2, a
2b) ∗−→ (q2, ba

4)−→ (q3, a
4b) ∗−→ · · · ∗−→ (qn, ba2n

)

−→ (q′n, a2n

b) ∗−→ (q′n, ba2n−1
)−→ (q′n−1, a

2n−1
b) ∗−→ · · · −→ (q′1, a2b) ∗−→ (q′1, ba)−→ (q′0, ε) .

In fact, there is only one run witnessing (q0, ε)
∗−→ (q′0, ε) and this run necessarily visits

q0 q1 q2 q3 · · · qn q′n q′n−1 · · · q′1 q′0

?a !aa ?a !aa ?a !aa ?a !aa ?aa !a ?aa !a ?aa !a

!ab ?b !b ?b !b ?b !b ?b !b ?ba

Figure 1 A flat LCM where (q0, ε)
∗−→ (q′0, ε) requires exponential-sized configurations.

(qn, ba2n), a configuration of exponential size, iterating 2n−1 times the cycle on qn. Observe
that, starting from (q0, ε), any message loss will prevent ever reaching q′0. y

CSL 2021

37:10 On Flat Lossy Channel Machines

4 SLP-compressed words and an NP algorithm for reachability

In this section we explain how the exponentially long minimal runs analysed in Section 3.3 can
be handled efficiently using SLP-compressed words. This provides witnesses of polynomial
size that can be validated in polynomial time, thus showing that reachability in flat LCMs is
in NP.

4.1 SLP-compressed words
Compressed words are data structures used to represent long words via succinct encodings.
If a long word is rather repetitive, it can have a succinct encoding of logarithmic size. Since
several operations on long words or decision tests about them can be performed efficiently on
the succinct representation, compressed words have been used to provide efficient solutions
to algorithmic problems involving exponential-size (but rather repetitive) words, see [37] for
a survey.

The most studied encoding is the SLP, for Straight-Line Program, which is in effect an
acyclic context-free grammar that generates a single word, called its expansion.

From now on, we always use small letters x, y, u, v for usual words, and capital letters
X,Y, U, V for SLPs expanding to the corresponding words. Since SLPs are interpreted as
plain words, we will use them freely in places where words can be used. It will always
be clear when we consider the SLP as a data structure and then we use it to denote its
expansion. The main situation where we want to distinguish between the two usages is when
reasoning about size and algorithmic complexity: for this we write |X| for the length |x| of
the expansion, while we write ‖X‖ for the size of the SLP as a data structure. For example,
if X expands to x then for any fractional power of the form xp, there is an SLP Xp with
|Xp| = |xp| = p|x| and ‖Xp‖ = O(‖X‖+ log p).

In the rest of this section we will use well-known, or easy to prove, algorithmic results on
SLPs. In particular, all the following problems can be solved in polynomial time:
length: Given a SLP X, compute |X|.
factor: Given a SLP X and two positions 0 ≤ i ≤ j ≤ |X|, construct a SLP of size O(‖X‖)

for the factor X[i : j].
concatenation: Given two SLPs X and Y , construct a SLP for X · Y .
matching: Given two SLPs X and Y , decide if X is a factor (or a prefix, or a suffix) of Y .

To this list we add results tailored to our needs:
(scattered) subword with a power word: Given a SLP X, a plain word v and some power

k ∈ N, decide if X 4 vk. This special case of the fully compressed subsequence test can
be done in time poly(‖X‖+ |v|+ log k), see Proposition A.1 in the Appendix.

iterated LCM predecessor: Given a SLP X, a plain word v, and some power k ∈ N, compute
a SLP for X/vk, i.e., for pr[(!v)k](X). This can be done in time poly(‖X‖+ |v|+ log k),
see Proposition A.2 in the Appendix.

With the above results, we are ready to lift the computation of pr[σk](x) from plain
words to SLPs:

I Proposition 4.1. Given an SLP X, a sequence of actions σ, and some k ∈ N, it possible
to compute an SLP Y for pr[σk](X) in time poly(‖X‖+ |σ|+ log k).

Proof (sketch). We follow the construction described in the proof of Theorem 3.4, now
using SLPs. So again let us write u and v for rea(σ) and wri(σ).

P. Schnoebelen 37:11

The first step is to compute κ. This is done by dichotomic search, since we can decide in
polynomial time whether a candidate n leads to X/vn = ε. We then build X<`κ as X/vκ.

If k ≤ κ, we build a SLP Y for uk · (X/vk) and we are done.
If k ≥ κ + 1, we compute a SLP for yκ+1 = upκ+1 by applying pr[σ] on a SLP for

yκ = uκ · x<`κ: this involves computing a SSS involving at most 2m operations like prefixing
by ai or computing Y/bj . This is done in polynomial time and the exponent in upκ+1 can be
computed by dividing the length of a SLP with the length of u. From there we continue as
in the proof of Theorem 3.4. This involves performing a polynomial number of simple pr
operations and some simple reasoning on the exponents. J

4.2 Reachability for flat LCMs is in NP
We now explain how Equation (10) can be replaced by an SLP-based witness of the form

〈q0, Z0, n0, Z
′
0, q1, Z1, n1, Z

′
1, . . . , qm, Zm, nm, Y 〉 . (10’)

I Lemma 4.2. If 〈q0, z0, n0, z
′
0, q1, n1, z1, z

′
1, . . . , qm, zm, nm, y〉 is a minimal witness

for (q, x) ∗−→ (q′, y) in S, then there exist SLPs Z0, Z
′
0, Z1, . . . , Zm, Y representing

z0, z
′
0, z1, . . . , zm, y that have size polynomial in |S|+ |y|.

Proof. By induction on m− i. We start with Y for y which does not need any compression
(and let Z ′m = Y for the inductive reasoning).

Then any Zi has the shape Upi

i · (Z ′i)<`i for some pi and `i. Now ‖(Z ′i)<`i‖ is in O(‖Z ′i‖)
and since pi is in 2O(|S|) – as shown in Section 3.3 – , the size of the SLP for upi

i is is
O(|ui|+ |S|), i.e., O(|S|).

Now any Z ′i−1 is pr[θi](Zi) and is easily obtained from Zi and θi according to Equation (6).
One can ensure that ‖Z ′i‖ is in O(‖Zi‖+ |S|).

Finally, and since each SLP has size linearly bounded in the size of the following one (the
bounds propagate from right to left), we have a quadratic bound on the individual sizes for
the Zi and Z ′i, hence a cubic bound on the SLP witness overall (recall that the ni, written
in binary, have size O(|S|)). J

I Theorem 4.3. Deciding whether (q, x) ∗−→ (q′, y) in a flat LCM S is NP-complete.

Proof. NP-hardness is proven in Appendix C and we just provide a NP decision algorithm.
As expected, the algorithm just guesses a SLP-based witness and checks that it is indeed

a valid witness. For a positive instance of the problem, a witness exists and has polynomial
size as shown in Lemma 4.2. Now checking that it is valid, i.e., that each Zi is indeed
pr[σni](Z ′i) etc., can be done in polynomial time as shown with Proposition 4.1.5 J

5 NP algorithms for liveness properties

We show in this section how, for flat LCMs, liveness properties like nontermination, unboun-
dedness, and existence of a Büchi run (i.e., a run visiting a given location infinitely many
times), effectively reduce to reachability. This only requires characterising and computing
the set of configurations from which infinite runs are possible but Section 3 provides all the
necessary tools.

With any sequence of channel actions σ we associate Iσ
def=
⋂
k=0,1,2,... Pre[σk](Σ∗).

5 In fact, it is sufficient to guess the exponents n1, . . . , nm for the σi’s since the Zi, Z
′
i’s can be computed

from them.

CSL 2021

37:12 On Flat Lossy Channel Machines

I Lemma 5.1. Iσ ⊆ Σ∗ is an upward-closed set of channel contents. It has a single minimal
element or is empty.

Proof. Write (yk)k∈N for the sequence y0
def= ε and yk+1 = pr[σ](yk). Then Pre[σk](Σ∗) =

↑ yk for all k ∈ N (Definition 3.1) and Iσ =
⋂
k∈N Pre[σk](Σ∗) =

⋂
k ↑ yk. From y0 4 y1 and

monotonicity of pr (Lemma 3.2) we obtain y0 4 y1 4 y2 4 · · · and ↑ y0 ⊇ ↑ y1 ⊇ ↑ y2 ⊇ · · · .
Thus we have

Iσ =
⋂
k∈N
↑ yk =

{
↑ yK if yK = yK+1 for some K,
∅ if the (yk)k∈N sequence is strictly increasing.

J

We write pr[σω](ε) = y if Iσ = ↑ y, and pr[σω](ε) = ⊥ if Iσ is empty.

I Lemma 5.2. pr[σω](ε) can be computed in time O(|σ|3).

Proof (sketch). We start computing the elements y0, y1, y2, . . . of the (yk)k sequence. If two
consecutive values yK and yK+1 coincide, we have found pr[σω](ε). Otherwise we continue
while the sequence is strictly increasing until eventually |yk| > | rea(σ)| for some k (indeed,
some k ≤ 1 + |σ|). In this case we can invoke Lemma 3.3.(ii) and conclude that the (yk)k
sequence will remain strictly increasing, hence pr[σω](ε) = ⊥.

For complexity, we note that each yk+1 is obtained in time O(|σ|+ |yk|) and has length
in O(|σ|2) since |yk+1| ≤ |yk|+ | rea(σ)| for all k. J

The set Iσ, represented via pr[σω](ε), is interesting because it characterises the configura-
tions from which a σ-labelled cycle can be traversed infinitely many times, i.e., it characterises
nontermination.

Indeed, the following lemma reduces nontermination to reachability:

I Lemma 5.3 (Existence of infinite runs). (i) There exists an infinite sequence x =
x0

σ−→ x1
σ−→ x2 · · · starting from x if, and only if, pr[σω](ε) 4 x.

(ii) There exists an infinite run in S that starts from (q, x) and visits a given q′ ∈ Q infinitely
many times if, and only if, q′ is on an elementary cycle of S and (q, x) ∗−→ (q′, pr[σωq′](ε)).

Proof.
(i) Write y for pr[σω](ε). The proof of Lemma 5.2 shows that, unless y = ⊥, y = pr[σ](y)

and thus y σ−→ y.
(⇐=): Since x < y, we have x σ−→ y

σ−→ y
σ−→ · · · if σ 6= ε, and x σ−→ x

σ−→ x
σ−→ · · · in the

degenerate case where σ = ε.
(=⇒): We assume σ 6= ε since otherwise x < ε = pr[σω](ε) holds trivially. The infinite
sequence x0

σ−→ x1
σ−→ x2

σ−→ · · · satisfies x0 < pr[σk](xk) < pr[σk](ε) for all k ∈ N. Thus
pr[σω](ε) 6= ⊥ and x = x0 < pr[σω](ε).

(ii) is an immediate consequence of (i). J

We can now solve our favorite liveness problems. Here a co-Büchi run is an infinite run
that visits a given location finitely many times, while repeated coverability is the question
whether there exists an infinite run c0 −→ c1 −→ c2 −→ · · · such that infinitely many ci’s are
above a given (q, x).

I Theorem 5.4. Nontermination, existence of a Büchi run, existence of a co-Büchi run,
and repeated coverability are all NP-complete for flat LCMs.

P. Schnoebelen 37:13

Proof. See Appendix C for NP-hardness. For membership in NP, Lemmas 5.2 and 5.3 reduce
nontermination and existence of a Büchi run to a reachability question that we can solve
thanks to Theorem 4.3. Note that in flat machines, the existence of a co-Büchi run is easily
reduced to a positive Büchi property, so that there only remain to provide an NP-algorithm
for repeated coverability.

For this let us define more generally Iσ(x) as
⋂
k=0,1,2,... Pre[σk](↑x), so that Iσ really

is shorthand for Iσ(ε). For a location q on a σq-labelled cycle, Iσq
(x) characterises a form

of repeated coverability since y ∈ Iσq (x) iff there is an infinite run from (q, y) such that the
channel contains a superword of x every time q is (re)visited. Using some temporal logic,
this could be written under the form

y ∈ Iσq
(x) ⇐⇒ (q, y) |=∃ GFq ∧ G(q =⇒ chan ≥ x) .

The proof of Lemma 5.2 can be extended to the computation of Iσ(x). One obtains
Iσq

(x) = ↑ y0 ∩ ↑ y1 ∩ · · · ∩ ↑ yK for some K in O(|σ| · |x|). Note however that now the (yk)k
sequence does not necessarily satisfy y0 4 y1, so that Iσ(x) will have in general several
minimal elements, and possibly exponentially many. In fact already ↑ y0 ∩ ↑ y1 may have
exponentially many minimal elements (see [28, § 6.3]). Thus our algorithm for repeated
coverability will represent Iσ(x) as a conjunction of K+1 subword constraints, not via a set of
minimal elements. This is sufficient for our purposes: the algorithm for reachability is easily
extended to questions of the form “can we reach some (q, x) with x 4 y0 ∧ · · · ∧x 4 yK?” J

Unboundedness reduces to reachability in a very similar way. We say that a sequence of
actions σ is increasing if u`v 4 v`v−1 (and `v > 0) for u def= rea(σ), v def= wri(σ) and `v

def= |v|.
Now pr[σω](ε) and increasingness of σ characterise unbounded reachability sets.

I Lemma 5.5 (Proof in Appendix B.1). Let x ∈ Σ∗ be some channel contents and σ a
sequence of channel actions. T.f.a.e.:
(i) For all k ∈ N there exists xk with x σ∗−→ xk and |xk| ≥ k.
(ii) There exists an infinite unbounded sequence x σ∗−→x1

σ∗−→x2
σ∗−→ · · · with |x1| < |x2| < · · · .

(iii) σ is increasing and x < pr[σω](ε).

I Lemma 5.6 (Existence of unbounded runs). In a flat LCM, t.f.a.e.
(i) The reachability set Post∗(q, x) is infinite.
(ii) There is an unbounded run starting from (q, x).
(iii) (q, x) ∗−→ (q′, pr[σωq′](ε)) for some control location q′ with an increasing σq′ .

Proof (sketch).

(ii =⇒ iii): In an unbounded run, there must be a control location q′ that is visited
infinitely many times with associated channel contents that are unbounded. Since from
q′ one can only return to q′ by running through the cycle around q′, hence performing σq′
some number of times, the first visit of q′ is some (q′, x′) satisfying case (ii) of Lemma 5.5.
We deduce that σ′q is increasing and that x′ < pr[σωq′](ε) as in case (iii) of the Lemma.

(iii =⇒ ii): by Lemma 5.5 there exists an unbounded run starting from (q′, pr[σωq′](ε)).
Hence there is one starting from (q, x).

(i ⇐⇒ ii): is an application of Kőnig’s Lemma, not specific to LCMs, see e.g. [41, §6]. J
We can thus reduce unboundedness to reachability of an increasing cycle. With the NP-
hardness results proven in Appendix C, one now obtains:

I Theorem 5.7. Unboundedness for flat LCMs is NP-complete.

CSL 2021

37:14 On Flat Lossy Channel Machines

6 Conclusion

We analysed the behaviour of the backward-reachability algorithm for lossy channel machines
when a cycle of channel actions can be performed arbitrarily many times. This provides
complexity bounds on the size of runs that follow a bounded path scheme of the form
σ∗1ρ1σ

∗
2ρ2 . . . σ

∗
mρm, with applications in the verification of flat systems, or in bounded

verification for general systems. The main result is an NP upper bound for reachability and,
by reduction, several other verification problems like unboundedness or existence of a Büchi
run.

Natural directions for future work include extending our approach to deal with richer
verification problems, like temporal logic model checking. It would also be interesting to
consider more expressive models, like the partially lossy channel systems from [32] or the
higher-order lossy channel systems and priority channel systems from [29].

References

1 P. A. Abdulla, K. Čerāns, B. Jonsson, and Yih-Kuen Tsay. Algorithmic analysis of programs
with well quasi-ordered domains. Information and Computation, 160(1/2):109–127, 2000.
doi:10.1006/inco.1999.2843.

2 P. A. Abdulla, A. Collomb-Annichini, A. Bouajjani, and B. Jonsson. Using forward reachability
analysis for verification of lossy channel systems. Formal Methods in System Design, 25(1):39–
65, 2004. doi:10.1023/B:FORM.0000033962.51898.1a.

3 P. A. Abdulla, J. Deneux, J. Ouaknine, and J. Worrell. Decidability and complexity results for
timed automata via channel machines. In Proc. ICALP 2005, volume 3580 of Lecture Notes in
Computer Science, pages 1089–1101. Springer, 2005. doi:10.1007/11523468_88.

4 P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. Information and
Computation, 127(2):91–101, 1996. doi:10.1006/inco.1996.0053.

5 B. Boigelot and P. Godefroid. Symbolic verification of communication protocols with infinite
state spaces using QDDs. Formal Methods in System Design, 14(3):237–255, 1999. doi:
10.1023/A:1008719024240.

6 B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In Proc. CAV ’94,
volume 818 of Lecture Notes in Computer Science, pages 55–67. Springer, 1994. doi:10.1007/
3-540-58179-0_43.

7 A. Bouajjani and P. Habermehl. Symbolic reachability analysis of FIFO-channel systems
with nonregular sets of configurations. Theoretical Computer Science, 221(1–2):211–250, 1999.
doi:10.1016/S0304-3975(99)00033-X.

8 M. Bozga, R. Iosif, and F. Konecný. Safety problems are NP-complete for flat integer programs
with octagonal loops. In Proc. VMCAI 2014, volume 8318 of Lecture Notes in Computer
Science, pages 242–261. Springer, 2014. doi:10.1007/978-3-642-54013-4_14.

9 M. Bozga, R. Iosif, and Y. Lakhnech. Flat parametric counter automata. Fundamenta
Informaticae, 91(2):275–303, 2009. doi:10.3233/FI-2009-0044.

10 D. Brand and P. Zafiropulo. On communicating finite-state machines. JACM, 30(2):323–342,
1983. doi:10.1145/322374.322380.

11 G. Cécé, A. Finkel, and S. Purushothaman Iyer. Unreliable channels are easier to verify than
perfect channels. Information and Computation, 124(1):20–31, 1996. doi:10.1006/inco.1996.
0003.

12 P. Cégielski, I. Guessarian, Y. Lifshits, and Y. V. Matiyasevich. Window subsequence problems
for compressed texts. In Proc. CSR 2006, volume 3967 of Lecture Notes in Computer Science,
pages 127–136. Springer, 2006. doi:10.1007/11753728_15.

13 P. Chambart and Ph. Schnoebelen. The ordinal recursive complexity of lossy channel systems. In
Proc. LICS 2008, pages 205–216. IEEE Comp. Soc. Press, 2008. doi:10.1109/LICS.2008.47.

https://doi.org/10.1006/inco.1999.2843
https://doi.org/10.1023/B:FORM.0000033962.51898.1a
https://doi.org/10.1007/11523468_88
https://doi.org/10.1006/inco.1996.0053
https://doi.org/10.1023/A:1008719024240
https://doi.org/10.1023/A:1008719024240
https://doi.org/10.1007/3-540-58179-0_43
https://doi.org/10.1007/3-540-58179-0_43
https://doi.org/10.1016/S0304-3975(99)00033-X
https://doi.org/10.1007/978-3-642-54013-4_14
https://doi.org/10.3233/FI-2009-0044
https://doi.org/10.1145/322374.322380
https://doi.org/10.1006/inco.1996.0003
https://doi.org/10.1006/inco.1996.0003
https://doi.org/10.1007/11753728_15
https://doi.org/10.1109/LICS.2008.47

P. Schnoebelen 37:15

14 P. Chambart and Ph. Schnoebelen. Toward a compositional theory of leftist grammars and
transformations. In Proc. FOSSACS 2010, volume 6014 of Lecture Notes in Computer Science,
pages 237–251. Springer, 2010. doi:10.1007/978-3-642-12032-9_17.

15 H. Comon and Y. Jurski. Multiple counters automata, safety analysis, and Presburger
arithmetic. In Proc. CAV ’98, volume 1427 of Lecture Notes in Computer Science, pages
268–279. Springer, 1998. doi:10.1007/BFb0028751.

16 N. Decker, P. Habermehl, M. Leucker, A. Sangnier, and D. Thoma. Model-checking counting
temporal logics on flat structures. In Proc. CONCUR 2017, volume 85 of Leibniz International
Proceedings in Informatics, pages 29:1–29:17. Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPIcs.CONCUR.2017.29.

17 S. Demri, A. K. Dhar, and A. Sangnier. Taming past LTL and flat counter systems. Information
and Computation, 242:306–339, 2015. doi:10.1016/j.ic.2015.03.007.

18 S. Demri, A. Finkel, V. Goranko, and G. van Drimmelen. Model-checking CTL* over flat
Presburger counter systems. Journal of Applied Non-Classical Logics, 20(4):313–344, 2010.
doi:10.3166/jancl.20.313-344.

19 S. Demri, F. Laroussinie, and Ph. Schnoebelen. A parametric analysis of the state explosion
problem in model checking. Journal of Computer and System Sciences, 72(4):547–575, 2006.
doi:10.1016/j.jcss.2005.11.003.

20 J. Esparza, P. Ganty, and R. Majumdar. A perfect model for bounded verification. In Proc.
LICS 2012, pages 285–294. IEEE Comp. Soc. Press, 2012. doi:10.1109/LICS.2012.39.

21 A. Finkel. Decidability of the termination problem for completely specificied protocols.
Distributed Computing, 7(3):129–135, 1994. doi:10.1007/BF02277857.

22 A. Finkel and M. Praveen. Verification of flat FIFO systems. In Proc. CONCUR 2019, volume
140 of Leibniz International Proceedings in Informatics, pages 12:1–12:17. Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.CONCUR.2019.12.

23 A. Finkel and M. Praveen. Verification of flat FIFO systems. Logical Methods in Comp.
Science, 16(4), 2020.

24 A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theoretical
Computer Science, 256(1–2):63–92, 2001. doi:10.1016/S0304-3975(00)00102-X.

25 L. Fribourg and H. Olsén. A decompositional approach for computing least fixed-points
of datalog programs with Z-counters. Constraints, 2(3/4):305–335, 1997. doi:10.1023/A:
1009747629591.

26 D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev. Non-primitive recursive decidability
of products of modal logics with expanding domains. Annals of Pure and Applied Logic, 142(1–
3):245–268, 2006. doi:10.1016/j.apal.2006.01.001.

27 P. Ganty and R. Iosif. Interprocedural reachability for flat integer programs. In Proc. FCT
2015, volume 9210 of Lecture Notes in Computer Science, pages 133–145. Springer, 2015.
doi:10.1007/978-3-319-22177-9_11.

28 J. Goubault-Larrecq, S. Halfon, P. Karandikar, K. Narayan Kumar, and Ph. Schnoebelen.
The ideal approach to computing closed subsets in well-quasi-orderings. In Well Quasi-Orders
in Computation, Logic, Language and Reasoning, volume 53 of Trends in Logic, chapter 3,
pages 55–105. Springer, 2020. doi:10.1007/978-3-030-30229-0_3.

29 Ch. Haase, S. Schmitz, and Ph. Schnoebelen. The power of priority channel systems. Logical
Methods in Comp. Science, 10(4:4), 2014. doi:10.2168/LMCS-10(4:4)2014.

30 J. Hopcroft and J.-J. Pansiot. On the reachability problem for 5-dimensional vector addition
systems. Theoretical Computer Science, 8(2):135–159, 1979. doi:10.1016/0304-3975(79)
90041-0.

31 P. Karandikar and Ph. Schnoebelen. Generalized Post embedding problems. Theory of
Computing Systems, 56(4):697–716, 2015. doi:10.1007/s00224-014-9561-9.

32 Ch. Köcher. Reachability problems on partially lossy queue automata. In Proc. RP 2019,
volume 11674 of Lecture Notes in Computer Science, pages 149–163. Springer, 2019. doi:
10.1007/978-3-030-30806-3_12.

CSL 2021

https://doi.org/10.1007/978-3-642-12032-9_17
https://doi.org/10.1007/BFb0028751
https://doi.org/10.4230/LIPIcs.CONCUR.2017.29
https://doi.org/10.4230/LIPIcs.CONCUR.2017.29
https://doi.org/10.1016/j.ic.2015.03.007
https://doi.org/10.3166/jancl.20.313-344
https://doi.org/10.1016/j.jcss.2005.11.003
https://doi.org/10.1109/LICS.2012.39
https://doi.org/10.1007/BF02277857
https://doi.org/10.4230/LIPIcs.CONCUR.2019.12
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1023/A:1009747629591
https://doi.org/10.1023/A:1009747629591
https://doi.org/10.1016/j.apal.2006.01.001
https://doi.org/10.1007/978-3-319-22177-9_11
https://doi.org/10.1007/978-3-030-30229-0_3
https://doi.org/10.2168/LMCS-10(4:4)2014
https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.1007/s00224-014-9561-9
https://doi.org/10.1007/978-3-030-30806-3_12
https://doi.org/10.1007/978-3-030-30806-3_12

37:16 On Flat Lossy Channel Machines

33 L. Kuhtz and B. Finkbeiner. Weak Kripke structures and LTL. In Proc. CONCUR 2011,
volume 6901 of Lecture Notes in Computer Science, pages 419–433. Springer, 2011. doi:
10.1007/978-3-642-23217-6_28.

34 S. Lasota and I. Walukiewicz. Alternating timed automata. ACM Trans. Computational Logic,
9(2), 2008. doi:10.1145/1342991.1342994.

35 J. Leroux, V. Penelle, and G. Sutre. The context-freeness problem is coNP-complete for flat
counter systems. In Proc. ATVA 2014, volume 8837 of Lecture Notes in Computer Science,
pages 248–263. Springer, 2014. doi:10.1007/978-3-319-11936-6_19.

36 J. Leroux and G. Sutre. Flat counter automata almost everywhere! In Proc. ATVA 2005,
volume 3707 of Lecture Notes in Computer Science, pages 489–503. Springer, 2005. doi:
10.1007/11562948_36.

37 M. Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups Complexity Cryptology,
4(2):241–299, 2012. doi:10.1515/gcc-2012-0016.

38 N. Markey and Ph. Schnoebelen. A PTIME-complete matching problem for SLP-compressed
words. Information Processing Letters, 90(1):3–6, 2004. doi:10.1016/j.ipl.2004.01.002.

39 S. Schmitz. Complexity hierarchies beyond Elementary. ACM Trans. Computation Theory,
8(1), 2016. doi:10.1145/2858784.

40 S. Schmitz and Ph. Schnoebelen. Multiply-recursive upper bounds with Higman’s lemma.
In Proc. ICALP 2011, volume 6756 of Lecture Notes in Computer Science, pages 441–452.
Springer, 2011. doi:10.1007/978-3-642-22012-8_35.

41 Ph. Schnoebelen. Lossy counter machines decidability cheat sheet. In Proc. RP 2010,
volume 6227 of Lecture Notes in Computer Science, pages 51–75. Springer, 2010. doi:
10.1007/978-3-642-15349-5_4.

42 B. Vauquelin and P. Franchi-Zannettacci. Automates à file. Theoretical Computer Science,
11(2):221–225, 1980. doi:10.1016/0304-3975(80)90047-X.

43 T. Yamamoto, H. Bannai, S. Inenaga, and M. Takeda. Faster subsequence and don’t-care
pattern matching on compressed texts. In Proc. CPM 2011, volume 6661 of Lecture Notes in
Computer Science, pages 309–322. Springer, 2011. doi:10.1007/978-3-642-21458-5_27.

A Some SLP algorithms

We describe here some SLP algorithms that are not readily available in the literature (as far
as we know). Formally, by “an SLP X” we mean a grammar (Σ, N,X, P) where X ∈ N is
the axiom (a non terminal), where Σ is the set of terminal letters, and where the production
rules in P are either Ai → a or Ai → AjAk for some a ∈ Σ and some nonterminals Ai, Aj , Ak
with i < j, k. There is exactly one production rule for each Ai ∈ N , so that each Ai defines
a unique word L(Ai) ∈ Σ∗.

A.1 Deciding X 4 vn

Deciding X 4 Y between SLPs is a difficult problem, PP-hard as show in [37]. When x (or
y) is a plain word, the problem has polynomial-time solutions [38, 12, 43].

Here we consider the special case where Y is some vn.

I Proposition A.1. Deciding whether X 4 vn, where X is an SLP, v is a plain word, and n
is a fractional exponent, can be done in time O(‖X‖ · |v|+ |v|2 + logn).

https://doi.org/10.1007/978-3-642-23217-6_28
https://doi.org/10.1007/978-3-642-23217-6_28
https://doi.org/10.1145/1342991.1342994
https://doi.org/10.1007/978-3-319-11936-6_19
https://doi.org/10.1007/11562948_36
https://doi.org/10.1007/11562948_36
https://doi.org/10.1515/gcc-2012-0016
https://doi.org/10.1016/j.ipl.2004.01.002
https://doi.org/10.1145/2858784
https://doi.org/10.1007/978-3-642-22012-8_35
https://doi.org/10.1007/978-3-642-15349-5_4
https://doi.org/10.1007/978-3-642-15349-5_4
https://doi.org/10.1016/0304-3975(80)90047-X
https://doi.org/10.1007/978-3-642-21458-5_27

P. Schnoebelen 37:17

Proof. For v 6= ε and some word x such that alph(x) ⊆ alph(v), let us define p(x, v) as the
smallest fractional power such that x 4 vp. Now p(x, v) satisfies the following equalities:

p(ε, v) = 0

p(a, v) = i

|v|
, if the first occurrence of a in v is at position i,

p(x y, v) = p(x, v) + p(y, v(j)), if p(x, v) is some q + j

|v|
with q ∈ N.

(12)

Using Equation (12) leads to a dynamic programming algorithm computing p(X, v) for an
SLP X. After checking that alph(X) ⊆ alph(v), one computes the values of all p(A, v(i)) for
i = 1, . . . , |v| and A a nonterminal in SLP X. Each of these O(‖X‖ · |u|) values is computed
in time O(1) if one precomputes the first occurrences of letters in the cyclic shifts of v, say
in time O(|v|2). Finally, one only has to compare p(X, v) with n. J

A.2 Computing X/vk

I Proposition A.2. Building a SLP for X/vk, where X is an SLP, v is a plain word, and
k ∈ N, can be done in time poly(‖X‖+ |v|+ logn).

Proof. For given `, deciding whether X/vk has length at least ` is easy: One just applies
the definition, builds an SLP X ′ for the suffix of length |X| − ` of X, and checks that it is a
subword of vk with Proposition A.1.

Thus one can computes |X/vk| by finding the length of the result via dichotomic search,
repeating the previous process log |X|, i.e., O(‖X‖), times.6 J

B Forward reachability techniques

We collect in this section some proofs relying on forward-reachability analysis.
Let us reuse notations from [2] and define a partial function x 	 u between channel

contents as follows:

x	 u def=

x if u = ε,
undefined if x = ε and u 6= ε,
x′ 	 u′ if x = ax′ and u = au′ for some a ∈ Σ,
x′ 	 u if x = ax′ and u = bu′ for some a 6= b ∈ Σ.

(13)

Observe that x	 u is defined if, and only if, u 4 x. Note also that

(x	 u)	 u′ = x	 (u u′) , (14)
and that 	 is left-monotone and commutes with with concatenation when defined:

if u 4 x then for all x′ :
{
x 4 x′ implies x	 u 4 x′ 	 u ,
(x	 u) · x′ = (x x′)	 u .

(15)

Now x	 u captures the forward effects of ?u actions in LCMs:

I Lemma B.1. x ?u−→ y iff y 4 x	 u.

6 A better, dynamic programming, algorithm exists but here we aim for the simplest feasability proof.

CSL 2021

37:18 On Flat Lossy Channel Machines

We can also use 	 to characterise the outcome of arbitrary sequences of actions.

I Lemma B.2. Let σ ∈ Act∗Σ and x, y ∈ Σ∗ be any sequence of actions and channel contents.

x′
σ−→ y for some x′ 4 x iff x

σ−→ and y 4
(
x · wri(σ)

)
	 rea(σ) .

Proof. By induction on the length of σ. The existential quantification on some x′ 4 x

accounts for the case where σ = ε is the empty sequence.
For the inductive step, we consider two cases:

1. σ = !w · σ′: For the “=⇒” direction, x′ σ−→ y implies x σ−→ and x′
!w−→ x′′

σ′−→ y for some
x′′ 4 x′ w, which implies

y 4
(
x′w · wri(σ′)

)
	 rea(σ′) by ind. hyp.,

=
(
x′ · wri(σ)

)
	 rea(σ) since σ = !w · σ′,

4
(
x · wri(σ)

)
	 rea(σ) by monotonicity.

For the “⇐=” direction, we know that y 4
(
x. wri(σ)

)
	rea(σ) =

(
xw. wri(σ′)

)
	rea(σ′),

so the ind. hyp. tells us that x′ σ
′

−→ y for some x′ 4 xw. We deduce x !w−→ x′
σ′−→ y.

2. σ = ?w · σ′: For the “=⇒” direction, x′ σ−→ y implies x′ ?w−→ x′′
σ′−→ y for some x′′ 4 x′ 	 w.

We have

y 4
(
x′′. wri(σ′)

)
	 rea(σ′) by ind. hyp.,

4
(
[x	 w] · wri(σ′)

)
	 rea(σ′) by monotonicity,

=
(
x · wri(σ′)

)
	
(
w · rea(σ′)

)
by Equations (14) and (15),

= (x · wri(σ))	 rea(σ) since σ = ?w · σ′.

For the “⇐=” direction, we know that x	 w is defined since x σ−→ . We also know that
y 4

(
x. wri(σ)

)
	 rea(σ) =

(
x. wri(σ′)

)
	 (w · rea(σ′)) =

(
(x	 w). wri(σ′)

)
	 rea(σ′),

so by ind. hyp. there is some x′ 4 x	 w with x′ σ
′

−→ y. We deduce x ?w−→ x′
σ′−→ y. J

B.1 Proof of Lemma 5.5
Write u, v for rea(σ), wri(σ).

(ii =⇒ iii): we only have to prove that σq is increasing since Lemma 5.3 entails x <
pr[σω](ε) already.
By assumption, there is a sequence x1, x2, . . . of channel contents of increasing length, and
some numbers n1, n2, . . . in N such that x σni

−−→ xi. W.l.o.g. we can assume n1 < n2 < · · · .
With Lemma B.2 we deduce xi 4 (x vni)	uni , hence uni xi 4 x vni , for all i = 1, 2, . . . If
u = ε, σ is trivially increasing, so assume |u| > 0 and writem = |x|: we get uni−mxi 4 vni

for all i such that ni ≥ m. Now take i such that |xi| ≥ (m+ 1)|v| (and such that ni > m):
we get uni−m 4 vni−m−1. We now applies Lemma 6.2 from [2]: “if there is some k ≥ 1
such that wk1 4 wk−1

2 (for two words w1, w2), then in particular one can choose k = |w2|”.
This yields u|v| 4 v|v|−1, i.e., σ is increasing.

(iii =⇒ i): we assume that σ is increasing, i.e., u|v| 4 v|v|−1, and that x < pr[σωq](ε).
The second assumption entails that x σn

−→ for all n. The first assumption entails vk 4

x vk|v| 	 uk|v|, hence x σk|v|

−−−→ vk by Lemma B.2, for all k ∈ N.

(i =⇒ ii): is an application of Kőnig’s Lemma, not specific to LCMs, see e.g. [41, §6].

P. Schnoebelen 37:19

C NP-hardness for flat LCMs and flat FIFO machines

LCMs are derived from FIFO automata [42, 10] and our NP-hardness results apply to both
models. FIFO automata, sometimes called queue automata, or communicating finite state
machines, are reliable channel machines where messages are never lost. Their operational
semantics is based on a reliable notion of steps, formally given by x ! w−→rel y

def⇐⇒ y = xw

and x ? w−→rel y
def⇐⇒ wy = x, to be compared with Equation (2). This is extended to x σ−→rel y,

c
∗−→rel c

′, etc., as for LCMs.

C.1 Proof of Theorem 2.1: NP-hardness for acyclic machines
We first show hardness for reachability and reduce from SAT. Let ϕ = C1 ∧ · · · ∧ Cm be a
3CNF with Boolean variables among V = {v1, . . . , vn}. With ϕ we associate a machine Sϕ
as illustrated below in Figure 2.

Ib 1 2 3 4 n Ie· · ·
!0

!1

!0

!1

!0

!1

!0

!1

!0

!1

!0

!1

!$

Cb
1 · · ·?1 !1 ?0 !0

?1 !1

?0 !0

?1 !1

?0 !0

?1 !1

?0 !0

?1 !1

?0 !0

?1 !1

?$!$

· · ·
?0 !0

?1 !1

?0 !0 ?0 !0

?1 !1

?0 !0

?1 !1

?0 !0

?1 !1

?0 !0

?1 !1

?$!$

Ce
1· · ·

?0 !0

?1 !1

?0 !0

?1 !1

?0 !0

?1 !1

?1 !1 ?0 !0

?1 !1

?0 !0

?1 !1

?$!$

Cb
2

Ce
m

?$!$

· · ·

V b V e· · ·
?0

?1

?0

?1

?0

?1

?0

?1

?0

?1

?0

?1

?$

Write some valuation v

Check v |= C1 (≡ v1 ∨ ¬v2 ∨ v4)

Check v |= C2 ∧ · · · ∧ Cm

Check no losses occurred

Figure 2 LCM Sϕ for satisfiability of ϕ = (v1 ∨ ¬v2 ∨ v4) ∧ C2 · · · ∧ Cm.

Let us explain informally how Sϕ operates. Starting from Ib it first reaches Ie while
writing in the channel a word of the form w$ with w ∈ {0, 1}n. This word encodes a valuation
of the Boolean variables and carries an end marker $. Then Sϕ crosses from Cb

1 to Ce
1: this

requires reading the valuation on the channel and checking that it satisfies C1. For this Sϕ
has to choose the line corresponding to one of the three literals in C1, in fact choose one
literal made true by the valuation. During this check, the valuation is written back on the
channel. Then Sϕ checks that the remaining clauses, C2 to Cm, are satisfied by the valuation,
each time reading the valuation and writing it back on the channel. Finally, the last leg from
V b to V e checks that no message has been lost during all this run.

CSL 2021

37:20 On Flat Lossy Channel Machines

It is now clear that (Ib, ε) ∗−→ (V e, ε) in Sϕ if, and only if, ϕ is satisfiable. The reasoning
holds for lossy LCMs and for reliable FIFO automata. We have thus reduced SAT to the
reachability problem for both types of acyclic machines.
I Remark C.1. The construction of Sϕ can be simplified at the cost of making the reduction
perhaps less obviously correct: one can either omit the end-marker symbol $ since in the end
the machine checks that no message was lost (thus a binary alphabet suffices), or one can
stop the machine at Ce

m, getting rid of the V b to V e part, since the markers ensure that the
valuation read while checking a clause Ci is indeed the full valuation written at the previous
stage. y

For hardness of nontermination and unboundedness we adapt the previous reduction
by adding a single cycle V e !$−→ V e on the last control location. Starting from (Ib, ε), the
modified Sϕ has an infinite run iff it has an unbounded run iff ϕ is satisfiable.

The above reductions adapt to flat VASSes and lossy VASSes, i.e., channel machines
with unary alphabet, provided that we allow 2n channels (or counters) for a valuation on n
Boolean variables.

C.2 Proof of Theorem 2.2: NP-hardness for single-path machines
We first show hardness for reachability. For this we reduce from SAT. So let us consider
a 3CNF formula ϕ with Boolean variables among V = {v1, . . . , vn}. Let us say ϕ =
(v2 ∨ ¬v3 ∨ ¬vn) ∧ C2 ∧ · · · ∧ Cm, with m clauses.

0start 0, 1 0, 2 0, n· · ·!v10v20 · · · vn0 ?v1 !v1 ?v2 !v2 ?vn !vn
?0 !0 ?0 !1 ?0 !0 ?0 !1 ?0 !0 ?0 !1

1, 1 1, 2 1, 3 1, 4 1, n· · ·?v1 !v1 ?v2 !v2 ?v3 !v3 ?v4 !v4 ?vn !vn
?0 !0 ?1 !1 ?0 !0 ?1 !1x ?0 !0x ?1 !1 ?0 !0x ?1 !1

2, 1 2, 2 2, n· · ·

?x !x

?v1 !v1

?v1x !xv1

?0 !0

?0x !x0

?1 !1

?1x !x1

?v2 !v2

?v2x !xv2

?0 !0

?0x !x0

?1 !1

?1x !x1

?vn !vn

?vnx !xvn

?0 !0

?0x !x0

?1 !1

?1x !x1

3, 1 3, 2 3, n· · ·?x ?v1 !v1 ?v2 !v2 ?vn !vn
?0 !0 ?1 !1 ?0 !0 ?1 !1 ?0 !0 ?1 !1

L0

L1

L2,1

L3

... f

... · · · Repeat line above 2n− 1 times · · ·

· · · Repeat lines L1 to L3 (2n+ 2 lines each time) for remaining clauses C2, . . . , Cm · · ·

Figure 3 Single-path LCM for satisfiability of ϕ = (v2 ∨ ¬v3 ∨ ¬vn) ∧ C2 · · · ∧ Cm.

With ϕ we associate Sϕ, the single-path flat LCM described in Figure 3. This LCM has
O(mn2) control locations7, and is organised as a series of distinct operations on the channel
contents. The operations are grouped in lines and we describe them informally.

7 Our reduction insists on using only one channel. With multiple channels the same idea would use
O(n+m) control locations.

P. Schnoebelen 37:21

L0, choosing a valuation nondeterministically: Sϕ first writes v10v20 . . . vn0 on the chan-
nel. This is our encoding for the valuation that is 0 for all variables. Then Sϕ reads the
valuation and write it back, possibly changing any 0 value with a 1 (this happens at the
red-coloured actions), and thus picking an arbitrary valuation nondeterministically. Here
we see how the v1, . . . , vn markers are used to check positions inside the valuation.

L1, marking where clause C1 is validated: Sϕ now checks whether the valuation stored on
the channel makes C1 true. In this example, we assume that C1 is v2 ∨¬v3 ∨¬vn. Again
Sϕ reads the valuation and writes it back. However, if it reads v21 or v30 or vn0, it writes
it back followed by a special checkmark symbol x that “means C1 has been validated”
(see red actions). Note that as many as 3 occurrences of x can be inserted in the encoding
of the valuation.

L2,1, pushing x to the head of the valuation encoding: Sϕ now pushes any checkmark
symbol to the left. This is done along the L2,1 line. While the valuation is read
and written back as usual (black actions), any symbol preceding a x can swap position
with it (red actions).

L2,2, . . . , L2,2n, more pushing x to the left: this behaviour is repeated 2n times in total,
so that any x can be pushed completely to the left of the valuation. In case of multiple
occurrences of x, we just need one of them to reach the head of the valuation so we
assume that the other ones will just be lost.

L3, checking that clause C1 has been validated: Now Sϕ knows where to expect x. The
machine can only proceed if indeed a x is present in the channel, in front of the valuation,
and thus if the valuation on the channel satisfies C1. The rest of the line reads and writes
back the valuation, clearing it of any remaining x’s.

Same treatment for the remaining clauses C2, . . . , Cm: Sϕ now continues with similar
locations and rules checking that the remaining clauses are validated.

Note that, once the valuation has been picked nondeterministically (in L1), it cannot be
modified. Also note that the machine will block if one of the vi markers is lost before the
last clause has been validated. If one of the 0/1 values of the valuation is lost, this value
cannot be used any more for checkmarking a validated clause. Such message losses do not
lead to any incorrect behaviour, they can only hinder the validation of a clause.

Finally, starting from (0, ε), Sϕ can reach its final location f iff ϕ is satisfiable.

Now the reduction extends to show prove NP-hardness of unboundedness for single-path
LCMs with exactly the same adaptation as in the proof for acyclic LCMs. For hardness of
nontermination a little more work is needed since every cycle where Sϕ reads the valuation
and writes it back could become a nonterminating cycle if all but one letter are lost. One
possible trick to overcome this is to have two copies of the alphabet, say of two different
colours, and to ensure that in all its phases the machine reads in one colour and writes back
in the other, so that the valuation is always read and written in alternating colours. Once
this is implemented, the system cannot have infinite runs as is. Adding a single loop on f,
the final control location, as we did for acyclic LCMs, now provides a correct reduction from
SAT to nontermination for single-path LCMs.

The idea behind this reduction can easily be adapted so that it applies to single-path
VASSes and lossy VASSes, or equivalently, to channel machines with a unary alphabet. One
uses 2n channels (or counters) for storing the valuation and m distinct counters for marking
the clauses that have been validated.

Restricting to a binary alphabet on a single channel is equally easy for reliable FIFO
automata, but more difficult when message losses have to be taken care of. Therefore we
won’t attempt it in this preliminary version.

CSL 2021

37:22 On Flat Lossy Channel Machines

D Multiple channels

The analysis we conducted in Section 3 carries over without any difficulty to systems with
multiple channels. Lemma 3.3 and Theorem 3.4 remain valid since, once σ and k have been
fixed, computing pr[σk](〈x1, . . . , xc〉) for a system with c channels can be done independently
for each of the c channels: one only needs to distribute the actions on σ to their corresponding
channel, so that rea(σ) now is some tuple 〈u1, . . . , uc〉. In particular the bound in Theorem 3.7
becomes

L
(
σ, 〈x1, . . . , xc〉

)
≤ maxci=1 |xi| · (|ui|+ 1) , where rea(σ) = 〈u1, . . . , uc〉 .

Realizability Without Symmetry
Haruka Tomita
Research Institute for Mathematical Sciences, Kyoto University, Japan

Abstract
In categorical realizability, it is common to construct categories of assemblies and modest sets from
applicative structures. In this paper, we introduce several classes of applicative structures and apply
the categorical realizability construction to them. Then we obtain closed multicategories, closed
categories and skew closed categories, which are more general categorical structures than Cartesian
closed categories and symmetric monoidal closed categories. Moreover, we give the necessary and
sufficient conditions for obtaining closed multicategories and closed categories of assemblies.

2012 ACM Subject Classification Theory of computation → Categorical semantics

Keywords and phrases Realizability, combinatory algebra, closed multicategory, closed category,
skew closed category

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.38

Funding This work was supported by JST ERATO Grant Number JPMJER1603, Japan.

Acknowledgements I would like to express the deepest appreciation to my supervisor Masahito
Hasegawa for a lot of his support, encouragement and advice. Many of his suggestions are incorporated
into this paper. I am also grateful to Naohiko Hoshino for helpful discussions and lending his expertise
on realizability. I also want to thank Stephen Lack for constructive discussions and comments.
Thanks also to anonymous reviewers for variable suggestions and comments.

1 Introduction

In categorical realizability, we construct categories of assemblies and modest sets from
applicative structures. The best known usage is applying this construction to partial
combinatory algebras (PCAs) which is a class of applicative structures close to the models
of the lambda calculus, as in [12]. From PCAs, we obtain Cartesian closed categories of
assemblies and use these categories for models of various logics and programming languages
like PCF.

The construction of categories of assemblies does not depend on particular structures of
applicative structures. Hence we may apply this construction to other classes of applicative
structures. Indeed, another usage is introduced in [3] [2], where by applying the construction
to BCI-algebras, we can obtain symmetric monoidal closed categories (SMCCs) and use them
for models of linear logics and languages.

In this paper, by applying the categorical realizability construction to more general classes
of applicative structures than PCAs and BCI-algebras, we investigate further correspondences
between categorical structures of assemblies and classes of applicative structures. To make
assemblies on an applicative structure a category, it is sufficient to assume two elements
B (corresponding to the lambda term λxyz.x(yz) expressing the composition of functions)
and I (corresponding to the lambda term λx.x expressing the identity function) in the
applicative structure. (Here we say such an applicative structure is a BI-algebra.) Therefore,
classes between BCI-algebras and BI-algebras may induce some categorical structures more
general than SMCCs. For instance, there may exist some classes which induce non-symmetric
categorical structures. Indeed, in this paper we introduce such classes of applicative structures,
which induce closed multicategories, closed categories and skew closed categories.

© Haruka Tomita;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 38; pp. 38:1–38:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CSL.2021.38
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Realizability Without Symmetry

Table 1 Summary of the correspondences.
(Here (†) means that not only the corresponding applicative structures induce the categorical
structures, but also the converse hold in some natural conditions, like Proposition 19.).

Applicative structures Structure of assemblies and modest sets Section

Known PCA Cartesian closed category (†) 2.2
results BCI-algebra symmetric monoidal closed category (†) 2.3
New BK(−)•-algebra closed category 5.1
results BII×(−)•-algebra closed category (†) 4

BI(−)•-algebra closed multicategory (†) 3
BB′II•-algebra skew closed category 5.3
BII•(−)◦-algebra skew closed category 5.2

Inclusions
PCAs (BCI-algebras (BII×(−)•-algebras (BI(−)•-algebras (BII•(−)◦-algebras

PCAs (BK(−)•-algebras (BII×(−)•-algebras
BCI-algebras (BB′II•-algebras (BII•(−)◦-algebras

In category theory, many closed structures without tensor products have been developed.
Closed multicategories, closed categories and skew closed categories are the typical ones.
Each of them gives certain axiomatization of internal function spaces without using tensor
products and does not have symmetries in general unlike SMCCs.

Closed multicategories introduced in [11] are closed categorical structures for multicat-
egories (extensions of categories, whose maps are allowed to have finitely many arguments)
and correspond to planar multiplicative intuitionistic linear logic with only linear implication
(and without tensor product nor unit. Closed categories introduced in [5] are something
like monoidal closed categories without tensor products, which have internal hom objects
defined without using tensor products. In [13], it is shown that closed categories are equival-
ent to closed multicategories with unit objects. Skew closed categories introduced in [17]
are categories with slightly weaker structure than closed categories. There is a categorical
structure called skew monoidal categories [18], which have the same components as monoidal
categories but the invertibility of unitors and associators are not assumed. Skew closed
categories are to skew monoidal categories what closed categories are to monoidal categories.

When we try to obtain these categorical structures by categorical realizability, we face a
subtle problem. To exclude symmetries, we have to remove the element C (corresponding to
the lambda term λxyz.xzy expressing the swap of arguments) from an applicative structure.
However, to obtain closed structures, we need to realize maps sent by internal hom functors
[f, g] : h 7→ (g ◦ h ◦ f), and realizing them needs some exchange operation. We resolve this
problem by introducing restricted exchanges (−)•, (−)◦ and B′.

For an applicative structure (|A|, ·), (−)• is a unary operation on |A| such that x• ·y = y ·x
for any x and y in |A|. Since C · I · x satisfies the axiom of x•, assuming (−)• is a weaker
assumption than assuming C. BI(−)•-algebras, i.e., BI-algebras with (−)•, give rise to
(non-symmetric) closed multicategories. Moreover, we show that being a BI(−)•-algebra is a
necessary condition to give a category of assemblies as a closed multicategory under some
natural assumptions in Proposition 19.

Other than BI(−)•-algebras, we also introduce several classes of applicative structures.
The correspondences are in table 1. In particular, we also show that BII×(−)•-algebras are
necessary to give categories of assemblies as closed categories under some conditions. Table
2 is the summary of elements and constructions assumed in these applicative structures.

H. Tomita 38:3

Table 2 Summary of the elements and constructions of applicative structures.

Elements and constructions Axiom Section

element S Sxyz ' xz(yz) 2.2
element K Kxy ' x 2.2
element B Bxyz = x(yz) 2.3
element C Cxyz = xzy 2.3
element I Ix = x 2.3
element B′ B′xyz = y(xz) 5.3
element I× I×xI = x 4

unary operation (−)• x•y = yx 3
unary operation (−)◦ x◦yz = y(xz) 5.2

To the best of our knowledge, this is the first systematic treatment of realizability
semantics for the non-commutative or planar setting. We hope that our analysis brings new
insights on categorical realizability and extends its applications to new areas, most notably
to non-commutative logics and systems such as Lambek calculus.

The rest of this paper is structured as follows. In Section 2, we recall some basic notions
and results in categorical realizability. In Section 3, we introduce BI(−)•-algebras and
describe how they correspond to the planar lambda calculus and closed multicategories.
Section 4 is about BII×(−)•-algebras and closed categories, which has a similar story to
Section 3. In Section 5, we give three other classes of applicative structures and see categorical
structures of assemblies on them. In Section 6, we construct concrete examples of BI(−)•-
algebras other than the planar lambda calculus. As an unexpected one, we show that the
computational lambda calculus [14] is a BII×(−)•-algebra. In Section 7, we discuss related
work. Finally, in Section 8, we summarize contents of this paper and describe future work.

Basic knowledge of category theory and the lambda calculus is assumed.

2 Background

In this section, we recall some basic concepts and results. All the definitions and propositions
in this section are from [12] and [8].

2.1 Applicative structures and categories of assemblies
I Definition 1. A partial applicative structure A is a pair of a set |A| and a partial binary
operation (x, y) 7→ x · y on |A|. Application associates to the left, and we often omit · and
write it as juxtaposition. For instance, xz(yz) denotes (x ·z) · (y ·z). When the binary operation
of A is total, we say A is a total applicative structure.

In the sequel, we use two notations ↓ and '. The down arrow means “defined.” For
instance, for a partial applicative structure (|A|, ·), xy ↓ means that x · y is defined. “'”
denotes the Kleene equality, which means that if the one side of the equation is defined then
the other side is also defined and are equal.

I Definition 2. Let A be a partial applicative structure.
(1) An assembly on A is a pair X := (|X|, ‖-‖X), where |X| is a set and ‖-‖X is a function

sending x ∈ |X| to a non-empty subset ‖x‖X of |A|.

CSL 2021

38:4 Realizability Without Symmetry

(2) A map of assemblies f : X → Y is a function f : |X| → |Y | such that there exists an
element r ∈ |A| realizing f , where “r realizes f” means that

∀x ∈ |X|, ∀a ∈ ‖x‖X , ra ↓ and ra ∈ ‖f(x)‖Y .

We say that r is a realizer of f when r realizes f .

If we assume two extra conditions on a partial applicative structure, we can construct a
category from assemblies and maps of assemblies.

I Definition 3. Let A be a partial applicative structure satisfying that:
(i) |A| has an element I such that for any x ∈ |A|, Ix ↓ and Ix = x;
(ii) for any r1, r2 ∈ |A|, there exists r1,2 ∈ |A| such that for any x ∈ |A|, r1,2x ' r1(r2x).

Then we construct categories as follows:
(1) The category Asm(A) of assemblies on A consists of assemblies on A as its objects and

maps of assemblies as its maps. Identity maps and composition maps are the same as
those of Sets.

(2) The category Mod(A) of modest sets on A is the full subcategory of Asm(A), such that
each object (|X|, ‖-‖X) has the property:

∀x, y ∈ |X|, x 6= y ⇒ ‖x‖X ∩ ‖y‖X = ∅.

Asm(A) and Mod(A) are indeed categories. For any assembly (|X|, ‖-‖) on A, the
identity function on |X| is realized by I. Given two maps of assemblies X f−→ Y

g−→ Z realized
by r2 and r1 respectively, the composition function g ◦ f : |X| → |Z| is realized by r1,2.

In particular, a total applicative structure A which has I and B (such that Bxyz = x(yz)
for all x, y, z ∈ |A|) induces the category of assemblies and the category of modest sets. We
call such a total applicative structure a BI-algebra.

In the following two subsections, we introduce two well-known classes of partial applicative
structures. The categories constructed from partial applicative structures in these classes
have useful categorical structures.

I Remark. In the rest of this paper, we only deal with categories of assemblies and not
with categories of modest sets. However, all propositions hold when we replace the word
“assemblies” by “modest sets.”

2.2 PCAs and Cartesian closed categories
In this subsection, we recall a well-known class of partial applicative structures called partial
combinatory algebras (PCAs). Assemblies on a PCA form a Cartesian closed category.

I Definition 4. A PCA is a partial applicative structure A which contains two elements S
and K satisfying:
(i) ∀x, y ∈ |A|, Kx ↓ and Kxy ' x;
(ii) ∀x, y, z ∈ |A|, Sx ↓, Sxy ↓ and Sxyz ' xz(yz).

I Example 5. Suppose infinite supply of variables x, y, z, Untyped lambda terms are
terms constructed from the following six rules:

(identity)
x ` x ; Γ `M ∆ ` N (application)

Γ,∆ `MN
where Γ and ∆ are sequences of distinct variables and contain no common variables;

H. Tomita 38:5

Γ, x `M
(abstraction)

Γ ` λx.M
; Γ, x, y `M

(exchange)
Γ, y, x `M

; Γ, x, y `M
(contraction)

Γ, x `M [x/y]
where M [x/y] denotes the term obtained by substituting x for all free y in M ;

Γ `M (weakening)
Γ, x `M where x is a variable not contained in Γ.

Note that abstraction rules are only applied to the rightmost variables. In order to apply
the abstraction rule to a variable in a different position, we need to use exchange rules and
move the variable to the rightmost place.

We define an equivalence relation =β on lambda terms as the congruence of the relation
(λx.M)N ∼M [N/x]. Untyped lambda terms form a PCA. The underlying set consists of β-
equivalence classes of untyped closed lambda terms (i.e., lambda terms with no free variables)
and the application is defined as that of lambda terms. In this example, λxyz.xz(yz) is the
representative of S and λxy.x is the representative of K.

PCAs are closely related to the untyped lambda calculus through the property called
combinatory completeness.

I Definition 6. Let A be a partial applicative structure. A polynominal over A is a syntactic
expression generated by variables, elements of |A| and applications. For polynominals M and
N over A, M ' N means that M [a1/x1, ..., an/xn] ' N [a1/x1, ..., an/xn] holds in A for any
a1, ..., an ∈ |A|, where {x1, ..., xn} contains all the variables of M and N .

I Proposition 7. (combinatory completeness of PCAs) Let A be a PCA and M be a
polynominal over |A|. For any variable x, there exists a polynominal M ′ such that the free
variables of M ′ are the free variables of M excluding x and M ′a 'M [a/x] for all a ∈ |A|.
We write λ∗x.M for such M ′.

Proof. We define λ∗x.M by induction on the structure of M as follows: λ∗x.x := SKK;
λ∗x.y := Ky (when x 6= y); λ∗x.MN := S(λ∗x.M)(λ∗x.N). J

For the special case of the above proposition, any closed lambda term is β-equivalent to
some term constructed from λxyz.xz(yz) and λxy.x only using applications.

Although conditions of PCAs are simple, categorical structures induced by these algebras
are quite strong and useful.

I Proposition 8. Let A be a PCA. Then Asm(A) is Cartesian closed and regular.

I Remark. Since all the examples in this paper are total applicative structures, we shall
in future only consider total structures, although the definitions and results do generalize
smoothly to partial ones. A discussion about “partial BCI-algebras” is found in Remark 1
of [8]. From now on, whenever we say “applicative structure”, it means total applicative
structures.

2.3 BCI-algebras and symmetric monoidal closed categories
In this subsection we recall another class of applicative structures called BCI-algebra. BCI-
algebras are related to linear structures whereas PCAs are not.

I Definition 9. A BCI-algebra is an applicative structure A which contains three elements
B, C and I satisfying:
(i) ∀x, y, z ∈ |A|, Bxyz = x(yz);
(ii) ∀x, y, z ∈ |A|, Cxyz = xzy;

CSL 2021

38:6 Realizability Without Symmetry

(iii) ∀x ∈ |A|, Ix = x.

I Example 10. Untyped linear lambda terms are untyped lambda terms constructed without
using weakening and contraction rules.

Untyped linear lambda terms form a BCI-algebra. The underlying set consists of β-
equivalence classes of closed linear lambda terms and the application is defined as that of
the lambda calculus. Here λxyz.x(yz), λxyz.xzy and λx.x are the representatives of B, C
and I respectively.

I Proposition 11. (combinatory completeness of BCI-algebras) Let A be a BCI-algebra and
M be a polynominal over |A| whose variables appear exactly once in M . For any variable x
in M , there exists a polynominal λ∗x.M such that the free variables of λ∗x.M are the free
variables of M excluding x and (λ∗x.M)a = M [a/x] for all a ∈ |A|.

Proof. We define λ∗x.M by induction on the structure of M as follows:
λ∗x.x := I

λ∗x.MN :=
{
C(λ∗x.M)N (x ∈ FV (M))
BM(λ∗x.N) (x ∈ FV (N))

J

For the special case of the above proposition, any closed linear lambda term is β-equivalent
to some term constructed from λxyz.x(yz), λxyz.xzy and λx.x only using applications.

Since BCI-algebras are related to the linear lambda calculus, categorical structures of
assemblies on BCI-algebras are also linear.

I Proposition 12. Let A be a BCI-algebra. Then Asm(A) is a symmetric monoidal closed
category (SMCC).

3 BI(−)•-algebras and closed multicategories

From here, we investigate realizability without symmetry. To obtain Asm(A) with non-
symmetric categorical structures, A needs to be a structure in between BI-algebras and
BCI-algebras. In this section, we introduce such a new class of applicative structures
BI(−)•-algebra, whose assemblies form closed multicategories.

I Definition 13. Let A be an applicative structure. For x in |A|, we write x• for an element of
|A| (whenever it exists) such that x•a = ax for all a ∈ |A|. We say that A is a BI(−)•-algebra
iff it contains B, I and x• for each x ∈ |A|.

A PCA is related to the untyped lambda calculus, which has all term construction
rules. A BCI-algebra is related to the untyped linear lambda calculus, which does not have
weakening nor contraction. Similarly, A BI(−)•-algebra is related to the untyped planar
lambda calculus, which has none of weakening, contraction nor exchange rules.

I Example 14. Untyped planar lambda terms are untyped lambda terms constructed without
using weakening, contraction or exchange rules1. Untyped closed planar lambda terms form a
BI(−)•-algebra. The underlying set consists of β-equivalence classes of closed planar lambda

1 The definition of construction rules of planar lambda terms has two different styles. In our definition,
the abstraction rule is only allowed for the rightmost variable. Such a term construction is seen in [1].
On the other hand, there is also a definition that the abstraction rule is only allowed for the leftmost
variable, as in [20]. Here we choose the former style for preservation the planarity of terms under the
βη-conversions.

H. Tomita 38:7

terms and the application is defined as that of lambda terms. Here λxyz.x(yz) and λx.x are
the representatives of B and I. Let M be a representative of x. Then λx.xM is also a closed
planar term and is the representative of x•. We write Lplanar for this applicative structure.
Lplanar does not have a term satisfying the axiom of C. That is intuitively obvious, however,
the rigorous proof is a little bit tricky and omitted.

I Proposition 15. (combinatory completeness of BI(−)•-algebras) Let A be a BI(−)•-
algebra and M be a polynominal over |A| whose variables appear exactly once in M . For the
rightmost variable x of M , there exists λ∗x.M such that the free variables of λ∗x.M are the
free variables of M in the same order excluding x and (λ∗x.M)a = M [a/x] for all a ∈ |A|.

Proof. We define λ∗x.M by induction on the structure of M as follows:
λ∗x.x := I

λ∗x.MN :=
{
BN•(λ∗x.M) (x ∈ FV (M))
BM(λ∗x.N) (x ∈ FV (N))

Note that for λ∗x.MN , x is the rightmost free variable in MN . Therefore, if x is in FV (M),
N has no free variables and N• can be defined. J

For the special case of the above proposition, any closed planar lambda term is β-
equivalent to some term constructed from λxyz.x(yz) and λx.x using applications and the
unary operation (−)• : M 7→ λx.xM .

Since CIx satisfies the axiom of x•, any BCI-algebra is also a BI(−)•-algebra. BI(−)•-
algebras are weaker than BCI-algebra, and thus categories of assemblies on BI(−)•-algebras
have weaker categorical structures than those on BCI-algebras. We show that assemblies
on a BI(−)•-algebra form a closed multicategory, which is more general than symmetric
monoidal closed categories.

Multicategories are extensions of categories, whose maps are allowed to have finitely many
arguments. Closed multicategories are closed categorical structures for multicategories and
correspond to planar multiplicative intuitionistic linear logic with only linear implication (
and without tensor product nor unit. Here the word “planar” means the planarity of the
string diagrams of the modeling categories. The string diagrams do not contain symmetries
or braids.

First, we recall the definition of closed multicategories in [13].

I Definition 16. A multicategory C consists of the following data:
1. a collection Ob(C);
2. for each n ≥ 0 and X1, X2, . . . , Xn, Y ∈ Ob(C), a set C(X1, . . . , Xn;Y);
3. for each X ∈ Ob(C), an element 1X ∈ C(X;X), called the identity map;
4. for each n, k1, k2, . . . , kn ∈ N and Xij , Yi, Z (i ≤ n, j ≤ ki), a function

◦ :
n∏
i

C(Xi1, . . . , Xiki
;Yi)×C(Y1, . . . , Yn;Z)→ C(X11, . . . , X1k1 , X21, . . . , Xnkn

;Z)

called the composition. g ◦ (f1, . . . , fn) denotes the composition of g ∈ C(Y1, . . . , Yn;Z)
and fi ∈ C(Xi1, . . . , Xiki

;Yi). The compositions satisfy associativity and identity axioms.

I Definition 17. A closed multicategory consists of the following data:
1. a multicategory C;
2. for each X1, X2, . . . , Xn, Y ∈ Ob(C), an object C(X1, X2, . . . , Xn;Y), called the internal

hom object;

CSL 2021

38:8 Realizability Without Symmetry

3. for each X1, . . . , Xn, Y ∈ Ob(C), a map

evX1,...,Xn;Y : X1, . . . , Xn,C(X1, . . . , Xn;Y)→ Y,

called the evaluation map such that ∀Z1, Z2, . . . , Zm ∈ Ob(C), the function
ϕX1,...,Xn;Z1,...,Zm;Y : C(Z1, . . . , Zm; C(X1, . . . , Xn;Y))→ C(X1, . . . , Xn, Z1, . . . , Zm;Y)
sending f to evX1,...,Xn;Y ◦ (1X1 , . . . , 1Xn

, f) is invertible. We write the inverse function
ΛX1,...,Xn;Z1,...,Zm;Y .

I Proposition 18. Let A be a BI(−)•-algebra. Then Asm(A) is a closed multicategory.

Proof. Let C := Asm(A). It is obvious that C is a category. We define a bifunctor
[−,−] : Cop ×C→ C as follows:

[−,−] sends (|X|, ‖-‖X) and (|Y |, ‖-‖Y) to (|[X,Y]|, ‖-‖[X,Y]), where |[X,Y]| is the set of
maps from (|X|, ‖-‖X) to (|Y |, ‖-‖Y) in C and ‖f‖[X,Y] := {r | r realizes f}.
[−,−] sends f : X ′ → X and g : Y → Y ′ in C to the function [f, g] : [X,Y] → [X ′, Y ′]
which sends h : X → Y to g ◦ h ◦ f .

We check that [−,−] certainly forms a functor. Let rf and rg be the realizers for f and g,
then B(Brf •B)(Brg) is the realizer for [f, g]. Therefore, for any f : X ′ → X and g : Y → Y ′

in C, [f, g] exists in C. It is easy to see that [−,−] preserves identities and compositions.
Next, we show that C is a multicategory. For X1, . . . , Xn, Y ∈ C (n > 0), the set

C(X1, . . . , Xn;Y) is defined as the underlying set of the object2 [Xn, [Xn−1, [. . . [X1, Y] . . .]]].
In the case n = 0, C(;Y) is defined as the underlying set |Y |. Identity maps and compositions
are usual ones in Sets.

To check that composition maps have realizers, we use Proposition 15. Given
g ∈ C(Y1, . . . , Ym;Z) and fl ∈ C(X l

1, . . . , X
l
kl

;Yl) (1 ≤ l ≤ m), whose realizers are
u, v1, . . . , vm respectively. Then the composition map g ◦ (f1, . . . , fm) is realized by r such
that for any a1

1, a1
2, . . . , a1

k1
, a2

1, . . . , amkm
in |A|,

ramkm
. . . am1 . . . a1

k1
. . . a1

1 = u(vmamkm
. . . am1) . . . (v1a1

k1
. . . a1

1).

The existence of such r follows by the combinatory completeness of BI(−)•-algebras.
Finally, we show that C is a closed multicategory. We take internal hom objects

C(X1, . . . , Xn;Y) as [Xn, [Xn−1, [. . . [X1, Y] . . .]]] and evaluation maps as the obvious ones,
where the evaluation maps are realized by I. ϕ is invertible as a function and for a map
g : X1, . . . , Xn, Z1, . . . , Zm → Y , Λ(g) is indeed realized by a realizer of g. J

The converse of Proposition 18 holds under some natural conditions.

I Proposition 19. Suppose A is an applicative structure and C := Asm(A) happens to be a
closed multicategory of assemblies. A is a BI(−)•-algebra if the following conditions hold:
(i) C(;X) = X and C(;X) is the underlying set |X|;
(ii) f ∈ C(X;Y) iff f is a function from |X| to |Y | realized by some element of |A|;
(iii) identity maps are obvious ones;
(iv) C(X;Y) = (C(X;Y), ‖-‖) where ‖f‖ = {r | r realizes f};

2 Here we reverse the order of arguments due to the difference between closed multicategories and
applicative structures. Internal hom objects of a closed multicategory receive arguments from the left
side, whereas in an applicative structure, elements receive arguments from the right side. If we employ
another definition of closed multicategories with reversing the order of arguments of the compositions
and evaluation maps, then it will be suitable for the order of realizers.

H. Tomita 38:9

(v) C(X1, . . . , Xn+1;Y) = C(Xn+1; C(X1, . . . , Xn;Y)) and C(X1, . . . , Xn+1;Y) is the un-
derlying set of C(X1, . . . , Xn+1;Y);

(vi) for g : Y1, . . . , Yn → Z and fl : X l
1, . . . , X

l
kl
→ Yl, g ◦ (f1, . . . , fn) sends

x1
1, . . . , x

1
k1
, . . . , xnkn

to g(fn(xnkn
, . . . , xn1), . . . , f1(x1

k1
, . . . , x1

1));
(vii) evX1,...,Xn;Y sends x1, . . . , xn, f to f(xn, . . . , x1);
(viii) ΛX1,...,Xn;Z1,...,Zm;Y sends a function (x1, . . . , xn, z1, . . . , zm 7→

f(zm, . . . , z1, xn, . . . , x1)) to a function (z1, . . . , zm 7→ f(zm, . . . , z1,−, . . . ,−)).

Proof. Let X := (|A|, ‖-‖X), where ‖a‖X := {a}. Suppose I0 is a realizer of 1X . Then
I0a ∈ {a} for any a ∈ |A|. Therefore I0 has the property of I.

Let Y := (|A| × |A|, ‖-‖Y), where ‖(a, a′)‖Y := {aa′}. Given arbitrary two element
r, r′ ∈ |A|, define f : X → Y as a 7→ (r, a) and g : Y → Y as (a, a′) 7→ (r′, aa′). Let
LXY,Y : C(Y ;Y)→ C(C(X;Y); C(X;Y)) be the map

ΛC(X;Y);C(Y ;Y);C(X;Y)(ΛX;C(X;Y),C(Y ;Y);Y (evY ;Y ◦ (evX;Y , 1C(Y ;Y)))).

LXY,Y sends g to (f 7→ g ◦ f). Suppose B0 is a realizer of LXY,Y . Then B0r′r realizes g ◦ f and
thus B0r′ra ∈ ‖g(f(a))‖Y = {r′(ra)} for any a ∈ |A|. Therefore B0 has the property of B.

Given arbitrary x ∈ |A|, define Evx : C(X;X) → X as evX;X ◦ (x, 1[X,X]). For any
a ∈ |A|, Evx sends fa : X → X, a′ 7→ aa′ to fa(x). Suppose (x•)0 is a realizer of Evx. Then
(x•)0a ∈ {ax}. Therefore (x•)0 has the property of x•. J

4 BII×(−)•-algebras and closed categories

In the previous section, we saw that BI(−)•-algebras correspond to closed multicategories.
In this section, we show that a slightly stronger class of applicative structures (BII×(−)•-
algebras) corresponds to a slightly stronger categorical structure (closed categories).

Closed categories are something like monoidal closed categories without tensor products,
which have internal hom objects defined without using tensor products. It is shown in [13]
that closed categories are slightly stronger categorical structures than closed multicategories.

First, we recall the definition of closed categories in [13].

I Definition 20. A closed category consists of the following data:
1. a locally small category C;
2. a functor [−,−] : Cop ×C→ C, called the internal hom functor;
3. an object I, called the unit object;
4. a natural isomorphism iX : [I,X]→ X;
5. an extranatural transformation jX : I → [X,X];
6. a transformation LXY,Z : [Y,Z]→ [[X,Y], [X,Z]] natural in Y,Z and extranatural in X,
such that the following axioms hold:
(i) ∀X,Y ∈ C, LXY,Y ◦ jY = j[X,Y];
(ii) ∀X,Y ∈ C, i[X,Y] ◦ [jX , 1[X,Y]] ◦ LXX,Y = 1[X,Y];
(iii) ∀X,Y, Z,W ∈ C, the following diagram commutes:

[Z,W]

LX
Z,W

��

LY
Z,W // [[Y,Z], [Y,W]]

[1[Y,Z],L
X
Y,W]

��

[[X,Z], [X,W]]

L
[X,Y]
[X,Z],[X,W]

��
[[[X,Y], [X,Z]], [[X,Y], [X,W]]]

[LX
Y,Z ,1[[X,Y],[X,W]]]

// [[Y, Z], [[X,Y], [X,W]]]

CSL 2021

38:10 Realizability Without Symmetry

(iv) ∀X,Y ∈ C, LIX,Y ◦ [1X , iY] = [iX , 1[I,Y]];
(v) ∀X,Y ∈ C, the function γ : C(X,Y) → C(I, [X,Y]) which sends f : X → Y to

[1X , f] ◦ jX is invertible.

When A is a BI(−)•-algebra, the closed multicategory structure of Asm(A) does not
generally extend to a closed category since the natural isomorphism i−1

X is not generally
realized. Next, we give the definition of BII×(−)•-algebras, which we assume an extra element
I× for the realizer of i−1

X .

I Definition 21. Let A be a BI(−)•-algebra. I× is defined as an element of |A| (whenever it
exists) satisfying I×aI = a for all a ∈ |A|. If A has I×, we say that A is a BII×(−)•-algebra.

I Example 22. Any BCI-algebra is a BII×(−)•-algebra, since CI satisfies the axiom of I×.

I Example 23. Lplanar is a BII×(−)•-algebra. For any closed planar term M , M has a
β-normal form since it is a linear lambda term. Let λu.M ′ be the β-normal form of M . Then
(λxyz.x(yz))M(λv.v) =β λz.Mz =β λz.M

′[z/u] =α λu.M
′ =β M . Therefore in this case, B

satisfies the axiom of I×.

I Remark. There exists a BI(−)•-algebra which is not a BII×(−)•-algebra. Add the constant
rule:

(constant)
` c

to the construction of planar lambda terms and add no evaluation rules on these constants.
We write Lcplanar for the applicative structure which consists of closed planar lambda terms
with constants. Lcplanar is a BI(−)•-algebra and does not contains I×.

Note that if we further assume the extensionality (η-equality) on Lcplanar, then λxyz.x(yz)
satisfies the axiom of I× and the applicative structure forms a BII×(−)•-algebra.

I Proposition 24. Let A be a BII×(−)•-algebra. Then Asm(A) is a closed category.

Proof. Since a BII×(−)•-algebra is also a BI(−)•-algebra, a bifunctor [−,−] can be defined
in the same way as in the proof of Proposition 18.

We define the unit object I as ({∗}, ‖-‖I), where ‖∗‖I := {I}. jX is defined as the function
∗ 7→ 1X , which is realized by I. iX is defined as the function sending (f : ∗ 7→ x) to x,
which is realized by I•. The inverse function of iX is realized by I×. LXY,Z is defined as
g 7→ (f 7→ g ◦ f), which is realized by B. It is easy to verify that i,j and L have naturality
and satisfy the axioms of closed category.

Finally, we show that γ is invertible. Let g ∈ C(I, [X,Y]) then g(∗) is γ−1(g), which is
realized by rgI, where rg is a realizer of g. J

Like Proposition 19, the converse of the above proposition holds under some conditions.

I Proposition 25. Suppose A is an applicative structure and C := Asm(A) happens to be a
closed category. If the following conditions hold, then A is a BII×(−)•-algebra.
(i) [X,Y] = (C(X,Y), ‖-‖) where ‖f‖ = {r | r realizes f};
(ii) [f, g] : [X,Y]→ [X ′, Y ′] is a function which sends h : X → Y to g ◦ h ◦ f ;
(iii) LXY,Z sends g : Y → Z to the function (f : X → Y) 7→ (g ◦ f : X → Z);
(iv) the underlying set of the unit object I is the singleton {∗};
(v) iX sends a function (f : ∗ 7→ x) to x.

H. Tomita 38:11

Proof. Let X := (|A|, ‖-‖X), where ‖a‖X := {a}. Suppose I0 is the realizer of 1X . Then
I0a ∈ {a} for any a ∈ |A|. Therefore I0 has the property of I.

Let Y := (|A| × |A|, ‖-‖Y), where ‖(a, a′)‖Y := {aa′}. Given arbitrary two element
r, r′ ∈ |A|, define f : X → Y as a 7→ (r, a) and g : Y → Y as (a, a′) 7→ (r′, aa′). LXY,Y sends
g to (f 7→ g ◦ f). Suppose B0 is the realizer of LXY,Y . Then B0r′r realizes g ◦ f and thus
B0r′ra ∈ ‖g(f(a))‖Y = {r′(ra)} for any a ∈ |A|. Therefore B0 has the property of B.

Since I ∼= [I, I] and I ∈ ‖1I‖[I,I], we can assume I ∈ ‖∗‖I with loss of generality. Suppose
I×0 is the realizer of i−1

X . Then I×0 a realizes the map ∗ 7→ a for any a ∈ |A|. Thus (I×0 a)I ∈ {a}
and I×0 has the property of I×.

Given arbitrary x ∈ |A|, define f : I → X as ∗ 7→ x. For any a ∈ |A|, iX ◦ [f, 1X]
sends fa : X → X, a′ 7→ aa′ to fa(x). Suppose (x•)0 is the realizer of iX ◦ [f, 1X]. Then
(x•)0a ∈ {ax}. Therefore (x•)0 has the property of x•. J

5 Other cases

In this section, we introduce three classes of applicative structures which are sufficient
for inducing some categorical structures on assemblies. Unlike BI(−)•-algebras for closed
multicategories and BII×(−)•-algebras for closed categories, the classes in this section do
not provide necessary conditions for inducing such structures.

5.1 BK(−)•-algebras and closed categories

I Definition 26. A BK(−)•-algebra is an applicative structure A which contains B, K and
x• for each x ∈ |A|.

I Example 27. Consider untyped lambda terms constructed without using contraction or
exchange rules. Then β-equivalence classes of these closed terms form a BK(−)•-algebra.

I Proposition 28. (combinatory completeness of BK(−)•-algebras) Let A be a BK(−)•-
algebra and M be a polynominal over |A| whose variables appear at most once in M . For
a variable x which is the rightmost variable of M or not in M , there exists a polynominal
λ∗x.M such that the free variables of λ∗x.M are the free variables of M excluding x and
(λ∗x.M)a = M [a/x] for all a ∈ |A|.

Proof. We define λx.M by induction on the structure of M as follows:
λ∗x.x := BB•K
λ∗x.y := Ky (x 6= y)

λ∗x.MN :=

BN•(λ∗x.M) (x ∈ FV (M))
BM(λ∗x.N) (x ∈ FV (N))
K(MN) (otherwise)

J

Since BB•K satisfies the axiom of I and K satisfies the axiom of I×, any BK(−)•-algebra
is also a BII×(−)•-algebra. Therefore the next corollary follows by Proposition 24.

I Corollary 29. Let A be a BK(−)•-algebra. Then Asm(A) is a closed category.

CSL 2021

38:12 Realizability Without Symmetry

5.2 BII•(−)◦-algebras and skew closed categories
I Definition 30. Let A be an applicative structure. For x in |A|, we write x◦ as an element
of |A| (whenever it exists) such that x◦aa′ = a(xa′) for all a, a′ ∈ |A|. We say that A is a
BII•(−)◦-algebra iff it contains B, I, I• and x◦ for each x ∈ |A|.

Since Bx•B satisfies the axiom of x◦, any BI(−)•-algebra is also a BII•(−)◦-algebra.
Assemblies on BII•(−)◦-algebras form skew closed categories, which are weaker closed
categorical structure than closed categories.

There is a categorical structure called skew monoidal categories [18], which have the same
components as monoidal categories but the invertibility of unitors and associators are not
assumed. Skew closed categories are to skew monoidal categories what closed categories are
to monoidal categories.

First we recall the definition of skew closed categories in [17].

I Definition 31. A (left) skew closed category C consists of the following data:
1. a locally small category C;
2. a functor [−,−] : Cop ×C→ C, called the internal hom functor;
3. an object I, called the unit object;
4. a natural transformation iX : [I,X]→ X;
5. an extranatural transformation jX : I → [X,X];
6. a transformation LXY,Z : [Y,Z]→ [[X,Y], [X,Z]] natural in Y,Z and extranatural in X,
such that the following axioms hold:
(i) ∀X,Y ∈ C, LXY,Y ◦ jY = j[X,Y];
(ii) ∀X,Y ∈ C, i[X,Y] ◦ [jX , 1[X,Y]] ◦ LXX,Y = 1[X,Y];
(iii) ∀X,Y, Z,W ∈ C, the following diagram commutes:

[Z,W]

LX
Z,W

��

LY
Z,W // [[Y,Z], [Y,W]]

[1[Y,Z],L
X
Y,W]

��

[[X,Z], [X,W]]

L
[X,Y]
[X,Z],[X,W]

��
[[[X,Y], [X,Z]], [[X,Y], [X,W]]]

[LX
Y,Z ,1[[X,Y],[X,W]]]

// [[Y,Z], [[X,Y], [X,W]]]

(iv) ∀X,Y ∈ C, [1[I,X], iY] ◦ LIX,Y = [iX , 1Y];
(v) iI ◦ jI = 1I .

A left skew closed category is called left normal when the function γ : C(X,Y)→ C(I, [X,Y]),
f 7→ [1, f] ◦ jX is invertible for any X,Y ∈ C.

I Proposition 32. Let A be a BII•(−)◦-algebra. Then Asm(A) is a left normal skew closed
category.

Proof. We define the functor [−,−] as in the proof of Proposition 18, where [f, g] is realized
by Brf ◦(Brg). The rest of the proof is the same as Proposition 24 except for the existence of
i−1
X . J

Since any BI(−)•-algebra is also a BII•(−)◦-algebra, the next corollary follows.

I Corollary 33. Let A be a BI(−)•-algebra. Then Asm(A) is a left normal skew closed
category.

H. Tomita 38:13

5.3 BB′II•-algebras and skew closed categories
Unlike PCAs and BCI-algebras, BI(−)•-algebras, BK(−)•-algebras and BII•(−)◦-algebras
need infinitely many assumptions due to (−)• or (−)◦. In this subsection, we introduce a
class of applicative structure BB′II•-algebras, which induces skew closed categories and needs
only four assumptions.

I Definition 34. A BB′II•-algebra is an applicative structure A which contains four elements
B, B′, I and I•, where B′ is a element such that B′xyz = y(xz) for all x, y, z ∈ |A|.

Since B′x satisfies the axiom of x◦, any BB′II•-algebra is also a BII•(−)◦-algebra. There-
fore the next corollary follows by Proposition 32.

I Corollary 35. Let A be a BB′II•-algebra. Then Asm(A) is a left normal skew closed
category.

I Remark. A category of assemblies on a BB′II•-algebra is not a closed category in general
because i−1

X is not realized. If a BB′II•-algebra has I×, then B(B′(B(BI•)(BB′I×)))B′ satisfies
the axiom of C, and thus this BB′II•-algebra becomes a BCI-algebra.

6 Examples

In this section, we introduce three examples of BI(−)•-algebras.

6.1 Propositions derivable in the planar logic
In this subsection, we construct F as a BI(−)•-algebra.

We define the planar logic as a sequent calculus whose formulas are constructed from
propositional variables and an implication symbol (, and whose derivation rules are the
following ones:

(identity)
A `p A where A is a formula; A,Γ `p B

((-introduction)
Γ `p A(B

;

Γ `p A ∆ `p A(B
((-elimination)

Γ,∆ `p B
,

where Γ and ∆ are sequences of distinct formulas.
Let F be the powerset of {A | `p A is derivable in the planar logic}. Then F gives rise

to a BI(−)•-algebra. Indeed, we can define the applicative structure on F as follows:
For M,N ∈ F , the application MN := {A1 | ∃A2 ∈ N, (A2 (A1) ∈M}.
B := {(A1 (A2) (((A3 (A1) ((A3 (A2)) | A1, A2, A3 are formulas}.
I := {A1 (A1 | A1 is a formula}.
For M ∈ F , M• := {(A1 (A2) (A2 | A2 is a formula and A1 ∈M}.

6.2 Binary trees from ordered groups
In this subsection, we construct T as a BII×(−)•-algebra.

Take an ordered group (G, ·, e,≤). Let T be a set of binary trees whose leaves are labeled
by elements of G:

t ::= g | t(t (g ∈ G).

We define a function |-| : T → G by induction: |g| := g and |t1 (t2| := |t1|−1 · |t2|.
Let T be the powerset of {t ∈ T | e ≤ |t|}. Then T gives rise to a BII×(−)•-algebra.

Indeed, we can define the applicative structure on T as follows:

CSL 2021

38:14 Realizability Without Symmetry

For M,N ∈ T , MN := {t1 | ∃t2 ∈ N, (t2 (t1) ∈M}.
B := {(t1 (t2) (((t3 (t1) ((t3 (t2)) | t1, t2, t3 ∈ T}.
I := {t1 (t1 | t1 ∈ T}.
I× := {t1 (((t2 (t2) (t1) | t1, t2 ∈ T}
For M ∈ T , M• := {(t1 (t2) (t2 | t2 ∈ T, t1 ∈M}.

I Remark. Whether T includes C or not depends on G. For instance, when G is Abelian, T
has C as {(t1 ((t2 (t3)) ((t2 ((t1 (t3)) | t1, t2, t3 ∈ T}.

The example in this subsection is based on Comod(G) introduced in [6]. Comod(G) is
a category constructed from a group G, whose objects are sets equipped with G valued
functions and whose maps are relations between the objects compatible to the valuations. For
any (not necessarily ordered) group G, Comod(G) is a pivotal category. T is a set of maps
from the unit object to a reflexive object of Comod(G) with alteration for order structures.

6.3 Computational lambda calculus and its models
In this subsection, we show the untyped computational lambda calculus [14] is a BII×(−)•-
algebra. The following axiomatization is from [15].

Suppose infinite supply of variables x, y, z, The values, terms and evaluation contexts
are defined as follows:

V ∈ Values ::= x | (λx.M);
M ∈ Terms ::= V |M(M ′);
E ∈ EvalCtx ::= [−] | EM | V E.

An equivalence relation =R on Terms is defined as the congruence of the following
equations:
1. βv : (λx.M)V = M [V/x];
2. ηv : λx.V x = V (x /∈ FV (V));
3. βΩ : (λx.E[x])M = E[M] (x /∈ FV (E)),

where E[N] denotes the term obtained by substituting N for [−] in E.

Then, (Terms/=R) forms a BII×(−)•-algebra. Here the application is that of the compu-
tational lambda calculus. λxyz.x(yz), λx.x, λxy.yx and λx.xM are representatives of B, I,
I× and M• respectively.

Although the computational lambda calculus consists of the same terms as the ordinary
lambda calculus, this example is not a PCA nor a BCI-algebra. Intuitively, the computational
lambda calculus is sound for reasoning about effectful programs, which cannot be discarded,
duplicated nor exchanged in general; hence it cannot have S, K nor C.

The syntactical proof is as follows. Assume that the computational lambda calculus is a
BCI-algebra. Then there exists a term C′ such that C′MN =R NM in the computational
lambda calculus for any term M and N . Take two different variables u and v which are not
free in C′. Then C′(uu)(vv) =R (vv)(uu) holds in the computational lambda calculus. Since
the CPS-translation [[−]] is sound [16], [[−]] sends C′(uu)(vv) and (vv)(uu) to the βη-equal
terms.

[[C′(uu)(vv)]] =βη λk.[[C′]](λz.uu(λw.zw(λx.vv(λy.xyk))))
[[(vv)(uu)]] =βη λk.vv(λx.uu(λy.xyk))

The former contains a subterm uu(...vv...), whereas the latter contains a subterm vv(...uu...).
Therefore, these two terms are not βη-equal, and it yields a contradiction.

H. Tomita 38:15

We can also obtain BII×(−)•-algebras from models of the computational lambda calculus.
Take a Cartesian closed category C and a strong monad T on C with an object X such
that X ∼= (X → TX). Then C(1, TX) is a model of the computational lambda calculus and
forms a BII×(−)•-algebra.

7 Related work

In [19], Zeilberger showed certain kind of planar maps with orientations are generated by
combining several “imploid moves” including those corresponding to B and I. In particular for
an untyped case, his work gives the combinatory completeness of BI(−)•-algebras. Moreover,
this paper suggests that we can obtain models of BI(−)•-algebras from reflexive objects of
skew closed categories.

In this paper, we deal with several classes of applicative structures other than PCAs nor
BCI-algebras. [7] is a textbook covering basic facts about combinatory algebras. In [10],
Komori investigated BB′I logic, one of combinatory logics with restricted exchanges. Our
BB′II•-algebra is inspired by it and assemblies on BB′II•-algebras are models of BB′I logics
with an extra axiom ` ((φ→ φ)→ ψ)→ ψ. Futhermore, using “guarded merge” introduced
in that paper, we can construct lambda terms which form a BB′II•-algebra.

BI(−)•-algebras give rise to models of certain fragments of the Lambek calculus. Corres-
pondences about Lambek calulus and closed multicategories are in [11]. A basic Lambek
calculus is L(•, I, \, /) which has products, a unit and implications for both sides, whose
models are monoidal biclosed category. Closed multicategories are models of L(\) or L(/).
Closed categories are models of L(I, \) or L(I, /).

Realizability models for exponential modalities ! are introduced in [3] [2] as “linear
combinatory algebras (LCAs).” In [8], linear/non-linear realizability models are constructed
from adjoint pairs between BCI-algebras and PCAs. We are currently developing the
construction of realizability models for exchange modalities in the same way as exponential
modalities. Exchange modalities are modalities associating the Lambek calculus to the
commutative linear logic. The characterization of an exchange modality on the Lambek
calculus is in [4] and categorical models of exchange modalities are introduced in [9]. A
categorical model of exchange modality on L(•, I, \, /) is given as a monoidal adjunction
between a monoidal biclosed category and an SMCC. With some appropriate conditions,
adjoint pairs between BI(−)•-algebras and BCI-algebras may give rise to realizability models
of exchange modalities on L(\) or L(/).

8 Conclusion

In this paper, we have presented several classes of applicative structures and identified
categorical structures of assemblies on them. In particular, we have shown that BI(−)•-
algebras are the necessary and sufficient conditions for obtaining closed multicategories under
some conditions, and that BII×(−)•-algebras are those for closed categories.

There are several directions for further investigation of this paper. We conclude this
paper by describing three of future tasks.

First, we may investigate more correspondences between applicative structures and
categorical structures of assemblies. We have not given appropriate classes of applicative
structures inducing other important categorical structures such as non-symmetric monoidal
closed categories nor monoidal biclosed categories.

CSL 2021

38:16 Realizability Without Symmetry

Second, as mentioned in Section 7, we may characterize realizability models of exchange
modalities. Furthermore, if we obtain a class of applicative structures for monoidal biclosed
categories, adjoint pairs between such applicative structures and BCI-algebras could give
rise to categorical models of exchange modalities on L(•, I, \, /).

Third, more examples of BI(−)•-algebras are desired. Finding interesting examples, we
may get new perspectives for analyzing non-commutative logical systems.

References
1 Samson Abramsky. Temperley-lieb algebra: from knot theory to logic and computation via

quantum mechanics. arXiv preprint arXiv:0910.2737, 2009.
2 Samson Abramsky, Esfandiar Haghverdi, and Philip Scott. Geometry of interaction and linear

combinatory algebras. Mathematical Structures in Computer Science, 12(5):625–665, 2002.
3 Samson Abramsky and Marina Lenisa. A fully complete PER model for ML polymorphic

types. In International Workshop on Computer Science Logic, pages 140–155. Springer, 2000.
4 Valeria de Paiva and Harley Eades. Dialectica categories for the lambek calculus. In Inter-

national Symposium on Logical Foundations of Computer Science, pages 256–272. Springer,
2018.

5 Samuel Eilenberg and G Max Kelly. Closed categories. In Proceedings of the Conference on
Categorical Algebra, pages 421–562. Springer, 1966.

6 Masahito Hasegawa. A quantum double construction in Rel. Mathematical Structures in
Computer Science, 22(4):618–650, 2012.

7 J Roger Hindley and Jonathan P Seldin. Lambda-calculus and Combinators, an Introduction,
volume 13. Cambridge University Press Cambridge, 2008.

8 Naohiko Hoshino. Linear realizability. In International Workshop on Computer Science Logic,
pages 420–434. Springer, 2007.

9 Jiaming Jiang, Harley Eades III, and Valeria de Paiva. On the lambek calculus with an
exchange modality. arXiv preprint arXiv:1904.06847, 2019.

10 Yuichi Komori. Syntactical investigations into BI logic and BB’I logic. Studia Logica, 53(3):397–
416, 1994.

11 Joachim Lambek. Deductive systems and categories II. standard constructions and closed
categories. In Category theory, homology theory and their applications I, pages 76–122. Springer,
1969.

12 John R Longley. Realizability toposes and language semantics. PhD thesis, University of
Edinburgh, 1995.

13 Oleksandr Manzyuk. Closed categories vs. closed multicategories. Theory and Applications of
Categories, 26(5):132–175, 2012.

14 Eugenio Moggi. Computational lambda-calculus and monads. Technical report ECS-LFCS-88-
66, University of Edinburgh, 1988.

15 Amr Sabry. Note on axiomatizing the semantics of control operators. Technical report
CIS-TR-96-03, Department of Computer Science, University of Oregon, 1996.

16 Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style.
Lisp and symbolic computation, 6(3-4):289–360, 1993.

17 Ross Street. Skew-closed categories. Journal of Pure and Applied Algebra, 217(6):973–988,
2013.

18 Kornel Szlachányi. Skew-monoidal categories and bialgebroids. Advances in Mathematics,
231(3-4):1694–1730, 2012.

19 Noam Zeilberger. A theory of linear typings as flows on 3-valent graphs. In Proceedings of the
33rd Annual ACM/IEEE Symposium on Logic in Computer Science, pages 919–928. ACM,
2018.

20 Noam Zeilberger and Alain Giorgetti. A correspondence between rooted planar maps and
normal plain lambda terms. Logical Methods in Computer Science, 11(3):1–39, 2015.

	p000-Frontmatter
	Preface
	Programme Committee
	Organisation Committee
	Reviewers
	Ackermann Award 2020

	p001-Klin
	p001-ZZZ-Klin
	p002-Mahboubi
	Summary

	p002-ZZZ-Mahboubi
	p003-Schmitz
	Outline

	p003-ZZZ-Schmitz
	p004-Westrick
	p005-Abramsky
	Introduction
	Partial Boolean algebras
	Basic definitions
	Colimits and free extensions of commeasurability
	States on partial Boolean algebras

	Graphical measurement scenarios and partial Boolean algebras
	Measurement scenarios and (no-signalling) empirical models
	Exclusivity principle on empirical models
	From graphical measurement scenarios to partial Boolean algebras

	Partial Boolean algebras and contextuality
	The Kochen–Specker property
	Probabilistic contextuality

	Exclusivity principles for partial Boolean algebras
	Logical exclusivity principle (LEP)
	Probabilistic exclusivity principle (PEP)
	LEP vs PEP
	A reflective adjunction for logical exclusivity

	Tensor products of partial Boolean algebras
	A (first) tensor product by generators and relations
	A more expressive tensor product
	Commeasurability extensions, Kochen–Specker, and Hilbert space tensor product

	Discussion

	p006-Accattoli
	Introduction
	Preliminaries
	Modularizing Factorization
	Extensions of the Call-by-Name lambda-Calculus: Head Factorization
	The (Applied) lambda-Calculus
	Call-by-Name: Head Factorization, Modularly

	The Non-Deterministic lambda-Calculus Lambda_oplus
	 Extensions of the CbV lambda-Calculus: Left and Weak Factorization
	The Shuffling Calculus
	Non-Terminating Relations
	Further Applications: Probabilistic Calculi
	Conclusions and Discussions
	Appendix: Omitted Proofs
	Head Factorization (Sect. 4)
	Call-by-Value lambda-Calculus (Sect. 6)
	The Shuffling Calculus (Sect. 7)
	Non-Terminating Relations (Sect. 8)

	Appendix: Factorizing Factorization in Probabilistic lambda-calculus

	p006-ZZZ-Accattoli
	p007-Aceto
	Introduction
	Preliminaries
	The Strongest Monitorable Consequence
	Monitorability in recHML
	Computing Strongest Monitorable Consequences in recHML
	Eliminating Existential Modalities
	Eliminating Least Fixpoints
	Eliminating Disjunctions
	The strongest sHML consequence
	Complexity

	Related Work
	Conclusion
	Technical Proofs
	Eliminating disjunctions

	p007-ZZZ-Aceto
	p008-Aceto
	Introduction
	Background
	The simplifying assumptions
	The de Simone format
	Axiomatising || with f

	The operational semantics of f
	The main theorem and its proof strategy
	Negative result: the case L_{a}^f,L_{a}}^f,L_{tau}^f
	Negative result: the case L^f_{alpha} wedge R^f_{alpha}
	Negative result: the case L^f_{alpha}, R^f_{alpha}}
	Negative result: the case L^f_{tau}
	Conclusions

	p008-ZZZ-Aceto
	p009-Arnold
	Introduction
	Basic concepts
	Algorithm
	Symmetric version
	Asymmetric version
	Time and space complexity

	Correctness of the algorithms
	Lower bound
	Conclusion
	Proof of Proposition 2.3
	Proof of Lemma 3.4
	An explicit definition of the system of equations
	Proof of Lemma 3.5
	Proof of Lemma 5.2

	p009-ZZZ-Arnold
	p010-VanBergerem
	Introduction
	Preliminaries
	Weight Aggregation Logic
	Locality Properties of {FOW_1} and {FOWA_1}
	Learning Concepts on Weighted Structures
	Exact Learning with Precomputation
	Agnostic PAC Learning with Precomputation

	Putting Things Together

	p011-Bickford
	Introduction
	OpenTT and Choice Sequences
	Syntax
	Worlds
	Operational Semantics
	Space Squashing and Time Squashing

	Open Bar Realizability Model
	A Theory of Choice Sequences
	The Axiom of Open Data (AOD)
	The Space-Squashed Axiom of Open Data (AOD_{NUPRLsquashSYMB})
	The Time-Squashed Axiom of Open Data (AOD_{downrsquigarrow})

	The Density Axiom (DeA)
	The Discreteness Axiom (DiA)

	The Law of Excluded Middle
	Conclusion and Related Work
	OpenTT's Semantics
	OpenTT's Inference Rules
	Products
	Sums
	Equality
	Universes
	Sets
	Disjoint Unions

	Squashing

	p011-ZZZ-Bickford
	p012-Boker
	Introduction
	Discounted-Sum Automata with Multiple Integral Discount Factors
	Arbitrary Integral NMDAs
	Tidy NMDAs
	Tidy NMDAs – Decision Problems
	Conclusions
	Selected Proofs

	p012-ZZZ-Boker
	p013-Bollig
	Introduction
	Reachability in Distributed Memory Automata
	Considering a fixed number of processes
	The parameterized train problem
	Definition
	Bounding the number of passengers
	Solving Train-Reachability

	An algorithm for reachability
	Conclusion

	p014-Broda
	Introduction
	Contribution and Related Work
	Outline

	Preliminaries
	Pregrammars for Intersection Types
	Type Checking
	Inhabitation
	Intersections at different depth or degree

	Algorithm {I}
	Conclusions
	Appendix

	p015-Colcombet
	Introduction
	Minimization
	Languages and automata as functors
	Minimization of automata

	The basic FunL* algorithm
	Hypothesis automata
	The learning algorithm

	Conclusion and future work

	p015-ZZZ-Colcombet
	p016-Conghaile
	Introduction
	Background
	Logics
	Generalised quantifiers
	Games
	Comonads

	Games and Logic with Generalised Quantifers
	Relaxing Bij_{n}^{k}
	Logics with generalised quantifiers
	Games and logics correspond

	The Comonad and Kleisli Category
	Translating between games
	Lifting the comonad P_{k} to G_{n,k}
	Classifying the morphisms of K(G_{n,k})

	Coalgebras and Decompositions
	Concluding Remarks

	p016-ZZZ-Conghaile
	p017-Dannert
	Introduction
	Preliminaries: Commutative Semirings
	Provenance Semantics for Fixed-Point Logic
	Semirings for Fixed-Point Logic
	Generalized Absorptive Polynomials
	Game-theoretic analysis
	Related Work
	Conclusion and Outlook
	Proofs
	Fundamental Property
	Universal Property of Absorptive Polynomials

	Example of a Model-Checking Game

	p018-Dawar
	Introduction
	Preliminaries
	The Extension-Closed Properties
	First-Order Definitions
	Datalog Definitions

	Proof of the Main Result
	Construction of the Structures
	The Game Argument

	Concluding Remarks

	p018-ZZZ-Dawar
	p019-Dinis
	Introduction
	The ultrapower construction
	Realizability in a nutshell
	Heyting second-order arithmetic
	Realizability interpretation of HA2
	Introducing value restrictions

	Realizability with slices
	Stateful computations
	Stateful realizability interpretation
	Glueing

	Nonstandard principles in realizability with slices
	Natural numbers
	Nonstandard reasoning principles
	Idealization

	Conclusion and future work
	Towards a quotient
	Related and future work

	Proofs of Section 3
	Realizability interpretation
	Introducing value restrictions

	Proofs of Section 4
	Stateful computations
	Realizability interpretation
	Glueing
	Natural numbers
	Nonstandard reasoning principles
	Idealization

	Realizability up to U

	p019-ZZZ-Dinis
	p020-Echenim
	Introduction
	Separation Logic with Inductive Definitions
	Decidable Classes of Entailments
	Normal Structures
	Core Formulæ
	Construction of the Profile Relation
	Main Result
	Conclusion and Future Work

	p021-Forster
	Introduction
	Preliminaries
	Partial Functions
	Equivalence relations on functions
	Decidability, Semi-decidability, Enumerability, Reducibility

	Church's thesis in type theory
	Bauer's enumerability axiom EA
	Richman's Enumerability of Partial Functions EPF

	Halting Problems
	Kleene Trees
	Extensionality Axioms
	Classical Logical Axioms
	Axioms of Russian Constructivism
	Choice Axioms
	Provable choice axioms

	Axioms on Trees
	Continuity: Baire Space, Cantor Space, and Brouwer's Intuitionism
	Conclusion
	Modesty and Oracles
	Coq mechanisation

	p021-ZZZ-Forster
	p022-Gassner
	Introduction
	Background from computable analysis
	Products and exponentials of represented spaces
	Weihrauch reducibility and Weihrauch degrees
	Spaces of sets and choice principles

	Algebraic models of computation and the diamond operator
	Enhancing BSS-machines and statement of our results
	Measure, controlled limits and the Weihrauch degree of sorting
	Iterating measure and computable functions as supplement

	Measurability, Integrability and Weihrauch degrees
	Integrable functions, L_1({[0, 1]}) and continuous functions
	The Lebesgue measure on the Delta_2^0-subsets of the unit interval
	Piece-wise continuous functions and Delta_2^0-measurable functions

	Proof of Lemma 28
	Proof of Lemma 25
	The BSS RAM model – some details

	p023-Geoffroy
	Introduction
	Generalized Partial Metric Spaces
	Approximate Programs for the Simply-Typed lambda-Calculus over Real
	Approximate Values and Approximate Programs
	A Partial Metric on Each Type

	Computing Program Distances using Partial Metrics
	Diameter Space Models Over a Cartesian Closed Category
	Conclusions

	p024-Guerrieri
	Introduction
	The structural lambda-calculus
	A deep type system
	The collection calculus
	A deep quantitative type system
	Intersection types
	Discussion and future work
	References
	Encoding non-idempotent intersection types and resource calculi
	Omitted proofs and lemmas in Section 2
	Omitted proofs and lemmas in Section 4
	Omitted proofs and lemmas in Section 5
	Omitted proofs and lemmas in Section 6

	p025-Guerrieri
	Introduction
	Preliminaries
	Rel, Polr, Dist
	A Type-Theoretic Non-Extensional Model for the Bang Calculus
	Conclusions
	References
	Appendix

	p026-Gottlinger
	Introduction
	AMC With Disjunctive Explicit Strategies
	Preliminaries: Coalgebraic Logic
	Set-Valued First-Order Resolution
	The AMC, Coalgebraically
	AMCDES Satisfiability
	Conclusions
	Appendix: AMCDES Model Checking Details
	Appendix: Omitted Proofs and Further Details

	p027-Hannula
	Introduction
	Second-order quantified Boolean formulae
	Syntax and semantics
	Syntactic restrictions and normal forms
	Known complexity results
	Simplification based on variable dependencies

	An NL-complete second-order fragment
	Further Upper Bounds
	Lower bounds
	Cases with an existential function quantifier
	The fragment Pi_1 without uniqueness
	The Sigma_1 cases with simpleness but no uniqueness

	Summary
	Complexity toolbox
	Proof of Proposition 10
	Proof of Lemma 22
	Proof of Theorem 30

	p028-DeJong
	Introduction
	Foundations
	Impredicativity
	Basic Domain Theory
	Lifting
	Exponentials

	Scott's D_infty
	Limits and Colimits
	Scott's Example Using Self-exponentiation

	Continuous and Algebraic Dcpos
	The Way-below Relation
	Continuous Dcpos
	Algebraic Dcpos
	Ideal Completion

	Conclusion and Future Work

	p029-Kori
	Introduction
	HFLN: Higher-Order Fixed-Point Arithmetic
	Syntax of HFLN
	Semantics of HFLN

	A Cyclic Proof System for HFLN
	Definition of the Cyclic Proof System
	Some Admissible Rules
	Examples

	Decidability of the Global Trace Condition
	Soundness
	Completeness of Infinitary Variant
	Related Work
	Cyclic Proof Systems
	Proof Systems and Games for HFL

	Conclusion
	Definition of relevant occurrences
	Proof of Theorem 21

	p030-DiLavore
	Introduction
	Network games
	Open games
	Open graphs
	Games on graphs via functorial semantics
	Examples
	Conclusions
	Proofs for Section 4
	Proofs for Sections 5

	p031-Lichter
	Introduction
	Preliminaries
	Classification of 2-Injective Subdirect Products of Dihedral Groups
	Normal Forms for Structures
	Structures with Dihedral Colors
	Cyclic Linear Equation Systems in CPT
	Canonization of Structures with Dihedral Color Classes
	Reflection Components
	Canonizing Abelian Structures
	Canonization Procedure
	Equation Systems for Reflection Components

	Conclusion

	p032-Lopez
	Introduction
	Preservation Theorems
	Classical Preservation Theorems
	The Łos-Tarski Theorem in Topological Terms

	Pre-spectral Spaces and Diagram Bases
	Pre-spectral Spaces
	Diagram Bases
	A Generic Preservation Theorem

	Related Notions
	Well-Quasi-Orderings and Noetherian Spaces
	Spectral Spaces

	Basic Closure Properties
	Morphisms
	Relativisation
	Disjoint Unions and Products

	Logical Closure
	Limits of Projective Systems
	Projective Systems
	Application to the Homomorphism Preservation Theorem
	Completeness

	Concluding Remarks

	p032-ZZZ-Lopez
	p033-Pago
	Introduction
	Choiceless computation and the undefinability of preorders
	Previous work and the significance of undefinable preorders
	Analysing orbits of hereditarily finite objects over hypercubes
	Approximating permutation groups with supporting partitions
	The Super-Polynomial Orbit Theorem
	The case of sublinearly bounded supports
	The case of linearly-sized supports

	Concluding remarks and future research
	Appendix
	Proof of Lemma 18
	Proof of Lemma 27
	Proof of Lemma 28

	p033-ZZZ-Pago
	p034-Pham
	Introduction
	Automatic Amortized Resource Analysis (AARA)
	Resource-Aware ML
	Univariate AARA
	Multivariate AARA

	Embedding Polynomial-Time Turing Machines in AARA
	Preliminaries
	Embedding

	Inherently Polynomial Time
	High-Level Design
	Formulation of Inherently Polynomial Time

	Typable Fragment of Resource-Aware ML
	Conclusion

	p034-ZZZ-Pham
	p035-Pistone
	Introduction
	Yoneda Type Isomorphisms
	Counting Type Inhabitants with Yoneda Type Isomorphisms
	From Polymorphic Types to Polynomial Trees
	Yoneda Reduction
	The Characteristic of a Polymorphic Type
	System F with Finite Characteristic
	Conclusion
	Type Systems, Type Isomorphisms and Equational Theories
	The epsilon-Theory and the Yoneda Isomorphisms

	p036-Rabinovich
	Introduction
	Preliminaries
	 Non-Emptiness Problem for Intersection of PTA
	co-NP-hardness of Deciding the Degree of Ambiguity of a PTA
	Degree of Ambiguity for Parity Automata on omega-words
	Finite Ambiguity and Bounded Ambiguity of PTA
	co-NP Upper Bound of Theorem 1
	Conclusion
	Selected Proofs
	Proof of Lemma 25
	Proof of Proposition 28

	p037-Schnoebelen
	Introduction
	Preliminaries
	Backward reachability in flat LCMs
	Computing predecessors
	Cycles: repeating a given sequence of actions
	Bounding runs

	SLP-compressed words and an NP algorithm for reachability
	SLP-compressed words
	Reachability for flat LCMs is in NP

	NP algorithms for liveness properties
	Conclusion
	Some SLP algorithms
	Deciding X preccurlyeq v^n
	Computing X/v^k

	Forward reachability techniques
	Proof of Lemma 5.5

	NP-hardness for flat LCMs and flat FIFO machines
	Proof of Theorem 2.1: NP-hardness for acyclic machines
	Proof of Theorem 2.2: NP-hardness for single-path machines

	Multiple channels

	p038-Tomita
	Introduction
	Background
	Applicative structures and categories of assemblies
	PCAs and Cartesian closed categories
	BCI-algebras and symmetric monoidal closed categories

	BI{(-)}^{bullet}-algebras and closed multicategories
	BII^{x} {(-)}^{bullet}-algebras and closed categories
	Other cases
	BK{(-)}^{bullet}-algebras and closed categories
	BI{I}^{bullet} {(-)}^{o}-algebras and skew closed categories
	BB' I{I}^{bullet}-algebras and skew closed categories

	Examples
	Propositions derivable in the planar logic
	Binary trees from ordered groups
	Computational lambda calculus and its models

	Related work
	Conclusion

