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Preface

This volume collects the papers presented at the second edition of the Workshop on Next
Generation Real-Time Embedded Systems (NG-RES 2021). The workshop is co-located with
the 2021 edition of the HiPEAC conference and was held on January 20th, 2021. Although the
workshop was originally planned to take place at Budapest, Hungary, due to the COVID-19
pandemic it switched to a virtual online event.

The traditional concept of embedded systems is constantly evolving to address the require-
ments of the modern world. Cyber-physical systems, networked control systems and Industry
4.0 are introducing an increasing need for interconnectivity. A steadily increasing algorithmic
complexity of embedded software is fueling the adoption of multicore and heterogeneous
architectures. As a consequence, meeting real-time requirements is now more challenging
than ever. The NG-RES workshop focuses on real-time embedded systems, with particular
emphasis on the distributed and parallel aspects. The workshop is a venue for both the
networking and multicore real-time communities aiming at cross-fertilization and multi-
disciplinary approaches to the design of embedded systems.

The scope of the NG-RES workshop include the following topics:
Programming models, paradigms and frameworks for real-time computation on parallel
and heterogeneous architectures
Networking protocols and services (e.g., clock synchronization) for distributed real-time
embedded systems
Scheduling and schedulability analysis for distributed and/or parallel real-time systems
System-level sofware and technologies (e.g. RTOSs, hypervisors, separation kernels,
virtualization) for parallel and heterogenous architectures
Application of formal methods to distributed and/or parallel real-time systems
Compiler-assisted solutions for distributed and/or parallel real-time systems
Middlewares for distributed and/or parallel real-time systems

In this second edition of the workshop four regular papers were accepted, each of which
receiving three peer reviews. In addition, we are glad to have an invited paper by Khalil
Esper, Stefan Wildermann and Jürgen Teich titled “A Comparative Evaluation of Latency-
Aware Energy Optimization Approaches in Many-Core Systems”. We would like to thank the
authors of the NG-RES 2021 papers, the members of our program committee, our publisher
Schloss Dagstuhl as well as the HiPEAC organizers for contributing to the success of this
workshop.

Marko Bertogna and Federico Terraneo
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Abstract

Many applications vary a lot in execution time depending on their workload. A prominent example
is image processing applications, where the execution time is dependent on the content or the size of
the processed input images. An interesting case is when these applications have quality-of-service
requirements such as soft deadlines, that they should meet as good as possible. A further complicated
case is when such applications have one or even multiple further objectives to optimize like, e.g.,
energy consumption.

Approaches that dynamically adapt the processing resources to application needs under multiple
optimization goals and constraints can be characterized into the application-specific and feedback-
based techniques. Whereas application-specific approaches typically statically use an offline stage to
determine the best configuration for each known workload, feedback-based approaches, using, e.g.,
control theory, adapt the system without the need of knowing the effect of workload on these goals.

In this paper, we evaluate a state-of-the-art approach of each of the two categories and compare
them for image processing applications in terms of energy consumption and number of deadline
misses on a given many-core architecture. In addition, we propose a second feedback-based approach
that is based on finite state machines (FSMs). The obtained results suggest that whereas the
state-of-the-art application-specific approach is able to meet a specified latency deadline whenever
possible while consuming the least amount of energy, it requires a perfect characterization of the
workload on a given many-core system. If such knowledge is not available, the feedback-based
approaches have their strengths in achieving comparable energy savings, but missing deadlines more
often.
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1:2 Latency-Aware Energy Optimization in Many-Core Systems

1 Introduction

Many applications have different requirements that should be met during their execution on
modern many-core platforms. Embedded systems often have energy and temperature con-
straints due to their limited power budget. Interesting is the case when an application comes
with more than one non-functional requirement, e.g., latency, power or energy consumption,
or safety requirements. In this paper, we consider image processing applications as a class of
streaming applications that often require the results to be ready within a defined latency,
and at the same time should consume a minimal amount of energy on a given platform. For
instance, self-driving cars should timely detect crossing people, and also consume as little
energy as possible.

Application-specific approaches for latency-aware energy optimization statically (at design
time) determine or approximate a set of operating points where each is optimized for a specific
workload scenario [18]. Then, for each workload scenario, a set of actions is determined (e.g.,
voltage/frequency and/or selection of the number of cores to execute given workload) in
order to achieve a set of requirements (e.g., a deadline) while optimizing a cost function,
e.g., energy. For example, [6] uses a profiling stage to determine a set of Pareto points.
While such approaches rely solely on design-time techniques, other approaches like [9] build
an offline model from the profiling data and then adapt it online using machine learning
algorithms. However, the disadvantage of these approaches is their lack of ability to adapt
to unseen workloads or, more severe, new applications that were not analyzed at the offline
stage [9]. The authors of [8] use performance and analytical models online to evaluate a
machine learning strategy that was derived offline, in order to adapt to unseen workloads.
However, it still needs a profiling stage offline to decide an initial strategy and also cannot
be generalized as it depends on the analytical models that are used online.

As a remedy, approaches applying control theory to adapt the execution of applications
to current needs have been proposed [3, 7, 10, 11, 12, 13, 16]. Control-theoretical approaches
apply an observe-decide-act loop, which is a three-stages control strategy. First, the system
monitors the application to obtain a latency feedback, then it decides on the actions to be
applied by computing a generic control signal that reflects the control system’s status and
the obtained feedback, and finally it applies those decided actions. The main advantage
of these approaches is that the system no longer needs to know the expected workloads or
analyze the applications that it will control before start of the execution. Another advantage
for using control theory is that if the system can be proven to be stable, this implies that the
system output will be bounded or return to a desired value in a bounded amount of time [1].

As an alternative to control-theoretic approaches, with equally strong mathematical
soundness and proof qualities, finite state machines (FSMs) can be used. FSMs are heavily
used in digital design, industrial control and robotics. As such, stability properties might
equally be proven by state reachability. Moreover, contrary to many control-theoretic
approaches proposed in literature such as [3, 10, 11, 13, 16], no assumptions need to be made
on the linearity of as well plant as control behaviours.

Contributions. In this paper, we evaluate and compare both an application-specific [17, 18]
and a feedback-based [4] state-of-the-art approach using control theory, and propose a
very simple alternative feedback-based approach using FSMs. For streaming-based image
processing applications, i.e., video sequences with content-based workload, we subsequently
compare these approaches in terms of deadline misses and energy savings for a given many-
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core platform. We conclude that application-specific approaches have their strength in case
of highly predictable workload whereas the feedback-based approaches have their strength in
rather unpredictable and even to some degree to so far unseen workloads.

The remaining of this paper is structured as follows. Section 2 introduces the different
approaches for latency-aware energy optimization that shall be analyzed and compared.
Section 3 introduces the workload and experiments as well as results on their evaluation and
comparison. Finally, in Section 4, we conclude this work.

2 Latency-Aware Energy Optimization Approaches

In this section, we introduce one application-specific and two feedback-based approaches
for optimizing energy while preserving soft deadlines for many-core platforms. A given
(soft) deadline for execution of periodic workload, e.g., images, shall be enforced while
minimizing the amount of consumed energy. The latter can be influenced by variation of as
well the number of cores n as well as by dynamic power management, i.e., voltage/frequency
scaling. Modern processors allow to execute a program in m different voltage/frequency
configurations. In addition, we consider a strategy called race-to-idle as an example of a
heuristic approach that is neither application-specific nor feedback-based. Race-to-idle makes
the system execute in the fastest possible configuration (e.g., highest voltage/frequency
settings mmax and number of cores nmax) in order for the application to finish and the system
to become idle as fast as possible. However, this method does not provide energy-optimality
as has been shown in [5].

2.1 Application-Specific Approaches

Application-specific approaches which are used here synonymously with offline approaches
require a knowledge base so they can choose the best decision in the execution phase based on
offline optimizations or offline-learned experience. Typically, execution time characteristics
are gathered from profiling data. In the following, we introduce one approach as described in
[17, 18] more closely.

2.1.1 Profiling Phase

The first phase aims at parameterizing a latency and an energy model for a given application
or a task, which is dependent on one or multiple workload indicators (e.g., the number of
features in an image) and the configuration (e.g., voltage/frequency and the number of cores)
to execute this workload item, respectively task. The approach in [17, 18] considers a class
of video (streaming) applications, in particular an object-detection application, in which
the workload of some tasks is dependent on the number of input features i. Apart from the
number of features, the execution latency L also depends on the voltage/frequency setting
m and the number of cores n used for the calculation.

Let L(1, 1, mmax) denote the latency for processing one feature on one core in the
highest voltage and frequency mode mmax. L(1, 1, mmax) may be determined by simulatively
determining the execution latency of the execution per image for a representative set of
input images. Subsequently, the latency estimate per feature is determined for each image
by dividing its latency by the number of features i in that image. Alternatively, the latency
could be determined by applying worst-case timing analysis.

NG-RES 2021



1:4 Latency-Aware Energy Optimization in Many-Core Systems

2.1.2 Pareto-Front Determination Phase
After determining L(1, 1, mmax), a model for estimating the latency L(i, n, m) for processing
i features in an image when employing n cores and running in voltage/frequency setting m is
derived or learned, resulting in a mathematical characterization of the latency in dependence
of workload i and processor setting n and m, e.g.:

L(i, n, m) = L(1, 1, mmax) · i

n · eff(n) ·
f(mmax)

f(m) (1)

In Eq. (1), eff(n) denotes the parallel efficiency in dependence of the number of cores n

employed for the computation with eff(n) = 1 in the best case and f(m) being the frequency
of setting m. In our experiments described in Section 3, we consider eff(n) = 1. Then, based
on a given latency deadline L̄, a design space exploration (DSE) can then be performed [18]
to determine those settings n, m that enable to process the workload i within the deadline L̄

while consuming the least amount of energy.

2.1.3 Energy-Minimized Timing Enforcement
Finally, the Pareto-optimal settings can be stored in a table or implemented by an automaton
that just selects at run-time the energy minimal setting in characterized ranges of inputs i.
Before each execution, based on i, the pre-determined energy-minimal setting 〈n, m〉 is
activated as action. Obviously, this hybrid technique must be adjusted to each application
and each architecture individually. However, as we will show in our experiments, if the
characterization is safe, then we may guarantee deadlines to be enforced by 100%. This
means that even hard deadlines can be safely enforced.

2.2 Feedback-Based Approaches
These approaches utilize a latency feedback to decide the next configuration (i.e., 〈n, m〉)
to apply. The most prominent approaches are based on control-theory or finite state
machines (FSMs).

2.2.1 Using Control Theory
Using control theory for designing adaptive systems [1] has the advantage of formally
guaranteeing the properties (e.g., stability) of systems with unknown workloads [19]. In the
following, we describe one concrete approach [4] for subsequent evaluation in more detail.
Figure 1 illustrates the overall control mechanism.

Control Signal as an Abstraction for Latency
Control-theory based approaches consider latency as a variable that is controlled, where
the controller utilizes Eq. (2) to model the relation between the latency L(t) at iteration t

(respectively, discrete time index in the following), and the control signal s(t− 1) [4, 11].

L(t) = 1
b(t) · s(t− 1) (2)

In Eq. (2), the base signal b(t) is a time-varying parameter that forms an abstraction of
L(i, nmin, mmin), which is the latency of executing the application’s workload (i.e., number
of features i) at iteration t in the lowest configuration (i.e., 〈nmin, mmin〉). The base signal is
computed using Eq. (3).

b(t) = 1
i(t) · L(1, nmin, mmin) (3)
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Here, i(t) denotes the number of features i observed at iteration t and L(1, nmin, mmin) is
the latency of executing one unit of workload (i.e., one feature or i = 1) at iteration t in the
lowest configuration (i.e., 〈nmin, mmin〉). As L(i, nmin, mmin) generally cannot be known until
run time, it is estimated using a Kalman filter [4], or in our use case and later experiments,
we use a profiling phase to determine L(1, nmin, mmin) for its estimation.

Configuration Mapping
A configuration mapping is used in a later energy optimization step to determine the best
configurations 〈n, m〉 for the computed control signal s(t) [4]. This is done by creating a
table with an index sn,m that delivers a corresponding configuration 〈n, m〉 with sn,m being
defined as the speedup when executing one unit of workload (i.e., one feature or i = 1)
in the configuration 〈n, m〉 over the case when executing this workload unit in the lowest
configuration 〈nmin, mmin〉:

sn,m = L(1, nmin, mmin)
L(1, n, m) (4)

Here, L(1, n, m) denotes the latency of executing one unit of workload (i.e., one feature or
i = 1) at iteration t in the configuration 〈n, m〉.

Computing the Control Signal
At iteration t, the controller uses Eq. (5) to calculate the error between the latency in the last
execution L(t− 1) and the latency goal L̄ [4]. In case of a positive error value, the deadline
has therefore been missed (i.e., L̄ < L(t− 1)).

e(t) = 1
L̄
− 1

L(t− 1) (5)

The control signal s(t) is then computed using Eq. (6) [4]:

s(t) = s(t− 1) + (1− p) · e(t)
b(t) (6)

Finally, the control signal s(t) is used by the optimizer to find the best configuration
(i.e., 〈n, m〉) that is needed to be applied in the next iteration t, based on the latency error
e(t), the base signal b(t), and the previous control signal s(t − 1). The base signal b(t) is
computed using Eq. (3) after determining the current workload (i.e., number of features i(t)).
The pole p is a user-specified parameter that lies between 0 and 1. A small value of p increases
the importance of the error to the resultant control signal, whereas a large p increases the
controller resistance to fast-changing workloads.

Energy Optimization
The optimizer uses the configuration mapping, explained above, for transforming the calcu-
lated control signal s(t) into the best configuration (i.e., 〈n, m〉) to meet a given deadline L̄,
while minimizing the amount of consumed energy. Kim et al. [5] claim that there must be
an optimal solution that has at most two configurations that have to be scheduled within
the time interval between iteration t and t + 1. These two configurations are computed using
the algorithm which is detailed in [4].

NG-RES 2021
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Figure 1 The controller uses the error e(t) and the base signal b(t) (based on the number of
features i(t)) to compute the control signal s(t). The optimizer looks up the configuration mapping
for deciding the next actions (i.e., 〈n, m〉) based on the computed control signal s(t); the value of
s(t) is compared with the values sn,m of the configuration mappings to select the configurations
under which to operate the system in the time interval between iteration t and t + 11.

2.2.2 Using Finite state machines (FSMs)
An FSM describes the system’s behavior using states, transitions, events, and actions. An
FSM is composed of a number of states. It starts in an initial state. Each state outputs
actions to perform the desired control activities in case of a Moore machine. Triggered by
events (input), it transitions to a next state based on the input and the current state.

FSMs are heavily used for modeling the power states of modern processor architectures
including dynamic power management [20]. FSMs have also been proposed for adjusting
the processor power depending on a utilization feedback. For instance, the authors of [2]
propose an FSM-based controller that uses the processor utilization as a feedback to choose
the best configuration (i.e., 〈n, m〉). Here, the FSM transitions between the states based on
utilization thresholds.

A possible realization of an FSM enforcing latency while minizing energy based on
feedback is depicted in Figure 2. The error e(t− 1) is computed similar to Eq. (5) from the
latency feedback L(t−1). This approach neither includes an offline stage nor utilizes a control
signal. Instead, it uses a power-ascending list of configurations so that the configuration
〈ncj , mcj 〉 associated with state cj only should have a higher power consumption than that
of state cj−1. With a number of N available configurations, the FSM consists of states cj

with 1 ≤ j ≤ N . Based on the error e(t− 1), there are three possibilities to define the FSM
transitions:
1. The latency error is positive e(t − 1) > 0: The deadline has been missed and the

FSM responds by switching to the next state with higher power by incrementing the
configuration level.

2. There is no latency error e(t− 1) = 0: The deadline has been met precisely and the FSM
stays in the same state with the same configuration level.

3. The latency error is negative e(t− 1) < 0: The application executes faster than needed
and the FSM responds by switching to the next state with lower power to decrement the
configuration level.

1 In [4], it is explained in detail how a two-step sequence of two sn,m configurations is activated and
optimized so to save energy.
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Figure 2 A feedback-based FSM approach, that transitions between adjacent states at each
iteration t, based on the feedback L(t− 1) and a power-ascending list of configurations.

For the construction of such enforcement FSM, many extensions are possible, e.g.,
transition conditions containing multiple events (not only one like e(t)), possibly also
including environmental conditions such as temperature. Moreover, instead of just transiting
to one lower, resp. one higher power state, one could transit to non-neighbor states depending
on the absolute deviation e(t).

3 Evaluation

3.1 InvadeSIM simulator

For the following evaluations and comparisons, a simulation framework called InvadeSIM,
a many-core simulator for parallel applications [15] is used. InvadeSIM allows to specify
symmetric homogeneous, as well as tile-based asymmetric many-core architectures within
one framework. It performs a discrete-event simulation of applications mapped to a given
architecture model including the processor cores, memory access overheads and communic-
ation latencies, e.g., on a network-on-chip. In addition, it provides an emulation for the
runtime system and a timing as well as a power model for each core type of a heterogeneous
many-core architecture. The discrete-event simulation enables the timed simulation of the
different parallel tasks in execution. From a power configuration and the execution times, the
energy consumption of application executions can be monitored as well. Using an ActorX10
object-oriented programming library [14], applications are modeled by a graph of actors and
then mapped and executed on a modeled multi-core platform.

3.2 Object Detection Application

For our evaluations and comparisons, we introduce an object detection application as shown
in Figure 3. It belongs to the class of image processing applications that performs a pipelined
processing of input image streams. The job of the object detection algorithm is to detect a
given object in each image frame by applying a SIFT feature matching algorithm.

The application consists of an actor chain. Each actor processes one input image at a
time. The image source (IS) actor reads in the input images periodically at a constant rate,
then follows the gray-scale conversion (GS) actor, and after that the edge detection (ED) and
the corner detection (CD) actors to determine respectively edges and corners in an image.
After that the SIFT orientation (SO) actor achieves invariance to image rotation. The four
SIFT description actors SD1 to SD4 extract the features in an image. They can be executed
in parallel on n = 4 cores, after partitioning the number of features i of a given image evenly
into each actor.

NG-RES 2021
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Figure 3 Object detection algorithm implemented as a graph of actors for pipelined processing
of streams of images.

3.3 Target Architecture and Deadline Model
For the following experiments, let each of the periodic execution of each SD actor be completed
within a soft deadline of L̄ = 80 ms. For the enforcement of this local deadline, the execution
power mode m (voltage/frequency) of the SD actors’ cores through Dynamic Voltage and
Frequency Scaling (DVFS) is used and we assume, a maximum of n = 4 cores can be activated
in each of m = 20 different power modes. However, during the execution of an image, we
assume all cores run in the same power mode m, thus resulting in a configuration 〈n, m〉.
According to Figure 3, the SD actor also provides a feedback of the latency which can be
used by the controller to properly determine the configuration 〈n, m〉 to be used to execute
the next frame, resp. iteration. Upon each execution, the output of each SD actor is then
provided to the SIFT matching (SM) actor to detect common features between the given
object to be found and the current input image. Then, the RAN-SAC (RS) actor calculates
the transformation between both images based on the matched features. The image is finally
sent out by an image destination (ID) actor.

3.4 Application Management Techniques
In the following, we evaluate four techniques for latency-aware energy optimization:
1. Race-to-idle: Executing always in the highest configuration level 〈nmax, mmax〉.
2. Application-specific: Finding operating points offline by analyzing sequences of input

images beforehand, see Section 2.1. At run-time, the Pareto-optimal configuration to
enforce the given deadline is retrieved from a table based on the characterized input
(feature number i) [17, 18].

3. Control-theoretical: Computing a control signal that translates into a specific configura-
tions 〈n, m〉 based on latency feedback L(t− 1) [4].

4. FSM-based: Using the simple FSM from Figure 2 that is based on latency feedback
L(t− 1) to transition between neighbor system configurations 〈n, m〉.

3.5 Workload Types
The following experiments have been performed by applying the following workloads to the
object detection application with latency-enforced SD actor:

A 5-minute YouTube video from national geographic.
A 40-minutes video of front camera in a car driving through city roads.
A sequence of 1, 750 images with random contents.
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Figure 4 shows the number of features i for each image of the sequences.
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(a) YouTube video.
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(b) Car video.
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(c) Random images.

Figure 4 Distribution of number of features i per frame in the analyzed videos.

3.6 Results
We run the application for each combination of application management technique and input
sequence. Each controller behavior has been implemented by the controller actor in Figure 3.
The number of available configurations is N = n · m with n = 4 and m = 20. As latency
bound L̄ of the enforced SD actor, we chose L̄ = 80 ms. For the control-theoretic approach,
the pole was chosen at p = 0.5 (changing the pole value did not have a noticeable impact on
its results).

In the following, we analyze the performance of the four approaches in terms of number
of deadline misses and in terms of energy consumption.

3.6.1 Deadline Misses
Mean Absolute Percentage Error (MAPE) is a standard metric in controllers [4], and we use
it to measure number of deadline misses. We can compute MAPE for an application with K

iterations (number of frames in our test applications) using Eq. (7):

MAPE = 100% · 1
K

K∑
i=1

L(t− 1) > L̄ : L(t− 1)− L̄

L̄

L(t− 1) ≤ L̄ : 0
(7)

Figure 5a shows the number of deadline misses experienced for each of the four evaluated
approaches. Race-to-idle and the application-specific approach almost never miss any deadline
as they execute in the fastest possible way, respectively the slowest required speed to meet
the deadline. Only in a few cases where the deadline cannot be met at all even in the fastest
possible configuration, L̄ is (necessarily) exceeded. However, evidently, the feedback-based
approaches miss more deadlines, especially the FSM-based approach, which obviously by its
simple construction provides only a stepwise and thus slow convergence towards a feasible
level of configuration 〈n, m〉, after receiving the latency feedback L(t− 1).

3.6.2 Energy Consumption
Figure 5b shows the evaluated average overall energy consumption per image of the SD actor.
Race-to-idle consumes the largest amount of energy, because it executes in the fastest possible
way. The application-specific approach consumes a significantly less amount of energy, due to
the fact that it knows exactly which actions are needed to meet the deadline for all possible
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input images. For the feedback-based approaches, the control-theoretical approach consumes
slightly more energy than the optimal (i.e., the application-specific approach). On the other
hand, the simple FSM-based approach consumes more energy than the application-specific
and the control-theoretical approach due to its simplicity in construction. Still, it consumes
less energy than the race-to-idle strategy.
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(a) Percentage of deadline misses of each approach.
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(b) Energy consumption of each approach.

Figure 5 Evaluation results of the race-to-idle, application-specific and feedback-based approaches
using the three types of image input sequences and a set of N = 80 configurations in terms of
deadline misses (a) and consumed energy (b).

3.6.3 The Effect of Available Configurations
In a further evaluation, we fixed the number of cores to n = 4, resulting into only N = 20
configurations (i.e., 20 voltage/frequency settings), keeping race-to-idle unaffected.

We notice from the results in Figure 6 an increase in the amount of energy consumption
for the application-specific and the control-theoretical approach. For the latency results, the
FSM-based approach achieves less deadline misses compared to the case of N = 80, because
now, the transitions in the FSM are more effective in the sense of faster converging to a
feasible configuration level 〈n, m〉.

4 Conclusion and Future Work

In this paper, we evaluated and compared multiple application-specific and feedback-based
categories for latency-aware energy optimization. We evaluated the approaches on a many-
core simulator and found out that the application-specific approach respects the latency
goal whenever possible while consuming the lowest amount of energy consumption. For
the feedback-based category, the feedback-based approaches can achieve energy savings
comparable to the application-specific approach, but both missing deadlines more often.

For future work, we aim to focus on FSM-based approaches further, as they are sim-
ilar to control-theoretical approaches in providing a sound mathematical formalism with
opportunities of formally proving requirements on non-functional program properties, e.g.,
by state reachability and the use of temporal logic to express complex requirements. On
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(b) Energy consumption of each approach.

Figure 6 Evaluation results of the race-to-idle, application-specific and feedback-based approaches
using three types of image input sequences and a set of N = 20 configurations in terms of deadline
misses (a) and consumed energy (b).

the other hand, control-theoretic approaches, although theoretically sound and known for
their strength in being able to mathematically prove properties such as the stability and
robustness of a feedback-based system, are often based on assumptions of linearity of either
controller or the many-core system under control, e.g., based on z-transform descriptions
and the analysis of poles of related closed-loop transfer functions. However, in multi-core
systems, performance such as the speedup hardly scales linearly with the number of cores for
most workloads and applications. Therefore, non-linear control techniques would need to be
applied.
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1 Introduction

Wireless sensor and actuator networks (WSAN) play nowadays an important role in industrial
facilities. Wireless radio links, in general, bring the flexibility and scalability that wireline
infrastructure lacks, but often with relatively lower bandwidth and reliability [4]. Yet, for
many applications based on sensor and actuator networks, e.g., for real-time monitoring
or even audio streaming [10], low data rate wireless technologies (up to 250 Kbps) are
sufficient to satisfy typical bandwidth requirements. Similarly, the reliability of standards
like WirelessHART, ISA100.11a, IEEE802.15.4e and 6TiSCH, based on IEEE 802.15.4-PHY,
increased to levels that are, in many cases, compatible to wired networks [18].

Time-synchronized channel hopping (TSCH) is among the most popular standards in
the scope of WSAN to support real-time data traffic. Salient features, such as time-division
multiple-access (TDMA), centralized scheduling and frequency diversity, have gradually
underpinned its adoption in a number of application domains, from factory automation and
process control [9] to vehicles [16], paving the way for the Industrial Internet of Things (IIoT)
and Industry 4.0 [15].

In these domains, real-time communication is essential to ensure satisfactory (and de-
terministic) performance. The predictable/analyzable (time-slotted) channel access of TSCH
is appropriate for that purpose which, coupled with proper (typically centralized) scheduling
and routing algorithms, can provide safe operational bounds for worst-case end-to-end delays
and schedulability. Several research efforts have pursued real-time communication in TSCH
networks, but mostly focusing on packet scheduling. Routing, in the other hand, is often
assumed as standard, e.g., using the shortest-path algorithm, leading to sub-optimal real-time
performance.

In this work, we deal with the so-called real-time wireless routing [19] for TSCH networks,
whose primary goal is to enhance and/or guarantee the real-time properties of the network
based on routing decisions. In this respect, Wu et al. [19] proposed a conflict-aware routing
method for WirelessHART networks with packet transmissions scheduled using a fixed-
priority policy. We tackle alike foundational questions from this work, but for TSCH WSANs
under the earliest-deadline-first (EDF) scheduler, instead. We propose a minimal-overlap
shortest-path routing based on a greedy heuristic driven by reducing path overlaps among
network flows. We show, by leveraging on prior work on schedulability analysis, that our
method considerably improves the network schedulability when compared to the conventional
(hop-count) shortest-path method.

2 Related Work & Contribution

Theoretical and empirical studies for modelling and assessing the real-time performance of
TSCH-like networks have been discussed in recent literature, e.g., [13, 6, 5, 8, 1, 3, 14], usually
having as the main focus priority-based packet scheduling algorithms. The span of analytical
works includes the design of methods based on response-time analysis [13], supply/demand-
based tests [6, 5], network calculus [8], etc., often deriving theoretical/empirical bounds
attempting to guarantee worst-case real-time network performance. Both fixed-priority
and dynamic-priority schedulers have been covered, most of the times assuming a standard
behaviour for the rest of network features, e.g., routing, channel assignment, etc.

While for routing there are many works available in the literature [12] addressing TSCH
networks, only a few of them fit into the class of real-time wireless routing [19], i.e., tailored
routing methods aiming to enhance and/or guarantee the real-time performance of wireless
networks. Wu et al. [19] made a step ahead in this direction by proposing a conflict-aware
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real-time routing for WirelessHART networks under a fixed-priority policy, but they did
not address dynamic-priority schedulers. Their work leverages on a prior delay analysis for
TSCH-like networks, which derives in part from the real-time CPU scheduling theory [7].

We highlight the importance of this prior analysis in our work, allowing to split up the
end-to-end delay analysis into two components: (i) the effect of channel contention, and
(ii) the effect of wireless transmission conflicts. The former is conveniently mapped to the
multiprocessor contention concept, by assuming the number of cores as equal to the number of
(radio) channels in TSCH networks. The second is specific to wireless transmission scheduling,
and model the restriction of half-duplex transceivers to transmit/receive alternately, a
challenging condition under mesh network topologies, which has a significant impact on
end-to-end delays and schedulability.

As in [19], we focus on the latter factor to improve routing decisions, i.e., the effect of
the transmission conflicts on real-time performance, but we target transmissions scheduled
under EDF. Moreover, distinctly to [19], we do not generate routes one-by-one until they
become schedulable; instead, we provide a set of paths with minimal (node-) overlaps between
flows, and then, we test the overall schedulability. We draw attention to the effectiveness of
our approach against to the more common (hop-count) shortest path method, as well as in
terms of the bandwidth utilization benefits brought by EDF in comparison to fixed-priority
schedulers. We note that to the best of our knowledge, this is the first joint EDF scheduling
and real-time wireless routing framework for TSCH networks.

3 System Model: TSCH-based network and EDF scheduling

We consider a WSAN as the one represented in Figure 1. The network consists of a finite
number of N ∈ N nodes, including one gateway, multiple access points (APs), and several
field devices (i.e., sensors and actuators). The field devices are wirelessly connected to
the APs forming a mesh network topology, and each of them is equipped with half-duplex
omnidirectional radio transceivers. The APs are directly linked to the gateway, which, in
turn, enables bidirectional communication between the field devices and other entities outside
the network, e.g., the network manager, process controller, host application, etc. The network
manager is a software module (typically running on the gateway) which collects network
topological information and is responsible for both scheduling and routing functions.

We assume the network is TSCH-based, i.e., relies on an IEEE 802.15.4 compatible physical
layer, and uses a centralized multi-channel TDMA protocol with global synchronization.
The multi-channel feature enables concurrent per-slot (but not per-channel) transmissions
based on a channel hopping technique over a number of m active (i.e., not-blacklisted)
radio channels, with 1 ≤ m ≤ 16 ∈ N. The length of the time slots is fixed (∼ 10ms), and
corresponds to a (dedicated) time interval to allocate a single packet transmission, a maximum
number of w − 1 retransmissions (with w ∈ N), and their corresponding acknowledgements.

Sensor nodes periodically transmit data through the network to external entities, e.g., to
a remote controller (located at the gateway’s node position), which, in turn, deliver control
commands to the actuators (see Fig. 1). We consider transmissions occur in per-slot/per-hop
basis, following predefined multi-hop routes between the sensors and the gateway (uplink),
and between the gateway and the actuators (downlink), both with stringent timing delivery
constraints. As for the sake of simplicity, we consider the routes are set under source routing,
i.e., using pre-defined single routes for both uplink and downlink.

Without loss of generality, we also assume the topology maintenance is a native in-built
centralized service or that can be further implemented, e.g., as in [17].
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Figure 1 Pictorial representation of an industrial WSAN.

3.1 Network model

Given the above features, the network is modelled as a graph G = (V,E), where V represents
the set of vertices (or nodes), and E the set of edges (or links) between those nodes. We
assume the graph is undirected and connected, but not complete, i.e., there is a path between
any pair of nodes in the network, but not a link between every node pair. The total number of
nodes N corresponds to the total number of vertices |V |, i.e., N = |V |, where one node acts
as a gateway, and the rest N − 1 nodes correspond to the multiple APs and the several field
devices. We further assume the gateway is the node with the highest betweenness centrality,
i.e., the node if being removed, has the greatest impact on the overall network connectivity.

We consider a subset n ∈ N of the field devices are used to generate data (e.g., sensor
measurements), and the rest N − n− 1 nodes act as relay. Note that when not transmitting
their own data, the n transmitter field devices can act as relay too.

3.2 Flow model

We denote F def= {f1, f2, . . . , fn} the set of n real-time network flows to be transmitted
from source to destination by following an EDF policy. Each fi represents a periodic time-
constrained end-to-end communication flow, characterized by a 4-tuple (Ci, Di, Ti, φi). Ci
denotes the effective transmission time between source and destination, Ti the period (or
the sampling rate of sensors), Di the relative deadline, and φi the routing path. These
parameters are given with the interpretation that each flow fi releases a potentially infinite
number of transmissions. The γth instance of those transmissions, with γ ∈ N, is denoted
as fi,γ , and is released at the time ri,γ , such that ri,γ+1 − ri,γ

def= Ti. Then, in accordance
with the EDF policy, fi,γ is constrained to reach its destination before its absolute deadline,
i.e., di,γ

def= ri,γ +Di. We assume this is a constrained deadline model, i.e., Di ≤ Ti, thus
allowing only a single transmission of flow fi at any time slot.

Note that here Ci is interpreted as the time required by flow fi to be completely
transmitted from source to destination, but when it does not suffer whatsoever interference
from other flows. We thus assume Ci can be computed as Ci = ζi × w (slots), where ζi is
total number of links in the route path φi, and w is the number of transmission slots assigned
to a flow in each link, including retransmissions. We adopt w fixed (as in WirelessHART)
for all the links, thus Ci being exclusively dependent on topology and routing dynamics.
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3.2.1 Supply/demand-based schedulability analysis for EDF
For the sake of completeness, we briefly revisit our prior work on schedulability analysis
for WSANs [6]. Particularly, we leverage on the so-called forced-forward demand-bound
function (ff-dbf) [2] when applied to the WSANs domain, which is a state-of-the-art
supply/demand-bound schedulability assessment for TSCH-like WSANs under EDF [5].

We reproduce here the formal expression for the schedulability test, defined as the
relationship between the supply-bound function (sbf) [20], i.e., the minimal transmission
capacity offered by a network with m channels, and the ff-dbf, i.e., the upper-bound on the
maximum possible demand for a set of real-time network flows F = {f1, f2, . . . , fn} (with
n ∈ N) when evaluated over a given time interval of length `

n∑
i=1

ff-dbf(fi, `) ≤ sbf(`), ∀` ≥ 0 (1)

where the sbf is formally defined as follows

sbf(0) = 0 ∧ ∀`, k ≥ 0 : sbf(`+ k)− sbf(`) ≤ m× k (2)

and the ff-dbf (for TSCH-based WSANs) is defined as

1
m

n∑
i=1

ff-dbfch(fi, `) +
n∑

i,j=1

(
∆i,j max

{⌈ `
Ti

⌉
,
⌈ `
Tj

⌉})
(3)

where ∆i,j denotes the transmission conflicts delay (due to path overlaps) between any pair
of flows fi and fj ∈ F , and Ti and Tj the respective transmission periods of these flows.

I Note. On (1), unlike to the common understanding on multiprocessors [2], the ff-dbf
notion refers to the upper bound on network demand due to the contribution of two
components: (i) channel contention, equivalent to the (core) contention concept on multi-core
platforms, and (ii) transmission conflicts, an abstraction specific to wireless transmission
scheduling. On (3), these two components are formally dissociate as a summation. On
the left side, the expression denoted as ff-dbfch corresponds to the channel contention
contribution, which is equivalent to the expression on multiprocessors, but here it models the
restriction imposed to network flows to be simultaneously scheduled on different channels (see
[6] for the complete expression of ff-dbfch). On the right side, the expression designates
the contribution of transmission conflicts, which represents the delay experienced due to
multiple flows encountering on a common node. We also note that this is a key aspect for
the motivation and further understanding of the solution later proposed in the present work.

4 Problem Formulation

Given the network and flow models presented in Section 3, we consider the problem of finding
the optimal set of flow paths Φopt

def= {φopt1 , φopt2 , . . . , φoptn } that minimizes the overall number
of path overlaps between any pair of flows in the network.

I Definition 1. We denote as Ω the overall number of path overlaps between any pair of flows
in the set F def= {f1, f2, . . . , fn}. Particularly, Ω is the sum of all the individual node overlaps
δij between the routes of any pair of flows fi and fj in the set F , where i, j ∈ [1, n] ∧ i 6= j.

I Definition 2. We denote as F0
def= {f0

1 , f
0
2 , . . . , f

0
n} the original set of flows in the network

which set of flow paths Φ0
def= {φ0

1, φ
0
2, . . . , φ

0
n} is obtained using a conventional (hop-count)

shortest-path algorithm, ergo Ω0 is the respective overall number of path overlaps for Φ0.
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I Definition 3. We denote as Fk
def= {fk1 , fk2 , . . . , fkn} (with k ∈ N) the kth variation of the

set of flows F0 when a sub-optimal set of routes Φk
def= {φk1 , φk2 , . . . , φkn} is considered, thus

Ωk is the kth overall number of path overlaps produced.

Given a network graph G, an initial solution Φ0 with respective Ω0, and a number of
kmax ∈ N sub-optimal sets of routes Φk, we formulate the problem of minimizing Ω as follows:

minimize
k

Ωk =
∑

∀i,j∈[1,n]∧i6=j

δi,j(Φk)

subject to k ∈ [1, kmax],
Φk ∈ [Φ1,Φkmax ]

(4)

where δi,j(Φk) is the number of node overlaps between the routes of the flows fki and fkj
∈ Fk (i.e. δkij), ∀i, j ∈ [1, n]∧ i 6= j. The result is Ω = Ωmink , i.e., the minimal overall number
of overlaps within all the kmax possible sets of flow paths [Φ1,Φkmax

]. We denote as Φopt

the set of optimal routes, to any of the Φk sets of flow paths that produce Ωmink .

I Note. Each individual route φki in Φk is defined as a sub-optimal version of the shortest-
path φ0

i , i.e., the route length ζki of φki is always greater than or equal to ζ0
i . In the same

way, each individual transmission time Cki of fki is always a sub-optimal version of C0
i , thus

Cki being always greater than or equal to C0
i . Yet, we make clear that a larger Cki does not

necessary implies a larger Ωk, and vice-versa. We also note that although, in general, a larger
Cki may lead to larger end-to-end delays, we conjecture that this impact is less detrimental
than the impact of flow path overlaps, thus we target to minimize this latter factor.

5 Proposed Solution: Minimal-Overlaps (MO) Greedy Heuristic

We propose an approximate method to solve the problem formalized in (4). The approach is
based on a greedy heuristic that recommends a single set Φk at each kth iteration, and then
computes the corresponding Ωk. The smallest of the Ωk after kmax iterations is designated
as Ωmink , which is reported at the last iteration. We detail the proposed method as follows:

Step 1 (Initial solution)

At k = 1, Φk = Φ1 is computed as function of the path overlaps resulting from Φ0, i.e.,
from the initial set of (hop count) shortest-paths, and from the graph G = (V,E).
Φ1 is computed as the set of (weighted) shortest-paths of G1 = (V,E1), a modified
version of the unitary-weighted G whose set of edges is weighted as function of the
node-overlapping degree derived from the set of flow paths Φ0.
The cost function Wi,j(u, v) that weight any edge (u, v) in G whose nodes u and v ∈ V
are simultaneously in any pair of routes φ0

i and φ0
j ∈ Φ0 is defined as follows:

Wi,j(u, v) = 1 +
δ0

i,j∑
e=1

ψ (5)

where ψ ∈ R is an arbitrary factor2, and δ0
i,j is the number of node overlaps resulting

from the routes φ0
i and φ0

j ∈ Φ0, ∀i, j ∈ [1, n] ∧ i 6= j.

2 The arbitrary factor Ψ is a user-defined parameter, here assumed as constant, but that can be optimized
to provide better (e.g., faster) solutions for Ωmin

k . Yet, this aspect is not covered in this work.
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Therefore, Φ1 is the resulting set of (weighted) shortest-paths over G1, and Ω1 the
corresponding overall number of overlaps for Φ1.
If Ω1 < Ω0, then Ωmink = Ω1, else Ωmink = Ω0.

Step 2 (Greedy search)

For any k ∈]1, kmax], the search for a Ωmink is generalized.
Gk = (V,Ek) is defined as the modified version of G(k−1) = (V,E(k−1)), whose set of
edges is weighted using the following cost function due the node-overlapping of flow paths:

W k
i,j(u, v) = 1 +

δ
(k−1)
i,j∑
e=1

ψ (6)

where δ(k−1)
i,j results from the routes φ(k−1)

i and φ(k−1)
j ∈ Φ(k−1),∀i, j ∈ [1, n] ∧ i 6= j.

Φk is thus computed as function of the path overlaps resulting from the set Φ(k−1).
If Ωk < Ωmink , then Ωmink = Ωk, else Ωmink = Ωmink .

Step 3 (Best solution)

At k = kmax, the algorithm finishes and provides Ωmink , i.e., the minimal overall number
of overlaps within all the kmax Φk sets recommended. Note that the quality of Ωmin

k

will depend on the quality of the generated Φk sets, as well as on the total number of
iterations.
The optimal set of routes Φopt is thus the Φk which provides Ωmink .

6 Performance Evaluation

We report here the relevant information for the data sets generation and performance
evaluation of both, the proposed minimal-overlap (weighted) shortest-path method denoted
as MO, and the baseline (hop-count) shortest-path method, denoted as SP. We present the
assessment of the real-time performance through the schedulability ratio metric by considering
varying network topologies and workload conditions. We further assess the influence of
varying topologies and workload on the number of overlaps, routes length, channel contention
and transmission conflicts. We show that MO significantly outperforms SP in terms of
schedulability ratio, number of overlaps and transmission conflicts, while having marginal
impact on the average length of the routes and channel contention.

6.1 Simulation setup
The configuration details related to the generation of random network topologies and real-time
network flows are described next:

Network topologies

We prepared a set of 100 network topologies built upon the random generation of network
graphs. Each graph was created based on a sparse uniformly distributed random matrix of
size NxN (with N ∈ N) and density Λ (with Λ in [0, 1] ∈ R). Each sparse matrix acted as
an adjacency matrix for the graph generation. The size of the sparse matrix (NxN) as well
as the number of vertices in the graph (N) were fixed for all the simulation instances. We
set N = 66 as in [19], for benchmarking purposes. The vertex with the highest betweenness
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centrality3 was chosen as gateway, while the rest N − 1 vertices represented field devices
and access points. A subset of n ⊂ N of field devices is chosen as sensors, thus assumed
to periodically transmit data to the gateway. For comparison, the range of n varied within
[2, 22] as in [19]. We considered varying values of Λ = λ

N , where λ indicates the median
vertex degree of the graph. We controlled Λ by varying λ ∈ N in the range [4, 12]. We
justify this choice since in practical WSANs deployments, each node is typically required
to be connected at least to other 3 nodes (i.e., λ ≥ 3). We note that, in general, this setup
provided connected graphs, but in the few cases that nodes were disconnected, we forced a
random connection (edge) with any of the other connected vertices.

Given the above configuration, we generated a set of shortest-path (hop-count) routes
between the set of n sensors and the gateway, for each graph, thus providing 100 instances of
sets of n routes for the baseline method. In the case of the MO method, the set of routes
was generated from the baseline, but taken into consideration the degree of node-overlapping
between routes as described in Section 5. The proposed set of (minimal-overlap) routes is thus
the result of the evaluation of kmax edge-weighted versions of each baseline graph instance.
On the weight functions, we used the arbitrary factor Ψ as equal to the graph density, i.e.
Ψ = Λ, for all the cases. We considered this value based on empirical observations. For the
sake of scalability, we considered for all the experiments kmax = 100 . We observed that a
greater number of iterations (kmax) can lead to a lower node-overlapping degree, but at the
cost of higher execution times; thus we do not further explore this factor. Note that in the
case of overall number of overlaps Ωk that reaches zero, the algorithm stops.

Network flows

We consider a random set of n ∈ [2, 22] real-time network flows for each of the 100 topologies
generated. The complete set of flows corresponds to the set of periodic data transmissions
generated by the n ⊂ N sensor nodes in the graph. Each of these flows fi is characterized
by a 4-tuple (Ci, Di, Ti, φi) following the model described in 3.2. Each Ci represents the
effective transmission time (in slots) for the route φi, and can be obtained directly from
the product of the number of hops (links or edges) traveled by the path φi from source
to destination, and the number of transmissions assigned to each slot (we assume w = 2,
as in WirelessHART). Thus, each of the 100 random graph instances is also generating,
randomly, the Ci and φi occurrences. Hence, being applicable for both the MO and the SP
methods. The corresponding Ti periods were assumed as random harmonically generated
in the form of 2η time slots, with η ∈ N in the range [4, 7] (as in [19]). This assumption
leads to a direct computation of the hyperperiod H ∈ N (a.k.a, superframe length) as the
maximum period within the range of harmonic periods, or as generally defined, the least
common multiple of the set of periods, i.e., H = lcm(T ), where T = {T1, T2, . . . , Tn}. So,
in this case, H = 27 = 128 slots (or equivalently 1280ms). We used H = 128 slots as the
length of the time interval ` for the purposes of schedulability assessment, as well as for the
performance evaluation of all the other metrics. The schedulability was evaluated using the
test presented in 3.2.1, when considering a worst-case ∆i,j as in [11]. Finally, we assume
Di = Ti for all the cases, thus reducing the original problem to an implicit-deadline model.

3 The betweenness centrality metric was chosen to maintain a consistent relevance of the gateway within
the random topologies, thus avoiding an arbitrary gateway position (e.g. at the border). As different
centrality metrics can be defined based on application needs, this consideration requires further research.
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I Note. For the sake of simplicity, we have only considered network flows that travel from
sensors to the gateway, thus the case of uplink deadline-constrained single (non-redundant) set
of paths (as in convergecast). Yet, we note the work can be extended to consider the downlink
component, e.g., by considering additional routes traveling from the gateway to actuators in
a deadline-constrained fashion, both for symmetric or asymmetric (uplink-downlink) routing,
thus including the case of graph routing (as in [11]) with multiple redundant paths (and/or
for multi-cast). We aim to further analyze these aspects in future research works.

6.2 Simulation Results

The average performance of 100 test cases for both the SP and MO methods under varying
network topologies and workload conditions is reported next:

(i) Number of overlaps
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Figure 2 The average number of overlaps under varying number of flows n ∈ [2, 22], and varying
median vertex degree λ = {4, 8, 12}. N = 66 nodes, m = 8 channels.

(ii) Routes length
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Figure 3 The average length of the routes under varying number of flows n ∈ [2, 22], and varying
median vertex degree λ = {4, 8, 12}. N = 66 nodes, m = 8 channels.
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(iii) Channel contention
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Figure 4 The average contention demand under varying number of flows n ∈ [2, 22], and varying
number of channels m = {4, 8, 12}. N = 66 nodes, median vertex degree λ = 4.

(iv) Transmission conflicts
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Figure 5 The average conflict demand under varying number of flows n ∈ [2, 22], and varying
median vertex degree λ = {4, 8, 12}. N = 66 nodes, m = 8 channels.

(v) Schedulability ratio
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Figure 6 The schedulability ratio under varying number of flows n ∈ [2, 22] and fixed number of
nodes N = 66. On top, the case of varying median vertex degree λ = {4, 8, 12} and m = 8 channels.
On bottom, the case of varying number of channels m = {2, 8, 16} and median vertex degree λ = 4.
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6.3 Discussion
The performance comparison of MO and SP in terms the overall (average) number of overlaps
confirms the main intuition behind the proposed method. The greedy heuristic search of
MO albeit sub-optimal is able to effectively reduce the node-overlapping degree in up to half
(and more) of the baseline (Fig. 2). This, depending of the number of flows and network
density (or vertex degree). The exponential growth of the overlaps as function of the number
of flows justifies the need for its mitigation. This trend is also observable in the growth
imposed on transmission conflicts, which directly depends on the number of overlaps (Fig. 5).
The compromise on the route lengths is marginal, whose impact is even negligible on more
connected networks (Fig. 3). The influence on the channel contention is also minor, being
discernible (in practice) only on networks with a lower number of active channels (Fig. 4).
The benefits on the overall network schedulability are clear, regardless of the degree of
connectivity (Fig. 6, top) or the available radio channels (Fig. 6, bottom), but suggesting
superfluous effect on this latter parameter at a given point (see m = 8 and m = 16). All
in all, the prospect for the proposed method is promising, both as a general technique to
reduce the impact on conflict delays on wireless mesh network, or as an specific joint EDF
scheduling and routing framework to provide real-time guarantees on TSCH-based networks.

7 Summary & Conclusion

We have developed an effective real-time wireless routing for TSCH-based WSANs with
packet transmissions scheduled under an EDF policy. The approach based on a greedy
heuristic for path-overlap minimization shown to be successful in reducing transmission
conflicts and improving schedulability, while having marginal impact on contention and
routes length. Simulation results under varying topologies and workload conditions revealed
a remarkable dominance of our approach over the more common (hop-count) shortest path
method. To conclude, we leverage on our prior work on schedulability analysis to frame both
together as a novel joint real-time scheduling and routing framework for TSCH WSANs.
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Abstract
Modern microcontrollers for safety-critical real-time systems use a hierarchical memory system to
increase execution speed and memory capacity. For this purpose, flash memories, which offer high
capacity at low transfer rates, are combined with scratchpad memories, which provide high access
speed at low memory capacities. The main goal is to use both types of memory in such a way that
their advantages are optimally exploited. The target is to allocate runtime-intensive code fragments
with low memory requirements to the fast scratchpad memories. Previous approaches to separate
program code on system memories consider the executed functions as the smallest logical unit. This
is contradicted by the fact that not all parts of a function have the same computing time in relation
to their memory usage. This article introduces a procedure that automatically analyses the compiled
source code and identifies runtime intensive fragments. For this purpose, the translated code is
executed in an offline simulator and the maximum repetition for each instruction is detected. This
information is used to create logical code fragments called basic blocks. This is repeated for all
functions in the overall system. During the analysis of the functions, the dependencies between
them are also extracted and a corresponding call-graph with the call frequencies is generated. By
combining the information from the call graph and the evaluation of the basic blocks, a prognosis of
the computing load of the respective code blocks is created, which serves as base for the distribution
into the fast scratchpad memories. To verify the described procedure, EEMBC’s CoreMark is
executed on an Infineon AURIX TC29x microcontroller, in which different scratchpad sizes are
simulated. It is demonstrated that the allocation of basic blocks scales significantly better with
smaller memory sizes than the previous function-based approach.
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1 Introduction

In modern systems with hard real-time requirements, microcontrollers are increasingly used,
which implement a hierarchical memory layout with different memory technologies. The
reason for this is that memories with a large capacity, such as flash, have a comparatively slow
access time and a significantly reduced bandwidth in contrast to fast scratchpad memories
based on Static Random-Access Memory (SRAM). In comparison, the disadvantage of SRAM
is that it requires a lot of space on the wafer during manufacturing, which significantly

© Philipp Jungklass and Mladen Berekovic;
licensed under Creative Commons License CC-BY

Second Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2021).
Editors: Marko Bertogna and Federico Terraneo; Article No. 3; pp. 3:1–3:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:philipp.jungklass@iav.de
mailto:berekovic@iti.uni-luebeck.de
https://doi.org/10.4230/OASIcs.NG-RES.2021.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


3:2 Static Allocation of Basic Blocks

increases production costs. For this reason, the manufacturers of such microcontrollers try to
combine these two types of memory efficiently with each other, thus exploiting the advantages
of both technologies and reducing the disadvantages [13] [14].

Table 1 Relation of the memory sizes of microcontrollers for real-time systems [7] [15] [18] .

Microcontroller Flash-
Memory /KB

SRAM-
Memory /KB

Infineon AURIX TC29x
(3 processor cores)

Code: 8192
Data: 1024

Code: 96
Data: 600

Texas Instruments TMS320F2838x
(5 processor cores)

Code: 1536
Data: -

Code: -
Data: -

ST SPC58 family
(3 processor cores)

Code: 6144
Data: 256

Code: 48
Data: 160

As table 1 shows, the storage capacity of SRAM-based memories is significantly smaller
compared to flash memories. It should also be noted that all specifications refer to the
respective overall system. Therefore it is important to note that, for example, the Infineon
AURIX TC29x provides a relatively large SRAM memory of 96KB for code execution, but
this is divided among the three processor cores, so that only 32KB is directly available for
each core [7]. The great potential of these small but powerful memories is that the fast access
times significantly increase the execution speed. In case of the already mentioned Infineon
AURIX TC29x, code from the local SRAM memory of the corresponding processor core
is executed 3.5 times faster than using the flash memory. Furthermore, by allocating local
copies of selected code parts to the respective SRAM memory of the cores, the number of
concurrent accesses can be reduced significantly, which is particularly relevant for real-time
multicore systems [16] [12] [8]. Due to the limited memory capacity it is essential to evaluate
which code fragments should be allocated in these memories. As these code fragments
are needed more frequently, the increased execution speed has a greater influence on the
performance of the overall system. For this reason, this article presents a procedure that
analyzes the code at instruction level and allocates particularly runtime-intensive basic blocks
to the fast scratchpad memories. For this purpose, the call frequency is set in relation to
the memory consumption, with the goal of an optimized usage of the fast memory. The
structure of this article is divided into six chapters. After the introduction, related work as
well as the previous optimization approaches are presented. This is followed by a description
of the developed concept, which is implemented practically in the fourth section. To prove
the functionality, the presented method is applied to the CoreMark of EEMBC in the fifth
chapter. Finally, the results are discussed and an outlook on future extensions is given.

2 Related Work

Previous work on optimizing the use of existing scratchpad memory can be divided funda-
mentally into two categories. In static distribution, the allocation of code and data takes
place during development and is fixed at system runtime. The advantage of this approach
is that a static allocation can more easily be mapped in a timing model. This is necessary
for the calculation of the Worst-Case Execution Time (WCET), which is mandatory for
the certification of a safety-critical real-time system. The disadvantage, in contrast, is the
sometimes suboptimal utilization of the small scratchpad memory, which cannot realize its
speed advantage optimally, depending on the execution path. Dynamic approaches try to
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compensate this by adapting the contents of the scratchpad memory at runtime according to
the program flow. It should be noted, that dynamic approaches cause an overhead due to
copy processes and the associated administration, that should not be underestimated.

2.1 Static Allocation
In [10] a procedure for the static distribution of code and data into the available memory of a
real-time multicore system is shown. For this purpose priorities are calculated for all functions
and variables in the system, which result from the call frequency as well as the number of
concurrent accesses. Depending on the priority, the code and data are distributed to the
memories in the system and local copies are created if necessary. In contrast to this work, in
the article, functions are defined as the smallest allocatable unit, whereby less frequently
executed code paths are also allocated to the scratchpad memory. A further approach of
static separation is discussed in [2]. The article describes a compiler strategy for distributing
the stack and global variables into the Random-Access Memory (RAM) of the microcontroller.
As boundary conditions for the procedure the renouncement of an Memory Management
Unit (MMU) as well as the use of a Non-Uniform Memory Access (NUMA)-based memory
management is demanded. Analogous to the method presented in this article, the execution
speed shall be improved by an optimized memory distribution depending on the call frequency.
In contrast, the analysis is limited to global variables and the separation of the stack. In
the article [9] and [11] approaches for the optimization of explicit intercore communication
in multicore systems are presented. The concepts are based on the assumption that shared
variables should be allocated to the local scratchpad memory of those processor cores that
access it more often. The two methods have a similar approach, but differ in their respective
implementation. In contrast to the procedure described here, the concepts in the two articles
are limited to the allocation of variables for intercore communication.

2.2 Dynamic Allocation
One possibility for the dynamic use of scratchpad memory is described in the approach [13].
For the presented procedure the functions are divided into basic blocks in the first step. In the
second step, the basic blocks are determined, which are called in the Worst-Case Execution
Path (WCEP). Then these basic blocks are allocated to the fast scratchpad memories, which
increases the execution speed. In contrast to the approach in this article, the described
concept uses dynamic memory management, which reloads the basic blocks as required. As a
result, there is no evaluation or prioritisation of functions among themselves, which would be
necessary for static memory management. Instead, an offline evaluation of the basic blocks is
carried out to determine if they are qualified for reloading at runtime, because the copy time
causes a significant overhead, which has to be compensated by the increased execution speed.
In [19] a method is described which optimizes concurrent accesses to shared memory in
real-time capable multicore microcontrollers. For this purpose the scheduling of the operating
system is extended, whereby a task consists of three phases. In the first phase, all required
data is loaded from the shared memory into the local caches of the processor cores before
it is executed in the second phase. In the last phase, the generated results are copied back
into shared memory. Although the procedure in this article focuses on caches, this method
is also possible when using scratchpad memories. In contrast to the concept in this article,
dynamic memory management is implemented here to reduce competing accesses. However,
in order to reduce the number of concurrent accesses, all possible paths of a task must be
completely copied to the local memory. Only in this case copying phases during execution
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can be effectively prevented. However, this also copies paths of a task whose computing time
has no significant influence on the runtime. The method presented in the article [4] describes
a procedure that dynamically allocates basic blocks into scratchpad memory based on their
call frequency. To reduce the overhead of dynamic memory management, basic blocks with
a fixed size are used, which can compensate the problem of fragmentation. The problem
is, fixed-size memory blocks are not always completely filled, which in effect reduces the
efficiency of memory usage.

3 Concept

The concept described here is to identify code fragments within a function that have a high
runtime and low memory requirements. For this purpose, the translated code is analyzed
in an offline simulator and the minimum and maximum execution frequency is determined
for each instruction. In addition, the memory requirements of each instruction and its
execution time in clock cycles are extracted from the processor architecture description. This
information can be used to create a table for each function, which contains all the data
required to evaluate each instruction. The goal is to allocate the particularly computationally
time-intensive areas of a function to the fast scratchpad memories of the microcontroller,
which allows the low capacity of these high-performance memories to be used more efficiently.
The procedure is illustrated using listing 1 as an example.

1 /∗ func t i on to copy the message from
2 r e c e i v e bu f f e r in d e s t i n a t i on bu f f e r ∗/
3 uint32 CopyMessage ( u int8 ∗ dest , u int32 l ength )
4 {
5 /∗ return value ∗/
6 uint32 errorCode = TRUE; /∗ TRUE = 1 ∗/
7
8 /∗ check the maximum bu f f e r l ength ∗/
9 i f ( l ength <= 32)

10 {
11 f o r ( u int32 i = 0 ; i < length ; i++)
12 {
13 /∗ copy the r e c e i v ed byte from r e c e i v e
14 bu f f e r ( rb ) in to d e s t i n a t i on bu f f e r ∗/
15 ∗ dest++ = rb [ i ] ;
16 }
17 }
18 e l s e
19 {
20 /∗ i n v a l i d l ength ∗/
21 errorCode = FALSE; /∗ FALSE = 0 ∗/
22 }
23 re turn errorCode ;
24 }
25

Listing 1 Example CopyMessage: Source code (ANSI C)

The minimal example in the listing contains a function which copies the data from a
global array rb[] byte by byte into a target memory, whose address is passed to the function
as bytepointer dest. To avoid memory overflow, the requested variable length is checked
for the maximum value of 32 before copying. Depending on the result of the check, the data
is copied to the target memory or a corresponding error message is returned to the calling
function. Using the C code shown here, it can already be estimated that the runtime is
primarily dependent on the length of the data to be copied.
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3.1 Machine Code Analysis
In the first step of the analysis, the source code for the target platform is compiled. The
reason for this procedure is that modern compilers support a variety of optimizations that
take into account architectural characteristics like jump predictions, superscalar architectures
or errors in processor design. Therefore, depending on the configured optimization level, the
translated machine code can differ massively from the original source code. To ensure that
the available scratchpad memory can still be used efficiently, the translated machine code is
therefore used as the basis for optimization.

In the example shown here, this is done for an Infineon AURIX TC29x, using the Tasking
Compiler in version 6.2r2 with the optimization level O0 as compiler. The result can be taken
from the commented listing 2.

1 mov d2,#1 ;Move
2 mov d15 ,#32 ;Move
3 j g e . u d15 , d4 , .L5 ; Jump i f Greater Than or Equal
4 j .L17 ; Jump Uncondit iona l
5 mov d15 ,#0 ;Move
6 j .L14 ; Jump Uncondit iona l
7 movh.a a15 ,#@his ( rb ) ;Move High to Address
8 l e a a15 , [ a15 ] @los ( rb ) ; Load E f f e c t i v e Address
9 addsc .a a15 , a15 , d15 ,#0 ;Add Scaled Index to Address

10 l d .bu d0 , [ a15 ] ; Load Byte Unsigned
11 s t . b [ a4 ] , d0 ; Store Byte
12 add.a a4 ,#1 ;Add Address
13 add d15 ,#1 ;Add
14 j g e . u d15 , d4 , .L16 ; Jump i f Greater Than or Equal
15 j .L7 ; Jump Uncondit iona l
16 j .L18 ; Jump Uncondit iona l
17 mov d2,#0 ;Move
18 j .L19 ; Jump Uncondit iona l
19 r e t ; Return from Cal l
20

Listing 2 Example CopyMessage: Source code (machine code)

With the help of the Infineon TriCore Simulator (TSIM) the translated code is executed
and combined with the information from the processor architecture description. The result
is shown in the table 2.

As it can be seen in the table 2, the offline simulator analyzes all paths of the function and
determines the minimum and maximum call frequency for each instruction. This information
is combined with the memory requirements and the runtime. This combination of parameters
is used to identify fragments that require a lot of computing power. Additionally, the WCEP
is determined for each function. This procedure is particularly interesting for safety-critical
real-time systems, because only the WCET is relevant for the evaluation of such systems.

3.2 Basic Block Prioritisation
After the identification of the relevant blocks, a prioritisation is carried out. In the first
step, all basic blocks along the WCEP are evaluated regarding of their runtime. Due to the
focus on real-time systems, these fragments receive the highest priority within the function.
Subsequently, all other paths are examined for their optimization potential. After completion
of this analysis, all basic blocks of this function have a priority based on their call frequency,
with the WCEP having the highest rating. The formula (1) describes the calculation.

pf (bb) =
imax∑
i=0

(emax(i) · rmax(i)) + pWCEP (1)
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pf (bb) Priority of the basic block bb within the function f

emax(i) Maximum execution freqency of instruction i

rmax(i) Maximum runtime of instruction i

pWCEP Additional priority for the WCEP

As the procedure presented here is a static memory allocation, a dynamic adjustment
of the scratchpad contents at runtime is not possible. In fact of this, it is not sufficient to
prioritise only the basic blocks within a function. It is also necessary to consider the call
frequencies of the individual functions in the overall system in the evaluation. For this reason,
all function jumps and their frequency are logged during the analysis of the functions and
used to construct a call graph. On the basis of this information, the call frequency can be
determined for each function, which is then included in the prioritisation of the basic blocks.
The following formula (2) illustrates the procedure.

ps(bb) = emax(f) · pf (bb) (2)

ps(bb) Priority of the basic block bb within the system s

emax(f) Maximum execution freqency of function f

Table 2 Example CopyMessage: memory usage, runtime and call frequency.

Instruction Memory usage
/Byte

Runtime
/Ticks

Execution
frequency
Min/Max
/Ticks

mov d2,#1 4 1 1/1
mov d15,#32 4 1 1/1
jge.u d15,d4, .L5 4 1 1/1
j .L17 4 1 0/1
mov d15,#0 4 1 0/1
j .L14 4 1 0/1
movh.a a15,#@his(rb) 4 1 0/32
lea a15,[a15]@los(rb) 4 1 0/32
addsc.a a15,a15,d15,#0 4 1 0/32
ld.bu d0,[a15] 4 1 0/32
st.b [a4],d0 4 1 0/32
add.a a4,#1 2 1 0/32
add d15,#1 2 1 0/32
jge.u d15,d4,.L16 4 1 0/33
j .L7 4 1 0/32
j .L18 4 1 0/1
mov d2,#0 4 1 0/1
j .L19 4 1 1/1
ret 4 4 1/1
Total 72 22 10/300
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3.3 Basic Block Separation
The basic blocks are separated by jumps, which are already contained in the machine code.
Only the address have to be manipulated. By this procedure both the runtime and the
memory consumption can be kept constant. Ideally, most compilers generate entry and
exit jumps during the translation of loops, which are suitable for this modification. In the
example from listing 2 used here, the jump instructions in line 6 and line 16 are used for
this purpose. Analogous to the procedure with loops, this is also done with branches, which
are also implemented using conditional jump instructions. Depending on the architecture
used, however, it must be taken into account that often only one branch path is reached by
a jump. This becomes clear in listing 2, where in line 3 the conditional jump is executed. If
the check is unsuccessful, the following line is executed, but without a jump. In fact of this,
care must be taken during compilation that the runtime-intensive path is always reached via
a jump, so that this can be allocated to the fast scratchpad memory if necessary. Applying
the presented concept to the example shown here results in all instructions from line 7 to line
16 inclusive being allocated to the fast scratchpad memory. By this procedure the required
memory can be reduced from 72 bytes, when allocating the complete function, to 36 bytes.
Despite the 50% reduction in memory requirements, 290 of the 300 required instructions are
executed from scratchpad memory in the case of WCEP.

4 Implementation

The offline simulator for the analysis of the translated machine code basically consists of
the components shown in figure 1. As input variables, the simulator receives a description
of the microcontroller, which contains the addresses of the memories, the addressing types
and the instruction set. On the other hand the translated machine code is entered into the
simulator. Both input files are then processed by a parser, which converts the information
into an uniform format. This input parser is intended to enable easy expandability for further
microcontroller architectures or compilers. In the next step, the code is analyzed using the
concept described in chapter 3 and then the priority for each basic block is calculated. Using
the knowledge gained, an optimized memory allocation can be calculated in the next-to-last
step with the help of the allocation block. At last, a modified copy table as well as the
corresponding linker script will be created using two generators.

4.1 Basic Block Separation
After the complete analysis of all functions in the overall system and their prioritisation,
the jump instructions in the compiled machine code are manipulated to separate the basic
blocks. In general, modern microcontrollers use an instruction set that provides a large
number of such instructions. These jump instructions can be divided into two categories.
The first category consists of absolute jumps, which refer directly to an address in memory.
In contrast, the second variant always uses relative jumps in relation to the current address.
For example, a relative jump can refer to an address that is 20 bytes further in memory. The
advantage of these relative jumps is their reduced memory requirement, since no complete
address has to be stored. The disadvantage is their reduced range, since it is only possible to
refer to a much smaller memory area. In order to implement the method presented in this
article, it must be possible to implement a jump to the scratchpad within a function allocated
in the flash memory. Depending on the microcontroller used, absolute jumps are absolutely
necessary for this, since the two types of memory often use different address ranges. For the
Infineon AURIX TC29x used in this article, the absolute addresses for the different memories
are listed in the table 3.
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Microcontroller

Description

Offline Simulator

Machine Code

Instruction Set Parser Machine Code Parser

Machine Code Analysis

(Basic Block / WCEP Identification)

Allocation

Copy Table Generator Linker Script Generator

Copy Table Linker Script

Priority Calculation

Figure 1 Offline Simulator - Detailed Design.

Table 3 Infineon AURIX TC29x - Code Memory Addresses [7].

Memory Address Range Size/KB
Code Scratchpad (CPU0) 0x7010.0000-0x7010.7FFF 32
Code Cache (CPU0) 0x7010.8000-0x7010.FFFF 32
Flash 0x8000.0000-0x807F.FFFF 8192

The relative jumps of the TriCore architecture of the AURIX use one byte for addressing,
which allows a maximum jump width of 512 bytes with an addressing granularity of two
bytes. As a result, it is only possible to switch between the flash memory and the scratchpad
with an absolute jump. Due to the fact that a relative jump requires less memory space
compared to an absolute jump, this creates a problem because the two types of addressing
cannot simply be replaced. There are three different approaches to solve this problem, which
are explained in the following sections [6].

4.1.1 Absolute Jumps
Modern compilers offer the option to avoid relative jumps in memory by various configuration
settings, whereby only absolute addresses are used. The advantage of this variant is that
the used addresses in the memory can be easily replaced. The disadvantage is the increased
memory consumption of this method, which results from the exclusive use of absolute
addresses. One way to reduce this problem is the specific use of compiler commands in the
source code, whereby the use of absolute addresses is only applied at defined positions.

4.1.2 Jump Table
If the compiler that is used, does not provide an option to disable relative jumps, an additional
jump table in memory can be used. For this purpose, a table containing the absolute addresses
is stored in memory near the function to be optimized. The relative jumps within the function
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are manipulated in such a way that they refer to the correct lines within the table where
the absolute address is located. The advantage of this implementation is that no support
from the compiler is required. In contrast, the jump table occupies additional memory and
each jump into the fast scratchpad requires an additional relative jump into the table before
the actual target address is reached. This increases the runtime, which must be taken into
account in the evaluation of the separation.

4.1.3 Memory Reservation
Another possibility is to reserve additional memory space directly next to a relative jump
instruction. This can be achieved by integrating so-called zero-operations already in the
C code. After compiling the source code, the memory space of the relative jump and the
zero-operation is used to integrate an absolute jump. Similar to the jump table, this procedure
does not require any support from the compiler. However, this variant requires a complex
analysis to integrate the required zero-operations at the correct position in the source code.

4.2 Basic Block Allocation
To copy the selected basic blocks into the scratchpad memory of the microcontroller, the copy
table must be extended accordingly. Using the copy table, the microcontroller copies the
required functions and variables into the system’s RAM during the startup code. Since this
table is automatically created by the compiler during the compilation process, this causes
a problem. In general, most compilers only allow complete functions and variables to be
allocated to the scratchpad memory. For this reason the copy table is extended by a script
to include the corresponding entries. In addition, the required memory is reserved in the
linker script by means of a dummy section, with an adjusted size according to the required
memory.

5 Experimental Results

The CoreMark of EEMBC in version 1.0 is used to prove the functionality. The reason for
choosing the CoreMark as benchmark is that it is available in open source and has already
been used in other publications. This circumstance makes it easier to relate the results of
this article to the overall context of previous publications. Furthermore, the CoreMark was
developed with a special focus on the evaluation of embedded microcontrollers and also offers
multicore support.

The microcontroller used is an Infineon AURIX of the first generation, type TC29x with
three processor cores, which is operated with a clock frequency of 200 MHz. The Infineon
AURIX family uses the proprietary TriCore architecture, which is a modified Harvard
architecture. Therefore each processor core has two interfaces, one for data and one for code.
Each of these interfaces has two memories, one is a cache and one is a scratchpad RAM. The
communication between the cores and the connection to the global memories is done via a
crossbar. The basic structure can be seen in the figure 2. The memory sizes are described in
the table 4.

For compiling the source code of the CoreMark, the TASKING compiler in version 6.2r1
for the TriCore architecture is used. The translation process of the this compiler is done
in three steps. In the first step the C code is compiled into the Src format, which is then
translated into the machine code by the assembler in the second step. At last the code is
combined by the linker and allocated to the corresponding memories. The configurations for
all steps used in this article can be taken from the table 5 [17].
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Figure 2 Infineon AURIX TC29x - Basic Memory Layout [7].

For the manual validation of the generated results of the offline simulator all optimization
levels of the compiler as well as the linker are deactivated. This configuration generates entry
and exit jumps for loops, which are required for the separation of the basic blocks in this
test series. Another special feature of the assembler configuration is the avoidance of relative
jumps. With the settings made in this experiment, all jumps are implemented absolutely,
which, as already described in chapter 4, is one way to separate the program code [17]. The
previous approach to distributing source code to the available memory in the system is based
on the call frequency and the memory consumption of the respective functions. For this
purpose, the maximum number of times the individual functions are called during a defined
period of time is determined. The call frequency is used to calculate their priority and the
functions with the highest priority are allocated to the fast SRAM memory until it is filled
completely. For this comparison, this method is taken as a reference. Therefore, in the
first step, the maximum call frequency and its memory consumption is determined for each
function of the CoreMark. The table 6 shows the number of calls at 20,000 iterations for each
function, whereby the ordering already corresponds to the priorities calculated. For better
overview, only the functions that are called during the benchmark measurement are listed.

In the table 7, the decomposition into basic blocks is carried out for three functions
as an example. For the purpose of better overview, only those basic blocks are shown
that are relevant for the proposed optimization. The remaining instructions within this

Table 4 Infineon AURIX TC29x - Memory Dimen-
sioning [7].

Category Memory Size/KB
Local Data Scratchpad 240

Data Cache 8
Code Scratchpad 32
Code Cache 32

Global Flash 8192
SRAM 32

Table 5 TASKING Compiler 6.2r1 -
Configuration.

Utility Configuration
C-Compiler -O0
Assembler -OgS
Linker -O0
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Table 6 EEMBC CoreMark 1.0 - Call Frequency and Memory Usage (Functions).

Function Name Call
Frequency

Size
/Byte

ee_isdigit 78400000 44
core_state_transition 20480000 644
crcu8 11680008 92
crcu16 5840004 32
crc16 5240004 16
calc_func 4442360 240
cmp_idx 4161115 76
core_list_find 4120000 106
core_list_reverse 4080000 38
cmp_complex 2221180 44
crcu32 1280000 36
matrix_sum 320000 128
matrix_add_const 160000 74
core_bench_state 80000 422
matrix_test 80000 272
matrix_mul_matrix_bitextract 80000 162
matrix_mul_matrix 80000 146
matrix_mul_vect 80000 112
matrix_mul_const 80000 74
core_bench_matrix 80000 52
core_list_mergesort 60001 290
core_bench_list 40000 440
core_list_remove 40000 46
core_list_undo_remove 40000 40
Total 3626

function are only executed once per function call. In fact of this they cannot be used
for further decomposition. For each of the basic blocks, the repetition during the entire
benchmark execution is specified, which is calculated from the call frequency of the function
and repetitions within the function. In addition, the memory requirements for each basic
block in the scratchpad are also specified.

All basic blocks in the table 7 are loops which, due to their repetitions, cause a high
computing load with low memory consumption. The basic blocks of the matrix_sum function
are special because they are nested loops. However, since the analysis of the machine code
is performed at the instruction level, the oflline simulator detects this structure due to the
different execution frequencies.

In the measurement, which is shown in figure 3, the presented method is set in relation to
the previous approach. To evaluate the two allocation strategies, the CoreMark is executed
with different scratchpad sizes. In the function-based approach, the functions are allocated to
the fast memory in the order of their priority, which is shown in table 6. For a comparison of
the two approaches, the distribution of the basic blocks is done according to a similar scheme.
The advantage of the basic block allocation is the finer granularity. Due to the fact that
functions often contain execution paths that are rarely processed, function-based allocation
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Table 7 EEMBC CoreMark 1.0 - Call Frequency and Memory Usage (Basic Blocks).

Function Name Basic Block Call
Frequency Total

Size
/Byte

crcu8 93440064 72
matrix_sum 2880000 14

25920000 90
core_bench_list 4080000 192

1120000 32
1160000 32

is less efficient when using the small scratchpad memory. The difference is particularly
noticeable at the beginning of the measurement series, where the execution time decreases
significantly faster with the basic block-based method. The disadvantageous course of the
function-based procedure is caused by the fact that the function core_state_transistion is
called frequently, but consumes a lot of memory. As a result, additional functions can only be
allocated to the scratchpad once its size exceeds 800 bytes. Analogous to the staged sequence
of the function-based allocation, a similar paragraph for the basic block-based procedure
can be seen at 1 KB. This is a relatively large basic block that is unsuitable for further
decomposition. By using better distribution algorithms, however, the process could be even
better balanced. This should be evaluated in further investigations. Furthermore, it can be
seen in the course that with increasing size of the scratch pad, the two methods converge,
since all frequently used instructions are available in the fast memory. As the CoreMark with
the current settings requires 3626 bytes of memory, the measurement results are identical
from this scratchpad size on.
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Figure 3 Execution Time of the CoreMark 1.0 with different Scratchpad Allocation Methods.

6 Discussion

The main goal of this work is to use the local scratchpad memory more efficiently for the
program code. Especially in systems with hard real-time requirements these memories provide
a fast and deterministic way to increase the execution speed. However, the table 1 shows that
the size of the flash memory is often larger than the program scratchpad by a factor of 85, as
shown in the Infineon AURIX TC29x. As this relation already illustrates, the optimal use of
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the scratch pads is therefore essential for reaching full performance. The method presented
in this article shows a way how the low capacity of the scratchpad memory can be utilized
better. The results on the AURIX platform in chapter 5 clearly show that, in contrast to the
function-based approach, the use of basic blocks scales better with reduced memory sizes.
However, this is at the cost of a slightly increased memory requirement in flash memory
for all variants of separation. This is due to the fact that for absolute jumps, compared
to the relative jumps, the complete address must be stored in memory. This restriction
only exists for Instruction Set Architecture (ISA) that support relative jumps. A further
problem is currently the analysis of the machine code. Particularly in safety-critical systems,
interrupts and external signals are analyzed and it is necessary to react accordingly. Due to
these unpredictable input variables, a realistic estimation of the maximum call frequency
of functions is almost impossible. Furthermore, there are states in every system which are
mutually exclusive, which effects the call frequency of functions. These complex correlations
are extremely difficult to extract and require further investigations for a better evaluation of
the WCET [5] [1]. In previous studies, the code is translated with the optimization levelO0,
whereby only absolute addresses for the jump instructions are generated. By this procedure
optimizations are deactivated too, which have a significant influence on the execution speed.
Therefore the goal is to consider further optimization levels and compilers in future extensions
to achieve more realistic results. For the measurements performed so far, only the CoreMark
from EEMBC was used, which only represents a small number of use cases. For this reason,
a wide range of benchmarks will be ported in future research so that many different memory
access types and patterns in the allocation can be analyzed and taken into account. In
this context, the previous approaches to an optimized storage strategy will be ported and
compared with the concept presented in this article. The intention is to give an overview
which distribution method achieves the best results with which memory access pattern. A
potential extension is the integration of caches in the distribution of the basic blocks. In
contrast to the dynamic use of scratch pads, the address calculation for caches is done
by the microcontroller. Thus, the overhead that would normally occur when calculating
addresses in software can be avoided. However, the use of caches in real-time systems is
associated with significantly higher effort in timing analysis, which in turn makes allocation
more difficult [3]. Furthermore, support for other microcontroller architectures is planned for
future work. The focus will be on multicore architectures, as these will benefit even more
from local scratch pads due to concurrent access to shared memory. By optimizing the use
of these core-exclusive memories, timing anomalies resulting from concurrent accesses could
be prevented even more effectively. For this purpose, the analysis and prioritisation of the
basic blocks would have to be extended accordingly [14].
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Abstract
In the last years, event-based control techniques have been gaining a steadily increasing importance
owing to the advantages they bring, such as reduced network traffic, low actuator wear, reduced
energy consumption of the involved devices. Applying the event-based paradigm in the context of
real-time control opens up new opportunities, but introduces new challenges as well. In this paper
we provide an overview of both opportunities and challenges, outlining the major problems to be
tackled and as a consequence future research directions.
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1 Introduction and motivation

In the last years, the industrial environment has been characterised by the emergence of the
“wireless factory” concept, fostered by paradigms like the Industry 4.0 (I40) and the Industrial
Internet of Things (IIoT) ones. A prominent argument to promote the wireless factory idea is
a strong reduction of cables, and therefore the mitigation of the related problems concerning
for example – and most notably – installation and maintenance.

A key feature of the so emerging scenario is the use of wireless communication techniques
also for control applications [4, 8, 12], where real-time requirements inevitably come into
play. As such, the advantages of wireless communications come at a cost in terms of
1. tighter energy efficiency requirements, as in many cases cabling reduction and system

layout reconfigurability call for battery-operated devices,
2. and increased criticality of band occupation, as one transmission medium can host a large

number of applications, some of which requiring real-time guarantees in terms of latency,
data rate, and so on.

Event-Based Control (hereinafter EBC for short) helps mitigating these issues by trans-
mitting measurement and control data “only when needed”. The consequent energy saving is
quite evident, as a notoriously battery-killing action for wireless devices is the exchange of
data, due to the high power demand of the radio transceiver. Not equally obvious are the
advantages as for band occupation, as these are in fact relevant only when slack reclamation
techniques are employed, allowing other applications to reuse time slots temporarily made
empty as some transmission “was not needed”.
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It is quite intuitive to notice, as our main point, that EBC has a potentially strong impact
on real-time properties, no matter how formulated. As we shall discuss later on, giving
up the periodic transmissions of fixed-rate digital control makes end-to-end latency (from
the occurrence of a physical event in the controlled object till the physical reaction on that
object) involve new phenomena, deeply intertwined with the synthesis of a control law.

Said otherwise, from a real-time perspective, EBC couples control algorithm, processor
and network scheduling in a much tigher and more complicated manner than fixed-rate
control does. As will be shown, for example, the idea itself of latency (a very typical subject of
real-time requirements) needs extending to distinguish a “cyber” latency – the one addressed
in the mainstream real-time literature – and a “cyber-physical” latency. The latter heavily
depends not only on the workload required by the control law, but also on the way that
law is conceived and tuned – an important subject in industrial control, see e.g. [5, 22] –
and even on how the corresponding algorithms invoked by the event-generation mechanism.
Needless to say, therefore, “real-time EBC” poses more than one challenging problem.

In this paper, continuing the research presented in [23], we analyse the real-time EBC
scenario from the control theory and engineering viewpoint, but with an eye on the underlying
architecture and technology as this is made necessary in the light of the considerations just
reported, evidencing some of the new challenges arising when EBC systems coexist with
other real-time applications and proposing possible solutions.

2 Event-based control in a nutshell

The core idea of EBC is to act on the controlled system not periodically, as in standard
digital control, but “only when necessary”. Many meanings can be attributed to this idea
of “necessity”, and since we are not providing here a complete treatise but just the bare
necessary for this paper, we only describe the so-called “Send on Delta” one (SoD for short)
as it is the most widely used in the applications. The very intuitive operation of a SoD
sampler sensor, that triggers a control action by transmitting a new sample of the controlled
variable when this “has varied enough”, is illustrated in Figure 1 and its caption.

y(t)

tq Sensor	"fast"	internal	sampling

Transmissions∓∆	band

Figure 1 Send on Delta (SoD) sampler operation in the periodic case – the sensor transmits a
sample of the controlled variable y(t) at the first integer multiple of the time quantum q where it
differs in magnitude more than ∆ from the last transmitted one.

In practice, one typically completes the mechanism in Figure 1 with a timeout, i.e., makes
the sensor transmit a new sample unconditionally after a number Nto of quanta since the
last transmission. Besides possible influences on stability that we are not discussing herein,
this is an intuitively necessary means to watch over the sensor and check it stays alive.

Rigorously speaking, we are here limiting the scope to periodic EBC, as in the most
general theory events are not constrained to occur at multiples of any time quantum (contrary
to what we are assuming here right from the explanatory Figure 1). However, given the
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clocked nature of any digital computing system, the periodic EBC context is general enough
for us. The reader willing to deepen his/her knowledge can refer e.g. to the recent survey [2]
and its huge bibliography. To give here just a rapid idea about how beneficial a properly
designed EBC can be in terms of saved transmissions, Figure 2 reports a snapshot of the
operation of a properly tuned EBC loop in the presence of typical measurement noise; some
brief explanatory comments are provided in the caption.

0

0.5

1
Set point

Controlled variable

0

0.5

1
Control signal

0 10 20 30 40 50 60

time (s)

Figure 2 EBC in action: set point and controlled variable (top), control signal (centre) and
events (bottom); the transmission saving with respect to fixed-rate control – where these would have
to always occur at the fastest pace observed and needed during rapid signal variations – is apparent;
periodic events when the system is (almost) at rest are due to SoD timeout, and their slow pace
would not suffice to keep the loop under proper control in the face of significant stimuli.

As just said, however, EBC needs to be designed properly, or disasters can occur owing
to the controller not acting timely. From the methodological standpoint, the main issue with
EBC (also in the periodic case) is that the classical theory of fixed-rate sampled-data digital
control ceases to apply, as the time span in between two subsequent control computations is
not constant. In fixed-rate control, ensuring stable and correct operation of the closed-loop
system ultimately calls for a proper choice of the sampling period, and there are established
techniques for this purpose. In our EBC context, the role of the sampling period is played
cooperatively by two actors, namely the time quantum q and the parameters pertaining to
event generation (in SoD, the threshold ∆ and the timeout Nto).

In extreme synthesis, assuming that the control design process follows the very common
modus operandi to first determine a continuous-time controller and then its digital realisation,
obtaining the latter in the (periodic) EBC context means
1. choosing the event generator parameters in such a way that events are generated frequently

enough to ensure closed-loop stability and to not excessively deteriorate performance
with respect to that ideally provided by the continuous-time controller, while at the same
time avoiding too frequent spurious events (owing typically to measurement noise) to not
excessively stress communciation channels, controller and actuator;

2. converting the continuous-time controller to a discrete-time one suitable for updating its
output and state in steps that are not uniformly spaced in time (although distances are
quantised) to get the required control algorithm.

NG-RES 2021
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An important research domain concerns extending tuning techniques conceived for fixed-
rate control realisations, which for industry standard controllers form a large corpus as
shown e.g. in [22], to serve for EBC. But in addition to this research, that concentrates
on syntesising the control algorithm rather than on the underlying architecture, for our
purposes it is worth here noticing that EBC quite apparently revolutionises the usage of
computing and network resources. An immediately noticeable fact is that the said usage is
intrinsically non uniform and can exhibit hard-to-predict bursts, but if one focuses on the
real-time context, there is more. Analysing the so emerging scenario is the subject of the
following sections.

3 New challenges

As mentioned in the introduction, abandoning the “classical” fixed-rate digital control
techniques in favour of EBC, alongside the previously outlined advantages, poses new
challenges from the technological point of view. Some are in fact variations or enhancements
of already known ones, for example in the domain of mixed criticality, while others are
specific to the EBC context. Among the relevant ones, we evidence here a wider variability
of the control latency, tight requirements in terms of network synchronisation and significant
impacts on the schedulability of control tasks. In this section we analyse in detail these
issues, compatibly with space limitations.

Control latency
Event-based control affects latency “as seen by the plant”, that is, the amount of time since
some fact occurs till the controller reacts. Consider, for example, the case of a disturbance
applied to the process input: if a fixed-rate control scheme is used, the controller surely
reacts to the disturbance starting at the first control step immediately following the time
instant when the disturbance effect becomes visible on the controlled variable. From this we
have that the control latency, as seen by the process, is bounded and at most equal to the
width of one additional time step with respect to the process natural response delay. In the
case of EBC, on the contrary, the controller reaction time is affected by various factors, like
the mechanism used to generate events, the presence of a timeout, and others.

Following this brief analysis, we can introduce the concept of “cyber-physical control
latency”, explicitly denoting the influence on the controller response time of two different
components, one attributable to both the network and computing infrastructures - the
cyber part - and the other one - the physical one - to the process structure, through the
event-triggering mechanism.

In the case of a fixed-rate control system, the contribution to the overall control latency
of the physical component is negligible with respect to the cyber one, since the controller will
react to any change in the process output within, at most, one time step, irrespectively of the
process internal state, the extent of output and measurement noises and so forth. From the
point of view of control system’s stability and performance, this represents an good situation:
once the controller step rate has been properly computed and estimates of the amount of
network-induced delay are available, the impact of the control latency on phase margin (one
of the key parameters which allow to describe both control stability and performance) can
be straightforwardly computed and, eventually, compensated with ad-hoc techniques.

On the other hand, with event-based control systems the situation is more difficult: here,
the physical component has a significant contribution on the overall amount of the control
latency, also increasing its temporal variability. This physics-induced latency is ascribable
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y(t)

tq

Threshold

 ∆-induced variable P latency y(t)

tq

Threshold

 Timeout-induced variable P latency

Figure 3 Example of variable physical latency in the case one has to detect when some variable
y(t) exceeds a threshold: P latency variability can come from both the SoD threshold ∆ (left) and
the timeout Nto (right); in either case, moreover, the process state has influences the P latency
variability by dictating – together with the inputs – the variation rate of y(t).

to different phenomena, two of which are now described: one of them, depicted in the left
part of Figure 3, is the rate of variation of the process output variable, determining the time
span between the instant when a perturbed movement of the process output arises due to
an external disturbance and the one when a corrective control action is applied, this one
triggered by the process output variable crossing the threshold inside the event generator.

The other one, shown in the right part of Figure 3, is constituted by process perturbations
causing its output variable to have an erratic behaviour, but inside the event-triggering
dead band: given that the event-triggering threshold has to be chosen appropriately also
considering the maximum tolerable deviation from the reference signal, such phenomena
could anyway be detrimental in terms of control performance. In this situation, the amount of
time before a corrective control action is applied depends on the characteristics of the timeout
mechanism - which is always a good idea to have, to avoid running the closed-loop system in
open loop for excessive amounts of time - periodically and unconditionally triggering a new
control action: in the worst case, the one when the perturbation begins immediately after
the last timeout-triggered control action has been applied, the control latency amounts to
one full timeout period. This problem is apparently an EBC peculiarity, relevant for real
time control as it pertains to latency.

Synchronisation
When an EBC scheme is employed, communications between sensors and controller and/or
controller and actuators can be infrequent, however their timing must be always precise
enough to allow them to happen properly. Although in a fixed-rate control application there
are plenty of signal fronts to keep all the network nodes synchronised, in an event-based one
this may well not be the case: consider, in this respect, that the time between two subsequent
control computations, also in the fixed-rate case, is in general far larger than the time scale
of network protocol transactions.

Another fact worth noticing, as testified by the major industry standards [17, 14, 28]1,
is that Time Division Multiple Access (TDMA) or even polling-based access schemes are
widely adopted when dealing with communication networks for control applications. Since in
periodic EBC adopting TDMA (polling would make no sense) implies that a slot must be

1 There are exceptions like e.g. CAN, but mostly limited to vehicular applications and wired settings,
where the problem of minimising the radio listening consumption does not exist.
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reserved for each possible transmission, bandwidth saving can be jeopardised unless some
slack reclamation technique is in place for non time-critical traffic to opportunistically occupy
unused slots.

The consequent need for the originators of that traffic to carry out a reliable clear channel
assessment apparently tightens the synchronisation needs. Also, in fixed-rate control missing
one sample of the controlled variable is an information loss immediately cured by the next
one. In EBC there can be no “next one” for a long time, causing highly undesired behaviours.
As such, this is an example of pre-existing problem exacerbated by EBC.

Schedulability of control tasks
When dealing with task schedulability in a real-time system, the presence of event-based
control tasks in a task set can have non negligible effects in terms of schedule feasibility and
system overload. Before better analysing these effects, let us consider, for a comparison,
the case of a task set containing only fixed-rate control tasks: here, to each controller (or
group of controllers) corresponds a periodic task with a fixed and know execution period and,
from the schedulability point of view, the problem is the “classic” one of finding a feasibile
schedule for a given set of tasks. On the other hand, event-based techniques, due to their
underlying principle of acting on the plant “only when needed”, pose some concerns for what
regards the scheduling of CPU resources: each control task maintains its requirements in
terms of guaranteed periodic execution, but its contribution to the overall CPU load is not
constant, since it will be executed only sporadically and for a limited amount of time.

When EBC tasks are present, then, the feasibility of a task schedule enters the “cyber-
physical” domain: the same physical phenomena that affect the control latency, shown in the
previous point, can strongly determine the time distribution of an EBC task. In this regard,
we also introduce the concept of “event storm”: it may happen, during the normal operation
of the system, that a large number control tasks, if not all of them, are simultaneously woken
up due as a consequence of some external physical phenomena causing the generation of
controller events. When an event storm occurs, CPU utilisation factor suddenly spikes up to
a value which can be greater than 100%, causing some tasks to miss their deadline.

The key point of such a phenomenon lays in the fact that an event storm is caused by some
event happening in the physical world, and these events are substantially not predictable:
this means that new techniques to ensure proper task schedulability in presence of EBC
applications have to be devised. Similarly to what can be done with TDMA slots, however,
the aperiodic nature of the EBC tasks brings into play also some advantages, allowing to
achieve better CPU and network utilisation by re-assigning the otherwise unused CPU time.

Summing up, the EBC context complicates a priori architecture sizing, because utilisation
bursts can be much higher then in fixed-rate control, and the inherently sporadic (but possibly
transiently concentrated) events, make it hardly possible to figure out hyer-periods to ground
task allocation upon. Said otherwise, EBC strongly affects – to not say just breaks – the
customary connection between real-time and periodic tasks, turning the exception of a
latency-constrained non-periodic task – at least as long as control is the purpose – into the
normal case.

4 Proposals

The sporadic behaviour of EBC tasks, occupying network and computing resources only when
some corrective control action has to be applied, can be favourably exploited to improve the
performances of the computing infrastructure they are based on, for example exploiting the
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approach proposed in [20]. In this section we develop our treatise by analysing the possible
earnings that can be gathered when dealing with schedulability of either CPU or network
resources.

Concerning CPU utilisation, the underlying principle of EBC stating that the controller is
run “only when needed” results in the fact that is no more necessary to have an always running
periodic task for each controller: although the constraint of ensuring enough CPU time to
each (event-based) control task is still present - to not affect the stability and performance of
the closed-loop system - there is now the possibility to re-allocate the otherwise unused CPU
time to other tasks whenever the corresponding controller is in idle state. This, evidently, is
not the case with fixed-rate controllers: since, in this case, the closed-loop system to which
they belong is not designed to be run in open loop - or, at least, the safety of such a behaviour
is not guaranteed -, a value for the control action has to be computed at each time step, even
when the control error is zero. However, as described in Section 3, event-based control tasks
can also have detrimental effects on the feasibility of a CPU schedule in occurrence of event
storms. In this respect, two different approaches are possible: the first one, conservative,
proceeds by considering all the event-based controllers as fixed-rate ones and then requiring
to the schedulability analysis to guarantee that the overall task set never reaches a CPU
utilisation factor greater than 100%. With this approach, an event storm simultaneously
activating all the control tasks does not have a destructive impact on the overall system
performance, while keeping the possibility of reusing empty CPU slots for other non-critical
tasks.

The second approach, applicable when some degradation in the control performance is
tolerable, calls for a subdivision of the event-based control tasks in two sets, whether a
degradation of control performance is acceptable or not. The outcomes of this subdivision,
then, provide some room to safely undersize the required computing resources by making the
scheduling system structured such that, in case of CPU overload - i.e. due to an event storm -
the tasks associated to the control loops accepting a performance degradation are not always
assigned their CPU time, leaving computing resources to the other, more critical, tasks.

The same principle of re-allocating the otherwise unused time slots can be applied to
network resources too. Data transmission on control networks is often managed through
TDMA schemes so as to have an almost constant and known in advance (cyber) control
latency: since each control task is uniquely assigned a transmission slot, all the variable
delays introduced by collisions and access contention are automatically removed. Especially
with battery-operated wireless devices, using event-based control techniques coupled with
a well-synchronised TDMA scheme allows to reach remarkable energy savings, enhancing
the devices’ operating time and reducing the maintenance costs. These advantages, however,
are counterbalanced by a poor utilisation of the wireless transmission medium: the fact that
each transmission slot is uniquely assigned to a control task means that it cannot be reused
whenever the event-based control system is in the idle state, a situation which happens quite
often and for significant periods of time. To avoid wasting this precious bandwidth, various
techniques can be used. One possibility is implementing a slack reclamation technique,
making each network node capable of detecting, for each time slot, if the slot assignee is
effectively transmitting data: if not, that otherwise empty slot can be reused for other
transmissions. For such a mechanism to be feasible, however, a very precise synchronisation
among all the nodes is required, such that the residual synchronisation error is well below
the width of a time slot. Another observation has to be made about which kind of data can
be effectively exchanged through the re-used slots: given how this mechanism works, data
exchange through these slots is affected by a wide temporal variability in terms of available
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bandwidth and latency, both depending on how many slots are effectively available in a
transmission round. Given these characteristics, then, data exchanged through otherwise
empty slots cannot have strict requirements in terms of real-time performance: this, however,
leaves room for all the data transmissions serving ancillary functionalities always present in
an industrial plant, such as non-critical monitoring of process parameters, and signalling and
so on.

Another way for a more efficient utilisation of the available bandwidth from the event-
based control tasks is abandoning the TDMA scheme in favour of a CSMA (Carrier Sense
Multiple Access) one: instead of having uniquely-assigned time slots also for the event-
based control tasks, resulting in the aforesaid bad utilisation of the available bandwidth,
the communication mechanism can be made such that all the packets containing data for
event-based control are exchanged through opportunistic time slots, where more than one
network node attempts to transmit its payload. It is not a mystery that this scheme has
effects on the control latency: lost the guarantees given by a TDMA scheme, the value of the
network-induced latency has to be determined on a probabilistic basis in terms of “worst
case cyber-physical latency”. This expression poses the accent on the fact that the overall
transmission latency is both due to network characteristics and physical phenomena affecting
the access contention to the transmission medium and the generation of events starting a
data transmission. If we go deeply into the problem, however, we have to observe that control
applications are more tolerant to latency issues with respect to others like, for example,
signal processing ones: while in the second case a non-tight latency bound can disrupt the
final results (think to the case of an FFT task: a change in the sample arrival rate shifts the
resulting spectrum), in a control loop the value of latency bounds appears more indirectly,
in terms of stability degree, absence of oscillations, small response time deterioration, and so
forth. A hybrid approach is also possible, by subdividing a transmission round in two parts:
the first one managed through a TDMA scheme for all the event-based control tasks whose
execution is somehow critical and requires for strict bounds on the variability of transmission
latency and the remaining one accessed with a CSMA technique, for all the tasks able to
tolerate a wider variability of the transmission latency.

5 Related work

On the systems and control front, EBC dates back to pioneering works such as [3], where the
idea of lightening the control network load was proposed and developed on a significantly
heuristic basis. Methodological studies on the properties of such newly introduced loops came
in the following decades and yielded neat results, see e.g. [19, 27], while the influences of the
EBC framework on the synthesis of controllers came into the research arena [15, 16]. The
presence of EBC also required new models for the network as seen “externally” by controllers
in terms of dynamic systems [30]. At the same time, pilot and research-targeted realisations
started appearing – see for example [10] and several analogous works – paving the way to
addressing real industrial cases [9, 8].

As already said, a recent and complete survey on the overall subject is [2], while another
one more geared to industrial applications can be found in [11]. Considering this huge research
corpus, the main conclusions for the purpose of our research is that powerful analysis methods
are nowadays available for EBC, but the intertwined effects of event triggering mechanism
and control algorithm are still being explored, so that in fact a systematic approach to tuning
event-related parameters together with those of a control law is still in its infancy – especially
if industry-standard solutions are sought, specifications are tight, the cost of resources makes
rules out over-provisioning a priori, or any combination of the above.
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On the technological side, the problem of resource scheduling in presence of both period
and aperiodic tasks has been already analysed in the past - see, for example, works like [18]
and [13]. On this basis, a good starting point for future works aiming to both improvements
to EBC task schedulability and a more efficient utilisation of CPU time left free by idle EBC
tasks is constituted by the current state of the art on the schedulability of sporadic tasks,
with works like [7, 21, 6].

From the network scheduling point of view, instead, EBC represents a completely new use
case for the current state of the art, for a variety of reasons. The first one is the management
of latency: while in fixed rate control the addition of one time step to the estimated - or
measured - cyber latency is a correct overbound for the total cyber-physical latency, with
EBC this assumption cannot be held true anymore due to the presence of a strong physical
component influencing the total control latency. To this extent, Figure 3 shows two notable
cases. Coming to the transmission protocols for control networks, EBC ideally requires
for schemes allowing for non periodic data transmission but without queues: an unusual
requirement for a transmission protocol from both the cyber and cyber-physical points of
view. The rationale for such a requirement resides in the fact that, for a control system,
a measurement sample arriving “late” to the controller becomes useless, since it conveys
information about an old state of the process, which in the meantime has surely changed.
From this point of view, a network protocol without queues dropping the old packets of favour
of newer ones represents a more effective situation. Given such a scenario, the presence of a
valid scheme for the synchronisation among the network nodes allows for the implementation
of suitable protocols. To this aim, works like [26] and its successive extensions [24, 25] provide
a valuable ground for future developments.

On a wider perspective, the current research activity concentrates on the IIoT paradigm
and on event-based wireless communication [1, 29] but, to the best of the authors’ knowledge,
the problem of cyber-physical latency is hardly mentioned, let alone of a formalisation of the
connected problems.

6 Conclusions

Using event-based techniques for process control brings in numerous advantages, especially
when battery-operated wireless sensors and actuators are involved. However, from the
technological point of view, applying such techniques in a real-time context poses new and
important challenges: in this paper we have briefly analysed these issues with a focus on both
computational and network resources, showing the impact of EBC tasks on the feasibility of
a CPU schedule and the existing trade-offs between energy and bandwidth saving. Another
relevant point is constituted by control latency, which becomes more dependent on the
physical phenomena inherent with the process being controlled. To this aim, we have
introduced the concept of “cyber-physical control latency” and detailed the nature of its
cyber and physical components.

Following the analysis of these new challenges, we have outlined some solutions allowing
for a safe implementation of EBC techniques in a real-time context, also pointing towards a
better utilisation of both CPU and network resources through slack-reclamation techniques.
Future work in this direction points towards a deeper analysis of the issues here presented
followed by the devise of adequate methods for reclaiming the otherwise unused resources.
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Abstract
A current trend of industrial systems is reducing space, weight and power (SWaP) through the
allocation of different applications on a single chip. This is enabled by the continued improvement of
semiconductor technology which allows the integration of multiple cores in a single processor chip, as
the processors are prevented to continue increasing their clock rate due to the “power-wall”. The use
of Commercial-Off-The-Shelf (COTS) multi-core processors for real-time purposes presents issues
due to the shared bus used to access the shared memory. An alternative to the use of multi-core
processors are the many-core processors with tens to hundreds of processors in the same chip, using
different scalable ways to interconnect their cores. This paper presents the adaptation of the M2OS
Real-Time Operating System (RTOS) and its simplified Ada run-time for mesh-based many-core
processors. This RTOS is called M2OS-mc and has been tested on the Epiphany III many-core
processor (referred in this paper simply as Epiphany), a many-core which has 16 cores connected by
a Network-on-Chip (NoC) consisting of a 4x4 2D mesh. In order to have a synchronized way to send
messages between tasks through the NoC independently of the core where they are being executed,
we provide sampling port communication primitives.
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1 Introduction

In the past, the evolution of processors was mostly related to frequency improvement but
since the processors reached a power consumption too high to dissipate, the designers have
been improving the processor’s performance by having more processing cores executing in the
same chip: the multi-core era begun. Multi-cores provide not only better energetic efficiency
but a greater performance-per-cost. The applications can be parallelized, being divided into
sections that can be executed simultaneously, to take advantage of all of cores in the same
multi-core chip.

Multi-core processors with few cores have a shared bus for communications among their
cores and the shared memory, as shown in Figure 1. When the number of cores increases,
the shared bus becomes a bottleneck and different communication strategies are used. In
these processors with a high number of cores, called many-cores, a common alternative is the
use of a Network-on-Chip (NoC) based on a 2D mesh, as shown in Figure 1 for the Epiphany
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processor [16]. This network has a predictable delay on the communications between two
neighbor cores. It also requires less wires than a shared bus and its power consumption
is linear with the number of cores. Other NoC topologies have been proposed in other
architectures like the torus of Kalray [6] or the ring used by Intel [12].

Figure 1 Generic multi-core topography (left), Epiphany’s topography (middle) and eCore
architecture (right).

The many-core mesh connects the tiles using the typical configuration shown in Figure 1,
with the core, its local memory and a router connecting the tile’s core with the neighbor
routers in the mesh.

As the many-core processors seem to be the immediate future of COTS processors, there
is a need to have suitable software platforms that allow the execution of hard real-time
applications on such architectures. In order to fulfill that requirement, this paper presents
the port of the M2OS RTOS to Epiphany, a many-core which has 16 cores connected by a
4x4 2D mesh, with each core having a 32-kilobyte local memory.

M2OS is a small and efficient real-time kernel supporting the non-preemptive one-shot
task model [17] [1]. The implementation presented in this paper follows the multikernel
paradigm [4], with a different RTOS image running in each core. The small footprint of
M2OS makes its adaptation to this architecture feasible. M2OS has been ported to the
Epiphany many-core processor, in such a way that the resulting M2OS-mc is aimed at
running in any other 2D-mesh many-core platform with a minimum amount of changes. We
have developed a mechanism to allow exchanging messages between the different tasks of
the system, independently of the core where they are executing. This mechanism uses the
sampling port implementation presented at Section 5.

M2OS-mc, as well as M2OS, is written in Ada as this language has specialized features
supporting low-level real-time, safety-critical and embedded systems programming” 1.

A typical Ada application executed on M2OS in the Epiphany processor is composed of
several tasks running in the different cores, with one or more tasks in each core. Tasks in the
same core are executed under the one-shot non-preemptive scheduling policy implemented
by M2OS. The tasks’ messages between tasks allocated in different cores will travel through
the NoC.

To take advantage of the parallel architecture of the underlying many-core, the response
to an external event is typically performed by several tasks (running on the same or different
cores) which are activated in sequence (a task’s predecessor activates the next task in the
sequence and provides its input data).

1 https://en.wikibooks.org/wiki/Ada_Programming
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M2OS alongside M2OS-mc are available on-line at the website 2, and are distributed
under a GPL license.

The paper continues by analyzing the related work in Section 2. In Section 3 the Epiphany
processor is introduced. Section 4 discusses the properties of M2OS and exposes its adaptation
to a many-core. Synchronization and message exchange between tasks are described and
evaluated in Section 5. Finally, Section 6 shows the paper conclusions and future work. An
appendix is included with the sampling port interface and a consumer-producer test code.

2 Related work

The NoC concept is not something new. It was already presented by Benini in 2002 [5] and
it soon got the real-time community’s attention [10].

There have been some projects that brought many-core platforms and real-time operating
systems together:

P-SOCRATES [9], whose purpose is to develop an entirely new designed framework
from the conceptual design of the system functionality to its physical implementation, to
facilitate the deployment of standardized parallel architectures in all kinds of systems. The
tasks follow the OpenMP task model. From that project Erika3, from Erika Enterprise [7],
has been developed. It is an RTOS that uses a single image per computer cluster and
has a memory footprint of just a few kB. This RTOS runs in the Kalray MPPA-255.
eSol has developed a many-core real-time OS called eMCOS [8] with a distributed micro-
kernel architecture implemented. This micro-kernel is allocated at the cores with minimal
functions while more advanced operations are performed through server cores. It claims
to support a wide variety of architectures in which Epiphany is not included.
Altamary ported RTEMS [2] for the Epiphany processor on a Parallella board similar
to the one used in this project. As we will see later, the Parallella board has both local
memory for each core and a global shared memory. This modified version of RTEMS can
be placed in both types of memory. When RTEMS is placed in the shared memory the
system is significantly slower than when it is placed in local memory. However, in the
latter case it only leaves 5kB for the applications. RTEMS is a relatively complex RTOS
that implements several scheduling algorithms.

Several studies have been done for theoretical 2D mesh NoCs [11] [13]. These studies
perform scheduling analysis using theoretical many-core processors. With the availability of
an RTOS such as M2OS-mc more realistic scheduling analysis could be carried out in the
future.

3 Epiphany

The Epiphany processor is integrated in the Parallella [14] development board which has the
size of a credit card and needs just 5W to work. Apart from the Epiphany processor it also
has an ARM dual-core processor (Zynq), which is the central processor on the Parallella
board. It combines an ARM dual-core Cortex-A9 with Xilinx programmable logic. Zynq has
an Ubuntu adaptation (Parabuntu) that is used as operating system. The Parabuntu OS is
used to send the executables to the Epiphany cores (eCores) and it also starts each eCore
execution.

2 https://m2os.unican.es
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The Epiphany processor is a many-core designed by Adapteva with 16 cores connected by
a NoC placed in a 4x4 2D mesh as Figure 1 shows, where every square is a tile that contains
a router connected to the neighbor tiles and the execution core. Each core of the Epiphany
is an eCore, whose architecture is also designed by Adapteva, that executes its instructions
in order, with a frequency of 600 MHz. It consists of an integer ALU, floating-point unit,
a debug unit an interrupt controller, a general purpose program sequencer and a 64-word
general purpose register file. Each core has 32kB of local memory. The architecture is
supported by the GCC compiler and has libraries for OpenMP and MPI.

The design could grow as it has been shown with a 1024 cores version [15]. Unfortunately,
the Epiphany V is not available in any development board.

Any eCore can access the local memory of the rest of the eCores using a range of special
global addresses. The synchronized message interface explained in Section 5 takes advantage
of that. An eCore’s local memory can be written and read without any hardware limitations
but the memory size. The process of writing to another eCore’s memory is 8 times faster
than reading. This is due to the fact that the Epiphany processor has independent networks
for reading and writing between cores and the one used for writing is much faster.

The Parallella board has a shared memory that can be accessed by the eCores. This
memory access is much slower than a memory access between eCores so this method is
considered too slow, although it could be useful for other functionalities as it is shown in
Section 4.5.

It can be said that the Parallella board is a good platform for experimenting with the
development of RTOS for mesh-based many-cores.

4 M2OS

M2OS [17] [1] is a small real-time operating system that allows running multitasking ap-
plications in small microcontrollers with scarce memory resources. This is the case of the
Epiphany processor, where each of its eCores has a 32 kB local memory.

M2OS implements a simple scheduling policy based on non-preemptive one-shot tasks,
which requires a very small memory footprint. This policy allows the same stack area to
be shared by all the tasks and, consequently, the system only needs to allocate a stack area
large enough to fit the largest task stack.

M2OS is written in Ada and it is the base of a simplified Run-Time System for the GNAT
Ada compiler. This RTOS has been developed for Arduino Uno and STM32F4. M2OS
is intended to be easily ported to different platforms. All the hardware dependent part is
encapsulated in a Hardware Abstraction Layer (HAL), which is the only code that has to be
modified to port the kernel to a new platform.

The new HAL written for the Epiphany uses the Epiphany Library (e-lib) to perform low-
level functions that are specific to this architecture, such as interrupt and timer management.
An Ada interface has been implemented for those functions of the e-lib library that are
required by the M2OS kernel. As a result, the e-lib library must be included in the linking
instruction.

A deeper analysis the Epiphany’s implementation will now be exposed.

4.1 Building and loading the application
M2OS is an RTOS written in Ada so taking advantage that the eCore architecture is
supported by the GNU compiler collection gcc, we have compiled it for the eCore, therefore
achieving support for the Ada and C languages.
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One executable file is generated for each of the eCores. The executable file generated
includes both the M2OS and the user code. This executable must be loaded into the different
eCores by the Zynq processor. Each eCore starts its execution individually when the Zynq
processor sends the corresponding signal.

The linker script used to build the M2OS applications places all the data and code in the
local memory of the eCores.

A set of scripts has been produced to automate the cross-compilation of the applications
that will run under M2OS and to load the generated executables to the Parallela board.

4.2 HAL
The HAL of M2OS has been implemented for the eCore’s architecture. This layer includes
the basic support for context switch, interrupt and hardware timer handling.

Context switch. Under the simple scheduling policy implemented in M2OS the context
switch only requires resetting the Stack Pointer to the base position and setting the
program counter.
Interrupts. The global interrupts can be enabled, disabled and checked for their status.
This implementation was developed thanks to the e-lib library.
Core identification. The e-lib provides primitives for core identification. This service
was not included in the M2OS HAL because it is specific of architectures with more than
one core. It is part of M2OS-mc now.
Spinlock. The e-lib provides spinlocks to be used among the different cores for non-
blocking mutual exclusion synchronization (called “mutex” in the e-lib terminology).
System timer. It follows the “ticker” approach that requires the periodic programming
of a hardware timer. In our implementation one of the two eCore’s timers is used to
generate an interrupt each 1ms. This interrupt is used to account for the system time.
The timer, driven by a 600MHz clock, can only be programmed in one-shot mode, which
requires it to be reprogrammed at each execution of the interrupt handler.
System clock. It stores a counter of each system timer interrupt in a 32 bit integer. It
has a 1 ms resolution.
High precision clock. Our implementation of M2OS in Epiphany provides a high
precision clock by reading the actual value of the hardware timer. This clock has a
precision of 1.667 ns and is suitable for intervals up to 1ms (when the system timer resets
the value).

4.3 Clock synchronization
Epiphany applications are launched from the Zynq processor by loading the application code
corresponding to each eCore and sending, sequentially, the start signals to the different
eCores of the system. In consequence, each eCore starts its execution at a different instant.
For a real-time operating system the timer synchronization at each component is very useful
for time awareness, to avoid having significant timer gaps between tasks executing at different
eCores. For this purpose M2OS synchronizes all the timers during the start up of the RTOS.

This clock synchronization process is conducted by a master eCore, which is the last
one to be started (the 0x0 eCore in the current version). Upon initialization, every other
eCore has to wait for the master to send a message containing the value of its timer. After
receiving this synchronization message, each eCore updates its own timer with the received
value plus the time the message needs to be generated and transmitted through the NoC
and the time spent by the eCores executing the required instructions.
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4.4 Performance metrics
Different tests are done to measure various mechanisms implemented in a single eCore, which
are time measurement, context switch, application size and mutex usage.

The tests in this section execute the required actions a thousand times. This number was
chosen to achieve short execution times in which there was no interference from the system
timer, which produces an interrupt every millisecond.

Reading the clock. Knowing the time needed for reading the clock is required to get
more precise times for the rest of the tests. The result of this test is shown in Table 1.
Since the minimum time to read the clock is 81 cycles, from this point we have subtracted
this value from all the measurements involving the clock.
Mutex. The time required to lock or release a mutex is constant, as shown in Table 1.
Context Switch. The time needed to perform a context switch on an eCore is calculated
with an M2OS generic test run in the M2OS-mc. The results when using a delay until
operation are shown in Table 1. The context switch has been tested in depth divided in
activation and suspension tests, as shown in Table 2. The set of tests consists of:

Activation tests. Latency since one task opens a suspension primitive and suspends
itself until the activated task executes (suspension object, protected object entry
without parameters or protected object entry with one parameter).
Suspension tests. Latency since a task suspends itself until another task executes.
Times are measured for different suspension primitives (delay until, suspension ob-
ject, protected object entry without parameters or protected object entry with one
parameter).

Application size. The output of the size linux command for 2 applications, one with 6
periodic tasks and another one with 2 periodic tasks is shown in Table 3. Each of those
tasks just put a message on the console, set a boolean to true, calculate the time of the
next activation and delay until that time. It can be seen that the amount of tasks has a
small impact on the size of the application.

Table 1 Latencies for reading the clock and operating a mutex.

Test Max Min Avg
Clock Read 81 cycles 81 cycles 81 cycles
Lock Mutex 211.7 ns 211.7 ns 211.7 ns

Release Mutex 133.4 ns 133.4 ns 133.4 ns

Table 2 Context switch tests.

Activation Tests Max Min Avg
Suspension object 593.5 ns 593.5 ns 593.5 ns

Protected object entry without parameter 698.5 ns 698.5 ns 698.5 ns
Protected object entry with one parameter 736.8 ns 736.8 ns 736.8 ns

Suspension Tests Max Min Avg
Delay until 596.8 ns 596.8 ns 596.8 ns

Suspension object 345.1 ns 345.1 ns 345.1 ns
Protected object entry without parameter 540.1 ns 433.4 ns 453,4 ns
Protected object entry with one parameter 548.4 ns 548.4 ns 548.4 ns
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Table 3 Results of the size command for two applications with 6 and 2 tasks, respectively.

text data bss dec hex filename
10914 1244 528 12686 318e six_tasks
10226 1244 208 11678 2d9e two_tasks

4.5 Console
The console output in M2OS is performed by the console driver, which has to be implemented
for each architecture M2OS is ported to. In the Parallella board the system console is
managed by the Zynq processor. The eCores do not have direct access to the system console.

The solution adopted is that every eCore writes in a reserved local memory space that is
read by the Zynq processor. The reserved memory space of every eCore will be used as a
circular buffer into which Put_Line commands write text. The buffer is designed such that a
line is never divided. When the final address of the designated area is reached, the next write
operation will be done at the beginning of its reserved region, erasing the oldest line or lines.
In that way we emulate the behavior of a console. No console input has been implemented.

The console output is thereby printed in the user’s terminal by a specifically-developed
software executed at the Zynq, which shows the eCores consoles content by reading the fixed
local memory of each eCore where the console driver writes the desired console output.

In case the Zynq tries to read from the memory assigned to a non-initialized eCore it
gets content lacking any meaning but the system will not crash.

5 Inter-task messages

A typical application running on the many-core processor consists of a number of end-to-end
flows (e2e). Each e2e is a set of tasks (in the same or different eCores) that responds to the
same periodic or sporadic event. These tasks must have a way to communicate between them
and a mechanism for waking up the next task in the flow at the end of each execution. This
requires a way to communicate between tasks in different eCores in a synchronized manner.

The chosen synchronization mechanism is inspired in the ARINC’s sampling ports (SP)
and the Ada implementation performed by Garrido [3]. Only one message can be held at a
determined sampling port. This means that any new message written in a sampling port will
overwrite the previous stored message. Several sampling ports can be mapped at the same
eCore.

In order to avoid a task from blocking the eCore we advise application developers to
make a periodic polling using a delay until operation that allows other tasks to use the
eCore while polling the sampling port. The polling period must be considered to calculate
the response time. An example of this approach is shown in Listing 3 in Appendix A.

5.1 Implementation
The implemented synchronized messages take advantage of the fact that the local memory of
any eCore is accessible from every other eCore.

In our implementation there is a fixed number of sampling ports per eCore, configurable
at system configuration time. They are implemented as an array of sampling port records
that are placed in the same predefined memory location of each eCore’s local memory. Each
sampling port is identified by the identifier of the core where it is allocated and its index in
the array.
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Figure 2 Sampling port states. We show all the sampling ports in the initial state (left) and a
single sampling port at each of the other states (right).

The sampling port record includes the followings fields:
Init. Boolean used to know if the sampling port has been initialized or not.
Mutex. The spinlock to protect the content.
Size. The size of the protected content.
Addr. Where the content is located using a global memory address of the eCore’s memory.
New. Flag to know whether the content has been modified since the last read operation.
Core. Core where the SP is initialized. This is required by the mutex.

M2OS initializes the Mutex of each sampling port and sets its Init field to False. The
access to the sampling port is protected by the spinlock. Any operation on the sampling port
must lock the spinlock and release it afterwards.

To wake-up a task, the sampling port used for that purpose must be polled periodically
by the task, waiting for the New field to be set to True.

This implementation requires 32 bytes per sampling port, in addition to a user-allocated
memory area for the message.

5.2 Interface
The interface developed for the sampling ports is shown at Listing 1 in Appendix A. It
provides the following functions:

Init_Sampling_Port. This function returns the identifier of the initialized sampling port.
It receives the host eCore, the sampling port index at the eCore and the address and
size of the shared data. The function initializes the port causing its state to transition
from the “initial” state to the “empty” state, passing through the “locked” state. All
these states are shown in Figure 2. If the sampling port is already initialized it returns
Null_SP_Id. No writing or reading operation over the sampling port are allowed until
this initialization is performed, and consequently those operations will return an error
indication in that case.
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Get_Sampling_Port. A function that returns the identifier of a sampling port given the
host eCore and its index identifier. If the sampling port has not been initialized it returns
Null_SP_Id.
Write_Sampling_Port. A procedure that writes the shared data of the sampling port
parameter. The content is marked as new. The content to be copied into the shared
data is located at the address given as a parameter and has the size also indicated as a
parameter. This procedure performs the transition of the sampling port from the “empty”
(or “new data”) state to the “locked” state and then to the “new data” state. The states
are shown in Figure 2. If the write operation has been successful the output parameter is
set to True. It will be set to False otherwise (when trying to write into an “initial” state
sampling port or when the size of the item is larger than the size defined at the sampling
port).
Read_Sampling_Port. This procedure copies the shared content of a sampling port into
an address supplied as a parameter. The field New is set to False. During the read
operation the sampling port is in the “locked” state passing to the “empty” state once the
operation finishes. If the read has been successful the output parameter is set to True, it
will be set to False otherwise (when trying to read from an uninitialized sampling port,
when the size defined at the sampling port is larger than the size of the item where the
value is going to be written, or when no data is written yet).

5.3 Usage example
The functionality of the sampling ports is described with an example that follows the typical
producer/consumer pattern. The producer is a periodic task that produces a data item and
writes it in a sampling port. This sampling port is used by the consumer task to wait for new
data and process it.

The consumer, shown at Listing 2 in Appendix A, declares and initializes the data to
be shared and then initializes the sampling port. Thereafter it continuously iterates waiting
for a new value to arrive at the sampling port and consuming it. The wait operation is
implemented as a periodic poll of the sampling port.

The producer, shown at Listing 3 in Appendix A, must wait until the sampling port is
initialized. This is done by periodically polling the sampling port until it is initialized. Then
it periodically iterates producing a new data item and writing it to the sampling port. New
content is written to the sampling port regardless of whether the previous content has been
read or not.

In this example it can be noticed that the consumer is the one that initializes the sampling
port, because it is located in its own eCore and, since writing through the NoC is eight times
faster than reading, we decided to implement the most efficient model.

5.4 Tests
M2OS has a battery of tests that have been successfully passed for the Epiphany architecture.
These tests include stack management, scheduling, timing events and task handling. To this
battery set, we have added other tests such as measuring the latency of sending messages
between tasks through the network. These tests will be analyzed in the following lines.

Table 4 shows the time required to execute the operations described in Section 5.2. The
times for the Get_Sampling_Port and the Write_Sampling_Port operations are measured
for a sampling port allocated in an eCore at one hop distance from the calling task. It can
be seen that both writing and reading a sampling port have a linear increment in relation to
the size of the message.
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Table 4 Sampling port latencies for different message sizes.

Latency of Max Min Avg
Init_Sampling_Port 556.8 ns 556.8 ns 556.8 ns
Get_Sampling_Port 146.7 ns 146.7 ns 146.7 ns

Write_Sampling_Port (8 bytes) 596.8 ns 596.8 ns 596.8 ns
Read_Sampling_Port (8 bytes) 873.5 ns 873.5 ns 873.5 ns
Write_Sampling_Port (40 bytes) 1247 ns 1237 ns 1237 ns
Read_Sampling_Port (40 bytes) 2364 ns 2364 ns 2364 ns

The process of sending a message requires locking and unlocking a remote mutex. The
latencies therefore depend on the latencies in the NoC, which in turn depend on the distance,
in hops, the message needs to travel. A test sending an 8-byte message comparing different
locations and different hop distances is shown in Table 5, where it can be seen that the
timing is also linear in relation to the distance. We have performed the same test for reading
a message from another eCore placed at different distances.

Table 5 Write_Sampling_Port and Read_Sampling_Port latencies for different hop distances in
the NoC.

Write Max Min Avg
1 hop 596.8 ns 596.8 ns 596.8 ns
2 hops 631.8 ns 631.8 ns 631.8 ns
3 hops 666.8 ns 666.8 ns 666.8 ns
4 hops 701.8 ns 701.8 ns 701.8 ns
5 hops 736.8 ns 736.8 ns 736.8 ns
6 hops 771.8 ns 771.8 ns 771.8 ns

Read Max Min Avg
1 hop 873.5 ns 873.5 ns 873.5 ns
2 hops 958.5 ns 958.5 ns 958.5 ns
3 hops 1044 ns 1044 ns 1044 ns
4 hops 1129 ns 1129 ns 1129 ns
5 hops 1214 ns 1214 ns 1214 ns
6 hops 1299 ns 1299 ns 1299 ns

In order to complete the performance analysis of the sampling ports, a round-trip scenario
has been created. This scenario involves two cores with one task and one sampling port in
each. The task in the first core sends a message to the sampling port allocated in the second
core. A task waiting for that message sends it back to the sampling port allocated in the
initial core. Table 6 shows the latencies measured for this round trip for different distances
between the cores. In this test, when either of the two tasks has to wait for a message sent
through a sampling port it does so by spinning continuously, so that there are no context
switches or delays.

We can see that there is a dependency on the size of the message, an that the dependency
on the distance between the eCores is linear.

Table 6 Round-trip latencies for messages of 8 bytes (left) and 40 bytes (right).

8 bytes Max Min Avg
1 hop 2794 ns 2322 ns 2777 ns
2 hops 2787 ns 2366 ns 2776 ns
3 hops 2904 ns 2479 ns 2882 ns
4 hops 2944 ns 2559 ns 2936 ns
5 hops 3062 ns 2656 ns 3036 ns
6 hops 3132 ns 2731 ns 3097 ns

40 bytes Max Min Avg
1 hop 5846 ns 5568 ns 5615 ns
2 hops 5841 ns 5579 ns 5603 ns
3 hops 6051 ns 5720 ns 5768 ns
4 hops 6160 ns 5786 ns 5845 ns
5 hops 6161 ns 5770 ns 5866 ns
6 hops 6190 ns 5891 ns 5903 ns
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6 Conclusions and future work

We have ported the M2OS to the Epiphany many-core, with an implementation designed
to allow the adaptation for other many-cores. We have also implemented a synchronization
mechanism inspired on the ARINC-653 sampling ports.

The resulting port, called M2OS-mc, has passed the whole battery of tests included in
M2OS, so we can conclude the port works. Tests to check the functionality and performance
of the developed synchronization mechanism have also been developed and the system has
passed them. The performance metrics done for the sampling ports shows an acceptable
efficiency.

At the current stage, M2OS-mc is a fully functional prototype however, our intention is
to continue its development in several aspects:

Develop a new kind of synchronization port inspired on the ARINC queuing ports. This
kind of port implements a fixed-size queue of data and allows a consumer task to suspend
on an empty port until new data is written, which would avoid the need for polling.
Develop a system model that allows us to perform a schedulability analysis of the
applications using M2OS-mc for Epiphany.
Develop task allocation algorithms that allow us to improve the response times of the
end-to-end flows that form the applications.
Extend the application model by allowing some eCores to execute parallel workloads
programmed with OpenMP while other eCores execute the real-time tasks.
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A Listings

type SP_Index is range 0 .. Sampling_Ports_Per_Core -1;
type SP_Id is private ;

function Init_Sampling_Port (C : in E_Lib.Core; Id : in SP_Index ;
Addr : in System . Address ; Size : Interfaces . Unsigned_32 )

return SP_Id;

function Get_Sampling_Port (C : in E_Lib.Core; Id : in SP_Index )
return SP_Id;

function Write_Sampling_Port (SP : in SP_Id;
Orig : in System . Address ; Orig_Size : in Interfaces . Unsigned_32 )

return Boolean ; -- Successful

procedure Read_Sampling_Port (SP : in SP_Id;
Dest : in System . Address ; Dest_Size : in Interfaces . Unsigned_32 ;
Successful : out Boolean ; Is_New : out Boolean );

Listing 1 Sampling port Interface

https://doi.org/10.1109/TPDS.2016.2623619
https://doi.org/10.1016/j.sysarc.2014.05.002
https://doi.org/10.1007/s11241-018-9312-0
http://arxiv.org/abs/1412.5538
https://doi.org/10.1016/j.sysarc.2019.02.015
https://doi.org/10.1016/j.sysarc.2019.02.015


D.G. Villaescusa, M.A. Rivas, and M.G. Harbour 5:13

task Consumer is
-- Declare and initialize data

begin
SP := Init_Sampling_Port ( Current_Core , SP_Index , Data ’Addr , Data ’

Size);
loop

loop
Read_Sampling_Port (SP , Data ’Address , Data ’Size , Success , Is_New

);
if not Success then

-- Error;
end if;
exit when Is_New ;
Next_Polling_Period := Next_Polling_Period + Period ;
delay until Next_Polling_Period ;

end loop
-- Consume data

end loop;
end Consumer ;

Listing 2 Consumer

task Producer is
begin

loop
SP := Get_Sampling_Port ( Core_Target , SP_Index );
exit when SP /= Null_SP_Id ;
Next_Polling_Period := Next_Polling_Period + Period ;
delay until Next_Polling_Period ;

end loop;
loop

-- Produce new data
Write_Sampling_Port (SP , Data ’Address , Data ’Size , Success );
if not Success then

-- Error
end if;
Next_Activation := Next_Activation + Task_Period ;
delay until Next_Activation ;

end loop;
end Producer ;

Listing 3 Producer
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