
M2OS-Mc: An RTOS for Many-Core Processors
David García Villaescusa
University of Cantabria, Santander, Spain
garciavd@unican.es

Mario Aldea Rivas
University of Cantabria, Santander, Spain
aldeam@unican.es

Michael González Harbour
University of Cantabria, Santander, Spain
mgh@unican.es

Abstract
A current trend of industrial systems is reducing space, weight and power (SWaP) through the
allocation of different applications on a single chip. This is enabled by the continued improvement of
semiconductor technology which allows the integration of multiple cores in a single processor chip, as
the processors are prevented to continue increasing their clock rate due to the “power-wall”. The use
of Commercial-Off-The-Shelf (COTS) multi-core processors for real-time purposes presents issues
due to the shared bus used to access the shared memory. An alternative to the use of multi-core
processors are the many-core processors with tens to hundreds of processors in the same chip, using
different scalable ways to interconnect their cores. This paper presents the adaptation of the M2OS
Real-Time Operating System (RTOS) and its simplified Ada run-time for mesh-based many-core
processors. This RTOS is called M2OS-mc and has been tested on the Epiphany III many-core
processor (referred in this paper simply as Epiphany), a many-core which has 16 cores connected by
a Network-on-Chip (NoC) consisting of a 4x4 2D mesh. In order to have a synchronized way to send
messages between tasks through the NoC independently of the core where they are being executed,
we provide sampling port communication primitives.

2012 ACM Subject Classification Computer systems organization → Real-time operating systems

Keywords and phrases M2OS, Many-Core, Real-Time, Parallella, Epiphany, Network-on-Chip,
Operating System, RTOS

Digital Object Identifier 10.4230/OASIcs.NG-RES.2021.5

Funding FEDER funds (AEI/FEDER, UE) under Grant TIN2017-86520-C3-3-R(PRECON-I4).
David García Villaescusa: Graduate Grant Program of the University of Cantabria, Spanish
Government.

1 Introduction

In the past, the evolution of processors was mostly related to frequency improvement but
since the processors reached a power consumption too high to dissipate, the designers have
been improving the processor’s performance by having more processing cores executing in the
same chip: the multi-core era begun. Multi-cores provide not only better energetic efficiency
but a greater performance-per-cost. The applications can be parallelized, being divided into
sections that can be executed simultaneously, to take advantage of all of cores in the same
multi-core chip.

Multi-core processors with few cores have a shared bus for communications among their
cores and the shared memory, as shown in Figure 1. When the number of cores increases,
the shared bus becomes a bottleneck and different communication strategies are used. In
these processors with a high number of cores, called many-cores, a common alternative is the
use of a Network-on-Chip (NoC) based on a 2D mesh, as shown in Figure 1 for the Epiphany

© David García Villaescusa, Mario Aldea Rivas, and Michael González Harbour;
licensed under Creative Commons License CC-BY

Second Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2021).
Editors: Marko Bertogna and Federico Terraneo; Article No. 5; pp. 5:1–5:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2497-6553
mailto:garciavd@unican.es
https://orcid.org/0000-0002-0430-5472
mailto:aldeam@unican.es
https://orcid.org/0000-0003-1198-9275
mailto:mgh@unican.es
https://doi.org/10.4230/OASIcs.NG-RES.2021.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2 M2OS-Mc: An RTOS for Many-Core Processors

processor [16]. This network has a predictable delay on the communications between two
neighbor cores. It also requires less wires than a shared bus and its power consumption
is linear with the number of cores. Other NoC topologies have been proposed in other
architectures like the torus of Kalray [6] or the ring used by Intel [12].

Figure 1 Generic multi-core topography (left), Epiphany’s topography (middle) and eCore
architecture (right).

The many-core mesh connects the tiles using the typical configuration shown in Figure 1,
with the core, its local memory and a router connecting the tile’s core with the neighbor
routers in the mesh.

As the many-core processors seem to be the immediate future of COTS processors, there
is a need to have suitable software platforms that allow the execution of hard real-time
applications on such architectures. In order to fulfill that requirement, this paper presents
the port of the M2OS RTOS to Epiphany, a many-core which has 16 cores connected by a
4x4 2D mesh, with each core having a 32-kilobyte local memory.

M2OS is a small and efficient real-time kernel supporting the non-preemptive one-shot
task model [17] [1]. The implementation presented in this paper follows the multikernel
paradigm [4], with a different RTOS image running in each core. The small footprint of
M2OS makes its adaptation to this architecture feasible. M2OS has been ported to the
Epiphany many-core processor, in such a way that the resulting M2OS-mc is aimed at
running in any other 2D-mesh many-core platform with a minimum amount of changes. We
have developed a mechanism to allow exchanging messages between the different tasks of
the system, independently of the core where they are executing. This mechanism uses the
sampling port implementation presented at Section 5.

M2OS-mc, as well as M2OS, is written in Ada as this language has specialized features
supporting low-level real-time, safety-critical and embedded systems programming” 1.

A typical Ada application executed on M2OS in the Epiphany processor is composed of
several tasks running in the different cores, with one or more tasks in each core. Tasks in the
same core are executed under the one-shot non-preemptive scheduling policy implemented
by M2OS. The tasks’ messages between tasks allocated in different cores will travel through
the NoC.

To take advantage of the parallel architecture of the underlying many-core, the response
to an external event is typically performed by several tasks (running on the same or different
cores) which are activated in sequence (a task’s predecessor activates the next task in the
sequence and provides its input data).

1 https://en.wikibooks.org/wiki/Ada_Programming

https://en.wikibooks.org/wiki/Ada_Programming

D.G. Villaescusa, M.A. Rivas, and M.G. Harbour 5:3

M2OS alongside M2OS-mc are available on-line at the website 2, and are distributed
under a GPL license.

The paper continues by analyzing the related work in Section 2. In Section 3 the Epiphany
processor is introduced. Section 4 discusses the properties of M2OS and exposes its adaptation
to a many-core. Synchronization and message exchange between tasks are described and
evaluated in Section 5. Finally, Section 6 shows the paper conclusions and future work. An
appendix is included with the sampling port interface and a consumer-producer test code.

2 Related work

The NoC concept is not something new. It was already presented by Benini in 2002 [5] and
it soon got the real-time community’s attention [10].

There have been some projects that brought many-core platforms and real-time operating
systems together:

P-SOCRATES [9], whose purpose is to develop an entirely new designed framework
from the conceptual design of the system functionality to its physical implementation, to
facilitate the deployment of standardized parallel architectures in all kinds of systems. The
tasks follow the OpenMP task model. From that project Erika3, from Erika Enterprise [7],
has been developed. It is an RTOS that uses a single image per computer cluster and
has a memory footprint of just a few kB. This RTOS runs in the Kalray MPPA-255.
eSol has developed a many-core real-time OS called eMCOS [8] with a distributed micro-
kernel architecture implemented. This micro-kernel is allocated at the cores with minimal
functions while more advanced operations are performed through server cores. It claims
to support a wide variety of architectures in which Epiphany is not included.
Altamary ported RTEMS [2] for the Epiphany processor on a Parallella board similar
to the one used in this project. As we will see later, the Parallella board has both local
memory for each core and a global shared memory. This modified version of RTEMS can
be placed in both types of memory. When RTEMS is placed in the shared memory the
system is significantly slower than when it is placed in local memory. However, in the
latter case it only leaves 5kB for the applications. RTEMS is a relatively complex RTOS
that implements several scheduling algorithms.

Several studies have been done for theoretical 2D mesh NoCs [11] [13]. These studies
perform scheduling analysis using theoretical many-core processors. With the availability of
an RTOS such as M2OS-mc more realistic scheduling analysis could be carried out in the
future.

3 Epiphany

The Epiphany processor is integrated in the Parallella [14] development board which has the
size of a credit card and needs just 5W to work. Apart from the Epiphany processor it also
has an ARM dual-core processor (Zynq), which is the central processor on the Parallella
board. It combines an ARM dual-core Cortex-A9 with Xilinx programmable logic. Zynq has
an Ubuntu adaptation (Parabuntu) that is used as operating system. The Parabuntu OS is
used to send the executables to the Epiphany cores (eCores) and it also starts each eCore
execution.

2 https://m2os.unican.es

NG-RES 2021

https://m2os.unican.es

5:4 M2OS-Mc: An RTOS for Many-Core Processors

The Epiphany processor is a many-core designed by Adapteva with 16 cores connected by
a NoC placed in a 4x4 2D mesh as Figure 1 shows, where every square is a tile that contains
a router connected to the neighbor tiles and the execution core. Each core of the Epiphany
is an eCore, whose architecture is also designed by Adapteva, that executes its instructions
in order, with a frequency of 600 MHz. It consists of an integer ALU, floating-point unit,
a debug unit an interrupt controller, a general purpose program sequencer and a 64-word
general purpose register file. Each core has 32kB of local memory. The architecture is
supported by the GCC compiler and has libraries for OpenMP and MPI.

The design could grow as it has been shown with a 1024 cores version [15]. Unfortunately,
the Epiphany V is not available in any development board.

Any eCore can access the local memory of the rest of the eCores using a range of special
global addresses. The synchronized message interface explained in Section 5 takes advantage
of that. An eCore’s local memory can be written and read without any hardware limitations
but the memory size. The process of writing to another eCore’s memory is 8 times faster
than reading. This is due to the fact that the Epiphany processor has independent networks
for reading and writing between cores and the one used for writing is much faster.

The Parallella board has a shared memory that can be accessed by the eCores. This
memory access is much slower than a memory access between eCores so this method is
considered too slow, although it could be useful for other functionalities as it is shown in
Section 4.5.

It can be said that the Parallella board is a good platform for experimenting with the
development of RTOS for mesh-based many-cores.

4 M2OS

M2OS [17] [1] is a small real-time operating system that allows running multitasking ap-
plications in small microcontrollers with scarce memory resources. This is the case of the
Epiphany processor, where each of its eCores has a 32 kB local memory.

M2OS implements a simple scheduling policy based on non-preemptive one-shot tasks,
which requires a very small memory footprint. This policy allows the same stack area to
be shared by all the tasks and, consequently, the system only needs to allocate a stack area
large enough to fit the largest task stack.

M2OS is written in Ada and it is the base of a simplified Run-Time System for the GNAT
Ada compiler. This RTOS has been developed for Arduino Uno and STM32F4. M2OS
is intended to be easily ported to different platforms. All the hardware dependent part is
encapsulated in a Hardware Abstraction Layer (HAL), which is the only code that has to be
modified to port the kernel to a new platform.

The new HAL written for the Epiphany uses the Epiphany Library (e-lib) to perform low-
level functions that are specific to this architecture, such as interrupt and timer management.
An Ada interface has been implemented for those functions of the e-lib library that are
required by the M2OS kernel. As a result, the e-lib library must be included in the linking
instruction.

A deeper analysis the Epiphany’s implementation will now be exposed.

4.1 Building and loading the application
M2OS is an RTOS written in Ada so taking advantage that the eCore architecture is
supported by the GNU compiler collection gcc, we have compiled it for the eCore, therefore
achieving support for the Ada and C languages.

D.G. Villaescusa, M.A. Rivas, and M.G. Harbour 5:5

One executable file is generated for each of the eCores. The executable file generated
includes both the M2OS and the user code. This executable must be loaded into the different
eCores by the Zynq processor. Each eCore starts its execution individually when the Zynq
processor sends the corresponding signal.

The linker script used to build the M2OS applications places all the data and code in the
local memory of the eCores.

A set of scripts has been produced to automate the cross-compilation of the applications
that will run under M2OS and to load the generated executables to the Parallela board.

4.2 HAL
The HAL of M2OS has been implemented for the eCore’s architecture. This layer includes
the basic support for context switch, interrupt and hardware timer handling.

Context switch. Under the simple scheduling policy implemented in M2OS the context
switch only requires resetting the Stack Pointer to the base position and setting the
program counter.
Interrupts. The global interrupts can be enabled, disabled and checked for their status.
This implementation was developed thanks to the e-lib library.
Core identification. The e-lib provides primitives for core identification. This service
was not included in the M2OS HAL because it is specific of architectures with more than
one core. It is part of M2OS-mc now.
Spinlock. The e-lib provides spinlocks to be used among the different cores for non-
blocking mutual exclusion synchronization (called “mutex” in the e-lib terminology).
System timer. It follows the “ticker” approach that requires the periodic programming
of a hardware timer. In our implementation one of the two eCore’s timers is used to
generate an interrupt each 1ms. This interrupt is used to account for the system time.
The timer, driven by a 600MHz clock, can only be programmed in one-shot mode, which
requires it to be reprogrammed at each execution of the interrupt handler.
System clock. It stores a counter of each system timer interrupt in a 32 bit integer. It
has a 1 ms resolution.
High precision clock. Our implementation of M2OS in Epiphany provides a high
precision clock by reading the actual value of the hardware timer. This clock has a
precision of 1.667 ns and is suitable for intervals up to 1ms (when the system timer resets
the value).

4.3 Clock synchronization
Epiphany applications are launched from the Zynq processor by loading the application code
corresponding to each eCore and sending, sequentially, the start signals to the different
eCores of the system. In consequence, each eCore starts its execution at a different instant.
For a real-time operating system the timer synchronization at each component is very useful
for time awareness, to avoid having significant timer gaps between tasks executing at different
eCores. For this purpose M2OS synchronizes all the timers during the start up of the RTOS.

This clock synchronization process is conducted by a master eCore, which is the last
one to be started (the 0x0 eCore in the current version). Upon initialization, every other
eCore has to wait for the master to send a message containing the value of its timer. After
receiving this synchronization message, each eCore updates its own timer with the received
value plus the time the message needs to be generated and transmitted through the NoC
and the time spent by the eCores executing the required instructions.

NG-RES 2021

5:6 M2OS-Mc: An RTOS for Many-Core Processors

4.4 Performance metrics
Different tests are done to measure various mechanisms implemented in a single eCore, which
are time measurement, context switch, application size and mutex usage.

The tests in this section execute the required actions a thousand times. This number was
chosen to achieve short execution times in which there was no interference from the system
timer, which produces an interrupt every millisecond.

Reading the clock. Knowing the time needed for reading the clock is required to get
more precise times for the rest of the tests. The result of this test is shown in Table 1.
Since the minimum time to read the clock is 81 cycles, from this point we have subtracted
this value from all the measurements involving the clock.
Mutex. The time required to lock or release a mutex is constant, as shown in Table 1.
Context Switch. The time needed to perform a context switch on an eCore is calculated
with an M2OS generic test run in the M2OS-mc. The results when using a delay until
operation are shown in Table 1. The context switch has been tested in depth divided in
activation and suspension tests, as shown in Table 2. The set of tests consists of:

Activation tests. Latency since one task opens a suspension primitive and suspends
itself until the activated task executes (suspension object, protected object entry
without parameters or protected object entry with one parameter).
Suspension tests. Latency since a task suspends itself until another task executes.
Times are measured for different suspension primitives (delay until, suspension ob-
ject, protected object entry without parameters or protected object entry with one
parameter).

Application size. The output of the size linux command for 2 applications, one with 6
periodic tasks and another one with 2 periodic tasks is shown in Table 3. Each of those
tasks just put a message on the console, set a boolean to true, calculate the time of the
next activation and delay until that time. It can be seen that the amount of tasks has a
small impact on the size of the application.

Table 1 Latencies for reading the clock and operating a mutex.

Test Max Min Avg
Clock Read 81 cycles 81 cycles 81 cycles
Lock Mutex 211.7 ns 211.7 ns 211.7 ns

Release Mutex 133.4 ns 133.4 ns 133.4 ns

Table 2 Context switch tests.

Activation Tests Max Min Avg
Suspension object 593.5 ns 593.5 ns 593.5 ns

Protected object entry without parameter 698.5 ns 698.5 ns 698.5 ns
Protected object entry with one parameter 736.8 ns 736.8 ns 736.8 ns

Suspension Tests Max Min Avg
Delay until 596.8 ns 596.8 ns 596.8 ns

Suspension object 345.1 ns 345.1 ns 345.1 ns
Protected object entry without parameter 540.1 ns 433.4 ns 453,4 ns
Protected object entry with one parameter 548.4 ns 548.4 ns 548.4 ns

D.G. Villaescusa, M.A. Rivas, and M.G. Harbour 5:7

Table 3 Results of the size command for two applications with 6 and 2 tasks, respectively.

text data bss dec hex filename
10914 1244 528 12686 318e six_tasks
10226 1244 208 11678 2d9e two_tasks

4.5 Console
The console output in M2OS is performed by the console driver, which has to be implemented
for each architecture M2OS is ported to. In the Parallella board the system console is
managed by the Zynq processor. The eCores do not have direct access to the system console.

The solution adopted is that every eCore writes in a reserved local memory space that is
read by the Zynq processor. The reserved memory space of every eCore will be used as a
circular buffer into which Put_Line commands write text. The buffer is designed such that a
line is never divided. When the final address of the designated area is reached, the next write
operation will be done at the beginning of its reserved region, erasing the oldest line or lines.
In that way we emulate the behavior of a console. No console input has been implemented.

The console output is thereby printed in the user’s terminal by a specifically-developed
software executed at the Zynq, which shows the eCores consoles content by reading the fixed
local memory of each eCore where the console driver writes the desired console output.

In case the Zynq tries to read from the memory assigned to a non-initialized eCore it
gets content lacking any meaning but the system will not crash.

5 Inter-task messages

A typical application running on the many-core processor consists of a number of end-to-end
flows (e2e). Each e2e is a set of tasks (in the same or different eCores) that responds to the
same periodic or sporadic event. These tasks must have a way to communicate between them
and a mechanism for waking up the next task in the flow at the end of each execution. This
requires a way to communicate between tasks in different eCores in a synchronized manner.

The chosen synchronization mechanism is inspired in the ARINC’s sampling ports (SP)
and the Ada implementation performed by Garrido [3]. Only one message can be held at a
determined sampling port. This means that any new message written in a sampling port will
overwrite the previous stored message. Several sampling ports can be mapped at the same
eCore.

In order to avoid a task from blocking the eCore we advise application developers to
make a periodic polling using a delay until operation that allows other tasks to use the
eCore while polling the sampling port. The polling period must be considered to calculate
the response time. An example of this approach is shown in Listing 3 in Appendix A.

5.1 Implementation
The implemented synchronized messages take advantage of the fact that the local memory of
any eCore is accessible from every other eCore.

In our implementation there is a fixed number of sampling ports per eCore, configurable
at system configuration time. They are implemented as an array of sampling port records
that are placed in the same predefined memory location of each eCore’s local memory. Each
sampling port is identified by the identifier of the core where it is allocated and its index in
the array.

NG-RES 2021

5:8 M2OS-Mc: An RTOS for Many-Core Processors

Figure 2 Sampling port states. We show all the sampling ports in the initial state (left) and a
single sampling port at each of the other states (right).

The sampling port record includes the followings fields:
Init. Boolean used to know if the sampling port has been initialized or not.
Mutex. The spinlock to protect the content.
Size. The size of the protected content.
Addr. Where the content is located using a global memory address of the eCore’s memory.
New. Flag to know whether the content has been modified since the last read operation.
Core. Core where the SP is initialized. This is required by the mutex.

M2OS initializes the Mutex of each sampling port and sets its Init field to False. The
access to the sampling port is protected by the spinlock. Any operation on the sampling port
must lock the spinlock and release it afterwards.

To wake-up a task, the sampling port used for that purpose must be polled periodically
by the task, waiting for the New field to be set to True.

This implementation requires 32 bytes per sampling port, in addition to a user-allocated
memory area for the message.

5.2 Interface
The interface developed for the sampling ports is shown at Listing 1 in Appendix A. It
provides the following functions:

Init_Sampling_Port. This function returns the identifier of the initialized sampling port.
It receives the host eCore, the sampling port index at the eCore and the address and
size of the shared data. The function initializes the port causing its state to transition
from the “initial” state to the “empty” state, passing through the “locked” state. All
these states are shown in Figure 2. If the sampling port is already initialized it returns
Null_SP_Id. No writing or reading operation over the sampling port are allowed until
this initialization is performed, and consequently those operations will return an error
indication in that case.

D.G. Villaescusa, M.A. Rivas, and M.G. Harbour 5:9

Get_Sampling_Port. A function that returns the identifier of a sampling port given the
host eCore and its index identifier. If the sampling port has not been initialized it returns
Null_SP_Id.
Write_Sampling_Port. A procedure that writes the shared data of the sampling port
parameter. The content is marked as new. The content to be copied into the shared
data is located at the address given as a parameter and has the size also indicated as a
parameter. This procedure performs the transition of the sampling port from the “empty”
(or “new data”) state to the “locked” state and then to the “new data” state. The states
are shown in Figure 2. If the write operation has been successful the output parameter is
set to True. It will be set to False otherwise (when trying to write into an “initial” state
sampling port or when the size of the item is larger than the size defined at the sampling
port).
Read_Sampling_Port. This procedure copies the shared content of a sampling port into
an address supplied as a parameter. The field New is set to False. During the read
operation the sampling port is in the “locked” state passing to the “empty” state once the
operation finishes. If the read has been successful the output parameter is set to True, it
will be set to False otherwise (when trying to read from an uninitialized sampling port,
when the size defined at the sampling port is larger than the size of the item where the
value is going to be written, or when no data is written yet).

5.3 Usage example
The functionality of the sampling ports is described with an example that follows the typical
producer/consumer pattern. The producer is a periodic task that produces a data item and
writes it in a sampling port. This sampling port is used by the consumer task to wait for new
data and process it.

The consumer, shown at Listing 2 in Appendix A, declares and initializes the data to
be shared and then initializes the sampling port. Thereafter it continuously iterates waiting
for a new value to arrive at the sampling port and consuming it. The wait operation is
implemented as a periodic poll of the sampling port.

The producer, shown at Listing 3 in Appendix A, must wait until the sampling port is
initialized. This is done by periodically polling the sampling port until it is initialized. Then
it periodically iterates producing a new data item and writing it to the sampling port. New
content is written to the sampling port regardless of whether the previous content has been
read or not.

In this example it can be noticed that the consumer is the one that initializes the sampling
port, because it is located in its own eCore and, since writing through the NoC is eight times
faster than reading, we decided to implement the most efficient model.

5.4 Tests
M2OS has a battery of tests that have been successfully passed for the Epiphany architecture.
These tests include stack management, scheduling, timing events and task handling. To this
battery set, we have added other tests such as measuring the latency of sending messages
between tasks through the network. These tests will be analyzed in the following lines.

Table 4 shows the time required to execute the operations described in Section 5.2. The
times for the Get_Sampling_Port and the Write_Sampling_Port operations are measured
for a sampling port allocated in an eCore at one hop distance from the calling task. It can
be seen that both writing and reading a sampling port have a linear increment in relation to
the size of the message.

NG-RES 2021

5:10 M2OS-Mc: An RTOS for Many-Core Processors

Table 4 Sampling port latencies for different message sizes.

Latency of Max Min Avg
Init_Sampling_Port 556.8 ns 556.8 ns 556.8 ns
Get_Sampling_Port 146.7 ns 146.7 ns 146.7 ns

Write_Sampling_Port (8 bytes) 596.8 ns 596.8 ns 596.8 ns
Read_Sampling_Port (8 bytes) 873.5 ns 873.5 ns 873.5 ns
Write_Sampling_Port (40 bytes) 1247 ns 1237 ns 1237 ns
Read_Sampling_Port (40 bytes) 2364 ns 2364 ns 2364 ns

The process of sending a message requires locking and unlocking a remote mutex. The
latencies therefore depend on the latencies in the NoC, which in turn depend on the distance,
in hops, the message needs to travel. A test sending an 8-byte message comparing different
locations and different hop distances is shown in Table 5, where it can be seen that the
timing is also linear in relation to the distance. We have performed the same test for reading
a message from another eCore placed at different distances.

Table 5 Write_Sampling_Port and Read_Sampling_Port latencies for different hop distances in
the NoC.

Write Max Min Avg
1 hop 596.8 ns 596.8 ns 596.8 ns
2 hops 631.8 ns 631.8 ns 631.8 ns
3 hops 666.8 ns 666.8 ns 666.8 ns
4 hops 701.8 ns 701.8 ns 701.8 ns
5 hops 736.8 ns 736.8 ns 736.8 ns
6 hops 771.8 ns 771.8 ns 771.8 ns

Read Max Min Avg
1 hop 873.5 ns 873.5 ns 873.5 ns
2 hops 958.5 ns 958.5 ns 958.5 ns
3 hops 1044 ns 1044 ns 1044 ns
4 hops 1129 ns 1129 ns 1129 ns
5 hops 1214 ns 1214 ns 1214 ns
6 hops 1299 ns 1299 ns 1299 ns

In order to complete the performance analysis of the sampling ports, a round-trip scenario
has been created. This scenario involves two cores with one task and one sampling port in
each. The task in the first core sends a message to the sampling port allocated in the second
core. A task waiting for that message sends it back to the sampling port allocated in the
initial core. Table 6 shows the latencies measured for this round trip for different distances
between the cores. In this test, when either of the two tasks has to wait for a message sent
through a sampling port it does so by spinning continuously, so that there are no context
switches or delays.

We can see that there is a dependency on the size of the message, an that the dependency
on the distance between the eCores is linear.

Table 6 Round-trip latencies for messages of 8 bytes (left) and 40 bytes (right).

8 bytes Max Min Avg
1 hop 2794 ns 2322 ns 2777 ns
2 hops 2787 ns 2366 ns 2776 ns
3 hops 2904 ns 2479 ns 2882 ns
4 hops 2944 ns 2559 ns 2936 ns
5 hops 3062 ns 2656 ns 3036 ns
6 hops 3132 ns 2731 ns 3097 ns

40 bytes Max Min Avg
1 hop 5846 ns 5568 ns 5615 ns
2 hops 5841 ns 5579 ns 5603 ns
3 hops 6051 ns 5720 ns 5768 ns
4 hops 6160 ns 5786 ns 5845 ns
5 hops 6161 ns 5770 ns 5866 ns
6 hops 6190 ns 5891 ns 5903 ns

D.G. Villaescusa, M.A. Rivas, and M.G. Harbour 5:11

6 Conclusions and future work

We have ported the M2OS to the Epiphany many-core, with an implementation designed
to allow the adaptation for other many-cores. We have also implemented a synchronization
mechanism inspired on the ARINC-653 sampling ports.

The resulting port, called M2OS-mc, has passed the whole battery of tests included in
M2OS, so we can conclude the port works. Tests to check the functionality and performance
of the developed synchronization mechanism have also been developed and the system has
passed them. The performance metrics done for the sampling ports shows an acceptable
efficiency.

At the current stage, M2OS-mc is a fully functional prototype however, our intention is
to continue its development in several aspects:

Develop a new kind of synchronization port inspired on the ARINC queuing ports. This
kind of port implements a fixed-size queue of data and allows a consumer task to suspend
on an empty port until new data is written, which would avoid the need for polling.
Develop a system model that allows us to perform a schedulability analysis of the
applications using M2OS-mc for Epiphany.
Develop task allocation algorithms that allow us to improve the response times of the
end-to-end flows that form the applications.
Extend the application model by allowing some eCores to execute parallel workloads
programmed with OpenMP while other eCores execute the real-time tasks.

References
1 Mario Aldea-Rivas and Héctor Pérez-Tijero. Proposal for a new ada profile for small micro-

controllers. Ada Lett., 38(1):34–39, July 2018. doi:10.1145/3241950.3241955.
2 Hesham Almatary. Operating System Kernels on Multi-core Architectures. PhD thesis,

University of York, January 2016. URL: http://etheses.whiterose.ac.uk/12959/.
3 Jorge Garrido Balaguer, Juan Rafael Zamorano Flores, and Juan Antonio de la Puente Alfaro.

Arinc-653 inter-partition communications and the ravenscar profile. Ada Letters, 35(1):38–45,
2015. URL: http://oa.upm.es/42418/.

4 Andrew Baumann, Paul Barham, Rebecca Isaacs, and Tim Harris. The mul-
tikernel: A new os architecture for scalable multicore systems. In 22nd Sym-
posium on Operating Systems Principles. Association for Computing Machinery,
Inc., October 2009. URL: https://www.microsoft.com/en-us/research/publication/
the-multikernel-a-new-os-architecture-for-scalable-multicore-systems/.

5 Luca Benini and Giovanni Micheli. Networks on chips: A new soc paradigm. Computer,
35:70–78, February 2002. doi:10.1109/2.976921.

6 Benoundefinedt Dupont de Dinechin and Amaury Graillat. Network-on-chip service guarantees
on the kalray mppa-256 bostan processor. In Proceedings of the 2nd International Workshop on
Advanced Interconnect Solutions and Technologies for Emerging Computing Systems, AISTECS
’17, page 35–40, New York, NY, USA, 2017. Association for Computing Machinery. doi:
10.1145/3073763.3073770.

7 Erika Enterprise. Erika3. [Online; accessed 29-January-2020].
8 eSol. Scalable and High-performance Real-Time OS available for various types of processors.

[Online; accessed 29-January-2020].
9 Xiongli Gu, Peng Liu, Mei Yang, Jie Yang, Cheng Li, and Qingdong Yao. An efficient scheduler

of rtos for multi/many-core system. Computers & Electrical Engineering, 38(3):785–800, 2012.
The Design and Analysis of Wireless Systems and Emerging Computing Architectures and
Systems. doi:10.1016/j.compeleceng.2011.09.009.

NG-RES 2021

https://doi.org/10.1145/3241950.3241955
http://etheses.whiterose.ac.uk/12959/
http://oa.upm.es/42418/
https://www.microsoft.com/en-us/research/publication/the-multikernel-a-new-os-architecture-for-scalable-multicore-systems/
https://www.microsoft.com/en-us/research/publication/the-multikernel-a-new-os-architecture-for-scalable-multicore-systems/
https://doi.org/10.1109/2.976921
https://doi.org/10.1145/3073763.3073770
https://doi.org/10.1145/3073763.3073770
https://doi.org/10.1016/j.compeleceng.2011.09.009

5:12 M2OS-Mc: An RTOS for Many-Core Processors

10 Salma Hesham, Jens Rettkowski, Diana Goehringer, and Mohamed A. Abd El Ghany. Survey
on real-time networks-on-chip. IEEE Trans. Parallel Distrib. Syst., 28(5):1500–1517, May
2017. doi:10.1109/TPDS.2016.2623619.

11 Leandro Soares Indrusiak. End-to-end schedulability tests for multiprocessor embedded
systems based on networks-on-chip with priority-preemptive arbitration. Journal of Systems
Architecture, 60(7):553–561, 2014. doi:10.1016/j.sysarc.2014.05.002.

12 James Jeffers and James Reinders. Intel Xeon Phi coprocessor high performance programming.
Newnes, 2013.

13 Borislav Nikolic, Sebastian Tobuschat, Leandro Indrusiak, Rolf Ernst, and Alan Burns.
Real-time analysis of priority-preemptive nocs with arbitrary buffer sizes and router delays.
Real-Time Systems, 55, June 2018. doi:10.1007/s11241-018-9312-0.

14 Andreas Olofsson. Parallella reference manual.

15 Andreas Olofsson. Epiphany-v: A 1024 processor 64-bit risc system-on-chip. arXiv preprint
arXiv:1610.01832, 2016.

16 Andreas Olofsson, Tomas Nordström, and Zain Ul-Abdin. Kickstarting high-performance
energy-efficient manycore architectures with epiphany. CoRR, 2014. arXiv:1412.5538.

17 Mario Aldea Rivas and Hector Perez Tijero. Leveraging real-time and multitasking ada
capabilities to small microcontrollers. Journal of Systems Architecture, 94:32–41, 2019. doi:
10.1016/j.sysarc.2019.02.015.

A Listings

type SP_Index is range 0 .. Sampling_Ports_Per_Core -1;
type SP_Id is private ;

function Init_Sampling_Port (C : in E_Lib.Core; Id : in SP_Index ;
Addr : in System . Address ; Size : Interfaces . Unsigned_32)

return SP_Id;

function Get_Sampling_Port (C : in E_Lib.Core; Id : in SP_Index)
return SP_Id;

function Write_Sampling_Port (SP : in SP_Id;
Orig : in System . Address ; Orig_Size : in Interfaces . Unsigned_32)

return Boolean ; -- Successful

procedure Read_Sampling_Port (SP : in SP_Id;
Dest : in System . Address ; Dest_Size : in Interfaces . Unsigned_32 ;
Successful : out Boolean ; Is_New : out Boolean);

Listing 1 Sampling port Interface

https://doi.org/10.1109/TPDS.2016.2623619
https://doi.org/10.1016/j.sysarc.2014.05.002
https://doi.org/10.1007/s11241-018-9312-0
http://arxiv.org/abs/1412.5538
https://doi.org/10.1016/j.sysarc.2019.02.015
https://doi.org/10.1016/j.sysarc.2019.02.015

D.G. Villaescusa, M.A. Rivas, and M.G. Harbour 5:13

task Consumer is
-- Declare and initialize data

begin
SP := Init_Sampling_Port (Current_Core , SP_Index , Data ’Addr , Data ’

Size);
loop

loop
Read_Sampling_Port (SP , Data ’Address , Data ’Size , Success , Is_New

);
if not Success then

-- Error;
end if;
exit when Is_New ;
Next_Polling_Period := Next_Polling_Period + Period ;
delay until Next_Polling_Period ;

end loop
-- Consume data

end loop;
end Consumer ;

Listing 2 Consumer

task Producer is
begin

loop
SP := Get_Sampling_Port (Core_Target , SP_Index);
exit when SP /= Null_SP_Id ;
Next_Polling_Period := Next_Polling_Period + Period ;
delay until Next_Polling_Period ;

end loop;
loop

-- Produce new data
Write_Sampling_Port (SP , Data ’Address , Data ’Size , Success);
if not Success then

-- Error
end if;
Next_Activation := Next_Activation + Task_Period ;
delay until Next_Activation ;

end loop;
end Producer ;

Listing 3 Producer

NG-RES 2021

	Introduction
	Related work
	Epiphany
	M2OS
	Building and loading the application
	HAL
	Clock synchronization
	Performance metrics
	Console

	Inter-task messages
	Implementation
	Interface
	Usage example
	Tests

	Conclusions and future work
	Listings

