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Preface

The papers in this volume were presented at the 24th International Conference on Principles
of Distributed Systems (OPODIS 2020), held on December 14-16, 2020. Originally planned
to be held in Strasbourg, France, the conference was held online due to the COVID19
pandemic.

OPODIS is an open forum for the exchange of state-of-the-art knowledge about dis-
tributed computing. With strong roots in the theory of distributed systems, OPODIS has
expanded its scope to cover the entire range between the theoretical aspects and practical
implementations of distributed systems, as well as experimental and quantitative assessments.
All aspects of distributed systems are within the scope of OPODIS: theory, specification,
design, performance, and system building. Specifically, this year, the topics of interest at
OPODIS included:

Biological distributed algorithms

Blockchain technology and theory

Communication networks (protocols, architectures, services, applications)
Cloud computing and data centers

Dependable distributed algorithms and systems

Design and analysis of concurrent and distributed data structures

Design and analysis of distributed algorithms

Randomization in distributed computing

Social systems, peer-to-peer and overlay networks

Distributed event processing

Distributed operating systems, middleware, and distributed database systems
Distributed storage and file systems, large-scale systems, and big data analytics
Edge computing

Embedded and energy-efficient distributed systems

Game-theory and economical aspects of distributed computing

Security and privacy, cryptographic protocols

Synchronization, concurrent algorithms, shared and transactional memory
Impossibility results for distributed computing

High-performance, cluster, cloud and grid computing

Internet of things and cyber-physical systems

Mesh and ad-hoc networks (wireless, mobile, sensor), location and context-aware systems
Mobile agents, robots, and rendezvous

Programming languages, formal methods, specification and verification applied to distrib-
uted systems

Self-stabilization, self-organization, autonomy

Distributed deployments of machine learning

We received 75 submissions, each of which underwent a double-blind peer review process,
by at least three members of the Program Committee with the help of external reviewers.
Overall, the quality of the submissions was very high. From the 75 submissions, 30 papers
were selected to be included in these proceedings.

The OPODIS proceedings appear in the Leibniz International Proceedings in Informatics
(LIPIcs) series. LIPIcs proceedings are available online and free of charge to readers. The
production costs are paid in part from the conference budget.
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Preface

The Best Paper Award was awarded to Salwa Faour and Fabian Kuhn for their paper
titled “Approximating Bipartite Minimum Vertex Cover in the CONGEST model”. The Best
Student Paper Award was given to Amine Boussetta for his paper titled “Fast Byzantine
SGD”, co-authored with Rachid Guerraoui, Alexandre Maurer and Sébastien Rouault.

This year OPODIS had three distinguished invited keynote speakers: Idit Keidar (Tech-
nion), Jukka Suomela (Aalto University) and Pascal Felber (University of Neuchatel).

Thank you to all the authors that submitted their work to OPODIS. We are also grateful
to the Program Committee members for their hard work reviewing papers and their active
participation in the online discussions and the Program Committee meeting. We also thank
the external reviewers for their help with the reviewing process.

Organizing this event would not have been possible without the help of the Networks
Team of the ICUBE Laboratory.

Finally, we thank the Steering Committee members for their valuable advice, as well as
the sponsors and the University of Strasbourg for their support.

November 2020
Quentin Bramas (University of Strasbourg, ICUBE, France)

Rotem Oshman (Technion, Israel)
Paolo Romano (University of Lisbon and INESC-ID, Portugal)
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Big Data Processing: Security and Scalability
Challenges
Pascal Felber

University of Neuchatel, Switzerland

—— Abstract

The processing of large amonts of data requires significant computing power and scalable architectures.

This trend makes the use of Cloud computing and off-premises data centres particularly attractive,
but exposes companies to the risk of data theft. This is a key challenge toward exploiting public
Clouds, as data represents for many companies their most valuable asset. In this talk, we will
discuss about mechanisms to ensure secure and privacy-preserving Big Data processing on computing
architectures supporting horizontal and vertical scalability.

2012 ACM Subject Classification Computer systems organization — Cloud computing; Security
and privacy — Privacy-preserving protocols

Keywords and phrases Big Data
Digital Object Identifier 10.4230/LIPIcs.OPODIS.2020.1

Category Invited Talk

© Pascal Felber;
37 licensed under Creative Commons License CC-BY
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Byzantine Agreement and SMR with
Sub-Quadratic Message Complexity
Idit Keidar

Technion, Haifa, Israel

—— Abstract

Byzantine Agreement (BA) has been studied for four decades by now, but until recently, has been
considered at a fairly small scale. In recent years, however, we begin to see practical use-cases of
BA in large-scale systems, which motivates a push for reduced communication complexity. Dolev
and Reischuk’s well-known lower bound stipulates that any deterministic algorithm requires Q(n?)
communication in the worst-case, and until fairly recently, almost all randomized algorithms have
had at least quadratic complexity as well. This talk will present two new algorithms breaking this
barrier.

The first part of the talk will consider a fully asynchronous setting, focusing on randomized BA
whose safety and liveness guarantees hold with high probability. It will present the first asynchronous
Byzantine Agreement algorithm with sub-quadratic communication complexity. This algorithm
exploits VRF-based committee sampling, which it adapts for the asynchronous model.

The second part of the talk will consider the eventually synchronous model, where BA and State
Machine Replication (SMR) can be solved with deterministic safety and liveness guarantees. In this
context, randomization is used in order to reduce the expected communication complexity. The talk
will present an algorithm for round synchronization, which is a building block for BA and SMR
and constitutes the main performance bottleneck therein. It will present an algorithm that, for the
first time, achieves round synchronization with expected linear message complexity and expected
constant latency. Existing protocols can use this round synchronization algorithm to solve Byzantine
SMR with the same asymptotic performance.

The first part of the talk is based on joint work with Shir Cohen and Alexander Spiegelman,
and the second part of the talk is based on joint work with Oded Naor.

2012 ACM Subject Classification Networks — Network algorithms; Computing methodologies —
Distributed algorithms

Keywords and phrases Distributed Computing, Byzantine Agreement

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2020.2

Category Invited Talk

Related Version This talk covers results from [1], https://doi.org/10.4230/LIPIcs.DISC.2020.25

and [2], https://doi.org/10.4230/LIPIcs.DISC.2020.26.

—— References

1 Shir Cohen, Idit Keidar, and Alexander Spiegelman. Not a coincidence: Sub-quadratic asyn-
chronous byzantine agreement WHP. In Hagit Attiya, editor, 34th International Symposium
on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual Conference, volume
179 of LIPIcs, pages 25:1-25:17. Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 2020.
do0i:10.4230/LIPIcs.DISC.2020.25.

2 Oded Naor and Idit Keidar. Expected linear round synchronization: The missing link for
linear byzantine SMR. In Hagit Attiya, editor, 34th International Symposium on Distributed
Computing, DISC 2020, October 12-16, 2020, Virtual Conference, volume 179 of LIPIcs, pages
26:1-26:17. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020. doi:10.4230/LIPIcs.
DISC.2020.26.
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Can We Automate Our Own Work — or Show That
It Is Hard?

Jukka Suomela
Aalto University, Finland
https://jukkasuomela.fi/
jukka.suomela@aalto.fi

—— Abstract

Computer scientists seek to understand what can be automated, but what do we know about

automating our own work? Can we outsource our own research questions to computers? In this
talk I will discuss this question from the perspective of the theory of distributed computing. I will
present not only recent examples of human-computer-collaborations that have resulted in major
breakthroughs in our understanding of distributed computing, but I will also explore the fundamental
limits of such approaches.

2012 ACM Subject Classification Computing methodologies — Distributed algorithms
Keywords and phrases Distributed Computing

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2020.3

Category Invited Talk
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Byzantine Lattice Agreement in Asynchronous

Systems
Xiong Zheng
Electrical and Computer Engineering, University of Texas at Austin, TX, USA

Vijay Garg
FElectrical and Computer Engineering, University of Texas at Austin, TX, USA

—— Abstract

We study the Byzantine lattice agreement (BLA) problem in asynchronous distributed message
passing systems. In the BLA problem, each process proposes a value from a join semi-lattice and
needs to output a value also in the lattice such that all output values of correct processes lie on a
chain despite the presence of Byzantine processes. We present an algorithm for this problem with
round complexity of O(log f) which tolerates f < ¢ Byzantine failures in the asynchronous setting
without digital signatures, where n is the number of processes. This is the first algorithm which has
logarithmic round complexity for this problem in asynchronous setting. Before our work, Di Luna
et al give an algorithm for this problem which takes O(f) rounds and tolerates f < % Byzantine
failures. We also show how this algorithm can be modified to work in the authenticated setting (i.e.,
with digital signatures) to tolerate f < % Byzantine failures.

2012 ACM Subject Classification Theory of computation — Distributed algorithms
Keywords and phrases Byzantine Lattice Agreement, Asynchronous

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2020.4

Related Version Full version hosted on https://arxiv.org/abs/2002.06779.

Funding Vijay Garg: This work was supported in parts by the National Science Foundation Grants
CNS-1812349, CNS-1563544, and the Cullen Trust Endowed Professorship.

1 Introduction

In distributed systems, reaching agreement in the presence of process failures is a fundamental
task. Understanding the kind of agreement that can be reached helps us understand the
limitation of distributed systems with failures. Consensus [15] is the most fundamental
problem in distributed computing. In this problem, each process proposes some input value
and has to decide on some output value such that all correct processes decide on the same
valid output. In synchronous message systems with crash failures, consensus cannot be
solved in fewer than f + 1 rounds [9]. In asynchronous systems, consensus is impossible
in the presence of even one crash failure [11]. The k-set agreement [5] is a generalization
of consensus, in which processes can decide on at most k values instead of just one single
value. The k-set agreement cannot be solved in asynchronous systems if the number of crash
failures f > k [3, 12]. The paper [6] shows that k-set agreement problem cannot be solved
by less than L%j rounds if n > f + k + 1 in crash failure model. The lattice agreement
problem was proposed by Attiya et al [1] to solve the atomic snapshot object problem in
shared memory systems. In this problem, each process ¢ € [n] has input x; and needs to
output y; such that the following properties are satisfied. 1) Downward-Validity: z; < y;
for each correct process i. 2) Upward-Validity: y; < U{x; | i € [n]}. 3) Comparability:
for any two correct processes ¢ and j, either y; < y; or y; < y;.
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Attiya et al in [1] present a generic algorithm to transform any protocol for the lattice
agreement problem to a protocol for implementing an atomic snapshot object in shared
memory systems. This transformation can be easily implemented in message passing systems
by replacing each read and write step with sending “read” and “write” messages to all and
waiting for acknowledgements from n — f different processes. Conversely, if we can implement
an atomic snapshot object, lattice agreement can also be solved easily both on shared-memory
and message passing systems with only crash failures. Thus, solving the lattice agreement
problem in message passing systems is equivalent to implementing an atomic snapshot object
in message passing systems with only crash failures.

Using lattice agreement protocols, Faleiro et al [10] give procedures to build a special
class of linearizable and serializable replicated state machines which only support query
operations and update operations but not mixed query-update operations. Later, Xiong
et al [19] propose some optimizations for their procedure for implementing replicated state
machines from lattice agreement in practice. They propose a method to truncate the logs
maintained in the procedure in [10]. The recent paper [17] by Skrzypczak et al proposes a
protocol based on generalized lattice agreement [10], which is a multi-shot version of lattice
agreement problem, to provide linearizability for state based conflict-free data types [16].

In message passing systems with crash failures, the lattice agreement problem is well
studied [1, 19, 20, 13]. The best upper bound for both synchronous systems and asynchronous
systems is O(log f) rounds. In the Byzantine failure model, a variant of the lattice agreement
problem is first studied by Nowak et al [14]. Then, Di Luna et al [8] propose a validity
condition which still permits the application of lattice agreement protocol in obtaining atomic
snapshots and implementing a special class of replicated state machines. They present
an O(f) rounds algorithm for the Byzantine lattice agreement problem in asynchronous
message systems. For synchronous message systems, a recent preprint by Xiong et al [18]
gives three algorithms. The first algorithm takes O(y/f) rounds and has the early stopping
property. The second and third algorithm takes O(logn) and O(log f) rounds but are not
early stopping. All three algorithms can tolerate f < 7 failures. They also show how to
modify their algorithms to work for authenticated settings and tolerates f < % failures. The
preprint by Di Luna et al [7] presents an algorithm which takes O(log f) rounds and tolerates
J < % failures and shows how to improve resilience to f < % by using digital signatures.

In this work, we present new algorithms for the Byzantine lattice agreement (BLA)
problem in asynchronous message systems. In this problem, each process ¢ € [n] has input x;
from a join semi-lattice (X, <,U) with X being the set of elements in the lattice, < being
the partial order defined on X, and LI being the join operation. The lattice can be infinite.
Each process i has to output some y; € X such that the following properties are satisfied.
Let C denote the set of correct processes in the system and f, denote the actual number of
Byzantine processes in the system.

Comparability: For all i € C' and j € C, either y; < y; or y; < y;.

Downward-Validity: For all i € C, x; < y;.

Upward-Validity: U{y; | i € C} <U({z; | ¢ € C} U B), where B C X and |B| < f,.

The first two requirements are straightforward. Upward-Validity requires that the total
number of values that can be introduced by Byzantine processes into the decision value of
correct processes can be at most the number of actual Byzantine processes in the system.
One may argue that if a Byzantine process proposes the largest element of the input lattice,
then correct processes may always decide on the largest element. For applications, we can
impose an additional constraint on the initial proposal of all processes. In the case of a
Boolean lattice, we can require that the initial proposal for any process must be a singleton.
More generally, we can impose the requirement that the initial proposal of any process must
have the height less than some constant.
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Our contribution is summarized in Table 1. First, we present an algorithm for the BLA
problem in asynchronous systems without the digital signatures assumption which takes
O(log f) rounds and f < %. The algorithm achieves exponential improvement in round
complexity compared to the previous best algorithm in [8]. Then, we show how to improve
the resilience to f < g with the digital signatures assumption. The round complexity of our
algorithm matches the best round complexity achieved in synchronous model [18].

Table 1 Our Results.

Model Digital Signatures? | Reference | Rounds | Resilience

N o(l n

Synchronous o 18] (log f) <3z
Yes O(log f) f<3

No 5 o) | f<=

A h N n
synchronous o This paper | O(log f) <%
Yes f < %

2 System Model

We assume a distributed asynchronous message system with n processes with unique ids
in {1,2,...,n}. The communication graph is completely connected, i.e., each process can
send messages to any other process in the system. We assume that the communication
channel between any two processes is reliable. There is no upper bound on message delay.
We assume that processes can have Byzantine failures but at most f < n/3 processes can
be Byzantine in any execution of the algorithm. We use parameter f, to denote the actual
number of Byzantine processes in a system. By our assumption, we must have f, < f.
Byzantine processes can deviate arbitrarily from the algorithm. We say a process is correct
or non-faulty if it is not a Byzantine process. We consider both systems with and without
digital signatures. In a system with digital signatures, Byzantine processes cannot forge the
signature of correct processes.

3 Algorithm for the Asynchronous model without Digital Signatures

In this section, we present an algorithm for the BLA problem in asynchronous systems which
takes O(log f) rounds of asynchronous communication and tolerates f < ¢ Byzantine failures.
Our algorithm applies a recursive approach similar to the algorithms designed for crash
failure model in [20], which is inspired by the algorithm in [2] designed for atomic snapshot
objects in shared memory systems. The high level idea of the recursive approach is to apply
a classifier procedure to divide a group of processes into the slave subgroup and the master
subgroup and update their values such that the values of the slave group is less than the
values of the master group. Then, by recursively applying such a classifier procedure within
each subgroup, eventually all processes have comparable values. In crash failure model, the
classifier procedure only needs to guarantee the following two properties: (C1) The value of
a correct slave process is at most the value of any correct master process, (C2) The size of
the union of all values of correct slave processes is at most k, which is a threshold parameter
associated with the classifier procedure and serves as knowledge threshold.

Suppose we have a classifier procedure in the crash failure model with properties (C1) and
(C2). The binary tree in Fig. 1 shows how processes invoke the classifier procedure recursively.
Each node in the tree represents a classifier procedure with its threshold parameter k shown
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above the node. Before all processes traverse the tree and recursively invoke the classifier
procedures along the way, an initial round is used to let all processes exchange their input
values. After the initial round, each process obtains at least n — f values. The threshold
parameters of classifier procedures in the tree are set in a binary way with low equal to n — f
and high equal to n. The threshold parameter of the classifier procedure at the root node is
set as n — % Given a node with threshold parameter equal to &, the threshold parameter of
its left child node and right child node are set as k — T% and k+ QT%, respectively. Then, all
processes traverse the binary tree starting from the root and invoke the classifier procedures
along the way. After a specific classifier procedure invocation, processes classified as slave
traverses to the left subtree and processes classified as master traverse to the right subtree.
We can observe that all labels in the binary tree up to level log f are unique. The above
properties (C1) and (C2) of the classifier procedure and our method to set the threshold
parameter of each classifier procedure in the tree guarantee that 1) at level log f + 1, processes
in different nodes have comparable values, 2) at level log f + 1, processes within the same
node must have the same value. This will be formally proved when we present our algorithm.

"
level 1 : 3
”—Tf/ \”—5
level 2 : \ )
level logf+1: ) (
n—fn—f+1 n—1 n

Figure 1 The Classification Tree.

In presence of Byzantine processes, (C1) and (C2) are not enough for recursively applying
such classifier procedure within each subgroup. A Byzantine process in a slave group can
introduce new values which are not known by some master process. To prevent that from
happening, we introduce the notion of admissible values for a group (to be formally defined
later), which is the set of values that processes in this group can ever have. We present
a Byzantine tolerant classifier procedure with threshold parameter & which provides the
following properties: (B1) Each correct slave process has < k values and each correct master
process has > k values. (B2) The admissible values of the slave group is a subset of the value
of any correct master process. (B3) The union of all admissible values in the slave group has
size < the threshold parameter k.

Suppose now we have a Byzantine tolerant classifier which guarantees the above proper-
ties.The main algorithm, shown in Fig. 2, proceeds in asynchronous rounds. The Byzantine
tolerant classifier procedure can take multiple rounds. For ease of presentation, we call
each round in the classifier as a subround. Each process i maintains a value set V; which
contains a set of values and is updated at each round by invoking the classifier procedure.
Each process i has a label [;, which is used as the threshold parameter when it invokes
the classifier procedure. Initially, each process has the same label kg = n — % The label
of a process is updated at each round according to the classification tree. Each process i
also keeps track of a map S;, which we call the safe value map. S;[k] denotes the set of
values that process i considers valid for label k. This safe value map is used by process i to
restrict the admissible values of a group. In the main algorithm, a process uses the reliable
broadcast primitive efined by Bracha [4] to send its value. When process i receives a value
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broadcast by process j that is not in S;[j], it will not send echo this value to other processes.

In the reliable broadcast primitive, a process uses RB__broadcast to send a message and
uses RB__broadcast to reliably deliver a message. This primitive guarantees many nice
properties. In our algorithm, we need the following two main properties: 1) If a message
is reliably delivered by some correct process, then this message will eventually be reliably
delivered by each correct process. 2) If a correct process reliably delivers a message from
process p, then each correct process reliably delivers the same message from p.

Code for process i:

x;: input value y;: output value

l;: label of process . Initially, I; = kg =n — %:

V;': value set held by process i at round r of the algorithm

Map S;: S;[k] denote the safe value set for group k

/* Initial Round */

1: RB_ broadcast(z;), wait for n — f RB__deliver(z;) from p;
2: Set V;! as the set of values reliably delivered

/* Round 1 to log f */

3: for r:=1 to log f

4: (VY class) == Classifier(V7,1;,r)

5: if class = master then [; .= 1[; + 27%
6: else ;=1 — 2}%

7: end for

8: y; == Ufv e V/os Ity

Upon RB__deliver(z;) from p;
Sz[k‘o] = Sz[ko} Uz,

Figure 2 O(log f) Rounds Algorithm for the BLA Problem.

In the initial round at lines 1-2, process ¢ RB__broadcast its input z; to all and waits
for RB__deliver from n — f different processes. Then, it updates its value set to be the
set of values reliably delivered at this round. When reliable delivering a value, process ¢
adds this value into its safe value set for the initial group kg =n — g The reliable delivery
procedure is assumed to be running in background. So, the safe value set for the initial group
keeps growing. By the properties of reliable broadcast, this safe value set can only contain at
most one value from each process. This is used to ensure Upward-Validity.

After the initial round, we can assume that all values in the initial safe value set of each
process are unique, which can be done by associating the sender’s id with the value. At line
3-8, process i executes the classifier procedure (to be presented later) for log f rounds. At
each round, it invokes the classifier procedure to decide whether it is classified as a slave
or a master and then updates its value accordingly. At round r, if process i is a master, it
updates its label to be [; :=1; + QT% Otherwise, if updates its label to be [; :=1[; — QT%

By applying properties (B1)-(B3), we can show that any two correct process ¢ and j in
the same group at the end of round log f must have the same set of values. For any two
processes in different group, by recursively applying property (B2), the values of one process
must be subset of the values of the other process.
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OPODIS 2020



4:6

Byzantine Lattice Agreement in Asynchronous Systems

3.1 The Byzantine Tolerant Classifier

We present a classifier procedure that satisfies (B1)-(B3), shown in Fig. 4. It is inspired
by the asynchronous classifier procedure given in [19] for the crash failure model. In the
classifier procedure, each process stores a set of values received from other processes. We say
a process writes a value to at least n — f processes if it sends a “write” message containing
the value to all processes and waits for n — f processes to send acknowledgement back. We
say a process reads from at least n — f processes if it sends a “read” message to all and waits
for at least n — f processes to send their current values back. We say a process performs a
write-read step if it writes its value to at least n — f processes and reads their values.

In the asynchronous classifier procedure for the crash failure model [19], to divide a group
into a slave subgroup and a master subgroup, each process in the group first writes its value
to at least n — f processes and then reads from at least n — f processes. After that, each
process checks whether the union of all values obtained has size greater than the threshold
parameter k or not. If true, it is classified as a master process, otherwise, it is classified
as a slave process. Slave processes keep their values the same. To guarantee the value of
each slave process is < the value of each master process, each master process performs a
write-read step to write the values obtained at the read step to at least n — f processes and
read the values from them. Then it updates its value to be the union of all values read. The
second read step guarantees the size of the union of values of slave processes is < k, since the
last slave process which completes the write step must have read all values of slave processes.

Constructing such a classifier procedure in presence of Byzantine processes is much more
difficult. In order to adapt the above procedure to work in Byzantine setting, we need to
address the following challenges. First, in the write step or read step, when a process waits
for at least n — f different processes to send their values back, a Byzantine process can
send arbitrary values. Second, simply ensuring that the values of a slave process is a subset
of values of each master process is not enough, since a Byzantine process can introduce
some values unknown to a master process in the slave group. For example, even if we can
guarantee that the current value of each slave process is less that the value of each master
process, in a later round, a Byzantine process can send some new value to a slave process
which is unknown to some master process. This is possible in an asynchronous systems since
messages can be arbitrarily delayed. Third, ensuring that the union of all values in the slave
group has size at most k is quite challenging. A simple second read step does not work any
more since the last process which completes the write step might be a Byzantine process.

To prevent the first problem, in the Byzantine classifier procedure, when a process wants
to perform a write step or read step, it applies the reliable broadcast primitive to broadcast
its value. When a process waits for values from at least n — f processes, it only accepts a
value if the value is a subset of the values reliably delivered by this process. By property of
reliable broadcast, this ensures that each accepted value must be reliably broadcast by some
process, which prevents Byzantine processes from introducing arbitrary values.

To tackle the second and third problem, the key idea is to restrict the values that a
Byzantine process, which claims itself to be a slave process, can successfully reliable broadcast
in later rounds. To achieve that, first we require that that a slave process can only reliable
broadcast the value that it has reliably broadcast in the previous round. This prevents
Byzantine processes from introducing arbitrary new values into a slave group. Second, we
require each process which claims itself as a slave process to prove that it is indeed classified
as a slave at the previous round when it tries to reliable broadcast a value at the current
round by presenting the set of values it used to do classification. To enforce the above two
requirements, we add a validity condition when a process echoes a message in the reliable
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broadcast primitive. However, this is not enough, since the value of a Byzantine slave
process might not be known to a master process if the value of the Byzantine process is
arbitrarily delayed. To ensure that the value a Byzantine process reliably broadcast is read
by each correct master process, we force a Byzantine process who wants to be able to reliable
broadcast a value in the slave group at next round to actually write its value to at least
L"—;fj + 1 — f correct processes, i.e., at least L”THJ + 1 — f correct processes must have
received the value of a Byzantine process before each correct master process tries to read
from at least n — 2f correct processes. These two sets of correct processes must have at least
one correct process in common since f < Z.

BRB_ broadcast(type, pf, v, k,r)

type denotes the type of the message to be sent, either “write” or “read”
pf is an array which is a proof of sender’s group identity

v is the value to be sent, k is the label of the sender, r is the round number

Broadcast INIT(4, type, pf, v, k,r) to all

Upon receiving INIT(j,¢;,pf;, v, kj,75)
if (first reception of INIT(j,¢;, —, —, —,7;)
wait until valid(t;, pf;,v;, kj,r;) /* The valid function is defined in Fig. 5 */
Broadcast ECHO(j, ¢, v;, kj,7;5)

Upon receiving ECHO(j, t;, pf;,vj, kj, rj)
if ECHO(y,t;,pfj,vj, kj, ;) is received from at least L"—;fj + 1 different processes
A READY (4, vj, kj,7;) has not yet broadcasted
Broadcast READY (j,t;,pf;,v;, kj,7;)

Upon receiving READY (5,t;, pfj, vi, kj,75)
if READY(j,t;,pfj, v, kj,75) received  from f + 1 processes A
READY(j,t;,pfj, v, kj,7;) has not been broadcasted
Broadcast READY (4, t;,pf;,v,, kj, rj)
if READY (4, t;,pf;,v;, k;, ;) received from 2f 4 1 processes A (4, t;,pf;, v, kj,7;) has
not been delivered
BRB_ deliver(j,t;,pf;,vj, kj,75)

Figure 3 Bounded Reliable Broadcast.

Each process which is classified as master is not required to prove its group identity but
the value it tries to broadcast has to be a subset of safe value sets of correct processes. To
ensure that the value of a slave process is less than the value of a master process, a master
process needs to do a write-read step after it is classified as a master process.

Bounded Reliable Broadcast. Before explaining the Byzantine classifier procedure in detail,
we modify the reliable broadcast primitive by adding a condition when a process echoes
a broadcast message. This condition restricts the admissible values for each group. For
completeness, the modified reliable broadcast procedure is shown in Fig. 3. When a process
reliable broadcasts a value, it also includes the round number, its current label and a proof
of its group identity. The proof is an array of size n denoting the values read by the
sender at previous round, which will be explained in detail when we present the classifier
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procedure.When a process i receives a broadcast message from process j, it waits for the
validity condition to hold and then echoes the message. We say a process BRB__broadcasts
a message if it executes BRB__broadcast procedure with the message. We say a process
BRB__delivers a message if it executes BRB__deliver with this message.

Groups and Admissible Values. In our algorithm, each process i has a label [;, which serves
as the threshold when it invokes the classifier procedure. The notion of group defined as
below is based on labels of processes.

» Definition 1 (group). A group is a set of processes which have the same label. The label
of a group is the label of the processes in this group. The label of a group is also the threshold
value processes in this group use to do classification.

We also use label to indicate a group. A process is in group k if its message is associated with
label k. Initially all processes are within the same group with label kg =n — g The label
of each process is updated at each round based on the classification result. For group k at
round 7, let s(k,r) =k — QF% and m(k,r) = k+ 27% We introduce the notion of admissible
values for a group, which is the set of values that processes in the group can ever have.

» Definition 2 (admissible values for a group). The admissible values for a group G with label
k is the set of values that can be reliably delivered with label k if they are reliably broadcast
by some process (possibly Byzantine) with label k.

In our classifier, each process in group k updates its value set to a subset of the values
which are reliably delivered with label k. Thus, the value set of each process in group k£ must
be a subset of the admissible values for group k.

3.2 The Classifier Procedure

The classifier procedure for process i € [n], shown in Fig. 4, has three input parameters: V'
is the current value set of process i, k is the threshold value used to do the classification,
which is also the current label of process i, and r is the round number.

In lines 1-2, process ¢ writes its current value set to at least n — f processes by using the
BRB__broadcast procedure to send a “write” message. If process i is classified as a slave
at the previous round, it needs to include the array of values it read from at least n — f
processes at previous round as a proof of its group identity. This proof is used by every other
process in the wvalid function to decide whether to echo the “write” message or not. When
process ¢ BRB_ delivers a “write” message with label k at round r, it includes the value in
it into its safe value set for group m(k,r). The safe value set is used to restrict the set of
values that can be delivered in the master group m(k,r). Due to this step, we can see that
the admissible values in the master subgroup must be a subset of the admissible values at
the current group. Process ¢ also includes the value contained in the “write” message into
ACV][k], which stores the set of values reliably delivered with label k at round .

From line 3 to line 4, process ¢ reads values from at least n — f processes by using the
BRB__broadcast procedure to send a “read” message to all. In the valid function, each
process j echos a “read” message from process i only if it has BRB_ delivered the “write”
message from process i sent at line 2. This step is used to ensure that for any process,
possibly Byzantine, to read from other processes, it must have written its value to at least
LRTHJ + 1 — f correct processes, otherwise it cannot have enough processes echo its “read”
message in the BRB__broadcast. When process ¢ BRB_ delivers a “read” message with
label k£ from process j at round r, it records the set of values it has reliably delivered with
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Classifier(V, k,r) for p;:

V' input value set k: threshold value r: round number

/* Each process i € [n] keeps track of the following variables */

Array LB!. LBY[j] denotes the label of process j sent along its values at round r
Map S;. S;[k] denotes a safe value set for group k

Map RV;". RV;"[j] denote the values process i read from process j at round r at line 4
Map RT;]. RT![j] denote the values process j read from process i at round r.

/* write step*/
1: if isSlave(i, k,r) then pf := RV ! else pf := ()
2: BRB_ broadcast(“write”,pf, V, k, r), wait for wack(—,r) from n — f different processes

/* read step*/
3: BRB_ broadcast(“read”, —, —, k, ), wait for n — f rack(R;

i,7) s.t. R; C ACV;[k] from p;,
4: Set RV/[j] := R, if R; C ACV;"[k], otherwise RV;"[j] :== 0

/* Classification */
5: Let T. = | RV/[j]

j=1
6: if [T >k

/* write-read step */
7: Send master(T, k,r) to all, wait for n — f mack(R;,r) from p; s.t. R; C ACV;[K]
8: Define T" := U{R; | R; C ACV[k],j € [n]}
9: return (77, master)

10: else
11:  return (V, slave)

Map ACV;. ACV;"[k] denotes the set of values accepted with label k, initially ACV;"[k] := 0)

Upon BRB_ Deliver(j, type, —, v, k, )

if type = “write”
Silm(k,r)] := Si[m(k,r)]Uv /* Construct safe value set for group m(k,r) */
ACVT k] := ACV] [kl U
LB!'[j] ==k /* Record the label of a process at round r */
Send message wack(—,r) to p;

elif type = “read”
RTY(j) = ACV? K]
Send message rack(ACV/[k],r) to p;

Upon receiving master(T, k,r) from p;
wait until 7' C ACV;[k]
Send message mack(ACV; [k],r) to p;

Figure 4 The Byzantine Tolerant Classifier Procedure.

OPODIS 2020



4:10

Byzantine Lattice Agreement in Asynchronous Systems

label k in RT][j]. Then process i sends back a rack message along with the set of reliably
delivered values with label k at round r to process j. At line 3, after the “read” message
is sent, process ¢ has to wait for valid rack message from n — f processes. A rack message
is valid if the value set contained in it is a subset of ACV;"[k], which is the set of values
reliably delivered with label k at round r. Consider a rack(R;,r) message from a correct
process j. Since j is correct, each value in R; must have been reliably delivered by process
j. By property of reliable broadcast, each value in R; will eventually be reliably delivered
by process i, thus R; C ACV;"[k]. Thus, eventually process ¢ can obtain n — f valid rack
message. To implement line 3, we need a concurrent thread to check the wait condition
whenever a new message is reliably delivered and added into ACV,"[k]. At line 4, process
i records the set of valid R;’s obtained at line 3 into array RV;". So, this array stores the
values reliably delivered with label k that process ¢ read from all processes. This array is
used to do classification in line 5-11 and also used as the proof of group identity of process 4
when it writes at next round.

Line 5-11 is the classification step. Process i is classified as a master process if the size of
the union of valid values obtained in the read step is greater than its label k, otherwise, it is
classified as a slave process. If it is classified as a slave process, it returns its input value
set. If it is classified as a master process, process i performs a write-read step by sending a
master message which includes the set of values it uses to do classification to all and wait for
n — f valid mack message back at line 7. Similar to line 3, a mack message is valid if each
value contained in it has been reliably delivered with correct label. When a process receives
a master message with value set T and label k at round r, it first waits until all values in
T are reliably delivered. Then it sends back a mack message along with the set of values
reliably delivered with label k£ at round r. The waiting is used to ensure that each value in T
is valid, i.e., be reliably delivered, because a Byzantine process can send arbitrary values
in its master message at line 7. By a similar reasoning as line 3, process i will eventually
obtain valid mack message from at least n — f different processes. After the write-read step,
at line 8, process 7 updates its value set to be the union of values obtained at line 7.

function wvalid(j, type,pf, v, k,r) for process i:
if (type = “write” A —~isSlave(j, k,r) Av C S;[k])
V (type = “write” NisSlave(j, k,7) ABRB_ deliver(j, “write”, —, v, LB ~*[j],r — 1)

Apfli)=RT;GIAT U pflill < LB 7))

V (type = “read” A BRB_ deliver(j, “write”, —, —, k,r))
return True
else

return False

function isSlave(j, k,r) for process i:
if k= LB '[j] - &
return True
else

return False

Figure 5 The valid Function.

The valid function is defined in Fig. 5. In the this function, we first consider the “write”
messages. If the message has been sent by a process that claims to be a master, then it is
considered valid if the value v in this message is contained in the safe value set S;[k]. If
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the message has been sent by a process that claims to be a slave, then process i checks (1)
whether process ¢ has BRB_ delivered the “write” message containing the same value at
the previous round, (2) whether the i*” entry in pf array matches the value process j read
from ¢ in the previous round, and (3) whether the the number of values contained in the
proof pf is at most k. The condition (1) ensures that a slave process sends the same value as
the previous round since a correct slave process must keep its value same as in the previous
round. The condition (2) ensures that the proof sent by the slave process uses values that it
read at round r — 1. The condition (3) checks that the sender classified itself correctly.

If the message is a “read” with label k at round r, process ¢ considers it as valid if it
BRB__deliverd a “write” message with label k£ at round r from the sender. This is used
to make sure that the sender (possibly Byzantine) must complete its write step in line 1-2
before trying to read at line 3-4.

The ¢sSlave function invoked in the valid function simply checks whether the label of
the sender matches the label update rule by comparing it with the label at previous round.

3.3 Proof of Correctness

We first define the notion of committing a message. Due to space limitation, we omit the
proof of most lemmas. The notations used in our proof are listed in Table. 2.

» Definition 3. We say a process commits a message if it reliably broadcasts the message
and the message is reliably delivered. A process commits a message at time t if this message
1s reliably delivered by the first process at time t.

Table 2 Notations.

Variable | Definition
G A group of processes at round r with label k

slave(@) The slave subgroup of G, i.e., the processes with label s(k,r) at round r + 1

master(G) | The master subgroup of G, i.e., the processes with label m(k,r) at round r + 1

\% The value set of process i at the beginning of round r

The safe value map of process i at the beginning of round r

Si[k] is the safe value set of process i for group k at the beginning of round r
The set of admissible values for group k at round r, i.e., the set of values that
can be committed along with a “write” message at round r with label k

By properties of reliable broadcast, we observe that each process (possibly Byzantine)
can commit at most one “write” message and at most one “read” message at each round.
Define s(k,r) = k — w% and m(k,r) = k + 2,4% The variables we use in the proof are
shown in Table. 2. Consider the classification step in group k at round r. The following
lemma shows that if a Byzantine process wants to commit a “write” message m at round
r 4+ 1 with a slave label, then it must commit a “write” message m’ which contains the same
value as m and a “read” message at round r with label k. Also, it must commit its “read”
message before its “write” message at round r with label k.

» Lemma 4. Suppose that process i (possibly Byzantine) commits a write message

(i, “write”, —, Vi, s(k,r),r +1). Then

1) The message (i, “read”, —, —, k,r) and the message (i, “write”, —,V;, k,r) must be com-
mitted by process i.
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2) Let t denote the time that message (i, “read”, —, —, k,r) is committed. Then, the message
(i, “write”, —, V;, k,r) must have been reliably delivered by at least L"THJ +1— f correct
processes before time t.

The following lemma shows that the classifier provides the properties we defined.

» Lemma 5. Let G be a group at round r with label k. Let L and R be two nonnegative
integers such that L < k < R. If L < |V]"| < R for each correct process i € G, and |U]| < R,
then

(pl) For each correct i € master(G), k < |V/ T <R

(p2) For each correct i € slave(G), L < [V <k

(P3) Usi.y € Uk

(p4) Unly.y C UK

(P5) UL 44 < R
(p6) U742, < K

s(k,r
(p7) For each correct j € master(G), UST('Z?T) C Vf“
(p8) Each correct i € slave(G) can commits its value set at round r+1, i.e., VT C UST(J,;lT)
(p9) Each correct j € master(G) can commit its value set at round r+1, i.e., Vf“ C U;j('é’r)

(p10) |U{V/ T | i€ slave(G)NCY <k (p11) |U{V/T! | i € master(G)NC} <R

Proof.

(p1)-(p5): Implied by how processes are classified as slave or master in the classifier.

(p6): (Sketch) Let P denote the set of processes who can commit a write message at round
r+ 1 with label s(k,r). Part 2) of Lemma 4 implies that the write message of each i € P
at round r must have been reliably delivered by at least L"THJ + 1 — f correct processes.
Let | € P be the last process s.t its write message at round r is reliably delivered by at
least L"THJ + 1 — f correct processes. Process I must have read all the values written by
processes in P at round r due to quorum intersection. Due to quorum intersection and
the condition to which processes echo write messages, process [ must have read all values
in Usr(z}r) at round r and [ is classified as slave at round r, which indicates that U:(Z}T).

(p7): (Sketch) Let P denote the set of processes who commit a “write” message at round
r + 1 with label s(k,7). Lemma 4 implies that the write message of each process in
P must have been reliably delivered by at least L%fj 4+ 1 — f correct processes. The
condition to which correct processes echo write messages implies that at round r 4 1, each
process in P sends the same value as round r in its write message. Quorum intersection
guarantees that each master process must have read the values of each process in P in its
reading step at round r. Thus, U:(Jrk,lr) C er+1 for each j.

(p8): Since process i is correct, at round r, it must read from at least n—2f correct processes.
Let @ denote this set of correct processes. Then, at round r + 1, each process in Q will
echo i’s write message. Thus, there will be > n —2f echo messages. Since f < ¢, we have
n—2f> anifj + 1. Hence, the write message of i will be eventually reliably delivered.

(p9): (Sketch) Any value in Vf“ will eventually be reliably delivered by each correct process
and be included into the safe value set of each correct process for the group with label
m(k,r). er+1 will be reliable delivered by each correct process at round r + 1.

(p10)-(p11): (p10) is implied by (p8) and (p6). (p11) is implied by (p9) and (p5). <

The following lemma shows that the value set of a correct process is non-decreasing.

» Lemma 6. For any correct process i and round r, V" C Vf“.
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The following lemma is used later to show that processes in the same group at the end of
the algorithm must have the same set of values.

» Lemma 7. Let G be a group of processes at round r with label k. Then
(1) for each correct process i € G, k — 2% <|V/|<k+ QLT
(@) (U7l <k+ &

Proof. By induction on round number r and apply (p1)-(p2) and (p5)-p(6) of Lemma 5. <

» Lemma 8. Let i and j be two correct processes that are within the same group G with
label k at the beginning of round log f + 1. Then Vilog 1 and leog I+ re equal.

Proof (Sketch). By applying Lemma 7 at round log f within the parent group of G, we can
show that &' < [V;°*/™| <&’ + 1 and |U{V/*#/ "1 VI8 /F1 < I/ + 1, where &' is the label
of the parent group of G. Thus, Vilog FH = V;Og F+t <
» Lemma 9 (Comparability). For any two correct process i and j, y; and y; are comparable.

Proof. If process i and j are in the same group at the beginning of round log f + 1, then by
Lemma 8, y; = y;. Otherwise, let G' be the last group that both ¢ and j belong to. Suppose
G is a group with label k at round r. Suppose i € slave(G) and j € master(G) without loss
of generality. Then, V2! C U:(Llr) - erﬂ - lengH, by (p8), (p6) (p7) and (p5) of
Lemma 5 and Lemma 6. |

» Theorem 10. There is an O(log f) rounds algorithm for the BLA problem in asynchronous
systems which can tolerate f < ¢ Byzantine failures, where n is the number of processes in
the system. The algorithm takes O(n?log f) messages.

4 An O(log f) Rounds Algorithm for the Authenticated BLA Problem

In this section, we present an O(log f) round algorithm for the BLA problem in authenticated
(i.e., assuming digital signatures and public-key infrastructure) setting that can tolerate
J < 5 Byzantine failures by modifying the Byzantine tolerant classifier procedure in previous
section. The Byzantine classifier procedure in authenticated setting is shown in Fig. 6. The
primary difference lies in what a process does when it reliably delivers some message and the
validity condition for echoing a broadcast message. The basic idea is to let a process sign
the ack message that it needs to send. Each process uses the set of signed ack messages as
proof of its completion of a write step or read step. In this section, we use (x); to denote
a message x signed by process i, i.e., (x); = (z,0), where ¢ is the signature produced by
process i using its private signing key. We say a message is correctly signed by process ¢ if
the signature within the message is a correct signature produced by process 1.

The Authenticated Byzantine Tolerant Classifier. The classifier in the authenticated
setting is shown in Fig. 6. The primary difference between the classifier in previous section
and the authenticated classifier is that in the authenticated classifier each process uses signed
messages as proof of its group identity.

At lines 1-2, each process writes its current value set by using the BRB__broadcast
procedure to send a “write” message. If the process is a slave process, it also includes the set
of at least n — f signed rack messages it received at the previous round as a proof that it is
indeed classified as a slave. At line 2, each process waits for correctly signed wack message
from at least n — f different processes. This set of signed wack message is used as the proof
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of its completion of the write step when this process tries to read from other processes. When
a process BRB__delivers a “write” message, it performs similar steps as the algorithm in
previous section except that it sends a signed wack message back.

Classifier(V, k,r):

V. input value set k: threshold value r: round number

Each process i € [n] keeps track of the same variables as the classifier in Fig. 4

Set RV;", which stores the set of signed rack message in the read step of previous round

1: ifisSlave(k,r) then pf := R‘/;Tfl else pf :=0
2: BRB_ broadcast(“write”, pf,v, k,r), wait for n — f valid (wack(—,r)); from p;
3: Let W denote the set of (wack); delivered at line 2

4: Send read(W, k,r) to all, wait for n — f valid (rack(R;,r)); s.t. R; C ACV;"[k] from p;
5: Set RV := {(rack(R;,7)); | R; C ACV][k]}

6: Let T :=U{R; | R; C ACV][k]}

7: if |T| > k /* Size of T is greater than the threshold */

8: Send master (T, k,r) to all, wait for n — f mack(R;,r) s.t. R; C ACV][k] from p;
9 Define T" := U{R; | R; C ACV/[k]}

10: return (77, master)

11: else

12: return (V, slave)

Upon BRB_ deliver(j,t,v, k, )
if t = “write”
Sim(k,r)] == Silm(k,7)] U v, ACV][k]:= ACV][k] U v
Send message (wack(ACV[k],r)); to p;

Upon receiving read(W, k, r) from p;
if validSignature(“read”, j, W, r)
Send message (rack(ACV][k],r)); to p;

Upon receiving master(T, k,r) from p;
wait until 7' C ACV;"[k]
Send message mack(ACV][k],r) to p;

Figure 6 The Authenticated Byzantine Tolerant Classifier.

At line 4-5, each process reads from at least n — f processes. Different from the classi-
fier procedure in previous section, each process directly sends a read message along with
the set of correctly signed wack messages obtained at line 2 to all (instead of using the
BRB__broadcast procedure). When a process receives a “read” message with label & for
round 7, if uses the validSignature function to check whether the “read” message contains
correctly signed wack message for round r from at least n — f different processes. If so, it
sends back to the sender a signed rack message along with the reliably delivered values with
label k at round r. This ensures that if a process (possibly Byzantine) tries to read from
correct processes, it must complete its write step first.
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The classification step from line 6-12 is the same as the classification step of the algorithm
in previous section. A mater process performs a write-read step by sending a master message
along the set of value obtained at line 6. Then it waits for n — f valid mack messages and
updates its value set to be the set of values contained in these messages. When a process
receives a master message, it performs the same steps as in the classifier in previous section.

The wvalid function is different from the one given in previous section. First, only “write”
messages are reliably broadcast. Second, the proof is a set of signed rack messages instead of
an array in previous section. To verify the proof, the valid function invokes the validSignature
function to check whether the proof contains correctly signed rack message for previous
round from at least n — f different processes.

function wvalid(j, type, pf, v, k,r):
if (type = “write” A —~isSlave(j, k,r) ANv C S;[k])
V (type = “write” AisSlave(, k,r) ABRB_deliver(j, “write”, —, v, LBff1 [4],7—1)
AvalidSignature(“write”, pf,r) A pf contains at most k distinct values
return True
else
return False

function validSignature(type, pf,r):
if (type = “write” A pf contains correctly signed rack(—,r — 1) from n — f processes)
vV (type = “read” A pf contains correctly signed wack(—,r) from n — f processes)
return True
else

return False

Figure 7 The valid Function.

For the proof of correctness, we just need to prove the classifier procedure satisfies the
properties given Lemma 5 under the assumption that f < 7.

» Lemma 11. Properties (pl) — (pll) of Lemma 5 hold for the authenticated Byzantine
tolerant classifier.

» Theorem 12. There is an O(log f) rounds algorithm for the BLA problem in authenticated
asynchronous systems which can tolerate f < 5 Byzantine failures, where n is the number of
processes in the system. The algorithm takes O(n?log f) messages.

5 Conclusion

In this paper, we present an O(log f) rounds algorithm for the Byzantine lattice agreement
problem in asynchronous systems which can tolerates f < ¥ Byzantine failures. We also
give an O(log f) rounds algorithm for the authenticated setting that can tolerate f < %
Byzantine failures. One open problem left is to design an algorithm which has resilience of
f < % and takes O(log f) rounds.
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—— Abstract

In distributed systems, a group of learners achieve consensus when, by observing the output of

some acceptors, they all arrive at the same value. Consensus is crucial for ordering transactions in
failure-tolerant systems. Traditional consensus algorithms are homogeneous in three ways:

all learners are treated equally,

all acceptors are treated equally, and

all failures are treated equally.
These assumptions, however, are unsuitable for cross-domain applications, including blockchains,
where not all acceptors are equally trustworthy, and not all learners have the same assumptions
and priorities. We present the first consensus algorithm to be heterogeneous in all three respects.
Learners set their own mixed failure tolerances over differently trusted sets of acceptors. We express
these assumptions in a novel Learner Graph, and demonstrate sufficient conditions for consensus.

We present Heterogeneous Pazos, an extension of Byzantine Paxos. Heterogeneous Paxos achieves
consensus for any viable Learner Graph in best-case three message sends, which is optimal. We
present a proof-of-concept implementation and demonstrate how tailoring for heterogeneous scenarios
can save resources and reduce latency.
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1 Introduction

The rise of blockchain systems has renewed interest in the classic problem of consensus, but
traditional consensus protocols are not designed for the highly decentralized, heterogeneous
environment of blockchains. In a Consensus protocol, processes called learners try to decide
on the same value, based on the outputs of some set of processes called acceptors, some of
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Figure 1 Illustration of the scenario in § 1.1. Blue learners are drawn as blue eyes, red learners
as red, outlined eyes. Blue acceptors are drawn as blue circles, red acceptors as red, outlined circles,
and third parties as black circles. The light solid blue region holds a quorum for the blue learners,
and the striped red holds a quorum for the red learners.

whom may fail. (In our model, learners send no messages, and so they cannot fail.) Consensus
is a vital part of any fault-tolerant system maintaining strongly consistent state, such as
Datastores [14, 9], Blockchains [41, 20, 16], or indeed anything which orders transactions.
Traditionally, consensus protocols have been homogeneous along three distinct dimensions:
Homogeneous acceptors. Traditional systems tolerate some number f of failed acceptors,
but acceptors are interchangeable. Prior work including “failure-prone sets” [38, 27]
explores heterogeneous acceptors.
Homogeneous failures. Systems are traditionally designed to tolerate either purely
Byzantine or purely crash failures. There is no distinction between failure scenarios in
which the same acceptors fail, but possibly in different ways. However, some projects
have explored heterogeneous, or “mixed” failures [48, 13, 33].
Homogeneous learners. All learners make the same assumptions, so system guarantees
apply either to all learners, or to none. Systems with heterogeneous learners include
Cobalt [36] and Stellar [39, 35, 21].

Blockchain systems can violate homogeneity on all three dimensions. Permissioned
blockchain systems like Hyperledger [1], J.P. Morgan’s Quorum [2], and R3’s Corda [26]
exist specifically to facilitate atomic transactions between mutually distrusting businesses. A
crucial part of setting up any implementation has been settling on a set of equally trustworthy,
failure-independent acceptors. These setups are complicated by the reality that different
parties make different assumptions about whom to trust, and how.

Defining heterogeneous consensus poses challenges not covered by homogeneous definitions,
particularly with respect to learners. How should learners express their failure tolerances?
When different learners expect different possible failures, when do they need to agree? If
a learner’s failure assumptions are wrong, does it have any guarantees? No failure models
developed for one or two dimensions of heterogeneity easily compose to describe all three.

Failure models developed for one or two dimensions of heterogeneity do not easily compose
to describe all three, but our new trust model, the Learner Graph (§ 3), can express the
precise trust assumptions of learners in terms of diverse acceptors and failures. Compared
to trying to find a homogeneous setup agreeable to all learners, finding a learner graph
for which consensus is possible is strictly more permissive. In fact, the learner graph is
substantially more expressive than the models used in prior heterogeneous learner consensus
work, including Stellar’s slices [39] or Cobalt’s essential subsets [36]. Building on our learner
graph, we present the first fully heterogeneous consensus protocol. It generalizes Paxos to be
heterogeneous along all three dimensions.

Heterogeneity allows acceptors to tailor a consensus protocol for the specific requirements
of learners, rather than trying to force every learner to agree whenever any pair demand to
agree. This increased flexibility can save time and resources, or even make consensus possible
where it was not before, as we now show with an example.
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1.1 Example

Suppose organizations Blue Org and Red Org want to agree on a value, such as the order of
transactions involving both of their databases or blockchains. The people at Blue Org are blue
learners: they want to decide on a value subject to their failure assumptions. Likewise, the
people at Red Org are red learners with their own assumptions. While neither organization’s
learners believe their own organization’s acceptors (machines) are Byzantine, they do not
trust the other organization’s acceptors at all. To help achieve consensus, they enlist three
trustworthy third-party acceptors. Figure 1 illustrates this situation.

All learners want to agree so long as there are no Byzantine failures. However, no learner
is willing to lose liveness (never decide on a value) if only one of its own acceptors has crashed,
one third-party acceptor is Byzantine, and all the other organization’s learners are Byzantine.
Furthermore, learners within the same organization expect never to disagree, so long as none
of their own organization’s acceptors are Byzantine.

Unfortunately, existing protocols cannot satisfy these learners. Stellar [39], for instance,
has one of the most expressive heterogeneous models available, but it cannot express hetero-
geneous failures. It cannot express blue and red learners’ desire to terminate if a third-party
acceptor crashes, but not necessarily agree a third-party acceptor is Byzantine. Our work
enables a heterogeneous consensus protocol that satisfies all learners.

1.2 Heterogeneous Paxos

Heterogeneous Paxos, our novel generalization of Byzantine Paxos achieves consensus in
a fully heterogeneous setting (§ 5), with precisely defined conditions under which learners
are guaranteed safety and liveness. Heterogeneous Paxos inherits Paxos’ optimal 3-message-
send best-case latency, making it especially good for latency-sensitive applications with
geodistributed acceptors, including blockchains. We have implemented this protocol and
used it to construct several permissioned blockchains [21]. We demonstrate the savings in
latency and resources that arise from tailoring consensus to specific learners’ constraints.

1.3 Contributions

The Learner Graph offers a general way to express heterogeneous trust assumptions in
all three dimensions (§ 3).

We formally generalize the traditional consensus properties (Validity, Agreement,
and Termination) for the fully heterogeneous setting (§ 4).

Heterogeneous Paxos is the first consensus protocol with heterogeneous learners,
heterogeneous acceptors, and heterogeneous failures (§ 5). It also inherits Paxos’ optimal
3-message-send best-case latency.

Experimental results from our implementation of Heterogeneous Paxos demonstrate
its use to construct permissioned blockchains with previously unobtainable security and
performance properties (§ 6).

2 System Model

We consider a closed-world (or permissioned) system consisting of a fixed set of acceptors, a
fixed set of proposers, and a fixed set of learners. Proposers and acceptors can send messages
to other acceptors and learners. Some predetermined, but unknown set of acceptors are
faulty (we assume a non-adaptive adversary). Faults include crash failures, which are not
live (they can stop at any time without detection), and Byzantine failures, which are neither
live nor safe (they can behave arbitrarily).
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» Definition 1 (Live). A live acceptor eventually sends every message required by the protocol.

» Definition 2 (Safe). A safe acceptor will not send messages unless they are required by the
protocol, and will send messages only in the order specified by the protocol.

Learners set the conditions under which they expect to agree. They want to decide values,
and to be guaranteed agreement under certain conditions. While learners can make bad
assumptions, since they do not send messages, they cannot misbehave, and so there are no
“faulty learners.”

Network. Network communication is point-to-point and reliable: if a live acceptor sends a
message to another live acceptor, or to a learner, the message arrives. We adopt a slight
weakening of partial synchrony [18]: after some unknown global stabilization time (GST),
all messages between live acceptors arrive within some unknown latency bound A. In
Heterogeneous Paxos, live acceptors send all messages to all acceptors and learners, but
Byzantine acceptors may equivocate, sending messages to different recipients in different
orders, with unbounded delays. We assume that messages carry effectively unbreakable
cryptographic signatures, and that acceptors are identified by public keys. We also assume
messages can reference other messages by collision-resistant hash: if one message contains
a hash of another, it uniquely identifies the message it is referencing [42].

Consensus. The purpose of consensus is for each learner to decide on exactly one value,
and for all learners to decide on the same value. Here, execution refers to a specific instance
of consensus: the actions of a specific set of acceptors during some time frame. A protocol
refers to the instructions that safe acceptors follow during an execution.

An execution of consensus begins when proposers propose candidate values, in the form of
a message received by a correct acceptor. (No consensus can make guarantees about proposed
values only known to crashed or Byzantine acceptors.) Proposers might be clients sending
requests into the system. We make no assumptions about proposer correctness for safety
properties, but to guarantee liveness, we will assume that acceptors can act as proposers
as well (i.e. proposers are a superset of acceptors). After receiving some messages from
acceptors, each learner eventually decides on a single value.

Traditionally, consensus requires three properties [19]:

Validity: if a learner decides p, then p was proposed.!

Agreement: if learner a decides value v, and learner b decides value v’, then v = v'.

Termination: all learners eventually decide.
In § 4, we generalize these properties to account for heterogeneity.

3 The Learner Graph

We characterize learners’ failure assumptions with a novel construct called a learner graph.
The learner graph is a general way to characterize trust assumptions for heterogeneous
consensus. It can encompass most existing formulations, including Stellar’s “slices” [39] and
Cobalt’s “essential sets” [36]. We discuss other formulations in § 7.

» Definition 3 (Learner Graph). A learner graph is an undirected graph in which vertices are
learners, each labeled with the conditions under which they must terminate (§ 4.3 formally
defines termination). Each pair of learners is connected by an edge, labeled with the conditions
under which those learners must agree (§ 4.2 formally defines agreement).

1 Correia, Neves, and Verissimo list several popular validity conditions. Ours corresponds to MCV2 [15]
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3.1 Quorums

A quorum is a set of acceptors sufficient to make a learner decide: even if everything else has
crashed [32], if a quorum are behaving correctly, a learner will eventually decide. In a learner
graph, each learner a is labeled with a set of quorums (),. The learner requires termination
precisely when at least one quorum are all live.

Within a specific execution, we assume some (unknown) set of pre-determined acceptors
are actually live. We call this set L.

3.2 Safe Sets

To characterize the conditions under which two learners want to agree, we need to express
all possible failures they anticipate. Surprisingly, crash failures cannot cause disagreement:
any disagreement that occurs when some acceptor has crashed could also occur if the same
acceptor were correct, but very slow, and did not act until after the learner decided. Therefore,
for agreement purposes, each tolerable failure scenario is characterized by a safe set (usually

written s), the set of acceptors who are safe, meaning they act only according to the protocol.

Between any pair of learners a and b in the learner graph, we label the edge between them
with a set of safe sets a—b: so long as one of the safe sets in a—b indeed comprises only safe
acceptors, the learners demand agreement.

Within a specific execution, we assume some (unknown) set of pre-determined acceptors
are actually safe. We call this set S. We do not require it, but systems often assume that
S C L, since a Byzantine acceptor [31] may choose not to send messages.

3.2.1 Subset of Tolerable Failures

We generally assume that a subset of tolerable failures is always tolerated:

- 4o €Qa = [Uqq € Qq

» Assumption 4. Subset il ties:
p ubset of failures properties Vi scab = 2Us € ab

One might imagine, for example, two learners who demand agreement if two acceptors fail,
but not if only one acceptor fails. However, we have no guarantee on time: if two acceptors
are indeed faulty, one might act normally for an indefinite time, so the system would act as
though only one has failed, and we will have to guarantee agreement.

3.2.2 Generalized Learner Graph Labels

It is possible to generalize the labels of learners and learner graph edges, and characterize
quorums (conditions under which a learner must terminate) and safe sets (conditions under
which pairs of learners must agree) as more detailed formal models (e.g., modeling network
synchrony failures). All consensus failure models of which we are aware can be formalized
using learner graphs with generalized labels. Heterogeneous Paxos works with any model of
labels, so long as each label can be mapped (not necessarily uniquely) to a set of quorums
for each learner, and a set of safe sets for each edge. For simplicity, in this work, we define
labels as a set of quorums for each learner, and a set of safe sets for each edge.

3.3 Example

Consider our example from § 1.1 and Figure 1. All learners want to agree when all acceptors
are safe. However, each learner demands termination (it must eventually decide on a value)
even when one of its own acceptors has crashed, and one third part as well as all the
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Figure 2 Learner Graph from § 3.3: Learners are eyes, with darker blue learners on the left, and
outlined red learners on the right. Edge labels display one safe set for which the learners want to
agree (unsafe acceptors are marked with a devil). The center label represents all edges between
red and blue learners. Learner labels display one quorum for which the learner wants to terminate
(crashed acceptors are marked with a skull). In each label, blue acceptors are blue circles, red
acceptors are red, outlined circles, and third-party acceptors are black circles.

other organization’s acceptors have failed as well. Furthermore, learners within the same
organization expect never to disagree, so long as none of their own organization’s acceptors
are Byzantine: neither organization tolerates the other, or third-party acceptors, creating
internal disagreement. In Figure 2, we diagram the learner graph. For space reasons, we
draw each label with only one quorum or one safe set.

3.4 Agreement is Transitive and Symmetric

Agreement (formally defined in § 4.2) is symmetric, so learner graphs are undirected (a—b =
b—a). Agreement is also transitive: if a agrees with b and b agrees with ¢, then a agrees with
c. As a result, a and ¢ must agree whenever both the conditions a—b and b—c are met. When
learners’ requirements reflect this assumption, we call the resulting learner graph condensed.
We describe how to condense a learner graph in § 3.5 of [47].

» Definition 5 (Condensed Learner Graph (CLG)). A learner graph G is condensed iff:
Ya,b,c. (a=bNb—) C a—c

Self-Edges. A CLG describes when a learner a agrees with itself (i.e., if it decides twice,
both decisions must have the same value): a—a.

» Lemma 6 (Self-agreement). A learner must agree with itself in order to agree with anyone:
a—b C a—a

Proof. Follows from Definition 5, and the fact that the CLG is undirected (§ 3.4) <

3.5 Liveness Bounds from Safety

Given the conditions under which learners want to agree, we can derive a (sufficient) bound
on the quorums they require to terminate. In other words, given labels for the edges in the
learners graph, we can bound the labels for the vertices.

As we will cover in more detail in § 5.1, each of a learner’s quorums must intersect
its neighbors quorums at a safe acceptor. As a result, we can construct a sufficient set of
quorums for each learner in a CLG as follows: for each edge of the learner, each quorum
includes a majority of acceptors from a each of the safety sets.
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3.6 Safety Bounds from Liveness

Given the conditions under which learners want to terminate, we can derive a (necessary)
bound on the safe sets they can require on each of their edges. As we will cover in more
detail in § 5.1, each of a learner’s quorums must intersect its neighbors quorums at a safe
acceptor. As a result, safe sets can be assembled for each edge in a CLG as follows: each set

includes one acceptor from the intersection of each pair of quorums (one from each learner).

4 Heterogeneous Consensus

We now define our novel heterogeneous generalization of traditional consensus properties.

4.1 Validity

Intuitively, a consensus protocol shouldn’t allow learners to always decide some predetermined
value. Validity is the same in heterogeneous and homogeneous settings.

» Definition 7 (Heterogeneous Validity).
A consensus execution is valid if all values learners decide were proposed in that execution.
A consensus protocol is valid if all possible executions are valid.

4.2 Agreement

Our generalization of Agreement from the homogeneous setting to a heterogeneous one is the
key insight that makes our conception of heterogeneous consensus possible. It generalizes
not only the traditional homogeneous approach, but also the “intact nodes” concept from
Stellar [39], and “linked nodes” from Cobalt [36].

» Definition 8 (Entangled). In an execution, two learners are entangled if their failure
assumptions matched the failures that actually happen: Entangled(a,b) = S € a—b

In the example (§ 1.1), if one third-party acceptor were Byzantine, the blue learners would
be entangled with each other, and similarly with the red learners, but no blue learners would
be entangled with red learners. It is possible for failures to divide the learners into separate
groups, which may then decide different values even if they agree among themselves.

» Definition 9 (Heterogeneous Agreement).
Within an execution, two learners have agreement if all decisions for either learner have
the same value.
A heterogeneous consensus protocol has agreement if, for all possible executions of that
protocol, all entangled pairs of learners have agreement.

In Heterogeneous Paxos, as in many other protocols, learners decide on a value whenever
certain conditions are met for that value: learners can even decide multiple times. If there
aren’t too many failures, a learner is guaranteed to decide the same value every time. Because
learners send no messages, they cannot fail, but they can make incorrect assumptions. Within
the context of an execution, entanglement neatly defines when a learner is accurate, meaning
it cannot decide different values.

» Definition 10 (Accurate Learner). is entangled with itself: Accurate(a) = Entangled(a, a)

In the example (§ 1.1), if one third-party acceptor were Byzantine, then the blue and red
learners would be accurate, but if a blue acceptor were also Byzantine, the blue learners
would not be accurate (although the red learners would still be accurate).
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learner_inittal_state:
known_messages = {}

acceptor_initial_state: 1
known_messages = {} 2
recently_received = {} 3
1+ learner_on_receipt (m):

acceptor_on_receipt (m): for r€m.refs:

for re€murefs: 6 while r ¢ known_messages:
while 7 ¢ known_messages: 7 wait ()
wait () s known_messages U= {m}
atomic: 9 for S C known_messages:
if m ¢ known_messages: 10 if Decisionggq¢(SU{m}):
forward m to all acceptors and learners . decide (V(m))

recently_received U= {m}
known_messages U= {m}
if m has type 1la:
z = new 1b(refs = recently_received)
recently_received = {}
on_receipt (2)
if m has type 1b and b(m) == maxicknown_messages D(T)
for learner € learners:
z = new 2a(refs = recently_received, lrn = learner)
if WellFormed(z):
recently_received = {}
on_receipt(z)

Figure 3 Pseudo-code for Acceptor (left) and Learner (right). § 5 defines message structure (§ 5.2),
WellFormed (Assumption 26), b() (Definition 19), V() (Definition 20), and Decision() (Defini-
tion 21).

4.3 Termination

Termination has no well agreed-upon definition for the heterogeneous setting, as it does
not generalize easily from the homogeneous one. A heterogeneous consensus protocol is
specified in terms of the (possibly differing) conditions under which each learner is guaranteed
termination (§ 3). For example, in our prior work on Heterogeneous Fast Consensus, we
distinguish between “gurus,” learners with accurate failure assumptions, and “chumps,” who
hold inaccurate assumptions [45]; Stellar calls them “intact” and “befouled” [39]. When
discussing termination properties, we use the following terminology:

» Definition 11 (Termination).

Within an execution, a learner has termination if it eventually decides.

A heterogeneous consensus protocol has termination if, for all possible executions of that

protocol, all learners with a safe and live quorum have termination.
Protocols can only guarantee termination under specific network assumptions, and varying
notions of “eventually” [19, 29, 40]. Following in the footsteps of Dwork et al. [18], Hetero-
geneous Paxos guarantees Validity and Agreement in a fully asynchronous network, and
termination in a partially synchronous network (Assumption 31). Furthermore, as in all
other consensus protocols, if there are too many acceptor failures, some learners may not
terminate. Specifically, a learner will decide (terminate) if at least one of its quorums is live.

» Definition 12 (Terminating Learner). has a live, safe quorum: Terminating(a) = LUS € Q,

5 Heterogeneous Paxos

Heterogeneous Paxos is a consensus protocol (§ 2) based on Byzantine Paxos, Lamport’s
Byzantine-fault-tolerant [31] variant of Paxos [28, 29] using a simulated leader [30]. This
protocol is conceptually simpler than Practical Byzantine Fault Tolerance [10]. When all
learners have the same failure assumptions, Heterogeneous Paxos is exactly Byzantine Paxos.
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Byzantine Paxos was originally written as a sequence of changes from crash-tolerant
Paxos [30, 28]. We were able to construct a complete version of Byzantine Paxos in such a way

that we could describe Heterogeneous Paxos with only a few additions, highlighted in pale blue.

To our knowledge, without the portions highlighted in pale blue this is also the most direct
description of the Byzantine Paxos via Simulated Leader protocol in the literature. Figure 3
presents pseudocode for Heterogeneous Paxos acceptors and learners.
Informally, Heterogeneous Paxos proceeds as a series of (possibly overlapping) phases
corresponding to three types of messages, traditionally called Ia, 1b, and 2a:
Proposers send la messages, each carrying a value and unique ballot number (stage
identifier), to acceptors.
Acceptors send 1b messages to each other to communicate that they’ve received a fa
(line 15 of Figure 3).
When an acceptor receives a 1b message for the highest ballot number it has seen from
a learner a’s quorum of acceptors, it sends a 2a message labeled with a and that ballot
number (line 20 of Figure 3). There is one exception (Well Formed in Figure 3): once a
safe acceptor sends a 2a message m for a learner a, it never sends a 2a message with a
different value for a learner b, unless:
It knows that a quorum of acceptors has seen 2a messages with learner a and ballot
number higher than m.
Or it has seen Byzantine behavior that proves a and b do not have to agree.

A learner a decides when it receives 2a messages with the same ballot number from one
of its quorums of acceptors (line 11 on the right of Figure 3).

Proposers can restart the protocol at any time, with a new ballot number. Acceptor
and Learner behavior in Heterogeneous Paxos is described in Figure 3. We now describe
their sub-functions, including message construction (§ 5.2), Well Formed (Assumption 26),
b() (Definition 19), V() (Definition 20), and Decision() (Definition 21).

Key Insight. Intuitively, Heterogeneous Paxos operates much like Byzantine Paxos, except
that all acceptors execute the final phase separately for each learner. The shared phases
allow learners to agree when possible, while the replicated final phase allows different learners
to decide under different conditions. § 8 of [47] describes several heterogeneous consensus
scenarios, as well as quorums for each learner.

5.1 Valid Learner Graph

Naturally, there are bounds on the learner graphs for which Heterogeneous Paxos can provide
guarantees. Unlike traditional consensus, in a Heterogeneous Consensus learner graph, each
learner a has its own set of quorums @),. These describe the learner’s termination constraints:
it may not terminate if all of its quorums contain a non-live acceptor (Definition 12). The
notion of a walid learner graph generalizes the homogeneous assumption that every pair of
quorums have a safe acceptor in their intersection.

Homogeneous Byzantine Paxos guarantees agreement (§ 4.2) when all pairs of quorums
have > 1 safe acceptor in their intersection. The heterogeneous case has a similar requirement:

» Definition 13 (Valid Learner Graph). A learner graph is valid iff for each pair of learners a
and b, whenever they must agree, all of their quorums feature at least one safe acceptor in
their intersection: s € a—bAq, € Qu Ay € Qpy = quNaqpNs#D

5:9

OPODIS 2020



5:10

Heterogeneous Paxos

5.2 Messaging

Acceptors send messages to each other. Live acceptors echo all messages sent and received
to all other acceptors and learners, so if one live acceptor receives a message, all acceptors
eventually receive it. When safe acceptors receive a message, they process and send resulting
messages specified by the protocol atomically: they do not receive messages between sending
results to other acceptors. Safe acceptors also receive any messages they send to themselves
immediately: they receive no other messages between sending and receiving.

Each message x contains a cryptographic signature allowing anyone to identify the signer:

» Definition 14 (Message Signer). Sig(x:message)= the acceptor or proposer that signed
We can define Sig() over sets of messages, to mean the set of signers of those messages:
» Definition 15 (Message Set Signers). Sig(x : set) = { Sig(m) ‘ meuzx }

Furthermore, each message x carries references to 0 or more other messages, z.7efs. These
references are by hash, ensuring both the absence of cycles in the reference graph and that it
is possible to know exactly when one message references another [42]. In each message, safe
acceptors reference each message they received since the last message they sent. Since all
messages sent are sent to all acceptors, and safe acceptors receive messages sent to themselves
immediately, each message a safe acceptor sends transitively references all messages it has
ever sent or received. Safe acceptors delay receipt of any message until they have received all
messages it references. This ensures they receive, for example, a la for a given ballot before
receiving any 1bs for that ballot.

Each message has a unique ID and an identifiable type: la,1b, or 2a. A 2a message z
has one type-specific field: z.lrn specifies a learner. A la message y has two type-specific
fields: y.value is a proposed value, and y.ballot is a natural number specific to this proposal.

We assume that each 1a has a unique ballot number, which could be accomplished by
including signature information in the least significant bits of the ballot number:

» Assumption 16 (Unique ballot assumption). z:1la Ay:la A z.ballot = y.ballot = z =y

5.3 Machinery

To describe Heterogeneous Paxos, we require some mathematical machinery.

Transitive References. We define Tran(z) to be the transitive closure of message x’s
references. Intuitively, these are all the messages in the “causal past” of x.

» Definition 17. Tran(z) £ {2} U U’rnE:Irureifs Tran(m)

Getla: It is useful to refer to the la that started the ballot of a message: the highest
ballot number la in its transitive references.

» Definition 18. Getla(z) £ argmax m.ballot
m:1a€ Tran(x)

Ballot Numbers. The ballot number of a la is part of the message, and the ballot number
of anything else is the highest ballot number among the Ias it (transitively) references.

» Definition 19. b(x) = Getla(z).ballot
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Value. The value of a la is part of the message, and the value of anything else is the value
of the highest ballot 1a among the messages it (transitively) references.

» Definition 20. V(z) £ Getla(z).value

Decisions. A learner decides when it has observed a set of 2a messages with the same
ballot, sent by a quorum of acceptors. We call such a set a decision:

» Definition 21. Decision,(q,) = Sig(q.) € Qu AV{z,y} C qu. b(z)=b(y) Az.lrn=aAx:2a

Messages in a decision share a ballot (and therefore a value), so we extend our value
function to include decisions: Decision,(q,) = V(q,) = V(m) ‘ m € qq

Although decisions are not messages, applications might send decisions in other messages
as a kind of “proof of consensus.” This is how the Heterogeneous Paxos integrity attestations
work in our prototype blockchains (§ 6).

Caught. Some behavior can create proof that an acceptor is Byzantine. Unlike Byzantine
Paxos, our acceptors and learners must adapt to Byzantine behavior. We say that an acceptor
p is Caught in a message x if the transitive references of the messages include evidence such
as two messages, m and m’, both signed by p, in which neither is featured in the other’s
transitive references (safe acceptors transitively reference all prior messages).

» Definition 22. Caught(z) £ { Sig(m) {m,m'} € Tran(z) A Sig(m) = Sz'g(m’)}
AN m & Tran(m’) A m’ & Tran(m)

Connected. When some acceptors are proved Byzantine, clearly some learners need not
agree, meaning that S isn’t in the edge between them in the CLG: at least one acceptor in
each safe set in the edge is proven Byzantine. Homogeneous learners are always connected
unless there are so many failures no consensus is required.

» Definition 23. Con,(z) £ { b |s€a-be CLG A sN Caught(x) =0 }

It is clear that disconnected learners may not agree, and so each 2a message = will have
some implications only for learners still connected to its specified learner: Con, ;- (2).

Quorums in Messages. 2a messages reference quorums of messages with the same value
and ballot. A 2a’s quorums are formed from fresh 1b messages with the same ballot and
value (we define fresh in Definition 28).

» Definition 24. ¢(x:2a) £ {m ‘ m:1b A freshx’h,n(m) A m € Tran(xz) N b(m) = b(l)}

Buried messages. A 2q message can become irrelevant if, after a time, an entire quorum of
acceptors has seen 2as with different values, the same learner, and higher ballot numbers.
We call such a 2a buried (in the context of some later message y):

» Definition 25.

) : T - )
Buried(x - %a,y) 2 {Sig(m) m € Tran(y) N z:2a A {x,z} C Tran(m) } .

AV(z) £ V() A b(2) > b(x) A zlrn = z.drn
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Well-Formedness. In addition to the basic message layout, 2a and 1b messages must be
well-formed. No 2a should have an invalid quorum upon creation, and no acceptor should
create a 2a unless it sent one of the 1b messages in the 2a. Similarly, no 1b should reference
any message with the same ballot number besides a Ia (safe acceptors make 1bs as soon as
they receive a fa). Acceptors and learners should ignore messages that are not well-formed.

» Assumption 26 (Well-Formedness Assumption).

x:1b Ny € Tran(x) A x#y N y# Getla(z) = bly) # b(x)
z:2a= q(2) €Q_ ., N Sig(z) € Sig(q(z))

Connected 2a messages. Entangled learners must agree, but learners that are not connected
are not entangled, so they need not agree. Intuitively, a 1b message references a 2a message
to demonstrate that some learner may have decided some value. For learner a, it can be
useful to find the set of 2a messages from the same sender as a message = (and sent earlier)
which are still unburied, and for learners connected to a. The 1b cannot be used to make
any new 2a messages for learner a that have values different from these 2a messages.

> Definition 27. ConZas,(x) A{ m| m:2a A m € Tran(x) A Sigim) = Szg(ar)}

= Buried(m,x) A m.rn € Con, ()

Fresh 1b messages. Acceptors send a 1b message whenever they receive a 1a message
with a ballot number higher than they have yet seen. However, this does not mean that the
1b’s value (which is the same as the 1a’s) agrees with that of 2a messages the acceptor has
already sent. We call a 1b message fresh (with respect to a learner) when its value agrees
with that of unburied 2a messages the acceptor has sent.

» Definition 28. fresh (: 1b) £Ym € ConZas,(z). V(z) = V(m)

5.4 Ballots

Heterogeneous Paxos can be thought of as taking place in stages identified by natural numbers
called ballots. § 5.6.3 of [47] describes one way to construct unique ballot numbers.

Multiple Ballots. Proposers construct new la messages (with a value and a unique ballot
number), and send them to all acceptors. Just like in Homogeneous Byzantine Consensus,
it is possible for a ballot to fail: after some number of ballots, it may be the case that all
messages have arrived, the protocol in Figure 3 doesn’t require any acceptor to send any
further messages, and yet no learner has decided. For this reason, it is necessary to start a
new ballot when an old one is failing.

One way to handle this is to leave the responsibility at the proposers: if a proposer
proposes a ballot, and learners don’t decide for a while, then the proposer should propose
again. Randomized exponential backoff can be used to allow clients to adapt to the unknown
delay in a partially synchronous [18] network without flooding the system.

Another way is to have acceptors propose after a ballot has failed: when sufficiently many
1b messages for a given ballot are collected, but none are fresh, an acceptor could send a new
la. There are subtleties to ensuring liveness, which we discuss in § 6.4.1 of [47].
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5.5 Safety

Under our assumptions (§ 5.2 of [47]), Heterogeneous Paxos has the safety properties of
Validity and Agreement (proofs in § 6.2 of [47] and § 6.3 of [47]):

» Theorem 29 (Validity). Heterogeneous Pazos is Valid (Definition 7):
Decision,(q.) = 3z : 1a. V(z) = V(q,)

» Theorem 30 (Agreement). Heterogeneous Paxos has Agreement (Definition 9):
Entangled(a, b) A Decision,(q,) N Decisiony(qp) = V(ga) = Vigw)

5.6 Liveness

Heterogeneous Paxos, and indeed Byzantine Paxos, rely on a weak network assumption to
guarantee termination. The assumption is complex precisely because it is weak; a simpler
but stronger assumption, such as a partially synchronous network, would suffice.

» Assumption 31 (Network Assumption). To guarantee that a learner a decides, we assume
that for some quorum q, € Q, of safe and live acceptors:
Eventually, there will be 13 consecutive periods of any duration, with no time in between,
numbered 0 through 12, such that any message sent to a or an acceptor in q, before one
period begins is delivered before it ends.
If an acceptor in q, sends a message in between receiving two messages m and (and it
receives no other messages in between), and m is delivered in some period n, then the
message is sent in period n.
No 1a message except x, y, and z is delivered to any acceptor in q, during any period.
x 18 delivered to an acceptor in q, in period 0, y is delivered to an acceptor in q, in period
4, and z s delivered to an acceptor in q, in period 9.
V(y) = V(z) is the value of the highest ballot 2a known to any acceptor in q, at the end
of period 3.
b(x) is greater than any ballot number of any message delivered to any acceptor in q,
before period 0, and b(x) < b(y) < b(z).
This assumption is only necessary for termination, not any safety property. We prove our
termination theorem in § 6.4.1 of [47].

» Theorem 32 (Termination). If Assumption 31 holds for learner a, then a has Termina-
tion (Definition 11). Specifically, after period 12: Terminating(a) = 3q..Decision,(q,) If
Assumption 31 holds for all terminating learners, then Heterogeneous Pazos has Termination.

A partially synchronous network is one in which, after some point in time, there exists some
(possibly unknown) constant latency A such that all sent messages arrive within A [18]. We
explain elsewhere how to add artificial message receipt delays to Heterogeneous Paxos in
order to guarantee Assumption 31 in a partially synchronous network (§ 6.4.2 of [47]).

6 Implementation

Since Heterogeneous Paxos is designed for cross-domain applications where different parties
have different trust assumptions, it is well-suited for blockchains. We constructed a variety
of example blockchains using the Charlotte framework [46], which allows for pluggable
integrity (consensus) mechanisms. Our servers are implemented in 1,704 lines of open-source
Java. Charlotte uses 256-bit SHA3 hashes, P256 elliptic curve signatures, protobufs [43] for
marshaling, and gRPC [24] for transmitting messages over TLS 1.3 channels.
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To explore the performance of Heterogeneous Paxos, we created several blockchains with
different CLGs (§ 3). The results (§ 9.3 of [47]) show that heterogeneous configurations save
resources and latency compared with homogeneous configurations tolerating the same failures.
For instance, in our example configuration § 1.1, a Homogeneous configuration tolerating
similar failures would cost an extra 7 unnecessary acceptors, increasing latency overhead by
51% relative to Heterogeneous Paxos. 2a messages include a quorum of 256-bit message hashes,
so they expand linearly with quorum size, as does the cost of unmarshaling and verifying the
signatures of the messages referenced. In all experiments, however, computational overhead
was dominated by the theoretical minimum (simulated) geodistributed network latency.

7 Related Work

Heterogeneous Acceptors and Failures. Heterogeneous Paxos is based on Leslie Lamport’s
Byzantine-fault-tolerant variant [30] of Paxos [28]. Byzantine Paxos supports heterogeneous
acceptors because it uses quorums: not all acceptors need be of equal worth, but all
quorums are. Although Lamport does not describe it explicitly, Byzantine Paxos can have
heterogeneous, or mized [48], failures, so long as quorum intersections have a safe acceptor
and at least one quorum is safe and live.

Many papers have investigated hybrid failure models [48, 13, 7, 33] in which different
consensus protocol acceptors can have different failure modes, including crash failures and
Byzantine failures (heterogeneous failures). These papers typically investigate how many
failures in each class can be tolerated. Other papers have looked at system models in which
different acceptors may be more or less likely to fail [22, 38], or where failures are dependent
(heterogeneous acceptors) [27, 17, 25].

Further generalizations are possible. Our Learner Graph uses only safe and live acceptors,
but its labels might be generalized to support other failure types such as rational failures [3].
We have only considered learners that all make the same (weak) synchrony assumption, but
others have studied learners with heterogeneous network assumptions [5, 37].

Heterogeneous Learners. Unlike ours, most related work conflates learners and acceptors.
Early related work on “Consensus with Unknown Participants” [11, 23, 4] defines protocols
in which each participant knows only a subset of other participants, inducing a “who-
knows-whom” digraph; this work identifies properties of this graph that must hold to
achieve consensus. Not every participant knows all participants, but trust assumptions are
homogeneous: participants have the same beliefs about trustworthiness of other participants.

Our prior work describes [45] a heterogeneous failure model in which different participants
may have different failure assumptions about other participants. We distinguished learners
whose failure assumptions are accurate from those whose failure assumptions are inaccurate
and we specified a heterogeneous consensus protocol in terms of the possibly different
conditions under which each learner is guaranteed agreement. The paper constructs a
heterogeneous consensus protocol that meets the requirements of all learners using lattice-
based information flow to analyze and prove protocol properties.

Heterogeneous learners became of interest to blockchain implementations based on voting
protocols where open membership was desirable. Ripple (XRP) [44] was the earliest blockchain
to attempt support for heterogeneous learners. Originally, each learner had its own Unique
Node List (UNL), the set of acceptors that it partially trusts and uses for making decisions.
An acceptor in more UNLs is implicitly more influential. The protocol was updated because
of correctness issues [12], and support for diverse UNLs was all but eliminated. Ripple has
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proposed a protocol called Cobalt [36], in which each learner specifies a set of acceptors they
partially trust, and it works if those sets intersect “enough.” Cobalt does not account for
heterogeneous failures, and only limited acceptor heterogeneity.

The Stellar Consensus [39, 34, 35] blockchain protocol supports both heterogeneous
learners and acceptors, although it does not distinguish the two; each learner specifies a
set of “quorum slices.” Like Cobalt, Stellar does not account for heterogeneous failures.
Neither Stellar nor Cobalt match Heterogeneous Paxos’ best-case latency. Heterogeneous
Paxos inherits Byzantine Paxos’ 3-message-send best case latency, which is optimal for a
consensus tolerating [%] — 1 failures in the homogeneous Byzantine case or [%] — 1 failures
in the homogeneous crash case [6]. However, both Cobalt and Stellar are designed for an
“open-world” model, where not all acceptors and learners are known in advance. We have
not yet adapted Heterogeneous Paxos to an open-world setting.

The heterogeneous learner models of Cobalt and Stellar have been studied in detail by
Garcia-Pérez and Gotsman [21]. Cachin and Tackmann examine Stellar-style asymmetric
trust models, including in shared-memory environments [8]. However, neither paper separates
learners from acceptors, attempts to solve consensus, or considers heterogeneous failures; the
Learner Graph is more general.

Like our work, Flexible BFT [37] distinguishes learners from acceptors and accounts for
both heterogeneous learners and heterogeneous failures. It does not allow heterogeneous
acceptors: they are interchangeable, and quorums are specified by size. Flexible BFT also
has optimal best-case latency. It does not support crash failures, but introduces a new failure
type called alive-but-corrupt for acceptors interested in violating safety but not liveness.

8 Conclusion

Heterogeneous Paxos is the first consensus protocol with heterogeneous acceptors, failures,
and learners. It is based on the Learner Graph, a new and expressive way to capture learners’
diverse failure-tolerance assumptions. Heterogeneous consensus facilitates a more nuanced
approach that can save time and resources, or even make previously unachievable consensus
possible. Heterogeneous Paxos is proven correct against our new generalization of consensus
for heterogeneous settings. This approach is well-suited to systems spanning heterogeneous
trust domains; for example, we demonstrate working blockchains with heterogeneous trust.

Future work may expand learner graphs to represent even more types of failures. Hetero-
geneous Paxos may be extended to allow for changing configurations, or improved efficiency
in terms of bandwidth and computational overhead. New protocols can also make use of our
definition of heterogeneous consensus, perhaps adding new guarantees such as probabilistic
termination in asynchronous networks.
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—— Abstract
Classical protocols for reliable broadcast and consensus provide security guarantees as long as the
number of corrupted parties f is bounded by a single given threshold ¢. If f > ¢, these protocols are
completely deemed insecure. We consider the relaxed notion of multi-threshold reliable broadcast and
consensus where validity, consistency and termination are guaranteed as long as f <t,, f <t. and
f < t: respectively. For consensus, we consider both variants of (1 — €)-consensus and almost-surely
terminating consensus, where termination is guaranteed with probability (1 — €) and 1, respectively.
We give a very complete characterization for these primitives in the asynchronous setting and with
no signatures:

Multi-threshold reliable broadcast is possible if and only if max{t.,t,} + 2t: < n.

Multi-threshold almost-surely consensus is possible if max{tc,t,} + 2t: < n, 2t, + t; < n and

t¢ < m/3. Assuming a global coin, it is possible if and only if max{t.,t,} + 2¢t; < n and

2ty + 1 < n.

Multi-threshold (1 — €)-consensus is possible if and only if max{tc, tv} +2t; < n and 2t, +t: < n.
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1 Introduction

Consensus and reliable broadcast are fundamental building blocks in fault-tolerant distributed
computing. Consensus allows a set of parties, each holding an input, to agree on a common
value v’, where, if all honest parties hold the same input v, v’ = v. Reliable broadcast allows
a designated party, called the sender, to consistently distribute a value v among a set of
recipients such that all honest recipients output v in case the sender is honest. If the sender
is dishonest, either all honest recipients output the same value or none of them terminates.
Both primitives are used typically in the design of more complex applications, including
multi-party computation, verifiable secret-sharing or voting, just to name a few.

The first consensus protocol was introduced in the seminal work of Lamport et al. [21] for
the model where parties have access to a complete network of point-to-point authenticated
channels, and where at most ¢t < n/3 parties are corrupted. Reliable broadcast was first
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introduced by Bracha [6] as a useful primitive to construct building blocks in asynchronous
environments. Since then, both primitives has been extensively studied in many different
settings [7, 8, 6, 2, 25].

Most known fault-tolerant distributed protocols provide security guarantees in an all-or-
nothing fashion: if up to ¢ parties are corrupted, all security guarantees remain. However,
if more than ¢ parties are corrupted, the protocols do not provide any security guarantees.
Multi-threshold protocols (also known as hybrid security) provide different security guarantees
depending on the amount of corruption, thereby allowing a graceful degradation of security.

In this work, we consider consensus and reliable broadcast protocols with separate
thresholds t,, t. and t; for validity, consistency and termination, respectively. For consensus,
we consider both variants of (1 — €)-consensus and almost-surely terminating consensus, where
termination is guaranteed with probability (1 — €) and 1, respectively.

Such multi-threshold primitives are not only of theoretical interest, but are also motivated
by its use as core primitives in the design of more involved applications. In particular,
they are used as a central building block in the recent line of works [26, 22], that leverage
synchronous multi-party computation and consensus protocols to achieve responsiveness,
where parties obtain output as fast as the network allows, given that the amount of corruption
is low enough.

Our protocols work without the use of signatures and in the purely asynchronous model
without the need to make any timing assumptions. Our contributions give a very complete
picture of feasibility and impossibility results, which can be summarized as follows:

Multi-threshold reliable broadcast is possible if and only if max{t.,t,} + 2t; < n.

Multi-threshold almost-surely consensus is possible if max{t.,t,} + 2t; < n, 2t, +t; <n

and t; < n/3. The first two conditions are shown to be necessary as well. The question

whether ¢; < n/3 is necessary is left as an open problem. However, we give a protocol
assuming a global coin that does not require this condition.

Multi-threshold (1 — €)-consensus is possible if and only if max{t.,t,} + 2t; < n and

2t, +t; < n.

The impossibility proofs are simple and follow the lines of [9].

1.1 Related Work

There is a large literature devoted to achieving different types of hybrid security guarantees
under different settings for agreement primitives and multi-party computation (MPC). We
are only able to list an incomplete summary of related work.

The work in [11] provides constructions in the synchronous model for Byzantine broadcast
with extended validity or consistency, where Byzantine broadcast is achieved up to a threshold
t, and validity / consistency is achieved up to an extended threshold T' > ¢, and then apply
such constructions to achieve multi-party computation with full security up to ¢ corruptions,
and unanimous abort up to T > t. The above constructions exists if and only if ¢ = 0 or
t+ 2T < n. The works in [19, 20] focus on the question of achieving multi-party computation
with full security under an honest majority, and security with abort under a dishonest
majority. The line of works in [13, 24] provide constructions that achieve trade-offs that
include information-theoretic security up to a certain threshold, and computational security
up to a larger threshold, with different types of guarantees. A different line of works provide
security against different types of corruption (also known as mixed adversaries). The works
[12, 18] consider multi-party computation protocols where security holds even when up to ¢,
t¢, tq parties can be passively, fail-stop, actively corrupted, respectively. Finally, there are
works that combine mixed adversaries with hybrid security [16, 17, 15].
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A recent line of works [23, 26, 22] achieve trade-offs between responsiveness, where parties
obtain output as fast as the network allows, and other security guarantees, for consensus,
SMR and MPC, assuming a synchronous network. The work [14] considers to networks that
tolerate some level of disconnection between the parties, as long as there is a connected
component with an honest majority of the parties. Finally, the works [3, 4, 5] provide
protocols that achieve security guarantees under a synchronous network up to t5 corruptions,
and under an asynchronous network up to t, corruptions.

1.2 Comparison to Prior Work

As mentioned above, some works use as building blocks multi-threshold asynchronous
consensus and reliable broadcast primitives. In particular, the works in [23, 14, 22] make use

of an asynchronous multi-threshold consensus protocol with increased validity and consistency.

Their constructions differ from ours in two aspects: 1) they operate in a setting where parties
have access to a public-key infrastructure and 2) their constructions inherently require that
the termination threshold is below n/3.

The constructions for consensus and reliable broadcast in [3, 4] considers different
thresholds. In [3], the authors design a consensus protocol with increased validity with
termination (where validity also ensures termination in case of pre-agreement) assuming a
global common coin, based on the protocol in [25]. Similarly, in [4], the authors provide a
construction for reliable broadcast with two thresholds allowing for validity with termination
in the honest sender case, and consistency with reliable termination (where either all honest
parties terminate or none), in the dishonest sender case. We provide constructions without
assuming a global coin, which in addition allow to have the termination threshold above
validity and consistency.

2 Model

We consider a setting in which parties have access to a complete network of authenticated
channels. The adversary has full control over the network and can schedule the messages in
an arbitrary manner. However, each message must be eventually delivered. Moreover, we
consider the setting where parties do not have any setup available.

We consider an adaptive adversary who can gradually corrupt parties and take full control
over them. Note, however, that our impossibility proofs hold even against a static adversary
that is assumed to choose the corrupted parties at the beginning of the protocol execution.
We require our protocols to be unconditionally secure, meaning that security holds even
against a computationally unbounded adversary. On the other hand, our impossibility results
hold even against a computationally bounded adversary.

In the protocols we say that a party terminates when it stops participating in the protocol.
Note that we distinguish between outputting and terminating, in the sense that a party
might output a value but still continue participating.

3  Multi-Threshold Reliable Broadcast

Reliable broadcast is a fundamental primitive in distributed computing which allows a sender
to consistently distribute a message towards a set of recipients. We consider a setting with
n + 1 parties, one sender S and n recipients R = {Ry, ..., R, }. Let us denote the number of
corrupted recipients (not including the sender) at the end of the protocol execution by f.
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OPODIS 2020



6:4

Multi- Threshold Asynchronous Reliable Broadcast and Consensus

» Definition 1 (Reliable Broadcast). Let M be a finite message space and f be the number
of corrupted recipients at the end of the execution. A protocol m where initially the sender S
has an input m € M and every recipient R; upon termination outputs m; € M, is a reliable
broadcast protocol, with respect to thresholds t., t,, and t;, if it satisfies the following:
Consistency. If f <., then every honest recipient that terminates outputs the same
message. That is, 3m’' € M :V honest R; that terminate m; = m/'.
Validity. If f < t, and the sender is honest, then every honest recipient R; that
terminates outputs the sender’s message. That is, ¥ honest R; that terminate m; = m.
Termination.
An honest sender always terminates.
If f < t; and an honest recipient terminates, then every honest recipient eventually

N o=

terminates.
3. If f <t; and the sender is honest, then eventually every honest recipient terminates.

3.1 Protocol

We present a reliable broadcast protocol with respect to thresholds t., t, and t;, as long as
max{ty,t.} + 2t; < n. The protocol is a generalization of Bracha’s broadcast protocol [6].

tc ;tu 7tt
— Protocol I3

The sender S holds input m € M. Upon termination every recipient R; € R outputs a message.
Code for the sender S

1. Send the message (MSG, m) to all recipients in R and terminate.

Code for recipient R; € R

1. Upon receiving first (MSG, m) from the sender, send (ECHO, m) to all recipients.

2. Upon receiving (ECHO, m’) from n — t, parties that agree on the value m’ € M, send
(READY, m’) to all recipients.

3. Upon receiving (READY, m’) from max{t,,t.} + 1 parties that agree on the value
m’ € M, send (READY, m') to all recipients.

4. Upon receiving (READY, m’) or (TERMINATE) from n — ¢; parties from which at
least max{t,,t.} + 1 are READY messages and (they all) agree on the value m’ € M,
send (TERMINATE), output m' and terminate.

» Lemma 2. If f < max{t,,t.}, Ym' € M the first honest recipient that sends (READY,
m') received at least n —t, (ECHO, m’) messages.

Proof. For any m’ € M, (READY, m') messages are sent by honest recipients either in line
2 or 3 of the recipient’s code. However, Vm’ € M the first (READY, m’) message can only
be sent in line 2. This is due to the fact that if f < max{t,,t.}, line 3 implies that there
must be some other honest recipient that previously sent a (READY, m’) message too. <«

» Lemma 3. If f < max{t,,t.}, the messages (READY, m') sent by honest recipients
are consistent. That is, there Im"” € M such that for every honest recipient R; that sends
(READY, m/), m' =m".

Proof. Suppose not; let R; and R; be the first honest recipients that send (READY, m/)
and (READY, m”) with m’ # m”. Due to Lemma 2, R; received at least n — t; (ECHO,
m’) messages whereas R, received at least n — ¢, (ECHO, m’) messages. It follows, at least
2(n — tt) —n =n — 2t; > max{t,, t.} players dishonestly sent inconsistent ECHO messages
to R; and R;. However, each honest recipient sends an ECHO message at most once and
there are at most f < max{t,,t.} dishonest recipients. A contradiction. <
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» Lemma 4. If f < max{t,,t.} and an honest sender broadcasts m, for every honest
recipient that sends (READY, m’), m’ =m.

Proof. Suppose not; Let R; be the first honest recipient that sends (READY, m’) with
m’ # m. Due to Lemma 2, R; received at least n — t; (ECHO, m’) messages. However,
in case the sender is honest and broadcasts m every honest recipient will ECHO only the
sender’s value (m). Hence there can be at most f < max{t,,t.} <n —t; (ECHO, m’) with
m #m'/. A contradiction. <

» Lemma 5. If f < t; and an honest recipient terminates, then every honest recipient
eventually terminates.

Proof. Let R; be the first honest recipient that terminates. Then, R; received (READY, m’)
or (TERMINATE) from n — ¢, messages from which at least max{t,,t.} + 1 are READY
messages. Furthermore, all READY messages agree on m/. Under the assumption that no
other honest recipient has terminated so far, we know that no (TERMINATE) messages were
sent from the honest recipients. Hence, by taking into account that n — ¢; > max{t,,t.} + &
and f < t;, it follows that at least max{¢,,t.} + 1 recipients have sent (READY, m') to
all other parties. Every honest recipient will eventually either receive these (READY, m/)
messages and send a (READY, m’) as well or terminate before receiving them and send a
(TERMINATE) message instead. Since there are at least n — ¢; honest recipients, it follows
that eventually every honest recipient R; that didn’t terminate yet will receive n —t; messages
(READY, m/) or (TERMINATE) from which at least max{t,,¢.} + 1 are READY messages
and they all agree on m’. Thus, every honest R; eventually terminates as well. |

» Lemma 6. If f < t; and the sender is honest, at least one honest recipient eventually
terminates.

Proof. Since every honest recipient echoes the sender’s value, there will be at least n — ¢4
(ECHO, m) messages. Similarly, since there are n — t; (ECHO, m) messages in the network,
every honest recipient will eventually send a (READY, m). Finally, since there are n — ¢,
(READY, m) messages in the network, at least one honest recipient will terminate. |

te,ty,te
Tbc

» Theorem 7. Let 0 < t.,t,,t; <n. II
Definition 1 if max{t,,t.} + 2t; < n.

is a multi-threshold broadcast according to

Proof.
Consistency € Validity. Assume f < max{t,,t.}. Every honest recipient that outputs a
message, has received at least max{t,,t.} + 1 (READY, m). Since f < max{t,,t.}, it
follows at least one is sent from an honest party. From Lemma 3 we know that READY
messages are consistent, hence we achieve consistency. From Lemma 4 we know that the
READY messages from honest parties contain only the sender’s value, hence we achieve
validity.
Termination. We prove the three termination properties from the Definition 1.
1. For the first requirement, it is trivial to see that an honest sender always terminates.
The second requirement is proven in Lemma 5.
3. For the third requirement, from Lemma 6 we know that if the sender is honest, at least
one honest recipient terminates. We can apply Lemma 5 again, and see that every
honest recipient terminates. |
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3.2 Impossibility Proofs

In this section, we show that the protocol Hi;f“’“

is no reliable broadcast protocol with max{t,,t.} + 2t; > n, where t.,t,,t; > 0. We prove
each bound separately.

presented above is optimal. That is, there

Figure 1 The same configuration can be viewed as: a) (in red) two independent runs of the
protocol on the left and the right side, where messages between A and B are delayed: One where
the sender has input 0 and one where the sender has input 1; b) (in blue) the sender and the set C
is corrupted and behaves differently towards A and B.

» Theorem 8. There exists no multi-threshold broadcast protocol with t. + 2t; > n.

Proof. Suppose not; let m be a multi-threshold broadcast protocol with ¢, 4+ 2t, = n. We
partition the set of all recipients into three sets A, B and C with size |A| = |B| =ty and
|C’ | = t.. We build the network as in Figure 1.

Figure 1(in red) on the left side, we can see an independent run where all parties are
honest and messages between A and B are delayed by the scheduler. Since A and B are
of size t;, all parties terminate with an output. Moreover, since all parties are honest, the
output is 0. In particular, parties in A output 0. Similarly, B outputs 1 on the right side.

Now consider an attacker that corrupts the sender and C, and emulates the protocol
as in the scenario in Figure 1(in blue). Since this configuration is exactly the same as the
red one, A outputs 0 and B outputs 1. This results in a contradiction to the consistency
property of the multi-threshold broadcast. |

» Theorem 9. For any t, > 0, there is no multi-threshold broadcast protocol with t,+2t; > n.

Proof. Suppose not; let m be a multi-threshold broadcast protocol with ¢, + 2t; = n. We
partition the set of all recipients into three sets A, B and C' with |A’ = }B’ =t; and ‘C’ = to.
We build the a configuration as in Figure 2.

Consider Figure 2(in red), on the left side, where messages between S and B, or between
A and B are delayed. Since B is of size t;, all parties must output a value without waiting
for the messages from B (as B could be corrupted). Moreover, since all parties are honest, A
and C output 0. Furthermore, since C' outputs 0, because of the second requirement of the
termination of broadcast — if one recipient terminates, then every recipient terminates — B
outputs 0 as well. Note that A and S have together size t; + 1, but the second requirement
of termination requires B to terminate even if the sender is corrupted. The same argument
can be applied on the right side of Figure 2(in red).
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Figure 2 The same configuration can be viewed as: a) (in red) two independent runs of the
protocol on the left and the right side, where messages between A and B are delayed, and also
between S and B. One where the sender has input 0 and one where the sender has input 1; b) (in
blue) the set C' is corrupted and behaves differently towards S and A on the left side and differently
towards B on the right side.

Now, consider an attacker that corrupts the parties in C' and emulates the protocol as in
the scenario in Figure 2(in blue). Because both scenarios are the same setup, A outputs 0 on
the left side, whereas B outputs 1 on the right side. Thus, validity is violated. |

4  Almost-Surely Multi-Threshold Consensus

Stated in simple terms, consensus allows a set of parties to agree on a common value. More
formally, the protocol starts with every party having an input and ends with every party
having a consistent output. Moreover, if every honest party starts with the same input, they
keep it. Due to the FLP impossibility proof [10], non-terminating executions are inevitable
for every consensus protocol. Hence, we require the parties to terminate only with probability
1, termed in the literature as almost-surely terminating consensus.

» Definition 10 (Consensus). Let M be a finite message space and f be the number of
corrupted parties at the end of the execution. A protocol w where initially each party has
an input x; € M and finally every party P; upon termination has an output y; € M, is a
consensus protocol, with respect to thresholds t., t,, t, if it satisfies the following:
Consistency. If f <., then the output of every honest party is the same value. That
is, Jy € M : Y honest P; that output y; = y.
Validity. If f <t, and every honest party has the same input value x € M, then the
output of every honest party P; is x. That is, ¥V honest P; that output y; = x.
Termination. If f < t;, then with probability 1 eventually every honest party outputs
and terminates.

In the following, we present a multi-threshold consensus protocol with respect to thresholds
te, ty and t;, where max{t.,t,} + 2t; <mn, 2t, + t; < n and t; < n/3. In the full version, we
also show that the bounds max{t.,t,} + 2t; < n and 2t, + t; < n are required. We leave

the feasibility of almost-surely multi-threshold consensus with ¢; > n/3 as an open question.

However, in the full version we provide a construction that overcomes the n/3 bound for the
case where parties have access to a global coin.

6:7
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The protocol is an adaptation of Bracha’s consensus [6] protocol. The main idea of
Bracha’s consensus is to use a reliable broadcast primitive and build a correctness enforcement
scheme, where only messages that are intended by the protocol design are accepted. The only
difference in our protocol is that we plug our multi-threshold broadcast protocol described in
the previous section into the correctness enforcement scheme proposed by Bracha. We choose
to use a multi-threshold reliable broadcast Hf_,f,’cts’tt that achieves validity and consistency up
to ts = n — 2t; — 1 corruptions (which is achievable since t4 + 2t; < n). Note that ¢; < n/3

implies that t5 > t;.

4.1 Multi-Threshold Correctness Enforcement

For completeness and readability of our protocols, we include a summary of the correctness
enforcement mechanism. Further details can be found in [6]. The following constructions
and proof techniques are very similar to [6] with the only difference that we plug our

multi-threshold broadcast protocol Hi;’ct‘“’t‘

. Furthermore, we assume ts > t;.

Round-Based Asynchronous Protocols. We consider protocols that are composed by
rounds. In each round k, every party uses the multi-threshold broadcast protocol to send a
value to all parties. Subsequently, every party waits to receive a set S of the values (of size at
most n — ;) and computes a new value according to some function F*(-) for the next round.

Validation Sets. Each party P; keeps for each round & a set of values V¥, called a validation
set, with the values that are broadcast in round k. Each value z; broadcasted in round k& by
P; is stored as (P;, k,x;). When a value is broadcast by some party at round k + 1, every
party checks locally whether there exists a subset of values in V¥ that explains the broadcast
value. That is, V¥ is defined as follows:
For k = 1, (Pj,1,z;) € V} if z; is received by P; from a multi-threshold broadcast
protocol with sender P; at round 1.
Fork > 1, (P}, k,x;) € VE if x; is received by P; from a multi-threshold broadcast protocol
with sender P; at round k, and there is a subset S C V¥~! such that 2; = F¥~1(S).

We say a party P; validates a message x; in round k if (P;,k,z;) € VF. The parties
update their V sets whenever they validate a message. If a party P; outputs a value during
a broadcast protocol but the message is still not validated it is ignored in the protocol,
although it is stored for future validation.

—| Protocol A round with correctness enforcement

Code for the party P; with input x; at round k
1. Multi-Threshold Broadcast(z;) to all the parties.

2. Wait until a set S of messages have been validated.

3. Set z; = F*(S).

We state a list of lemmas that are guaranteed from the correctness enforcement mechanism.
The proofs will appear in the full version of the paper.

» Lemma 11. If f < t,, in every round k of the protocol the added values in the validation
sets of all honest parties are consistent. That is:

V honest P;, P; : VP, : (P, k, @) € VE A (PLk, &) €V = o =13
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» Lemma 12. If f <t; and an honest sender P; broadcasts (P;, k,x;) in a round k of the
protocol, the validation sets of all honest parties contain only the sender’s value. That is:

V honest P;, P; : (P, k,xz;) € Vj’-“ — P, broadcast x; in round k.

» Lemma 13. If f <t; every party will eventually go from round k to round k + 1.

4.2 Protocol

We describe the protocol, which is a generalization of Bracha’s consensus [6]. The protocol
executes in parallel the two sub-protocols 'Reaching agreement’ and 'Termination’.

| Protocol ITt:

as—con

Input. Every party P; holds input x;.
Variable. y; = L.
Reaching agreement.
Code for the party P; at phase k.
1. IIits* (z;). Wait until n — ¢, messages are validated.
z; = majority of the validated elements.
2. TIig ' (x;). Wait until n — t; messages are validated.
If all of the validated messages have the same value z, z; = (propose, x)
Otherwise, keep the same ;.
3. Mbb' (x;). Wait until n — ¢, messages are validated.
a. If at least n — ¢; of the validated messages have the same value (propose, z), then
update y; = x and run the ’'Reaching agreement code’ for only one more phase.
b. Else if at least t; + 1 of the validated messages have the same value (propose, =), then
T; = X.
c. Otherwise, choose 0 or 1 with probability 1/2 for z; (coin toss).
4. Go to phase k + 1.

Termination.
Upon updating y;, send (READY, y;) to all parties.

Upon receiving (READY, m’) messages from max{t.,t,} + 1 parties that agree on the
value m’, send (READY, m') to all parties.

Upon receiving (READY, m’) from n — ¢, parties that agree on the value m’, output m’
and terminate.

» Lemma 14. If f < t, it is impossible for an honest party to propose 0 and an honest
party to propose 1 in the same phase k.

Proof. The proof is by contradiction. Suppose parties P; and P; propose 0 and 1, respectively,
in phase k. Thus in line 2 of phase k, P; validated n — t; messages with value 0 and P;
validated n — ¢; messages with value 1. Since n — 2t; > 0, it follows that P; and P; have
inconsistent messages in their validation sets, which contradicts Lemma 11. <

We say that a phase k is z-fixed (for € {0, 1}), if honest parties that starts phase k
validate only x as an input value broadcast by any party.

» Lemma 15. If f < t; and an honest party P; updates y; = x € {0,1} at some phase k,
phase k + 1 is x-fized.

Proof. Suppose that some party P; updates y; = = € {0,1} at phase k. P, must have
validated at least n —t, proposals for = in step 3 of phase k. Let P; be any party that starts
phase k+1. In phase k, since P; validated n — ¢, proposals for z and ¢, < n/3, P; must have
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validated at least ¢t; + 1 for . Moreover by Lemma 14, P; does not validate any proposals
for 2’ # x. So any P; can only set its variable x; to « in step 3. Hence, no honest party can
validate ' # x in the next phase as an input. Therefore, phase k + 1 is z-fixed. <

» Lemma 16. If a phase k is x-fized then every honest party P; that reaches step 8 of the
phase k updates y; = x at the end of the phase.

Proof. Suppose a phase k is z-fixed. Then, all honest parties validate only = as an input
value. Hence, every honest party can only propose x as their input. Consider a party P; that
reaches step 3 of phase k. Clearly, P; can only validate proposals with z. Hence, from line 3
of the reaching agreement part of the protocol we can see that P; updates y; = z. |

» Lemma 17 (Liveness). If f < t; and if no honest party updated y;, the parties will eventually
go from phase k to phase k + 1.

Proof. Immediate from Lemma 13. |

» Lemma 18. If f < t; every honest party with probability 1 will update y; to the same
value.

Proof. First note that we assume t; < t;. By Lemma 17, as long as no party updates y;,
honest parties don’t get stuck in any round. Every honest party that doesn’t update y; in
phase k, sets its value x; for the next phase either based on step 3(ii) or step 3(iii). Let P;
be the first honest party that completed round 3k + 3. There are two cases:
Party P; has validated at least one (propose,z). With probability p > 1/2"~* all honest
parties that toss a coin choose x. By Lemma 14, the remaining honest parties that set
their value deterministically, are forced to set their value to x.
Party P; has validated no (propose, ;). Since P; validated n — ¢; messages and t; < n/3,
no other honest party P; can validate more than ¢; values of the form (propose, ). Hence,
every honest party tosses a coin. The probability that every honest party tosses the same
value is again p > 1/2" 7",
Hence, in either case after each phase the probability that honest parties have the same
value is greater or equal then 1/277%_ If at some phase k every honest party has the same
value then it follows that in the next round there can be at most ¢; parties will input Z (the
ones that maliciously change the outcome of the local coin). However, by Lemma 15 (note
that we have t; < ts) and since n — 2t; > t;, it follows that the majority of each subset of
size n — t; in the next round will result in x. Hence, next phase is z-fixed. By Lemma 16 it
follows that every honest party will update y; after that phase. Hence, after round k the
probability of not updating y; is (1 —p)*. As k goes to infinity, the probability goes to 0. <«

» Theorem 19. Let 0 < t,, t,, ty < n. I s an almost-surely terminating multi-threshold

as—con

consensus (see Definition 10) if max{tc,t,} + 2t <mn, 2t, +t; < n and t; < n/3.

Proof. Validity. Suppose all honest parties have the same input x. In the first round, since
there are at most f < t,,, at most ¢, elements with value & can be broadcast by corrupted
parties. By Lemma 15 (note that t, < max{t.,t,} = ts) and since n — t; — t, > t,,
it follows that honest parties can only validate xz as the outcome of the first round.
Hence, the first phase is z-fixed. Due to Lemma 16, it follows that every honest party
updates y; = = at the end of the first phase. Furthermore, by applying Lemma 15 and 16
recursively, one can easily see that once a phase is z-fixed it always remains so. Hence,
parties can never change the value. Furthermore, in the termination part of the protocol
it is not hard to see that READY messages are unique (see Section 3 for a detailed proof)
and contain only z. Hence, every honest party that outputs, outputs z.
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Consistency. Suppose some party P; and P; update different values y; = x and y; = 2’
in phase k and k' respectively. There are two cases:
1. k=F'. Since a party can update a value in phase k only if that value was proposed
in round k, it follows both x and z’ were proposed in phase k. By Lemma 14 this is
impossible.

2. k < k'. Since P; updates y; in phase k then due to Lemma 15 phase k + 1 is z-fixed.

Similar to previous arguments, by applying Lemma 15 and 16 recursively, one can
easily see that once a phase is x-fixed it always remains so. It follows that all parties
can only update y; = x in the next phases.

This proves that the update of y; by all parties is unique. In return this implies that
READY messages are unique as well. By similar arguments as in Section 3, it is not hard
to see that the consistency is achieved also in the termination part of the protocol.

Almost-Surely Termination. From Lemma 18 it follows that with probability 1 every
honest party will update y; to the same value (say x). Since, after updating y; = «
parties take part only in one more round, with probability 1 every honest party will “get
out” of the infinite loop. By simply setting the message space M = {0,1} one can easily
prove now termination similar to Section 3. It follows, like in multi-threshold broadcast
protocol, every party will eventually send the same (READY, z) with « € {0,1}. Hence
eventually there will be n — ¢; (READY, x) messages that agree on a value and thus at
least an honest party with probability 1 terminates. Again, similar to broadcast one can

see that if an honest party terminates, then every honest party eventually terminates.

Thus with probability 1 eventually everyone terminates. <

5 (1 — €) Multi-Threshold Consensus

The general idea in the previous section is to use randomness such that by chance the parties
reach agreement. Once they do, agreement is preserved. However, in the regime where
t: > n/3, the following challenges arise. First, note that if ¢; > n/3 and max{t.,t,} +2t;: < n,
then max{t.,t,} < t;. Asa consequence, there is a region where the multi-threshold broadcast
protocol only guarantees termination, but does not guarantee the consistency and validity
of the outputs. This is problematic, because the adversary can change the outputs of each

broadcast instance such that no messages are validated in the correctness enforcement scheme.

As a consequence, parties get stuck in a phase and never terminate. The second challenge is
with respect to the coin. If t; > n/3, even when all honest parties obtain the same value
v as local coin, the adversary can schedule messages so that the majority decision among
n — t; values is inconsistent among the parties. Finally, as pointed out in [1], the correctness
proof for n/3 < t; < n/2 is more subtle and requires reasoning about two consecutive
phases. Moreover, they show that the global-variant of Ben-Or doesn’t work for the case
n/3 <ty <n/2.

We overcome the first challenge by plugging in a detectable broadcast primitive into the
correctness enforcement mechanism, which allows parties to eventually detect misbehavior
in the case where they obtain different values. The second challenge is resolved by cycling
through all sets S of t; + 1 parties, where only parties in S sample a random coin. This
way, if all parties in S are honest and chooses the same local coin, then everyone adopts the
same value. Finally, the last challenge is resolved by adding one round for each phase, which
allows to analyse the phases independently of each other.
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With these techniques, we construct a (1 — €) multi-threshold consensus protocol if
max{t., t,} + 2t; < n and 2t, + t; < n, where termination holds with probability (1 — ¢)
(instead of 1). The bounds are optimal (see the full version).In contrast to the almost-surely-
terminating version, it is possible to achieve this notion with ¢; > n/3. The number of rounds
depends on the error €. For negligible €, the number of rounds is exponential in n.

» Definition 20 ((1—¢)-Consensus). The consistency and validity property of (1—e€)-consensus

are the same as in Definition 10. We only change the termination property.
Termination. If f < t;, then with probability 1 — € eventually every honest party
outputs and terminates.

5.1 Detectable Correctness Enforcement

As mentioned, if ¢; > max{t,,t.}, in the region where the adversary corrupts max{t,,t.} <
f < t;, the multi-threshold broadcast does not guarantee any consistency among messages,
allowing the adversary to make parties reach a state where no messages are validated and
thus all honest parties get stuck. Instead, we use a detectable multi-threshold broadcast,
which guarantees consistent outputs when f < max{t.,t,} as in multi-threshold broadcast,
but in addition allows parties to detect potential misbehavior if f < t;. Note, however, that
we don’t require termination, i.e., parties may need to run forever. The protocol is based on
the one in Section 3, so we defer its description and analysis to the full version. Plugging
the detectable multi-threshold broadcast in the correctness enforcement results in detectable
correctness enforcement, where the properties of correctness enforcement hold or parties
detect Byzantine behavior.

» Definition 21 (Detectable Multi-Threshold Broadcast). Let M be a finite message space
and f be the number of corrupted parties. A protocol w, where initially the sender S has an
input message m € M and subsequently every recipient R; € R potentially outputs a message
m; € M and/or a detection flag DETECT, is a detectable multi-threshold broadcast protocol
with respect to thresholds t., t, and ty, if it satisfies the following:
Consistency. If f <t., 3m' € M :V honest R; that output the message m;, the value
of m; = m’. Furthermore, no honest recipient R; outputs the detection flag DETECT.
Validity. If f <t, and the sender is honest, ¥V honest R; that output the message m;,
the value of m; = m. Furthermore, no honest recipient R; outputs the detection flag
DETECT.
Totality-or-Detection.

1. If f <ty and an honest recipient outputs the message m' € M then eventually every
honest recipient outputs the message m’ or every honest recipient outputs the detection
flag DETECT.

2. If f <ty and the sender is honest, then eventually every honest recipient outputs the
message m or every honest recipient outputs the detection flag DETECT.

Notation. We say that “P; detects Byzantine behaviour” to denote that P; outputs the
detection flag DETECT in an execution of detectable multi-threshold broadcast. Note that
detectable multi-threshold broadcast guarantees that either all honest recipients eventually
output DETECT, or none of them does.

5.2 Common Coin

In the protocol from Section 4, parties toss a coin until they reach by chance agreement. If
ty > n/3, the adversary can maliciously change the local coins for some of the parties and
break termination. We show a protocol that allows parties to output the same value, even if
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the adversary changes the outcome of the local coin of some of the parties. If ¢, < n/3, this
is easily done by allowing each party to broadcast a random value and choosing the majority
among the n — t; values that are received. For n/3 < t; < n/2, one cannot take the majority
value. The idea is to let only a subset R of t; + 1 parties toss a local coin:

Protocol Coin(R), f <t; <n/2, |R’ =t +1

1. If P, € R: choose 0 or 1 with probability 1/2 and detectable-broadcast the outcome to
everyone.

2. Every party outputs the value of the first broadcast that output.

If all the parties in R are honest and toss the same coin, then every party outputs the
same value. During the consensus protocol, we cycle through all subsets of size t; + 1. If
t: < n/2, one of them contains only honest parties, and in that phase, if all parties toss the
same coin (we denote it a lucky phase), all honest parties obtain the same value.

5.3 Protocol

The protocol is very similar to the one in Section 4, but with four changes: 1) it is executed
a fixed number of phases, 2) the broadcast protocols are replaced by detectable broadcast
protocols (allowing parties for detectable correctness enforcement), 3) the coin is replaced by
the one in Section 5.2 and 4) a termination protocol which works even if ¢; > max{t.,t,}. In
addition, the protocol has a special initial majority round that allows for a simpler analysis
of validity and one lock-round for each phase that allows the deterministic value of a phase
to be fixed before the coins are revealed.

The intuition behind fixing the number of phases is that if the protocol runs indefinitely, it
may happen that some messages are never scheduled: even though the detectable broadcast
eventually detects misbehavior, such messages are never scheduled because there are always
other messages that the adversary can schedule!. However, this cannot happen if the number
of phases is fixed. Setting a “large enough” number of phases suffices for parties to reach
agreement with probability (1 —¢), unless the adversary misbehaved in a detectable broadcast
protocol, in which case parties detect it and eventually reach agreement.

We call a batch B an iteration over all subsets of size t; + 1, i.e. B = (ttil)' We set an
upper bound K + 1 on the number of batches (hence we have (K + 1)B phases in total), so
that the probability that parties are not in agreement after (KX + 1)B phases is at most €.

| Protocol IT%'*;"

(1—e)—con

Input. Every party P; holds input z; € {0,1}.

Variable. y, = L.

Initial majority round // This initial round is necessary to ensure validity.
Detectable-Broadcast(x;) to every party. Wait until n — ¢; messages have been validated.

Set z; = majority of the n — ¢; validated messages.

Reaching agreement. Repeat at most K + 1 times: // K + 1 batches.
For every subset R of size ‘R! =t:+1do: // we call this loop one batch.

1. Detectable-Broadcast(z;) to every party. Wait until n — ¢; messages have been validated.

! This is the main challenge that one needs to overcome to design an almost-surely terminating consensus
for t; > n/3.
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If all validated messages have the same value z, update z; = (lock, z), else update
z; = (lock, 7).

2. Detectable-Broadcast(z;) to every party. Wait until n — ¢; messages have been validated.
If all messages are (lock,z) with the same z € {0, 1}, update z; = (propose, x), else
update z; = (propose, 7).

3. Set ¢; = Coin(R).

4. Detectable-Broadcast(x;) to every party. Wait until n —¢; messages have been validated.
If all messages are (propose, z) with = € {0, 1}, update y; = .

Else if at least one of the messages is (propose, z) with « € {0,1}, then z; = x.
Otherwise, set x; = ¢;.

Termination.
Upon updating y;, send (READY, y;) to all parties.
Upon detecting a Byzantine behaviour, send (READY, L) to all parties.

Upon receiving (READY, d’) messages from max{t., t,} + 1 parties that agree on the value
m’ € {0,1, L} during the consensus protocol, send (READY, m') to all parties.

Upon receiving (READY, m’) or (TERMINATE) from n — t; parties from which at least
max{ty,t.} + 1 are READY messages and (they all) agree on the value m’ € {0,1, L},
send (TERMINATE) to all recipients, output m’ and terminate.

A formal analysis of the protocol can be found in the full version of the paper. Intuitively,
if f < max{t.,t,}, correctness enforcement ensures the same properties as in the protocol
It making the proofs of validity and consistency similar to those. However, the
termination property involves a bit more careful analysis. The idea is that either each honest
party P; updates to the same value y; = y, or Byzantine behavior is detected. This is because
with high probability, there is a phase where honest parties reach agreement by chance (they
obtain the same value from the coin, and the coin coincides with the deterministic value of
that phase), unless the adversary tampered the outputs from a detectable broadcast protocol
in which case it will eventually be detected. As a result, one can argue that there is an honest
party that terminates (every honest party eventually sends the same READY message),
which in turn implies that eventually everyone terminates by a similar argument as for the
broadcast protocol in Section 3.
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—— Abstract

In the past few years, many Byzantine-tolerant distributed machine learning (DML) algorithms have
been proposed in the point-to-point communication model. In this paper, we focus on a popular
DML framework — the parameter server computation paradigm and iterative learning algorithms
that proceed in rounds, e.g., [11, 8, 6]. One limitation of prior algorithms in this domain is the high
communication complezity. All the Byzantine-tolerant DML algorithms that we are aware of need to
send n d-dimensional vectors from worker nodes to the parameter server in each round, where n is
the number of workers and d is the number of dimensions of the feature space (which may be in the
order of millions). In a wireless network, power consumption is proportional to the number of bits
transmitted. Consequently, it is extremely difficult, if not impossible, to deploy these algorithms in
power-limited wireless devices. Motivated by this observation, we aim to reduce the communication
complezity of Byzantine-tolerant DML algorithms in the single-hop radio network [1, 3, 14].

Inspired by the CGC filter developed by Gupta and Vaidya, PODC 2020 [11], we propose
a gradient descent-based algorithm, Echo-CGC. Our main novelty is a mechanism to utilize the
broadcast properties of the radio network to avoid transmitting the raw gradients (full d-dimensional
vectors). In the radio network, each worker is able to overhear previous gradients that were
transmitted to the parameter server. Roughly speaking, in Echo-CGC, if a worker “agrees” with
a combination of prior gradients, it will broadcast the “echo message” instead of the its raw local
gradient. The echo message contains a vector of coefficients (of size at most n) and the ratio of
the magnitude between two gradients (a float). In comparison, the traditional approaches need
to send n local gradients in each round, where each gradient is typically a vector in a ultra-high
dimensional space (d > n). The improvement on communication complexity of our algorithm
depends on multiple factors, including number of nodes, number of faulty workers in an execution,
and the cost function. We numerically analyze the improvement, and show that with a large number
of nodes, Echo-CGC reduces 80% of the communication under standard assumptions.
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1 Introduction

Machine learning has been widely adopted and explored recently [23, 16]. Due to the
exponential growth of datasets and computation power required, distributed machine learning
(DML) becomes a necessity. There is also an emerging trend [21, 13] to apply DML in power-
limited wireless networked systems, e.g., sensor networks, distributed robots, smart homes,
and Industrial Internet-of-Things (IToT), etc. In these applications, the devices are usually
small and fragile, and susceptible to malicious attacks and/or malfunction. More importantly,
it is necessary to reduce communication complexity so that (over-)communication does not
drain the device battery. Most prior research on fault-tolerant DML (e.g., [8, 4, 11, 6]) has
focused on the use cases in clusters or datacenters. These algorithms achieve high resilience
(number of faults tolerated), but also incur high communication complexity. As a result, most
prior Byzantine-tolerant DML algorithms are extremely difficult, if not impossible, to be
deployed in power-limited wireless networks.

Motivated by our observations, we aim to design a Byzantine DML algorithm with
reduced communication complexity. We consider wireless systems that are modeled as a
single-hop radio network, and focus on the popular parameter server computation paradigm
(e.g., [11, 8, 6]). We propose Echo-CGC, and prove its correctness under typical assumptions
[4, 8]. For the communication complexity, we formally analyze the expected number of bits
that need to be sent from workers to the parameter server. The extension to multi-hop radio
network is left as an interesting future work.

Recent Development in Distributed Machine Learning. Distributed Machine Learning
(DML) is designed to handle a large amount of computation over big data. In the parameter
server model, there is a centralized parameter server that distributes the computation tasks to
n workers. These workers have the access to the same dataset (that may be stored externally).
Similar to [4, 11, 6], we focus on the synchronous gradient descent DML algorithms, where the
server and workers proceed in synchronous rounds. In each round, each worker computes a
local gradient over the parameter received from the server, and the server then aggregates the
gradients collected from workers, and updates the parameter. Under suitable assumptions,
prior algorithms [4, 11, 6] converge to the optimal point in the d-dimensional space R? even
if up to f workers may become Byzantine faulty.

To our knowledge, most Byzantine-tolerant DML or distributed optimization algorithms
focused on the case of clusters and datacenters, which are modeled as a point-to-point network.
For example, Reference [6], Krum [4], Kardam [7], and ByzSGD 8] focused on the stochastic
gradient descent algorithms under several different settings (synchronous, asynchronous,
and distributed parameter server). Reference [20, 11, 19] focused on the gradient descent
algorithms for the general distributed optimization framework. Zeno [24] uses failure detection
to improve the resilience. None of these works aimed to reduce communication complexity.

Another closely related research direction is on reducing the communication complexity
of non-Byzantine-tolerant DML algorithms, e.g., [15, 13, 22]. These algorithms are not
Byzantine fault-tolerant, and adopt a completely different design. For example, reference [15]
utilizes relaxed consistency (of the underlying shared data), reference [22] discards coordinates
(of the local gradients) aggressively, and reference [13] uses intermediate aggregation. It is not
clear how to integrate these techniques with Byzantine fault-tolerance, as these approaches
reduce the redundancy, making it difficult to mask the impact from Byzantine workers.
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Single-Hop Radio Network. We consider the problem in a single-hop radio network, which
is a proper theoretical model for wireless networks. Following [1, 3, 14], we assume that
single-hop wireless communication is reliable and authenticated, and there is no jamming nor
spoofing. Moreover, nodes follow a specific TDMA schedule so that there is no collision. In
Section 2.1, we briefly argue why such an assumption is realistic to model wireless communi-
cation. In the single-hop radio network model, we aim to minimize the total number of bits

to be transmitted in each round. If we directly adapt prior gradient descent-based algorithms
[4, 11] to the radio network model, then each worker needs to broadcast a vector of size d,
where d is the number of dimensions of the feature space. In practical applications (e.g.,
[9, 13]), d might be in the order of millions, and the gradients may require a few GBs. Since
power consumption is proportional to the communication complexity in wireless channel,
prior Byzantine DML algorithms are not adequate for power-limited wireless networks..

Main Contributions. Inspired by the CGC filter developed by Gupta and Vaidya, PODC
2020 [11], we propose a gradient descent-based algorithm, Echo-CGC, for the parameter
server model in the single-hop radio network. Our main observation is that since workers can
overhear gradients transmitted earlier, they can use this information to avoid sending the raw
gradients in some cases. Particularly, if a worker “agrees” with some reference gradient(s)
transmitted earlier in the same round, then they send a small message to “echo” with the
reference gradient(s). The size of the echo message (O(n) bits) is negligible compared to the
raw gradient (O(d) bits), since in typical ML applications, d > n.

Our proof is more sophisticated than the one in [11], even though Echo-CGC is inspired
by the CGC filter. The reason is that the “echo message” does not necessarily contain
worker i’s local gradient; instead, it can be used to construct an approximate gradient,
which intuitively equals a combined gradients between i’s local gradients and the gradients
broadcast by previous workers. We need to ensure that such an approximation does not affect
the aggregation at the server. Moreover, CGC filter [11] works on deterministic gradients —
each worker computes the gradient of its local cost function using the full dataset. In our
case, each worker computes a stochastic gradient, a gradient over a small random data batch.
We prove that with appropriate assumptions, Echo-CGC converges to the optimal point.

Echo-CGC is correct under the same set of assumptions in prior work [4]; however, there is
an inherent trade-off between resilience, the proven bound on the communication complexity
reduction, and the cost function. Fix the cost function. We derive necessary conditions on n
so that Echo-CGC is guaranteed to perform better. We also perform numerical analysis to
understand the trade-off. In general, Echo-CGC saves more and more communication if f/n
becomes smaller and smaller. Moreover, our algorithm performs better when the variance of
the data is relatively small. For example, our algorithm tolerates 10% of faulty workers and
saves over 75% of communication cost when standard deviation of computed gradients is less
than 10% of the true gradient.

2  Preliminaries
In this section, we formally define our models, and introduce the assumptions and notations.

2.1 Models

Single-Hop Radio Network. We consider the standard radio network model in the literature,
e.g., [1, 3, 14]. In particular, the underlying communication layer ensures the reliable local
broadcast property [3]. In other words, the channel is perfectly reliable, and a local broadcast
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is correctly received by all neighbors. As noted in [1, 3], this assumption does not typically
hold in the current deployed wireless networks, but it is possible to realize such a property
with high probability in practice with the help from the MAC layer [2] or physical layer [17].

In our system, nodes can be uniquely identified, i.e., each node has a unique identifier. We
assume that a faulty node may not spoof another node’s identity. The communication network
is assumed to be single-hop; that is, each pair of nodes are within the communication range
of each other. Moreover, time is divided into slots, and each node proceeds synchronously.
Message collision is not possible because of the nodes follow a pre-determined TDMA schedule
that determine the transmitting node in each slot and the transmission protocol is jam-
resistant. Each slot is assumed to be large enough so that it is possible for a node to transmit
a gradient. We also assume that each communication round (or communication step) is
divided into n slots, and the TDMA schedule assigns each node to a unique slot. For ease of
discussion, node ¢ is scheduled to transmit at slot i.

Stochastic Gradient Descent and Parameter Server. In this work, we focus on the
Byzantine-tolerant distributed Stochastic Gradient Descent (SGD) algorithms, which are
popular in the optimization and machine learning literature [4, 8, 11, 5]. Given a cost function
@, the (sequential) SGD algorithm outputs an optimal parameter w* such that

w* = argmin Q(w) (1)
weR?
An SGD algorithm executes in an iterative fashion, where in each round ¢, the algorithm
computes the gradient of the cost function @ at parameter w! and updates the parameter
with the gradient.

Synchronous Parameter Server Model: ~Computation of gradients is typically expensive
and slow. One popular framework to speed up the computation is the parameter server
model, in which the parameter server distributes the computation tasks to n workers and
aggregates their computed gradients to update the parameter in each round. Following the
convention, we will use node and worker interchangeably.

We assume a synchronous system, i.e., the computation and communication delays are
bounded, and the server and workers know the bound. Consequently, if the server does not
receive a message from worker ¢ by the end of some round, then the server identifies that
worker i is faulty.

Formally speaking, a distributed SGD algorithm in the parameter server model proceeds
in synchronous rounds, and executes the following three steps in each round t¢:

1. The parameter server broadcasts parameter w' to the workers.
2. Each worker j randomly chooses a random data batch 5;1 from the dataset (shared by all
the workers) and computes an estimate, g?, of the gradient VQ(w?) of the cost function

Q using & and w'.

3. The server aggregates estimated gradients from all workers and updates the parameter

using the gradient descent approach with step size n:

n
w =w—n> gl (2)
J=1

Fault Model and Byzantine SGD. Following [11, 4, 6], our system consists of n workers,
up to f of which might be Byzantine faulty. We assume that the central parameter server is
always fault-free.
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Byzantine workers may be controlled by an omniscient adversary which has the knowledge
of the current parameter (at the server) and the local gradient of all the other workers, and
may have arbitrary behaviors. They can send arbitrary messages. However, due to the
reliable local broadcast property of the radio network model, they cannot send inconsistent

messages to the server and other workers. They also cannot spoof another node’s identity.

Our goal is therefore to design a distributed SGD algorithm that solves Equation (1) in the
presence of up to f Byzantine workers.

Workers that are not Byzantine faulty are called fault-free workers. These workers follow
the algorithm specification faithfully. For a given execution of the algorithm, we denote H as
the set of fault-free workers and B as the set of Byzantine workers. For brevity, we denote
h =|H| and b = |B|; hence, we have b < f and h > n — f.

Communication Complexity. We are interested in minimizing the total number of bits that

need to be transmitted from workers to the parameter server in each round. Prior algorithms
[11, 4] transmit n gradients in a d-dimensional space in each round, since each node needs to
transmit its local gradient to the centralized server. Typically, each gradient consists of d
floats or doubles (i.e., a single primitive floating point data structure for each dimension).

2.2 Assumptions and Notations

We assume that the cost function @) satisfies some standard properties used in the literature

[4, 8, 6], including convexity, differentiability, Lipschitz smoothness, and strong convexity.

Following the convention, we use (a,b) to represent the dot product of two vectors a and b
in the d-dimensional space R?.

» Assumption 1 (Convexity and smoothness). @ is convex and differentiable.

» Assumption 2 (L-Lipschitz smoothness). There exists L > 0 such that for all w,w’ € RY,
IVQ(w) = VQ(uw)|| < Lijw — w'| (3)

» Assumption 3 (y-strong convexity). There exists 1 > 0 such that for all w,w’ € R?,
(VQ(w) = VQ(uw'),w — w') > pllw — w'||? (4)

We also assume that the random data batches are independently and identically distributed
from the dataset. Before stating the assumptions, we formally introduce the concept of
randomness in the framework. Similar to typical stochastic gradient descent algorithms, the
only randomness is due to the random data batches f; sampled by each fault-free worker
j € H in each round ¢, which further makes g as well as w'*! non-deterministic. In the case
when a worker uses the entire dataset to train model, g5 = VQ(w"). Hence, the result is
deterministic, i.e., each fault-free worker derives the same gradient. In practice, data batch
is a small sample of the entire data set.!

Formally speaking, we denote an operator Ez: (- | w',Gk) as the conditional expectation
operator over the set of random batches = = {¢f,7 = 1,2,...,n} in round ¢ given (i) the
parameter w', and (ii) the set of Byzantine gradients G = {g¢ : j € B}. This conditional
expectation operator allows us to treat w’, Q(w'), and VQ(w') as constants, as well as the

1 Reference [11] works on a different formulation in which each worker may have a different local cost
function.
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Byzantine gradients. This is reasonable because (i) we have the knowledge about @ and w?
given an execution, and (ii) the Byzantine gradients are arbitrary, and do not depend on
the data batches. From now on, without further specification, we abbreviate the operator

Ez: (- | w', Gk) as E.

Below we present two further assumptions of local stochastic gradient g§ at each fault-free
worker j. Similar to [4, 8], we rely on the two following assumptions for correctness proof.
» Assumption 4 (IID Random Batches). For all j € H andt € N,

E(g5) = VQ(w") (5)

» Assumption 5 (Bounded Variance). For all j € H and t € N,

Ellg; — VQ")|* < o®||VQ(w")]? (6)

Notation. We list the most important notations and constants used in our algorithm and

analysis in the following table.

Table 1 Notations and constants used in this paper.

H | set of fault-free workers; h = |H|

B | set of faulty workers; b = |B|

t round number, t =0,1,2,...

w” | optimal solution to @, i.e., w* = argmin,, cpa Q(w)
w' | parameter in round ¢

gj estimated gradient of j in round ¢

~§- “reconstructed” gradient of j by server in round
A;- gradient of j in round ¢ after applying the CGC filter
n fixed step size as in Equation (2)

L Lipschitz constant

7 strong convexity constant

r deviation ratio, a key parameter in our algorithm
k* | constant defined in Lemma 2, k™ ~ 1.12

3  Our Algorithm: Echo-CGC

Our algorithm is inspired by Gupta and Vaidya [11]. Specifically, we integrate their CGC
filter with a novel aggregation phase. Our aggregation mechanism utilizes the broadcast
property of the radio network to improve the communication complexity. In the CGC
algorithm [11], each worker needs to send a d-dimensional gradient to the server, whereas in
our algorithm, some workers only need to send the “echo message” which is of size O(n) bits.
Note that in typical machine learning applications, d > n.

We design our algorithm for the synchronous parameter server model, so the algorithm is
presented in an iterative fashion. That is, each worker and the parameter server proceed
in synchronous rounds, and the algorithm specifies the exact steps for each round ¢. Our
Algorithm, Echo-CGC, is presented in Algorithm 1. The algorithm uses the notations and
constants summarized in Table 1.



Q. Zhang and L. Tseng

Algorithm Description

Initially, the parameter server randomly generates an initial parameter w® € R?. Each round
t > 0 consists of three phases: (i) computation phase, (ii) communication phase, and (iii)
aggregation phase. Echo-CGC takes the following inputs: step size 7, deviation ratio r,
number of workers n, and maximum number of tolerable faults f. The exact requirements
on the values of these inputs will become clear later. For example, n, f,r need to satisfy the
bound derived in Lemma 3. More discussion will be presented in Section 4.3.

Computation Phase. In the computation phase of round ¢, the server broadcasts w’ to the
workers. Each worker j then computes the local stochastic gradient gg- = VQ;(w") using
w? and its random data batch f; Since we assume the parameter server is fault-free, each
worker receives the identical wt. The local gradient is stochastic, because each worker uses a
random data batch to compute the local gradient g;-.

Communication Phase. In the communication phase, each worker needs to send the
information regarding to its local gradient to the parameter server. This phase is our main
novelty, and different from prior algorithms [11, 4, 6]. We utilize the property of the broadcast
channel to reduce the communication complexity. As mentioned earlier, the communication
phase of round t is divided into n slots t1,...,t,. Without loss of generality, we assume that
each worker j is scheduled to broadcast its information in slot ¢; (of round t). Note that we
assume that the underlying physical or MAC layer is jamming-resistant and reliable; hence,
each fault-free worker can reliably broadcast the information to all the other nodes.

Steps for Worker j. FEach worker j stores a set of gradients that it overhears in round t.

Denote by R; the set of stored gradients. By assumption, R; consists of gradients g} for
i < j, when at the beginning of slot ¢;. Upon receiving a gradient g! (in the form of a vector

in R?), worker j stores it to R; if g} is linearly independent with all existing gradients in R;.

In the slot t;, worker j computes the “echo gradient” using vectors stored in R;. Specifically,
worker j takes the following steps:
It expresses R; as R; = {gf,...., g}, } and constructs a matrix A; € RIS a5
J

Al =g, g, - gflRﬂ]
It then computes the Moore-Penrose inverse (M-P inverse in short) of A;, defined as

(A5)* = ((A)TA) AN,

where AT is the transpose of matrix A. The existence of the M-P inverse is guaranteed.
Intuitively this is because all columns of Az» are linearly independent by construction.

The formal proof is presented in our full paper [25].
Next, worker j computes a vector x§ € RIS using the M-P inverse:

o = (4) ),

where ¢t is the local stochastic gradient of @ computed by j in the computation phase.
9g; g P y J p P

Note that z§ is of size O(n), since R; contains at most n elements.
Finally, it computes the “echo gradient” as
t\k At t
(gj) = Ajfcj
Mathematically, (g5)* is the projection of g% onto the span of vectors in Rj, i.e., the
closest vector to g§- in the span of R;.

17
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Next, worker j checks whether the following inequality holds where (gﬁ)* is the echo
gradient, g§» the local stochastic gradient, and r the deviation ratio.

1(g5)" = g5l < rllgjll (7)

Worker j performs one of the two actions depending on the result of Inequality (7).
If Inequality (7) holds, then j sends the echo message (||lgill/(|lg5)* ||, 25, I}) to the server,
where Ijt- = {i1,...,i|Rr,|} is a sorted list of worker IDs whose gradients are stored in R;.

Otherwise, worker j broadcasts the raw gradient g§» to server and all the other workers.

Steps for Parameter Server: The parameter server uses a vector GG to store the gradients
from workers. Specifically, in each round ¢, for each worker j, the server computes g; and
stores it as the j-th element of G. At the beginning of round ¢, every element G[j] is initialized
as an empty placeholder L. During the communication phase, the parameter server takes
two possible actions upon receiving a message from worker j:

If the message is a vector, then the server stores g% = g% in G[j].

Otherwise, the message is a tuple (k,z, I). The server then does the following:

If there exists some ¢ € I such that G[i] =L (i.e., the server has not received a message
from worker ), then due to the reliable broadcast property, the server can safely
identify j as a Byzantine worker. By convention, we let the server store §§ =0, the
zero vector in RY, in G[j].

Otherwise, denote the matrix Ay as Ay = [G[il], e, G[i|Rj|]] where I = {i1,...,%g,|},
and the server stores gt as g% = kA;x in G[j].

Aggregation Phase. The final phase is identical to the algorithm in [11], in which the server
updates the parameter using the CGC filter. First, the server sorts the stored gradients G in
the increasing order of their Euclidean norm and relabel the IDs so that ||gf | <--- < ||g} |.
Then the server applies the CGC filter as follows:
i, M., . ) .
~t ngv J € {Zn—f+1""7ln} (8)
g;'a ]6{21772n—f}

Finally, the server aggregates the gradients by ¢ = Z?:l Q; and updates the parameter by
w!tt = w! — ng', where 7 is the fixed step size.

4 Convergence Analysis

In this section, we prove the convergence of our algorithm Echo-CGC. The proof is more
complicated than the one in [11], even though both algorithms use the CGC filter. This is
mainly due to two reasons: (i) we use stochastic gradient, whereas [11] uses a deterministic
gradient; and (ii) echo messages only results in an approximate gradient (i.e., the echo
gradient which may be deviated from the local stochastic gradient by a ratio r). Intuitively,
in addition to the Byzantine tampering, we need to deal with non-determinism from stochastic
gradients and noise from echo messages.

4.1 Convergence Rate Analysis

In this part, we first analyze the convergence rate p, which is a constant defined later in
Equation (13). Recall a few notations that h = |H| and b = |B|, where given the execution,
‘H is the set of fault-free workers and B is the set of Byzantine workers. Also recall that
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Algorithm 1 Algorithm Echo-CGC.

: Parameters:
n > 0 is the step size defined in Equation (2)
r > 0 is the deviation ratio
n, f,r satisfy the resilience bounds stated in Lemma 3

: for t < 0 to oo do
/* Computation Phase */

1

2

3

4

5: Initialization at server: w® « a random vector in R?

6

7

8 At server: broadcast w? to all workers; G < a L-vector of length n
9

At worker j:

10: receive w' from the server
11: g5+ VQj(w'); Rj+ {} > local stochastic gradient at worker j
12: /* Communication Phase */
13: for i < 1 ton do
14: (i) At worker i:
15: if |R;| = 0 then
16: broadcast g!
17: else
18: A< [glger,; AT < (ATA)TTAT; o« Atgt > Az is the echo gradient
19 if | Az — g!l| < rllg!] then
20: I+ {i': g}, € R;} in an ascending order
21: broadcast (||g¢||/||Az]|,z, ) > echo message
22: else
23: broadcast g! > raw local gradient
24: end if
25: end if
26: (ii) At worker j > i:
27: if j receives vector g¢ from worker i then
28: A< [glger,; AT+ (ATA)71AT
29: if ¢! is linearly independent with R; (i.e., AATg! # g!) then
30: R; %RiU{gf}
31: end if
32: end if

(iii) At server:
33: if it receives a vector gj from worker j then
34: Glj] <+ ¢} > j transmitted a raw gradient
35: else if it receives an echo message (k,z,I) from worker j then
36: if Ji € I such that G[i{] =L then
37: Glj] + 0 > j is a Byzantine worker
38: else
39: Ar < [Gtier, G[j] + KAz > j transmitted an echo message
40: end if
41: end if

42: end for
43: /* Aggregation Phase (applying CGC filter from [11]) */

44: gt 3 o CGO(g) > CGC(-) defined in Equation (8)
45:  witl —wt—n. gt > 7 defined in Equation (2)
46: end for

OPODIS 2020
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L and p are the constants defined in the Assumption 2 and 3, respectively; ¢ defined in
Assumption 5; and r is the deviation ratio used in Echo-CGC. To derive p, we need to define
series of constants based on the given parameters of n, f, h,b, L, u,r, and o.

We first define a constant (3 as

=2t =D o, )
where k, is defined as

km:1+\/%, Vo > 1. (10)
We then define a constant v as

v =nL? (h(1+0°) +bay), (11)
where

ap = x0% + (1 + kpo)?, Vo > 1. (12)

Finally, we define the convergence rate p using 8 and - as follows:
p=1=28n+". (13)

We will prove that under some standard assumptions, the convergence rate p is in the
interval [0,1). We first present several auxiliary lemmas. Due to page limit, most proofs are
presented in the full paper [25].

» Lemma 1. Let L, > 0 be the Lipschitz constant and strong convexity constant defined in
Assumption 2 and 3, respectively. Then we have u < L.

» Lemma 2. Denote k* = sup,{k./\/x :x > 1}. Then k* < oo, and numerically k* ~ 1.12.
Equivalently, kp, < k*Vh for all h > 1.

» Lemma 3. Assume nu — (3 + kyo)fL > 0, then there exists r > 0 that satisfies equation
below.

np— (34 kpo) fL
(n—2f) 1+ o)L+ (1 + kpo)fL’

Moreover, if r > 0 satisfies Equation (14), then 8 > 0.

r <

(14)

Lemma 3 implies that we need to bound o for convergence. In general, Echo-CGC is
correct if o = o(logn). For brevity, we make the following assumption to simplify the proof of
convergence and the analysis of communication complexity. We stress that this assumption
can be relaxed using basically the same analysis with a denser mathematical manipulation.

» Assumption 6. Let o be the variance bound defined in Assumption 5. We further assume

1
that o < T

Under Assumption 6, we can narrow down the bound of 7 in Lemma 3 to loosen our
assumption on fault tolerance.

» Lemma 4. Assume nu— (3+k*)fL > 0 (k* = 1.12), then there exists r > 0 satisfying
Equation (15) such that 8 > 0.

np— (3+ k%) fL
(n=2f)1+0o)L+ (1+k*)fL"
» Theorem 5. Assume np — (3+k*)fL > 0 and r is a value that satisfies Inequality (15).
Then we can find an n > 0 such that n < 28/, which in turn makes p € [0,1).

r< (15)
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4.2 Proof of Convergence

Next, we prove the convergence of our algorithm. That is, Echo-CGC converges to the
optimal point w* of the cost function ). We prove the convergence under the assumption
that nu — (3 4+ k*)fL > 0. Due to page limit, we present key proofs here, and the rest can
be found in [25].

Recall our definition of the conditional expectation E = Ez:(- | w', G%) introduced in
Section 2.2. Before proving the main theorem, we introduce some preliminary lemmas.

» Lemma 6. For allt and for all j € H,
Ellgi]l < (1 + o) IVQ(w)]l. (16)

» Lemma 7. Recall that g; is the gradient after applying the CGC filter. For allt and for
all j€{1,2,...,n},

Ellgi] < (1 + kno)[VQ(w)]. (17)

The proof of Lemma 7 is based on Lemma 6 and the following prior results: Gumbel
[10] and Hartley and David [12] proved that given identical means and variances (u,0?), the
upper bound of the expectation of the largest random variable among n independent random

variables is p + f}%

» Lemma 8. Following the same setup, for all t and for all j € {1,2,...,n},
E[351° < an|VQ(w")|?. (18)

The proof of Lemma 8 is based on Lemma 6 and the following result: Papadatos [18]
proved that for n i.i.d. random variables X; < X5 < ... < X, with finite variance 02, the

maximum variance of X, is bounded above by no?2.

Lemma 7 and Lemma 8 provide upper bounds on E||g}|| and E[|g}[|*. These two bounds
allow us to bound the impact of bogus gradients transmitted by a faulty node j. If j
transmitted an extreme gradient, it would be dropped by the CGC filter; otherwise, these
two bounds essentially imply that the filtered gradient gj. has some nice property even if j is

faulty. For fault-free gradients, Lemma 6 provides a better bound.

» Theorem 9. Assume that nu— (3+k*)fL > 0. We can find r > 0 that satisfies Inequality
(15) and n > 0 such that n < 28/7v. Echo-CGC with the chosen r and n will converge to the
optimal parameter w* ast — oo.

Proof. Our ultimate goal is to show that the sequence {E|w’ — w*||?}2°, converges to 0.

Recall that the aggregation rule of the algorithm is w!*! = w! — ng’. Thus, we obtain that

Elw™ —w*[|* <E[w’ — w* —ng'|?

=Elw’ —w"||? - 2B (w' —w*, g") + ’Ellg'||* . (19)
——
A B C
Since w’ is known, w’ can be treated as a constant, and E|jw! — w*||? = ||w’ — w*|2.

Part C: In [25], we show that the following inequality holds.

Ellg'[I* < 7llw® — w*||*. (20)

7:11
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Part B: By linearity of inner product,

(W' —w*, g") = Z<w —w*,9t) —I—Z(w —w*,9t). (21)

JEH jEB
First, by Schwarz Inequality, <w —w ,gJ> —|lwt —w*||||g ||, by Lemma 7 and L-Lipschitz
assumption, E||g§ || < (1 + kpo)L||wt — w*||. Thus,
E(w' —w*,§%) > —(1+ kno)Lljw® — w*||?, Vj € B. (22)

Next, observe that by our algorithm, for each j € H, the received gradient before CGC filter
g satisfies () [1g2] = I|g}l] and (i) g% = a; (g} + Agt), for some constant a; = |lgt|l/|lg! + At
and a vector Agj such that [[Ag§|| < r[lg5]|. This implies a; > 1/(1 4-r). Therefore,

B(uf —w,g5) =B’ w0yl +Ag)

((w* — w* Egj>+]E<w —w* Agj>), Vj e H. (23)

>
1+7r

By Assumption 4, Egf = VQ(w"); by strong convexity,

(wt — w", VQ(u1)) > pllwt — w|.
By Schwarz inequality, E (w’ — w*, Agt) > —|lw’ — w*|[E[|Agt|; and E[|Ag|| < rE|g}||. By
Lemma 6 and L-Lipschitz assumption, E[gt|| < (1+ o) Lllw* — w*||. Thus,

E(w' —w*,Agt) > —r(1 + o) L|jw" — w*|.
Upon substituting these results into Equation (23), we obtain that

1—|—U)L

E(w' —w*,gt) > & [w! —w*||?, Vj€H. (24)

We partition H into two parts: Hi =HN{i1,...,in—p} and Ho = H \ H1. For each
j € Hi, the received gradient is unchanged by CGC filter, i.e., g; = g;. Therefore, Equation
(24) also holds for g5, for all j € H;.

The case of Hs is similar. Note that for each j € Hs, the gradient g; is scaled down to

g% by CGC filter. In other words, there exists some constant a’ > 0 such that g5 = a/gt.
Therefore, by Equation (23),

E (w' — w*7§§> = E<wt — w*,a;-g~§> = a;E (w' = w*,§§> , Vi e Hs.
We can verify that if by assumption that r > 0 satisfies Equation (15), then p—r(1+0)L > 0;
and Equation (23) implies that E (w’ — w*, §5) > 0. Therefore,

E(w' —w*, §5) >0, Vj € Ho. (25)
Note that |Hi| > h — 2f. Upon substituting Equation (22), (24), (25) into Equation (21),

we obtain that

—r(l+o)L
E(w — w*. at) > _onk r(
(w wyg>_<(n N=—=%
By definition of 3 in Equation (9), this implies E (w! — w*, g*) > B|jw! — w*||2.
Conclusion: Upon combining part A, B and C, by definition of p in Equation (13),

Efluw' ! — w2 < plle’ — w2, VE=0,1,2,...

—b(1+ kho')L) lw — w*||*. (26)

Recall the definition of the conditional expectation operator E. This implies that
E(|w’ —w|* |w®, Gp, ..., G5) < p' 0’ —w*|?

By Theorem 5, p € (0,1). Therefore, as t — oo, ||w! — w*||? converges to 0. In other words,
w? converges to the optimal parameter w*. This proves the theorem. <
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4.3 Communication Complexity

We analyze the communication complexity of the Echo-CGC algorithm, and show that
under suitable conditions, it effectively reduces communication complexity compared to prior
algorithms [4, 11]. First consider a ball in R? whose center is the true gradient VQ(w?):

r

BVQu'). 55—

IVQ@HI) = fu € B : fu = VQ)| < o~ IVQ@AI}.  (27)

where r > 0 is the deviation ratio. For a slight abuse of notations, we abbreviate the ball as
B. This should not be confused with B, the set of Byzantine workers. We present only the
main results, and the proofs can be found in [25].

» Lemma 10. For all u,v € B, ||u — | < r|ul (and |ju—v| < 7r|v]).
Given Lemma 10, we compute the probability that an arbitrary gradient g§» is in the ball
B. By Markov’s Inequality,

r2

Pt} € ) = o I - VOO < ot VQUI)
| Ellg - QY
S v

(28)

By Assumption 5, E[|gf — VQ(w")||* < o®||[VQ(w")||?, so we conclude that Pr(g} € B) > p,
where p is the lower bound defined as p =1 — (1 + 2/r)%02.

Denote np = |{j : g} € B}| and n* as the number of workers that send the “echo message’
in a round. By Lemma 10, n* > np — 1. Since each event {g§ € B} is independent and has
a fixed probability, n* follows a Binomial distribution with success probability Pr(g§ € B)
which is bounded below by p. Therefore,

)

En*>Eng —1>np—1.

For n > 1, we assume that 1/n &~ 0. Also in practice, d > n, so the message complexity
of each echo message (in O(n) bits) is negligible compared to raw gradients (in O(d) bits).
Hence, the ratio of bit complexity of our algorithm and prior algorithms (e.g., [4, 11]) can be
approximately bounded above as follows:

bit complexity of Echo-CGC ~ n*O(n) + (n —n*)O(d)
bit complexity of prior algorithms nO(d)
< (np=1)0(n) + [n — (np — 1)|O(d)
- nO(d)
~1—p.

We denote the upper bound of ratio of reduced complexity to complexity of prior algorithms
asC=1-—p=(1+2/r)%0

Analysis. By Equation (3) and Lemma 2, C' can be expressed as

(1-22)1+0)+(1+ ak*ﬁ)x)z
u/L — (3 +ck*y/n)x ’

where x = f/n is the fault-tolerance factor.

C < o2 (1+2-

7:13

OPODIS 2020



7:14

Echo-CGC: A Communication-Efficient Byzantine DML

As Equation (29) shows, the ratio C is related to four non-trivial variables: (i) bound of
variance o > 0; (ii) resilience x = f/n satisfying the assumption in Lemma 3, i.e.,

w/L— (3+ ak*/n)x > 0;

(iii) constant L/, which is determined by the cost function @ and satisfies 0 < L/u < 1 by
Lemma 1; and (iv) number of workers n > 0.

1 £
0.8 0-81
06 | 0.6
)
)
04 | 0.4
021 0.2
0 T T T T 0 ‘ i ‘ ‘ |4 ‘ ‘ B ‘
0 i s 0z o 0.7 075 08 085 09 095 1
o n/L
(a) C as a function of o, for fixed p/L = 1, (b) C as a function of /L, for fixed o = 0.1,
z = 0.1, and n = 100. z = 0.1, and n = 100.
1% 14
0.8 0.8
0.6 + 0.6
© )
0.4+ 0.4 |
0.2 1 0.2 1
0 i i i 0 f f f f |
0 5.1072 0.1 0.15 0 100 200 300 400 500
T n
(c) C as a function of z, for fixed o = 0.1, (d) C as a function of n, for fixed o = 0.1,
u/L =1, and n = 100. u/L=1,and z =0.1.

We first plot the relation between one factor and C while fixing the other three factors.
First, we present the most significant fact, . We fix u/L = 1, z = 0.1, and n = 100. As
Figure la shows, C increases in an almost quadratic speed with o because of the o2 term
in Equation (29). Therefore, our algorithm is guaranteed to have lower communication
complexity when the variance of gradients is relatively low, especially when ¢ < 0.1. In
practice, this is the scenario when the data set consists mainly of similar data instances.

Then, we plot C against u/L with fixed o = 0.1, z = 0.1, and n = 100. As Figure 1b
shows, C' decreases as p/L becomes closer to 1. As p/L > 0.75, C' < 0.5, meaning that
[0.75,1] is the range of p/L where our algorithm is guaranteed to perform significantly better.

Next, we plot C against z with fixed o = 0.1, p/ L, and n = 100. As Figure 1c shows, there
is a trade-off between C' and f/a}:ult resilience x. As x approaches the max resilience defined

I

in Lemma 3, i.e., Tmax = Grok v the theoretical upper bound C' blows up. Moreover, as

x < 0.15, C' < 0.4; and thus [0,0.15] is a proper range of x.
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Finally, we plot C against n with fixed o = 0.1, u/L = 1, and = 0.1. As Figure 1d
shows, C' increases almost linearly with respect to n with a relatively flat slope. In other
words, n is not a significant factor of C; and the performance of our algorithm is stable in a
wide range of n.

In conclusion, our algorithm is guaranteed to require lower communication complexity
when: (i) o is low, i.e., data instances are similar and (ii) u/L is close to 1. Also, there is a
trade-off between resilience and efficiency. As a concrete example, when ¢ = 0.1, z = 0.2,
u/L =1, and n = 100, C = 0.25, meaning that our algorithm is guaranteed to save at least
75% of communication cost.

5 Summary

In this paper, we present our Byzantine-tolerant DML algorithm that incurs lower communi-
cation complexity in a single-hop radio netowrk (under suitable conditions). Our algorithm is
inspired by the CGC filter [11], but we need to devise new proofs to handle the randomness
and noise introduced in our mechanism.

There are two interesting open problems: (i) multi-hop radio network; and (ii) different
mechanism for constructing echo messages, e.g., usage of angles rather than distance ratio.
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—— Abstract

Modern machine learning architectures distinguish servers and workers. Typically, a d-dimensional
model is hosted by a server and trained by n workers, using a distributed stochastic gradient descent
(SGD) optimization scheme. At each SGD step, the goal is to estimate the gradient of a cost function.
The simplest way to do this is to average the gradients estimated by the workers. However, averaging
is not resilient to even one single Byzantine failure of a worker. Many alternative gradient aggregation
rules (GARs) have recently been proposed to tolerate a maximum number f of Byzantine workers.
These GARs differ according to (1) the complexity of their computation time, (2) the maximal
number of Byzantine workers despite which convergence can still be ensured (breakdown point),
and (3) their accuracy, which can be captured by (3.1) their angular error, namely the angle with
the true gradient, as well as (3.2) their ability to aggregate full gradients. In particular, many are
not full gradients for they operate on each dimension separately, which results in a coordinate-wise
blended gradient, leading to low accuracy in practical situations where the number (s) of workers
that are actually Byzantine in an execution is small (s << f).

We propose AKSEL, a new scalable median-based GAR with optimal time complexity (O(nd)),
optimal breakdown point (n > 2f) and the lowest upper bound on the ezpected angular error
(O(+/d)) among full gradient approaches. We also study the actual angular error of AKSEL when
the gradient distribution is normal and show that it only grows in O(\/Elog n), which is the first
logarithmic upper bound ever proven on the number of workers n assuming an optimal breakdown
point. We also report on an empirical evaluation of AKSEL on various classification tasks, which we
compare to alternative GARs against state-of-the-art attacks. AKSEL is the only GAR reaching top
accuracy when there is actually none or few Byzantine workers while maintaining a good defense
even under the extreme case (s = f). For simplicity of presentation, we consider a scheme with a
single server. However, as we explain in the paper, AKSEL can also easily be adapted to multi-server
architectures that tolerate the Byzantine behavior of a fraction of the servers.
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AKSEL: Fast Byzantine SGD

1 Introduction

Machine learning (ML) has gained a lot of attention during the last decades, where data
collection and processing have reached outstanding levels in terms of volume, variety and
velocity. Public awareness of machine learning, especially after the renaissance of neural
networks with the backpropagation algorithm [16], increased greatly when companies like
IBM and DeepMind created computer programs that beat world class champions in various
games. Machine learning started being incorporated within many applications such as
transportation, healthcare, finance, agriculture, retail, and customer service.

Essentially, training a supervised ML algorithm consists in determining the set of para-
meters that minimize the error between the model prediction and the actual output, a
scheme formally called empirical risk minimization [27]. In a single machine, it is common
to use Gradient Descent (GD) to minimize the cost function (which depends on the entire
dataset) by computing its gradient. For modern applications however, even the best and
most expensive hardware would eventually become insufficient.

Almost every industry grade machine learning algorithm is nowadays implemented in a
distributed manner. Most rely on stochastic gradient descent (SGD) [25], a variant of GD
that supports parallelization. However, a distributed architecture induces many challenges,
in particular the risk of partial failures. The classical way to model various failures (e.g.
software bug, arbitrary behavior of the hardware. ..) is the Byzantine abstraction and the
classical way to deal with them is to use a state machine replication protocol [26], but this
solution entails heavy communication and computational costs.

More specifically, distributed implementations of SGD typically consist of parameter
servers and workers. For simplicity of presentation, we consider the now classical ML scheme
with a single parameter server and several workers [1] (but our result can easily be extended
to a setting with multiple servers). The dataset is distributed over these workers, each of
which computes an estimation of the gradient step based on their share of the data. The
parameter server aggregates all the received gradient estimations and updates the parameter
vector accordingly. The goal is to come up with an estimate of the (true) gradient that would
have been computed on a single machine using GD. The simplest and best way to aggregate
the vectors is through averaging [23] which comes very close to the true gradient. However,
averaging cannot withstand a single Byzantine failure of a worker [4].

To solve this problem, many gradient aggregation rules (GARs) have been proposed to
tolerate a (maximum) number f of Byzantine workers (as we discuss later in “Related work”).
They can be classified in two main families: full-GARs, that select and average gradients of
responsive workers keeping the whole information on the descent direction, and blended-GARs,
that perform coordinate-wise operations on the set of collected gradients, inevitably losing
some information (as illustrated by Figure 2 in Section 6). The former are particularly
appealing in a practical setting because, even if a GAR is devised to tolerate extreme
situations and provide a reasonably good accuracy despite a large number of Byzantine
workers, it is important that the GAR provides very good accuracy in most frequent situations
where the number (s) of actual Byzantine workers in an execution is small (s << f). In this
sense, full gradients inherently enable graceful degradation.

The motivation of this work was to ask whether it is possible to derive a full gradient
aggregation rule defending against 50% of Byzantine workers (n > 2f) with a low time
complexity (O(nd)), which are both optimal, but with an angular error close to that of
averaging (which is not Byzantine-resilient). We answer positively by presenting AKSEL?, a

2 Aksel (known as Kusaila in Arabic and Caecilius in Latin) was an Amazigh leader of the 7th century
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new scalable median-based approach to aggregate the gradients. Essentially, Aksel is unique
in the sense that it is a full-gradient GAR using indirectly the power of coordinate-wise
operations to reduce the angular error.

Looking for optimal breakdown point and time complexity is self justifying. But why
seek a low angular error? In fact, this is directly linked to the quality of the solution and the
speed of convergence. Intuitively, a large angle makes enough room for Byzantine workers
to corrupt the machine learning model. Moreover, two models with different GARs can
converge to the same solution, but with different speed. We establish in Corollary 9 the
link between the angle value and the convergence slowdown occasioned by the robust GAR
compared to averaging.

Related work. Most approaches that have been proposed to improve the Byzantine resilience
of gradient descent (and its variants) rely on robust statistics, whilst some use historical
information to identify correct workers. KRUM [4] selects the vector with the minimum
score defined as the sum of euclidean distances with its neighbors. m-KRUM [