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Preface

The papers in this volume were presented at the 24th International Conference on Principles
of Distributed Systems (OPODIS 2020), held on December 14–16, 2020. Originally planned
to be held in Strasbourg, France, the conference was held online due to the COVID19
pandemic.

OPODIS is an open forum for the exchange of state-of-the-art knowledge about dis-
tributed computing. With strong roots in the theory of distributed systems, OPODIS has
expanded its scope to cover the entire range between the theoretical aspects and practical
implementations of distributed systems, as well as experimental and quantitative assessments.
All aspects of distributed systems are within the scope of OPODIS: theory, specification,
design, performance, and system building. Specifically, this year, the topics of interest at
OPODIS included:

Biological distributed algorithms
Blockchain technology and theory
Communication networks (protocols, architectures, services, applications)
Cloud computing and data centers
Dependable distributed algorithms and systems
Design and analysis of concurrent and distributed data structures
Design and analysis of distributed algorithms
Randomization in distributed computing
Social systems, peer-to-peer and overlay networks
Distributed event processing
Distributed operating systems, middleware, and distributed database systems
Distributed storage and file systems, large-scale systems, and big data analytics
Edge computing
Embedded and energy-efficient distributed systems
Game-theory and economical aspects of distributed computing
Security and privacy, cryptographic protocols
Synchronization, concurrent algorithms, shared and transactional memory
Impossibility results for distributed computing
High-performance, cluster, cloud and grid computing
Internet of things and cyber-physical systems
Mesh and ad-hoc networks (wireless, mobile, sensor), location and context-aware systems
Mobile agents, robots, and rendezvous
Programming languages, formal methods, specification and verification applied to distrib-
uted systems
Self-stabilization, self-organization, autonomy
Distributed deployments of machine learning

We received 75 submissions, each of which underwent a double-blind peer review process,
by at least three members of the Program Committee with the help of external reviewers.
Overall, the quality of the submissions was very high. From the 75 submissions, 30 papers
were selected to be included in these proceedings.

The OPODIS proceedings appear in the Leibniz International Proceedings in Informatics
(LIPIcs) series. LIPIcs proceedings are available online and free of charge to readers. The
production costs are paid in part from the conference budget.
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The Best Paper Award was awarded to Salwa Faour and Fabian Kuhn for their paper
titled “Approximating Bipartite Minimum Vertex Cover in the CONGEST model”. The Best
Student Paper Award was given to Amine Boussetta for his paper titled “Fast Byzantine
SGD”, co-authored with Rachid Guerraoui, Alexandre Maurer and Sébastien Rouault.

This year OPODIS had three distinguished invited keynote speakers: Idit Keidar (Tech-
nion), Jukka Suomela (Aalto University) and Pascal Felber (University of Neuchâtel).

Thank you to all the authors that submitted their work to OPODIS. We are also grateful
to the Program Committee members for their hard work reviewing papers and their active
participation in the online discussions and the Program Committee meeting. We also thank
the external reviewers for their help with the reviewing process.

Organizing this event would not have been possible without the help of the Networks
Team of the ICUBE Laboratory.

Finally, we thank the Steering Committee members for their valuable advice, as well as
the sponsors and the University of Strasbourg for their support.

November 2020

Quentin Bramas (University of Strasbourg, ICUBE, France)
Rotem Oshman (Technion, Israel)
Paolo Romano (University of Lisbon and INESC-ID, Portugal)
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Big Data Processing: Security and Scalability
Challenges
Pascal Felber
University of Neuchâtel, Switzerland

Abstract
The processing of large amonts of data requires significant computing power and scalable architectures.
This trend makes the use of Cloud computing and off-premises data centres particularly attractive,
but exposes companies to the risk of data theft. This is a key challenge toward exploiting public
Clouds, as data represents for many companies their most valuable asset. In this talk, we will
discuss about mechanisms to ensure secure and privacy-preserving Big Data processing on computing
architectures supporting horizontal and vertical scalability.

2012 ACM Subject Classification Computer systems organization → Cloud computing; Security
and privacy → Privacy-preserving protocols

Keywords and phrases Big Data
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Byzantine Agreement and SMR with
Sub-Quadratic Message Complexity
Idit Keidar
Technion, Haifa, Israel

Abstract
Byzantine Agreement (BA) has been studied for four decades by now, but until recently, has been
considered at a fairly small scale. In recent years, however, we begin to see practical use-cases of
BA in large-scale systems, which motivates a push for reduced communication complexity. Dolev
and Reischuk’s well-known lower bound stipulates that any deterministic algorithm requires Ω(n2)
communication in the worst-case, and until fairly recently, almost all randomized algorithms have
had at least quadratic complexity as well. This talk will present two new algorithms breaking this
barrier.

The first part of the talk will consider a fully asynchronous setting, focusing on randomized BA
whose safety and liveness guarantees hold with high probability. It will present the first asynchronous
Byzantine Agreement algorithm with sub-quadratic communication complexity. This algorithm
exploits VRF-based committee sampling, which it adapts for the asynchronous model.

The second part of the talk will consider the eventually synchronous model, where BA and State
Machine Replication (SMR) can be solved with deterministic safety and liveness guarantees. In this
context, randomization is used in order to reduce the expected communication complexity. The talk
will present an algorithm for round synchronization, which is a building block for BA and SMR
and constitutes the main performance bottleneck therein. It will present an algorithm that, for the
first time, achieves round synchronization with expected linear message complexity and expected
constant latency. Existing protocols can use this round synchronization algorithm to solve Byzantine
SMR with the same asymptotic performance.

The first part of the talk is based on joint work with Shir Cohen and Alexander Spiegelman,
and the second part of the talk is based on joint work with Oded Naor.

2012 ACM Subject Classification Networks → Network algorithms; Computing methodologies →
Distributed algorithms

Keywords and phrases Distributed Computing, Byzantine Agreement
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It Is Hard?
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Abstract
Computer scientists seek to understand what can be automated, but what do we know about
automating our own work? Can we outsource our own research questions to computers? In this
talk I will discuss this question from the perspective of the theory of distributed computing. I will
present not only recent examples of human-computer-collaborations that have resulted in major
breakthroughs in our understanding of distributed computing, but I will also explore the fundamental
limits of such approaches.

2012 ACM Subject Classification Computing methodologies → Distributed algorithms

Keywords and phrases Distributed Computing

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2020.3

Category Invited Talk

© Jukka Suomela;
licensed under Creative Commons License CC-BY

24th International Conference on Principles of Distributed Systems (OPODIS 2020).
Editors: Quentin Bramas, Rotem Oshman, and Paolo Romano; Article No. 3; pp. 3:1–3:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-6117-8089
https://jukkasuomela.fi/
mailto:jukka.suomela@aalto.fi
https://doi.org/10.4230/LIPIcs.OPODIS.2020.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de




Byzantine Lattice Agreement in Asynchronous
Systems
Xiong Zheng
Electrical and Computer Engineering, University of Texas at Austin, TX, USA

Vijay Garg
Electrical and Computer Engineering, University of Texas at Austin, TX, USA

Abstract
We study the Byzantine lattice agreement (BLA) problem in asynchronous distributed message
passing systems. In the BLA problem, each process proposes a value from a join semi-lattice and
needs to output a value also in the lattice such that all output values of correct processes lie on a
chain despite the presence of Byzantine processes. We present an algorithm for this problem with
round complexity of O(log f) which tolerates f < n

5 Byzantine failures in the asynchronous setting
without digital signatures, where n is the number of processes. This is the first algorithm which has
logarithmic round complexity for this problem in asynchronous setting. Before our work, Di Luna
et al give an algorithm for this problem which takes O(f) rounds and tolerates f < n

3 Byzantine
failures. We also show how this algorithm can be modified to work in the authenticated setting (i.e.,
with digital signatures) to tolerate f < n

3 Byzantine failures.
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1 Introduction

In distributed systems, reaching agreement in the presence of process failures is a fundamental
task. Understanding the kind of agreement that can be reached helps us understand the
limitation of distributed systems with failures. Consensus [15] is the most fundamental
problem in distributed computing. In this problem, each process proposes some input value
and has to decide on some output value such that all correct processes decide on the same
valid output. In synchronous message systems with crash failures, consensus cannot be
solved in fewer than f + 1 rounds [9]. In asynchronous systems, consensus is impossible
in the presence of even one crash failure [11]. The k-set agreement [5] is a generalization
of consensus, in which processes can decide on at most k values instead of just one single
value. The k-set agreement cannot be solved in asynchronous systems if the number of crash
failures f ≥ k [3, 12]. The paper [6] shows that k-set agreement problem cannot be solved
by less than b f

k c rounds if n ≥ f + k + 1 in crash failure model. The lattice agreement
problem was proposed by Attiya et al [1] to solve the atomic snapshot object problem in
shared memory systems. In this problem, each process i ∈ [n] has input xi and needs to
output yi such that the following properties are satisfied. 1) Downward-Validity: xi ≤ yi

for each correct process i. 2) Upward-Validity: yi ≤ t{xi | i ∈ [n]}. 3) Comparability:
for any two correct processes i and j, either yi ≤ yj or yj ≤ yi.
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Attiya et al in [1] present a generic algorithm to transform any protocol for the lattice
agreement problem to a protocol for implementing an atomic snapshot object in shared
memory systems. This transformation can be easily implemented in message passing systems
by replacing each read and write step with sending “read” and “write” messages to all and
waiting for acknowledgements from n−f different processes. Conversely, if we can implement
an atomic snapshot object, lattice agreement can also be solved easily both on shared-memory
and message passing systems with only crash failures. Thus, solving the lattice agreement
problem in message passing systems is equivalent to implementing an atomic snapshot object
in message passing systems with only crash failures.

Using lattice agreement protocols, Faleiro et al [10] give procedures to build a special
class of linearizable and serializable replicated state machines which only support query
operations and update operations but not mixed query-update operations. Later, Xiong
et al [19] propose some optimizations for their procedure for implementing replicated state
machines from lattice agreement in practice. They propose a method to truncate the logs
maintained in the procedure in [10]. The recent paper [17] by Skrzypczak et al proposes a
protocol based on generalized lattice agreement [10], which is a multi-shot version of lattice
agreement problem, to provide linearizability for state based conflict-free data types [16].

In message passing systems with crash failures, the lattice agreement problem is well
studied [1, 19, 20, 13]. The best upper bound for both synchronous systems and asynchronous
systems is O(log f) rounds. In the Byzantine failure model, a variant of the lattice agreement
problem is first studied by Nowak et al [14]. Then, Di Luna et al [8] propose a validity
condition which still permits the application of lattice agreement protocol in obtaining atomic
snapshots and implementing a special class of replicated state machines. They present
an O(f) rounds algorithm for the Byzantine lattice agreement problem in asynchronous
message systems. For synchronous message systems, a recent preprint by Xiong et al [18]
gives three algorithms. The first algorithm takes O(

√
f) rounds and has the early stopping

property. The second and third algorithm takes O(logn) and O(log f) rounds but are not
early stopping. All three algorithms can tolerate f < n

3 failures. They also show how to
modify their algorithms to work for authenticated settings and tolerates f < n

2 failures. The
preprint by Di Luna et al [7] presents an algorithm which takes O(log f) rounds and tolerates
f < n

4 failures and shows how to improve resilience to f < n
3 by using digital signatures.

In this work, we present new algorithms for the Byzantine lattice agreement (BLA)
problem in asynchronous message systems. In this problem, each process i ∈ [n] has input xi

from a join semi-lattice (X,≤,t) with X being the set of elements in the lattice, ≤ being
the partial order defined on X, and t being the join operation. The lattice can be infinite.
Each process i has to output some yi ∈ X such that the following properties are satisfied.
Let C denote the set of correct processes in the system and fa denote the actual number of
Byzantine processes in the system.
Comparability: For all i ∈ C and j ∈ C, either yi ≤ yj or yj ≤ yi.
Downward-Validity: For all i ∈ C, xi ≤ yi.
Upward-Validity: t{yi | i ∈ C} ≤ t({xi | i ∈ C} ∪B), where B ⊂ X and |B| ≤ fa.
The first two requirements are straightforward. Upward-Validity requires that the total
number of values that can be introduced by Byzantine processes into the decision value of
correct processes can be at most the number of actual Byzantine processes in the system.
One may argue that if a Byzantine process proposes the largest element of the input lattice,
then correct processes may always decide on the largest element. For applications, we can
impose an additional constraint on the initial proposal of all processes. In the case of a
Boolean lattice, we can require that the initial proposal for any process must be a singleton.
More generally, we can impose the requirement that the initial proposal of any process must
have the height less than some constant.
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Our contribution is summarized in Table 1. First, we present an algorithm for the BLA
problem in asynchronous systems without the digital signatures assumption which takes
O(log f) rounds and f < n

5 . The algorithm achieves exponential improvement in round
complexity compared to the previous best algorithm in [8]. Then, we show how to improve
the resilience to f < n

3 with the digital signatures assumption. The round complexity of our
algorithm matches the best round complexity achieved in synchronous model [18].

Table 1 Our Results.

Model Digital Signatures? Reference Rounds Resilience

Synchronous No [18] O(log f) f < n
3

Yes O(log f) f < n
2

Asynchronous
No [8] O(f) f < n

3
No This paper O(log f) f < n

5
Yes f < n

3

2 System Model

We assume a distributed asynchronous message system with n processes with unique ids
in {1, 2, ..., n}. The communication graph is completely connected, i.e., each process can
send messages to any other process in the system. We assume that the communication
channel between any two processes is reliable. There is no upper bound on message delay.
We assume that processes can have Byzantine failures but at most f < n/3 processes can
be Byzantine in any execution of the algorithm. We use parameter fa to denote the actual
number of Byzantine processes in a system. By our assumption, we must have fa ≤ f .
Byzantine processes can deviate arbitrarily from the algorithm. We say a process is correct
or non-faulty if it is not a Byzantine process. We consider both systems with and without
digital signatures. In a system with digital signatures, Byzantine processes cannot forge the
signature of correct processes.

3 Algorithm for the Asynchronous model without Digital Signatures

In this section, we present an algorithm for the BLA problem in asynchronous systems which
takes O(log f) rounds of asynchronous communication and tolerates f < n

5 Byzantine failures.
Our algorithm applies a recursive approach similar to the algorithms designed for crash
failure model in [20], which is inspired by the algorithm in [2] designed for atomic snapshot
objects in shared memory systems. The high level idea of the recursive approach is to apply
a classifier procedure to divide a group of processes into the slave subgroup and the master
subgroup and update their values such that the values of the slave group is less than the
values of the master group. Then, by recursively applying such a classifier procedure within
each subgroup, eventually all processes have comparable values. In crash failure model, the
classifier procedure only needs to guarantee the following two properties: (C1) The value of
a correct slave process is at most the value of any correct master process, (C2) The size of
the union of all values of correct slave processes is at most k, which is a threshold parameter
associated with the classifier procedure and serves as knowledge threshold.

Suppose we have a classifier procedure in the crash failure model with properties (C1) and
(C2). The binary tree in Fig. 1 shows how processes invoke the classifier procedure recursively.
Each node in the tree represents a classifier procedure with its threshold parameter k shown

OPODIS 2020
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above the node. Before all processes traverse the tree and recursively invoke the classifier
procedures along the way, an initial round is used to let all processes exchange their input
values. After the initial round, each process obtains at least n − f values. The threshold
parameters of classifier procedures in the tree are set in a binary way with low equal to n− f
and high equal to n. The threshold parameter of the classifier procedure at the root node is
set as n− f

2 . Given a node with threshold parameter equal to k, the threshold parameter of
its left child node and right child node are set as k− f

2r+1 and k+ f
2r+1 , respectively. Then, all

processes traverse the binary tree starting from the root and invoke the classifier procedures
along the way. After a specific classifier procedure invocation, processes classified as slave
traverses to the left subtree and processes classified as master traverse to the right subtree.
We can observe that all labels in the binary tree up to level log f are unique. The above
properties (C1) and (C2) of the classifier procedure and our method to set the threshold
parameter of each classifier procedure in the tree guarantee that 1) at level log f+1, processes
in different nodes have comparable values, 2) at level log f + 1, processes within the same
node must have the same value. This will be formally proved when we present our algorithm.

n− f
2

n− 3f
4 n− f

4

n− f n− f + 1 nn− 1

level 1 :

level 2 :

level log f + 1 :
... . . .

Figure 1 The Classification Tree.

In presence of Byzantine processes, (C1) and (C2) are not enough for recursively applying
such classifier procedure within each subgroup. A Byzantine process in a slave group can
introduce new values which are not known by some master process. To prevent that from
happening, we introduce the notion of admissible values for a group (to be formally defined
later), which is the set of values that processes in this group can ever have. We present
a Byzantine tolerant classifier procedure with threshold parameter k which provides the
following properties: (B1) Each correct slave process has ≤ k values and each correct master
process has > k values. (B2) The admissible values of the slave group is a subset of the value
of any correct master process. (B3) The union of all admissible values in the slave group has
size < the threshold parameter k.

Suppose now we have a Byzantine tolerant classifier which guarantees the above proper-
ties.The main algorithm, shown in Fig. 2, proceeds in asynchronous rounds. The Byzantine
tolerant classifier procedure can take multiple rounds. For ease of presentation, we call
each round in the classifier as a subround. Each process i maintains a value set Vi which
contains a set of values and is updated at each round by invoking the classifier procedure.
Each process i has a label li, which is used as the threshold parameter when it invokes
the classifier procedure. Initially, each process has the same label k0 = n − f

2 . The label
of a process is updated at each round according to the classification tree. Each process i
also keeps track of a map Si, which we call the safe value map. Si[k] denotes the set of
values that process i considers valid for label k. This safe value map is used by process i to
restrict the admissible values of a group. In the main algorithm, a process uses the reliable
broadcast primitive efined by Bracha [4] to send its value. When process i receives a value
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broadcast by process j that is not in Si[j], it will not send echo this value to other processes.
In the reliable broadcast primitive, a process uses RB_broadcast to send a message and
uses RB_broadcast to reliably deliver a message. This primitive guarantees many nice
properties. In our algorithm, we need the following two main properties: 1) If a message
is reliably delivered by some correct process, then this message will eventually be reliably
delivered by each correct process. 2) If a correct process reliably delivers a message from
process p, then each correct process reliably delivers the same message from p.

Code for process i:
xi: input value yi: output value
li: label of process i. Initially, li = k0 = n− f

2 :
V r

i : value set held by process i at round r of the algorithm
Map Si: Si[k] denote the safe value set for group k

/* Initial Round */
1: RB_broadcast(xi), wait for n− f RB_deliver(xj) from pj

2: Set V 1
i as the set of values reliably delivered

/* Round 1 to log f */
3: for r := 1 to log f
4: (V r+1

i , class) := Classifier(V r
i , li, r)

5: if class = master then li := li + f
2r+1

6: else li := li − f
2r+1

7: end for
8: yi := t{v ∈ V log f+1

i }

Upon RB_deliver(xj) from pj

Si[k0] := Si[k0] ∪ xj

Figure 2 O(log f) Rounds Algorithm for the BLA Problem.

In the initial round at lines 1-2, process i RB_broadcast its input xi to all and waits
for RB_deliver from n − f different processes. Then, it updates its value set to be the
set of values reliably delivered at this round. When reliable delivering a value, process i
adds this value into its safe value set for the initial group k0 = n− f

2 . The reliable delivery
procedure is assumed to be running in background. So, the safe value set for the initial group
keeps growing. By the properties of reliable broadcast, this safe value set can only contain at
most one value from each process. This is used to ensure Upward-Validity.

After the initial round, we can assume that all values in the initial safe value set of each
process are unique, which can be done by associating the sender’s id with the value. At line
3-8, process i executes the classifier procedure (to be presented later) for log f rounds. At
each round, it invokes the classifier procedure to decide whether it is classified as a slave
or a master and then updates its value accordingly. At round r, if process i is a master, it
updates its label to be li := li + f

2r+1 . Otherwise, if updates its label to be li := li − f
2r+1 .

By applying properties (B1)-(B3), we can show that any two correct process i and j in
the same group at the end of round log f must have the same set of values. For any two
processes in different group, by recursively applying property (B2), the values of one process
must be subset of the values of the other process.

OPODIS 2020
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3.1 The Byzantine Tolerant Classifier
We present a classifier procedure that satisfies (B1)-(B3), shown in Fig. 4. It is inspired
by the asynchronous classifier procedure given in [19] for the crash failure model. In the
classifier procedure, each process stores a set of values received from other processes. We say
a process writes a value to at least n− f processes if it sends a “write” message containing
the value to all processes and waits for n− f processes to send acknowledgement back. We
say a process reads from at least n− f processes if it sends a “read” message to all and waits
for at least n− f processes to send their current values back. We say a process performs a
write-read step if it writes its value to at least n− f processes and reads their values.

In the asynchronous classifier procedure for the crash failure model [19], to divide a group
into a slave subgroup and a master subgroup, each process in the group first writes its value
to at least n− f processes and then reads from at least n− f processes. After that, each
process checks whether the union of all values obtained has size greater than the threshold
parameter k or not. If true, it is classified as a master process, otherwise, it is classified
as a slave process. Slave processes keep their values the same. To guarantee the value of
each slave process is ≤ the value of each master process, each master process performs a
write-read step to write the values obtained at the read step to at least n− f processes and
read the values from them. Then it updates its value to be the union of all values read. The
second read step guarantees the size of the union of values of slave processes is < k, since the
last slave process which completes the write step must have read all values of slave processes.

Constructing such a classifier procedure in presence of Byzantine processes is much more
difficult. In order to adapt the above procedure to work in Byzantine setting, we need to
address the following challenges. First, in the write step or read step, when a process waits
for at least n − f different processes to send their values back, a Byzantine process can
send arbitrary values. Second, simply ensuring that the values of a slave process is a subset
of values of each master process is not enough, since a Byzantine process can introduce
some values unknown to a master process in the slave group. For example, even if we can
guarantee that the current value of each slave process is less that the value of each master
process, in a later round, a Byzantine process can send some new value to a slave process
which is unknown to some master process. This is possible in an asynchronous systems since
messages can be arbitrarily delayed. Third, ensuring that the union of all values in the slave
group has size at most k is quite challenging. A simple second read step does not work any
more since the last process which completes the write step might be a Byzantine process.

To prevent the first problem, in the Byzantine classifier procedure, when a process wants
to perform a write step or read step, it applies the reliable broadcast primitive to broadcast
its value. When a process waits for values from at least n− f processes, it only accepts a
value if the value is a subset of the values reliably delivered by this process. By property of
reliable broadcast, this ensures that each accepted value must be reliably broadcast by some
process, which prevents Byzantine processes from introducing arbitrary values.

To tackle the second and third problem, the key idea is to restrict the values that a
Byzantine process, which claims itself to be a slave process, can successfully reliable broadcast
in later rounds. To achieve that, first we require that that a slave process can only reliable
broadcast the value that it has reliably broadcast in the previous round. This prevents
Byzantine processes from introducing arbitrary new values into a slave group. Second, we
require each process which claims itself as a slave process to prove that it is indeed classified
as a slave at the previous round when it tries to reliable broadcast a value at the current
round by presenting the set of values it used to do classification. To enforce the above two
requirements, we add a validity condition when a process echoes a message in the reliable
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broadcast primitive. However, this is not enough, since the value of a Byzantine slave
process might not be known to a master process if the value of the Byzantine process is
arbitrarily delayed. To ensure that the value a Byzantine process reliably broadcast is read
by each correct master process, we force a Byzantine process who wants to be able to reliable
broadcast a value in the slave group at next round to actually write its value to at least
bn+f

2 c + 1 − f correct processes, i.e., at least bn+f
2 c + 1 − f correct processes must have

received the value of a Byzantine process before each correct master process tries to read
from at least n− 2f correct processes. These two sets of correct processes must have at least
one correct process in common since f < n

5 .

BRB_broadcast(type, pf, v, k, r)
type denotes the type of the message to be sent, either “write” or “read”
pf is an array which is a proof of sender’s group identity
v is the value to be sent, k is the label of the sender, r is the round number

Broadcast INIT(i, type, pf, v, k, r) to all

Upon receiving INIT(j, tj , pfj , vj , kj , rj)
if (first reception of INIT(j, tj ,−,−,−, rj)

wait until valid(tj , pfj , vj , kj , rj) /* The valid function is defined in Fig. 5 */
Broadcast ECHO(j, tj , vj , kj , rj)

Upon receiving ECHO(j, tj , pfj , vj , kj , rj)
if ECHO(j, tj , pfj , vj , kj , rj) is received from at least bn+f

2 c+ 1 different processes
∧ READY(j, vj , kj , rj) has not yet broadcasted
Broadcast READY(j, tj , pfj , vj , kj , rj)

Upon receiving READY(j, tj , pfj , vj , kj , rj)
if READY(j, tj , pfj , vj , kj , rj) received from f + 1 processes ∧

READY(j, tj , pfj , vj , kj , rj) has not been broadcasted
Broadcast READY(j, tj , pfj , vj , kj , rj)

if READY(j, tj , pfj , vj , kj , rj) received from 2f + 1 processes ∧ (j, tj , pfj , vj , kj , rj) has
not been delivered
BRB_deliver(j, tj , pfj , vj , kj , rj)

Figure 3 Bounded Reliable Broadcast.

Each process which is classified as master is not required to prove its group identity but
the value it tries to broadcast has to be a subset of safe value sets of correct processes. To
ensure that the value of a slave process is less than the value of a master process, a master
process needs to do a write-read step after it is classified as a master process.

Bounded Reliable Broadcast. Before explaining the Byzantine classifier procedure in detail,
we modify the reliable broadcast primitive by adding a condition when a process echoes
a broadcast message. This condition restricts the admissible values for each group. For
completeness, the modified reliable broadcast procedure is shown in Fig. 3. When a process
reliable broadcasts a value, it also includes the round number, its current label and a proof
of its group identity. The proof is an array of size n denoting the values read by the
sender at previous round, which will be explained in detail when we present the classifier
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procedure.When a process i receives a broadcast message from process j, it waits for the
validity condition to hold and then echoes the message. We say a process BRB_broadcasts
a message if it executes BRB_broadcast procedure with the message. We say a process
BRB_delivers a message if it executes BRB_deliver with this message.

Groups and Admissible Values. In our algorithm, each process i has a label li, which serves
as the threshold when it invokes the classifier procedure. The notion of group defined as
below is based on labels of processes.

I Definition 1 (group). A group is a set of processes which have the same label. The label
of a group is the label of the processes in this group. The label of a group is also the threshold
value processes in this group use to do classification.

We also use label to indicate a group. A process is in group k if its message is associated with
label k. Initially all processes are within the same group with label k0 = n− f

2 . The label
of each process is updated at each round based on the classification result. For group k at
round r, let s(k, r) = k− f

2r+1 and m(k, r) = k+ f
2r+1 . We introduce the notion of admissible

values for a group, which is the set of values that processes in the group can ever have.

I Definition 2 (admissible values for a group). The admissible values for a group G with label
k is the set of values that can be reliably delivered with label k if they are reliably broadcast
by some process (possibly Byzantine) with label k.

In our classifier, each process in group k updates its value set to a subset of the values
which are reliably delivered with label k. Thus, the value set of each process in group k must
be a subset of the admissible values for group k.

3.2 The Classifier Procedure
The classifier procedure for process i ∈ [n], shown in Fig. 4, has three input parameters: V
is the current value set of process i, k is the threshold value used to do the classification,
which is also the current label of process i, and r is the round number.

In lines 1-2, process i writes its current value set to at least n− f processes by using the
BRB_broadcast procedure to send a “write” message. If process i is classified as a slave
at the previous round, it needs to include the array of values it read from at least n − f
processes at previous round as a proof of its group identity. This proof is used by every other
process in the valid function to decide whether to echo the “write” message or not. When
process i BRB_delivers a “write” message with label k at round r, it includes the value in
it into its safe value set for group m(k, r). The safe value set is used to restrict the set of
values that can be delivered in the master group m(k, r). Due to this step, we can see that
the admissible values in the master subgroup must be a subset of the admissible values at
the current group. Process i also includes the value contained in the “write” message into
ACV r

i [k], which stores the set of values reliably delivered with label k at round r.
From line 3 to line 4, process i reads values from at least n− f processes by using the

BRB_broadcast procedure to send a “read” message to all. In the valid function, each
process j echos a “read” message from process i only if it has BRB_delivered the “write”
message from process i sent at line 2. This step is used to ensure that for any process,
possibly Byzantine, to read from other processes, it must have written its value to at least
bn+f

2 c+ 1− f correct processes, otherwise it cannot have enough processes echo its “read”
message in the BRB_broadcast. When process i BRB_delivers a “read” message with
label k from process j at round r, it records the set of values it has reliably delivered with
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Classifier(V, k, r) for pi:
V : input value set k: threshold value r: round number
/* Each process i ∈ [n] keeps track of the following variables */
Array LBr

i . LBr
i [j] denotes the label of process j sent along its values at round r

Map Si. Si[k] denotes a safe value set for group k
Map ACV r

i . ACV r
i [k] denotes the set of values accepted with label k, initially ACV r

i [k] := ∅
Map RV r

i . RV r
i [j] denote the values process i read from process j at round r at line 4

Map RT r
i . RT r

i [j] denote the values process j read from process i at round r.

/* write step*/
1: if isSlave(i, k, r) then pf := RV r−1

i else pf := ∅
2: BRB_broadcast(“write”, pf, V, k, r), wait for wack(−, r) from n− f different processes

/* read step*/
3: BRB_broadcast(“read”,−,−, k, r), wait for n− f rack(Rj , r) s.t. Rj ⊆ ACV r

i [k] from pj

4: Set RV r
i [j] := Rj if Rj ⊆ ACV r

i [k], otherwise RV r
i [j] := ∅

/* Classification */
5: Let T: =

n⋃
j=1

RV r
i [j]

6: if |T | > k

/* write-read step */
7: Send master(T, k, r) to all, wait for n− f mack(Rj , r) from pj s.t. Rj ⊆ ACV r

i [k]
8: Define T ′ := ∪{Rj | Rj ⊆ ACV r

i [k], j ∈ [n]}
9: return (T ′, master)
10: else
11: return (V , slave)

Upon BRB_Deliver(j, type,−, v, k, r)
if type = “write”

Si[m(k, r)] := Si[m(k, r)] ∪ v /* Construct safe value set for group m(k, r) */
ACV r

i [k] := ACV r
i [k] ∪ v

LBr
i [j] := k /* Record the label of a process at round r */

Send message wack(−, r) to pj

elif type = “read”
RT r

i [j] := ACV r
i [k]

Send message rack(ACV r
i [k], r) to pj

Upon receiving master(T, k, r) from pj

wait until T ⊆ ACV r
i [k]

Send message mack(ACV r
i [k], r) to pj

Figure 4 The Byzantine Tolerant Classifier Procedure.
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label k in RT r
i [j]. Then process i sends back a rack message along with the set of reliably

delivered values with label k at round r to process j. At line 3, after the “read” message
is sent, process i has to wait for valid rack message from n− f processes. A rack message
is valid if the value set contained in it is a subset of ACV r

i [k], which is the set of values
reliably delivered with label k at round r. Consider a rack(Rj , r) message from a correct
process j. Since j is correct, each value in Rj must have been reliably delivered by process
j. By property of reliable broadcast, each value in Rj will eventually be reliably delivered
by process i, thus Rj ⊆ ACV r

i [k]. Thus, eventually process i can obtain n− f valid rack
message. To implement line 3, we need a concurrent thread to check the wait condition
whenever a new message is reliably delivered and added into ACV r

i [k]. At line 4, process
i records the set of valid Rj ’s obtained at line 3 into array RV r

i . So, this array stores the
values reliably delivered with label k that process i read from all processes. This array is
used to do classification in line 5-11 and also used as the proof of group identity of process i
when it writes at next round.

Line 5-11 is the classification step. Process i is classified as a master process if the size of
the union of valid values obtained in the read step is greater than its label k, otherwise, it is
classified as a slave process. If it is classified as a slave process, it returns its input value
set. If it is classified as a master process, process i performs a write-read step by sending a
master message which includes the set of values it uses to do classification to all and wait for
n− f valid mack message back at line 7. Similar to line 3, a mack message is valid if each
value contained in it has been reliably delivered with correct label. When a process receives
a master message with value set T and label k at round r, it first waits until all values in
T are reliably delivered. Then it sends back a mack message along with the set of values
reliably delivered with label k at round r. The waiting is used to ensure that each value in T
is valid, i.e., be reliably delivered, because a Byzantine process can send arbitrary values
in its master message at line 7. By a similar reasoning as line 3, process i will eventually
obtain valid mack message from at least n− f different processes. After the write-read step,
at line 8, process i updates its value set to be the union of values obtained at line 7.

function valid(j, type, pf, v, k, r) for process i:
if (type = “write” ∧ ¬isSlave(j, k, r) ∧ v ⊆ Si[k])
∨ (type = “write”∧ isSlave(j, k, r)∧BRB_deliver(j, “write”,−, v, LBr−1

i [j], r− 1)

∧ pf [i] = RT r−1
i [j] ∧ |

n⋃
j=1

pf [j]| ≤ LBr−1
i [j])

∨ (type = “read” ∧ BRB_deliver(j, “write”,−,−, k, r))
return True

else
return False

function isSlave(j, k, r) for process i:
if k = LBr−1

i [j]− f
2r

return True

else
return False

Figure 5 The valid Function.

The valid function is defined in Fig. 5. In the this function, we first consider the “write”
messages. If the message has been sent by a process that claims to be a master, then it is
considered valid if the value v in this message is contained in the safe value set Si[k]. If
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the message has been sent by a process that claims to be a slave, then process i checks (1)
whether process i has BRB_delivered the “write” message containing the same value at
the previous round, (2) whether the ith entry in pf array matches the value process j read
from i in the previous round, and (3) whether the the number of values contained in the
proof pf is at most k. The condition (1) ensures that a slave process sends the same value as
the previous round since a correct slave process must keep its value same as in the previous
round. The condition (2) ensures that the proof sent by the slave process uses values that it
read at round r − 1. The condition (3) checks that the sender classified itself correctly.

If the message is a “read” with label k at round r, process i considers it as valid if it
BRB_deliverd a “write” message with label k at round r from the sender. This is used
to make sure that the sender (possibly Byzantine) must complete its write step in line 1-2
before trying to read at line 3-4.

The isSlave function invoked in the valid function simply checks whether the label of
the sender matches the label update rule by comparing it with the label at previous round.

3.3 Proof of Correctness
We first define the notion of committing a message. Due to space limitation, we omit the
proof of most lemmas. The notations used in our proof are listed in Table. 2.

I Definition 3. We say a process commits a message if it reliably broadcasts the message
and the message is reliably delivered. A process commits a message at time t if this message
is reliably delivered by the first process at time t.

Table 2 Notations.

Variable Definition
G A group of processes at round r with label k

slave(G) The slave subgroup of G, i.e., the processes with label s(k, r) at round r + 1
master(G) The master subgroup of G, i.e., the processes with label m(k, r) at round r + 1

V r
i The value set of process i at the beginning of round r

Sr
i

The safe value map of process i at the beginning of round r

Sr
i [k] is the safe value set of process i for group k at the beginning of round r

Ur
k

The set of admissible values for group k at round r, i.e., the set of values that
can be committed along with a “write” message at round r with label k

By properties of reliable broadcast, we observe that each process (possibly Byzantine)
can commit at most one “write” message and at most one “read” message at each round.
Define s(k, r) = k − f

2r+1 and m(k, r) = k + f
2r+1 . The variables we use in the proof are

shown in Table. 2. Consider the classification step in group k at round r. The following
lemma shows that if a Byzantine process wants to commit a “write” message m at round
r + 1 with a slave label, then it must commit a “write” message m′ which contains the same
value as m and a “read” message at round r with label k. Also, it must commit its “read”
message before its “write” message at round r with label k.

I Lemma 4. Suppose that process i (possibly Byzantine) commits a write message
(i, “write”,−, Vi, s(k, r), r + 1). Then
1) The message (i, “read”,−,−, k, r) and the message (i, “write”,−, Vi, k, r) must be com-

mitted by process i.
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2) Let t denote the time that message (i, “read”,−,−, k, r) is committed. Then, the message
(i, “write”,−, Vi, k, r) must have been reliably delivered by at least bn+f

2 c+ 1− f correct
processes before time t.

The following lemma shows that the classifier provides the properties we defined.

I Lemma 5. Let G be a group at round r with label k. Let L and R be two nonnegative
integers such that L < k ≤ R. If L < |V r

i | ≤ R for each correct process i ∈ G, and |Ur
k | ≤ R,

then
(p1) For each correct i ∈ master(G), k < |V r+1

i | ≤ R
(p2) For each correct i ∈ slave(G), L < |V r+1

i | ≤ k
(p3) Ur+1

s(k,r) ⊆ U
r
k

(p4) Ur+1
m(k,r) ⊆ U

r
k

(p5) |Ur+1
m(k,r)| ≤ R

(p6) |Ur+1
s(k,r)| ≤ k

(p7) For each correct j ∈ master(G), Ur+1
s(k,r) ⊆ V

r+1
j

(p8) Each correct i ∈ slave(G) can commits its value set at round r+ 1, i.e., V r+1
i ⊆ Ur+1

s(k,r)
(p9) Each correct j ∈ master(G) can commit its value set at round r+1, i.e., V r+1

j ⊆ Ur+1
m(k,r)

(p10) | ∪ {V r+1
i | i ∈ slave(G) ∩ C}| ≤ k (p11) | ∪ {V r+1

i | i ∈ master(G) ∩ C}| ≤ R

Proof.
(p1)-(p5): Implied by how processes are classified as slave or master in the classifier.
(p6): (Sketch) Let P denote the set of processes who can commit a write message at round

r+ 1 with label s(k, r). Part 2) of Lemma 4 implies that the write message of each i ∈ P
at round r must have been reliably delivered by at least bn+f

2 c+ 1− f correct processes.
Let l ∈ P be the last process s.t its write message at round r is reliably delivered by at
least bn+f

2 c+ 1− f correct processes. Process l must have read all the values written by
processes in P at round r due to quorum intersection. Due to quorum intersection and
the condition to which processes echo write messages, process l must have read all values
in Ur+1

s(k,r) at round r and l is classified as slave at round r, which indicates that Ur+1
s(k,r).

(p7): (Sketch) Let P denote the set of processes who commit a “write” message at round
r + 1 with label s(k, r). Lemma 4 implies that the write message of each process in
P must have been reliably delivered by at least bn+f

2 c + 1 − f correct processes. The
condition to which correct processes echo write messages implies that at round r+ 1, each
process in P sends the same value as round r in its write message. Quorum intersection
guarantees that each master process must have read the values of each process in P in its
reading step at round r. Thus, Ur+1

s(k,r) ⊆ V
r+1

j for each j.
(p8): Since process i is correct, at round r, it must read from at least n−2f correct processes.

Let Q denote this set of correct processes. Then, at round r + 1, each process in Q will
echo i’s write message. Thus, there will be ≥ n−2f echo messages. Since f < n

5 , we have
n− 2f ≥ bn+f

2 c+ 1. Hence, the write message of i will be eventually reliably delivered.
(p9): (Sketch) Any value in V r+1

j will eventually be reliably delivered by each correct process
and be included into the safe value set of each correct process for the group with label
m(k, r). V r+1

j will be reliable delivered by each correct process at round r + 1.
(p10)-(p11): (p10) is implied by (p8) and (p6). (p11) is implied by (p9) and (p5). J

The following lemma shows that the value set of a correct process is non-decreasing.

I Lemma 6. For any correct process i and round r, V r
i ⊆ V

r+1
i .
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The following lemma is used later to show that processes in the same group at the end of
the algorithm must have the same set of values.

I Lemma 7. Let G be a group of processes at round r with label k. Then
(1) for each correct process i ∈ G, k − f

2r ≤ |V r
i | ≤ k + f

2r

(2) |Ur
k | ≤ k + f

2r

Proof. By induction on round number r and apply (p1)-(p2) and (p5)-p(6) of Lemma 5. J

I Lemma 8. Let i and j be two correct processes that are within the same group G with
label k at the beginning of round log f + 1. Then V log f+1

i and V log f+1
j are equal.

Proof (Sketch). By applying Lemma 7 at round log f within the parent group of G, we can
show that k′ < |V log f+1

i | ≤ k′ + 1 and | ∪ {V log f+1
i , V log f+1

j }| ≤ k′ + 1, where k′ is the label
of the parent group of G. Thus, V log f+1

i = V log f+1
j . J

I Lemma 9 (Comparability). For any two correct process i and j, yi and yj are comparable.

Proof. If process i and j are in the same group at the beginning of round log f + 1, then by
Lemma 8, yi = yj . Otherwise, let G be the last group that both i and j belong to. Suppose
G is a group with label k at round r. Suppose i ∈ slave(G) and j ∈ master(G) without loss
of generality. Then, V log f+1

i ⊆ Ur+1
s(k,r) ⊆ V r+1

j ⊆ V log f+1
j , by (p8), (p6) (p7) and (p5) of

Lemma 5 and Lemma 6. J

I Theorem 10. There is an O(log f) rounds algorithm for the BLA problem in asynchronous
systems which can tolerate f < n

5 Byzantine failures, where n is the number of processes in
the system. The algorithm takes O(n2 log f) messages.

4 An O(log f) Rounds Algorithm for the Authenticated BLA Problem

In this section, we present an O(log f) round algorithm for the BLA problem in authenticated
(i.e., assuming digital signatures and public-key infrastructure) setting that can tolerate
f < n

3 Byzantine failures by modifying the Byzantine tolerant classifier procedure in previous
section. The Byzantine classifier procedure in authenticated setting is shown in Fig. 6. The
primary difference lies in what a process does when it reliably delivers some message and the
validity condition for echoing a broadcast message. The basic idea is to let a process sign
the ack message that it needs to send. Each process uses the set of signed ack messages as
proof of its completion of a write step or read step. In this section, we use 〈x〉i to denote
a message x signed by process i, i.e., 〈x〉i = 〈x, σ〉, where σ is the signature produced by
process i using its private signing key. We say a message is correctly signed by process i if
the signature within the message is a correct signature produced by process i.

The Authenticated Byzantine Tolerant Classifier. The classifier in the authenticated
setting is shown in Fig. 6. The primary difference between the classifier in previous section
and the authenticated classifier is that in the authenticated classifier each process uses signed
messages as proof of its group identity.

At lines 1-2, each process writes its current value set by using the BRB_broadcast
procedure to send a “write” message. If the process is a slave process, it also includes the set
of at least n− f signed rack messages it received at the previous round as a proof that it is
indeed classified as a slave. At line 2, each process waits for correctly signed wack message
from at least n− f different processes. This set of signed wack message is used as the proof
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of its completion of the write step when this process tries to read from other processes. When
a process BRB_delivers a “write” message, it performs similar steps as the algorithm in
previous section except that it sends a signed wack message back.

Classifier(V, k, r):
V : input value set k: threshold value r: round number
Each process i ∈ [n] keeps track of the same variables as the classifier in Fig. 4
Set RV r

i , which stores the set of signed rack message in the read step of previous round

1: if isSlave(k, r) then pf := RV r−1
i else pf := ∅

2: BRB_broadcast(“write”, pf, v, k, r), wait for n− f valid 〈wack(−, r)〉j from pj

3: Let W denote the set of 〈wack〉j delivered at line 2

4: Send read(W,k, r) to all, wait for n− f valid 〈rack(Rj , r)〉j s.t. Rj ⊆ ACV r
i [k] from pj

5: Set RV r
i := {〈rack(Rj , r)〉j | Rj ⊆ ACV r

i [k]}

6: Let T := ∪{Rj | Rj ⊆ ACV r
i [k]}

7: if |T | > k /* Size of T is greater than the threshold */
8: Send master(T, k, r) to all, wait for n− f mack(Rj , r) s.t. Rj ⊆ ACV r

i [k] from pj

9: Define T ′ := ∪{Rj | Rj ⊆ ACV r
i [k]}

10: return (T ′, master)
11: else
12: return (V , slave)

Upon BRB_deliver(j, t, v, k, r)
if t = “write”

Si[m(k, r)] := Si[m(k, r)] ∪ v, ACV r
i [k] := ACV r

i [k] ∪ v

Send message 〈wack(ACV r
i [k], r)〉i to pj

Upon receiving read(W,k, r) from pj

if validSignature(“read”, j,W, r)
Send message 〈rack(ACV r

i [k], r)〉i to pj

Upon receiving master(T, k, r) from pj

wait until T ⊆ ACV r
i [k]

Send message mack(ACV r
i [k], r) to pj

Figure 6 The Authenticated Byzantine Tolerant Classifier.

At line 4-5, each process reads from at least n− f processes. Different from the classi-
fier procedure in previous section, each process directly sends a read message along with
the set of correctly signed wack messages obtained at line 2 to all (instead of using the
BRB_broadcast procedure). When a process receives a “read” message with label k for
round r, if uses the validSignature function to check whether the “read” message contains
correctly signed wack message for round r from at least n− f different processes. If so, it
sends back to the sender a signed rack message along with the reliably delivered values with
label k at round r. This ensures that if a process (possibly Byzantine) tries to read from
correct processes, it must complete its write step first.



X. Zheng and V. Garg 4:15

The classification step from line 6-12 is the same as the classification step of the algorithm
in previous section. A mater process performs a write-read step by sending a master message
along the set of value obtained at line 6. Then it waits for n− f valid mack messages and
updates its value set to be the set of values contained in these messages. When a process
receives a master message, it performs the same steps as in the classifier in previous section.

The valid function is different from the one given in previous section. First, only “write”
messages are reliably broadcast. Second, the proof is a set of signed rack messages instead of
an array in previous section. To verify the proof, the valid function invokes the validSignature
function to check whether the proof contains correctly signed rack message for previous
round from at least n− f different processes.

function valid(j, type, pf, v, k, r):
if (type = “write” ∧ ¬isSlave(j, k, r) ∧ v ⊆ Si[k])
∨ (type = “write”∧ isSlave(j, k, r)∧BRB_deliver(j, “write”,−, v, LBr−1

i [j], r− 1)
∧validSignature(“write”, pf, r) ∧ pf contains at most k distinct values

return True

else
return False

function validSignature(type, pf, r):
if (type = “write” ∧ pf contains correctly signed rack(−, r − 1) from n− f processes)
∨ (type = “read” ∧ pf contains correctly signed wack(−, r) from n− f processes)
return True

else
return False

Figure 7 The valid Function.

For the proof of correctness, we just need to prove the classifier procedure satisfies the
properties given Lemma 5 under the assumption that f < n

3 .

I Lemma 11. Properties (p1) − (p11) of Lemma 5 hold for the authenticated Byzantine
tolerant classifier.

I Theorem 12. There is an O(log f) rounds algorithm for the BLA problem in authenticated
asynchronous systems which can tolerate f < n

3 Byzantine failures, where n is the number of
processes in the system. The algorithm takes O(n2 log f) messages.

5 Conclusion

In this paper, we present an O(log f) rounds algorithm for the Byzantine lattice agreement
problem in asynchronous systems which can tolerates f < n

5 Byzantine failures. We also
give an O(log f) rounds algorithm for the authenticated setting that can tolerate f < n

3
Byzantine failures. One open problem left is to design an algorithm which has resilience of
f < n

3 and takes O(log f) rounds.
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Abstract
In distributed systems, a group of learners achieve consensus when, by observing the output of
some acceptors, they all arrive at the same value. Consensus is crucial for ordering transactions in
failure-tolerant systems. Traditional consensus algorithms are homogeneous in three ways:

all learners are treated equally,
all acceptors are treated equally, and
all failures are treated equally.

These assumptions, however, are unsuitable for cross-domain applications, including blockchains,
where not all acceptors are equally trustworthy, and not all learners have the same assumptions
and priorities. We present the first consensus algorithm to be heterogeneous in all three respects.
Learners set their own mixed failure tolerances over differently trusted sets of acceptors. We express
these assumptions in a novel Learner Graph, and demonstrate sufficient conditions for consensus.

We present Heterogeneous Paxos, an extension of Byzantine Paxos. Heterogeneous Paxos achieves
consensus for any viable Learner Graph in best-case three message sends, which is optimal. We
present a proof-of-concept implementation and demonstrate how tailoring for heterogeneous scenarios
can save resources and reduce latency.
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1 Introduction

The rise of blockchain systems has renewed interest in the classic problem of consensus, but
traditional consensus protocols are not designed for the highly decentralized, heterogeneous
environment of blockchains. In a Consensus protocol, processes called learners try to decide
on the same value, based on the outputs of some set of processes called acceptors, some of

© Isaac Sheff, Xinwen Wang, Robbert van Renesse, and Andrew C. Myers;
licensed under Creative Commons License CC-BY

24th International Conference on Principles of Distributed Systems (OPODIS 2020).
Editors: Quentin Bramas, Rotem Oshman, and Paolo Romano; Article No. 5; pp. 5:1–5:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7822-1503
https://IsaacSheff.com
mailto:isheff@mpi-sws.org
https://orcid.org/0000-0003-2958-6589
https://www.cs.cornell.edu/~xinwen/
mailto:xinwen@cs.cornell.edu
https://orcid.org/0000-0003-3598-0283
https://www.cs.cornell.edu/home/rvr/
mailto:rvr@cs.cornell.edu
https://orcid.org/0000-0001-5819-7588
https://www.cs.cornell.edu/andru/
mailto:andru@cs.cornell.edu
https://doi.org/10.4230/LIPIcs.OPODIS.2020.5
https://arxiv.org/abs/2011.08253
https://github.com/isheff/charlotte-public
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


5:2 Heterogeneous Paxos

Figure 1 Illustration of the scenario in § 1.1. Blue learners are drawn as blue eyes, red learners
as red, outlined eyes. Blue acceptors are drawn as blue circles, red acceptors as red, outlined circles,
and third parties as black circles. The light solid blue region holds a quorum for the blue learners,
and the striped red holds a quorum for the red learners.

whom may fail. (In our model, learners send no messages, and so they cannot fail.) Consensus
is a vital part of any fault-tolerant system maintaining strongly consistent state, such as
Datastores [14, 9], Blockchains [41, 20, 16], or indeed anything which orders transactions.
Traditionally, consensus protocols have been homogeneous along three distinct dimensions:

Homogeneous acceptors. Traditional systems tolerate some number f of failed acceptors,
but acceptors are interchangeable. Prior work including “failure-prone sets” [38, 27]
explores heterogeneous acceptors.
Homogeneous failures. Systems are traditionally designed to tolerate either purely
Byzantine or purely crash failures. There is no distinction between failure scenarios in
which the same acceptors fail, but possibly in different ways. However, some projects
have explored heterogeneous, or “mixed” failures [48, 13, 33].
Homogeneous learners. All learners make the same assumptions, so system guarantees
apply either to all learners, or to none. Systems with heterogeneous learners include
Cobalt [36] and Stellar [39, 35, 21].

Blockchain systems can violate homogeneity on all three dimensions. Permissioned
blockchain systems like Hyperledger [1], J.P. Morgan’s Quorum [2], and R3’s Corda [26]
exist specifically to facilitate atomic transactions between mutually distrusting businesses. A
crucial part of setting up any implementation has been settling on a set of equally trustworthy,
failure-independent acceptors. These setups are complicated by the reality that different
parties make different assumptions about whom to trust, and how.

Defining heterogeneous consensus poses challenges not covered by homogeneous definitions,
particularly with respect to learners. How should learners express their failure tolerances?
When different learners expect different possible failures, when do they need to agree? If
a learner’s failure assumptions are wrong, does it have any guarantees? No failure models
developed for one or two dimensions of heterogeneity easily compose to describe all three.

Failure models developed for one or two dimensions of heterogeneity do not easily compose
to describe all three, but our new trust model, the Learner Graph (§ 3), can express the
precise trust assumptions of learners in terms of diverse acceptors and failures. Compared
to trying to find a homogeneous setup agreeable to all learners, finding a learner graph
for which consensus is possible is strictly more permissive. In fact, the learner graph is
substantially more expressive than the models used in prior heterogeneous learner consensus
work, including Stellar’s slices [39] or Cobalt’s essential subsets [36]. Building on our learner
graph, we present the first fully heterogeneous consensus protocol. It generalizes Paxos to be
heterogeneous along all three dimensions.

Heterogeneity allows acceptors to tailor a consensus protocol for the specific requirements
of learners, rather than trying to force every learner to agree whenever any pair demand to
agree. This increased flexibility can save time and resources, or even make consensus possible
where it was not before, as we now show with an example.
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1.1 Example
Suppose organizations Blue Org and Red Org want to agree on a value, such as the order of
transactions involving both of their databases or blockchains. The people at Blue Org are blue
learners: they want to decide on a value subject to their failure assumptions. Likewise, the
people at Red Org are red learners with their own assumptions. While neither organization’s
learners believe their own organization’s acceptors (machines) are Byzantine, they do not
trust the other organization’s acceptors at all. To help achieve consensus, they enlist three
trustworthy third-party acceptors. Figure 1 illustrates this situation.

All learners want to agree so long as there are no Byzantine failures. However, no learner
is willing to lose liveness (never decide on a value) if only one of its own acceptors has crashed,
one third-party acceptor is Byzantine, and all the other organization’s learners are Byzantine.
Furthermore, learners within the same organization expect never to disagree, so long as none
of their own organization’s acceptors are Byzantine.

Unfortunately, existing protocols cannot satisfy these learners. Stellar [39], for instance,
has one of the most expressive heterogeneous models available, but it cannot express hetero-
geneous failures. It cannot express blue and red learners’ desire to terminate if a third-party
acceptor crashes, but not necessarily agree a third-party acceptor is Byzantine. Our work
enables a heterogeneous consensus protocol that satisfies all learners.

1.2 Heterogeneous Paxos
Heterogeneous Paxos, our novel generalization of Byzantine Paxos achieves consensus in
a fully heterogeneous setting (§ 5), with precisely defined conditions under which learners
are guaranteed safety and liveness. Heterogeneous Paxos inherits Paxos’ optimal 3-message-
send best-case latency, making it especially good for latency-sensitive applications with
geodistributed acceptors, including blockchains. We have implemented this protocol and
used it to construct several permissioned blockchains [21]. We demonstrate the savings in
latency and resources that arise from tailoring consensus to specific learners’ constraints.

1.3 Contributions
The Learner Graph offers a general way to express heterogeneous trust assumptions in
all three dimensions (§ 3).
We formally generalize the traditional consensus properties (Validity, Agreement,
and Termination) for the fully heterogeneous setting (§ 4).
Heterogeneous Paxos is the first consensus protocol with heterogeneous learners,
heterogeneous acceptors, and heterogeneous failures (§ 5). It also inherits Paxos’ optimal
3-message-send best-case latency.
Experimental results from our implementation of Heterogeneous Paxos demonstrate
its use to construct permissioned blockchains with previously unobtainable security and
performance properties (§ 6).

2 System Model

We consider a closed-world (or permissioned) system consisting of a fixed set of acceptors, a
fixed set of proposers, and a fixed set of learners. Proposers and acceptors can send messages
to other acceptors and learners. Some predetermined, but unknown set of acceptors are
faulty (we assume a non-adaptive adversary). Faults include crash failures, which are not
live (they can stop at any time without detection), and Byzantine failures, which are neither
live nor safe (they can behave arbitrarily).

OPODIS 2020
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I Definition 1 (Live). A live acceptor eventually sends every message required by the protocol.

I Definition 2 (Safe). A safe acceptor will not send messages unless they are required by the
protocol, and will send messages only in the order specified by the protocol.

Learners set the conditions under which they expect to agree. They want to decide values,
and to be guaranteed agreement under certain conditions. While learners can make bad
assumptions, since they do not send messages, they cannot misbehave, and so there are no
“faulty learners.”

Network. Network communication is point-to-point and reliable: if a live acceptor sends a
message to another live acceptor, or to a learner, the message arrives. We adopt a slight
weakening of partial synchrony [18]: after some unknown global stabilization time (GST),
all messages between live acceptors arrive within some unknown latency bound ∆. In
Heterogeneous Paxos, live acceptors send all messages to all acceptors and learners, but
Byzantine acceptors may equivocate, sending messages to different recipients in different
orders, with unbounded delays. We assume that messages carry effectively unbreakable
cryptographic signatures, and that acceptors are identified by public keys. We also assume
messages can reference other messages by collision-resistant hash: if one message contains
a hash of another, it uniquely identifies the message it is referencing [42].

Consensus. The purpose of consensus is for each learner to decide on exactly one value,
and for all learners to decide on the same value. Here, execution refers to a specific instance
of consensus: the actions of a specific set of acceptors during some time frame. A protocol
refers to the instructions that safe acceptors follow during an execution.

An execution of consensus begins when proposers propose candidate values, in the form of
a message received by a correct acceptor. (No consensus can make guarantees about proposed
values only known to crashed or Byzantine acceptors.) Proposers might be clients sending
requests into the system. We make no assumptions about proposer correctness for safety
properties, but to guarantee liveness, we will assume that acceptors can act as proposers
as well (i.e. proposers are a superset of acceptors). After receiving some messages from
acceptors, each learner eventually decides on a single value.

Traditionally, consensus requires three properties [19]:
Validity: if a learner decides p, then p was proposed.1
Agreement: if learner a decides value v, and learner b decides value v′, then v = v′.
Termination: all learners eventually decide.

In § 4, we generalize these properties to account for heterogeneity.

3 The Learner Graph

We characterize learners’ failure assumptions with a novel construct called a learner graph.
The learner graph is a general way to characterize trust assumptions for heterogeneous
consensus. It can encompass most existing formulations, including Stellar’s “slices” [39] and
Cobalt’s “essential sets” [36]. We discuss other formulations in § 7.

I Definition 3 (Learner Graph). A learner graph is an undirected graph in which vertices are
learners, each labeled with the conditions under which they must terminate (§ 4.3 formally
defines termination). Each pair of learners is connected by an edge, labeled with the conditions
under which those learners must agree (§ 4.2 formally defines agreement).

1 Correia, Neves, and Veríssimo list several popular validity conditions. Ours corresponds to MCV2 [15]
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3.1 Quorums
A quorum is a set of acceptors sufficient to make a learner decide: even if everything else has
crashed [32], if a quorum are behaving correctly, a learner will eventually decide. In a learner
graph, each learner a is labeled with a set of quorums Qa. The learner requires termination
precisely when at least one quorum are all live.

Within a specific execution, we assume some (unknown) set of pre-determined acceptors
are actually live. We call this set L.

3.2 Safe Sets
To characterize the conditions under which two learners want to agree, we need to express
all possible failures they anticipate. Surprisingly, crash failures cannot cause disagreement:
any disagreement that occurs when some acceptor has crashed could also occur if the same
acceptor were correct, but very slow, and did not act until after the learner decided. Therefore,
for agreement purposes, each tolerable failure scenario is characterized by a safe set (usually
written s), the set of acceptors who are safe, meaning they act only according to the protocol.
Between any pair of learners a and b in the learner graph, we label the edge between them
with a set of safe sets a−b: so long as one of the safe sets in a−b indeed comprises only safe
acceptors, the learners demand agreement.

Within a specific execution, we assume some (unknown) set of pre-determined acceptors
are actually safe. We call this set S. We do not require it, but systems often assume that
S ⊆ L, since a Byzantine acceptor [31] may choose not to send messages.

3.2.1 Subset of Tolerable Failures
We generally assume that a subset of tolerable failures is always tolerated:

I Assumption 4. Subset of failures properties: ∀` . qa ∈ Qa ⇒ ` ∪ qa ∈ Qa

∀x . s ∈ a−b ⇒ x ∪ s ∈ a−b

One might imagine, for example, two learners who demand agreement if two acceptors fail,
but not if only one acceptor fails. However, we have no guarantee on time: if two acceptors
are indeed faulty, one might act normally for an indefinite time, so the system would act as
though only one has failed, and we will have to guarantee agreement.

3.2.2 Generalized Learner Graph Labels
It is possible to generalize the labels of learners and learner graph edges, and characterize
quorums (conditions under which a learner must terminate) and safe sets (conditions under
which pairs of learners must agree) as more detailed formal models (e.g., modeling network
synchrony failures). All consensus failure models of which we are aware can be formalized
using learner graphs with generalized labels. Heterogeneous Paxos works with any model of
labels, so long as each label can be mapped (not necessarily uniquely) to a set of quorums
for each learner, and a set of safe sets for each edge. For simplicity, in this work, we define
labels as a set of quorums for each learner, and a set of safe sets for each edge.

3.3 Example
Consider our example from § 1.1 and Figure 1. All learners want to agree when all acceptors
are safe. However, each learner demands termination (it must eventually decide on a value)
even when one of its own acceptors has crashed, and one third part as well as all the
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Figure 2 Learner Graph from § 3.3: Learners are eyes, with darker blue learners on the left, and
outlined red learners on the right. Edge labels display one safe set for which the learners want to
agree (unsafe acceptors are marked with a devil). The center label represents all edges between
red and blue learners. Learner labels display one quorum for which the learner wants to terminate
(crashed acceptors are marked with a skull). In each label, blue acceptors are blue circles, red
acceptors are red, outlined circles, and third-party acceptors are black circles.

other organization’s acceptors have failed as well. Furthermore, learners within the same
organization expect never to disagree, so long as none of their own organization’s acceptors
are Byzantine: neither organization tolerates the other, or third-party acceptors, creating
internal disagreement. In Figure 2, we diagram the learner graph. For space reasons, we
draw each label with only one quorum or one safe set.

3.4 Agreement is Transitive and Symmetric
Agreement (formally defined in § 4.2) is symmetric, so learner graphs are undirected (a−b =
b−a). Agreement is also transitive: if a agrees with b and b agrees with c, then a agrees with
c. As a result, a and c must agree whenever both the conditions a−b and b−c are met. When
learners’ requirements reflect this assumption, we call the resulting learner graph condensed.
We describe how to condense a learner graph in § 3.5 of [47].

I Definition 5 (Condensed Learner Graph (CLG)). A learner graph G is condensed iff:
∀a, b, c. (a−b ∩ b−c) ⊆ a−c

Self-Edges. A CLG describes when a learner a agrees with itself (i.e., if it decides twice,
both decisions must have the same value): a−a.

I Lemma 6 (Self-agreement). A learner must agree with itself in order to agree with anyone:
a−b ⊆ a−a

Proof. Follows from Definition 5, and the fact that the CLG is undirected (§ 3.4) J

3.5 Liveness Bounds from Safety
Given the conditions under which learners want to agree, we can derive a (sufficient) bound
on the quorums they require to terminate. In other words, given labels for the edges in the
learners graph, we can bound the labels for the vertices.

As we will cover in more detail in § 5.1, each of a learner’s quorums must intersect
its neighbors quorums at a safe acceptor. As a result, we can construct a sufficient set of
quorums for each learner in a CLG as follows: for each edge of the learner, each quorum
includes a majority of acceptors from a each of the safety sets.
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3.6 Safety Bounds from Liveness
Given the conditions under which learners want to terminate, we can derive a (necessary)
bound on the safe sets they can require on each of their edges. As we will cover in more
detail in § 5.1, each of a learner’s quorums must intersect its neighbors quorums at a safe
acceptor. As a result, safe sets can be assembled for each edge in a CLG as follows: each set
includes one acceptor from the intersection of each pair of quorums (one from each learner).

4 Heterogeneous Consensus

We now define our novel heterogeneous generalization of traditional consensus properties.

4.1 Validity
Intuitively, a consensus protocol shouldn’t allow learners to always decide some predetermined
value. Validity is the same in heterogeneous and homogeneous settings.

I Definition 7 (Heterogeneous Validity).
A consensus execution is valid if all values learners decide were proposed in that execution.
A consensus protocol is valid if all possible executions are valid.

4.2 Agreement
Our generalization of Agreement from the homogeneous setting to a heterogeneous one is the
key insight that makes our conception of heterogeneous consensus possible. It generalizes
not only the traditional homogeneous approach, but also the “intact nodes” concept from
Stellar [39], and “linked nodes” from Cobalt [36].

I Definition 8 (Entangled). In an execution, two learners are entangled if their failure
assumptions matched the failures that actually happen: Entangled(a, b) , S ∈ a−b

In the example (§ 1.1), if one third-party acceptor were Byzantine, the blue learners would
be entangled with each other, and similarly with the red learners, but no blue learners would
be entangled with red learners. It is possible for failures to divide the learners into separate
groups, which may then decide different values even if they agree among themselves.

I Definition 9 (Heterogeneous Agreement).
Within an execution, two learners have agreement if all decisions for either learner have
the same value.
A heterogeneous consensus protocol has agreement if, for all possible executions of that
protocol, all entangled pairs of learners have agreement.

In Heterogeneous Paxos, as in many other protocols, learners decide on a value whenever
certain conditions are met for that value: learners can even decide multiple times. If there
aren’t too many failures, a learner is guaranteed to decide the same value every time. Because
learners send no messages, they cannot fail, but they can make incorrect assumptions. Within
the context of an execution, entanglement neatly defines when a learner is accurate, meaning
it cannot decide different values.

I Definition 10 (Accurate Learner). is entangled with itself: Accurate(a) , Entangled(a, a)

In the example (§ 1.1), if one third-party acceptor were Byzantine, then the blue and red
learners would be accurate, but if a blue acceptor were also Byzantine, the blue learners
would not be accurate (although the red learners would still be accurate).

OPODIS 2020
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1 acceptor_initial_state :
2 known_messages = {}
3 recently_received = {}
4

5 acceptor_on_receipt (m):
6 for r ∈ m.refs:
7 while r /∈ known_messages :
8 wait ()
9 atomic :

10 if m /∈ known_messages :
11 forward m to all acceptors and learners
12 recently_received ∪= {m}
13 known_messages ∪= {m}
14 if m has type 1a:
15 z = new 1b(refs = recently_received )
16 recently_received = {}
17 on_receipt (z)
18 if m has type 1b and b(m) == maxx∈known_messages b(x)
19 for learner ∈ learners:
20 z = new 2a(refs = recently_received, lrn = learner)
21 if WellFormed(z):
22 recently_received = {}
23 on_receipt (z)

1 learner_initial_state :
2 known_messages = {}
3

4 learner_on_receipt (m):
5 for r ∈ m.refs:
6 while r /∈ known_messages :
7 wait ()
8 known_messages ∪= {m}
9 for S ⊆ known_messages :

10 if Decisionself(S ∪ {m}):
11 decide (V(m))

Figure 3 Pseudo-code for Acceptor (left) and Learner (right). § 5 defines message structure (§ 5.2),
W ellF ormed (Assumption 26), b() (Definition 19), V() (Definition 20), and Decision() (Defini-
tion 21).

4.3 Termination
Termination has no well agreed-upon definition for the heterogeneous setting, as it does
not generalize easily from the homogeneous one. A heterogeneous consensus protocol is
specified in terms of the (possibly differing) conditions under which each learner is guaranteed
termination (§ 3). For example, in our prior work on Heterogeneous Fast Consensus, we
distinguish between “gurus,” learners with accurate failure assumptions, and “chumps,” who
hold inaccurate assumptions [45]; Stellar calls them “intact” and “befouled” [39]. When
discussing termination properties, we use the following terminology:

I Definition 11 (Termination).
Within an execution, a learner has termination if it eventually decides.
A heterogeneous consensus protocol has termination if, for all possible executions of that
protocol, all learners with a safe and live quorum have termination.

Protocols can only guarantee termination under specific network assumptions, and varying
notions of “eventually” [19, 29, 40]. Following in the footsteps of Dwork et al. [18], Hetero-
geneous Paxos guarantees Validity and Agreement in a fully asynchronous network, and
termination in a partially synchronous network (Assumption 31). Furthermore, as in all
other consensus protocols, if there are too many acceptor failures, some learners may not
terminate. Specifically, a learner will decide (terminate) if at least one of its quorums is live.

I Definition 12 (Terminating Learner). has a live, safe quorum: Terminating(a) , L∪S ∈ Qa

5 Heterogeneous Paxos

Heterogeneous Paxos is a consensus protocol (§ 2) based on Byzantine Paxos, Lamport’s
Byzantine-fault-tolerant [31] variant of Paxos [28, 29] using a simulated leader [30]. This
protocol is conceptually simpler than Practical Byzantine Fault Tolerance [10]. When all
learners have the same failure assumptions, Heterogeneous Paxos is exactly Byzantine Paxos.
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Byzantine Paxos was originally written as a sequence of changes from crash-tolerant
Paxos [30, 28]. We were able to construct a complete version of Byzantine Paxos in such a way
that we could describe Heterogeneous Paxos with only a few additions, highlighted in pale blue.
To our knowledge, without the portions highlighted in pale blue this is also the most direct
description of the Byzantine Paxos via Simulated Leader protocol in the literature. Figure 3
presents pseudocode for Heterogeneous Paxos acceptors and learners.

Informally, Heterogeneous Paxos proceeds as a series of (possibly overlapping) phases
corresponding to three types of messages, traditionally called 1a, 1b, and 2a:

Proposers send 1a messages, each carrying a value and unique ballot number (stage
identifier), to acceptors.
Acceptors send 1b messages to each other to communicate that they’ve received a 1a
(line 15 of Figure 3).
When an acceptor receives a 1b message for the highest ballot number it has seen from
a learner a’s quorum of acceptors, it sends a 2a message labeled with a and that ballot
number (line 20 of Figure 3). There is one exception (WellFormed in Figure 3): once a
safe acceptor sends a 2a message m for a learner a, it never sends a 2a message with a
different value for a learner b, unless:

It knows that a quorum of acceptors has seen 2a messages with learner a and ballot
number higher than m.
Or it has seen Byzantine behavior that proves a and b do not have to agree.

A learner a decides when it receives 2a messages with the same ballot number from one
of its quorums of acceptors (line 11 on the right of Figure 3).

Proposers can restart the protocol at any time, with a new ballot number. Acceptor
and Learner behavior in Heterogeneous Paxos is described in Figure 3. We now describe
their sub-functions, including message construction (§ 5.2), WellFormed (Assumption 26),
b() (Definition 19), V() (Definition 20), and Decision() (Definition 21).

Key Insight. Intuitively, Heterogeneous Paxos operates much like Byzantine Paxos, except
that all acceptors execute the final phase separately for each learner. The shared phases
allow learners to agree when possible, while the replicated final phase allows different learners
to decide under different conditions. § 8 of [47] describes several heterogeneous consensus
scenarios, as well as quorums for each learner.

5.1 Valid Learner Graph
Naturally, there are bounds on the learner graphs for which Heterogeneous Paxos can provide
guarantees. Unlike traditional consensus, in a Heterogeneous Consensus learner graph, each
learner a has its own set of quorums Qa. These describe the learner’s termination constraints:
it may not terminate if all of its quorums contain a non-live acceptor (Definition 12). The
notion of a valid learner graph generalizes the homogeneous assumption that every pair of
quorums have a safe acceptor in their intersection.

Homogeneous Byzantine Paxos guarantees agreement (§ 4.2) when all pairs of quorums
have ≥ 1 safe acceptor in their intersection. The heterogeneous case has a similar requirement:

I Definition 13 (Valid Learner Graph). A learner graph is valid iff for each pair of learners a

and b, whenever they must agree, all of their quorums feature at least one safe acceptor in
their intersection: s ∈ a−b ∧ qa ∈ Qa ∧ qb ∈ Qb ⇒ qa ∩ qb ∩ s 6= ∅
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5.2 Messaging
Acceptors send messages to each other. Live acceptors echo all messages sent and received
to all other acceptors and learners, so if one live acceptor receives a message, all acceptors
eventually receive it. When safe acceptors receive a message, they process and send resulting
messages specified by the protocol atomically: they do not receive messages between sending
results to other acceptors. Safe acceptors also receive any messages they send to themselves
immediately: they receive no other messages between sending and receiving.

Each message x contains a cryptographic signature allowing anyone to identify the signer:

I Definition 14 (Message Signer). Sig(x :message), the acceptor or proposer that signed x

We can define Sig() over sets of messages, to mean the set of signers of those messages:

I Definition 15 (Message Set Signers). Sig(x : set) ,
{

Sig(m) m ∈ x
}

Furthermore, each message x carries references to 0 or more other messages, x.refs. These
references are by hash, ensuring both the absence of cycles in the reference graph and that it
is possible to know exactly when one message references another [42]. In each message, safe
acceptors reference each message they received since the last message they sent. Since all
messages sent are sent to all acceptors, and safe acceptors receive messages sent to themselves
immediately, each message a safe acceptor sends transitively references all messages it has
ever sent or received. Safe acceptors delay receipt of any message until they have received all
messages it references. This ensures they receive, for example, a 1a for a given ballot before
receiving any 1bs for that ballot.

Each message has a unique ID and an identifiable type: 1a, 1b, or 2a. A 2a message x

has one type-specific field: x.lrn specifies a learner. A 1a message y has two type-specific
fields: y.value is a proposed value, and y.ballot is a natural number specific to this proposal.

We assume that each 1a has a unique ballot number, which could be accomplished by
including signature information in the least significant bits of the ballot number:

I Assumption 16 (Unique ballot assumption). z :1a ∧ y :1a ∧ z.ballot = y.ballot⇒ z = y

5.3 Machinery
To describe Heterogeneous Paxos, we require some mathematical machinery.

Transitive References. We define Tran(x) to be the transitive closure of message x’s
references. Intuitively, these are all the messages in the “causal past” of x.

I Definition 17. Tran(x) , {x} ∪
⋃

m∈x.refs Tran(m)

Get1a: It is useful to refer to the 1a that started the ballot of a message: the highest
ballot number 1a in its transitive references.

I Definition 18. Get1a(x) , argmax
m:1a∈Tran(x)

m.ballot

Ballot Numbers. The ballot number of a 1a is part of the message, and the ballot number
of anything else is the highest ballot number among the 1as it (transitively) references.

I Definition 19. b(x) , Get1a(x).ballot
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Value. The value of a 1a is part of the message, and the value of anything else is the value
of the highest ballot 1a among the messages it (transitively) references.

I Definition 20. V(x) , Get1a(x).value

Decisions. A learner decides when it has observed a set of 2a messages with the same
ballot, sent by a quorum of acceptors. We call such a set a decision:

I Definition 21. Decisiona(qa) , Sig(qa) ∈ Qa ∧ ∀{x,y} ⊆ qa. b(x)=b(y)∧ x.lrn=a∧ x :2a

Messages in a decision share a ballot (and therefore a value), so we extend our value
function to include decisions: Decisiona(qa)⇒ V(qa) = V(m) m ∈ qa

Although decisions are not messages, applications might send decisions in other messages
as a kind of “proof of consensus.” This is how the Heterogeneous Paxos integrity attestations
work in our prototype blockchains (§ 6).

Caught. Some behavior can create proof that an acceptor is Byzantine. Unlike Byzantine
Paxos, our acceptors and learners must adapt to Byzantine behavior. We say that an acceptor
p is Caught in a message x if the transitive references of the messages include evidence such
as two messages, m and m′, both signed by p, in which neither is featured in the other’s
transitive references (safe acceptors transitively reference all prior messages).

I Definition 22. Caught(x) ,
{

Sig(m) {m, m′} ⊆ Tran(x) ∧ Sig(m) = Sig(m′)
∧ m 6∈ Tran(m′) ∧ m′ 6∈ Tran(m)

}
Connected. When some acceptors are proved Byzantine, clearly some learners need not

agree, meaning that S isn’t in the edge between them in the CLG: at least one acceptor in
each safe set in the edge is proven Byzantine. Homogeneous learners are always connected
unless there are so many failures no consensus is required.

I Definition 23. Cona(x) ,
{

b s ∈ a−b ∈ CLG ∧ s ∩ Caught(x) = ∅
}

It is clear that disconnected learners may not agree, and so each 2a message x will have
some implications only for learners still connected to its specified learner: Conx.lrn(x).

Quorums in Messages. 2a messages reference quorums of messages with the same value
and ballot. A 2a’s quorums are formed from fresh 1b messages with the same ballot and
value (we define fresh in Definition 28).

I Definition 24. q(x :2a) ,
{

m m :1b ∧ freshx.lrn(m) ∧ m ∈ Tran(x) ∧ b(m) = b(x)
}

Buried messages. A 2a message can become irrelevant if, after a time, an entire quorum of
acceptors has seen 2as with different values, the same learner, and higher ballot numbers.
We call such a 2a buried (in the context of some later message y):

I Definition 25.

Buried(x : 2a, y) ,
{
Sig(m) m ∈ Tran(y) ∧ z :2a ∧ {x, z} ⊆ Tran(m)

∧V(z) 6= V(x) ∧ b(z) > b(x) ∧ z.lrn = x.lrn

}
∈ Qx.lrn
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Well-Formedness. In addition to the basic message layout, 2a and 1b messages must be
well-formed. No 2a should have an invalid quorum upon creation, and no acceptor should
create a 2a unless it sent one of the 1b messages in the 2a. Similarly, no 1b should reference
any message with the same ballot number besides a 1a (safe acceptors make 1bs as soon as
they receive a 1a). Acceptors and learners should ignore messages that are not well-formed.

I Assumption 26 (Well-Formedness Assumption).

x : 1b ∧ y ∈ Tran(x) ∧ x 6= y ∧ y 6= Get1a(x) ⇒ b(y) 6= b(x)
z : 2a⇒ q(z) ∈ Qz.lrn ∧ Sig(z) ∈ Sig(q(z))

Connected 2a messages. Entangled learners must agree, but learners that are not connected
are not entangled, so they need not agree. Intuitively, a 1b message references a 2a message
to demonstrate that some learner may have decided some value. For learner a, it can be
useful to find the set of 2a messages from the same sender as a message x (and sent earlier)
which are still unburied, and for learners connected to a. The 1b cannot be used to make
any new 2a messages for learner a that have values different from these 2a messages.

I Definition 27. Con2asa(x) ,
{

m
m :2a ∧ m ∈ Tran(x) ∧ Sig(m) = Sig(x)

∧ ¬Buried(m, x) ∧ m.lrn ∈ Cona(x)

}

Fresh 1b messages. Acceptors send a 1b message whenever they receive a 1a message
with a ballot number higher than they have yet seen. However, this does not mean that the
1b’s value (which is the same as the 1a’s) agrees with that of 2a messages the acceptor has
already sent. We call a 1b message fresh (with respect to a learner) when its value agrees
with that of unburied 2a messages the acceptor has sent.

I Definition 28. fresha(x : 1b) , ∀m ∈ Con2asa(x). V(x) = V(m)

5.4 Ballots

Heterogeneous Paxos can be thought of as taking place in stages identified by natural numbers
called ballots. § 5.6.3 of [47] describes one way to construct unique ballot numbers.

Multiple Ballots. Proposers construct new 1a messages (with a value and a unique ballot
number), and send them to all acceptors. Just like in Homogeneous Byzantine Consensus,
it is possible for a ballot to fail: after some number of ballots, it may be the case that all
messages have arrived, the protocol in Figure 3 doesn’t require any acceptor to send any
further messages, and yet no learner has decided. For this reason, it is necessary to start a
new ballot when an old one is failing.

One way to handle this is to leave the responsibility at the proposers: if a proposer
proposes a ballot, and learners don’t decide for a while, then the proposer should propose
again. Randomized exponential backoff can be used to allow clients to adapt to the unknown
delay in a partially synchronous [18] network without flooding the system.

Another way is to have acceptors propose after a ballot has failed: when sufficiently many
1b messages for a given ballot are collected, but none are fresh, an acceptor could send a new
1a. There are subtleties to ensuring liveness, which we discuss in § 6.4.1 of [47].
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5.5 Safety
Under our assumptions (§ 5.2 of [47]), Heterogeneous Paxos has the safety properties of
Validity and Agreement (proofs in § 6.2 of [47] and § 6.3 of [47]):

I Theorem 29 (Validity). Heterogeneous Paxos is Valid (Definition 7):
Decisiona(qa)⇒ ∃x : 1a.V(x) = V(qa)

I Theorem 30 (Agreement). Heterogeneous Paxos has Agreement (Definition 9):
Entangled(a, b) ∧Decisiona(qa) ∧Decisionb(qb)⇒ V(qa) = V(qb)

5.6 Liveness
Heterogeneous Paxos, and indeed Byzantine Paxos, rely on a weak network assumption to
guarantee termination. The assumption is complex precisely because it is weak; a simpler
but stronger assumption, such as a partially synchronous network, would suffice.

I Assumption 31 (Network Assumption). To guarantee that a learner a decides, we assume
that for some quorum qa ∈ Qa of safe and live acceptors:

Eventually, there will be 13 consecutive periods of any duration, with no time in between,
numbered 0 through 12, such that any message sent to a or an acceptor in qa before one
period begins is delivered before it ends.
If an acceptor in qa sends a message in between receiving two messages m and m′ (and it
receives no other messages in between), and m is delivered in some period n, then the
message is sent in period n.
No 1a message except x, y, and z is delivered to any acceptor in qa during any period.
x is delivered to an acceptor in qa in period 0, y is delivered to an acceptor in qa in period
4, and z is delivered to an acceptor in qa in period 9.
V(y) = V(z) is the value of the highest ballot 2a known to any acceptor in qa at the end
of period 3.
b(x) is greater than any ballot number of any message delivered to any acceptor in qa

before period 0, and b(x) < b(y) < b(z).
This assumption is only necessary for termination, not any safety property. We prove our
termination theorem in § 6.4.1 of [47].

I Theorem 32 (Termination). If Assumption 31 holds for learner a, then a has Termina-
tion (Definition 11). Specifically, after period 12: Terminating(a) ⇒ ∃qa.Decisiona(qa) If
Assumption 31 holds for all terminating learners, then Heterogeneous Paxos has Termination.

A partially synchronous network is one in which, after some point in time, there exists some
(possibly unknown) constant latency ∆ such that all sent messages arrive within ∆ [18]. We
explain elsewhere how to add artificial message receipt delays to Heterogeneous Paxos in
order to guarantee Assumption 31 in a partially synchronous network (§ 6.4.2 of [47]).

6 Implementation

Since Heterogeneous Paxos is designed for cross-domain applications where different parties
have different trust assumptions, it is well-suited for blockchains. We constructed a variety
of example blockchains using the Charlotte framework [46], which allows for pluggable
integrity (consensus) mechanisms. Our servers are implemented in 1,704 lines of open-source
Java. Charlotte uses 256-bit SHA3 hashes, P256 elliptic curve signatures, protobufs [43] for
marshaling, and gRPC [24] for transmitting messages over TLS 1.3 channels.
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To explore the performance of Heterogeneous Paxos, we created several blockchains with
different CLGs (§ 3). The results (§ 9.3 of [47]) show that heterogeneous configurations save
resources and latency compared with homogeneous configurations tolerating the same failures.
For instance, in our example configuration § 1.1, a Homogeneous configuration tolerating
similar failures would cost an extra 7 unnecessary acceptors, increasing latency overhead by
51% relative to Heterogeneous Paxos. 2a messages include a quorum of 256-bit message hashes,
so they expand linearly with quorum size, as does the cost of unmarshaling and verifying the
signatures of the messages referenced. In all experiments, however, computational overhead
was dominated by the theoretical minimum (simulated) geodistributed network latency.

7 Related Work

Heterogeneous Acceptors and Failures. Heterogeneous Paxos is based on Leslie Lamport’s
Byzantine-fault-tolerant variant [30] of Paxos [28]. Byzantine Paxos supports heterogeneous
acceptors because it uses quorums: not all acceptors need be of equal worth, but all
quorums are. Although Lamport does not describe it explicitly, Byzantine Paxos can have
heterogeneous, or mixed [48], failures, so long as quorum intersections have a safe acceptor
and at least one quorum is safe and live.

Many papers have investigated hybrid failure models [48, 13, 7, 33] in which different
consensus protocol acceptors can have different failure modes, including crash failures and
Byzantine failures (heterogeneous failures). These papers typically investigate how many
failures in each class can be tolerated. Other papers have looked at system models in which
different acceptors may be more or less likely to fail [22, 38], or where failures are dependent
(heterogeneous acceptors) [27, 17, 25].

Further generalizations are possible. Our Learner Graph uses only safe and live acceptors,
but its labels might be generalized to support other failure types such as rational failures [3].
We have only considered learners that all make the same (weak) synchrony assumption, but
others have studied learners with heterogeneous network assumptions [5, 37].

Heterogeneous Learners. Unlike ours, most related work conflates learners and acceptors.
Early related work on “Consensus with Unknown Participants” [11, 23, 4] defines protocols
in which each participant knows only a subset of other participants, inducing a “who-
knows-whom” digraph; this work identifies properties of this graph that must hold to
achieve consensus. Not every participant knows all participants, but trust assumptions are
homogeneous: participants have the same beliefs about trustworthiness of other participants.

Our prior work describes [45] a heterogeneous failure model in which different participants
may have different failure assumptions about other participants. We distinguished learners
whose failure assumptions are accurate from those whose failure assumptions are inaccurate
and we specified a heterogeneous consensus protocol in terms of the possibly different
conditions under which each learner is guaranteed agreement. The paper constructs a
heterogeneous consensus protocol that meets the requirements of all learners using lattice-
based information flow to analyze and prove protocol properties.

Heterogeneous learners became of interest to blockchain implementations based on voting
protocols where open membership was desirable. Ripple (XRP) [44] was the earliest blockchain
to attempt support for heterogeneous learners. Originally, each learner had its own Unique
Node List (UNL), the set of acceptors that it partially trusts and uses for making decisions.
An acceptor in more UNLs is implicitly more influential. The protocol was updated because
of correctness issues [12], and support for diverse UNLs was all but eliminated. Ripple has
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proposed a protocol called Cobalt [36], in which each learner specifies a set of acceptors they
partially trust, and it works if those sets intersect “enough.” Cobalt does not account for
heterogeneous failures, and only limited acceptor heterogeneity.

The Stellar Consensus [39, 34, 35] blockchain protocol supports both heterogeneous
learners and acceptors, although it does not distinguish the two; each learner specifies a
set of “quorum slices.” Like Cobalt, Stellar does not account for heterogeneous failures.
Neither Stellar nor Cobalt match Heterogeneous Paxos’ best-case latency. Heterogeneous
Paxos inherits Byzantine Paxos’ 3-message-send best case latency, which is optimal for a
consensus tolerating

⌈
n
3
⌉
− 1 failures in the homogeneous Byzantine case or

⌈
n
2
⌉
− 1 failures

in the homogeneous crash case [6]. However, both Cobalt and Stellar are designed for an
“open-world” model, where not all acceptors and learners are known in advance. We have
not yet adapted Heterogeneous Paxos to an open-world setting.

The heterogeneous learner models of Cobalt and Stellar have been studied in detail by
García-Pérez and Gotsman [21]. Cachin and Tackmann examine Stellar-style asymmetric
trust models, including in shared-memory environments [8]. However, neither paper separates
learners from acceptors, attempts to solve consensus, or considers heterogeneous failures; the
Learner Graph is more general.

Like our work, Flexible BFT [37] distinguishes learners from acceptors and accounts for
both heterogeneous learners and heterogeneous failures. It does not allow heterogeneous
acceptors: they are interchangeable, and quorums are specified by size. Flexible BFT also
has optimal best-case latency. It does not support crash failures, but introduces a new failure
type called alive-but-corrupt for acceptors interested in violating safety but not liveness.

8 Conclusion

Heterogeneous Paxos is the first consensus protocol with heterogeneous acceptors, failures,
and learners. It is based on the Learner Graph, a new and expressive way to capture learners’
diverse failure-tolerance assumptions. Heterogeneous consensus facilitates a more nuanced
approach that can save time and resources, or even make previously unachievable consensus
possible. Heterogeneous Paxos is proven correct against our new generalization of consensus
for heterogeneous settings. This approach is well-suited to systems spanning heterogeneous
trust domains; for example, we demonstrate working blockchains with heterogeneous trust.

Future work may expand learner graphs to represent even more types of failures. Hetero-
geneous Paxos may be extended to allow for changing configurations, or improved efficiency
in terms of bandwidth and computational overhead. New protocols can also make use of our
definition of heterogeneous consensus, perhaps adding new guarantees such as probabilistic
termination in asynchronous networks.
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Abstract
Classical protocols for reliable broadcast and consensus provide security guarantees as long as the
number of corrupted parties f is bounded by a single given threshold t. If f > t, these protocols are
completely deemed insecure. We consider the relaxed notion of multi-threshold reliable broadcast and
consensus where validity, consistency and termination are guaranteed as long as f ≤ tv, f ≤ tc and
f ≤ tt respectively. For consensus, we consider both variants of (1− ε)-consensus and almost-surely
terminating consensus, where termination is guaranteed with probability (1− ε) and 1, respectively.
We give a very complete characterization for these primitives in the asynchronous setting and with
no signatures:

Multi-threshold reliable broadcast is possible if and only if max{tc, tv}+ 2tt < n.
Multi-threshold almost-surely consensus is possible if max{tc, tv}+ 2tt < n, 2tv + tt < n and
tt < n/3. Assuming a global coin, it is possible if and only if max{tc, tv} + 2tt < n and
2tv + tt < n.
Multi-threshold (1− ε)-consensus is possible if and only if max{tc, tv}+ 2tt < n and 2tv + tt < n.
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1 Introduction

Consensus and reliable broadcast are fundamental building blocks in fault-tolerant distributed
computing. Consensus allows a set of parties, each holding an input, to agree on a common
value v′, where, if all honest parties hold the same input v, v′ = v. Reliable broadcast allows
a designated party, called the sender, to consistently distribute a value v among a set of
recipients such that all honest recipients output v in case the sender is honest. If the sender
is dishonest, either all honest recipients output the same value or none of them terminates.
Both primitives are used typically in the design of more complex applications, including
multi-party computation, verifiable secret-sharing or voting, just to name a few.

The first consensus protocol was introduced in the seminal work of Lamport et al. [21] for
the model where parties have access to a complete network of point-to-point authenticated
channels, and where at most t < n/3 parties are corrupted. Reliable broadcast was first
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introduced by Bracha [6] as a useful primitive to construct building blocks in asynchronous
environments. Since then, both primitives has been extensively studied in many different
settings [7, 8, 6, 2, 25].

Most known fault-tolerant distributed protocols provide security guarantees in an all-or-
nothing fashion: if up to t parties are corrupted, all security guarantees remain. However,
if more than t parties are corrupted, the protocols do not provide any security guarantees.
Multi-threshold protocols (also known as hybrid security) provide different security guarantees
depending on the amount of corruption, thereby allowing a graceful degradation of security.

In this work, we consider consensus and reliable broadcast protocols with separate
thresholds tv, tc and tt for validity, consistency and termination, respectively. For consensus,
we consider both variants of (1−ε)-consensus and almost-surely terminating consensus, where
termination is guaranteed with probability (1− ε) and 1, respectively.

Such multi-threshold primitives are not only of theoretical interest, but are also motivated
by its use as core primitives in the design of more involved applications. In particular,
they are used as a central building block in the recent line of works [26, 22], that leverage
synchronous multi-party computation and consensus protocols to achieve responsiveness,
where parties obtain output as fast as the network allows, given that the amount of corruption
is low enough.

Our protocols work without the use of signatures and in the purely asynchronous model
without the need to make any timing assumptions. Our contributions give a very complete
picture of feasibility and impossibility results, which can be summarized as follows:

Multi-threshold reliable broadcast is possible if and only if max{tc, tv}+ 2tt < n.
Multi-threshold almost-surely consensus is possible if max{tc, tv}+ 2tt < n, 2tv + tt < n

and tt < n/3. The first two conditions are shown to be necessary as well. The question
whether tt < n/3 is necessary is left as an open problem. However, we give a protocol
assuming a global coin that does not require this condition.
Multi-threshold (1 − ε)-consensus is possible if and only if max{tc, tv} + 2tt < n and
2tv + tt < n.

The impossibility proofs are simple and follow the lines of [9].

1.1 Related Work
There is a large literature devoted to achieving different types of hybrid security guarantees
under different settings for agreement primitives and multi-party computation (MPC). We
are only able to list an incomplete summary of related work.

The work in [11] provides constructions in the synchronous model for Byzantine broadcast
with extended validity or consistency, where Byzantine broadcast is achieved up to a threshold
t, and validity / consistency is achieved up to an extended threshold T ≥ t, and then apply
such constructions to achieve multi-party computation with full security up to t corruptions,
and unanimous abort up to T ≥ t. The above constructions exists if and only if t = 0 or
t+ 2T < n. The works in [19, 20] focus on the question of achieving multi-party computation
with full security under an honest majority, and security with abort under a dishonest
majority. The line of works in [13, 24] provide constructions that achieve trade-offs that
include information-theoretic security up to a certain threshold, and computational security
up to a larger threshold, with different types of guarantees. A different line of works provide
security against different types of corruption (also known as mixed adversaries). The works
[12, 18] consider multi-party computation protocols where security holds even when up to tp,
tf , ta parties can be passively, fail-stop, actively corrupted, respectively. Finally, there are
works that combine mixed adversaries with hybrid security [16, 17, 15].
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A recent line of works [23, 26, 22] achieve trade-offs between responsiveness, where parties
obtain output as fast as the network allows, and other security guarantees, for consensus,
SMR and MPC, assuming a synchronous network. The work [14] considers to networks that
tolerate some level of disconnection between the parties, as long as there is a connected
component with an honest majority of the parties. Finally, the works [3, 4, 5] provide
protocols that achieve security guarantees under a synchronous network up to ts corruptions,
and under an asynchronous network up to ta corruptions.

1.2 Comparison to Prior Work
As mentioned above, some works use as building blocks multi-threshold asynchronous
consensus and reliable broadcast primitives. In particular, the works in [23, 14, 22] make use
of an asynchronous multi-threshold consensus protocol with increased validity and consistency.
Their constructions differ from ours in two aspects: 1) they operate in a setting where parties
have access to a public-key infrastructure and 2) their constructions inherently require that
the termination threshold is below n/3.

The constructions for consensus and reliable broadcast in [3, 4] considers different
thresholds. In [3], the authors design a consensus protocol with increased validity with
termination (where validity also ensures termination in case of pre-agreement) assuming a
global common coin, based on the protocol in [25]. Similarly, in [4], the authors provide a
construction for reliable broadcast with two thresholds allowing for validity with termination
in the honest sender case, and consistency with reliable termination (where either all honest
parties terminate or none), in the dishonest sender case. We provide constructions without
assuming a global coin, which in addition allow to have the termination threshold above
validity and consistency.

2 Model

We consider a setting in which parties have access to a complete network of authenticated
channels. The adversary has full control over the network and can schedule the messages in
an arbitrary manner. However, each message must be eventually delivered. Moreover, we
consider the setting where parties do not have any setup available.

We consider an adaptive adversary who can gradually corrupt parties and take full control
over them. Note, however, that our impossibility proofs hold even against a static adversary
that is assumed to choose the corrupted parties at the beginning of the protocol execution.
We require our protocols to be unconditionally secure, meaning that security holds even
against a computationally unbounded adversary. On the other hand, our impossibility results
hold even against a computationally bounded adversary.

In the protocols we say that a party terminates when it stops participating in the protocol.
Note that we distinguish between outputting and terminating, in the sense that a party
might output a value but still continue participating.

3 Multi-Threshold Reliable Broadcast

Reliable broadcast is a fundamental primitive in distributed computing which allows a sender
to consistently distribute a message towards a set of recipients. We consider a setting with
n+ 1 parties, one sender S and n recipients R = {R1, ..., Rn}. Let us denote the number of
corrupted recipients (not including the sender) at the end of the protocol execution by f .
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I Definition 1 (Reliable Broadcast). LetM be a finite message space and f be the number
of corrupted recipients at the end of the execution. A protocol π where initially the sender S
has an input m ∈M and every recipient Ri upon termination outputs mi ∈M, is a reliable
broadcast protocol, with respect to thresholds tc, tv, and tt, if it satisfies the following:

Consistency. If f ≤ tc, then every honest recipient that terminates outputs the same
message. That is, ∃m′ ∈M : ∀ honest Ri that terminate mi = m′.
Validity. If f ≤ tv and the sender is honest, then every honest recipient Ri that
terminates outputs the sender’s message. That is, ∀ honest Ri that terminate mi = m.
Termination.
1. An honest sender always terminates.
2. If f ≤ tt and an honest recipient terminates, then every honest recipient eventually

terminates.
3. If f ≤ tt and the sender is honest, then eventually every honest recipient terminates.

3.1 Protocol
We present a reliable broadcast protocol with respect to thresholds tc, tv and tt, as long as
max{tv, tc}+ 2tt < n. The protocol is a generalization of Bracha’s broadcast protocol [6].

Protocol Πtc,tv,tt
rbc

The sender S holds input m ∈M. Upon termination every recipient Ri ∈ R outputs a message.
Code for the sender S
1. Send the message (MSG, m) to all recipients in R and terminate.
Code for recipient Ri ∈ R
1. Upon receiving first (MSG, m) from the sender, send (ECHO, m) to all recipients.
2. Upon receiving (ECHO, m′) from n− tt parties that agree on the value m′ ∈M, send

(READY, m′) to all recipients.
3. Upon receiving (READY, m′) from max{tv, tc} + 1 parties that agree on the value

m′ ∈M, send (READY, m′) to all recipients.
4. Upon receiving (READY, m′) or (TERMINATE) from n − tt parties from which at

least max{tv, tc}+ 1 are READY messages and (they all) agree on the value m′ ∈M,
send (TERMINATE), output m′ and terminate.

I Lemma 2. If f ≤ max{tv, tc}, ∀m′ ∈ M the first honest recipient that sends (READY,
m′) received at least n− tt (ECHO, m′) messages.

Proof. For any m′ ∈M, (READY, m′) messages are sent by honest recipients either in line
2 or 3 of the recipient’s code. However, ∀m′ ∈M the first (READY, m′) message can only
be sent in line 2. This is due to the fact that if f ≤ max{tv, tc}, line 3 implies that there
must be some other honest recipient that previously sent a (READY, m′) message too. J

I Lemma 3. If f ≤ max{tv, tc}, the messages (READY, m′) sent by honest recipients
are consistent. That is, there ∃m′′ ∈M such that for every honest recipient Ri that sends
(READY, m′), m′ = m′′.

Proof. Suppose not; let Ri and Rj be the first honest recipients that send (READY, m′)
and (READY, m′′) with m′ 6= m′′. Due to Lemma 2, Ri received at least n − tt (ECHO,
m′) messages whereas Rj received at least n− tt (ECHO, m′′) messages. It follows, at least
2(n− tt)− n = n− 2tt > max{tv, tc} players dishonestly sent inconsistent ECHO messages
to Ri and Rj . However, each honest recipient sends an ECHO message at most once and
there are at most f ≤ max{tv, tc} dishonest recipients. A contradiction. J
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I Lemma 4. If f ≤ max{tv, tc} and an honest sender broadcasts m, for every honest
recipient that sends (READY, m′), m′ = m.

Proof. Suppose not; Let Ri be the first honest recipient that sends (READY, m′) with
m′ 6= m. Due to Lemma 2, Ri received at least n − tt (ECHO, m′) messages. However,
in case the sender is honest and broadcasts m every honest recipient will ECHO only the
sender’s value (m). Hence there can be at most f ≤ max{tv, tc} < n− tt (ECHO, m′) with
m 6= m′. A contradiction. J

I Lemma 5. If f ≤ tt and an honest recipient terminates, then every honest recipient
eventually terminates.

Proof. Let Ri be the first honest recipient that terminates. Then, Ri received (READY, m′)
or (TERMINATE) from n− tt messages from which at least max{tv, tc}+ 1 are READY
messages. Furthermore, all READY messages agree on m′. Under the assumption that no
other honest recipient has terminated so far, we know that no (TERMINATE) messages were
sent from the honest recipients. Hence, by taking into account that n− tt > max{tv, tc}+ tt
and f ≤ tt, it follows that at least max{tv, tc} + 1 recipients have sent (READY, m′) to
all other parties. Every honest recipient will eventually either receive these (READY, m′)
messages and send a (READY, m′) as well or terminate before receiving them and send a
(TERMINATE) message instead. Since there are at least n− tt honest recipients, it follows
that eventually every honest recipient Rl that didn’t terminate yet will receive n−tt messages
(READY, m′) or (TERMINATE) from which at least max{tv, tc}+ 1 are READY messages
and they all agree on m′. Thus, every honest Rl eventually terminates as well. J

I Lemma 6. If f ≤ tt and the sender is honest, at least one honest recipient eventually
terminates.

Proof. Since every honest recipient echoes the sender’s value, there will be at least n− tt
(ECHO, m) messages. Similarly, since there are n− tt (ECHO, m) messages in the network,
every honest recipient will eventually send a (READY, m). Finally, since there are n− tt
(READY, m) messages in the network, at least one honest recipient will terminate. J

I Theorem 7. Let 0 ≤ tc, tv, tt < n. Πtc,tv,tt
rbc is a multi-threshold broadcast according to

Definition 1 if max{tv, tc}+ 2tt < n.

Proof.
Consistency & Validity. Assume f ≤ max{tv, tc}. Every honest recipient that outputs a
message, has received at least max{tv, tc}+ 1 (READY, m). Since f ≤ max{tv, tc}, it
follows at least one is sent from an honest party. From Lemma 3 we know that READY
messages are consistent, hence we achieve consistency. From Lemma 4 we know that the
READY messages from honest parties contain only the sender’s value, hence we achieve
validity.
Termination. We prove the three termination properties from the Definition 1.
1. For the first requirement, it is trivial to see that an honest sender always terminates.
2. The second requirement is proven in Lemma 5.
3. For the third requirement, from Lemma 6 we know that if the sender is honest, at least

one honest recipient terminates. We can apply Lemma 5 again, and see that every
honest recipient terminates. J
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3.2 Impossibility Proofs
In this section, we show that the protocol Πtc,tv,tt

rbc presented above is optimal. That is, there
is no reliable broadcast protocol with max{tv, tc}+ 2tt ≥ n, where tc, tv, tt ≥ 0. We prove
each bound separately.

∣∣B∣∣ = tt
∣∣A∣∣ = tt

S

∣∣C∣∣ = tc

0

∣∣B∣∣ = tt
∣∣A∣∣ = tt

S

∣∣C∣∣ = tc

1

Figure 1 The same configuration can be viewed as: a) (in red) two independent runs of the
protocol on the left and the right side, where messages between A and B are delayed: One where
the sender has input 0 and one where the sender has input 1; b) (in blue) the sender and the set C
is corrupted and behaves differently towards A and B.

I Theorem 8. There exists no multi-threshold broadcast protocol with tc + 2tt ≥ n.

Proof. Suppose not; let π be a multi-threshold broadcast protocol with tc + 2tt = n. We
partition the set of all recipients into three sets A, B and C with size

∣∣A∣∣ =
∣∣B∣∣ = tt and∣∣C∣∣ = tc. We build the network as in Figure 1.

Figure 1(in red) on the left side, we can see an independent run where all parties are
honest and messages between A and B are delayed by the scheduler. Since A and B are
of size tt, all parties terminate with an output. Moreover, since all parties are honest, the
output is 0. In particular, parties in A output 0. Similarly, B outputs 1 on the right side.

Now consider an attacker that corrupts the sender and C, and emulates the protocol
as in the scenario in Figure 1(in blue). Since this configuration is exactly the same as the
red one, A outputs 0 and B outputs 1. This results in a contradiction to the consistency
property of the multi-threshold broadcast. J

I Theorem 9. For any tv > 0, there is no multi-threshold broadcast protocol with tv+2tt ≥ n.

Proof. Suppose not; let π be a multi-threshold broadcast protocol with tv + 2tt = n. We
partition the set of all recipients into three sets A, B and C with

∣∣A∣∣ =
∣∣B∣∣ = tt and

∣∣C∣∣ = tv.
We build the a configuration as in Figure 2.

Consider Figure 2(in red), on the left side, where messages between S and B, or between
A and B are delayed. Since B is of size tt, all parties must output a value without waiting
for the messages from B (as B could be corrupted). Moreover, since all parties are honest, A
and C output 0. Furthermore, since C outputs 0, because of the second requirement of the
termination of broadcast – if one recipient terminates, then every recipient terminates – B
outputs 0 as well. Note that A and S have together size tt + 1, but the second requirement
of termination requires B to terminate even if the sender is corrupted. The same argument
can be applied on the right side of Figure 2(in red).
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S
∣∣C∣∣ = tv

∣∣B∣∣ = tt
∣∣A∣∣ = tt

0
S

∣∣C∣∣ = tv

∣∣B∣∣ = tt
∣∣A∣∣ = tt

1

Figure 2 The same configuration can be viewed as: a) (in red) two independent runs of the
protocol on the left and the right side, where messages between A and B are delayed, and also
between S and B. One where the sender has input 0 and one where the sender has input 1; b) (in
blue) the set C is corrupted and behaves differently towards S and A on the left side and differently
towards B on the right side.

Now, consider an attacker that corrupts the parties in C and emulates the protocol as in
the scenario in Figure 2(in blue). Because both scenarios are the same setup, A outputs 0 on
the left side, whereas B outputs 1 on the right side. Thus, validity is violated. J

4 Almost-Surely Multi-Threshold Consensus

Stated in simple terms, consensus allows a set of parties to agree on a common value. More
formally, the protocol starts with every party having an input and ends with every party
having a consistent output. Moreover, if every honest party starts with the same input, they
keep it. Due to the FLP impossibility proof [10], non-terminating executions are inevitable
for every consensus protocol. Hence, we require the parties to terminate only with probability
1, termed in the literature as almost-surely terminating consensus.

I Definition 10 (Consensus). Let M be a finite message space and f be the number of
corrupted parties at the end of the execution. A protocol π where initially each party has
an input xi ∈ M and finally every party Pi upon termination has an output yi ∈ M, is a
consensus protocol, with respect to thresholds tc, tv, tt, if it satisfies the following:

Consistency. If f ≤ tc, then the output of every honest party is the same value. That
is, ∃y ∈M : ∀ honest Pi that output yi = y.
Validity. If f ≤ tv and every honest party has the same input value x ∈M, then the
output of every honest party Pi is x. That is, ∀ honest Pi that output yi = x.
Termination. If f ≤ tt, then with probability 1 eventually every honest party outputs
and terminates.

In the following, we present a multi-threshold consensus protocol with respect to thresholds
tc, tv and tt, where max{tc, tv}+ 2tt < n, 2tv + tt < n and tt < n/3. In the full version, we
also show that the bounds max{tc, tv} + 2tt < n and 2tv + tt < n are required. We leave
the feasibility of almost-surely multi-threshold consensus with tt ≥ n/3 as an open question.
However, in the full version we provide a construction that overcomes the n/3 bound for the
case where parties have access to a global coin.
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The protocol is an adaptation of Bracha’s consensus [6] protocol. The main idea of
Bracha’s consensus is to use a reliable broadcast primitive and build a correctness enforcement
scheme, where only messages that are intended by the protocol design are accepted. The only
difference in our protocol is that we plug our multi-threshold broadcast protocol described in
the previous section into the correctness enforcement scheme proposed by Bracha. We choose
to use a multi-threshold reliable broadcast Πts,ts,tt

rbc that achieves validity and consistency up
to ts = n− 2tt − 1 corruptions (which is achievable since ts + 2tt < n). Note that tt < n/3
implies that ts ≥ tt.

4.1 Multi-Threshold Correctness Enforcement
For completeness and readability of our protocols, we include a summary of the correctness
enforcement mechanism. Further details can be found in [6]. The following constructions
and proof techniques are very similar to [6] with the only difference that we plug our
multi-threshold broadcast protocol Πts,ts,tt

rbc . Furthermore, we assume ts ≥ tt.

Round-Based Asynchronous Protocols. We consider protocols that are composed by
rounds. In each round k, every party uses the multi-threshold broadcast protocol to send a
value to all parties. Subsequently, every party waits to receive a set S of the values (of size at
most n− tt) and computes a new value according to some function F k(·) for the next round.

Validation Sets. Each party Pi keeps for each round k a set of values Vki , called a validation
set, with the values that are broadcast in round k. Each value xi broadcasted in round k by
Pi is stored as (Pi, k, xi). When a value is broadcast by some party at round k + 1, every
party checks locally whether there exists a subset of values in Vki that explains the broadcast
value. That is, Vki is defined as follows:

For k = 1, (Pj , 1, xj) ∈ V1
i if xj is received by Pi from a multi-threshold broadcast

protocol with sender Pj at round 1.
For k > 1, (Pj , k, xj) ∈ Vki , if xj is received by Pi from a multi-threshold broadcast protocol
with sender Pj at round k, and there is a subset S ⊆ Vk−1

i such that xj = F k−1(S).

We say a party Pi validates a message xj in round k if (Pj , k, xj) ∈ Vki . The parties
update their V sets whenever they validate a message. If a party Pi outputs a value during
a broadcast protocol but the message is still not validated it is ignored in the protocol,
although it is stored for future validation.

Protocol A round with correctness enforcement

Code for the party Pi with input xi at round k

1. Multi-Threshold Broadcast(xi) to all the parties.
2. Wait until a set S of messages have been validated.
3. Set xi = F k(S).

We state a list of lemmas that are guaranteed from the correctness enforcement mechanism.
The proofs will appear in the full version of the paper.

I Lemma 11. If f ≤ ts, in every round k of the protocol the added values in the validation
sets of all honest parties are consistent. That is:

∀ honest Pi, Pj : ∀Pl : (Pl, k, xl) ∈ Vki ∧ (Pl, k, x̃l) ∈ Vkj =⇒ xl = x̃l
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I Lemma 12. If f ≤ ts and an honest sender Pi broadcasts (Pi, k, xi) in a round k of the
protocol, the validation sets of all honest parties contain only the sender’s value. That is:

∀ honest Pi, Pj : (Pi, k, xi) ∈ Vkj =⇒ Pi broadcast xi in round k.

I Lemma 13. If f ≤ tt every party will eventually go from round k to round k + 1.

4.2 Protocol
We describe the protocol, which is a generalization of Bracha’s consensus [6]. The protocol
executes in parallel the two sub-protocols ’Reaching agreement’ and ’Termination’.

Protocol Πtc,tv,tt
as−con

Input. Every party Pi holds input xi.
Variable. yi = ⊥.
Reaching agreement.

Code for the party Pi at phase k.
1. Πts,ts,tt

rbc (xi). Wait until n− tt messages are validated.
xi = majority of the validated elements.

2. Πts,ts,tt
rbc (xi). Wait until n− tt messages are validated.
If all of the validated messages have the same value x, xi = (propose, x)
Otherwise, keep the same xi.

3. Πts,ts,tt
rbc (xi). Wait until n− tt messages are validated.

a. If at least n − tt of the validated messages have the same value (propose, x), then
update yi = x and run the ’Reaching agreement code’ for only one more phase.

b. Else if at least tt + 1 of the validated messages have the same value (propose, x), then
xi = x.

c. Otherwise, choose 0 or 1 with probability 1/2 for xi (coin toss).
4. Go to phase k + 1.

Termination.
Upon updating yi, send (READY, yi) to all parties.
Upon receiving (READY, m′) messages from max{tc, tv} + 1 parties that agree on the
value m′, send (READY, m′) to all parties.
Upon receiving (READY, m′) from n− tt parties that agree on the value m′, output m′

and terminate.

I Lemma 14. If f ≤ ts, it is impossible for an honest party to propose 0 and an honest
party to propose 1 in the same phase k.

Proof. The proof is by contradiction. Suppose parties Pi and Pj propose 0 and 1, respectively,
in phase k. Thus in line 2 of phase k, Pi validated n − tt messages with value 0 and Pj
validated n − tt messages with value 1. Since n − 2tt > 0, it follows that Pi and Pj have
inconsistent messages in their validation sets, which contradicts Lemma 11. J

We say that a phase k is x-fixed (for x ∈ {0, 1}), if honest parties that starts phase k
validate only x as an input value broadcast by any party.

I Lemma 15. If f ≤ ts and an honest party Pi updates yi = x ∈ {0, 1} at some phase k,
phase k + 1 is x-fixed.

Proof. Suppose that some party Pi updates yi = x ∈ {0, 1} at phase k. Pi must have
validated at least n− tt proposals for x in step 3 of phase k. Let Pj be any party that starts
phase k+ 1. In phase k, since Pi validated n− tt proposals for x and tt < n/3, Pj must have
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validated at least tt + 1 for x. Moreover by Lemma 14, Pj does not validate any proposals
for x′ 6= x. So any Pj can only set its variable xj to x in step 3. Hence, no honest party can
validate x′ 6= x in the next phase as an input. Therefore, phase k + 1 is x-fixed. J

I Lemma 16. If a phase k is x-fixed then every honest party Pi that reaches step 3 of the
phase k updates yi = x at the end of the phase.

Proof. Suppose a phase k is x-fixed. Then, all honest parties validate only x as an input
value. Hence, every honest party can only propose x as their input. Consider a party Pi that
reaches step 3 of phase k. Clearly, Pi can only validate proposals with x. Hence, from line 3
of the reaching agreement part of the protocol we can see that Pi updates yi = x. J

I Lemma 17 (Liveness). If f ≤ tt and if no honest party updated yi, the parties will eventually
go from phase k to phase k + 1.

Proof. Immediate from Lemma 13. J

I Lemma 18. If f ≤ tt every honest party with probability 1 will update yi to the same
value.

Proof. First note that we assume tt ≤ ts. By Lemma 17, as long as no party updates yi,
honest parties don’t get stuck in any round. Every honest party that doesn’t update yi in
phase k, sets its value xi for the next phase either based on step 3(ii) or step 3(iii). Let Pi
be the first honest party that completed round 3k + 3. There are two cases:

Party Pi has validated at least one (propose, x). With probability p ≥ 1/2n−tt all honest
parties that toss a coin choose x. By Lemma 14, the remaining honest parties that set
their value deterministically, are forced to set their value to x.
Party Pi has validated no (propose, x). Since Pi validated n− tt messages and tt < n/3,
no other honest party Pj can validate more than tt values of the form (propose, x). Hence,
every honest party tosses a coin. The probability that every honest party tosses the same
value is again p ≥ 1/2n−tt .

Hence, in either case after each phase the probability that honest parties have the same
value is greater or equal then 1/2n−tt . If at some phase k every honest party has the same
value then it follows that in the next round there can be at most tt parties will input x̄ (the
ones that maliciously change the outcome of the local coin). However, by Lemma 15 (note
that we have tt ≤ ts) and since n− 2tt > tt, it follows that the majority of each subset of
size n− tt in the next round will result in x. Hence, next phase is x-fixed. By Lemma 16 it
follows that every honest party will update yi after that phase. Hence, after round k the
probability of not updating yi is (1− p)k. As k goes to infinity, the probability goes to 0. J

I Theorem 19. Let 0 ≤ tc, tv, tt < n. Πtc,tv,tt
as−con is an almost-surely terminating multi-threshold

consensus (see Definition 10) if max{tc, tv}+ 2tt < n, 2tv + tt < n and tt < n/3.

Proof. Validity. Suppose all honest parties have the same input x. In the first round, since
there are at most f ≤ tv, at most tv elements with value x̄ can be broadcast by corrupted
parties. By Lemma 15 (note that tv ≤ max{tc, tv} = ts) and since n − tt − tv > tv,
it follows that honest parties can only validate x as the outcome of the first round.
Hence, the first phase is x-fixed. Due to Lemma 16, it follows that every honest party
updates yi = x at the end of the first phase. Furthermore, by applying Lemma 15 and 16
recursively, one can easily see that once a phase is x-fixed it always remains so. Hence,
parties can never change the value. Furthermore, in the termination part of the protocol
it is not hard to see that READY messages are unique (see Section 3 for a detailed proof)
and contain only x. Hence, every honest party that outputs, outputs x.
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Consistency. Suppose some party Pi and Pj update different values yi = x and yj = x′

in phase k and k′ respectively. There are two cases:
1. k = k′. Since a party can update a value in phase k only if that value was proposed

in round k, it follows both x and x′ were proposed in phase k. By Lemma 14 this is
impossible.

2. k < k′. Since Pi updates yi in phase k then due to Lemma 15 phase k + 1 is x-fixed.
Similar to previous arguments, by applying Lemma 15 and 16 recursively, one can
easily see that once a phase is x-fixed it always remains so. It follows that all parties
can only update yi = x in the next phases.

This proves that the update of yi by all parties is unique. In return this implies that
READY messages are unique as well. By similar arguments as in Section 3, it is not hard
to see that the consistency is achieved also in the termination part of the protocol.
Almost-Surely Termination. From Lemma 18 it follows that with probability 1 every
honest party will update yi to the same value (say x). Since, after updating yi = x

parties take part only in one more round, with probability 1 every honest party will “get
out” of the infinite loop. By simply setting the message spaceM = {0, 1} one can easily
prove now termination similar to Section 3. It follows, like in multi-threshold broadcast
protocol, every party will eventually send the same (READY, x) with x ∈ {0, 1}. Hence
eventually there will be n− tt (READY, x) messages that agree on a value and thus at
least an honest party with probability 1 terminates. Again, similar to broadcast one can
see that if an honest party terminates, then every honest party eventually terminates.
Thus with probability 1 eventually everyone terminates. J

5 (1− ε) Multi-Threshold Consensus

The general idea in the previous section is to use randomness such that by chance the parties
reach agreement. Once they do, agreement is preserved. However, in the regime where
tt ≥ n/3, the following challenges arise. First, note that if tt ≥ n/3 and max{tc, tv}+2tt < n,
then max{tc, tv} < tt. As a consequence, there is a region where the multi-threshold broadcast
protocol only guarantees termination, but does not guarantee the consistency and validity
of the outputs. This is problematic, because the adversary can change the outputs of each
broadcast instance such that no messages are validated in the correctness enforcement scheme.
As a consequence, parties get stuck in a phase and never terminate. The second challenge is
with respect to the coin. If tt ≥ n/3, even when all honest parties obtain the same value
v as local coin, the adversary can schedule messages so that the majority decision among
n− tt values is inconsistent among the parties. Finally, as pointed out in [1], the correctness
proof for n/3 ≤ tt < n/2 is more subtle and requires reasoning about two consecutive
phases. Moreover, they show that the global-variant of Ben-Or doesn’t work for the case
n/3 ≤ tt < n/2.

We overcome the first challenge by plugging in a detectable broadcast primitive into the
correctness enforcement mechanism, which allows parties to eventually detect misbehavior
in the case where they obtain different values. The second challenge is resolved by cycling
through all sets S of tt + 1 parties, where only parties in S sample a random coin. This
way, if all parties in S are honest and chooses the same local coin, then everyone adopts the
same value. Finally, the last challenge is resolved by adding one round for each phase, which
allows to analyse the phases independently of each other.

OPODIS 2020
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With these techniques, we construct a (1 − ε) multi-threshold consensus protocol if
max{tc, tv} + 2tt < n and 2tv + tt < n, where termination holds with probability (1 − ε)
(instead of 1). The bounds are optimal (see the full version).In contrast to the almost-surely-
terminating version, it is possible to achieve this notion with tt ≥ n/3. The number of rounds
depends on the error ε. For negligible ε, the number of rounds is exponential in n.

I Definition 20 ((1−ε)-Consensus). The consistency and validity property of (1−ε)-consensus
are the same as in Definition 10. We only change the termination property.

Termination. If f ≤ tt, then with probability 1 − ε eventually every honest party
outputs and terminates.

5.1 Detectable Correctness Enforcement
As mentioned, if tt > max{tv, tc}, in the region where the adversary corrupts max{tv, tc} <
f ≤ tt, the multi-threshold broadcast does not guarantee any consistency among messages,
allowing the adversary to make parties reach a state where no messages are validated and
thus all honest parties get stuck. Instead, we use a detectable multi-threshold broadcast,
which guarantees consistent outputs when f ≤ max{tc, tv} as in multi-threshold broadcast,
but in addition allows parties to detect potential misbehavior if f ≤ tt. Note, however, that
we don’t require termination, i.e., parties may need to run forever. The protocol is based on
the one in Section 3, so we defer its description and analysis to the full version. Plugging
the detectable multi-threshold broadcast in the correctness enforcement results in detectable
correctness enforcement, where the properties of correctness enforcement hold or parties
detect Byzantine behavior.

I Definition 21 (Detectable Multi-Threshold Broadcast). LetM be a finite message space
and f be the number of corrupted parties. A protocol π, where initially the sender S has an
input message m ∈M and subsequently every recipient Ri ∈ R potentially outputs a message
mi ∈M and/or a detection flag DETECT, is a detectable multi-threshold broadcast protocol
with respect to thresholds tc, tv and tt, if it satisfies the following:

Consistency. If f ≤ tc, ∃m′ ∈M : ∀ honest Ri that output the message mi, the value
of mi = m′. Furthermore, no honest recipient Ri outputs the detection flag DETECT.
Validity. If f ≤ tv and the sender is honest, ∀ honest Ri that output the message mi,
the value of mi = m. Furthermore, no honest recipient Ri outputs the detection flag
DETECT.
Totality-or-Detection.
1. If f ≤ tt and an honest recipient outputs the message m′ ∈M then eventually every

honest recipient outputs the message m′ or every honest recipient outputs the detection
flag DETECT.

2. If f ≤ tt and the sender is honest, then eventually every honest recipient outputs the
message m or every honest recipient outputs the detection flag DETECT.

Notation. We say that “Pi detects Byzantine behaviour” to denote that Pi outputs the
detection flag DETECT in an execution of detectable multi-threshold broadcast. Note that
detectable multi-threshold broadcast guarantees that either all honest recipients eventually
output DETECT, or none of them does.

5.2 Common Coin
In the protocol from Section 4, parties toss a coin until they reach by chance agreement. If
tt ≥ n/3, the adversary can maliciously change the local coins for some of the parties and
break termination. We show a protocol that allows parties to output the same value, even if
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the adversary changes the outcome of the local coin of some of the parties. If tt < n/3, this
is easily done by allowing each party to broadcast a random value and choosing the majority
among the n− tt values that are received. For n/3 ≤ tt < n/2, one cannot take the majority
value. The idea is to let only a subset R of tt + 1 parties toss a local coin:

Protocol Coin(R), f ≤ tt < n/2,
∣∣R∣∣ = tt + 1

1. If Pi ∈ R: choose 0 or 1 with probability 1/2 and detectable-broadcast the outcome to
everyone.

2. Every party outputs the value of the first broadcast that output.

If all the parties in R are honest and toss the same coin, then every party outputs the
same value. During the consensus protocol, we cycle through all subsets of size tt + 1. If
tt < n/2, one of them contains only honest parties, and in that phase, if all parties toss the
same coin (we denote it a lucky phase), all honest parties obtain the same value.

5.3 Protocol
The protocol is very similar to the one in Section 4, but with four changes: 1) it is executed
a fixed number of phases, 2) the broadcast protocols are replaced by detectable broadcast
protocols (allowing parties for detectable correctness enforcement), 3) the coin is replaced by
the one in Section 5.2 and 4) a termination protocol which works even if tt > max{tc, tv}. In
addition, the protocol has a special initial majority round that allows for a simpler analysis
of validity and one lock-round for each phase that allows the deterministic value of a phase
to be fixed before the coins are revealed.

The intuition behind fixing the number of phases is that if the protocol runs indefinitely, it
may happen that some messages are never scheduled: even though the detectable broadcast
eventually detects misbehavior, such messages are never scheduled because there are always
other messages that the adversary can schedule1. However, this cannot happen if the number
of phases is fixed. Setting a “large enough” number of phases suffices for parties to reach
agreement with probability (1−ε), unless the adversary misbehaved in a detectable broadcast
protocol, in which case parties detect it and eventually reach agreement.

We call a batch B an iteration over all subsets of size tt + 1, i.e. B =
(
n

tt+1
)
. We set an

upper bound K + 1 on the number of batches (hence we have (K + 1)B phases in total), so
that the probability that parties are not in agreement after (K + 1)B phases is at most ε.

Protocol Πtc,tv,tt
(1−ε)−con

Input. Every party Pi holds input xi ∈ {0, 1}.
Variable. yi = ⊥.
Initial majority round // This initial round is necessary to ensure validity.

Detectable-Broadcast(xi) to every party. Wait until n− tt messages have been validated.
Set xi = majority of the n− tt validated messages.

Reaching agreement. Repeat at most K + 1 times: // K + 1 batches.
For every subset R of size

∣∣R∣∣ = tt + 1 do: // we call this loop one batch.
1. Detectable-Broadcast(xi) to every party. Wait until n− tt messages have been validated.

1 This is the main challenge that one needs to overcome to design an almost-surely terminating consensus
for tt ≥ n/3.
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If all validated messages have the same value x, update xi = (lock, x), else update
xi = (lock, ?).

2. Detectable-Broadcast(xi) to every party. Wait until n− tt messages have been validated.
If all messages are (lock, x) with the same x ∈ {0, 1}, update xi = (propose, x), else
update xi = (propose, ?).

3. Set ci = Coin(R).
4. Detectable-Broadcast(xi) to every party. Wait until n− tt messages have been validated.

If all messages are (propose, x) with x ∈ {0, 1}, update yi = x.
Else if at least one of the messages is (propose, x) with x ∈ {0, 1}, then xi = x.
Otherwise, set xi = ci.

Termination.
Upon updating yi, send (READY, yi) to all parties.
Upon detecting a Byzantine behaviour, send (READY, ⊥) to all parties.
Upon receiving (READY, d′) messages from max{tc, tv}+ 1 parties that agree on the value
m′ ∈ {0, 1,⊥} during the consensus protocol, send (READY, m′) to all parties.
Upon receiving (READY, m′) or (TERMINATE) from n− tt parties from which at least
max{tv, tc} + 1 are READY messages and (they all) agree on the value m′ ∈ {0, 1,⊥},
send (TERMINATE) to all recipients, output m′ and terminate.

A formal analysis of the protocol can be found in the full version of the paper. Intuitively,
if f ≤ max{tc, tv}, correctness enforcement ensures the same properties as in the protocol
Πtc,tv,tt

as−con, making the proofs of validity and consistency similar to those. However, the
termination property involves a bit more careful analysis. The idea is that either each honest
party Pi updates to the same value yi = y, or Byzantine behavior is detected. This is because
with high probability, there is a phase where honest parties reach agreement by chance (they
obtain the same value from the coin, and the coin coincides with the deterministic value of
that phase), unless the adversary tampered the outputs from a detectable broadcast protocol
in which case it will eventually be detected. As a result, one can argue that there is an honest
party that terminates (every honest party eventually sends the same READY message),
which in turn implies that eventually everyone terminates by a similar argument as for the
broadcast protocol in Section 3.
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Abstract

In the past few years, many Byzantine-tolerant distributed machine learning (DML) algorithms have
been proposed in the point-to-point communication model. In this paper, we focus on a popular
DML framework – the parameter server computation paradigm and iterative learning algorithms
that proceed in rounds, e.g., [11, 8, 6]. One limitation of prior algorithms in this domain is the high
communication complexity. All the Byzantine-tolerant DML algorithms that we are aware of need to
send n d-dimensional vectors from worker nodes to the parameter server in each round, where n is
the number of workers and d is the number of dimensions of the feature space (which may be in the
order of millions). In a wireless network, power consumption is proportional to the number of bits
transmitted. Consequently, it is extremely difficult, if not impossible, to deploy these algorithms in
power-limited wireless devices. Motivated by this observation, we aim to reduce the communication
complexity of Byzantine-tolerant DML algorithms in the single-hop radio network [1, 3, 14].

Inspired by the CGC filter developed by Gupta and Vaidya, PODC 2020 [11], we propose
a gradient descent-based algorithm, Echo-CGC. Our main novelty is a mechanism to utilize the
broadcast properties of the radio network to avoid transmitting the raw gradients (full d-dimensional
vectors). In the radio network, each worker is able to overhear previous gradients that were
transmitted to the parameter server. Roughly speaking, in Echo-CGC, if a worker “agrees” with
a combination of prior gradients, it will broadcast the “echo message” instead of the its raw local
gradient. The echo message contains a vector of coefficients (of size at most n) and the ratio of
the magnitude between two gradients (a float). In comparison, the traditional approaches need
to send n local gradients in each round, where each gradient is typically a vector in a ultra-high
dimensional space (d � n). The improvement on communication complexity of our algorithm
depends on multiple factors, including number of nodes, number of faulty workers in an execution,
and the cost function. We numerically analyze the improvement, and show that with a large number
of nodes, Echo-CGC reduces 80% of the communication under standard assumptions.
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1 Introduction

Machine learning has been widely adopted and explored recently [23, 16]. Due to the
exponential growth of datasets and computation power required, distributed machine learning
(DML) becomes a necessity. There is also an emerging trend [21, 13] to apply DML in power-
limited wireless networked systems, e.g., sensor networks, distributed robots, smart homes,
and Industrial Internet-of-Things (IIoT), etc. In these applications, the devices are usually
small and fragile, and susceptible to malicious attacks and/or malfunction. More importantly,
it is necessary to reduce communication complexity so that (over-)communication does not
drain the device battery. Most prior research on fault-tolerant DML (e.g., [8, 4, 11, 6]) has
focused on the use cases in clusters or datacenters. These algorithms achieve high resilience
(number of faults tolerated), but also incur high communication complexity. As a result, most
prior Byzantine-tolerant DML algorithms are extremely difficult, if not impossible, to be
deployed in power-limited wireless networks.

Motivated by our observations, we aim to design a Byzantine DML algorithm with
reduced communication complexity. We consider wireless systems that are modeled as a
single-hop radio network, and focus on the popular parameter server computation paradigm
(e.g., [11, 8, 6]). We propose Echo-CGC, and prove its correctness under typical assumptions
[4, 8]. For the communication complexity, we formally analyze the expected number of bits
that need to be sent from workers to the parameter server. The extension to multi-hop radio
network is left as an interesting future work.

Recent Development in Distributed Machine Learning. Distributed Machine Learning
(DML) is designed to handle a large amount of computation over big data. In the parameter
server model, there is a centralized parameter server that distributes the computation tasks to
n workers. These workers have the access to the same dataset (that may be stored externally).
Similar to [4, 11, 6], we focus on the synchronous gradient descent DML algorithms, where the
server and workers proceed in synchronous rounds. In each round, each worker computes a
local gradient over the parameter received from the server, and the server then aggregates the
gradients collected from workers, and updates the parameter. Under suitable assumptions,
prior algorithms [4, 11, 6] converge to the optimal point in the d-dimensional space Rd even
if up to f workers may become Byzantine faulty.

To our knowledge, most Byzantine-tolerant DML or distributed optimization algorithms
focused on the case of clusters and datacenters, which are modeled as a point-to-point network.
For example, Reference [6], Krum [4], Kardam [7], and ByzSGD [8] focused on the stochastic
gradient descent algorithms under several different settings (synchronous, asynchronous,
and distributed parameter server). Reference [20, 11, 19] focused on the gradient descent
algorithms for the general distributed optimization framework. Zeno [24] uses failure detection
to improve the resilience. None of these works aimed to reduce communication complexity.

Another closely related research direction is on reducing the communication complexity
of non-Byzantine-tolerant DML algorithms, e.g., [15, 13, 22]. These algorithms are not
Byzantine fault-tolerant, and adopt a completely different design. For example, reference [15]
utilizes relaxed consistency (of the underlying shared data), reference [22] discards coordinates
(of the local gradients) aggressively, and reference [13] uses intermediate aggregation. It is not
clear how to integrate these techniques with Byzantine fault-tolerance, as these approaches
reduce the redundancy, making it difficult to mask the impact from Byzantine workers.
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Single-Hop Radio Network. We consider the problem in a single-hop radio network, which
is a proper theoretical model for wireless networks. Following [1, 3, 14], we assume that
single-hop wireless communication is reliable and authenticated, and there is no jamming nor
spoofing. Moreover, nodes follow a specific TDMA schedule so that there is no collision. In
Section 2.1, we briefly argue why such an assumption is realistic to model wireless communi-
cation. In the single-hop radio network model, we aim to minimize the total number of bits
to be transmitted in each round. If we directly adapt prior gradient descent-based algorithms
[4, 11] to the radio network model, then each worker needs to broadcast a vector of size d,
where d is the number of dimensions of the feature space. In practical applications (e.g.,
[9, 13]), d might be in the order of millions, and the gradients may require a few GBs. Since
power consumption is proportional to the communication complexity in wireless channel,
prior Byzantine DML algorithms are not adequate for power-limited wireless networks..

Main Contributions. Inspired by the CGC filter developed by Gupta and Vaidya, PODC
2020 [11], we propose a gradient descent-based algorithm, Echo-CGC, for the parameter
server model in the single-hop radio network. Our main observation is that since workers can
overhear gradients transmitted earlier, they can use this information to avoid sending the raw
gradients in some cases. Particularly, if a worker “agrees” with some reference gradient(s)
transmitted earlier in the same round, then they send a small message to “echo” with the
reference gradient(s). The size of the echo message (O(n) bits) is negligible compared to the
raw gradient (O(d) bits), since in typical ML applications, d� n.

Our proof is more sophisticated than the one in [11], even though Echo-CGC is inspired
by the CGC filter. The reason is that the “echo message” does not necessarily contain
worker i’s local gradient; instead, it can be used to construct an approximate gradient,
which intuitively equals a combined gradients between i’s local gradients and the gradients
broadcast by previous workers. We need to ensure that such an approximation does not affect
the aggregation at the server. Moreover, CGC filter [11] works on deterministic gradients –
each worker computes the gradient of its local cost function using the full dataset. In our
case, each worker computes a stochastic gradient, a gradient over a small random data batch.
We prove that with appropriate assumptions, Echo-CGC converges to the optimal point.

Echo-CGC is correct under the same set of assumptions in prior work [4]; however, there is
an inherent trade-off between resilience, the proven bound on the communication complexity
reduction, and the cost function. Fix the cost function. We derive necessary conditions on n
so that Echo-CGC is guaranteed to perform better. We also perform numerical analysis to
understand the trade-off. In general, Echo-CGC saves more and more communication if f/n
becomes smaller and smaller. Moreover, our algorithm performs better when the variance of
the data is relatively small. For example, our algorithm tolerates 10% of faulty workers and
saves over 75% of communication cost when standard deviation of computed gradients is less
than 10% of the true gradient.

2 Preliminaries

In this section, we formally define our models, and introduce the assumptions and notations.

2.1 Models
Single-Hop Radio Network. We consider the standard radio network model in the literature,
e.g., [1, 3, 14]. In particular, the underlying communication layer ensures the reliable local
broadcast property [3]. In other words, the channel is perfectly reliable, and a local broadcast

OPODIS 2020



7:4 Echo-CGC: A Communication-Efficient Byzantine DML

is correctly received by all neighbors. As noted in [1, 3], this assumption does not typically
hold in the current deployed wireless networks, but it is possible to realize such a property
with high probability in practice with the help from the MAC layer [2] or physical layer [17].

In our system, nodes can be uniquely identified, i.e., each node has a unique identifier. We
assume that a faulty node may not spoof another node’s identity. The communication network
is assumed to be single-hop; that is, each pair of nodes are within the communication range
of each other. Moreover, time is divided into slots, and each node proceeds synchronously.
Message collision is not possible because of the nodes follow a pre-determined TDMA schedule
that determine the transmitting node in each slot and the transmission protocol is jam-
resistant. Each slot is assumed to be large enough so that it is possible for a node to transmit
a gradient. We also assume that each communication round (or communication step) is
divided into n slots, and the TDMA schedule assigns each node to a unique slot. For ease of
discussion, node i is scheduled to transmit at slot i.

Stochastic Gradient Descent and Parameter Server. In this work, we focus on the
Byzantine-tolerant distributed Stochastic Gradient Descent (SGD) algorithms, which are
popular in the optimization and machine learning literature [4, 8, 11, 5]. Given a cost function
Q, the (sequential) SGD algorithm outputs an optimal parameter w∗ such that

w∗ = argmin
w∈Rd

Q(w) (1)

An SGD algorithm executes in an iterative fashion, where in each round t, the algorithm
computes the gradient of the cost function Q at parameter wt and updates the parameter
with the gradient.

Synchronous Parameter Server Model: Computation of gradients is typically expensive
and slow. One popular framework to speed up the computation is the parameter server
model, in which the parameter server distributes the computation tasks to n workers and
aggregates their computed gradients to update the parameter in each round. Following the
convention, we will use node and worker interchangeably.

We assume a synchronous system, i.e., the computation and communication delays are
bounded, and the server and workers know the bound. Consequently, if the server does not
receive a message from worker i by the end of some round, then the server identifies that
worker i is faulty.

Formally speaking, a distributed SGD algorithm in the parameter server model proceeds
in synchronous rounds, and executes the following three steps in each round t:
1. The parameter server broadcasts parameter wt to the workers.
2. Each worker j randomly chooses a random data batch ξtj from the dataset (shared by all

the workers) and computes an estimate, gtj , of the gradient ∇Q(wt) of the cost function
Q using ξtj and wt.

3. The server aggregates estimated gradients from all workers and updates the parameter
using the gradient descent approach with step size η:

wt+1 = wt − η
n∑
j=1

gtj (2)

Fault Model and Byzantine SGD. Following [11, 4, 6], our system consists of n workers,
up to f of which might be Byzantine faulty. We assume that the central parameter server is
always fault-free.
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Byzantine workers may be controlled by an omniscient adversary which has the knowledge
of the current parameter (at the server) and the local gradient of all the other workers, and
may have arbitrary behaviors. They can send arbitrary messages. However, due to the
reliable local broadcast property of the radio network model, they cannot send inconsistent
messages to the server and other workers. They also cannot spoof another node’s identity.
Our goal is therefore to design a distributed SGD algorithm that solves Equation (1) in the
presence of up to f Byzantine workers.

Workers that are not Byzantine faulty are called fault-free workers. These workers follow
the algorithm specification faithfully. For a given execution of the algorithm, we denote H as
the set of fault-free workers and B as the set of Byzantine workers. For brevity, we denote
h = |H| and b = |B|; hence, we have b ≤ f and h ≥ n− f .

Communication Complexity. We are interested in minimizing the total number of bits that
need to be transmitted from workers to the parameter server in each round. Prior algorithms
[11, 4] transmit n gradients in a d-dimensional space in each round, since each node needs to
transmit its local gradient to the centralized server. Typically, each gradient consists of d
floats or doubles (i.e., a single primitive floating point data structure for each dimension).

2.2 Assumptions and Notations
We assume that the cost function Q satisfies some standard properties used in the literature
[4, 8, 6], including convexity, differentiability, Lipschitz smoothness, and strong convexity.
Following the convention, we use 〈a, b〉 to represent the dot product of two vectors a and b
in the d-dimensional space Rd.

I Assumption 1 (Convexity and smoothness). Q is convex and differentiable.

I Assumption 2 (L-Lipschitz smoothness). There exists L > 0 such that for all w,w′ ∈ Rd,

‖∇Q(w)−∇Q(w′)‖ ≤ L‖w − w′‖ (3)

I Assumption 3 (µ-strong convexity). There exists µ > 0 such that for all w,w′ ∈ Rd,

〈∇Q(w)−∇Q(w′), w − w′〉 ≥ µ‖w − w′‖2 (4)

We also assume that the random data batches are independently and identically distributed
from the dataset. Before stating the assumptions, we formally introduce the concept of
randomness in the framework. Similar to typical stochastic gradient descent algorithms, the
only randomness is due to the random data batches ξtj sampled by each fault-free worker
j ∈ H in each round t, which further makes gtj as well as wt+1 non-deterministic. In the case
when a worker uses the entire dataset to train model, gtj = ∇Q(wt). Hence, the result is
deterministic, i.e., each fault-free worker derives the same gradient. In practice, data batch
is a small sample of the entire data set.1

Formally speaking, we denote an operator EΞt(· | wt,GtB) as the conditional expectation
operator over the set of random batches Ξt = {ξtj , j = 1, 2, . . . , n} in round t given (i) the
parameter wt, and (ii) the set of Byzantine gradients GtB = {gtj : j ∈ B}. This conditional
expectation operator allows us to treat wt, Q(wt), and ∇Q(wt) as constants, as well as the

1 Reference [11] works on a different formulation in which each worker may have a different local cost
function.
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Byzantine gradients. This is reasonable because (i) we have the knowledge about Q and wt
given an execution, and (ii) the Byzantine gradients are arbitrary, and do not depend on
the data batches. From now on, without further specification, we abbreviate the operator
EΞt(· | wt,GtB) as E.

Below we present two further assumptions of local stochastic gradient gtj at each fault-free
worker j. Similar to [4, 8], we rely on the two following assumptions for correctness proof.

I Assumption 4 (IID Random Batches). For all j ∈ H and t ∈ N,

E(gtj) = ∇Q(wt) (5)

I Assumption 5 (Bounded Variance). For all j ∈ H and t ∈ N,

E‖gtj −∇Q(wt)‖2 ≤ σ2‖∇Q(wt)‖2 (6)

Notation. We list the most important notations and constants used in our algorithm and
analysis in the following table.

Table 1 Notations and constants used in this paper.

H set of fault-free workers; h = |H|
B set of faulty workers; b = |B|
t round number, t = 0, 1, 2, . . .
w∗ optimal solution to Q, i.e., w∗ = argminw∈Rd Q(w)
wt parameter in round t
gt

j estimated gradient of j in round t
g̃t

j “reconstructed” gradient of j by server in round
ĝt

j gradient of j in round t after applying the CGC filter
η fixed step size as in Equation (2)
L Lipschitz constant
µ strong convexity constant
r deviation ratio, a key parameter in our algorithm
k∗ constant defined in Lemma 2, k∗ ≈ 1.12

3 Our Algorithm: Echo-CGC

Our algorithm is inspired by Gupta and Vaidya [11]. Specifically, we integrate their CGC
filter with a novel aggregation phase. Our aggregation mechanism utilizes the broadcast
property of the radio network to improve the communication complexity. In the CGC
algorithm [11], each worker needs to send a d-dimensional gradient to the server, whereas in
our algorithm, some workers only need to send the “echo message” which is of size O(n) bits.
Note that in typical machine learning applications, d� n.

We design our algorithm for the synchronous parameter server model, so the algorithm is
presented in an iterative fashion. That is, each worker and the parameter server proceed
in synchronous rounds, and the algorithm specifies the exact steps for each round t. Our
Algorithm, Echo-CGC, is presented in Algorithm 1. The algorithm uses the notations and
constants summarized in Table 1.
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Algorithm Description

Initially, the parameter server randomly generates an initial parameter w0 ∈ Rd. Each round
t ≥ 0 consists of three phases: (i) computation phase, (ii) communication phase, and (iii)
aggregation phase. Echo-CGC takes the following inputs: step size η, deviation ratio r,
number of workers n, and maximum number of tolerable faults f . The exact requirements
on the values of these inputs will become clear later. For example, n, f, r need to satisfy the
bound derived in Lemma 3. More discussion will be presented in Section 4.3.

Computation Phase. In the computation phase of round t, the server broadcasts wt to the
workers. Each worker j then computes the local stochastic gradient gtj = ∇Qj(wt) using
wt and its random data batch ξtj . Since we assume the parameter server is fault-free, each
worker receives the identical wt. The local gradient is stochastic, because each worker uses a
random data batch to compute the local gradient gtj .

Communication Phase. In the communication phase, each worker needs to send the
information regarding to its local gradient to the parameter server. This phase is our main
novelty, and different from prior algorithms [11, 4, 6]. We utilize the property of the broadcast
channel to reduce the communication complexity. As mentioned earlier, the communication
phase of round t is divided into n slots t1, . . . , tn. Without loss of generality, we assume that
each worker j is scheduled to broadcast its information in slot tj (of round t). Note that we
assume that the underlying physical or MAC layer is jamming-resistant and reliable; hence,
each fault-free worker can reliably broadcast the information to all the other nodes.

Steps for Worker j. Each worker j stores a set of gradients that it overhears in round t.
Denote by Rj the set of stored gradients. By assumption, Rj consists of gradients gti for
i < j, when at the beginning of slot tj . Upon receiving a gradient gti (in the form of a vector
in Rd), worker j stores it to Rj if gti is linearly independent with all existing gradients in Rj .
In the slot tj , worker j computes the “echo gradient” using vectors stored in Rj . Specifically,
worker j takes the following steps:

It expresses Rj as Rj = {gti1 , . . . , g
t
i|Rj |
} and constructs a matrix Aj ∈ Rd×|Rj | as

Atj =
[
gti1 gti2 · · · gti|Rj |

]
It then computes the Moore-Penrose inverse (M-P inverse in short) of Atj , defined as

(Atj)+ = ((Atj)TAtj)−1(Atj)T ,

where AT is the transpose of matrix A. The existence of the M-P inverse is guaranteed.
Intuitively this is because all columns of Atj are linearly independent by construction.
The formal proof is presented in our full paper [25].
Next, worker j computes a vector xtj ∈ R|Rj | using the M-P inverse:

xtj = (Atj)+gtj ,

where gtj is the local stochastic gradient of Q computed by j in the computation phase.
Note that xtj is of size O(n), since Rj contains at most n elements.
Finally, it computes the “echo gradient” as

(gtj)∗ = Atjx
t
j

Mathematically, (gtj)∗ is the projection of gtj onto the span of vectors in Rj , i.e., the
closest vector to gtj in the span of Rj .
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Next, worker j checks whether the following inequality holds where (gtj)∗ is the echo
gradient, gtj the local stochastic gradient, and r the deviation ratio.

‖(gtj)∗ − gtj‖ ≤ r‖gtj‖ (7)

Worker j performs one of the two actions depending on the result of Inequality (7).
If Inequality (7) holds, then j sends the echo message (‖gtj‖/(‖gtj)∗‖, xtj , Itj) to the server,
where Itj = {i1, . . . , i|Rj |} is a sorted list of worker IDs whose gradients are stored in Rj .
Otherwise, worker j broadcasts the raw gradient gtj to server and all the other workers.

Steps for Parameter Server: The parameter server uses a vector G to store the gradients
from workers. Specifically, in each round t, for each worker j, the server computes g̃tj and
stores it as the j-th element of G. At the beginning of round t, every element G[j] is initialized
as an empty placeholder ⊥. During the communication phase, the parameter server takes
two possible actions upon receiving a message from worker j:

If the message is a vector, then the server stores g̃tj = gtj in G[j].
Otherwise, the message is a tuple (k, x, I). The server then does the following:

If there exists some i ∈ I such that G[i] =⊥ (i.e., the server has not received a message
from worker i), then due to the reliable broadcast property, the server can safely
identify j as a Byzantine worker. By convention, we let the server store g̃tj = ~0, the
zero vector in Rd, in G[j].
Otherwise, denote the matrix AI as AI =

[
G[i1], . . . , G[i|Rj |]

]
where I = {i1, . . . , i|Rj |},

and the server stores g̃tj as g̃tj = kAIx in G[j].

Aggregation Phase. The final phase is identical to the algorithm in [11], in which the server
updates the parameter using the CGC filter. First, the server sorts the stored gradients Gt in
the increasing order of their Euclidean norm and relabel the IDs so that ‖g̃ti1‖ ≤ · · · ≤ ‖g̃

t
in
‖.

Then the server applies the CGC filter as follows:

ĝtj =


‖g̃t

in−f
‖

‖g̃t
j
‖ g̃tj , j ∈ {in−f+1, . . . , in}

g̃tj , j ∈ {i1, . . . , in−f}
(8)

Finally, the server aggregates the gradients by gt =
∑n
j=1 ĝ

t
j and updates the parameter by

wt+1 = wt − ηgt, where η is the fixed step size.

4 Convergence Analysis

In this section, we prove the convergence of our algorithm Echo-CGC. The proof is more
complicated than the one in [11], even though both algorithms use the CGC filter. This is
mainly due to two reasons: (i) we use stochastic gradient, whereas [11] uses a deterministic
gradient; and (ii) echo messages only results in an approximate gradient (i.e., the echo
gradient which may be deviated from the local stochastic gradient by a ratio r). Intuitively,
in addition to the Byzantine tampering, we need to deal with non-determinism from stochastic
gradients and noise from echo messages.

4.1 Convergence Rate Analysis
In this part, we first analyze the convergence rate ρ, which is a constant defined later in
Equation (13). Recall a few notations that h = |H| and b = |B|, where given the execution,
H is the set of fault-free workers and B is the set of Byzantine workers. Also recall that
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Algorithm 1 Algorithm Echo-CGC.

1: Parameters:
2: η > 0 is the step size defined in Equation (2)
3: r > 0 is the deviation ratio
4: n, f, r satisfy the resilience bounds stated in Lemma 3
5: Initialization at server: w0 ← a random vector in Rd
6: for t← 0 to ∞ do
7: /* Computation Phase */
8: At server: broadcast wt to all workers; G← a ⊥-vector of length n
9: At worker j:
10: receive wt from the server
11: gtj ← ∇Qj(wt); Rj ← {} . local stochastic gradient at worker j

12: /* Communication Phase */
13: for i← 1 to n do
14: (i) At worker i:
15: if |Ri| = 0 then
16: broadcast gti
17: else
18: A← [g]g∈Rj

; A+ ← (ATA)−1AT ; x← A+gti . Ax is the echo gradient
19: if ‖Ax− gti‖ ≤ r‖gti‖ then
20: I ← {i′ : gti′ ∈ Rj} in an ascending order
21: broadcast (‖gti‖/‖Ax‖, x, I) . echo message
22: else
23: broadcast gti . raw local gradient
24: end if
25: end if
26: (ii) At worker j > i:
27: if j receives vector gti from worker i then
28: A← [g]g∈Rj ; A+ ← (ATA)−1AT

29: if gti is linearly independent with Rj (i.e., AA+gti 6= gti) then
30: Ri ← Ri ∪ {gti}
31: end if
32: end if

(iii) At server:
33: if it receives a vector gtj from worker j then
34: G[j]← gtj . j transmitted a raw gradient
35: else if it receives an echo message (k, x, I) from worker j then
36: if ∃i ∈ I such that G[i] =⊥ then
37: G[j]← ~0 . j is a Byzantine worker
38: else
39: AI ← [g̃ti ]i∈I , G[j]← kAIx . j transmitted an echo message
40: end if
41: end if
42: end for
43: /* Aggregation Phase (applying CGC filter from [11]) */
44: gt ←

∑
g∈G CGC(g) . CGC(·) defined in Equation (8)

45: wt+1 ← wt − η · gt . η defined in Equation (2)
46: end for
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L and µ are the constants defined in the Assumption 2 and 3, respectively; σ defined in
Assumption 5; and r is the deviation ratio used in Echo-CGC. To derive ρ, we need to define
series of constants based on the given parameters of n, f, h, b, L, µ, r, and σ.

We first define a constant β as

β = (n− 2f)µ− r(1 + σ)L
1 + r

− b(1 + khσ)L, (9)

where kx is defined as

kx = 1 + x− 1√
2x− 1

, ∀x ≥ 1. (10)

We then define a constant γ as

γ = nL2 (h(1 + σ2) + bαh
)
, (11)

where

αx = xσ2 + (1 + khσ)2, ∀x ≥ 1. (12)

Finally, we define the convergence rate ρ using β and γ as follows:

ρ = 1− 2βη + γη2. (13)

We will prove that under some standard assumptions, the convergence rate ρ is in the
interval [0, 1). We first present several auxiliary lemmas. Due to page limit, most proofs are
presented in the full paper [25].

I Lemma 1. Let L, µ > 0 be the Lipschitz constant and strong convexity constant defined in
Assumption 2 and 3, respectively. Then we have µ ≤ L.

I Lemma 2. Denote k∗ = supx{kx/
√
x : x ≥ 1}. Then k∗ <∞, and numerically k∗ ≈ 1.12.

Equivalently, kh ≤ k∗
√
h for all h ≥ 1.

I Lemma 3. Assume nµ− (3 + knσ)fL > 0, then there exists r > 0 that satisfies equation
below.

r <
nµ− (3 + knσ)fL

(n− 2f)(1 + σ)L+ (1 + knσ)fL. (14)

Moreover, if r > 0 satisfies Equation (14), then β > 0.

Lemma 3 implies that we need to bound σ for convergence. In general, Echo-CGC is
correct if σ = o(logn). For brevity, we make the following assumption to simplify the proof of
convergence and the analysis of communication complexity. We stress that this assumption
can be relaxed using basically the same analysis with a denser mathematical manipulation.

I Assumption 6. Let σ be the variance bound defined in Assumption 5. We further assume
that σ < 1√

n
.

Under Assumption 6, we can narrow down the bound of r in Lemma 3 to loosen our
assumption on fault tolerance.

I Lemma 4. Assume nµ− (3 + k∗)fL > 0 (k∗ ≈ 1.12), then there exists r > 0 satisfying
Equation (15) such that β > 0.

r <
nµ− (3 + k∗)fL

(n− 2f)(1 + σ)L+ (1 + k∗)fL. (15)

I Theorem 5. Assume nµ− (3 + k∗)fL > 0 and r is a value that satisfies Inequality (15).
Then we can find an η > 0 such that η < 2β/γ, which in turn makes ρ ∈ [0, 1).
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4.2 Proof of Convergence
Next, we prove the convergence of our algorithm. That is, Echo-CGC converges to the
optimal point w∗ of the cost function Q. We prove the convergence under the assumption
that nµ− (3 + k∗)fL > 0. Due to page limit, we present key proofs here, and the rest can
be found in [25].

Recall our definition of the conditional expectation E = EΞt(· | wt, GtB) introduced in
Section 2.2. Before proving the main theorem, we introduce some preliminary lemmas.

I Lemma 6. For all t and for all j ∈ H,

E‖gtj‖ ≤ (1 + σ)‖∇Q(wt)‖. (16)

I Lemma 7. Recall that ĝtj is the gradient after applying the CGC filter. For all t and for
all j ∈ {1, 2, . . . , n},

E‖ĝtj‖ ≤ (1 + khσ)‖∇Q(wt)‖. (17)

The proof of Lemma 7 is based on Lemma 6 and the following prior results: Gumbel
[10] and Hartley and David [12] proved that given identical means and variances (µ, σ2), the
upper bound of the expectation of the largest random variable among n independent random
variables is µ+ σ(n−1)√

2n−1 .

I Lemma 8. Following the same setup, for all t and for all j ∈ {1, 2, . . . , n},

E‖ĝtj‖2 ≤ αh‖∇Q(wt)‖2. (18)

The proof of Lemma 8 is based on Lemma 6 and the following result: Papadatos [18]
proved that for n i.i.d. random variables X1 ≤ X2 ≤ · · · ≤ Xn with finite variance σ2, the
maximum variance of Xn is bounded above by nσ2.

Lemma 7 and Lemma 8 provide upper bounds on E‖ĝtj‖ and E‖ĝtj‖2. These two bounds
allow us to bound the impact of bogus gradients transmitted by a faulty node j. If j
transmitted an extreme gradient, it would be dropped by the CGC filter; otherwise, these
two bounds essentially imply that the filtered gradient ĝtj has some nice property even if j is
faulty. For fault-free gradients, Lemma 6 provides a better bound.

I Theorem 9. Assume that nµ− (3 + k∗)fL > 0. We can find r > 0 that satisfies Inequality
(15) and η > 0 such that η < 2β/γ. Echo-CGC with the chosen r and η will converge to the
optimal parameter w∗ as t→∞.

Proof. Our ultimate goal is to show that the sequence {E‖wt − w∗‖2}∞t=0 converges to 0.
Recall that the aggregation rule of the algorithm is wt+1 = wt − ηgt. Thus, we obtain that

E‖wt+1 − w∗‖2 ≤ E‖wt − w∗ − ηgt‖2

= E‖wt − w∗‖2︸ ︷︷ ︸
A

− 2ηE
〈
wt − w∗, gt

〉︸ ︷︷ ︸
B

+ η2E‖gt‖2︸ ︷︷ ︸
C

. (19)

Since wt is known, wt can be treated as a constant, and E‖wt − w∗‖2 = ‖wt − w∗‖2.
Part C: In [25], we show that the following inequality holds.

E‖gt‖2 ≤ γ‖wt − w∗‖2. (20)
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Part B: By linearity of inner product,〈
wt − w∗, gt

〉
=
∑
j∈H

〈
wt − w∗, ĝtj

〉
+
∑
j∈B

〈
wt − w∗, ĝtj

〉
. (21)

First, by Schwarz Inequality,
〈
wt − w∗, ĝtj

〉
≥ −‖wt −w∗‖‖ĝtj‖; by Lemma 7 and L-Lipschitz

assumption, E‖ĝtj‖ ≤ (1 + khσ)L‖wt − w∗‖. Thus,

E
〈
wt − w∗, ĝtj

〉
≥ −(1 + khσ)L‖wt − w∗‖2, ∀j ∈ B. (22)

Next, observe that by our algorithm, for each j ∈ H, the received gradient before CGC filter
g̃tj satisfies (i) ‖g̃tj‖ = ‖gtj‖ and (ii) g̃tj = aj(gtj+∆gtj), for some constant aj = ‖gtj‖/‖gtj+∆gtj‖
and a vector ∆gtj such that ‖∆gtj‖ ≤ r‖gtj‖. This implies aj ≥ 1/(1 + r). Therefore,

E
〈
wt − w∗, g̃tj

〉
= E

〈
wt − w∗, aj(gtj + ∆gtj)

〉
≥ 1

1 + r

(〈
wt − w∗,Egtj

〉
+ E

〈
wt − w∗,∆gtj

〉)
, ∀j ∈ H. (23)

By Assumption 4, Egtj = ∇Q(wt); by strong convexity,〈
wt − w∗,∇Q(wt)

〉
≥ µ‖wt − w∗‖2.

By Schwarz inequality, E
〈
wt − w∗,∆gtj

〉
≥ −‖wt − w∗‖E‖∆gtj‖; and E‖∆gtj‖ ≤ rE‖gtj‖. By

Lemma 6 and L-Lipschitz assumption, E‖gtj‖ ≤ (1 + σ)L‖wt − w∗‖. Thus,

E
〈
wt − w∗,∆gtj

〉
≥ −r(1 + σ)L‖wt − w∗‖2.

Upon substituting these results into Equation (23), we obtain that

E
〈
wt − w∗, g̃tj

〉
≥ µ− r(1 + σ)L

1 + r
‖wt − w∗‖2, ∀j ∈ H. (24)

We partition H into two parts: H1 = H ∩ {i1, . . . , in−f} and H2 = H \ H1. For each
j ∈ H1, the received gradient is unchanged by CGC filter, i.e., ĝtj = g̃tj . Therefore, Equation
(24) also holds for ĝtj , for all j ∈ H1.

The case of H2 is similar. Note that for each j ∈ H2, the gradient g̃tj is scaled down to
ĝtj by CGC filter. In other words, there exists some constant a′j ≥ 0 such that ĝtj = a′j g̃

t
j .

Therefore, by Equation (23),

E
〈
wt − w∗, ĝtj

〉
= E

〈
wt − w∗, a′j g̃tj

〉
= a′jE

〈
wt − w∗, g̃tj

〉
, ∀j ∈ H2.

We can verify that if by assumption that r > 0 satisfies Equation (15), then µ−r(1+σ)L > 0;
and Equation (23) implies that E

〈
wt − w∗, g̃tj

〉
≥ 0. Therefore,

E
〈
wt − w∗, ĝtj

〉
≥ 0, ∀j ∈ H2. (25)

Note that |H1| ≥ h− 2f . Upon substituting Equation (22), (24), (25) into Equation (21),
we obtain that

E
〈
wt − w∗, gt

〉
≥
(

(n− 2f)µ− r(1 + σ)L
1 + r

− b(1 + khσ)L
)
‖wt − w∗‖2. (26)

By definition of β in Equation (9), this implies E 〈wt − w∗, gt〉 ≥ β‖wt − w∗‖2.
Conclusion: Upon combining part A,B and C, by definition of ρ in Equation (13),

E‖wt+1 − w∗‖2 ≤ ρ‖wt − w∗‖2, ∀t = 0, 1, 2, . . .

Recall the definition of the conditional expectation operator E. This implies that

E(‖wt − w∗‖2 | w0,G0
B, . . . ,GtB) ≤ ρt‖w0 − w∗‖2

By Theorem 5, ρ ∈ (0, 1). Therefore, as t→∞, ‖wt − w∗‖2 converges to 0. In other words,
wt converges to the optimal parameter w∗. This proves the theorem. J
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4.3 Communication Complexity
We analyze the communication complexity of the Echo-CGC algorithm, and show that
under suitable conditions, it effectively reduces communication complexity compared to prior
algorithms [4, 11]. First consider a ball in Rd whose center is the true gradient ∇Q(wt):

B(∇Q(wt), r

2 + r
‖∇Q(wt)‖) = {u ∈ Rd : ‖u−∇Q(wt)‖ ≤ r

2 + r
‖∇Q(wt)‖}, (27)

where r > 0 is the deviation ratio. For a slight abuse of notations, we abbreviate the ball as
B. This should not be confused with B, the set of Byzantine workers. We present only the
main results, and the proofs can be found in [25].

I Lemma 10. For all u, v ∈ B, ‖u− v‖ ≤ r‖u‖ (and ‖u− v‖ ≤ r‖v‖).

Given Lemma 10, we compute the probability that an arbitrary gradient gtj is in the ball
B. By Markov’s Inequality,

Pr(gtj ∈ B) = Pr
(
‖gtj −∇Q(wt)‖2 ≤ r2

(2 + r)2 ‖∇Q(wt)‖2
)

≥ 1−
E‖gtj −∇Q(wt)‖2
r2

(2+r)2 ‖∇Q(wt)‖2
. (28)

By Assumption 5, E‖gtj −∇Q(wt)‖2 ≤ σ2‖∇Q(wt)‖2, so we conclude that Pr(gtj ∈ B) ≥ p,
where p is the lower bound defined as p = 1− (1 + 2/r)2σ2.

Denote nB = |{j : gtj ∈ B}| and n∗ as the number of workers that send the “echo message”
in a round. By Lemma 10, n∗ ≥ nB − 1. Since each event {gtj ∈ B} is independent and has
a fixed probability, n∗ follows a Binomial distribution with success probability Pr(gtj ∈ B)
which is bounded below by p. Therefore,

En∗ ≥ EnB − 1 ≥ np− 1.

For n � 1, we assume that 1/n ≈ 0. Also in practice, d � n, so the message complexity
of each echo message (in O(n) bits) is negligible compared to raw gradients (in O(d) bits).
Hence, the ratio of bit complexity of our algorithm and prior algorithms (e.g., [4, 11]) can be
approximately bounded above as follows:

bit complexity of Echo-CGC
bit complexity of prior algorithms = n∗O(n) + (n− n∗)O(d)

nO(d)

≤ (np− 1)O(n) + [n− (np− 1)]O(d)
nO(d)

≈ 1− p.

We denote the upper bound of ratio of reduced complexity to complexity of prior algorithms
as C = 1− p = (1 + 2/r)2σ2.

Analysis. By Equation (3) and Lemma 2, C can be expressed as

C ≤ σ2
(

1 + 2 · (1− 2x)(1 + σ) + (1 + σk∗
√
n)x

µ/L− (3 + σk∗
√
n)x

)2

, (29)

where x = f/n is the fault-tolerance factor.

OPODIS 2020
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As Equation (29) shows, the ratio C is related to four non-trivial variables: (i) bound of
variance σ ≥ 0; (ii) resilience x = f/n satisfying the assumption in Lemma 3, i.e.,

µ/L− (3 + σk∗
√
n)x > 0;

(iii) constant L/µ, which is determined by the cost function Q and satisfies 0 < L/µ < 1 by
Lemma 1; and (iv) number of workers n > 0.
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(a) C as a function of σ, for fixed µ/L = 1,
x = 0.1, and n = 100.

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

µ/L

C

(b) C as a function of µ/L, for fixed σ = 0.1,
x = 0.1, and n = 100.
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(c) C as a function of x, for fixed σ = 0.1,
µ/L = 1, and n = 100.
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(d) C as a function of n, for fixed σ = 0.1,
µ/L = 1, and x = 0.1.

We first plot the relation between one factor and C while fixing the other three factors.
First, we present the most significant fact, σ. We fix µ/L = 1, x = 0.1, and n = 100. As
Figure 1a shows, C increases in an almost quadratic speed with σ because of the σ2 term
in Equation (29). Therefore, our algorithm is guaranteed to have lower communication
complexity when the variance of gradients is relatively low, especially when σ ≤ 0.1. In
practice, this is the scenario when the data set consists mainly of similar data instances.

Then, we plot C against µ/L with fixed σ = 0.1, x = 0.1, and n = 100. As Figure 1b
shows, C decreases as µ/L becomes closer to 1. As µ/L > 0.75, C < 0.5, meaning that
[0.75, 1] is the range of µ/L where our algorithm is guaranteed to perform significantly better.

Next, we plot C against x with fixed σ = 0.1, µ/L, and n = 100. As Figure 1c shows, there
is a trade-off between C and fault resilience x. As x approaches the max resilience defined
in Lemma 3, i.e., xmax = µ/L

(3+σk∗
√
n
, the theoretical upper bound C blows up. Moreover, as

x < 0.15, C < 0.4; and thus [0, 0.15] is a proper range of x.
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Finally, we plot C against n with fixed σ = 0.1, µ/L = 1, and x = 0.1. As Figure 1d
shows, C increases almost linearly with respect to n with a relatively flat slope. In other
words, n is not a significant factor of C; and the performance of our algorithm is stable in a
wide range of n.

In conclusion, our algorithm is guaranteed to require lower communication complexity
when: (i) σ is low, i.e., data instances are similar and (ii) µ/L is close to 1. Also, there is a
trade-off between resilience and efficiency. As a concrete example, when σ = 0.1, x = 0.2,
µ/L = 1, and n = 100, C ≈ 0.25, meaning that our algorithm is guaranteed to save at least
75% of communication cost.

5 Summary

In this paper, we present our Byzantine-tolerant DML algorithm that incurs lower communi-
cation complexity in a single-hop radio netowrk (under suitable conditions). Our algorithm is
inspired by the CGC filter [11], but we need to devise new proofs to handle the randomness
and noise introduced in our mechanism.

There are two interesting open problems: (i) multi-hop radio network; and (ii) different
mechanism for constructing echo messages, e.g., usage of angles rather than distance ratio.
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Abstract
Modern machine learning architectures distinguish servers and workers. Typically, a d-dimensional
model is hosted by a server and trained by n workers, using a distributed stochastic gradient descent
(SGD) optimization scheme. At each SGD step, the goal is to estimate the gradient of a cost function.
The simplest way to do this is to average the gradients estimated by the workers. However, averaging
is not resilient to even one single Byzantine failure of a worker. Many alternative gradient aggregation
rules (GARs) have recently been proposed to tolerate a maximum number f of Byzantine workers.
These GARs differ according to (1) the complexity of their computation time, (2) the maximal
number of Byzantine workers despite which convergence can still be ensured (breakdown point),
and (3) their accuracy, which can be captured by (3.1) their angular error, namely the angle with
the true gradient, as well as (3.2) their ability to aggregate full gradients. In particular, many are
not full gradients for they operate on each dimension separately, which results in a coordinate-wise
blended gradient, leading to low accuracy in practical situations where the number (s) of workers
that are actually Byzantine in an execution is small (s << f).

We propose Aksel, a new scalable median-based GAR with optimal time complexity (O(nd)),
optimal breakdown point (n > 2f) and the lowest upper bound on the expected angular error
(O(

√
d)) among full gradient approaches. We also study the actual angular error of Aksel when

the gradient distribution is normal and show that it only grows in O(
√

d log n), which is the first
logarithmic upper bound ever proven on the number of workers n assuming an optimal breakdown
point. We also report on an empirical evaluation of Aksel on various classification tasks, which we
compare to alternative GARs against state-of-the-art attacks. Aksel is the only GAR reaching top
accuracy when there is actually none or few Byzantine workers while maintaining a good defense
even under the extreme case (s = f). For simplicity of presentation, we consider a scheme with a
single server. However, as we explain in the paper, Aksel can also easily be adapted to multi-server
architectures that tolerate the Byzantine behavior of a fraction of the servers.
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1 Introduction

Machine learning (ML) has gained a lot of attention during the last decades, where data
collection and processing have reached outstanding levels in terms of volume, variety and
velocity. Public awareness of machine learning, especially after the renaissance of neural
networks with the backpropagation algorithm [16], increased greatly when companies like
IBM and DeepMind created computer programs that beat world class champions in various
games. Machine learning started being incorporated within many applications such as
transportation, healthcare, finance, agriculture, retail, and customer service.

Essentially, training a supervised ML algorithm consists in determining the set of para-
meters that minimize the error between the model prediction and the actual output, a
scheme formally called empirical risk minimization [27]. In a single machine, it is common
to use Gradient Descent (GD) to minimize the cost function (which depends on the entire
dataset) by computing its gradient. For modern applications however, even the best and
most expensive hardware would eventually become insufficient.

Almost every industry grade machine learning algorithm is nowadays implemented in a
distributed manner. Most rely on stochastic gradient descent (SGD) [25], a variant of GD
that supports parallelization. However, a distributed architecture induces many challenges,
in particular the risk of partial failures. The classical way to model various failures (e.g.
software bug, arbitrary behavior of the hardware. . . ) is the Byzantine abstraction and the
classical way to deal with them is to use a state machine replication protocol [26], but this
solution entails heavy communication and computational costs.

More specifically, distributed implementations of SGD typically consist of parameter
servers and workers. For simplicity of presentation, we consider the now classical ML scheme
with a single parameter server and several workers [1] (but our result can easily be extended
to a setting with multiple servers). The dataset is distributed over these workers, each of
which computes an estimation of the gradient step based on their share of the data. The
parameter server aggregates all the received gradient estimations and updates the parameter
vector accordingly. The goal is to come up with an estimate of the (true) gradient that would
have been computed on a single machine using GD. The simplest and best way to aggregate
the vectors is through averaging [23] which comes very close to the true gradient. However,
averaging cannot withstand a single Byzantine failure of a worker [4].

To solve this problem, many gradient aggregation rules (GARs) have been proposed to
tolerate a (maximum) number f of Byzantine workers (as we discuss later in “Related work”).
They can be classified in two main families: full-GARs, that select and average gradients of
responsive workers keeping the whole information on the descent direction, and blended-GARs,
that perform coordinate-wise operations on the set of collected gradients, inevitably losing
some information (as illustrated by Figure 2 in Section 6). The former are particularly
appealing in a practical setting because, even if a GAR is devised to tolerate extreme
situations and provide a reasonably good accuracy despite a large number of Byzantine
workers, it is important that the GAR provides very good accuracy in most frequent situations
where the number (s) of actual Byzantine workers in an execution is small (s << f). In this
sense, full gradients inherently enable graceful degradation.

The motivation of this work was to ask whether it is possible to derive a full gradient
aggregation rule defending against 50% of Byzantine workers (n > 2f) with a low time
complexity (O(nd)), which are both optimal, but with an angular error close to that of
averaging (which is not Byzantine-resilient). We answer positively by presenting Aksel2, a

2 Aksel (known as Kusaila in Arabic and Caecilius in Latin) was an Amazigh leader of the 7th century
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new scalable median-based approach to aggregate the gradients. Essentially, Aksel is unique
in the sense that it is a full-gradient GAR using indirectly the power of coordinate-wise
operations to reduce the angular error.

Looking for optimal breakdown point and time complexity is self justifying. But why
seek a low angular error? In fact, this is directly linked to the quality of the solution and the
speed of convergence. Intuitively, a large angle makes enough room for Byzantine workers
to corrupt the machine learning model. Moreover, two models with different GARs can
converge to the same solution, but with different speed. We establish in Corollary 9 the
link between the angle value and the convergence slowdown occasioned by the robust GAR
compared to averaging.

Related work. Most approaches that have been proposed to improve the Byzantine resilience
of gradient descent (and its variants) rely on robust statistics, whilst some use historical
information to identify correct workers. Krum [4] selects the vector with the minimum
score defined as the sum of euclidean distances with its neighbors. m-Krum [9] consists
in averaging m Krum outputs without replacement. Bulyan [12] applies a variant of the
trimmed mean on a selection of vectors obtained from m-Krum.

Median and b-TrMean [31] apply robust statistics on each coordinate of the n gradients.
Trimmed mean (b-TrMean) removes the smallest and the largest b values and averages
the remaining n − 2b values, whereas the median Median is a special case of Trimmed
mean where b = bn2 c. b-Phocas [29] averages the n− b closest values to b-TrMean in each
coordinate. MeaMed [28] is a special case of Phocas where the trimmed mean is replaced
with the median. Geometric Median of Means [8] computes the average of m batches of
gradients, then computes the geometric median of those averages. Since no exact algorithm
is available for GeoMed, the (1 + ε)-approximation is used instead. Draco [7] uses coding
theory and a redundancy scheme to aggregate the gradients. ByzantineSGD [2] and
Kardam [10] both use historical information on the gradients and construct filters that
allow to distinguish bad workers from honest ones. Recent techniques from Multidimensional
approximate agreement [14, 20] are also good candidates because the output of the correct
workers remains inside the convex hull of the correct workers input, which is a desirable
property for the problem at hand.

The median is particularly interesting for it constitutes a straightforward mechanism to
deal with outliers. Yet, although the median is guaranteed to be inside the set of correct
scalar values, its multidimensional variant (Coordinate-wise Median) may not lie within the
convex hull of correct vectors. Second, the median heavily protects against outliers at the
expense of statistical meaning. As a matter of fact, the median throws away many interesting
values which makes it less efficient, as we explain later. b-TrMean and b-Phocas are very
efficient when the truncation parameter b is greater than the number of Byzantine workers.
However, to defend against s = dn2 e − 1, the value of b must be equal to its upper bound and
the two GARs are reduced to their special cases, namely, Median and MeaMed. Otherwise,
they become as vulnerable as averaging, whose deviation under attack is unbounded. One
common aspect about these blended-GARs is the fact that they defend against dimensional
attacks [28] but cannot reach top accuracy in honest settings with none or few Byzantine
workers. The only full-GARs proposed to this day are Krum, m-Krum and Bulyan.
These are all powerful, but they have a high time complexity (at least O(n2d)) and their
breakdown point is far from optimal. Draco is the only aggregation rule not suffering from

who resisted the conquest of North Africa while making pragmatic alliances with the Byzantines.
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vulnerabilities of common statistics. However, it only defends against a very limited number
of Byzantine workers because of the redundancy scheme. Also, Draco cannot be used in
settings where privacy matters, because of the matrix allocation mechanism needed before the
encoding phase. ByzantineSGD and Kardam are different from the first category of GARs
because they use information on past gradients to filter the Byzantine estimates. Although
theoretical guarantees have been provided for convergence, ByzantineSGD requires too
many parameters to be tuned, which make it less practical. Kardam is the only GAR
tolerating asynchrony, but it only works for Lipschitz loss functions, and defends only against
n > 3f . Finally, multidimensional approximate agreement algorithms are round based, which
means that, at each SGD iteration, many rounds (O(log ∆

ε ),∆ being the initial diameter of
the correct set of workers) need to be executed in order to agree on a gradient with an error
rate ε. These techniques may be advantageous in coordinator-free settings (fully decentralized
learning). Table 1 compares various GARs to Aksel according to several properties.

Basically, the full-GARs achieve top accuracy when s << f but are not optimal in
terms of complexity and break down point. They also have a big angular error. In contrast,
blended-GARs have optimal complexity and break down point with a small angular error,
but do not achieve top accuracy when s << f . Aksel achieves the best of both worlds.

Table 1 Comparing the time complexity (TC), the breakdown point (BDP) and the expected
angular error of gradient aggregation rules (GARs). Parameter f denotes the maximal number
of Byzantine workers. Parameter m is specific to m-Krum (which consists in averaging m Krum
outputs without replacement). Parameter b is specific to Phocas and TrMean and sets the level of
truncation. Aksel is the best full-GAR for all three properties.

Angular errorGARs TC BDP
f = O(1) f = O(n)

Averaging O(nd) f = 0 O(
√

d
n ) O(

√
d
n )

Full-aggregathors
Krum O(n2d) n > 2f + 1 O(

√
nd) O(n

√
d)

m-Krum O(n2d) n > 2f + 2
m < n− f − 2 O(

√
nd) O(n

√
d)

Bulyan O(n2d) n > 4f + 2 O(
√
nd) O(n

√
d)

Aksel O(nd) n > 2f O(
√
d) O(

√
d)

Blended-aggregathors
Median O(nd) n > 2f O(

√
d) O(

√
d)

(1 + ε)-GeoMed O(nd) n > 2f O(
√
nd) O(

√
nd)

b-Phocas O(nd) n > 2f
b > f

O(
√

d
n ) O(

√
d)

b-TrMean O(nd) n > 2f
b > f

O(
√

d
n ) O(

√
d)

MeaMed O(nd) n > 2f O(
√
d) O(

√
d)

Contributions. We present in this paper Aksel, a new median based algorithm which is
the first to have the 4 following properties simultaneously:

Optimal time complexity O(nd)
Optimal breakdown point n > 2f
Full gradient aggregation (high accuracy reachable for s << f)
Constant upper bound (O(d) in the number of workers n, see Lemma 10) on the expected
angular error (scalability)
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On the theoretical side, we prove (1) the (α, f)-Byzantine resilience of Aksel; (2) its
convergence for non convex and strongly convex losses; and (3) a logarithmic upper bound of
the real angular error of Aksel.

On the practical side, we report on an empirical evaluation of our distributed imple-
mentation of Aksel. In particular, we consider two state-of-the-art attacks [3, 30] on
academic classification tasks (MNIST, Fashion-MNIST and CIFAR-10). Aksel reaches
the top accuracy when s << f , and maintains a good accuracy in the extreme case s = f .
Aksel does also have some advantages that may appeal to practitioners: it requires no
parameter tuning for the aggregation (a time consuming task in general) and no knowledge
of the number of Byzantine workers (which can be fatal if underestimated, e.g. b-Phocas
and b-TrMean). Aksel is also based on simple mathematical functions (i.e. median,
subtraction, sum-of-squares, averaging) which makes it simple to analyze.

A recent paper [11] proposed a genuinely distributed scheme with multiple servers,
tolerating the Byzantine failures of a fraction of them by composing established GARs such
as Krum, m-Krum and Bulyan. For pedagogical reasons, we present here Aksel in a
single-server setting, focusing on improving resilience to failures of workers. However, Aksel
satisfies the properties required by [11] from a GAR, and could therefore be used also in a
multi-server setting instead of Krum, m-Krum and Bulyan in [11].

Outline. The paper is organized as follow. We first present our model in Section 2. After
some preliminaries in Section 3, we motivate the design of our algorithm and present it in
Section 4. Theoretical guarantees on its Byzantine resilience and convergence are presented
in Section 5. Section 6 reports on a selection of empirical results. We conclude the paper by
discussing some open issues in Section 7. For space limitations, we defer all the proofs and
the full empirical evaluation to the appendix.

2 Model

As discussed previously, most machine learning algorithms use gradient descent (GD) to
minimize a cost function F (wt) where wt is a vector of parameters3 at time t. Typically,
the cost function is a sum of individual errors run through many examples of the data set.
Vanilla GD runs the sum through the entire dataset. However, this takes a lot of time
to compute, and this is not realistic with huge datasets involving hundreds of billions of
examples. Another variant is the stochastic gradient descent algorithm (SGD) which only
uses a single example in each iteration. This method is very fast but noisy. A compromise is
to construct a mini batch, namely a small subset of the dataset, run the sum of individual
errors over this mini batch, and compute the gradient. A randomly sampled mini batch
typically contains redundant examples, which can be useful to smooth out noisy gradients.
Mini batch SGD is a good choice to compute quality gradients in a reasonable time. Besides,
mini batch SGD is highly parallelizable. One can generate n mini batches and compute n
gradients, then average them to get a very good estimate of the true gradient. In a distributed
setting, randomly sampled mini batches are allocated to n workers (compute nodes), and a
server aggregates those gradients then updates the parameter vector wt.

3 For instance, the weights and biases of a neural network.
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2.1 Distributed SGD
We follow the classical distributed SGD model [1] where a parameter server (PS) broadcasts,
in each synchronous round t, the parameter vector wt ∈ Rd to n workers. We consider that
f among these n workers can be Byzantine. Each correct worker i computes an estimate
Vi

t = G(wt, ξ
t
i) of the gradient ∇F (wt) of the cost function F , where ξti is an independent

and identically distributed (i.i.d.) random variable representing the subset of the dataset,
drawn randomly for worker i. The PS aggregates the n received gradients (Vt

1,Vt
2, ...,Vt

n)
using its choice function A called aggregation rule, then updates the parameter vector using
the following SGD equation:

wt+1 = wt − γA(Vt
1,Vt

2, ...,Vt
n)

where γ is an arbitrary constant called learning rate.

2.2 Adversary
A Byzantine worker has the full knowledge of the system, including the aggregation rule
and the vectors proposed by other workers. It can collude with other Byzantine workers to
perform attacks against the aggregation rule and prevent convergence, or make the model
converge to ineffective solutions. The Byzantine workers can for instance send arbitrary
values, strategically-chosen values that exploit the environment, or null values corresponding
to a classical crash failure. Since we are working in a synchronous system, when a vector is
not received, the PS assumes that it is a null vector. Dimensional attacks were presented in
[28], meaning that corruption can happen anywhere in the gradient matrix as long as each
dimension contains a majority of correct values. However, we believe that such scenario could
be avoided by introducing cryptography schemes (e.g. RSA signatures / AES encryption and
decryption / Diffie-Hellman secure exchange of keys. . . ) to make sure that impersonation is
not possible, and keep the same threat model as in [4].

2.3 Assumptions
We now state the (rather standard) assumptions made in this paper by default: in the rest
of the paper, all assumptions, except Assumption 5, are always assumed to be true, unless
specified otherwise.

I Assumption 1. (Breakdown point) The number of Byzantine workers is strictly less than
the number of correct ones: n > 2f

I Assumption 2. (Smoothness) F is L−smooth:
∀w′,w, ‖∇F (w′)−∇F (w)‖ ≤ L ‖w′ −w‖

I Assumption 3. (Strong convexity) F is K−strongly convex:
∀w′,w, F (w′) ≥ F (w) + 〈∇F (w),w′ −w〉+ K

2 ‖w
′ −w‖2

I Assumption 4. (Bounded variance and unbiased estimators) The proposed vectors are
unbiased estimates of the true gradient and their variance is bounded:
∀i ∈ {1, · · · , n},EVi = ∇F and E ‖Vi −∇F‖2 < dσ2

I Assumption 5. (Normal distribution; not a default assumption) The proposed vectors are
normally distributed around the true gradient ∇F : ∀i ∈ {1, · · · , n},Vi ∼ N (∇F,σ2) where
σ2 = diag(σ2) is a d× d diagonal covariance matrix.
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Assumption 1 is very common in synchronous distributed systems. It is however worth
noting that beyond the classical impossibility results in distributed computing, this assumption
is a direct consequence of another impossibility result in robust statistics [24], even when all
the operations are done in a single machine. Assumptions 2 and 4 are common in the SGD
literature [5] and Assumption 3 is typically needed to prove convergence rates [6]. We also
analyze Aksel and median based GARs in general under Assumption 5. This assumption
is substantiated by recent empirical findings in machine learning, where many normally
distributed datasets naturally yield normally distributed gradients [18]. As we detail later,
our experimental findings illustrate that Aksel performs well in commonly used datasets.

3 Preliminaries

We recall in this section background results on the robustness of the median and the
probabilistic absolute error between the extreme value and the mean of normal samples.
These will also be useful when describing the properties of our algorithm. We also recall the
measure of Byzantine resilience in the context of distributed SGD .

3.1 Robustness of the median
Mosteller and Tukey [21] defined two types of robustness: resistance and efficiency. The
first notion conveys the fact that an infinite change caused by a small part of a group has a
bounded impact on the value of the estimate. The second means that the estimate is close
to the optimal estimate in a variety of situations and not only in a particular one. Many
robust estimators have been proposed for scale and location. In this paper, we focus on the
median, a robust estimator of the location which is the value that separates a sorted set into
two equal parts. Formally: Let X = (x1, x2, · · · , xn) be a set of n values, then:

med(X) = arg min
y

n∑
i=1
|xi − y|

In high dimensions, we work with the coordinate-wise median, defined as follow: Let M =
(V1,V2, · · · ,Vn) be a matrix with n column vectors Vi = (v1i, v2i, · · · , vdi)T in Rd, then:
Median(M) = (m1,m2, · · · ,md)T , where mj = med(vj1, vj2, · · · , vjn),∀j ∈ [1, · · · , d].

The median has high efficiency for normal data (64%) [21], and most importantly, an
optimal breakdown point (50%). The last point implies that corrupting 50% of the data will
have only limited impact on the location parameter. Moreover, as known from the works on
Byzantine tolerant approximate agreement and clock synchronization, the median always lies
inside the subset of correct values when more than 50% of the data is correct. To formalize
this, we restate Lemma 4 from [28] without proof.

I Lemma 6. For a sequence composed of f Byzantine values and n − f correct values
x1, x2, · · · , xn−f , if f ≤ dn2 e−1 (the correct values dominates the sequence), then the median
value m of this sequence satisfies m ∈ [xmin, xmax].

3.2 Distribution of extreme normal values
The maximum or the minimum values observed when drawing normal samples changes
when n takes different values. The extreme value theory [15] shows that the extreme values
of a normal distribution follows a Gumbel distribution, depending on the number n of
samples drawn. Thanks to the symmetry of our problem, we only discuss the maximum
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value. Formulas for the minimum are derived in a similar way. Kotz and Nadarajah [19]
show that the distribution of the maximum of n samples drawn from a standard normal
random variable N (0, 1) with a standard normal quantile function Φ−1(x) has the following
statistics. Let µm(n), σm(n), qpm(n) be the mean, the standard deviation and the pth quantile
of the maximum distribution when n samples are drawn from a standard normal distribution.
Then:

µm(n) = Φ−1(1− 1
n

)

σm(n) = Φ−1(1− 1
n e

)− µm(n)

qpm(n) = µm(n)− σm(n) log(− log(p)) (1)

We use these results to compute a probabilistic bound of the gap between the mean and
the maximum value of n normal samples.

I Lemma 7. Let X = {x1, · · · ,xn−f} be a set of column vectors drawn from a multivariate
normal random variable N (µ,σ2) with µ = (µ1, · · · , µd)T and the covariance matrix σ =
diagn×d(σ). Let B = {b1, · · · ,bf} be a set of arbitrary column vectors and (n, f) ∈ N2.
Let S = X ∪B and M = Median(S). Let Ek be the following event for the kth coordinate:
|M[k]− µ[k]| ≤ λ(n, p). We then have, ∀p ∈ [0, 1) and ∀n ∈ N: P

[∧d
k=1 Ek

]
= p, where

λ(n, p) = Φ−1(1− 1
n

)
(

1 + log
[
− log(p 1

d )
])
− Φ−1(1− 1

ne
)
(

log
[
− log(p 1

d )
])

3.3 Measuring the Byzantine resilience of GARs
We make use of the now classical metric to evaluate the Byzantine resilience of gradient
aggregation rules [4, 12, 9, 28]. This metric encompasses two conditions. First, as long as
a proposed vector lies inside a cone around the true gradient, with an angle less than π

2
(first condition), and as long as its statistical moments are controlled by the moments of the
(correct) gradient estimator G (second condition), this vector can be considered correct and
will make a step toward the minimum of the function being optimized using SGD. The second
condition allows to transfer the control (classically expressed as bounds on the moments
of the gradient estimator G [5]) of the discrete nature of the SGD dynamics to the choice
function X . Below, we recall the definition of (α, f)-Byzantine resilience (introduced in [4]):

I Definition 8. Let 0 < α < π
2 be any angular value and f ∈ {0, · · · , n}. Let V1, · · · ,Vn be

any independent identically distributed random vectors in Rd with EVi = G,∀i ∈ {1, · · · , n}.
Let B1, · · · ,Bf be any random vectors in Rd, possibly dependent on the Vi’s. A choice
function X is said to be (α, f)-Byzantine resilient if, for any 1 ≤ j1 < · · · < jf ≤ n, the
vector X = X (V1, · · · , B1︸︷︷︸

j1

, · · · , Bf︸︷︷︸
jf

, · · · ,Vn) satisfies the following two conditions:

Condition (i): 〈EX ,G〉 ≥ (1− sinα) ‖G‖2

Condition (ii): for r = 2, 3, 4, E ‖X‖r is bounded above by a linear combination of
terms of the form E ‖G‖r1 · · ·E ‖G‖rn−1 with r1 + · · ·+ rn−1 = r

Generally, condition (i) can be proved by showing that EX belongs to the ball centered
at G with radius r = η(.)

√
dσ (formally: ‖EX −G‖ < η(.)

√
dσ), where η(.) is a positive

function, d is the dimension of the model and σ is the standard deviation of the gradient
estimator.

I Corollary 9. The function η(.) is positively correlated to the slowdown of convergence speed
occasioned by the aggregation rule X compared to averaging.
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4 The AKSEL Algorithm

We present our aggregation protocol Aksel in 4.1, discuss the rationale behind its design in
4.2 and give its time complexity in 4.3.

4.1 Aksel
Algorithm 1 Aksel: Scalable gradient aggregation rule.

Input: V = (V1,V2, · · · ,Vn): d× n matrix (received gradients)
Output: Y: d× 1 vector
/* Computing the sum of squares of each column vector Vi centered around the

coordinate-wise median */

1 Let S be a row vector (1× n) and M a column vector (d× 1)
2 M = (M[1],M[2], · · · ,M[d])T = coordinate-wise median vector constructed from V
3 S = (

∑d
j=1(V1[j]−M[j])2,

∑d
j=1(V2[j]−M[j])2, · · · ,

∑d
j=1(Vn[j]−M[j])2)

/* Constructing a robust interval */

4 Let r be the median of the set S
5 Let I = [0, r]

/* Averaging the new subset of column vectors from V */

6 Let N be the subset of vectors Vi’s such that ‖Vi −M‖2 ∈ I and |N| = p

7 Y[j] = 1
p

∑
Vi∈N

Vi[j], ∀j ∈ {1, · · · , d}

4.2 Rationale
The goal of any aggregation rule is to produce a vector as close as possible from the true
gradient of the cost function. This puts conditions on the norm as well as on the direction of
the aggregated vector. Clearly, any rule that focuses only on the vectors norms comparison
will not succeed because of the vulnerabilities of lp-norms, as pointed in [12]. For example,
VCorrect = (2, 2, 2, 2, 5, 5, 5, 3)T and VByzantine = (10, 0, 0, 0, 0, 0, 0, 0)T are two vectors with
the same norm and very different coordinates. One way to address this issue is to add a
constraint on the coordinates of all vectors by centering them around a robust location
estimator. We choose the coordinate-wise median in this work.

Since Median is a blended-GAR and provides only one aggregate which is very far
from the correct mean, we choose to incorporate more vectors in the aggregation process.
Therefore, a better alternative is to choose an interval around the median, and to average the
values within this interval. Using this alternative, we are guaranteed to produce, most of the
times, an aggregated value that lies between the real mean and the deviated median. Figure
1 illustrates the idea that an interval is better than a single value. Many GARs used this
concept on each coordinate to improve the defense mechanism [31, 28, 29]. However, operating
on each coordinate has consequences on the overhead cost of the Byzantine resilience. As
a matter of fact, coordinate-wise operations lead to a blended vector which is different (in
structure) from the full gradients. As a consequence, the top accuracy is never reached even
in honest environments (s = 0).

Aksel is unique in the sense that it is a full-gradient GAR using indirectly the power of
coordinate-wise operations. It performs the filtering method on the squared norms of the
centered vectors, rather than selecting the mean around the median in each coordinate, in
order to aggregate full gradients. Since norms are positive, the filter interval will be [0, r],
where r is the median of norms in our work.
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8:10 AKSEL: Fast Byzantine SGD

The idea of centering the vectors around their coordinate-wise median is a very powerful
guardrail against the vulnerability of norms, and also a very handy tool for the proof
development. In fact, it is hard to come up with a probability density function for the sum of
squares of normal variables with nonzero expectation, although a recent work [13] has shown
that it is possible to derive a complex cumulative distribution function (but no elementary
expression for the density function). Subtracting a scalar from each coordinate makes
us close enough to normal variables with zero expectation, whose sum of squares density
function is known and expressed through elementary expressions. We derive in Lemma 16
the expectation and the variance of the sum of squares of normal samples centered around a
scalar (which, in our case, is equal to the median of the n values) for each coordinate.

4.3 Complexity
Our Aksel aggregation rule has an optimal time complexity O(nd). First, Aksel computes
the coordinate-wise median (M) in O(nd) steps. Next, it subtracts M from all n gradients
and computes their euclidean norms, also in O(nd) steps. Then, Aksel computes the median
(m) of the n norms using a Quickselect [17] in O(n) steps. Finally, it averages the vectors
whose norm is less than (m) in O(nd) steps. The global time complexity is therefore O(nd).

Figure 1 Comparison of (1) the median and (2) the mean of an interval around the median, in
terms of distance to the mean. In a setting where the number of Byzantine workers is exactly the
number of correct workers minus one, and their values are all positioned in an extremum side, the
median is always the farthest correct value from the mean among correct values. However, taking
the average of values inside an interval around the median can reduce the distance to the mean
value in many situations.

5 Theoretical Guarantees of Aksel

We give an upper bound on the variance of Aksel and prove its (α, f)-Byzantine resilience
as well as its convergence properties for non convex as well as strongly convex losses.

5.1 Bounded variance
The following lemma states an upper bound of the variance of Aksel.

I Lemma 10. Let V1, · · · ,Vn be any random d-dimensional vectors in Rd, f among them
being possibly Byzantine. Under Assumptions 1 and 4, the variance of Aksel is upper
bounded, and we have:

E ‖A−∇F‖2 ≤
(

4 +
12dn2 e(n− f)

(n− dn2 e − f + 1)2

)
dσ2 ∼ O(d)
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5.2 Byzantine resilience
Following Definition 8, the (α, f)-Byzantine resilience of Aksel can be proved by showing
first that the aggregated vector EA is pointing in the same direction and has a close norm
to the true gradient ∇F (condition i) and its statistical moments are controlled by a linear
combination of the statistical moments of the correct gradient estimator (condition ii). We
prove the two conditions through the following lemmas.

I Lemma 11 (Expected angular error). If Assumptions 1 and 4 hold, the angular error of
Aksel is upper bounded as follow: ‖EA−∇F‖2 ≤ η2(n, f)dσ2 where:

η2(n, f) = 4 +
12dn2 e(n− f)

(n− dn2 e − f + 1)2

I Lemma 12 (Controlled statistical moments). If Assumptions 1 and 4 hold, the statistical
moments of Aksel are upper bounded by a linear combination of the statistical moments of
the correct gradient estimator:

E ‖A‖r ≤ C
∑

r1+···+rn−f =r
‖G‖r1 · · · ‖G‖rn−f

We now present the (α, f)-Byzantine resilience result in the following theorem:

I Theorem 13. Let V1, · · · ,Vn be a set of gradient estimates in Rd. Under Assumptions 1
and 4, if η(n, f)

√
dσ < ‖∇F‖, then Aksel is (α, f)-Byzantine resilient where α ∈ [0, π2 ] is

defined by: sinα = η(n,f)
√
dσ

‖∇F‖

5.3 Convergence for non convex losses
When analyzing optimization algorithms under the non convexity assumption, the objective
function can have several local minima instead of one global minimum. A simple solution
would be to partition the parameter space into many convex pools and proceed as in the
convex case. Bottou [5] proposes however to study the convergence of the objective function
and its gradient instead of the parameter vector itself. When some conditions are met
regarding the cost function being minimized and the learning rate, SGD converges almost
surely to a flat region, where the gradient is very small. Blanchard et al. [4] combine this
result with the (α, f)-Byzantine resilience framework to derive a second result on the almost
sure convergence of SGD using an (α, f)-Byzantine resilient aggregation rule. Since Aksel is
Byzantine resilient, as proven in Theorem 13, we only restate the convergence result without
proof in Theorem 14. The reader is kindly referred to [4] and [5] for more details on the
convergence analysis.

I Theorem 14. Let At be the output of the Aksel aggregation rule over the n received
gradients Vi ∼ G. We assume that (i) the cost function F is three times differentiable
with continuous derivatives and is non negative (F (w) ≥ 0); (ii) the learning rate satisfies∑

t γt = ∞ and
∑
t γ

2
t < ∞; (iii) the gradient estimator satisfies EG(w) = ∇F (w) and

∀r ∈ {2, 3, 4},E ‖G(w)‖r ≤ Ar +Br ‖w‖r; (iv) there exists a constant 0 ≤ α ≤ π
2 such that

∀w, η(n, f)
√
dσ ≤ ‖∇F (w)‖ sinα; (v) finally, beyond a certain horizon ‖w‖2 ≥ D, there

exist ε > 0 and 0 ≤ β ≤ π
2 − α such that:

‖∇F (w)‖ ≥ ε
〈w,∇F (w)〉
‖w‖ ‖∇F (w)‖ ≥ cosβ

Then, the sequence of gradients ∇F (wt) converges almost surely to zero.
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5.4 Convergence for strongly convex losses
Finally, we derive the statistical error rate of SGD using Aksel as an aggregation rule.

I Theorem 15. Let F (w) be the cost function being optimized, ∇F (w) its actual gradient and
A the output of the Aksel aggregation rule over the n received gradients. When Assumptions
1, 2, 3 and 4 hold, then after T iterations of SGD updates using the Aksel GAR with a step
size αt = 1

L , we have:

E ‖wT −w∗‖ ≤
(

1− K

L+K

)T
‖w0 −w∗‖+ 2

√
∆
K

E[F (wT )− F (w∗)] ≤
∆
2L +

(
1− K

L

)T ∥∥∥∥F (w0)− F (w∗)−
∆
2L

∥∥∥∥
with: ∆ =

(
4 + 12dn

2 e(n−f)
(n−dn

2 e−f+1)2

)
dσ2

5.5 Probabilistic upper bound on the real angular error of Aksel
In the previous section and in all the related work, results are derived in expectation. In
fact, recent works only study the expected angular error, the variance (the expected squared
absolute error) and the expected statistical error in convergence. Up to our knowledge, [31] is
the only work addressing these quantities without expectation. More specifically, they study
the two well known GARs Median and TrMean when applied with the gradient descent
algorithm, assuming unbiased gradient estimates with bounded variance and skewness. They
achieve an upper bound on the variance decreasing like O( 1√

n
) using normal approximations

and Berry-Essen inequalities, but their breakdown point is very far from optimal:

α+

√
d log (1 + nmLD)

n(1− α) + 0.4748 S√
m
≤ 1

2 − ε

where α is the ratio of Byzantine workers, n is the number of workers, m is the number of
data points each worker has, D is the diameter of the parameter space, L is the Lipschitz
constant, d is the dimension of the model and S is the skewness upper bound.

We study the optimal robustness (α < 1
2 ) of Aksel applied with stochastic gradient

descent when gradients are normally distributed, and we show that the real angular error only
has a logarithmic growth (O(

√
d logn)) in the number of workers n under this assumption4.

Expectation and variance of the squared norm of a centered vector
An important step in our algorithm is to sum the squares of all the coordinates centered around
their median value. When Assumption 5 holds, it is possible to derive the expectation and
the variance of this quantity using the asymptotic approximation of the Gamma distribution
and simple bounding properties. We formalize this in the following lemma:

I Lemma 16. Let Xi be a normal random variable where µi is the mean, σ2 is the variance
and mi is a value such that |mi − µi| ≤ λσ. If Zi = Xi −mi is the new random variable Xi

centered around mi and S =
∑d
i=1 Z

2
i , then we have:

E[S] = (1 + λ2)dσ2

var[S] = 2dσ4 (1 + 2λ2σ2)
4 This result is interesting in its own right. Many median based GARs can benefit from this new analysis.

In particular, Median which has been studied under non optimal robustness [31] and MeaMed whose
expected angular error was shown to be growing as O(

√
nd) [28]
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Upper bound on the absolute error of Aksel

Note that the (α, f)-Byzantine resilience and convergence theorems will be exactly the same
in our new analysis. It suffices to derive the upper bound on the absolute error ‖A−∇F‖2

and use it in every appearance of E ‖A−∇F‖2 in the previous results while dropping the
expectation sign and introducing the probabilistic statement (with probability p) before each
result.

In the following lemma, we upper bound the absolute error between Aksel’s output and
the true gradient in the squared norm sense.

I Lemma 17. Let V1, · · · ,Vn be any random d-dimensional vectors, f among them being pos-
sibly Byzantine. Let λ = Φ−1(1− 1

n )
(

1 + log
[
− log(p 1

d )
])
−Φ−1(1− 1

ne )
(

log
[
− log(p 1

d )
])

,
where p ∈ [0, 1) is an arbitrary probability. When Assumptions 1 and 5 hold, the gap
‖A−∇F‖ is upper bounded, and we have, with probability p:

‖A−∇F‖2 ≤ 2
[

1 + 2λ2 + λ

√
2(1 + 2λ2)√

d

]
dσ2 ∼ O(d log2 n)

6 Empirical Evaluation

We fully implemented and evaluated Aksel in a distributed setting. Due to space limitations,
we only present here a selection of empirical results. A detailed version of the setup, as well
as an extensive set of experiments, can be found in the appendix.

We tested Aksel (and its competitors) both in settings with no Byzantine players as well
as against two state-of-the-art attacks, namely “A little is enough” [3] and “Fall of empires”
[30]. The first attack leverages the normal distribution of data and proposes gradients that
lie within a small range containing the mean. The second attack focuses on inner product
manipulation: all GARs require their inner product with the true gradient to be positive.

We obtained remarkable results with Aksel, especially on complex datasets (CIFAR10).
In fact, Aksel, as any full-GAR, reaches top accuracy when s << f (see Figure 2). It is
also able to defend against the extreme case s ∼ f while maintaining a descent accuracy,
thanks to its low angular error (see Figure 3). In some experiments, Aksel is the only GAR
reaching the top accuracy while others never converge (Figure 4).

Figure 2 We compare Aksel and averaging (“No Byzantine resilience”) to full-GARs (left) and
blended-GARs (right) in an environment with no Byzantine worker. Here, Aksel, as well as other
full-GARs, perform as well as averaging. (MNIST dataset, using n = 51 workers; the GARs are
tuned to withstand up to 12 Byzantines workers.)
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Figure 3 CIFAR-10 using n = 25 workers and s = f = 11 Byzantine workers implementing attack
[30]. The learning rate schedule is 0.01 for the first 1500 training steps, then 0.001 for the remaining
of the training.

Figure 4 CIFAR-10 using n = 25 workers, including s = f = 5 Byzantine workers implementing
attack [3]. The learning rate schedule is 0.01 for the first 1500 training steps, then 0.001 for the
remaining of the training. Aksel is the only GAR which actually converges.

7 Concluding Remarks

Summary. This paper investigates the parameter server architecture of machine learning
algorithms when trained in untrusted environments. We address time complexity, breakdown
point, angular error and the overhead cost of Byzantine resilience. We propose Aksel, the
first full gradient aggregation rule with optimal time complexity and optimal breakdown point
with a constant expected angular error in the number of workers. Our empirical evaluation
shows that AKSEL achieves top accuracy in frequent situations with none or few Byzantine
workers, while maintaining a good defense in the very few cases where the ratio of Byzantine
workers approaches 50%. We also provide a new upper bound on the angular error of median
based GARs (Aksel included) which grows only in O(

√
d
n ) under optimal robustness.

Discussion. One could also ask whether it is possible to reduce the angular error of Aksel
further and obtain that of averaging (O(

√
d
n )), which is not Byzantine resilient. We foresee

two ways to improve the angular error: either by reducing the breakdown point, which would
result in a interval around the median containing only correct workers (this is the main idea
of b-TrMean and b-Phocas [29]), or by sacrificing the time complexity by computing the
distance between the median and the closest possible Byzantine value, which should give
an idea on how tight the filtering interval should be to average only correct workers. Note
that if we replace Median in Aksel with b-TrMean, it is possible to reduce the expected
angular error to O(

√
d
n ) when f = O(1). However, we prefer the current version of Aksel

because it does not need the truncation parameter b which, if underestimated, can cause a
serious problem in the training.

We see many ways to relax some of the assumptions we make in this paper. We believe
for instance that the Byzantine resilience and the convergence analysis could be done using
biased estimates, as in [6]. One could also derive an upper bound of the variance of gradients
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using the smoothness assumption, as discussed in [22], without assuming a constant upper
bound σ2 (as assumed in all previous papers). Another interesting direction is to leverage
randomness to improve Byzantine resilience.
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Abstract
With the emergence of attack-prone cross-organization systems, providing asynchronous state
machine replication (SMR) solutions is no longer a theoretical concern. This paper presents ACE, a
framework for the design of such fault tolerant systems. Leveraging a known paradigm for randomized
consensus solutions, ACE wraps existing practical solutions and real-life systems, boosting their
liveness under adversarial conditions and, at the same time, promoting load balancing and fairness.
Boosting is achieved without modifying the overall design or the engineering of these solutions.

ACE is aimed at boosting the prevailing approach for practical fault tolerance. This approach,
often named partial synchrony, is based on a leader-based paradigm: a good leader makes progress
and a bad leader does no harm. The partial synchrony approach focuses on safety and forgoes
liveness under targeted and dynamic attacks. Specifically, an attacker might block specific leaders,
e.g., through a denial of service, to prevent progress. ACE provides boosting by running waves
of parallel leaders and selecting a winning leader only retroactively, achieving boosting at a linear
communication cost increase.

ACE is agnostic to the fault model, inheriting it s failure model from the wrapped solution
assumptions. As our evaluation shows, an asynchronous Byzantine fault tolerance (BFT) replication
system built with ACE around an existing partially synchronous BFT protocol demonstrates
reasonable slow-down compared with the base BFT protocol during faultless synchronous scenarios,
yet exhibits significant speedup while the system is under attack.
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1 Introduction

Building reliable systems via state machine replication (SMR) requires resilience against all
network conditions, including malicious attacks. The best way to model such settings is
by assuming asynchronous communication links. However, as shown in the FLP result [27],
deterministic asynchronous SMR solutions are impossible.

Two principal approaches are used to circumvent this result. The first is by assuming
partial synchrony [25], in which protocols are designed to guarantee safety under worst case
network conditions, but are able to satisfy progress only during “long enough” periods of
network synchrony. Protocols in this model normally follow the leader-based view-by-view
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paradigm due to its speed during synchronous attack-free periods and relative simplicity.
In fact, most deployed systems, several of which have become the de facto standards for
building reliable systems (e.g., Paxos [35], PBFT [19], Zyzzyva [34], Zookeeper [2] Raft [45]
and others [45, 4, 51, 13]), adopt this approach. The drawback of the partial synchrony model
is that it fails to capture adaptive network attacks [48], leaving the leader-based view-by-view
algorithms vulnerable. For example, an attacker can prevent progress by adaptively blocking
the communication of the leader of every view.

The second approach to circumventing the FLP impossibility is by employing random-
ization [12, 47, 21]. Randomized algorithms typically satisfy safety properties, but ensure
liveness only with probability approaching 1, albeit operate at network speed under all
network conditions. There are many theoretical works on asynchronous consensus (also
called agreement) in the literature, but since they are typically very complex or inefficient,
only a few of them were used in academic asynchronous SMR systems [5, 24] and we are not
aware of any deployed in practice.

Main contribution. This paper presents ACE, a framework for asynchronous boosting that
converts consensus algorithms designed according to the leader-based view-by-view paradigm
in the partial synchrony model into randomized fully asynchronous SMR solutions. ACE
provides boosting by running waves of parallel leaders and selecting a winning leader only
retroactively. As a result, with ACE, a system designer can benefit twofold: (1) from the
experience gained in decades of leader-based view-by-view algorithm design and system
engineering, and (2) from a robust asynchronous solution that is live under attacks.

An additional feature of ACE is the following notion of fairness. Due to the unpredictabil-
ity of the election mechanism, ACE guarantees that for each slot the probability of parties
to agree on a value proposed by an honest party is at least 1/2. Another important feature
of ACE is that it is model agnostic and can be applied to any leader-based protocol in the
Byzantine or crash failure model. As a result, when instantiated with a BFT protocol such as
PBFT [19] we get asynchronous byzantine state machine replication, and when instantiated
with a crash-failure solution like Paxos [35] or Raft [45] we get the first asynchronous SMR
system tolerating any minority of failures.

1.1 Technical Approach
View-by-view paradigm. Leader-based view-by-view protocols divide executions into a
sequence of views, each with a designated leader. Every view is then further divided into two
phases. First, the leader-based phase in which the designated leader tries to drive progress
by getting all parties to commit its value, and all other parties start a timer to monitor
the progress. If the timer expires before a decision is reached (due to a faulty leader or
long network delays), the parties switch to the view-change phase. In this phase the parties
exchange information to safely wedge the current view and proceed to the next one, restarting
the process with the new designated leader.

Wave-by-Wave. Our solution boosts asynchronous liveness by eliminating the need in
internal timers. To thus end, ACE leverages a known theoretical paradigm [31, 9] of running
n leaders in parallel and retrospectively choosing one. In particular, ACE provides boosting
by running a wave of n leader-base phases in parallel, waiting for a quorum of leaders
to progress, and then randomly electing one leader to proceed to its view-change phase.
Importantly, no timers are used. Rather, the trigger to move to the view-change phase is
external and happens upon the completion of “enough” leaders.
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To be able to externally switch between the phases, ACE provides a formal characterization
of the leader-based view-by-view protocols by defining a leader-based view (LBV) abstraction,
which encapsulates the main properties of a single view. Its API de-couples the leader-based
phase from the view-change phase and allows each of them to be separately invoked – engage
triggers the leader-based phase, and wedge&exchange triggers the view-change phase.

We define the properties of LBV, and conjecture that existing view-by-view algorithms
implicitly satisfy them. Moreover, decomposing such algorithms according to the LBV
abstraction yields a sequence of LBV’s with an external timer triggering phase transitions,
as depicted in Figure 1.

Figure 1 Using a sequence of LBV instances to reconstruct a partially synchronous leader-based
view-by-view protocol.

More specifically, in a single-shot agreement protocol, an ACE wave operates as follows:
Instead of running one LBV instance (as view-by-view protocols do), a wave runs n LBV
instances (the leader-based phase) simultaneously, each with a distinct leader. Then, the wave
performs a barrier synchronization in which parties wait until a quorum of the instances have
completed. The barrier is eventually reached due to a key property of the LBV abstraction,
which guarantees that if the leader is correct and no correct party invokes view-change, then
all correct parties eventually commit a value.

After the barrier is reached, one LBV instance is selected unpredictably and uniformly
at random. The chosen instance “wins”, and all other instances are ignored. Then, parties
use the LBV’s wedge&exchange API to invoke the view-change phase in the chosen instance
(only). The view-change phase here has two purposes. First, it boosts termination. If the
chosen LBV instance has reached a decision, meaning that a significantly large quorum of
parties have decided in its leader-based phase, then all correct parties learn this decision
during the view-change phase. Second, as in every view-by-view protocol, the view-change
phase ensures safety by forcing the leaders of the next wave to propose safe values.

The next wave enacts n new LBV instances, each with a different leader that proposes
a value according to the state returned from the view-change phase of the chosen instance
of the previous wave. Note that since parties wait for a large quorum of LBV instances to
reach a decision in each wave before randomly choosing one, the chosen LBV has a constant
probability of having a decision, hence, together with the termination boosting provided by
the view-change phase, we get progress, in expectation, in a constant number of waves.

As to SMR, ACE implements a variant in which parties do not proceed to the next slot
before they learn the decision value of the current one, but once they move to the next one
they stop participating in the current slot and garbage collect all the associated resources.
Deferring next slots until the current decision is known is essential for systems in which the
validity of a value for a certain slot depends on all previous decision values (e.g., Blockchains).
ACE’s SMR solution uses an instance of the single-shot protocol for every slot together with
a forwarding mechanism to help slow parties catch-up.

Applicability. ACE can take any view-by-view consensus protocol designed for the partially
synchronous model and transform it into an asynchronous SMR solution. In order to
instantiate ACE with a specific algorithm, e.g., PBFT [19] or Paxos [35], one only needs
to take a single view of the algorithm’s logic and wrap it with the LBV API. Therefore,
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instantiating ACE does not require new logic implementation beyond the engineering effort
of providing the API. Furthermore, ACE’s modularity provides a clean separation of concerns
between safety (provided by the LBV properties) and asynchronous liveness (provided by
the framework).

Evaluation. To demonstrate ACE, we choose to focus on the byzantine model as this is the
model considered by Blockchain systems and we believe that, due to their high stakes and
public infrastructures, Blockchain systems will benefit the most from a generic asynchronous
SMR solution that can tolerate network attacks. We implement ACE’s algorithms in C++
and instantiate the LBV abstraction with a variant of HotStuff [51] – a state of the art BFT
solution, which is currently being implemented in several commercial Blockchain systems [6].
To compare the ACE instantiation to the base (raw) HotStuff implementation, we emulate
different adversarial scenarios and generate networks attacks. Our evaluation shows that while
base HotStuff outperforms ACE (instantiated with HotStuff) in the synchronous failure-free
case, ACE has absolute superiority during asynchronous periods and network attacks. For
example, we show that byzantine parties can hinder progress in base HotStuff by targeting
leaders with a DDoS attack, whereas ACE manages to commit values at network speed.

Roadmap. The rest of the paper is organized as follows: Section 2 describes the model and
formalizes the agreement and SMR problems. Section 3 gives an overview of the leader-based
view-by-view paradigm, capturing its main properties and vulnerabilities. Section 4 defines
ACE’s abstractions, and its algorithms are given in Section 5. Section 6 instantiates ACE and
evaluates its performance. Finally, Section 7 discusses related work and Section 8 concludes.

2 Model and Problem Definitions

2.1 System Model
We consider a peer to peer system with n parties, f < n of which may fail. We say that a
party is faulty if it fails at any time during an execution of a protocol. Otherwise, we say it
is correct. In a peer to peer system every pair of parties is connected with a communication
link. A message sent on a link between two correct parties is guaranteed to be delivered,
whereas a message to or from a faulty party might be lost. A link between two correct
parties is asynchronous if the delivery of a message may take arbitrary long time, whereas a
link between two correct parties is synchronous if there is a bound ∆ for message deliveries.
In asynchronous network periods all links among correct parties are asynchronous, whereas
during synchronous network periods all such links are synchronous.

A standard communication model assumed by algorithms that follow the view-by-view
paradigm is the partially synchronous model (also called eventual synchrony [25]). In
this model, there is an unknown point in every execution, called global stabilization time
(GST), which divides the execution into two network periods: before GST the network is
asynchronous and after GST the network is synchronous. The partially synchronous model
was defined to capture spontaneous network disconnections in wide-area networks, in which
case it is reasonable to assume that asynchronous periods are short and synchronous periods
are long enough for the protocols to make progress.

However, the partially synchronous model fails to capture malicious attacks that inten-
tionally try to sabotage progress, and thus are not suitable for many current use cases (e.g.,
Blockchains). For example, one possible attack is the weakly adaptive asynchronous in which
an attacker adaptively blocks one party at a time from sending or receiving messages (e.g.,
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via DDOS). This results in a mobile asynchrony that moves from party to party, violating
the GST assumption made by the partially synchronous model, and thus prevents progress
from all leader-based view-by-view algorithms.

ACE, in contrast, assumes the fully asynchronous communication model, and thus progress
in network speed under all network conditions and attacks as long as messages among correct
parties are eventually delivered.

As mentioned in the Introduction and explained in more detail below, ACE abstracts
away specific model assumptions and implementation details into three primitives: Leader
based view (LBV), leader-election, and barrier. In Section 4, we define the properties of these
primitives and require that any leader-based view-by-view protocol that is instantiated into
our framework satisfies them. To satisfy these properties, each protocol may have different
model assumptions: for example, the relation between f and n, the failure types (e.g., crash
and byzantine), and cryptographic assumptions. ACE inherits the specific assumptions
made by each of the protocols it is instantiated with, and adds nothing to them. In other
words, whatever assumptions are made by the instantiated protocol in order to satisfy the
abstractions’ properties, are exactly the assumptions under which ACE operates.

2.2 Problem Definition

We define the fair validated single-shot agreement problem below, and for space limitation
defer the definition of the generalized SMR problem to to the full paper [49].

The fair validated agreement [9, 16, 15] is a single-shot problem in which correct parties
propose externally valid values and agree on one unique such value. The formal properties
are given below:

Agreement: All correct parties that decide, decide on the same value.
Termination: If all correct parties propose valid values, then all correct parties decide
with probability 1.
Validity: If a correct party decides an a value v, then v is externally valid.

Note that the agreement and termination properties are not enough by to guarantee real
progress of any multi-shot agreement system (e.g., Blockchain) that is built on top of the
single-shot problem. Without external validity, parties are allowed to agree on some pre-
defined value (i.e., ⊥) [43], which is basically an agreement not to agree. Moreover, as long as
a value satisfies the system’s external validity condition (e.g., no contradicting transactions in
a blockchain system), parties may decide on this value even if it was proposed by a byzantine
party. However, since high stake is involved and byzantine parties may try to increase the
ratio of decision values proposed by them, we require an additional fairness property that is
a generalization of the quality property defined in [9]:

Fairness: The probability for a correct party to decide on a value proposed by a correct
party is at least 1/2. Moreover, during synchronous periods, all correct parties have an
equal probability of 1/n for their values to be chosen.

Intuitively, note that by simply following the protocol byzantine parties can have a probability
of 1/3 (recall that 1/3 of the parties are byzantine) for their value to be chosen in every
protocols even during synchronous periods. And since during asynchronous periods the
adversary can, in addition, block 1/3 of the correct parties, we get that byzantine parties can
increase their probability to 1/2. Meaning that the fairness property we require is optimal.
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3 The View-by-View Paradigm

Many (if not all) practical agreement and consensus algorithms operate a leader-based
view-by-view paradigm, designed for partially synchronous models, including the seminal
work of Dwork et al. [25] pioneering the approach, and underlying classical algorithms like
Paxos [35], Viewstamped-Replication [44], PBFT [19], and others [34, 45].

Protocols designed according to the view-by-view paradigm advance in views. Each view
has a designated leader that proposes a value and tries to convince other parties to decide
on it. To tolerate faulty leaders from halting progress forever, parties use timers to measure
leader progress; if no progress is made they demote the leader, abandoning the current view
and proceeding to the next one.

The main problem with this approach is that a faulty leader that does not send any
messages is indistinguishable from a correct leader with asynchronous links. Therefore,
protocols implementing this approach are not able to guarantee progress during asynchronous
periods or weakly adaptive asynchronous attacks since parties advance views before correct
leaders are able to drive decisions. Below we discuss the main properties of algorithms
designed according to the view-by-view paradigm:

3.1 Main properties
Safety. Perhaps the most important property of such algorithms is their ability to satisfy
safety during arbitrary long asynchronous periods. This is achieved via a careful view-change
mechanism that governs the transition between views. View-change consists of parties
wedging the current view by abandoning the current leader, and exchanging information
about what might have committed in the view (the closing state of the view). In the new
view, parties participate in the new leader’s phase only if it proposes a value that is safe in
accordance with the closing state.

Liveness. Algorithms that rely on leaders to drive progress cannot guarantee progress
during asynchronous periods since they cannot distinguish between faulty leaders and correct
ones with asynchronous links. During asynchronous periods, messages from the current
leader may be delivered only after parties timeout and move to the next view regardless of
how conservative the timeouts are.

However, all these algorithms share an important property that our framework utilizes:
for every view, if the leader of the view is correct and no correct party times out and abandons
this view, then all correct parties decide in this view.

3.2 Practical Vulnerabilities
Deploying view-by-view algorithms requires tuning the leader timeouts. On the one hand,
aggressive timeouts set close to the common network delay might cause correct leaders to
be demoted due to spurious delays, and destabilize the system. On the other, conservative
timeouts implies delayed actions in case of faulty leaders. It further opens the system to
possible attacks by byzantine leaders that slow system progress to the maximum possible
without triggering a timeout.

Another attack on the progress of leader-based protocols is the weak adaptive asynchrony
in which an attacker blocks communication with the leader of each view until the view
expires, e.g., via distributed denial-of-service attack. Last, a carefully executed adaptive
asynchrony attack can cause a fairness bias. Some leaders (possibly byzantine) may be
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allowed to progress and commit their values, whereas an attacker blocks communication
with other designated (possibly all correct) leaders. In Section 6, we demonstrate the above
attacks, and show that ACE is resilient against them.

4 Framework abstractions

ACE provides “asynchronous boosting” for partially synchronous protocols designed according
to the leader-based view-by-view paradigm. In a nutshell, ACE takes such a protocol,
encapsulates a single view of the protocol into a leader-based view (LBV) abstraction that
provides API to avoid timeouts, composes LBVs into a wave of n instances running in parallel,
interjects auxiliary actions in between successive waves, and chooses one LBV instance
retrospectively at random. Detailed description is given in the next section. Section 4.1
defines the Leader based view (LBV) abstraction and the auxiliary abstractions utilized by
ACE, Barrier and Leader-election, are given in the full paper [49].

4.1 Encapsulating view-based agreement protocols
As explained above, each view in a leader-based view-by-view algorithm consists of two
phases: First, all parties wait for the leader to perform the leader-based phase to drive
decision on some value v, and then, if the leader fails to do it fast enough, parties switch
to the view-change phase in which they wedge the current leader and exchange information
in order to get the closing state of the view. To decide when to switch between the phases,
existing algorithms use timeouts, which prevent them from guaranteeing progress during
asynchronous periods. Therefore, in order to boost asynchronous liveness, ACE replaces
the timeout mechanism with a different strategy to switch between the phases. To this end,
the LBV abstraction exposes an API with two methods, engage and wedge&exchange, where
engage starts the first phase of the view (leader-based), and wedge&exchange switches to the
second (view-change). By exposing API with these two methods, we remove the responsibility
of deciding when to switch between the phases from the view (e.g., no more timeouts inside
a view) and give it to the framework, while still preserving all safety guarantees provided by
each view in a leader-based view-by-view protocol.

Every instance of the LBV abstraction is parametrized with the leader’s name and with
an identification id, which contains information used by the high-level agreement algorithm
built (by the framework) on top of a composition of LBV instances. The wedge&exchange
method gets no parameters and returns a tuple 〈s, v〉, where v is either a value or ⊥; and s

is the closing state of the instance, consisting of all necessary information required by the
specific implementation of the abstraction (e.g., a safe value for a leader to propose). The
engage method gets the “closing state” s that was returned from wedge&exchange in the
preceding LBV instance (or the initial state in case this is the first one), and outputs a value
v. Intuitively, the returned value from both methods is the “decision” that was made in the
LBV instance, but as we explain below, the high-level agreement algorithm might choose to
ignore this value.

The safety of view-by-view algorithms strongly relies on the fact that correct parties start
a new view with the closing state of the previous one. Otherwise, they cannot guarantee
that correct parties that decide in different views decide on the same value. Therefore, when
we encapsulate a single view in our LBV abstraction and define its properties, we consider
only executions in which the LBV instances are composed one after another. Formally, we
say that the LBV abstractions are properly composed by a party pi in an execution if pi

invokes the engage of the first instance with some fixed initial state (which depends on the
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instantiated protocol), and for every instance k > 1, pi invokes its engage with the state
output of wedge&exchange of instance k − 1. In addition, we say that the LBV abstractions
are properly composed in an execution if they are properly composed by all correct parties.
Figure 2 illustrates LBV’s API and its properly composed execution.

Figure 2 A properly composed execution: The engage method of instance k > 1 gets the state
output of the wedge&exchange method of instance k − 1.

The formal definition of the LBV abstraction is as follows:

I Definition 1. A protocol implements an LBV abstraction if the following properties are
satisfied in every properly composed execution that consists of a sequence of LBV instances:
Liveness.

Engage-Termination: For every instance with a correct leader, if all correct parties
invoke engage and no correct party invokes wedge&exchange, then engage invocations
by all correct parties eventually return.
Wedge&Exchange-Termination: For every instance, if all correct parties invoke
wedge&exchange then all wedge&exchange by correct parties eventually return.

Safety.
Validity: For every instance, if an engage or
wedge&exchange invocation by a correct party returns a value v, then v is externally
valid.
Completeness: For every instance, if f + 1 engage invocations by correct parties
return, then no wedge&exchange invocation by a correct party returns a value v = ⊥.
Agreement: If an engage or wedge&exchange invoked in some instance by a correct
party returns a value v 6= ⊥ and some other engage or wedge&exchange invoked in
some instance by a correct party returns v′ 6= ⊥ then v = v′.

Note that during the view-change phase in most leader-based protocols, parties send the
closing state only to the leader of the next view. However, in ACE, since we run n concurrent
LBV instances, each with a different leader, we need all parties to learn the closing state after
wedge&exchange returns. Moreover, as mentioned above and captured by the Completeness
property, we use wedge&exchange to also boost decisions in order to guarantee that if the
retrospectively chosen LBV instance successfully completed the first (leader-based) phase,
than all correct parties decide at the end of its second phase. Therefore, when encapsulating
the view-change mechanism of a leader-based protocol into the wedge&exchange method, a
small change has to be made in order to satisfy the above properties. Instead of sending the
closing state only to the next leader, parties need to exchange information by sending the
closing state to all parties and wait to receive n− f such messages. No change is needed to
the first phase of the encapsulated leader-based protocol since all the required properties for
engage are implicitly satisfied.

5 Framework algorithms

In this section we present ACE’s asynchronous boosting algorithms, which are built on top
of the abstractions defined above. The algorithm for an asynchronous single-shot agreement
is given below, and for space limitation, we show how to turn it into an asynchronous SMR
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in the full paper [49]. For completeness, the full paper [49], we show how to use the LBV
abstraction to reconstruct the base partially synchronous view-by-view algorithm the LBV is
instantiated with.

The pseudocode for the asynchronous single-shot agreement protocol appears in Algo-
rithm 1 and a formal correctness proof can be found in the full paper [49]. An invocation of
the protocol (SS-propose(id, S)) gets an initial state S and identification id, where the initial
state S contains all the initial specific information (including the proposed value) required
by the leader-based view-by-view protocol instantiated in the LBV abstraction.

Algorithm 1 Asynchronous single-shot agreement.
1: upon SS-propose(id,S) do
2: state← S ; wave← 1
3: while true do
4: ID ← 〈id, wave〉
5: 〈state′, value〉 ← wave(ID, state)
6: if value 6= ⊥ and did not decide before

then
7: decide 〈id, value〉
8: state← state′

9: wave← wave + 1
10: upon engage 〈ID,pj 〉 returns v do
11: send “ID, engage-done” to party pj

12: procedure wave(ID, state)
13: for all pj = p1, . . . , pn do
14: invoke engage 〈ID,pj 〉(state)

//non-blocking
15: barrier-sync ID()
16: leader ← electID()
17: return wedge&exchange 〈ID,leader〉()
18: upon receiving n− f “ID,engage-done” do
19: invoke barrier-ready ID()

The protocol proceeds in a wave-by-wave manner. The state is updated at the and of
every wave and a decision is made the first time a wave returns a non-empty value. In every
wave, each party first invokes the engage operation in n LBV instances, each with a different
leader. Each invocation gets the state obtained at the end of the previous wave or the initial
state if this is the first wave.

Then, parties invoke barrier-sync and wait for it to return. Recall that by the B-
Coordination property, barrier-sync returns only after f +1 correct parties invoke barrier-ready.
When an engage invocation in an LBV instance with leader pj returns, a correct party sends
an “engage-done” message to party pj , and whenever a party gets n− f such messages it
invokes barrier-ready. Denote an LBV instance as successfully completed when f + 1 correct
parties completed the first phase, i.e., their engage returned, and note, therefore, that a
correct party invokes barrier-ready only after the LBV instance in which it acts as the leader
was successfully completed. Thus, a barrier-sync invocation by a correct party returns only
after f + 1 LBV instances successfully completed.

Figure 3 Asynchronous single-shot algorithm. The chosen LBVs, marked in green, are properly
composed.
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Next, when the barrier-sync returns, parties elect a unique leader via the leader-election
abstraction, and further consider only its LBV instance. Note that since parties wait until
f + 1 LBV instances have successfully completed before electing the leader, with a constant
probability of f+1

n the parties elect a successfully completed instance (can be improved to
2f+1

n in the byzantine case with n = 3f + 1), and even an adaptive adversary has no power
to prevent it.

Finally, all parties invoke wedge&exchange in the elected LBV instance to wedge and
find out what happened in its first phase, using the returned state for the next wave and
possibly receiving a decision value. By the Completeness property of LBV, if a successfully
completed LBV instance is elected, then all wedge&exchange invocations by correct parties
return v 6= ⊥ and thus all correct parties decide v in this wave. Therefore, after a small
number of n

f+1 waves all correct parties decide in expectation. Note that the sequence of
chosen LBV instances form a properly composed execution, and thus since parties return
only values returned from chosen LBVs, our algorithm inherits its safety guarantees from the
leader-based protocol the LBV is instantiated with. An illustration of the algorithm appears
in Figure 3.

6 ACE Instantiation

There are many possible ways to instantiate the ACE framework. We choose to evaluate
ACE in the byzantine failure model with n = 3f + 1 parties and a computationally bounded
adversary due to the attention it gets in the Blockchain use-case. For the LBV abstraction,
we implement a variant of HotStuff [51]. For the leader-election we implement the protocol
in [9, 16], and for the Barrier we give an implementation that operates in the same model. All
protocols use a BLS threshold signatures schema [14] that requires a setup, which can be done
with the help of a trusted dealer or by using a protocol for an asynchronous distributed key
generation [33]. Communication is done over TCP to provide reliable links. Due to the space
limitation, implementation details can be found in the full paper [49]. The communication
complexity of a single LBV is linear and that of the barrier and leader-election is quadratic,
leading to an expected total quadratic communication, for each slot.

Our evaluation compares the performance of ACE’s SMR instantiated with HotStuff,
we refer to as ACE HotStuff, with the base HotStuff SMR implementation. To compare
apples to apples, the base HotStuff and ACE HotStuff share as much code as possible. In
Section 6.1 we present the tests’ setup. Then, in Section 6.2, we measure ACE’s overhead
during failure-free synchronous periods, and in Section 6.3 we demonstrate ACE’s superiority
during asynchronous periods and network attacks.

6.1 Setup
We conducted our experiments using c5d.4xlarge instances on AWS EC2 machines in the
same data center. We used between 1 and 16 virtual machines, each with 4 replicas. The
duration of every test was 60 seconds, and every test was repeated 10 times. The size of
the proposed values is 10000 bytes. The latency is measured starting from when a new slot
has begun until a decision is made. The throughput is measured in one of two ways. In
tests where we altered the number of replicas, the throughout is the total number of bytes
committed, divided by the length of the test. In tests where we show the throughout as a
function of time, we aggregate the number of committed bytes in 1 second intervals. We did
not throttle the bandwidth in any run, rather we altered the transmission delays between
the machines, using NetEm [7].
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6.2 ACE’s overhead
The first set of tests compare ACE HotStuff performance with that of base HotStuff under
optimistic, synchronous, faultless conditions. Figure 4 depicts the latency and throughput.
The delay on the links was measured to be under 1ms. The latency increases with the growth
in the number of replicas since each replica must handle an equal growth in the number
of messages. Furthermore, as ACE HotStuff has a larger overhead than base HotStuff, the
latency grows faster.

Figure 5 shows the latency and throughput with different delays added to the links. The
latency of ACE HotStuff is twice that of base HotStuff. This is expected, as ACE is expected
to execute 1.5 waves per slot, leading to 1.5x the latency. Add on the additional barrier,
leader election abstraction and we arrive at 2x reduction in performance.

These tests show that the performance cost of using ACE is about 2x reduction in
performance in the optimistic case. In the next tests we argue this cost is sometimes worth
paying, as liveness of partially synchronous algorithms can be easily affected.

(a) Latency. (b) Throughput.

Figure 4 Optimistic case with no network delay.

(a) Latency. (b) Throughput.

Figure 5 Optimistic case under different network delays.

6.3 ACE’s superiority
From here on we choose a configuration of 32 replicas and set the transmission delay to be
5ms unless specified otherwise. The second set of tests compare ACE HotStuff and base
HotStuff in adverse conditions concerning message delays. These tests manipulate two factors,
the transmission delays (controlled via NetEm [7]), and the view timeout strategy.

The first test sets base HotStuff view timers to a fixed constant of 100ms, the time needed
for a commit assuming a 5ms transmission delay. The test measures the performance drop
during a short period in which transmission delays are increased, simulating asynchrony. For
the first third of the test the network delay is 5ms, for the next third the delay is 10ms, and
finally the delay returns to 5ms.
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Figure 6 Throughput with a fluctuating transmission delay.

Figure 6 compares the throughput of ACE HotStuff and base HotStuff. While the network
delay is 5ms, base HotStuff outperforms ACE HotStuff. However, once the network delay
begins to fluctuate, the throughput of base HotStuff goes to 0 since no leader has enough
time to drive progress. ACE HotStuff only sees a drop in throughput proportional to the
delay, meaning that it continue to progress at network speed.

Note that since the views in base HotStuff are leader-based, byzantine parties (or any
other adversarial entity) can achieve the same “asynchronous” effect presented above by only
slowing down the leaders. In the next test we demonstrate the above using a distributed
denial of service (DDoS) attack, in which leaders are flooded with superfluous requests in an
attempt to overload them and delay their progress in the leader-based phase.

Figure 7 compares the throughput of ACE HotStuff and base HotStuff, where the attack
starts at the halfway mark of the test. The byzantine parties coordinate their attack by
adaptively choosing a single correct party and flooding it with superfluous requests. In base
HotStuff, byzantine parties target correct leaders (byzantine leaders are making progress).
In ACE HotStuff, there is no designated leader, thus byzantine parties choose an arbitrary
correct party to attack. Our logs show that in base HotStuff progress is mainly made in
views where byzantines parties are leaders. If they would not drive progress, the throughput
would drop near 0.

Figure 7 Throughput under DDoS attack.

The previous two scenarios operated base HotStuff with a fixed aggressive view timer,
which was based on the expected network delay. This caused premature timer expiration
during periods of increased delays (due to asynchrony or attacks). One might think that a
possible solution can be to set a very long timeouts that will never expire, thus letting the
base HotStuff protocol progress in network speed. However, the downside of conservative
timers is that byzantine parties can perform a silent attack on the protocol’s progress by
not driving views when they are leaders, forcing all parties to wait for the long timeouts to
expire.
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Figure 8 Throughput with conservative timeouts under byzantine silence attack.

The next test evaluates base HotStuff with a conservative view timer of 1 second, fixed
to be much higher than expected needed to commit a view, under the silent attack starting
at the half way mark. Figure 8 presents the results. Before the attack, base HotStuff indeed
progresses in network speed, but during the attack, the throughput drops significantly since
a few consecutive byzantine leader might stall progress for seconds. In ACE HotStuff we see
a much smaller drop, but more fluctuation. This is due to the fact that byzantine leaders do
not drive progress in their LBV instances, and thus the expected number of waves until a
decision is now higher.

As the scenarios above demonstrate, neither being too aggressive nor being too conservative
works well for base HotStuff during asynchrony or attacks. Therefore, in practice, when
HotStuff is deployed it typically adjusts timers during execution according to progress or
lack of it. The most common method (used also by PBFT [19] and SBFT [29]) is to increase
timeouts whenever timers expires too early, and decrease them whenever progress is made
in order to try to learn the network delay and adapt to it’s dynamic changes. To test this
method, we implement an adaptive version, starting with a delay of t. If a timeout is reached
in a view before a decision is made we set the next view’s timeout to 1.25t. Otherwise, the
next view’s timeout is set to 0.8t.

Figure 9 Throughput with adjusting timeouts under a combination of DDoS and silence attacks.

We evaluate this method against the following attack that combines insights from the
previous ones. The results are shown in Figure 9. In the second half of the experiment,
byzantine parties perform a DDoS attack on correct leaders, causing the view timers to
increase, and then perform the silence attack (in views they act as leaders) to stall progress
as much as possible. As expected, base HotStuff throughput drops to almost zero, whereas
ACE HotStuff continues driving decisions. Same as in the previous test, ACE HotStuff
suffers from fluctuation due to the probability to choose a byzantine leader that did not
made progress in its LBV instance. Another interesting phenomenon is the x2 performance
drop of base HotStuff before the attack begins compared to previous tests. This is due to
the timeout adjustment mechanism, which reduces the timers after every successful view,
resulting in a too short timeout in every second view.
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While the timer adjustment algorithm can be further enhanced, it is an arms race against
the adversary – for each method, there is an adversarial response. In addition, although this
evaluation is focused on HotStuff, the only ingredient of the algorithm that is under attack is
the timeout, hence the evaluation exemplifies the weakness of all leader-based view by view
algorithms. Therefore, our evaluation suggests that the overhead of ACE in the optimistic
case is worth paying when high availability is desired under all circumstances.

7 Related work

The agreement problem was first introduced by Pease et al. [46], and has since received an
enormous amount of attention [17, 8, 50, 19, 34, 41, 39, 10, 20, 11, 42, 40, 23]. One of the
most important results is the FLP [27] impossibility, proving that deterministic solutions
in the asynchronous communication models are impossible. Below we describe work that
was done to circumvent the FLP impossibility, present two related frameworks that were
previously proposed for the agreement problem, and discuss alternative fairness definitions.
For space limitations, we compare our SMR definition to other systems in the literature in
the full paper [49].

Agreement in the partial synchrony model. A practical approach to circumvent the FLP
impossibility is to consider the partial synchrony communication model [44, 45, 29, 51, 34],
which was first proposed by Dwork et al. [25] and later used by seminal works like Paxos [35]
and PBFT [19]. As explained in detail in Section 3, protocols designed for this model never
violate safety, but provide progress only during long enough synchronous periods. Despite
their limitations, they are widely adopted in the industry due to their relative simplicity
compared to the alternatives and their performance benefits during synchronous periods.
For example, Casandra [1], Zookeeper [2], and Google’s Spanner [26] implement a variant of
Paxos [35]; and VMware’s Concord [3], the Libra Network [6] and IBM’s Hyperledger [5],
implement SBFT [29], HotStuff [51] and PBFT [19], respectively.

Agreement in the asynchrony model. As first shown by Ben-Or [12] and Rabin [37], the
FLP impossibility result does not stand randomization. Meaning that the randomized version
of the Agreement problem, which guarantees termination with probability 1, can be solved
in the asynchronous model provided that parties can flip random coins. The algorithms
in [12, 37] are very inefficient in terms of time and message complexity, and there has been a
huge effort to improve it over the years. Some considered the theoretical full information
model, in which the adversary is computationally unbounded, and showed more efficient
algorithms that relax the failure resilience threshold [30, 32]. These are beautiful theoretical
results but too complex to implement and maintain.

A more practical model for randomized asynchronous agreement is the random oracle
model in which the adversary is computationally bounded and cryptographic assumptions
(like the Decisional Diffie–Hellman [22]) are valid. In the context of distributed computing,
this model was first proposed by Cachin et al. [16, 15]. In [15] they proposed an almost optimal
algorithm for the agreement problem. A variant of this algorithm was later implemented in
Honeybadger [42] and Beat [24], which are the first academic asynchronous SMR systems.
The protocol in [15] is optimal in terms of resilience to failures and round complexity, but
has an inefficient O(n3) communication cost. Improving the communication cost was an
open problem for almost 20 years, until it was recently resolved in VABA [9]. ACE borrows
a lot from VABA [9].
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Frameworks for agreement. There are a few previously proposed agreement frameworks [28,
36, 18] that we are aware of. The authors of [28] and [18] propose frameworks allowing
for dynamically switching between protocols. They observed that no byzantine SMR can
outperform all others under all circumstances, and introduce a general way for a system
designer to switch between implementations whenever the setting changes. Our work is very
different from theirs. While they defined an abstraction in order to compose different SMR
view-by-view implementations to achieve better performance in the partially synchronous
model, our LBV abstraction provides an API to decouple the leader-based phase from the
view-change phase in each view, which in turn allows us to compose LBV instances in a novel
way that avoids leader demotions via timeouts and boost liveness in asynchronous networks.

Vertical Paxos [36] is a class of consensus algorithms that separates the mechanism for
reaching agreement from the one that deals with failures. The idea is to use a fast and
small quorum of parties to drive agreement, and have an auxiliary reconfiguration master to
reconfigure this quorum whenever progress stalls. The protocol for agreement relies on the
participation of all parties in the dedicated quorum, and thus stalls whenever some party
fails. The master is emulated by a bigger quorum, which uses an agreement protocol to agree
on reconfiguration, and thus can tolerate failures.

Fairness. Although the Agreement and SMR problems have been studied for many years,
the question of fairness therein was only recently asked, and we are aware of only few
solutions that provide some notion of it [11, 42, 38, 9]. Prime [11] extends PBFT [19] to
guarantee that values are committed in a bounded number of slots after they first proposed,
and FairLedger [38] uses batching to ensures that all correct party commits a value in every
batch. However, in contrast to ACE, both protocols are able to guarantee fairness only
during synchronous periods. Honeybadger [42] is an asynchronous protocol that, similarly
to FairLedger, batches values proposed by different parties and commits them together
atomically. It probabilistically bounds the number of epochs (and accordingly the number
of slots) until a value is committed, after being submitted to n− f parties. The VABA [9]
protocol does not use batching, and provides a per slot guarantee that bounds the probability
to choose a value proposed by a correct party during asynchronous periods. ACE provides
similar fairness guarantees during asynchrony, but also guarantees equal chance for each
correct party during synchrony.

8 Discussion

In this paper we introduced ACE: a general model agnostic framework for boosting asyn-
chronous liveness of any leader-based SMR system designed for the partially synchronous
model. The main ingredient is the novel LBV abstraction that encapsulates the properties
of a single view in leader-based view-by-view algorithms, while providing an API to control
the scheduler of the two phases, leader-based and view-change, in each view. Exploiting this
separation, ACE provides a novel algorithm that composes LBV instances in a way that
avoids timers and provides a randomized asynchronous SMR solution.

ACE is model agnostic, meaning that it does not add any assumptions on top of what are
assumed in the instantiated LBV implementation, thus provides a generic liveness boosting
for both byzantine and crash-failure SMRs. In order to instantiate ACE with a specific SMR
algorithm, all a system designer needs to do is alter the code of a single view to support
LBV’s API; this should not be too complicated as the view logic must already implicitly
satisfy the required API’s properties.
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In addition to boosting liveness, ACE is designed in a way that inherently provides
fairness due to its randomized election of leaders in retrospect. Moreover, ACE provides
a clear separation between safety, which relies on the LBV implementation, and liveness,
which is given by the framework. As a result, a system designer that chooses to instantiate
ACE gets a modular SMR implementation that is easier to prove correct and maintain – if a
better agreement protocol is published, all the designer needs to do in order to integrate it
in the system is to alter the LBV implementation accordingly.

To demonstrate the power of ACE we implemented it, instantiated it with the state of the
art HotStuff [51] protocol, and compared its performance to the base HotStuff implementation.
Our results show that while ACE suffers a 2x performance degradation in the optimistic,
synchronous, failure-free case, it enjoys absolute superiority during asynchronous periods
and network attacks.
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Abstract
The Ripple network is one of the most prominent blockchain platforms and its native XRP token
currently has one of the highest cryptocurrency market capitalizations. The Ripple consensus
protocol powers this network and is generally considered to a Byzantine fault-tolerant agreement
protocol, which can reach consensus in the presence of faulty or malicious nodes. In contrast to
traditional Byzantine agreement protocols, there is no global knowledge of all participating nodes in
Ripple consensus; instead, each node declares a list of other nodes that it trusts and from which it
considers votes.

Previous work has brought up concerns about the liveness and safety of the consensus protocol
under the general assumptions stated initially by Ripple, and there is currently no appropriate
understanding of its workings and its properties in the literature. This paper closes this gap and
makes two contributions. It first provides a detailed, abstract description of the protocol, which has
been derived from the source code. Second, the paper points out that the abstract protocol may
violate safety and liveness in several simple executions under relatively benign network assumptions.
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1 Introduction

Ripple is one of the oldest and most established blockchain networks; its XRP token is
ranked fourth in market capitalization in October 2020. The Ripple network is primarily
aimed at fast global payments, asset exchange, and settlement. Its distributed consensus
protocol is implemented by a peer-to-peer network of validator nodes that maintain a history
of all transactions on the network [24]. Unlike Nakamoto’s consensus protocol [21] in Bitcoin
or Ethereum, the Ripple consensus protocol does not rely on “mining,” but uses a voting
process based on the identities of its validator nodes to reach consensus. This makes Ripple
much more efficient than Bitcoin for processing transactions (up to 1500 transactions per
second) and lets it achieve very low transaction settlement times (4–5 seconds).

However, Ripple’s consensus protocol does not follow the established models and algo-
rithms for Byzantine agreement [22, 15] or Byzantine fault-tolerant (BFT) consensus [8].
Those systems start from a common set of nodes that are communicating with each other to
reach consensus and the corresponding protocols have been investigated for decades. Instead,
the Ripple consensus protocol introduces the idea of subjective validators, such that every
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node declares some trusted validators and effectively communicates only with those nodes for
reaching agreement on transactions. With this mechanism, the designers of Ripple aimed
at opening up membership in the set of validator nodes compared to BFT consensus. The
trusted validators of a node are defined by a Unique Node List (UNL), which plays an
important role in the formalization of the protocol. Every node maintains a static UNL in
its configuration file and considers only the opinions of nodes in its UNL during consensus.
Figure 1 shows an example network, where two UNLs are defined: UNL1 = {1, 2, 3, 4} and
UNL2 = {3, 4, 5, 6}; for instance, nodes 1, 2 and 3 may trust UNL1, and nodes 4, 5 and 6
may trust UNL2.

Consensus in Ripple aims at delivering the transactions submitted by clients to all
participating nodes in a common global order, despite faulty or malicious (Byzantine)
nodes [27]. This ensures that the sequence of transactions, which are grouped into so-
called ledgers and then processed by each node, is the same for all nodes. Hence, the
states of all correct nodes remain synchronized, according to the blueprint of state-machine
replication [26].

Cachin and Vukolić [7] have earlier pointed out that it is important to formally assess
the properties of blockchain consensus protocols. Unfortunately, many systems have been
designed and were deployed without following the agreed-on principles on protocol analysis
from the literature. Ripple is no exception to this, as we show in this work.

Specifically, we focus on two properties that every sound protocol must satisfy [1]: safety
and liveness. Safety means that nothing “bad” will ever happen, and liveness means that
something “good” eventually happens. Safety ensures that the network does not fork or
double-spend a token, for instance. A violation of liveness would mean that the network
stops making progress and halts processing transactions, which creates as much harm as
forking.

This work first presents a complete, abstract description of the Ripple consensus protocol
(Section 3). The model has been obtained directly from the source code. It is formulated
in the language spoken by designers of consensus protocols, in order to facilitate a better
understanding of the properties of Ripple consensus. No formal description of Ripple
consensus with comparable technical depth has been available so far (apart from the source
itself).

Figure 1 Example of a Ripple network configuration with six nodes and two UNLs, UNL1 =
{1, 2, 3, 4} and UNL2 = {3, 4, 5, 6}. Nodes 1, 2, and 3 (white) trust UNL1, and nodes 4, 5, and 6
(black) trust UNL2. Notice that nodes 3 and 4 have more influence than the rest of nodes since they
are in the intersection of both UNLs.
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Second, we exhibit examples of how safety and liveness may be violated in executions of
the Ripple consensus protocol (Sections 4 and 5). In particular, the network may fork under
the standard condition on UNL overlap stated by Ripple and in the presence of a constant
fraction of Byzantine nodes. The malicious nodes may simply send conflicting messages to
correct nodes and delay the reception of other messages among correct nodes. Furthermore,
the consensus protocol may lose liveness even if all nodes have the same UNL and there is
only one Byzantine node. If this would occur, the system has to be restarted manually.

Given these findings, we conclude that the consensus protocol of the Ripple network is
brittle and does not ensure consensus in the usual sense. It relies heavily on synchronized
clocks, timely message delivery, the presence of a fault-free network, and an a-priori agreement
on common trusted nodes. The role of the UNLs, their overlap, and the creation of global
consensus from subjective trust choices remain unclear. If Ripple instead had adopted a
standard BFT consensus protocol [5], as done by Tendermint [4], versions of Hyperledger
Fabric [2], Libra [16] or Concord [13], then the Ripple network would resist a much wider
range of corruptions, tolerate temporary loss of connectivity, and continue operating despite
loss of synchronization.

2 Related work

Despite Ripple’s prominence and its relatively high age among blockchain protocols – the
system was first released in 2012 – there are only few research papers investigating the
Ripple consensus protocol compared to the large number of papers on Bitcoin. The original
Ripple white paper of 2014 [27] describes the UNL model and illustrates some ideas behind
the protocol. It claims that under the assumption of requiring an 80%-quorum for declaring
consensus, the intersection between the UNLs of any two nodes u and v should be larger
than 20% of the size of the larger of their UNLs, i.e.,∣∣∣UNLu ∩UNLv

∣∣∣ ≥ 1
5 max

{∣∣UNLu

∣∣, ∣∣UNLv

∣∣}.
The only earlier protocol analysis in the scientific literature of which we are aware was

authored by Armknecht et al. in 2015 [3]. This work analyzes the Ripple consensus protocol
and outlines the security and privacy of the network compared to Bitcoin. The authors
prove that a 20%-overlap, as claimed in the white paper, cannot be sufficient for reaching
consensus and they increase the bound on the overlap to at least 40%, i.e.,

|UNLu ∩UNLv| >
2
5 max{|UNLu|, |UNLv|}

In a preprint of 2018, Chase and MacBrough [10] further strengthen the required UNL
overlap. They introduce a high-level model of the consensus protocol and describe some of
its properties, but many details appear unclear or are left out. This work concludes that the
overlap between UNLs should actually be larger than 90%. The paper also gives an example
with 102 nodes that shows how liveness can be violated, even if the UNLs overlap almost
completely (by 99%) and there are no faulty nodes. The authors conclude that manual
intervention would be needed to resurrect the protocol after this.

Christodoulou et al. [11] further investigate the decentralization of a Ripple network
by running simulations with different configurations. They observe how the convergence
time and the so-called “Network Health Indicator,” a synthetic measure computed by a
tool available from Ripple, change depending on the overlap between the nodes’ UNLs.
Their experiments suggest that a large UNL overlap is required only with more than 20% of
malicious nodes in the network. They also indicate a possibility for a dynamic determination
of an optimal UNL overlap.
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An analysis whose goal is similar to that of our work has been conducted by Mauri et
al. [19]. Based on the source code, they give a verbal description of the consensus protocol,
but do not analyze dynamic protocol properties. Our analysis, in contrast, provides a detailed,
formal description with pseudocode and achieves a much better understanding of how the
“preferred ledger” is chosen. Moreover, our work shows possible violations of safety and
liveness, whereas Mauri et al. address only on the safety of the consensus protocol through
sufficient conditions.

Other academic work mostly addresses network structure, transaction graph, and privacy
aspects of payments on the Ripple blockchain [18, 20], which is orthogonal to our focus.

3 A description of the Ripple consensus protocol

The main part of our analysis consists of a detailed presentation of the Ripple consensus
protocol in this section and formally in Algorithms 1–3. Before we describe this, we define
the task that the protocol intends to solve.

3.1 Specification
Informally, the goal of the Ripple consensus protocol is “to ensure that the same transactions
are processed and validated ledgers are consistent across the peer-to-peer XRP Ledger
network” [25]. More precisely, this protocol implements the task of synchronizing the nodes
so that they proceed through a common execution, by appending successive ledgers to an
initially empty history and where each ledger consists of a number of transactions. This is
the problem of replicating a service in a distributed system, which goes back to Lamport et
al.’s pioneering work on Byzantine agreement [22, 15]. The problem has a long history and a
good summary can be found in the book “30-year perspective on replication” [9].

For replicating an abstract service among a set of nodes, the service is formulated as a
deterministic state machine that executes transactions submitted by clients or, for simplicity,
by the nodes themselves. The consensus protocol disseminates the transactions among the
nodes, such that each node locally executes the same sequence of transactions on its copy
of the state. The task provided by this protocol is also called atomic broadcast, indicating
that the nodes actually disseminate the transactions. When each node locally executes the
same sequence of transactions, as directed by the protocol, and since each transaction is
deterministic, all nodes will maintain the same copy of the state [26].

More formally, atomic broadcast is characterized by two events dealing with transactions:
submission and execution, which may each occur multiple times. Every node may submit
a transaction tx by invoking submit(tx) and atomic broadcast applies tx to the application
state on the node through execute(tx). A protocol for atomic broadcast then ensures these
properties [14, 5]:

Validity: If a correct node p submits a transaction tx, then p eventually executes tx.
Agreement: If a transaction tx is executed by some correct node, then tx is eventually

executed by every correct node.
Integrity: No correct node executes a transaction more than once; moreover, if a correct

node executes a transaction tx and the submitter p of tx is correct, then tx was previously
submitted by p.

Total order: For transactions tx and tx′, suppose p and q are two correct nodes that both
execute tx and tx′. Then p executes tx before tx′ if and only if q executes tx before tx′.
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Our specification does not refer to the heterogeneous trust structure defined by the UNLs
and simply assumes all nodes should execute the same transactions. This corresponds to
the implicit assumption in Ripple’s code and documentation. We note that the question of
establishing global consistency in a distributed system with subjective trust structures is a
topic of current research, as addressed by asymmetric quorum systems [6] or in the context
of Stellar’s protocol [17], for example.

3.2 Overview
The following description was obtained directly from the source code. Its overall structure
retains many elements and function names found in the code, so that it may serve as a
guide to the source for others and to explain its working. If the goal had been to compare
Ripple consensus to the existing literature on synchronous Byzantine agreement protocols,
the formalization would differ considerably.

The protocol is highly synchronous and relies on a common notion of time. It is
structured into successive rounds of consensus, whereby each round agrees on a ledger (a set
of transactions to execute). Each round roughly takes a predefined amount of time and is
driven by a heartbeat timer, which triggers a state update once per second. This contrasts
with the Byzantine consensus protocols with partial synchrony [12], such as PBFT [8], which
can tolerate arbitrarily long periods of asynchrony and rely on clocks or timeouts only for
liveness. The Ripple protocol aims to agree on a transaction set within each synchronized
round. The round ends when all nodes collectively declare to have reached consensus on
a proposal for the round. The protocol is then said to close and later validate a ledger
containing the agreed-on transaction set. However, the transactions in the ledger are executed
only after another protocol step, once the ledger has become fully validated; this occurs in an
asynchronous process in the background. Transaction execution is only logically synchronized
with the consensus round.

A ledger consists of a batch of transactions that result from a consensus round and
contains a hash of the logically preceding ledger. Ledgers are stored persistently and roughly
play the role of blocks in other blockchain protocols. Each node locally maintains three
different ledgers: the current ledger, which is in the process of building during a consensus
round, the previous ledger, representing the most recently closed ledger and the valid ledger,
which is the last fully validated ledger in the network.

In more detail, a consensus round has three phases: open, establish, and accepted. The
usual phase transition goes from open to establish to accepted and then proceeds to the next
consensus round, which starts again from open. However, it is also possible that the phase
changes from establish to open, if a node detects that it has been forked from the others to a
wrong ledger and resumes processing after switching to the ledger agreed by the network.

Nodes may submit transactions at any time, concurrently to executing the consensus
rounds. They are disseminated among the nodes through a gossip layer that ensures only
weak consistency. All transactions that have been received from gossip are placed into a
buffer. Apparently, the original design assumed that the gossip layer ensures a notion of
consistency that prevents Byzantine nodes from equivocating, in the sense of correct nodes
never receive different messages from them. This assumption has been dropped later [10].

The protocol rounds and their phases are implemented by a state machine, which is
invoked every second, when the global heartbeat timer ticks. Messages from other nodes are
received asynchronously in the background and processed during the next timer interrupt.
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The timeout handler (L56) first checks if the local previous ledger is the same as the
preferred ledger of a sufficient majority of the nodes in the network. If not, the node has
been forked or lost synchronization with the rest of the network and must bring itself back to
the state agreed by the network. In this case, it starts a new consensus round from scratch.

When the node enters a new round of consensus, it sets the phase to open, resets round-
specific data structures, and simply waits for the buffer to fill up with submitted transactions.
Once the node has been in the open phase for more than half of the duration of the previous
consensus round, the node moves to the establish phase (L63–L64; function closeLedger). It
locally closes the ledger, which means to initialize its proposal for the consensus round and
to send this to the other nodes in its UNL.

During the establish phase, the nodes exchange their proposals for the transactions to
decide in this consensus round (using proposal messages). Obviously, these proposals
may contain different transaction sets. All transactions on which the proposals from other
nodes differ become disputed. Every node keeps track of how many other nodes in its UNL
have proposed a disputed transaction and represents this information as votes by the other
nodes. The node may remove a disputed transaction from its own proposal, or add one to its
proposal, based on the votes of the others and based on the time that has passed. Specifically,
the node increases the necessary threshold of votes for changing its own vote on a disputed
transaction depending on the duration of the establish phase with respect to the time taken
by the previous consensus round.

The node leaves the establish phase when it has found that there is a consensus on its
proposal (L69–L71; functions haveConsensus and onAccept). The node constructs the next
ledger (the “last closed ledger”) by “applying” the decided transactions. This ledger is signed
and broadcast to the other nodes in a validation message.

The node then moves to the accepted phase and immediately initializes a new consensus
round. Concurrently, the node receives validation messages from the nodes in its UNL. It
verifies them and counts how many other nodes in its UNL have issued the same validation.
When this number reaches 80% of the nodes in its UNL, the ledger becomes fully validated
and the node executes the transactions contained in it.

3.3 Details

Functions. For simplicity, there are some functions that are not fully explained in the
pseudocode. These functions are:

startTimer(timer, duration) starts timer, which expires after the time passed as duration.
clock.now() returns the current time.
Hash() creates a unique identifier (often denoted ID) of a data structure by converting
the data to a canonical representation and applying a cryptographic hash function.
A 4 B denotes the symmetric set difference.
boolToInt(b) converts a logical value b to an integer and returns b? 0:1.
signi(L) creates a cryptographic digital signature for ledger L by node i.
verifyi(L, σ) checks if the digital signature on L from node i is valid.
siblings(M) returns the set of nodes, different from M , that have the same parent as M .

Remarks on the pseudocode. Next to every function name, a comment points to a specific
file and line in the source code which contains its implementation. The Ripple source contains
a large number of files and most of the consensus protocol implementation is actually spread
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over multiple header (.h) files, which complicates the analysis of the code. The references in
this work are based on version 1.4.01 of rippled [23].

Phase open. Function beginConsensus starts a consensus round for the next ledger (L50).
Each ledger (L11) contains a hash (ID) that serves as its identifier, a sequence number (seq),
a hash of the parent ledger (parentID), and a transaction set (txns), denoting the transactions
applied by the ledger.

The node records the time when the open phase started (openTime, L54), so that it can
later calculate how long the open phase has taken. This is important because the duration of
the open phase determines when to close the ledger locally. If the time that has passed since
openTime is longer or equal to half of the previous round time (prevRoundTime), consensus
moves to phase establish by calling the function closeLedger (L64). Meanwhile all nodes
submit transactions with the gossip layer (L46) and each node stores the transaction received
via gossip messages in its transaction set S (L48). We model transactions as bit strings. In
some places, and as in the source code, we use a short, unique transaction identifier (of type
int) for each transaction tx ∈ {0, 1}∗, computed by a function TxID(tx). A transaction set is
a set of binary strings here, but the source code maintains a transaction set using a hash
map, containing the transaction data indexed by their identifiers.

Phase establish. When the node moves from open to establish, it calls closeLedger that
creates an initial proposal (stored in result.proposal), containing all transactions received
from the gossip layer (L79) that have not been executed yet. A proposal structure (L16)
contains the hash of the previous ledger (prevLedgerID), a sequence number (seq), the actual
set (txns) of proposed transactions (in the source code named position), an identifier of the
node (node) that created this proposal, and a timestamp (time) when this proposal is created
(L79).

The node then broadcasts the new proposal as a proposal message (L81) to all nodes
in its UNL. When they receive it, they will store its contents in their currPeerProposals
collection of proposals (L85), if the message originates from a node their respective UNL.
The closeLedger function also sets result.roundTime to the current time (L80). This serves
to measure the duration of the establish phase and will be used later to determine how far
the consensus process has converged.

Based on the proposals from other nodes, each node computes a set of disputed transactions
(L88). A disputed transaction (DisputedTx, L5) contains the transaction itself (tx), a binary
vote (ourVote) by the node on whether this transaction should be included in the ledger, the
number of “yes” and “no” votes from other nodes on the transaction (yays and nays), taken
from their proposal messages, and the list of votes on this transaction from the other nodes
(votes).

A transaction becomes disputed when it is proposed by the node itself and some other
node does not propose it, or vice versa. The node determines these by comparing its own
transaction set with the transaction sets of all other nodes (L89). Every disputed transaction
is recorded (as a DisputedTx structure) in the collection result.disputes (L90–L97).

During the establish phase, the node constantly updates its votes on all disputed transac-
tions (L68; L99; L117) for responding to further proposal messages that have been received.
A vote may change based on the number of nodes in favor of the transaction, the convergence

1 The latest release (16. November 2020) is version 1.6.0. Compared to version 1.4.0, the current release
has no significant changes concerning the consensus protocol.
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ratio (converge) and a threshold. Convergence measures the expected progress in one single
consensus round and is computed from the duration of the establish phase, the duration of
the previous round, and an assumed maximal consensus-round time (L67). The value for the
threshold is predefined. The further the consensus converges, the higher is the threshold that
the number of opposing votes needs to reach so that the node changes its own vote (L126).
Whenever the node’s proposal is updated, the node broadcasts its new proposal to the other
nodes (L113) and the disputed transactions are recomputed (L115).

Afterwards, the node checks if consensus on its proposed transaction set result.txns is
reached, by calling the function haveConsensus (L69). The node counts agreements (L130)
and disagreements (L131) with result.txns. If the fraction of agreeing nodes is at least 80%
with respect to the UNL (L132), then consensus is reached. The node proceeds to the
accepted phase by calling the function onAccept (L71).

Phase accepted. The function onAccept (L133) “applies” the agreed-on transaction set
and thereby creates the next ledger (called the “last closed ledger” in the source code; L134).
This ledger is then signed (L136) and broadcast to the other nodes as a validation message
(L137). This marks the end of the accepted phase and a new consensus round is initiated by
the node (L140).

Meanwhile, in the background, the node receives validation messages from other nodes
in its UNL and tries to verify them (L141). This verification checks the signature and if the
sequence number of the received ledger is the same as the sequence number of the own ledger.
All validations that satisfy both conditions and contain the node’s own agreed-on ledger
are counted (L145); this comparison uses the cryptographic hash of the ledger structure in
the source code. Again, if 80% of nodes have validated the same ledger and if the sequence
number of that ledger is larger than that of the last fully validated ledger (L146), the ledger
becomes fully validated (L147). The node then executes the transactions in the ledger (L150).
In other words, the consensus decision has become final.

Preferred ledger. A node participating in consensus regularly computes the preferred ledger,
which denotes the current ledger on which the network has decided. Due to possible faults
and network delays, the node’s prevLedger may have diverged from the preferred ledger,
which is determined by calling the function getPreferred(validLedger) (L151). Should the
network have adopted a different ledger than the prevLedger of the node, the node switches
to this ledger and restarts the consensus round with the new ledger.

Notice that the validated ledgers from all correct nodes form a tree, rooted in the initial
ledger (genesisLedger). Each node stores all valid ledgers that it receives in a tree-structured
variable tree. Whenever the node receives a validation message containing a ledger L′, it
adds L′ to tree (L143). In order to compute the preferred ledger, we define the following
functions, which are derived from the ledgers in tree and in the received validation messages:

tip-support(L) for a ledger L is the number of validators in the UNL that have validated L.
In other words,

tip-support(L) =
∣∣{ j ∈ UNL | validations[j] = L}

∣∣.
support(L) for a given ledger L is the sum of the tip support of L and all its descendants
in tree, i.e.,

support(L) = tip-support(L) +
∑

L′ is a child of L in tree
tip-support(L′).
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Algorithm 1 Ripple consensus protocol for node i (continues on next pages).
1: Type
2: Enum Phase = {open, establish, accepted}
3: Tx = {0, 1}∗ // a transaction
4: TxSet = 2Tx

5: DisputedTx( // DisputedTx.h:50
6: Tx tx, // disputed transaction
7: bool ourVote, // binary vote on whether transaction should be included
8: int yays, // number of yes votes from others
9: int nays, // number of no votes from others
10: HashMap[int → bool] votes) // collection of votes indexed by node
11: Ledger( // Ledger.h:77
12: Hash ID, // identifier
13: int seq, // sequence number of this ledger
14: Hash parentID, // identifier of ledger’s parent
15: TxSet txns) // set of transactions applied by ledger
16: Proposal( // ConsensusProposal.h:52
17: Hash prevLedgerID, // hash of the previous ledger, on which this proposal builds
18: int seq, // sequence number
19: TxSet txns, // proposed transaction set, called position at ConsensusProposal.h:73
20: int node, // node that proposes this
21: milliseconds time) // time when proposal is created
22: ConsensusResult( // ConsensusTypes.h:201
23: TxSet txns, // set of transactions consensus agrees on
24: Proposal proposal, // proposal containing transaction set
25: HashMap[int → DisputedTx] disputes, // collection of disputed transactions
26: milliseconds roundTime) // duration of the establish phase

27: State
28: Phase phase // phase of the consensus round for agreeing on one ledger
29: Tree tree // tree representation of received valid ledgers
30: Ledger L // current working ledger
31: Ledger prevLedger // last agreed-on (“closed”) ledger according to the network
32: Ledger validLedger // ledger that was most recently fully validated by the node
33: TxSet S // transactions submitted by clients that have not yet been executed
34: ConsensusResult result // data relevant for the outcome of consensus on a single ledger
35: HashMap[int → Proposal] currPeerProposals // collection of proposals indexed by node
36: HashMap[int → Ledger] validations // collection of validations indexed by node
37: milliseconds prevRoundTime// time taken by the previous consensus round, initialized to 15s
38: float converge ∈ [0, 1] // ratio of round time to prevRoundTime
39: UNL ⊆ {1, . . . ,M} // validator nodes trusted by node i, taken from the configuration file
40: milliseconds openTime // time when the last open phase started

41: function initialization()
42: prevLedger← genesisLedger // genesisLedger is the first ledger in the history of the network
43: S ← {}
44: beginConsensus() // start the first round of consensus
45: startTimer(heartbeat, 1s) // NetworkOPs.cpp:673

46: upon submission of a transaction tx do
47: send message [submit, tx] with the gossip layer

48: upon receiving a message [submit, tx] from the gossip layer do
49: S← S ∪ {tx}

50: function beginConsensus() // start a new round of consensus, Consensus.h:663
51: phase← open // Consensus.h:669
52: result← ({},⊥, [ ], 0) // Consensus.h:674
53: converge← 0 // Consensus.h:675
54: openTime← clock.now() // remember the time when this consensus round started
55: currPeerProposals← [ ] // reset the proposals for this consensus round

OPODIS 2020



10:10 Security Analysis of Ripple Consensus

Algorithm 2 Ripple consensus protocol for node i (continued).
56: upon timeout(heartbeat) do // Consensus.h:818
57: L′ ← getPreferred(validLedger)
58: if L′ 6= prevLedger then
59: prevLedger← L′
60: beginConsensus(prevLedger)
61: if phase = open then // wait until the closing ledger can be determined locally
62: if (clock.now()− openTime) ≥ prevRoundTime

2 then // Consensus.cpp:75
63: phase← establish
64: closeLedger() // initialize consensus value in result
65: else if phase = establish then // agree on the contents of the ledger to close
66: result.roundTime← clock.now()− result.roundTime
67: converge← result.roundTime

max{prevRoundTime,5s}
68: updateOurProposals() // update consensus value in result
69: if haveConsensus() then
70: phase← accepted
71: onAccept() // note this immediately sets phase = open inside beginConsensus()
72: else if phase = accepted then // Consensus.h:821
73: // do nothing
74: startTimer(heartbeat, 1s)

75: // transition from open to establish phase
76: function closeLedger() // Consensus.h:1309
77: L← (⊥, prevLedger.seq + 1,⊥, {})
78: result.txns← S // propose the current set of submitted transactions
79: result.proposal← (Hash(prevLedger), 0, result.txns, i, clock.now())
80: result.roundTime← clock.now()
81: broadcast message [proposal, result.proposal]
82: result.disputes← [ ] // disputes for transactions not proposed by all nodes in the UNL
83: for j ∈ UNL such that currPeerProposals[j] 6= ⊥ do
84: createDisputes(currPeerProposals[j].txns) // compared to result.txns, Consensus.h:1334

85: upon receiving a message [proposal, prop] such that prop = (nl, ·, ·, j, ·) and
86: j ∈ UNL and nl = Hash(prevLedger) do
87: currPeerProposals[j]← prop // Consensus.h:781

88: function createDisputes(TxSet set) // Consensus.h:1623
89: for tx ∈ result.txns 4 set do // all transactions that differ between result.txns and set
90: dt←

(
tx, (tx ∈ result.txns), 0, 0, [ ]

)
// dt is a disputed transaction

91: for k ∈ UNL such that currPeerProposals[k] 6= ⊥ do
92: if tx ∈ currPeerProposals[k].txns then
93: dt.votes[k]← 1 // record node’s vote for the disputed transaction
94: dt.yays← dt.yays + 1
95: else
96: dt.votes[k]← 0 // record node’s vote against the disputed transaction
97: dt.nays← dt.nays + 1
98: result.disputes[TxID(tx)]← dt // phase establish

99: function updateOurProposals() // Consensus.h:1361
100: for j ∈ UNL such that (clock.now()− currPeerProposals[j].time) > 20s do
101: currPeerProposals[j]← ⊥ // remove stale proposals
102: T ← result.txns // current set of transactions, to update from disputed ones
103: for dt ∈ result.disputes do // dt is a disputed transaction
104: if updateVote(dt) then // if vote on dt changes, update the dispute set
105: dt.ourVote← ¬dt.ourVote
106: if dt.ourVote then // should the transaction be included? DisputedTx.h:77
107: T ← T ∪ {dt.tx} // dt.ourVote is initially set in createDisputes(TxSet set)
108: else
109: T ← T \ {dt.tx}
110: if T 6= result.txns then // if txns changed, then update result and tell the other nodes
111: result.txns← T
112: result.proposal← (Hash(prevLedger), result.proposal.seq + 1, result.txns, i)
113: broadcast message [proposal, result.proposal]
114: result.disputes← [ ] // recompute disputes after updating result.txns
115: for j ∈ UNL such that currPeerProposals[j] 6= ⊥ do // Consensus.h:1679
116: createDisputes(currPeerProposals[j].txns)
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Algorithm 3 Ripple consensus protocol for node i (continued).
117:function updateVote(DisputedTx dt) // DisputedTx.h:197
118: if converge < 0.5 then // set threshold based on duration of the establish phase
119: threshold← 0.5
120: else if converge < 0.85 then
121: threshold← 0.65
122: else if converge < 2 then
123: threshold← 0.7
124: else
125: threshold← 0.95
126: newVote←

(
dt.yays+boolToInt(dt.ourVote)

dt.yays+dt.nays+1 > threshold
)

127: return
(
newVote 6= dt.ourVote

)
// the vote changes

128:function haveConsensus() // Consensus.h:1545
129: // count number of agreements and disagreements with our proposal
130: agree← |{j|currPeerProposals[j] = result.proposal}|
131: disagree← |{j|currPeerProposals[j] 6= ⊥ ∧ currPeerProposals[j] 6= result.proposal}|
132: return

( agree+1
agree+disagree+1 ≥ 0.8

)
// 0.8 is defined in ConsensusParams.h, Consensus.cpp:104

// phase accepted

133:function onAccept() // RCLConsensus.cpp:408
134: L← (prevLedger, result.txns) // L is the last closed ledger, RCLConsensus.cpp:708
135: validations[i]← L
136: σ ← signi(L) // validate the ledger, RCLConsensus.cpp:743
137: broadcast message [validation, i, σ,L]
138: prevLedger← L // store the last closed ledger
139: prevRoundTime← result.roundTime
140: beginConsensus() // advance to the next round of consensus, NetworkOPs.cpp:1584

141:upon receiving a message [validation, j, σ,L′] such that // LedgerMaster.cpp:858
142: L′.seq = L.seq and verifyj(L′, σ) do
143: add L′ to tree
144: validations[j]← L′ // store received validation
145: valCount← |{k ∈ UNL|validations[k] = L}| // count the number of validations
146: if valCount ≥ 0.8 · |UNL| and L.seq > validLedger.seq then
147: validLedger← L // ledger becomes fully validated
148: S← S \ {L.txns}
149: for tx ∈ L.txns do // in some deterministic order
150: execute(tx)

151:function getPreferred(Ledger L) // LedgerTrie.h:677
152: if L is a leaf node in tree then
153: return L
154: else
155: M ← arg max{support(N) | N is a child of L in the tree}
156: if uncommitted(M) ≥ support(M) then
157: return L
158: else if max{support(N) | N ∈ siblings(M)}+ uncommitted(M) < support(M) then
159: return getPreferred(M)
160: else
161: return L
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uncommitted(L) for a ledger L denotes the number of validators whose last validated
ledger has a sequence number that is strictly smaller than the sequence number of L.
More formally,

uncommitted(L) =
∣∣{j ∈ UNL | validations[j].seq < L.seq}

∣∣.
With these definitions, we now explain how getPreferred(Ledger L) proceeds (L151–L161).

If L has no children in tree, it returns L itself. Otherwise, the function considers the child of
L that has the highest support among all children (M). If the support of M is still smaller
than the number of validators that are yet uncommitted at this ledger-sequence number,
then L is still the preferred ledger (L157). Otherwise, if the support of M is guaranteed to
exceed the support of any of its siblings N , even when the uncommitted validators would
also support N , then the function recursively calls getPreferred on M , which outputs the
preferred ledger for M and returns this as the preferred ledger for L. Otherwise, L itself is
returned as the preferred ledger. Observe that in the case when M has no siblings conditions
in L156 and L158 are equivalent. Then is enough to check if support of M is greater than
uncommitted od M .

4 Violation of safety

In this section, we address the safety of the Ripple consensus protocol. We describe a simple
scenario that violates consensus in an execution with seven nodes, of which one is Byzantine.
Actually, one can generalize this to executions with more nodes.

To show that the Ripple consensus protocol violates safety and may let two correct nodes
execute different transactions, we use the following scenario with seven nodes. Figure 2
gives a graphical representation of our scenario. Nodes are named by numbers. We let
UNL1 = {1, 2, 3, 4, 5} and UNL2 = {3, 4, 5, 6, 7}, as illustrated by the two hatched areas in
the figure. Nodes 1, 2, and 3 (white) trust UNL1, nodes 5, 6, and 7 (black) trust UNL2, and
they are all correct; node 4 (gray) is Byzantine. With this setup, we achieve 60% overlap
between the UNLs of any two nodes.

Figure 2 Example setup for showing a safety violation in the Ripple consensus protocol. The
setup consists of seven nodes, one of them Byzantine, and two UNLs. Nodes 1, 2, and 3 (white)
adopt UNL1, vertically hatched, and nodes 5, 6, and 7 adopt UNL2, horizontally hatched. Node 4
(gray) is Byzantine.
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The key idea is that the Byzantine node (4) changes its behavior depending on the
group of nodes to which it communicates. It will cause nodes 1, 2, and 3 (white) to propose
some transaction tx and nodes 5, 6, and 7 (black) to propose a transaction tx′ for the next
ledger. No other transaction exists. The Byzantine node (4) follows the protocol as if it had
proposed tx when interacting with the white nodes and behaves as if it had proposed tx′
when interacting with the black nodes. Assuming that all nodes start the consensus roughly
at the same time and they do not switch the preferred ledger, the protocol does the following:

The Byzantine node 4 submits tx and tx′ using gossip and causes [submit, tx] to be
received by nodes 1, 2, and 3 and [submit, tx′] to be received by nodes 5, 6, and 7 from
the gossip layer. During the repeated heartbeat timer executions in the open phase, all
correct nodes have the same value of prevLedger and send no further messages.
Suppose at a common execution of the heartbeat timer execution (L56) all correct
nodes proceed to the establish phase and call closeLedger. They broadcast the message
[proposal,S], with S containing tx or tx′, respectively (L81). Node 4 sends a proposal
message containing tx to nodes 1, 2, and 3 and one containing tx′ to nodes 5-7. Furthermore,
every correct node executes createDisputes with the transaction set txns received in each
proposal message, which creates result.disputes (L88). For nodes 1, 2, and 3, transaction
tx′ is disputed and for nodes 5, 6, and 7, transaction tx is disputed.
During establish phase, all nodes update their vote for each disputed transaction (L117).
Nodes 1, 2, and 3 consider tx′ but do not change their no vote on tx′ because only 20% of
nodes in their UNL (namely, node 5) vote yes on tx′; this is less than required threshold
of 50% or more (L126). The same holds for nodes 5, 6, and 7 with respect to transaction
tx. Hence, result.txns remains unchanged and no correct node sends another proposal
message.
Eventually, function haveConsensus returns true for each correct node because the
required 4/5 = 80% of its UNL has issued the same proposal as the node itself (L128).
Every correct node moves to the accepted phase.
During onAccept, nodes 1, 2, and 3 send a validation message with ledger L =
(prevLedger, {tx}), whereas nodes 5, 6, and 7 send a validation message containing
L′ = (prevLedger, {tx′}) (L137). Node 4 sends a validation message containing tx to
nodes 1, 2, and 3 and a different one, containing tx′, to nodes 5, 6, and 7.
Every correct node subsequently receives five validation messages, from all nodes in its
UNL, and finds that 80% among them contain the same ledger (L141). Observe that no
node changes its preferred ledger after calling getPreferred. This implies that nodes 1, 2,
and 3 fully validate L and execute tx, whereas nodes 5, 6, and 7 fully validate L′ and
execute tx′. Hence, the agreement condition of consensus is violated.

5 Violation of liveness

Here we show how the Ripple consensus protocol may violate liveness even when all nodes
have the same UNL and only one node is Byzantine. One can bring the protocol to a state,
in which it cannot produce a correct ledger and where it stops making progress.

Consider a system with 2n correct nodes and one single Byzantine node. All nodes are
assumed to trust each other, i.e., there is one common UNL containing all 2n + 1 nodes.
Observe that in this system, the fraction of Byzantines nodes can be made arbitrary small
by increasing n.

As illustrated in Figure 3, node n+ 1, which is Byzantine, exhibits a split-brain behavior
and follows the protocol for an input transaction tx when interacting with nodes 1, . . . , n, and
operates with a different input transaction tx′ when interacting with nodes n+ 2, . . . , 2n+
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Figure 3 Setup in which liveness is violated in the Ripple network. The network consists of
2n+ 1 nodes with one single UNL and 1 Byzantine (black). The n first nodes propose transaction tx
while the last n propose transaction tx′. The Byzantine proposes transaction tx to the n first nodes
and transaction tx′ to the last n.

1. This implies that the first half of the correct nodes, denoted 1, . . . , n, will propose a
transaction tx and the other half, nodes n+2, . . . , 2n+1, will propose transaction tx′. Similar
to the execution shown in Section 4, the nodes start the consensus protocol roughly at the
same time and they do not switch the preferred ledger, they proceed like this:

Byzantine node n+ 1 sends two messages, [submit, tx] and [submit, tx′], using the gossip
layer and causes tx to be received by the first n correct nodes and tx′ to be received by
the last n correct nodes.
After some time has passed, the correct nodes start to close the ledger and move to the
establish phase. Every correct node sends a proposal message, containing only the
submitted transaction of which it knows (L81), namely tx for the first n correct nodes
and tx′ for the last n correct nodes.
During establish phase, the correct nodes receive the proposal messages from all nodes
(including the Byzantine node) and store them in currPeerProposals (L85). Since they
all use the same UNL, all obtain the same proposal messages from the correct nodes.
Each node creates disputes (L88) and updates them while more proposal messages
arrive. Since the proposed transaction sets differ, each node creates a dispute for tx and
for tx′.
While the proposal messages are being processed, votes are counted in updateVotes
(L117), using the yays and nays of each disputed transaction. For a correct node in
{1, . . . , n}, notice that the first n nodes and the Byzantine node vote no for tx′ and the
last n nodes vote yes. Thus, the fraction of nodes voting yes for tx′ is less than required
threshold (50%), and so the first n nodes continue to vote no for tx′. Similarly, nodes
n+ 2 to 2n+ 1 never update their vote on tx and always vote no for tx.
The haveConsensus function called periodically during the establish phase checks if at
least 80% of the nodes in the UNL agree on the the proposal of the node itself (L128).
From the perspective of each one of the first n correct nodes, n other nodes agree and
n nodes disagree with its proposal, which contains tx. That is not enough support
for achieving consensus and the function will return false. The same holds from the
perspective of the last n correct nodes, which also continuously return false.
Finally, the correct nodes will continue trying to update votes and get enough support, but
without being able to generate a correct ledger. No correct node proceeds to validating
the ledger. In other words, liveness of the protocol is not guaranteed.
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6 Conclusion

Ripple is one of the oldest public blockchain platforms. For a long time, its native XRP
token has been the third-most valuable in terms of its total market capitalization. The
Ripple network is implemented as a peer-to-peer network of validator nodes, which should
reach consensus even in the presence of faulty or malicious nodes. Its consensus protocol is
generally considered to be a Byzantine fault-tolerant protocol, but without global knowledge
of all participating nodes and where a node only communicates with other nodes it knows
from its UNL. Previous work regarding the Ripple consensus protocol has already brought up
some concerns about its liveness and safety. In order to better analyze the protocol, this work
has presented an independent, abstract description derived directly from the implementation.
Furthermore, this work has identified relatively simple cases, in which the protocol may
violate safety and/or liveness and which have devastating effects on the health of the network.
Our analysis illustrates the need for very close synchronization, tight interconnection, and
fault-free operations among the participating validators in the Ripple network.
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Abstract
This work presents Information Theoretic HotStuff (IT-HS), a new optimally resilient protocol for
solving Byzantine Agreement in partial synchrony with information theoretic security guarantees.
In particular, IT-HS does not depend on any PKI or common setup assumptions and is resilient
to computationally unbounded adversaries. IT-HS is based on the Primary-Backup view-based
paradigm. In IT-HS, in each view, and in each view change, each party sends only a constant
number of words to every other party. This yields an O(n2) word and message complexity in each
view. In addition, IT-HS requires just O(1) persistent local storage and O(n) transient local storage.
Finally, like all Primary-Backup view-based protocols in partial synchrony, after the system becomes
synchronous, all nonfaulty parties decide on a value in the first view a nonfaulty leader is chosen.
Moreover, like PBFT and HotStuff, IT-HS is optimistically responsive: with a nonfaulty leader,
parties decide as quickly as the network allows them to do so, without regard for the known upper
bound on network delay. Our work improves in multiple dimensions upon the information theoretic
version of PBFT presented by Miguel Castro, and can be seen as an information theoretic variant of
the HotStuff paradigm.
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1 Introduction

This work assumes the model of Castro and Liskov’s PBFT protocol [7, 9, 11]. In particular
we deal with the task of Byzantine Agreement in a partially synchronous network. The
setting of partial synchrony was proposed by Dwork, Lynch, and Stockmeyer [12] and studied
extensively since. In this model, the network starts off as an asynchronous network and at
some unknown time becomes synchronous with a known delay ∆ on message arrival. This
time is known as the Global Stabilization Time, or GST in short. This model turns out
to be a useful one, managing to capture some of the behaviour of real-world networks. As
in PBFT, our goal in this work is to reduce the use of cryptographic tools that require a
computationally bounded adversary as much as possible. Much like PBFT, our algorithm
is information theoretically secure. Formally, as in PBFT [7, 9, 11], our protocol is secure
against adversaries that are not computationally bounded under the assumption that there
exist authenticated channels that can be made secure against such adversaries. For example,
authenticated channels can be obtained via a setup of one time pads or via Quantum key
exchange [2].
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There are several good reasons to design protocols in the information theoretic security
setting. First, from a theoretical perspective we are interested in minimizing the assumptions.
Fewer assumptions often tend to add clarity and conceptual simplicity. Secondly, adding
public-key cryptography primitives adds a performance overhead and increases the code-base
attack surface, whereas computations in the information-theoretic setting are quick and
often amount to simple memory management and counting. Finally, protocols in this setting
are more “future-proof”. Such protocol are more resilient to breaking certain cryptographic
assumptions and to major technological disruptions in the field.

The PBFT variants that use a PKI and digital signatures can easily use bounded storage
at each party (per active slot). One of the challenges of the PBFT protocol when only
authenticated channels (no signatures) are used is that obtaining bounded storage is not
immediate. Indeed all the peer reviewed papers that we are aware of obtain unbounded
solutions [7, 10]. Castro’s thesis [9] does include a bounded storage solution, however to
the best of our knowledge this result was not published in a peer reviewed venue, and its
complexity does rely on cryptographic hash functions.

1.1 Main result
Our main result is Information Theoretic HotStuff (IT-HS), a protocol solving the task of
Byzantine Agreement in partial synchrony with information theoretic security using bounded
storage that sends messages whose maximal size is O(1) words (both during a view and
during a view change). The protocol is resilient to any number of Byzantine parties f such
that n > 3f , making it optimally resilient. In the protocol, there are several virtual rounds
called views, and each one has a leader, called a primary. This is a common paradigm for
solving Byzantine agreement, famously used in the Paxos protocol [16] and in later iterations
on those ideas such as PBFT [7, 9, 15] and more recent protocols in the Blockchain era
[4, 5, 6, 14, 18]. We use a standard measure of storage called a word and assume a word
can contain enough information to store any command, identifier, or counter. Formally, this
means that much like in all previous systems and protocols, our counters, identifiers, and
views are bounded (by say 256 bits). In IT-HS, in each view and in each view change, each
party sends just a constant number of words and messages to each other party, making the
total word and message complexity O(n2) in each view and in each view change. As far
as we know, this is the best known communication complexity and word complexity for
information theoretic protocols of this kind (see table below for comparison). In addition, all
parties require O(n) space throughout the protocol, out of which only O(1) space needs to
be persistent, crash-resistant memory. Clearly at least O(1) persistent memory is required,
because otherwise a decided upon value can be “forgotten” by all parties if they crash and
reboot. As far as we know, O(n) transient space complexity is the best known result. In the
shared memory model, a lower bound of Ω(n) registers exists [13], suggesting that the total
amount of persistent memory in the system is optimal.

In IT-HS, all nonfaulty parties are guaranteed to decide on a value and terminate during
the first view a nonfaulty party is chosen as primary after GST, if they haven’t done so
earlier. This is the asymptotically optimal convergence for such protocols: For deterministic
leader rotation this implies O(f) rounds after GST. If we assume that parties have access
to a randomized leader-election beacon, then this implies O(1) expected rounds after GST.
Furthermore, like PBFT and HotStuff, IT-HS is optimistically responsive. If the network
delay is actually δ = o (∆), all nonfaulty parties terminate in O (δ) time instead of in O (∆)
time. IT-HS uses an asymptotically optimal (constant) number of rounds given a nonfaulty
primary and after the network becomes synchronous.
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The most relevant related works for IT-HS are the PBFT protocol variants [7, 9, 10, 11]
and the HotStuff protocol variants [18]. The following table provides a comparison between
them.

Assumptions Persistent storage Maximum size of
message (in words)

PBFT (OSDI) [11] PKI Ω(n) O(n)

PBFT (TOCS) [10] Authenticated Channels,
Cryptographic Hash

Ω(n) per view
(unbounded)

Ω(n) per view
(unbounded)

PBFT (Thesis) [9] Authenticated Channels,
Cryptographic Hash O(1) O(n)

YAVP (Cachin) [7] Authenticated Channels,
Cryptographic Hash

Ω(n) per view
(unbounded)

Ω(n) per view
(unbounded)

HotStuff
(authenticators) [18] PKI O(n) O(n)

HotStuff
(threshold sig) [18]

DKG: Threshold
signature setup O(1) O(1)

(threshold sig)
IT-HS (this work) Authenticated Channels O(1) O(1)

As mentioned earlier, all previous peer-reviewed works in the information theoretic setting
require at least Ω(n · v) words of storage, where v is the view number. Since the view number
can grow arbitrarily large, the persistent storage requirement is unbounded. The only work
we know of that achieves comparable asymptotic performance relies on the relatively strong
cryptographic assumption of threshold signatures.

We note that IT-HS does not only use fewer assumptions (does not use any cryptographic
hash function), it also obtains the asymptotically optimal O(1) word bound on the maximal
message size. All other protocols require at least Ω(n) size messages to be sent during view
change by the primary (except for Hotstuff when using a Distributed Key Generation setup
and threshold signatures).

Compared to PBFT, our work can be seen as addressing the open problem left in the
PBFT journal version (which uses unbounded space and cryptographic hash functions) and is
an improvement of the non peer-reviewed PBFT thesis work (which still uses cryptographic
hash functions). IT-HS obtains the same O(1) persistent space, and manages to reduce the
maximum message size from O(n) (in the PBFT view change) to the asymptotically optimal
O(1) maximum message size and requires no cryptographic hash functions.

Relative to HotStuff, our work shows that without any PKI (public key infrastructure)
or DKG (distributed key generation) assumptions and without any cryptographic setup
ceremony, constant size messages and constant size persistent storage are possible! We do
note that IT-HS requires O(n2) messages and words per view, while the Hostuff version with
a DKG setup that uses threshold signatures requires just O(n) messages and words per view.
On the other hand, HS-IT requires no cryptographic setup ceremony and no computational
assumptions other than pairwise authenticated channels. Like HS-IT, all other protocols that
do not use threshold signatures (even those that require a PKI) use Ω(n2) words per view.

Our contributions
1. Unlike previous solutions which used cryptographic hash functions and required O(n)

sized messages, We provide the first information theoretic primary backup protocol where
all messages have size O(1) and storage is bounded to size O(1).

2. We manage to reduce the size of the view change messages to a constant by adapting
the HosStuff paradigm without using any cryptographic primitives. We introduce an
information theoretic technique for one-transferable signatures to maintain bounded space
and adopt the view change protocol accordingly.

OPODIS 2020
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3. Without using any cryptographic primitives, we obtain a protocol that requires just a
constant amount of persistent storage. We use information theoretic techniques that
require storing just the last two events from each message type.

1.2 Main Techniques

As the name might suggest, IT-HS is inspired by the Tendermint, Casper, and HotStuff
protocols [4, 5, 6, 18] and adapts them to the information theoretic setting. We show how to
adapt the lock and key mechanism which was suggested in HotStuff [18] and made explicit in
[1], to the information theoretic setting while maintaining just O(1) persistent storage. In a
basic locking mechanism [4, 12], before nonfaulty parties decide on a value, they set a “lock”
that doesn’t allow them to respond to primaries suggesting values from older views. Then,
before deciding on a value, nonfaulty parties require a proof that enough parties are locked
on the current view. This ensures that if some value is decided upon, there will be a large
number of nonfaulty parties that won’t be willing to receive messages from older views, and
thus this will remain the only viable value in the system.

The challenge with the locking mechanism is that the adversary can cause nonfaulty
locked parties to block nonfaulty primaries, unless the primary waits for all nonfaulty parties
to respond. To overcome this, an additional round is added so that a nonfaulty locked party
guarantees that there is a sufficient number of nonfaulty parties with a key. When a new
primary is chosen, it waits for just n − f parties to send their highest keys, and uses the
highest one it receives.

The challenge with using a key is verifying its authenticity. In the cryptographic setting,
this is easily done using signatures. In the information theoretic setting, verification is more
challenging. One approach is using Bracha’s Broadcast [3] in order to prove that the key
received by the primary will also be accepted by the other parties. Since there is no indication
of termination in Bracha’s Broadcast, there is a need to maintain an unbounded number
of broadcast instances (one for each view). Using such techniques requires an unbounded
amount of space.

To overcome this challenge with bounded space, we propose a novel approach of using
one-hop transferable proofs. If before moving to the next round, a nonfaulty party hears
from n− f parties, then it knows it heard from at least f + 1 nonfaulty parties. This means
that once the system becomes synchronous, every party will hear from those f + 1 parties
and know that at least one of them is nonfaulty. We use this type of “one-hop transferable
proof” twice so we have 3 key messages instead of one, each proving that the next key (or
lock) is correct, and that this fact can be proven to other parties, thereby ensuring liveness.

In order to send just a constant number of words, we send just the last two times that
the value of the key was updated. If the final update to key happened after a lock was set,
and its value is different than the lock’s value, then the lock is safe to open. Otherwise, if
the older of the two updates was after the lock’s view then at least in one of those times it
was updated to a value other than the lock’s value, and thus the lock is also safe to open.
Using this idea, parties can also prove to a primary that a key3 suggestion is safe. In this
case, the parties either show a later view in which the same value was set for key2, or two
later views in which the value of key2 was updated. This proof shows that any previous lock
either has the same value as key3, or can be opened safely regardless of its value. The idea
of storing just two lock values appears in Castro’s Thesis [9], we significantly extend this
technique to use our novel one-hop transferable information theoretic “signatures” combined
with the HotStuff keys-lock approach.
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1.3 Protocol Overview
Much like all primary backup protocols, each view of IT-HS consists of a constant number of
rounds. Each party waits to receive n − f round i messages before it sends a round i + 1
message (in some rounds there are additional checks). Much like PBFT, each round involves
an all-to-all message sending format. Throughout the protocol, parties may set a lock for a
given view and value. This lock indicates that any proposal for a different view, value pair
should not be accepted without ample proof that another value reached advanced stages in
a later view. In order to provide that proof, the parties send a proof message that helps
convince parties with locks to accept messages about a different value if appropriate.

The rounds of IT-HS for a given view can be partitioned into 4 parts:
1. View Change: parties first send a request message, indicating that they started the view.

Once parties hear the request message sent by the primary, they respond with their
current suggestion for a value to propose, as well as the view in which this suggestion
originated, and additional data which will help validate all nonfaulty parties’ suggestions
(proofs). After receiving those suggestions, the primary checks whether each suggestion is
valid, and once it sees n − f valid suggestions, it sends a propose message for the one
that originated in the most recent view.

2. Propose message round: this is where a party checks a proposal relative to its lock. Each
party checks if it’s locked on the same value as the one proposed, or convinced to override
its lock by f + 1 proof messages. If that is the case, it responds by sending an echo

message.
3. Key message rounds: this is where a key is created that can be later used to unlock

parties. After receiving n − f echo messages with the same value, parties send a key1
message with that value. After receiving n− f key1 messages with the same value they
send a key2 message. After receiving n− f key2 messages with the same value they send
a key3 message. We use these three rounds in order to obtain transferable information
theoretic signatures on the key message.

4. Lock and commit rounds: After receiving n− f key3 messages with the same value they
lock on it and send a lock message. After receiving n− f lock messages with the same
value they commit and send a done message.

Before sending a key1 message, the local key1, key1_val and prev_key1 fields are
updated. These fields contain the last view in which a key1 message was sent, its value, and
the last view a key1 message was sent with a different value. Similar updates take place for
the other key fields and the lock fields. The echo, lock and various key messages are tagged
with the current view, while the done message is a protocol-wide message and isn’t related
to a specific view. Similarly to the mechanism in Bracha Broadcast [3], after receiving f + 1
done messages, the message is echoed, and after receiving n− f messages it is accepted and
the parties decide and terminate. If a party sees that this view takes more than the expected
time, it sends an abort message for the view. The same f + 1 threshold for echoing the
abort message and n− f threshold for moving to the next view are implemented in order to
achieve the same properties. In order to avoid buffering request and abort messages, only
the messages with the highest view v are actually stored and are understood as a request or
abort message for any view up to v.

2 Byzantine Agreement in Partial Synchrony

This section deals with the task of Byzantine Agreement in a partially synchronous system.
In this model, there exist n parties who have local clocks and authenticated point-to-point
channels to every other party. The system starts off fully asynchronous: the clocks are not
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Algorithm 1 IT-HS.
Code for party i with input xi:
1: lock ← 0, lock_val← xi
2: key3← 0, key3_val← xi
3: key2← 0, key2_val← xi, prev_key2← −1
4: key1← 0, key1_val← xi, prev_key1← −1
5: view ← 0
6: ∀j ∈ [n] highest_request [j]← 0
7: continually run check_progress() in the background
8: while true do . memory from last process_messages and view_change calls is freed
9: cur_view ← view

10: as long as cur_view = view, run
11: at time cur_time() + 11∆ do
12: send an 〈abort, view〉 message to all parties
13: ignore messages from other views, other than abort, done and request messages
14: primary ← (view mod n) + 1
15: continually run process_messages(view) in the background
16: view_change(view, primary)

synchronized, and every message can be delayed any finite amount of time before reaching its
recipient. At some point in time, the system becomes fully synchronous: the clocks become
synchronized, and every message (including the ones previously sent) arrives in ∆ time at
most, for some commonly known ∆. It is important to note that even though it is guaranteed
that the system eventually becomes synchronous, the parties do not know when it is going to
happen, or even if it has already happened. The point in time in which the system becomes
synchronous is called the Global Stabilization Time, or GST in short. In the setting of a
Byzantine adversary, the adversary can control up to f parties, making them arbitrarily
deviate from the protocol. In general, throughout this work assume that f < n

3 .

I Definition 1. A Byzantine Agreement protocol in partial synchrony has the following
properties:

Termination. If all nonfaulty parties participate in the protocol, they all eventually
decide on a value and terminate.
Correctness. If two nonfaulty parties decide on values val, val′, then val = val′.
Validity. If all parties are nonfaulty and they all have the same input val, then every
nonfaulty party that decides on a value does so with the value val.

We note that if we assume the parties have access to an external validity function, as
described in [8], this protocol can be easily adjusted to have external validity. In this setting,
the external validity function defines which values are “valid”, and all nonfaulty parties are
required to output a valid value. The only adjustment needed is for parties to also check if a
value is valid before sending an echo message.

The main goal of this section is to show that Algorithm 1 is a Byzantine Agreement
protocol in partial synchrony resilient to f < n

3 Byzantine parties. For ease of discussion,
a party is said to perform an action “in view v” if when it performed the action its local
view variable equaled v. In addition, we define the notion of messages “supporting” a key or
opening a lock:
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Algorithm 2 view_change(view,primary).
Code for party i:
1: send 〈request, view〉 to all parties j ∈ [n]
2: upon highet_request [primary] = view, do
3: send 〈suggest, key3, key3_val, key2, key2_val, prev_key2, view〉 to primary
4: send_all_upon_join(〈proof, key1, key1_val, prev_key1, view〉)
5: if primary = i then
6: suggestions← ∅
7: key2_proofs← ∅
8: upon receiving the first 〈suggest, k3, v3, k2, v2, pk2, view〉 message from j, do
9: if pk2 < k2 < view then
10: add (k2, v2, pk2) to key2_proofs
11: if k3 = 0 then
12: add (k3, v3) to suggestions
13: else if k3 < view then
14: upon accept_key (k3, v3, key2_proofs) = true, do
15: add (k3, v3) to suggestions
16: wait until |suggestions| ≥ n− f , then do
17: let (k, v) ∈ suggestions be some tuple such that ∀ (k′, v′) ∈ suggestions k′ ≤ k
18: send_all_upon_join(〈propose, k, v, view〉)

I Definition 2. A suggest message is said to support the pair key3, key3_val, if its key2,
key2_val, and prev_key2 fields are ones for which at least one of the conditions in the loop
of Algorithm 3 is true.

A proof message is said to support opening the pair lock, lock_val if its key1, key1_val,
and prev_key1 fields are ones for which at least one of the conditions in the loop of Al-
gorithm 7 is true.

Before proving that Algorithm 1 is a Byzantine Agreement protocol in partial synchrony,
we prove several lemmas. The lemmas can be classified into two types: safety lemmas and
liveness lemmas. The safety lemmas show that if a nonfaulty party decides on some value,
no nonfaulty party decides on a different value. This is achieved by the locking mechanism.
Roughly speaking, if some nonfaulty party decides on some value, there exist f + 1 nonfaulty
parties that are locked on that value and will stop any other value from progressing past the
propose message. The liveness lemmas show two crucial properties for liveness. First of all, if
some nonfaulty party sets key3 to be some value, then there are f+1 parties that will support
that key. This means that if a nonfaulty party hears key suggestions from all nonfaulty
parties, it accepts them and picks some key. Secondly, if some nonfaulty primary picks a key
to propose, the suggest messages it receives guarantee that any nonfaulty party will receive
enough supporting proof messages. This means that all nonfaulty parties eventually accept
the primary’s proposal, even if they are locked on some other value. In the following lemmas
assume that the number of faulty parties is f < n

3 .

2.1 Safety Lemmas
The following lemma and corollary show that a primary cannot equivocate in a given view.
More precisely, in a given view all nonfaulty parties send messages that report the same
value, other than echo messages which might have more than one value. The proofs of the
lemma and corollary consist of simple counting arguments and are omitted.
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Algorithm 3 accept_key(key,value,proofs).

1: supporting ← 0
2: for all (k, v, pk) ∈ proofs do
3: if key ≤ pk then
4: supporting ← supporting + 1
5: else if key ≤ k ∧ value = v then
6: supporting ← supporting + 1
7: if supporting ≥ f + 1 then
8: return true
9: else
10: return false

Algorithm 4 send_all_upon_join(message).
Code for party i:
1: for all parties j ∈ [n] do
2: upon highest_request [j] = view, do
3: send message to party j

I Lemma 3. If two nonfaulty parties send the messages 〈key1, val, v〉 and 〈key1, val′, v〉,
then val = val′.

I Corollary 4. If two nonfaulty parties i and j send a 〈tag, val, v〉 and 〈tag′, val′, v〉 message
such that tag, tag′ ∈ {key1, key2, key3, lock} then val = val′.

The following lemma and corollary now show that all done messages that nonfaulty
parties send have the same value. There are two ways nonfaulty party might send a done
message: in the end of a view, or after receiving enough done messages from other parties.
In the first view a nonfaulty party sends a done message in line 29, no nonfaulty party sends
a done message with another value because of the previous non-equivocation claims. Then,
once such a done message is sent, there are f + 1 nonfaulty parties that are locked on that
value, and won’t allow any other value to be proposed by a primary. Since all nonfaulty
parties send done messages with the same value at the end of views, they never receive
enough done messages with another value for them to echo that done message.

I Lemma 5. If two nonfaulty parties send the messages 〈done, val〉 and 〈done, val′〉 in
line 29, then val = val′.

I Corollary 6. If two nonfaulty parties send the messages 〈done, val〉 and 〈done, val′〉, then
val = val′.

The proofs of Lemma 5 and Corollary 6 closely follow the above description and are
omitted.

2.2 Liveness Lemmas
The first two lemmas show that no nonfaulty party gets “stuck” in a view. If some nonfaulty
party terminates, then every nonfaulty party eventually terminates as well. In addition, after
GST, all nonfaulty parties start participating in consecutive views until terminating.
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Algorithm 5 check_progress().
Code for party i:
1: ∀j ∈ [n] highest_abort [j]← 0
2: upon receiving a 〈request, v〉 message from party j, do
3: if highest_request [j] < v then
4: highest_request[j]← v

5: upon receiving a 〈done, val〉 message from f + 1 parties with the same val, do
6: if no done message has been previously sent then
7: send 〈done, val〉 to every party j ∈ [n]
8: upon receiving a 〈done, val〉 message from n− f parties with the same val, do
9: decide val and terminate
10: upon receiving an 〈abort, v〉 message from party j, do
11: if highest_abort [j] < v then
12: highest_abort [j]← v

13: let u be the f + 1’th largest value in highest_abort
14: if u > highest_abort [i] then
15: send 〈abort, u〉 to every party j ∈ [n]
16: highest_abort [i]← u

17: let w be the n− f ’th largest value in highest_abort
18: if w ≥ view then
19: view ← w + 1

I Lemma 7. Observe some nonfaulty party i that terminates. All nonfaulty parties terminate
no later than 2∆ time after both GST occurs, and i terminates.

I Lemma 8. Let v be the highest view that some nonfaulty party is in at GST. For every
view v′ > v, all nonfaulty parties either start view v′, or terminate in some earlier view.

Furthermore, if some nonfaulty party starts view v′ after GST, all nonfaulty parties either
terminate or start view v′ no later than 2∆ time afterwards.

The proofs are straightforward and are omitted. Eventually, all nonfaulty parties particip-
ate in some view with a nonfaulty primary, if they haven’t terminated previously. The next
lemmas show that once that happens, all nonfaulty parties terminate. First of all, in order for
that to happen, a primary needs to receive enough suggestions for a key3 that it will accept.
The following lemma shows that every nonfaulty party’s key3 field has enough support from
nonfaulty parties for the primary to accept the key. Intuitively, since a nonfaulty party set
its key3 field to some value, there exist f + 1 nonfaulty parties that sent a key2 message
with that value. The lemma shows that those f + 1 nonfaulty parties have key2, key2_val
and prev_key2 fields that continue to support the key.

I Lemma 9. If some nonfaulty party sets key3 = v, key3_val = val in view v, then there
exist f + 1 nonfaulty parties whose suggest messages in every view v′ > v support key3 and
key3_val.

Proof. We will prove by induction that there exist f + 1 nonfaulty parties for whom in every
v′ > v either prev_key2 ≥ key3, or key2 ≥ key and key2_value = val. Since those are the
fields that nonfaulty parties send in suggest messages, that proves the lemma. First, observe
view v. In that view, some nonfaulty party set key3 = v and key3_val = val. This means
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Algorithm 6 process_messages(view).
Code for party i:
1: proofs← ∅
2: upon receiving the first 〈proof, k1, v1, pk1, view〉 message from j, do
3: if view > k1 > pk1 then
4: add (k1, v1, pk1) to proofs
5: upon receiving the first 〈propose, key, val, view〉 message from primary, do
6: if lock = 0 ∨ val = lock_val then
7: send_all_upon_join(〈echo, val, view〉)
8: else if view > key ≥ lock then
9: upon open_lock (proofs) = true, do

10: send_all_upon_join(〈echo, val, view〉)
11: upon receiving an 〈echo, val, view〉 message from n− f parties with the same val, do
12: send_all_upon_join(〈key1, val, view〉)
13: if key1_val 6= val then
14: prev_key1← key1, key1_val← val

15: key1← view

16: upon receiving a 〈key1, val, view〉 message from n− f parties with the same val, do
17: send_all_upon_join(〈key2, val, view〉)
18: if key2_val 6= val then
19: prev_key2← key2, key2_val← val

20: key2← view

21: upon receiving a 〈key2, val, view〉 message from n− f parties with the same val, do
22: send_all_upon_join(〈key3, val, view〉)
23: key3← view, key3_val← val

24: upon receiving a 〈key3, val, view〉 message from n− f parties with the same val, do
25: send_all_upon_join(〈lock, val, view〉) to every party j ∈ [n]
26: lock ← view, lock_val← val

27: upon receiving a 〈lock, val, view〉 message from n− f parties with the same val, do
28: if no done message has been previously sent then
29: send 〈done, val〉 to every party j ∈ [n]

that it received a 〈key2, val, v〉 message from n − f parties, f + 1 of whom are nonfaulty.
In addition to other possible updates, every one of those parties updates key2 = view, and
key2_val = val if that isn’t true already. Those f + 1 parties prove the claim for view v.

Now assume the claim holds for every v′′ < v′. Observe party j, which is one of the
f + 1 parties described in the induction claim. If j doesn’t update any of its key2 fields
in view v′, those conditions continue to hold in the end of view v′ and in the beginning
of the next view. If j only updates key2 to be v′, then if prev_key2 ≥ key3, it remains
that way, and if key2 ≥ key3 as well as key2_val = key3_val, after updating key2 to be
v′ > key2 ≥ key3, it also remains that way. Otherwise j updates prev_key2 = key2 too.
Note that key2 > prev_key2 at all times. Therefore, before updating prev_key2, regardless
of which part of the induction claim holds, key2 ≥ key3. After updating prev_key2 to be
key2, prev_key2 ≥ key3, completing the proof. J

The following lemma is used to show that if a nonfaulty primary chose some key, and some
nonfaulty party has a lock, it is either the case that the key’s value equals the lock’s value, or
there are enough nonfaulty parties that support opening the lock. Note that the conditions of
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Algorithm 7 open_lock(proofs).
Code for party i:
1: supporting ← 0
2: for all (k, v, pk) ∈ proofs do
3: if lock ≤ pk then
4: supporting ← supporting + 1
5: else if lock ≤ k ∧ v 6= lock_val then
6: supporting ← supporting + 1
7: if supporting ≥ f + 1 then
8: return true
9: else
10: return false

the lemma are nearly identical to the conditions the primary checks before accepting a proof
as supporting some key. This means that before accepting a key, the primary essentially
checks if there is enough support to open any other lock. Similarly to the previous lemma,
this lemma shows that if some nonfaulty party sets key2 to some value, there are f + 1
parties that sent a key1 message with that value. Those f + 1 parties’ key1, key1_val and
prev_key1 fields then continue to support any lock set previously with another value.

I Lemma 10. Let lock > 0 be some nonfaulty party’s lock and lock_val be its value. If some
nonfaulty party either has prev_key2 ≥ lock or key2 ≥ lock and key2_val 6= lock_val,
then there exist f + 1 nonfaulty parties whose key1, key1_val and prev_key1 fields support
opening the lock.

Proof. Let i be a nonfaulty party such that either prev_key2 ≥ lock or key2 ≥ lock

and key2_val 6= lock_val. If key2 ≥ lock > 0 and key2_val 6= lock_val, i received a
〈key1, key1_val, key2〉 message from n− f parties in view key2. Out of those n− f parties,
at least f + 1 are nonfaulty. On the other hand, if prev_key2 ≥ lock > 0, then for some
pair of values val, val′ such that val 6= val′, i received a 〈key1, val, prev_key2〉 message
from f + 1 nonfaulty parties in view prev_key2 and a 〈key1, val′, key2〉 message from f + 1
nonfaulty parties in view key2 > prev_key2 ≥ lock. At least one of the values val, val′
must not equal lock_val because val 6= val′. In other words, in both cases there exist f + 1
nonfaulty parties that sent a 〈key1, val, v〉 in view v such that val 6= lock_val and v ≥ lock.
Let I be the set of those nonfaulty parties.

We now prove by induction that for every v′ ≥ v, all of the parties in I either have
prev_key1 ≥ lock or key1 ≥ lock and key1_val 6= lock_val. First, observe view v. As
stated above, in view v all of the parties in I sent a 〈key1, val, v〉 and thus set key1 = v ≥ lock
and key1_val = val 6= lock_val, if it wasn’t already so. Now, assume the claim holds for all
views v′′ < v′. Note that the values of key1 and prev_key1 only grow throughout the run.
This means that if prev_key1 ≥ lock in the beginning of view v′, this will also be true at
the end of view v′. On the other hand, if that is not the case, then in the beginning of view
v′, key1 ≥ lock and key1_val 6= lock_val. If the value of key1_val isn’t updated in view
v′, then key1 can only grow and thus the claim continues to hold. On the other, if the value
of key1_val is updated in view v′, then for some val′ 6= val the following updates take place:
key1← v′, key1_val ← val′, prev_key1← key1. By assumption, in the beginning of view
v′, key1 ≥ lock, and thus after the update prev_key1 ≥ lock, completing the proof. J
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This final lemma ties the two previous lemmas together. Once a nonfaulty party is chosen
as primary after GST, the primary receives enough keys, and each one of them has enough
support to be accepted. Then, after the key is sent, every nonfaulty party either has a lock
with the same value, or there is enough support to open its lock. From this point on, the
view progresses easily and all nonfaulty parties terminate.

I Lemma 11. Let v be the first view with a nonfaulty primary that starts after GST1. All
nonfaulty parties decide on a value and terminate in view v, if they haven’t done so earlier.

Furthermore, if all messages between nonfaulty parties are actually delayed only δ time
until being received, they decide on a value and terminate in O (δ) time.

The proof of the lemma follows naturally from the previous lemmas and is omitted.

2.3 Main Theorem
Using the previous lemmas, it is now possible to prove the main theorem:

I Theorem 12. Algorithm 1 is a Byzantine Agreement protocol in partial synchrony resilient
to f < n

3 Byzantine parties.

Proof. We prove each property individually.
Correctness. Observe two nonfaulty parties i, j that decide on the values val, val′ respectively.

Party i first received a 〈done, val〉 message from n−f parties, and j received a 〈done, val′〉
message from n−f parties. Since n−f > f , i and j receive at least one of their respective
messages from some nonfaulty party. From Corollary 6, all nonfaulty parties that send a
done message do so with the same value. Therefore, val = val′.

Validity. Assume that all parties are nonfaulty and that they have the same input val. We
will prove by induction that for every view v, every nonfaulty party has key3_val = val.
Furthermore, if some nonfaulty party sends a 〈key1, val′, v〉 message, then val′ = val.
First, all parties set key3_val to be val in the beginning of the protocol. Assume the claim
holds for every v′ < v. In the beginning of view v, the primary calls the view_change
protocol. Before completing view_change, the primary receives suggest messages from
n− f parties with their key3_val field. Since all parties are nonfaulty, they all send the
key3_val they have at that point, and from the induction hypothesis key3_val = val.
This means that if the primary completes the view_change protocol, it sees that for every
(key, key_val) ∈ suggestions, key_val = val and thus if the primary sends a propose
message it sends the message 〈propose, val, key, v〉 to all parties. Now, every nonfaulty
party that sends a key1 message sends the message 〈key1, val, v〉. From Corollary 4,
every nonfaulty party that sends a 〈key3, val′, v〉 message, does so with val′ = val. If
a nonfaulty party updates key3_val to a new value val′, it also sends a 〈key3, val′, v〉
message. However, as shown above the only value sent in such a message is val so no
nonfaulty party updates its key3_val field to any other value. Using Corollary 4, every
nonfaulty party that sends a lock message does so with the value val. This means that
any party that sends a done message in line 29, does so with the value val. Clearly any
party that sends a done message in line 7 does so with the value val as well, because
it never receives done messages with any other value. Finally, this means that every
nonfaulty party that decides on a value decides on val.

1 More precisely, by “starting after GST”, we mean that the first time some nonfaulty party has view ≥ v
is after GST.
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Termination. Observe the system after GST, and let v be the highest view that some
nonfaulty party is in at that time. From Lemma 8, all nonfaulty parties either terminate
or participate in every view v′ > v. Since the primaries are chosen in a round-robin
fashion, after no more than f + 1 views, some nonfaulty party starts a view with a
nonfaulty primary. From Lemma 11, all nonfaulty parties either terminate in that view
or earlier. J

2.4 Complexity Measures
The main complexity measures of interest are round complexity, word complexity, and space
complexity.

Word complexity. In IT-HS in every round, every party sends at most O(1) words to every
other party. We assume that a word is large enough to contain any counter or identifier.
This implies that just O(n2) words are sent in each round.

Round complexity. As IT-HS is a primary-backup view-based protocol (like Paxos and
PBFT), there are no bounds on the number of rounds while the system is still asynchronous.
Therefore, we use the standard measure of counting the number of rounds and number of
words sent after GST. Furthermore, in order to be useful in the task of agreeing on many
values, a desirable property is optimistic responsiveness: when the primary is nonfaulty and
the network delay is low, all nonfaulty parties complete the protocol at network speed. This
desire is captured in the next definition:

I Definition 13 (Optimistic Responsivness). Assume all messages between nonfaulty parties
are actually delivered in δ < ∆ time. The protocol is said to be optimistically responsive if
all nonfaulty parties complete the protocol in O (δ) time after a nonfaulty primary is chosen
after GST.

Space complexity. We separate the local space complexity into two types: persistent
memory and transient memory. In this setting, parties can crash and be rebooted. Persistent
memory is never erased, even in the event of a crash, while transient memory can be erased
by a reboot event. IT-HS requires asymptotically optimal O(1) persistent storage (measured
in words) and just O(1) transient memory per communication channel (so a total of O(n)
transient memory).

After a reboot, nonfaulty parties can ask other parties to send messages that help recover
information needed in their transient memory. In this setting we assume that all nonfaulty
parties that terminate still reply to messages asking for previously sent information.

I Theorem 14. During Algorithm 1, each nonfaulty party sends a constant number of words
to each other party in each view and requires O (n) memory overall, out of which O(1) is
persistent memory. Furthermore, the protocol is optimistically responsive.

Proof. First note that each view consists of one message sent from all parties to the primary,
one message sent from the primary to all parties, and a constant number of all-to-all
communication rounds. In addition, each message consists of no more than 7 words. Overall,
each party only sends a constant number of messages to every party, each with a constant
number of words. In each view, every nonfaulty party needs to remember which messages
were sent to it by other parties, as well as a constant amount of information about every
suggest and proof message. Since a constant number of words and messages is sent from each
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party to every other party, this requires O(n) memory. Note that once a new view is started,
all of the information stored in the previous call to view_change and process_messages
is freed. Other than that, every nonfaulty party allocates two arrays of size n, a constant
number of other fields, and needs to remember the first done messages received from every
other party. This also requires O(n) memory. Overall, the only fields that need to be stored
in persistent memory are the view, lock, lock_val, and various key, key_val and prev_key
fields, as well as the messages it sent in the current view, and the last done, request and
abort messages it sent. This is a constant number of fields, in addition to a constant number
of messages. After being rebooted, a nonfaulty party i can ask to receive the last done,
request, and abort messages sent by all nonfaulty parties to restore the information it lost
that doesn’t pertain to any specific view, and any message sent in the current view. In
addition, it sends a request message for its current view. Upon receiving such a message, a
nonfaulty party j replies with the last done, request and abort messages it sent. In addition,
if j is in the view that party i asked about, it also re-sends the messages it sent in the current
view. Note that this is essentially the same as i receiving messages late and starting its view
after being rebooted, and thus all of the properties still hold. The fact that the protocol is
optimistically responsive is proven in Lemma 11. J

3 Multi-Shot Byzantine Agreement and State Machine Replication

This section describes taking a Byzantine Agreement protocol and using it to solve two
tasks that are natural extensions of a single shot agreement. Both tasks deal with different
formulations for the idea of agreeing on many values, instead of just one.

3.1 State Machine Replication with Stable Leader (a la PBFT)
In the task of State Machine Replication [17], all parties (called replicas) have knowledge of
the same state machine. Each party receives a (possibly infinite) series of instructions to
perform on the state machine as input. The goal of the parties is to all perform the same
actions on the state machine in the same order. More precisely, the parties are actually
only interested in the state of the state machine, and aren’t required to see all of the
intermediary states throughout computation. In order to avoid trivial solutions, if all parties
are nonfaulty and they have the same s’th instruction as input, then they all execute it as
the s’th instruction for the state machine. This task can be achieved utilizing any Byzantine
Agreement protocol, using ideas from the PBFT protocol.

In addition to the inputs, the protocol is parameterized by a window size α. All parties
participate in α instances of the Byzantine Agreement protocol, each one tagged with the
current decision number. After each decision, every party saves a log of their current decision,
and updates the state machine according to the decided upon instruction. Then, after every
α
2 decisions, each party saves a “checkpoint” with the current state of the state machine, and
deletes the log of the α

2 oldest decisions. Then, before starting the next α
2 decisions, every

party sends its current checkpoint and makes sure it receives the same state from n − f
parties using techniques similar to Bracha broadcast. Furthermore, as long as no view fails,
the primary isn’t replaced. This means that eventually at some point, either there exists a
faulty primary that always acts like a nonfaulty primary, or a nonfaulty primary is chosen
and is never replaced. Both sending the checkpoints and replacing faulty leaders require
more implementation details which can be found in [9].

Using these techniques, all parties can decide on O (α) instructions at a time, improving
the throughput of the algorithm. The communication complexity per view remains similar
to the communication complexity of the IT-HS algorithm, but once a nonfaulty primary
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is reached after GST, all invocations of the protocol require only one view to terminate.
Alternatively, if a nonfaulty primary is never reached after GST, a faulty party acts like a
nonfaulty primary indefinitely, which yields the same round complexity. Finally, if we assume
that a description of the state machine requires O (S) space, the protocol now requires
O(S + α) persistent space in order to store the checkpoints and store the O(1) state for each
slot in the window. In addition, the protocol requires O (α · n+ S) transient space in order
to store the information about all active calls to IT-HS, the α decisions in the log, and a
description of the current state of the state machine.

3.2 Multi-Shot Agreement with Pipelining (a la HotStuff)
In contrast, we can take the approach of HotStuff [18] and solve the task of multi-shot
agreement. In this task, party i has an infinite series of inputs x1

i , x
2
i , . . ., and the goal of the

parties is to agree on an infinite number of values. Each decision is associated with a slot
which is the number s ∈ N of the decision made. Each one of these decisions is required to
have the agreement properties, i.e.: eventually all nonfaulty parties decide on a value for slot
s, they all decide on the same value, and if all parties are nonfaulty and have the same input
val for slot s, the decision for the slot is val.

A naive implementation for this task is to sequentially call separate instances of IT-HS
for every slot s ∈ N, each with the input (s, xsi ). In order to improve the throughput of
the protocol, after completing an instance of the IT-HS protocol, the parties can continue
with the next view and the next primary in the round-robin. This slight adjustment ensures
that after GST, n− f out of every n views have a decision made, and if messages between
nonfaulty parties are only delayed δ time, each one of those views requires only O(δ) time to
reach a decision. Slight adjustments need to be made in that case so that abort messages
are sent about views regardless of the slot, so that all parties continue participating in the
same views throughout the protocol. In addition, messages about different slots need to be
ignored.

In the case of the optimistic assumption that most parties are nonfaulty, a significantly
more efficient alternative can be gleaned from the HotStuff protocol. This alternative uses a
technique called pipelining (or chaining). Roughly speaking, in this technique, all parties
start slot s by appending messages, starting on the second round (round, not view) of slot
s− 1. In the case of HT-IS, the protocol can be changed so that suggest messages are sent
to all parties, and then each party starts slot s after receiving n − f suggest messages in
slot s. Note that the exact length of timeouts needs to be slightly adjusted, and the details
can be found in [18]. In slot s, a nonfaulty primary appends its current proposal to the
proposal it heard in slot s − 1. Then, before deciding on a value in slot s, parties check
that the decision values in the previous slots agree with the proposal in slot s. If they do,
then the parties agree on the value in this slot as well. In this protocol, each view lasts for
11∆ time, so if at some point a primary sees that a proposal from 11 views ago failed, it
appends its proposal to the first one that it accepted from a previous view. After GST, if
there are m+ 11 nonfaulty primaries in a row, then the last m primaries are guaranteed to
complete the protocol, and thus add m decisions in (m+ 11)∆ time instead of in m · 11∆
time. This means that in the optimistic case that a vast majority of parties are nonfaulty,
the throughput of this protocol is greatly improved as compared to the naive implementation.
In this protocol the communication complexity per view is still O(n2) messages, but a larger
number of words. However, note that it is not always the case that if a nonfaulty primary is
chosen, its proposal is accepted. To obtain bounded memory requirement one needs to add
a checkpointing mechanism, similar to PBFT. As in PBFT, only O(n) transient space and
O(1) persistent space are required per decision in addition to the log of the decisions.
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Abstract
We study the rational behaviors of participants in committee-based blockchains. Committee-based
blockchains rely on specific blockchain consensus that must be guaranteed in presence of rational
participants. We consider a simplified blockchain consensus algorithm based on existing or proposed
committee-based blockchains that encapsulate the main actions of the participants: voting for a
block, and checking its validity. Knowing that those actions have costs, and achieving the consensus
gives rewards to committee members, we study using game theory how strategic participants behave
while trying to maximize their gains. We consider different reward schemes, and found that in
each setting, there exist equilibria where blockchain consensus is guaranteed; in some settings
however, there can be coordination failures hindering consensus. Moreover, we study equilibria with
trembling participants, which is a novelty in the context of committee-based blockchains. Trembling
participants are rational that can do unintended actions with a low probability. We found that in
presence of trembling participants, there exist equilibria where blockchain consensus is guaranteed;
however, when only voters are rewarded, there also exist equilibria where validity can be violated.
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1 Introduction

Most cryptocurrencies rely on distributed technology ledgers. Each user of the cryptocurrency
may have a local copy of the ledger. The most popular among the distributed ledger
technologies is probably blockchain. A blockchain is a growing sequence of blocks, where
each block contains transactions and is linked to the previous block by containing the hash
of the latter. Modifying information in a block changes its hash, and the subsequent blocks
should be changed in consequence. Blockchains then offer many guarantees, such as tamper
resistance. The number of blocks since the genesis to the current is called the height of
the blockchain, and there should ideally be only one block per height. The way blockchain
systems are built (in particular how to add blocks) can be roughly separated in two classes:
(i) forkable blockchains, where for each height, one participant is drawn at random and has
the charge to produce a new block; or (ii) committee-based blockchains, where for each height,
a committee is selected and is in charge of agreeing on which block to append next.

Forkable blockchains are the most famous and the most popular. There are many
techniques to build such blockchains. The protocol to add a new block in the most popular
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blockchains (Bitcoin [22], Ethereum [25]) is called proof-of-work (PoW), introduced in [13].
In PoW, a participant needs to prove that it worked to have the right to add the next block.
More in details, for a participant to be selected to add a block in the blockchain, it has to be
the first to resolve a crypto-puzzle: the more computing power, the higher the chances are to
win. This gives rise to many problems, first to increase the chance to solve the problem faster,
one needs specialized equipment and a lot of computing power. All participants do these
computations, but there is only one winner. These non-environment-friendly computations
are not useful other than to solve the crypto-puzzle. Another issue with PoW is that
although the probability of having multiple winners at the same time is extremely low, it is
not impossible. From time to time, there are multiple winners and blocks proposed for the
same height; these are called forks, and to ensure consistency and avoid double-spending,
fork management should be implemented. To try solving these issues, some blockchains
propose to replace the PoW with other protocols such as proof-of-stake, e.g., Ouroboros [18].
In proof-of-stake, the more stakes a stakeholder has in the blockchain, the higher are its
chances to add a block to the chain. This solves the problem of energy consumption, but not
the presence of fork; the selection of the leader is somehow still random. Proof-of-stake may
also introduce some concentration of power by the richest stakeholders. Other proof-of-*
proposals have been made, but all suffer from the fork issue, and sometimes many more.

On the other hand, there are committee-based blockchains, e.g., Algorand [16], HotStuff
[26], Tendermint [7], etc. They have the purpose of avoiding forks by relying, instead
of one participant drawn at random for each block, on a committee that has to agree
on the next block to add. The committees run blockchain consensus algorithms. Those
algorithms are inspired by well-known algorithmic techniques such as the one from classical
consensus [8, 12, 19, 21, 24]. Committee-based blockchains can guarantee the absence of
forks. Compared to Bitcoin and proof-fo-work blockchains, committee-based blockchains
seem slower since they require many messages to be exchange, and the selection of the
committee members is a complex problem.

In both cases, forkable or non-forkable, blockchain systems usually have economical
or financial advantages, specifically for block creators. These advantages serve to give an
incentive to maintain the blockchain. With advantages given, participants of such systems
may try to maximize their profit. Those participants do not necessarily want to harm the
system; they often want to stay in the system but gain the most from it. Such participants are
called rational. To avoid blockchains collapsing due to the presence of rational participants,
we must study them, and ensure that the blockchain consensus properties always hold.

Contributions. In this work, we analyze the behavior of rational participants in committee-
based blockchains. We show the different equilibria that exist given different methods of
rewarding the committee members. We analyze if the equilibria do satisfy the consensus
specifications or not. In particular, we found that there always exist equilibria that satisfy
the blockchain consensus properties, but these equilibria are not unique and coordination
failures may occur, leading to liveness issues. Let ν be the number of votes required for a
block to be considered produced. The different equilibria are summarized in Table 1.

Additionally, we introduce the notion of “trembling hand” which to the best of our
knowledge is a novelty in distributed systems. The trembling hand can be viewed as a failure
of rational participants. The idea of trembling hand and acknowledging errors has been
studied in different fields, such as in economics (e.g., [11]), in networks (e.g., [10]), etc. With
low probability, the player can tremble and do an unintended action. We conduct the same
equilibrium analysis and found that there exist equilibria satisfying the consensus properties.
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Table 1 Summary of the Equilbria with Rational Players.

Reward All Reward Only Senders

ν = 1
Proposition 5

In equilibrium, exactly one message is sent:
Consensus

Proposition 1

In equilibrium, All players send a message:
Consensus; but inefficient: too costly

ν > 1

Proposition 7

In equilibrium, either:
- No message is sent:

No Termination: No block, coordination failure, or
- Exactly ν messages are sent.

Consensus

Proposition 3

In equilibrium, either:
- No message is sent:

No Termination: No block, coordination failure, or
- All players sent a message:

Consensus; but inefficient: too costly

Table 2 Summary of the Equilbria with “Trembling” Players.

Reward All Reward Only Senders

ν = 1
Proposition 13

In the equilibrium, one message sent if valid:
Consensus

Proposition 9

In the equilibrium, either
- n messages always sent: Validity not guaranteed

- n messages sent only if valid: Consensus

ν > 1

Proposition 15

In equilibrium, either:
- No message is sent: No Termination

- ν − 1 messages always sent + 1 if valid: Consensus

Proposition 11

In equilibrium, either:
- No message is sent: No Termination

- (if ν < n) n messages always sent: Validity not guaranteed
- ν − 1 messages always sent + (n− ν + 1) if valid: Consensus

However, there also exist equilibria inducing liveness or safety issues because the consensus
properties cannot be guaranteed. Equilibria with trembling participants are summarized in
Table 2. In all cases, we found that equilibria, when all committee members are rewarded,
are efficient in terms of the number of messages.

Related work. Many analyses have been made on strategic behaviors in blockchains.
However, they mainly focus on forkable systems (e.g., [6, 14]). To the best of our knowledge,
very few works have been dedicated to analyze or discuss the rational behaviors among
participants in committee-based blockchains. Some exceptions have to be noted.

The work of Abraham et al. in [2] is probably the first to consider strategic behaviors in
committee-based blockchains. They introduced interesting incentive mechanisms, but did not
provide a formal framework for their analysis, nor did they consider the cost of the actions.

Recently, Fooladgar et al. show in [15] that the proposed reward distribution in Algorand
does not lead to an equilibrium. Interestingly, as in our paper, [15] considers the cost of
actions of the players; but as opposed to us, among other things, players have basically one
action, either following the protocol or not, so it either incurring all costs or no cost at all.
In our work, we refine the approaches; We consider that multiple actions are available to the
players, and that they just pay the costs of the actions they did, and not all of them.

In [4], we provide a framework for the analysis of strategic behaviors in the presence of
rational players can either exhibit strategic or adversarial behaviors for committee-based
blockchains. We however only considered one reward mechanism and did not study trembling
hand effects. In this work, we extend the model in [4]; we consider systems with participants
that behave strategically and can exhibit trembling hand effects. Additionally, in this work,
we study the behavior of the participants under different reward schemes, as opposed to [4].

Previous works studying rational behavior in consensus algorithms (such as [1, 17, 20])
did not take into consideration the rewards given when a decision is reached, nor the cost of
participants’ actions. They usually proposed incentive-compatible protocols. Blockchains
highlighting the costs and rewards, we take them into account in our analysis.
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2 Model

2.1 System Model
We consider a system composed of a finite and ordered set Π of n players, called committee,
of synchronous sequential players denoted by their index, namely Π = {1, . . . , n}.

Communication. The players communicate by sending and receiving messages through
a synchronous network. We assume that the players proceed in rounds. A round consists
of three sequential phases, in order: the send, the delivery and the compute phase. Since
we consider synchronous communication, there is a known upper bound on the message
transfer delay. Such upper bound is used by the players to set the duration of their rounds,
in particular, the duration of the delivery phase is such that for all players, all messages sent
at the beginning of the round are received before the end of the delivery phase. At the end
of a round, a player exits from the current round and starts the next one. We assume the
existence of a reliable broadcast primitive. A broadcast is reliable if the following conditions
hold: (i) safety: every message delivered by a player has been previously sent by a source,
and (ii) liveness: every player eventually delivers every message sent by a source. Messages
are created with a digital signature, and we assume that digital signatures cannot be forged.
When a player i delivers a message, it knows the player j that created the message.

Players Behavior. We consider that players are rational. Rational players are self-interested
and their objective is to maximize their expected gain. They will deviate from a prescribed
protocol if and only if doing so increases their expected gain. They differ from honest players
who always follow the prescribed protocol.

We also consider trembling players. With low probability, an external function can return
an unexpected value. They do not want such value, but are not in control of that, and are
not aware when the returning value is “normal” or not. They only know the probability of
such an event happening. A trembling player is also a rational player.

2.2 Consensus in Presence of Rational Players
A blockchain is a growing sequence of blocks. The number of blocks since the genesis to
the current is called the height of the blockchain. In committee-based blockchains, for each
height, a committee is selected and is in charge of agreeing on which block to append next.

As proposed by many articles (e.g., [3], [5], [9], [16], [26], . . . ), committee-based blockchains
can be developed using consensus algorithms. In particular, at each height, the protocol used
by the corresponding committee must implement the consensus. In the section, we adapt the
definition of consensus properties to take into account the presence of rational players.

We say that a protocol is a consensus algorithm in presence of rational players if the
following properties hold:

Termination: every rational player decides on a value (a block);
Agreement: if two rational players decide respectively on values B and B′, then B = B′;
Validity: a decided value by any rational player is valid; w.r.t a predefined predicate.

Problem. We study the behavior of rational players in a consensus protocol. The goal is to
know whether consensus is guaranteed in committee-based blockchains in the presence of
rational players. For the study, we use the notion of Nash equilibrium, which is intuitively a
“stable” situation where no player has an incentive to unilaterally deviate.
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The question we answer is: What are the different Nash equilibria and do they satisfy the
consensus properties? It is important to note that we do not propose a protocol such that all
rational behave as honest, but rather study the behavior of rational players in a blockchain
consensus algorithm under different reward mechanisms.

2.3 Protocol Studied
In committee-based blockchains, for each height, there is a committee supposed to reach
a consensus on the block to append. The agreement procedure can be seen as a vote in
potentially multiple sequential rounds. Focusing on one height, the consensus procedure is
as follows. For each round:

A proposer is selected for the current round. The proposer of the round proposes a block
(the proposal) and send it to the rest of the committee members.
Once a player receives the proposal, it should check its validity and vote (by sending a
message) for the block only if it is valid; otherwise, it should not vote if invalid.

At the end of the round, all committee members collect the vote messages and count them.
Let ν be the number of votes required for a block to be considered produced (the decision of
the consensus). If the proposal receives votes for at least ν different committee members,
then the block is consider produced; otherwise the next round starts with a new proposer,
proposing a new block and the procedure restarts until a decision is made. When a player
considers a block produced (i.e., collects ν votes for the block), due to the communication
model we consider, all players will also consider the block as produced since they have the
same set of messages at the end of any round.

As explained above, these two phases encapsulate the main and important ideas of
consensus protocol for committee-based blockchains. Moreover, Chan and Shi in [9], extended
this two phases approach (Propose and Vote) to present multiple algorithms for different
communication and failures models; pointing out the importance and sufficiency of these
phases in consensus algorithms for blockchains.

In the following, we describe the actions rational players have. We present it as a protocol
shown in Algorithm 1. Definition of the game and actions is done in the next section. We
consider the choice of (i) checking or not the validity of a block and (ii) sending or not the
vote for a proposed block. We consider that the actions of checking the validity of the block
and of sending the message (of type vote) are costly.

Protocol of Rational Players. Rational players have some freedom at executing the pre-
scribed protocol. We represent their possible actions in Algorithm 1, where specific variables
have been introduced; namely,

actioncheck ∈ {false, true}, if the player decides to check the validity of the proposal or
not; and
actionsend ∈ {false, true}, if the player decides to vote for the proposal or not (depending
on the validity information the player has about the proposal).

isProposer(t, h) returns the identifier of the proposer for the current round (line 10).
All players sets their actions locally, in more details, player i sets its action variable

actioncheck (resp. actionsend) by calling the dedicated function σchecki (resp. σsendi ) repres-
enting its strategy.

The strategy σchecki determines if i, the receiving player, chooses to check the validity
of the proposal or not, which is a costly action. If the player chooses to check the validity
(line 17), it will also update the knowledge it has about the validity of the proposal and it
will pay a cost ccheck. If otherwise, the player keeps not knowing if the proposal is valid or
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Algorithm 1 Pseudo-code for a given height h modeling the rational player i’s behavior.

1: Initialization:
2: vote := nil
3: t := 0 /* Current round number */
4: decidedV alue := nil
5: actioncheck := nil
6: actionsend := nil
7: validV alue[] := {⊥,⊥, . . . ,⊥} /* validV alue[r] ∈ {⊥, false, true} */

8: Round PROPOSE(t) :
9: Send phase:

10: if i == isProposer(t, h) then
11: proposal← createValidValue(h)
12: broadcast 〈PROPOSE, h, t, proposal〉
13: Delivery phase:
14: delivery 〈PROPOSE, h, t, v〉 from proposer(h, t)
15: Compute phase:
16: actioncheck ← σcheck

i () /* σcheck
i () ∈ {false, true} sets the action of checking or not the validity of the

proposal */
17: if actioncheck == true then
18: validValue[r]← isValid(v) /* The execution of isValid(v) has a cost ccheck */
19: actionsend ← σsend

i (validValue) /* σsend
i : {⊥, false, true} → {false, true} sets the action of sending the

vote or not */
20: if actionsend == true then
21: vote← v /* The player decides to send the vote, the proposal might be invalid */

22: Round VOTE(t) :
23: Send phase:
24: if vote 6= nil then
25: broadcast 〈VOTEi, h, t, vote〉 /* The execution of the broadcast has a cost csend */
26: Delivery phase:
27: delivery 〈VOTE, h, t, v〉 /* The player collects all the votes for the current height and round */
28: Compute phase:
29: if |〈VOTE, h, t, v〉| ≥ ν ∧ decidedV alue = nil ∧ vote 6= nil ∧ vote = v then
30: decidedV alue = v; exit
31: else
32: vote← nil
33: t← t + 1

not (validValue[t] remains at ⊥). Note that this value remains at ⊥ even if the player is the
proposer. This is because we assumed, without loss of generality, that checking validity has
a cost and that the only way of checking validity is by executing the isValid(v) function.

Note that the strategy σsendi depends on the knowledge the player has about the validity
of the proposal. The strategy determines if the player chooses to send its vote for the proposal
or not (line 19 - 25). If the player chooses to vote for the proposal, it will pay a cost csend.

Let us note that a rational player that did not check the validity of the block could
consider as decision of the committee an invalid value if it collects more than ν votes for an
invalid proposal. We also note that in the model model considered, the Agreement property
always holds, since, at the end of each round, all players have the same set of messages
delivered.

Note that the creation of proposal (line 11 of Algorithm 1) will be subject to the trembling
hand effect in Section 5.

2.4 Game

Action space. At each round t, when a player receives the proposal, it decides whether to
check the block’s validity or not (at cost ccheck), and then given the validity information, it
decides whether to send a vote message (at cost csend) or not.
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Proposal
received

Does not
check the
validity

No Validity
Information

Not Vote

Vote

Checks the
validity

Block is
not Valid

Not Vote

Vote

Block is valid
Not Vote

Vote

Figure 1 Decision Tree of one Player after Reception of the Proposal.

Information sets. At the beginning of each round t > 1, the information set of the player, ηti ,
includes the observation of the round number t, as well as the observation of what happened
in previous rounds, namely (i) whether the player decided to check validity, and in that case,
it knows the validity of the block, (ii) how many messages were sent, and (iii) whether a
block was produced or not.

Then, in each round t > 1, the player decides whether to check the validity of the current
block. At this point, denoting by bt the block proposed at round t, when the player does not
decide to check validity isValid(bt) is the null information set, while if the player decides
to check, isValid(bt) is equal to 1 if the block is valid and 0 otherwise. Therefore, at this
stage, the player information set becomes Ht

i = ηti ∪ isValid(bt), which is ηti augmented
with the validity information player i has about bt, the proposed block.

Strategies. At each round t ≥ 1, the strategy of player i is a mapping from its information
set into its actions. At the point at which the player can decide to check block validity, its
strategy is given by σchecki (ηti). Finally, after making that decision, the player must decide
whether to vote or not, and that decision is given by σsendi (Ht

i ). The decision tree of a player
is depicted in Figure 1. We note that when the player does not check the validity of the
proposal, it does not know if the block is valid or not.

We denote by σ = (σ1, . . . , σn) the strategy profile where ∀i ∈ {1, . . . , n}, player i use
strategy σi, where σi(Ht

i ) is the pair (σchecki (ηti), σsendi (Ht
i )).

Rewards and Costs for the Players. We study the cases in which:
1. when a block is produced, only the committee members which voted are rewarded (and

receive R); or
2. whenever a block is produced, all committee members are rewarded (and receive R).
We will explicitly state the case we are studying.

We also assume that when an invalid block is produced, all players incur a cost κ1. Note
that κ is not incurred when no block is produced. We assume that the reward R, is larger
than the cost ccheck of checking validity, which is larger than the cost csend of sending a vote
message. Lastly, the reward obtained is smaller than the cost κ of producing an invalid block.
That is, κ > R > ccheck > csend > 0.

1 Such a cost corresponds, for example, to the loss of confidence in the blockchain system caused by the
invalid block produced, hence hurting the whole ecosystem.
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Objective of Rational Players. Let T be the round at which the game stops. If a block
is produced at round t ≤ n, then T = t. Otherwise, if no block is produced, T = n+ 1. In
the latter case, the termination property is not satisfied. In our analyses, we focus on what
happens during the first round; in particular, when T ≥ 2, we say that termination is not
satisfied at round 1.

As explained above, we study two types of rewards. The analyses are done independently.
In each setting, all rational players have the same gain function detailed in the following
when we focus only on the first round.
1. Reward Only Sender: When the reward is given only to players that vote for the

produced block, for the first round, the expected gain of rational player i is:

Ui(σ) = E

[
R ∗ 1(σsend

i
(H1

i
)∧block produced at round 1) − csend ∗ 1σsend

i
(H1

i
)

−ccheck ∗ 1σcheck
i

(η1
i

) − κ ∗ 1(invalid block produced at round 1)

]
, (1)

where 1(.) denotes the indicator function, taking the value 1 if its argument is true, and
0 if it is false.

2. Reward All: When the reward is given to the whole committee once a block is produced,
for the first round, the expected gain of rational player i is:

Ui(σ) = E

[
R ∗ 1(block produced at round 1) − csend ∗ 1σsend

i
(H1

i
)

−ccheck ∗ 1σcheck
i

(η1
i

) − κ ∗ 1(invalid block produced at round 1)

]
. (2)

Equilibrium concept. We consider the players are playing Nash equilibria, and we focus
only on their behavior during the first round.

Let σ = (σ1, . . . , σn) be a strategy profile, where σi is the strategy of player i. We
write (σ−i, σ′i) to represent the strategy profile (σ1, . . . , σi−1, σ

′
i, σi+1, . . . , σn) where player i

deviates, and the others continue playing their strategy. A strategy profile is a pure Nash
equilibrium [23] if no player can increase its gain by unilaterally deviating. Formally, σ is a pure
Nash equilibrium if and only if ∀i ∈ {1, . . . , n}, and ∀σ′i a strategy for i, Ui(σ) ≥ Ui((σ−i, σ′i)).
We simply use Nash equilibrium instead of pure Nash equilibrium.

The following sections present our results.
In Sections 3 & 4, we do not have trembling hand effects, therefore, we cannot have invalid

blocks since the proposal should be valid (line 11 of Algorithm 1). Focusing on liveness issues,
we study whether players vote or not in equilibria.

In Section 5, trembling effects are considered, and the proposal may be invalid. Therefore,
for safety reasons, players may check the proposal’s validity before voting or not.

3 Reward Only Committee Members that Vote

In this section, we consider that only committee members that voted for a produced block
are rewarded. Equation 1 describes the gain of each rational player.

We study the different equilibria with respect to the value of ν, the minimum number of
votes required to consider a block as produced.

First, we analyze the case where 1 vote for a proposed block is sufficient to considered it
as produced, i.e., ν = 1.

I Proposition 1. In one round, with only rational players in the committee, if ν = 1, and
when only players that vote for the produced block are rewarded, there is only one Nash
equilibrium. In the unique equilibrium, all players vote for the proposed block.
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In this equilibrium, all players vote, and the block is produced. No player has an incentive
to deviate and not send, such deviation will mean for the player that it will not be rewarded
while the block is produced.
I Remark 2. Note that in the Nash equilibrium of Proposition 1, the consensus properties
are satisfied, in particular, there is always a block produced at the end of the first round.

We now consider the situation where strictly more than one vote is needed to consider a
block as produced, i.e., ν ∈ {2, . . . , n}.

I Proposition 3. In one round, with only rational players in the committee, if ν > 1, and
when only players that vote for the produced block are rewarded, there are two Nash equilibria;
either (i) all players vote, or (ii) no player votes.

In the first equilibrium, if a rational player anticipates that no players will vote, its only
vote will not make the proposal produced, since ν > 1, therefore, the player prefers not
voting. In the second type of equilibrium, if a player anticipates that all other players are
voting, it prefers voting as well; otherwise, if the player does not send, it will not have a
reward.
I Remark 4. There are two Nash equilibria in Proposition 3. In the equilibrium where no
player votes, Termination is not guarantee at round 1. In the second equilibrium where there
are n votes, the consensus properties are satisfied in the first round.

4 Reward All Committee Members

In this section, we consider that all committee members are rewarded once a block is produced.
Equation 2 describes the gain of each rational player.

We study the different equilibria with respect to the value of ν, the minimum number of
votes required to consider a block as produced.

First, we analyze the case where 1 vote for a proposed block is sufficient to considered it
as produced, i.e., ν = 1.

I Proposition 5. In one round, with only rational players in the committee, if ν = 1, and
when all players are rewarded once a block is produced, in the Nash equilibria, exactly one
player votes, and the others do nothing.

If the player supposed to vote does not vote, no block is produced, and hence it does not
have any reward. Therefore, it prefers voting, since a block is always produced in equilibrium,
if a player not supposed to send deviates and votes, it will pay the cost of sending for nothing
since it will be rewarded even without voting.
I Remark 6. Note that there exists at most n equilibria corresponding to Proposition 5. In
all the equilibria corresponding to Proposition 5, the consensus properties are satisfied.

We now consider the situation where strictly more than one vote is needed to consider a
block as produced, i.e., ν ∈ {2, . . . , n}.

I Proposition 7. In one round, with only rational players in the committee, if ν > 1, and
when all players are rewarded once a block is produced, in the Nash equilibria, either (i)
exactly ν players vote, or (ii) no player votes.

If a rational player anticipates that no players will vote, since ν > 1, its only vote will
not make the proposal produced, therefore, it is better off not voting. In the other type of
equilibrium, exactly ν players vote; if a player supposed to send does not vote, the block is
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not produced and the deviating player is not rewarded any more; if a player not supposed
to send deviates (by voting) it will incur a cost of sending, when it will be rewarded in any
case, so it prefers not to vote.

I Remark 8. There are two types of Nash equilibria in Proposition 7.
The equilibrium where no player votes does not guarantee Termination at round 1.
In the second type of equilibrium in this setting, there are exactly ν messages sent. There
can be at most

(
n
ν

)
+ 1 equilibria corresponding to that setting2. In each of them, the

consensus properties are satisfied.

A summary of the different equilibria in Sections 3 & 4 can be found in Table 1. When
only 1 vote is required to consider a proposal as produced, in all equilibria, blocks are always
produced. When we require strictly more than 1 vote to consider a block as produced,
although there are equilibria where the consensus is guaranteed, there is also an equilibrium
where no player votes, anticipating that the others will not vote as well: a coordination failure,
leading to a violation of the Termination. This happens in the two reward mechanisms:
reward all committee members, or reward only the members that voted. However, in the
equilibria where all committee members are rewarded, less messages are sent, making it a
more efficient (and less costly) mechanism with respect to the number of messages.

5 Trembling Players at Proposal

Now, we assume that there is some negligible probability p for the createValidValue
function (line 11 of Algorithm 1) to return an invalid proposal, and all players are aware
of the trembling effect. When proposing a value there is a probability that the hand of the
player trembles and proposes an invalid block instead of a valid block; i.e., in some sense, we
take into account the possibility of making a mistake for the proposal.

Note that now, checking the validity of a block may be important, there is a risk of
producing an invalid block, violating the validity property of the consensus. To ensure
that the reward covers the costs of checking and voting, in this setting we assume that
(1 − p)(R − csend) − ccheck > 0. We also note that it is better for the player to vote (resp.
not vote) without checking than checking and voting (resp. not voting) irrespective to the
block validity; that would mean incurring a cost −ccheck for nothing. It is also not in their
best interest to check the validity of the proposal and vote if the proposal is invalid, that
would mean increasing the chances of producing an invalid block and incurring a cost −κ. In
the analyses, we then consider only the three relevant strategies: a rational player can (i)
vote without checking proposal validity, (ii) not vote nor check proposal validity, and (iii)
check the proposal validity and vote only if the proposal is valid.

In the following, we make the same analyses as in Sections 3 & 4, i.e., we analyze the
behavior of rational players when only voters are rewarded; and their behaviors when all
committee members are rewarded.

5.1 Reward Only Committee Members that Vote
In this subsection, we consider that only committee members that voted for a produced
block are rewarded. Equation 1 describes the gain of each rational player.

2
(
n
ν

)
= Cνn is the number of combinations for choosing ν out of n elements.
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We study the different equilibria with respect to the value of ν, the minimum number of
votes required to consider a block as produced.

First, we analyze the case where 1 vote for a proposed block is sufficient to consider it as
produced, i.e., ν = 1.

I Proposition 9. In one round, with only rational players in the committee, if ν = 1, when
only players that vote for the produced block are rewarded, and if there is a probability p that
the proposer proposes an invalid block, there are two Nash equilibria. In equilibrium, either
(i) if κ ≥ R− csend + ccheck/p, all players check the validity of the proposal and vote only if it
is valid; or (ii) all players vote for the proposal without checking the validity of the proposal.

As in Proposition 1, one can note that in equilibrium, all players do (try to) vote.

I Remark 10. There are two Nash equilibria in Proposition 9. In the equilibrium where
all players check and vote, if the proposal is invalid, there is no Termination at the first
round, however Validity is always ensured. While in the second equilibrium where no player
checks but votes, Termination is always guaranteed at the end of the first round, even if the
proposal is invalid, which violates the Validity.

We now consider the situation where strictly more than one vote is needed to consider a
block as produced, i.e., ν ∈ {2, . . . , n}.

I Proposition 11. In one round, with only rational players in the committee, if ν > 1, when
only players that vote for the produced block are rewarded, and if there is a probability p
that the proposer proposes an invalid block, there are three Nash equilibria. Either (i) no
player votes nor checks the proposal validity; or (ii) if ν < n, all players vote for the proposal
without checking the validity of the proposal; or (iii) if κ ≥ R− csend + ccheck/p, n− ν + 1
players check the validity of the proposal and vote only if it is valid, and the ν − 1 remaining
players only vote without checking the validity of the proposal.

Proof of Proposition 11. We prove that the strategy profiles described in the proposition
are Nash equilibria.

First, we prove that the strategy profile where no player votes is a Nash equilibrium. The
gain at equilibrium of any player is 0. If one player deviates and votes, there is only 1
vote and the block is not produced since ν > 1, the gain at deviation is −csend < 0. If the
player deviates by checking block validity, it will pay the cost −ccheck − (1− p)csend < 0.
The strategy profile is indeed a Nash equilibrium.
We now prove that the strategy profile where all players vote without checking the
proposal validity is a Nash equilibrium. Let ν < n, the gain at equilibrium of any player
is R − csend − pκ. Even if one player deviates, the block will be produced in any case
(since ν < n) no matter its validity. If a player deviates by checking validity and voting if
the proposal is valid, its gain will be (1− p)(R− csend)− ccheck− pκ; if the player deviates
and does not check proposal’s validity nor votes, its expected gain at deviation is −pκ,
the gain at deviation is lower than the gain at equilibrium. The strategy profile is indeed
a Nash equilibrium.
It remains to prove that the strategy profile where some players are supposed to check
the proposal validity and check only if the block is valid and the remaining players vote
without checking block validity is also a Nash equilibrium.
We can first note that only valid blocks can be produced following the equilibrium, and
invalid blocks do not have the necessary ν votes, since only ν − 1 players vote without
checking, and so for invalid proposal.
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The expected gain of a player not supposed to check is (1− p)(R− csend). If it deviates
and does not vote, its gain at deviation is 0; if it deviates by checking and voting only
if the proposal is valid, its expected gain at deviation is (1 − p)(R − csend) − ccheck,
which is lower than the gain at equilibrium.
The expected gain of a player supposed to check is (1 − p)(R − csend) − ccheck. If it
deviates and does not vote, its gain at deviation is 0. If it deviates by voting without
checking the proposal’s validity, any block proposed will be produced, no matter
its validity since ν votes are sent in any case, so the expected gain of the deviating
player is R − csend − pκ, which is lower than the gain at equilibrium if and only if
κ ≥ R− csend + ccheck/p.

The strategy profile is indeed a Nash equilibrium.

Moreover, there is no more equilibrium. We sketch the proof by exhibiting the main other
equilibrium candidates.

Let x ≥ 0. Assume by contradiction that there exists an equilibrium where n − ν − x
players check the block validity and vote only if the proposal is valid, and the remaining
ν + x players vote without checking the block validity.
That means any block proposed will be produced, since ν + x ≥ ν players vote without
checking validity. Let i be a player supposed to check. It expected gain is R − csend −
ccheck − pκ, while if i deviates and votes without checking proposal validity, its expected
gain will be R− csend − pκ. Contradiction, the strategy profile is not an equilibrium.
Let x > 1. Assume by contradiction that there exists an equilibrium where n − ν + x

players check the block validity and vote only if the proposal is valid, and the remaining
ν − x players vote without checking the block validity.
Let i be a player supposed to check. It expected gain is (1− p)(R− csend)− ccheck. If i
deviates and votes without checking proposal validity, there will be ν − x+ 1 < ν votes
for invalid an block proposed, and so it will not be produced, where there will be n votes
for a valid block proposed; the expected gain at deviation for i is (1 − p)(R − csend).
Contradiction, the strategy profile proposed is not an equilibrium. J

I Remark 12. There are three types of Nash equilibria in Proposition 11.
The equilibrium where no player votes does not guarantee Termination at round 1.
In the equilibrium where no player checks, Termination is always guaranteed at the end
of the first round, even if the proposal is invalid, which violates the Validity property.
In the last equilibrium, valid blocks are produced and invalid blocks are not. Termination
is not guaranteed at round 1 but Validity is always ensured. There can be at most(

n
n−ν+1

)
equilibria corresponding to that setting.

5.2 Reward All Committee Members
In this section, we consider that all committee members are rewarded once a block is produced.
Equation 2 describes the gain of each rational player.

We study the different equilibria with respect to the value of ν, the minimum number of
votes required to consider a block as produced.

First, we analyze the case where 1 vote for a proposed block is sufficient to consider it as
produced, i.e., ν = 1.

I Proposition 13. In one round, with only rational players in the committee, if ν = 1, when
all players are rewarded once a block is produced, if there is a probability p that the proposer
proposes an invalid block, and if κ ≥ R− csend + ccheck/p, in all Nash equilibria, exactly one
player checks the validity of the proposal and votes only if it is valid, while the other players
do nothing.
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As in Proposition 5, one can note that in equilibrium, the task of validating (checking) and
producing a block is delegated to one player.

I Remark 14. Note that there exists at most n equilibria corresponding to Proposition 13.
In all the equilibria corresponding to Proposition 13, if the proposal is invalid, there is no
Termination at the first round, however, Validity is always ensured.

We now consider the situation where strictly more than one vote is needed to consider a
block as produced, i.e., ν ∈ {2, . . . , n}.

I Proposition 15. In one round, with only rational players in the committee, if ν > 1, when
all players are rewarded once a block is produced, if there is a probability p that the proposer
proposes an invalid block, and if κ ≥ R− csend + ccheck/p, in all Nash equilibria, either (i) no
player votes, or (ii) 1 player checks the proposal validity and votes only if it is valid, exactly
ν − 1 other players vote without checking validity, and the others do nothing.

Proof of Proposition 15. We prove that the strategy profiles described in the proposition
are Nash equilibria.

First, we prove that the strategy profile where no player votes is a Nash equilibrium. The
gain at equilibrium of any player is 0. If one player deviates and votes, there is only 1
vote, and the block is not produced since ν > 1, the gain at deviation is −csend < 0. If the
player deviates by checking block validity, it will pay the cost of checking for nothing and
will have the gain −ccheck − (1− p)csend < 0. The strategy profile is a Nash equilibrium.
It remains to prove that the strategy profile where some players are supposed to check the
proposal validity, and vote only if the block is valid; some players vote without checking
block validity; and the others do nothing is a Nash equilibrium.
We first note that only valid blocks can be produced following the equilibrium, and invalid
blocks do not have the necessary ν votes, since only ν − 1 players vote without checking.

First, the players that do not vote nor check validity have an expected gain of (1− p)R.
Let i be such a player. If i deviates and votes without checking, any proposal will
be produced, no matter its validity, therefore, the gain of the player at deviation is
R− csend − pκ, which is lower than the gain at equilibrium. If instead, i deviates and
checks the validity of the proposal and votes only if it is valid, only valid blocks will be
produced, so the gain at deviation will be (1− p)(R− csend)− ccheck, which is lower
than the gain at equilibrium.
Now, turns to the players not supposed to check but vote. Their expected gain at
equilibrium is (1− p)R− csend. Let i be such a player, if it deviates and does not vote
nor checks, no block will be produced and its gain at deviation is 0 < (1− p)R− csend.
If it deviates by checking and voting only if the proposal is valid, its expected gain at
deviation is (1 − p)(R − csend) − ccheck, which is lower than the gain at equilibrium
since csend < ccheck.
Finally, we can analyze the one player supposed to check. Without loss of generality,
assume that it is player with index 1. The expected gain of player 1 is (1− p)(R −
csend) − ccheck. If it deviates and does not vote, no block will be produced, so its
gain at deviation is 0 < (1 − p)(R − csend) − ccheck; if it deviates by voting without
checking the proposal’s validity, any block proposed will be produced, no matter its
validity since ν votes are sent in any case; therefore, the expected gain of player 1 at
deviation is R− csend − pκ, which is lower than the gain at equilibrium if and only if
κ ≥ R− csend + ccheck/p.

The strategy profile is indeed a Nash equilibrium. No deviation is profitable.
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There is no more equilibrium in this setting.
First, let us note that in any case, exactly ν players should vote (counting also those

supposed to vote after checking). If there are less than ν players supposed to vote (but at
least one), no block is produced so one such player can deviate and not vote, economizing its
cost. If there are more than ν players supposed to vote, one can deviate by not voting and
economizing that cost.

We can show that the other main equilibrium candidates are not equilibria.
By contradiction, assume that there exists an equilibrium where ν players vote without
checking the proposal’s validity and the others do not vote nor check.
Let i be a player supposed to vote. It expected gain at equilibrium R− csend − pκ, while
if i deviates by checking the proposal validity and voting only if valid, only valid proposal
will be produced, so its expected gain will be: (1− p)(R− csend)− ccheck which is greater
than the equilibrium. Contradiction, the strategy profile is not an equilibrium.
By contradiction, assume that there exists an equilibrium where ν players vote (counting
also those supposed to vote after checking) and the others do not vote nor check. Suppose
that in the set of players supposed to vote, at least two i and j check the validity of the
proposal and vote only if it is valid. In this strategy profile, only valid proposals will be
produced. The expected gain at equilibrium of i is (1− p)(R− csend)− ccheck. If instead,
i deviates and always votes without checking validity, its expected gain at deviation is
(1−p)R−csend, which is greater than the gain at equilibrium. Contradiction, the strategy
profile is not an equilibrium. J

I Remark 16. There are two types of Nash equilibria in Proposition 15.
Termination is not guaranteed at round 1 in the equilibrium where no player votes.
In the second type of equilibrium in this setting, there are exactly ν votes when the
proposal is valid, but ν − 1 votes when the proposal is invalid. Termination is not
guaranteed at round 1 but Validity is ensured. There can be at most n ∗

(
n−1
ν−1
)
equilibria

corresponding to that setting.

A summary of the different equilibria with trembling players can be found in Table 2.
When all players are rewarded once a block is produced, there is no “bad” equilibrium, i.e.,
an equilibrium where Validity is violated, while when only players that vote for a produced
block are rewarded when ν < n, there exists a “bad” equilibrium (Propositions 9 and 11).

6 Discussions

Before concluding, we discuss some interesting points that are not directly addressed in the
core of this paper.

Fixed amount of Reward for the Committee. First, we quickly highlight what happens if
there is a fixed reward for the committee members that is shared by them. Let µ be the
number of players that are rewarded in the committee, and let R

µ be the fraction of the
reward each player rewarded gets. Our equilibrium analysis still holds, but attention should
be given to the bounds. For example, in Proposition 9, instead of κ ≥ R− csend + ccheck/p

we should have κ ≥ R/n− csend + ccheck/p, since all players vote in case of a valid proposal.
(here, µ = n).

Honest Players. Recall that honest players always follow the prescribed protocol, i.e., they
always check the validity of the proposal, and vote only if the proposal is valid.
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We did not include honest players in this paper for the following reason: their presence
does not change the different equilibria we have; they may however change the bounds under
which some equilibria exist.

Denote by h the number of honest players in the committee. Generally, if there are
h honest players and ν messages are required for the production of a block, h votes are
guaranteed for valid blocks only; then for the rational players, the goal is to give the ν − h
remaining votes.

7 Conclusion

We analyze the behavior of rational players in committee-based blockchains under assumptions
of synchrony of messages and under different mechanisms of rewards. Although our analysis
focuses on a single round, the behaviors of the rational players can be repeated in multi-round
settings, since each new round has the same setting as the first round, and therefore, be
viewed as independent. This paper study the case where there is one proposer at the time
and does not consider the case of multiple proposers as in Algorand which has multiple
proposers at the same time and rely on probabilistic consensus while we consider only
deterministic consensus. We found that although there always exist equilibria where the
consensus properties are guaranteed, there also exist equilibria, where those properties are
violated, both in the case where the proposal is always valid, or by trembling effect can be
invalid. When all committee members are rewarded once a block is produced, in equilibrium,
the validity property is always guaranteed; while rewarding only those who vote for the
produced block leads to the existence of equilibrium where an invalid block can be produced.
Moreover, equilibria when all committee members are rewarded are more efficient in terms
of the number of messages. Thus, rewarding all members of the committee seems to be
an interesting reward scheme, and need more investigations, in particular in more general
settings.

In this work, we consider only the game representing the consensus agreement in committee-
based blockchains, from a liveness point of view. Interestingly, it helps clearly identifying
coordination problems that are likely to be present in more general settings.
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Abstract
Considering asynchronous shared memory systems in which any number of processes may crash,
this work identifies and formally defines relaxations of queues and stacks that can be non-blocking
or wait-free while being implemented using only read/write operations. Set-linearizability and
Interval-linearizability are used to specify the relaxations formally, and precisely identify the subset
of executions which preserve the original sequential behavior. The relaxations allow for an item to
be returned more than once by different operations, but only in case of concurrency; we call such
a property multiplicity. The stack implementation is wait-free, while the queue implementation is
non-blocking. Interval-linearizability is used to describe a queue with multiplicity, with the additional
relaxation that a dequeue operation can return weak-empty, which means that the queue might be
empty. We present a read/write wait-free interval-linearizable algorithm of a concurrent queue. As
far as we know, this work is the first that provides formalizations of the notions of multiplicity and
weak-emptiness, which can be implemented on top of read/write registers only.
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1 Introduction

In the context of asynchronous crash-prone systems where processes communicate by accessing
a shared memory, linearizable implementations of concurrent counters, queues, stacks, pools,
and other concurrent data structures [32] need extensive synchronization among processes,
which in turn jeopardizes performance and scalability. Moreover, it has been formally shown
that this cost is sometimes unavoidable, under various specific assumptions [11, 12, 19].
However, often applications do not require all guarantees offered by a linearizable sequential
specification [38]. Thus, much research has focused on improving performance of concurrent
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data structures by relaxing their semantics. Furthermore, several works have focused on
relaxations for queues and stacks, achieving significant performance improvements (e.g.,
[21, 22, 28, 38]).

It is impossible however to implement queues and stacks with only Read/Write operations,
without relaxing their specification. This is because queues and stacks have consensus
number two (i.e. they allow consensus to be solved among two processes but not three),
while the consensus number of Read/Write operations is only one [23], hence too weak to
wait-free implement queues and stacks. Thus, atomic Read-Modify-Write operations, such
as Compare&Swap or Test&Set, are required in any queue or stack implementation. To the
best of our knowledge, even relaxed versions of queues or stacks have not been designed that
avoid the use of Read-Modify-Write operations.

In this article, we are interested in exploring if there are meaningful relaxations of queues
and stacks that can be implemented using only simple Read/Write operations, namely, if
there are non-trivial relaxations with consensus number one. Hence, this work is a theoretical
investigation of the power of the crash Read/Write model for relaxed data structures.

Contributions
We identify and formally define relaxations of queues and stacks that can be implemented
using only simple Read/Write operations. We consider queue and stack relaxations with
multiplicity, where an item can be extracted by more than one dequeue or pop operation,
instead of exactly once. However, this may happen only in the presence of concurrent
operations. As already argued [30], this type of relaxation could be useful in a wide range of
applications, such as parallel garbage collection, fixed point computations in program analysis,
constraint solvers (e.g. SAT solvers), state space search exploration in model checking, as
well as integer and mixed programming solvers.

One of the main challenges in designing relaxed data structures lies in the difficulty of
formally specifying what is meant by “relaxed specification”. To provide a formal specification
of our relaxations, we use set-linearizability [33] and interval-linearizability [14], specification
methods that are useful to specify the behavior of a data structure in concurrent patterns
of operation invocations, instead of only in sequential patterns. Using these specification
methods, we are able to precisely state in which executions the relaxed behavior of the data
structure should take place, and demand a strict behavior (not relaxed), in other executions,
especially when operation invocations are sequential.

First Contribution. We define a set-concurrent stack with multiplicity, in which no items
are lost, all items are pushed/popped in LIFO order but an item can be popped by multiple
operations, which are then concurrent. We define a set-concurrent queue with multiplicity
similarly. In both cases we present set-linearizable implementations based only on Read/Write
operations. The stack implementation is wait-free [23], while the queue implementation
is non-blocking [25]. Our set-concurrent implementations imply Read/Write solutions for
idempotent work-stealing [30] and k-FIFO [28] queues and stacks.

Second Contribution. We define an interval-concurrent queue with a weak-emptiness check,
which behaves like a classical sequential queue with the exception that a dequeue operation
can return a control value denoted weak-empty. Intuitively, this value means that the
operation was concurrent with dequeue operations that took the items that were in the
queue when it started, thus the queue might be empty. First, we describe a wait-free
interval-linearizable implementation based on Fetch&Inc and Swap operations. Then, using
the techniques in our set-linearizable stack and queue implementations, we obtain a wait-free
interval-linearizable implementation using only Read/Write operations.
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Our interval-concurrent queue with weak-emptiness check is motivated by a theoretical
question that has been open for more than two decades [4]: it is unknown if there is a wait-free
linearizable queue implementation based on objects with consensus number two (e.g. Fetch&Inc
or Swap), for any number of processes. There are only such non-blocking implementations
in the literature, or wait-free implementations for restricted cases (e.g. [10, 18, 29, 16, 17]).
Interestingly, our interval-concurrent queue allows us to go from non-blocking to wait-freedom.

Since we are interested in the computability power of Read/Write operations to implement
relaxed concurrent objects (that otherwise are impossible), our algorithms are presented in
an idealized shared-memory computational model. We hope these algorithms will help to
develop a better understanding of fundamentals that can derive solutions for real multicore
architectures, with good performance and scalability.

Related Work
It has been frequently pointed out that classic concurrent data structures have to be relaxed
in order to support scalability, and examples are known showing how natural relaxations on
the ordering guarantees of queues or stacks can result in higher performance and greater
scalability [38]. Thus, for the past ten years there has been a surge of interest in relaxed
concurrent data structures from practitioners (e.g. [34]). Also, theoreticians have identified
inherent limitations in achieving high scalability in the implementation of linearizable
objects [11, 12, 19].

Some articles relax the sequential specification of traditional data structures, while others
relax their correctness condition requirements. As an example of relaxing the requirement
of a sequential data structure, [22, 27, 28, 35] present a k-FIFO queue (called out-of-order
in [22]) in which elements may be dequeued out of FIFO order up to a constant k ≥ 0. A
family of relaxed queues and stacks is introduced in [39], and studied from a computability
point of view (consensus numbers). It is defined in [22] the k-stuttering relaxation of a
queue/stack, where an item can be returned by a dequeue/pop operation without actually
removing the item, up to k ≥ 0 times, even in sequential executions. Our queue/stack with
multiplicity is a stronger version of k-stuttering, in the sense that an item can be returned
by two operations if and only if the operations are concurrent. Relaxed priority queues (in
the flavor of [39]) and associated performance experiments are presented in [6, 42].

Other works design a weakening of the consistency condition. For instance, quasi-
linearizability [3], which models relaxed data structures through a distance function from
valid sequential executions. This work provides examples of quasi-linearizable concurrent
implementations that outperform state of the art standard implementations. A quantitative
relaxation framework to formally specify relaxed objects is introduced in [21, 22] where relaxed
queues, stacks and priority queues are studied. This framework is more powerful than quasi-
linearizability. It is shown in [40] that linearizability and three data type relaxations studied
in [22], k-Out-of-Order, k-Lateness, and k-Stuttering, can also be defined as consistency
conditions. The notion of local linearizability is introduced in [20]. It is a relaxed consistency
condition that is applicable to container-type concurrent data structures like pools, queues,
and stacks. The notion of distributional linearizability [5] captures randomized relaxations.
This formalism is applied to MultiQueues [37], a family of concurrent data structures
implementing relaxed concurrent priority queues.

The previous works use relaxed specifications, but still sequential, while we relax the
specification to make it concurrent (using set-linearizability and interval-linearizability).

The notion of idempotent work stealing is introduced in [30], where LIFO, FIFO and
double-ended set implementations are presented; these implementations exploit the relaxed
semantics to deliver better performance than usual work stealing algorithms. Similarly
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to our queues and stacks with multiplicity, the idempotent relaxation means that each
inserted item is eventually extracted at least once, instead of exactly once. In contrast to our
work, the algorithms presented in [30] use Compare&Swap (in the Steal operation). Being
a practical-oriented work, formal specifications of the implemented data structures are not
given.

Organization. The article is organized as follows. Section 2 presents the model of com-
putation and the linearizability, set-linearizability and interval-linearizability correctness
conditions. Sections 3 and 4 contain our Read/Write set-linearizable queue and stack imple-
mentations, and Section 5 explains some implications obtained from these implementations.
Our interval-linearizable queue implementation is presented in Section 6. Finally, Section 7
ends the paper with some final remarks. Full proofs of our claims can be found in the full
version of the paper [15].

2 Preliminaries

Model of Computation. We consider the standard concurrent system model with n asyn-
chronous processes, p1, . . . , pn, which may crash at any time during an execution. The index
of process pi is i. Processes communicate with each other by invoking atomic operations on
shared base objects. A base object can provide atomic Read/Write operations (henceforth
called a register), or more powerful atomic Read-Modify-Write operations, such as Fetch&Inc,
Swap or Compare&Swap.

A (high-level) concurrent object, or data type, is, roughly speaking, defined by a state
machine consisting of a set of states, a finite set of operations, and a set of transitions between
states. The specification does not necessarily have to be sequential, namely, (1) a state might
have pending operations and (2) state transitions might involve several invocations. The
following subsections formalize this notion and the different types of objects.

An implementation of a concurrent object T is a distributed algorithm A consisting
of local state machines A1, . . . , An. Local machine Ai specifies which operations on base
objects pi executes in order to return a response when it invokes a high-level operation of
T . A process is sequential: it can invoke a new high-level operations only when its previous
operation has been responded. Each of these base objects operation invocations is a step.
Thus, an execution of A is a possibly infinite sequence of steps, namely, executions of base
objects operations, plus invocations and responses to high-level operations of the concurrent
object T .

An operation in an execution is complete if both its invocation and response appear in
the execution. An operation is pending if only its invocation appears in the execution. A
process is correct in an execution if it takes infinitely many steps.

An implementation is wait-free if every process completes each operation it invokes [23].
An implementation is non-blocking if whenever processes take steps and at least one of
them does not crash, at least one of them terminates its operation [25]. Thus, a wait-free
implementation is non-blocking but not necessarily vice versa.

The consensus number of a shared object O is the maximum number of processes that can
solve consensus, using any number of instances of O in addition to any number of Read/Write
registers [23]. Consensus numbers induce the consensus hierarchy where objects are classified
according their consensus numbers. The simple Read/Write operations stand at the bottom
of the hierarchy, with consensus number one; these operations are the least expensive ones
in real multicore architectures. At the top of the hierarchy we find operations with infinite
consensus number, like Compare&Swap, that provide the maximum possible coordination.
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Correctness Conditions. Linearizability [25] is the standard notion used to define a correct
concurrent implementation of an object defined by a sequential specification. Intuitively,
an execution is linearizable if its operations can be totally ordered, while respecting the
execution order its non-concurrent operations (see below).

A sequential specification of a concurrent object T is a state machine specified through a
transition function δ. Given a state q and an invocation inv(op), δ(q, inv(op)) returns the
tuple (q′, res(op)) (or a set of tuples if the machine is non-deterministic) indicating that the
machine moves to state q′ and the response to op is res(op). In our specifications, res(op)
is written as a tuple 〈op : r〉, where r is the output value of the operation. The sequences
of invocation-response tuples, 〈inv(op) : res(op)〉, produced by the state machine are its
sequential executions.

Linearizability

Set-Linearizability

Interval-Linearizability

Figure 1 Linearizability requires a total order on the operations, set-linearizability allows several
operations to be linearized at the same linearization point, while interval-linearizability allows an
operation to be decomposed into several linearization points.

To formalize linearizability we define a partial order <α on the completed operations of
an execution α: op <α op′ if and only if res(op) precedes inv(op′) in α. Two operations are
concurrent, denoted op||αop′, if they are incomparable by <α. The execution is sequential if
<α is a total order.

Let A be an implementation of a concurrent object T . An execution α of A is linearizable
if there is a sequential execution S of T such that: (1) S contains every completed operation
of α and might contain some pending operations. Inputs and outputs of invocations and
responses in S agree with inputs and outputs in α. (2) For every two completed operations
op and op′ in α, if op <α op′, then op appears before op′ in S. We say that A is linearizable
if each of its executions is linearizable.

To formally specify our relaxed queues and stacks, we use the formalism provided by
the set-linearizability and interval-linearizability consistency conditions [14, 33]. Roughly
speaking, set-linearizability allows us to linearize several operations in the same point, namely,
all these operations are executed concurrently, while interval-linearizability allows operations
to be linearized concurrently with several non-concurrent operations. Figure 1 schematizes the
differences between the three consistency conditions where each double-end arrow represents
an operation execution.

A set-concurrent specification of a concurrent object differs from a sequential execu-
tion in that δ receives as input the current state q of the machine and a set Inv =
{inv(op1), . . . , inv(opt)} of operation invocations, and δ(q, Inv) returns (q′, Res), where
q′ is the next state and Res = {res(op1), . . . , res(opt)} are the responses to the invocations
in Inv. Intuitively, all operations op1, . . . , opt are performed concurrently and move the
machine from state q to q′. The sets Inv and Res are called concurrency classes. Observe
that a set-concurrent specification in which all concurrency classes have a single element
corresponds to a sequential specification.
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13:6 Relaxed Queues and Stacks from Read/Write Operations

Let A be an implementation of a concurrent object T . An execution α of A is set-
linearizable if there is a set-concurrent execution S of T such that: (1) S contains every
completed operation of α and might contain some pending operations. Inputs and outputs
of invocations and responses in S agree with inputs and outputs in α. (2) For every two
completed operations op and op′ in α, if op <α op′, then op appears before op′ in S. We say
that A is set-linearizable if each of its executions is set-linearizable.

In an interval-concurrent specification, some operations might be pending in a given
state q, namely, the state records that there is an operation of a process without response.
We now have that in (q′, Res) = δ(q, Inv), some of the operations that are pending in q

might still be pending in q′ and operations invoked in Inv may be pending in q′, therefore
Res contains the responses to the operations that are completed when moving from q to q′.

Let A be an implementation of a concurrent object T . An execution α of A is interval-
linearizable if there is an interval-concurrent execution S of T such that: (1) S contains every
completed operation of α and might contain some pending operations. Inputs and outputs
of invocations and responses in S agree with inputs and outputs in α. (2) For every two
completed operations op and op′ in α, if op <α op′, then op appears before op′ in S. We say
that A is interval-linearizable if each of its executions is interval-linearizable.

3 Set-Concurrent Stacks with Multiplicity

By the universality of consensus [23], we know that, for every sequential object there is a
linearizable wait-free implementation of it, for any number of processes, using Read/Write
registers and base objects with consensus number ∞, e.g. Compare&Swap [24, 36, 41].
However, the resulting implementation might not be efficient because first, as it is universal,
the construction does not exploit the semantics of the particular object, and Compare&Swap
may be an expensive base operation. Moreover, such an approach would prevent us from
investigating the power and the limit of the Read/Write model (as it was done for Snapshot
object for which there are several linearizable wait-free Read/Write efficient implementations,
e.g. [1, 8, 26]) and find accordingly meaningful Read/Write-based specifications of relaxed
sequential specifications with efficient implementations.

A Wait-free Linearizable Stack from Consensus Number Two. Afek, Gafni and Morisson
proposed in [2] a simple linearizable wait-free stack implementation for n ≥ 2 processes,
using Fetch&Inc and Test&Set base objects, whose consensus number is 2. Figure 2 contains
a slight variant of this algorithm that uses Swap and readable Fetch&Inc objects, both with
consensus number 2 (the authors explain in [2] how to replace Test&Set with Swap).

A Push operation reserves a slot in Item by atomically reading and incrementing Top
(Line 01) and then places its item in the corresponding position (Line 02). A Pop operation
simply reads the Top of the stack (Line 04) and scans down Items from that position
(Line 05), trying to obtain an item with the help of a Swap operation (Lines 06 and 07); if
the operation cannot get a item (a non-⊥ value), it returns empty (Line 09). In what follows,
we call this implementation Seq-Stack. It is worth mentioning that, although Seq-Stack has
a simple structure, its linearizability proof is far from trivial, the difficult part being proving
that items are taken in LIFO order.

In a formal sense, Seq-Stack is the best we can do, from the perspective of the consensus
hierarchy: if there were a wait-free (or non-blocking) linearizable implementation based only
on Read/Write registers, we could solve consensus among two processes in the standard way, by
popping a value from the stack initialized to a single item containing a predefined value winner;
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Shared Variables:
Top : Fetch&Inc object initialized to 1
Items[1, . . .] : Swap objects initialized to ⊥

Operation Push(xi) is
(01) topi ← Top.Fetch&Inc()
(02) Items[topi].Write(xi)
(03) return true
end Push

Operation Pop() is
(04) topi ← Top.Read()− 1
(05) for ri ← topi down to 1 do
(06) xi ← Items[ri].Swap(⊥)
(07) if xi 6= ⊥ then return xi end if
(08) end for
(09) return ε
end Pop

Figure 2 Stack implementation Seq-Stack of Afek, Gafni and Morisson [2] (code for process pi).

this is a contradiction as consensus cannot be solved from Read/Write registers [24, 36, 41].
Therefore, there is no exact wait-free linearizable stack implementation from Read/Write
registers only. However, we could search for approximate solutions. Below, we show a
formal definition of the notion of a relaxed set-concurrent stack and prove that it can
be wait-free implemented from Read/Write registers. Informally, our solution consists in
implementing relaxed versions of Fetch&Inc and Swap with Read/Write registers, and plug
these implementations in Seq-Stack.

A Set-linearizable Read/Write Stack with Multiplicity. Roughly speaking, our relaxed
stack allows concurrent Pop operations to obtain the same item, but all items are returned
in LIFO order, and no pushed item is lost. Formally, our set-concurrent stack is specified as
follows:

I Definition 1 (Set-Concurrent Stack with Multiplicity). The universe of items that can be
pushed is N = {1, 2, . . .}, and the set of states Q is the infinite set of strings N∗. The initial
state is the empty string, denoted ε. In state q, the first element in q represents the top of
the stack, which might be empty if q is the empty string. The transitions are the following:
1. For q ∈ Q, δ(q,Push(x)) = (x · q, 〈Push(x) : true〉).
2. For q ∈ Q, 1 ≤ t ≤ n and x ∈ N : δ(x · q, {Pop1(), . . . ,Popt()}) = (q, {〈Pop1() :

x〉, . . . , 〈Popt() : x〉}).
3. δ(ε,Pop()) = (ε, 〈Pop() : ε〉).

I Remark 2. Every execution of the set-concurrent stack with all its concurrency classes
containing a single operation boils down to an execution of a sequential stack.

The following lemma shows that any algorithm implementing the set-concurrent stack
keeps the behavior of a sequential stack in several cases. In fact, the only reason the
implementation does not provide linearizability is due only to the Pop operations that are
concurrent.

I Lemma 3. Let A be any set-linearizable implementation of the set-concurrent stack with
multiplicity. Then,
1. All sequential executions of A are executions of the sequential stack.
2. All executions with no concurrent Pop operations are linearizable with respect to the

sequential stack.
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13:8 Relaxed Queues and Stacks from Read/Write Operations

3. All executions with Pop operations returning distinct values are linearizable with respect
to the sequential stack.

4. If Pop operations return the same value in an execution, then they are concurrent.

The algorithm in Figure 3 is a set-linearizable Read/Write wait-free implementation of the
stack with multiplicity, which we call Set-Conc-Stack. This implementation is a modification
of Seq-Stack. The Fetch&Inc operation in Line 01 in Seq-Stack is replaced by a Read and
Increment operations of a Read/Write wait-free linearizable Counter, in Lines 01 and 02 in
Set-Conc-Stack. This causes a problem as two Push operations can set the same value in
their topi local variables. This problem is resolved with the help of a two-dimensional array
Items in Line 03, which guarantees that no pushed item is lost: each row of Items now has
n entries, each of them associated with one and only process. Similarly, the Swap operation
in Line 06 in Seq-Stack is replaced by Read and Write operations in Lines 08 and 10 in
Set-Conc-Stack, together with the test in Line 09 which ensures that a Pop operation modifies
an entry in Items only if an item has been written in it. Thus, it is now possible that two
distinct Pop operations get the same non-⊥ value, which is fine because this can only happen
if the operations are concurrent. Object Top in Set-Conc-Stack can be any of the known
Read/Write wait-free linearizable Counter implementations1.

Shared Variables:
Top : Read/Write Counter object initialized to 1
Items[1, . . .][1, . . . , n] : Read/Write registers init. to ⊥

Operation Push(x) is
(01) topi ← Top.Read()
(02) Top.Increment()
(03) Items[topi, i].Write(x)
(04) return true
end Push

Operation Pop() is
(05) topi ← Top.Read()− 1
(06) for ri ← topi down to 1 do
(07) for si ← n down to 1 do
(08) xi ← Items[ri][si].Read()
(09) if xi 6= ⊥ then
(10) Items[ri][si].Write(⊥)
(11) return xi

(12) end if
(13) end for
(14) end for
(15) return ε
end Pop

Figure 3 Read/Write wait-free set-concurrent stack Set-Conc-Stack with multiplicity (code for
process pi).

I Theorem 4. The algorithm Set-Conc-Stack (Figure 3) is a Read/Write wait-free set-
linearizable implementation of the stack with multiplicity.

Proof sketch. The set-linearizability proof is a “reduction” that proceeds as follows. For
any execution E, we modify it and remove some of its operations to obtain another execution
G of the algorithm. Then, from G, we obtain an execution H of Seq-Stack, and show that
we can obtain a set-linearization SetLin(G) of G from any linearization Lin(H) of H. Finally,
we add to SetLin(G) the operations of E that were removed to obtain a set-linearization

1 To the best of our knowledge, the best implementation is in [7] with polylogarithmic step complexity,
on the number of processes, provided that the number of increments is polynomial.
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SetLin(E) of E. To obtain the execution G, we first obtain intermediate executions F and
then F ′, from which we derive G. For any value y 6= ε that is returned by at least two
concurrent Pop operations in E, we remove all these operations (invocations, responses and
steps) except for the first one that executes Line 10, i.e., the first among these operations
that marks y as taken in Items. Let F be the resulting execution of Set-Conc-Stack. Since
there are no two Pop operations in F popping the same item y 6= ε, then for every Pop
operation we can safely move backward each of its steps in Line 10 next to its previous step
in Line 08 (which corresponds to the same iteration of the for loop in Line 07). Thus, for
every Pop operation, Lines 08 to 10 correspond to a Swap operation. Let F ′ denote the
resulting equivalent execution.
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3 ⊥
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Figure 4 An example of the codification of the one-dimensional array Items of Seq-Stack in the
two-dimensional array Items in Set-Conc-Stack. The untouched entries are represented with ⊥.

We now permute the order of some steps in F ′ to obtain G. For each integer b ≥ 0, let
t(b) ∈ [0, . . . , n] be the number of Push operations in F ′ that store their items in row Items[b].
Namely, each of these operations obtains b in its Read steps in Line 01. Let Pushb1, . . . ,Pushbt(b)
denote all these operations. For each Pushbj , let xbj denote the item the operation pushes, let
ebj denote its Read step in Line 01, and let indbj be the index of the process that performs
operation Pushbj . Hence, Pushbj stores its item xbj in Items[b][indbj ] when performs Line 03.
Without loss of generality, let us suppose that indb1 < indb2 < . . . < indbt(b). Observe that
Pushb1, . . . ,Pushbt(b) are concurrent.

Let f b be the first among the steps eb1, . . . , ebt(b) that appears in F ′. As explained in the
full proof, moving forward each ebj right after f b produces another execution equivalent to
F ′. Thus, we obtain G by moving forward all steps eb1, . . . , ebt(b) up to the position of f b,
and place them in that order, eb1, . . . , ebt(b), for every b ≥ 0. Intuitively, all Pushb1, . . . ,Pushbt(b)
concurrently read Top and then concurrently increment it.

The main observation now is that G already corresponds to an execution of Seq-Stack,
if we consider the entries in Items in their usual order (first row, then column). We say
that Items[r][s] is touched in G if there is a Push operation that writes its item in that
entry; otherwise, Items[r][s] is untouched. Now, for every b ≥ 0, in G all Pushb1, . . . ,Pushbt(b)
execute Line 01 one right after the other, in order eb1, . . . , ebt(b). Also, the items they push
appear in row Items[b] from left to right in order Pushb1, . . . ,Pushbt(b). Thus, we can think of
the touched entries in row Items[b] as a column with the left most element at the bottom,
and pile all rows of Items with Items[0] at the bottom. Figure 4 depicts an example of the
transformation. In this way, each ebj corresponds to a Fetch&Inc operation and every Pop
operations scans the touched entries of Items in the order Seq-Stack does (note that it does
not matter if the operation start scanning in a row of Items with no touched entries, since
untouched entries are immaterial). Thus, from G we can obtain an execution H of Seq-Stack.
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13:10 Relaxed Queues and Stacks from Read/Write Operations

Any linearization Lin(H) of H is indeed a set-linearization of F and G with each concur-
rency class having a single operation. To obtain a set-linearization SetLin(E) of E, we put
every Pop operation of E that is removed to obtain F , in the concurrency class of Lin(H)
with the Pop operation that returns the same item. Therefore, E is set-linearizable. J

It is worth observing that indeed it is simple to prove that Set-Conc-Stack is an implement-
ation of the set-concurrent pool with multiplicity, namely, Definition 1 without LIFO order
(i.e. q is a set instead of a string). The hard part in the previous proof is the LIFO order,
which is shown through a reduction to the (nontrivial) linearizability proof of Seq-Stack [2].

A Renaming-based Performance-related Improvement. When the contention on the
shared memory accesses is small, a Pop operation in Set-Conc-Stack might perform several
“useless” Read operations in Line 08, as it scans all entries of Items in every row while trying
to get a non-⊥ value, and some of these entries might never store an item in the execution
(called untouched in the proof of Theorem 4). This issue can be mitigated with the help of
an array Ren with instances of any Read/Write f(n)-adaptive renaming. In f(n)-adaptive
renaming [9], each process starts with its index as input and obtains a unique name in the
space {1, . . . , f(p)}, where p denotes the number of processes participating in the execution.
Several adaptive renaming algorithms have been proposed (see e.g. [13]); a good candidate is
the simple (p2/2)-adaptive renaming algorithm of Moir and Anderson with O(p) individual
step complexity [31].

Push operations storing their items in the same row Items[b], which has now infinite length,
dynamically decide where in the row they store their items, with the help of Ren[b].Rename(·)
before performing Line 02. Additionally, these operations announce the number of operations
that store values in row Items[b] by incrementing a counter NOPS [b] before incrementing
Top in Line 02. In this way, a Pop operation first reads the value x of NOPS [ri] before the
for loop in Line 06, and then scans only that segment of Items[ri] in the for loop in Line 07,
namely, Item[ri][1, . . . , f(x)].

Note that if the contention is small, say O(logx n), every Pop operation scans only the
first entries O(log2x n) of row Items[b] as the processes storing items in that row rename
in the space {1, . . . , (log2x n)/2}, using the Moir and Anderson (p2/2)-adaptive renaming
algorithm. Finally, observe that n does not to be known in the modified algorithm (as in
Seq-Stack).

4 Set-Concurrent Queues with Multiplicity

We now consider the linearizable queue implementation in Figure 5, which uses objects with
consensus number two. The idea of the implementation, which we call Seq-Queue, is similar
to that of Seq-Stack in the previous section. Differently from Seq-Stack, whose operations
are wait-free, Seq-Queue has a wait-free Enqueue and a non-blocking Dequeue.

Seq-Queue is a slight modification of the non-blocking queue implementation of Li [29],
which in turn is a variation of the blocking queue implementation of Herlihy and Wing [25].
Each Enqueue operation simply reserves a slot for its item by performing Fetch&Inc to the tail
of the queue, Line 01, and then stores it in Items, Line 02. A Dequeue operation repeatedly
tries to obtain an item scanning Items from position 1 to the tail of the queue (from its
perspective), Line 07; every time it sees an item has been stored in an entry of Items,
Lines 09 and 10, it tries to obtain the item by atomically replacing it with >, which signals
that the item stored in that entry has been taken, Line 11. While scanning, the operation
records the number of items that has been taken (from its perspective), Line 13, and if this
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number is equal to the number of items that were taken in the previous scan, it declares the
queue is empty, Line 16. Despite its simplicity, Seq-Queue’s linearizability proof is far from
trivial.

Shared Variables:
Tail : Fetch&Inc object initialized to 1
Items[1, . . .] : Swap objects initialized to ⊥

Operation Enqueue(xi) is
(01) taili ← Tail.Fetch&Inc()
(02) Items[taili].Write(xi)
(03) return true
end Enqueue

Operation Dequeue() is
(04) taken′

i ← 0
(05) while true do
(06) takeni ← 0
(07) taili ← Tail.Read()− 1
(08) for ri ← 1 up to taili do
(09) xi ← Items[ri].Read()
(10) if xi 6= ⊥ then
(11) xi ← Items[ri].Swap(>)
(12) if xi 6= > then return xi end if
(13) takeni ← takeni + 1
(14) end if
(15) end for
(16) if takeni = taken′

i then return ε
(17) taken′

i ← takeni

(18) end while
end Dequeue

Figure 5 Non-blocking linearizable queue Seq-Queue from base objects with consensus number 2
(code for pi).

Similarly to the case of the stack, Seq-Queue is optimal from the perspective of the
consensus hierarchy as there is no non-blocking linearizable queue implementation from
Read/Write operations only. However, as we will show below, we can obtain a Read/Write
non-blocking implementation of a set-concurrent queue with multiplicity.

I Definition 5 (Set-Concurrent Queue with Multiplicity). The universe of items that can be
enqueued is N = {1, 2, . . .}, and the set of states Q is the infinite set of strings N∗. The
initial state is the empty string, denoted ε. In state q, the first element in q represents the
head of the queue, which might be empty if q is the empty string. The transitions are the
following:
1. For q ∈ Q, δ(q,Enqueue(x)) = (q · x, 〈Enqueue(x) : true〉).
2. For q ∈ Q, 1 ≤ t ≤ n, x ∈ N : δ(x · q, {Dequeue1(), . . . ,Dequeuet()}) = (q, {〈Dequeue1() :

x〉, . . . , 〈Dequeuet() : x〉}).
3. δ(ε,Dequeue()) = (ε, 〈Dequeue() : ε〉).

I Remark 6. Every execution of the set-concurrent queue with all its concurrency classes
containing a single operation is an execution of the sequential queue.

I Lemma 7. Let A be any set-linearizable implementation of the set-concurrent queue with
multiplicity. Then,
1. All sequential executions of A are executions of the sequential queue.
2. All executions with no concurrent Dequeue operations are linearizable with respect to the

sequential queue.
3. All executions with Dequeue operations returning distinct values are linearizable with

respect to the sequential queue.
4. If two Dequeue operations return the same value in an execution, then they are concurrent.
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Following a similar approach to that in the previous section, Seq-Queue can be modified
to obtain a Read/Write non-blocking implementation of a queue with multiplicity. The
algorithm is modified as follows: (1) replace the Fetch&Inc object in Seq-Queue with a
Read/Write wait-free Counter, (2) extend Items to a matrix to handle collisions, and (3)
simulate the Swap operation with a Read followed by a Write. The correctness proof of the
modified algorithm is similar to the correctness proof of Set-Conc-Stack. In fact, proving that
the algorithm implements the set-concurrent pool with multiplicity is simple, the difficulty
comes from the FIFO order requirement of the queue, which is shown through a simulation
argument.

I Theorem 8. There is a Read/Write non-blocking set-linearizable implementation of the
queue with multiplicity.

5 Implications

Avoiding Costly Synchronization Operations/Patterns. It is worth observing that Set-
Conc-Stack and Set-Conc-Queue allow us to circumvent the linearization-related impossibility
results in [12], where it is shown that every linearizable implementation of a queue or a stack,
as well as other concurrent operation executions as encountered for example in work-stealing,
must use either expensive Read-Modify-Write operations (e.g. Fetch&Inc and Compare&Swap)
or Read-After-Write patterns [12] (i.e. a process writing in a shared variable and then reading
another shared variable, may be performing operation on other variables in between).

In the simplest Read/Write Counter implementation we are aware of, the object is
represented via a shared array M with an entry per process; process pi performs Increment
by incrementing its entry, M [i], and Read by reading, one by one, the entries of M and
returning the sum. Using this simple Counter implementation, we obtain from Set-Conc-Stack
a set-concurrent stack implementation with multiplicity, devoided of (1) Read-Modify-Write
operations, as only Read/Write operations are used, and (2) Read-After-Write patterns, as in
both operations, Push and Pop, a process first reads and then writes. It similarly happens
with Set-Conc-Queue.

Work-stealing with multiplicity. Our implementations also provide relaxed work-stealing
solutions without expensive synchronization operation/patterns. Work-stealing is a popular
technique to implement load balancing in a distributed manner, in which each process
maintains its own pool of tasks and occasionally steals tasks from the pool of another process.
In more detail, a process can Put and Take tasks in its own pool and Steal tasks from another
pool. To improve performance, [30] introduced the notion of idempotent work-stealing which
allows a task to be taken/stolen at least once instead of exactly once as in previous work.
Using this relaxed notion, three different solutions are presented in that paper where the
Put and Take operations avoid Read-Modify-Write operations and Read-After-Write patterns;
however, the Steal operation still uses costly Compare&Swap operations.

Our set-concurrent queue and stack implementations provide idempotent work-stealing
solutions in which no operation uses Read-Modify-Write operations and Read-After-Write
patterns. Moreover, in our solutions both Take and Steal are implemented by Pop (or
Dequeue), hence any process can invoke those operations, allowing more concurrency. If we
insist that Take and Steal can be invoked only by the owner, Items can be a 1-dimensional
array. Additionally, differently from [30], whose approach is practical, our queues and stacks
with multiplicity are formally defined, with a clear and simple semantics.
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Out-of-order queues and stacks with multiplicity: The notion of a k-FIFO queue is
introduced in [28] (called k-out-of-order queue in [22]), in which items can be dequeued out
of FIFO order up to an integer k ≥ 0. More precisely, dequeueing the oldest item may require
up to k + 1 dequeue operations, which may return elements not younger than the k + 1
oldest elements in the queue, or nothing even if the queue is not empty. [28] presents also a
simple way to implement a k-FIFO queue, through p independent FIFO queue linearizable
implementations. When a process wants to perform an operation, it first uses a load balancer
to pick one of the p queues and then performs its operation. The value of k depends on p
and the load balancer. Examples of load balancers are round-robin load balancing, which
requires the use of Read-Modify-Write operations, and randomized load balancing, which does
not require coordination but can be computational locally expensive. As explained in [28],
the notion of a k-FIFO stack can be defined and implemented similarly.

We can relax the k-FIFO queues and stacks to include multiplicity, namely, an item can
be taken by several concurrent operations. Using p instances of our set-concurrent stack or
queue Read/Write implementations, we can easily obtain set-concurrent implementations of
k-FIFO queues and stacks with multiplicity, where the use of Read-Modify-Write operations
or Read-After-Write patterns are in the load balancer.

6 Interval-Concurrent Queues with Weak-Emptiness Check

A natural question is if in Section 4 we could start with a wait-free linearizable queue
implementation instead of Seq-Queue, which is only non-blocking, and hence derive a wait-
free set-linearizable queue implementation with multiplicity. It turns out that it is an
open question if there is a wait-free linearizable queue implementation from objects with
consensus number two. (Concretely, such an algorithm would show that the queue belongs
to the Common2 family of operations [4].) This question has been open for more than
two decades [4] and there have been several papers proposing wait-free implementations of
restricted queues [10, 18, 29, 16, 17], e.g., limiting the number of processes that can perform
a type of operations.

Shared Variables:
Tail : Fetch&Inc object initialized to 1
Items[1, . . .] : Swap objects initialized to ⊥

Operation Enqueue(xi) is
(01) taili ← Tail.Fetch&Inc()
(02) Items[taili].Write(xi)
(03) return true
end Enqueue

Operation Dequeue() is
(04) taili ← Tail.Read()− 1
(05) for ri ← 1 up to taili do
(06) xi ← Items[ri].Swap(⊥)
(07) if xi 6= ⊥ then return xi end if
(08) end for
(09) return ε
end Dequeue

Figure 6 A non-linearizable queue implementation (code for process pi).

The Tail-Chasing Problem. One of the main difficulties to solve when trying to design such
an implementations using objects with consensus number two is that of reading the current
position of the tail. This problem, which we call as tail-chasing, can be easily exemplified

OPODIS 2020



13:14 Relaxed Queues and Stacks from Read/Write Operations

with the help of the non-linearizable queue implementation in Figure 6. The implementation
is similar to Seq-Stack with the difference that Dequeue operations scan Items in the opposite
order, i.e. from the head to the tail.

The problem with this implementation is that once a Dequeue has scanned unsuccessfully
Item (i.e., the items that were in the queue were taken by “faster” operations), it returns
ε; however, while the operation was scanning, more items could have been enqueued, and
indeed it is not safe to return ε as the queue might not be empty. Figure 7 describes an
execution of the implementation that cannot be linearized because there is no moment in
time during the execution of the Dequeue operation returning ε in which the queue is empty.
Certainly, this problem can be solved as in Seq-Queue: read the tail and scan again; thus, in
order to complete, a Dequeue operation is forced to chase the current position of the tail
until it is sure there are no new items.

Enqueue(x) Enqueue(y) Enqueue(z) Dequeue():x Dequeue():y

Dequeue():εreads
taili = 2

scans
Items[1]

scans
Items[2]

Figure 7 An example of the tail-chasing problem.

Inspired by this problem, below we introduce a relaxed interval-concurrent queue that
allows a Dequeue operation to return a weak-empty value, with the meaning that the
operation was not able take any of the items that were in the queue when it started but it
was concurrent with all the Dequeue operation that took those items, i.e., it has a sort of
certificate that the items were taken, and the queue might be empty. Then, we show that
such a relaxed queue can be wait-free implemented from objects with consensus number two.

A Wait-Free Interval-Concurrent Queue with Weak-Emptiness. Roughly speaking, in our
relaxed interval-concurrent queue, the state is a tuple (q, P ), where q denotes the state of
the queue and P denotes the pending Dequeue operations that eventually return weak-empty,
denoted εw. More precisely, P [i] 6= ⊥ means that process pi has a pending Dequeue operation.
P [i] is a prefix of q and represents the remaining items that have to be dequeued so that the
current Dequeue operation of pi can return εw. Dequeue operations taking items from the
queue, also remove the items from P [i], and the operation of pi can return εw only if P [i] is
ε. Intuitively, the semantics of εw is that the queue could be empty as all items that were in
the queue when the operations started have been taken. So this Dequeue operation virtually
occurs after all the items have been dequeued.

Enqueue(x) Enqueue(y) Enqueue(z) Dequeue():x Dequeue():y

Dequeue():εw

Figure 8 An interval-concurrent execution with a Dequeue operations returning weak-empty.

Figure 8 shows an example of an interval-concurrent execution of our relaxed queue
where the Dequeue operation returning εw is allowed to return only when x and y have been
dequeued. Observe that this execution is an interval-linearization of the execution obtained
from Figure 7 by replacing ε with εw.
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I Definition 9 (Interval-Concurrent Queue with Weak-Empty). The universe of items that
can be enqueued is N = {1, 2, . . .} and the set of states is Q = N∗ × (N∗ ∪ {⊥})n, with the
initial state being (ε,⊥, . . . ,⊥). Below, a subscript denotes the ID of the process invoking an
operation. The transitions are the following:
1. For (q, P ) ∈ Q, 0 ≤ t, ` ≤ n− 1, δ(q, P,Enqueue(x),Dequeuei(1)(), . . . ,Dequeuei(t)()) con-

tains the transition (q · x, S, 〈Enqueue(x) : true〉, 〈Dequeuej(1)() : εw〉, . . . , 〈Dequeuej(`)() :
εw〉), satisfying that
a. i(k) 6= i(k′), i(k) 6= the id of the process invoking Enqueue(x), and j(k) 6= j(k′),
b. for each i(k), P [i(k)] = ⊥,
c. for each j(k), either P [j(k)] = ε, or P [j(k)] = ⊥ and q = ε and j(k) = i(k′) for

some k′,
d. for each 1 ≤ s ≤ n, if there is a k with s = j(k), then S[s] = ⊥; otherwise, if there is

k′ with s = i(k′), S[s] = q, else S[s] = P [s].
2. For (x · q, P ) ∈ Q, 0 ≤ t, ` ≤ n− 1, δ(x · q, P,Dequeue(),Dequeuei(1)(), . . . ,Dequeuei(t)())

contains the transition (q, S, 〈Dequeue() : x〉, 〈Dequeuej(1)() : εw〉, . . . , 〈Dequeuej(`)() :
εw〉), satisfying that
a. i(k) 6= i(k′), i(k) 6= the id of the process invoking Dequeue(), and j(k) 6= j(k′),
b. for each i(k), P [i(k)] = ⊥,
c. for each j(k), either P [j(k)] = x, or P [j(k)] = ⊥ and q = ε and j(k) = i(k′) for

some k′,
d. for each 1 ≤ s ≤ n, if there is a k with s = j(k), then S[s] = ⊥; otherwise, if there is

k′ with s = i(k′), S[s] = q, else S[s] is the string obtained by removing the first symbol
of P [s] (which must be x).

e. if x · q = ε and t, ` = 0, then x ∈ {ε, εw}.

I Remark 10. Every execution of the interval-concurrent queue with no dequeue operation
returning εw is an execution of the sequential queue.

I Lemma 11. Let A be any interval-linearizable implementation of the interval-concurrent
queue with weak-empty. Then, (1) all sequential executions of A are executions of the
sequential queue, and (2) all executions in which no Dequeue operation is concurrent with
any other operation are linearizable with respect to the sequential queue.

The algorithm in Figure 9, which we call Int-Conc-Queue, is an interval-linearizable
wait-free implementation of a queue with weak-emptiness, which uses base objects with
consensus number two. Int-Conc-Queue is a simple modification of Seq-Queue in which an
Enqueue operation proceeds as in Seq-Queue, while a Dequeue operation scans Items at most
two times to obtain an item, in both cases recording the number of taken items. If the two
numbers are the same (cf. double clean scan), then the operations return ε, otherwise it
returns εw.

I Theorem 12. The algorithm Int-Conc-Queue (Figure 9) is a wait-free interval-linearizable
implementation of the queue with weak-empty, using objects with consensus number two.

Interval-Concurrent Queue with Weak-emptiness and Multiplicity. Using the techniques
in Sections 3 and 4, we can obtain a Read/Write wait-free implementation of a even more
relaxed interval-concurrent queue in which an item can be taken by several dequeue operations,
i.e., with multiplicity. In more detail, the interval-concurrent queue with weak-emptiness
is modified such that concurrent Dequeue operations can return the same item and are
set-linearized in the same concurrency class, as in Definitions 1 and 5.
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Shared Variables:
Tail : Fetch&Inc object initialized to 1
Items[1, . . .] : Swap objects initialized to ⊥

Operation Enqueue(xi) is
(01) taili ← Tail.Fetch&Inc()
(02) Items[taili].Write(xi)
(03) return true
end Enqueue

Operation Dequeue() is
(04) for k ← 1 up to 2 do
(05) takeni[k]← 0
(06) taili ← Tail.Read()− 1
(07) for ri ← 1 up to taili do
(08) xi ← Items[ri].Read()
(09) if xi 6= ⊥ then
(10) xi ← Items[ri].Swap(>)
(11) if xi 6= > then return xi end if
(12) takeni[k]← takeni[k] + 1
(13) end if
(14) end for
(15) end for
(16) if takeni[1] = takeni[2] then return ε
(17) else return εw

(18) end if
end Dequeue

Figure 9 Wait-free interval-concurrent queue from consensus number 2 (code for pi).

We obtain a Read/Write wait-free interval-concurrent implementation of the queue with
weak-emptiness and multiplicity by doing the following: (1) replace the Fetch&Inc object in
Int-Conc-Queue with a Read/Write wait-free Counter, (2) extend Items to a matrix to handle
collisions, and (3) simulate the Swap operation with a Read followed by a Write. Thus, we
have:

I Theorem 13. There is a Read/Write wait-free interval-linearizable implementation of the
queue with weak-emptiness and multiplicity.

7 Final Discussion

Considering classical data structures initially defined for sequential computing, this work
has introduced new well-defined relaxations to adapt them to concurrency and investigated
algorithms that implement them on top of “as weak as possible” base operations. It has
first introduced the notion of set-concurrent queues and stacks with multiplicity, a relaxed
version of queues and tasks in which an item can be dequeued more than once by concurrent
operations. Non-blocking and wait-free set-linearizable implementations were presented, both
based only on the simplest Read/Write operations. These are the first implementations of
relaxed queues and stacks using only these operations. The implementations imply algorithms
for idempotent work-stealing and out-of-order stacks and queues.

The paper also introduced a relaxed concurrent queue with weak-emptiness check, which
allows a dequeue operation to return a “weak-empty certificate” reporting that the queue
might be empty. A wait-free interval-linearizable implementation using objects with consensus
number two was presented for such a relaxed queue. As there are only non-blocking linearizable
(not relaxed) queue implementations using objects with consensus number two, it is an open
question if there is such a wait-free implementation. The proposed queue relaxation allowed
us to go from non-blocking to wait-freedom using only objects with consensus number two.

This work also can be seen as a work prolonging the results described in [14] where the
notion of interval-linearizability was introduced and set-linearizability [33] is studied. It has
shown that linearizability, set-linearizability and interval-linearizability constitute a hierarchy
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of consistency conditions that allow us to formally express the behavior of non-trivial (and
still meaningful) relaxed queues and stacks on top of simple base objects such as Read/Write
registers. An interesting extension to this work is to explore if the proposed relaxations can
lead to practical efficient implementations. Another interesting extension is to explore if
set-concurrent or interval-concurrent relaxations of other concurrent data structures would
allow implementations to be designed without requiring the stronger computational power
provided by atomic Read-Modify-Write operations.
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Abstract
Efficient message-passing implementations of shared data types are a vital component of practical
distributed systems, enabling them to work on shared data in predictable ways, but there is a
long history of results showing that many of the most useful types of access to shared data are
necessarily slow. A variety of approaches attempt to circumvent these bounds, notably weakening
consistency guarantees and relaxing the sequential specification of the provided data type. These
trade behavioral guarantees for performance. We focus on relaxing the sequential specification of
a first-in, first-out queue type, which has been shown to allow faster linearizable implementations
than are possible for traditional FIFO queues without relaxation.

The algorithms which showed these improvements in operation time tracked a complete execution
history, storing complete object state at all n processes in the system, leading to n copies of every
stored data element. In this paper, we consider the question of reducing the space complexity of
linearizable implementations of shared data types, which provide intuitive behavior through strong
consistency guarantees. We improve the existing algorithm for a relaxed queue, showing that it is
possible to store only one copy of each element in a shared queue, while still having a low amortized
time cost. This is one of several important steps towards making these data types practical in real
world systems.

2012 ACM Subject Classification Computing methodologies → Distributed algorithms

Keywords and phrases Shared Data Structures, Message Passing, Relaxed Data Types, Space
Complexity

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2020.14

Acknowledgements We would like to thank Anh Kieu, Shane Staret, and Jimmy Wei for helping
find references.

1 Introduction & Related Work

Because they present the same interface as sequential data types, shared memory objects
are a relatively intuitive way to program access to shared data by many processors. Un-
fortunately, in a distributed computation setting, physical shared memory is usually not
possible and processes communicate by sending messages. Programming in a message passing
system is more difficult, since there tend to be many messages in transit at once, on many
communication links, and their causal and temporal relationships may be masked by variable
delays. To hide this difficulty and make distributed programming easier and less error-prone,
there is much work on implementing shared memory objects as an abstraction layer on top
of message passing systems. As more and more computing moves to distributed and cloud
systems, the ability to write programs that interact with shared data in predictable and
efficient ways continues to grow, so it is vital that we work to provide the best shared data
structure implementations possible.
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Existing work on shared data types has given implementations for both specific and
arbitrary data types, but it has also shown that all operations with certain often-desirable
properties are inherently slow, requiring a delay proportional to the maximum time a message
may take in transit to ensure knowledge of preceding and concurrent operation invocations
[8, 11, 6]. In a widely distributed system, such a delay could easily be on the order of
hundreds of milliseconds, which is more than enough to negatively impact a human user’s
experience, and is extremely costly to a computation using such a shared data object.

There are several approaches to circumvent this lower bound, some of which the community
has explored for decades and some of which are newer. The lower bounds mentioned before
generally apply to linearizable implementations, in which it is possible to reduce a concurrent
execution to an equivalent sequential one without reordering non-concurrent operations.
Weaker consistency conditions, such as sequential consistency or eventual consistency, do
not have the same lower bounds, but they also do not provide the same guarantees [2, 10]
or intuitive correspondence to sequential structures. Eventual consistency is widely used in
commercial applications but gives very weak guarantees, making it difficult to reason about
the expected behavior of interactions with shared data. Even for stronger conditions like
sequential consistency, the practical effects of weakened guarantees can be hard to anticipate
and seem counter-intuitive, making them less attractive in practice.

Another approach called relaxation, developed in [1] and formalized in [5], allows better
performance in a linearizable system [5, 9]. By weakening the guarantees of the data type’s
sequential specification, more possible responses to a particular operation are allowed, and this
limited non-determinism can be exploited to eliminate the need for processes to synchronize
in every operation instance. Instead, updates can be sent in the background, allowing
quick responses and high throughput. Occasional synchronization is necessary, keeping the
worst-case time complexity high, but relaxed data types can have a much lower amortized
cost per operation than is possible for unrelaxed types.

While [9] proved the possibility of these performance gains, it did so in a theoretical model
without many of the difficulties present in real systems. Assumptions of known message delays,
free storage, and always-correct processes do not translate well to practical implementations.
In this paper, we seek to take a first step towards removing these assumptions by reducing the
space required to implement relaxed queues, while still maintaining good time performance.
Future work is still necessary to remove other idealized model assumptions and build practical
implementations of these types.

The performance gains possible with relaxed data structures, particularly queues, come at
the cost of weakened guarantees on the order of data retrieval. For example, the relaxation
we primarily consider in this work merely guarantees that some old element in the structure,
not necessarily the single oldest, is returned by each Dequeue instance. Such a weakening
reduces the usefulness of the data type in many cases, since we can no longer be confident
which element we get when we retrieve one from the structure. But because the type still
provides some ordering, these objects are still of use in applications where response time is
more important than exact ordering. For example, consider a distributed job queue, where
the primary goal is to execute a large computation as quickly as possible. While we intuitively
want to send tasks in exact FIFO order, if they are being completed concurrently, their
completion order may not exactly match their start order, so relaxing the start order will
not adversely affect the computation. Similarly, online shopping applications, such as for
high-demand, limited-run items like concert tickets, demand very quick response time, or
customers are left frustrated while they wait to find out whether they were among the first
to request a product. By relaxing the order of customers in some cases, the average wait
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time may decrease, without any customer waiting longer than they would in an unrelaxed
system. Care is necessary to avoid disadvantaging customers who made their request earlier,
but this is possible by counting requests. As a tangible example, consider the problem of
selling 1000 identical tickets for lawn seating at a concert. The exact order in which requests
are processed has no bearing on correctness, as long as the first 1000 customers are those
who get the tickets. Since we do not relax Enqueue (which already has good performance),
we know that we store requests in the order they arrive, and merely need to mark which
are the first 1000. With a fast relaxed Dequeue, we can then process all the requests more
quickly, leading to happier customers and lower load on the ticket servers.

Our Contribution

The algorithm for arbitrary data types in [11], on which the algorithm in [9] for relaxed types
is based, keeps a complete copy of the shared data locally on every process and updates
these copies based on operations invoked throughout the system. This is highly inefficient,
especially for data types like Queues, Stacks, and Heaps in which reading an element also
removes it, so only a single process will ever need the value of each stored data object. The
space overhead of full replication was necessary for those algorithms to achieve their low time
complexity, as they avoided waiting for round-trip messages by having every process simulate
the shared object by executing all operation instances on its local copy of the structure.

We consider only linearizable implementations of data types, since they provide the
strongest, most intuitive restrictions on concurrent behavior. The idea of only partially
replicating data elements has been more thoroughly explored in the context of causal
consistency [4, 12, 3] where, despite the weaker consistency condition it is difficult or
impossible to store fewer than n copies of the data and maintain consistency.

We show that by exploiting the same properties of relaxation that allow a structure to
have lower time cost, we can also reduce storage to only a single copy of each data element
in the system. This gives a reduction in space complexity by a factor of n over the existing
work. We here present this solution for one particular relaxation of FIFO queues as a proof
of concept. For this relaxation, we increase the amortized time complexity of the costly
Dequeue operation by approximately a factor of 2 over the relaxed queue implementation
in [9], but with reasonable levels of relaxation still achieve amortized time below the lower
bound for unrelaxed queues. We also show that this is better than is possible in an unrelaxed
queue implementation. In the future, we intend to explore other relaxations, where we expect
to match the time complexity of the best-known algorithm while still reducing the total
space complexity by a factor of n.

Our solution is still somewhat idealized, as we keep assumptions about known message
delay bounds and correct processes. We are working separately on fault-tolerant implementa-
tions, with the aim of eventually combining improvements along different dimensions. In
fact, a real-world solution will probably not want to reduce space complexity quite as far
as we do here, since some replication is necessary to prevent data loss in the presence of
faults. However, we feel it worthwhile to explore the bounds of possible space savings and
the tradeoff of space versus time on their own merits. This helps demonstrate the essential
parts of efficient implementations and educates our ongoing work to build practically useful
structures.
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2 Model & Definitions

We consider sequential data type specifications consisting of two parts: a list of operations,
with argument and return types, and a list of legal sequences of invocation-response pairs of
those operations. In the sequential setting, an operation’s invocation must be immediately
followed by its response. In a concurrent setting, the argument and response of an operation
may occur at different times. An operation instance is an invocation of an operation, which
specifies an argument, together with a corresponding response. We require that the set of
legal sequences in a data type specification be prefix-closed and complete, meaning that any
prefix of a legal sequence is legal and after any sequence ρ, for any invocation i there must
be a response r forming an operation instance (i, r) such that ρ · (i, r) is legal.

We focus on the queue data type, since its ordering properties lend themselves to intuitive
relaxations. Specifically, in this paper we implement queues with Out-of-Order k-relaxed
Dequeue. Informally, this is a FIFO queue in which each Dequeue, instead of being required
to return and remove the oldest element in the queue, may return and remove any of the k
oldest elements. For analysis, we will also refer to the derived parameter ` := bk/nc.

I Definition 1. A queue with Out-of-Order k-relaxed Dequeue provides two operations:
1. Enqueue(x,−) takes one value x as its argument and returns nothing.
2. Dequeue(−, r) takes no argument and returns one value r.
Let ⊥ be a special symbol to indicate an empty queue. The empty sequence is legal and, if ρ
is a legal sequence,

ρ ·Enqueue(x,−) is legal for any x 6= ⊥ which is not the argument of an Enqueue in ρ.2
ρ ·Dequeue(−, r), r 6= ⊥, is legal if r is the argument of one of the first k Enqueue(y)
instances in ρ s.t. Dequeue(−, y) is not in ρ.
ρ · Dequeue(−,⊥) is legal if there are fewer than k Enqueue(y) instances in ρ s.t.
Dequeue(−, y) is not in ρ.

We adopt the model of [9]: We consider a system of n processes which can communicate
by sending point-to-point messages to each other. This is a partially-synchronous model,
where each process has a local clock running at the same rate as real time, but with an
unknown offset, and processes know that every message takes between d− u and d real time
in transit. We assume that local computation is instantaneous to focus on the communication
costs which arise in the algorithm. Each process interacts with a user by allowing them
to invoke operations and by providing return values to those invocations. We thus model
each process with a state machine whose transitions are triggered by three types of events:
message arrival, timer expiration, and operation invocation, and which can set timers, send
messages, and/or generate operation responses in each step.

A schedule for each process describes the sequence of states and transitions of its state
machine. A run of an algorithm consists of a schedule for each process, where each transition
has an associated real time. A run is admissible if the times associated with each process’
transitions are monotonically non-decreasing and interaction with each process starts with
an operation invocation and then alternates responses and invocations. This prevents a user
from invoking an operation until its previous invocation has finished. A run is complete if
every message sent is received and each process’ schedule is infinite or ends with no timers
set. Note that this assumes that all processes are correct and do not crash.

2 We assume that arguments to Enqueue are unique. This can be achieved by another abstraction layer
adding tags such as timestamps to elements.
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We assume that local clocks have previously been synchronized by an algorithm such as
that of [7], which yields an optimal bound of ε ≤ (1− 1/n)u on clock skew, the difference
between any two local clocks.

We consider algorithms implementing data type specifications in this message passing
model which satisfy a liveness condition, that every operation invocation has a matching
response and vice versa, and linearizability, which says that for every complete, admissible
run of the algorithm, there is a permutation, called a linearization, of the operation instances
in the run which is legal by the data type specification and respects the real-time order
of instances which do not overlap in real time. We require algorithms to be eventually
quiescent, which means that if users stop invoking operations, every process’ schedule will be
finite–processes eventually stop setting timers and sending messages.

The time complexity of an operation OP in this model, denoted |OP |, is the maximum
over all instances in all complete, admissible runs of the real time between the invocation and
response of a single instance of that operation. We are also interested in the amortized time
complexity of OP , which is the maximum over all complete, admissible runs of the average
real time between invocation and response of every instance of OP . We assume that local
computation is instantaneous, partly because it is practically much faster than communication
time and partly because we are focused on minimizing the cost of communication-related
delays.

To measure space complexity of our queue implementations, we introduce the parameter
T , which represents the maximum number of data elements concurrently in the queue. That
is, in a sequence π of operation instances, T is the maximum over all prefixes ρ of π of
the number of Enqueue instances in ρ minus the number of Dequeue instances in ρ which
return a non-⊥ value. To focus on the principles of shared data objects, we only measure
the amount of data stored, not local variables used for the algorithm or buffers holding
unprocessed messages.

3 Lower Bound on Unrelaxed Queues

We begin with a brief argument for the worst-case time complexity of any algorithm for an
unrelaxed queue which stores only one copy of each data element. Our algorithm will match
this space complexity and worst-case time bound, which shows that our algorithm is not a
step backward from an unrelaxed queue with the same space complexity.

I Theorem 2. Any algorithm linearizably implementing an unrelaxed queue which stores
only one copy of each element must have |Dequeue| ≥ 2d.

Proof. Suppose that some algorithm A linearizably implements a queue and only stores one
copy of each element. Consider a run in which one process enqueues several elements, then
nothing happens until the system is quiescent. Since A stores only one copy of each element,
the oldest element head is stored at a single process, which we’ll call ph. Suppose that some
other process pd then invokes a Dequeue. Since there are no concurrent operation instances,
pd must return head. But pd doesn’t know what head is, so must retrieve it from ph. Since
the system was in a quiescent state, ph must wait to hear from pd before sending head, and
the upper bound on message delay implies that pd will not have head available to return
until up to 2d after invocation. J

In a system that does not satisfy eventual quiescence, we could prove the same result by
showing that if head is in transit, a process that is not the recipient of a message carrying
head can invoke a Dequeue and it will still need to wait up to 2d time before receiving head.

OPODIS 2020
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The exception, and why we restrict ourselves to the domain of eventually quiescent algorithms,
are algorithms that effectively use the message channels for memory. By broadcasting all
elements immediately upon reception, instead of storing them, such an algorithm could
prevent a Dequeue instance from needing a long delay. This would lead to an unconscionably
large message complexity, even in the absence of activity on the data structure.

4 Algorithm

Our algorithm is a modification of that in [9], as we want to maintain its improvements
in time complexity. That algorithm uses a system of timers to ensure that all processes
execute all invocations on their local copies of the queue in the same order. This, coupled
with deterministic execution, ensures that all processes maintain the same state and can
provide consistent and correct return values. To enable the majority of Dequeue instances
to return after only local computation, the algorithm used an element-claiming system to
divide the k values which were possibilities for a legal Dequeue return value among the n
processes. As long as a process had a claimed element when a Dequeue invocation arrived,
the algorithm responded quickly to the user and coordinated with other processes in the
background. When a process ran out of claimed elements, the next Dequeue invocation was
forced to wait until the process was sure its local copy of the queue was up to date to claim
ownership of more elements and generate a Dequeue response.

We want to avoid having a complete copy of the shared state at every process, so we
add mechanisms for determining which process stores each element. This is a two-stage
system, with each element initially stored at one process, but then moved to a (potentially)
different process which claims it. This transfer is necessary for a process to be able to return
its claimed elements without waiting for communication with other processes, enabling the
common case of most Dequeue instances returning without waiting for communication.

4.1 Description
We first give an intuitive description of our algorithm’s behavior. The algorithm is event-
driven, where possible events are operation invocation, message arrival, and timer expiration.
Recall that we assume local computation is instantaneous, so events cannot interrupt other
event handlers.3

When a user invokes an operation at a particular process pi, the appropriate handler
(lines 1-4 for Enqueue, 5-11 for Dequeue) will announce the invocation to every process,
including pi. When each process receives such an announcement of an invocation op, the
message handler in lines 15-20 sets a timer to wait u+ ε time (u to account for variation in
message delay and ε to correct for clock skew) ensuring that it receives all invocations with
smaller timestamps. The process will then locally execute, in increasing timestamp order, all
invocations with smaller timestamps, ending with op, via the while loop in lines 21-25. In
[9], this guaranteed that all processes follow the same sequence of local operation executions,
allowing them to keep their local views of the shared queue synchronized. In our algorithm,
we do not store the full state of the shared queue at each process, so cannot make as strong
a claim. Instead, we track the number of each type of operation (modulo n) and current
size of the simulated queue, which enables us to determine which process should store and
retrieve the data elements involved in each Enqueue or Dequeue instance, respectively.

3 We name functions in the pseudocode based on how they may be called: HandleEvents respond to
external events, while Functions are called internally.
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We can respond to certain operation invocations before their execution is complete at all
processes, as soon as we know the correct return value. The algorithm will propagate the
instance’s effects in the background to ensure correct state. All Enqueue instances can thus
return quickly, since they have no return value. Similarly, Dequeue instances can quickly
return one of a process’ claimed elements, if there are any. Lines 12-14 generate these fast
responses. When a process runs out of claimed elements, however, quick returns to Dequeue
invocations are not possible, dividing Dequeue instances into two types, fast and slow. For
slow Dequeues, the invoking process must claim new elements, which requires waiting until
it knows about all preceding operation instances so that all processes agree which elements it
claims. This occurs when processes locally execute the slow Dequeue instance, which sends
the newly-claimed element to the invoking process as a restock message. Once the invoking
process receives a restock, it knows it has an element that is a correct return value for the
Dequeue instance and will not be returned by any other process, so the slow Dequeue can
return to the user. The algorithm does this in lines 39-53 by a similar logical structure as
that which ensures local execution of all instances in timestamp order. Here, we ensure that
restock elements are claimed, or returned by slow Dequeue instances, in the correct order.

There are two primary improvements in this algorithm over that of [9]. First, and central
to this paper’s result, we note that when processes receive an announcement of a new
Enqueue instance, they do not all need to store a copy of the argument. Instead, we separate
stored elements from those which processes have claimed. Only one process saves the new
element, putting it in a local stored queue. When a process claims that element, the storing
process can send and delete it, since it will be saved in the claiming process’ claimed queue.

Using the number of Enqueue instances which have happened so far, the algorithm
distributes enqueued elements in a round-robin fashion to achieve balanced storage. When
processes claim elements and remove them from storage, we similarly remove them in round-
robin order using the saved number of Dequeue instances, which guarantees a FIFO ordering
of stored elements across all processes. Note that this order does not hold for Dequeue
return values, since a process can claim elements, then sit idle while other processes remove
elements added to the queue since its claimed elements.

Our second improvement is the restocking procedure: when a process invokes a Dequeue,
its announcement of that invocation also serves as a request to claim a new element. If the
invoking process has no claimed elements, it must wait for the new element to arrive from
the process storing it. If the invoking process has claimed elements, restocking occurs in
the background, with the effect that if Dequeue invocations are not too frequent at any
one process, all Dequeue instances in a run could be fast. This restocking system increases
the worst-case time of a Dequeue to approximately 2d, where the original algorithm had
a worst-case time of approximately d, but this tradeoff is necessary to reduce our storage
requirements. As detailed later in the paper, we still have a lower amortized time complexity
than is possible without relaxation.

Pseudocode for our relaxed queue is in Algorithms 1 and 2. It uses local FIFO queues
claimed and stored and min-priority queues Pending and Restocks, which are keyed on the
timestamps (lexicographically-ordered pairs containing local clock values and process ids) of
the instances they store.

4.2 Correctness
To prove our algorithm is a correct, linearizable implementation of a queue with Out-of-Order
k relaxed Dequeue, we will show that every invocation has a response, then construct a
linearization of those instances based on the timestamps assigned when they are invoked,
and show that every return value is legal by the data type specification.
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Algorithm 1 Pseudocode for each pi implementing a Queue with Out-of-Order k-relaxed Dequeue.

1: HandleEvent Enqueue(val)
2: ts = 〈localtime, i〉
3: send (enq, val, ts) to all
4: setT imer(ε, 〈enq, val, ts〉, respond)
5: HandleEvent Dequeue
6: ts = 〈localtime, i〉
7: val = claimed.dequeue()
8: if val 6= ⊥ then
9: send (fastDeq, val, ts) to all

10: setT imer(ε, 〈fastDeq, val, ts〉, respond)
11: else send (slowDeq,⊥, ts) to all
12: HandleEvent ExpireTimer(〈op, val, ts〉, respond)
13: if op == fastDeq then Generate Dequeue response with return value val
14: else Generate Enqueue response with no return value
15: HandleEvent Receive (op, val, ts) from pj
16: if op ∈ {fastDeq, slowDeq} then
17: Restocks.insert(〈op, val, ts〉)
18: setT imer(d+ 2u+ ε, 〈op, val, ts〉, restock)
19: Pending.insert(〈op, val, ts〉)
20: setT imer(u+ ε, 〈op, val, ts〉, execute)
21: HandleEvent ExpireTimer(〈op, val, ts〉, execute)
22: while ts ≥ Pending.min() do
23: 〈op′, val′, ts′〉 = Pending.extractMin()
24: executeLocally(op′, val′, ts′)
25: cancelT imer(〈op′, arg′, 〈t, j〉〉, execute)
26: Function executeLocally(op, val, ts)
27: if op == enq then
28: if enqueueCount == i then
29: if clean and size < k then
30: claimed.enqueue(val)
31: else stored.enqueue(val)
32: enqueueCount += 1 (mod n)
33: size += 1
34: else
35: if restockCount == i then send (restock, stored.dequeue(), 〈op, val, ts〉) to pj
36: restockCount += 1 (mod n)
37: size −= 1
38: clean = (size == 0)
39: HandleEvent Receive (restock, restockV al, 〈op, val, 〈t, i〉〉) from pj
40: Restocks.update(〈op, val, 〈t, i〉〉, restockV al)
41: Function ExpireTimer(〈op, val, ts, restockV al〉, restock)
42: while ts ≥ Restocks.min() do
43: 〈op′, val′, ts′, restockV al′〉 = Restocks.extractMin()
44: executeRestock(op′, val′, ts′, restockV al′)
45: cancelT imer(〈op′, arg′, ts′, restockV al′〉, restock)
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Algorithm 2 Algorithm 1, continued.

46: Function ExecuteRestock(op, val, 〈∗, j〉, restockV al)
47: if op == fastDeq and j == i then
48: claimed.Enqueue(restockV al)
49: if op == slowDeq and j == i then
50: returnV al = claimed.Dequeue()
51: if returnV al == ⊥ then returnV al == restockV al

52: else claimed.Enqueue(restockV al)
53: Generate Dequeue response with return value returnV al

Let R be an arbitrary complete, admissible run of the algorithm. We assume that if
multiple events happen at the same process at exactly the same real time, message receptions
occur before timer expirations, but events of the same type may occur in any order. An
operation invocation’s timestamp is the value of the variable ts defined in line 2 or 6 for
Enqueue or Dequeue invocations, respectively.

We omit the proofs for Lemmas 3 and 4 for the sake of space, since they are fundamentally
the same as proofs in [9].

I Lemma 3. Each operation invocation in R causes exactly one response.

This defines the set of operation instances in R, by pairing each invocation with the
resultant response. We say that an operation instance’s timestamp is that of its invocation.

I Lemma 4. Every process locally executes every operation instance exactly once, in times-
tamp order.

I Construction 1. Let π be the sequence of all operations instance in R, sorted by timestamp
order.

I Lemma 5. π respects the order of non-overlapping operation instances in R.

Proof. Suppose in contradiction that op2 responds before op1’s invocation, but ts(op1) <
ts(op2), so op1 precedes op2 in π. Every operation instance takes at least ε time to respond,
by the timers in lines 4 and 10. Thus, op2’s invocation must be at least ε real time before
op1’s. But local clocks are skewed by at most ε, so ts(op2) must be less than or equal to
ts(op1), contradicting our assumption and proving the claim. J

I Lemma 6. At any time, there are no more than k elements in the union of all processes’
claimed queues and the set of restock messages in transit.

Proof. We observe that there are only two ways that elements can be added to a claimed
queue. First, in a clean state, which means that there have been no Dequeues since the
queue was last empty, Enqueue instances can add their arguments directly to claimed queues
in line 30. This cannot cause there to be more than k elements in all processes’ claimed
queues, by the check in line 29.

Second, we add elements to claimed when restocking after a Dequeue instance, in lines 48
and 52. Elements are only added to claimed after removing an element from that process’
claimed, either in line 7 or line 50, no Dequeue instance can increase the size of any process’
claimed queue above the maximum size of that queue set by Enqueue instances.

The only time an element is sent in a restock message is after a Dequeue instance. If
that instance was fast, then it removed a claimed element, so sending the restock message
does not increase the number of claimed or restocking elements. If the Dequeue instance
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was slow, then the invoking process had no claimed elements. Sending the restock message
could increase the total number of elements claimed or in transit, but since the invoking
process’ claimed queue was empty, k ≥ n, and Enqueue instances which add to claimed do
so in round-robin fashion, this means that there were previously fewer than k elements in the
union of all claimed queues and in-transit restock messages, so there are still fewer than k.

Thus, the total number of elements in all processes’ claimed queues and all in-transit
restock messages will be less than or equal to k. J

I Lemma 7. For any prefix ρ of the sequence π defined in Construction 1, after locally
executing ρ, every process’ size and clean variables will have the same values.

Proof. We first note that both size and clean are only edited in the function executeLo-
cally, so we restrict our attention to that function and prove this lemma by induction on
|ρ|, the length of the prefix ρ. When |ρ| = 0, all processes’ variables hold their initial value
of clean = true and size = 0.

Assume that after locally executing a prefix ρ′ of length k, the claim holds. Then when
any process locally executes the next operation instance op in π, it will follow the same logic,
since executeLocally is deterministic and all processes have the same parameters, since
they are executing the same operation instance, they will set clean to the same value and
change size in the same way. The only differences in behavior that may occur at different
processes are the results of the process id checks in lines 28 and 35, which do not have any
effect on the values of clean or size. Thus, after executing a prefix of length k + 1, every
process will have the same values for its clean and size variables. J

I Lemma 8. At any time, for any element c in any process’ claimed queue or in-transit
restock message and any element s in any process’ stored queue, c was the argument of
an Enqueue instance which appears in the sequence π defined in Construction 1 before the
Enqueue instance with s as argument.

Proof. Suppose in contradiction that an element x in some process pi’s claimed queue was
the argument of an Enqueue instance enq = Enqueue(x) that appears in π after another
instance enq′ = Enqueue(y), where y is in some process pj ’s stored queue (note that i and
j may not be distinct). As before, there are two possible ways the algorithm may have put x
in pi’s claimed queue: directly by enq in line 30 or as a restock for a Dequeue instance in
line 48 or 52.

Suppose first that x was added directly to pi’s claimed queue by enq. Then when each of
pi and pj locally executed enq, by line 28 and Lemma 7 we know that clean was true. Thus,
pj would only have put y in stored if either clean was false when pj locally executed enq′
and changed to true before pj locally executed enq, or if size was at least k when pj locally
executed enq′ but less than k when pi locally executed enq (or both). clean could not have
been false when processes locally executed enq′ and true when they locally executed enq
without y having been removed from stored and returned by a Dequeue in between, since
clean is only set to true when there are no elements left in the queue, by Line 38. On the
other hand, if size was at least k when pj locally executed enq′, but was not when pi locally
executed enq, there must have been a Dequeue instance between enq′ and enq in π, since
size only decreases in line 37. But when each process locally executed that Dequeue instance,
they would have set clean to false in line 38, so when pi locally executed enq, it would not
have stored x in claimed, unless clean was reset to true between the local execution of the
Dequeue instance, which we have already argued could not happen. Thus, x cannot have
been added to pi’s claimed by enq.
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The other possible way for x to be in pi’s claimed queue is for it to have been put in some
process pk’s stored queue and passed to pi as a restock element for a Dequeue instance deq.
But, since all processes locally execute all instances in the same order, restocks are taken from
storage in the order in which they were added (proving the claim for elements in in-transit
restock messages), and y would be added to stored before x, by Lemma 4, we can conclude
that y was removed from pj ’s stored queue by an instance deq′ with a lower timestamp
than that which caused x to be removed. Because the instance deq′ removing y from stored

had a lower timestamp than deq, it must have been locally executed within d+ u+ ε time
after the invocation of deq, at the latest when the timer set in line 18 (upon arrival of the
message containing deq) expires. However, no process can call executeRestock for deq
and add x to claimed until the timer on line 18 expires for deq or another instance with
larger timestamp. Such an instance can be invoked at most ε real time before deq, and the
message sent at its invocation must take at least d− u times. Thus, this instance’s restock
timer can expire no earlier than (d − u) + (d + 2u + ε) − ε = 2d + u real time after the
invocation of deq. Thus, pj must have locally executed deq′ and removed y from stored at
least (2d+ u)− (d+ u+ ε) = d− ε > 0 real time before pi added x to claimed, contradicting
our assumption.

Thus, for any x enqueued by an instance with smaller timestamp than that enqueueing y,
x cannot be in any process’ claimed queue or an in–transit restock message while y is in
another process’ stored queue, and we have the claim. J

I Lemma 9. The sequence π defined in Construction 1 is legal by the specification of a queue
with Out-of-Order k-relaxed Dequeue.

Proof. We prove this by induction on the length of a prefix ρ of π. The empty sequence is
legal, proving the base case. Suppose now that ρ = σ · op and σ is a legal sequence. Denote
the process invoking op as ph.

Case 1: op = Enqueue(arg,−). ρ is legal by the type specification.
Case 2: op = Dequeue(−, retV al), retV al ∈ V . We consider the cases of fast and slow
Dequeue instances separately:

Suppose op is a fastDeq instance. Then its return value is chosen from ph’s claimed
queue. By Lemmas 6, there are no more than k elements in all processes’ claimed
queues and in-transit restock messages. By Lemma 8, all claimed elements and those
carried by in-transit restock messages are the arguments of the earliest unmatched
Enqueue instances in the prefix of π before op. Thus, at op’s invocation retV al is the
argument of one of the first k unmatched Enqueue instances.
Every Dequeue instance’s return value in a claimed queue is removed as soon as it
is chosen (lines 7, 50) and ph removes retV al from its claimed queue during op’s
invocation. Also, no element is ever in more than one claimed queue, by the checks
on lines 48 and 52 and the fact that elements are removed from stored when sent
to claimed (line 35). Thus, no other Dequeue will return retV al. Further, once an
Enqueue instance is among the first k unmatched, it will continue to be until it is
matched, so ρ is legal.
Suppose op is a slowDeq instance. If op chooses its return value in line 50, then
Lemmas 6 and 8 show that retV al is the argument of one of the first k unmatched
Enqueue instances in σ, so ρ is legal. If op chooses its return value in line 51, then
that value was carried by a restock message. As discussed before, that means it was
the argument of one of the first k unmatched Enqueue instances, and thus ρ is legal.
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Case 3: op = Dequeue(−,⊥). For a Dequeue instance to return ⊥, then it must have
chosen its return value in line 51, and have received a ⊥ as a restock element. For the
restock message to have been carrying ⊥, then it must have come from a process with
an empty stored queue, in line 35. This means that when processes locally executed this
Dequeue instance, there were no elements in any process’ stored queue, since elements
are removed from stored queues in the order in which they were added. This means there
were fewer than k unmatched Enqueues, since processes locally execute all instances in
the order given by π, by Lemma 4 and there are fewer than k elements in claimed elements
and restock messages–which are the only other places values can be–by Lemma 6. Thus,
by the specification of a queue with Out-of-Order k-relaxed Dequeue, ρ is legal. J

I Theorem 10. Algorithm 1 is a correct, linearizable implementation of a queue with
Out-of-Order k-relaxed Dequeue.

Proof. By Lemma 5, π is an ordering of all operation instances which respects the real time
order of non-overlapping instances and by Lemma 9, π is legal. Thus, for any run R of
Algorithm 1, there is a linearization of R, and we have the claim. J

4.3 Complexity
4.3.1 Time
When discussing time complexity, we are interested in the time the algorithm takes to
respond to operation invocations, in terms of the system’s message timing parameters. With
relaxation, we can have many Dequeue instances return much faster than the worst-case,
leading to a low average cost for Dequeue. Thus, we also measure the amortized, or worst-
case of the average, time required for Dequeue. We do not consider the amortized cost of
Enqueue since every instance takes the (low) worst-case time.

One additional wrinkle in measuring the time complexity is that the mechanism for
accelerating fast Dequeue instances depends on having a significant number of elements in
the queue at all times. This would be the most common use case, and the number of fast
Dequeues, and thus average performance, scales cleanly with the size of the queue, but makes
general analysis difficult. We thus present bounds for the heavily-loaded case, where there
are consistently at least k elements in the queue. In more lightly loaded scenarios, where
there are fewer than k elements to distribute, the algorithm behaves as if k was decreased–the
structure is less relaxed. Practically, the enqueue elements are distributed evenly among all
processes, and they can dequeue those quickly before trying to claim more. Since Enqueue
instances only claim elements while the structure is clean, this is the same as if k was the
size of the queue at the first Dequeue instance until the queue is clean again. This means
that relaxation scales cleanly with the queue’s size when the first Dequeue instance occurs,
up to k.

Finally, we observe that our restocking mechanism gives the possibility of much better
average performance than the worst case represented in the amortized cost. A Dequeue

instance is fast if its invoking process has claimed elements available, so slow Dequeue

instance occur when many fast Dequeues in a row deplete the process’ stock of claimed
elements. Because we restock in the background, if Dequeue invocations are sufficiently
infrequent, then a process will never run out of claimed elements, and all Dequeue instances
will be fast. Exactly how infrequent Dequeue invocations must be for this to occur depends
on the system parameters, but the average time for each would be the same as the amortized
cost of the mix of fast and slow Dequeues which results from invoking them continuously.
Thus, for the common case when many Dequeues are not invoked immediately one after
another, a process will experience only Dequeue instances with low response times.
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I Theorem 11. The worst-case operation times for Algorithm 1 are ε for Enqueue and
2d+ u+ ε for Dequeue.

Proof. Enqueue instances and Dequeue instances at a process which currently has claimed
elements are fast operations, and respond ε time after invocation, by the timers set in
lines 4 and 10 and handled in lines 12-14, while their effects are propagated through the
system in the background. Dequeue instances at processes which do not have any claimed
elements are slow, and cannot respond until the process can coordinate with other processes
to claim an element. Such a slowDeq instance must wait for its announcement message to
arrive at the process which holds the next stored element (in FIFO order), up to u+ ε time
(line 20) for that process to ensure that it is executing instances in timestamp order, and
a second message delay for that process to send the newly-claimed element back (line 35).
The slowDeq instance can then return either the newly claimed element or one its invoking
process claimed in the background execution of another operation instance while it was
waiting. This delay is managed by the timer set in line 18, which starts after the d − u
delay for a message from the invoking process to reach itself. Thus, the total worst-case time
complexity for Dequeue is 2d+ u+ ε. J

This worst-case cost is higher than the d + ε achievable in unrelaxed queues [11], but
slow Dequeue instances are relatively infrequent, so we still obtain a low amortized cost.
More concerning is the fact that we have more than doubled the worst-case cost from the
algorithm for queues with out-of-order k-relaxed Dequeue in [9]. This is the tradeoff for
reducing space complexity, and is unavoidable since at least some Dequeue instance must
retrieve its return value from another process, taking minimum of 2d time.

For amortized response time, consider a heavily-loaded run, defined as a run which starts
with at least k Enqueue instances, after which there are never fewer than k unmatched
Enqueue instances. Because there have been no Dequeue instances so far, when processes
locally execute each of the initial k Enqueue instances, the check in line 29 will pass, and one
process will the enqueued element. Thus, there will be k claimed elements, evenly distributed
among the processes, when the first Dequeue is invoked. Since we assume k ≥ n, this means
that the first Dequeue will be fast, as will subsequent Dequeue instances until some process
fast Dequeues ` elements and empties its claimed queue. If that process invokes another
Dequeue before restocking, it will be a slow Dequeue instance, and take the worst-case time
of 2d+u+ ε. By the time that slow Dequeue instance returns, all restocking for previous fast
Dequeue instances will be complete, and the process will again have ` claimed elements. In
a heavily-loaded run, this pattern is the worst-case for every process, since there will always
be elements to restock processes’ claimed queues. Thus, at most one in every ` Dequeue
instances will be slow (recall ` = bk/nc) and the amortized time complexity of Dequeue is
at most 2d+u+ε+(`−1)ε

` = 2d+u
` + ε.

I Theorem 12. The amortized time complexity of Dequeue in Algorithm 1 in a heavily-loaded
run is 2d+u

` + ε.

[9] gives a lower bound of d(1− 1/n) for the amortized complexity of unrelaxed Dequeue,
so for ` > 3, our algorithm is faster than an unrelaxed queue, while using a factor of n less
space. We also note that existing algorithms for more complex relaxations already have a
similar 2d term in their amortized cost and expect that we will be able to extend the benefits
of this paper’s work to such relaxations without significantly increasing the time cost.
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4.3.2 Space

For space complexity, because we use a round-robin method to evenly distribute stored
elements across the various processes, each process only has to hold (1/n)th of the elements
stored at any time. To present this in a way useful for building a system or determining
whether one has the capability necessary to participate in this algorithm, we can phrase this
in terms of the maximum size of the queue at any point in a run, T .

I Theorem 13. Our algorithm requires memory for at most T/n+ k/n+O(1) elements at
any process at a time, excluding message buffers.

Proof. No more than k elements are in the union of all processes’ claimed queues at a
time, by Lemma 6. These elements are evenly distributed by the round-robin procedure for
claiming elements at enqueue time, or restocking elements removed from that balanced state.
Thus, each process stores up to bk/nc+ 1 claimed elements. The restocking procedure for
Dequeue instances attempts to keep each process at this level, but in the event of many
Dequeue invocations in close succession, the claimed elements could be depleted, leaving
all elements in storage. Because elements are stored and removed from storage in a FIFO,
round-robin fashion, the number of elements stored at each process will differ by at most
1. This follows from the fact that if there have been E Enqueue instances and D Dequeue

instances, each process will have stored at most bE/nc+ 1 elements and removed at least
bD/nc of those, leaving it with less than or equal to E−D

n + 1 elements in stored. Since
T = E−D, we have at most bT/nc+ 1 stored elements at each process for a total of at most
T/n+ k/n+ 2 elements in memory.

This analysis is slightly oversimplified since processes, while they locally execute all
operation instances in the same order, may not do so at the same time. It is thus possible
that some process has not yet locally executed a Dequeue instance and removed an element
from storage at the real time when an Enqueue instance with later timestamp adds its
argument to another process’ storage. This leads to at most a constant number of additional
stored elements per process, however, as any one process cannot store elements from Enqueues
with later timestamps until it has completed locally executing all previous operations. Thus,
there can be at most n− 1 of these extra elements, each stored at a different process, before
the delayed local execution of a Dequeue removes an element from storage. This is less than
1 extra element stored at each process, preserving the bound. J

This reduction by a factor of n makes shared queues far more practical for computing
devices with limited memory, as well as much more attractive to users of larger systems since
a process needs only store elements which it expects to return and a share of elements which
it may yet use. In a particular system, it may be possible to use a more finely-tuned storage
strategy to demand more storage from processes with more resources, but we here treat the
general case by balancing the load evenly.

Extending this algorithm to keep more than one copy of each data element, which would
be an important component of fault-tolerance, would be simple, as we would just alter the
logic in line 28 so that more than one process stored each element and in line 35 to make
sure that all copies were removed from storage. The logic could be tuned to provide as much
or little replication as desired, but we leave the details to ongoing work that treats all the
concerns of failure tolerance.
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5 Conclusion and Ongoing Work

We have shown that relaxing a data type can not only enable faster implementations of
that type, but also reduce the type’s space complexity. This is a large step towards making
these data types practical in real-world systems. Now that we have shown the possibility
of reducing the space complexity to a single stored copy of each data element, we know we
have the flexibility to replicate them as many times as we may need for fault tolerance or
resilience to poor message delays.

One other approach which could provide this level of space efficiency is a system with a
centralized storage server, which coordinates requests and allocates elements to all processes.
Traditionally, the two primary drawbacks to such an approach are increased communication
time, since a round trip is required, and lack of fault tolerance, as a loss of the central server is
a loss of all data. The first complaint does not apply, since we also require a round-trip delay
for slow Dequeues. Since we assume no failures, we do not directly need fault tolerance. This
work is not our end goal, though, as we are working towards fault-tolerant implementations,
so we want to avoid structures which will make that extension more difficult.

Our end goal is to obviate all of the model assumptions that are unrealistic, eventually
yielding a practical implementation of our shared queue implementation. This will involve
not only space efficiency, but fault-tolerance, independence from exact knowledge of message
bounds, and accounting for local computation time, at a minimum. We have addressed
one of these dimensions here, and are working on the others independently. We also hope
to generalize and extend results to more relaxations of more data types, creating a large
collection of efficient shared data structures to aid developers of distributed systems.

Specifically, the lateness and restricted Out-of-Order relaxations of Dequeue are natural
targets. Lateness corrects the issue with Out-of-Order relaxations that a single element
at the head of the queue may be starved indefinitely by requiring that one in every k

Dequeue instances returns the oldest element in the queue, but places no restrictions on the
return values of other Dequeue instances. Restricted Out-of-Order combines the lateness
and Out-of-Order relaxations, requiring that every Dequeue returns one of the k elements
which were oldest when the queue’s head was last returned, which means every removed
element is near the head and at least one in every k Dequeue instances returns the head. A
space-efficient implementation of a queue with a lateness k-relaxed Dequeue does not need
to claim elements, only to coordinate removal of the head. An implementation of a queue
with restricted Out-of-Order k-relaxed Dequeue would combine that coordination system
with the claiming system of this paper’s algorithm. Both implementations should be possible
with the same time complexity as we achieve for the Out-of-Order relaxation.

References
1 Yehuda Afek, Guy Korland, and Eitan Yanovsky. Quasi-linearizability: Relaxed consistency

for improved concurrency. In Chenyang Lu, Toshimitsu Masuzawa, and Mohamed Mosbah,
editors, Principles of Distributed Systems - 14th International Conference, OPODIS 2010,
Tozeur, Tunisia, December 14-17, 2010. Proceedings, volume 6490 of Lecture Notes in Computer
Science, pages 395–410. Springer, 2010. doi:10.1007/978-3-642-17653-1_29.

2 Hagit Attiya and Jennifer L. Welch. Sequential consistency versus linearizability. ACM
Transactions on Computer Systems, 12(2):91–122, 1994. doi:10.1145/176575.176576.

3 Iwan Briquemont, Manuel Bravo, Zhongmiao Li, and Peter Van Roy. Conflict-free partially
replicated data types. In 7th IEEE International Conference on Cloud Computing Technology
and Science, CloudCom 2015, Vancouver, BC, Canada, November 30 - December 3, 2015,
pages 282–289. IEEE Computer Society, 2015. doi:10.1109/CloudCom.2015.81.

OPODIS 2020

https://doi.org/10.1007/978-3-642-17653-1_29
https://doi.org/10.1145/176575.176576
https://doi.org/10.1109/CloudCom.2015.81


14:16 Space-Efficient Relaxed Queues

4 Jean-Michel Hélary and Alessia Milani. About the efficiency of partial replication to implement
distributed shared memory. In 2006 International Conference on Parallel Processing (ICPP
2006), 14-18 August 2006, Columbus, Ohio, USA, pages 263–270. IEEE Computer Society,
2006. doi:10.1109/ICPP.2006.15.

5 Thomas A. Henzinger, Christoph M. Kirsch, Hannes Payer, Ali Sezgin, and Ana Sokolova.
Quantitative relaxation of concurrent data structures. In Roberto Giacobazzi and Radhia
Cousot, editors, The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, pages 317–328.
ACM, 2013. doi:10.1145/2429069.2429109.

6 Martha J. Kosa. Time bounds for strong and hybrid consistency for arbitrary abstract
data types. Chicago Journal of Theoretical Computer Science, 1999, 1999. URL: http:
//cjtcs.cs.uchicago.edu/articles/1999/9/contents.html.

7 Jennifer Lundelius and Nancy A. Lynch. An upper and lower bound for clock synchronization.
Information and Control, 62(2/3):190–204, 1984. doi:10.1016/S0019-9958(84)80033-9.

8 Marios Mavronicolas and Dan Roth. Linearizable read/write objects. Theoretical Computer
Science, 220(1):267–319, 1999. doi:10.1016/S0304-3975(98)90244-4.

9 Edward Talmage and Jennifer L. Welch. Improving average performance by relaxing distributed
data structures. In Fabian Kuhn, editor, Distributed Computing - 28th International Symposium,
DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings, volume 8784 of Lecture Notes
in Computer Science, pages 421–438. Springer, 2014. doi:10.1007/978-3-662-45174-8_29.

10 Werner Vogels. Eventually consistent. Communications of the ACM, 52(1):40–44, 2009.
doi:10.1145/1435417.1435432.

11 Jiaqi Wang, Edward Talmage, Hyunyoung Lee, and Jennifer L. Welch. Improved time
bounds for linearizable implementations of abstract data types. Information and Computation,
263:1–30, 2018. doi:10.1016/j.ic.2018.08.004.

12 Zhuolun Xiang and Nitin H. Vaidya. Partially replicated causally consistent shared memory:
Lower bounds and an algorithm. In Peter Robinson and Faith Ellen, editors, Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON,
Canada, July 29 - August 2, 2019, pages 425–434. ACM, 2019. doi:10.1145/3293611.3331600.

https://doi.org/10.1109/ICPP.2006.15
https://doi.org/10.1145/2429069.2429109
http://cjtcs.cs.uchicago.edu/articles/1999/9/contents.html
http://cjtcs.cs.uchicago.edu/articles/1999/9/contents.html
https://doi.org/10.1016/S0019-9958(84)80033-9
https://doi.org/10.1016/S0304-3975(98)90244-4
https://doi.org/10.1007/978-3-662-45174-8_29
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1016/j.ic.2018.08.004
https://doi.org/10.1145/3293611.3331600


Recoverable, Abortable, and Adaptive Mutual
Exclusion with Sublogarithmic RMR Complexity
Daniel Katzan
Tel Aviv University, Israel

Adam Morrison
Tel Aviv University, Israel

Abstract
We present the first recoverable mutual exclusion (RME) algorithm that is simultaneously abortable,
adaptive to point contention, and with sublogarithmic RMR complexity. Our algorithm has
O(min(K, logW N)) RMR passage complexity and O(F + min(K, logW N)) RMR super-passage
complexity, where K is the number of concurrent processes (point contention), W is the size (in
bits) of registers, and F is the number of crashes in a super-passage. Under the standard assumption
that W = Θ(log N), these bounds translate to worst-case O( log N

log log N
) passage complexity and

O(F + log N
log log N

) super-passage complexity. Our key building blocks are:
A D-process abortable RME algorithm, for D ≤W , with O(1) passage complexity and O(1 + F )
super-passage complexity. We obtain this algorithm by using the Fetch-And-Add (FAA) primitive,
unlike prior work on RME that uses Fetch-And-Store (FAS/SWAP).
A generic transformation that transforms any abortable RME algorithm with passage complexity
of B < W , into an abortable RME lock with passage complexity of O(min(K, B)).
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1 Introduction

Mutual exclusion (ME) [10] is a central problem in distributed computing. A mutual exclusion
algorithm, or lock, ensures that some critical section of code is accessed by at most one
process at all times. To enter the critical section (CS), a process first executes an entry section
to acquire the lock. After leaving the critical section, the process executes an exit section
to release the lock. The standard complexity measure for ME is remote memory references
(RMR) complexity [3, 6]. RMR complexity models the property that memory access cost on
a shared-memory machine is not uniform. Some accesses are local and cheap, while the rest
are remote and expensive (e.g., processor cache hits and misses, respectively). The RMR
complexity measure thus charges a process only for remote accesses. There are various RMR
definitions, modeling cache-coherent (CC) and distributed shared-memory (DSM) systems.
The complexity of a ME algorithm is usually defined as its passage complexity, i.e., the
number of RMRs incurred by a process as it goes through an entry and corresponding exit
of the critical section.

For decades, the vast majority of mutual exclusion algorithms were designed under
the assumption that processes are reliable: they do not crash during the mutual exclusion
algorithm or critical section. This assumption models the fact that when a machine or program
crashes, its memory state is wiped out. However, the recent introduction of non-volatile
main memory (NVRAM) technology can render this assumption invalid. With NVRAM,
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memory state can remain persistent over a program or machine crash. This change creates
the recoverable mutual exclusion (RME) problem [13], of designing an ME algorithm that
can tolerate processes crashing and returning to execute the algorithm. In RME, a passage of
a process p is defined as the execution fragment from when p enters the lock algorithm and
until either p completes the exit section or crashes. If p crashes mid-passage and recovers, it
re-enters the lock algorithm, which starts a new passage. Such a sequence of p’s passages
that ends with a crash-free passage (in which p acquires and releases the lock) is called a
super-passage of p.

RME constitutes an exciting clean slate for ME research. Over the years, locks with many
desired properties (e.g., fairness) were designed and associated complexity trade-offs were
explored [27]. These questions are now re-opened for RME, which has spurred a flurry of
research [7,9,11–14,18–21]. In this paper, we study such questions. In a nutshell, we introduce
an RME algorithm that is abortable, adaptive, and has sublogarithmic RMR complexity. Our
lock is the first RME algorithm adaptive to the number of concurrent processes (or point
contention) and the first abortable RME algorithm with sublogarithmic RMR complexity. It
is also the first deterministic, worst-case sublogarithmic abortable lock in the DSM model
(irrespective of recoverability). Our algorithm also features other desirable properties not
present in prior work, as detailed shortly.

Abortable ME & RME. An abortable lock [17,25,26] allows a process waiting to acquire the
lock to give up and exit the lock algorithm in a finite number of its own steps. Jayanti and
Joshi [21] argue that abortability is even more important in the RME setting. The reason
is that a crashed process might delay waiting processes for longer periods of time, which
increases the motivation for allowing processes to abort their lock acquisition attempt and
proceed to perform other useful work.

Mutual exclusion, and therefore abortable ME (AME), incurs a worst-case RMR cost
of Ω(logN) in an N -process system with standard read, write, and comparison primitives
such as Compare-And-Swap (CAS) or LL/SC [6]. This logarithmic bound is achieved for
both ME [28] and AME [16], and was recently achieved for a recoverable, abortable lock by
Jayanti and Joshi [21]. However, while there exists an AME algorithm with sublogarithmic
worst-case RMR complexity (in the CC model) [2], no such abortable algorithm is known for
RME. Moreover, Jayanti and Joshi’s O(logN) abortable RME algorithm is suboptimal in a
few ways. First, its worst-case RMR complexity is logarithmic only on a relaxed CC model,
in which a failed CAS on a variable does not cause another process with a cached copy of the
variable to incur an RMR on its next access to it, which is not the case on real CC machines.
Their algorithm has linear RMR complexity in the realistic, standard CC model. Second,
their algorithm is starvation-free only if the number of aborts is finite.

Adaptive ME. A lock is adaptive with respect to point contention if its RMR complexity
depends on K, the number of processes concurrently trying to access the lock, and not only
on N , the number of processes in the system. Adaptive locks are desirable because they are
often faster when K � N . There exist locks with worst-case RMR cost of O(min(logN,K))
for both ME [15] and AME [16], but no adaptive RME algorithm is known (independent of
abortability).

1.1 Overview of Our Results
In the following, we denote the number of crashes in a super-passage by F and the size (in
bits) of the system’s registers by W . We obtain three keys results, which, when combined,
yield the first RME algorithm that is simultaneously abortable and adaptive, with worst-case
O(logW N) passage complexity and O(F + logW N) super-passage complexity, in both CC
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and DSM models. Assuming (as is standard) thatW = Θ(logN), this translates to worst-case
O( log N

log log N ) passage complexity and O(F + log N
log log N ) super-passage complexity. In contrast to

Jayanti and Joshi’s abortable RME algorithm [21], our lock achieves sublogarithmic RMR
complexity in the standard CC model and is unconditionally starvation-free. Our algorithm’s
space complexity is a static (pre-allocated) O(NW logW N) memory words (which translates
to O( N log2 N

log log N ) if W = Θ(logN)). Jayanti and Joshi’s algorithm also uses static memory, but
it relies on unbounded counters. The other sublogarithmic RME algorithms [9, 11, 18] use
dynamic memory allocation, and may consume unbounded space.

Result #1: W -process abortable RME with O(1) passage and O(1 + F ) super-passage
complexity (§ 3). Our key building block is a D-process algorithm, for D ≤ W . It has
constant RMR cost for a passage, regardless of if the process arrives after a crash. The
novelty of our algorithm is that it uses the Fetch-And-Add (FAA) primitive to beat the
Ω(logD) passage complexity lower-bound. In contrast, the building blocks in prior RME
work with worst-case sublogarithmic RMR complexity use the Fetch-And-Store (FAS, or
SWAP) primitive and assume no bound on D, even though they are ultimately used by only
a bounded number of processes in the final algorithm. By departing from FAS and exploiting
the process usage bound, we overcome difficulties that made the prior algorithms’ building
blocks [11,18] have only O(D) RMR passage complexity.

These prior algorithms use a FAS-based queue-based lock as a building block. They
start with an O(1) RMR queue-based ME algorithm [8, 23], in which a process trying to
acquire the lock uses FAS to append a node to the queue tail, and then spins on that
node waiting for its turn to enter the critical section. Unfortunately, if the process crashes
after the FAS, before writing its result to memory, then when it recovers and returns to
the algorithm, it does not know whether it has added itself to the queue and/or who is
its predecessor (previously obtained from the FAS response). To overcome this problem,
a recovering process reconstructs the queue state into some valid state, which incurs a
linear number of RMRs. The recovery procedure is blocking (not wait-free), and multiple
processes cannot recover concurrently. Overall, these prior building blocks have O(D) passage
complexity and O(1 + FD) super-passage complexity. In contrast, our D-process abortable
RME algorithm has O(1) passage complexity and O(1 + F ) super-passage complexity, has
wait-free recovery, and allows multiple processes to recover concurrently. While other O(1)
RME algorithms exist, they either assume a weaker crash model [12], rely on non-standard
primitives that are not available on real machines [11, 19], or obtain only amortized, not
worst-case, O(1) RMR complexity [7].

Result #2: Tournament tree with wait-free exit (§ 4). In both ours and prior work [11,18],
the main lock is obtained by constructing a tournament tree from the D-process locks. The
tree has N leaves, one for each process. Each internal node is a D-process lock, so the tree
has height O(logD N). To acquire the main lock, a process competes to acquire each lock on
the path from its leaf to the root, until it wins at the root and enters the critical section. Our
algorithm differs from prior tournament trees in a couple of simple ways, but which have
important impact.

First: In our tree, a process that recovers from a crash returns directly to the node in
which it crashed. This allows us to leverage our node lock’s O(1+F ) super-passage complexity
to obtain O(H + F ) super-passage complexity for the tree, where H is the tree’s height. By
taking D = W = Θ(logN), our overall lock has O(F + log N

log log N ) super-passage complexity
and O( log N

log log N ) passage complexity. In contrast, prior trees perform recovery by having a
process restart its ascent from the leaf. In fact, in these algorithms, there is no asymptotic
benefit from returning directly to the node where the crash occurred. The reason is that
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Table 1 Comparison of RME algorithms. (SP: super-passage, WF: wait-free, F∗: total number of
crashes in the system, FASAS: Fetch-And-Swap-And-Swap.) All algorithms satisfy starvation-freedom,
wait-free critical-section re-entry, and wait-free exit (defined in § 2).

Algorithm Passage Super-Passage Primitives Space Additional
Complexity Complexity Used Complexity Properties

Golab & Ramaraju
[14, Section 4.2]
with MCS [23] as

base lock

O(1) (no concurrent crashes) O(1) (no concurrent
crashes) CAS, FAS O(N logN)

O(logN) (concurrent
crashes)

O(logN) (concurrent
crashes)

O(N) (if crashes) O(FN) (if crashes)
Jayanti & Joshi [20] O(logN) O(logN + F ) CAS O(N logN) FCFS, SP WF Exit
Jayanti, Jayanti, &

Joshi [18]
O( log N

log log N ) O((1 + F )( (log N
log log N )) FAS Unbounded

Jayanti, Jayanti, &
Joshi [19]

O(1) O(1) in the DSM model
O(F ) in the CC model

FASAS O(N) SP WF Exit

Chan & Woelfel [7] O(1) amortized same as passage
complexity

CAS,
FAA

Unbounded SP WF Exit

Dhoked & Mittal [9] O(min(
√
F ∗, log N

log log N ) same as passage
complexity

CAS, FAS Unbounded Crash-adaptive

Jayanti & Joshi [21] O(logN) O(logN + F ) CAS O(N logN) Abortable, SP WF
Exit, FCFS

This work O(min(K, log N
log log N ))O(min(K, log N
log log N ))O(min(K, log N
log log N )) O(min(K, log N

log log N ) + F )O(min(K, log N
log log N ) + F )O(min(K, log N
log log N ) + F ) FAA,

CAS
O( N log2 N

log log N )O( N log2 N
log log N )O( N log2 N
log log N ) Abortable, adaptive,

SP WF Exit

node lock recovery in these trees has O(D) complexity, so to obtain overall sublogarithmic
complexity, they take D = log N

log log N , which means that node crash recovery costs the same as
climbing to the node. Consequently, their overall super-passage complexity is multiplicative
in F , O((1 + F ) log N

log log N ), instead of additive as in our tree.
Second: Our tree’s exit section is wait-free (assuming finitely many crashes). In contrast,

in the prior trees, a process that crashes during its exit section might subsequently block. The
reason is a subtle issue related to composition of RME locks. The model in these works [11,18]
is that a process p that crashes in its exit section must complete a crash-free passage upon
recovery (i.e., re-enter the critical section and exit it again). Thus, p must re-ascend to
the root after recovering. Each node lock satisfies a bounded CS re-entry property, which
allows p to re-enter the node’s CS (i.e., ascend) without blocking – provided that p crashed
inside the node’s CS. However, this property does not apply if p released the node lock (i.e.,
descended) before crashing. For such a node, p simply attempts to re-acquire the node lock.
Consequently, p might block during its recovery, even though logically it is only trying to
release the overall lock. We address this problem by carefully modeling the interface of an
RME algorithm in a way that facilitates composition, which enables a recovering process to
avoid re-acquiring node locks it had already released. Our overall algorithm thereby satisfies
a new super-passage wait-free exit property.

Result #3: Generic RME adaptivity transformation (§ 5). We present a generic transfor-
mation that transforms any abortable RME algorithm with passage complexity of B < W

into an abortable RME lock with passage complexity of O(min(K,B)), where K is the
number of processes executing the algorithm concurrently with the process going through
the super-passage, i.e., the point contention. Applying this transformation to our tournament
tree lock yields the final algorithm.

Summary of contributions and related work. Table 1 compares our final algorithm to
prior RME work. Dhoked and Mittal [9] use a definition of “adaptivity” that requires RMR
cost to depend on the total number of crashes; we refer to this property as crash-adaptivity.
Crash-adaptivity is thus orthogonal to the traditional notion of adaptivity [5]. Chan &
Woelfel’s algorithm [7] uses FAA, but it is used to assign processes with tickets, which is
different from our technique (§ 3). Their algorithm has only an amortized RMR passage
complexity bound and its worst-case RMR cost is unbounded.
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2 Model and Preliminaries

Model. We consider a system in which N deterministic, asynchronous, and unreliable
processes communicate over a shared memory. The shared memory, M , is an array of Θ(W )-
bit words. (Henceforth, we refer to the shared memory simply as “memory”; process-private
variables are not part of the shared memory.) The system supports the standard read, write,
CAS, and FAA operations. CAS(a, o, n) atomically changes M [a] from o to n if M [a] = o

and returns true; otherwise, it returns false without changing M [a]. FAA(a, x) atomically
adds x to M [a] and returns M [a]’s original content.

A configuration consists of the state of the memory and of all processes, where the state
of process p consists of its internal program counter and (non-shared) variables. Given a
configuration σ, an execution fragment is a (possibly infinite) sequence of steps, each of which
moves the system from one configuration to another, starting from σ. In a normal step, some
process p invokes an operation on a memory word and receives the operation’s response. In
a crash step, the state of some process p resets to its initial state (but the memory state
remains unchanged). An execution is an execution fragment starting from the system’s initial
configuration.

Notation. Given an execution fragment α, if β is a subsequence of α, we write β ⊆ α. If e
is a step taken in α, we write e ∈ α. If e is the t-th step in an execution E, we say that e
is at time t. We use [t, t′] to denote the subsequence of E whose first and last steps are at
times t and t′ in E, respectively.

RMR complexity. The RMR complexity measure breaks the memory accesses by a process
p into local and remote references, and charges p only for remote references. We consider two
types of RMR models. In the DSM model, each memory word is local to one process and
remote to all others, and process p performs an RMR if it accesses a memory word remote
to it. In the CC model, the processes are thought of as having coherent caches, with RMRs
occurring when a process accesses an uncached memory word. Formally: (1) every write,
CAS, or FAA is an RMR, and (2) a read by p of word x is an RMR if it is the first time p
accesses x or if after p’s prior access to x, another process performed a write, CAS, or FAA
on x.

Recoverable mutual exclusion (RME). Our RME model draws from the models of Golab
and Ramaraju [14] and Jayanti and Joshi [20]. In the spirit of [14], we model the RME
algorithm as an object exporting methods invoked by a client process. In the spirit of [20],
we require recovery to re-execute the section in which the crash occurred, rather than restart
the entire passage. An RME algorithm (or lock) provides the methods Recover, Try, and
Exit. (In the code, we show the methods taking an argument specifying the calling process’
id.) If process p invokes Try and it returns TRUE, then p has acquired the lock and enters
the critical section (CS). Subsequently, p exits the CS by invoking Exit. If Exit completes,
we say that p has released the lock. The Recover method guides p’s execution after a crash,
which resets p to its initial state. We assume p’s initial state is to invoke Recover, which
returns r ∈ {TRY,CS,EXIT}. If r = TRY , p invokes Try. If r = CS, p enters the CS. If
r = EXIT , p invokes Exit.

A super-passage of p begins with p completing Recover and invoking Try, either for the
first time, or for the first time after p’s prior super-passage ended. The super-passage ends
when p completes Exit. A passage of p begins with p starting a super-passage, or when p
invokes Recover following a crash step. The passage ends at the earliest of p completing
Exit or crashing. We refer to an L-passage (or L-super-passage) to denote the lock L that a
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passage (or super-passage) applies to; similarly, we refer to a step taken in lock L’s code as
an L-step. We omit L when the context is clear. These definitions facilitate composition of
RME locks. For instance, suppose that process p is releasing locks in a tournament tree and
crashes after releasing some node lock L. When p recovers, it can invoke L.Recover, which
will return TRY , and thereby learn that it has released L and can descend from it – without
the Recover invocation counting as starting a new L-super-passage.

Well-formed executions formalize the above described process behavior:

I Definition 1. An execution is well-formed if the following hold for every lock L and process
p:
1. Recover invocation: p’s first L-step after a crash step is to invoke L.Recover.
2. Try invocation: p invokes L.Try only if p is starting a new L-super-passage, or if p’s

prior crash step was during L.Try.
3. CS invocation: p enters the CS of L only if p receives TRUE from L.Try in its current

L-passage, or if p’s prior crash step was during the CS.
4. Exit invocation: p invokes L.Exit only if p is in the CS of L, or if p’s prior crash step

was during L.Exit.

Henceforth, we consider only well-formed execution. We also consider only well-behaved
RME algorithms, in which Recover correctly identifies where a process crashes:

I Definition 2. An RME algorithm is well-behaved if the following hold, for every process p
and every well-formed execution:
1. p’s first complete invocation of Recover, and p’s first complete invocation of Recover

following a complete passage of Exit, returns TRY .
2. p’s first complete invocation of Recover following a crash during Try return TRY .
3. p’s first complete invocation of Recover following a crash during the CS returns CS.
4. p’s first complete invocation of Recover following a crash during Exit returns EXIT .
5. A complete invocation of Recover by p during the CS returns CS.
Note: We consider p to be in the Try or Exit section from the time it executes the first
memory operation of that section and until it either crashes or executes the last memory
operation of that section. Thus, p is considered to be in the CS after it executes its final Try
memory operation.

Fairness. We make a standard fairness assumption on executions: once p starts a super-
passage, it does not stop taking steps until the super-passage ends.

Abortable RME. At any point during its super-passage, process p can non-deterministically
choose to abort its attempt, which we model by p receiving an external abort signal that
remains visible to p throughout the super-passage (i.e., including after crashes) and resets
once p finishes the super-passages. Abortable RME extends the definition of a super-passage
as follows. If p is signalled to abort and its execution of Try returns FALSE, then p has
aborted and the super-passage ends. (It is not mandatory for Try to return FALSE, because
an abort may be signalled just as p acquires the lock.)

D-ported locks. We model locks that may be used by at most D processes concurrently
as follows. In a D-ported lock, each process invokes the methods with a port argument,
1 ≤ k ≤ D, which acts as an identifier. We augment the definition of a well-formed execution
to include the following conditions:
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5. Constant port usage: For every process p and L-super-passage of p, p does not change its
port for L throughout the super-passage.

6. No concurrent super-passages: For any L-super-passages spi and spj of processes pi 6= pj ,
if spi and spj are concurrent, then pi’s port for L in spi is different than pj ’s port for L
in spj . (Two super-passages are not concurrent if one ends before the other begins.)

Problem statement. Design a well-behaved abortable RME algorithm with the following
properties.

1. Mutual exclusion: At most one process is in the CS at any time t.
2. Deadlock-freedom: If a process p starts a super-passage sp at time t, and does not

abort sp, and if every process that enters the CS eventually leaves it, then there is some
time t′ > t and some process q such the q enters the CS in time t′, or else there are
infinitely many crash steps.

3. Bounded abort: If a process p has abort signalled while executing Try, and executes
sufficiently many steps without crashing, then p complete its execution of Try.

The following properties are also desirable, and all but FCFS are satisfied by our algorithm:
4. Starvation-freedom: If the total number of crashes in the execution is finite and process

p executes infinitely many steps and every process that enters the CS eventually leaves it,
then p enters the CS in each super-passage in which it does not receive an abort signal.

5. CS re-entry: If process p crashes while in the CS, then no other process enters the CS
from the time p crashes to the time when p next enters the CS.

6. Wait-free CS re-entry: If process p crashes in the CS, and executes sufficiently many
steps without crashing, then p enters the CS.

7. Wait-free exit: If process p is executing Exit, and executes sufficiently many steps
without crashing, then p completes its execution of Exit.

8. Super-passage wait-free exit: If process p is executing Exit, then p completes an
execution of Exit after a finite number of its own steps, or else p crashes infinitely many
times. (Notice that p may crash and return to re-execute Exit.)

9. First-Come-First-Served (FCFS): If there exists a bounded section of code in the
start of the entry section, referred to as the doorway such that, if process pi finishes
the doorway in its super-passage spi for the first time before some process pj begins its
doorway for the first time in its super-passage spj , and pi does not abort spi, then pj

does not enter the CS in spj before pi enters the CS in spi.

Super-passage wait-free exit is a novel property introduced in this work. It guarantees that
a process completes Exit in a finite number of its own steps, as long as it only crashes finitely
many times. Wait-free exit does not imply super-passage wait-free exit since it does not apply
if the process crashes during Exit. Clearly, starvation-freedom implies deadlock-freedom,
wait-free CS re-entry implies CS re-entry, and super-passage wait-free exit implies wait-free
exit.

Lock complexity. The passage complexity (respectively, super-passage complexity) of a
lock is the maximum number of RMRs that a process can incur while executing a passage
(respectively, super-passage). We denote by F the maximum number of times a process
crashes in an execution.
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3 W -Port Abortable RME Algorithm

Here, we present our D-process abortable RME algorithm, for D ≤ W , which has O(1)
passage RMR complexity and O(1 + F ) super-passage complexity. The algorithm is similar
in structure to Jayanti and Joshi’s abortable RME algorithm [21], in that it is built around
a recoverable auxiliary object that tracks the processes waiting to acquire the lock. This
object’s RMR complexity determines the algorithm’s complexity. Non-abortable RME locks
implement such an object with a FAS-based linked list [11,18]. Such a list has O(1 + FD)
super-passage complexity – i.e., a crash-free passage incurs O(1) RMRs – but it is hard to
make abortable. Jayanti and Joshi instead use a recoverable min-array [15]. This object
supports aborting, but its passage complexity is logarithmic, even in the absence of crashes.

Our key idea is to represent the “waiting room” object with a FAA-based W -bit mask
(a single word), where a process p arriving/leaving is indicated by flipping a bit associated
with p’s port. The key ideas are that (1) if p crashes and recovers, it can learn its state in
O(1) RMRs simply by reading the bit mask and (2) the algorithm carefully avoids relying on
any FAA’s return value. Our design thus obtains the best of both worlds: the object can be
updated with O(1) RMRs as well as supports efficient aborting (with a single bit flip). The
trade-off we make in this design choice is that we only guarantee starvation-freedom, but not
FCFS. Unlike a min-array, the bit mask cannot track the order of arriving processes, as bit
setting operations commute. We do, however, track the order in which processes acquire the
lock, and thereby guarantee starvation-freedom.

Our algorithm guarantees starvation-freedom unconditionally, even if there are infinitely
many aborts. This turns out to be a subtle issue to handle correctly (§ 3.2), and the Jayanti
and Joshi algorithm is prone to executions in which a process that does not abort starves as
a result of other processes aborting infinitely often (we show an example in § 3.2).

Since we assumeW -bit memory words, we are careful not to use unbounded, monotonically
increasing counters, which the Jayanti and Joshi lock does use. Our algorithm’s RMR bounds
are in both the DSM and CC models, whereas the Jayanti and Joshi lock has linear RMR
complexity on the standard CC model.

3.1 Algorithm Walk-Through
Figure 1 presents the pseudo code of the algorithm. We assume participating processes uses
distinct ports in the range 0, . . . ,W − 1, so we refer to processes and ports interchangeably.
For simplicity, we present the algorithm assuming dynamic memory allocation with safe
reclamation [24]. In this environment, a process can allocate and retire objects, and it is
guaranteed that an allocation does not return a previously-retired object if some process still
has a reference to that object. We show how to satisfy this assumption (with O(D2) static,
pre-allocated memory) in the full version [22, Appendix A].

Each process p has a status word, STATUS[p], and a pointer to a boolean spin variable,
GO[p]. (In the DSM model, a process allocates its spin variables from local memory, so
that it can spin on them with O(1) RMR cost.) The lock’s state consists of a W -bit word,
ACTIV E, and a Θ(W )-bit word, LOCK_STATUS. The LOCK_STATUS word holds a
tuple (taken, owner, owner_go), where taken is a bit indicating if the lock is acquired by
some process. If taken is set, owner is the id (port) of the lock’s owner and owner_go points
to the owner’s spin variable.

The STATUS word of each process p, initialized to TRY , indicates in which section the
process is currently at. This information is used by Recover to steer p to the right method
when it arrives. The STATUS word changes when completing Try and entering the CS, when
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aborting during Try, when exiting the CS and executing Exit, and when Exit completes.
Note that the Exit method may be called as a subroutine during the Try section’s abort
flow. In this case, its operations are considered part of the Try section (i.e., the subroutine
call is to avoid putting a copy of Exit’s code in Try). To distinguish these subroutine calls
from when a process invokes Exit to exit the CS, we add an abort argument to Exit, which is
FALSE if and only if Exit is invoked to exit the CS (i.e., not as a subroutine).

In the normal (crash- and abort-free) flow, a passage of process p proceeds as follows.
First, p allocates its spin variable, if it does not currently exist (lines 11–16). Then p flips
its bit in the ACTIV E word, but only if p’s bit is not already set (lines 17–18). This check
avoids corrupting ACTIV E when p recovers from a crash. Next, p executes a Promote
procedure, which tries to pick some waiting process (possibly p) and make it the owner of
the lock, if the lock is currently unowned (line 19). Finally, p begins spinning on its spin
variable, waiting for an indication that it has become the lock owner (lines 20–25). Upon
exiting the CS, p clears its bit in ACTIV E (again, only if the bit is currently set, to handle
crash recovery) (lines 39–40). Then p executes Promote (line 41). Performing this call will
have no effect, since p is still holding the lock, which may appear strange, but is required in
order to support the abort flow, as explained shortly. Then, if p is indeed the lock owner
(another check useful only in the abort flow), it releases the lock by clearing the taken bit in
LOCK_STATUS (lines 42–45). Note that p leaves the owner and owner_go fields intact,
for reasons described shortly. Finally, p executes Promote again, to hand the lock off to
some waiting process (line 46). It then retires its spin variable, clears its GO pointer, and
updates its STATUS to TRY , thereby completing Exit and thus its current passage and
super-passage (line 47–50).

1 ACTIVE: int // initially 0
2 STATUS: array of W status words // initially all TRY
3 GO: array of W pointers to booleans // initially all ⊥
4 LOCK_STATUS: struct {bool, port_id, bool∗}
5 // initially (0, 0, ⊥)

7 void Try(int k) {
8 if STATUS[k] = ABORT:
9 Exit(k, TRUE)

10 return FALSE
11 if GO[k] = ⊥:
12 if got abort signal :
13 STATUS[k] := ABORT
14 Exit(k, TRUE)
15 return FALSE
16 GO[k] := new Bool()
17 if k−th bit in ACTIVE is 0:
18 FAA(ACTIVE, 2k)
19 Promote(⊥)
20 while ∗GO[k] = FALSE:
21 if got abort signal :
22 STATUS[k] := ABORT
23 Exit(k, TRUE)
24 return FALSE
25
26 STATUS[k] := CS
27 return TRUE
28 }
29 status Recover(int k) {
30 if STATUS[k] = EXIT:
31 return EXIT
32 if STATUS[k] = CS:
33 return CS
34 return TRY
35 }

36 void Exit(int k, bool abort) {
37 if abort = FALSE:
38 STATUS[k] = EXIT
39 if k−th bit in ACTIVE is 1:
40 FAA(ACTIVE, −2k)
41 Promote(k)
42 (taken, owner, owner_go) := LOCK_STATUS
43 if taken = 1 and owner = k:
44 CAS(LOCK_STATUS, (1, owner, owner_go),
45 (0, owner, owner_go))
46 Promote(⊥)
47 if GO[k] 6=⊥
48 Retire(GO[k])
49 GO[k] := ⊥
50 STATUS[k] := TRY
51 }
52 void Promote(int j) {
53 (taken, owner, owner_go) := LOCK_STATUS
54 if taken = 0:
55 active := ACTIVE
56 if active 6= 0:
57 j := next(owner, active)
58 if j 6=⊥:
59 CAS(LOCK_STATUS, (0, owner, owner_go),
60 (1, j , GO[j]))
61 (taken, owner, owner_go) := LOCK_STATUS
62 if taken = 1:
63 ∗owner_go := TRUE
64 }

Figure 1 W -port abortable RME algorithm.
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If p receives the abort signal while spinning in Try, it sets its STATUS to ABORT ,
executes the Exit method as a subroutine, and returns FALSE (label 12–15). If p crashes
during the execution of Exit, Recover will steer it to Try once it recovers, at which point it
will again execute the Exit method and return FALSE. In the abort flow, the call to Exit
does not modify p’s STATUS (the if is not taken, lines 37–38).

The main goal of Promote(j) is to promote some waiting process to be the lock owner, if
the lock is currently unowned. Promote tries to promote one of the waiting processes (as
specified by ACTIVE). If there is no such process, then Promote tries to promote process
j if j 6=⊥, and does not promote any process otherwise (lines 53–60). A secondary goal of
Promote is that it signals the (current or newly promoted) owner by writing to its spin
variable (lines 61–63). Picking a process to promote from among the waiting processes is
done in a manner that guarantees starvation-freedom. To this end, Promote picks the next
id whose bit is set in ACTIV E, when ids are scanned starting from the previous owner’s
id (which, as described above, is written in LOCK_STATUS) and moving up (modulo
W ). (In the code, this is specified as next(owner, active).) Having picked a process q to
promote, Promote tries to update LOCK_STATUS to (1, q, GO[q]) using a single CAS.
Finally, before completing, Promote checks again if the lock is owned by some process r
(possibly r 6= q), and if so, signals r by writing TRUE to r’s spin variable.

The reason for executing Promote in Exit before releasing the lock, and not only
afterwards, is to handle a scenario in which the lock owner q has released the lock and
next(q, ACTIV E) = p, so any process r (possibly, but not necessarily, q) executing Promote
tries to hand the lock to p. If now p is signalled to abort, and did not also execute Promote
before departing, deadlock would occur. By having p call Promote(p), we guarantee that
either (1) some process (possibly p) promotes p, so p’s Exit call releases the lock before
completing the abort; or (2) some process r (possibly, but not necessarily p), which does not
observe p in ACTIV E, updates LOCK_STATUS from (0, q, G) to (1, q′, G′). In the latter
case, our memory management assumption implies that LOCK_STATUS will not recycle
to contain (0, q, G) before every processes that has read (0, q, G) from LOCK_STATUS
executes its CAS. All such CASs, who are about to change (0, q, G) to (1, p,GO[p]) thus fail,
so the lock does not get handed to p and no deadlock occurs after it completes its abort.

3.2 Discussion: Guaranteeing Starvation-Freedom In the Presence of
Infinitely Many Aborts

As discussed in § 3.1, a key idea in our algorithm is to invoke Promote even before releasing
the lock, to handle the case in which the lock is about to be handed to an aborting process.
While simple, this is a subtle idea, because a different (more straightforward) approach
to dealing with this issue can lead to starvation. We explain the issue by describing and
analyzing a starvation problem in Jayanti and Joshi’s abortable RME algorithm [21]. The
structure of our algorithm and of Jayanti and Joshi’s algorithm is similar, if one thinks of
our ACTIV E word and their min-array as abortable objects which (1) maintain the set
of waiting processes and (2) have some notion of the “next in line” waiting process, which
becomes the lock owner. (Jayanti and Joshi refer to this object as a registry.) We describe
the problem in the Jayanti and Joshi lock by contrasting its behavior with our algorithm’s.

Intuitively, starvation-freedom should follow from property (2) of the “waiting room”
object, because every process executing Promote will eventually agree on the process p to
promote, which would then become the lock owner. For this to be true, however, aborts
need to be handled very carefully. Phrased in our terminology, in the Jayanti and Joshi
algorithm, a process p that receives an abort signal starts executing Exit, where it removes
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itself from the “waiting room” object. Subsequently, if LOCK_STATUS = (0, o, os), p tries
(using a single CAS) to update LOCK_STATUS from (0, o, os) to (0, p,GO[p]). In other
words, p tries to make it look as if it had acquired the lock and immediately released it. The
motivation for this step is to fail any Promote that is about to make p the lock owner, which
if not handled, would result in deadlock.

This approach has the unfortunate side-effect of failing concurrent Promotes even if they
are not about to make p the lock owner. This can lead to an execution in which aborting
processes prevent the lock from being acquired, as described next.

Process p1 arrives and enters the critical section. Process p2, p3, p4 arrive and enter
the waiting room. Now p1 leaves the CS and executes Exit, which (in Jayanti and Joshi’s
algorithm) has a single Promote call, after releasing the lock. Suppose the “waiting room”
object indicates that p2 should be the next lock owner. Now, p1 stops in its Promote call,
just before CASing LOCK_STATUS from (0, p1, ∗) to (1, p2, ∗). Next, p3 aborts, executes
the Exit code and successfully changes LOCK_STATUS to (0, p3, ∗).

As a result, p1’s CAS in Promote fails. p1 completes its Exit section and then returns to
the Try section, executes Promote, and stops just before CASing LOCK_STATUS from
(0, p3, ∗) to (1, p2, ∗). Now, p3 proceeds to the Promote call in Exit, stopping just before
CASing LOCK_STATUS from (0, p3, ∗) to (1, p2, ∗). We have reached a state in which
p4 is waiting, LOCK_STATUS is (0, p3, ∗), p1 is in its Try Promote and p3 is in its Exit
promote, both about to CAS LOCK_STATUS from (0, p3, ∗) to (1, p2, ∗).

We continue as follows. Now p4 receives the abort signal, proceeds to execute Exit, and
successfully changes LOCK_STATUS from (0, p3, ∗) to (0, p4, ∗). Consequently, the CAS
of both p1 and p3 fails, so p1 enters the waiting room, whereas p3 departs the algorithm,
returns, and stops in the Try Promote before CASing LOCK_STATUS from (0, p4, ∗) to
(1, p2, ∗). As for p4, it enters the Exit Promote and stops before CASing LOCK_STATUS
from (0, p4, ∗) to (1, p2, ∗). We have reached a similar situation as in the previous paragraph,
and can therefore keep repeating this scenario indefinitely. Throughout, p2 keeps taking steps
in the waiting room, but will never enter the CS.

3.3 Proofs of RME Properties
We refer to ourW -port abortable RME algorithm as AlgorithmM . In the the full version [22],
we prove the following theorem:

I Theorem 3. If every execution of Algorithm M is well-formed, then Algorithm M satisfies
mutual exclusion, bounded abort, starvation-freedom, CS re-entry, wait-free CS re-entry,
wait-free exit, and super-passage wait-free exit. The passage complexity of Algorithm M

in both the CC and DSM models is O(1) and the super-passage complexity is O(1 + F ).
(Assuming, for the DSM model, that process memory allocations return local memory.) The
space complexity of the algorithm is O(D2).

Here, we omit the proof, due to space constraints, and point out of some of its high-level
aspects. Whenever a process p starts a super-passage in our algorithm, it allocates a fresh
spin variable. To avoid unbounded space consumption, the memory used for spin variables
eventually has to be recycled, i.e., an allocation by process p can return a variable it previously
used. Our proofs assume that this recycling is done safely, namely, that an allocation of
a new spin variable does not return an object that is currently being referenced by some
process. (We show how to satisfy this assumption using O(D2) static pre-allocated memory
words in the full version [22, Appendix A].)
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The above safe memory management assumption implies two properties that we use
throughout the proofs. First, that if a process p is about to CAS LOCK_STATUS in
Promote, and LOCK_STATUS has changed between p last reading it and executing the
CAS, then the CAS will fail. This holds because LOCK_STATUS necessarily contains a
different owner_go value. Second, that if p sets the spin variable of q to TRUE and q has
already started a new super-passage, then q will never read that TRUE value. This holds
because q allocates a different spin variable for its new super-passage.

4 Tournament Tree

A tournament tree lock, referred to as the main lock, is constructed by statically arranging
multiple D-port RME algorithms, referred to as node locks, in a D-ary tree with N leaves
(we assume D ≤W ). Each leaf is uniquely associated with a process. To acquire the main
lock, a process competes to acquire each lock on the path from its leaf to the root, until
it wins at the root and enters the main lock’s CS. To release the main lock, the process
descends from the root to its leaf, releasing each node lock on the path. In this section, we
present our tournament tree algorithm.

Our algorithm has two distinguishing features: (1) that its super-passage RMR complexity
is additive in F , the number of crashes, and not multiplicative; and (2) that it satisfies
super-passage wait-free exit (SP-WF-Exit), i.e., a process releasing the main lock is guaranteed
to complete some execution of Exit after a finite number of its own steps (including crashes).

Our algorithm’s super-passage RMR complexity is O(FR+B logD N), where R and B are
the recovery cost and passage complexity of the node lock, respectively. In comparison, prior
trees have super-passage complexity of O(F (R+B logD N)). Obtaining our bound is simple:
a process just needs to write its location in the tree to NVRAM, so that upon crash recovery,
it can resume from there instead of starting to walk up or down the tree from scratch. We
suspect that this simple optimization was not performed in prior tournament trees because
their node lock has R = logD N = O( log N

log log N ) and B = O(1), so directly returning to the
node at which the crash occurred does not asymptotically improve complexity. With our
W -port RME algorithm, however, R = B = O(1), so being additive in F is asymptotically
better, and would not be obtained using prior tournament trees.

The problem of obtaining SP-WF-Exit highlights the difficulty of composing recoverable
locks. The issue is that a process in the main lock is composing critical sections of the node
locks, which creates the problem of how recovery of the main and node locks interact. In
the model of prior work [11,14], a process crashing in the main lock’s exit section attempts
to re-acquire the main lock upon recovering. As a result, the process might now block in
some node lock’s entry section, which violates SF-WF-Exit for the main lock. We address
this problem by carefully modeling RME algorithms in a way that facilitates composition
(§ 2). Instead of assuming how a process participates in the algorithm (i.e., cycling through
entry, CS, exit), we model the RME algorithm as an object whose Recover procedure informs
the process where it crashed in the super-passage. This approach allows client algorithms,
composing the lock, to decide how to proceed. Our model allows a process returning to lock
x after crashing in the main lock to realize that it had completed an x-super-passage and
not start a new one. Consequently, our tournament tree avoids the problems described above
and satisfies SP-WF-Exit.

We present detailed pseudo code and prove all of the algorithm’s properties. Due to space
limits, omitted proofs appear in the full version [22, Appendix C].
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1 STATUS: array of N status words // initially all TRY.
2 CURR_NODE: array of N nodes
3 // initially CURR_NODE[i] is the i−th leaf.

5 void Try(int pid) {
6 if STATUS[pid] = ABORT:
7 Exit(k, TRUE)
8 return FALSE
9 node = CURR_NODE[pid]

10 while STATUS[pid] 6= CS or node 6= root:
11 if node is the j−th child of node.parent,
12 then set k to j
13 if node.Recover(k) = TRY:
14 node.Try(k)
15 if received abort signal :
16 STATUS[pid] := ABORT
17 Exit(pid, TRUE)
18 return FALSE
19 if node = root:
20 break
21 node := node.parent
22 CURR_NODE[pid] := node
23 STATUS[pid] := CS
24 return TRUE
25 }

27 void Exit(int pid, bool aborting) {
28 if aborting = FALSE:
29 STATUS[pid] = EXIT
30 node := CURR_NODE[pid]
31 while TRUE:
32 if node is the j−th child of node,
33 then set k to be j
34 if node.Recover(k) 6= TRY:
35 node.Exit(k, FALSE)
36 if node = LEAF:
37 break
38 node := node.child(k)
39 CURR_NODE[pid] := node
40 STATUS[pid] := TRY
41 }
42 status Recover(int pid) {
43 if STATUS[pid] = EXIT:
44 return EXIT
45 if STATUS[pid] = CS:
46 return CS
47 return TRY
48 }

Figure 2 The Tournament Tree.

4.1 Algorithm Walk-Through

Figure 2 shows the pseudo code of the algorithm. Each node has immutable parent and child
pointers (as mentioned before, the tree structure is static). The parent of root is ⊥, as are
all child pointers of a leaf node. Each process is statically assigned to a leaf based on its id
(pid). Each node contains a D-port abortable RME lock.

Similarly to our W -port algorithm, each process p has a status word, STATUS[p], which
is used by the main lock’s Recover procedure. Each process has a current_node pointer.

In Try, a process walks the path from its leaf to the root, acquiring each node lock along
the way (lines 10–22). In each such lock, it uses a statically assigned port, corresponding to
the number of the child from which it climbed into the node. After successfully acquiring the
lock at node x, process p writes x to current_node[p] (line 22). This allows p to return to x if
it crashes, instead of having to start from scratch and climb the entire path again. The Exit
flow is symmetric, with p releasing each lock along the path back to the leaf, and updating
current_node[p] after each lock release (lines 31–39). In both entry and exit flows, p always
execute node lock’s Recover procedure before entering that lock’s Try or Exit section. This
allows p to behave correctly after crash recovery: on its way up (respectively, down) it will
not execute Enter (respectively, Exit) on the same node lock twice (lines 13–14, respectively
lines 34–35).

To support aborts, process p checks the abort signal after acquiring each node lock
(lines 15-18). If an abort was signalled, p starts executing the main lock’s exit code to descend
from the current node back to its leaf, releasing the node locks it holds along the way.
(Similarly to the W -port algorithm, an aborting process execute Exit as a subroutine; it does
not formally enter the main lock’s exit section). The algorithm correctly supports aborts
because if an abort is signalled while p is in some node lock’s Try execution, it is guaranteed
to complete in a finite number of its own steps. Subsequently, it will execute the main lock’s
abort handling code in a constant number of its own steps.
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5 Adaptive Transformation

We now present our generic adaptivity transformation, which transforms any abortable
RME algorithm L whose RMR complexity depends only on N into an abortable RME
algorithm whose RMR complexity also depends on the point contention [1, 4], K, which is
the number of processes executing the algorithm concurrently with the process going through
the super-passage. We show how to transform an abortable RME algorithm with passage
complexity B < W , super-passage complexity B∗, and space complexity S, into an abortable
RME algorithm with passage complexity O(min(K,B)), super-passage complexity O(K +F )
if K < B or O(B∗ + F ) otherwise, and space complexity O(S +N +B2).

The transformation is essentially a fast-path/slow-path construction, where the fast path
is our W -port abortable RME algorithm and the slow path is the original lock L. A process
p attempts to capture port k = 0, . . . ,W − 1 so it can use it in the fast path lock. Each such
capture attempt is performed with CAS, and hence incurs an RMR. The idea is that if p
fails to capture a port, then another process q succeeds. Therefore, if p fails to capture any
port, the point contention is > W . In this case, p gives up and enters the slow path. The fast
path and slow paths are synchronized with a 2-port abortable RME lock, again implemented
with our lock (§ 3).

We present detailed pseudo code and prove all of the algorithm’s properties. Due to space
limits, omitted proofs appear in the full version [22, Appendix D].

1 void Try(int pid) {
2 if STATUS[pid] = ABORT:
3 Exit(pid, TRUE)
4 return FALSE
5 k := CURR_K[pid]
6 while k < B:
7 if K_OWNERS[k] = pid
8 or CAS(K_OWNERS[k], ⊥, pid):
9 PATH[pid] := FAST

10 if fast_path.Recover(k) = TRY
11 if fast_path.Try(k) = FALSE:
12 STATUS[pid] := ABORT
13 Exit(pid, TRUE)
14 return FALSE
15 break loop
16 k := k + 1
17 CURR_K[pid] := k
18 if PATH[pid] 6= FAST:
19 PATH[pid] := SLOW
20 if slow_path.Recover(pid) = TRY:
21 if slow_path.Try(pid) = FALSE:
22 STATUS[pid] := ABORT
23 Exit(pid, TRUE)
24 return FALSE
25 if PATH[pid] = FAST:
26 SIDE[pid] := RIGHT
27 else // PATH[pid] = SLOW
28 SIDE[pid] := LEFT
29 if 2_rme.Recover(SIDE[pid]) = TRY:
30 if 2_rme.Try(SIDE[pid]) = FALSE:
31 STATUS[pid] := ABORT
32 Exit(pid, TRUE)
33 return FALSE
34 STATUS[pid] := CS
35 }

36 STATUS: array of N status words // initially all TRY
37 SIDE: array of N SIDE words // initially all ⊥
38 K_OWNERS: array of B pids // initially all ⊥
39 CURR_K: array of N integers // initially all 0

41 void Exit(int pid, bool aborting) {
42 if aborting = FALSE:
43 STATUS[pid] = EXIT
44 if SIDE[pid] 6=⊥ and
45 2_rme.Recover(SIDE[pid]) 6= TRY
46 2_rme.exit(SIDE[pid], FALSE)
47 SIDE[pid] := ⊥

49 if PATH[pid] = FAST:
50 k := CURR_K[pid]
51 if K_OWNERS[k] = pid and
52 fast_path.Recover(k) 6= TRY:
53 fast_path.Exit(k, FALSE)
54 K_OWNERS[k] := ⊥
55 else if PATH[pid] = SLOW:
56 if slow_path.Recover(p) 6= TRY:
57 slow_path.Exit(p, FALSE)
58 PATH[pid] := ⊥
59 CURR_K[pid] := 0
60 STATUS[pid] := TRY
61 }

63 status Recover(int pid) {
64 if STATUS[pid] = EXIT:
65 return EXIT
66 if STATUS[pid] = CS:
67 return CS
68 return TRY
69 }

Figure 3 Adaptive Transformation.
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5.1 Algorithm Walk-Through

Figure 3 presents the transformed algorithm’s pseudo code. The transformed algorithm uses
three auxiliary abortable RME locks: a slow_path lock, which is an N -process base lock
being transformed into an adaptive lock, and fast_path as well as 2_rme locks, both of
which are instances of our D-port abortable RME (§ 3). The fast_path instance uses D = B

and the 2_rme instance uses D = 2.
The algorithm maintains K_OWNERS, an array of B words (initially all ⊥) through

which processes in the entry section try to capture ports to use in the fast-path lock (lines 5–
17). Each process maintains a CURR_K variable to store the next port the process attempts
to capture, or its captured port (once it captures one). To capture a port, process p scans
K_OWNERS, using CAS at each slot k in an attempt to capture port k. If p captures port
k, it enters the fast-path lock using that port. Overall, if p reaches slot k in K_OWNERS,
then k other processes have captured ports 0, ..., k−1. If p reaches the end of K_OWNERS

and fails to capture a port, it enters the slow-path lock (lines 18–24). Regardless of which
lock p ultimately enters, it invokes that lock’s Recover method first, to correctly handle the
case in which p is recovering from a crash.

We use the 2-RME lock to ensure mutual exclusion between the owners of the fast-
path and the slow-path. Once p acquires its lock, it enters the 2-RME lock from the right
(respectively, left) if it is on the fast-path (respectively, slow-path). In the 2-RME lock, p
takes on a unique right/left id, corresponding to its direction of entry. Once p acquires the
2-RME lock, it enters the CS (lines 29–33).

In the exit section, p releases the 2-RME lock (lines 44–46) and then the fast-path or
slow-path lock, as appropriate (lines 49–57). After releasing the fast-path lock, p releases its
port (line 54) . These steps are done carefully to avoid having p return to the fast-path lock
after crashing with the same port that is now being used by another process.

To handle aborts, if p receives a FALSE return value from some Enter execution, it
executes the transformed lock’s exit code (which, as a byproduct, releases p’s port if it has
one). Subsequently, p completes the abort.

6 Putting It All Together & Conclusion

Let T be the RME algorithm obtained by instantiating our tournament tree (§ 4) with ourW -
port abortable RME algorithm (§ 3). Then T ’s RMR passage complexity is O(logW N) < W ,
super-passage complexity is O(logW N + F ) and space complexity is O(NW logW N). We
can therefore apply the transformation of § 5 to T , obtaining our main result:

I Theorem 4. There exists an abortable RME with O(min(K, logW N)) RMR passage
complexity, O(F + min(K, logW N)) RMR super-passage complexity, and O(NW logW N)
space complexity where K is the point contention, W is the memory word size, N is the
number of processes, and F is the number of crashes in a super-passage.

Many questions about ME properties in the context of RME remain open, and we are far
from understanding how the demand for recoverability affects the possibility of obtaining
other desirable properties and their cost. Can the sublogarithmic RMR bounds be improved
using only primitives supported in hardware, such as FAS and FAA? It is known that a
weaker crash model facilitate better bounds [12], but is relaxing the crash model necessary?
What, if any, is the connection between RME and abortable mutual exclusion? Both problems
involve a similar concept, of a process “disappearing” from the algorithm, and for both
problems, the best known RMR bounds (assuming standard primitives) are O( log N

log log N ). Can
a formal connection between these problems be established?
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Abstract
We investigate the minimal number of failures that can partition a system where processes commu-
nicate both through shared memory and by message passing. We prove that this number precisely
captures the resilience that can be achieved by algorithms that implement a variety of shared
objects, like registers and atomic snapshots, and solve common tasks, like randomized consensus,
approximate agreement and renaming. This has implications for the m&m-model of [5] and for the
hybrid, cluster-based model of [28, 31].
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1 Introduction

Some distributed systems combine more than one mode of communication among processes,
allowing them both to send messages among themselves and to access shared memory.
Examples include recent technologies such as remote direct memory access (RDMA) [2–4],
disaggregated memory [30], and Gen-Z [1]. In these technologies, the crash of a process does
not prevent access to its shared memory by other processes. Under these technologies, it
is infeasible to share memory among a large set of processes, so memories are shared by
smaller, strict subsets of processes.

Systems mixing shared memory and message passing offer a major opportunity since
information stored in shared variables remains available even after the failure of the process
who stored it. Mixed systems are expected to withstand more process failures than pure
message-passing systems, as captured by the resilience of a problem – the maximal number
of failures that an algorithm solving this problem can tolerate. This is particularly the
case in an asynchronous system. At one extreme, when all processes can access the same
shared memory, many problems can be solved even when all processes but one fail. Such
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wait-free algorithms exist for implementing shared objects and solving tasks like randomized
consensus, approximate agreement and renaming. At the other extreme, when processes
only communicate by message passing, the same problems require that at least a majority of
processes do not fail [7,8,18]. Thus, typically, shared-memory systems are (n−1)-resilient, and
pure message-passing systems are b(n− 1)/2c-resilient, where n is the number of processes.

The resilience in systems that mix shared memory and message passing falls in the
intermediate range, between b(n− 1)/2c and n − 1. It is, however, challenging to solve
specific problems with the best-possible resilience in a particular system organization: the
algorithm has to coordinate between non-disjoint sets of processes that have access to different
regions of the shared memory. On the other hand, bounding the resilience requires to take
into account the fact that processes might be able to communicate indirectly through shared
memory accesses of third-party processes.

This paper explores the optimal resilience in systems that provide message-passing support
between all pairs of processes, and access to shared memory between subsets of processes. We
do this by studying the minimal number of failures that can partition the system, depending
on its structure, i.e., how processes share memory with each other. We show that the
partitioning number exactly characterizes the resilience, that is, a host of problems can be
solved in the presence of < f crash failures, if and only if f is the minimal number of failures
that partition the system.

A key step is to focus on the implementation of a single-writer multi-reader register
shared among all processes, in the presence of f crash failures. A read or a write operation
takes O(1) round-trips, and requires O(n) messages. Armed with this implementation, well-
known shared-memory algorithms can be employed to implement other shared objects, like
multi-writer multi-reader registers and atomic snapshots, or to solve fundamental problems,
such as randomized consensus, approximate agreement and renaming. Because the register
implementation is efficient, these algorithms inherit the good efficiency of the best-known
shared-memory algorithm for each of these problems.

Going through a register simulation, instead of solving consensus, approximate agreement
or renaming from scratch, does not deteriorate their resilience. One of our key contributions
is to show that the resilience achieved in this way is optimal, by proving that these problems
cannot be solved in the presence of f crash failures, if f failures can partition the system.

We consider memories with access restrictions and model mixed systems by stating which
processes can read from or write to each memory. (Note that every pair of processes can
communicate using messages.) Based on this concept, we define fopt to be the largest number
of failures that do not partition the system. We prove that f -resilient registers and snapshot
implementations, and f -resilient solutions to randomized consensus, approximate agreement
and renaming, exist if and only if f ≤ fopt.

One example of a mixed model is the message-and-memory model [5], in short, the m&m
model. In the general m&m model [5], the shared-memory connections are defined by (not
necessarily disjoint) subsets of processes, where each subset of processes share a memory. Most
of their results, however, are for the uniform m&m model, where shared-memory connections
can be induced by an undirected graph, whose vertices are the processes. Each process has
an associated shared memory that can be accessed by all its neighbors in the shared-memory
graph (see Section 5). They present bounds on the resilience for solving randomized consensus
in the uniform model. Their algorithm is based on Ben-Or’s exponential algorithm for the
pure message-passing model [15]. The algorithm terminates if the nonfaulty processes and
their neighbors (in the shared-memory graph) are a majority of the processes. They also
prove an upper bound on the number of failures a randomized consensus algorithm can
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tolerate in the uniform m&m model. We show that in the uniform m&m model, this bound
is equivalent to the partitioning bound (fopt) proved in our paper (Theorem 17 in Section 5).
We further show that this bound does not match the resilience of their algorithm, whose
resilience is strictly smaller than fopt, for some shared-memory graphs.

In the special case where the shared memory has no access restrictions, our model is dual
to the general m&m model, i.e., it captures the same systems as the general m&m model.
However, rather then listing which processes can access a memory, we consider the flipped
view: we consider for each process, the memories it can access. We believe this makes it
easier to obtain some extensions, for example, for memories with access restrictions.

Hadzilacos, Hu and Toueg [23] present an implementation of a SWMR register in the
general m&m model. The resilience of their algorithm is shown to match the maximum
resilience of an SWMR register implementation in the m&m model. Our results for register
implementations are adaptations of their results. For the general m&m model specified by
the set of process subsets L, they define a parameter fL and show that it is the maximum
number of failures tolerated by an algorithm implementing a SWMR register [23] or solving
randomized consensus [24]. For memories without access restrictions, fL is equal to fopt.
Their randomized consensus algorithm is based on the simple algorithm of [6] and inherits
its exponential expected step complexity.

Another example of a model that mixes shared memory and message passing is the hybrid
model of [28,31]. In this model, which we call cluster-based, processes are partitioned into
disjoint clusters, each with an associated shared memory; all processes in the cluster (and
only them) can read from and write to this shared memory. Two randomized consensus
algorithms are presented for the cluster-based model [31]. Their resilience is stated as an
operational property of executions: the algorithm terminates if the clusters of responsive
processes contain a majority of the processes. We prove (Lemma 19 in Section 6) that the
optimal resilience we state in a closed form for the cluster-based model is equal to their
operational property.

Our model is general and captures all these models within a single framework, by precisely
specifying the shared-memory layout. The tight bounds in this general model provide the
exact resilience of any system that mix shared memory and message passing.

2 Modelling Systems that Mix Shared Memory and Message Passing

We consider n asynchronous processes p1, . . . , pn, which communicate with each other by
sending and receiving messages, over a complete communication network of asynchronous
reliable links. In addition, there are m shared memories M = {µ1, ..., µm}, which can be
accessed by subsets of the processes. A memory µ ∈ M has access restrictions, where Rµ
denotes all the processes that can read from the memory and Wµ denotes all the processes
that can write to the memory. The set of memories a process p can read from is denoted
Rp, i.e., Rp = {µ ∈ M : p ∈ Rµ}. The set of memories p can write to is denoted Wp, i.e.,
Wp = {µ ∈M : p ∈Wµ}. We assume the network allows nodes to send the same message to
all nodes; message delivery is FIFO. A process p can crash, in which case it stops taking steps;
messages sent by a crashed process may not be delivered at their recipients. We assume that
the shared memory does not fail, as done in prior work [5,23,28,31].

A configuration C is a tuple with a state for each process, a value for each shared register,
and a set of messages in transit (sent but not received) between any pair of processes. A
schedule is a sequence of process identifiers. For a set of processes P , a schedule is P -free
if no process from P appears in the schedule; a schedule is P -only if only processes from
P appear in the schedule. An execution α is an alternating sequence of configurations and
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events, where each event is a step by a single process that takes the system from the preceding
configuration to the following configuration. In a step, a process either accesses the shared
memory (read or write) or receives and sends messages. Additionally, a step may involve
the invocation of a higher-level operation. A schedule is associated with the execution in a
natural way; this induces notions of P -free and P -only executions.

If there is a shared memory µ ∈ M that p can read from and q can write to, then we
denote p → q. If p → q and q → p, then we denote p ↔ q. Since a process can read what
it writes to its local memory, this relation is reflexive, i.e., for every process p, p→ p. Let
P and Q be two sets of processes. Denote P → Q if some process p ∈ P can read what a
process q ∈ Q writes, i.e., p→ q. If P → Q and Q→ P , then we denote P ↔ Q.

I Definition 1. A system is f -partitionable if there are two sets of processes P and Q, both
of size n− f , such that P 6↔ Q. Namely, the failure of f processes can partition (disconnect)
two sets of n− f processes. Denote by fopt the largest integer f such that P ↔ Q, for every
pair of sets of processes P and Q, each of size n− f .

Clearly, a system is f -partitionable if and only if f > fopt. Note that fopt ≥ b(n− 1)/2c.
In the pure message-passing model, p→ q if and only if p = q; hence, fopt = b(n− 1)/2c.

The special case of shared memory without access restrictions is when for every memory
µ ∈M , Rµ = Wµ, and all processes that can read from a memory can also write to it. In
this case, the → relation is symmetric, i.e., for every pair of processes p and q, if p→ q then
q → p. Therefore, for every two processes p and q, p ↔ q. Later, we discuss two models
without access restrictions, the m&m model and the cluster-based model.

For a set of processes P ,
→
P are the processes that some process in P can read what

they write to the shared memory, i.e.,
→
P = {q : ∃p ∈ P , p→ q}. fmaj is the largest integer

f such that for every set P of n − f processes, |
→
P | > bn/2c. That is, fmaj is the largest

number of failures that still allows the remaining (nonfaulty) processes to communicate with
a majority of the processes. It is simple to see that fopt ≤ fmaj . The converse direction does
not necessarily hold, as discussed for the m&m model and the cluster-based model.

3 Necessary and Sufficient Condition for Implementing a Register

This section shows that a register can be implemented in the presence of f failures, if and
only if the system is not f -partitionable, that is, f ≤ fopt. This is an adaptation of the
register implementation of [23] in the m&m model. A single-writer multi-reader (SWMR)
register R can be written by a single writer process w, using a procedure Write, and can
be read by all processes p1, . . . , pn, using a procedure Read. A register is atomic [29] if any
execution of Read and Write operations can be linearized [27]. This means that there is a
total order of all completed operations and some incomplete operations, that respects the
real-time order of non-overlapping operations, in which each Read operation returns the
value of the last preceding Write operation (or the initial value of the register, if there is no
such Write).

The algorithm appears in Algorithm 1; for simplicity of presentation, a process sends
each message also to itself and responds with the appropriate response. All the message
communication between the processes is done in msg_exchange(), where we simply send a
message and wait for n− f acknowledgement. This modular approach allows us to replace
the communication pattern according to the specific shared-memory layout. For example,
Section 6 shows that in the cluster-based model this communication pattern can be changed
to wait for less than n− f processes.
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Algorithm 1 Atomic SWMR register implementation (w is the single writer).

Local Variables:
w-sqno: int, initially 0 . write sequence number
r-sqno: int, initially 0 . read sequence number
last-sqno: int, initially 0 . last write sequence number observed
counter : int, initially 0 . number of replies/acks received so far
Shared Variables: for every process p and every µ ∈Wp:
Rµ[p]: 〈int, int〉, initially 〈0, v0〉 . writable by p and readable by all processes that can
read from µ, i.e., all the processes in Rµ

Write(v) – Code for the writer w:
1: w-sqno = w-sqno + 1 . increment the write sequence number
2: acks = msg_exchange〈W, w-sqno, v〉
3: return

Code for any process p:
4: Upon receipt of a 〈W/WB, sqno, v〉 message from process w/q:
5: if (sqno > last-sqno) then
6: last-sqno = sqno
7: for each µ ∈Wp do . write value and sequence number to every register p can write

to
8: Rµ[p] = 〈sqno, v〉
9: send 〈Ack-W/Ack-WB, sqno〉 to process w/q

Read() – Code for the reader q:
10: r-sqno = r-sqno + 1 . increment the read sequence number
11: set_of_tuples = msg_exchange〈R, r-sqno, ⊥〉
12: 〈seq, val〉 = max(set_of_tuples) . maximum 〈seq, val〉
13: acks = msg_exchange〈WB, seq, val〉 . write back
14: return val

Code for any process p:
15: Upon receipt of a 〈R, r-sqno, -〉 message from process q:
16: 〈w-seq, w-val〉 = max{〈seq, val〉 : µ ∈ Rp ∩Wq and Rµ[q] = 〈seq, val〉} . find val with

maximum seq
17: send 〈Ack-R, r-sqno, 〈w-seq, w-val〉〉 to process q

msg_exchange〈m, seq, val〉: returns set of responses
18: send 〈m, seq, val〉 to all processes
19: responses = ∅
20: repeat
21: wait to receive a message m of the form 〈Ack-m, seq, -〉
22: counter = counter + 1
23: responses = responses ∪ {m}
24: until counter≥ n− f
25: return(responses)

For each process p and memory µ ∈Wp there is a shared SWMR register Rµ[p], writable by
p and readable by every process that can read from µ, i.e., every process in Rµ. In Write(v),
the writer w increments its local write sequence number w-sqno and calls msg_exchange().
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This procedure sends a message of type W with value v and w-sqno to all processes. On
receiving a write message from w, p checks if the write value is more up-to-date than the
last value it has observed, by checking if w-sqno is larger than last-sqno. If so, p updates
last-sqno to be w-sqno and writes the value v and sequence number w-sqno to all the registers
it can write to. When done, the process sends an acknowledgment to the writer w. Once w
receives n− f acknowledgments, it returns successfully.

In Read, a reader process q increments its local read sequence number r-sqno and calls
msg_exchange(). This procedure sends a message of type R and r-sqno to all processes. On
receiving a read message from q, a process p reads all the registers it can read and finds
the maximum sequence number and value stored in them and sends this pair to the reader
q. Once q receives n− f acknowledgments, it finds the value val with maximum sequence
number seq among the responses (i.e., it selects the most up-to-date value). Then, q calls
msg_exchange(), with message type WB (write back) and value val and seq to update other
readers. On receiving a write back message from q, each process p handles WB like W
message, checking if w-sqno is larger than last-sqno and if so updating last-sqno and all the
registers it can write to. When done, the process sends an acknowledgment to q. Once q
receives n− f acknowledgments, it returns val successfully.

The communication complexities of read and write operations are dominated by the
cost of a msg_exchange(), invoked once in a write and twice in a read. This procedure
takes one round-trip and O(n) messages, like the algorithm for the pure message-passing
model [7]. The number of shared SWMR registers depends on the shared-memory topology
and is ρ =

∑
process p |Wp|, as every process has a single register in each memory it can write

to. The number of accesses to the shared memory is σ =
∑

process p
∑
µ∈Rp

|Wµ|, as every
process reads all the registers it can read from. Note that σ ≤ nρ.

The only statement that could prevent the completion of a Write or a Read is waiting
for n − f responses (Line 24). Since at most f processes may crash, the wait statement
eventually completes, implying that a Write or Read invoked by a process that does not
crash completes.

I Lemma 2. Let t2 be the largest sequence number returned in a read msg_exchange by reader
pj, and assume that the msg_exchange starts after the completion of a write msg_exchange,
either by the writer w or in a write back by reader pi, with sequence number t1, then, t1 ≤ t2.

We explicitly order all completed reads and all invoked writes (even if they are incomplete).
Note that values written by the writer w have distinct write sequence numbers, and are
different from the initial value of the register, denoted v0; the value of the kth write operation
is denoted vk, k ≥ 1. Writes are ordered by the order they are invoked by process w; if
the last write is incomplete, we place this write at the end. Since only one process invokes
write, this ordering is well-defined and furthermore, the values written appear in the order
v1, v2, . . ..

Next, we consider reads in the order they complete; note that this means that non-
overlapping operations are considered in their order in the execution. A read that returns
the value vk−1, k ≥ 0, is placed before the k-th write in the ordering, if this write exists, and
at the end of the ordering, otherwise. For k = 0, this means that the read is placed before
the first write, which may be at the end of the order, if there is no write.

Lemma 2 implies that this order respects the real-time order of non-overlapping operations.

I Theorem 3. If a system is not f-partitionable then Algorithm 1 implements an atomic
SWMR register, in the presence of f failures.
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The impossibility proof holds even if only regular register [29] is implemented. In a
regular register, a read should return the value of a Write operation that either overlaps it,
or immediately precedes it. The proof is similar to the one in [23], where they show that a
SWMR register cannot be implemented in the m&m model if more than fL processes may
fail.

I Theorem 4. If a system is f-partitionable then there is no implementation of a regular
SWMR register in the presence of f failures.

4 Solving Other Problems in Non-Partitionable Systems

4.1 Constructing Other Read/Write Registers
The atomic SWMR register presented in the previous section can be used as a basic building
block for implementing other shared-memory objects. Recall that if a system is not f -
partitionable (i.e., f ≤ fopt), a SWMR register can be implemented so that each operation
takes O(1) time, O(n) messages, O(ρ) SWMR shared-memory registers and O(σ) SWMR
shared-memory accesses. Given a shared-memory algorithm that uses O(r) SWMR registers
and has O(s) step complexity, it can be simulated with O(s) round-trips, O(ns) messages,
and O(σs) shared-memory accesses. The simulation requires O(ρr) SWMR shared-memory
registers. (Recall that ρ =

∑
process p |Wp| and σ =

∑
process p

∑
µ∈Rp

|Wµ|.)
An atomic multi-writer multi-reader (MWMR) register can be built from atomic SWMR

registers [33]; each read or write requires O(n) round-trips, O(n2) messages, O(ρn) SWMR
shared registers and O(αn) shared-memory accesses.

Atomic snapshots can also be implemented using SWMR registers [13]; each scan or
update takes O(n logn) round-trips, O(n2 logn) messages, O(ρn) SWMR shared registers
and O(σn logn) shared-memory accesses.

4.2 Batching
A simple optimization is batching of read requests, namely reading the registers of several
processes simultaneously. Batching is useful when each process replicates a register for
each other process – not for just one writer. A process p can send read requests for all
these registers together, instead of sending n separate read requests (for the registers of all
processes), one after the other. When a process q receives the batched request from p, it
replies with a vector containing the values of all registers in a single message, rather than
sending them separately. Process p waits for vectors from n− f processes, and picks from
them the latest value for each other process. Finally, the reader does a write-back of this
vector.

Batching reduces the number of round-trips and messages, and shared-memory registers
and accesses, but increases the size of messages and registers. With batching, an operation on
a MWMR register requires O(1) round-trips, O(n) messages, O(ρ) SWMR shared registers
and O(α) shared-memory accesses, when each process saves all the writers values in a single
SWMR register. Batching can also be applied to atomic snapshots, so that each scan or
update takes O(logn) round-trips, O(n logn) messages, O(ρ) SWMR shared registers and
O(σ logn) shared-memory accesses.

Batching provides a regular collect, as defined in [11]. Regular collects can be used in
the following building block, where a process repeatedly call collect, and returns a vector of
values if it has received it twice (in two consecutive collects). Two vectors are the same if they
contain the same sequence numbers in each component. Process p can write the value v using

OPODIS 2020



16:8 Resilience of Systems That Mix Shared Memory and Message Passing

procedure Writep(v), and repeatedly double collect all the processes current values using
the procedure BuildingBlock(). An invocation of BuildingBlock() returns a vector V
with n components, one for each process. Each component contains a pair of a value with a
sequence number. For every process pi, V [i] is the entry in the vector corresponding to pi’s
value. A vector V1 precedes a vector V2 if the sequence number of each component of V1 is
smaller than or equal to the corresponding component of V2. Although the writes are not
atomic, it can be shown that if V1 and V2 are vectors returned by two pairs of successful
double collects then either V1 precedes V2 or V2 precedes V1.

This building block may not terminate (even if the system is not f -partitionable), due to
continuous writes. However, if two consecutive collects are not equal then some sequence
number was incremented, i.e., a write by some process is in progress.

4.3 Consensus
In the consensus problem, a process starts with an input value and decides on an output
value, so that all processes decide on the same value (agreement), which is the input value
of some process (validity). With a standard termination requirement, it is well known that
consensus cannot be solved in an asynchronous system [21]. This result holds whether
processes communicate through shared memory or by message passing, and even if only
a single process fails. However, consensus can be solved if the termination condition is
weakened, either to be required only with high probability (randomized consensus), or to
hold when it is possible to eventually detect failures (using a failure detector), or to happen
only under fortunate situations.

There are numerous shared-memory randomized consensus algorithms, which rely on read
/ write registers, or objects constructed out of them. Using these algorithms together with
linearizable register implementations is not obvious since linearizability does not preserve
hyperproperties [9, 22]. It has been shown [24] that the ABD register implementation [7] is
not strongly linearizable [22]. This extends to the mixed-model register implementations, as
ABD is a special case of them.

Hadzilacos et al. [25] have proved that the simple randomized consensus algorithm of [6]
works correctly with regular registers, and used it to obtain consensus in m&m systems [24].
Their algorithm inherits exponential complexity from the simple algorithm of [6], which
employs independent coin flips by the processes.

Here, we explain how to use BuildingBlock() to emulate the weak shared coin of [6],
following [14]. This holds with f failures, if the system is not f -partitionable.

In Algorithm 2, a process flips a coin using a local function flip(), which returns the value
1 or -1, each with probably 1/2. Invoking flip() is a single atomic step. After each flip, a
process writes its outcome in an individual cumulative sum. Then it calls BuildingBlock()
to obtain a vector V with the individual cumulative sums of all processes. (We assume that
the initial value in each component is 0.) The process then checks the absolute value of the
total sum of the individual cumulative sums, denoted sum(V ). If it is at least c · n for some
constant c > 1, then the process returns its sign.

Intuitively, the only way the adversary can create disagreement on the outcome of the
shared coin is by preventing as many processors as possible to move the counter in the
unwanted direction. We will show that the adversary cannot “hide” more than n− 1 coin
flips. (This was originally proved when processes use atomic writes [6]; here, we show it holds
even when writes are not atomic.) Therefore, after the cumulative sum is big or small enough
the adversary can no longer affect the outcome of the shared coin, and cannot prevent the
processes from terminating.
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Algorithm 2 Weak shared coin [6].

Local Variables:
my-counter : int, initially 0
V : vector of size n, with all entries initially 0

Coin() – Code for process p:
1: while true do
2: my-counter = my-counter + flip()
3: Writep(my-counter)
4: V = BuildingBlock()
5: if sum(V )≥ c · n then return 1
6: else if sum(V )≤ −c · n then return -1

Let H and T be the number of 1 and -1 (respectively) flipped by all processes at some
point in the execution. These numbers are well-defined since the local coin flips are atomic.

I Lemma 5. If H − T < −(c+ 1) · n (respectively, H − T > (c+ 1) · n) at some point in
the execution, then a process that invokes BuildingBlock() after this point returns −1
(respectively, 1).

Proof. (Sketch) We consider the first case; the other case is symmetric. Consider the
set of processes that invoked BuildingBlock() after the point in the execution when
H − T < −(c+ 1) · n, in the order their BuildingBlock() returns. Let pji

, i ≥ 1, be the
ith process in this order, and let Vi be the vector returned by its BuildingBlock(). We
prove, by induction on i, that sum(Vi) ≤ −c · n, and hence, pji returns −1.

In the base case, i = 1. Since a process invokes BuildingBlock() after every write,
there can be at most n writes (either pending or finished) after the point H−T < −(c+1) ·n
and the return of BuildingBlock() by pj1 . Therefore, sum(V1) < −c · n, and pj1 decides -1
in Line 6.

Inductive step: Assume that for i > 1, processes pj1 , ..., pji−1 decide after their Build-
ingBlock() invocation returns. Therefore, there are no additional writes in the execution,
and pji

will observe at most n additional values from H − T and will return −1. J

I Lemma 6. If process p returns 1 (respectively, -1) from the shared coin, then H−T > (c−
1)·n (respectively, H−T < −(c−1)·n) at some point during its last call to BuildingBlock().

Proof. (Sketch) We consider the first case; the other case is symmetric. Consider the last
pair of collects in the last BuildingBlock() invocation before process p returns, and assume
they return a vector V . Assume p misses a write by some process q that overlaps the first
collect, i.e., the sequence number of this write is smaller than the corresponding sequence
number in V . Then q’s write overlaps p’s first collect, and it returns after the second collect
starts. (Otherwise, the regularity of collect implies that the second collect returns this write
by q, or a later one, contradicting the fact it is equal to the first collect.) Therefore, each
process has at most one write that overlaps the first collect and can be missed by the first
collect. So, the sum of V differs by at most n− 1 values from H − T at the point when the
first collect completes. Since p returns 1, sum(V ) ≥ c ·n, and it holds that H−T > (c−1) ·n
when the first collect completes. J

The next lemma can be proved along the lines of [6, Theorem 17], using the fact (see proof
of Lemma 5) that there are at most n additional writes after H − T drops below −(c+ 1) · n.
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I Lemma 7. The adversary can force the weak shared coin procedure of a process to return
1 (respectively, -1) with probability at most (c+ 1)/2c.

It follows that the adversary can force the processes to disagree with probability at most
(c− 1)/2c. The next theorem has the same proof as in [6].

I Theorem 8. For a constant c > 1, the expected number of coin flips in an execution of the
weak shared coin is O(n2).

Since the expected number of coin flips is O(n2), the expected number of write and
building block invocations is also O(n2). The total number of collect operations in these
building block invocations for all the processes is O(n3) in expectation, this is because a
double collect fails only when another coin is written. Therefore, the complexity of the weak
shared coin is O(n3) round-trips, O(n4) messages, O(ρ) registers and O(αn3) shared-memory
accesses. Plugging the weak shared coin in the overall algorithm of [6], proved to be correct
by [25], yields a randomized consensus algorithm with the same expected complexities as the
weak shared coin.

Next, we prove that randomized consensus cannot be solved in a partitionable system,
by considering the more general problem of non-deterministic f-terminating consensus, an
extension of nondeterministic solo termination [20]. This variant of consensus has the usual
validity and agreement properties, with the following termination property:
Non-deterministic f -termination: For every configuration C, process p and set F of at most

f processes, such that p /∈ F , there is an F -free execution in which process p terminates.

I Theorem 9. If a system is f -partitionable then non-deterministic f -terminating consensus
is unsolvable.

Proof. Assume, by way of contradiction, that there is an non-deterministic f -terminating
consensus algorithm. Since the system is f -partitionable, there are two disjoint sets of
processes P and P ′, each of size n − f , such that P ′ 6→ P . Therefore, there are no two
processes p ∈ P and p′ ∈ P ′ so that p′ can read from a memory and p can write to that
same memory. Let Q be the processes not in P ∪ P ′. Since |P |, |P ′| = n− f , it follows that
|P ∪Q| = |P ′ ∪Q| = f .

To prove the theorem, we construct three executions. Consider an initial configuration,
in which all processes in P have initial value 0. Since |P ′ ∪ Q| = f , non-deterministic
f -termination implies there is a (P ′ ∪ Q)-free execution, in which some process p ∈ P

terminates, say by time t1. Call this execution α1, and note that only processes in P take
steps in α1. By validity, p decides 0.

In a similar manner, we can get a (P ∪Q)-free execution, α2, in which initial values of
all the processes in P ′ are 1, and by non-deterministic f -termination, some process p′ ∈ P ′
decides on 1, say by time t2. Note that only processes in P ′ take steps in α2.

Finally, the third execution α3 combines α1 and α2. The initial value of processes in P is
0, and the initial value of processes in P ′ is 1. Processes in Q have arbitrary initial values,
and they take no steps in α3. The execution is identical to α1 from time 0 until time t1,
and to α2 from this time until time t1 + t2. All messages sent between processes in P and
processes in P ′ are delivered after time t1 + t2. Since processes in P ′ do not take steps in α3
until time t1, all processes in P decides 0, as in α1. Processes in P ′ cannot receive messages
from processes in P or read what processes in P write to the shared memory, therefore all
processes in P ′ decides 1, as in execution α2, violating the agreement property. J
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4.4 Approximate Agreement
In the approximate agreement problem with parameter ε > 0, all processes start with a
real-valued input and must decide on an output value, so any two decision values are in
distance at most ε from each other (agreement), and any decision value is in the range of all
initial values (validity).

There is a wait-free algorithm for the approximate agreement problem in the shared-
memory model, which uses only SWMR registers [12]. This algorithm can be simulated if
the system is not f -partitionable, and at most f processes fail. Similarly to randomized
consensus, it can be shown that this problem is unsolvable in partitionable systems.

I Theorem 10. If a system is f -partitionable then approximate agreement is unsolvable in
the presence of f failures.

4.5 Renaming
In the M-renaming problem, processes start with unique original names from a large
namespace {1, ..., N}, and the processes pick distinct new names from a smaller namespace
{1, ...,M} (M < N). To avoid a trivial solution, in which a process pi picks its index i as
the new name, we require anonymity: a process pi with original name m performs the same
as process pj with original name m.

Employing the SWMR register simulation in a (2n− 1)-renaming algorithm [10] yields an
algorithm that requires O(n logn) round-trips, O(n2 logn) messages, O(ρn4) shared registers
and O(σn logn) shared-memory accesses. The number of registers can reduces to O(ρ), at
the cost of increasing their size.

This algorithm assumes that the system is not f -partitionable and at most f processes
fail. The next theorem shows that this is a necessary condition.

I Theorem 11. If a system is f -partitionable then renaming is unsolvable in the presence of
f failures.

Proof. Assume, by way of contradiction, that there is a renaming algorithm. Since the
system is f -partitionable, there are two disjoint sets of processes P and P ′, each of size n− f ,
such that P ′ 6→ P . Denote P = {pi1 , ..., pin−f

} and P ′ = {p′i1 , ..., p
′
in−f
}. Let Q be the set of

processes not in P ∪ P ′. Since |P |, |P ′| = n− f , we have that |P ∪Q| = |P ′ ∪Q| = f .
Given a vector I of n − f original names, denote by α(I, P ) the P -only execution in

which processes in P have original names I: processes in (P ′ ∪Q) crash and take no step,
and processes in P are scheduled in round-robin. Since at most f processes fail in α(I, P ),
eventually all processes in P pick distinct new names, say by time t(I). Note that by
anonymity, the same names are picked in the execution α(I, P ′), in which p′ij starts with the
same original name as pij and takes analogous steps.

Consider α(Ii, P ), for any possible set of original names. The original name space can be
picked to be big enough to ensure that for two disjoint name assignments, I1 and I2, some
process pij ∈ P decides the same new name r in the executions α(I1, P ) and α(I2, P ).

Denote α1 = α(I1, P ) and α2 = α(I2, P
′), namely, the execution in which processes in P ′

replace the corresponding processes from P . The anonymity assumption ensures that p′ij
decides on r, just as pij decides on r in α(I1, P ) and α(I2, P ).

The execution α3 combines α1 and α2, as follows. Processes in Q take no steps in α3.
The original names of processes in P are I1, and original names of processes in P ′ are I2. The
execution is identical to α1 from time 0 until time t(I1), and to α2 from this time until time
t(I1) + t(I2). All messages sent from processes in P to processes in P ′ and from processes in
P ′ to processes in P are delivered after time t(I1) + t(I2).
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In α3, processes in P do not receive messages from processes in P ′ ∪ Q. Furthermore,
P ′ 6→ P ; i.e., processes in P ′ cannot read what processes in P wrote to the shared memory.
Hence, α3 is indistinguishable to pij from α1, and hence, it picks new name r. Similarly, α3
is indistinguishable to p′ij from α2, and hence, it also picks new name r, which contradicts
the uniqueness of new names. J

5 The M&M Model

In the m&m model [5, 23], the shared memory connections are defined by a shared-memory
domain L, which is a collection of sets of processes. For each set S ∈ L, all the processes in
the set may share any number of registers among them. Our model when the shared memory
has no access restrictions is a dual of the general m&m model, and they both capture the
same systems. We say that L is uniform if it is induced by an undirected shared-memory
graph G = (V,E), where each vertex in V represents a process p. For every process p,
Sp = {p} ∪ {q : (p, q) ∈ E}, then L = {Sp : p is a process}. In the uniform m&m model each
memory is associated with a process p, and all the processes in Sp may access it. That is, a
process can access its own memory and the memories of its neighbors.

In the m&m model, there are no access restrictions on the shared memory. Hence, for
every process p, |Rp| = |Wp| = |Sp|. Therefore, ρ =

∑
process p |Sp| =

∑
process p d(p) + 1 =

2|E| + n = O(n2) and σ = O(n3), where d(p) is the degree of process p in the graph.
Substituting into the algorithms presented in Section 4, we obtain polynomial complexity for
all of them, including a polynomial randomized consensus algorithm. In the general m&m
model, ρ and σ are unbounded.

I Definition 12 ( [23]). Given a shared-memory domain L , fL is the largest integer f such
that for all process subsets P and P ′ of size n− f each, either P ∩ P ′ 6= ∅ or there is a set
S ∈ L that contains both a process from P and a process from P ′.

Hadzilacos, Hu and Toueg [23] show that an SWMR register can be implemented in
the m&m model if and only if at most fL process may fail. Therefore in the m&m model,
fopt = fL. We can see the connection between the two definitions by observing that, in this
model, p↔ q if p = q or there is a set S ∈ L such that p, q ∈ S. We simply write ↔, since
the shared memory has no access restrictions.

The square of a graph G = (V,E) is the graph G2 = (V,E2), where E2 = E ∪ {(u, v) :
∃w ∈ E such that (u,w) ∈ E and (w, v) ∈ E}. I.e., there is an edge in G2 between every
two vertices that are in distance at most 2 in the graph G.

I Definition 13 ( [23]). Given an undirected graph G = (V,E), fG is the largest integer f
such that for all subsets P and P ′ of V of size n− f each, either P ∩ P ′ 6= ∅ or G2 has an
edge (u, v) such that u ∈ P and v ∈ P ′.

In the uniform m&m model, fL = fG = fopt [23], and p↔ q if p = q or (p, q) is an edge
in G2.

We have seen that fopt ≤ fmaj . Figure 1 shows a graph where fopt < fmaj . Thus, the
converse inequality does not hold in the (uniform or general) m&m model.

I Definition 14 ( [5]). A process p represents itself and all its neighbors, that is, {p} ∪ {q :
(p, q) ∈ E}. A set of processes P represents the union of all the processes represented by
processes in P .
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Figure 2 Counter example for n = 5.

Aguilera et al. [5] present a randomized consensus algorithm, called HBO, which is based
on Ben-Or’s algorithm [15]. Like Ben-Or’s algorithm, HBO has exponential time and message
complexities. HBO assumes that the nonfaulty processes represent a majority of the processes.
Below, we show that the resilience of the HBO algorithm is not optimal. We first capture
the condition required for the correctness of the HBO algorithm, with the next definition.

I Definition 15. fm&m is the largest integer f such that every set P of n − f processes
represents a majority of the processes.

It can be shown that fm&m ≤ fopt. On the other hand, for every n > 4, there is a
shared-memory graph, such that fm&m < fopt in the uniform m&m model. The graph is the
star graph over n vertices, and has edges {(p1, p2)} ∪ {(p2, pi) : 3 ≤ i ≤ n)}. (See Figure 2,
for n = 5.) Thus, requiring at least n − fm&m nonfaulty processes is strictly stronger
than requiring n− fopt nonfaulty processes. Therefore, the HBO algorithm does not have
optimal resilience. Intuitively this happens since HBO does not utilize all the shared-memory
connections that are embodied in G2. Thus, our algorithm (Section 4.3), has better resilience
than HBO, which we show is optimal, in addition to having polynomial complexity.

Aguilera et al. [5] also present a lower bound on the number of failures any consensus
algorithm can tolerate in the m&m model. To state their bound, consider a graph G = (V,E),
and let B, S and T be a partition of V . (B,S, T ) is an SM-cut in G if B can be partitioned
into two disjoint sets B1 and B2, such that for every b1 ∈ B1, b2 ∈ B2, s ∈ S and t ∈ T , we
have that (s, t), (b1, t), (b2, s) /∈ E.

I Theorem 16 ( [5]). Consensus cannot be solved in the uniform m&m model in the presence
of f failures if there is a SM-cut (B,S, T ) such that |S| ≥ n− f and |T | ≥ n− f .

Although the resilience of HBO is not optimal, we show that this lower bound on resilience
is optimal, by proving that if a system is f -partitionable then the condition in Theorem 16
holds. By Theorem 9, these two conditions are equal in the m&m model.

I Theorem 17. In the uniform m&m model, if the system is f -partitionable then there is an
SM-cut (B,S, T ) with |S| ≥ n− f and |T | ≥ n− f .

6 The Cluster-based Model

In the hybrid, cluster-based model of [28,31], processes are partitioned into m, 1 ≤ m ≤ n,
non-empty and disjoint subsets P1, . . . , Pm, called clusters. Each cluster has an associated
shared memory; only processes of this cluster can (atomically) read from and write to this
shared memory. The set of processes in the cluster of p is denoted cluster[p]. As in the m&m
model, there are no access restrictions on the shared memory. Hence, |Rp| = |Wp| = 1 for
every process p, and therefore, ρ = n and σ = O(n2).

In the cluster-based model, p↔ q if and only if p and q are in the same cluster.
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If p↔ q and q ↔ w, for some processes p, q and w, then p and q are in the same cluster
and q and w are in the same cluster. Since clusters are disjoint, it follows that p and w are
in the same cluster, implying that ↔ is transitive.

I Definition 18. fcluster is the largest integer f such that for all sets of processes P and P ′,
each of size (n− f), either P ∩ P ′ 6= ∅ or some cluster contains a process in P and a process
in P ′.

I Observation 1. In the cluster-based model fopt = fcluster.

I Lemma 19. In the cluster-based model, fopt = fmaj.

I Lemma 20. In the cluster-based model, for every two sets of processes, P and Q, and
f ≤ fopt, if |

→
P | ≥ n− f and |

→
Q| ≥ n− f then P ↔ Q.

Raynal and Cao [31] present two randomized consensus algorithms for the cluster-based
model. One is also based on Ben Or’s algorithm [15], using local coins, and the other is based
on an external common coin (whose implementation is left unspecified). These algorithms
terminate in an execution if there are distinct clusters whose total size is (strictly) larger than
n/2, each containing at least one nonfaulty process. Clearly, if f ≤ fmaj , this condition holds
for every execution with at most f failures. Since fopt ≤ fmaj , the condition holds if there
are at most f ≤ fopt failures. Lemma 19 implies that these two definitions are equivalent by
proving that fopt = fmaj . This means that the maximum resilience guaranteeing that every
two sets of nonfaulty processes can communicate is equal to the one guaranteeing that every
set of nonfaulty processes can communicate with a majority of the processes.

In the cluster-based model, if a process p ∈ Pi does not crash then all other processes
receive the information from all the processes of Pi, as if none of them crashed. For this
reason, we say that p represents all processes in Pi (note that this definition is different
than Definition 14). If a process q receives messages from processes representing k clusters
P1, . . . , Pk, such that |P1|+ · · ·+ |Pk| > n/2, then it has received information from a majority
of the processes. This observation does not change the resilience threshold, i.e., the maximal
number of failures that can be tolerated, but allows to wait for a smaller number of messages,
thereby, making the algorithm execute faster. Lemma 20 proves that every two sets of
processes representing at least n− fopt processes can communicate. Therefore, instead of
waiting for a majority of represented processes, as is done in [31], it suffices to wait for
n− fopt represented processes. Since n− fopt ≤ bn/2c+ 1, this means that in some cases it
suffices to wait for fewer than a majority of represented processes.

This is not the case in the m&m model. For example, in the graph of Figure 1, fopt = 6.
For P = {p7, p9},

→
P = {p1, p6, p7, p8, p9}, and for Q = {p3, p5},

→
Q = {p1, p2, p3, p4, p5}, so

|
→
P | = |

→
Q| = 5 > n/2, but P 6↔ Q. Therefore, even though the system is not f -partitionable,

and the set of non-faulty processes can communicate with a majority of the processes, it
does not suffice to wait for more than n/2 represented processes.

7 Discussion

This paper studies the optimal resilience for various problems in mixed models. Our approach
builds on simulating a SWMR register, which allows to investigate the resilience of many
problems, like implementing MWMR registers and atomic snapshots, or solving randomized
consensus, approximate agreement and renaming. Prior consensus algorithms for mixed
models [5, 31] start from a pure message-passing algorithm and then try to exploit the
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added power of shared memory. In contrast, we start with a shared-memory consensus
algorithm and systematically simulate it in the mixed model. This simplifies the algorithms
and improves their complexity, while still achieving optimal resilience.

It would be interesting to investigate additional tasks and objects. An interesting example
is k-set consensus [19], in which processes must decide on at most k different values. This is
trivial for k = n and reduces to consensus, for k = 1. For the pure message-passing model,
there is a k-set consensus algorithm [19], when the number of failures f < k. This bound is
necessary for solving the problem in shared memory systems [17,26,32]. Since resilience in
a mixed system cannot be better than in the shared-memory model, it follows that f < k

is necessary and sufficient for any mixed model. Thus, when fopt < k − 1, a system can be
f -partitionable and still offer f -resilience for k-set consensus.1

The weakest failure detector needed for implementing a register in the cluster-based
model is strictly weaker than the weakest failure detector needed in the pure message-
passing model [28]. This aligns with the improved resilience we can achieve in a mixed
model compared to the pure message-passing model. It is interesting to explore the precise
improvement in resilience achieved with specific failure detectors and other mixed models.

We would also like to study systems where the message-passing network is not a clique.
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Abstract
The graph model enables a broad range of analysis, thus graph processing is an invaluable tool in
data analytics. At the heart of every graph-processing system lies a concurrent graph data structure
storing the graph. Such a data structure needs to be highly efficient for both graph algorithms and
queries. Due to the continuous evolution, the sparsity, and the scale-free nature of real-world graphs,
graph-processing systems face the challenge of providing an appropriate graph data structure that
enables both fast analytical workloads and low-memory graph mutations. Existing graph structures
offer a hard trade-off between read-only performance, update friendliness, and memory consumption
upon updates. In this paper, we introduce csr++, a new graph data structure that removes these
trade-offs and enables both fast read-only analytics and quick and memory-friendly mutations. csr++
combines ideas from CSR, the fastest read-only data structure, and adjacency lists to achieve the
best of both worlds. We compare csr++ to CSR, adjacency lists from the Boost Graph Library, and
LLAMA, a state-of-the-art update-friendly graph structure. In our evaluation, which is based on
popular graph-processing algorithms executed over real-world graphs, we show that csr++ remains
close to CSR in read-only concurrent performance (within 10% on average), while significantly
outperforming CSR (by an order of magnitude) and LLAMA (by almost 2×) with frequent updates.
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1 Introduction

Graph processing is an invaluable tool for data analytics, as illustrated by the plethora of
relatively recent work aiming at achieving high performance for graph algorithms [12, 17, 23,
34, 35, 41], such as PageRank [29], or graph querying/mining [13, 21, 26, 27, 31, 33, 38], e.g.,
using PGQL [5]. At the heart of each graph system lies the graph data structure, responsible
for holding the vertices and the edges comprising the graph, and whose performance largely
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contributes to the general performance of the system. The ideal graph structure should offer
excellent read-only performance, fast mutations (i.e., vertex or edge insertions and deletions),
and low memory consumption with or without mutations.

Classic graph data structures typically trade some characteristics for others (see Sec-
tion 2.1). Adjacency lists enable quick graph updates and consume relatively little memory,
but sacrifice performance, as they lead to expensive pointer chasing. Adjacency matrices
enable quick edge updates, but sacrifice vertex insertions and consume a lot of memory.
Finally, the Compressed Sparse Row (CSR) representation offers a good memory footprint
with excellent read-only performance by completely sacrificing mutability: even a single
vertex or edge insertion requires complete reallocation of the underlying structures. There
have been efforts to improve the update-friendliness of CSR (see Section 2.2). These include
in-place update techniques [36, 39], batching techniques [11, 24], and changeset-based up-
dates with delta maps [22] and multi-versioning [23]. A multi-versioning solution is used in
LLAMA [23], a state-of-the-art update-friendly graph structure that enables mutability on
top of CSR by appending delta snapshots. However, having a frequent flow of graph updates
– which is the common case in real-life scenarios, such as financial transactions – results in a
large number of delta logs, and thus high memory utilization and decreased performance.
Compaction operations on these data structures are often expensive, hindering the benefits
of fast mutability (see Section 4 for a performance analysis). Very often, users simply need
to operate on the most up-to-date version of the graph data, thus asking for fast in-place
graph updates.

In this paper, we introduce csr++, a concurrent graph data structure with performance
comparable to CSR, efficient updates, and memory consumption proportional to the number
of mutations. csr++ maintains the array-continuity that makes CSR very fast. In particular,
vertices are stored in arrays, segmented for better update-friendliness. As in CSR, vertex
IDs in csr++ are implicitly determined by the location of the vertex, but include both the
segment ID and where in the segment the vertex lies. Accordingly, the 64 bits of vertex IDs
are split into {int segment_id; int in_segment_id}, making vertices directly addressable.
Due to segmentation, inserting a new vertex is as simple as (i) if needed, appending a new
segment to the array of segments, and (ii) appending the vertex to that segment.

In contrast to CSR, and like adjacency lists, csr++ can independently manage the edges
of each vertex. If a vertex has two or more edges, csr++ holds a pointer to an array storing
the edges. To reduce memory usage, for single-edge vertices, the target vertex of the edge is
inlined in lieu of the array pointer. All in all, csr++ maintains the array-oriented structures
of CSR for performance, while enabling per-vertex edge-list modifications to enable fast
updates as with adjacency lists.

Apart from vertices and edges, graph structures also need to store vertex and edge
properties, which are a prominent feature of property graphs. csr++ includes segmentation
techniques to enable fast property updates when new vertices or edges are inserted. Vertex
properties are stored in segmented arrays, and each vertex holds a pointer to an array of edge
property values, allowing for fast per-segment or per-vertex reallocation of property arrays.

We evaluate csr++ with both read and update workloads, with various graphs and
graph algorithms, and compare it against CSR, adjacency lists, and LLAMA. Our results
indicate that csr++ is much faster than adjacency lists, is almost as fast as CSR on read-
only workloads, and has faster updates and lower memory consumption than LLAMA. In
particular, csr++ performs on average within 10% of the read-only performance of CSR with
36 threads and is an order of magnitude faster for updates. Furthermore, csr++ is faster
than LLAMA for most read-only workloads, is almost 2× faster in applying batched updates,
and consumes 4× less memory when 100 update batches are applied on a base graph.
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Figure 1 (1) An example graph with newly inserted edges in green, represented in different graph
structures: (2) CSR, (3) Adjacency list, and (4) LLAMA with implicit linking and deletion vectors.

The main contributions of this paper are as follows:
csr++, a new graph data structure that supports fast in-place updates, without sacrificing
read-only performance or memory consumption; and
Our thorough evaluation that shows that csr++ achieves the best of both read-only and
update-friendly worlds.

2 Background & Related Work

Graphs are already a prominent data model, especially in the current era of big data and
data deluge [16]. The advantage over the traditional relational model is that graphs can
inherently model entities and their relationships. While a relational model needs to join
tabular data in order to process foreign-key relationships, graph-processing engines have
built-in ways to efficiently iterate over the graph [37], e.g., over the neighbors of vertices, and
support a plethora of expressive graph algorithms (such as Green-Marl [19, 34]) and graph
pattern-matching queries (such as PGQL [5], SPARQL [8], and Gremlin [9]).

Graphs can be represented with different models and data representations. A popular
model is the RDF (Resource Description Framework) graph data model [8], which became
popular with the rise of the semantic web [10]. RDF regularizes the graph representation
as a set of triples. RDF adds links for all data, including constant literals, and it does not
explicitly store vertices, edges, or properties separately. As the graph is not stored in its
native format, it results in reduced performance [40], as RDF engines are forced to process
and join a large number of intermediate results.

Our paper focuses on a more recent model, the Property Graph (PG) model [6, 38], which
is widely adopted by various graph databases and processing systems (such as Neo4J [27]
and PGX [28, 31]). PG represents the topology of a graph natively as vertices and edges,
and stores properties separately in the form of key-value pairs. This separation allows for
quick traversals over the graph structure. Classic graph algorithms, such as PageRank [29]
and Connected Components, are very naturally expressed on top of property graphs [34].

In order for graph-processing engines to provide efficient solutions for large-scale graphs,
they rely on efficient data structures, potentially resident on main memory [23, 41, 18, 15],
to store and process vertices and their relationships. One of the key challenges for in-memory
graph-processing engines is to design data structures with reasonable memory footprint [23]
that can support fast graph algorithm execution [19] and query pattern matching [32], whilst
supporting topological modifications (like additions or removals of vertices and edges), either
in batches or in a streaming fashion [25, 11]. In the following, we discuss the most prominent
data structures in related work [15], and motivate the necessity of the novel csr++. We show
in Figure 1 an example of a graph and how it is represented in different formats.
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2.1 Graph Representations

Adjacency Matrices and Lists. An adjacency matrix represents a graph with a V 2 matrix
M , where V is the number of vertices in the graph. A non-zero cell M [vs][vd] represents the
directed edge from a source vertex vs to a destination vertex vd. An adjacency matrix is not
preferred for sparse graphs, i.e., graphs where the number of edges E � V 2, due to increased
memory footprint and decreased performance in analytics.

Adjacency lists represent the graph with a set of vertices, where each vertex is associated
with a list of neighbors, as shown in Figure 1(3). An adjacency list typically consumes less
memory than an adjacency matrix, since for a given vertex only the existing edges need to
be stored. The typical format for the adjacency list uses linked lists, with extra pointers, but
more cache-friendly variants exist, such as Blocked Adjacency Lists, where adjacencies are
represented by simple arrays [41] or with linked lists of buckets containing a fixed size of
edges [14, 17]. As an example, the popular Boost C++ Library [1] implements adjacency
lists and the edge structures can be configured to either be vectors, lists, or sets. Although
adjacency lists can be efficient in terms of mutations, they struggle in read-only workloads,
as we show in Section 4.

Compressed Sparse Row (CSR). CSR [19] is a commonly used data structure for sparse
graphs, because it compacts adjacencies into two arrays: The vertex array and the edge array.
In the vertex array, each vertex is identified by its array index. The vertex cell stores the
begin offset in the edge array (the end offset is implicit, as it is equal to the begin offset of
the next vertex cell), where the list of the destination neighbors of this vertex is stored, as
shown in Figure 1(2). In terms of graph mutations, CSR is very inefficient. For example, to
add an edge, the whole edge array needs to be reallocated with the newly-added edge and
the subsequent edges shifted by one place.

2.2 Graph Mutations

Graph mutations, or updates, mostly refer to vertex or edge insertions and deletions. Although
CSR is one of the most popular data structures for representing a graph, it is, as mentioned
above, very limiting for graph mutations. This has prompted a lot of related work on mutable
data structures to represent graphs that can efficiently digest sets of updates.

In-Place Updates. Techniques that use in-place updates employ the aforementioned static
data structures in a way that allows for in-place digestion of sets with insertions and deletions
of vertices and edges, without requiring the expensive rebuild of the data structure. For
instance, Dense [20] is a concurrent graph adjacency matrix that supports mutations and
partial traversals through a coordination protocol, but does not handle graph properties.
NetworKit [36], in order to perform edge insertions, stores adjacencies vectors that double the
size of the initial array to reserve enough space for new incoming edges. Madduri et al. [24]
use the same underlying technique but define a configurable size of the new edge array instead
of using factor 2. Ediger et al. [14] implement blocked adjacency lists and allow insertions
by appending new blocks and updating pointers. Wheatman et al. [39] implement a variant
of CSR that leaves space at the end of each adjacency list to allow efficient single-threaded
mutations. We employ similar techniques in csr++ to ingest mutations, but in a parallel
manner while also handling graph property mutations.
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Batching. Regarding the sources of changes, they can be continuous streams of updates [11,
14] or single changes applied as “local” mutations. Generally, when applying a batch of
updates, frameworks perform pre-processing to re-arrange the batches in ways that can
speed-up the mutations. For instance, Madduri et al. [24] apply techniques on the list of new
edges, such as sorting, re-ordering, and partitioning, in order to exploit parallelism at the
time of the changes application. Similarly, csr++ groups updates by their source vertices,
and uses multiple threads to perform fast edge insertions (see Section 3.2).

Multi-Versioning & Deltas. One way to extend CSR to support fast updates is by allocating
a separate structure to store only the new changes [22] in delta maps. Furthermore, by
using deltas, the following systems can run analytical workloads on different static versions
(snapshots) of the changing graph over time. LLAMA [23] is a state-of-the-art snapshot-based
graph system that supports multi-versioning by storing deltas as separate snapshots and
supports concurrent access to those snapshots (see Figure 1(4)). ASGraph [17] limits its
read-access to one snapshot at a time but still ensures high performance by extending its
underlying data structure [14] with temporal attributes. Graphite [30] is an in-memory
relational column-store that employs also multi-versioning snapshots using deltas.

The downside of the above approaches is two-fold. First, maintaining separate snapshots
increases the memory requirements of the system, as a frequent flow of graph updates results
in a large number of deltas. Second, the performance of analytics is degraded because they
need to read from both the original structure and the deltas and reconcile them. A solution
to the potential performance degradation is to periodically merge the delta maps into CSR,
an operation called compaction. Compaction, however, can become very expensive, often
zeroing the mutability performance benefits of these structures. For users that wish to
operate on the most up-to-date version of the graph data, we show that csr++, which is
designed for in-place graph mutations, achieves better analytics and update performance than
LLAMA [23], with up to an order of magnitude lower memory requirements (see Section 4).

3 CSR++: Design and Implementation

With csr++, our goal is to design a data structure that stores graphs and allows fast in-
place mutations with analytics performance comparable to CSR. In order to allow for fast
algorithms, csr++ enables fast concurrent accesses to the main graph data (vertex and edge
tables) and stores additional graph data, such as reverse edges, user-defined keys, and vertex
and edge properties. csr++ does not aim to support versioning, but instead fast in-place
updates, allowing to withstand frequent small updates without the overhead of snapshots.

3.1 Graph Topology and Properties
csr++ is a concurrent structure that stores the graph in memory using segmentation techniques.
It allows in-place insertions by allocating additional space for new incoming edges and supports
logical deletions of vertices and edges. Figure 2 shows the building blocks of csr++.

Segments. csr++ stores vertices in arrays called segments. The graph is represented as an
array of segments, each storing a fixed number of vertices defined by a global configurable
parameter NUM_V_SEG. Segments give flexibility to csr++ in three ways: (i) memory allocations
and reallocations use segment granularity, (ii) vertex properties are allocated per segment,
and (iii) synchronization for concurrency uses segment granularity. As with CSR, csr++
packs the vertices in arrays to reduce the memory footprint when storing sparse graphs,
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which also results in better cache locality. The entry point to csr++ is an array that stores
all segments; this also enables quick segment additions. Finally, each segment stores a vector
of pointers to the vertex property arrays.

Vertices. Each vertex stores its degree, a pointer to its list of neighbors, and optionally
a pointer to the property values of its edges. This design resembles a mix of CSR and
adjacency lists, however, adding a new vertex in csr++ is faster (see Section 3.2) considering
that the vertex array is segmented, i.e., we do not need to copy the whole vertex array to
add or remove entries. csr++ does not store explicit IDs for vertices nor edges, but since
all segments store a fixed number NUM_V_SEG of vertices, we can compute implicit IDs for
vertices using the segment ID and the index of the vertex in the segment: global_v_id =
(seg_id * NUM_V_SEG) + v_id . Overall, the vertex structure consists of the following fields:

length (4 bytes): The vertex degree. A length of −1 indicates a deleted vertex.
neighbors (8 bytes): A pointer to the set of neighbors. As a space optimization, if
length = 1, this field directly contains the neighbor’s vertex ID.
edge_properties (8 bytes): A pointer to the set of edge properties. As a space
optimization, this field can be disabled in case the graph does not define edge properties.

Edges. csr++ represents the neighbors list of a vertex by an array of edges, where every
entry stores the coordinates (i.e., the vertex ID and the segment ID) of the corresponding
neighbor. At loading time, the edges are sorted; as with CSR and LLAMA, keeping the
edges sorted allows for better cache performance. Moreover, this semi-sorting is necessary for
csr++ in a deletion-frequent context, as we use binary search to locate edges. Additionally,
as an optimization for update-friendliness, csr++ can be configured to create extra empty
space for new incoming edges during graph loading (see Section 3.2). The edge structure
consists of the following fields:

deleted_flag (2 bytes): For logical deletion of edges.
vertex_id (2 bytes): The index of the neighbor in the segment; using 16 bits allows
for segments with a capacity NUM_V_SEG of up to 65536 entries.
segment_id (4 bytes): The segment ID where the neighbor is stored.

For better cache utilization when scanning over vertices and better load balancing when using
multiple threads, the number of vertices that a segment stores should neither be very small
nor too large, in order to avoid copying large amounts of data when the graph is updated.
By default we use NUM_V_SEG = 4096 vertices per segment.

Properties. Vertex property values are stored in arrays parallel to the vertices array. csr++
keeps a vector of pointers to each vertex property array within the segment. The size of
each array is therefore NUM_V_SEG * sizeof(Property_Type). For edge properties, we use the

Edge Array

prop_1
{type = char}

prop_2
{type = int}

Segments

V1 {num_edges = 3}

Vertex Array

Edge Properties Array

Vertex Array

Lock

Properties DesignTopology Design

Vertex Property Array

Figure 2 The building blocks of csr++: Graph topology (left) and graph properties (right).
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same segmentation approach as vertices. If the user enables edge properties, each vertex
structure stores a pointer to an array of edge property values, as shown in Figure 2. In
case of multiple properties, we allocate an array that stores the values for different edge
properties in an cache-aligned manner. In order to locate a specific edge property p, we use
offsets and the position of its values can be calculated given the type of that property Tp,
the index i of the edge in the neighbor list, and the degree d of the vertex v. For example,
suppose the user registers n edge properties, then the total size of the edge properties of
a vertex v is

∑n
p=1(sizeof (Typep) ∗ d). Similarly, the values of the xth property begin at

Values(x) =
∑x

p=1(sizeof (Typep) ∗ d). Accordingly, the property value for the xth property
of the edge i is Value(x, i) = Values(x) + (i ∗ sizeof (Typex)).

The reason for this choice is that having the edge properties stored in parallel to the edge
arrays allows to copy-on-write the edge property arrays of the updated vertices only, unlike
with CSR where there is a need to rebuild edge properties for the entire graph. In addition,
this design makes it easier to keep the property values in the same order as the edges in case
we have to sort them after an update operation. As we show in Section 4.6, this design adds
a moderate memory overhead. Naturally, if the to-be-loaded graph configuration does not
include edge properties, edge property support can be disabled to save memory.

Additional Structures. Most real-life graphs include user-provided vertex IDs, e.g., a full-
name string. csr++ supports mapping of user vertex keys to internal IDs by storing them in a
map and, inversely, internal IDs are mapped directly inside the segments of csr++ using one
ID mapping array per segment. For directed graphs, some algorithms, e.g., PageRank, require
access to reverse edges and sometimes mappings from reverse to their corresponding forward
edges (e.g., Weighted PageRank; see Section 4). To ensure fast lookup over the reverse edges
and their mapping, similar to most representations, such as CSR in Green-Marl [2] and
LLAMA, csr++ reserves additional structures to store the reverse edges corresponding to
each forward edge, as well as the mapping between their indices stored as an edge property.
These increase the memory footprint but contribute to higher performance.

Synchronization. Synchronization in csr++ is implemented at the segment level, using
spinlocks to protect data writes. csr++ does not support scans concurrent to updates.

3.2 Update Protocols
csr++ supports efficient concurrent in-place mutations by allowing both single local updates
(e.g., inserting edge by edge) and batch update operations.

Vertex and Edge Insertion. For vertex insertions, as described in the previous section, the
length field in the vertex structure stores the degree of the vertex. Lengths ≥ 0 indicate a
valid vertex. New vertex insertions land in the last segment. To add a vertex: in case there
is enough space in the last segment, csr++ finds the first non-valid vertex, and then sets the
vertex accordingly. Setting the vertex also indicates that there is a reserved space for the
corresponding vertex property entries. Otherwise, if the last segment is full, the insertion
operation allocates a new one, along with new arrays for each registered vertex property.

Inserting a new segment in csr++ is as simple as appending a new pointer to the segment
array. Extending this array is lightweight, given that even for large graphs such as Twitter,
csr++ only needs to copy ≈ 3MB worth of pointers.

As for edge insertions, the per-vertex edge arrays use classic allocation amortization
techniques for efficient edge insertions. If there is no space left to add edges, we double the size
of the array through reallocation. This way we keep the size of the allocated array as a power
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of two, which helps amortize the allocation costs upon possible future insertions. Naturally,
csr++ can support different growing factors than 2× to enable tuning edge insertion and
memory consumption performance.

Although csr++ efficiently supports single vertex and/or edge insertions, in practice,
insertions happen in batches, e.g., inserting a set of new transactions in a financial graph.
Batch insertion enables csr++ to leverage multi-threading and reduces the cost of maintaining
per-vertex edge sorting. Batch insertions are implemented with the following steps:
1. Collect an input of edges grouped by their source vertices and convert both source and

destination user keys to internal keys. New vertices are inserted in csr++ and each
acquires a new internal ID. We keep this step sequential in csr++, as it is very lightweight
(see Section 4.2).

2. Sort new edges (parallel for each source vertex) then insert them in direct and reverse
maps (parallel for each source vertex).

3. Sort the final edge arrays using a technique that merges two sorted arrays (i.e., the
old edges and the new ones) and reallocate edge properties (parallel for each modified
segment) according to the new order of edges.

Vertex and Edge Deletion. Deletions are not very frequent in real-life workloads. Accord-
ingly, we develop a very lightweight protocol of logical deletions. As presented above, for
vertices, setting the length to a negative value indicates an invalid/deleted vertex. For edges,
the separate delete_flag indicates deletion. Of course, vertex and edge iterators are adapted
to take these flags into account and disregard deleted entities. Optionally, when deleting
a vertex, the list of neighbors can be destroyed. Currently, csr++ instead restricts access
to the edges if the vertex length is negative. Since csr++ does not store explicit edge keys,
deleting an edge requires to translate the source and destination vertex keys to internal IDs
and scan over the neighbor list to locate the edge to be deleted. As already mentioned, for
fast scans, csr++ keeps the per-vertex edges sorted and performs binary searches. In case
storage becomes very fragmented due to many deletions, a rather heavyweight compaction
operation needs to be invoked to physically remove logically deleted entities. The cost of this
operation is proportional to the cost of populating the same graph from scratch. However, we
expect that this operation seldom happens in real-life deployments. Additionally, segments
with no deletions can be reused as-is in the compacted graph.

3.3 Algorithms on Top of CSR++
csr++ is written in C++ and is simple to use when writing graph algorithms. To iterate over
vertices, csr++ requires a nested loop to iterate over the segments then over the vertices per
segment. Using parallelism APIs, such as OpenMP [4], the nested loops can be automatically
collapsed and optimized. For algorithms requiring access to edges, the vertex structure
implements a get_neighbors() method that returns its edge list.

4 Evaluation

In this section, we answer to the following questions regarding the performance of csr++: How
does csr++ perform on read-only and on update workloads? How much memory does csr++
consume on these workloads? How does csr++ perform in comparison to other read-friendly
(i.e., CSR) and update-friendly graph structures (i.e., adjacency lists and LLAMA [23])?
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To this end, we compare the graph-structure configurations in Table 1, using two real-world
graphs [7], LiveJournal (4.8 million vertices and 68 million edges) and Twitter (41 million
vertices and 1.4 billion edges), as well as the four algorithms in Table 2 in various workload
configurations. Before we present the experimental results, we describe our configuration.

Table 1 Graph structures and the configurations that we use in our evaluation.

Name Type Configuration
csr++ Segmentation based Pre-allocating extra space for new edges. Deletion support

enabled only on deletion workloads, in order to have fair
comparison to LLAMA that does not support deletions by
the default.

BGL [1] Adjacency list Bidirectional with default parameters.
CSR [2] CSR Implementation in the Green-Marl library [2].
LLAMA [3] CSR with delta logs Read- and space-optimized with explicit linking. The fast-

est overall variant of LLAMA. Deletion support enabled
only on deletion workloads.

Table 2 Algorithms used in our evaluation.

Algorithm Description
PageRank Computes ranking scores for vertices based on their incoming edges.
Weakly Connected
Components (WCC)

Computes affinity of vertices within a network.

Breadth-First Search
(BFS)

Traverses the graph, starting from a root vertex, visits neighbors and
stores distance of vertices from the root vertex, as well as parents.

Weighted PageRank Computes ranking scores like the original PageRank and allows a weight
associated with every edge. It requires access to edge properties.

Experimental Methodology. For every result point, we perform five iterations and plot
the median. We report the execution time as a function of the number of threads. For most
analytics workloads we use CSR as a baseline. We run our benchmarks on a two-socket,
36-core machine with 384GB of RAM. Its two 2.30Ghz Intel Xeon E5-2699 v3 CPUs have
18 cores (36 hardware threads) and 32KB, 256KB and 46MB L1, L2, and LLC caches,
respectively. We disable Intel TurboBoost and do not use Intel Hyper-Threading in all
experiments. Both csr++ and the other evaluated systems are implemented in C++ and
compiled using GCC 4.8.2, with optimization level -O3 and -fopenmp on Oracle Linux 7.3.
We use the implementation of graph algorithms from Green-Marl [2].

We use the evaluated graphs as follows. For the read-only and deletion workloads, we
initially load the whole graph structures. For workloads with insertions, we initially load
80% of the graph and then insert batches of different sizes, generated using the graph-split
techniques used for loading and testing in the original LLAMA paper [23]. The first split
contains the 80% of the graph (≈1.1 billion edges for Twitter) that is loaded as a base graph.
Then, the remaining 20% is split using a random uniform distribution over N files; we refer
to N as the number of batches. Depending on the workload, we refer in figures to either the
batch size (e.g., 1% corresponds to splitting the 20% in 20 batches, hence 1% of the overall
graph), or the number of batches.
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Figure 3 Read-only performance of CSR, csr++, LLAMA, and adjacency lists (BGL).

4.1 Read-Only Workloads

We load the graph in memory and execute the evaluated algorithms. We report the execution
time taken to complete each algorithm and examine how it scales with multiple threads.

Figure 3 includes the results for csr++, CSR, BGL adjacency lists, and LLAMA. As
expected, the read-only CSR provides the best performance in this workload, since with
CSR, any graph access, for vertices, edges, and properties is as simple and efficient as an
indexed array access. Still, csr++ delivers performance comparable to CSR, especially in the
presence of multi-threading. Over all datapoints, csr++ is on average 15% slower than CSR,
while with 36 threads, csr++ is on average less than 10% slower than CSR.

As shown in Figure 3, we evaluate BGL adjacency lists only with PageRank. The reason
for this is that the other algorithms require reverse-to-forward edge mapping, which is
not supported out of the box in BGL. Still, the results of PageRank are conclusive: plain
adjacency lists cannot deliver performance comparable to read-friendly structures such as
CSR and csr++. Based on these results, and for simplicity of presentation, we omit adjacency
lists from the experiments in the rest of the paper.

Compared to LLAMA, csr++ is faster for four out of the six configurations by 16% on
average with 36 threads. Overall, the two systems perform within 1% of each other on
average. LLAMA is faster than csr++ for Pagerank with Livejournal and for BFS on Twitter.

For Weighted PageRank, we only evaluate CSR and csr++ and omit LLAMA because it
does not support edge properties out of the box. csr++ still performs close to CSR as shown
in Figures 3h and 3i. With 36 threads, csr++ is 1% faster than CSR on Twitter and 42%
slower for Livejournal. The slowdown in Livejournal is due to the small size of the graph:
with CSR’s representation, all data is served from the last-level cache, while csr++ needs to
slightly spill to main memory. These results show that the representation of edge properties
in csr++ performs comparably to CSR, especially on large graphs.

Overall, csr++ is very fast on read-only workloads, especially in the presence of concur-
rency, which is the intended use case of graph analytics.
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4.2 Updates: Vertex Insertions
Vertex insertions in csr++ are very lightweight, mainly due to segmentation (see Section 3.2).
Table 3 shows the time to insert different number of vertices on a fully loaded Twitter graph
(the choice of the graph has little impact on the performance of vertex insertions in csr++),
when the graph contains either no vertex properties or 50 vertex properties. Vertex insertions
are fast: With 10M insertions, inserting a vertex takes an average of 118 and 126 nanoseconds
per-vertex with no and 50 properties, respectively. Vertex properties are lightweight in csr++,
as they require just one memory allocation per property per segment.

Table 3 Time to add new vertices to Twitter graph in milliseconds.

#Vertices 10K 100K 1M 10M
Time (ms) – 0 vertex properties 1.6 11 120 1188
Time (ms) – 50 vertex properties 10 32 181 1259

4.3 Updates: Edge Insertions
First, we evaluate the time to insert all edges of one batch in both forward and reverse
structures (plus edge semi-sorting). Figure 4a shows the results. csr++ completes this full
batch insertion one order of magnitude faster than CSR. As expected, CSR completes all
batch insertions in the same amount of time, regardless of the batch size. In contrast, csr++
performs localized graph updates and thus delivers fast performance that is proportional to
the batch size.

Next, we examine the scalability of edge insertions with csr++ using the same workloads
and exploiting multi-threading. The results are shown in Figure 4b. We isolate insertions
by removing the edge semi-sorting that takes a significant amount of overall insertion time.
csr++ achieves good scalability for up to 12 threads. For more threads, performance does
not improve, in part because of the effects of memory contention and NUMA, but mainly
because of actual vertex contention: Twitter is a very skewed graph, hence many of the edge
insertions land in the same high-degree vertices, hindering parallelism. Note that for these
workloads, due to limited space, we only show the results with Twitter; we reach very similar
conclusions with the smaller LiveJournal graph.

We further compare csr++ to LLAMA for graph insertions. In Figure 5, we compare
the edge-insertion latency and memory consumption. We apply 1000 batches of insertions
(equivalent to the 0.02% workload in Figure 4), and print the memory usage and timestamp
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Figure 5 Memory consumption and batch-insertion latency of update workloads with 36 threads.
(a) & (b): Comparing csr++ and LLAMA without compaction. (c) & (d): Comparing csr++ and
LLAMA with compaction after every 100th batch insertion.

after inserting each batch. As shown in Figures 5a and 5b, the memory usage of LLAMA
explodes after applying 370 batches, causing the system to run out of memory. In contrast,
csr++ consumes memory proportional to the actual graph size. Additionally, csr++ is up to
2.7× faster in performing the insertions.

LLAMA provides a function to compact all snapshots into a single one. Figures 5c
and 5d show the performance of csr++ and LLAMA with compaction. After every 100
batches, we compact all 100 snapshots. LLAMA’s memory usage increases until compaction
is invoked, but it is still higher than csr++, even immediately after compaction. Note
that the compaction method in LLAMA does not provide instructions for building the
reverse edges, hence these figures show the performance of inserting only forward edges. In
principle, building the reverse edges is quite more expensive than building forward edges,
i.e., if the reverse operation was included, the cost of compacting would be significantly
higher. Compacting 100 snapshots with only direct edges in LLAMA takes up to 40 seconds
with a single thread and 5-7 seconds with 36 threads. As shown in Figure 5c, csr++ is still
consistently faster than LLAMA by a factor of approximately 1.8×.

4.4 Updates: Edge Deletions
To support edge deletions, we modify our vertex and edge iterators in csr++ to check whether
a vertex or an edge is deleted, using the embedded flag in their respective structures. For
LLAMA, we enable the deletion vector which similarly adds the cost of checking whether
edges are deleted. Figure 4c shows the time csr++ takes to perform edge deletions. Each
data point represents the time to delete a whole batch of edges. The scalability is almost
linear relative to the number of threads, and, as we increase the batch size, the effect of
multithreading is more noticeable.

With a single thread, deletions are more computationally heavy, and therefore slower
than insertions, as can be seen in Figures 4b and 4c. As we mention earlier, csr++ does
not store edge indices (it would be very memory consuming), which means that for every
edge that is deleted, the thread needs to perform a (binary) search to find the target edge to
delete logically. Note that csr++ can “easily” also support physical deletion of edges, at the
additional cost of having to reshuffle edge properties to match the new edge array.

4.5 Analytics After Graph Updates
To evaluate csr++ in a mutation context, we first load the initial 80% of the graph and
simulate the insertion of a stream of updates (batches of new edges and new vertices), then
we evaluate PageRank. For insertions, this workload evaluates the impact of updates on
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Figure 6 PageRank performance after graph updates. (a) Comparing performance of CSR, csr++,
and LLAMA after applying 100 (of size 0.2%) batches of new edges; (b) Performance of csr++ after
applying 12 (1.6%), 20 (2%), 100 (0.2%) and 1000 (0.02%) batches of new edges, CSR is used as a
baseline; (c) Performance of csr++ and LLAMA after deleting one batch of edges of different sizes.

the performance of the graph structures, e.g., for csr++ reallocations of edge arrays and the
added pointers to newly-allocated segments. For deletions, we examine the overhead of the
extra conditional branch to check the deleted flags and the cost of virtual deletions.

Figure 6 shows the performance of PagerRank with csr++ and LLAMA after applying
mutations to the graph. In Figure 6a, we observe that, after inserting 100 batches of new
edges, the performance of csr++ only decreases by a factor of less than 1.25× as compared
to CSR, which shows the moderate overhead that is caused by the continuous reallocations
of edge arrays and the copy-on-write of the indirection layer. Additionally, LLAMA is faster
than csr++ by a factor of 1.12× but consumes ≈5× more memory than csr++ (see also
Table 4). This is due to the 100 snapshots LLAMA stores as multi-versioning support. If
we need to perform analytics on the latest version of the graph (which is the case of most
real-world scenarios), the significant memory overhead of these snapshots may not be worth
the minimal performance improvement. Figure 6b shows a breakdown of the performance of
csr++ when inserting different numbers of new batches: increasing the number of batches
results in more reallocations and copy-on-write operations. csr++ scales well in all cases and
keeps the moderate overhead of ≈1.25× over CSR even after inserting 1000 batches.

Finally, Figure 6c shows the performance of csr++ and LLAMA after deleting one batch
of edges of different sizes, relative to csr++’s performance without deletions. As we mention
earlier, we modified the iterators in csr++ to check for deletion flags in vertices and edges. We
delete up to 23 million edges from the 1.47 billion total edges of Twitter, and as expected, the
performance is similar to that of the baseline (i.e., without deletions). The extra conditional
branches in csr++ do not introduce considerable overhead. In case there are only few
deletions, branch prediction makes sure that these deletion checks have minimal overhead,
resulting in performance close to the original implementation (i.e., without deletion checks).
In contrast, LLAMA’s performance significantly suffers when enabling support for deletions
and makes LLAMA ≈30% slower than csr++.

4.6 Memory Footprint
We calculate the memory footprint of Twitter and LiveJournal graphs stored in CSR, csr++,
and LLAMA (read-optimized), both just after loading them in memory and after applying
different numbers of batch insertions on Twitter (Table 4).

As shown in Table 4, CSR is the most compact representation and consumes the least
memory – at the cost of mutability. The memory overhead of LLAMA is small when storing
one snapshot (i.e., before applying mutations), but as can be seen in the same Table 4, this
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Table 4 Memory footprint of different graph structures in GB in read-only workloads and after
inserting a different number of batches (Twitter-x, where x is the number of batches).

Graph Structure LiveJournal Twitter Twitter-12 Twitter-20 Twitter-100
CSR 0.53 11.09 11.09 11.09 11.09
csr++ read-only 0.57 11.54 - - -
csr++ 0.82 16.55 16.55 16.55 16.55
LLAMA 0.58 11.56 21.66 27.03 78.00
LLAMA implicit 0.58 11.56 19.02 23.99 73.64
linking

overhead increases steeply when applying batches. It is primarily due to storing different
delta-snapshots of the graph for versioning. As mentioned earlier, for realistic workloads
such as applying updates at a high frequency and then running analytics on recent versions
of the graph, this memory overhead may lead to out-of-memory errors. As a reference, we
include a second variant of LLAMA with implicit linking across snapshot versions, which
trades performance for memory. The memory savings of this variant are low, however, and
its performance is significantly worse (hence why our performance figures do not include it).

The default version of csr++ has a moderate memory overhead of 33% compared to CSR,
due to the pre-allocation of extra space for edge arrays. When this optimization is disabled,
memory is allocated in a tight manner and csr++ consumes closely to CSR.

5 Concluding Remarks

We introduced csr++, a new concurrent graph data structure that is as fast as the fastest
existing read-only graph structure, namely CSR, while enabling fast and memory-efficient
in-place graph mutations. csr++ achieves this sweet spot by combining the array-based
design of CSR with the mutability of adjacency lists. In practice, csr++ is within 10% of the
performance of CSR and delivers an order of magnitude faster updates.

Future work includes using smarter synchronization mechanisms in csr++ (such as e.g.,
developing lock-free protocols to avoid per-segment locking) as well as improving scalability
with concurrent updates. Furthermore, we intend to explore smarter, faster, and locality-
preserving memory reallocations using different memory allocators that are better suited for
multithreaded applications.
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Abstract
An elegant strategy for proving impossibility results in distributed computing was introduced in the
celebrated FLP consensus impossibility proof. This strategy is local in nature as at each stage, one
configuration of a hypothetical protocol for consensus is considered, together with future valencies of
possible extensions. This proof strategy has been used in numerous situations related to consensus,
leading one to wonder why it has not been used in impossibility results of two other well-known
tasks: set agreement and renaming. This paper provides an explanation of why impossibility proofs
of these tasks have been of a global nature. It shows that a protocol can always solve such tasks
locally, in the following sense. Given a configuration and all its future valencies, if a single successor
configuration is selected, then the protocol can reveal all decisions in this branch of executions,
satisfying the task specification. This result is shown for both set agreement and renaming, implying
that there are no local impossibility proofs for these tasks.
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1 Introduction

An elegant strategy for proving impossibility results in distributed computing was introduced
in the celebrated FLP consensus impossibility proof [17]. This strategy is local in nature
as at each stage, one configuration of a hypothetical protocol for consensus is considered,
together with its future valencies, namely, the decisions the protocol may reach from this
configuration. To apply it, one needs to consider only the interactions of pending transitions
at the configuration, and analyze their commutativity properties. This local nature makes
the strategy very powerful and flexible, and has therefore been used in numerous situations
related to consensus (e.g., [1, 3, 6, 7, 8, 16, 21, 24, 25, 26, 27, 29]).
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For this reason, it would be desirable to be able to use a local strategy, in the style
of FLP, to prove impossibility results for two other important tasks: k-set agreement [15],
an extension of consensus, where processes may decide on up to k different values, and
M -renaming [4], where processes must pick distinct names from a given namespace of size
M . Existing impossibility proofs for these tasks (e.g., [5, 9, 10, 12, 22, 23, 32]) are based on
topological invariant properties of final configurations of a protocol, which are global in nature,
namely, all final configurations are analyzed together to argue that there is no protocol for the
task. For consensus, these configurations are connected, in the graph-theoretic sense. For set
agreement and renaming, higher-dimensional connectivity properties are proved. Researchers
have investigated why only global impossibility proofs have been used for these tasks [2].

This paper provides an explanation of why the impossibility proof strategies for set
agreement and renaming have been of a global nature. It shows that one could not hope to
prove that set agreement and renaming are unsolvable through a local argument, since they
are solvable in a local sense. For a configuration C of the protocol, we denote by χ(C) all
its successor configurations. In a local FLP style of argument, one selects a configuration
C ′ ∈ χ(C), based on the valencies of the configurations in χ(C). The observation is that
valencies can be assigned to χ(C), such that for any chosen configuration C ′ ∈ χ(C),
the protocol can reveal decisions in all final configurations extending C ′, such that the
decisions are consistent both with the valencies and with the task specification. Intuitively, a
hypothetical protocol for set agreement or renaming can “hide” its errors, if one inspects it
only locally.

Intuitively, the reason that a protocol can do this for set agreement and renaming, and
not for consensus, is that the consensus specification is one-dimensional in nature, so one can
“corner” the protocol to reveal a configuration violating agreement (assuming the protocol
terminates). Formally, it is always possible to find a bivalent configuration for consensus,
and it is impossible to locally solve consensus from such a configuration. For set agreement
and renaming, the protocol can “move” its errors around, on a higher dimensional space,
without being cornered, even if the protocol declares all its valencies.

In more detail, given a hypothetical full-information protocol for either set agreement
or renaming, we introduce the notion of valency task for set agreement and for renaming.
The inputs to such a task are the configurations χ(C) of the protocol after ` rounds, ` ≥ 1
(one round after some configuration C). For each configuration C ′ ∈ χ(C), there is a valency,
val(C ′), specifying the outputs of the protocol on executions starting in C ′. The valency
task is thus defined together by both χ(C) and the valencies. A protocol solves the valency
task locally in m ≥ 1 rounds, if starting on any C ′ ∈ χ(C), after m rounds it produces
decisions that are consistent with the task specification (either set agreement or renaming),
and additionally complete, that is, if a value v ∈ val(C ′), then at least one process decides v
in at least one execution starting in C ′. This captures the notion that the values promised
by valencies are indeed decided.

We present the notions of valency task and local solvability in Section 3, and define
valency tasks for set agreement and renaming. We show in Section 4 that for both valency
tasks, set agreement and renaming, for any ` ≥ 1, the task is locally solvable, in one round
(m = 1) in the wait-free model. This theorem implies our main result that there are no
local proofs, in the style of FLP, for set agreement and renaming, as shown in Section 5,
where we present a precise notion of local impossibility proof. The techniques are based
on combinatorial topology arguments explaining how a protocol can “hide” the inevitable
mistakes it must make in some final decisions.
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The setting used is a round-based wait-free model, where n asynchronous processes com-
municate reading and writing shared variables. Since the model is wait-free, the impossibility
results are related to k-set agreement, k = n− 1, and M -renaming, M = 2n− 1. Working
in a round-based model facilitates identification of consistent layers of configurations, and
talking about `-round configurations. Considering wait-free executions allows to assume the
hypothetical protocol decides always after some number of rounds, R. The significance of
these specific cases and the choice of the model is further discussed in Section 6, which also
explains the relation of our results to the approach of Alistarh, Aspnes, Ellen, Gelashvili and
Zhu [2], the first paper that has considered this question, which showed that extension-based
techniques do not suffice for proving the impossibility of solving set agreement.

2 Model of Computation and Its Topological Interpretation

The model we consider is a standard shared-memory system with n ≥ 2 asynchronous wait-
free processes, P0, . . . , Pn−1, communicating by atomically reading and writing to shared
variables.

The IIS model. A protocol specifies, for each process, the steps to perform in order to solve
a task. We consider an iterated immediate snapshot (IIS) [31] model of computation in which
the protocol proceeds in a sequence of asynchronous rounds. In each round r ≥ 1, a process
performs an immediate snapshot (IS) operation on a clean shared array M [r]. The execution
of an IS operation on M [r] is described as a sequence of concurrency classes, i.e., non-empty
sets of processes. Each concurrency class indicates that the processes in the class first write
in M [r] (in some arbitrary order) and then read all entries of M [r] (in some arbitrary order).
Each process appears in exactly one concurrency class for round r, namely, executes one IS,
on each memory M [r].

An execution starting in σ is defined by a sequence of IS executions, one for eachM [r]: the
sequence of concurrency classes on M [1], followed by the sequence of concurrency classes on
M [2], and so on. Since processes access a clean memoryM [r] in every round r, IIS executions
can be equivalently defined as a sequence of concurrency classes with the property that, for
each concurrency class C, the processes in it perform the same number of IS operations in
the concurrency classes preceding C. This means that all of them are poised to perform an
IS operation on the same M [r].

A configuration of the protocol σ = {(P0, v0), . . . , (Pn−1, vn−1)} consists of the local state
vi for each process Pi, during an execution. Notice that the states of the processes define the
values assigned to the entries of M [r]. In an initial configuration σ, each process of σ is in
an initial state determined by its input value (and its id), and all shared variables hold their
initial value. A partial configuration of a configuration σ is a subset of σ.

Tasks. A task T = (I,O,∆) is specified by a set of input assignments I to the processes
participating in an execution, a set of possible output assignments O to the participating
processes, and a mapping ∆ : I 7→ 2O specifying the allowable outputs for each input
assignment. A protocol solves a task T if in every execution starting in any initial configuration
σ ∈ I, every participating process of σ decides an output value, such that the output values
of the processes respect ∆ for their input values. The safety property is that the decisions
of the processes starting with inputs σ ∈ I define an output simplex τ , such that τ ∈ ∆(σ).
The liveness property is that the protocol is wait-free, namely, a process does not take an
infinite number of steps without deciding.
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A task is solvable in the IIS model if and only if is solvable in the standard asynchronous
read/write model [11, 18]. When one is interested only in computability (and not complexity),
the protocol may be assumed to be full-information: a process remembers everything, and
always writes all the information it has. Therefore, the protocol only needs to instruct a
process when to decide, and on which output value.

The following tasks are defined over a domain of possible inputs V = {0, 1, . . . , n− 1}.
For proving impossibility results, it suffices to assume that a process Pi starts with input i.

I Definition 1. In the k-set agreement task [15] processes decide on at most k different
values, among the input values they have observed. The case where k = 1 and V = {0, 1}, is
the binary consensus task.

I Definition 2. In the M -renaming task [4] processes start with distinct values from a large
domain, and decide on distinct values from a smaller domain {0, . . . ,M − 1}.
In the weak symmetry breaking task [19] processes decide values in {0, 1}, such that not all
of them decide the same value.

If there is a protocol solving (2n − 2)-renaming then there is a protocol solving weak
symmetry breaking [19]. Due to its simpler structure and equivalence to (2n− 2)-renaming,
we study weak symmetry breaking instead of studying renaming.

Topological Interpretation. Since protocols preserve topological invariants of the model
of computation, and these invariants, in turn, determine which tasks are solvable, it is
convenient to describe protocols in the topological model of distributed computing [20].

In this model, the inputs of a task form an input complex I, which is a family of sets
closed under containment. Each set in the family is called a simplex. An input simplex σ ∈ I
has the form σ = {(Pi, vi)}, for some subset of processes Pi, denoted ids(σ). It indicates
that process Pi ∈ ids(σ) starts with input vi. The values vi are taken from a universe V
of possible input values. The facets of I are the simplexes of size n, defining the initial
configurations of the system. (A facet is a simplex that is not contained in another simplex.)
The output complex O is defined similarly.

For each input simplex σ ∈ I, a task T = (I,O,∆) specifies an output simplex τ ∈ ∆(σ),
τ = {(Pi, v′i)}. This means that Pi may decide v′i, in an execution starting with inputs
defined by σ, where the processes observe steps by processes in ids(σ).

Consider tuples of the form (P, view), where P is in ids(σ) and view is the state of P after
` rounds of communication. A configuration is a simplex, a set of such tuples, specifying the
states of the processes after ` rounds. The set of all configurations starting in σ, after some
number of rounds ` (including the partial configurations), defines the protocol complex χ`(σ).
The configurations of χ`(σ) are the simplexes of this complex. For a partial configuration
σ′ ⊂ σ, χ`(σ′) is the subset of χ`(σ) corresponding to executions where the processes of
ids(σ′) see only immediate snapshots by themselves.

In our model, the topological invariant preserved is that a full-information protocol
subdivides the input complex.

The protocol complex is denoted χ`(σ), since it turns out that it is the `-th chromatic
subdivision of σ. For example, when n = 3, a configuration may be drawn as a triangle, as
seen in Figure 1(left). The figure depicts the subdivision obtained after one round, χ(σ),
for three processes (p = black, q = grey, r = white), starting in one input simplex σ. It
describes the sequences of concurrency classes that led to four of its simplexes. Notice that a
partial configuration, σ′ ⊂ σ, |σ| = 3, is depicted as a vertex (state of one process) or as an
edge (state of two processes), contained in the triangle σ. The subdivision χ2(σ) is obtained
by replacing each triangle τ of χ(σ), by χ(τ), and so forth.
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A task T is solvable in ` rounds if and only if there is a simplicial map δ from the
`-th chromatic subdivision χ`(I) to O that respects ∆, i.e., for every σ ∈ I, δ(χ`(σ)) is a
subcomplex of ∆(σ). (A simplicial map sends vertices of one complex to vertices of another
complex, preserving simplexes.)

If the input complex is finite (i.e., the universe V of possible input values is finite), it is
well-known that there is an integer R, such that processes always decide at the end of the
R-th round in a wait-free protocol. (This follows directly from König’s Lemma.)

The dimension of the protocol complex, as well as the input complex, is n − 1. (The
dimension of a simplex σ is |σ| − 1, and the dimension of a complex is the largest dimension
of any of its simplexes.)

The carrier, carr(τ, χ`(σ)), is the smallest σ′ ⊆ σ, such that τ ∈ χ`(σ′). In the figure,
for the two edges of τ , we have carr(τ ′, χ`(σ)) = σ′, and carr(τ ′′, χ`(σ)) = σ.

A carrier map ∆ : I 7→ 2O sending each input simplex σ ∈ I to a subcomplex ∆(σ) of O,
such that σ ⊆ σ′ implies ∆(σ) ⊆ ∆(σ′).

3 Valency Tasks and Local Solvability

We introduce here the notions of valency task, and of locally solving such a task. Together,
these notions provide the basic step in an impossibility proof in the FLP style, that will be
formally defined in Section 5.

As discussed above, both for set agreement and weak symmetry breaking, one may consider,
without loss of generality, a single input configuration, σ = {(P0, 0), · · · , (Pn−1, n − 1)},
meaning that the initial local states of the processes differ only in their ids. Thus, the input
complex I consists of σ together with each subset of σ. For short, let σ = {0, · · · , n− 1},
and we sometimes abuse notation and denote the input complex also by σ.

Now, assume by way of contradiction that there is a protocol P solving an unsolvable
task T in R rounds, for some R ≥ 1. Namely, the protocol complex is χR(σ), and each vertex
v = (p, view) of this complex corresponds to the state view of a process p, based on which, p
produces an output, after executing an IS on M [R]. Solving the task means that the protocol
determines a simplicial map δ, a coloring of each vertex v of χR(σ) with a decision value,
δ(v), by the map δ(v) = (p, out), in such a way that for any final configuration τ ∈ χR(σ),
the simplex of decision values δ(τ) belongs to ∆(σ). Since the task is unsolvable, there is no
such δ. Intuitively, a local proof demonstrates a contradiction by pinpointing a configuration
τ of the protocol complex where the decisions do not satisfy the task specification, through a
local observation, as follows.

3.1 Overview of the local solvability approach
Assume a protocol P solving the task in R = `+m rounds, and consider all the configurations
after ` ≥ 1 rounds, χ`(σ), and for each configuration σ′ ∈ χ`(σ), the valencies, val(σ′)
determined by P . Namely, for each value v ∈ val(σ′), there is a final configuration τ ∈ χm(σ′),
a successor of σ′ after m rounds, such that at least one process decides on the value v in
τ . The successor configurations of σ′ are all configurations after m additional rounds of
computation by processes in σ′, namely, all simplexes in χm(σ′). Figure 1 (right) depicts
the case of ` = m = 1. The successor τ of σ′ is reached from the initial configuration σ in
`+m rounds. Given χ`(σ) and all the valencies of all these configurations, the impossibility
argument consists of selecting one σ′ ∈ χ`(σ). If there are legal decisions δσ′ for all final
configurations extending σ′, then the impossibility argument did not succeed in finding a
contradiction, because δσ′ could be the map used by P. This is precisely what we show for
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Figure 2 Consensus is not locally solvable.

set agreement and weak symmetry breaking: one can define valencies, such that for any
such σ′ there is a protocol δσ′ solving the task locally at σ′. The protocol δσ′ colors the
vertices of χm(σ′) after executing m rounds starting in σ′ and satisfies the task specification,
and additionally, the a priori made commitments expressed by val(σ′) (each val ∈ val(σ′) is
indeed decided, i.e., there is a vertex (p, view) ∈ χm(σ′), with δσ′(p, view) = (p, val)). Thus,
the protocol indeed preserves the valencies.

That is, an incorrect protocol can always hide the error locally. Given that the task
is unsolvable, an error must exist somewhere. However, each particular configuration σ′

inspected looks fine, and the error is moved elsewhere. We stress that this holds for every
` ≥ 1 and m = 1, namely, even inspecting one round before the protocol terminates.

3.2 There is no Locally Solvable Valency Task for Consensus
For consensus, there is no way of defining a locally-solvable valency task. This is indeed
what is expected, since there is a local impossibility proof for consensus. We show that there
is no way to assign valencies, so that a protocol can hide its error. We present the case where
the hypothetical protocol solves consensus in two rounds, `+m = 2, but the general case is
analogous. (See Figure 2.)

Let σ = {0, 1} be the input edge, and the task specification ∆({0}) = {(P0, 0)}, ∆({1}) =
{(P1, 1)}, ∆({0, 1}) = {{(P0, 0), (P1, 0)}, {(P0, 0), (P1, 1)}}. In terms of valencies, for i ∈
{0, 1}, observe that val({i}) = {i} (for any m), because χm(Pi, i) is the solo execution of Pi
with input i, in which Pi must decide i. Thus, val(σ) = {0, 1} as χm(Pi, i) ⊂ χ`(σ).
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Consider the complex χ1(σ), which has the following edges: {(P0, 〈0〉), (P1, 〈0, 1〉)}, cor-
responding to the execution in which P0 goes first and then P1; {(P1, 〈0, 1〉), (P0, 〈0, 1〉)}, cor-
responding to the execution in which both processes run concurrently; {(P0, 〈0, 1〉), (P1, 〈1〉)},
corresponding to the execution in which P1 goes first and then P0. As explained above,
val(P0, 〈0〉) = {0} and val(P1, 〈1〉) = {1}, and the valency of any other vertex of χ(σ),
(P0, 〈0, 1〉) and (P1, 〈0, 1〉), is either {0} or {1}. Thus, there must be an edge σ′ = (u, v) ∈
χ1(σ) among the three edges with val(u) = {0} and val(v) = {1}, and hence val(σ′) = {0, 1}.
We pick such an edge σ′ and observe that consensus is not locally solvable in χ1(σ′), i.e., the
valency task with input σ′ and outputs χ1(σ′) with these valencies is not solvable. This is
because any attempt to color the vertices of χ1(σ′), with one endpoint of the path colored 0
and the other colored 1, will produce an edge τ whose vertices have different colors, violating
the agreement requirement of consensus.

We have seen that for consensus (1-set agreement) it is impossible to define a valency
task that is locally solvable. In Sections 3.3 and 3.4 we show how to specify valency tasks for
set agreement and weak symmetry breaking that are locally solvable, and in Section 4 we
describe protocols that solve them.

3.3 Valency Tasks and Local Solvability for Set Agreement
Consider now the unique input simplex σ = {0, . . . , n− 1} for k-set agreement, k = n− 1.
Processes decide values from σ that they have seen, and such that at most n− 1 different
values are decided in an execution.

Following topology terminology, in the rest of the paper configurations are called simplexes.
First, recall that for a simplex τ ∈ χ`(σ), the carrier of τ in χ`(σ) is the smallest face σ′ ⊆ σ,
such that τ ∈ χ`(σ′). From an operational perspective, carr(τ, χ`(σ)) identifies the set of
processes seen in the `-round IIS execution that ends at configuration τ .

The goal is to define, for each `, a set agreement valency task T = 〈χ`(σ), σ, val〉. This
is a task that respects the set agreement specification: a decided value should have been
seen, namely, a process deciding v must have v in its view. Indeed, agreement tasks such as
consensus and set agreement are specializations of a validity task [14], where this is the only
requirement.

More formally, in a valency task for set agreement, for every simplex τ ∈ χ`(σ), val(τ) ⊆
carr(τ, χ`(σ)). The set of inputs of T are the configurations at round `, namely χ`(σ). For
each configuration τ ∈ χ`(σ), the set of possible decisions val(τ) is a non-empty subset of σ
(this is the standard hypothesis of Sperner’s lemma). Notice that val can be formally defined
as a carrier map.1 The following is a particular set agreement valency task.

I Definition 3 (Locally solvable set agreement valency task). For every integer ` ≥ 1, let
T = 〈χ`(σ), σ, val〉, where val is the carrier map defined by
1. If |τ | ≤ n− 2, then val(τ) = ids(τ),
2. else val(τ) = carr(τ, χ`(σ)).

In the notion of local solvability of valency-tasks, we ask for a protocol that solves T in
m rounds, namely a decision map cτ : χ`+m(σ) → σ that respects T . Thus, cτ is a global
solution to T , but the k-set agreement task is solved only locally at τ : cτ is determined by
a specific input simplex τ ∈ χ`(σ), and cτ (χm(τ)) does not have any simplex with k + 1

1 Formally, the corresponding task specification ∆, for ∆(τ), consists of all output simplexes labeled by
output values from val(τ).
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decisions. Of course, cτ does not globally solve k-set agreement because indeed cτ (χ`+m(σ))
is a Sperner’s coloring and has at least one simplex colored with n different decisions, by
Sperner’s lemma [33]. Recall that a Sperner coloring c : χ`+m(σ)→ σ is a simplicial map
such that c(v) ∈ carr(τ, χ`+m(σ)), for every vertex v of χ`+m(σ).

We have that if cτ solves T in m rounds, for each τ ∈ χ`(σ) and all configurations after m
rounds, χ`+m(τ), it should hold that cτ is consistent, i.e., cτ (χ`+m(τ)) ⊆ val(τ). We require
that cτ is additionally complete, meaning that every value committed by the valencies, is
indeed decided, namely, cτ (χ`+m(τ)) = val(τ).

I Definition 4 (Local solvability of k-set agreement). We say that a set agreement valency task
T = 〈χ`(σ), σ, val〉 is k-locally solvable in m ≥ 1 rounds if for every input simplex τ ∈ χ`(σ)
there is a decision simplicial map cτ : χ`+m(σ)→ σ that is consistent and complete w.r.t. T
and cτ (χm(τ)) does not have simplexes with more than k distinct decisions at its vertices.

We stress that local solvability allows cτ (which depends on τ) to have simplexes not in
χm(τ) with more than k distinct decisions, as it requires that cτ solves k-set agreement only
in χm(τ). Although it is unavoidable that there are simplexes with more than k distinct
decisions somewhere (due to the k-set agreement impossibility), local solvability does not
require that the task is globally unsolvable. Indeed, while we prove (Section 4.1) that the
valency task for set agreement is (n− 1)-locally solvable in a single round, we do not prove it
is globally unsolvable.

3.4 Valency Tasks and Local Solvability for Weak Symmetry Breaking
The weak symmetry breaking task with unique input (n−1)-simplex σ = {0, . . . , n−1} requires
that the binary output coloring on the boundary of χ`(σ) has the next symmetry property
(assuming the protocol terminates in ` rounds) on the vertices V (χ`(σ)), e.g. [12, 13, 23]:

I Definition 5 (Symmetric binary coloring). A symmetric binary coloring of χ`(σ) is a
simplicial map b : V (χ`(σ))→ {0, 1} satisfying that, for any two distinct proper faces σ′, σ′′
of σ of the same dimension, v ∈ V (χ`(σ′)) and φ(v) ∈ V (χ`(σ′′)) have the same binary color,
i.e. b(v) = b(φ(v)), where φ is the simplicial bijection between V (χ`(σ′)) and V (χ`(σ′′)) that
maps vertices preserving order, namely, vertices with the smallest id in ids(σ′) to vertices
with the smallest id in ids(σ′′), vertices with the second smallest id in ids(σ′) to vertices with
the second smallest id in ids(σ′′), and so on.

We remark that a weak symmetry breaking protocol can be transformed into a comparison-
based protocol, in which processes only perform comparisons between inputs. Thus, actual
input values are irrelevant, and only the relative order among them matters. In inputless
weak symmetry breaking, i ∈ σ denotes the process with i-th input, in ascending order.

Output decisions in weak symmetry breaking are binary, hence in valency tasks for weak
symmetry breaking the carrier map val goes from χ`(σ) to {0, 1}, the complex with a single
edge, and its vertices. Since val models the valencies of a hypothetical protocol for weak
symmetry breaking, the valencies must be symmetric on the boundary; this is the only
requirement val must satisfy. The following is a particular weak symmetry breaking valency
task, where it is not hard to check that val is indeed a carrier map.

I Definition 6 (Locally solvable weak symmetry breaking valency task). For every ` ≥ 1, let
T = 〈χ`(σ), {0, 1}, val〉 where val is the carrier map defined by
1. If dim(τ) ≤ n− 3, then val(τ) = {1}.
2. Otherwise, val(τ) = {0, 1}.
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Analogous to set agreement, if a symmetric binary coloring bτ : V (χ`+m(σ)) → {0, 1}
solves T in m rounds then it respects val, or is consistent with T . This means that for every
input simplex τ ∈ χ`(σ), bτ (χ`+m(τ)) ⊆ val(τ). We also require that it is complete, i.e.,
bτ (χ`+m(τ)) = val(τ).

It has been shown [9, 12] that if dim(σ) + 1 is a prime power, then b(χ`(σ)) has at
least one monochromatic simplex (i.e. with all its vertices having the same binary color)
of dimension dim(σ), which implies the impossibility of weak symmetry breaking; those
monochromatic simplexes are the errors that b makes, however, b is able to hide them locally:
for the specified input simplex τ ∈ χ`(σ), b(χm(τ)) does not have monochromatic simplexes
of dimension dim(σ).

I Definition 7 (Local solvability of weak symmetry breaking). We say that a weak symmetry
breaking valency task T = 〈χ`(σ), {0, 1}, val〉 is locally solvable in m ≥ 1 rounds if for every
input simplex τ ∈ χ`(σ) there is a symmetric binary decision map bτ : χ`+m(σ) → {0, 1}
(which is on function of τ) that is consistent and complete w.r.t. T and bτ (χm(τ)) does not
have monochromatic simplexes of dimension dim(σ).

In the next section, we prove that the weak symmetry breaking valency task (Definition 6)
is locally solvable in one round. This result is trivial when dim(σ) + 1 is not a prime power
because in those cases weak symmetry breaking is indeed solvable [13], and hence, there is
a symmetric binary coloring with no monochromatic simplexes (i.e., without errors). The
interesting case in when weak symmetry breaking is not solvable and unavoidable errors need
to be hidden.

4 Solving Valency Tasks

This section contains the proof of Theorems 8 and 10, stating that the set agreement and
weak symmetry breaking valency tasks defined in the previous section, Definitions 3 and 6,
are locally solvable in one round.

4.1 Set Agreement
The following theorem shows that the valency tasks for set agreement defined in the previous
section are locally solvable.

I Theorem 8. For any n ≥ 3 and ` ≥ 1, the set agreement valency task T = 〈χ`(σ), σ, val〉
in Definition 3 is (n− 1)-locally solvable in one round.

The proof of Theorem 8 relies on the following lemma, regarding vertex colorings of the
first standard chromatic subdivision. Roughly speaking, the lemma identifies colorings that,
to some extent, satisfy the properties of a Sperner coloring, but without simplexes with n
different decisions. Figure 3 presents an example of these colorings.

I Lemma 9. Consider the (n− 1)-dimensional simplex ρ = {0, . . . , n− 1} with n ≥ 3. There
is a coloring (simplicial map) c : χ(ρ)→ ρ such that:
1. for every ρ′ ⊂ ρ with dim(ρ′) ≤ n− 3, c(χ(ρ′)) = ρ′,
2. one of the following holds:

a. for every (n− 2)-dimensional face ρ′ ⊆ ρ, c(χ(ρ′)) = ρ,
b. for a chosen (n− 2)-dimensional ρ′′ ⊂ ρ, c(χ(ρ′′)) = ρ′′, and for every other (n− 2)-

dimensional face ρ′ ⊆ ρ, c(χ(ρ′)) = ρ,
3. c(χ(ρ)) = ρ and there is no fully colored (n− 1)-simplex in c(χ(ρ)).
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Figure 3 Example for Lemma 9. Since every vertex v of ρ has dimension n− 3, the only vertex in
χ(v) has color v, implying (1). The coloring satisfies requirement (2.b) of the lemma: for the (n− 2)-face
{0, 2} of ρ, all vertices in χ({0, 2}) have colors in {0, 2}, while for any other (n − 2)-face ρ′ of ρ, every
vertex in χ(ρ′) has a color in ρ. Finally, χ(ρ) has no (n− 1)-simplex with the three colors at its vertices,
implying (3).

For every simplex τ ∈ χ`(σ), let ids(τ) be the simplex containing the first entries of
the vertices in τ (recall that each vertex of χ`(σ) is a pair (v, view) where v is the id of
a process and view is its view after ` rounds); note that ids(τ) is a dim(τ)-face of σ, and
ids(τ) ⊆ carr(τ, σ, χ`), since χ`(σ) is a chromatic subdivision of σ.

Proof of Theorem 8. We prove now that set agreement valency task T = 〈χ`(σ), σ, val〉 is
(n− 1)-locally solvable in one round. To do so, we define a Sperner coloring cτ of χ`+1(σ)
that is consistent and complete w.r.t. the task and has no fully colored (n− 1)-simplexes in
cτ (χ(τ)), for any input simplex τ ∈ χ`(σ). We focus on the case when |τ | = n because for
any simplex τ ′ of a smaller dimension, we can just pick any τ containing τ ′, and set cτ ′ to
cτ restricted to χ(τ ′), i.e. cτ |χ(τ ′).

Thus, for the rest of the proof fix an (n− 1)-dimensional simplex of τ ∈ χ`(σ). We define
a Sperner coloring cτ that is consistent with val and has no fully colored (n− 1)-simplexes
in χ(τ). First, we use Lemma 9 to define cτ restricted to χ(τ), i.e. cτ |χ(τ), and then extend
the coloring to all vertices in χ`+1(σ), to finally obtain cτ .

Let ρ = ids(τ). Note that ρ = σ but for clarity we use ρ. ids’s naturally induce a bijection
between vertices of ρ and τ , and χ(ρ) and χ(τ), respectively, hence any coloring (simplicial
map) χ(ρ)→ ρ induces a coloring χ(τ)→ ids(τ). Below, when we use Lemma 9 applied to
ρ = ids(τ), we can speak about faces of τ instead of faces of ρ.

Observe that either for every (n−2)-face τ ′ of τ , carr(τ ′, σ, χ`) = σ, or for one (n−2)-face
τ ′′ of τ , carr(τ ′, χ`) = ids(τ ′′) and for every other (n− 2)-face τ ′ of τ , carr(τ ′, σ, χ`) = σ.
Intuitively, τ ′ is “inside” χ`(σ) or only one (n− 2)-face of τ ′ “touches” the boundary of χ`(σ)
(see Figure 3). We set cτ |χ(τ) using a coloring of χ(τ) in Lemma 9, as follows. In the former
case, cτ |χ(τ) is obtained with a coloring of χ(τ), as in Case (2.a) of Lemma 9, while in the
latter case, is obtained with a coloring as in case (2.b), where τ ′′ is the chosen face in that
case of the lemma.

We argue that Lemma 9 and the definition of val implies that for any face τ ′ of τ , it
holds that cτ (χ(τ ′)) = val(τ ′), which is good because we want cτ to be consistent and
complete w.r.t. val. If dim(τ ′) ≤ n− 3, then val(τ ′) = ids(τ ′), by definition of val, and from
Lemma 9(1), we know that cτ (χ(τ ′)) = ids(τ ′). Also, by definition of val, if dim(τ ′) > n− 3,
then val(τ ′) = carr(τ ′, σ, χ`). Note that if dim(τ ′) = n− 1 (hence τ ′ = τ), then val(τ ′) = σ,
and cτ (χ(τ ′)) = val(τ ′), by Lemma 9(3). The subcase that remains to be shown is when
dim(ρ) = n− 2. Again, if val(τ ′) = σ, cτ (χ(τ ′)) = val(τ ′), by Lemma 9(3). Thus, consider
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the case val(τ ′) = carr(τ ′, σ, χ`) 6= σ. Observe that this can only happen when τ ′ is at the
boundary of χ`(σ), and hence carr(τ ′, σ, χ`) = ids(τ ′). By Lemma 9(2.b), cτ (χ(τ ′)) = ids(τ ′)
(τ ′ was the chosen (n− 2)-face of τ in case (2.b) of Lemma 9 when defining cτ on χ(τ)).

We now extend the coloring cτ in two steps. First, for any vertex v ∈ χ`(σ) that does
not belong to χ(τ), we first set cτ (v) = id(v). Thus, for any input simplex λ ∈ χ`(σ) that
does not intersect τ , we have that cτ (χ(λ)) = ids(λ). That is fine if dim(λ) 6= n − 2, or
dim(λ) = n−2 and carr(λ, σ, χ`) 6= σ, because in such cases cτ (χ(λ)) = val(λ), by definition
of val.

But if dim(λ) = n− 2 and carr(λ, σ, χ`) = σ, then cτ (χ(λ)) = ids(λ) ⊂ val(λ) = σ, and
then in this case cτ is not complete. Note that the proper contention is because there is
no vertex in χ(λ) that is mapped to the unique vertex in σ \ ids(λ). To solve this issue,
for every such input simplex λ ∈ χ`(σ), we pick one vertex v ∈ χ(λ) with carr(v, λ, χ) = λ

(which belongs to the “central” (n− 2)-simplex of χ(λ)) and set cτ (v) to the unique vertex
in σ \ ids(λ). Therefore, we now have that cτ (χ(λ)) = val(λ) = σ.

To fully prove that cτ is consistent and complete w.r.t. val, the only case that remains
is of an input simplex λ that intersects τ but is not one of its faces. Let λ′ and τ ′ be the
proper faces of λ and τ such that λ = λ′ ∪ τ ′. We already know that cτ (χ(λ′)) = val(λ′) and
cτ (χ(τ ′)) = val(τ ′). If dim(λ′ ∪ τ ′) ≤ n− 3, the definition of val implies that val(λ ∪ τ ′) =
val(λ′)∪ val(τ ′), hence cτ (χ(λ′ ∪ τ ′)) = val(λ∪ τ ′). If dim(λ′ ∪ τ ′) = n− 1, then it must be
that val(λ ∪ τ ′) = σ, from the definition of val, and then clearly cτ (χ(λ′ ∪ τ ′)) = val(λ ∪ τ ′),
by construction. If dim(λ′ ∪ τ ′) ≥ n− 2, we have two cases, val(λ′ ∪ τ ′) is either ids(λ′ ∪ τ ′)
or σ; in any case, the very definition of cτ implies that cτ (χ(λ′ ∪ τ ′)) = val(λ ∪ τ ′).

Therefore, so far we have a coloring cτ that is consistent and complete w.r.t. val and
cτ (χ(τ)) has no fully colored (n− 1)-simplexes (since we defined cτ (χ(τ)) using Lemma 9).
To finally conclude that 〈χ`(σ), σ, val〉 is locally solvable in one round, we argue cτ is a
Sperner coloring, which essentially follows becase val is a Sperner-valency coloring and cτ
is consistent and complete w.r.t. val. To prove the claim in detail, consider any vertex
v ∈ χ`(σ). If v /∈ χ(τ), then cτ (v) = id(v) ∈ carr(v, σ, χ`). Otherwise, let τ ′ = carr(v, τ, χ).
Note that ids(τ ′) ⊆ carr(v, σ, χ`). It follows from Lemma 9 that cτ (χ(τ ′)) is either ids(τ ′)
or σ. If cτ (χ(τ ′)) = ids(τ ′) then cτ (v) ∈ carr(v, σ, χ`). For the remaining case, note that
cτ (χ(τ ′)) = σ only if dim(τ ′) = n − 1 (hence carr(τ ′, σ, χ`) = σ), or dim(τ ′) = n − 2 and
carr(τ ′, σ, χ`) = σ (i.e. τ ′ is not the chosen (n−2)-face of τ in the case (2.b) of Lemma 9); in
either case we have that cτ (v) ∈ carr(v, σ, χ`). We conclude that cτ is a Sperner coloring. J

4.2 Weak Symmetry Breaking
I Theorem 10. For any n ≥ 3 and ` ≥ 1, the weak symmetry breaking valency task
T = 〈χ`(σ), σ, val〉 in Definition 6 is locally solvable in one round.

The proof of Theorem 10 is similar in structure to the proof for set agreement in the
previous section. It relies on Lemma 11 below to produce binary colorings that are almost
symmetric on the boundary and do not have monochromatic dim(σ)-simplexes. Figure 4
shows an example of such a coloring. In the proof of Theorem 10, we use these binary
colorings to locally solve symmetric binary-valency tasks.

I Lemma 11. Consider the (n − 1)-dimensional simplex ρ = {0, . . . , n − 1} with n ≥ 3.
There is a binary coloring (simplicial map) b : χ(ρ)→ {0, 1} such that:
1. for every ρ′ ⊂ ρ with dim(ρ′) ≤ n− 3, b(χ(ρ′)) = {1},
2. for every (n− 2)-dimensional face ρ′ ⊆ ρ, b(χ(ρ′)) = {0, 1},
3. b(χ(ρ)) = {0, 1} and there is no monochromatic (n− 1)-simplex in b(χ(ρ)).
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Figure 4 Example for Lemma 11. Since every vertex v of ρ has dimension n− 3, the only vertex
in χ(v) has color 1, implying (1). For every (n− 2)-face ρ′ of ρ, there are vertices in χ({0, 2}) with
color 0 and 1, implying (2). Finally, χ(ρ) has no monochromatic (n− 1)-simplex, implying (3).

Proof of Theorem 10. We now show that the weak symmetry breaking valency task T =
〈χ`(σ), σ, val〉 is locally solvable in one round. We need to show that for every input simplex
τ ∈ χ`(σ), we define a symmetric binary coloring bτ of χ`+1(σ) that is consistent and
complete w.r.t. val and has no monochromatic (n− 1)-simplexes in bτ (χ(τ)). We focus on
the case is when τ is of dimension n− 1 because for any simplex τ ′ of a smaller dimension,
we can just pick any τ containing τ ′, and set bτ ′ to bτ restricted to χ(τ ′), i.e. bτ |χ(τ ′).

For the rest of the proof fix an (n − 1)-dimensional simplex of τ ∈ χ`(σ). We define
a symmetric binary coloring bτ that is consistent and complete w.r.t. val and has no
monochromatic (n− 1)-simplexes in χ(τ). First, we use Lemma 11 to define bτ restricted to
χ(τ), i.e. bτ |χ(τ), and then extend the coloring to all vertices in χ`+1(σ), to finally obtain bτ .

Let ρ = ids(τ). Note that ρ = σ but for clarity we use ρ. id’s naturally induce a bijection
between ρ and τ , and χ(ρ) and χ(τ), hence any coloring (simplicial map) χ(ρ)→ ρ induces a
coloring χ(τ)→ ids(τ). Below, when we use Lemma 11 applied to ρ = ids(τ), we can speak
about faces of τ instead of faces of ρ.

First, we set bτ |χ(τ) using a coloring of χ(τ) in Lemma 11. We have that bτ |χ(τ) is
consistent and complete with respect to val: for every face τ ′ of τ , if dim(τ ′) ≤ n − 3,
val(τ ′) = {1}, by definition of val, and bτ (χ(τ ′)) = {1}, by Lemma 11(1); and if dim(τ ′) ≥
n− 2, val(τ ′) = {0, 1}, by definition of val, and bτ (χ(τ ′)) = {0, 1}, by Lemma 11(2-3).

We extend bτ in two steps. In the first step, we pick any vertex v ∈ χ`+1(σ) that
does not belong to χ(τ) (which is uncolored yet). If there are faces σ′, σ′′ of σ with the
same dimension such that v ∈ χ`+1(σ′), φ(v) ∈ χ`+1(σ′′) and φ(v) ∈ χ(τ), where φ is the
simplicial bijection between χ`+1(σ′) and χ`+1(σ′′) that maps vertices preserving order, then
set bτ (v) = bτ (φ(v)); otherwise, set bτ (v) = 1. In words: if χ(τ) “touches” the boundary
of χ`+1(σ), we replicate that “part” of the coloring in its symmetric “counterparts” in the
boundary. Observe that bτ is well defined because, since ` ≥ 1, there are no two vertices of
u, v ∈ χ(τ) such that there are two distinct faces σ′, σ′′ of σ of same dimension such that
u ∈ χ`+1(σ′) and v ∈ χ`+1(σ′′); intuitively, χ(τ) can “touch” either χ`+1(σ′) or χ`+1(σ′′)
but not both. Note that bτ is symmetric.

It is not hard to see that for any input simplex λ ∈ χ`(σ) with dim(λ) ≤ n − 3,
bτ (χ(λ)) = val(λ). First, if λ is a face of τ , we have already saw that this is true. Second, if
λ is a face of τ , then bτ (χ(λ)) = {1} because even if a vertex v ∈ χ(λ) is in the boundary
of χ`+1(σ) and gets its color from a vertex u ∈ χ(τ) (i.e. bτ (v) = bτ (u)), it must be that
bτ (u) = 1 because there must be a face τ ′ of τ of dimension dim(λ) such that u ∈ χ(τ ′), and
by Lemma 11(1), bτ (χ(τ ′)) = {1}; and finally, by definition, val(λ) = {1}.
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However, we cannot say that same for any input simplex λ ∈ χ`(σ) with dim(λ) ≥ n− 2.
Consider the case that χ(λ) does not intersect χ(τ) and the boundary of χ`+1(σ); in that
case bτ (χ(λ)) = 1, by definition of bτ , but val(λ) = {0, 1}, by definition of val. We fix
this issue in the second step of the construction: for any λ ∈ χ`(σ) with dim(λ) = n − 2
and bτ (χ(λ)) = {1}, pick the vertex v ∈ χ(λ) with smallest id among the vertices with
carr(v, λ, χ) = λ (namely, v is a vertex with smallest id of the “central” (n− 2)-simplex of
χ(λ)), and set bτ (v) = 0.

By construction, we have that bτ (χ(λ)) = {0, 1} = val(λ). Note that λ is not face of τ
because initially we had bτ (χ(λ)) = {1}, which is not true for (n− 2)-dimensional faces of τ ,
by Lemma 11(2), and if λ intersects τ , then v /∈ χ(τ) because v is an “internal” vertex of χ(λ).
Therefore, bτ |χ(τ) remains the same after the second step. Moreover, since we pick vertices
with smallest id, bτ remains symmetric. Finally, for any λ ∈ χ`(σ) with dim(λ) = n− 1, if
λ = τ , we know already that bτ (χ(λ)) = {0, 1}, and if λ 6= τ , we already saw that for every
(n− 2)-face τ ′ of λ, bτ (χ(τ ′)) = {0, 1}, and thus bτ (χ(λ)) = {0, 1}. Therefore, we conclude
that bτ (χ(λ)) = val(λ), for every input simplex τ ∈ χ`(σ).

Thus, we have shown that bτ is a symmetric binary coloring that is consistent and
complete w.r.t. val. Also, by Lemma 11, bτ (χ(τ)) has no monochromatic simplexes of
dimension n− 1. Therefore, 〈χ`(σ), {0, 1}, val〉 is locally solvable in one round. J

5 Local Valency Impossibility Proofs

Here we make precise our notion of “impossibility proof in the FLP style,” and use Theorems 8
and 10 to argue that such impossibility proofs do not exist for (n− 1)-set agreement and
weak symmetry breaking in the IIS model.

In a local valency impossibility proof for say, set agreement, one assumes by way of
contradiction a hypothetical R-round protocol solving the task. Recall that the protocol
determines valencies, for all simplexes in all rounds, starting with those of the initial
configuration σ. The valencies must respect the task specification, since we asume the
protocol solves the task. For example, val(Pi, i) = {i}, where (pi, i) ∈ σ is the initial state of
Pi (in an execution where Pi sees only itself, it must decide its own input value). A crucial
observation is that what we are given in a local valency impossibility proof are only the
valencies, and there are many protocols that could produce the same valencies (i.e., many
simplicial maps c assigning decisions to χR(σ), yielding the same valencies).

The proof consists of R − 1 phases to select a sequence of simplexes σ0, σ1, . . . , σR−1,
starting with σ0 = σ and such that σ` ∈ χ`(σ) for all 1 ≤ ` ≤ R− 1, extending the sequence
by one at each phase.

Assume we have selected the sequence σ0, . . . , σ`, for some ` ≥ 1. To select σ`+1 ∈
χ(σ`) ⊂ χ`+1(σ), one considers all simplexes in σ′ ∈ χ(σ`), together with their valencies,
val(σ′). When we reach phase R − 1, and we have selected σR−1 ∈ χ(σR−2), the protocol
reveals all decisions in χ(σR−1) ⊂ χR(σ) (and only those decisions). Namely, a simplicial
map c assigning a decision to each vertex of χ(σR−1), respecting all previously observed
valencies, namely, all those in each χ(σ`).

There is a local valency impossibility proof for the task if and only if one can select a
sequence σ0, σ1, . . . , σR−1 such that the task is not locally solvable in one round at σR−1.
Namely, if there is no decision function c, that respects the valencies and is consistent with
the task specification. In the case of set agreement, at least one simplex must have n different
decisions, for any c that respects the valencies.
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Therefore, there is no such a proof if we are able to exhibit valencies of a hypothetical
protocol such that, for any selection σ0, σ1, . . . , σR−1, there is a decision function c corres-
ponding to those valencies that locally solves (n− 1)-set agreement (the argument for weak
symmetry breaking is analogous):

Fix any R ≥ 2.
For the input complex, the valency of each σ′ ⊆ σ is val(σ′) = σ′.
In phase ` ∈ {0, . . . , R − 2}, the valency of each simplex τ ∈ χ(σ`) ⊂ χ`+1(σ) is the
valency of the simplex in the valency task T `+1 = 〈χ`+1(σ), σ, val〉 in Definition 3, namely,
val(τ).
In phase R− 1, the protocol picks a decision map c : χR(σ)→ σ that is consistent and
complete w.r.t T R−1 = 〈χR−1(σ), σ, val〉 and does not have fully colored (n−1)-simplexes
in χ(σR−1) ⊂ χR(σ), and provides only the decisions c(χ(σR−1)). Such a mapping exists
since T R−1 is (n− 1)-locally solvable, due to Theorem 8.

Notice that no matter the simplex σ` we chose in each phase, we cannot find a contradiction
in the decisions of χ(σR−1). The only thing that remains to be argued is that the valencies
are consistent during all phases. More specifically, valencies preserve containment in the
same phase and can only shrink as the phases go by, and additionally they do not contradict
validity, i.e., the valency of a simplex is a subset of its carrier. Thus, for any R, there are
valencies that could be produced by a hypothetical set agreement protocol. This is implied
by the three properties below that are satisfied for every valency task T ` = 〈χ`(σ), σ, val〉,
` ∈ {1, . . . , R− 1}, and whose proof is based on Observation 12. These properties also show
that the decisions of χR−1(σR−1) revealed by the protocol are consistent with all valencies
in all phases.

I Observation 12. For ` ≥ 0, for every γ ∈ χ`(σ), ID(γ) ⊆ carr(γ, σ, χ`). Furthermore, if
dim(carr(γ, σ, χ`)) = dim(γ), then carr(γ, σ, χ`) = ID(γ).

Containment For τ, τ ′ ∈ χ`(σ) with τ ′ ⊂ τ , we have val(τ ′) ⊆ val(τ). By Observation 12,
for every γ ∈ χ`(σ), ID(γ) ⊆ carr(γ, σ, χ`). Since τ ′ ⊂ τ , we have carr(τ ′, σ, χ`) ⊂
carr(τ, σ, χ`). Depending on the dimension of τ , val(τ) is either ID(τ) or carr(τ, σ, χ`);
and similarly for τ ′. Therefore, val(τ ′) ⊆ val(τ).

Valencies shrink Consider any m > ` with 0 ≤ ` + m ≤ R − 1 and the valency task
T `+m = 〈χ`+m(σ), σ, val′〉. For τ ∈ χ`(σ) and τ ′ ∈ χm(τ), val′(τ ′) ⊆ val(τ). The
argument is very similar to the previous one. Since τ ′ ∈ χm(τ) ⊂ χ`(σ), we have that
carr(τ ′, σ, χ`+m) ⊆ carr(τ, σ, χ`). Depending on the dimension of τ , val(τ) is either
ID(τ) or carr(τ, σ, χ`), and we have that ID(τ) ⊆ carr(τ, σ, χ`), by Observation 12; and
similarly for τ ′. Therefore, val′(τ ′) ⊆ val(τ).

Validity For τ ∈ χ`(σ), we have val(τ) ⊆ carr(τ, σ, χ`). If dim(τ) is n − 2 or n − 1,
val(τ) = carr(τ, σ, χ`), and if dim(τ) ≤ n − 3, val(τ) = ID(τ) ⊆ carr(τ, σ, χ`), where
the last containment follows from Observation 12.

The previous properties hold for all simplexes of the valency tasks in Definition 3, and
thus we conclude that there is no contradiction on the valencies provided during the phases.

6 Discussion

This paper argues that the (n− 1)-set agreement and weak symmetry breaking (and hence
(2n− 2)-renaming) impossibilities in the wait-free read/write shared memory model cannot
be proved using local arguments, in the style of FLP. We introduced the notions of valency
task and local solvability for set agreement and weak symmetry breaking. We formalized
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the notion of local-valency impossibility proof for these tasks, where a presumptive protocol
for these tasks can always hide erroneous results, even after committing to valencies one
round before termination. We showed that there are no local-valency impossibility proofs
for (n− 1)-set agreement and weak symmetry breaking in the wait-free read/write shared
memory model.

Alistarh, Aspnes, Ellen, Gelashvili and Zhu [2] studied a similar question by defining a
game between a prover and a protocol, as a way to represent extension-based techniques for
proving impossibility results. They have shown that, for set agreement, a protocol can win
this game against any prover, thus showing extension-based techniques do not suffice for
proving the impossibility of solving set agreement. Their approach is restricted to unbounded
protocols. This also complicates the argument, since they need to work with non-uniform
simplicial subdivisions. In contrast, we consider bounded wait-free. This allows to assume
that all processes decide at the same round, R (hence giving more information and power
to the prover), leading to simpler uniform subdivisions. We stress that there is no loss of
generality in this assumption, since a task is wait-free solvable if and only if it is wait-free
solvable by a protocol where all processes decide at the same round. Furthermore, while
Alistarh et al. study only k-set agreement, we also investigate weak symmetry breaking, and
by reduction, renaming.

Looking forward, it would be interesting to define a notion of valency task that can be
applied to any task, such as approximate agreement. Also, in the context of randomized
and non-deterministic protocols. Another interesting question is how much of the final
decisions the protocol can reveal; for example, revealing consistent decisions even if several
configurations are chosen instead of only one. Finally, we would like to explore local-
valency proofs beyond our wait-free setting, in models that are not round-based [28] or
non-compact [30], like t-resilient models.
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Abstract
Population protocols [6] are a class of algorithms for modeling distributed computation in networks
of finite-state agents communicating through pairwise interactions. Their suitability for analyzing
numerous chemical processes has motivated the adaptation of the original population protocol
framework to better model these chemical systems. In this paper, we further the study of two such
adaptations in the context of solving approximate majority: persistent-state agents (or catalysts)
and spontaneous state changes (or leaks).

Based on models considered in recent protocols for populations with persistent-state agents
[3,5,14], we assume a population with n catalytic input agents and m worker agents, and the goal of
the worker agents is to compute some predicate over the states of the catalytic inputs. We call this
model the Catalytic Input (CI) model. For m = Θ(n), we show that computing the parity of the
input population with high probability requires at least Ω(n2) total interactions, demonstrating a
strong separation between the CI model and the standard population protocol model. On the other
hand, we show that the simple third-state dynamics [7,20] for approximate majority in the standard
model can be naturally adapted to the CI model: we present such a constant-state protocol for the
CI model that solves approximate majority in O(n logn) total steps with high probability when the
input margin is Ω(

√
n logn).

We then show the robustness of third-state dynamics protocols to the transient leaks events
introduced by [3, 5]. In both the original and CI models, these protocols successfully compute
approximate majority with high probability in the presence of leaks occurring at each step with
probability β ≤ O

(√
n logn/n

)
. The resilience of these dynamics to leaks exhibits similarities to

previous work involving Byzantine agents, and we define and prove a notion of equivalence between
the two.
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1 Introduction

The population protocol model [6] is a theoretical framework for analyzing distributed
computation in ad hoc networks of anonymous, mobile agents: at each step, a random pair of
agents is chosen to interact, and their local states are updated according to a global transition
function. Population protocols can solve numerous problems in distributed computing,
including majority (which is also referred to as consensus) [5, 7, 12], source detection [3, 14],
and leader election [4, 16,17].

Population protocols are a special case of chemical reaction networks (CRNs), which
are systems of transition rules describing how a set of chemical reactants stochastically
transform into a set of products. In particular, population protocols are chemical reaction
networks with exactly two reactants which form two products, where each transition rule
for a pair of reactants is weighted with probability 1. Given their suitability for modeling
chemical processes, population protocols have been used to study computation not only by
chemical reaction networks [10], but also DNA strand displacement [11, 21] and biochemical
networks [9]. These applications of population protocols in chemistry have inspired various
adaptations of the model. In this paper, we focus on two such variations on population
protocols in the context of solving majority, the problem of determining which of two states
is initially more prevalent in a population.

The first modification to the model we consider, which was introduced to the literature
in previous works studying source detection and bit-broadcast [3, 14] and later studied in
the context of the majority problem [5,13], is the presence of persistent-state agents, or
agents whose state never changes. While some works use persistent-state agents to model
authoritative sources of information [14] or “stubborn” nodes that are unwilling to change
state [13], others describe these entities as an embodiment of chemical catalysts because they
induce a state transition in another agent without themselves changing state [3,5]. Using the
latter perspective, we refer to these persistent-state agents as catalysts.

In this work, we call the class of population protocols with catalysts the catalytic input
(CI) model. We formally define the model to consist of n catalytic input agents, which
in accordance with their name do not ever change state, and m worker agents that can
change state and wish to compute some function on the states of the catalysts. While the
CI model is similar to the standard population protocol model, we show that there exists a
strong separation between the two in terms of their computational power.

The next variation on the model we consider is the introduction of transient leak events,
studied previously in the contexts of solving source detection and comparison [3, 5]. In brief,
a “leak” simulates the low-probability event that a molecule undergoes a reaction that would
typically take place in the presence of a catalyst. In population protocols, this is modeled
by a spontaneous change of state at a single agent, and note that catalytic agents in the
CI model are not susceptible to leaks because they never change state. A leak replaces an
interaction between two agents at any given step with some fixed probability, known as the
leak rate [3]. Although leaks have typically been studied in the presence of catalysts, we
consider leaks to more generally model unpredictable or adversarial behavior which may
occur in the absence of catalysts as well.

We explore the impact of leaks on third-state dynamics [7, 20] solving majority. Our
work demonstrates that third-state dynamics can solve approximate majority, or majority
with a lower-bounded initial difference between the counts of the two input states, with
upper-bounded leak rate both in the standard and CI population models.
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1.1 Related Work
The third-state dynamics protocol in the original population model (sometimes called
undecided-state dynamics) was introduced by Anlguin et al. [7] and independently by Perron
et al. [20]. An agent is either in a state X or Y , or in a blank state B (sometimes called an
undecided state). The transition rules are shown in Figure 1, and we refer to this protocol
as DBAM1. Assuming an initial X majority, a simplified analysis from Condon et al. [12]
showed that all n agents in the population transition to the X state within O(n logn) total
interactions with high probability, so long as the input margin |X| − |Y | at the start of the
protocol is at least Ω(

√
n logn). The DBAM protocol is also robust to a small subset of faulty

Byzantine agents [7, 12], meaning that all but a O(
√
n logn/n) fraction of the population

still reaches the X state within O(n logn) interactions with high probability, despite the
presence of these dishonest agents.

The DBAM protocol and similar variants of third-state dynamics have been shown to more
generally compute consensus (where all agents converge to either X or Y , but where this
need not be the initial majority value), both in the original population protocols model [7,12]
and in other similar distributed models [8, 13]. In particular, the closely related results of
d’Amore et al. [13] analyzed an analogous version of the DBAM protocol in the synchronous
PULL model. The authors considered systems with stubborn agents (as in [24]) which are
similar to the persistent-state catalytic agents we consider in the present work. However, the
parallel synchronous scheduling model considered in [13] is fundamentally distinct from the
sequential pairwise scheduling used in population protocols.

The notion of a persistent source state in population protocols originated from [14], where
sources are used to solve detection (the detection of a source in the population) and bit
broadcast (the broadcast of a 0 or 1 message from a set of source agents). An accompanying
work [3] introduces the concept of leaks, or spontaneous state changes, and investigates the
detection problem in their presence. Generally, leaks can be dealt with using error-correcting
codes [22]; however, for certain problems there are more efficient specialized solutions. For
example, Alistarh et al. [3] demonstrate that detection in the presence of leaks (up to rate
β = O(1/n)) can be solved with high probability using log n

k + O(log logn) states, where
k ≤ n is the number of sources in the population.

More recently, [5] examines leaks in the context of the comparison problem. Comparison
is a generalization of the majority problem, where some possibly small subset of the population
is in input state X0 or Y0 and the task of the population is to determine which of the two
states is more prevalent. Alistarh et al. [5] solve comparison in O(n logn) interactions with
high probability using O(logn) states per agent, assuming |X0| ≥ C|Y0| for some constant C,
and X0, Y0 ≥ Ω(logn). The protocol is self-stabilizing, meaning that it dynamically responds
to changes in the counts of input states.

1.2 Our Contribution
In this work, motivated by the recent interest in population models with catalytic agents
and with transient leaks, we study the well-known third-state dynamics protocols [7, 20] for
solving approximate majority in the presence of each of these variants separately as well

1 DBAM stands for double-B approximate majority where double-B captures the fact that following an
X + Y interaction, both agents transition to the B state. This protocol is the two-way variant of the
original protocol from [7], which uses one-way communication and where only one agent updates its
state per pairwise interaction.

OPODIS 2020
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X +B → X +X

Y +B → Y + Y

X + Y → B +B

Figure 1 Transition rules for the DBAM pro-
tocol [7] in the original population model.

X +B → X +X IX +B → IX +X

Y +B → Y + Y IY +B → IY + Y

X + Y → B +B

Figure 2 Transition rules for our DBAM-C
protocol in the CI model.

as together. To begin, we formalize the CI model consisting of n catalysts and m workers,
where N = n+m. While conceptually similar to other models considering these types of
catalytic agents [3, 5, 13], introducing the distinction between the two (possibly unrelated)
population sizes provides a new level of generality for designing and analyzing protocols in
this setting, both with and without leaks.

Although the CI and original population models are almost identical, we show a strong
separation between the computational power of the two. When m = Θ(n), we prove a lower
bound showing that parity, the problem of determining whether the number of catalysts is
odd or even, cannot be computed in fewer than Ω(n2) interactions with high probability in
the CI model. On the other hand, the result of [19] shows that this predicate is computable
within O(npolylogn) total steps in the standard model with high probability2.

While some problems have strictly different lower bounds on running time in these
two models, others do not and can in fact be solved using nearly identical techniques. In
particular, we show that the approximate majority problem can be solved in the CI model
by naturally extending the DBAM protocol.

In the approximate majority problem in the CI model, each catalytic input agent holds a
persistent value of IX or IY and each worker agent holds either an undecided, or blank value
B, or an X or Y value corresponding to a belief in an IX or IY input majority, respectively.
The worker agents seek to correctly determine the larger of |IX | and |IY | so long as the input
margin ||IX | − |IY || is sufficiently large. By adapting the third-state dynamics process [7],
we present a constant-state protocol for approximate majority with catalytic inputs called
DBAM-C (see Figure 2). The protocol converges with high probability in O(N logN) total
steps when the initial input margin is Ω(

√
N logN) and m = Θ(n). We then show that this

input margin is optimal in the CI model up to a O(
√

logN) factor when m = Θ(n).
Moreover, in the presence of transient leak events, we show that both the third-state

dynamics protocol in the original model and our adapted protocol in the CI model exhibit
a strong robustness to leaks. When the probability of a leak event is bounded, we show
that with high probability both protocols still quickly reach a configuration where nearly all
agents share the correct input majority value.

Notice that the approximate majority problem in the CI model is equivalent to the
comparison problem considered by [5], so we demonstrate how our protocol compares to the
results of this work. We show that our DBAM-C protocol converges correctly within the same
time complexity of O(n logn) total steps, while only using constant state space (compared to
the logarithmic state used by the protocols in their work). Moreover, in populations where
m = Θ(n), our protocol tolerates a less restrictive bound on the input margin compared to [5]
(Ω(
√
n logn) compared to Ω(n)). In the presence of transient leaks, our protocol also shows

2 We define “high probability” to mean with probability at least 1− n−c where n is the total number of
agents and c ≥ 1.
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robustness to a higher leak rate of β ≤ O(
√
n logn/n). However, unlike [5], our protocol is

not self-stabilizing and requires that the number of inputs be at least a constant fraction of
the total population for our main results. In order to achieve these results, we leverage the
random walk analysis techniques and analysis structure introduced by [12].

Finally, we compare the impact of leaks on population protocols with that of faulty
Byzantine processes. While the fast robust approximate majority protocol of [7] is proven to
be robust to a number of Byzantine agents that is bounded by the input margin [7, 12], we
show that DBAM is robust to a similarly bounded leak rate and has sampling error matching
the result from [12].

The structure of the remainder of the paper is as follows: in Section 2 we introduce
notation and definitions central to our results. Section 3 presents our lower bounds over
the CI model, which demonstrates the separation between the CI and original population
models. In Section 4, we analyze the correctness and efficiency of the DBAM-C protocol for
approximate majority in the CI model, and in Section 5 we demonstrate the leak-robustness
of both the DBAM-C and original DBAM protocols. Then in Section 6, we compare the notion
of transient leaks with the adversarial Byzantine model, demonstrating parallels between
previous results examining Byzantine behavior and our work.

Throughout the paper, we provide overviews of the intuition and techniques used to
obtain our results and defer most proofs to the full version.

2 Preliminaries

We begin with some definitions. Denote by N the number of agents in the population.

Population Protocols

Population protocols are a class of algorithms which model interactions between mobile
agents with limited communication range. Agents only interact with one another if they are
within close enough proximity of each other. In order to model this type of system in an
asynchronous setting, interactions between pairs of agents are executed in sequence. The
interaction pattern of these agents is dictated by a scheduler, which may be random or
adversarial. In this work we will assume that the scheduler is uniformly random, meaning
that an ordered pair of agents is chosen to interact at each time step independently and
uniformly at random from all N(N − 1) ordered pairs of agents in the system.

As defined by [6] which first introduced the model, a population protocol P consists of
a state set S = {s1, s2, ..., sk}, a rule set R : S2 7→ S2, an output alphabet O, and an
output function f : S 7→ O. The output function computes the evaluation of some function
on the population locally at each agent. The configuration of the population is denoted
as a vector c = 〈c1, c2, ..., ck〉 such that each ci ≥ 0 is equal to the number of agents in the
population in state si, from which it follows that

∑
ci = N . For convenience, we denote by

|si| the number of agents in the population in state si.
At each point in time, the scheduler chooses an ordered pair of agents (ai, aj), where ai

is the initiator and aj is the responder [6]. The agents interact and update their state
according to the corresponding rule inR. In general, a rule inR is written as A+B −→ C+D
to convey that two agents, an initiator in state A and a responder in state B, interact and
update their states to be C and D, respectively. By convention, N/2 interactions make one
unit of parallel time [7]. This convention is equivalent to assuming every agent interacts
once per time unit on average.

OPODIS 2020
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An execution is the sequence of configurations of a run of the protocol, which converges
when the population arrives at a configuration d such that all configurations chronologically
after d have the same output at each agent as those in d [6]. In order to determine the
success or failure of an execution of P , we will consider a sample of the population to signify
the outcome of the protocol [3]. After the expected time to converge, one agent is selected at
random and its state is observed. The output associated with the agent’s state is considered
the output of the protocol. The probability of sampling an agent whose state does not reflect
the desired output of the protocol is called the sample error rate. Multiple samples can
be aggregated to improve the rate of success.

Catalysts and Leaks

Following [3], in an interaction of the form A + B −→ A + D, we say A catalyzes the
transformation of the agent in state B to be in state D. If A catalyzes every interaction it
participates in, A is referred to as a catalyst.

In chemistry, a reaction that occurs in the presence of a catalyst also occurs at a lower
rate in the absence of that catalyst. For this reason, recent work in DNA strand displacement,
chemical reactions networks, and population protocols [3,5, 21] have studied the notion of
leakage: When a catalytic reaction A+B −→ A+D is possible, then there is some probability
that a transition B −→ D can occur without interacting with A at all. This type of event,
called a leak, was introduced in [21].

The probability with which the non-catalyzed variation of a reaction takes place is the
leak rate, which we denote by β. We simulate a leak as follows: At each step in time,
with probability 1− β, the scheduler samples an ordered pair of agents to interact with one
another as described in the beginning of the section; the rest of the time (i.e. with probability
β) one agent is chosen uniformly at random from all possible agents and the leak function
` : S → S is applied to update this agent’s state. Note that we only consider non-catalytic
agents to be susceptible to these faulty events.

Catalytic Input Model

In this work, we formalize a catalytic input (CI) model consisting of n catalytic agents that
supply the input and m worker agents that perform the computation and produce output.
We define N = m+ n to be the total number of agents in the population. At each time step,
the scheduler samples any two agents in the population to interact with one another. If two
catalysts are chosen to interact, then the interaction is considered to be null as no nontrivial
state transition occurs. When n = o(m), the probability that two catalysts are chosen to
interact is upper bounded by a constant, and so the total running time of the protocol is
asymptotically equivalent to the number of non-null interactions needed to reach convergence.
In the CI model, we consider convergence to be a term that refers to the states of the worker
agents only, as the catalytic agents never change state. Namely, for the approximate majority
problem, successful convergence equates to the worker agents being in the majority-accepting
state. In general, we wish to obtain results that hold with high probability with respect to
the total number of agents N .

3 Catalytic Input Model Lower Bounds

In this section, we characterize the computational power of the CI population protocol model.
Using information-theoretic arguments, we prove two lower bounds over the catalytic model
when the number of input agents is a constant fraction of the total population:
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I Theorem 1. In the catalytic input model with n input agents and m = Θ(n) worker agents,
any protocol that computes the parity of the inputs with probability at least 1−N−γ requires
at least Ω(N2) total steps for any γ ≥ 1.

I Theorem 2. In the catalytic input model with n input agents and m = Θ(n) worker agents,
any protocol that computes the majority of the inputs within O(N logN) total steps requires
an input margin of at least Ω(

√
N) to be correct with probability at least 1−N−γ for any

γ ≥ 1.

The first result can be viewed as a separation between the CI and original population
models: since it is shown in [19] that the parity of agents can be computed in the original
model within O(polylogn) parallel time with high probability, our result indicates that not
all semi-linear predicates over the input population in the CI model can be computed in
sub-linear parallel time with high probability. Additionally, this rules out the possibility of
designing fast protocols for exact majority in the CI model when the input size is a constant
fraction of the entire population. On the other hand, the second result indicates the existence
of a predicate – approximate majority – that does not require a large increase in convergence
time to be computed with high probability in this new model.

One key characteristic of a CI population is the inability for worker agents to distinguish
which inputs have previously interacted with a worker. Instead, every worker-input interaction
acts like a random sample with replacement from the input population. For proving lower
bounds in this model, this characteristic of a CI population leads to the following natural
argument: consider a population of n catalytic input agents and a worker population
consisting of a single super-agent. Here, we assume the super-agent has unbounded state
and computational power, and it is thus able to simulate the entire worker population of
any protocol with more workers. In this simulation, any interaction between a worker and
an input agent is equivalent to the super-agent interacting with an input chosen uniformly
at random: in other words, as a sample with replacement from the input population. Thus
we view the super-agent as running a central randomized algorithm to simulate the random
interactions that occur in population protocols. If the super-agent needs S samples to
compute some predicate over the inputs with high probability, then so does any multi-worker
protocol in the CI model. We denote this information-theoretic model as the Super CI
model, and restate the above argument more formally in the following lemma.

I Lemma 3. Consider a population with n catalytic input agents and a worker population
consisting of a single super-agent W . Let P be a predicate over the input population that
requires S total interactions between W and the input population in order for W to correctly
compute P with probability ε. Then for a CI population with n catalytic inputs and m worker
agents, computing P correctly with probability ε requires at least S total interactions.

Proof Sketch of Theorem 1

In a CI model population with n input agents and m worker agents where m = Θ(n),
Theorem 1 shows that computing the parity or exact majority of the inputs requires at least
Ω(n2) = Ω(N2) total interactions to be correct with high probability. We prove this by
showing that in the Super CI model described in the previous section, a computationally
unbounded super-agentW requires at least Ω(n2) samples of the input population to correctly
compute the input parity with high probability. Applying Lemma 3 then gives Theorem 1.

More formally, for an input population C of n agents, each with input value 0 or 1, the
parity of C is said to be 1 if an odd number of agents have input value 1, and 0 otherwise.
Now, consider the majority predicate over C, which is simply the majority value of the input
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population. Letting X denote the number of 1-inputs, and Y the number of 0-inputs, we
refer to the input margin of the population C as the quantity |X − Y |. Suppose that n is
odd and the input margin of C is 1. Then X and Y are either

⌊
n
2
⌋
and

⌈
n
2
⌉
or vice versa.

These two cases can be distinguished either by computing the majority predicate or the
parity predicate, making both of these problems equivalent to distinguishing the two cases
under this constraint on the input. We will now argue that distinguishing these cases in the
Super CI model requires Ω(n2) samples.

Recall that in the Super CI model, a predicate over the input population C is computed
by a single super agent worker W with unbounded computational power. Thus, the output
of W can be viewed as a mapping between a string of input values obtained from interactions
with between W and the input population and the output set {0, 1}. We refer to interactions
between W and the input population as samples of the input, and for a fixed number of
samples S, we refer to W ’s output as its strategy.

First, we show that for some fixed distribution over the input values of C, the strategy
that maximizes W ’s probability of correctly outputting the majority value of C is simply to
output the majority value of its samples. Let I ∈ {0, 1}S be the sample string representing
the S independent samples with replacement taken by W , and let S denote the set of all 2S
possible sample strings. We model the population of input agents as being generated by an
adversary. Specifically, let M denote the majority value (0 or 1) of the input population,
where we treat M as a a random variable whose distribution is unknown. In any realization
of M , we assume a fixed fraction p > 1/2 of the inputs hold the majority value. Given an
input population, the objective of the worker agent is to correctly determine the value of
M through its input sample string I. By Yao’s principle [23], the error of any randomized
algorithm (i.e., the randomized simulation run by the super-agent) on the worst case value of
M is no smaller than the error of the best deterministic algorithm on some fixed distribution
over M . So our strategy is to pick a distribution over M , and to use the the error of the best
deterministic strategy with respect to this distribution as a lower bound on the worst-case
error of any randomized algorithm used by the super-agent.

Thus, assuming M is chosen according to some fixed distribution, we model the worker’s
strategy as a fixed map f : {0, 1}S → {0, 1}. Letting FS denote the set of all such maps, W
then faces the following optimization problem: maxf∈FS

Pr[f(I) = M ]. For a given f ∈ FS ,
let pf = Pr[f(I) = M ], and let Φ ∈ FS denote the map that outputs the majority value of
the input sample string I. In the following lemma, we show that when the distribution over
M is uniform, setting f := Φ maximizes pf . In other words, to maximize the probability
of correctly guessing the input population majority value, the worker’s optimal strategy is
to simply guess the majority value of its S independent samples. The proof of the lemma
simply uses the definitions of conditional probability and the Law of Total Probability to
obtain the result.

I Lemma 4. Let I = {0, 1}S be a sample string of size S drawn from an input population
with majority value M and majority ratio p, and assume Pr[M = 1] = Pr[M = 0] = 1/2.
Then Pr[Φ(I) = M ] ≥ Pr[f(I) = M ] for all maps f ∈ FS, where Φ is the map that outputs
the majority value of the sample string I.

We have established by Lemma 4 that to correctly output the input population majority,
the super worker agent’s error-minimizing strategy is to output the majority of its S samples
when the distribution over M is uniform. Now the following lemma shows that when the
input margin of the population is 1, this strategy requires at least Ω(n2) samples in order to
output the input majority with probability at least 1− n−c for some constant c ≥ 1. The
proof uses a tail bound on the Binomial distribution to show the desired trade off between
the error of probability and the requisite number of samples needed to achieve this error.
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I Lemma 5. Let C be a Super CI population of n agents with majority value M and input
margin 1, and consider an input sample string I = {0, 1}S obtained by a super worker agent
W . Then for any c ≥ 1, letting Φ(I) denote the sample majority of I, Pr[Φ(I) 6= M ] ≤ n−c
only holds when S ≥ Ω(n2).

The proof of Theorem 1 follows from Lemmas 3, 4, and 5 by invoking Yao’s principle.

Overview of Theorem 2

As mentioned, Theorem 1 implies a strong separation between the CI model and original
population model, as [19] and [1,2] have shown that both parity and majority are computable
with high probability within O(npolylogn) total steps in the original model, respectively.
Thus, the persistent-state nature of input agents in the CI model may seem to pose greater
challenges than in the original model for computing predicates quickly with high probability.
However, using the same sampling-based lower bound techniques developed in the preceding
section, Theorem 2 shows that when m = Θ(n), and when restricted only to S = O(n logn)
total steps, any protocol computing majority in the CI model requires an input margin of at
least Ω(

√
n) = Ω(

√
N) to be correct with high probability in N .

Moreover, in Section 4 we present a protocol for approximate majority in the CI model
that converges correctly with high probability within O(N logN) total steps, so long as
the initial input margin is Ω(

√
N logN). Thus, the existence of such a protocol indicates

that the Ω(
√
N) lower bound on the input margin is nearly tight (up to

√
logN factors) for

protocols limited to O(N logN) total steps when m = Θ(n).

4 Approximate Majority with Catalytic Inputs

We now present and analyze the DBAM-C protocol for computing approximate majority in the
CI model. The protocol is a natural adaptation of a third-state dynamics from the original
model, where we now account for the behavior of n catalytic input agents and m worker
agents. Using the CI model notation introduced in Section 2, we consider a population with
N = n+m total agents. Each input agent begins (and remains) in state IX or IY , and we
assume each worker agent begins in a blank state B, but may transition to states X or Y
according to the transition rules found in Figure 1. Letting iX and iY (and similarly x, y and
b) be random variables denoting the number of agents in states IX and IY (and respectively
X,Y , and B), we denote the input margin of the population by ε = |iX − iY |. Throughout
the section, we assume without loss of generality that iX ≥ iY .

Intuitively, an undecided (blank) worker agent adopts the state of a decided agent (either
an input or worker), but decided workers only revert back to a blank state upon interactions
with other workers of the opposite opinion. Thus the protocol shares the opinion-spreading
behavior of the original DBAM protocol, but note that the inability for decided worker agents
to revert back to the blank state upon subsequent interactions with an input allows the
protocol to converge to a configuration where all workers share the same X or Y opinion.

The main result of the section characterizes the convergence behavior of the DBAM-C
protocol when the input margin ε is sufficiently large. Recall that we say the protocol
correctly computes the majority of the inputs if we reach a configuration where x = m. The
following theorem shows that, subject to mild constraints on the population sizes, when the
input margin is Ω(

√
N logN), the protocol correctly computes the majority value of the

inputs in roughly logarithmic parallel time with high probability.
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I Theorem 6. There exists some constant α ≥ 1 such that, for a population of n inputs, m
workers, and initial input margin ε ≥ α

√
N logN , the DBAM-C protocol correctly computes

the majority value of the inputs within O
(
N4

m3 logN
)
total interactions with probability at

least 1−N−c for any c ≥ 1 when m ≥ n/10 and N is sufficiently large.

Because the CI model allows for distinct (and possibly unrelated) input and worker
population sizes, we aim to characterize all error and success probabilities with respect to the
total population size N . The analysis in the proof of Theorem 6 characterizes the convergence
behavior of the protocol in terms of both population sizes m and n, and thus the convergence
time of O((N4/m3) logN) is not always equivalent to O(N logN). On the other hand, in
the case when m = Θ(n) – which is an assumption used to provide lower bounds over the CI
model from Section 3 – we have as a corollary (further below) that the protocol correctly
computes the majority of the inputs within O(N logN) total steps with probability at least
1−N−α.

Analysis Overview

The proof of the main result leverages and applies the random walk tools from [12] (in their
analysis of the original DBAM protocol) to the DBAM-C protocol. Given the uniformly-random
behavior of the interaction scheduler, the random variables x, y and b (which represent the
count of X, Y , and B worker agents in the population) each behave according to some
one-dimensional random walk, where the biases in the walks change dynamically as the values
of these random variables fluctuate. Based on the coupling principle that an upper bound on
the number of steps for a random walk with success probability p to reach a certain position
is an upper bound on the step requirement for a second random walk with probability p̂ ≥ p
to reach the same position, we make use of several progress measures that give the behavior
of the protocol a natural structure. As used in the analysis of Condon et al. [12], we define
x̂ = x+ b/2, ŷ = y + b/2, and P = ε+ x̂− ŷ. It can be easily seen that x̂+ ŷ = m will hold
throughout the protocol. On the other hand, the progress measure P captures the collective
gap between the majority and non-majority opinions in the population. Observe that the
protocol has correctly computed the input majority value when P = ε+m and ŷ = 0.

Our analysis uses a structure of phases and stages to prove the correctness and efficiency
of the protocol. Every correctly-completed stage of Phase 1 results in the progress measure
P doubling, and the phase completes correctly once P is at least ε plus some large constant
fraction of m. Then, every correctly-completed stage of Phase 2 results in the progress
measure ŷ decreasing by a factor of two, and the phase completes correctly once ŷ drops to
O(logm). Finally, Phase 3 of the protocol ends correctly once ŷ drops to 0. The details of
this structure are stated formally in the full version of the paper.

Note that among the protocol’s non-null transitions (see Figure 2), only the interactions
IX +B, IY +B, X +B, and Y +B change the value of either progress measure. For this
reason, we refer to the set of non-null transitions (which includes X + Y interactions) as
productive steps, and the subset of interactions that change our progress measures as
the set of blank-consuming productive steps The analysis strategy for every phase and
stage is to employ a combination of standard Chernoff bounds and martingale techniques
(in general, see [18] and [15]) to obtain with-high-probability estimates of (1) the number
of productive steps needed to complete each phase/stage correctly, and (2) the number of
total steps needed to obtain the productive step requirements. Given an input margin that
is sufficiently large, and also assuming a population where the number of worker agents is at
least a small constant fraction of the input size, we can then sum over the error probabilities
of each phase/stage and apply a union bound to yield the final result of Theorem 6.
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While the DBAM-C protocol is conceptually similar to the original DBAM protocol, the
presence of persistent-state catalysts whose opinions never change requires a careful analysis
of the convergence behavior. Moreover, simulation results presented in Section 5 show
interesting differences in the evolution of the protocol for varying population sizes. As
a simple corollary of Theorem 6, we also state the following result, which simplifies the
convergence guarantees of the DBAM-C protocol in the case when m = Θ(n).

I Theorem 7. There exists some constant α ≥ 1 such that, for a population of n inputs,
m = cn workers where c ≥ 1, and an initial input margin ε ≥ α

√
N logN , the DBAM-C

protocol correctly computes the majority of the inputs within O(N logN) total interactions
with probability at least 1−N−a for any a ≥ 1 when N is sufficiently large.

We note that the result of Corollary 7 implies that the CI model input margin lower
bound from Theorem 2 is tight up to a multiplicative O(

√
logN) factor.

5 Approximate Majority with Transient Leaks

We now consider the behavior of the DBAM and DBAM-C protocols in the presence of transient
leak faults. Even in the presence of these adversarial events (which occur up to some bounded
rate β), both the DBAM and DBAM-C protocols will, with high probability, reach configurations
where nearly all agents share the input majority opinion. In the presence of leaks, we
consider the approximate majority predicate to be computed correctly upon reaching these
low sample-error configurations.

Recall that a transient leak is an event where an agent spuriously changes its state
according to some leak function `. For example, we denote by U → V the event that an
agent in state U transitions to state V due to a leak event, where the timing of such events
are dictated by the random scheduler and occur with probability β at each subsequent
interaction step. In both the DBAM and DBAM-C protocols, the only state changes that could
possibly take place due to leaks are X → B, Y → B, B → X, and B → Y because these
describe all possible state changes that could take place in the presence of an interacting
partner. However, our analysis considers an adversarial leak event X → Y , which maximally
decreases our progress measures and can be considered the “worst” possible leak. Though
this leak event is not chemically sound (because no normal interaction can cause an X agent
to transition to the Y state), our results demonstrate that both DBAM and DBAM-C protocols
are robust to this strong adversarial leak event. Thus in a more realistic chemically sound
setting, our results will also hold, as the set of transitions working against our progress
measures are weaker.

Leak Robustness of the DBAM Protocol

We start by showing the leak-robustness of the DBAM protocol for approximate majority
in the original population protocol model. Recall that in the standard model, all agents
are susceptible to leaks. Our main result shows that when the leak rate β is sufficiently
small, the protocol still reaches a configuration with bounded sample error (the proportion
of agents in the non-initial-majority state) within O(n logn) total interactions with high
probability. Unlike the scenario without leak events, note that the protocol will never be able
to fully converge to a configuration where all agents remain in the majority opinion. However,
reaching a configuration where despite leaks, nearly all agents hold the input majority value
state matches similar results of [3, 5, 7, 12]. Formally, we have the following Theorem, which
characterizes the eventual sample error of the protocol with respect to the magnitude of the
leak rate β.
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I Theorem 8. There exists some constant α ≥ 1 such that, for a population with initial
input margin ε ≥ α

√
n logn and adversarial leak rate β ≤ (α

√
n logn)/12672n, an execution

of the DBAM protocol will reach a configuration with
1. sample error O(logn/n) when β ≤ O(logn/n)
2. sample error O(β) when ω(logn/n) ≤ β ≤ (α

√
n logn)/12672n

within O(n logn) total interactions with probability at least 1− n−c for any c ≥ 1 when n is
sufficiently large.

To prove Theorem 8, we again make modified use of the random walk tools from [12].
Using the progress measures ŷ = y + b/2 and P = x̂ − ŷ, observe that an X → Y leak
event incurs twice as much negative progress to both measures as opposed to X +B events.
Compared to the analysis from the non-leak setting, the analysis with adversarial leaks
must account for the stagnation (or potentially the reversal) of the protocol’s progress
toward reaching a high-sample-error configuration. Note that since the sample error of a
configuration is defined to be (y + b)/n (since we assume an initial x majority wlog), we will
use the value ŷ/n to approximate a configuration’s sample error.

We use a similar structure of phases and stages as in the previous section, and we list
these details formally in the full version of this work. In this leak-prone setting, we refer to
productive interactions as any of the non-null transitions found in Figure 1 in addition to a
leak event. The set of three non-null and non-leak transitions are referred to as non-leak
productive steps. For each phase and stage, we obtain high-probability estimates on the
number of productive and total steps needed to complete the phase/stage correctly in two
steps: first, we bound the number of leak events that can occur during a fixed interval of
productive events, and we then show that a smaller sub-sequence of non-leak productive
steps is sufficient to ensure that enough progress is made to offset the negative progress of
the leaks. We again rely on a combination of Chernoff concentration bounds and martingale
inequalities in order to show this progress at every phase and stage.

Theorem 8 also separates the behavior of the protocol into two classes: when β ≤
O(logn/n) (small leak rate), and when ω(logn/n) ≤ β ≤ O(

√
n logn/n) (large leak rate).

When the leak rate is large, the probability of a leak event conditioned on a productive step
becomes roughly equal to the conditional probability of a non-leak productive step when
ŷ = O(βn). Thus, we cannot expect the protocol to make further “progress” toward a lower
sample-error configuration with high probability beyond ŷ = O(βn). The same holds for
small leak rate when β = O(logn/n), and for even smaller values of β, our analysis tools only
allow for the high-probability guarantee that ŷ eventually drops to O(logn). the protocol
reaches a configuration with ŷ = O(logn). In the full version of the paper, we give additional
arguments showing that the protocol remains in a configuration with sample error O(logn/n)
for small leak rate, and with sample error O(

√
n logn/n) for large leak rate, for at least a

polynomial number of interactions with high probability.

Leak Robustness of the DBAM-C Protocol

The analysis of the previous subsection is adapted to show that the DBAM-C protocol also
exhibits a similar form of leak-robustness in the CI model, and in the following theorem we
prove the case where m = Θ(n). Recall that in the CI model, only the non-catalytic worker
agents are susceptible to leak events.

I Theorem 9. There exist constants α, d ≥ 1 such that, for a population with m = cn for
c ≥ 1 and input margin ε ≥ α

√
N logN , the DBAM-C protocol will reach a configuration with

1. sample error O(logN/N) when β ≤ O(logN/N)
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2. sample error O(β) when ω(logN/N) ≤ β ≤ (α
√
N logN)/dN

within O(N logN) total interactions with probability at least 1−N−a for a ≥ 1 when N is
sufficiently large.

The proof of the theorem uses the same progress measures and phase and stage structure
introduced in the non-leak setting in Section 4, and the final sample-error guarantee of the
protocol is again defined with respect to the magnitude of the leak rate. The behavior of
the protocol between the two classes of leak rate is similar as in the DBAM analysis, and the
formal details can be found in the full version of the paper. Note that as the upper bound on
the leak rate β is a decreasing function in N , the sample error guarantees of both protocols
increase with population size. This relationship is shown across various simulations of the
DBAM-C protocol in Figure 3. Moreover, Figure 4a depicts aggregate sample data over many
executions of the DBAM-C protocol for varying values of N , and Figure 4b illustrates the
logarithmic parallel time needed to reach convergence in the non-leak setting.

Figure 3 Simulations of the DBAM-C protocol, where each subplot shows the proportion of X, Y
and B worker agents evolve over the course of an execution. All simulations are for m = n, input
margin ε =

√
N logN (with an IX majority), and varying values of leak rate β over 4N logN total

interactions. Note that these plots are of single executions and thus provide a qualitative illustration
of behavior, rather than statistically significant data. However, we can see that for larger values of
m = n and smaller values of β, the number of X worker agents reaches a larger count more quickly.

6 Leaks Versus Byzantine agents

The original third-state dynamics approximate majority protocol [7] is robust to a bounded
number of Byzantine agents, and as shown in the previous sections, both the DBAM protocol
and the DBAM-C protocol in the CI model are robust to a bounded leak rate. In this section,
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(a) Sample success rate (y-axis) averaged over 3000
executions of DBAM-C for n = 600, ∆0 =

√
N logN ,

and β = 1/N , and varying values of m (x-axis).
Samples were drawn uniformly from the worker
population after 4N logN total interactions.

(b) Parallel time (y-axis) for DBAM-C without leaks
to reach consensus for varying population sizes (x-
axis) where m = 2n. Data points represent a single
execution. The solid black line is 3

4 log2(N), show-
ing that convergence takes O(N logN) interactions.

Figure 4 Success rate and running time of DBAM-C over various executions of the protocol.

we consider the connection between these two types of faulty behavior. While leaks can
occur at any agent with fixed probability throughout an execution, Byzantine agents are
a fixed subset of the population, and while a leak event does not change the subsequent
behavior of an agent, Byzantine agents may continue to misbehave forever. However, there
are parallels between these two models of adversarial behavior. A leak at one agent can
cause additional agents to deviate from a convergent configuration; similarly, interactions
among non-Byzantine agents, some of which have deviated from a convergent configuration
by interacting with a Byzantine agent, can cause additional non-Byzantine agents to diverge.

We prove that for the DBAM and DBAM-C protocols, introducing a leak rate of β has the
same asymptotic effect as introducing O(βN) Byzantine agents to the population, which
demonstrates an equivalence between these two notions of adversarial behavior among the
class of third-state dynamics protocols. Although the results of the previous section assumed
leaks that do not follow the laws of chemistry, the following result considers weak leaks,
which cause the selected agent to decrease its confidence in the majority value by one degree
(i.e. a leak causes an agent in state X to transition to B and an agent in state B to transition
to Y , matching the X+Y and Y +B transitions). For our purposes, we define two adversarial
models M1 and M2 to be equivalent for some protocol P if P converges to the same
asymptotic sample error rate in the same asymptotic running time in both models. We then
have the following equivalence result:

I Theorem 10. A population of N agents running DBAM (or DBAM-C) with weak leak rate
O(β) is equivalent to a population of N +B agents, where B = O(Nβ) agents are Byzantine,
running DBAM (or DBAM-C) without leaks, where in either setting the protocol converges in
O(N logN) interactions with error probability O(β).

7 Conclusion and Open Problems

We have shown that third-state dynamics can be used to solve approximate majority with
high probability in O(n logn) steps up to leak rate β = O(

√
n logn/n), both in the standard

population protocol model as well as the CI model when m = Θ(n). While we showed a
separation between the CI and original population models, it remains an open question what
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other problems (similar to approximate majority) can be computed quickly in the CI model.
Additionally, identifying which families of protocols are naturally robust to leak events in the
original population model (similar to third-state dynamics) also remains an open question.
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Abstract
In this paper, we study the problem of runtime verification of distributed applications that do
not share a global clock with respect to specifications in the linear temporal logics (LTL). Our
proposed method distinguishes from the existing work in three novel ways. First, we make a practical
assumption that the distributed system under scrutiny is augmented with a clock synchronization
algorithm that guarantees bounded clock skew among all processes. Second, we do not make any
assumption about the structure of predicates that form LTL formulas. This relaxation allows us
to monitor a wide range of applications that was not possible before. Subsequently, we propose
a distributed monitoring algorithm by employing SMT solving techniques. Third, given the fact
that distributed applications nowadays run on massive cloud services, we extend our solution to
a parallel monitoring algorithm to utilize the available computing infrastructure. We report on
rigorous synthetic as well as real-world case studies and demonstrate that scalable online monitoring
of distributed applications is within our reach.
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1 Introduction

A distributed system consists of a collection of processes that attempt to solve a problem by
means of communication and local computation. Applications of distributed systems range
over small-scale networks of deeply embedded systems to monitoring a collection of sensors
in smart buildings to large-scale cluster of servers in cloud services. However, design and
analysis of such systems has always been a grand challenge due to their inherent complex
structure, amplified by combinatorial explosion of possible executions due to nondeterminism
and the occurrence of faults. This makes exhaustive model checking techniques not scalable
and under-approximate techniques such as testing not so effective.

In this paper, we advocate for a runtime verification (RV) approach, where a monitor
observes the behavior of a distributed system at run time and verifies its correctness with
respect to a temporal logic formula. Distributed RV has to overcome a significant challenge.
Although RV deals with finite executions, due to lack of a global clock, there may potentially
exist events whose order of occurrence cannot be determined by a runtime monitor. Addition-
ally, different orders of events may result in different verification verdicts. Enumerating all
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possible orders at run time often incurs an exponential blow up, making it impractical. This
is of course, on top of the usual monitor overhead to evaluate an execution. For example,
consider the distributed computation in Fig. 1, where processes P1 and P2 host discrete
variables x1 and x2 , respectively. Let us also consider LTL formula ϕ = (x1 +x2 ≤ 1). Since
events x1 = 1 and x2 = 2 are concurrent (i.e., it is not possible to determine which happened
before or after which in the absence of a global clock), the formula can be evaluated to
both true and false, depending upon different order of occurrences of these events. Handling
concurrent events generally results in combinatorial enumeration of all possibilities and,
hence, intractability of distributed RV. Existing distributed RV techniques operate in two
extremes: they either assume a global clock [1], which is unrealistic for large-scale distributed
settings or assume complete asynchrony [20, 19], which do not scale well.

P1

P2

x1 = 0 x1 = 1

x2 = 0 x2 = 2

Figure 1 Distributed computation.

We propose a sound and complete solution to the problem of distributed RV with respect
to LTL formulas by incorporating a middle-ground approach. Our solution uses a fault-proof
central monitor and may be summarized as follows. In order to remedy the explosion of
different interleavings, we make a practical assumption, that is, a bounded skew ε between
local clocks of every pair of processes, guaranteed by a fault-proof clock synchronization
algorithm (e.g., NTP [17]). This means time instants from different clocks within ε are
considered concurrent, i.e., it is not possible to determine their order of occurrence. This
setting constitutes partial synchrony, which does not assume a global clock but limits the
impact of asynchrony within clock drifts. Following the work in [14], we augment the classic
happened-before relation [16] with the bounded skew assumption. This way, concurrent events
are limited to those that happen within the ε time window, and those cannot be ordered
according to communication. We transform our monitoring decision problem into an SMT
solving problem. The SMT instance includes constraints that encode (1) our monitoring
algorithm based on the 3-valued semantics of LTL [2], (2) behavior of communicating processes
and their local state changes in terms of a distributed computation, and (3) the happened-
before relation subject to the ε clock skew assumption. Then, it attempts to concretize an
uninterpreted function whose evaluation provides the possible verdicts of the monitor with
respect to the given computation. Furthermore, given the fact that distributed applications
nowadays run on massive cloud services, we extend our solution to a parallel monitoring
algorithm to utilize the available computing infrastructure and achieve better scalability.

We have fully implemented our techniques and report results of rigorous experiments
on monitoring synthetic data, as well as monitoring consistency conditions in data centers
that run Cassandra [15] as their distributed database management system. We make the
following observations. First, although our approach is based on SMT solving, it can be
employed for offline monitoring (e.g., log analysis) as well as online monitoring for less
intensive applications such as consistency checking in Google Drive. Secondly, we show how
the structure of global predicates (e.g., conjunctive vs. disjunctive) and LTL formulas affect
the performance of monitoring. Third, we illustrate how monitoring overhead is independent
of the clock skews when practical clock synchronization protocols are applied, making the
drift sufficiently small. Finally, we demonstrate how our parallel monitoring algorithm
achieves scalability, especially for predicate detection.
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Organization. Section 2 presents the background concepts. Our SMT-based solution is
described in Section 3, while experimental results are analyzed in Section 4. Related work is
discussed in Section 5. Finally, we make concluding remarks in Section 6.

2 Preliminaries

2.1 Linear Temporal Logic (LTL) for RV
Let AP be a set of atomic propositions and Σ = 2AP be the set of all possible states. A trace
is a sequence s0s1 · · · , where si ∈ Σ for every i ≥ 0. We denote by Σ∗ (resp., Σω) the set
of all finite (resp., infinite) traces. The syntax and semantics of the linear temporal logic
(LTL) [21] are defined for infinite traces. The syntax is defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ | ϕ U ϕ

where p ∈ AP, and where and U are the “next” and “until” temporal operators respectively.
We also use the following abbreviations: true = p ∨ ¬p, false = ¬true, ϕ→ ψ = ¬ϕ ∨ ψ,
ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ), ϕ = true U ϕ (eventually ϕ), and ϕ = ¬ ¬ϕ (always ϕ).

The infinite-trace semantics of LTL is defined as follows. Let σ = s0s1s2 · · · ∈ Σω, i ≥ 0,
and let |= denote the satisfaction relation:

σ, i |= p iff p ∈ si
σ, i |= ¬ϕ iff σ, i 6|= ϕ

σ, i |= ϕ1 ∨ ϕ2 iff σ, i |= ϕ1 or σ, i |= ϕ2
σ, i |= ϕ iff σ, i+ 1 |= ϕ

σ, i |= ϕ1 U ϕ2 iff ∃k ≥ i.σ, k |= ϕ2 and ∀j ∈ [i, k) : σ, j |= ϕ1

Also, σ |= ϕ holds if and only if σ, 0 |= ϕ holds.
In the context of RV, the 3-valued LTL (LTL3 for short) [2] evaluates LTL formulas for

finite traces, but with an eye on possible future extensions. In LTL3, the set of truth values is
B3 = {>,⊥, ?}, where > (resp., ⊥) denotes that the formula is permanently satisfied (resp.,
violated), no matter how the current finite trace extends, and “?” denotes an unknown
verdict, i.e., there exists an extension that can violate the formula, and another extension
that can satisfy the formula. Let α ∈ Σ∗ be a non-empty finite trace. The truth value of an
LTL3 formula ϕ with respect to α, denoted by [α |=3 ϕ], is defined as follows:

[α |=3 ϕ] =


> if ∀σ ∈ Σω : ασ |= ϕ

⊥ if ∀σ ∈ Σω : ασ 6|= ϕ

? otherwise.

q⊥

q0

q>

{a}

{} {a, b}, {b}

true true

Figure 2 LTL3 monitor for ϕ = a U b.
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For example, consider formula ϕ = p, and a finite trace α = s0s1 · · · sn. If p 6∈ si for
some i ∈ [0, n], then [α |=3 ϕ] = ⊥, that is, the formula is permanently violated. Now,
consider formula ϕ = p. If p 6∈ si for all i ∈ [0, n], then [α |=3 ϕ] =?.

I Definition 1. The LTL3 monitor (see Fig. 2) for a formula ϕ is the unique deterministic
finite state machine Mϕ = (Σ, Q, q0, δ, λ), where Q is the set of states, q0 is the initial
state, δ : Q × Σ → Q is the transition function, and λ : Q → B3 is a function such that
λ
(
δ(q0, α)

)
= [α |=3 ϕ], for every finite trace α ∈ Σ∗.

2.2 Distributed Computations
We assume a loosely coupled asynchronous message passing system, consisting of n reliable
processes (that do not fail), denoted by P = {P1, P2, . . . , Pn}, without any shared memory or
global clock. Channels are assumed to be FIFO, and lossless. In our model, each local state
change is considered an event, and every message activity (send or receive) is also represented
by a new event. Message transmission does not change the local state of processes and the
content of a message is immaterial to our purposes. We will need to refer to some global
clock which acts as a “real” timekeeper. It is to be understood, however, that this global
clock is a theoretical object used in definitions, and is not available to the processes.

We make a practical assumption, known as partial synchrony. The local clock (or time) of
a process Pi, where i ∈ [1, n], can be represented as an increasing function ci : R≥0 → R≥0,
where ci(χ) is the value of the local clock at global time χ. Then, for any two processes Pi
and Pj , we have ∀χ ∈ R≥0.|ci(χ) − cj(χ)| < ε, with ε > 0 being the maximum clock skew.
The value ε is assumed to be fixed and known by the monitor in the rest of this paper. In
the sequel, we make it explicit when we refer to “local” or ‘global’ time. This assumption
is met by using a clock synchronization algorithm, like NTP [17], to ensure bounded clock
skew among all processes.

An event in process Pi is of the form eiτ,σ, where σ is logical time (i.e., a natural number)
and τ is the local time at global time χ, that is, τ = ci(χ). We assume that for every two
events eiτ,σ and eiτ ′,σ′ , we have (τ < τ ′)⇔ (σ < σ′).

I Definition 2. A distributed computation on N processes is a tuple (E , ), where E is a
set of events partially ordered by Lamport’s happened-before ( ) relation [16], subject to the
partial synchrony assumption:

In every process Pi, 1 ≤ i ≤ N , all events are totally ordered, that is,

∀τ, τ ′ ∈ R+.∀σ, σ′ ∈ Z≥0.(σ < σ′)→ (eiτ,σ  eiτ ′,σ′).

If e is a message send event in a process, and f is the corresponding receive event by
another process, then we have e f .
For any two processes Pi and Pj, and any two events eiτ,σ, e

j
τ ′,σ′ ∈ E, if τ + ε < τ ′, then

eiτ,σ  ejτ ′,σ′ , where ε is the maximum clock skew.
If e f and f  g, then e g.

I Definition 3. Given a distributed computation (E , ), a subset of events C ⊆ E is said
to form a consistent cut iff when C contains an event e, then it contains all events that
happened-before e. Formally, ∀e ∈ E .(e ∈ C) ∧ (f  e)→ f ∈ C.

The frontier of a consistent cut C, denoted front(C) is the set of events that happen last in
the cut. front(C) is a set of eilast for each i ∈ [1, |P|] and eilast ∈ C. We denote eilast as the
last event in Pi such that ∀eiτ,σ ∈ E .(eiτ,σ 6= eilast)→ (eiτ,σ  eilast).
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2.3 Problem Statement
Given a distributed computation (E , ), a valid sequence of consistent cuts is of the form
C0C1C2 · · · , where for all i ≥ 0, we have (1) Ci ⊂ Ci+1, and (2) |Ci| + 1 = |Ci+1|. Let C
denote the set of all valid sequences of consistent cuts. We define the set of all traces of
(E , ) as follows:

Tr(E , ) =
{

front(C0)front(C1) · · · | C0C1C2 · · · ∈ C
}
.

Now, the evaluation of an LTL formula ϕ with respect to (E , ) in the 3-valued semantics is
the following:

[(E , ) |=3 ϕ] =
{

(α, ) |=3 ϕ | α ∈ Tr(E , )
}

This means evaluating a distributed computation with respect to a formula results in a set
of verdicts, as a computation may involve several traces.

2.4 Hybrid Logical Clocks

10 10 0
(τ , σ, ω)

20 20 0 21 21 0 31 31 0
P1

0 10 1 1 10 2 2 10 5 20 20 0
P2

0 0 0 1 10 3 2 10 4 20 20 0
P3

3

C1

7

C0

7

C2

Figure 3 HLC example.

A hybrid logical clock (HLC) [14] is a tuple (τ, σ, ω) for detecting one-way causality, where
τ is the local time, σ ensures the order of send and receive events between two processes,
and ω indicates causality between events. Thus, in the sequel, we denote an event by eiτ,σ,ω.
More specifically, for a set E of events:

τ is the local clock value of events, where for any process Pi and two events eiτ,σ,ω, eiτ ′,σ′,ω′
∈ E , we have τ < τ ′ iff eiτ,σ,ω  eiτ ′,σ′,ω′ .
σ stipulates the logical time, where:

For any process Pi and any event eiτ,σ,ω ∈ E , τ never exceeds σ, and their difference is
bounded by ε (i.e, σ − τ ≤ ε).
For any two processes Pi and Pj , and any two events eiτ,σ,ω, e

j
τ ′,σ′,ω′ ∈ E , where event

eiτ,σ,ω receiving a message sent by event ejτ ′,σ′,ω′ , σ is updated to max{σ, σ′, τ}. The
maximum of the three values are chosen to ensure that σ remains updated with
the largest τ observed so far. Observe that σ has similar behavior as τ , except the
communication between processes has no impact on the value of τ for an event.

ω : E → Z≥0 is a function that maps each event in E to the causality updates, where:
For any process Pi and a send or local event eiτ,σ,ω ∈ E , if τ < σ, then ω is incremented.
Otherwise, ω is reset to 0.
For any two processes Pi and Pj and any two events eiτ,σ,ω, e

j
τ ′,σ′,ω′ ∈ E , where

event eiτ,σ,ω receiving a message sent by event ejτ ′,σ′,ω′ , ω(eiτ,σ,ω) is updated based on
max{σ, σ′, τ}.
For any two processes Pi and Pj , and any two events eiτ,σ,ω, e

j
τ ′,σ′,ω′ ∈ E , (τ = τ ′)∧(ω <

ω′)→ eiτ,σ,ω  ejτ ′,σ′,ω′ .
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In our implementation of HLC, we assume that it is fault-proof. Fig. 3 shows an HLC
incorporated partially synchronous concurrent timelines of three processes with ε = 10.
Observe that the local times of all events in front(C1) are bounded by ε. Therefore, C1 is a
consistent cut, but C0 and C2 are not.

3 SMT-based Solution

3.1 Overall Idea
Recall from Section 1 (Fig. 1) that monitoring a distributed computation may result in
multiple verdicts depending upon different ordering of events. In other words, given a
distributed computation (E , ) and an LTL formula ϕ, different ordering of events may reach
different states in the monitor automatonMϕ = (Σ, Q, q0, δ, λ) (as defined in Definition 1).
In order to ensure that all possible verdicts are explored, we generate an SMT instance
for (1) the distributed computation (E , ), and (2) each possible path in the LTL3 monitor.
Thus, the corresponding decision problem is the following: given (E , ) and a monitor path
q0q1 · · · qm in an LTL3 monitor, can (E , ) reach qm? If the SMT instance is satisfiable, then
λ(qm) is a possible verdict. For example, for the monitor in Fig. 2, we consider two paths
q∗0q⊥ and q∗0q> (and, hence, two SMT instances). Thus, if both instances turn out to be
unsatisfiable, then the resulting monitor state is q0, where λ(q0) =?.

We note that since LTL3 monitors may contain cycles, we first transform the monitor
into an acyclic monitor. To this end, we collapse each cycle into one state with a self-loop
labeled by the sequence of events on the cycle (see Fig. 4 for an example). In the next two
subsections, we present the SMT entities and constraints with respect to one monitor path
and a distributed computation.

3.2 SMT Entities

q0

q1

q2q3

q4

qr

a1 a3

a5

a2

a4

⇒

q0

q1

q3 q2

q4

qr

a1

a2a3a1

a2

a4

a3a1a2

a5

Figure 4 LTL3 Monitor cycle.

We now introduce the entities that represent a path in an LTL3 monitorMϕ = (Σ, Q, q0, δ, λ)
for LTL formula ϕ and computation (E , ).

Monitor automaton. Let q0
s0−→ q1

s1−→ · · · (qj
sj−→ qj)∗ · · ·

sm−1−−−→ qm be a path of monitor
Mϕ, which may or may not include a self-loop. We include a non-negative integer variable
ki for each transition qi

si−→ qi+1, where i ∈ [0,m− 1] and si ∈ Σ. Observe that we include
only one non-negative integer variable kj for the self-loop qj

sj−→ qj .
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Distributed computation. In our SMT encoding, we represent the set E by a bit-vector
for efficiency. However, for simplicity, we keep referring to the events in a distributed
computation by the set E . In order to express the happened-before relation in our SMT
encoding, we conduct a pre-processing phase, where we create an |E| × |E| matrix E, such
that E[i, j] = 1, if E[i]  E[j], else E[i, j] = 0. This pre-processing phase incorporates
the HLC algorithm, described in Section 2.4, to construct the matrix. In the sequel, for
simplicity, we keep using the  relation between events when needed.

In order to establish the connection between events and atomic propositions in AP based
on which the LTL formula ϕ is constructed, we introduce a Boolean function µ : E × Σ→
{true, false}. We note that if processes have non-Boolean variables and more complex
relational predicates (e.g., x1 + x2 ≥ 2), then function µ can be defined accordingly. Finally,
in order to identify the sequence of consistent cuts whose run on the monitor starts from q0
and ends in qm, we introduce an uninterpreted function ρ : Z≥0 → 2E . That is, if the SMT
instance is satisfiable, then the interpretation of ρ is the sequence of consistent cuts that
ends in monitor state qm. Otherwise, no ordering of concurrent events results in the verdict
given by state qm.

3.3 SMT Constraints
Once we define the necessary SMT entities, we move onto the SMT constraints.

Consistent cut constraints over ρ. We first identify the constraints over uninterpreted
function ρ, whose interpretation is a sequence of consistent cuts that starts and ends in the
given monitor automaton path. Thus, we first require that each element in the range of ρ
must be a consistent cut:

∀i ∈ [0,m].∀e, e′ ∈ E .
(

(e′  e) ∧ (e ∈ ρ(i))
)
→
(
e′ ∈ ρ(i)

)
Next, we require the sequence of consistent cuts that ρ identifies to start from an empty set
of events and in each consistent cut of the sequence, there is one more event in the successor
cut:

∀i ∈ [0,m]. |ρ(i+ 1)| = |ρ(i)|+ 1

Finally, the progression of consistent cuts should yield a subset relation. Otherwise, the
successor of a consistent cut is not an immediately reachable cut in (E , ):

∀i ∈ [0,m]. ρ(i) ⊆ ρ(i+ 1)

Monitoring constraints over ρ. These constraints are responsible for generating a valid
sequence of consistent cuts given a distributed computation (E , ) that runs on monitor path
q1

s1−→ q2 · · · q∗j · · ·
sm−1−−−→ qm. We begin with interpreting ρ(km) by requiring that running

(E , ) ends in monitor state qm. The corresponding SMT constraint is:

µ(front(ρ(km)), sm−1)

For every monitor state qi, where i ∈ [0,m−1], if qi does not have a self-loop, the corresponding
SMT constraint is:

µ(front(ρ(ki+1 − 1)), si) ∧ (ki = ki+1 − 1)

OPODIS 2020
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For every monitor state qj , where j ∈ [0,m − 1], suppose qj has a self-loop (recall that a
cycle of r transitions in the monitor automaton is collapsed into a self-loop labeled by a
sequence of r letters). Let us imagine that this self-loop executed z number of times for some
z ≥ 0. Furthermore, we denote the sequence of letters in the self-loop as sj1sj2 · · · sjr . The
corresponding SMT constraint is:

z∧
i=1

r∧
n=1

µ
(

front
(
ρ(kj + r(i− 1) + n)

)
, sjn

)
Again, since z is a free variable in the above constraint, the solver will identify some value
z ≥ 0 which is exactly what we need. To ensure that the domain of ρ starts from the empty
consistent cut (i.e., ρ(0) = ∅), we add:

k0 = 0.

Finally, let C denote the conjunction of all the above constraints. Recall that this
conjunction is with respect to only one monitor path from q0 to qm. Since there may be
multiple paths in the monitor automaton that can reach qm from q0, we replicate the above
constraints for each such path. Suppose there are n such paths and let C1, C2, . . . , Cn be the
corresponding SMT constraints for these n paths. We include the following constraint:

C1 ∨ C2 ∨ C3 ∨ · · · ∨ Cn

This means that if the SMT instance is satisfiable, then computation (E , ) can reach
monitor state qm from q0.

3.4 Segmentation of Distributed Computation
Since the RV problem is known to be NP-complete in the size of processes [9], we are
inherently dealing with a computationally difficult problem. This complexity also grow
to higher classes in the presence of nested temporal operators. In order to cope with this
complexity, our strategy is to chop a computation (E , ) into a sequence of small segments
(seg1, )(seg2, ) · · · (segg, ) to create more but smaller-size SMT problems. This is likely
to improve the overall performance dramatically. More specifically, in a computation whose
duration is l, for g number of segments (i.e., segment duration l

g ± ε), the set of events in
segment j, where j ∈ [1, g], is the following:

segj =
{
enτ,σ,ω | σ ∈ [max{0, (j − 1)l

g
− ε}, jl

g
] ∧ n ∈ [1, |P|]

}
Observe that monitoring a segment has to be conducted from ε time units before the segment
actually starts. Also, when monitoring segment j is concluded, monitoring segment j + 1
should start from all possible monitor states that can be reached by segment j. In Section 4,
we show the impact of segmentation on the overall performance of monitoring.

We now show that the verification of a sequence of segments of a distributed computation
results in the same set of verdict as verification of the computation in one shot. This can be
formally proved by construction as follows. Given (E , ) and ϕ, where (E , ) is chopped
into two segments (seg1, ) and (seg2, ), we have: [(E , ) |=3 ϕ] = [(seg1seg2, ) |=3 ϕ].
Let Q1 be the set of all reachable monitor states at the end of verifying (seg1, ). This set
represents the valuation of (seg1, ) with respect to ϕ. Since in our algorithm verification of
(seg2, ) starts with states in Q1 as initial states of the monitor, we do not lose the temporal
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order of events. In other words, Q1 encodes all the important observations in (seg1, ).
This implies that by construction, the set Q2 of reachable monitor states after verification of
(seg2, ) starting from Q1 is the set of all reachable monitor states when verifying (E , ).
By induction, the same can be proved for g segments.

3.5 Parallelized Monitoring

We parallelize our technique in two steps, which ensure the temporal order of events. Let
Mϕ = (Σ, Q, q0, δ, λ) be an LTL3 monitor. Our first step is to create a 3-dimensional
reachability matrix RM by solving the following SMT decision problem: given a current
monitor state qj ∈ Q and segment segi, can this segment reach monitor state qk ∈ Q, for all
i ∈ [1, g], and j, k ∈ [0, |Q| − 1]. If the answer to the problem is affirmative, then we mark
RM [i][j][k] with true, otherwise with false. This is illustrated in Fig. 5 for the monitor
shown in Fig. 2, where the grey cells are filled arbitrarily with the answer to the SMT
problem. This step can be made embarrassingly parallel, where each element of RM can be
computed independently by a different computing core. One can optimize the construction
of RM by omitting redundant SMT executions. For example, if RM [i][j][>] = true,
then RM [i′][>][>] = true for all i′ ∈ [i, |Q| − 1]. Likewise, if RM [i][j][⊥] = true, then
RM [i′][⊥][⊥] = true for all i′ ∈ [i, |Q| − 1].

The second step is to generate a verdict reachability tree from RM . The goal of the tree
is to check if a monitor state qm ∈ Q can be reached from the initial monitor state q0. This
is achieved by setting q0 as the root and generating all possible paths from q0 using RM .
That is, if RM [i][k][j] = true, then we create a tree node with label qj and add it as a child
of the node with the label qk. Once the tree is generated, if qm is one of the leaves, only then
we can say qm is reachable from q0. In general, all leaves of the tree are possible monitoring
verdicts. Note that creation of the tree is achieved using a sequential algorithm. For example,
Fig.6 shows the verdict reachability tree generated from the matrix in Fig. 5.

seg1 seg2 seg3 seg4
q0 q> q⊥ q0 q> q⊥ q0 q> q⊥ q0 q> q⊥q0 T F F T T F T T T T T T
q0 q> q⊥ q0 q> q⊥ q0 q> q⊥ q0 q> q⊥

q> F F F F T F F T F F T F
q0 q> q⊥ q0 q> q⊥ q0 q> q⊥ q0 q> q⊥q⊥ F F F F F T F F T F F T

Figure 5 Reachability Matrix for aU b.

q0

q0

q0

q0

q0 q> q⊥

q>

q>

q⊥

q⊥

q>

q>

q>

Figure 6 Reachability Tree for aU b.

4 Case Studies and Evaluation

In this section, we evaluate our technique using synthetic experiments and a case study
involving Cassandra, a distributed database 1. We emphasize although RV involves many
dimensions such as instrumentation, data collection, data transfer to the monitor, etc., our
goal in this section is to evaluate our SMT-based technique, as in a distributed setting, the
analysis time is the dominant factor over other types of overhead.

1 All experimental code and data is available at https://drive.google.com/file/d/
19lF-jfUXV-l8ssxuRli1sixw2vctmofA/view?usp=sharing
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4.1 Implementation and Experimental Setup

Each experiment in this section consists of two phases: (1) data collection, and (2) verification.
We developed a program that randomly generates a distributed computation (i.e., the behavior
of a set of processes in terms of their local events and communication). We use a uniform
distribution (0, 2) to define the type of the event (computation, send, receive). Then another
program observes the execution of these processes and generates a trace log. Then, the
monitor attempts to verify the trace log with respect to a given LTL specification using our
monitoring algorithm.

We use the Red Hat OpenStack Platform servers to generate data. We consider the
following parameters: (1) number of processes |P|, (2) computation duration l, (3) number
of segments g, (4) event rate per process per second r, (5) maximum clock skew ε, (6)
number of messages sent per second m, and (7) LTL formulas under monitoring, in particular,
depth of the monitor automaton d. Our main metric to measure is the SMT solving time
for each configuration of parameters. Note that in all the plots presented in this section,
the time axis is shown in log-scale. When we analyze the effects of one parameter, all the
other parameters are held at a relevant constant value. We use a MacBook Pro with Intel
i7-7567U(3.5Ghz) processor, 16GB RAM, 512 SSD and Python 3.6.9 interface to the Z3
SMT solver [7]. To evaluate our parallel algorithm, we also use a server with 2x Intel Xeon
Platinum 8180 (2.5Ghz) processor, 768GB RAM 112 vcores and python 3.6.9 interface to
the Z3 SMT solver [7].

4.2 Analysis of Results – Synthetic Experiments

In this set of experiments we attempt to exhaust all the available parameters and metrics
discussed earlier. We aim to put all the parameters to test, and examine how they affect
the runtime of the verifier. Since the data generated in this case is synthetic and does not
depend on any external factors apart from the system configuration, we induce delay after
every event in order to uniformly distribute these events throughout the execution of each
process, and to achieve different event rates. That is, the events were generated such that
they were evenly spread out over the entire simulation. The value of each of the computation
events were selected from a uniform distribution over the set Σ.

Impact of assuming partial synchrony (single core). Figure 7a shows that with increase
in the value of ε, the runtime increases significantly. This is true for different number of
segments. This observation demonstrates that employing HLC and assuming bounded clock
skew helps in ordering events and as ε increases so does the number of concurrent events, and
in turn the complexity of verification. Figure 7a also shows that on breaking the computation
into smaller segments, the runtime keeps on decreasing for each value of ε. We will study the
impact of segment duration in other experiments as well.

Impact of predicate structure (single core). In this experiment (see Fig. 7b), we consider
formula ϕ, and ensure that it remains true throughout the computation duration. This is
to ensure that the monitor does not reach a terminal state in the middle of the computation.
We consider the following four different predicate structures for ϕ:

O(n) Conjunctive: In a system of n processes, ϕ is a conjunction of n atomic propositions,
each depending on the local state of only one process. Over a set of increasing total
number of processes, we observe a linear increase in the runtime. This is somewhat
expected, as it is known that monitoring conjunctive predicate is not computationally
complex [11].
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Figure 7 Comparison of how the clock skew ε, structure of predicates and different LTL formulas
play a role in monitoring with l = 2s, r = 10, and m = 1/s.

O(n) Disjunctive: Similar to O(n) conjunctive predicates, here, we have a disjunction of n
atomic propositions. Compared to its conjunctive counterpart, disjunction of propositions
requires more time to verify. This follows the theoretical result that monitoring linear
predicates is more complex than monitoring regular predicates [9].
O(n2) Conjunctive: Here, ϕ is a conjunction of atomic propositions, where each pro-
position depends on the state of 2 processes, thereby having a total of

(
n
2
)
predicates.

Monitoring such predicates clearly require more time than O(n) conjunctive predicates,
but surprisingly less than O(n) disjunctive predicates.
O(n3) Conjunctive: Here, we consider a conjunction of

(
n
3
)
predicates chosen symbolizing

a situation where each predicate is dependent on the state of 3 processes. This case is
the most time-consuming structure to monitor.

Impact of LTL formula (single core). Given an LTL formula, the depth of the monitor
automaton d is the length of the longest path from the initial to the accept/reject state. In
Fig. 7c, we experimented with the following LTL formulas:

ϕ1 = (¬p) d = 2
ϕ2 = r → (¬pU r) d = 3
ϕ3 = ((q ∧ ¬r ∧ r)→ (¬pU r)) d = 4
ϕ4 = ((q ∧ r)→ (¬pU (r ∨ (s ∧ ¬p ∧ (¬pU t))))) d = 5
ϕ5 = r → (s ∧ (¬r U t)→ (¬r U (t ∧ p)))U r d = 6
ϕ6 = ((q ∧ r)→ (p→ (¬r U (s ∧ ¬r ∧ (¬r U t))))U r) d = 7

Clearly, deeper monitors incur greater overhead. The predicate structure used is O(1),
meaning that the predicates are in terms of the state of all processes. Runtime for smaller
values of d are comparable since the overall runtime is dominated by the evaluation of the
uninterpreted function ρ (defined in Section 3). As d increases, it starts to influence the
overall runtime of the verification algorithm.

Impact of segment count (single core). As mentioned in Section 3, we anticipate that
chopping a distributed computation into smaller segments tackles the intractability of
distributed RV, as it may reduce the number of concurrent events. In Fig. 8a, we observe that
the runtime keeps on decreasing with increase in the number of segments per computation
duration, until it hits a certain level, after which it does not improve any further. This is due
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Figure 9 Impact of event and message rates with l = 2s, ε = 250ms, and g = 21, formula �p
with O(1) predicate structure.

to the fact that the total runtime also contains the time required to set up the SMT solver.
With increase in the number of segments, the total time required to setup the SMT solver
also increases and dominates the speedup. Also, decreasing the segment duration beyond
a certain point does not have any effect on the runtime. This is due to the clock skew ε,
which makes each segment start from ε before. Observe that in Fig. 8a, this result holds for
different number of processes, LTL formulas, and conjunctive/disjunctive predicates.

Impact of computation duration (single core). The computation duration has a direct
effect on the size of E , and thus, the number of events in a segment. With a unit increase in
the number of events in the SMT formulation, the size of 2E doubles, increasing the SMT
solver search space for ρ. This makes the runtime in Fig. 8b increase significantly. Observe
that in Fig. 8b, this result holds for different number of processes, and conjunctive/disjunctive
predicates.
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Figure 10 Impact of parallelization.

Impact of the event rate (single core). Until now, the event rate was fixed at 10 events/sec
per process, following the latency time obtained in a real network of replicated database
(Cassandra), discussed in detail in Section 4.3. Here, we change the event rate and study
its effect on the verification runtime. In Fig. 9a, we see increasing the event rate causes
the runtime to increase significantly. This result is valid for different number of processes,
though for more processes the increase is more dramatic.

Impact of the message rate (single core). Consider a send message event eiτ,σ,ω and its
corresponding receive event ejτ ′,σ′,ω′ . This results in a  -relation between these two events.
Such events are expected to reduce the number of concurrent events and consequently the
monitor overhead. However, Fig.9b shows no effect on the monitor run time. This is due
to the relatively short ε = 250ms, which is actually much larger than the maximum clock
skew of off-the-shelf protocols such as NTP. In other words, when ε dominates the impact
of event ordering that message passing can achieve. This is another reason to believe that
partial synchrony is an effective way to deal with distributed RV. We vary messages sent for
inter-process communication, from 0 to 9 with 10events/sec.

Impact of parallelization. To demonstrate the drastic increase in performance due to
parallelization, we evaluate formula p on a distributed computation with l = 20s, r = 10,
g = 20, and ε = 150ms, while varying the number of cores from 1 to 100, as shown in
Fig. 10a. Observe that beyond 40 cores, there is no significant relative change in runtime
regardless of the number of processes, as the time required to build the SMT formulation
starts dominating the total run time. This graph also shows that parallelization can result in
orders of magnitude speedup.

4.3 Case Study: Cassandra
Cassandra [15] is a No-SQL database management system. We simulate a system of multiple
processes. Each process is responsible for inter-process communication apart from basic
database operations (read, write and update). We deployed a system with two data centers
(see Fig. 11), where Cluster 1, contains 4 nodes (Nodes 11− 14) and Cluster 2 contains 3
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Figure 11 A network with two Cassandra clusters, Node-12 and Node-21 are the seed nodes of
the respective clusters.

nodes (Node 21− 23). Node 12 and Node 21 are the seed nodes of the respective clusters.
Data is replicated in all the nodes in both the clusters. Each of the nodes is art of the Red
Hat OpenStack Platform with the following configuration: 4 VCPUs, 4GB RAM, Ubuntu
1804, Cassandra 3.11.6, Java 1.8.0_252, and Python 3.6.9.

We have tested ping time of servers on Google Cloud Platform, Microsoft Azure and
Amazon Web Service. The fastest ping was received at 41ms. In a real-life datacenter,
networks used to communicate within the nodes usually have a speed on the scale of few
Gigabytes per second. Here, we use a private broadband that offers a speed of 100 Megabytes
per second. We measure the latency time of our system to be around 100ms. We consider
this to be our standard and setup all our experiments based on this assumption.

Processes are capable of reading, writing, and updating all entries of the database. The
exact type of the event is selected by a uniform distribution (0, 2). Each process selects the
available node at run time. In order to prevent deadlocks, no two processes are allowed to
connect to the same node at the same time. If there exists no free node at any point of
time, it waits for a node to be released and then it continues with the task. Once there is a
write or update, the process responsible for the change sends a message to each of the other
processes notifying about the change. We assume that a message is read by the receiving
process immediately upon receiving. All database operations (i.e. send and receive events)
are considered to be separate.

Consistency level in a database dictates the minimum number of replications that needs
to perform on an operation in order to consider the operation to be successfully executed.
Cassandra recommends that the sum of the read consistency and the write consistency be
more than the replication factor for no read or write anomaly in the database. By default,
the read and the write consistency level is set to one. For a database with replication factor
3, our goal is to monitor and identify read/write anomalies in the database:

ϕrw =
n∧
i=0

(
write(i)→ read(i)

)
where n is the number of read/write requests.

Since Cassandra does not allow normalization of database, the other two properties we
aim to monitor are write reference check and delete reference check. To give a sense of
database normalization, we use a database with two tables:

Student(id,name) Enrollment(id, course).

We enforce that if there is a write in the Enrollment table, it should be led by a write in
the Student table with the same id. The id and name to be written are a random string of
length 8. Likewise, in the case of deletion of some entry from Student table, it should be led
by deletion of all entries with the same id from Enrollment table. These enforce that there is
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Figure 12 Experimental results for Cassandra.

no insertion and delete anomaly, and thereby gives a sense of normalization in Cassandra:

ϕwrc = ¬
(
¬write(Student.id) U write(Enrollment.id)

)
ϕdrc = ¬

(
¬delete(Enrollment.id) U delete(Student.id))

Extreme load scenario. Figures 12a and 12b, plot runtime vs segmentation frequency and
runtime vs computation duration, respectively for the case where the processes experience full
read/write load that network latency allows. Compared to the results plotted for the synthetic
experiments, we see a bit of noise in the result. This owes to the fact that in synthetic
experiments, the events are uniformly distributed over the entire computation duration,
however, in case of Cassandra, the events are not uniform. Database operations like read,
write and update take about 100ms of time but sending and receiving of message is relatively
faster taking about 20-30ms making the overall event distribution quite non-uniform.

Moderate load scenario. In Figure 12a, with event rate r = 10, we are just about making
it even for number of processes as 2 and with a computation duration of 20s. Now, consider
Google Sheets API, which allows maximum 500 requests per 100 seconds per project and
100 requests per seconds per user, i.e., 5 events/sec per project and a user can generate 1
event/sec [12] on an average. To see how our algorithm performs in such a scenario, we
increase the number of processes and so as the number of monitoring cores and analyze the
time taken to verify such a trace log. We plot our findings in Figure 10b. We see that for
processes 8, 9 and 10, we get the best results for event rate of both 1 and 2 event(s)/sec/process.
We emphasize that the 2 event(s)/sec/process is twice more than what Google Sheets allow
to happen. This makes us confident that our algorithm can pave the path for implementation
in a real-life setting.

5 Related Work

Lattice-theoretic centralized and decentralized online predicate detection in asynchronous
distributed systems has been extensively studied in [4, 18]. Extensions of this work to include
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temporal operators appear in [20, 19]. The line of work in [4, 18, 20, 19, 22] operates in a
fully asynchronous setting. On the contrary in this paper, we leverage a practical assumption
and employ an off-the-shelf clock synchronization algorithm to limit the time window of
asynchrony. Predicate detection has been shown to be a powerful tool in solving combinatorial
optimization problems [10] and our results show that our approach is pretty effective in
handling predicate detection (e.g., Fig. 10b). In [24], the authors study the predicate detection
problem using SMT solving. Also, knowledge-based monitoring of distributed processes was
first studied in [22]. Here, the authors design a method for monitoring safety properties
in distributed systems using the past-time linear temporal logic. This approach, however,
suffers from producing false negatives.

Runtime monitoring of LTL formulas for synchronous distributed systems has been studied
in [8, 6, 5, 1]. This approach has the shortcoming of assuming a global clock across all
distributed processes. Predicate detection for asynchronous system has been studied in [23]
but the assumption needed to evaluate happen-before relationship is too strong. We utilize
HLC which not only is more realistic but also decreases the level of concurrency. Finally, fault-
tolerant monitoring, where monitors can crash, has been investigated in [3] for asynchronous
and in [13] for synchronized global clock with no clock shew across all distributed processes.
In this paper, we use a clock synchronization algorithm which guarantees bounded clock
shews. Our solution is also SMT based and to our knowledge this is the first SMT based
distributed monitoring algorithm for LTL, which results in better scalability.

6 Conclusion and Future Work

In this paper, we focused on runtime verification (RV) of distributed systems. Our SMT-based
technique takes as input an LTL formula and a distributed computation (i.e., a collection of
communicating processes along with their local events). We employed a partially synchronous
model, where a clock synchronization algorithm ensures bounded clock skew among all
processes. Such an algorithm significantly limits the impact of full asynchrony and remedies
combinatorial explosion of interleavings in a distributed setting. We conducted detailed and
rigorous synthetic experiments, as well as a case study on monitoring consistency conditions
on Cassandra, a non-SQL replicated database management system used in data centers. Our
experiments demonstrate the potential of scalability of our technique to large applications.

As for future work, there are several interesting research directions. Our first step will
be to scale up our technique to monitor cloud services with big data. This can be achieved
by studying the tradeoff between accuracy and scalability. Another important extension
of our work is distributed RV for timed temporal logics. Such expressiveness will allow
us to monitor distributed applications that are sensitive to explicit timing constraints. A
prominent example of such a setting is in blockchain and cross-chain protocols.
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Abstract
In the new generation of message-based systems such as network-based smart systems, distributed
components collaborate via asynchronous message passing. In some cases, particular ordering among
the messages may lead to violation of the desired properties such as data confidentiality. Due to
the absence of a global clock and usage of off-the-shelf components, there is no control over the
order of messages at design time. To make such systems safe, we propose a choreography-based
runtime enforcement algorithm that given an automata-based specification of unwanted message
sequences, prevents certain messages to be sent, and assures that the unwanted sequences are not
formed. Our algorithm is fully decentralized in the sense that each component is equipped with a
monitor, as opposed to having a centralized monitor. As there is no global clock in message-based
systems, the order of messages cannot be determined exactly. In this way, the monitors behave
conservatively in the sense that they prevent a message from being sent, even when the sequence
may not be formed. We aim to minimize conservative prevention in our algorithm when the message
sequence has not been formed. The efficiency and scalability of our algorithm are evaluated in terms
of the communication overhead and the blocking duration through simulation.
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1 Introduction

The new generation of message-based systems such as network-based smart applications are
usually distributed and may consist of off-the-shelf components developed by different vendors.
These systems are maintainable and scalable as components collaborate via asynchronous
message passing.

Such systems must satisfy the required properties such as data confidentiality, safety,
robustness, and security. However, a sequence of messages may lead to the property violation.
As an example (inspired by [19]), assume a building that consists of different locations
named A-E where the location E is restricted and a visitor must enter the restricted location
through a legal path (Figure 1). The only legal path to the restricted location is through the
consecutive locations A, C, and then E. Each location is equipped with a smart security
camera and a smart door that the visitor must use a smart door to enter the location. The
path between different locations is such that if the consecutive locations B and D are visited,
then the visitor will return to the location A. If a visitor is entered the restricted location
by passing through the consecutive locations A, B, and then E, it can be inferred that
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21:2 Decentralized Runtime Enforcement

the visitor accesses the restricted location illegally. This illegal access violates the security
rules of the building and can be detected by the message sequence Open(A,v) (the smart
door of the location A has opened by the visitor v), Open(B,v) and Open(E,v). There are
other examples of sequence-based patterns in the Complex Event Processing domain [28, 30].
Furthermore, a message protocol violation bug [24] and linked predicates [26] are also related
to the certain order of communicated messages. The former occurs in an actor-based program
[1], as a sample of a message-based program, when the components exchange messages that
are not consistent with the intended protocol of the application. The latter defines properties
(predicates) on a sequence of events interpreting events to messages.

A C E

B
D

: smart door equipped with a security camera which observes the location X

A C E

B E

D

X

Figure 1 The locations of a building denoted by A, B, C, D, and E separated by smart doors
equipped with security cameras.

As most systems in practice are an integration of various components which may be
closed-source and proprietary, the message sequences cannot be inspected statically at design
time to guarantee that unwanted sequences never happen at runtime. Runtime enforcement
can be used as a verification technique that makes sure such systems satisfy the given
properties and correct the execution of the system [23]. In this paper, we focus on the
decentralized runtime enforcement of properties where each component is equipped with a
local monitor. These decentralized monitors communicate with each other to prevent the
violation of the given property. The given property is violated by the formation of messages
sequences, where the sequences obey a specific pattern and specify the particular orderings
among sending and receiving messages of distributed components. Upon the occurrence of a
message, it may either lead to the sequence formation or cancel the effect of the partially
formed sequence. In the previous example, the message sequence Open(A,v), Open(B,v),
Open(D,v), Open(C,v), and Open(E,v) does not violate the security rule as the visitor returns
to the previous location A by passing through the consecutive locations B and D. Finally,
the visitor enters the restricted location E by passing through the location C.

Our decentralized runtime enforcement approach (Sect. 3) uses the choreography setting
[9], where local monitors are organized into a network and collaborate with each other by
using a specific protocol. This setting deals with decentralized specifications in which each
local monitor has access to some parts of the message sequences. The decentralized runtime
prevention of messages sequences formation in a message-based system is challenging due
to the absence of a global clock and asynchronous message passing. With the absence of
a global clock, the order of messages can not be distinguished as components own their
local clocks which are not synchronized [34]. With the asynchronous message passing, a
component is not synchronized with other components and so it has no information about
the status of a sequence formation. In the proposed algorithm (Sect. 4), we will use vector
clocks [25] in our messages to detect the partial ordering among messages, and then prevent
the sequence formation. When monitors cannot detect the total order among messages, they
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may prevent the sequence formation conservatively in the sense that they prevent a certain
message from being sent even if that message does not lead to a sequence formation. We
aim to minimize the conservative prevention in our algorithm when the message sequences
have not been formed. To prevent a sequence formation, a component may be blocked
before sending its message until its monitor makes sure about the effect of that message
on the sequence formation. We also aim to prevent the sequence formation by minimizing
the number of blocked components and manipulation of messages ordering. To the best of
our knowledge, there is no decentralized runtime enforcement of sequence-based properties
in message-based systems. We evaluate the performance of our algorithm and show that
our algorithm is scalable: with the increase of the complexity of applications or the length
of message sequences, the number of monitoring messages and the blocking duration of
processes grow linearly (Sect. 5).

2 Background

2.1 Message-Based Systems
We define a Message-Based System D = {P1, . . . , Pn} as a set of n processes that commu-
nicate via asynchronous message passing and guarantees in-order delivery, i.e., two messages
sent directly from one process to another will be delivered and processed in the same order
that they are sent. We assume that each process has a unique identifier and a message queue.
A process sends messages to a target process using its identifier. Each process takes messages
from its queue one by one in FIFO order and invokes a handler regarding the name of the
message.

Let ID be the set of possible identifiers, ranged over by x, y, and z. For simplicity, we
assume ID = N throughout the paper. Let MName be the set of message names and Msg
be the set of messages communicated among processes ranged over by m. Each message
m ∈ Msg has three parts: the sender identifier, the message name, and the receiver identifier,
hence Msg = ID ×MName × ID. Each process Px with the identifier x is defined by a set
of message handlers and state variables where a message handler specifies how the received
message must be responded to. The computation of the process Px can be abstracted in
terms of events which are categorized into internal, send, and take events, where an internal
event changes the state variables of Px, the event send(Px ,m,Py) occurs when Px sends m
to Py where m ∈ MName, and the event take(Py,m,Px) occurs when Px takes m ,which is
sent by Py, from its queue.

Events in the message-based system can be partially ordered according to the happened-
before relation [21] which is implemented by the vector clock. Let a message mi ∈ Msg be a
triple of (Px,mi, Py). A happened-before relation  defines a causal order among events:
(1) within a single message handler, the ordering of events is defined as their execution order
which can be determined unambiguously, (2) send(Px ,m,Py) take(Px ,m,Py), and (3) for
events ea, eb, ec, if ea  eb and eb  ec then ea  ec.

Two events ea and eb are concurrent and denoted by ea ‖ eb if there is no happened-before
relation between them.

2.2 Message-Based Property Specification
We aim to prevent certain unwanted sequences of send/take events from being formed. For
an unwanted sequence, the occurrence of some events contributes to the formation of the
sequence, while some other events may cancel the effect of the previous ones. To formalize
our message sequences, we use the sequence automaton defined in [32] as an extension to
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nondeterministic finite automata. In this model, transitions are partitioned into two sets of
forward and backward transitions. Forward transitions, denoted by → , lead to the sequences
formation while backward transitions, denoted by 99K , cancel the formation of sequences.
Let →∗ be the transitive closure of the → relation.

I Definition 1 (Sequence Automaton [32]). Given a nondeterministic finite automaton
(Q,Σ, δ, Q0, F ), the 6-tuple (Q,Σ, δf , δb, Q0, F ) is a sequence automaton (SA), where δ =
δf ∪ δb, δf ∩ δb = ∅, and the transitions specified by δf (resp. δb) are forward (resp. backward)
transitions, i.e.,

For all simple paths from any initial state q0 ∈ Q0 to any final state qn ∈ F passing
through q1 . . . qn−1, it holds that ∀ i < n, qi 699K qi+1.
qi 99K qj ⇒ qi 6= qj ∧ qj →∗ qi.

To simplify the explanation, we restrict Σ to send events and show send(m) by m in our
graphical representation of sequence automata.

q0start q1 q2 q3 q6

q4

q5

(P1,m1, P2)
true

(P1,m7, P3)

(P3,m8, P1)

(P3,m2, P2)

¬(P3,m2, P2)

(P2,m3, P3)
¬(P2,m3, P3)

(P1,m7, P3)
¬((P3,m4, P1) ∧ (P3,m5, P1) ∧ (P1,m7, P3))

(P2,m3, P3)

¬((P3,m5, P1) ∧ (P2,m3, P3))

true

(P2,m6, P1)

¬(P2,m6, P1)

(P3,m5, P1)

(P3,m5, P1)

(P3,m4, P1)

Figure 2 The sequence automaton A1 where the solid edges denote the forward transitions and
the dashed edges denote the backward transitions.

The sequence automaton A1, in Figure 2, represents the sequences of send events. For
instance, this automaton describes that if first the message (P1,m7, P3) is sent and then the
message (P2,m3, P3) is sent while the message (P3,m5, P1) is not sent after (P1,m7, P3) and
before (P2,m3, P3), then the sequence (P1,m7, P3)(P2,m3, P3) is formed. If the sequence
(P1,m7, P3)(P3,m5, P1)(P2,m3, P3) is observed, the occurrence of (P3,m5, P1) has eliminated
the effect of the occurrence of (P1,m7, P3) and so, the occurrence of (P2,m3, P3) will not
form a sequence (as the reaching state q0 is not a final state). However, a sequence is formed
by the occurrence of (P1,m7, P3)(P3,m5, P1)(P1,m7, P3)(P2,m3, P3). The self-loop over the
state q4 expresses that between the occurrences of (P1,m7, P3) and (P2,m3, P3), any message
except (P3,m5, P1) and (P2,m3, P3) can be sent.

When a message m occurs, a transition like (q,m, q′) may lead to the formation of a
sequence from the initial state up to q′. To form such a sequence, it is necessary that at
least a message over one of the preceding transition of (q,m, q′), like t, has occurred and no
message over the backward transitions has eliminated the effect of t. The pre-transitions
of (q,m, q′) is the set of preceding transitions whose labeled messages can occur before m

in a sequence. The preceding transitions have the same destination as the source state of
(q,m, q′), i.e., q.

I Definition 2 (pre-transition). For the given sequence automaton A, the pre-transitions of
the transition (q,m, q′) ∈ δf , where q 6= q′, is the set of forward transitions that end in state
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q. Also, the pre-transitions of the transition (q,m, q′) ∈ δb is the set of forward transitions
that end in state q and are visited on a path from q′ to q:

preTrns(A, (q,m, q′)) =
{
{(q′′,m′, q) ∈ δf | q 6= q′′} if (q,m, q′) ∈ δf

{(q′′,m′, q) ∈ δf | q 6= q′′ ∧ q′ →∗ q′′} if (q,m, q′) ∈ δb

A backward transition (q,m, q′) can eliminate the effect of all forward transitions on a
path from q′ to q, when m occurs after the occurrence of labeled messages over the sequence
of forward transitions on a path from q′ to q.

I Definition 3 (vio-transition [32]). For the given sequence automaton A, the vio-transitions
of the transition (q,m, q′) ∈ δf , where q 6= q′, is the set of backward transitions that can violate
the effect of (q,m, q′) in a path made up of only forward transitions from the destination to
the source of the backward one:

vioTrns(A, (q,m, q′)) = {(qn,m
′, q0) | (qn,m

′, q0) ∈ δb ∧ q0 →∗ q ∧ q′ →∗ qn}

For example, in Figure 2, preTrns(A1, (q0,m1, q1)) = ∅, preTrns(A1, (q4,m3, q6)) and
preTrns(A1, (q4,m5, q0)) are equal to (q0,m7, q4). Furthermore, the transition (q4,m5, q0)
violates the effect of (q0,m7, q4) and so vioTrns(A1, (q0,m7, q4)) = {(q4,m5, q0)}.

3 Choreography-Based Runtime Enforcement Approach

We aim to prevent the formation of unwanted message sequences that are specified by a se-
quence automaton in a message-based system at runtime. A message sequencem1 . . .mx . . .mn

is formed if we move from the initial state by the message m1 and reach a final state by the
message mn. To avoid the sequence formation, we equip each process Px with a monitor Mx.
The local monitors of the processes are organized as a network and communicate with each
other to prevent the sequence formation.

To prevent the formation of m1 . . .mx−1mx . . .mn, the process Pn as the sender of mn

must make sure that m1 . . .mn−1 has not been formed before sending mn. One possible
solution is that its monitor, i.e., Mn, communicates with other monitors and asks if all of
the messages m1 to mn−1 have been sent. However, this solution imposes a high overhead
on the system as there may be many sequences that lead to mn, and so Mn must ask other
monitors about the sending status of many messages. So, we propose a choreography-based
prevention approach where monitors have access to some parts of the sequence, detect the
sequence formation incrementally, and finally the monitor Mn informs its process to either
send the message mn safely or send an error message. To this end, upon sending a message
mx, the sender Px informs its monitor Mx, which in turn asks Mx−1 about the formation
of m1 . . .mx−1. The sequence m1 . . .mx−1mx will be formed if m1 . . .mx−1 is formed and
mx−1  mx. This way, the communication overhead between the monitors is distributed
over time, instead of happening all at the final states.

In the following, first, we explain how monitors have access to some parts of the specifica-
tion. Then, we demonstrate how monitors must communicate with each other to prevent the
formation of unwanted message sequences.

3.1 Choreography-Based Property Specification
In this section, we use the choreography-based specification in [32] where each monitor has
its own local property. As we explain in Section 2.2, the message sequences can be specified
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by a sequence automaton. To specify the choreography-based specification, the sequence
automaton should be broken down into a set of transition tables. Each monitorMx maintains
a transition table that contains the transitions labeled by the messages that their sender is Px.
For each transition, the set of its pre-transitions is also stored in the table. Since the effect
of a pre-transition may be violated by the occurrence of its vio-transitions, it is necessary
to store the set of vio-transitions for each pre-transition in the table too. A transition is
uniquely identified in terms of the identifiers of its source/destination states. Self-loops are
ignored in the transition tables, as they do not change the state of monitors.

Table 1 The transition table TP1 .

transition final pre-transition vio-transition
(q0, (P1, m1, P2), q1) ⊥ ∅ ∅
(q0, (P1.m7.P3), q4) ⊥ ∅ ∅

(q3, (P1, m7, P3), q6) > (q2, @ P2, q3) {(q3, @ P3, q2),
(q3, @ P3, q0)}

Table 2 The transition table TP2 .

transition final pre-transition vio-transition
(q2, (P2, m3, P3), q3) ⊥ (q1, @ P3, q2) {(q3, @ P3, q0)}
(q4, (P2, m3, P3), q6) > (q0, @ P1, q4) {(q4, @ P3, q0)}
(q5, (P2, m6, P1), q6) > (q0, @ P3, q5) ∅

Table 3 The transition table TP3 .

transition final pre-transition vio-transition
(q1, (P3, m2, P2), q2) ⊥ (q0, @ P1, q1) {(q3, @P3, q0)}
(q3, (P3, m4, P1), q2) ⊥ (q2, @ P2, q3) ∅
(q0, (P3, m8, P1), q5) ⊥ ∅ ∅
(q4, (P3, m5, P1), q0) ⊥ (q0, @ P1, q4) ∅
(q3, (P3, m5, P1), q0) ⊥ (q2, @ P2, q3) ∅

For instance, the automaton in Figure 2 is decomposed into three tables shown in Table 1, 2,
and 3. Table 1 is maintained by the monitor of P1 and contains information of the transitions
which the sender of the labeled messages is P1. The transition (q0, (P1,m1, P2), q1) does not
lead to a final state and it has no pre-transition and so no corresponding vio-transition. So, the
first row ((q0, (P1,m1, P2), q1),⊥, ∅, ∅) is included in TP1 . The transition (q3, (P1,m7, P3), q6)
leads to the final state and has only one pre-transition as (q2, (P2,m3, P3), q3) and two corres-
ponding vio-transitions of (q3, (P3,m5, P1), q0) and (q3, (P3,m4, P1), q2). The corresponding
row of the transition (q3, (P1,m7, P3), q6) in TP1 is :

((q3, (P1,m7, P3), q6),>, (q2,@P2, q3), {(q3,@P3, q2), (q3,@P3, q0)}).

3.2 Choreography-Based Communication Mechanism
In this section, we demonstrate how monitors communicate with each other to prevent
sequences formation. Upon sending a message m by the process Px, the monitor Mx
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communicates with other monitors to determine the sequence formation up to m. In the case
that m is the last message in at least one sequence, Px must be blocked before sending m

until Mx gets information about the partial sequence formation from others and makes sure
that sending m does not complete the sequence formation up to m. Otherwise, Px sends the
message m, and then its monitor tries to detect the sequence formation up to m.

P2 M2 M1P1

send(P2,m2,P3)

send(P1,m1,P3)

ask

reply
send(P2,m2,P3)

blocked on

(a)

P2 M2 M1 P1

send(P2,m2,P3)

send(P1,m1,P3)

reply
send(P2,m2,P3)

notify

ask
blocked on

send(P1,m1,P3)
blocked on

(b)

Figure 3 The monitors collaborate to avoid the sequence formation (P1, m1, P3)(P2, m2, P3). The
sequence has been formed in (a) as the process P1 sends the message m1 immediately before M1

receives the notify message. However, in (b), the sequence has not been formed as the process P1

sends the message m1 after M1 receives the monitoring message notify. The dashed part of a thread
denotes that the process is blocked until its monitor gets some information from other monitors.

The monitors communicate with each other using monitoring messages. There are three
types of monitoring messages called ask, reply, and notify. A monitor sends the monitoring
message ask to inquire if a message has been sent and receives the response by the monitoring
message reply.

I Example 4. In Figure 3a, the monitors communicate with each other to avoid the sequence
formation (P1,m1, P3)(P2,m2, P3) at runtime. The process P2 is blocked on the message
(P2,m2, P3) as it is the last message in the sequence. Then, M2 sends the monitoring message
ask to M1 to check if m1 has been sent. The monitor M1 responds to M2 by sending the
monitoring message reply.

In the case that the process Px is blocked on m until the monitor Mx makes sure about
the completion of the sequence formation, Mx may receive the response that the inquired
message has not been sent. Due to the delay of the network, this response may be received
late and meanwhile the inquired message may be sent before receiving this response. So,
the process Px sends m and the sequence is formed. To avoid the sequence formation, the
inquired message must not be sent by the process of the inquired monitor until the message
m is sent by Px, and the monitor Mx notifies the inquired monitor.

I Example 5. In Figure 3a, M1 responds to M2 that the message (P1,m1, P3) has not been
sent. However, P1 sends m1 immediately after sending this response. In this case, when
M2 receives the response, it finds that m1 has not been sent and so P2 can send m2 safely.
But, P2 sends the message m2 after sending m1 and so the sequence has been formed. In
Figure 3b, the sequence is not formed as the inquired message (P1,m1, P3) cannot be sent
until M1 receives the monitoring message notify from M2.
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3.2.1 Choreography-Based Communication Strategy
As the message sequence m1 . . .mx−1mx . . .mn is decentralized between monitors, the monitor
Mx−1 must inform Mx the result of the sequence formation m1 . . .mx−1. Results can be
either pushed into or pulled from a monitor. We use a pulling strategy for collaboration
among monitors. With this strategy, monitors find out the order of messages more accurately.
We explain the reason through an example.

As we assumed that there is no global clock, processes and monitors append their vector
clocks to the events and communicated messages. Consider the property that the event
send(P2,m2, P3) must never occur after the event send(P1,m1, P3). Assume that P1 sends
m1 after m2 has been sent, but the vector clocks of these messages are concurrent as depicted
in Figure 4. With a pushing strategy, the monitor M1 must inform the monitor M2 the
moment that m1 has been sent, i.e., [j, 0]. When P2 sends m2, M2 cannot conclude about
the violation of the property as it has not received the moment that m1 was sent. After
pushing the moment of m1 by M1, M2 cannot conclude the order among the two events
accurately and decide on the property, which is not held, as the vector clocks of the messages
are concurrent, i.e., [0, i] ‖ [j, 0]. However, with the pulling strategy, M2 inquires about
the sending status of m1 from M1 after sending m2. If P1 has not sent m1 yet, then M1
responds with a false result. Upon receipt of this response, M2 can conclude accurately that
the property is not violated.

P2
M2

M1
P1

send(P2,m2,P3) [0, i]

send(P1,m1,P3) [j, 0]

pull(send(P1,m1,P3) status) reply false push(send(P1,m1,P3),[j, 0])

M2 finds out that the property has not been violated

M2 cannot decide about the property violation as [0, i] and [j, 0] are concurrent

Figure 4 The two communication strategies between the monitors where the pulling strategy is
denoted by dotted lines and the pushing strategy is denoted by a dashed line. The vector clock [0, i],
where i > 0, denotes that P2 executes the event send(P2, m2, P3) as the ith event while it has no
information about the events of P1.

4 Choreography-Based Runtime Enforcement Algorithm

In this section, we aim to introduce the choreography-based runtime enforcement algorithm,
where the unwanted message sequences are specified on the sequences of send events.

4.1 The Process Environment
The process Px maintains the variable lastmessages which denotes the list of messages labeled
on transitions reach to final states. The process is blocked before sending m ∈ lastmessages
until its monitor makes sure that sending m does not complete a sequence formation.
The process and its monitor also have three shared variables sendingmsgx, blockmsgx, and
waitingmsgx, where:

sendingmsgx is a list of triples which consists of a message, which the process is going to
send, a vector clock of the process upon sending the message, and the type of a monitoring
message which the monitor must send to other monitors.
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(m,vc,ask)

((qi,m,qj),vc,result)

Px Mx

((q′
i,m′,q′

j),vc′,result′)

((q′
i,m′,q′

j),vc′,result′ 6= ?)

Mpre/Mvio Ppre/Pvio

(2)

(5)

(3)

(8)

final pre-transition vio-transition
(qi,m,qj) (q′′

i ,@ Pvio,q′′
j )(q′

i,@ Ppre,q′
j)>

((qi,m,qj),vc,?)
(4) ask

(7) reply

transition
TPx

result′=?→ reply later

sendingmsg

history

empty set

empty set

i

ii

(6)

(1)
send(m,vc)

Figure 5 The algorithm steps taken upon sending the message m by the process Px where m is
not the last message in any sequence.

blockmsgx is a pair of a message which Px has been blocked on it , and the status of a
message to be sent in which it can be either ok or error .
waitingmsgx is the list of messages that must not be sent by Px until its monitor receives
a notify message as explained in Section 3.2.

We assume that the mutual exclusion of shared variables is ensured by using some
well-known mechanisms like semaphore and monitors [20, 17].

4.2 The Monitor Environment
The monitor Mx maintains a transition table Tx as described in Section 3.1 to prevent a
sequence formation. We call a transition t of the table Tx is taken if its labeled message
m has been sent, and a partial sequence up to the transition t has been formed. A partial
sequence up to the transition t is formed if at least one of its preceding transitions has been
taken before, and after that, no violating transition (of those taken preceding transition) has
been taken. In the case that t has no preceding and violating transition, the transition t is
taken when its labeled message has been sent. The time that the transition t is taken equals
the time that m was sent, and is denoted by a vector clock appended to m. The monitor Mx

also maintains a variable historyx which is the list of triples that consists of the transition t
that is taken before, a vector clock of a process upon sending the message m, and a result of
a partial sequence formation up to t.

4.3 The Algorithm Sketch
When the process Px wants to send a message m, there will be two cases depending on
whether m is the last message in at least a sequence. In the following, we explain the behavior
of the process and its monitor in the two cases.

Case 1: m is not the last message in any sequence

If m is not the last message in any sequence, i.e., m 6∈ lastmessages, the process Px sends
the message and appends the triple (m, vc, ask) to the end of sendingmsgx. The monitor
Mx takes a message from sendingmsgx. If the type of message is ask, it inspects if any
transition of Tx can be taken. Then, Mx finds those rows of Tx whose labeled message on its
transition equals m. For each row, Mx inquires about the taken status of the pre-transition
and vio-transitions in the row by sending appropriate monitoring messages to the monitors
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corresponding to the sender of the messages over these transitions. Additional information is
appended to the monitoring messages including the vector clock of the sending event of m,
the inspected transition of Tx labeled by m, called t, the blocked status of the process Px on
m, the type of the monitoring message, and the inquired transitions. Then, Mx adds the
temporary record (t, vc, ?) to its history. The triple (t, vc, result) expresses that the taken
status of the transition t that its labeled message was sent at the moment vc, is either under
inspection or defined. The former case is indicated by the result value of “?” while the latter
is indicated by the result values of Frm or Frmp which are explained later. Adding the
record (t, vc, ?) is helpful when another monitor inquires Mx about the taken status of the
transition t. In such cases, the monitor Mx must postpone its response to the inquiry until
the result of the transition t be defined. Figure 5 shows the steps of the algorithm in this
case and (1)− (5) denotes the steps explained so far.

I Example 6. In Figure 2, when P2 sends the message m3, it appends the triple (m3, vc,

ask) to the end of sendingmsg2. Upon taking this triple from sendingmsg2, the monitor M2
checks the transition table TP2 (Table 2) and finds two transitions labeled by (P2,m3, P3). For
instance, as the transition (q4, (P2,m3, P3), q6) has one pre-transition and one vio-transition,
M2 prepares two monitoring messages to inquire about the taken status of the pre-transition
(q0,@P1, q4) from M1 and the vio-transition (q4,@P3, q0) from M3. Then, M2 adds the triple
((q4, (P2,m3, P3), q6), vc, ?) to its history.

Upon receiving the monitoring message ask by My, there are two cases according to the
blocked status of Py which is the sender of a message m′ labeled on the inquired transition:

(1) The process Py is not blocked on m′: In this case, if My has either an unknown result “?”
in historyy corresponded to the inquired transition or an unhandled message in sendingmsgy

corresponded to m′ in which send(m′) send(m), then it must postpone responding to the
monitoring message. Otherwise, if My finds a record with a defined result value about the
inquired transition, it infers that the transition has been previously taken. If so, My attaches
the corresponding information found in its history to its response monitoring message. If
there is no record with a defined result value about the inquired transition, it attaches an
empty set to the monitoring message (6i). Then, My communicates with Mx by sending the
monitoring message reply.

I Example 7. In Figure 2, suppose that the monitor M2 inspects the taken status of the
transition (q4, (P2,m3, P3), q6), and inquires about the taken status of (q0,@P1, q4) from M1.
If M1 finds any record ((q0,m

′, q4), vc′, ?) in history1, where send(m′)  send(P2,m3, P3),
then it postpones responding to this monitoring message until the result value “?” be defined.
Otherwise, it attaches the found records to the monitoring message and send to M2.

(2) The process Py is blocked on m′: The monitor My checks historyy to investigate whether
m′ has been previously sent and there is any record with a defined result value corresponding
to the inquired transition. If such a record with a defined result value is found, My attaches
the found information to its response monitoring message. Otherwise, it attaches an empty
set to the monitoring message (6ii). Then, My communicates with Mx by sending the
monitoring message reply. In this case, there may be a record corresponding to the inquired
transition with the unknown result “?” in historyy. However, a defined value of this result
does not affect on the sequence formation as m′ has not been sent yet, and the inspected
message m has been sent by Px. So, My can send the records with a defined result value to
Mx irrespective of the records with an unknown value about the inquired transition.
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I Example 8. In Figure 2, if P1 is blocked on the message (P1,m7, P3), then there will be a
record with an unknown result value for the transition (q0, (P1,m7, P3), q4) in history1. At this
time, if M1 receives a monitoring message with the inspected transition (q4, (P3,m5, P1), q0),
then M1 does not wait for a defined result value of (q0, (P1,m7, P3), q4). As the inspected
message (P3,m5, P1) has been sent and the inquired message (P1,m7, P3) has not been sent
up to now, the sequence (P1,m7, P3)(P3,m5, P1) cannot been formed.

When Mx receives all responses from other monitors, it checks whether the inspected
transition can be taken. In this case, Mx updates the result value of the corresponding record
in historyx (7)− (8). Otherwise, it removes the record (t, vc, ?) from historyx.

If there exists at least one taken pre-transition for the transition t that was not taken
before its vio-transitions and its taken time is before the occurrence of m, it is concluded
that a bad-prefix is going to be formed. So, the result value of the corresponding record of t
in the history is updated to “Frm”. This result denotes that a sequence as a bad-prefix of
the property is going to be formed. In the case that there is no happened-before relation
between the taken time of the pre-transition and the taken time of the transition t, then the
monitor decides conservatively, and updates the result value of the corresponding record of
t to “Frmp”. This result denotes that due to the concurrent occurrence of the events, the
bad-prefix probably may be formed. It is noteworthy that if the transition of Tx has no
pre-transition, the monitor Mx does not consult with any monitor, and adds this transition
with the result of “Frm” to historyx.
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reply later

i

ii

(6)

m′
remove m′

(14)

(1)

Figure 6 The algorithm steps taken upon sending the message m by the process Px where m is
the last message in at least one sequence.

Case 2: m is the last message in at least one sequence

If m is the last message in at least one sequence, i.e., m ∈ lastmessages, Px does not send
the message until it makes sure that sending m does not lead to a sequence formation. Then,
Px appends the triple (m,−, ask) to the end of sendingmsgx, where “−” denotes that the
process is blocked before sending m and so m has no assigned vector clock. The process Px

also sets the blockmgsx to (m,−), and then it is blocked. Figure 6 shows the steps of the
algorithm in this case. The process Px will be blocked until its monitor updates blockmsgx
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to either (m, ok) or (m, error). The pair (m, ok) denotes that no sequence will be formed by
sending m. In this case, Px can continue its execution and send the message safely. The
pair (m, error) denotes that a sequence up to the last message m has been formed and so
sending m leads to a complete sequence formation. The monitor Mx behaves similarly to
the previous case upon taking a message from sendingmsgx (2)− (4). Then, Mx adds the
temporary record (t,−, ?) to historyx (5).

Upon receiving the monitoring message by My, there are two cases based on the blocked
status of Py which is the sender of the message labeled on the inquired transition, i.e., m′:

(1) The process Py is not blocked on m′: The monitor My behaves similarly to the first item
of the previous case, except that it must also add m′ to waitingmsgy if it finds no record
with a defined result value about the inquired transition (6i).

(2) The process Py is blocked on m′: As the process Py is blocked on m′, there will be a record
((q,m′, q′),−, ?) in historyy. The monitor My must postpone responding to this monitoring
message as it does not know whether a sequence up to m′ is formed (6ii).

The monitor Mx behaves similarly to the previous case upon receiving all responses from
other monitors. If a sequence up to m is formed, then Mx updates blockmsgx to (m, error)
to inform Px that sending m leads to a complete sequence formation. Otherwise, it updates
blockmsgx to (m, ok) to inform Px that m can be sent safely (7)− (9).

The process Px either sendsm or sends an error message regarding the status of the message
in blockmsgx, and appends the triple (m, vc,notify) to the end of sendingmsgx (10)− (11).
The monitor Mx takes the triple with the message type notify from sendingmsgx and sends
the corresponding monitoring message (12)− (13). If Px sends m by the vector clock vc,
Mx also updates the vector clock of the transition labeled by m in historyx from “−” to vc.
Finally, the monitor My which receives the notify message from Mx, removes the message
labeled on the inquired transition from waitingmsgy (14).

4.4 Discussion
We have assumed that processes and their monitors behave honestly and do not suffer from
any failures or byzantine behavior [14]. If a monitor fails or a process fails before updating the
shared variable, the algorithm will not be sound due to the loss or the incomplete information
of the monitor. In cases that processes tamper with events or behave maliciously, they
may not inform their monitors upon the occurrence of send/take events. Hence, monitors
conclude wrongly and the algorithm will not be sound again. The proposed algorithm can be
implemented in the execution framework of message-based systems. For instance, the send
function of the open source Akka library [2] or the control layer of Theater [8] which regulates
the message scheduling and dispatching can be modified to incorporate our enforcement
algorithm. On the other hand, the given specification for the unwanted message sequences
may lead our algorithm to reach a communication deadlock [31] among the monitors. For
instance, suppose that we aim to prevent the formation of the message sequences m1m2 and
m2m1. According to our algorithm, the process P2 is blocked before sending the message
m2 and then M2 asks M1 if m1 has been sent. The process P1 also may be blocked before
sending m1 and then M1 inquires M2 if m2 has been sent. So, both processes P1 and P2 will
be blocked as their monitors cannot determine the sequence formation up to their blocked
messages. However, our algorithm works correctly for sequences without such dependencies.
The proof sketch of our algorithm is given in Appendix A. We are working on an extended
version of our algorithm to detect and resolve communication deadlocks as a future work.
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5 Evaluation and Experimental Results

In this section, we present the results of a set of experiments to evaluate our runtime
enforcement algorithm. We investigate the effect of different parameters on the efficiency
of the algorithm including the number of processes, the maximum number of message
handlers of processes, the maximum message communication chain between processes, and
the length of the message sequences. The maximum message communication chain denotes
the maximum number of processes in a chain of message handlers that send messages to each
other. We develop a test case generator 1 which produces message-based applications with
different parameters and a set of message sequences according to the generated application.
Applications are generated in terms of a simple actor-based language [1]. We also develop a
simulator 2 which simulates the execution of each application and our prevention algorithm,
and then measures the communication overhead of our algorithm. The simulator tools assume
a random network delay and our simulator delivers messages after this delay. We perform all
the experiment on a single machine with a dual core processor (Intel i5-520M 2.4GHz) with
4 GB memory.

To evaluate the scalability and the monitoring communication overhead of our algorithm,
we generate four applications with 3, 6, 9, and 12 processes, where each process has maximum
five message handlers, and the maximum message communication chain in each application
is 4, 5, 6, and 7, respectively.
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Figure 7 (a) The average number of monitoring messages in different applications regarding

three sequences (denoted by n3) with different lengths of six (denoted by l6), eight, and ten, (b)
The average time that processes are blocked regarding the same message sequences of (a).

Scalability: To show that our algorithm is scalable in terms of the average number of
monitoring messages and the average blocking time of processes, we run each experiment ten
times. The average number of monitoring messages for each application is shown in Figure 7a
where the given properties are three message sequences with the length of six, eight, and ten.
The number of times that a monitor inquires others because of a message m (occurring in
sequences) depends on the number of times that the message m has occurred at runtime. To
make our experiments fair, we enforce the restriction that each message can appear in at
most two communication chains. In this case, each constituent message of the sequence can
occur at most two times. Our results show that as the length of message communication
chain increases, the number of monitoring messages grows linearly for complex applications.

We also evaluate the average time that the processes of each application are blocked. In
the proposed algorithm, only the senders of the last messages in the sequences are blocked.
Figure 7b shows that the average blocking time of processes grows linearly for complex
application to prevent the formation of three message sequences with the length of six, eight,
and ten.

1 Available at https://gitlab.com/vmoh.ir/rebeca-generator, Accessed: 2020-11-04
2 Available at https://gitlab.com/mSamadi/enforcement, Accessed: 2020-11-04
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Figure 8 (a) the average number of monitoring messages, (b) the average of memory consumption,

(c) the average time for preventing the message sequence formation for different properties where Si

denotes three sequences with the length of i + 4.

Monitoring Communication Overhead:
We evaluate the average number of monitoring messages, the average of memory consumption
of the monitors, and the average time to enforce a property for the application with nine
processes. As illustrated in Figure 8a and Figure 8b, the average number of monitoring
messages and the average memory consumption of the monitors grows linearly as the length
of sequences increases. To measure the average time to enforce the property, we measure the
average time that the monitors are waited for receiving the responses from other monitors,
plus the total time that a process is blocked until its monitor informs it to send a message.
It is shown in Figure 8c that as the length of the sequence increases, the monitors involve in
more collaborations and hence, more time to gather all responses from other monitors.

6 Related Work

Several centralized monitoring algorithms [34, 4, 9] and decentralized ones [32, 27, 3] have
been proposed to detect the property violation in distributed systems at runtime . Among
the centralized runtime enforcement approaches which aim to avoid the property violation,
we can mention [33] which introduces security automata to specify security properties. Using
this model, the execution of the program is stopped if a sequence of events does not satisfy
the desired property. Using the edit automaton [22], the execution of the program can be
corrected by suppressing or inserting a new event. This automaton assumes that monitors
can predetermine the results of events without executing them. In [10, 23], an enforcement
model is presented for the cases that the results of events are not predetermined. In the
presented model, for every event generated by the program, the underlying executing system
returns a result to the target program. The predictive runtime enforcement [29] deals with
systems that are not entirely black-box, and there is some knowledge about their behavior.
The knowledge allows to output some events immediately, and the system is not blocked until
more events are observed. The timed properties are enforced, in [12] at runtime. Furthermore,
in [6], an enforcement approach for the reactive systems is presented where the output should
be corrected only if necessary, as little as possible, and without delay. In addition to these
work, [11, 7] deals with the runtime enforcement of component-based systems, where systems
are modeled within the BIP framework [5]. In this approach, monitors are synchronized
with their components. However, the proposed algorithm is decentralized and monitors
collaborate to prevent the unwanted sequences formation.

The existing approaches in the domain of runtime enforcement are categorized in [13],
and decentralized runtime enforcement is considered as an open challenge in distributed
systems. We can address [15] as a decentralized enforcement approach in which a frame-
work, called service automata, is specified in Hoare’s CSP language [18]. This framework
considers networks of service automata that are not fully connected. Each service automaton
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synchronizes with the system on the critical events. This automaton controls the execution
of a program and communicates with other service automata to decide whether a property is
satisfied. However, in our choreography-based approach, the monitors are fully connected and
a monitor can communicate with others monitors directly and so fewer monitoring messages
are transmitted in the network. In addition, there is no synchronization among processes and
their monitors, and the monitors take advantage of the specific communication mechanism
(Sect. 3.2) to prevent the scenario of sequence formation given in Figure 3. The work of [16]
is considered as a decentralized enforcement approach in the domain of business processes
where a document must follow a specific workflow. It uses the notion of migration strategy [9]
where the document is transmitted among different parties. The document carries fragments
of its history, and is protected from tampering using hashing and encryption. Here, the
workflow as a specification is shared among different parties as opposed to our method.

7 Conclusion and Future work

We addressed the choreography-based runtime prevention of message sequences formation
in systems where distributed processes communicate via asynchronous message passing.
We have assumed that there is no global clock and the network may postpone delivery of
messages. Our proposed algorithm is fully decentralized in the sense that each process is
equipped with a monitor which has partial access to some parts of the property specification.
Monitors cannot identify the total ordering among messages using the vector clock and hence,
may prevent a sequence formation conservatively. We developed a simulator to evaluate the
effect of different application and the length of the message sequences on various factors,
including the number of monitoring messages, memory consumption of the monitors, and
the time to prevent the sequence formation. Our experimental results show that with the
increase of the complexity of application or the length of message sequences, the number of
monitoring messages, memory consumption, and the time to prevent the sequence formation
grows linearly. We are going to resolve the possible communication deadlock based on the
given message sequences in the future and integrate our algorithm with the AKKA library.
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A Soundness of The Algorithm

We aim to prove that the proposed algorithm is sound meaning that the output of a
message-based system is correct and no given message sequences will be formed at runtime.

I Lemma 9. For any sequence m1 . . .mn−1mn ∈ L(A), the corresponding monitor of mn−1
declares the formation of m1 . . .mn−1 correctly.

Proof. It is trivial that if ω = m1 . . .mn−1mn ∈ L(A), then there exists at least a sub-
sequence mi

1m
j
2m

w
3 . . .m

h
l . . .m

k
n, called ω̂, where for the message mh

l , h is the index of the
message in ω and l is the index of the message in ω̂, i. e., 0 ≤ l ≤ n. For each pair of mi′

l′m
j′

l′+1
of ω̂, there is no message mo in ω, where i′ < o < j′, that cancel the effect of mi′

l′ . In other
words, the messages of ω̂ comprise of only forward transitions from the initial state of A to
the final state, and for each pair of mi′

l′m
j′

l′+1, mi′

l′ occurs as the label of a pre-transition of
the transition carrying mj′

l′+1. We show that the corresponding monitor of mn−1, declares
the formation of m1 . . .mn−1 correctly.

The message mi has occurred before the message mj , denoted by mi → mj , if and only if
¬(vc(mj) < vc(mi)). So, it can be concluded that in ω̂, either mi

1 has happened before mj
2 or

mi
1 is concurrent with mj

2 i.e., mj
2 6 mi

1 in short. By running our algorithm, the monitor
of mj

2, namely M2, checks the taken status of its pre-transitions and the vio-transitions
of the pre-transitions ((3) in Figure 5). So, a transition labeled by mi

1, called t, and its
corresponding vio-transitions are investigated. If a message belonging to the vio-transitions
of t, called mv, has occurred in ω, it must have occurred before mi

1, where v < i, in ω due
to our condition on the sub-sequence. Two cases can be distinguished: either the message
mv has happened before mi

1 or mv is concurrent with mi
1. In the first case, where the vector

clock of mv is less than the vector clock of mi
1, the effect of mi has not been canceled by mv.

So, M2 checks the vector clocks of mi
1 and mj

2. If mi
1 has happened before mj

2, M2 concludes
that the sequence mi

1m
j
2 has been formed so far and stores the “Frm” result in its history.

If there is no relation between the vector clocks of mi
1 and mj

2, M2 behaves conservatively
and stores the result value “Frmp” in its history ((8) in Figure 5). In the second case, where
the vector clock of mi

1 is concurrent with mv, M2 does not know whether mv has cancel the
effect of mi

1 and so it adds the result value “Frmp” to its history since mj
2 6 mi

1.
Up to here, the result with “Frm” or “Frmp” value has been correctly inserted into the

M2’s history. With the same discussion, we select mw
3 of ω̂ and assume that the message mv′ ,

which cancels the effect of mj
2, has occurred and due to our condition on the sub-sequence, it

must have occurred before mj
2 in ω. So, the message mj

2 has happened before mw
3 or mj

2 is
concurrent with mw

3 . By applying our algorithm, the monitor of mw
3 , namely M3, inquiries

about mj
2 and mv′ . The monitor M3 compares the received information about mj

2 and mv′

and decides whether mv′ cancels the effect of mj
2. If mv′ has not canceled the effect of mj

2,
M3 investigates the vector clocks of mj

2 and mw
3 . If m

j
2 has happened before mw

3 , then M3
stores the result value “Frmp” or “Frm” sent by M2 to the history. If there is no relation
between the vector clocks of mj

2 and mw
3 , it behaves conservatively and stores the “Frmp”

result to its history. These scenarios will be continued to reach the message mn−1 and the
“Frm” or “Frmp” results values have been correctly propagated to the monitor of the message
mn−1 and hence declares the false verdict. J
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I Theorem 10. In a message-based system D = {P1 . . . Pn}, no message sequence ω ∈ L(A)
will be formed at runtime.

Proof. We prove by contradiction: suppose that the unwanted message sequence m1 . . .mn

is formed at runtime. Based on the second case of the proposed algorithm, the process Pn

is blocked before sending the message mn and its corresponding monitor Mn inquires the
sending status of mn−1 from Mn−1. The process Pn−1 cannot be blocked as mn−1 is not the
last message in the sequence. There are two cases depending on the response of Mn−1:
(1) The message mn−1 has not been sent: The monitor Mn−1 responds to Mn that mn−1 has

not been sent and adds mn−1 to waitinglistn−1. In this case, The message mn−1 cannot
be sent until mn has been sent and then Mn sends notify to Mn−1. As Mn finds that
mn−1 has not been sent, it informs Pn to send mn safely ((10) in Figure 6). After sending
mn, the monitor Mn sends notify to Mn−1 ((13) in Figure 6). Then, Mn−1 removes
mn−1 from waitinglistn−1 and after that Pn−1 can send mn−1. Hence, the message mn

has been sent after mn−1 and is contradicted by the assumption that mn−1mn is formed.
(2) The message mn−1 has been sent: The monitor Mn−1 send the records of its history

that are related to mn−1 to Mn. By Lemma 1, the monitor Mn−1 responds correctly
if m1 . . .mn−1 has been formed. There are two cases depending on the result of the
received records: If there is any record which its result is Frm or Frmp, Mn finds that the
sequence m1 . . .mn−1 is formed. Hence, it informs Pn to send an error message instead
of mn. So, the message mn has not been sent and the sequence m1 . . .mn is not formed
and hence it is a contradiction. Otherwise, since there is no record with the result of
Frm or Frmp, Mn finds that the sequence m1 . . .mn−1 is not formed and informs Pn to
send mn safely. So, the message mn has been sent as the sequence m1 . . .mn−1 has not
been formed. This is also contradicted by the formation of m1 . . .mn−1. J
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Abstract
Broadcasting in wireless networks is vulnerable to adversarial jamming. To thwart such behavior,
resource competitive analysis is proposed. In this framework, sending, listening, or jamming on one
channel for one time slot costs one unit of energy. The adversary can employ arbitrary strategy to
disrupt communication, but has a limited energy budget T . The honest nodes, on the other hand,
aim to accomplish broadcast while spending only o(T ). Previous work has shown, in a C-channels
network containing n nodes, for large T values, each node can receive the message in Õ(T/C) time,
while spending only Õ(

√
T/n) energy. However, these multi-channel algorithms only work for

certain values of n and C, and can only tolerate an oblivious adversary.
In this work, we provide new upper and lower bounds for broadcasting in multi-channel radio

networks, from the perspective of resource competitiveness. Our algorithms work for arbitrary n, C

values, require minimal prior knowledge, and can tolerate a powerful adaptive adversary. More
specifically, in our algorithms, for large T values, each node’s runtime is O(T/C), and each node’s
energy cost is Õ(

√
T/n). We also complement algorithmic results with lower bounds, proving both

the time complexity and the energy complexity of our algorithms are optimal or near-optimal (within
a poly-log factor). Our technical contributions lie in using “epidemic broadcast” to achieve time
efficiency and resource competitiveness, and employing coupling techniques in the analysis to handle
the adaptivity of the adversary. At the lower bound side, we first derive a new energy complexity
lower bound for 1-to-1 communication in the multi-channel setting, and then apply simulation and
reduction arguments to obtain the desired result.
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1 Introduction

Consider a synchronous, time-slotted, single-hop wireless network formed by n devices (or,
nodes). Each node is equipped with a radio transceiver, and these nodes communicate over a
shared wireless medium containing C channels. In each time slot, each node can operate on
one arbitrary channel, but cannot send and listen simultaneously. In this model, we study a
fundamental communication problem – broadcasting – in which a designated source node
wants to disseminate a message m to all other nodes in the network.
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Lots of modern wireless devices are powered by battery and are able to switch between
active and sleep states. Often, sending and listening occurring during active state dominate
the energy expenditure, while sleeping costs much less [21]. Therefore, when running an
algorithm, each node’s energy complexity (or, energy cost) is often defined as the number of
channel accesses [5–7,17]; while time complexity is the number of slots till it halts.

The open and shared nature of wireless medium makes it vulnerable to jamming [16]. To
thwart such behavior, one reasonable restriction is to bound the total amount of jamming, as
injecting interfering signals also incurs operational cost. Specifically, we assume the existence
of a jamming adversary called Eve. She can jam multiple channels in each slot, and jamming
one channel for one slot costs one unit of energy. Eve has an energy budget T that is unknown
to the nodes, and she can employ arbitrary strategy to disrupt communication.

This setting motivates the notation of resource competitive algorithms [1, 4, 8, 15,18,19]
which focus on optimizing relative cost. Specifically, assume for each node the cost of sending
or listening on one channel for one slot is one unit of energy (while idling is free),1 can we
design broadcast algorithms that ensure each node’s cost is only o(T )? Such results would
imply Eve cannot efficiently stop nodes from accomplishing the distributed computing task in
concern. Interestingly enough, the answer is positive. In particular, Gilbert et al. [15] present
a resource competitive broadcast algorithm in the single-channel radio network setting: with
high probability, each node receives the message and terminates within Õ(T + n) slots, while
spending only Õ(

√
T/n+ 1) energy.2 This algorithm works even when Eve is adaptive and n

is unknown to the nodes. Later, Chen and Zheng [8] consider the multi-channel setting: they
show that when Eve is oblivious and C = O(n), having multiple channels allows a linear
speedup in time complexity, while the energy cost of each node remains to be Õ(

√
T/n+ 1).

In this paper, we develop two new multi-channel broadcast algorithms that can tolerate
a stronger adaptive adversary and work for arbitrary n,C values, without sacrificing time
efficiency or resource competitiveness. The first algorithm – called MultiCastAdp– needs
to know n; while the other more complicated one – called MultiCastAdvAdp– does not.
Both algorithms are randomized, and in the interesting case where T is large compared with
n and C, each node’s runtime is O(T/C), while each node’s energy cost is Õ(

√
T/n).3

I Theorem 1. MultiCastAdp guarantees the following properties w.h.p.: (a) all nodes
receive the message and terminate within O(T/C+ τtime) = Õ(T/C+ max{n/C,C/n}) slots;
and (b) the cost of each node is O(

√
T/n ·

√
lg T · lgn+ τcost) = Õ(

√
T/n+ C/n).

When C = O(n), τtime = (n/C) · lg (n/C) · lg2 n, and τcost = lg (n/C) · lgn.
When C = Ω(n), τtime = (C/n) · lg (C/n) · lg2 n, and τcost = (C/n) · lg (C/n) · lgn.

I Theorem 2. MultiCastAdvAdp guarantees the following properties w.h.p.: (a) all nodes
receive the message and terminate within O(T/C+(nC+C2) · lg4(nC)) = Õ(T/C+nC+C2)
slots; and (b) the cost of each node is O(

√
T/n · lg2 T +C2 · lg5(nCT )+(nC+C2) · lg4(nC)) =

Õ(
√
T/n+ nC + C2).

We also complement algorithmic results with lower bounds. Specifically, the O(T/C) term
in runtime is optimal, as Eve can jam all C channels continuously for T/C slots. Meanwhile,
the Õ(

√
T/n) term in energy cost matches lower bound up to a poly-logarithmic factor.

Thus our algorithms achieve (near) optimal time and energy complexity simultaneously.

1 In reality, the cost for sending, listening, and jamming might differ, but they are often in the same order.
The assumptions here are mostly for the ease of presentation, and are consistent with existing work.
Moreover, allowing different actions to have different constant costs will not affect the results.

2 We say an event happens with high probability (w.h.p.) if the event occurs with probability at least
1− 1/nc, for some tunable constant c ≥ 1. Moreover, we use Õ to hide poly-log factors in n, C, and T .

3 The primary goal of resource competitive algorithms is to optimize nodes’ cost for large T values, see
previous work (e.g., [4, 18]) and discussion on resource competitiveness in Section 1.2 for more details.
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I Theorem 3. For an adaptive adversary with budget T , any fair multi-channel broadcast
algorithm that succeeds with constant probability imposes an expected cost of Ω(

√
T/n) per

node. Notice, an algorithm is fair if all participating nodes have the same expected cost; both
MultiCastAdp and MultiCastAdvAdp are fair.

1.1 Related Work
Broadcasting in radio networks is non-trivial due to collisions. Classical results often rely on
variants of the Decay procedure [3], while recent ones (e.g., [10,14]) tend to employ more
advanced techniques (e.g., network decomposition) to improve performance. Besides time
complexity, energy cost has also been taken into consideration when building communication
primitives (e.g., [5–7,13]), but usually without assuming the existence of a jamming adversary.

Distributed computing in jamming-prone environment has attracted a lot of attention as
well. Researchers from the theory community usually pose certain restrictions on the behavior
of the malicious user(s), and then develop corresponding countermeasures (e.g., [2,11,20,22]).
Unfortunately, these restrictions somewhat limit the adversary’s strategy, and many of the
proposed algorithms also require honest nodes to spend a lot of energy. In view of these,
resource competitive analysis [4] is proposed. This framework allows more flexibility for the
adversary, hence potentially better captures reality. However, it also brings new challenges
to the design and analysis of algorithms.

In 2011, King, Saia, and Young [19] developed the first resource competitive algorithm,
in the context of 1-to-1 communication. (That is, Alice wants to send a message to Bob.)
Specifically, the proposed Las Vegas algorithm ensures the expected cost of Alice and Bob
is only O(T 0.62 + 1). As mentioned earlier, Gilbert et al. [15] later devise a single-channel
broadcast algorithm that is resource competitive against jamming. They have also proved
several lower bounds showing the algorithm’s energy cost is near optimal. The work that
is most closely related to ours is by Chen and Zheng [8], in which several multi-channel
broadcast algorithms are developed. However, an important drawback of [8] is that it only
considers an oblivious adversary, while all other previous results can tolerate an adaptive
(or even reactive) adversary. In this paper, we close the gap by considering an adaptive
adversary, and provide similar or better results than [8] that work for arbitrary values of n
and C. We also prove our results are (near) optimal by deriving new lower bounds.

1.2 Additional Model Details
All nodes in the network start execution simultaneously and can independently generate
random bits. In each slot, each node either sends a message on a channel, or listens on a
channel, or remains idle. Only listening nodes get feedback regarding channel status. The
adversary Eve is adaptive: at the beginning of each slot, she is given all past execution
history and can use these information to determine her behavior. However, she does not
know honest nodes’ random bits or behavior of the current slot.

In each slot, for each listening node, the channel feedback is determined by the number
of sending nodes on that channel and the behavior of Eve. Specifically, consider a slot and
a channel ch. If no node sends on ch and Eve does not jam ch, then nodes listening on
ch hear silence. If exactly one node sends a message on ch and Eve does not jam ch, then
nodes listening on ch receive the unique message. Finally, if at least two nodes send on ch or
Eve jams ch, then nodes listening on ch hear noise. Note that we assume nodes cannot tell
whether noise is due to jamming or message collision (or both).

We adopt the following definition of resource competitive algorithms introduced in [4]:

OPODIS 2020



22:4 Multi-Channel Resource Competitive Broadcast

I Definition 4. Consider an execution π in which nodes execute algorithm AN and Eve
employs strategy AE. Let costu(π) denote the energy cost of node u, and T (π) denote
the energy cost of Eve. We say AN is (ρ, τ)-resource competitive if maxu{costu(π)} ≤
ρ(T (π)) + τ for any execution π.

In above, ρ is a function of T and possibly other parameters (such as n,C). It captures
the additional cost nodes incur due to jamming. The other function τ captures the cost of
the algorithm when Eve is absent, thus τ should not depend on T . Most resource competitive
algorithms aim to minimize ρ, while keeping τ reasonably small.

1.3 Overview of Techniques
Fast and competitive broadcast against jamming. Most resource competitive broadcast
algorithms group slots into consecutive epochs, and execute a jamming-resistant broadcast
scheme within each epoch. In the single-channel setting, often the core idea is to broadcast
“sparsely” [18,19]. Consider 1-to-1 communication as an example. If both nodes send and
listen in Θ(

√
R) random slots in an epoch of length R, then by a birthday-paradox argument,

successful transmission will occur with constant probability even if Eve jams constant fraction
of all R slots. In the multi-channel setting, “epidemic broadcast” is employed [8]. In the
simplest form of this scheme, in each time slot, each node will choose a random channel
from [C] = {1, 2, · · · , C}. Then, each informed node (i.e., the node knows the message m)
will broadcast m with a constant probability, while each uninformed node will listen with a
constant probability. If C = n/2, broadcast will complete in O(lgn) slots w.h.p., and this
claim holds even if Eve jams constant fraction of all channels for constant fraction of all slots.

In designing MultiCastAdp and MultiCastAdvAdp, one key challenge is to extend
the basic epidemic broadcast scheme to guarantee an optimal O(T/C) runtime for arbitrary
n,C values, without increasing energy expenditure. To that end, we note that in the single-
channel setting, [15] has shown Θ(1/

√
Rn) is roughly an optimal working probability (i.e.,

sending/listening probabilities). When C channels are available, a good way to adjust the
probability would be to multiply it by a factor of

√
C (i.e., Θ(

√
C/(Rn))). Intuitively, the

reason being: if each node works on
√
C random channels simultaneously in each slot, then

again by a birthday-paradox argument, each pair of nodes will meet on at least one channel
with at least constant probability, which effectively means the optimal single-channel analysis
could be applied again. Of course nodes do not have multiple transceivers and cannot work
on multiple channels simultaneously, but over a period of time, multiplying the single-channel
working probability by

√
C achieves similar effect. On the other hand, although the working

probability of nodes is increased by a factor of
√
C, the energy expenditure of Eve will

increase by a factor of Θ(C). As a result, compared with single-channel solutions, our
algorithms have a Θ(C) speedup in time, yet the resource competitive ratio is unchanged.

Termination and the coupling technique. Termination mechanism is another key integrant,
it ensures nodes stop execution correctly and timely. For each node u, a helpful termination
criterion is comparing Nu – the number of silent slots it observed during the current epoch –
to some pre-defined threshold. To argue the correctness of our algorithms, we often need to
show Nu is close to its expected value. However, this is non-trivial if Eve is adaptive.

To see this, consider an epoch containing R slots. Define Gi as the behavior (i.e., channels
choices and actions) of all nodes in slot i, and define Qi – the set of channels that are not
jammed by Eve – as the jamming result of slot i. Note that Nu can be written as the sum
of R indicator random variables: Nu =

∑R
i=1Nu,i, where Nu,i = 1 iff u hears silence in the

ith slot. Nu,i is determined by Gi and Qi, but in general Qi can be arbitrary function of
{G1, G2, · · · , Gi−1, Q1, Q2, · · · , Qi−1}. Nonetheless, in case Eve is oblivious (i.e., an offline
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adversary), her optimal strategy would be a fixed vector of jamming results 〈q1, q2, · · · , qR〉,
thus {Nu,1, Nu,2, · · · , Nu,R} are mutually independent when {G1, G2, · · · , GR} are mutually
independent (this can be easily enforced by the algorithm). Therefore, if Eve is oblivious, we
can directly apply powerful concentration inequalities like Chernoff bounds to show Nu is close
to its expectation. However, once Eve becomes adaptive, Qi could depend on {G1, · · · , Gi−1}
and above observations no longer hold: {Nu,1, · · · , Nu,R} could be dependent!

In this paper, we leverage the coupling technique (see, e.g., [12]) extensively to resolve
the dependency issue. Specifically, for each vector of jamming results over one epoch, we
create a coupled execution and relate Nu to a corresponding random variable in the coupled
execution. By carefully crafting the coupling, the random variable in the coupled execution
can be interpreted as the sum of a set of independent random variables, allowing us to bound
the probability that Nu deviates a lot from its expectation. However, there is a catch in this
approach: bounding the probability that Nu deviates a lot from its expectation requires us
to sum the failure probability over all jamming results vectors, but there may be Θ(2CR)
such vectors! Our solution to this new problem is to group all vectors into fewer categories,
so that vectors within one category have identical or similar effects on the metric we concern.

I Remark. Techniques like “principle of deferred decision”, or the ones used in previous work,
cannot resolve the dependency issue directly in our setting. See full version of our paper for
more discussion.

Lower bound. Existing result [15] indicates fair broadcast in the single-channel settings
requires each node spending Ω(

√
T/n) energy, but could it be the case that having multiple

channels also reduces the energy complexity of the problem? We show the answer is negative.
Specifically, for any multi-channel broadcast algorithm An, we devise a corresponding

multi-channel 1-to-1 communication algorithm A2 that simulates An internally. We also
devise a jamming strategy S for disrupting An and A2: in each slot, for each channel, Eve
jams that channel iff a successful transmission will occur on that channel with a probability
exceeding 1/T . A2 and S are carefully constructed so that algorithms’ success probabilities
and nodes’ energy expenditure in the two executions (i.e., in (An,S) and (A2,S)) are closely
connected. Then, we derive an energy complexity lower bound for multi-channel 1-to-1
communication assuming Eve uses S. (This result, Theorem 17 in Section 7, could be of
independent interest and is strong in two aspects: (a) the bound holds even if the two nodes
has multiple transceivers; (b) its proof uses a novel approach to handle adaptive Monte Carlo
algorithms.) Finally, an energy complexity lower bound for An is obtained via reduction.

2 Notations

Let V be the set of all nodes. Since all algorithms developed in this paper proceed in epochs,
consider a slot i in an epoch of length R, where 1 ≤ i ≤ R. Denote Qi ∈ 2[C] as the jamming
result of the ith slot: Qi is the set of channels that are not jammed by Eve in the ith slot.
Denote Gi = 〈(Gchi,v)v∈V , (Gacti,v )v∈V 〉 as the behavior (i.e., channel choices and actions) of
the n nodes in the ith slot: Gi ∈ Ω = [C]n × {send, listen, idle}n.4 Since Eve is adaptive, Qi
may depend on G<i = (G1, · · · , Gi−1). Lastly, define Q≤i = (Q1, · · · , Qi).

4 There is a technical subtlety worth clarifying. The “behavior” here does not care about the exact
content to be broadcast if some node(s) choose to send message(s) in a slot. That is, for each slot, the
“behavior” here is not some element in [C]n × (M ∪ {listen, idle})n, where M is the set of all possible
messages. This is for the ease of presentation and will not affect the correctness of our results.
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To quantify the severity of jamming from Eve, for a given slot, we use E(> x) (respectively,
E(≥ x), E(< x), E(≤ x)) to denote that in a slot, more than (respectively, at least, less than,
at most) x fraction of the C channels are not jammed by Eve. In the following, we use E(·x)
to represent one of the above four forms. (I.e., “·” denotes “>”, “≥”, “<”, or “≤”.)

For an epoch, we use E(>y)(·x) (respectively, E(≥y)(·x), E(<y)(·x), E(≤y)(·x)) to denote
the event that for more than (respectively, at least, less than, at most) y fraction of the
R slots, E(·x) happen. For example, E(>0.1)(> 0.2) means in an epoch, for more than 0.1
fraction of all slots, Eve leaves more than 0.2 fraction of all channels unjammed.

Define negation operation in the following manner: (> x) = (≤ x) and vice versa;
(< x) = (≥ x) and vice versa. Further define complement operation in the following manner:
{(> x) = (< 1− x) and vice versa; {(≥ x) = (≤ 1− x) and vice versa. It is easy to verify
E(·y)(·x) = E({(·y))(·x) and E(·y)(·x) = E(·y)(·x). Therefore:

E(≥y)(≥ x) = E(≤1−y)(≥ x) = E(>1−y)(≥ x) = E(>1−y)(< x)

Again, as a simple example, the above equality implies “if in an epoch, it is not the case
that in at least 0.1 fraction of all slots Eve leaves at least 0.2 fraction of all channels unjammed,
then it must be the case that in more than 0.9 fraction of all slots, Eve leaves less than 0.2
fraction of all channels unjammed; and vice versa”. (I.e., E(≥0.1)(≥ 0.2) = E(>0.9)(< 0.2).)

3 The MultiCastAdp Algorithm

Each node u maintains a Boolean variable Mu to indicate whether it knows the message
m (in which case Mu is true and u is informed) or not (in which case Mu is false and u
is uninformed). Initially, only the source node sets Mu = true. The algorithm proceeds in
epochs and the ith epoch contains Ri = a ·4i · i · lg2 n slots, where a is some large constant. In
each slot in epoch i, for each node u that is still executing the algorithm (i.e., the node is still
active), it will hop to a uniformly chosen random channel. Then, u will choose to broadcast
or listen each with probability pi = (

√
C/n)/2i. If u decides to broadcast and Mu = true, it

sends m; otherwise, u sends a special beacon message ±. On the other hand, if in a slot u
decides to listen, it will record the channel feedback. Finally, by the end of an epoch i, for
a node u, if among the slots it listened within this epoch, at least (piRi)/2 are silent slots,
then u will halt. One point worth noting is, the first epoch number is not necessarily one;
instead, it is chosen as a sufficiently large integer to ensure pi ≤ 1/2 and pi ≤ C/(4n). Hence,
the first epoch number is Ib = 2 + dmax{lg (

√
n/C), lg (

√
C/n)}e. Complete pseudocode of

MultiCastAdp is provided in the full version of the paper.

4 Analysis of MultiCastAdp

Effectiveness of epidemic broadcast. The first technical lemma states if in an epoch
jamming from Eve is not strong and every node is active, then all nodes will be informed by
the end of the epoch. More specifically:

I Lemma 5. If all nodes are active at the beginning of epoch i, and during epoch i event
E≥y1(≥ x1) occurs, then by the end of this epoch, all nodes will be informed, with probability
at least 1− n−Θ(i). Here, x1 = y1 = 0.1, and E≥y1(≥ x1) is defined in Section 2.

This lemma highlights the effectiveness of the epidemic broadcast scheme. Intuitively, it
holds because when less than n/2 nodes know message m, the number of informed nodes
will increase by some constant factor every so often; and once at least n/2 nodes know m,
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remaining uninformed nodes will quickly learn the message too. To prove this intuition
rigorously, however, we need to apply the coupling technique.

To construct the coupling, we first specify how nodes’ behavior is generated. Fix
an epoch, imagine two sufficiently long bit strings Thigh and Tlow in which each bit is
generated independently and uniformly at random. Divide Thigh and Tlow into consecutive
chunks of equal size, such that each chunk provides enough random bits for n nodes to
determine their behavior in a slot. More formally, Thigh = (T (1)

hi , T
(2)
hi , · · · , T

(R)
hi ) and

Tlow = (T (1)
lo , T

(2)
lo , · · · , T (R)

lo ), where each T (∗)
hi or T (∗)

lo is a chunk. Next, we introduce three
processes that are used during the coupling: β, β′, and γ.

We begin with β, which is an execution of MultiCastAdp with adversary Eve. The
tricky part about β is: in the ith slot, nodes’ behavior Gi is not determined by T (i)

hi or T (i)
lo

directly. Instead, it is generated in a more complicated way. Specifically, at the beginning
of slot i, Eve first computes its jamming result Qi (i.e., the set of unjammed channels)
based on Q<i and G<i. If |Qi| ≥ x1C and the number of previously used chunks from
Thigh is no more than y1R, then we pick the next unused chunk from Thigh; otherwise, we
pick the next unused chunk from Tlow. Assume T (j) is the chosen chunk, and it computes
to nodes’ behavior 〈(Ĝchv )v∈V , (Ĝactv )v∈V 〉. Still, we do not use 〈(Ĝchv )v∈V , (Ĝactv )v∈V 〉 as
nodes’ behavior. Instead, we permute the channel choices according to the jamming result.
Specifically, for each q ∈ 2[C], define permutation πq on [C] as follows: for 1 ≤ k ≤ |q|, πq(k)
is the kth smallest element in q; and for |q| + 1 ≤ k ≤ C, πq(k) is the (k − |q|)th smallest
element in [C]\q. (For example, if C = 5 and q = {2, 4}, then πq permutes 〈1, 2, 3, 4, 5〉 to
〈2, 4, 1, 3, 5〉.) Further define bijection Ψq : Ω→ Ω using πq:

Ψq

(〈(
Ĝchv

)
v∈V

,
(
Ĝactv

)
v∈V

〉)
=
〈(

πq

(
Ĝchv

))
v∈V

,
(
Ĝactv

)
v∈V

〉
Now, we use 〈(πq(Ĝchv ))v∈V , (Ĝactv )v∈V 〉 as nodes’ behavior Gi in slot i. Formally, let
K(Q≤i) =

∑i
j=1 I[|Qj | ≥ x1C] count the number of weakly jammed slots (i.e., |Qj | ≥ x1C)

among the first i slots, where each I[|Qj | ≥ x1C] is an indicator random variable. Then, Gi
can be defined as:

Gi =


ΨQi

(
T

(K(Q≤i))
hi

)
, |Qi| ≥ x1C and K(Q≤i) ≤ y1R

ΨQi

(
T

(i−K(Q≤i))
lo

)
, |Qi| < x1C and K(Q≤i) ≤ y1R

ΨQi

(
T

(i−y1R)
lo

)
, otherwise

Careful readers might suspect does G = (G1, G2, · · · , GR) in process β really has the
correct distribution G we want. (That is, G is the distribution in which the behavior of the
nodes are determined by, say Tlow, directly.) After all, just by looking at the definition, it
seems Gi depends on Qi, which is controlled by Eve. Interestingly enough, indeed G ∼ G.
To understand this intuitively, consider the following simple game played between Alice and
Eve. In each round, Alice tosses a fair coin but does not reveal it to Eve (this coin plays
similar role as T (j)). However, Eve can decide whether to flip the coin or not (this is like
permuting channel assignments according to q). Finally, the coin is revealed and the game
continues into the next round. Now, a simple but important observation is: the coin is still a
fair coin in each round, although Eve can decide whether to flip it or not. Similarly, back to
our setting, we can show G ∼ G.

We continue to introduce process β′. In β′, still there are n nodes executing MultiCas-
tAdp, along with a jamming adversary Carlo. However, for each slot i, if in β nodes use
ΨQi(T

(j)
hi ) (resp., ΨQi(T

(j)
lo )) to determine their behavior, then in β′ nodes directly use T (j)

hi

(resp., T (j)
lo ), and Carlo leaves channels {1, 2, · · · , x1C} unjammed (resp., jams all channels).
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22:8 Multi-Channel Resource Competitive Broadcast

Finally, in γ, again there are n nodes executing MultiCastAdp, yet the adversary uses
a fixed strategy: in the first y1R slots, channels {1, 2, · · · , x1C} are unjammed; and in the
remaining (1− y1)R slots, all channels are jammed. Besides, in the ith slot, nodes directly
use chunk T (i)

hi to compute their behavior if i ≤ y1R, and use chunk T (i−y1R)
lo otherwise.

We are now ready to sketch the proof of Lemma 5. (Complete proofs can be found in the
full version of the paper.)

Proof sketch of Lemma 5. Define EX (respectively, EX′ , and EY ) be the event that some
node is still uninformed by the end of process β (respectively, β′, and γ). Let E≥ be event
E≥y1(≥ x1). The following claims capture the relationship between these events:

Claim I: EX implies EX′ . Consider a slot i and two nodes u and v, assume in β node u
broadcasts on channel ch and node v listens on ch. Then, by definition of our permutation
function π, in that same slot in β′, u must broadcast on π−1

Qi
(ch) and v must listen on

π−1
Qi

(ch). We argue a failed transmission attempt on ch in β will also fail on π−1
Qi

(ch) in β′:
(a) if some third node w also broadcasts on ch in slot i in β, then w must also broadcast on
π−1
Qi

(ch) in slot i in β′; (b) if Eve jams ch in slot i in β, then Carlo must also jam π−1
Qi

(ch)
in slot i in β′. Thus, assuming v is uninformed in both β and β′ at the beginning of slot
i, then by the end of slot i, if v is still uninformed in β, it must be the case that v is also
uninformed in β′. A simple induction immediately leads to the claim.

Claim II: (EX′ ∧ E≥) implies EY . If E≥ happens in β, then in both β′ and γ, Eve leaves
channels {1, 2, · · · , x1C} unjammed in y1R slots, and jams all channels in remaining slots.
Observe that we can ignore the slots in which all channels are jammed; and in each remaining
slot, nodes’ behavior and channel feedback are identical in the two processes.

Therefore, Pr[EX ∧ E≥] ≤ Pr[EY ]. The effectiveness of the epidemic broadcast scheme
is easy to demonstrate in process γ, as the jamming strategy of the adversary in γ is not
adaptive. Specifically, we conclude Pr[EY ] ≤ exp(−Θ(i · lgn)). J

Competitiveness and Correctness. We prove two other key lemmas in this part. The
first one shows Eve cannot stop nodes from halting without spending a lot of energy, thus
guaranteeing the resource competitiveness of the termination mechanism.

I Lemma 6. Fix an epoch i and a node u, assume u is alive at the beginning of this epoch.
By the end of this epoch, with probability at most exp(−Θ(i · lg2 n)), the following two events
happen simultaneously: (a) E≥y2(≥ x2) occurs during the epoch; and (b) node u does not
halt. Here, x2 = y2 = 0.99, and E≥y2(≥ x2) is defined in Section 2.

Proof sketch. Arrange the randomness of nodes as what we do in the proof of Lemma 5,
except that we use parameter x2 = 0.99 to replace x1, and y2 = 0.99 to replace y1. Let R
be the length of the epoch, p be nodes’ working probability, and E≥ be event E≥y2(≥ x2).
Define Xi (respectively, X ′i, and Yi) be an indicator random variable taking value one iff u
hears silence in the ith slot in β (respectively, β′, and γ). Following random variables are
what we intend to couple: X =

∑R
i=1Xi, X ′ =

∑R
i=1X

′
i, and Y =

∑R
i=1 Yi. Specifically:

Claim I: For any integer t ≥ 0, Pr[X ≤ t] ≤ Pr[X ′ ≤ t]. Similar to the proof of Claim I
in the proof of Lemma 5, for each slot, if in that slot u hears silence in β′, then by definition
of our permutation function π and the construction of β and β′, it must be the case that u
also hears silence in β. Thus, X ′i = 1 implies Xi = 1, resulting in X ′ ≤ X.

Claim II: For any integer t ≥ 0, Pr[(X ′ ≤ t)∧E≥] ≤ Pr[Y ≤ t]. If E≥ happens in β′, then
in both β′ and γ, Eve leaves channels {1, 2, · · · , x2C} unjammed for y2R slots, and jam all
channels in other slots. Note that in each of the R slots, nodes’ behavior are independent and
are sampled from an identical distribution, so the indices of the y2R slots does not matter.
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Therefore, Pr[(X ≤ t) ∧ E≥] ≤ Pr[Y ≤ t]. Since {Y1, Y2, · · · , YR} is a set of mutually
independent random variables, bounding Pr[Y < Rp/2] is easy. Specifically, E[Y ] = y2 · x2 ·
p · (1− p/C)n−1 ≥ 0.992 ·Rp · (1− p/C)n ≥ 0.992 ·Rp · e−2np/C ≥ 0.992 ·Rp · e−0.5 > 0.59Rp.
Apply a Chernoff bound, we know Pr[Y < Rp/2] ≤ exp(−Θ(Rp)) ≤ exp(−Θ(i · lgn)). J

The second lemma states that all nodes must have been informed before any node decides
to halt, thus message dissemination must have completed before any node stops execution.
To prove the lemma, we consider two complement cases: either Eve jams a lot in the epoch,
or she does not. If jamming is not strong, Lemma 5 implies no node remains uninformed.
Otherwise, u should not hear a lot of silent slots and will not halt. Notice, handling the
strong jamming case also relies on the coupling technique.

I Lemma 7. Fix an epoch i in which all nodes are active, fix a node u. By the end
of this epoch, with probability at most exp(−Θ(i · lgn)), the following two events happen
simultaneously: (a) node u halts; and (b) some node is still uninformed.

Main theorem. We sketch the proof of Theorem 1 in this last part.
Fix a node u, we begin by computing how long u remains active. Let L be the total

runtime of u. Since epoch length increases geometrically, we only need to focus on the last
epoch in which u is active. Also, notice that Lemma 6 suggests Eve must jam a lot in an
epoch – the amount of which can be described as some function of epoch length – to stop u
from halting. Putting these pieces together, we show Pr(L > Θ(1) · T/C) ≤ n−Ω(1). By a
union bound, we know when T = Ω(C) w.h.p. all nodes halt within O(T/C) slots.

Next, we analyze the cost of nodes. Again fix a node u, let F denote its total cost. By an
argument similar to above, we are able to prove Pr(F > Θ(lgn) ·

√
lg T · (T/n)) ≤ n−Ω(1). By

a union bound, we know when T = Ω(C) w.h.p. the cost of each node is O(
√
T/n·

√
lg T ·lgn).

The last step is to show with high probability each node must have been informed when
it halts, and this can be proved via an application of Lemma 7.

Finally, we note that when T = o(C), all nodes will halt by the end of the first epoch,
with high probability. This results in the τtime and τcost terms in the theorem statement.

5 The MultiCastAdvAdp Algorithm

Our second algorithm – called MultiCastAdvAdp– works even if knowledge of n is absent.
However, its design and analysis are much more involved than that of MultiCastAdp.

Building MultiCastAdvAdp. When the value of n is unknown, the principal obstacle lies in
properly setting nodes’ working probabilities. In view of this, we let MultiCastAdvAdp
contain multiple super-epochs, each of which contains multiple phases, and nodes may use
different working probabilities in different phases. Notice, for each super-epoch, we need to
ensure it contains sufficiently many “good” phases, in the sense that within each such good
phase broadcast will succeed if Eve does not heavily jam it. Another challenge posed by the
unknown n value is that the simple termination criterion – large fraction of silent slots – no
longer works, as this can happen when the working probability is too low.

Gilbert et al. [15] provide a solution to the above two challenges in the single-channel
setting. Specifically, at the beginning of a super-epoch i, nodes set their initial working
probability to a pre-defined small value. After each phase, each node u increases its working
probability pu by a factor of 2max{0,ηu−0.5}/i, where ηu denotes the fraction of silent slots u
observed within the phase. This mechanism provides two important advantages: (a) Eve has
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to keep jamming heavily to prevent pu from reaching the ideal value; and (b) pu and pv might
be different for two nodes u and v, but the difference is bounded. As for termination, the
number of messages nodes heard could be a good metric. However, a simple threshold would
not work. Instead, Gilbert et al. develop a two-stage termination mechanism: when a node u
hears the message sufficiently many times, it becomes a helper and obtains an estimate of
n; Later, when u is sure that all nodes have become helper, it will stop execution.

In MultiCastAdvAdp, we extend the above approach to the multi-channel setting.
Specifically, we observe that the single-channel message dissemination scheme used in [15]
is relatively slow in that it needs Θ(lgn) phases to accomplish broadcast. By contrast, in
MultiCastAdvAdp, the application of epidemic broadcast reduces this time period to a
single weakly-jammed phase. This replacement is not a simple cut-and-paste. Instead, we also
adjust the phase structure accordingly. In particular, each phase now contains two steps. This
adjustment further demands us to change the way nodes’ update their working probabilities
after each phase: pu ← pu · 2max{0,ηstep1

u +ηstep2
u −1.5}. In the end, MultiCastAdvAdp

provides a slightly better resource competitive ratio than [15].
Handing adaptivity via coupling also becomes more challenging. In more detail, in each

phase we need the number of silent slots u heard Nu to be close to its expectation for any
jamming results vector (instead of, say, only when jamming is strong, as in the proof of
Lemma 7). To acquire the desired results, we have to consider jamming results vectors at a
much finer level (rather than a single category, as in the proof of Lemma 6 and Lemma 7),
which in turn requires the failure probability for each category to be much lower (otherwise
a union bound over the increased number of categories would not work). Allowing Nu
to have larger deviation from its expectation solves the issue, but it further demands the
initial working probability nodes used at the beginning of each epoch to be sufficiently high.
Unfortunately, this increased initial working probability could result in nodes becoming
helper with incorrect estimates of n, violating the correctness of the termination mechanism.
We fix this problem by adding step three to each phase: observing the fraction of silent slots
in step three allows nodes to determine the reliability of their estimates.

Algorithm description. MultiCastAdvAdp contains multiple super-epochs, and the first
super-epoch number is Ib = 2 lgC + 20. In super-epoch i, there are bi phases numbered
from 0 to bi− 1, where b is some large constant. Each phase contains three steps. For any
super-epoch i, the length of each step is always Ri = a · 2i · i3, where a is some large constant.
Prior to execution, all nodes are in init status. Similar to MultiCastAdp, each node u
maintains Mu to indicate whether it knows the message m or not.

We now describe nodes’ behavior in each (i, j)-phase – i.e., phase j of super-epoch i –
in detail. For each slot in an (i, j)-phase, each node will go to a channel chosen uniformly
at random. Then, for each node u, it will broadcast or listen on the chosen channel, each
with a certain probability. In step one and two, this probability is pi,ju ; in step three, this
probability is pistep3 = C2/2i. We often call pi,ju as the working probability of node u. Notice,
at the beginning of an super-epoch i, the probability pi,ju , which is just pi,0u , is set to C/2i.
In a slot, if u chooses to send, then the broadcast content depends on the value of Mu: if
Mu is true then u will broadcast m, otherwise u will broadcast a beacon message ±. On the
other hand, if u chooses to listen in a slot, then it will record the channel feedback. One
point worth noting is, a node u will only change Mu from false to true if it hears message
m in step one. (The purpose of this somewhat strange behavior is to facilitate analysis.)

At the end of each phase j, nodes will compute pi,j+1
u (i.e., the working probability of the

next phase). Specifically, for each node u, define ∆step1
u = ∆step2

u = Rip
i,j
u /(1− pi,ju /C) and

∆step3
u = Rip

i
step3/(1− pistep3/C). Let Nstep1,c

u , Nstep2,c
u , and Nstep3,c

u denote the number of
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silent slots u observed in step one, step two, and step three in phase j, respectively. Then,
ηi,ju = Nstep1,c

u /∆step1
u +Nstep2,c

u /∆step2
u +Nstep3,c

u /∆step3
u , and pi,j+1

u = pi,ju · 2max{0,ηi,j
u −2.5}.

At the end of each phase j, nodes will also potentially change their status. Specifically, if
a node u is in init status and finds: (a) ηi,ju ≥ 2.4; and (b) it has heard the message m at
least ai3 times during step two of phase j. Then, node u will become helper and compute an
estimate of n as nu = C/((pi,ju )2 · 2i). On the other hand, if u is already a helper and finds
pi,j+1
u ≥ 64

√
C/(2i · nu), then u will change its status to halt and stop execution. Complete

pseudocode of MultiCastAdp is provided in the full version of the paper.

6 Analysis of MultiCastAdvAdp

Throughout the analysis, when considering an (i, j)-phase, we often omit the indices i and/or
j if they are clear from the context. For any node u, we often use pu to denote its working
probability in a step. We always use V to denote active nodes, and M to denote active nodes
with Mu = true. Omitted proofs and auxiliary lemmas are provided in the full paper.

The “bounded difference” property. The main goal of this part is to show nodes’ working
probabilities can never differ too much. This “bounded difference” property is used extensively
in remaining analysis, either explicitly or implicitly.

I Lemma 8. Consider a super-epoch i > lgn. With probability at least 1− exp(−Θ(iC)),
we have 1/2 ≤ pu/pv ≤ 2 for any two nodes u and v at any phase of the super-epoch.

At a high level, the above lemma holds because the fraction of silent slots nodes observed
during a phase cannot differ too much. To prove it formally, we show the following claim via
a coupling argument. However, details of the coupling differ from the ones we saw in Section
4. Specifically, we divide jamming results vectors into

(
R+C
C

)
categories.

B Claim 9. Consider a step of length R and two active nodes u and v. Let pu (resp., pv) be
the sending/listening probabilities of u (resp., v); and let Xu (resp., Xv) be the number of
silent slots u (resp., v) observed. Define ∆u = Rpu/(1− pu/C) and ∆v = Rpv/(1− pv/C).
Define χu =

√
giC/(Rpu) and χv =

√
giC/(Rpv), where g ≤ a/20 is a constant. Then:

1. Pr[Xu/∆u > 1] ≤ exp(−Θ(i3C)).
2. Pr[(Xu/∆u > 0.2) ∧ (Xv/∆v < 0.1)] ≤ exp(−Θ(i3C)).
3. Pr[(|Xu/∆u −Xv/∆v| ≥ χu + χv) ∧ (Xu/∆u ≥ 0.1) ∧ (Xv/∆v ≥ 0.1)] ≤ exp(−Θ(iC)).

Proof sketch. We begin with part (1). Define α =
∏
w∈V (1−pw/C). To make Xu as large as

possible, assume Eve does no jamming, thus whether u hears silence are independent among
different slots. Notice that E[Xu] = pu·(

∏
v∈V \{u}(1−pv/C))·R = α·∆u < ∆u. Therefore, by

a Chernoff bound, the probability that Xu > ∆u is at most exp(−Θ(∆u)) = exp(−Ω(i3C)).
Proofs for part (2) and (3) both rely on coupling, and we only focus on part (2) here.
We first setup the coupling. Assume the randomnesses of nodes come from C lists

(T0, · · · ,TC). Specifically, for each slot i in the step, if the jamming result is Qi ⊆ [C], then

nodes’ behavior in this slot is determined by ΨQi

(
T

(
∑

j≤i
I[|Qj |=|Qi|])

|Qi|

)
using permutation

πQi and bijection ΨQi . Notice, πQi and ΨQi are defined in Section 4 on page 7, and

T

∑
j≤i

I[|Qj |=|Qi|]
|Qi| is the (

∑
j≤i I[|Qj | = |Qi|])-th chunk in list T|Qi|. Let Xu,i be an indicator

random variable taking value 1 iff u hears silence in the ith slot, define Xu =
∑R
i=1Xu,i.

Define Z = {z = 〈z1, z2, · · · , zC〉 ∈ NC :
∑C
l=1 zl ≤ R}, thus |Z| =

(
R+C
C

)
≤ (R+ 1)C ≤

(2R)C . (Intuitively, for every l ∈ [C], zl in z is the number of slots in which Eve leaves
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l channels unjammed.) Denote the jamming results of this step as Q = (Q1, · · · , QR) ∈
Q = (2[C])R, and define |Q| =

∑R
i=1 |Qi|. Further define function K : Q → Z such that

K(Q) = 〈K1(Q), · · · ,KC(Q)〉, where Kl(Q) =
∑R
i=1 I[|Qi| = l]. (That is, Kl(Q) counts the

number of slots in which Eve leaves l channels unjammed.) Hence, given K(Q), we can use
a function L : Z → N to compute |Q|. In particular, L(z) =

∑C
l=1 zl · l and L(K(Q)) = |Q|.

Now, consider another execution, for any j ≥ 1 and l ∈ [C], let Y (j)
u,l be an indicator

random variable taking value 1 iff u hears silence in a slot in which the jamming result
is [l] and the behavior of nodes is determined by the jth chunk of Tl directly. Define
Yu(z) =

∑C
l=1
∑zl

j=1 Y
(j)
u,l for any z ∈ Z. By definition, it is easy to verifyXu(Q) = Yu(K(Q))

for any Q. That is, for any Q, values of Xu and Yu are identical. The significance of this
observation is that it relates Xu – which counts the number of silent slots u heard – to Yu,
and Yu can be interpreted as the sum of independent random variables once z is fixed.

Now we are ready to prove part (2). Notice E[Xu]/∆u = E[Xv]/∆v = α · |Q|/(RC). Also,
it is easy to verify E[Yu(z)]/∆u = E[Yv(z)]/∆v = α · L(z)/(RC). Let Z1 = {z ∈ Z : L(z) ≤
0.15RC/α}. Then for z ∈ Z1, E[Yu(z)] ≤ 0.15∆u, further by a Chernoff bound, Pr[Yu(z) >
0.2∆u] ≤ exp(−Θ(i3C)). Similarly, for z ∈ Z \ Z1, Pr[Yv(z) < 0.1∆v] ≤ exp(−Θ(i3C)).
Therefore, we can conclude Pr[Xu(Q) > 0.2∆u ∧Xv(Q) < 0.1∆v] ≤

(∑
z∈Z1

Pr[Yu(z) >
0.2∆u]

)
+
(∑

z∈Z\Z1
Pr[Yv(z) < 0.1∆v]

)
≤ |Z| · exp(−Θ(i3C)) = exp(−Θ(i3C)). J

We now sketch the proof of Lemma 8. Denote the working probabilities of the current
phase and the next phase as p and p′. If ηu ≤ 2.5 and ηv ≤ 2.5, then p′u/p′v = pu/pv and we are
done. So assume ηu > 2.5. In such case, Claim 9 imply |N c,step∗

u /∆step∗
u −N c,step∗

v /∆step∗
v | ≤√

giC/(Rpu)+
√
giC/(Rpv) for any step ∗ in {1, 2}, and |N c,step3

u /∆step3
u −N c,step3

v /∆step3
v | ≤

2
√
giC/(Rpstep3). This further suggests p′u/p′v ≤ (pu/pv) · 21/bi, thus the lemma is proved.

Correctness. This part shows MultiCastAdvAdp enforces two nice properties. First,
when some node halts, all nodes must have become helper. This property can be seen as a
stronger version of Lemma 7, since a node must have heard the message m when becoming a
helper. The second property, on the other hand, states that when a node becomes helper,
it also obtains a good estimate of n. This property helps to ensure nodes can stop execution
at the right time.

I Lemma 10 (“halt-imply-helper” property). The probability that some node has stopped
execution while some other node has not become helper is at most n−Ω(1).

I Lemma 11 (“good-estimate” property). For each node u, the probability that u becomes
helper with nu < n/256 or nu > 4n is at most n−Ω(1).

The following lemma is helpful for proving both of the above two properties. Roughly
speaking, this lemma states that if in an (i, j)-phase some node u has working probability
pu = Θ(

√
C/(2in)) and decides to raise pu at the end of the phase, then all nodes must have

heard the message many times in step two of the phase.

I Lemma 12. Consider an (i, j)-phase where i > lgn. Assume at the beginning of the phase:
(
∑
u∈V pu)/C ≤ 1/2, all nodes are active and their working probabilities are within a factor

of two, and the working probability of each node is at least 8
√
C/(2in). Then, with probability

at most exp(−Θ(i2)), these two events both occur: (a) some node raises its working probability
at the end of the phase; and (b) some node hears message m less than ai3 times in step two.
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Proof sketch. Let ER be the event that some node raises its working probability at the end
of the phase, EM be the event that some node hears m less than ai3 times during step two,
Eun be the event that some node is still uninformed by the end of step one. Moreover, let
E1 (respectively, E2) be the event that E≥0.25

step1 (≥ 0.25) (respectively, E≥0.25
step2 (≥ 0.25)) occurs

during step one (respectively, step two) of the phase. We know:

Pr(EMER) ≤Pr(EM ∧ (E1 ∧ E2)) + Pr(ER ∧ (E1 ∧ E2))
≤Pr(EunE1) + Pr(EunEME2) + Pr(ER ∧ (E1 ∨ E2))

The reminder of the proof bounds the three probabilities in the last line.
Claim I: Pr(EunE1) ≤ Pr(Eun|E1) ≤ exp(−Θ(i2)). If E1 happens, then step one is not

heavily jammed. Thus every node will be informed at the end of step one due to the
effectiveness of the epidemic broadcast scheme, much like the proof of Lemma 5.

Claim II: Pr(EunEME2) ≤ Pr(EME2|Eun) ≤ exp(−Θ(i3)). Fix a node u, and assume all
nodes know m at the beginning of step two. Similar to the proof of Lemma 6 (except that we
focus on message slots and apply the coupling argument accordingly), the probability that u
hears m less than ai3 times during a step two in which E2 occurs is at most exp(−Θ(i3)).
Take a union over all nodes and the claim is proved.

Claim III: Pr(ER ∧ (E1 ∨ E2)) ≤ exp(−Θ(i3C)). Notice that Pr(ER ∧ (E1 ∨ E2)) ≤
Pr(ERE1)+Pr(ERE2) ≤

∑
u∈V Pr(Eu,1E1)+

∑
u∈V Pr(Eu,2E2)+4

∑
u∈V exp(−Θ(i3C)). Here,

Eu,1 (respectively, Eu,2) is the event that node u hears silence more than ∆step1
u /2 (respectively,

∆step2
u /2) times in step one (respectively, step two) of the phase, and the last inequality is

due to part (1) of Claim 9. When E1 occurs, the expected number of silent slots heard by u
in step one is at most 7/16∆step1

u . Again via a coupling argument, we know Pr(Eu,1E1) ≤
exp(−Θ(i3)), and bounding Pr(Eu,2E2) is similar. J

At this point, to prove the “halt-imply-helper” property, we only need to combine the
above lemma with the following two observations. First, nodes are unlikely to become helper
in early super-epochs, as the sending probabilities in these super-epochs are too high and
nodes cannot hear enough silent slots. Second, when nodes’ working probabilities in step
two are too small, they will also not become helper as the number of messages heard is not
enough. Notice, this second observation also leads to an upper bound on the estimates of n.
(Detailed proofs of the two observations can be found in the full paper.)

To prove the “good-estimate” property, what remains is to show a lower bound for nu.
To that end, we show if all nodes are alive and u’s working probability is close to the ideal
value Θ(

√
C/(2in)), then u must have become helper already. (Again, see the full paper for

the proof.) By then, a lower bound of nu can be derived as a simple corollary of this claim.

Termination. This part shows nodes will quickly become helper and then halt once jamming
is weak. (In other words, Eve cannot delay nodes unless she spends a lot of energy.) We
begin by classifying phases and super-epochs into weakly jammed ones and strongly jammed
ones. Specifically, call a phase weakly jammed if E≥0.95(≥ 0.95) occurs for all three steps of
the phase. Otherwise, if E>0.05(< 0.95) occurs for any of the three steps, then the phase is
strongly jammed. Call a super-epoch weakly jammed if at least half of the phases in the
super-epoch are weakly jammed, otherwise the super-epoch is strongly jammed.

We first show, if a node’s working probability has not reached the ideal value, then this
probability will increase by some constant factor in a weakly jammed phase.

I Lemma 13. Fix an (i, j)-phase where i ≥ lg(nC) + 6, and fix an active node u satisfying
pi,ju < C/(128n). By the end of the phase, the following two events happen simultaneously
with probability exp(−Ω(iC)): (a) the phase is weakly jammed; and (b) pi,j+1

u < pi,ju · 2(1/10).
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Building upon Lemma 13, we can prove nodes’ working probabilities will reach p̃i =
1024

√
C/(2in) in a weakly jammed super-epoch, as there are enough weakly jammed phases.

I Lemma 14. Fix a super-epoch i ≥ 34 + lg(nC) and a node u that is active at the
beginning of the super-epoch. The following two events happen simultaneously with probability
exp(−Ω(iC)): (a) the super-epoch is weakly jammed; and (b) by the end of the super-epoch u
is still alive with a working probability less than p̃i.

Lastly, we show that when a node’s working probability reaches p̃i, it will halt.

I Lemma 15. Fix a super-epoch i ≥ lg(nC)−7 and a node u. Assume the “halt-imply-helper”
property and the “good-estimate” property both hold. Then, the probability that u is active at
the end of super-epoch i with a working probability exceeding p̃i is at most exp(−Θ(i)).

Main theorem. In this last part we sketch the proof of Theorem 2.
Fix an arbitrary node u. The first step is to analyze how long u remains active. Since

super-epoch length increases geometrically, we only need to focus on the last super-epoch in
which u is active. Specifically, let Î = 34 + lgC + max{lgC, lgn}, let ri be the number of
slots in super-epoch i, and let sri =

∑i
k=Î+1 rk be the total number of slots from super-epoch

Î + 1 to super-epoch i. It is easy to verify, for i ≥ Î + 1, sri ≤ 5ri−1. Define constant
β = 2400, and let random variable L denote node u’s actual runtime starting from super-
epoch Î + 1. Combine Lemma 10, 11, 14, 15, along with the fact that Eve spends less than
riC/β = bi/2 · 0.052RiC energy in super-epoch i implies super-epoch i is weakly jammed,
we can prove L ≤ 5βT/C holds w.h.p. Take a union bound over all nodes, we know every
node will terminate within (

∑Î
k=Ib

bk · 3Rk) + 5βT/C = Õ(T/C + nC + C2) slots, w.h.p.
Next, we analyze the cost of node u. Let Fstep1,2 (resp., Fstep3) be node u’s total actual

cost during step one and step two (resp., step three) in all phases starting from super-
epoch Î + 1. By an analysis similar to above, we show Fstep1,2 ≤ Θ(

√
T/n · lg2 T ) and

Fstep3 ≤ Θ(C2 · (Î + lg T )5), w.h.p. As a result, we can conclude w.h.p. the energy cost of
each node is bounded by Fstep1,2 + Fstep3 +

∑Î
k=Ib

(bk · 3Rk) = Õ(
√
T/n+ nC + C2).

Finally, notice the algorithm itself ensures a node must be informed when it halts.

7 Lower Bounds

In this section, we show our algorithms achieve (near) optimal time and energy complexity
simultaneously against an adaptive adversary with budget T . The time complexity part is
obvious: Eve can jam all channels during the first T/C slots, so the O(T/C) term in the
runtime of MultiCastAdp and MultiCastAdvAdp is asymptotically optimal.

Obtaining an energy complexity lower bound is much more involved. To do so, the first
step is a simulation argument. Specifically, given any fair multi-channel broadcast algorithm
An, we can devise a multi-channel 1-to-1 communication algorithm A2 (in which the goal
is to let one node called Alice to send a message m to another node Bob) that simulates
An internally. To make the simulation feasible, we allow Alice and Bob to have multiple
transceivers, so that in each slot they can operate on multiple channels, as well as send and
listen simultaneously. In more detail, Alice in A2 mimics the source node in An. As for Bob,
he simulates the n− 1 non-source nodes in An. Particularly, in each slot, for each channel,
if at least one non-source node listens, then Bob uses a transceiver to listen; if exactly one
non-source node broadcasts, then Bob uses a transceiver to broadcast the unique message;
and if at least two non-source nodes broadcast, then Bob uses a transceiver to broadcast noise.
(Notice Bob can simultaneously listen and broadcast on a channel: he uses two transceivers
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and incurs two units of cost.) On the other hand, Eve’s strategy for disrupting An and A2 is
called S: in each slot, for each channel, Eve jams it iff the probability that the source node
(respectively, Alice) successfully transmits m to some non-source node (respectively, Bob)
over this channel exceeds 1/T .

Clearly, the above simulation is “perfect”: an execution of A2 is identical to an execution of
An, assuming nodes use identical random bits in the two executions. To simplify presentation,
we further assume An automatically stops once all nodes are informed, and A2 automatically
stops once Bob is informed. This modification will not increase nodes’ energy cost, thus
will not affect the correctness of our lower bound. Now, observe that the success of A2 is a
necessary condition for the success of An, and Bob’s energy cost will not exceed the sum of
all non-source nodes’ cost, hence the following lemma is immediate.

I Lemma 16. For any fair multi-channel broadcast algorithm An, there exists a multi-
channel 1-to-1 communication algorithm A2. If in An each node incurs an expected cost of
f(T ) and An succeeds with probability p, then: (a) in A2 Alice and Bob incur an expected
cost of at most f(T ) and n · f(T ), respectively; (b) A2 succeeds with probability at least p.

What remains is an energy complexity lower bound for A2: with such a result, Theorem
3 is immediate via simple reduction. Indeed, we are able to prove Theorem 17, an energy
complexity lower bound for 1-to-1 communication in the multi-channel setting. This result
could be of independent interest, and at a high-level its proof is organized in the following way.
First, we note that in a rough sense, any multi-channel 1-to-1 communication algorithm A
can be viewed as a decision tree, and each path from the root to a leaf in the tree corresponds
to an oblivious algorithm. Then, we argue that A can be used to generate another algorithm
A′ which is a “convex combination” (or, a distribution) of all such oblivious algorithms,
without changing the success probability or the product of Alice’s and Bob’s expected cost.
Moreover, an important observation is that among all the oblivious algorithm used in the
“convex combination”, at least one – say Aŵ – is (roughly) as good as A′ in terms of both
success probability and energy efficiency. Finally, depending on whether Eve uses all her
budget during execution, we consider two potential scenarios for Aŵ, and for both we show
EAŵ

[A] · EAŵ
[B] ∈ Ω(T ), which in turn implies EA[A] · EA[B] ∈ Ω(T ). Complete proof of

Theorem 17 is provided in the full paper.

I Theorem 17. Consider any multi-channel 1-to-1 communication algorithm that succeeds
with constant probability against an adaptive adversary Eve with budget T . Let A and B
denote Alice’s and Bob’s expected cost respectively, then Eve can force E[A] · E[B] ∈ Ω(T ).
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Abstract
Reliable broadcast is a communication primitive guaranteeing, intuitively, that all processes in a
distributed system deliver the same set of messages. The reason why this primitive is appealing
is twofold: (i) we can implement it deterministically in a completely asynchronous environment,
unlike stronger primitives like consensus and total-order broadcast, and yet (ii) reliable broadcast is
powerful enough to implement important applications like payment systems.

The problem we tackle in this paper is that of dynamic reliable broadcast, i.e., enabling processes
to join or leave the system. This property is desirable for long-lived applications (aiming to be
highly available), yet has been precluded in previous asynchronous reliable broadcast protocols. We
study this property in a general adversarial (i.e., Byzantine) environment.

We introduce the first specification of a dynamic Byzantine reliable broadcast (dbrb) primitive
that is amenable to an asynchronous implementation. We then present an algorithm implementing
this specification in an asynchronous network. Our dbrb algorithm ensures that if any correct
process in the system broadcasts a message, then every correct process delivers that message unless
it leaves the system. Moreover, if a correct process delivers a message, then every correct process
that has not expressed its will to leave the system delivers that message. We assume that more than
2/3 of processes in the system are correct at all times, which is tight in our context.

We also show that if only one process in the system can fail – and it can fail only by crashing
– then it is impossible to implement a stronger primitive, ensuring that if any correct process in
the system broadcasts or delivers a message, then every correct process in the system delivers that
message – including those that leave.
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1 Introduction

Networks typically offer a reliable form of communication channels: TCP. As an abstraction,
these channels ensure that if neither the sender nor the destination of a message fail, then
the message is eventually delivered. Essentially, this abstraction hides the unreliability of
the underlying IP layer, so the user of a TCP channel is unaware of the lost messages.

Yet, for many applications, TCP is not reliable enough. Indeed, think of the situation
where a message needs to be sent to all processes of a distributed system. If the sender does
not fail, TCP will do the job; but otherwise, the message might reach only a strict subset of
processes. This can be problematic for certain applications, such as a financial notification
service when processes subscribe to information published by other processes. For fairness
reasons, one might want to ensure that if the sender fails, either all or no process delivers
that message. Moreover, if the correct processes choose to deliver, they must deliver the same
message, even when the sender is Byzantine. We talk, therefore, about reliable broadcast.
Such a primitive does not ensure that messages are delivered in the same total order, but
simply in the “all-or-nothing” manner.

Reliable broadcast is handy for many applications, including, for example, cryptocurren-
cies. Indeed, in contrast to what was implicitly considered since Nakamoto’s original paper
[24], there is no need to ensure consensus on the ordering of messages, i.e., to totally order
messages, if the goal is to perform secure payments. A reliable broadcast scheme suffices [15].

Reliable broadcast is also attractive because, unlike stronger primitives such as total
order broadcast and consensus, it can be implemented deterministically in a completely
asynchronous environment [7]. The basic idea uses a quorum of correct processes, and makes
that quorum responsible for ensuring that a message is transmitted to all processes if the
original sender of the message fails. If a message does not reach the quorum, it will not be
delivered by any process. It is important to notice at this point a terminology difference
between the act of “receiving” and the act of “delivering” a message. A process indeed might
“receive” a message m, but not necessarily “deliver” m to its application until it is confident
that the “all-or-nothing” property of the reliable broadcast is ensured.

A closer look at prior asynchronous implementations of reliable broadcast reveals, however,
a gap between theory and practice. The implementations described so far all assume a static
system. Essentially, the set of processes in the system remains the same, except that some of
them might fail. The ability of a process to join or leave the system, which is very desirable
in a long-lived application supposed to be highly available, is precluded in all asynchronous
reliable broadcast protocols published so far.

In this paper, we introduce the first specification of a dynamic Byzantine reliable broadcast
(dbrb) primitive that is amenable to an asynchronous implementation. The specification
allows any process outside the broadcast system to join; any process that is inside the system
can ask to leave. Processes inside the system can broadcast and deliver messages, whereas
processes outside the system cannot. Our specification is intended for an asynchronous
system for it does not require the processes to agree on the system membership. Therefore,
our specification does not build on top of a group membership scheme, as does the classical
view synchrony abstraction [10].

Our asynchronous dbrb implementation ensures that if any correct process in the system
broadcasts a message, then eventually every correct process, unless it asks to leave the
system, delivers that message. Moreover, if any correct process delivers a message, then every
correct process, if it has not asked to leave prior to the delivery, delivers that message. The
main technical difficulty addressed by our algorithm is to combine asynchrony and dynamic
membership, which makes it impossible for processes to agree on the exact membership.
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Two key insights enable us to face this challenge. First, starting from a known membership
set at system bootstrap time, we construct a sequence of changes to this set; at any time,
there is a majority of processes that record these changes. Based on this sequence, processes
can determine the validity of messages. Second, before transitioning to a new membership,
correct processes exchange their current state with respect to “in-flight” broadcast messages
and membership changes. This prevents equivocation and conflicts.

Our algorithm assumes that, at any point in time, more than 2/3 of the processes inside
the broadcast system are correct, which is tight. Moreover, we show that the “all-or-nothing”
property we ensure is, in some sense, maximal. More precisely, we prove (see [14]) that in
an asynchronous system, even if only one process in the system can fail, and it can merely
fail by crashing, then it is impossible to implement a stronger property, ensuring that if
any correct process in the system broadcasts (resp., delivers) a message, then every correct
process in the system delivers that message, including those that are willing to leave.

The paper is organized as follows. In §2, we describe our system model and introduce
the specification of dbrb. In §3, we overview the structure of our algorithm. In §4, we
describe our implementation, and in §5, we argue its correctness. We conclude in §6 with a
discussion of related and future work. Detailed proofs are delegated to the full version of the
paper [14].

2 Model and Specification

We describe here our system model (§2.1) and specify our dbrb primitive (§§ 2.2 to 2.4).

2.1 A Universe of Asynchronous Processes
We consider a universe U of processes, subject to Byzantine failures: a faulty process may
arbitrarily deviate from the algorithm it is assigned. Processes that are not subject to failures
are correct. We assume an asymmetric cryptographic system. Correct processes communicate
with signed messages: prior to sending a message m to a process q, a process p signs m,
labeled 〈m〉σp . Upon receiving the message, q can verify its authenticity and use it to prove
its origin to others (non-repudiation). To simplify presentation, we omit the signature-related
notation and, thus, whenever we write m, the identity of sender p and the signature are
implicit and correct processes only consider messages, whether received directly or relayed by
other processes, if they are equipped with valid signatures. We also use the terms “send” and
“disseminate” to differentiate the points in our algorithm when a process sends a message,
resp., to a single or to many destinations.

The system U is asynchronous: we make no assumptions on communication delays
or relative speeds of the processes.We assume that communication is reliable, i.e., every
message sent by a correct process to a correct process is eventually received. To describe
the events that occur to an external observer and prove the correctness of the protocol, we
assume a global notion of time, outside the control of the processes (not used in the protocol
implementation). We consider a subset of U called the broadcast system. We discuss below
how processes join or leave the broadcast system.

2.2 DBRB Interface
Our dbrb primitive exposes an interface with three operations and one callback:
1. dbrb-join: used by a process outside the system to join.
2. dbrb-leave: used by a process inside the system to leave.
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3. dbrb-broadcast(m): used by a process inside the system to broadcast a message m.
4. dbrb-deliver(m): this callback is triggered to handle the delivery of a message m.
If a process is in the system initially, or if it has returned from the invocation of a dbrb-join
call, we say that it has joined the system. Furthermore, it is considered participating (or,
simply, a participant) if it has not yet invoked dbrb-leave. When the invocation of dbrb-
leave returns, we say that the process leaves the system. Note that in the interval between
the invocation and the response of a dbrb-leave call, the process is no longer participating,
but has not yet left the system.

The following rules (illustrated in Figure 1) govern the behavior of correct processes: (i)
a dbrb-join operation can only be invoked if the process is not participating; moreover, we
assume that dbrb-join is invoked at most once; (ii) only a participating process can invoke a
dbrb-broadcast(m) operation; (iii) a dbrb-deliver(m) callback can be triggered only if
a process has previously joined but has not yet left the system; (iv) a dbrb-leave operation
can only be invoked by a participating process.

join()
completed

Participant in 
the system

Non-participant, 
still in system

Non-participant, 
not in system

broadcast()deliver() deliver()

leave()
completed

leave()

(may be invoked once)

(may be invoked once)

Figure 1 State transition diagram for correct processes.

2.3 Standard Assumptions

We make two standard assumptions in asynchronous reconfiguration protocols [1, 2, 5, 26],
which we restate below for the sake of completeness.

I Assumption 1 (Finite number of reconfiguration requests). In every execution, the number
of processes that want to join or leave the system is finite.

I Assumption 2. Initially, at time 0, the set of participants is nonempty and known to every
process in U .

Assumption 1 captures the assumption that no new reconfiguration requests will be made
for “sufficiently long”, thus ensuring that started operations do complete. Assumption 2 is
necessary to bootstrap the system and guarantees that all processes have the same starting
conditions. Additionally, we make standard cryptographic assumptions regarding the power of
the adversary, namely that it cannot subvert cryptographic primitives, e.g., forge a signature.

We also assume that a weak broadcast primitive is available. The primitive guarantees
that if a correct process broadcasts a messagem, then every correct process eventually delivers
m. In practice, such primitive can be implemented by some sort of a gossip protocol [18].
This primitive is “global” in a sense that it does not require a correct process to know all the
members of U .
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2.4 Properties of DBRB
For simplicity of presentation, we assume a specific instance of dbrb in which a predefined
sender process s disseminates a single message via dbrb-broadcast operation. The
specification can easily be extended to the general case in which every participant can
broadcast multiple messages, assuming that every message is uniquely identified.

I Definition 1 (dbrb basic guarantees).
Validity. If a correct participant s broadcasts a message m at time t, then every correct
process, if it is a participant at time t′ ≥ t and never leaves the system, eventually delivers
m.
Totality. If a correct process p delivers a message m at time t, then every correct process,
if it is a participant at time t′ ≥ t, eventually delivers m.
No duplication. A message is delivered by a correct process at most once.
Integrity. If some correct process delivers a message m with sender s and s is correct,
then s previously broadcast m.1
Consistency. If some correct process delivers a message m and another correct process
delivers a message m′, then m = m′.
Liveness. Every operation invoked by a correct process eventually completes.

To filter out implementations that involve all processes in the broadcast protocol, we add
the following non-triviality property.

I Definition 2 (Non-triviality). No correct process sends any message before invoking dbrb-
join or after returning from dbrb-leave operation.

3 Overview

We now present the building blocks underlying our dbrb algorithm (§3.1) and describe typical
scenarios: (1) a correct process joining or leaving the system (§3.2), and (2) a broadcast
(§3.3).

3.1 Building Blocks
Change. We define a set of system updates change = {+,−} × U , where the tuple 〈+, p〉
(resp., 〈−, p〉) indicates that process p asked to join (resp., leave) the system. This abstraction
captures the evolution of system membership throughout time. It is inevitable that, due
to asynchrony, processes might not be able to agree on an unique system membership. In
other words, two processes may concurrently consider different sets of system participants to
be valid. To capture this divergence, we introduce the view abstraction, which defines the
system membership through the lenses of some specific process at a specific point in time.

View. A view v comprises a set of updates v.changes. The set determines the view
membership as v.members = {p ∈ U : 〈+, p〉 ∈ v.changes∧〈−, p〉 /∈ v.changes}. For simplicity,
sometimes we use p ∈ v instead of p ∈ v.members; |v| is a shorthand for |v.members|.

Intuitively, each correct process p in dbrb uses a view as an append-only set, to record all
the changes that the broadcast system underwent up to a point in time, as far as p observed.
Some views are “instantiated” in dbrb protocol and those views are marked as valid (a

1 Recall that the identity of sender process s for a given message m is implicit in the message (§2.1).
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Figure 2 Protocol overview for dbrb-join or dbrb-leave (left), and dbrb-broadcast (right).

formal definition is deferred to §5). Our protocol ensures that all valid views are comparable.
Formally, v1 ⊂ v2 means that v1.changes ⊂ v2.changes, we say that v2 is more recent than
v1. Two different views are comparable if one is more recent than the other, otherwise they
conflict. We assume that the initial view, i.e., the set of participants at time 0, is publicly
known (Assumption 2).

A valid view v must be equipped with a quorum system: a collection of subsets of
v.members. We choose the quorums to be all subsets of size v.q = |v| − b |v|−1

3 c.

I Assumption 3 (Quorum systems). In every valid view v, the number of Byzantine processes
is less than or equal to b |v|−1

3 c and at least one quorum in v contains only correct processes.

Thus, every two quorums of a valid view have a correct process in common and at least one
quorum contains only correct processes.2

Sequence of views. We now build upon the comparability of views to obtain the abstraction
of a sequence of views, or just sequence. A sequence seq is a set of mutually comparable
views. Note that a set with just one view is, trivially, a sequence of views, so is the empty
set.

Reliable multicast. In addition to the use of signed messages (§2.1), we build our algorithm
on top of an elementary (static) reliable Byzantine broadcast protocol. We instantiate this
protocol from a standard solution in the literature for a static set of processes, as described
e.g., in [9]. The terms “R-multicast” and “R-delivery” refer to the request to broadcast a
message and deliver a message via this protocol to (or from) a static set of processes. For
completeness, we provide the pseudocode of the static reliable Byzantine broadcast primitive
in [14].

3.2 DBRB-JOIN and DBRB-LEAVE Operations
Upon invoking the dbrb-join operation, a process p first learns the current membership –
i.e., the most recent view v – of the broadcast system through a View Discovery protocol
(§4.1). The joining operation then consists of four steps (the left part of Figure 2). First, p
disseminates a 〈reconfig, 〈+, p〉〉 message to members of v. In the second step, when any
correct process q from v receives the reconfig message, q proposes to change the system
membership to a view v′, where v′ is an extension of v including the change 〈+, p〉. To
do so, q disseminates to members of v a propose message, containing the details of v′.
Third, any other correct member in v waits until v.q matching propose messages (a quorum

2 Note that this bound applies both to processes that are active participants, as well as processes leaving
the system. This requirement can be relaxed in practice by enforcing a correct process that leaves the
system to destroy its private key. Even if the process is later compromised, it will not be able to send
any protocol messages. Note that we assume that messages sent while the process was correct cannot
be withdrawn or modified.
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of v confirms the new view). Once a process collects the confirmation, it disseminates a
〈converged, v′〉 message to members of v. This concludes step three. In the fourth step,
each correct process q in v waits to gather matching converged messages from a quorum
(i.e., v.q) of processes. We say that processes that are members of view v are trying to
converge on a new membership. Then, q triggers an R-multicast of the 〈install, v′〉 message
to members of v ∪ v′; recall that the process p belongs to v′. Upon R-delivery of an install
message for v′, any process q updates its current view to v′. The dbrb-join operation
finishes at process p once this process receives the install message for v′ 3 p. From this
instant on, p is a participant in the system.

The steps executed after a correct process p invokes the dbrb-leave operation are almost
identical, except for the fact that p still executes its “duties” in dbrb until dbrb-leave
returns.3

3.3 DBRB-BROADCAST Operation
A correct process s that invokes dbrb-broadcast(m) first disseminates a prepare message
to every member of the s’ current view v. When a correct process q receives this message, q
sends an ack message to s, representing a signed statement asserting that q indeed received
m from s. Once s collects a quorum of matching ack messages for m, s constructs a message
certificate Σ out of the collected signatures ρ, and disseminates this certificate to every
member of v as part of a commit message. When any correct process q receives a commit
message with a valid certificate for m for the first time, q relays this message to all members
of view v. Moreover, q sends a deliver message to the sender of the commit message. Once
any process q collects a quorum of matching deliver messages, q triggers dbrb-deliver(m).
The right part of Figure 2 presents the overview of this operation. In Figure 2, we depict
process s collecting enough deliver messages to deliver m, assuming that all processes in
the system use the same view. The details of how views are changed during an execution of
a broadcast operation are given in §4.2.

4 DBRB Algorithm

In this section, we describe our dbrb algorithm, starting with dynamic membership (§4.1),
and continuing with broadcast (§4.2). We also present an illustrative execution of dbrb
(§4.3).

Algorithm 1 introduces the variables that each process p maintains, as well as two helper
functions to compute the least recent and most recent view of a given sequence, respectively.

4.1 Dynamic Membership
Algorithms 2 and 3 contain the pseudocode of the dbrb-join and dbrb-leave operations.
Let us first discuss the join operation.

After a correct process p invokes the dbrb-join operation, p obtains the most recent
view of the system, and it does so through the View Discovery protocol. We describe the
View Discovery protocol at the end of this section; for the moment it suffices to say that p
obtains the most recent view v and updates its local variable cv to reflect this view. Next,
process p disseminates a 〈reconfig, 〈+, p〉, cv〉 message to every member of cv (Algorithm 2)

3 There is a detail we deliberately omitted from this high-level description and we defer to §4.1: multiple
processes may try to join the system concurrently, and thereby multiple propose messages may circulate
at the same time. These messages comprise different views, e.g., one could be for a view v′ and another
for v′′. These conflicts are unavoidable in asynchronous networks. For this reason, propose messages
(and other protocol messages) operate at the granularity of sequences, not individual views. If conflicts
occur, sequences support union and ordering, allowing reconciliation of v′ with v′′ on a sequence that
comprises their union. OPODIS 2020
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notifying members of cv of its intention to join. The view discovery and the dissemination
are repeated until the joinComplete event triggers or a quorum of confirmation messages has
been collected for some view v to which reconfig message was broadcast (Algorithm 2).

Every correct member r of the view cv proposes a new system membership that includes
process p, once r receives the aforementioned reconfig message from process p. The new
proposal is incorporated within a sequence of views SEQv, v = cv, (containing, initially,
just one view) and disseminated to all members of the view cv via a propose message
(Algorithm 2).

The leaving operation invocation is similar: Process p disseminates a reconfig message
with 〈−, p〉 as an argument, and process r proposes a new system membership that does not
include p. The main difference with the joining operation is that if p delivered or is the sender
of a message, p must ensure validity and totality properties of dbrb before disseminating a
reconfig message (Algorithm 2).

Let us now explain how a new view is installed in the system. The correct process r ∈ cv
receives propose messages disseminated by other members of cv. First, r checks whether it
accepts4 the received proposal (recall that a proposal is a sequence of views). Moreover, r
checks whether the received proposed sequence seq is well-formed, i.e., whether seq satisfies
the following: (1) seq is a sequence of views, (2) there is at least one view in seq that r is
not aware of, and (3) every view in seq is more recent than cv.

If all the checks have passed, the process r uses the received propose message to update
its own proposal. This is done according to two cases:
1. There are conflicts between r’s and the received proposal (Algorithm 2 to Algorithm 2).

In this case, r creates a new proposal containing r’s last converged sequence for the view5

and a new view representing the union of the most recent views of two proposals.
2. There are no conflicts (Algorithm 2). In this case, r executes the union of its previous

and received proposal in order to create a new proposal.
Once r receives the same proposal from a quorum of processes, r updates its last converged
sequence (Algorithm 2) and disseminates it within a converged message (Algorithm 2).

When r receives a converged message for some sequence of views seq′ and some view
v (usually v is equal to the current view cv of process r, but it could also be a less recent
view than cv) from a quorum of members of the view v (Algorithm 2), r creates and reliably
disseminates an install message that specifies the view that should be replaced (i.e., v), the
least recent view of the sequence seq′ denoted by ω (Algorithm 2) and the entire sequence
seq′ (Algorithm 2). Moreover, we say that seq′ is converged on to replace v. An install
message is disseminated to processes that are members of views v or ω (Algorithm 2). Note
that install messages include a quorum of signed converged messages which ensures its
authenticity (omitted in Algorithms 2 and 3 for brevity).

Once the correct process r receives the install message (Algorithm 3), r enters the
installation procedure in order to update its current view of the system. There are four parts
to consider:
1. Process r was a member of a view v (Algorithm 3): Firstly, r checks whether cv ⊂ ω,

where cv is the current view of r. If this is the case, r stops processing prepare, commit

4 Process r accepts a sequence of views seq to replace a view v if seq ∈ FORMAT v or ∅ ∈ FORMAT v

(Algorithm 2). The following holds at every correct process that is a member of the initial view of the
system v0: ∅ ∈ FORMAT v0 . Note that FORMAT v, for any view v, is a set of sequences, i.e., a set of
sets.

5 We say that seq is the last converged sequence for a view v of a process if the process receives the same
proposal to replace the view v from a quorum of members of v (variable LCSEQv).
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Algorithm 1 dbrb algorithm: local variables of process p and helper functions.

1: variables:
2: cv = v0 // current view; v0 is the initial view
3: RECV = ∅ // set of pending updates (i.e., join or leave)
4: SEQv = ∅ // set of proposed sequences to replace v
5: LCSEQv = ∅ // last converged sequence to replace v
6: FORMAT v = ∅ // replacement sequence for view v
7: cer = ⊥ // message certificate for m
8: vcer = ⊥ // view in which certificate is collected
9: . set of messages allowed to be acknowledged; initially, any message could be acknowledged by a

process
10: allowed_ack = ⊥ // ⊥ - any message, > - no message
11: stored = false; stored_value = ⊥
12: can_leave = false // process is allowed to leave
13: delivered = false // m delivered or not
14: . for every process q ∈ U and every valid view v
15: acks[q, v] = ⊥; Σ [q, v] = ⊥; deliver [q, v] = ⊥
16: State = ⊥ // state of the process; consists of ack, conflicting and stored fields

17: function least_recent(seq) returns ω ∈ seq : @ω′ ∈ seq : ω′ ⊂ ω
18: function most_recent(seq) returns ω ∈ seq : @ω′ ∈ seq : ω ⊂ ω′

and reconfig messages (Algorithm 3; see §4.2). Therefore, process r will not send
any ack or deliver message for prepare or commit messages associated with v (and
views preceding v). The same holds for reconfig messages. We refer to acknowledged
and stored messages by a process as the state of the process (represented by the State
variable). The fact that r stops processing the aforementioned messages is important
because r needs to convey this information via the state-update message (Algorithm 3)
to the members of the new view ω. Therefore, a conveyed information is “complete”
since a correct process r will never process any prepare, commit or reconfig message
associated with “stale” views (see §4.2).

2. View ω is more recent than r’s current view cv (Algorithm 3 to Algorithm 3): Process
r waits for v.q of state-update messages (Algorithm 3) and processes received states
(Algorithm 3). state-update messages carry information about: (1) a message process
is allowed to acknowledge (allowed_ack variable), (2) a message stored by a process
(stored_value variable), and (3) reconfiguration requests observed by a process (see §4.2).
Hence, a state-update message contains at most two prepare messages associated
with some view and properly signed by s (corresponds to (1)). Two prepare messages
are needed if a process observes that s broadcast two messages and are used to convince
other processes not to acknowledge any messages (variable State.conflicting; Algorithm 4).
Moreover, state-update messages contain at most one commit message associated with
some view with a valid message certificate (variable State.stored) and properly signed by
s (corresponds to (2)), and a (possibly empty) list of properly signed reconfig messages
associated with some installed view (corresponds to (3)). Note that processes include only
prepare, commit and reconfig messages associated with some view v′′ ⊆ v in the
state-update message they send (incorporated in the state(v) function). The reason
is that processes receiving these state-update messages may not know whether views
v′′ ⊃ v are indeed “created” by our protocol and not “planted” by faulty processes.

3. Process r is a member of ω ⊃ cv (Algorithm 3 to Algorithm 3): If this is the case, r
updates its current view (Algorithm 3). Moreover, r installs the (updated) current view
cv if the sequence received in the install message does not contain other views that are
more recent than cv (Algorithm 3).

4. Process r is not a member of ω ⊃ cv (Algorithm 3 to Algorithm 3): A leaving process r
executes the View Discovery protocol (Algorithm 3) in order to ensure totality of dbrb
(we explain this in details in §4.2). When r has “fulfilled” its role in ensuring totality of
dbrb, r leaves the system (Algorithm 3).
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Algorithm 2 dbrb-join and dbrb-leave implementations at process p.

19: procedure dbrb-join()
20: repeat
21: cv = view_discovery(cv)
22: disseminate 〈reconfig, 〈+, p〉, cv〉 to all q ∈ cv.members
23: until joinComplete is triggered or v.q 〈rec-confirm, v〉 messages collected for some v
24: wait for joinComplete to be triggered

25: procedure dbrb-leave()
26: if delivered ∨ p = s then wait until can_leave
27: repeat in each installed view cv do // in each subsequent view p installs
28: disseminate 〈reconfig, 〈−, p〉, cv〉 to all q ∈ cv.members
29: until leaveComplete is triggered or v.q 〈rec-confirm, v〉 messages collected for some v
30: wait for leaveComplete to be triggered

31: upon receipt of 〈reconfig, 〈c, q〉, v〉 from q // c ∈ {−,+}
32: if v = cv ∧ 〈c, q〉 /∈ v ∧ (if (c = −) then 〈+, q〉 ∈ v) then
33: RECV = RECV ∪ {〈c, q〉}
34: send 〈rec-confirm, cv〉 to q
35: end if

36: upon RECV 6= ∅ ∧ installed(cv) do
37: if SEQcv = ∅ then
38: SEQcv = {cv ∪RECV }
39: disseminate 〈propose, SEQcv , cv〉 to all q ∈ cv.members
40: end if

41: upon receipt of 〈propose, seq, v〉 from q ∈ v.members such that seq ∈ FORMAT v ∨ ∅ ∈
FORMAT v

42: if valid(seq) then // filter incorrect proposals
43: if conflicting(seq,SEQv) then
44: ω = most_recent(seq)
45: ω′ = most_recent(SEQv)
46: . merge the last view from the local and q’s proposal
47: SEQv = LCSEQv ∪ {ω ∪ ω′}
48: else // no conflicts, just merge the proposals
49: SEQv = SEQv ∪ seq
50: end if
51: disseminate 〈propose, SEQv , v〉 to all q′ ∈ v.members
52: end if

53: upon receipt of 〈propose, SEQv, v〉 from v.q processes in v
54: LCSEQv = SEQv

55: disseminate 〈converged, SEQv, v〉 to all q ∈ v.members

56: upon receipt of 〈converged, seq′, v〉 from v.q processes in v
57: ω = least_recent(seq′)
58: R-multicast({j : j ∈ v.members ∨ j ∈ ω.members}, 〈install, ω, seq′, v〉)

View Discovery. Views “created” during an execution of dbrb form a sequence (see [14]).
The View Discovery subprotocol provides information about the sequence of views incor-
porated in an execution so far. Since every correct process in the system knows the initial
view (Assumption 2) and valid transition between views implies the existence of an install
message with a quorum of properly signed converged messages, any sequence of views
starting from the initial view of the system such that appropriate install messages “connect”
adjacent views can be trusted.

A correct process that has invoked the dbrb-join operation and has not left the system
executes the View Discovery subprotocol constantly. Once a correct process starts trusting
a sequence of views, it disseminates that information to all processes in the universe. A
correct process executing the View Discovery subprotocol learns which sequences of views are
trusted by other processes. Once the process observes a sequence of views allegedly trusted
by a process, it can check whether the sequence is properly formed (as explained above) and
if that is the case, the process can start trusting the sequence and views incorporated in it
(captured by the view_discovery function for the joining and leaving process; Algorithms 2
and 3).
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Algorithm 3 dbrb algorithm: installing a view at process p.

59: upon R-delivery({j : j ∈ v.members ∨ j ∈ ω.members}, 〈install, ω, seq, v〉) do
60: FORMAT ω = FORMAT ω ∪ {seq \ {ω}}
61: if p ∈ v.members then // p was a member of v
62: if cv ⊂ ω then stop processing prepare, commit and reconfig messages
63: R-multicast({j : j ∈ v.members ∨ j ∈ ω.members}, 〈state-update, state(v), RECV 〉)
64: end if
65: if cv ⊂ ω then // ω is more recent than p’s current view
66: wait for 〈state-update, ∗, ∗〉 messages from v.q processes in v // from the reliable broadcast
67: req = {reconfiguration requests from state-update messages}
68: RECV = RECV ∪ (req \ ω.changes)
69: states = {states from state-update messages}
70: installed(ω) = false
71: invoke state-transfer(states) // Algorithm 4
72: if p ∈ ω.members then // p is in ω
73: cv = ω
74: if p /∈ v.members then trigger joinComplete // can return from dbrb-join
75: if ∃ω′ ∈ seq : cv ⊂ ω′ then
76: seq′ = {ω′ ∈ seq : cv ⊂ ω′}
77: if SEQcv = ∅ ∧ ∀ω ∈ seq′ : cv ⊂ ω then
78: SEQcv = seq′

79: disseminate 〈propose, SEQcv , cv〉 to all q ∈ cv.members
80: end if
81: else
82: installed(cv) = true
83: resume processing prepare, commit and reconfig messages
84: invoke new-view() // Algorithm 4
85: end if
86: else // p is leaving the system
87: if stored then
88: while ¬can_leave do
89: cv = view_discovery(cv)
90: disseminate 〈commit, m, cer , vcer , cv〉 to all q ∈ cv.members
91: end while
92: end if
93: trigger leaveComplete // can return from dbrb-leave
94: end if
95: end if

The View Discovery protocol addresses two main difficulties: (1) it enables processes
joining and leaving the system to learn about the current membership of the system, (2) it is
crucial to ensure the consistency, validity and totality properties of dbrb since it supplies
information about views “instantiated” by the protocol and associated quorum systems. We
formally discuss the View Discovery protocol in the full version of the paper [14].

4.2 Broadcast
In order to broadcast some message m, processes in dbrb use the following types of messages:
prepare: When a correct process s invokes a dbrb-broadcast(m) operation, the algorithm
creates a mprepare = 〈prepare, m, cvs〉 message, where cvs is the current view of the system
of process s. Message mprepare is sent to every process that is a member of cvs (Algorithm 4).
Process s disseminates the prepare message if cvs is installed by s; otherwise, s does not
disseminate the message to members of cvs (Algorithm 4), but rather waits to install some
view and then disseminates the prepare message (Algorithm 4).
ack: When a correct process q receives mprepare message, q firstly checks whether view
specified in mprepare is equal to the current view of q (Algorithm 4). If that is the case, q
checks whether it is allowed to send an ack message for m (see Consistency paragraph in
§5; Algorithm 4) and if it is, q sends mack = 〈ack, m,σ, cvq〉 message to process s (i.e., the
sender of mprepare), where σ represents the signed statement that s sent m to q (Algorithm 4).
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Algorithm 4 dbrb-broadcast(m) and dbrb-deliver(m) implementations at process p.

96: procedure state-transfer(states)
97: if (allowed_ack = ⊥ ∨ allowed_ack = m) ∧m is the only acknowledged message among states

then
98: allowed_ack = m; update_if_bot(State.ack, prepare_msg) // updated only if it is ⊥
99: else if there exist at least two different messages acknowledged among states then
100: . p and p′ are different prepare messages
101: allowed_ack = >; update_if_bot(State.conflicting, p, p′); State.ack = ⊥
102: else if there exists a state among states such that it provides two different broadcast messages

then
103: allowed_ack = >; update_if_bot(State.conflicting, p, p′); State.ack = ⊥
104: end if
105: if ¬stored ∧ there exists a stored message m with a valid message certificate among states then
106: stored = true; stored_value = (m, cer , vcer ) // cer is the message certificate collected in view

vcer
107: update_if_bot(State.stored, commit_msg) // updated only if it is ⊥
108: end if

109: procedure new-view()
110: if p = s ∧ cer = ⊥ then disseminate 〈prepare, m, cv〉 to all q ∈ cv.members
111: if p = s ∧ cer 6= ⊥ ∧ ¬can_leave then disseminate 〈commit, m, cer , vcer , cv〉 to all q ∈

cv.members
112: if p 6= s ∧ stored ∧ ¬can_leave then disseminate 〈commit, m, cer , vcer , cv〉 to all q ∈ cv.members

113: procedure dbrb-broadcast(m)
114: if installed(cv) then disseminate 〈prepare, m, cv〉 to all q ∈ cv.members

115: upon receipt of 〈prepare, m, v〉 from s ∈ v.members such that v = cv
116: if allowed_ack = m ∨ allowed_ack = ⊥ then
117: allowed_ack = m; update_if_bot(State.ack, 〈prepare, m, v〉) // updated only if it is ⊥
118: σ = sign(m, cv); send 〈ack, m,σ, cv〉 to s
119: end if

120: upon receipt of 〈ack, m,σ, v〉 from q ∈ v.members // only process s
121: if acks[q, v] = ⊥ ∧ verifysig(q,m, v, σ) then acks[q, v] = m; Σ[q, v] = σ

122: upon exists m 6= ⊥ and v such that |{q ∈ v.members|acks[q, v] = m}| ≥ v.q ∧ cer = ⊥ do
123: cer = {Σ[q, v] : acks[q, v] = m}; vcer = v
124: if installed(cv) then disseminate 〈commit, m, cer , vcer , cv〉 to all q′ ∈ cv.members

125: upon receipt of 〈commit, m, cer, vcer, v〉 from q such that v = cv
126: if verify_certificate(cer , vcer ,m) then
127: if ¬stored then
128: stored = true; stored_value = (m, cer , vcer )
129: update_if_bot(State.stored, 〈commit, m, cer, vcer, v〉) // updated only if it is ⊥
130: disseminate 〈commit, m, cer , vcer , cv〉 to all q′ ∈ cv.members
131: end if
132: send 〈deliver, m, cv〉 to q
133: end if

134: upon receipt of 〈deliver, m, v〉 from q ∈ v.members
135: if deliver [q, v] = ⊥ then deliver [q, v] = >

136: upon exists v such that |{q ∈ v.members|deliver [q, v] = >}| ≥ v.q for the first time do
137: delivered = true
138: invoke dbrb-deliver(m)
139: can_leave = true // If p = s, dbrb-broadcast is completed

When some process q sends an ack message for m (m is a second argument of the message),
we say that q acknowledges m. Moreover, if an ack message is associated with some view v,
we say that q acknowledges m in a view v.
commit: When process s receives a quorum of appropriate ack messages associated with
the same view v for m (Algorithm 4), s collects received signed statements into a message
certificate. Process s then creates mcommit = 〈commit, m, cer , vcer , cvs〉 message and dissem-
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inates mcommit to every process that is a member of cvs (Algorithm 4). Note that cvs may
be different from v (we account for this in the rest of the section). Moreover, s disseminates
the commit message (Algorithm 4) if cvs is installed by s; otherwise, s does not disseminate
the message to members of cvs, but rather waits to install some view and then disseminates
the commit message (Algorithm 4).
deliver: When a correct process q receives mcommit message, it firstly checks whether view
specified in mcommit is equal to the current view of q (Algorithm 4). If that is the case
and the message certificate is valid (Algorithm 4), q “stores” m (Algorithm 4) and sends
mdeliver = 〈deliver, m, cvq〉 to process s as a an approval that s can deliverm (Algorithm 4).
When a process q executes Algorithm 4 or Algorithm 4 for a message m, we say that q stores
m. Observe that q also disseminates mcommit in order to deliver m itself (Algorithm 4).

Lastly, once a correct process receives a quorum of appropriate deliver messages
associated with the same view v for m (Algorithm 4), it delivers m (Algorithm 4).

Every prepare, ack, commit and deliver message is associated with one specific view.
We can divide the broadcasting of message m by the correct sender s into two phases:
Certificate collection phase: This phase includes a dissemination of an appropriate
prepare message and a wait for a quorum of ack messages by process s. Note that
prepare and ack messages are associated with the same view v. We say that certificate
collection phase is executed in view v. Moreover, if s indeed receives a quorum of ack
messages associated with v, we say that certificate collection phase is successfully executed
in v. In that case, sometimes we say that s collects a message certificate in v.
Storing phase: In this phase, each correct process p (including s) disseminates a commit
message (containing a valid message certificate collected in the previous phase), and
waits for a quorum of deliver messages. Note that commit and deliver messages
are associated with the same view v. We say that storing phase is executed in view v.
Moreover, if p indeed receives a quorum of deliver messages associated with v, we say
that storing phase is successfully executed in v.

Observe that the certificate collection phase can be successfully executed in some view
v, whereas the storing phase can be executed in some view v′ ⊃ v. This is the reason
why we include vcer argument in a commit message, representing the view in which a
message certificate is collected. Lastly, in order to ensure validity and totality, processes
must disseminate prepare and commit messages in new views they install until they collect
enough ack and deliver messages, respectively. This mechanism is captured in the new-view
procedure (Algorithm 4) that is invoked when a view is installed (Algorithm 3).

4.3 Illustration
Consider four participants at time t = 0. Process p1 broadcasts a message m. Hence,
p1 sends to processes p1, p2, p3, p4 a mprepare = 〈prepare, m, v0〉 message, where v0 =
{〈+, p1〉, 〈+, p2〉, 〈+, p3〉, 〈+, p4〉}. Since all processes consider v0 as their current view of the
system at time of receiving of mprepare message, they send to p1 an appropriate ack message
and p1 collects a quorum (with respect to v0) of ack messages for m.

However, process p5 invokes a dbrb-join operation and processes p2, p3, p4, p5 set
v1 = {〈+, p1〉, 〈+, p2〉, 〈+, p3〉, 〈+, p4〉, 〈+, p5〉} as their current view of the system. Pro-
cess p1 still considers v0 as its current view of the system and disseminates a mcommit =
〈commit, m, cer , vcer = v0, v0〉 message. Processes p2, p3 and p4 do not store m, since v0
(specified in mcommit message) is not their current view. Observe that p1 stores m since v0
is still the current view of the system from p1’s perspective.

Once process p1 assigns v1 as its current view of the system, it disseminates mcommit =
〈commit, m, cer , vcer = v0, v1〉 message to processes that are members of v1 and they all
store m and relay mcommit message to all processes that are members of v1. Hence, they
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all deliver message m once they collect a quorum (with respect to v1) of matching deliver
messages. In this execution p1 has successfully executed a certificate collection phase in v0
and then reused the message certificate to relay an appropriate commit message to processes
that are members of v1 (since the system has reconfigured to v1). Note that Figure 3 depicts
the described execution. For presentation simplicity, Figure 3 just shows the commit and
deliver messages that allow process p1 to deliver m.

PREPARE
〈m, v0〉

ACK
〈m, !, v0〉

COMMIT
〈m, ", v0, v0〉

p3
p4
p5

p1
p2

COMMIT
〈m, ", v0, v1〉

deliver

v1

v1

v1

v1

v1

DELIVER
〈m, v1〉

Figure 3 Example of a broadcast operation in dbrb algorithm, considering a dynamic membership.

5 DBRB Algorithm Correctness

We now give an intuition of why our dbrb algorithm is correct; we give formal arguments in
the full version of the paper [14].

We first define the notions of valid and installed views. A view v is valid if: (1) v is
the initial view of the system, or (2) a sequence seq = v → ... is converged on to replace
some valid view v′. A valid view v is installed if a correct process p ∈ v processed prepare,
commit and reconfig messages associated with v during an execution. By default, the
initial view of the system is installed. Lastly, our implementation ensures that installed views
form a sequence of views.

Liveness. dbrb-join and dbrb-leave operations complete because any change “noticed”
by a quorum of processes is eventually processed. Intuitively, a sequence can be converged on
if a quorum of processes propose that sequence. Moreover, noticed changes are transferred
to new valid views. dbrb-broadcast operation completes since a correct sender eventually
collects a quorum of deliver messages associated with an installed view (see the next
paragraph).

Validity. Recall that we assume a finite number of reconfiguration requests in any execution
of dbrb (Assumption 1), which means that there exists a view vfinal from which the system
will not be reconfigured. In order to prove validity, it suffices to show that every correct
member of vfinal delivers a broadcast message.

A correct process s that broadcasts a message m executes a certificate collection phase
in some installed view v (the current view of s). Even if s does not successfully execute a
certificate collection phase in views that precede vfinal in the sequence of installed views,
s successfully executes a certificate collection phase in vfinal. Note that process s does
not leave the system before it collects enough deliver messages (ensured by the check at
Algorithm 2 and the assignment at Algorithm 4).

Moreover, a correct process p that stored a message m eventually collects a quorum of
deliver messages associated with some installed view v. As in the argument above, even if
p does not collect a quorum of deliver messages associated with views that precede vfinal
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in the sequence of installed views, p does that in vfinal. Observe that if at least a quorum of
processes that are members of some installed view v store a message m, then every correct
process p ∈ v′, where view v′ ⊇ v is installed, stores m. Let us give the intuition behind this
claim. Suppose that view v′ directly succeeds view v in the sequence of views installed in
the system. Process p ∈ v′ waits for states from at least a quorum of processes that were
members of v (Algorithm 3) before it updates its current view to v′. Hence, p receives from
at least one process that m is stored and then p stores m (Algorithm 4). The same holds for
the correct members of v.

It now suffices to show that s collects a quorum (with respect to some installed view) of
confirmations that m is stored, i.e., deliver messages. Even if the correct sender does not
collect a quorum of deliver messages in views that precede vfinal, it collects the quorum
when disseminating the commit message to members of vfinal. Suppose now that the
sender collects the aforementioned quorum of deliver messages in some installed view v. If
v 6= vfinal, every correct member of vfinal stores and delivers m (because of the previous
argument). If v = vfinal, the reliable communication and the fact that the system can
not be further reconfigured guarantee that every correct member of vfinal stores and, thus,
delivers m.

Totality. The intuition here is similar to that behind ensuring validity. Consider a correct
process p that delivers a message m: p successfully executed a storing phase in some installed
view v. This means that every member of an installed view v′ ⊇ v stores m. Consider a
correct participant q that expressed its will to leave after process p had delivered m. This
implies that q ∈ v′′, where v′′ ⊇ v is an installed view, which means that process q eventually
stores m. As in the previous paragraph, we conclude that process q eventually collects enough
deliver messages associated with some installed view and delivers m.

Consistency. A correct process delivers a message only if there exists a message certificate
associated with the message (the check at Algorithm 4). Hence, the malicious sender s
must collect message certificates for two different messages in order for the consistency to be
violated.

Suppose that process s has successfully executed a certificate collection phase in some
installed view v for a message m. Because of the quorum intersection and the verification at
Algorithm 4, it is impossible for s to collect a valid message certificate in v for some message
m′ 6= m. Consider now an installed view v′ that directly succeeds view v in the sequence of
installed views. Since s collected a message certificate for m in v, every correct process p ∈ v′
receives from at least one process from the view v that it is allowed to acknowledge only
message m (Algorithm 4). It is easy to see that this holds for every installed view v′′ ⊃ v′.
Therefore, if s also collects a message certificate for some message m′, then m′ = m and the
consistency holds.

No duplication. Trivially follows from Algorithm 4.

Integrity. Consider a correct process q that delivers a message m. There is a message
certificate for m collected in some installed view v by s. A message certificate for m is
collected since a quorum of processes in v have sent an appropriate ack message for m. A
correct process sends an ack message only when it receives an appropriate prepare message.
Consequently, message m was broadcast by s.
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6 Related Work & Conclusions

DBRB vs. Static Byzantine Reliable Broadcast. Our dbrb abstraction generalizes static
brb (Byzantine reliable broadcast [8, 22]). Assuming that no process joins or leaves the
system, the two abstractions coincide. In a dynamic setting, the validity property of dbrb
stipulates that only processes that do not leave the system deliver the appropriate messages.
Moreover, the totality property guarantees that only processes that have not expressed their
will to leave deliver the message. We prove that stronger variants of these properties are
impossible in our model.

Passive and Active Reconfiguration. Some reconfigurable systems [6, 3, 4] assume that
processes join and leave the system under a specific churn model. Intuitively, the consistency
properties of the implemented service, e.g., an atomic storage, are ensured assuming that
the system does not evolve too quickly and there is always a certain fraction of correct
members in the system. In dbrb, we model this through the quorum system assumption on
valid views (Assumption 3). Our system model also assumes that booting finishes by time
0 (Assumption 2), thus avoiding the problem of unbounded booting times which could be
problematic in asynchronous network [27].

Active reconfiguration allows the processes to explicitly propose configuration updates,
e.g., sets of new process members. In DynaStore [1], reconfigurable dynamic atomic storage is
implemented in an asynchronous environment (i.e., without relying on consensus). Dynastore
implicitly generates a graph of views which provides a way of identifying a sequence of
views in which clients need to execute their r/w operations. SpSn [12] proposes to capture
this order via the speculating snapshot algorithm (SpSn). SmartMerge [17] implements a
reconfigurable storage in which not only system membership but also its quorum system can
be reconfigured, assuming that a static external lattice agreement is available. In [20], it was
shown that reconfigurable lattice agreement can get rid of this assumption and still implement
a large variety of reconfigurable objects. The approach was then extended to the Byzantine
fault model [21]. FreeStore [2] introduced view generator, an abstraction that captures the
agreement demands of reconfiguration protocols. Our work is highly inspired by FreeStore,
which algorithmic and theoretical approach we adapt to an arbitrary failure model.

All reconfigurable solutions discussed above were applied exclusively to shared-memory
emulations. Moreover, most of them assumed the crash fault model. In contrast, in this paper,
we address the problem of dynamic reliable broadcast, assuming an arbitrary (Byzantine)
failure model. Also, we do not distinguish between clients and replicas, and assume that
every process can only suggest itself as a candidate to join or leave the system. Unlike the
concurrent work by Kumar and Welch on Byzantine-tolerant registers [19], our solution can
tolerate unbounded number of Byzantine failures, as long as basic quorum assumptions on
valid views are maintained.

Broadcast Applications. Reliable broadcast is one of the most pervasive primitives in
distributed applications [25]. For instance, broadcast can be used for maintaining caches in
cloud services [13], or in a publish-subscribe network [11]. Even more interestingly, Byzantine
fault-tolerant reliable broadcast (e.g., dynamic solution such as our dbrb, as well as static
solutions [8, 16, 23]) are sufficiently strong for implementing decentralized online payments,
i.e., cryptocurrencies [15].



R. Guerraoui et al. 23:17

Summary. This paper presents the specification of dbrb (dynamic Byzantine reliable broad-
cast), as well as an asynchronous algorithm implementing this primitive. dbrb generalizes
traditional Byzantine reliable broadcast, which operates in static environments, to work
in a dynamic network. To the best of our knowledge, we are the first to investigate an
arbitrary failure model in implementing dynamic broadcast systems. The main merit of
our approach is that we did not rely on a consensus building blocks, i.e., dbrb can be
implemented completely asynchronously.
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Abstract
We study the standard communication problem of broadcast for mobile agents moving in a network.
The agents move autonomously in the network and can communicate with other agents only when
they meet at a node. In this model, broadcast is a communication primitive for information transfer
from one agent, the source, to all other agents. Previous studies of this problem were restricted
to static networks while, in this paper, we consider the problem in dynamic networks modelled
as an evolving graph. The dynamicity of the graph is unknown to the agents; in each round an
adversary selects which edges of the graph are available, and an agent can choose to traverse one of
the available edges adjacent to its current location. The only restriction on the adversary is that
the subgraph of available edges in each round must span all nodes; in other words the evolving
graph is constantly connected. The agents have global visibility allowing them to see the location
of other agents in the graph and move accordingly. Depending on the topology of the underlying
graph, we determine how many agents are necessary and sufficient to solve the broadcast problem in
dynamic networks. While two agents plus the source are sufficient for ring networks, much larger
teams of agents are necessary for denser graphs such as grid graphs and hypercubes, and finally
for complete graphs of n nodes at least n − 2 agents plus the source are necessary and sufficient.
We show lower bounds on the number of agents and provide some algorithms for solving broadcast
using the minimum number of agents, for various topologies.
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1 Introduction

We are interested in communication problems for mobile agents moving in a network. The
classical problems of broadcast or convergecast deal with the dissemination of information in
the network. In the case of message passing networks, broadcast is achieved by spreading
the information from the source node to all other nodes. For a system of mobile agents,
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the equivalent problem is the propagation of information from one source agent to all other
agents in the system. Such problems are relevant for teams of mobile sensor robots sent on
data collection missions. We assume that the agents autonomously move along the edges
of a graph that represents the network; when two agents are at the same node, they can
communicate and share information. We would like to stress here that the agents are not
allowed to use any means of communicating at a distance (e.g., due to security reasons). The
information to be broadcast can be transferred only when agents meet physically.

The problem of broadcasting has been originally investigated in message passing multi-hop
radio networks (see e.g. [33, 19]). Previous studies on broadcast and other communication
problems have focussed on the efficiency of performing the task, either in terms of time
taken [6], or in terms of energy expended [9]. A slightly different line of research considers
the problem of broadcast in the presence of faults and the objective is to tolerate as many
faults as possible. The faults can be missing links or nodes [20] in the network or loss of
messages [21], in case of message passing networks. Recently there has been a lot of interest
in so called dynamic networks which model both faults and changes in network topology in
a uniform manner by considering that the network may change in each round during the
execution of the algorithm. The evolving graph model [17] represents a dynamic network
by a sequence of graphs G = G1, G2, . . . based on the same set of nodes V but the set of
edges changes in each round i, i.e., each graph Gi = (V, Ei) is a spanning subgraph of the
underlying graph G = (V,∪Ei), which is called the footprint of the dynamic network. For
solving most problems, some assumptions about the connectivity of the dynamic network
need to be made. In this paper, we consider the model of constantly connected dynamic
networks where in round i, the graph Gi is assumed to be connected. No other assumptions
are made about the network. This means that in some cases, the graphs Gi and Gi+1 in two
consecutive rounds may differ completely in the set of available edges. To show correctness of
our algorithms, we will assume that an adversary having knowledge of the algorithm, chooses
the graph Gi in each round (respecting the connectivity constraint). This assumption is
based on a worst case scenario and similar to the model of T -interval connected networks
studied previously [26, 27], where the network is assumed to contain a stable spanning tree
for a continuous period of T rounds (with T = 1 in our case).

When the underlying graph G is sparse, there are fewer edges so the adversary has less
choice about possible changes in the network, while if G is a dense graph, the adversary has
more choice about which subset of edges to make available, and it can drastically change
the network which makes it difficult to design algorithms for these cases. We will consider
different network topologies, including sparse topologies, e.g., when G is a ring or a cactus, as
well as denser topologies, e.g., when G is a grid, a hypercube or a complete graph. For each
topology we will design algorithms to solve the broadcast problem under the assumption
that agents have global visibility allowing them to see the entire graph and the location of
other agents in any round of the algorithm. We denote by k, the number of agents, other
than the source that participate in the algorithm. We will show that the problem becomes
easier when there are more agents since at least one of them may be able to reach the source
agents and thus make progress in the propagation of the message. In fact we show tight lower
bounds on the value of k necessary to solve the broadcast problem in various topologies. We
formally define the problem as follows:

I Problem 1 (The broadcast problem). Given a constantly connected dynamic network G
based on an underlying graph G consisting of n ≥ 2 nodes, a source agent that has a message
M and k ≥ 1 other agents that are initially located at distinct nodes of the network, the goal
is to broadcast this messageM to all the agents.
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Related Work

Dynamic networks using the evolving graph model or the equivalent notion of time-varying
graph model have been studied in [5, 23, 28, 30]. Earlier studies have been devoted to message
passing networks in a dynamic setting, often assuming that the future changes to the network
are known a priori to the algorithm designer, or, that the dynamicity follows a predefined
pattern of repetition as, e.g., in [4]. In message passing dynamic networks, the problem of
information dissemination has been studied in [2, 4, 7, 27, 32]. The investigation of mobile
agents on dynamic networks started only recently. When agents know the dynamicity of
the graph, the problem of exploring a graph in the fastest possible way has been studied
in several papers, e.g,. [16, 31]. In the case of constantly connected dynamic graphs, the
exploration problem has been solved by Ilcinkas et al. [26, 24] in O(n) rounds for rings and
in 2O(

√
n)n rounds for cactus graphs.

The scenario when agents do not know the dynamicity of the graph as in this paper, has
been mostly studied under restrictive assumptions about the dynamicity, such as periodic
[18, 25] or recurrent [26] graphs; while another line of research has looked at probabilistic
dynamicity [34]. In the adversarial model (also called the unknown adversary model), the
adversary chooses the dynamicity of the network, and the agents have no prior knowledge
about it. This scenario is the most challenging for designing algorithms and most prior work
under this model has been for very simple topologies, namely rings and tori. In this setting,
the problem of exploration with termination has been studied for constantly connected rings
[14], while the exploration of dynamic tori has been studied in [22] with the assumption that
each ring in the torus is constantly connected. The problem of gathering many agents at
a node [15] or periodically patrolling the nodes using many agents [13] has been studied
for constantly connected dynamic ring networks (See the recent survey by Di Luna [29] for
many of the above results). The only previous work in this model which considers arbitrary
topologies is by Balev et al. [3] who studied the problem of cops and robbers on sparse graphs
of arbitrary topology. In this problem, a team of agents called cops have to capture (i.e.,
meet) a malicious agent called the robber, while the cops and the robber move in alternate
rounds (the adversary may change the graph after both have moved). The similarity of this
problem with the broadcast problem is only the first step when one of the ignorant agents
needs to meet the source agent (although they can collaborate unlike in the cops and robbers
problem). One major difference between the problems is that the cops can choose their
location in the graph, unlike the agents in our problem that are placed by the adversary.
Consequently the approach used in [3] cannot be adapted to our problem. Moreover the
bounds on the team size even for simple topologies are different for the two problems. Only
in the trivial case of tree networks (when the graph is essentially static) both problems allow
a solution with a single ignorant agent (cop).

In static networks, the communication problems of broadcast among mobile agents were
studied by Anaya et al. [1] for agents with limited energy, while Czyzowicz et al. [8, 9] studied
the problem with the objective of energy optimization. Other types of faults that have been
considered for static networks are faulty agents in the context of collaborative patrolling [10]
or the presence of a mobile adversary that blocks the path of agents [11, 12].

Our Contributions

In this paper we consider the broadcast problem for mobile agents in dynamic networks
with various underlying topologies. For each topology, we determine the minimum number
of agents that makes the problem solvable, which apparently depends on the density of
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the underlying graph G or, the number of redundant edges in G. For tree networks, the
adversary can never delete an edge without disconnecting the graph, thus broadcast is always
solvable for any number of agents. When the underlying graph is a ring, we show that at
least 2 agents (apart from the source agent), are needed, except for small rings of less than
5 nodes. For cactus graphs, which are collections of rings that can pairwise intersect in no
more than one node, we show that the number of agents necessary must be more than the
number of cycles. We then consider denser and regular graphs. For grid graphs, where the
total number of edges in G is still linear in n, we show that agent teams of size Ω(n) are
needed for broadcast. For the special case of grids with only two rows, we have tight results
and a strategy for solving broadcast using one more than the minimum number of agents.
For complete graphs, which are the densest graphs we show a tight result that k = n − 2
agents are necessary and sufficient. Finally we consider hypercube networks, and we show
that almost half of the nodes of the graph must be occupied to succeed in solving broadcast.
For the special case of 3-dimensional hypercube, we show a tight result of k = n/2 agents,
while for higher dimensional hypercubes, there is a gap between the lower and upper bounds
on the team size needed for solving broadcast.

The paper is organized as follows: In Section 2 we introduce the model and the required
background, followed by some preliminary observations. In Section 3 we present solutions
for sparse network topologies such as rings and cactus graphs. Section 4 considers grids
graphs, while in Section 5 we present solutions for dense networks including hypercubes
and complete graphs. To the best of our knowledge, these are the first results on broadcast
with mobile agents in dynamic graphs, and unlike previous work in this model, we consider
various distinct topologies, providing new techniques for dealing with the dynamicity in these
networks.

2 The Model

2.1 The network and the agents
The network topology is given by a connected graph G = (V, E) with n = |V | nodes.
The network is locally oriented in the following sense. All edges incident to a node have
distinct port labels. However, the network is dynamic – not all edges are available at
all times. We model the network as Constantly connected Dynamic Graphs denoted by
G = {G0 = (V, E0), G1 = (V, E1), . . .}, as a sequence of static graphs, where Gr corresponds
to the graph at round r. We emphasize that apart from the restriction that the graph remains
connected at any time, there is no other assumption or restriction with respect to which or
how many links might fail at a time. For instance, an adversary might keep deactivated any
number of links forever, as long as the graph remains connected. Thus, for any r > 0, Gr is
any connected spanning subgraph of the original graph G. The distance between nodes u

and v in G is denoted by dG(u, v).
The agents: The agents are autonomous entities with distinct identifiers. Each agent

has its own internal memory and is able to move along the available edges of the graph.
The agents cannot leave marks on the nodes or the edges of the graph. The agents are
initially located at distinct nodes of the network, they all start in the same initial state, and
they execute the same deterministic algorithm. They have global visibility and they move
in synchronous steps, i.e., time is discretized into atomic time units called rounds. During
each round r, each agent can see the graph Gr and the location of all agents in Gr along
with their identifiers, and can distinguish which agents have the messageM (called source
agents), and which agents do not (called ignorant agents). Based on this information, the
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agent can decide to stay at the current node or move to a neighboring node in Gr. In the
latter case, the agent arrives at its destination node at the end of the round. At the start of
the next round r + 1, the adversary chooses the graph Gr+1, and the agents execute the next
step of the algorithm. In the initial round, there is exactly one source agent and k ignorant
agents in the network.

The adversary: The adversary can decide the initial placement of all the agents in the
network, and in each round the adversary chooses the graph Gr which represents the available
links in the network for that round. The adversary may have knowledge of the algorithm
and can use this knowledge for deciding the placement of agents and the dynamicity of the
network (subject to the connectivity constraint as described).

Unknown Adversary: The agents do not have any knowledge of the adversary, and
thus they do not know the dynamic network G in advance.

As mentioned before, the adversary in this model is quite powerful, which makes it
necessary to make some strong assumptions about the capabilities of the agents. In particular
the global visibility makes it easier to coordinate among the agents as they all have the same
knowledge about the network in each round. The assumption about distinct initial locations
is not strictly necessary, since the agents could move to distinct nodes by virtue of their
distinct identifiers. On the hand, if the agent do not have distinct identities but start from
distinct locations, it is possible to assign distinct identifiers to the agents at the start of the
computation, due to the global visibility assumption and the fact that there is a uniquely
identifiable source agent initially. For simplifying the discussion, we assume agents have
distinct identities and start at distinct locations. Moreover, we shall describe the algorithms
in a centralized manner, describing which agents performs which operations in any round. It
is evident that the agents executing the same algorithm, can autonomously decide their role
in the computation.

2.2 Preliminaries
We make some preliminary observations about the problem.

I Observation 1. Given a constantly connected dynamic network G based on the underlying
graph G consisting of n nodes, k ≥ n− 2 ignorant agents starting from distinct nodes of the
network, can solve the broadcast problem.

Proof. Since there are at least n − 2 ignorant agents on distinct nodes and one node is
occupied by the source agent, there is at most one empty node. Thus, in any connected graph
Gi there would be a path of length at most two between a source agent and an ignorant
agent. These two agents would meet in this round. So, we reduced the number of ignorant
agents. The agents can now spread to distinct nodes by virtue of their distinct identities and
we can repeat the same argument. J

The above result provides a general upper bound on the team size needed for solving
broadcast. We will present smaller lower bounds for specific topologies. For the special case
of trees, the adversary cannot block any edge with losing connectivity. Hence we have the
following trivial upper bound for trees.

I Observation 2. If G is a tree then broadcast can be solved for any k ≥ 1.

Proof. The adversary cannot block any edge without disconnecting the graph. Thus, the
graph is static and in each step each agent can move one step closer to the node containing
the source agent, thus in O(D) time all agents would be colocated with the source agent and
we solve broadcast in O(D) time, where D is the distance of the farthest agent from the
source. J
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3 Broadcast in sparse graphs

In this section, we will study the broadcast problem with agents in sparse graphs. The
simplest non-trivial network is the ring topology.

I Theorem 3. If G is a ring of size n ≥ 5, then broadcast can be solved if and only if k ≥ 2
If G is a ring of size n < 5, then broadcast can be solved for any k ≥ 1.

Proof. Consider a ring of size n ≥ 5, with one source that has the information M and
one ignorant agent. In each round, the adversary can remove an edge on the shortest path
between the two agents. Note that, the longer path is always of size at least 3, thus the
agents cannot meet on this path in this round. Hence the two agents can never meet.

Now we show that if there are at least two ignorant agents (k ≥ 2), then broadcast
is possible. The two agents can try to reach the source agent by moving towards it from
opposite directions, then at each step one of the agents gets closer, and eventually one of
the agents would reach the source and obtainM. At this stage there are 2 source agents,
they can traverse the ring in opposite directions, thus at least one of them will soon meet
the remaining ignorant agent and broadcast is solved.

The impossibility of solving broadcast with k = 1, does not hold for rings of size 3 as in
this case any path between the source and the other agent is of size at most 2, and since
one of these paths must be available, the two agents can meet in one step and solve the
problem. For rings of size 4, if the longer path between the source agent and an ignorant
agent has length 3, then one of the agents can always move such that both paths between
the agents are of length 2. Then within the next step, the two agents meet in one of those
paths, similarly as in the case of rings of size 3. Thus, broadcast is solvable for rings of size
n < 5 with any k ≥ 1. J

We now make the following observation that will allow us to generalize the results from
rings to other graphs containing cycles.

I Lemma 4. If G contains a cycle C of length at least 3, such that there is a single node
v ∈ C that is connected to nodes in G \ C, then the adversary can always prevent at least
one agent located in C \ v from reaching node v, thus trapping the agent in cycle C.

Proof. Consider an agent located at a node u ∈ C \ v. Since the cycle must be of length
at least 3, the longer path from node u to node v is of length ≥ 2. If the adversary always
blocks the shorter path from the agent’s location to node v, then the agent cannot reach
node v. The only way to get out of the cycle is passing through node v, so the agent is
forever trapped in C. J

I Lemma 5. If G is a ring of size n ≥ 3, given any node v ∈ G, if there are two agents at
distinct nodes of G, then there is an algorithm to ensure that within n rounds either (i) the
two agents meet at a node of G or (ii) at least one of the agents (chosen by the algorithm)
can reach node v.

Proof. Let us call the two agents A and B. If we require agent A to reach node v, then the
algorithm asks agent B to move along the path containing agent A and then node v in this
order (if agent B was already at node v then we first move it to any neighbouring node of v).
In each round, only one edge of G may be unavailable, so either agent B will move closer to
agent A or agent A will move closer to node v. So eventually either condition (i) or (ii) will
be true. J
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In the following we consider cactus graphs which can be seen as combinations of trees
and rings.

I Definition 6. A cactus graph is a connected graph in which any two simple cycles have at
most one node in common.

In cactus graphs, the size of the team depends on the number and sizes of the cycles of
the graph, as follows:

I Lemma 7. If G is a cactus graph of size n having c1 ≥ 1 cycles of length < 5 and no
larger cycles, then broadcast can be solved if and only if k ≥ c1.

Proof. Consider the family of cactus graphs obtained from a line of length c1 by attaching
to each node of the line a cycle of length < 5. Each cycle thus satisfies the conditions of
Lemma 4.

If k < c1, the total number of agents is k + 1 ≤ c1, so the adversary can place each agent
in a distinct cycle, including the source agent. No agent can leave its cycle due to Lemma 4.
So, no two agents can meet, thus broadcast is not possible.

For k ≥ c1, broadcast is solvable in any cactus graph with c1 small cycles. To prove this
it is enough to analyze the case where at least one cycle has at least two agents, either two
ignorant ones or one ignorant agent and a source. This is because if an agent is outside of
any cycle it can always move to a cycle (all non cyclic edges are available in each round). If
two agents are in a cycle and none of them is the source, then one of the agents can leave the
cycle within at most 2 steps (both agents try to move towards an elected exit by approaching
it from different directions). The agent that leaves the cycle can move towards the source,
until it reaches another cycle.

Thus, one agent will eventually reach the cycle containing the source. This agent can
meet the source and obtain the informationM due to Theorem 3. Now, there are two source
agents in the same cycle, and thus, one of them can leave the cycle as described before
within at most 3 steps. This source agent reaches another ring containing an ignorant agent,
the information is propagated and we have again two source agents in a cycle. Repeating
the same algorithm, all agents will eventually learn the information, and thus we can solve
broadcast. J

I Lemma 8. If G is a cactus graph of size n having c2 cycles of length ≥ 5 and no cycles of
smaller length, then broadcast can be solved if and only if k ≥ c2 + 1.

Proof. Consider the family of cactus graphs obtained from a line of length c2 by attaching
to each node of the line a cycle of length ≥ 5.

Suppose that k < c2 + 1. Then, the adversary places each of the k ≤ c2 agents in a
distinct cycle and the source in one of these cycles. Due to Theorem 3, the source and the
other agent cannot meet, since the ring is of length ≥ 5. At the same time, due to Lemma 4
the adversary can trap each other agent in its cycle. In the cycle that contains the source, at
most one of the two agents can exit this cycle. Even if the source agent exits this cycle and
enters another cycle the configuration is similar to the initial one. Hence, no two agents can
ever meet and therefore the problem is unsolvable.

To prove that k ≥ c2 + 1 agents are enough to solve broadcast, we first show that at least
one ignorant agent can reach the source and can become a new source. As in the proof of
Lemma 7, we assume all agents move to some cycle if they are not in a cycle. If the source
agent is in the same cycle with at least two ignorant agents, by Theorem 3 both these agents
can become sources. If not, then, given k ≥ c2 + 1, there must be some cycle with two or
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more ignorant agents and all except one of these agents can leave the cycle to reach another
cycle. Eventually two or more ignorant agents would reach the same cycle as the source,
and again applying Theorem 3, all these agents would become source agents. Thus we have
now at least x ≥ 3 source agents in a cycle. Furthermore each of the remaining k − x + 1
ignorant agents are alone in some cycle. This implies that the number of empty cycles (cycles
without any agent) are at most x− 3. Among the x source agents, x− 1 of them can move
to another cycle. Whenever these source agents arrive at an empty cycle, at most one of
them may be trapped. In total x− 3 source agents can be trapped, thus at least two source
agents can reach any other cycle that contains an ignorant agent, so this agent will meet a
source. Hence, all ignorant agents will eventually become sources and thus broadcast can be
solved. J

I Theorem 9. Let G be a cactus graph of size n having c1 cycles of length < 5 and c2 cycles
of length ≥ 5, then:

If c2 = 0, broadcast can be solved if and only if k ≥ c1.
If c2 > 0, broadcast can be solved if and only if k ≥ c1 + c2 + 1.

Proof. If c2 = 0, then the cactus graph has only c1 cycles of length < 5, and in view of
Lemma 7 broadcast can be solved if and only if k ≥ c1.

On the other hand if c2 > 0 and c1 = 0, then in view of Lemma 8 broadcast can be solved
if and only if k ≥ c2 + 1, and thus the second condition holds.

Finally, if c1 > 0 and c2 > 0, similarly as in the proofs of Lemmas 7 and 8, we can
construct a cactus graph from a line of length c1 + c2 by attaching a cycle of length < 5 to
each of the first c1 nodes and attaching a cycle of length ≥ 5 to each of the remaining c2
nodes. Now, if k ≤ c1 + c2, then the adversary places each ignorant agent in a distinct cycle,
and places the source agent in the last big cycle C of length ≥ 5. Since there is at most one
ignorant agent and the source in cycle C of length ≥ 5, they cannot meet (see the proof of
Theorem 3). Furthermore no other agent (in a cycle different than C) can leave its cycle due
to Lemma 4. The source agent may escape from the cycle C and reach another cycle C ′. If
the cycle C ′ is big (size ≥ 5), then as before the source agent would not be able to meet the
only agent that is in cycle C ′. On the other hand, if the source reaches a small cycle (size
< 5) it may meet the ignorant agent in that cycle, so we will have two sources; however at
most one of the two can leave this cycle. Thus the agents in the big cycles would never meet
any source agent. Thus broadcast can not be solved.

We now show how to solve broadcast using k ≥ c1 + c2 + 1 ignorant agents. First, as
argued before, any agent that is not on a cycle can move to the nearest cycle. Since there
are more agents than cycles, there are some cycles that contain multiple agents. In any such
cycle, one of the agents can move to a neighboring empty cycle if there is one. Repeating
this process, we can distribute the agents such that there is at least one agent in each cycle.

Let C be the cycle that contains the source. In any cycle other than C, if there are more
than one ignorant agents, all except one of them can move to another cycle that is closer to
cycle C. Repeating this process, we will reach a configuration where there will be at least 2
ignorant agents and the source in cycle C and exactly one agent in each other cycle. Now it
is easy to solve broadcast from this configuration. Using the ring algorithm (Theorem 3) all
ignorant agents in cycle C would become sources. Since we have at least three source agents
now, at least two of them can move to a different cycle. In any other cycle reached by those
two source agents, there is one ignorant agent, so we can apply the same algorithm and have
3 source agents in this cycle. Repeating this process all ignorant agents will become sources
and broadcast is solved. J
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4 Broadcast in Grids

We now study grid graphs which are slightly more dense than rings or cactuses. Even for
2-dimensional grids, we show that we need Ω(n) agents to solve broadcast. Let us first
consider the simplest grid graph with only two rows (so called ladder graph).

I Theorem 10. If G is 2× L grid graph, then broadcast is unsolvable for k < L− 1.

Proof. Suppose that k < L− 1. The adversary can put all k agents in one row consisting
of L nodes and the source agent in the other row. So, there is at least one column where
both nodes are empty. The adversary would allow this edge and remove all other edges
connecting the two rows. So the agents could only move within their respective rows. After
some agents move, there would again be some column containing only empty nodes. So the
above argument can be repeated. Thus, no agent can leave its respective row at any step,
and hence no agent can meet the source. J

The above lower bound is almost tight as we can show an upper bound of k ≥ L for
broadcast in any 2× L grid graph.

I Theorem 11. If G is a 2× L grid graph, then broadcast is solvable for k ≥ L.

The proof is omitted, but we present some basic ideas here. The algorithm for broadcast
in 2× L grids is based on the following lemma which ensures that the ignorant agents can
get closer and closer to the source until one of the agents meets the source.

I Lemma 12. If G is 2×L grid graph containing a source agent at origin [0, 0], such that the
number of nodes occupied by ignorant agents is strictly greater than the number of unoccupied
nodes in G, then there exists a move of a subset of the agents which maintains the ignorant
agents in distinct locations and, either (i) one ignorant agent meets the source agent, or (ii)
the sum of distances from the ignorant agents to the source agent in G, decreases by at least
one.

To see why the lemma holds, consider any agent x and the path from this agent to the
source during the current round of the algorithm (there always exists such a path as the
dynamic graph is constantly connected). If all the agents on this path simultaneously move
by one edge along this path, and if there are more agents than unoccupied nodes, then we can
show more than half of the agents would get closer1 to the source. Thus the sum of distances
from the agents to the source will decrease monotonically and the algorithm makes progress.
Note that there are k ≥ L agents in distinct locations, there are at most L− 1 unoccupied
nodes. Thus, there is always some path with more occupied nodes than unoccupied nodes.
However the algorithm should always maintain the agents in distinct locations. There are
several other technical difficulties that need to be overcome to make the algorithm work, for
example, when the source is not in the corner node but somewhere in the interior then we
need to partition the grid and apply the lemma selectively on one partition and so on. The
resulting algorithm is quite involved and the above approach does not generalize to general
grids with more than two rows.

Indeed in larger grids we need a larger team of agents to solve the problem. We will now
consider the general case of a W × L grid graph for W, L > 2 and show some lower bounds
for broadcast in such grids. We first prove the following technical lemma.

1 closer in terms of distances in the original graph G
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I Lemma 13. If G is an h × L grid graph, with h ≥ 1, L > 2, then starting from a
configuration with L− 1 agents in each row, the adversary can ensure that there are never
more than L− 1 agents in the bottom row. Moreover, if we add an additional agent at the
bottom row, again the adversary can ensure that there are never more than L agents in the
bottom row.

Proof. If h = 1 then there is only one row, so the number of agents on the bottom row never
changes and the lemma holds trivially. We now prove the lemma by induction on the number
of rows. Suppose that the lemma holds for a grid G with h ≥ 1 rows. We can construct a
grid G′ by adding an additional row at the bottom with L nodes and L− 1 agents on distinct
nodes. Since the bottom row of G has at most L− 1 agents (by induction hypothesis), there
exists an empty node v in this row. In the grid G′ the adversary makes available the edge
from v to the node directly below (on the additional row); all other edges between G and
the additional row are unavailable. In the current round, no agent can enter the bottom row
of G′; although an agent from the bottom row may go up and reach grid G. In the next
round if there are L− 2 agents in the bottom row, and L agents in the row above then the
adversary makes available the edge between a node (containing at most one agent) in this
row to the node below in the bottom row (and disables all other edges between these two
rows). So, either an agent moves to the bottom row or the number of agents in the bottom
row remains the same. In the first case, we are back in the initial situation and we could use
the same arguments as before. In the second case, the number of agents at the bottom row
is smaller than what was initially. Thus the lemma holds for grids of h + 1 rows and thus by
induction for all grids satisfying the conditions of the lemma. Furthermore, note that all
arguments remain the same if initially there are x > L− 1 agents in the bottom row, i.e.,
the number of agents in the bottom row is never more than x if the higher rows contain at
most L− 1 agents initially. J

I Lemma 14. If G is a W × L grid graph, with W > 2 then broadcast in unsolvable for
k < (L− 1)(W − 1).

Proof. We can construct a grid of size W×L by joining two grids: a grid G1 of (h = W−2)×L

with a grid G2 of size 2× L (by adding L edges between the bottom row of G1 and the top
row of G2). In grid G1, we place L− 1 ignorant agents on each row, at distinct locations,
while in grid G2 we place k2 < (L− 1) agents plus the source agent, as in Theorem 10. Thus
the total number of agents is k = (W − 2) ∗ (L− 1) + k2 < (L− 1)(W − 1). We now show
that broadcast is not solvable in this graph.

First, if no additional agents enter grid G2 and the source never leaves G2 then by
Theorem 10, broadcast is not possible as no agent would meet the source in G2. Furthermore,
if the source is in the bottom row, it can never leave this row and thus it cannot leave G2.
In the grid G1 there are L− 1 agents in the bottom row and by the Lemma 13 the number
of agents on this row does not increase (considering only agents in G1), so there is at least
one empty node on this row. The edge between this node and the grid G2 is made available
and all other edges between the two grids are unavailable. In this case, no agents from G1

can enter G2. However, some ignorant agents from G2 can enter G1. If x ignorant agents
from G2 enter the grid G1, then by Lemma 13, the number of agents on the bottom row of
G1 is at most L− 1 + x. In each round, if there is some empty node v on this row, the edge
between v and G2 is the only edge between the two grids that is made available in that round
(in this case, no agents can move from G1 to G2). Otherwise any node in the bottom row of
G1 can have at most x agents in this round; so, if one edge is available between the two grids,
at most x agents can move from G1 to G2. Thus, after each round, the number of ignorant
agents in G2 is less than L− 1 and thus broadcast is not possible by Theorem 10. J
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We can generalize the above to higher dimensional grids as follows:

I Theorem 15. If G is a (d + 1)-dimensional grid graph of size W1×W2× . . . Wd×L where
Wi ≥ L ≥ 2 then broadcast in unsolvable for k < (L− 1)(W1 ·W2 . . . Wd − 1).

Proof. Consider the subgraph of the grid that is a 2-dimensional grid of size (W1 ·W2 . . . Wd)×
L. In each round the adversary chooses the available graph to be a connected subgraph of
this 2D grid, then we can apply Lemma 14 to obtain the above lower bound. J

5 Broadcast in Dense graphs

In dense graphs there are many disjoint paths between two nodes and thus there are many
possible ways for the adversary to change the network while keeping it connected. In other
words, the dynamicity of a (constantly connected) dynamic graph whose footprint is a dense
graph, is higher than that of sparser graphs that we studied before. The worst case is when
the underlying graph is a complete graph.

5.1 Broadcast in Complete graphs
I Theorem 16. If G is a complete graph of size n then broadcast can be solved if and only
if k ≥ n− 2 within O(n) steps.

Proof. If k < n − 2 then at most n − 2 nodes are occupied (including the source), and
therefore there are at least two empty nodes. The adversary will make available the spanning
tree where the source is connected to one empty node and all other occupied nodes are
connected to the other empty node. The two empty nodes are connected with an edge. This
is a spanning tree of G and in this tree, the distance from the source to any occupied node is
more than two. So no agent can meet the source in one step. After one step, during which
some agents may move, there will still be at least two empty nodes; thus the same argument
can be repeated for any step. Hence broadcast is impossible for k < n− 2.

If k ≥ n− 2, then by the Observation 1, it is possible to solve broadcast in any arbitrary
topology, and thus in a complete graph. J

The impossibility result above can be generalized to arbitrary graphs G having the
following property.

I Lemma 17. Consider a graph G and an integer k ≥ 1. Suppose that for every possible
placement of the source agent and k agents on distinct nodes of G, there always exists a
spanning tree of G where the distance from each agent to the source is ≥ 3. Then, broadcast
is impossible in G with k ignorant agents.

5.2 Broadcast in Hypercubes
We now study the problem in hypercube networks as defined below.

I Definition 18. A d-dimensional hypercube is a graph Hd = (V, E) with n = 2d nodes
labelled with distinct d-bit strings. A node vi ∈ V , 0 ≤ i ≤ 2d− 1, is connected to the d nodes
whose labels differ in exactly one bit from its own. Hereafter, we freely identify nodes with
their labels.

A hypercube Hd consists of two d − 1 dimensional hypercubes labelled as [0 ∗ ∗ · · · ∗]
and [1 ∗ ∗ · · · ∗], the corresponding nodes of these two hypercubes are connected by edges of
dimension d.
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I Theorem 19. Given a hypercube Hd of dimension d > 2, at least k = n/2− 1 ignorant
agents are necessary to solve broadcast in the dynamic graph based on Hd.

Proof. Assume k < n/2− 1. Suppose the source agent is at the node [00 . . . 0] of Hd; the
adversary places all the ignorant agents among the nodes of the sub-hypercube Hd−1 labelled
[1 ∗ ∗ · · · ∗]. Out of the n/2 nodes in Hd−1[1 ∗ ∗ · · · ∗], there must be at least 2 empty nodes.
At most one of these two nodes can be a neighbor of the source node [00. . . 0] in the other
sub-hypercube. So, the other empty node v must be a neighbor of an empty node u in
Hd−1[0 ∗ ∗ · · · ∗]. The adversary chooses the available graph Gi as the union of a spanning
tree of Hd−1[0 ∗ ∗ · · · ∗] and a spanning tree of Hd−1[1 ∗ ∗ · · · ∗], plus the edge (u, v). All
other edges of dimension d are missing in Gi. After the agents move in this round, the
ignorant agents would still be in sub-hypercube Hd−1[1 ∗ ∗ · · · ∗] and the source would be in
the other sub-hypercube Hd−1[0 ∗ ∗ · · · ∗]. Thus, using the same argument, in each round r

the adversary can choose the graph Gr as a spanning tree where each ignorant agent is at a
distance of at least 3 from the source, so by Lemma 17, broadcast is impossible. J

The above result does not hold for the trivial case of d = 2, since H2 is simply a ring of
four nodes where broadcast can be solved even for k = 1 (see Theorem 3). For a hypercube
of dimension d = 3 (i.e., a cube) we can show a matching lower and upper bound of k = n/2
ignorant agents.

1

u2 u3

u1

2u
2

1u
2

3u
1

u0

3

2u
1

[000]

[101]

[110]

[011]

Figure 1 (a) The cube with a single source (denoted by a square) in the proof of Theorem 20.
(b) The cube with two sources at distance 2; the remaining agents must occupy the two black nodes.

I Theorem 20. If G = H3 is a hypercube of dimension d = 3 consisting of n = 23 nodes,
then k = n/2 ignorant agents are necessary and sufficient to solve broadcast.

Proof (Lower Bound). We provide only a sketch of the proof that if there are only k = 3
ignorant agents, then it is not possible to solve broadcast starting from arbitrary configurations.
In particular, we define a class QF of forbidden initial configurations, with one source and 3
ignorant agents in a cube, such that starting from any such configuration, the adversary can
force the agents to move only to another configuration in QF . Further, in every configuration
in QF , there is a spanning tree (defined by the available links) where the distance from
source to the nearest agent is at least 3. The configurations in the set QF are listed below
by showing the positions of the 3 agents, with respect to the source node which is always
assumed2 to be [000]:

2 After any moves, we rename the nodes.
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Q1 ([100], [010], [110])
Q2 ([100], [010], [011])
Q3 ([100], [110], [101])
Q4 ([100], [101], [011])
Q5 ([100], [110], [111])
Q6 ([100], [011], [111])
Q7 ([101], [011], [111])
Note that starting from any other initial configurations with 3 agents permits a solution
to broadcast. However, when the 3 ignorant agents start in any configuration isomorphic
to configurations in QF , then the configuration in the next round can only be another
configuration in QF . This implies that no ignorant agent can meet the source after any
number of rounds, and thus it is not possible to solve the Broadcast problem. J

Proof (Upper Bound). We show that k = 4 agents can solve broadcast by providing an
algorithm. We first show that one of the four agents can meet the source agent. We denote
the nodes of the cube as follows: u0 = [000] is the node containing the source, u1

1, u1
2, u1

3 are
the three nodes at distance one from source, u1

i means a generic node at distance 1 from the
source, u2

1, u2
2, u2

3 are the three nodes at distance 2 from the source, and u3 = [111] is the
only node at distance 3 (see Figure 1(a)). We now consider all possible initial configurations
with agents placed on distinct nodes; Note that, each such configuration has at least three
empty nodes. We denote such a configuration as [x, y, z, l] showing the positions of the 4
ignorant agents at nodes x, y, z, l (with ∗ denoting any node other than the source).
C1 Configuration [u1

1, u1
2, u1

3, ∗]: At least one of the links (u0, u1
1), (u0, u1

2), or (u0, u1
3) must

be active, otherwise node u0 would be disconnected. Hence at least one agent can meet
the source within the next time unit.

C2 Configuration [u2
1, u2

2, u2
3, ∗]: At least one of the paths of distance two between the source

node u0 and one of the nodes u2
1, u2

2, or u2
3 must be available, otherwise node u0 would

be disconnected from nodes u2
1, u2

2 and u2
3. Hence, within the next step the agent at a

distance two from the source, and the source agent move to the middle node of the path
and meet.

C3 Configuration [u1
1, u1

2, u3, ∗]: If at least one of the links (u0, u1
1) or (u0, u1

2) are active,
then at least one agent can meet the source within the next time unit. Otherwise, the
link (u0, u1

3) must be active (to ensure connectedness), so in that case, the source agent
moves to node u1

3. The configuration we obtain is isomorphic to the configuration [c2]
above, so we are done.

C4 Configuration [u1
1, u1

2, u2
1, u2

2]: Assume that there are no paths of length 1 or 2 from
source to any agent (otherwise we are done as explained above). In that case, any possible
spanning tree must have the edges (u0, u1

3) and (u1
3, u2

3) and further at least one of the
edges (u1

2, u2
3) or (u2

1, u3) or (u2
2, u3). In the first case, one agent moves to u2

3 and we
obtain the configuration [c2]. In the other two cases, one agent moves to node u3, and
thus we obtain the configuration [C3]. So, we are done in all cases.

C5 Configuration [u1
i , u2

1, u2
2, u3]: In G0, if there are no length-2 paths from source to any

agent, then any path from u0 must go through u2
3; If node u2

3 has an available edge
to some agent, this agent will move to u2

3 and we would obtain the configuration [c2].
Otherwise u2

3 has an available edge to some empty node u1
j 6= u1

i which is connected
to some node occupied by an agent. Thus, this agent moves to u1

j , and we obtain the
configuration [C3].
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We have shown one agent can reach the source within a constant number of steps and
obtain the message. Now, there are two source agents and three ignorant agents. The two
source agents can place themselves at distance two in G (this is always possible in at most 2
steps). Assume without loss of generality, that the two sources are at nodes [000] and [011]
as in Figure 1(b). There are exactly two nodes ([110] and [101]) that are at distance 2 from
both the sources. If the ignorant agents occupy these two nodes, then in any spanning tree
chosen by the adversary, at least one of the ignorant agents would be at distance two from a
source agent. And in fact, it is easy to see that either the three ignorant agents occupy all
three adjacent nodes of one of the two sources (which means that in the next step at least
one more agent will meet a source), or three ignorant agents occupy two adjacent nodes of
each source. In the last case (due to connectedness) at least two of the ignorant agents will
occupy the two nodes ([110] and [101]) in the next step. Finally, if only one of the ignorant
agents occupies one of the nodes ([110] and [101]), then in the next step this agent can
move from that node and therefore we obtain the previous configuration (i.e., where three
ignorant agents occupy two adjacent nodes of each source). Thus eventually at least two of
the ignorant agents will occupy the two nodes ([110] and [101]) and in the next round, at
least one more ignorant agent will meet a source and therefore we will have 3 source agents.

Note that the case of 3 sources and 2 ignorant agents is analogous to the case of 2 sources
and 3 ignorant agents, while the case of one ignorant agent and four sources, is analogous to
the initial situation with one source and four ignorant agents. So, using the same strategies
as above eventually all agents will obtain the message and broadcasting is solved. J

For hypercubes of higher dimensions d ≥ 4, we do not have any general strategy for
solving the problem as the adversary has too many possible ways of choosing the available
subgraph. However, the lower bound of k = n/2− 1 agents from Theorem 19 still holds and
we have the upper bound of k = n− 2 (from Observation 1).

6 Conclusion

In this paper, we studied the problem of broadcast for mobile agents moving in constantly
connected dynamic networks. The main objective is to understand how many agents are
necessary and sufficient to allow broadcast to be solved in various topologies. It turns out
that for sparse topologies such as rings and cactus graphs, the number of agents needed for
solving the broadcast problem can be independent of the network size n, while for denser
graphs including grids, hypercubes, as well as the complete graph, Θ(n) agents are needed.
This preliminary investigation on broadcast in dynamic graphs opens many new research
directions. For both grids and hypercubes, we have large gaps between the lower bounds
of (n − 2

√
n) and (n/2 − 1) respectively, and the upper bound of (n − 2). It seems that

solving the problem in grids requires more agents than in hypercubes, since grid networks
contain more redundant edges. However, the lower bound on hypercubes shows that the
number of agents needed can sometimes be much more than the number of redundant edges
in the network. This is in contrast to the cops and robbers problem where the number of
cops needed is roughly equal to the number of redundant edges in the underlying graph [3].
In the future, we would like to study the differences between various problems in this model
and try to adapt techniques used for broadcast, to solve other problems in dynamic networks.
Moreover it would be nice to classify various problems according to the resources needed for
solving them under the adversarial model studied in this paper. Another possible direction
of research would be to replace the strong assumption of global visibility with some weaker
assumptions about the agent’s capabilities that still suffices to solve broadcast in this model.
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Abstract
Broadcast is a primitive which allows a specific party to distribute a message consistently among n

parties, even if up to t parties exhibit malicious behaviour. In the classical model with a complete
network of bilateral authenticated channels, the seminal result of Pease et al. [10] shows that
broadcast is achievable if and only if t < n/3. There are two generalizations suggested for the
broadcast problem – with respect to the adversarial model and the communication model. Fitzi
and Maurer [5] consider a (non-threshold) general adversary that is characterized by the subsets of
parties that could be corrupted, and show that broadcast can be realized from bilateral channels if
and only if the union of no three possible corrupted sets equals the entire set of n parties. On the
other hand, Considine et al. [3] extend the standard model of bilateral channels with the existence of
b-minicast channels that allow to locally broadcast among any subset of b parties; the authors show
that in this enhanced model of communication, secure broadcast tolerating up to t corrupted parties
is possible if and only if t < b−1

b+1 n. These generalizations are unified in the work by Raykov [9],
where a tight condition on the possible corrupted sets is presented such that broadcast is achievable
from a complete set of b-minicasts.

This paper investigates the achievability of broadcast in general networks, i.e., networks where
only some subsets of minicast channels may be available, thereby addressing open problems posed
in [8, 9]. To that end, we propose a hierarchy over all possible general adversaries, and identify
for each class of general adversaries 1) a set of minicast channels that are necessary to achieve
broadcast and 2) a set of minicast channels that are sufficient to achieve broadcast. In particular,
this allows us to derive bounds on the amount of b-minicasts that are necessary and that suffice
towards constructing broadcast in general b-minicast networks.
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1 Introduction

One of the most fundamental problems in distributed computing is to achieve consistency
guarantees among parties, even if some of the parties behave arbitrarily. A core primitive to
achieve global consistency is broadcast. More concretely, the Byzantine broadcast problem
[10] is described as follows: A designated party, called the sender, intends to distribute a
value consistently among n parties such that all honest parties obtain the same value, even if
the sender and/or some of the other parties behave in a malicious manner; if the sender is
honest, then all honest parties agree on the sender’s value.
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Broadcast is an important primitive that has applications in many protocols for secure
multi-party computation (MPC) – as defined in [12] and [6]. It is used to implement different
protocols for secure bidding, voting, collective contract signing, just to name a few. With
the recent trends in research in mind, another application worth mentioning is related to
cryptocurrencies, where users’ transactions are to be broadcast securely among all the nodes
of the underlying blockchain network even when some of the nodes could behave arbitrarily.

1.1 Motivation
The seminal result of Pease et al. [10] (also [1], [2]) shows that in the standard communication
model of a complete synchronous network of pairwise authenticated channels, perfectly-secure
broadcast is achievable if and only if less than a third of the parties are corrupted (i.e.,
t < n/3). The fundamental reason why the bound t < n/3 is tight is that a corrupted
node can consistently send different messages to correct processors and make them agree on
different values. To avoid this, several researchers have considered using stronger commu-
nication primitives such as partial broadcast channels, which guarantee that a message is
consistent among all recipients on the channel. Hence, a natural question is to investigate a
generalization of the classical broadcast problem, namely the trade-off between the strength
of the communication primitives and the corruptive power from the adversary.

Most results which study such trade-offs for broadcast achievability are phrased in the
so-called b-minicast model [4, 3, 9], i.e., a network which contains partial broadcast channels
among any subset of parties with size at most b. But one can go beyond this threshold
characterization of communication models (similar to the adversaries seen above modelled
by a threshold t) by considering a general network where the set of minicasts of size at most
b among the n parties may not be complete.

To the best of our knowledge, current works on such general networks [11, 8] focus on the
problem of Byzantine agreement for the concrete case of 3-minicast channels, and against
a threshold adversary in the range n/3 ≤ t < n/2. We continue the line of research w.r.t.
general b-minicast channels. We remark that – as noted in [3] – when b > 3, perfectly secure
broadcast can be realized even when there is no honest majority, in contrast to Byzantine
agreement. Surprisingly, there is a lack of literature devoted to this generalization. This paper
thus attempts to lay out some significant starting steps towards research in this direction.

1.2 Related Work
Complete/Threshold Networks. Many of the previous results assume a complete network
of partial broadcast channels up to a certain size. Fitzi and Maurer [4] showed that assuming
partial broadcast channels among every triplet of parties, global broadcast can be realized
if and only if t < n/2. Considine et al. [3] generalized this result to the b-minicast model,
i.e. a partial broadcast channel among any b parties, where it was shown that broadcast is
achievable if and only if t < b−1

b+1n.
Apart from generalizing the communication primitives, one can also generalize the

adversary model to general adversary structures. The classical problem [10] focuses on
adversaries that, for a threshold t, can corrupt any subset of parties a such that |a| ≤ t. This
was later extended to a generalized characterization of the adversary A, where it can corrupt
a set of parties a such that a ∈ A for a monotone set of subsets of the n parties [7, 5].

It was shown by Fitzi and Maurer [5] that secure broadcast can be realized from point-to-
point channels if and only if there are no three sets of parties in the adversary structure that
can cover the whole party set. Finally, Raykov [9] unified the previous results by studying
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the feasibility of broadcast in the b-minicast model that is secure against general adversaries.
Specifically, Raykov proved that broadcast is achievable from b-minicast channels against
adversary structures A if and only if A satisfies the so-called (b+ 1)-chain-free condition.

General Networks. Current works on general network structures with partial broadcast
channels focus on the achievability of Byzantine agreement. Given that Byzantine agreement
is achievable from bilateral channels if t < n

3 and not well defined for t ≥ n
2 , they focus on the

case where the network of partial broadcast channels only contains 3-minicasts (in addition
to bilateral channels), and the adversary is in the range n/3 ≤ t < n/2. Ravikant et al. [11]
provide necessary and sufficient conditions for general 3-minicast networks to satisfy so that
Byzantine agreement can be achieved while tolerating threshold adversaries in the range
n/3 ≤ t < n/2. In a follow-up work, Jaffe et al. [8] provide asymptotically tight bounds on
the number of necessary and sufficient 3-minicast channels to construct Byzantine agreement
for the same threshold adversary.

1.3 Contributions

We extend the results for general 3-minicast networks to general b-minicast networks and
address open questions posed in both of the papers [8, 9], namely to study broadcast
achievability in general communication models where only a subset of b-minicast channels
may be available.

The contributions of the paper are three-fold. First, we propose a simple hierarchy of all
possible adversary structures with respect to n parties, by imposing a partial order based on
the b-chain terminology introduced by Raykov [9]. This allows us to analyze the feasibility
of broadcast in general networks in a meaningful way. We believe this hierarchy of general
adversaries could be of independent interest to the broader area of secure MPC.

Second, we present necessary conditions on general network structures for secure broadcast
to be possible against general adversaries. To be precise, for each of the adversary classes in
the above hierarchy, we identify types of minicast channels that are essential in any network
in order to achieve broadcast.

Finally, we provide sufficient conditions towards achieving broadcast in general networks
while tolerating general adversaries. That is, given any adversary belonging to one of the
hierarchy classes, we construct a broadcast protocol for networks satisfying the sufficiency
condition corresponding to that adversary. We also show that these conditions are non-trivial
in the sense that they do not always require a complete set of minicast channels to begin
with; w.r.t. certain weak adversaries in each class, there exist general networks with an
incomplete set of minicasts that can still realize global broadcast using our protocol.

Our results generalize previous works in communication models assuming partial broadcast
channels [4, 11, 8, 9]. We show an example in Table 1 with 6 parties P = {P1, . . . , P6}.
Against a threshold adversary that can corrupt up to 3 parties, it is known that with
the network structure containing all 3-minicasts, N3, broadcast is impossible, whereas
with a network structure containing all 4-minicasts, N4, broadcast is possible. We depict
the network N = N4 \ {P1, P2, P4, P5}, {P1, P2, P4, P6}, {P1, P3, P4, P6}, {P1, P3, P4, P5}, for
which broadcast was unknown to be impossible. For the same network structure, we
show in addition that broadcast is possible with respect to the adversary structure A =
{{P1, P4, P5}, {P1, P4, P6}, {P2, P3, P5}, {P2, P3, P6}}.
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Table 1 In the first column, we describe network structures among 6 parties in line with
Definition 3. The first two entries are related to the complete 3-minicast and 4-minicast models
respectively (cf. Definition 4). We depict an incomplete 4-minicast network in the third entry
where the 4-minicasts that are not available are {P1, P2, P4, P5}, {P1, P2, P4, P6}, {P1, P3, P4, P6}
and {P1, P3, P4, P5}. The adversary is indicated in the second column. In the first three entries the
adversary can corrupt up to t = 3 parties, whereas in the last entry he can corrupt any element in
A = {{P1, P4, P5}, {P1, P4, P6}, {P2, P3, P5}, {P2, P3, P6}}. We then indicate whether broadcast can
be realized securely with the corresponding network/adversary w.r.t. any sender.

Network Adversary Broadcast
possible Literature

N3 = {p | p ⊆ P and |p| ≤ 3} t = 3 No [3, 9]
N4 = {p | p ⊆ P and |p| ≤ 4} t = 3 Yes [3, 9]

t = 3

A

No

Yes

This work

1.4 Techniques
Here we give a higher-level overview for some of the technical ideas behind our results.
As briefly mentioned above, we rely on a particular characterization of general adversary
structures A based on whether or not A contains a so-called b-chain; if not, then A is said to
be b-chain-free and vice-versa. This condition was introduced in [9] and was in turn inspired
by a broadcast impossibility proof of [3]. Consider a chain (or ordering) of b + 1 parties,
namely (P1, . . . , Pb+1). Then it was shown in [3] that no protocol can realize broadcast
among these b+ 1 parties in the complete b-minicast model when any pair of adjacent parties
(Pi, P1+(i mod b+1)) (i = 1, . . . , b+ 1) can be honest while the remaining parties are corrupted
by an adversary. Raykov [9] then generalized this type of corruption to a chain of party
subsets, where (P1, . . . ,Pb+1) is now a partition of n parties into b+ 1 non-empty subsets Pi.
He later shows that when there is such a (b+ 1)-partition of n parties such that the subset
of parties (Pi ∪ P1+(i mod b+1)) (i = 1, . . . , b+ 1) can be honest while the remaining parties
are corrupted by an adversary, then broadcast is impossible among n parties in the complete
b-minicast model, via a straightforward reduction to the setting with b+ 1 parties considered
in [3]. In this context, the partition is called a (b+ 1)-chain and the corrupting adversary is
said to contain a (b+ 1)-chain. But what is surprising is that this condition is tight in the
sense that, if an adversary does not contain a (b+ 1)-chain, then broadcast is achievable in
the b-minicast model. Namely,

I Theorem 1 ([9, Theorem 1]). In the complete b-minicast communication model, broadcast
tolerating adversary structure A is achievable if and only if A is (b+ 1)-chain-free.

Hierarchy of Adversaries. We partition the space of all possible general adversary structures
w.r.t. n parties into (n−1) classes based on the b-chain-free condition introduced in [9]. The
class A(b), for b ≥ 3, is the set of adversaries that contain a b-chain but are (b+ 1)-chain-free.
Given a general adversary A, to study the feasibility of broadcast in a general network N , we
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consider the unique class A belongs to – say A ∈ A(b), then because of Theorem 1, broadcast
tolerating A is impossible in the complete (b − 1)-minicast model, but is possible in the
complete b-minicast model. This allows us to analyze the b-minicast channels in N which
are necessary or which suffice to achieve broadcast securely against A.

Necessary Conditions. Given an adversary A ∈ A(b), we identify certain types of b-minicast
channels that are necessary to realize secure broadcast among parties P in any general
network. We proceed to show it by starting with a complete b-minicast model, and removing
b-minicast channels of the aforementioned type. Then we prove that any protocol that
achieves broadcast among P in the resulting network against A can be reduced to a protocol
that achieves broadcast in a setting with b parties in the complete (b− 1)-minicast model
against an adversary that contains a b-chain. Because the latter is deemed to be impossible
by Theorem 1, we conclude that secure broadcast protocols cannot exist when such essential
b-minicast channels are missing from a network.

Sufficient Conditions. Again given an adversary A ∈ A(b), we identify a set S of b-minicast
channels such that, for any general network N , it suffices to have N contain the minicast
channels S in order to achieve broadcast secure against A (assuming sufficient connectivity
w.r.t. (b − 1) and lower minicast channels in N ). For ease of exposition, we consider
general networks N with an underlying complete set of (b − 1) minicast channels. Now
since A is (b+ 1)-chain-free, secure broadcast is possible in the complete b-minicast model
according to Theorem 1. Hence the idea is to simulate the b-minicast model on the general
network N using its (possibly) incomplete set of b-minicast channels and the complete set of
(b− 1)-minicasts underneath.

Towards finding S, we focus on its complement set S{, namely the set of b-minicast
channels which are not required to be present in N to realize broadcast tolerating A. If
the b-minicast channels of S{ were to be missing in N , it should be possible to simulate
them via a local application of the feasibility result of Theorem 1, i.e., subsets of b parties
that have their corresponding b-minicast channel missing could simulate partial broadcast
among themselves by executing Raykov’s protocol [9] using their underlying (b− 1)-minicast
channels. In that case, we have to formally argue that A’s corrupting power when restricted
to these b parties is b-chain-free.

We also show that our set S for sufficiency of broadcast need not be the trivial complete
set of b-minicast channels for all adversaries in A(b). Specifically, we identify certain weak
adversaries of the class A(b), which we call b-chain adversaries, and prove that the set S{

is non-empty for such adversaries. Our arguments here are related to the b-chain property
of [9] and are mostly combinatorial. They revolve around showing the (non-)existence of
special configurations of parties placed in bins which are arranged in a circular fashion.

2 Models and Definitions

In this section, we introduce the main concepts, along with some notation, that will be used
in this paper – which includes a description of the models of communication and corruption
with respect to a set of parties being considered. Most of the definitions are borrowed from
[9] and [3]. In this paper we consider a setting where parties do not have a public-key
infrastructure (PKI) available. Note that if one assumes a PKI, it would allow messages to
be signed and broadcast would be possible with arbitrary resilience.
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2.1 Parties
Unless stated otherwise, we always consider a setting with n parties, namely P = {P1, . . . , Pn}.
We now describe some notions with respect to the partitions of the party set P .

I Definition 2. A list S = (S0, . . . ,Sk−1) is a k-partition of P if
⋃k−1
i=0 Si = P and all Si

and Sj are pair-wise disjoint. Such partitions are said to be proper if all Si are non-empty.

In addition, we present a notation to denote the set of parties from P minus the two sets
Si and Sj from the k-partition S:

S↓i,j := P \ (Si mod k ∪ Sj mod k)

2.2 Communication Network
In the classical model [10], parties are connected by a complete, synchronous network of
bilateral authenticated channels. Such communication channels between any two parties Pi
and Pj guarantee that only the aforementioned pair can send messages on the channel – no
third party can access (or block) the channel in any way other than possibly reading the
communication between Pi and Pj .

A synchronous network here means that all parties share common clock cycles. In a
particular clock cycle, each party initially receives a finite (possibly empty) set of messages
from the other parties, performs a finite (possibly zero) number of local computations, and
finally sends a finite (possibly empty) set of messages to each other party. Additionally, it is
guaranteed that the messages sent during a clock cycle arrive at the beginning of the next
cycle.

We focus on a very general characterization of such communication models where, in
addition to pairwise channels, there could be partial broadcast channels among the parties of
P that allow messages to be consistently delivered to more than one recipient, i.e, channels
which allow broadcast to be realized locally within certain subsets of parties.

I Definition 3 (General network). A general network N among a set of parties P is a
monotone1 set of subsets of P .

Given a general network N , we have {Pi1 , . . . , Pik} ∈ N if and only if there is a partial
broadcast channel among {Pi1 , . . . , Pik} – based on the sizes of the subset of parties, such
channels are also known as k-minicast channels [9].

The partial broadcast channels also provide authentication, similar in spirit to the bilateral
channels, and are synchronous. Also, observe that the classical model with bilateral channels
can be seen as a particular network structure N , where N contains nothing but all possible
subsets of P with size 2. In the same way, the complete b-minicast model is a network
structure which contains all partial broadcasts of size at most b.

I Definition 4 (b-minicast model). A complete b-minicast model is a network structure Nb
that contains all possible subsets of P with size at most b, i.e., Nb = {p | p ⊆ P and |p| ≤ b}

Finally, we define a subclass of general networks which, roughly speaking, do not contain
(b+ 1) and higher minicast channels.

I Definition 5 (General b-minicast network). A general b-minicast network is any network
structure N such that N ⊆ Nb, where Nb is the complete b-minicast model.

1 If N ∈ N and N ′ ⊆ N then N ′ ∈ N .
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2.3 Adversary and Security
We assume the existence of a central adversary that corrupts a subset of parties and makes
them deviate from a protocol in an arbitrary way. Such corrupted parties are often called
Byzantine, and the parties that are not corrupted will be referred to as honest or correct. Our
protocols are perfectly secure, which guarantees that a protocol never fails (zero probability
of error) even under computationally unbounded adversaries. On the other hand, our
impossibility results hold even against a bounded adversary.

In the paper, we mainly consider a general adversary structure A [7], which specifies the
possible subsets of parties that the adversary can corrupt. We require that A be monotone,
i.e., ∀ a, a′ (a ∈ A) and (a′ ⊆ a) =⇒ a′ ∈ A.

I Definition 6 (General adversary). A general adversary A among a set of parties P is a
monotone set of subsets of P .

In the literature, a specific type of adversary is widely discussed, namely a threshold
adversary, that is characterized by the maximum number of parties t which can be corrupted;
the adversary structure takes the following form At = {a | a ⊆ P and |a| ≤ t}. A typical
non-threshold adversary structure is the so-called Q(k) adversary. The adversary structure A
is said to satisfy Q(k) if the union of no k sets in A equals the party set P . In this paper, we
are more interested in the k-chain condition, which was introduced in [9]. In the full version
we briefly discuss the relation between the k-chain condition and the Q(k) condition.

I Definition 7. An adversary structure A is said to contain a k-chain if there exists a proper
k-partition S = (S0, . . . ,Sk−1) of the party set P such that ∀i ∈ [0, k − 1] S↓i,i+1 ∈ A. An
adversary structure is k-chain-free if it does not have a k-chain.

2.4 Broadcast
In broadcast, a designated party (known as the sender) wants to distribute its input value,
i.e., a message, among n parties such that all honest parties receive the same message.

I Definition 8 (Broadcast). A protocol among the party set P where some specific party
Ps ∈ P (the sender) holds an input v ∈ D and each party Pi ∈ P outputs a value yi ∈ D
achieves broadcast if the following holds:

Validity: If the sender Ps is honest, then every honest party Pi ∈ P outputs the sender’s
value, i.e., yi = v.

Consistency: All honest parties in P output the same value.

3 Hierarchy of Adversary Structures

Let us consider any general adversary A with respect to the parties P . Ignoring the two
extreme cases where the adversary is either too weak that broadcast is achievable by only
using bilateral channels (i.e., A is 3-chain-free, see Theorem 1), or when the adversary is too
strong that secure broadcast is not possible among the n parties unless we assume a global
broadcast primitive in the first place (i.e., A contains an n-chain), we note that there must
exist b ∈ [3, n− 1] such that A contains a b-chain and is (b+ 1)-chain-free.

This observation gives us a way to define a simple partial order over the complete space
of general adversarial structures with respect to the party set P , which is highly relevant
to the problem of achieving secure broadcast in general communication models. Define the
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weakest and strongest class of adversaries respectively as,

A(0) = {A ⊆ 2P | A is 3-chain-free}

A(n) = {A ⊆ 2P | A contains an n-chain}
The subsequent classes of adversary structures in-between are defined as: ∀b ∈ [3, n− 1],

A(b) = {A ⊆ 2P | A contains a b-chain and is (b+ 1)-chain-free}

The classes of adversaries arranged in an increasing order of strength would then be A(0) ≤
A(3) ≤ A(4) ≤ . . . ≤ A(n). Note that this forms indeed a partition over all possible adversary
structures, since for b > 3, any adversary structure in A(b) also contains an implicit (b− 1)-
chain (and lower). This can be seen from the definition of a b-chain-free adversary structure.
More concretely, if an adversary structure A is b-chain-free, then it is also (b+ 1)-chain-free.
This is because if it contains a (b+ 1)-chain (S0, . . . , Sb), then (S0, . . . , Sb−2, Sb−1 ∪ Sb) is a
valid b-chain, since A is monotone. In fact, we also show in Subsection 5.1 that the partition
is a proper partition, i.e., each set A(b) is non-empty.

Given this partition, one can consider a partial order over adversary structures as follows:
we define the order relation ≺ such that for any two general adversaries Ap ∈ A(k) and
Aq ∈ A(k′): Ap ≺ Aq ⇐⇒ (k < k′) ∨ (k = k′ ∧ Ap = Aq).

As mentioned in Subsection 1.4, given a general adversary A, there is a unique class
A(b) that A belongs to. We know that broadcast tolerating A is impossible in the complete
(b− 1)-minicast model, but is possible in the complete b-minicast model because of Theorem
1. We can then analyze the b-minicast channels which are necessary or which suffice to
achieve broadcast in a general network securely against A.

4 Necessary Conditions

In this section, we provide necessary conditions on general communication networks for
broadcast to be possible while tolerating general adversaries. Specifically, given an adversary
structure A ∈ A(b), we identify some types of minicast channels that have to be present in
any network N in order to achieve secure broadcast.

Let P = (P0, . . . ,Pb−1) be any b-chain that is present in A. We then characterize
b-minicasts that are essential for broadcast against A in a general communication network,
namely of the form {p0, . . . , pb−1} where p0 ∈ P0, . . . , pb−1 ∈ Pb−1. At a very high level, the
proof uses any protocol that achieves broadcast in an incomplete b-minicast network – with
the aforementioned essential b-minicasts missing – against A ∈ A(b) in order to construct
a broadcast protocol among b parties in the complete (b − 1)-minicast model against an
adversary containing a b-chain. Since the latter is known to be impossible by Theorem 1,
the former is also impossible. We depict in Figure 1 a concrete example of the reduction for
the case of b = 4.

I Lemma 9. Secure broadcast on a general network N tolerating a general adversary A ∈ A(b)

is possible for some sender only if: for every b-chain in A, namely P = (P0, . . . ,Pb−1), there
is a b-minicast channel in N that has non-empty intersection with the sets P0, . . . ,Pb−1.

Proof. Consider any b-chain in A, P = (P0, . . . ,Pb−1). From a complete network struc-
ture Ncomp = 2P , we remove b-minicast channels of the form {p0, . . . , pb−1} where p0 ∈
P0, . . . , pb−1 ∈ Pb−1. Because the set of partial broadcast channels is monotone (cf. Defini-
tion 3), all higher b′-minicasts (with b′ > b) that contain a b-minicast of the removed type
will be missing implicitly as well (more formally, if S = {p0, . . . , pb−1}, then we are talking
about b′-minicasts shared by the set S′ of b′ parties such that S′ ⊇ S).
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Figure 1 On the left, there is an adversary containing a 4-chain (Q′0, Q′1, Q′2, Q′3) among 6 parties
in the incomplete 4-minicast network missing all 4-minicasts that have non-empty intersection with
the sets Q′0, . . . , Q′3. On the right, there is an adversary with a 4-chain (Q0, Q1, Q2, Q3) among 4
parties in the complete 3-minicast network. Now our reduction lets each party Qi emulate the set of
parties Q′i. Then, any 4-minicast present on the left can be emulated by a 3-minicast on the right.
For example, the 4-minicast depicted in light-gray on the left can be emulated using the 3-minicast
depicted on the right.

Assume there exists a broadcast protocol π for some sender Ps from P tolerating the
adversary A. Using π, we now construct a protocol π′ for achieving broadcast among b
parties {Q0, . . . , Qb−1} in the complete (b − 1)-minicast communication model under an
adversary containing a b-chain, i.e., any pair (Qi, Q(i+1) mod b) can be honest while the
adversary corrupts the rest of the parties. Since from Theorem 1 such protocol π′ cannot
exist, we arrive at a contradiction.

To construct protocol π′ from π, the protocol π′ lets each Qi simulate the set Pi. The
key thing to note is that all partial broadcast channels that will be used among P in the
execution of π can be simulated by these b parties in the (b−1)-minicast model. On the other
hand, the simulation of channels that were removed in the first place would have required a
(non-existent) global broadcast channel {Q0, . . . , Qb−1}. Also all possible corruptions by an
adversary containing a b-chain, among {Q0, . . . , Qb−1} is already covered by the adversary
structure A with respect to π, because P is a b-chain contained in A, and if Qi is corrupted,
all the parties simulated by it Pi can behave arbitrarily. Since protocol π is assumed to
be secure against A, π′ allows the party that simulates Ps to broadcast securely, thereby
arriving at the contradiction. J

In fact, we can extend the above simulation argument to have a similar characterization
of essential partial broadcast channels for every lower k-chain (k < b) P = (P0, . . . ,Pk−1)
contained in A, i.e., minicasts of the type {p0, . . . , pk−1} where p0 ∈ P0, . . . , pk−1 ∈ Pk−1.
This leads us to our necessary condition for secure broadcast in general network structures.

I Theorem 10. Secure broadcast on a general network N and against a general adversary
A ∈ A(b) is possible for some sender only if: ∀k ∈ [3, b], if P = (P0, . . . ,Pk−1) is a k-chain
in A, then there must be a k-minicast channel in N that has non-empty intersection with
each of the sets P0, . . . ,Pk−1.

Sufficient Number of b-Minicasts. Jaffe et al. [8] present asymptotically tight bounds on
the number of 3-minicast channels that are necessary and sufficient to achieve Byzantine
agreement in general 3-minicast networks against threshold adversaries in the range n/3 ≤
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t < n/2. One of their main results is giving a bound for the quantity Un(t) which is the
minimum m such that any general 3-minicast network N with m 3-minicast channels achieves
Byzantine agreement while tolerating at most t corrupted parties – the underlying graph
(2-minicast network) of N is assumed to be sufficiently connected, e.g., via a complete set of
bilateral channels among the n parties.

An open question in [8] was scaling its definitions and results to general b-minicast
networks, for b > 3. We provide some steps towards answering it by first generalizing the
definition of Un(.) in a higher b-minicast setting. Similar to [8], there we consider general
b-minicast networks N that have a complete set of (b− 1)-minicast channels underneath.

I Definition 11. Let U bn(A) denote the minimum number m such that any general network
structure N with m b-minicast channels, and satisfying Nb−1 ⊆ N ⊆ Nb, achieves global
broadcast for some sender among the n parties while tolerating the general adversary A.

We now present a lower bound on U bn(A), for b ≥ 3 and any general adversary A ∈ A(b).
Note that this is similar in spirit to the analysis in [8] because the threshold adversaries
n/3 ≤ t < n/2 belong to the class A(3) (see the full version).Towards our bound, we consider
another quantity which is like a complement to U bn(A), namely ubn(A) which is defined as the
minimum number of b-minicast channels that can be removed from a complete b-minicast
model to ensure broadcast cannot be realized securely w.r.t. any sender among the n parties
against A. It is then not hard to see that U bn(A) =

(
n
b

)
− ubn(A) + 1.

So we essentially provide an upper bound on ubn(A) by removing b-minicast channels of the
type described in Lemma 9 so as to violate our necessary condition for secure broadcast in the
resulting incomplete b-minicast network. We do this by finding a b-chain P = (P0, . . . ,Pb−1)
in A ∈ A(b) which minimizes, over all b-chains present in A, the size of the corresponding set
of essential b-minicast channels {{p0, . . . , pb−1} ∈ Nb | p0 ∈ P0, . . . , pb−1 ∈ Pb−1} (here Nb
is the complete b-minicast model as denoted in Definition 4). To be precise, we attempt to
solve the following optimization problem, over all proper b-partitions P = (P0, . . . ,Pb−1) of
the party set P w.r.t. the adversary structure A:

minimize
P

|P0| × . . .× |Pb−1|

subject to P↓i,i+1 ∈ A, i = 0, . . . , b− 1.

If πA is a solution to the above problem, we have ubn(A) ≤ πA which results in the following
lower bound on U bn(A).

U bn(A) ≥
(
n

b

)
− πA + 1

Note that the above results hold for every adversary in the class A(b) – in particular, the
threshold adversaries in the range b−2

b n ≤ t < b−1
b+1n [3]. In the full version we explore in

detail this relation.

5 Sufficient Conditions

In this section, we present some conditions on general networks which are sufficient to achieve
global broadcast secure against general adversaries. To be specific, given an adversary
structure A ∈ A(b) and a network N satisfying the aforementioned sufficiency condition, we
construct a protocol that realizes Byzantine broadcast for any sender in P .

The main idea is to simulate Raykov’s protocol [9] – that considers complete b-minicast
models and (b+ 1)-chain-free adversaries – on the general network N . And we do this by
patching any b-minicast channel that might be missing in N with local executions of Raykov’s
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protocol among subsets of b parties. To make this intuition more rigorous, we first define an
operator on the general adversary A that, roughly speaking, projects its corruption power
onto such subsets of parties.

I Definition 12. Let A be any general adversary over a party set P . For a given subset
of parties S ⊆ P , we define the adversary structure A[S] to be the projection of A onto S,
where A[S] = {a ∩ S | a ∈ A}.

We make a couple of observations about the projected adversary A[S]. First, A[S] ⊆ A:
Given any a ∈ A[S], we have a = a′ ∩ S for a corresponding a′ ∈ A. But since a ⊆ a′ and A
is monotone, we have a ∈ A. Second, A[S] is a well-defined general adversary among the set
of parties S in accordance with Definition 6, i.e., A[S] is a monotone set of subsets of S. It is
clear that A[S] is a subset of 2S , because ∀a ∈ A[S], we have a ⊆ S. To show monotonicity,
let a ∈ A[S] and a′ ⊆ a. Then because A[S] ⊆ A and A is monotone, we have a′ ∈ A. As
a′ ⊆ a ⊆ S, we have a′ = a′ ∩ S, which implies that a′ ∈ A[S].

Coming to our protocol idea, consider a subset S of b parties. If A[S] is b-chain-free,
then the network N can afford to have the b-minicast channel among S to be missing, since
such a minicast channel can be locally simulated by the parties S via executing Raykov’s
broadcast protocol [9] on their underlying (b− 1)-minicast network. It is then not hard to
see that this line of reasoning extends recursively w.r.t. (b− 1) and lower minicast channels.
That is, now a (b− 1)-minicast channel among S, say the one shared by a subset of parties
S′ ⊂ S with |S′| = b − 1, is not required by our protocol if the projected adversary A[S′]
is (b− 1)-chain-free. For this recursion to terminate, we assume a complete set of bilateral
channels in the network N . Thus, we arrive at the following sufficient condition for secure
broadcast in general networks.

I Theorem 13. Secure broadcast on a general network N and against a general adversary
A ∈ A(b) is possible for any sender if:
N contains a complete set of bilateral channels, i.e. N2 ⊆ N .
For each subset of parties S of size k, where 3 ≤ k ≤ b: if A[S] contains a k-chain, there
is a k-minicast channel in N among S.

5.1 Chain Adversaries
At first glance, our sufficient condition above may seem to require the general network to
have a complete set of b-minicast channels in the first place. We show that this is not the
case for a certain class of adversaries – chain adversaries – which we define as follows.

I Definition 14. Let the list P = (P0, . . . ,Pb−1) be any proper b-partition of P . Then we
define a corresponding b-chain adversary:

AP = {a | ∃i ∈ [0, b− 1] such that a ⊆ P↓i,i+1}

It is clear that AP contains a b-chain, since we have a proper b-partition P such that
∀i ∈ [0, b − 1] P↓i,i+1 ∈ AP . From Theorem 1, we note that these b-chain adversaries
are precisely the minimal adversary structures under which broadcast is impossible in the
(b−1)-minicast model. So one would expect them to be weaker (i.e., broadcast to be possible)
when assuming a b-minicast model. We show that this is indeed the case by formally proving
that b-chain adversaries are (b+ 1)-chain-free, i.e., AP ∈ A(b).

Before proceeding with the technical details, we describe a setting that will be helpful
to understand our proofs of the following results. When arguing about (ordered) lists such
as S = (S0, . . . ,Sb−1) that are b-chains w.r.t. general adversaries, it helps to think of their
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Figure 2 Examples for b = 6 and b = 7.

partition sets (i.e., the Si’s) as being arranged in a circular fashion, among which there is a
collection of db/2e bins. More precisely, ∀k ∈ [1, db/2e− 1], define Bk = (S2k−2 ∪S2k−1), and
depending on whether b is even or odd, the last bin Bdb/2e is either (Sb−2 ∪ Sb−1) or Sb−1
respectively. Figure 2 describes the setting of Lemma 15 where each Si = {ni+1} is a singleton
set. It depicts some simpler examples of b = 6 and b = 7. For the diagram on the left, we
consider a subset SN = {n1, n3, n5}, and on the right, we consider SN = {n1, n4, n6}. The
ni’s are represented as vertices of a regular b-gon; a bold vertex means that the corresponding
ni is included in SN , and a hollow vertex implies that ni /∈ SN . A bin Bj is lightly shaded
if it is covered by SN , i.e., either n2j−1 ∈ SN or n2j ∈ SN , or more generally, Bj ∩ SN 6= φ.
In the example for b = 7 detailed in Figure 2, B2 is covered as n4 ∈ SN whereas B4 is not
because n7 /∈ SN .

Now towards proving that b-chain adversaries are indeed (b+ 1)-chain-free, we start with
the following combinatorial lemma that considers a simpler setting with b entities (or parties),
namely {n1, . . . , nb}. The proof is in the full version and uses the above methodology with
bins.

I Lemma 15. Let N = {n1, . . . , nb} and the list S = ({n1}, . . . , {nb}) be a b-partition of N .
Define S↓i,i+1 = N \ {ni, n1+(i mod b)} for i = 1, . . . , b.
1. For all subsets SN ⊆ N with |SN | < db/2e ∃i ∈ [1, b] such that SN ⊆ S↓i,i+1.
2. There exist subsets SN ⊆ N with |SN | = db/2e such that ∀i ∈ [1, b] SN 6⊆ S↓i,i+1.

I Lemma 16. Let AP be any b-chain adversary. Then AP ∈ A(b).

Proof. As discussed before, AP already contains a b-chain, namely P. Now we show that
the adversary structure is also (b + 1)-chain-free, thereby completing the proof. Towards
a contradiction, assume AP contains a (b + 1)-chain, namely S = (S0, . . . ,Sb), where
∀i ∈ [0, b] S↓i,i+1 ∈ AP . Consider a subset of db/2e alternating list elements from P , namely
SP = {P0,P2, . . . ,P2(db/2e−1)}. From Lemma 15.2 w.r.t. P, it is not hard to see that
if we pick a single party from each partition set in SP and construct a subset of parties
Sp = {p0, p2, . . . , p2(db/2e−1)}, where p0 ∈ P0, p2 ∈ P2, . . ., then ∀i ∈ [0, b− 1] Sp 6⊆ P↓i,i+1
(this can also be seen by noting that for any i ∈ [0, b− 1] Sp ∩ (Pi ∪ P(i+1) mod b) 6= ∅). Thus
because of the way AP is defined, Sp 6∈ AP .

Now coming to the (b+ 1)-chain S, no matter where we assign the parties of Sp among
the partition sets of S, we can only consider at most db/2e of those sets. For even b, as
d b2e < d

b+1
2 e, using Lemma 15.1 with respect to S, we note that ∃i ∈ [0, b] such that

Sp ⊆ S↓i,i+1, and hence, Sp ∈ AP , which is a contradiction.
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When b is odd, we have d b2e = d b+1
2 e. Using the bins methodology described above, we

observe that each of the d b2e disjoint bins in S must be covered by the d b2e parties of Sp
such that the assigned partition sets of the (b+ 1)-chain are alternating (the set Si is said to
be assigned w.r.t. parties in Sp if and only if Sp ∩ Si 6= ∅), so as to avoid the contradiction
Sp ∈ AP . Note that for any i ∈ [0, b], Sp ⊆ S↓i,i+1 ⇐⇒ Sp ∩ (Si ∪S(i+1) mod b+1) = ∅. Thus
the contradiction occurs whenever there is a pair of consecutive unassigned partition sets
(Si,S(i+1) mod b+1). Now without loss of generality, let the assigned sets be {S0,S2, . . . ,Sb−1}
with respect to Sp. More formally, let π be a bijection from the set {0, 2, . . . , b − 1} onto
itself such that p0 ∈ Sπ(0), p2 ∈ Sπ(2), . . ., pb−1 ∈ Sπ(b−1). Now consider a subset of parties
wherein we replace pb−1 in Sp with another party from Pb−1, i.e, S′p = {p0, p2, . . . , p

′
b−1}

where p′b−1 ∈ Pb−1. Again it is not hard to see from above that S′p 6∈ AP . As the assignment
of the parties p0, p2, . . . , pb−3 is already fixed, to preserve the cyclic arrangement of the
partition sets so as to avoid a contradiction with respect to S′p, we have p′b−1 ∈ Sπ(b−1).
Repeating this procedure with all parties of Pb−1, and moving over to other Pi’s, we essentially
get that P0 ⊆ Sπ(0), P2 ⊆ Sπ(2), . . ., Pb−1 ⊆ Sπ(b−1). Now consider another subset of db/2e
list elements from P, i.e., SP = {P1,P3, . . . ,Pb−2,P0}. Looking at the subset of parties
Sp = {p1, p3, . . . , pb−2, p0}, where p1 ∈ P1, p3 ∈ P3, . . ., Lemma 15.2 again shows that
∀i ∈ [0, b − 1] Sp 6⊆ P↓i,i+1, and thus Sp 6∈ AP . As the assignment of p0 to Sπ(0) in the
(b+ 1)-chain is already fixed, we observe that the assigned partition sets with respect to Sp
again has to be {S0,S2, . . . ,Sb−1} in order to avoid contradictions. Thus, define a bijection
π from the set {1, 3, . . . , b − 2, 0} onto {0, 2, . . . , b − 1} such that p1 ∈ Sπ(1), p3 ∈ Sπ(3),
pb−2 ∈ Sπ(b−2), and π(0) = π(0). Again we have P1 ⊆ Sπ(1), P3 ⊆ Sπ(3), . . ., Pb−2 ⊆ Sπ(b−2).
We see that all parties of P are distributed among the even indexed partition sets of S. In
particular, it means that S1 = ∅, thereby implying that the (b+ 1)-chain S is not a proper
partition, which is again a contradiction.

Finally, we have that AP is indeed (b+1)-chain-free, and thus belongs to the class A(b). J

So w.r.t. the hierarchy of general adversary structures described in Section 3, we can view
these b-chain adversaries to be the weakest within the class A(b). Now against these chain
adversaries, we achieve Byzantine broadcast in general networks N with missing b-minicast
channels using Theorem 13. Specifically, we identify certain b-minicast channels which are
not required (and thus can be missing in N ) to achieve broadcast against b-chain adversaries.

I Lemma 17. For 3 < b < n: given any b-chain adversary AP ∈ A(b), there exist subsets of
parties S of size b such that the projected adversary structure AP [S] is b-chain free.

Proof. Towards the proof, we construct such a subset S ⊆ P with |S| = b. Let P =
(P0,P1, . . . ,Pb−1) be the b-chain corresponding to the adversary AP . Since b < n, at least
one Pi contains more than one party; without loss of generality, let P0 be such a set. Define
the subset S = {p0, p

′
0, p1, . . . , pb−2} where {p0, p

′
0} ⊆ P0, p1 ∈ P1, . . . , pb−2 ∈ Pb−2. We

show that the projected adversary AP [S] does not contain a b-chain.
When b is even, consider the following subsets of size b/2: S0 = {p0, p2, . . . , pb−2} and

S′0 = {p′0, p2, . . . , pb−2}. From Lemma 15.2, we have that ∀i ∈ [0, b − 1] S0, S
′
0 6⊆ Pi,i+1↓,

which in turn means that S0, S
′
0 /∈ AP . Because we have AP [S] ⊆ AP , it is then clear that

S0, S
′
0 /∈ AP [S]. Now towards a contradiction, assume AP [S] contains a b-chain. Describing

such a b-chain using b/2 bins, as in the proof of Lemma 16, we observe that each element of
S0 has to be put in a unique bin in an alternative fashion to ensure that S0 /∈ AP [S] – i.e.,
every pair of consecutive elements in the b-chain must have a non-empty intersection with
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S0. Coming to S′0, we have to place p′0 in the same bin as p0 so that every bin is covered by
S′0. But this would disrupt the alternative arrangement among S′0 which would lead to a
pair of consecutive spots on the b-chain that are not occupied by S′0 resulting in S′0 ∈ AP [S],
a contradiction.

Similarly for odd b, we consider four subsets of size db/2e: S0 = {p0, p2, . . . , pb−3, pb−2},
S′0 = {p′0, p2, . . . , pb−3, pb−2}, S1 = {p0, p1, p3, . . . , pb−2} and S′1 = {p′0, p1, p3, . . . , pb−2}.
Using the same arguments as the even case above, we infer that S0, S

′
0, S1, S

′
1 /∈ AP [S]. Also

it is worth noting that S0 ∪ S′0 ∪ S1 ∪ S′1 = S; in other words, any element of S will belong
to at least one of these four subsets. Again we assume that AP [S] contains a b-chain. We
claim that in such a b-chain, the only elements that are allowed to be adjacent to p0 (p′0
resp.) are p′0 (p0 resp.) and pb−2. Because, for example, if p0 was adjacent to some pk in
the b-chain where k ∈ [1, b− 3], then using the bins terminology, the bin defined by {p0, pk}
is not covered by either S′0 or S′1 (depending on whether k is odd or even respectively),
thereby arriving at either S′0 ∈ AP [S] or S′1 ∈ AP [S], both of which are contradictions. But
since b > 3, such a configuration cannot exist – i.e., no matter how we arrange p0, p

′
0 and

pb−2 in the assumed b-chain, at least one of p0 or p′0 has to be adjacent to some pk where
k ∈ [1, b− 3]. This concludes the proof. J

Necessary Number of b-Minicasts. Another main result of Jaffe et al. [8] is a tight
characterization of the quantity Tn(t) which is defined as the minimum m such that there
exists a general 3-minicast network N with m 3-minicast channels that achieves Byzantine
agreement while tolerating at most t corrupted parties – the underlying graph (2-minicast
network) of N is also assumed to be sufficiently connected, e.g., via a complete set of bilateral
channels among the n parties. To extend their analysis to general b-minicast networks, for
b > 3, we start with generalizing the definition of Tn(.) in a higher b-minicast setting. Similar
to [8], in the following we again consider general b-minicast networks N that have a complete
set of (b− 1)-minicast channels underneath.

I Definition 18. Let T bn(A) denote the minimum number m such that there exists a general
network structure N with m b-minicast channels, satisfying Nb−1 ⊆ N ⊆ Nb, that achieves
global broadcast for any sender among the n parties while tolerating the general adversary A.

We now provide an upper bound on T bn(AP), for b > 3 and any b-chain adversary
AP ∈ A(b). Again, we note that this is in a similar vein to the analysis in [8] because the
threshold adversaries n/3 ≤ t < n/2 belong to the class A(3) (see the full version); here
we consider the weakest adversaries, a.k.a. b-chain adversaries, of the class A(b). The idea
behind the upper bound is to explicitly construct a network N , of the type described in
Definition 18, that satisfies the sufficiency condition of Theorem 13 for broadcast against a
b-chain adversary AP . And for a tighter bound, we would like N to have as few b-minicast
channels as possible.

So to construct the network N , we start with the complete b-minicast model and remove
b-minicast channels that are not required to achieve Byzantine broadcast against AP , i.e.,
minicast channels shared by any subset S of b parties where AP [S] is b-chain free. Specifically
in our case, the discarded b-minicast channels will be of the type described in the proof
of Lemma 17: if P = (P0,P1, . . . ,Pb−1) is the b-chain corresponding to the adversary AP ,
then we remove the minicast channel shared by the subset S = {p0, p

′
0, p1, . . . , pb−2} where

{p0, p
′
0} ⊆ P0, p1 ∈ P1, . . . , pb−2 ∈ Pb−2, leaving out Pb−1 (and assuming P0 contains more

than one party). In fact, we can also consider another type of b-minicast channels where, for
the corresponding subset S, we pick two parties from P1 (if possible) and continue to select
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a party from consecutive chain elements, namely P2,P3, . . .Pb−1, leaving out P0 this time.
And we could also start with two parties from P0 and continue picking a party in the reverse
direction, i.e., from elements Pb−1,Pb−2, . . .P2 – it is not hard to see that for such a subset
S, the adversary AP [S] is going to be b-chain free. Considering all these combinations, the
resulting number of b-minicast channels in our network will be an upper bound on T bn(AP).
For the sake of brevity, let σi = |Pi| with σi−1 = |P(i−1) mod b| and σi+1 = |P(i+1) mod b|.
Also let πP =

∏b−1
i=0 σi. Then we have the following:

T bn(AP) ≤
(
n

b

)
− πP ·

b−1∑
i=0

1
σi

((
σi−1

2
)

σi−1
+
(
σi+1

2
)

σi+1

)

To compute the above bound, we sum over all unpicked elements Pi and choose two parties
either from P(i−1) mod b or P(i+1) mod b; this also implies that the set of removed b-minicast
channels w.r.t. each of the above combinations are disjoint, i.e., there is no need to account
for any intersections among distinct types of such minicast channels. We believe that the
above bound can be made tighter by exhaustively identifying (and removing) additional
b-minicast channels shared by subsets S of b parties such that AP [S] is b-chain free and
which do not fall under the type (or its above variants) described in the proof of Lemma 17.

6 Conclusions

We identified certain types of partial broadcast channels that are necessary or that suffice for
global broadcast to be realized securely against general adversaries on general communication
networks. The analysis included proposing a partial ordering over all possible adversary
structures with respect to n parties, which could be of independent interest.

Our results are general enough to characterize such important sets of partial broadcasts
of any size b, against general adversary structures. In particular, this allows us to extend
the results of Jaffe et al. [8] related to finding the number of necessary and number of
sufficient 3-minicast channels for constructing broadcast to general b-minicast channels. But
at the same time, we note that there is a lot of room for improvement because, in contrast
to general 3-minicast networks, we do not (yet) have tight necessary and sufficient conditions
on general b-minicast networks – for b > 3 – towards achieving secure broadcast.

So a clear open problem would be to formulate such conditions for higher minicast
networks. One approach could be to generalize the tight sufficiency condition of secure
broadcast on general 3-minicast networks, as studied in [11, 8], to b-minicast networks. In the
full version,we show that a straightforward extension of the so-called virtual party emulation
technique – used by [11] for their broadcast protocols in general 3-minicast networks – is not
feasible when it comes to b-minicast channels. Hence it would be interesting to see how one
may circumvent this limitation.

On an abstract level, our necessary conditions looked at the b-chain property of general
adversaries on a global scale, i.e., with respect to all n parties. Whereas for our sufficient
conditions, we considered the b-chain condition of adversary structures on a local scale,
namely w.r.t. subsets of b parties. Thus, another intriguing open question would be to know
whether a middle ground between these two viewpoints could lead to tighter necessary and
sufficient conditions on general networks for realizing broadcast. All in all, we hope this paper
laid a firm groundwork for more advanced research on broadcast in general communication
networks that is secure against general adversaries.

OPODIS 2020
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Abstract
Modern communication networks support fast path restoration mechanisms which allow to reroute
traffic in case of (possibly multiple) link failures, in a completely decentralized manner and without
requiring global route reconvergence. However, devising resilient path restoration algorithms is
challenging as these algorithms need to be inherently local. Furthermore, the resulting failover paths
often have to fulfill additional requirements related to the policy and function implemented by the
network, such as the traversal of certain waypoints (e.g., a firewall).

This paper presents local algorithms which ensure a maximally resilient path restoration for a
large family of product graphs, including the widely used tori and generalized hypercube topologies.
Our algorithms provably ensure that even under multiple link failures, traffic is rerouted to the other
endpoint of every failed link whenever possible (i.e. detouring failed links), enforcing waypoints and
hence accounting for the network policy. The algorithms are particularly well-suited for emerging
segment routing networks based on label stacks.
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1 Introduction

Communication networks have become a critical infrastructure of our society. With the
increasing size of these networks, however, link failures are more common [2, 10], which
emphasizes the need for networks that provide a reliable connectivity even in failure scenarios,
by quickly rerouting traffic. As a global re-computation (and distribution) of routes after
failures is slow [21], most modern communication networks come with fast local path
restoration mechanisms: conditional failover rules are pre-computed, and take effect in case
of link failures incident to a given router.
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Devising algorithms for such path restoration mechanisms is challenging, as the failover
rules need to be (statically) pre-defined and can only depend on the local failures; at the
same time, the mechanism should tolerate multiple or ideally, a maximal number of failures
(as long as the underlying network is still connected), no matter where these failures may
occur. Furthermore, besides merely re-establishing connectivity, reliable networks often must
also account for additional network properties when rerouting traffic: unintended failover
routes may disrupt network services or even violate network policies. In particular, it is often
important that a flow, along its route from s to t, visits certain policy and network function
critical “waypoints”, e.g., a firewall or an intrusion detection system, even if failures occur.

Today, little is known about how to provably ensure a high resiliency under multiple
failures while preserving visits to waypoints. This paper is motivated by this gap. In
particular, we investigate local path restoration algorithms which do not only provide a
maximal resilience to link failures, but also never “skip” nodes: rather, traffic is rerouted
around failed links individually, hence enforcing waypoints [1].

1.1 Related Work

Motivation. Resilient routing is a common feature of most modern communications net-
works [6], and the topic has already received much interest in the literature. However, most
prior research on static fast rerouting aims at restoring connectivity to the final destination,
without considering waypoint properties as in our work. Such waypoint preservation is
motivated by the advent of (virtualized [11]) middleboxes [4], respectively local protection
schemes in Multiprotocol Label Switching (MPLS) terminology [26], and by the recent
emergence of Segment Routing (SR), where routing is based off label stacks – more precisely
by the label on top of the stack [24], which is treated as the next routing destination.

Path restoration. Only little is known today about static fast rerouting under multiple
failures, while preserving waypoints. In TI-MFA [16], it has been shown that existing solutions
for SR fast failover, based on TI-LFA [20], do not work in the presence of two or more failures.
However, TI-MFA [16] and non-SR predecessors [22] rely on failure-carrying packets, which
is undesirable as discussed before and we overcome in the current paper.

For the case of two failures, heuristics [9] exist, but they do not provide any formal
protection guarantees, except for torus graphs [23]. Beyond a single failure [20] in general
and two failures on the torus [23], we are not aware of any approaches that work in our
model, except for a recent work on binary hypercubes [17]. However, it is not clear how to
extend [17] to e.g. generalized hypercubes, and the approach followed in this paper presents
a more generic scheme for the Cartesian product of any set of base graphs, as long as
“well-structured” base graph schemes are provided.

Connectivity restoration without waypoints. Static fast failover mechanisms without way-
points are investigated by Chiesa et al. [5,7,8] leveraging arc-disjoint network decompositions,
also by Elhourani et al. [10], Stephens et al. [27,28], and Schmid et al. [3,14,15,18,19,25]. Bey-
ond that, the concept of perfect resilience (any number of failures) is investigated in [12,13,29].
Even though it is possible to provide Ω(k)-resilience in k-connected graphs, this guarantee
pertains only to reaching the destination, and does not transfer to link protection.
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1.2 Contributions
We initiate the study of local (i.e., immediate) path restoration algorithms on product graphs,
an important class of network topologies. More specifically, our algorithms are 1) resilient to
a maximum number of failures (i.e., are maximally robust), 2) respect the (waypoint) path
traversal of the original route (by detouring failed links), and 3) are compatible with current
technologies, and in particular with emerging segment routing networks [24]: our algorithms
do not require packets to carry failure information, routing tables are static, and forwarding
just depends on the packet’s top-of-the-stack destination label and the incident link failures.

Our main result is an efficient scheme that can provide maximally resilient backup paths
for arbitrary Cartesian product of given base graphs, as long as “well-structured” schemes
are provided for the base graphs. Using complete graphs, paths, and cycles as base graphs,
we can generate maximally resilient schemes for additional important network topologies
such as grids, tori, and generalized hypercubes.

1.3 Organization
The remainder of this paper is organized as follows. We first introduce necessary model
preliminaries in Section 2, followed by our main result in Section 3, where we provide a
general scheme to compute maximally resilient path restoration schemes for product graphs.
We then show how our scheme can be leveraged for specific graph classes in Section 4, for
the selected examples of complete graphs, generalized hypercubes, grids, and torus graphs.
We conclude our study in Section 5 with a few open questions.

2 Preliminaries

We consider undirected graphs G = (V, E) where V is the set of nodes and E is the set of
links connecting nodes.

I Definition 1. A backup path (a.k.a. replacement path) for a link ` ∈ E is a simple path
that connects the endpoint of the link `. Let P be the set of all backup paths in a graph. An
injective function BPG : E → P that maps each link to one of its backup paths is a backup
path scheme.

We may drop the subscript when the graph G is clear from the context. When a packet
arrives at a node and the next link on its path is some failed link `1, the node (i.e., router)
immediately reroutes the packet along the backup path of `1, given by BP(`1). The packet
may encounter a second failed link `2 ∈ BP (`1). Now assume `1 ∈ BP(`2). The packet
loops between the two links indefinitely as one link lies on the BP of the other. To this
end, we need to characterize backup paths that do not induce such infinite forwarding loops
under any subset of simultaneous link failures restricted only in cardinality. Before that, we
formalize the actual route that a packet takes under the “failure scenario” L.

I Definition 2. Given any subset of links L ⊂ E, a detour route around a link ` ∈ L,
denoted by RG(`, L), is obtained by recursively replacing each link in BPG(`) ∩ L with its
respective detour route. Precisely,

RG(`, L) = (BPG(`) \ L) ∪
⋃

`′∈BPG(`)∩L

RG(`′, L). (1)

Moreover, 1) BPG is resilient under the failure scenario L if and only if ∀` ∈ L, the detour
RG(`, L) exists, i.e., the recursion terminates, and
2) BPG is f -resilient if and only if it is resilient under every L ⊂ E s.t. |L| ≤ f .
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In words, when a packet’s next hop is across the failed link ` ∈ L, it gets rerouted along the
route RG(`, L) which ends at the other endpoint of ` hence evading all failed links. A BP
scheme is f -resilient if for every subset of up to f failed links, replacing each failed link with
its backup path produces a route that excludes failed links. The replacement process from a
packet’s perspective occurs recursively as in (1). A packet ends up in a loop permanently
when it encounters a failed link for which the detour (1) does not exist. Then, the scheme is
f -resilient if a packet that encounters a failed link reaches the other endpoint of the link by
traversing the BP of that link and the BP of any consequent failed link that it encounters
along the way.

Definition 2 implies that we cannot have a resiliency higher than graph connectivity, since
L may simply consist of all links incident to one node which makes a detour impossible.

I Definition 3. An f -resilient backup path scheme BPG is maximally resilient if and only if
there is no (f + 1)-resilient scheme.

Next, we introduce the notion of “dependency” on which we establish some key definitions
used widely in the analysis of resiliency in our proofs.

I Definition 4. We say there is a dependency relation `→ `′ if and only if the link ` includes
the link `′ on its backup path, i.e., `′ ∈ BPG(`). We represent all dependency relations as a
directed dependency graph D(BPG) with vertices {v` | ` ∈ G} and arcs {(v`1 , v`2) | `1 → `2}).
BPG induces the dependency graph D(BPG).

We denote a dependency arc (v`1 , v`2) by (`1, `2) for simplicity. Any backup path scheme
BPG induces cycles in D(BPG), as otherwise there is a link without any BP assigned to it.
We refer to one such cycle as cycle of dependencies or CoD for short. Similarly, we define
path of dependency or PoD for short.

Observe that a CoD captures a failure scenario that leads to a permanent loop. Rewording
Definition 2, BPG is f -resilient if and only if every CoD is longer than f , i.e., it consists of at
least f + 1 dependency arcs. Hence, CoDs with the shortest length determine the resiliency
and we refer to them as min-CoDs.

Next, we introduce some additional notations and definitions based on Definition 4. Let
CoD(v) denote the CoD over links incident to v ∈ V . We consider maximally resilient
schemes for special regular graphs which implies CoD(v) is unique. Note that non-incident
links may induce (min-)CoDs as well. We focus on special regular graphs and resiliency
thresholds that are maximal for the connectivity (or the degree) of the those graphs. Then,
a min-CoD cannot be shorter that the degree of the respective regular graph, which implies
CoD(v) is unique for every node v.

In Section 3, we present a backup path scheme for certain k-dimensional product graphs,
by generalizing the solution presented in [17] on binary hypercubes (BHC ). A k-dimensional
BHC is the Cartesian product of any set of BHCs where dimensions add up to k. A product
graph G is the Cartesian product of base graphs in {g1, . . . , gk}. That is, G =

∏
d∈[k] gd

where
∏

denotes the Cartesian product and each gd is the base graph in dimension d.
Let nd := |V [gd]|, d ∈ [k] denote the order of gd. Nodes in a product graph are repres-
ented as k-tuples (ak, . . . , a1) where ∀d ∈ [k] : 0 ≤ ad < nd. Likewise, we assume labels
(ak, . . . , ad−1, ∗, ad+1, . . . , a1) for links where their endpoint nodes differ in their dth digit
(i.e., dth component) which is represented by the ‘*’.
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3 Resiliency for Cartesian Product

We now introduce an algorithm to compute a maximally resilient scheme for special product
graphs. More specifically, the algorithm takes the scheme of each base graph and combines
them in a way that yields a scheme for the Cartesian product of those base graphs. However,
it requires each individual scheme to possess some structural properties. We begin with the
characterization of these properties.

We can break a CoD open into a PoD by removing one of its arcs, which is achieved by
removing the head link of an arc from the BP of its tail link.

I Definition 5. An r-resilient backup path scheme BPG is well-structured if and only if
there is a set of boundary links L∗ that for every node v contains a unique link incident to
v, satisfying the following conditions.
1. There is a unique CoD C∗ that consists only of links in L∗.
2. The following procedure breaks all CoDs.

a. For every link ` 6∈ L∗ s.t. BPG(`) ∩ L∗ 6= ∅;
i. There are exactly two nodes x1 and x2 on BP (`),
s.t. L∗(x1), L∗(x2) ∈ BP (`).

ii. Remove every link of BP (`) between x1 and x2, i.e. the subpath BP (`)[x1, x2].
b. To break C∗, pick one arc (`′, `∗) ∈ C∗ arbitrarily and remove `∗ from BPG(`′).

3. At least r arcs are left in every CoD (not removed at 2(a)ii).

Intuitively, these conditions mandate a choice of L∗ that for every CoD, the packet that
realizes the CoD traverses a boundary link. Removing the arc headed at such link breaks the
CoD open into a PoD. We refer to such arc as a feedback arc. Later, we close the PoD into a
new CoD that is induced by the scheme of a product graph for which G is a “base graph”.

Concretely, Definition 5 constrains the set L∗ in a way that for every CoD one of the
following two cases must apply. Case 1. The CoD may contain an arc headed to a link in L∗.
Then removing the head link from the BP of the tail link is sufficient to break the CoD. Case
2. The CoD may not contain any link in L∗ as the tail or head of some arc, but it contains
an arc (`1, `2), `2 6∈ L∗ that the packet departing from either endpoints of `1, traversing
BPG(`1), has to traverse some link in L∗ before reaching `2. The procedure (at line 5.2(a)ii),
removes not only links of L∗ from the BP but also the link `2, since it lies between x1 and
x2. Note that Case 1 applies also to the unique CoD C∗ which is handled separately at 5.2b.

Next, we establish a lemma that constructs a walk on all nodes of G, using a given BP
scheme and the corresponding set of boundary links.

I Lemma 6. Assume a well-structured scheme BPG and a set of links L∗ satisfying Definition
5 are given. There exists a closed walk W on all nodes of G that 1) visits each node v ∈ G

immediately before traversing the link L∗(v), and 2) links in L∗ are traversed in the same
order they are traversed by C∗.

Proof. The following procedure marks every node in G with FINISHED as soon as a visit
to v is followed by walking the link L∗(v).
1. W = ∅.
2. Let w0 := v. Initialize with the last traversed boundary link `∗ = L∗(w0). Let {w0, w1} :=

`∗, then initialize the walk W = [w0, w1].
3. Repeat:

a. Assume W = [w0, w1, . . . , wt] is the current walk, L∗(wt) = {wt, u} and let `′wt
:=

{wt, u′} ∈ BPG(`∗), u′ 6= wt−1.
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b. If wt−1 = u ∧ wt 6= wt−2 then wt+1 = u.
c. Else, wt+1 = u′.
d. If wt+1 = u then `∗ = `wt and mark wt with FINISHED.
e. If wt = w0 ∧ {w0, w1} ∈ BPG(`∗) then Break.

The walk W begins with the link L∗(w0). Then it proceeds to the next link on the
backup path of the last traversed link `∗ ∈ L∗ at Line 3c (initially `∗ = `w0), or it traverses
the recently walked link {wt−1, wt} in the opposite direction at Line 3b (i.e., from wt to
wt−1). By assumption, any ` ∈ L∗ is on the backup path of some `′ ∈ L∗ and (`′, `) ∈ C∗BPG

.
Therefore, the loop at Line 3 reaches an iteration where the last traversed `∗ ∈ L∗ includes
L∗(w0) on its backup path, which breaks the loop at Line 3e. The last visited node must
be w0 implying W is a closed walk. Whenever W reaches a node wt and L∗(wt) is on the
backup path of the last traversed `∗ ∈ L∗, then it next traverses L∗(wt) for the first time
at Line 3c in one direction, or for the second time at Line 3b in the reverse direction. In
either case, L∗(wt) is walked immediately after a (FINISHED) visit to wt. At the end, both
endpoints of every link in L∗ are marked FINISHED and since

⋃
`∈L∗ ` = V [G], all nodes are

marked FINISHED. J

We will use the walk in the construction of the scheme for a multi-dimensional graph where
G is the base graph in some dimension. The walk is used to guide backup paths of links in
other dimensions when they need to traverse the dimension of G.

3.1 The Construction
For every base graph gd, we assign node labels 0, . . . , nd − 1 such that nodes are ordered as
they are FINISHED in Lemma 6. I.e., the first node FINISHED gets 0, the second one gets 1
and so on. Assume, for each gd ∈ G, a well-structured, rd-resilient backup path scheme BPgd

together with a boundary set L∗BP
gd
⊆ E[gd] is given. Let us fix a circular order over base

graphs, e.g., g1, . . . , gd. A node v := (a1, . . . , ak) ∈ G corresponds to the adth node in the
dth base graph gd, d ∈ [k].

Let incd(1, . . . , ak) denote the (successor) function that takes a node in G, increments the
dth digit, applies any carry flag rightward rotating left, and discards any carry back to the
dth digit. Observe that for a fixed d ∈ [k], the function incd+1 defines a total order over all
instances of gd. We denote the ith instance by gd

i . We write gd
i (instead of gd) only when we

refer to a specific gd-instance. similarly, ` ∈ G is a gd-link if it is an instance of a link in gd.
Let vd

i (x) denote the mapping V [gd] 7→ V [gd
i ] ⊆ V [G], where vd

i (x) is the ith instance
of the node x ∈ gd. Then, vd

i+1(x) = incd+1(vd
i (x)). Similarly, for a path (i.e., subset) of

nodes P , we have vd
i (P ) = ∪v∈P vd

i (v). We use vd
i whenever the node x is not relevant to the

context. Next, we compute a path P ∗(vd
i ) = {vd

i , . . . , vd
i+1}, that connects vd

i and vd
i+1 in G

through the sequence of base graphs gd+1, gd+2, . . . . The intermediate nodes are determined
by digits incremented during the operation incd+1(vd

i ). Algorithm 1 depicts this procedure.
We initialize the scheme for every gd-instance with a copy of BPgd , i.e., ∀i : BPgd

i
= BPgd .

Then, we integrate BPgd
i
into BPG by extending backup paths of links that contain or traverse

a boundary link, i.e., links that are tail of some feedback arc. Consider any feedback arc
(`, `′) ∈ ABP

gd
i

(C). Since `′ ∈ BPgd
i
(`), we can break C by extending BPgd

i
(`) into a backup

path that does not traverse `′ (i.e., detours `′). We detour `′ = {x1, x2} via a pair of walks
through gd+1

i , gd+1
i , . . . that reaches the next instance of gd

i , i.e., the instance given by incd+1.
That is, the paths P ∗(vd

i (x1)) and P ∗(vd
i (x2)). By reconnecting vd

i+1(x1) and vd
i+1(x2)

through gd
i+1, we finish the construction of the extended backup path. In Algorithm 2, we

use notations and constructions defined so far to describe the integration of all BPgd
i
’s into

one scheme BPG .
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Algorithm 1 Construction of P ∗(vd
i ), vd

i = (a0, . . . , ak−1).

1: function P ∗(vd
i )

2: P = {vd
i }, v = vd

i , d′ = d + 1, carry = 1 . initialize
3: while carry > 0 ∧ d′ 6= d do . emulating incd+1(v)
4: if ad′ < nd′ − 1 then
5: v[d′] = v[d′] + 1, carry = 0 . increment the d′th digit
6: else
7: v[d′] = 0, carry = 1
8: d′ = (d′ + 1) (mod k) . move to the next digit, rotating left
9: P = P ∪ {v} . append v to P

return P

Algorithm 2 Construction of BPG .

1: Initialize BPG = ∅
2: for every d ∈ [k] and all instances gd

i do
3: BPgd

i
= ForBaseGraph(d, i)

4: BPG =
⋃

d∈[k],i BPgd
i

5: function ForBaseGraph(d, i)
6: Initialize BPgd

i
= BPgd , relabel all nodes from x ∈ gd to vd

i [x] ∈ gd
i .

7: Let Ld
i := L∗ of BPgd

i
(Definition 5)

8: for every ` ∈ gd
i , 6∈ Ld

i s.t. BPgd
i
(`) ∩ Ld

i 6= ∅ do . Definition 5.2a
9: Let x1 and x2 be nodes as specified in Definition 5.2(a)i. . detour points

10: S := BPgd
i
(`)[x1, x2] . the part of BP to be removed

11: S∗ := incd+1(S) . the copy of S in the next gd-instance gd
i+1

12: Compute P ∗(x1) and P ∗(x2) . Algorithm 1
13: P ′` := (P` \ {S}) ∪ {S∗} ∪ P ∗(x1) ∪ P ∗(x2)
14: BPgd

i
(`) = P ′`

return BPgd
i
(`)

I Definition 7. Let `1 := {u, v} ∈ gd′

i , `2 := {u′, v′} ∈ gd′

j , j 6= i. We say that the dependency
arc (`1, `2) traverses the base graph gd, d 6= d′ if and only if `1 and `2 differ in their dth digits.
Moreover, if the dth digit from `1 to `2 increases by 1 then we say the arc traverses gd in
uphill direction. Otherwise the dth digits resets to zero and the arc traverses gd in downhill
direction.

Restating Definition 7, two packets departing from the two endpoints of `1 traveling on the
backup path of `1 together traverse a pair of links in two gd-instances (symmetrically), before
reaching `2 ∈ BPgd

i
(`1). The pair of gd-links are distinct instances of the same link in gd

and they are traversed in the same direction due to the symmetric construction of the pair
of paths at Line 2.12. That is, either towards their higher endpoint (i.e. larger dth digit),
which we refer to as the uphill direction, or the opposite (downhill) direction.

I Definition 8. We say an arc (`1, `2), `1 ∈ gd′

i `2 ∈ gd
j crosses gd if the two links belong to

different base graphs, i.e. d′ 6= d, or both are in the same gd-instance, i.e. d = d′ and i = j.
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Similarly, we say a PoD (CoD) traverses or crosses gd if it includes an arc that, respectively,
traverses or crosses gd. Therefore, if a PoD does not cross gd-link then it means it does not
contain any gd-link as the head of an arc. We emphasize that by construction, an arc either
crosses or traverses a base graph gd.

I Definition 9. An arc (`1, `2) ∈ C is the contribution of gd in one these cases: it crosses
gd, it traverses gd in the uphill direction, or `2 is a gd-link and the arc traverses all other
dimensions in the downhill direction.

By Definition 9 every arc is the contribution of a unique base graph.

3.2 Analysis of Resiliency
We begin with a series of lemmas that show each base graph contributes its resiliency to the
resiliency of BPG .

I Lemma 10. Let P be a PoD induced by BPG that traverses gd in the uphill direction
at least once and it does not cross gd. Then, there exists a PoD P̃ induced by BPgd that
consists of the links in L∗BP

gd
that are traversed by P s.t. |P | ≥ |P̃ |.

We defer the proof to the appendix due to space constraint.

Proof. We have |C| ≥ |C̃| by applying Lemma 10. Then the claim follows because of the
assumption that BPgd is rd-resilient, which directly implies |C̃| ≥ rd + 1. J

I Lemma 11. Let P := {(`first , `1), . . . , (`s, `last)} be a PoD induced by BPG. Assume
`first ∈ gd

i and `last ∈ gd
j are the only gd-links on P for some i and j. Let `′first, `′last ∈ gd be

the corresponding links in gd. Then there exists a PoD P̃ induced by BPgd that begins with
`′first and ends at `′last s.t. |P | ≥ |P̃ |.

Proof. By assumption, P begins with an arc tailed at `first ∈ gd
i . Let (`first, `′) be the

feedback arc induced by BPgd
i
that is picked at Line 2.9 and then is handled by detouring

a boundary link `′ ∈ L∗
gd

i

via gd
i+1 at Lines 2.9 to 2.14. Let A ⊆ P be the set of arcs in P

that traverse gd in the uphill direction. Note the dth digit changes only along arcs in A and
remains unchanged along arcs P \A. We construct a PoD P̃ over a subset of boundary links
in L∗gd , as follows. The first arc in P̃ is (`first, `′). With each arc in A, the dth digit increases
by 1 from its tail to its head. Recall that the value of this digit is a node label in gd, and an
increment by 1 corresponds to traversing a boundary link of gd. Consider arcs in A sorted
in the order they appear in P . Let `∗ ∈ L∗BP

gd
be the boundary link traversed by the first

arc in A (possibly, `∗ = `′). Let P ′ := P \ {(`first , `1), (`s, `last}. By assumption, P ′ does not
cross gd and therefore it begins at `∗ and ends at `∗∗, the boundary link traversed by the
last arc in A. we consider two cases.

Case i) `last is a boundary link, i.e., `last ∈ L∗gd , then we apply Lemma 10 to P ′ and
we obtain a PoD P ′′, |P ′′| ≤ |P ′|, over the boundary links traversed by A. (1) Due to
Line 2.12 and Lemma 6.2, arcs in A traverse boundary links of BPgd in the same order
they appear in C∗BP

gd
. (2) The dth digit does not change, from the head of the last arc

in A until the arc headed at `s. Combining (1) and (2) implies that `last succeeds `∗∗

in this ordering and therefore (`∗∗, `last) ∈ C∗BP
gd

is an arc induced by BPgd . Thus, P̃ :=
{(`first , `∗)}∪P ′′∪{(`∗∗, `last)} is a PoD (induced by BPgd) and |P | = |P ′|+2 ≥ |P ′′|+2 = |P̃ |,
which satisfies the lemma.
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Case ii) `last is not a boundary link, i.e., `last 6∈ L∗gd . Let wt the value of the dth digit at
`s. The walk WBP

gd
from Lemma 6 visits the node wt ∈ gd immediately before traversing

the incident boundary link `∗∗ := L∗gd(wt) (Line 6.3d). The pair of paths computed at Line
2.12 traverse nodes of gd (i.e., values of the dth digits along the paths) in the same order
as they are walked on by WBP

gd
. This means that BPG(`s) traverses (some two instances

of) `∗∗ before any other link in gd, in particular, before `last . Therefore `∗∗ ∈ BPG(`s) and
(`s, `∗∗) is an arc induced by BPG . Then, P ′ := P \ {(`s, `last)} ∪ {(`s, `∗∗)} is a PoD as well.
By Lemma 6.3, the walk WBP

gd
, after traversing `∗∗, walks on BPgd(`∗∗) until the next

boundary link is reached. Hence, `last is on this backup path and (`∗∗, `last) is an arc induced
by BPgd . is a PoD induced by gd. Now, similarly to the case (i), we remove the first and the
last arcs in P ′ and obtain a PoD P ′′ that does not cross gd. By applying Lemma 10 to P ′′, we
obtain a PoD P ∗ induced by gd s.t. |P ∗| ≤ |P ′′|. Thus, P̃ := {(`first , `∗)} ∪P ∗ ∪ {(`∗∗, `last)}
is a PoD induced by gd and |P | = |P ′| = |P ′′| + 2 ≥ |P ∗| + 2 = |P̃ |, which concludes the
lemma. J

I Theorem 12. The backup path scheme BPG is (∆− 1)-resilient where ∆ =
∑

d∈[k](rd + 1).

Proof of Theorem 12. Consider any CoD C induced by BPG . We shrink G down to a single
instance of gd denoted by g̃d. To this end, we map all nodes in G with equal dth digit, to
one node s ∈ g̃d. As a result, links between nodes with equal dth digits merge into a single
node, which transforms them into loop links. We remove all arcs having a loop link as an
endpoint and denote the remaining arcs by C′. Since gd is rd-resilient, gd contributes up to
rd + 1 arcs to C; we argue that the contribution is exactly rd + 1 arcs.

If C consists of gd-links only (i.e., endpoints of every arc in C have different dth digits),
then all arcs in C are preserved (i.e. not removed) after the transformation, which implies
C′ is a CoD in g̃d and |C| ≥ |C′| ≥ rd + 1. However, some arcs in C′ are projection of arcs
in C that are not the contribution of gd (Definition 9). They traverse some gd′ , d′ 6= d in
the uphill direction and hence are exclusively the contribution of gd′ . These are the same
arcs eliminated at Line 5.2(a)ii. Definition 5.3 guarantees at least rd non-eliminated arcs left
which implies at least rd + 1 arcs in C′ cross gd and are its contribution. There must be one
arc that traverses all dimensions except d in the downhill direction, which means in total
there are at least rd + 1 arcs contributed from gd.

Else, if C does not contain cross gd-link, then it only traverses gd. Recall that traversing
gd is guided by the closed walk constructed in Lemma 6 and with each (FINISHED) visit
to nodes there is an increment, i.e. an uphill traversal. Hence, gd in this case contributes a
number of arcs equal to the number of FINISHED visits, which in turn is the number of its
nodes, or |V [gd]| ≥ rd + 1.

Else, C both traverses and crosses gd. Then there are links with equal dth digits at their
endpoints which shrink into loop links. We remove all arcs (`′, `′′) ∈ C′ where `′ or `′′ is a
loop link, as well as loop arcs. As a result, parts of C′ along which the dth digit does not
change, is eliminated and C′ is segmented into separate PoDs. Let S ⊂ C′ denote the set of
remaining arcs (tails and heads of which in g̃d). Notice that arcs in S form disconnected
PoDs. Moreover, for each PoD P ⊆ S, the tail of the first arc and the head of the last arc
belongs to g̃d. The remaining arcs (which do not include any gd-link) are in S := C \ S. Due
to the segmentation of C, S forms disconnected PoDs, each beginning with an arc tailed at a
link in g̃d and ends at an arc headed at link in g̃d. Since these PoDs cross gd only at their
end links, we apply Lemma 11 to each PoD P ′ ⊆ S and we obtain a PoD P̃ induced by
BPgd . Then, by adding each obtained P̃ to C, we reconnect all consecutive PoDs in S and
join them into a CoD C̃ induced by BPgd , which means |C̃| ≥ rd + 1. Due to proof of Lemma
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Figure 1 Maximally resilient schemes for K4 and K5. The numbers on each link are the internal
nodes of the link’s backup path.

11, every arc in C̃ is either projected from an arc in C that has gd-links as endpoints, i.e.,
crossing gd, or is projected from some arc in C that traverses gd in the uphill direction. Thus
by definition 9, every arc in C̃ is the contribution of gd. J

4 Generalized Hypercubes and Tori

We have described above how to construct a maximally resilient scheme for Cartesian
products of given base graphs using their well-structured schemes. In this section, we
showcase examples of these base graphs and apply our results to their products. In particular,
we will present efficient and robust path restoration schemes for generalized hypercube graphs
and tori.

4.1 Complete Graphs and Generalized Hypercubes
A complete graph over n nodes is defined as Kn = (V, E) where V = {0, . . . , n− 1} and the
links E = {{i, j}|i, j ∈ V, i 6= j}. We present a (n− 2)-resilient scheme for Kn denoted by
BPKn

, which we later leverage for generalized hypercubes. In the following assume every
increment (+1) is performed in modulo n and it skips 0. That is, i + 1 ≡ i (mod n− 1) + 1
We generate all backup paths in two simple cases as described in Algorithm 3.

Algorithm 3 Construction of BPKn .

1: for each link ` ∈ E[Kn] do
2: if 0 ∈ ` then . i.e. ` = {0, i}
3: BPKn(`) = [0, i + 1, i]
4: else . i.e. ` = {i, j}, i, j 6= 0
5: BPKn(`) = [i, j + 1, 0, i + 1, j]

I Theorem 13. The backup path scheme BPKn
is (n− 2)-resilient.

Proof. The dependencies from a link {i, j} where i, j 6= 0, to other links can be observed in
four distinct types: {i, j} A→ {i, j + 1}, {0, j} B→ {0, j + 1}, {i, j} C→ {0, j + 1} and {0, j} D→
{j, j + 1}. Note that with each type, i and j are interchangeable due to the symmetry of BP
produced at Line 3.5. In Figure 1 (right), an exemplary CoD that consists of all the four types
can be: {1, 2} → {1, 3} → {0, 4} → {0, 1} → {1, 2}. Next, we show that any CoD consists of
at least n− 1 arcs, implying n− 2 resiliency. If C consists of links all incident to some node
i 6= 0, then C = {i, j} A→ {i, j + 1} A→ {i, j + 2} . . . {i, n− 1} C→ {i, 0} D→ {i, i + 1} A→ . . . {i, j}.
Clearly C consists of n− 1 arcs and therefore in the remainder we focus on CoDs over links
non-incident to the same node.
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Given a CoD C, we construct a sequence of node ids S = (v0, v1, . . . , n− 1, . . . , v0) such
that for every 0 ≤ t < |S|, it holds St+1 ≤ St + 1, and the tail of the t-th arc in C is a link
{St, ∗}. Observe that such sequence implies there are |S| ≥ n− 1 arcs in C. We construct S

as follows.
1. All dependencies in C are of type A. Assume the packet p that realizes the CoD is

currently at node i and hits the failed link {i, j} 63 0. Let S be the sequence of nodes
that p visits until it arrives back to i. The next failure (by type A) is either {i + 1, j}
or {i, j + 1}. Therefore p either is rerouted to the node i + 1 or it stays at i. That is, p

visits all nodes contiguously before it arrives back to i. After applying type A to either
of the outcomes and repeating on each consequent link in a similar way, the packet visits
all nodes contiguously.

2. All dependencies in C are of type B. We take the sequence of non-zero endpoints. I.e.,
S[t] = v ∈ Ct, v 6= 0.

3. C contains multiple arc types. We refer to a path of arcs all in type X as type X-PoD.
We split C into maximal dependency paths of types A and B, which are concatenated by
dependency arcs of type C and D. We extract a sub-sequence from each maximal PoDs
and patch them into a single sequence S as follows. Initially, let S = ∅ and start with a
maximal A-PoD {i0, j0}

A→, . . . chosen arbitrarily.
a. Given a A-PoD, say {i, j} A→, . . . ,

A→ {i′, j′}, the packet that realizes the PoD visits
two sub-sequences depending on whether it starts at i or j. Let S1 and S2 be the
produced sub-sequences ending with i′ and j′ respectively. The A-PoD is followed by
a type C arc, that is {i′, j′} C→ {i′ + 1, 0} or {i′, j′} C→ {0, j′ + 1}. With the first case,
pick the sequence S1, otherwise pick S2. Append to S the chosen sequence and then
the incremented node id at the head of the C-arc (i.e. i′ + 1 or j′ + 1).

b. If C proceeds with a B-PoD then append to S the sequence of non-zero node ids.
c. After the C-arc and possibly a B-PoD, there must be a D-arc. E.g., {0, j′′} D→
{j′′, j′′ + 1}. The D-arc is then followed by a A-PoD (possibly the first one). If we
are back to the first A-PoD, i.e., {j′′, j′′ + 1} = {i0, j0}, then S is already a circular
sequence. Else, we continue the construction by repeating from step (a)

It is easy to see that the current sequence is contiguous after (a), (b) and (d). In particular,
after (d), S ends with j′′ and any sub-sequence chosen next in (a) begins with j′′ or j′′ + 1.
In either case the claim is preserved. J

In the following lemmata, we show that this scheme is well-structured. First, we need to
determine the boundary links.

I Lemma 14. Every CoD induced by the scheme from Theorem 13 includes a link in
BKn

:= {{1, i} | 0 ≤ i ≤ n−1} and the subset of arcs {{i, n−1} → {i, 1} | i ∈ {0, 2, 3, . . . , n−
2}} ∪ {{1, n− 1} → {0, 1}} are feedback arcs.

Proof. The sequence S constructed in the Proof 13 contains every non-zero node id regardless
of the given CoD. This means that for any node v ∈ {1, . . . , n− 1}, every CoD includes some
link incident to v. We pick v = 1 w.l.o.g. We identify feedback arcs as those that head to a
boundary link which is a unique arc in every CoD except the one induced by BKn . For this
case (i.e. CoD(1)), we designate {1, n− 1} → {0, 1} as the feedback arc. J

Next, we observe the properties required by Definition 5.

I Lemma 15. The scheme BPKn
(Theorem 13) is well-structured.
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Figure 2 A (6, 2)-cube. Each dashed blue line is a K2-instance. They connect the two K6-
instances. They admit (respectively) 0- and 4-resilient schemes. The dotted line traces BPG({2, 5}) =
[2, 2′, 1′, 0′, 0, 3, 5]. On K6, Lemma 6 gives the walk 0, 1, 0, 2, 1, 3, 1, 4, 1, 5, 1 over the boundary links
of K6, which are all the links incident to 1. The FINISHED order is 0, 1, 2, 3, 4, 5. In turn, Algorithm 2
generates backup paths such as BPG({0, 0′}) = [0, 1, 1′, 0′] and BPG({1, 1′}) = [1, 0, 2, 2′, 0′, 1′].
Hence, K2-instances induce the CoD: {0, 0′} → {1, 1′} → {2, 2′} → {3, 3′} . . . {0, 0′}. Observe in
example CoDs {2, 5} ∗→ {2′, 1′} → {0′, 3′} → {0′, 4′} → {0′, 5′} → {1, 5} → {2, 5} and {2, 5} ∗→
{2, 2′} → {2, 1} → {2, 0} → {2, 3} → {2, 4} → {2, 5}, the starred arcs are counted as the contribution
of K2 (0 + 1 arcs), while the rest are the contribution of K6 (4 + 1 arcs).

Proof. We observe the conditions in Definition 5 as follows. The set of boundary links in
Lemma 14 form a single CoD. Moreover, for every v ∈ V [Kn], v 6= 1, we have BKn

(v) = {1, v}
and BKn(1) = {1, 0}, which means every CoD has some link in L∗BPKn

as the endpoint of
some arcs. Therefore the procedure 5.2 can break all CoDs. Definition 5.3 can be observed
in the proof of Theorem 13. J

Next, we formally define the generalized hypercube (GHC) as a special product graph.
Given ri > 0, i ∈ [k], nodes in (rk, . . . , r1)-cube are represented as k-tuples (ak, . . . , a1),∀i ∈
[k] : 0 ≤ ai < ri (Figure 2). Therefore there are

∏
i∈[k] ri nodes in a k-GHC. Every two nodes

(ak, . . . , a1) and (bk, . . . , b1) that differ only at their ith digit, say ai and bi, are connected by
an i-dim link. The degree of each node is ∆ =

∑
i∈[k](ri − 1) and the graph is ∆-connected.

Observe that i-dim links form cliques of ri nodes. More precisely, there are
∏

j 6=d rj instances
of Krd

for every 1 ≤ d ≤ k. Thus, Algorithm 2 integrates individual complete graph’s
schemes into one scheme BPGHC . See Figure 2 for an example.

I Corollary 16. The backup path scheme BPGHC is (∆− 1)-resilient.

Proof. By Lemma 15, the scheme from Theorem 13 is well-structured. Due to the fact that
a GHC is the Cartesian product of complete graphs, we can apply Theorem 12 which directly
implies the claim. J

Observe that ∆ failures can disconnect generalized hypercubes, i.e., (∆− 1)-resiliency is
the best we can hope for.

4.2 Torus and Grid
Let B := {Cn1 , . . . , Cnk

} be a given set of base graphs where each Cnd
, d ∈ [k] is a cycle on nd

nodes. A k-dimensional torus T is the Cartesian Product of k cycles. That is, T =
∏

d∈[k] Cnd
.

Consider a cycle Cn ∈ B and its links `0, `1, . . . , `|n|−1 as they appear on the cycle. Any
cycle is 1-resilient since simply every link includes every other link on its backup path:
∀` ∈ E[Cn] : BPCn

(`) = E[Cn] \ {`}. Clearly, BPCn
induces

(
n
2
)
CoDs, each on two arcs.

The set B = E[Cn] \ {`0} includes a link from every CoD, therefore it is a (minimal) set of
boundary links. We choose the set of feedback arcs to be F := {(`i, `j) | 0 ≤ i < j ≤ |n| − 1}.
Observe that it includes one of the two links in every min-CoD.
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Figure 3 Solid lines are links of the cycle graph Cn+1. Dotted lines perpendicular to the cycle
represent incident links that belong to a base graph in another dimension. Dashed lines follow
backup paths in BPG where G is the Cartesian product of Cn+1 and some other base graphs. The
walk constructed in Lemma 6 is 0, 1, 2, . . . , n− 1, n, n− 1, n− 2, . . . , 2, 1, 0. By Lemma 17, in order
to break all CoDs, the backup path of `0 (dashed green) detours every other link in Cn+1 using the
next dimension base graph. The backup path of `1 (dashed blue) takes `0, but detours every other
link. Similarly, `2 (not shown here) takes `0, `1 on its backup path and detours `3 to `n+1. This
goes on until `n+1 which uses only links on the Cn+1.

I Lemma 17. The scheme BPCn is well-structured.

Proof. Every link `j ∈ E[Cn] has a non-feedback arc to every link `i ∈ E[Cn], i < j

(i.e. (`j , `i) 6∈ F ). Any CoD includes at least one arc (`j′ , `i′) where j′ > i′. Hence it includes
at least one non-feedback arc, which satisfies Definition 5 trivially. J

Now that we know BPCn
is well-structured, we construct BPT using Algorithm 2 and

apply Theorem 12 directly. (See Figure 3 and Figure 4 for an illustration, in the appendix)

I Corollary 18. The backup path scheme BPT is (2k − 1)-resilient on the k-dimensional
torus T .

As a k-dimensional torus can be disconnected by 2k failures, our scheme is maximally resilient.

Next, we address k-dimensional grids via a reduction to torus. By the construction
of BPT , only the link `0 ∈ Cn has a feedback arc to every other link in Cn. Let `d

0 ∈
Cnd

be the link that corresponds to `0 in the base graph Cnd
, for every d ∈ [k]. Let

B′ = {Pn1 , . . . , Pnk
} be the set of paths where each Pnd

is obtained by removing `d
0 from

Cnd
∈ B (i.e. Pnd

= Cnd
\ `d

0). We construct a scheme for the grid M =
∏

d∈[k] Pnd
as

follows. Consider the scheme BPT from Corollary 18. For every d ∈ [k] and every backup
path that uses (an instance of) `d

0 ∈ Cnd
, we replace `d

0 with its backup path. Formally,
∀d ∈ [k], ` ∈ E[T ], 6= `d

0 : BPM(`) = (BPT (`) \ `d
0) ∪ BPT (`d

0). Since every ` ∈ E[T ], 6= `d
0

includes `d
0 on its backup path, (after short-cutting wherever applies) we have a backup path

BPM(`) for every ` ∈ E[M]. Each dependency to or from `d
0, d ∈ [k] is now replaced by a

dependency to a link on BPT (`d
0). Hence, we have replaced PoDs of two arcs with one arc,

which in turn reduces the length of some min-CoDs by one. Hence, the (2k − 1)-resilient
scheme is reduced to a (2k − 1 − k) = (k − 1)-resilient scheme BPM. As a k-dimensional
grid can be disconnected by k failures, we obtain a maximally resilient scheme:

I Theorem 19. The backup path scheme BPM is (k − 1)-resilient on the k-dimensional
gridM.
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Figure 4 Each solid line is a link of the 2-dimensional m × n torus T , which is the Cartesian
product of Cm and Cn. Horizontal cycles are Cm-instances and vertical cycles are Cn-instances.
Dashed lines depict example backup paths in BPT . In the left picture, backup path of four instances
of `0 ∈ Cm are shown. Notice how all instances of `0 use each other sequentially on their backup
paths. The backup path of `0 in the nth instance (in green, thick) has to detour all the other `0’s in
order to use the `0-instance at row 0. This is imposed by the walk on Cn constructed in Lemma 6
(Figure 3). Also notice backup paths of `1’s on the right picture. The only difference backup paths
of `′0s is that they use the `0 in the same instance before proceeding to the next Cm-instance. In a
similar fashion, each `2-instance uses `0, `1 in the same Cm-instance and so on, up to `m which uses
only the links on the same Cm-instance.

5 Conclusion and Future Work

This paper studied the design of algorithms for local fast failover in the setting that requires
guaranteed (policy and function preserving) visits to every waypoint along the original
path, under multiple link failures. Our main result is a maximally resilient backup path
scheme for the Cartesian product of any set of base graphs, as long as for each base graph
a well-structured scheme is provisioned. We showcased applications of this result using
complete graphs, cycles, and paths by providing a well-structured scheme for each base
graph separately. This allowed us to devise algorithms for important network topologies,
such as generalized hypercubes and tori. In general, the result applies to the product of any
combination of these base graphs as well.

We see our work as a first step and believe that it opens several promising directions
for future research. From a dependability perspective, the main open question is whether
k-connectivity is always sufficient for (k − 1)-resiliency w.r.t. backup paths. It might be
insightful to understand the logic behind schemes formulated by Definition 5.
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Abstract
We consider the problem of communicating reliably in a dynamic network in the presence of up
to k Byzantine failures. It was shown that this problem can be solved if and only if the dynamic
graph satisfies a certain condition, that we call “RDC condition”. In this paper, we present the
first self-stabilizing algorithm for reliable communication in this setting – that is: in addition to
permanent Byzantine failures, there can also be an arbitrary number of transient failures. We prove
the correctness of this algorithm, provided that the RDC condition is “always eventually satisfied”.
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1 Introduction

As networks grow larger and larger, it becomes more and more likely that some of their
nodes will behave incorrectly at some point, for various reasons. Therefore, it is crucial to
design robust networks, that is: networks that still satisfy some essential properties even
when some nodes fail. There are many models of node failure, but the most general one is
the Byzantine model [13]: we assume that the failing nodes can have any arbitrary behavior.
Thus, we encompass any possible type of failure.

Here, we consider the problem of reliable communication: any two correct nodes of the
network should be able to exchange messages reliably, despite the potentially malicious
behavior of some Byzantine nodes.

One way to solve this problem is to use cryptography [6, 10]: the nodes use digital
signatures to authenticate the sender across multiple hops. However, cryptography is not
always reliable (see, for instance, the Heartbleed bug [1] discovered in the widely deployed
OpenSSL software). The Defense in Depth paradigm [14] recommends the use of multiple
security layers, including non-cryptographic layers. For instance, if the cryptographic layer
is compromised (bug, virus, . . . ), a cryptography-free communication layer can be used to
safely broadcast a patch, or to update cryptographic keys. Thus, even when cryptography is
available, it is interesting to develop non-cryptographic solutions. In the following, we focus
on these non-cryptographic solutions.

When it comes to non-cryptographic solutions, many solutions have been proposed for
static networks (e.g. [4, 11, 22, 15, 17, 16, 7, 21, 8]). Fewer papers consider dynamic networks
(e.g. [20, 3, 19]), where the topology changes over time. In particular, [19] showed the
necessary and sufficient condition on the graph topology to tolerate up to k Byzantine nodes
in a dynamic network. We call this condition the RDC (Reliable Dynamic Communication)
condition. (This condition is described in Section 2.3, but its exact terms do not matter at
this point.)

There already exists an algorithm for reliable communication in dynamic networks
tolerating permanent Byzantine failures [19]. Hence, the question: is it possible to go further
in terms of reliability guarantees?
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The concept of multitolerance [2, 12] describes the property of a system to tolerate
multiple fault-classes. One of the strongest possible level of multitolerance is the following:
tolerating, not only a given number of permanent Byzantine failures, but also an arbitrary
number of transient failures. This second point consists in assuming that the system can
have any arbitrary initial state. More precisely: (1) each correct node can have any arbitrary
initial state, and (2) communication channels between nodes can contain arbitrary messages,
“sent but not yet received”. In other words, such an algorithm is self-stabilizing [9]: it
can recover from any incorrect initial state. Satisfying this property in the presence of
Byzantine failures can be particularly challenging: Byzantine nodes, in addition to their
usual malicious behavior, can also actively try to prevent stabilization. The problem of
reliable communication despite transient and Byzantine failures was already considered in
[18], but for a specific class of static networks and a non-standard criteria on Byzantine
failures (i.e. the distance between Byzantine failures).

Our contribution is the following. we present the first self-stabilizing Byzantine-resilient
algorithm for reliable communication in a dynamic network. We prove the correctness of our
algorithm under the following assumption: the aforementioned RDC condition is “always
eventually satisfied” – that is: for any time t, there always exists a time t′ ≥ t where the
RDC condition is satisfied.

The rest of the paper is organized as follows. In Section 2, we present the setting
(definitions, assumptions. . . ). In Section 3, we describe the problem. In Section 4, we
motivate the main assumption w.r.t. the problem (i.e., that the RDC condition is “always
eventually satisfied”). In Section 5, we describe our algorithm. In Section 6, we prove its
correctness.

2 Preliminaries

The setting is mostly similar to [19]. We recall several definitions below.

2.1 Network model
We consider a continuous temporal domain R+. We model the system as a time varying
graph, as defined by Casteigts, Flocchini, Quattrociocchi and Santoro [5], where vertices
represent the processes and edges represent the communication links (or channels). A time
varying graph is a dynamic graph represented by a tuple G = (V,E, ρ, ζ) where:

V is the set of nodes.
E ⊆ V × V is the set of edges.
ρ : E × R+ → {0, 1} is the presence function: ρ(e, t) = 1 indicates that edge e is present
at time t.
ζ : E × R+ → R+ is the latency function: ζ(e, t) = T indicates that a message sent at
time t through edge e will be received, at worst, at time t+ T .

(Note: although one could imagine a simpler definition, we prefer to stick with the
standard definition of [5].)

2.2 Definitions
Informally, a dynamic path is a sequence of nodes a message can traverse, with respect to
network dynamicity and latency.
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I Definition 1 (Dynamic path). A sequence of distinct nodes (u1, . . . , un) is a “dynamic
path from u1 to un starting after t0” if there exists a sequence of times (t1, . . . , tn) such that
t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn, and, ∀i ∈ {1, . . . , n− 1}, we have:

ei = (ui, ui+1) ∈ E, i.e., there exists an edge connecting ui to ui+1.
∀t ∈ [ti, ti + ζ(ei, ti)], ρ(ei, t) = 1, i.e., ui can send a message to ui+1 at time ti.
ζ(ei, ti) ≤ ti+1 − ti, i.e., the aforementioned message is received by time ti+1.

With this definition, we can now define the following elements:
Let Dyn(p, q, t0) be the set of node sets {u1, . . . , un} such that (p, u1, . . . , un, q) is a
dynamic path starting after t0 (if (p, q) is a dynamic path starting after t0, Dyn(p, q, t0)
contains an empty set).
For any nonempty set of nonempty node sets X = {S1, . . . , Sn}, let Cut(X) be the set of
node sets C such that, ∀i ∈ {1, . . . , n}, C ∩ Si 6= ∅ (C contains at least one node from
each set Si).1

For any nonempty set of node sets X, we define MinCut(X) as follows:
If X contains an empty set, MinCut(X) = +∞.2

Otherwise: MinCut(X) = minC∈Cut(X) |C| (the size of the smallest element of
Cut(X)).

We say that a node multicasts a message m when it sends m to all nodes in its current
local topology.3

2.3 Setting and assumptions

We make the same basic assumptions as previous works on the subject (e.g. [4, 7, 11, 15, 16,
17, 21, 22]):
1. Each node has a unique identifier.
2. When a node q receives a message through channel (p, q), it knows that p sent the message.
3. Each node u is aware of its local topology at any given time t (here, u knows the set of

nodes v such that ρ((u, v), t) = 1)4.
4. The time required for computation and sending messages is negligible w.r.t. the delays

between changes in the dynamic graph.

Permanent Byzantine failures. An omniscient adversary can select up to k nodes as
Byzantine. These nodes can have a totally arbitrary and unpredictable behavior defined by
the adversary (including tampering or dropping messages, or simply crashing). Of course,
correct nodes are unable to know a priori which nodes are Byzantine.

1 Here, “one node” can be any node of Si.
2 Here, an empty set corresponds to the case where the two nodes p and q trying to communicate are

directly connected at some point. Therefore, no amount of (other) nodes suppression will be sufficient
to disconnect them.

3 We use “multicast” instead of “broadcast” here to avoid common misunderstandings: “broadcast”
can refer to some very specific problems in distributed computing (e.g. “Byzantine Broadcast”), not
necessarily related to our problem.

4 Note that this assumption is necessary to ensure that each existing dynamic path can be explored. For
instance, it is possible that some edges appear during exactly the time required to send a message. In
such a situation, the sending node must be immediately aware of the topology change.
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Transient failures. In addition to Byzantine failures, for the correct nodes, any variable of
their algorithm can have any arbitrary initial value. Besides, for any two neighbor nodes u
and v, a channel connecting u and v can initially contain any set of messages “sent by u but
not yet received by v”. In the following, this set is called Sen(u, v).5

RDC condition. In [19], it was shown that the necessary and sufficient condition for
reliable communication in a dynamic network is the following: for each pair of nodes {p, q},
MinCut(Dyn(p, q, 0)) > 2k.

We call this condition the RDC (Reliable Dynamic Communication) condition.

Main assumption. In this paper, we assume that the RDC condition is “always eventually
satisfied”, that is: for any two nodes p and q and for any time t0, MinCut(Dyn(p, q, t0)) >
2k.6 In Section 4, we motivate the “always” of “always eventually satisfied” w.r.t the problem.

3 The Problem

Let us assume that each correct node p has a fixed attribute p.m0 (the message that p wants
to broadcast, not part of the initial state) and a memory set p.Acc (where received messages
are stored). For each correct node q, when the set q.Acc contains a tuple (p,m), we say that
q accepts the message m as being from p.

The problem we try to solve is the following: finding an algorithm (for correct
nodes) such that, given the aforementioned setting, we have the two following properties:

For any two correct nodes p and q, there exists a time t such that, after t. . .

1. [Safety] There exists no m′ 6= p.m0 such that (p,m′) ∈ q.Acc.
2. [Liveness] (p, p.m0) ∈ q.Acc.

The first property ensures that, after t, no wrong message (i.e., a message m′ pretending
to be the message p.m0 from p) is accepted by q. The second property ensures that, after t,
the correct message p.m0 is accepted by q.

Such an algorithm would be self-stabilizing w.r.t. these two properties: no matter what
the initial state is, these properties are always eventually satisfied.7

In the following, we motivate the main assumption w.r.t this problem (Section 4), then
present our algorithm (Section 5) and prove that it solves the problem (Section 6).

4 Motivation of the main assumption

In this section, we motivate the main assumption (stated in Section 2.3). In particular, we
motivate the “always” in “always eventually satisfied”. In Theorem 2 below, we show that, if
the RDC condition in just “eventually satisfied”, no algorithm can solve the desired problem
in the setting we consider. We do this by constructing two possible scenarios (allowed in this
setting) that lead to incompatible outcomes.

5 We do not assume any bound on the capacity of communication channels: the number of fake initial
messages “sent but not yet received” can be arbitrarily high.

6 If we take “always eventually satisfied” strictly, the proposition is: for any two nodes p and q and for
any time t, there exists t0 ≥ t such that MinCut(Dyn(p, q, t0)) > 2k. But this proposition immediately
implies the aforementioned (simpler) proposition.

7 As usually done in self-stabilization papers, we assume that the algorithm itself is “hardwired”, and
cannot be corrupted (otherwise, it would be impossible to give any guarantee: the behavior of all nodes
would be completely arbitrary). However, any variable used by the algorithm can have any arbitrary
initial value.
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Figure 1 Graph used for the proof of Theorem 2.

I Theorem 2. Let us assume the aforementioned setting (with transient failures, etc), but
with one small change: the RDC condition is just eventually satisfied (and not “always
eventually satisfied”). Then, there exists no algorithm solving the problem of Section 3.

Proof. Suppose the opposite: there exists such an algorithm. Let m1 and m2 be two distinct
messages.

Let us assume that k = 0 (no Byzantine failures). Then, the RDC condition simplifies as
follows: there must exist one dynamic path between the sender and the receiver.

Consider the static network of Figure 1. In the following, we use this static network to
describe two dynamic networks, and show a contradiction. Let x be any message that can
be sent by q to r.

We first describe a scenario S1(x) (of which x is a parameter). In this scenario, p.m0 = m1.
The evolution of the dynamic graph is the following:
Step 1: Edge e1 appears, then disappears.
Step 2: Edge e3 appears, then disappears. During this time, r receives x from q.8

With Step 1, there exists a dynamic path from p to r. Thus, as the algorithm solves the
desired problem, there exists a time t1 after which we have (p,m1) ∈ r.Acc.9 Let y be the
state of r between Step 1 and Step 2.

We now describe a second scenario S2. In this scenario, p.m0 = m2, and the initial state
of r is y. The evolution of the dynamic graph is the following:
Step 1’: Edge e2 appears, then disappears.
Step 2’: Edge e3 appears, then disappears.

With these two steps, there exists a dynamic path from p to r. Thus, as the algorithm
solves the desired problem, there exists a time t2 after which we have (p,m2) ∈ r.Acc. Let
t3 = max(t1, t2), and let x′ be the message sent from q to r during Step 2’.

Now, let us consider (1) S1(x′) after Step 1 and (2) S2. From the point of view of r,
what happens then is exactly the same: r starts in state y, then receives x′ from q. Thus,
according to both scenarios, after t3, we have both (p,m1) ∈ r.Acc and (p,m2) ∈ r.Acc.

As the algorithm solves the desired problem, it implies that p.m0 = m1 = m2, which
contradicts our initial assumption (m1 6= m2). Thus, the result. J

5 Algorithm

In this section, we provide:
An explanation of the main intuition behind the algorithm (5.1).
A full description of our algorithm (5.2).
A more detailed explanation of the algorithm, to facilitate its understanding (5.3).

8 This can happen for any x, as the initial content of communication channels between nodes is arbitrary,
according to our model (see Section 2.3).

9 The fact that p sends a message to r through edge e1 is implicit here, as the outcome of the algorithm
is assumed to be guaranteed by the RDC condition (in the context of this proof by contradiction).
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5.1 Intuition behind the algorithm
The initial idea of the algorithm is similar to [19]:

Broadcast each message through each possible dynamic path, and register the identifier
of the nodes forwarding the message.
Before accepting the message: check if the various instances of the same message satisfy
the RDC condition.

This is done through rules 2, 3 and 4 of the algorithm below. However, in a setting with
transient failures, this is not sufficient: for instance, it is possible that a false message has
already been accepted, or that enough messages have been sent to have a false message
accepted in the future.

To solve this problem, we associate an integer α to each message. Now, each message
looks like this: (s,m, S, α), where s is the sender (or pretending to be so), m is the content
of the message, and S is the set of nodes crossed by the message.

The key idea here is the following: the algorithm is designed so that false transient
messages are “stuck” with the value α they initially have (as shown in Lemma 3). Therefore,
if correct nodes keep broadcasting their message with increasing values of α (Rule 1), and if
we give priority to messages with the highest value of α (Rule 5), the correct messages are
eventually accepted. Of course, Byzantine nodes can still broadcast messages with arbitrarily
high values of α, but rules 2, 3 and 4 ensure that this will never be sufficient (according to
the assumptions on the topology of the network).

5.2 Full description
For each correct node u, let u.m0 be the message that u wants to broadcast; u also maintains
the following variables:

An integer u.α (with an arbitrary initial value).
Three memory sets u.Ω, u.Acc0 and u.Acc (the initial content of these sets is completely
arbitrary).10

Let A(u, s,m) be the set of integers α such that (s,m, α) ∈ u.Acc0. Let Count(u, s,m) =
|A(u, s,m)|.

In Rule 1 below, “keep doing X” means that the algorithm will always eventually do X
(i.e., if t is the current time, there always exists a time t′ ≥ t at which X is done).

Each correct node u obeys to the following rules:
Rule 1. Keep doing the following: u.α := u.α+ 1, and add {(u, u.m0, ∅, u.α)} to u.Ω.
Rule 2. Whenever u.Ω or the set of neighbors of u changes11: multicast u.Ω.
Rule 3. When u receives a set Ω′ from a neighbor v: ∀(s,m, S, α) ∈ Ω′, if v /∈ S, add
(s,m, S ∪ {v}, α) to u.Ω.
Rule 4. When there exist s, m, α and n sets S1, . . . , Sn such that the following 3
conditions are satisfied:
1. ∀i ∈ {1, . . . , n}, (s,m, Si ∪ {s}, α) ∈ u.Ω.
2. MinCut({S1, . . . , Sn}) > k.
3. (s,m, α) /∈ u.Acc0.
Add (s,m, α) to u.Acc0.

10 See 5.3 for an explanation of the role of these memory sets.
11 See assumption 3 in Section 2.3.
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Rule 5. When there exist s and m such that the following 3 conditions are satisfied:
1. Count(u, s,m) ≥ 1.
2. There exists no m′ 6= m such that Count(u, s,m) ≤ Count(u, s,m′).
3. (s,m) /∈ u.Acc.
Do the following:
1. ∀m′ such that (s,m′) ∈ u.Acc, remove (s,m′) from u.Acc.
2. Add (s,m) to u.Acc.

5.3 Detailed explanation
In addition to the full description of the algorithm, we provide more detailed explanations
here, to facilitate its understanding.

First, let us explain the role of the variables of each correct node u.

The integer u.α is a counter that can only increase. This mechanism is used to defeat
false transient messages, as we explain below.
The memory set u.Ω stores all messages received by u, without discrimination, as described
in Rule 3. The elements stored in this set are tuples (p,m, S, α), where. . .
p is supposedly the author of the message;
m is the content of the message supposedly sent by p (it can be any piece of information);
S is the set of nodes that supposedly forwarded the message;
α is an integer associated to the rest of the tuple.

The role of the memory set u.Acc0 is to store messages that are “pre-accepted”, that is:
messages that have been (or appear to have been) sent through several dynamic paths,
in accordance with the RDC condition. These messages are added to u.Acc0 in Rule 4.
The role of the memory set u.Acc is to store messages that are “truly accepted”, that is:
messages from u.Acc0 satisfying a particular condition w.r.t their integers α. The goal
is that, eventually, u.Acc contains each message from each correct node, and no false
message (that is: a tuple (s,m′) such that m′ 6= s.m0).

Now, let us provide an informal explanation for each rule, for a given node u.

Rule 1: This rule ensures that u always eventually does the following: increment its
counter u.α, and add its message u.m0 (associated with the new value of u.α) to its set
u.Ω.
Rule 2: This rule sends the content of u.Ω to all neighbors of u whenever u.Ω is updated
(which happens either in Rule 1 or 3).
Rule 3: Whenever u receives a set Ω′ from a neighbor node v, it adds each tuple contained
in Ω′ to its own set u.Ω. However, before doing so, it adds v to the third element of the
tuple (i.e., the set S supposed to register all the nodes that forwarded this tuple).
Rule 4: This rule adds some elements to u.Acc0 (the set of “pre-accepted” messages)
when some conditions are satisfied in u.Ω. More precisely: there must exist a node
identifier s, a message m, a value α and n sets of nodes (S1, . . . , Sn) such that. . .

For each of these node sets, u.Ω contains a tuple associating s, m, α and this node
set (enriched with s). This condition ensures that at least one of these sets actually
corresponds to the correct nodes that actually forwarded the message (as shown in the
correctness proof).
The n sets of nodes cannot be (all) cut by removing k nodes (MinCut({S1, . . . , Sn}) >
k).
u.Acc0 does not already contain (s,m, α).

OPODIS 2020
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The underlying idea of Rule 4 is to prevent k Byzantine nodes from cooperating to make
u add false messages to u.Acc0. Indeed, as shown in the correctness proof, k Byzantine
nodes are not sufficient to bypass the filter of Rule 4.
Rule 5: This rule adds some elements to u.Acc (the set of “truly accepted” messages)
when some conditions are satisfied in u.Acc0. More precisely: when there exists a
node identifier s and a message m such that the number of tuples (s,m, α) ∈ u.Acc0 is
unmatched by any other message m′, (s,m) is added to u.Acc, and replaces any previous
message (s,m′).
The underlying idea of Rule 5 is to (eventually) eliminate and replace any false transient
messages that u.Acc0 may initially contain: as correct messages keep being generated
with new values of α (according to Rule 1), they will eventually outnumber false messages.

6 Correctness proof

We prove the correctness of the algorithm in Theorem 9.
Before going further, we define Z, the set of values α such that a tuple (s,m, S, α) exists

somewhere in the system at t = 0:
Let Z1 be the set of integers α such that, ∀α ∈ Z1, the following proposition is true: at
t = 0, there exist s, m, S, u, v and Ω such that Ω ∈ Sen(u, v) and (s,m, S, α) ∈ Ω.
Let Z2 be the set of integers α such that, ∀α ∈ Z2, the following proposition is true: at
t = 0, there exists s, m, S, and u such that (s,m, S, α) ∈ u.Ω.
Let Z = Z1 ∪ Z2.

Overview of the proof
In Lemma 3, we show that no false message can be accepted when it is associated with
an integer α /∈ Z. Thus, the number of integers α used by false messages is bounded by
|Z| (Lemma 4).
In Lemma 5, we show that, for any α0, a correct node eventually broadcasts messages
with α ≥ α0.
In Lemma 6, we show that correct messages successfully broadcast along each dynamic
path. Thus, as shown in Lemma 7, each correct message with a large enough α is
eventually “pre-accepted” (that is, added to the set Acc0 of the receiver).
From Lemmas 5 and 7, it follows that each correct message is eventually pre-accepted
(Lemma 8).
As the number of integers α used by false messages is bounded (Lemma 4), it follows
that, eventually, the only messages accepted are the correct ones (Theorem 9).

I Lemma 3. Let α /∈ Z. Let p and q be two correct nodes. Let m′ 6= p.m0. Then, we never
have (p,m′, α) ∈ q.Acc0.

Proof. Suppose the opposite: (p,m′, α) ∈ q.Acc0. Then, there exists {S1, . . . , Sn} such that,
∀i ∈ {1, . . . , n}, (p,m′, Si ∪ {p}, α) ∈ q.Ω and MinCut({S1, . . . , Sn}) > k.

Suppose that each node set S ∈ {S1, . . . , Sn} contains at least one Byzantine node. If C
is the set of Byzantine nodes, then C ∈ Cut({S1, . . . , Sn}) and |C| ≤ k. This is impossible
because MinCut({S1, . . . , Sn}) > k. Therefore, there exists S ∈ {S1, . . . , Sn} such that S
does not contain any Byzantine node.

Now, let us use the correct dynamic path corresponding to S to show that m′ = p.m0.
Let n′ = |S ∪ {p}|. Let us show the following property Pi by induction, ∀i ∈ {0, . . . , n′}:
there exists a correct node ui and a set of correct nodes Xi such that (p,m′, Xi, α) ∈ ui.Ω
and |Xi| = |S ∪ {p}| − i.



A. Maurer 27:9

As S ∈ {S1, . . . , Sn}, (p,m′, S ∪ {p}, α) ∈ q.Ω. Thus, P0 is true if we take u0 = q and
X0 = S ∪ {p}.
Let us now suppose that Pi is true, for i < n′. As (p,m′, Xi, α) ∈ ui.Ω, according to Rule
3 of our algorithm, it implies that ui received Ω′ from a node v, with (p,m′, X, α) ∈ Ω′,
v /∈ X and Xi = X ∪ {v}. Thus, |X| = |Xi| − 1 = |S ∪ {p}| − (i+ 1).
As v ∈ Xi and Xi is a set of correct nodes, v is correct and behaves according to our
algorithm. Then, as v sent Ω′, according to Rule 2 of our algorithm, we necessarily have
Ω′ ⊆ v.Ω. Thus, as (p,m′, X, α) ∈ Ω′, we have (p,m′, X, α) ∈ v.Ω. Hence, Pi+1 is true if
we take ui+1 = v and Xi+1 = X.

By the induction principle, Pn′ is true. As |Xn′ | = 0, Xn′ = ø and (p,m′,ø, α) ∈ un′ .Ω.
As un′ is a correct node and follows our algorithm, and as α /∈ Z, the only possibility to have
(p,m′,ø, α) ∈ un′ .Ω, according to Rule 1, is that un′ = p and m′ = p.m0, which contradicts
our initial hypothesis. Thus, the result. J

I Lemma 4. For any two correct nodes p and q, ∀m′ 6= p.m0, we have Count(q, p,m′) ≤ |Z|.

Proof. Suppose that, at some point, there exist q, p and m′ such that Count(q, p,m′) > |Z|.
It implies that there exists α /∈ Z such that (p,m′, α) ∈ q.Acc0. According to Lemma 3, this
is impossible. Thus, Count(q, p,m′) ≤ |Z|. J

I Lemma 5. Let p be a correct node. For any integer α0, there exists α ≥ α0 such that p
multicasts a set Ω containing (p, p.m0, ∅, α).

Proof. According to the algorithm, either we initially have p.α ≥ α0, or we eventually have
p.α ≥ α0. Thus, according to Rule 1, p eventually adds {(p, p.m0, ∅, α)} to p.Ω, with α ≥ α0.

Then, according to Rule 2, p multicasts a set Ω containing (p, p.m0, ∅, α). J

I Lemma 6. Let p and q be two correct nodes. Let α be an integer. Suppose that p
multicasts a set Ω containing (p, p.m0, ∅, α) at time t. Suppose that there exists a dynamic
path (u1, . . . , un), starting after t, such that p = u1, q = un, and ∀i ∈ {1, . . . , n}, ui is
correct. Then, eventually, we have (p, p.m0, {u1, . . . , un−1}, α) ∈ q.Ω.

Proof. Let us prove the following property Pi by induction, ∀i ∈ {1, . . . , n}: ui eventually
multicasts a set Ω containing (p, p.m0, {u1, . . . , ui−1}, α).

P1 is true, as p multicasts a set Ω containing (p, p.m0, ∅, α).
Suppose that Pi is true, for some i ∈ {1, . . . , n−1}. Then, ui+1 eventually receives a set Ω
from ui containing (p, p.m0, {u1, . . . , ui−1}, α), and adds (p, p.m0, {u1, . . . , ui}, α) to ui.Ω.
Thus, according to Rule 2, ui multicasts a set Ω′ containing (p, p.m0, {u1, . . . , ui}, α), and
Pi+1 is true.

As Pn is true, un = q eventually multicasts a set Ω containing (p, p.m0, {u1, . . . , un−1}, α).
According to the algorithm, it implies that (p, p.m0, {u1, . . . , un−1}, α) ∈ q.Ω. J

I Lemma 7. Let p and q be two correct nodes. Let α be an integer. Suppose that p multicasts
a set Ω containing (p, p.m0, ∅, α) at time t. Then, eventually, we have (p, p.m0, α) ∈ q.Acc0.

Proof. Let {S1, . . . , Sn} be the set of node sets S ∈ Dyn(p, q, t) that contain no Byzantine
node. Similarly, let {X1, . . . , Xn′} be the set of node sets X ∈ Dyn(p, q, t) that contain at
least one Byzantine node.
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Let us suppose that MinCut({S1, . . . , Sn}) ≤ k. Then, there exists a node set C ∈
Cut({S1, . . . , Sn}) such that |C| ≤ k. Let C ′ = C ∪ B (where B is the set of Byz-
antine nodes). Thus, C ′ ∈ Cut({S1, . . . , Sn} ∪ {X1, . . . , Xn′}) = Cut(Dyn(p, q, t)), and
|C ′| ≤ 2k. Thus, MinCut(Dyn(p, q, t)) ≤ 2k, which contradicts our hypothesis. Therefore,
MinCut({S1, . . . , Sn}) > k.
∀S = {v1, . . . , vn} ∈ Dyn(p, q, t), (p, v1, . . . , vn, q) is a dynamic path. Therefore, according

to Lemma 6, ∀S ∈ {S1, . . . , Sn}, we eventually have (p, p.m0, {p} ∪ {v1, . . . , vn}, α) ∈ q.Ω.
Thus, according to the algorithm, we eventually have (p, p.m0, α) ∈ q.Acc0. J

I Lemma 8. Let p and q be two correct nodes. ∀α0, there exists α ≥ α0 such that we
eventually have (p, p.m0, α) ∈ q.Acc0.

Proof. The result follows from Lemma 5 and Lemma 7. J

I Theorem 9. For any two correct nodes p and q, there exists a time t such that, after t,
(1) there exists no m′ 6= p.m0 such that (p,m′) ∈ q.Acc, and (2) (p, p.m0) ∈ q.Acc.

Proof. According to Lemma 4, ∀m′ 6= p.m0, Count(q, p,m′) ≤ |Z|. According to Lemma 8
we eventually have Count(q, p, p.m0) ≥ |Z|+ 1. Thus, the result, according to Rule 5 of our
algorithm. J

7 Conclusion

In this paper, we provided the first self-stabilizing and Byzantine-resilient algorithm for
reliable communication in dynamic networks, and proved its correctness. To go further,
one could consider more probabilistic settings: random positions for Byzantine nodes (each
node may have a given probability to be Byzantine), random evolution of the dynamic
graph. . . One could also consider permanent failures at the level of communication channels
(e.g., regularly and randomly dropping messages). Finally, an interesting open question
would be to consider the time and space complexity of solving this problem, and see if some
optimizations could be made w.r.t. these metrics.
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Abstract
This paper provides an algorithmic framework for obtaining fast distributed algorithms for a highly-
dynamic setting, in which arbitrarily many edge changes may occur in each round. Our algorithm
significantly improves upon prior work in its combination of (1) having an O(1) amortized time
complexity, (2) using only O(log n)-bit messages, (3) not posing any restrictions on the dynamic
behavior of the environment, (4) being deterministic, (5) having strong guarantees for intermediate
solutions, and (6) being applicable for a wide family of tasks.

The tasks for which we deduce such an algorithm are maximal matching, (degree + 1)-coloring,
2-approximation for minimum weight vertex cover, and maximal independent set (which is the
most subtle case). For some of these tasks, node insertions can also be among the allowed topology
changes, and for some of them also abrupt node deletions.
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1 Introduction

We present a family of deterministic distributed algorithms that rapidly fix solutions for
fundamental tasks even in a highly-dynamic environment. Specifically, we provide algorithms
for maximal matching, (degree + 1)-coloring, 2-approximation for the minimum weighted
vertex cover (2-MWVC), and maximal independent set (MIS). We further show that for
some of these tasks, fast fixing is also possible with node insertions and deletions. Here, we
consider the severe case of abrupt deletions, where a deleted node does not have a chance to
inform its neighbors about its upcoming departure from the system.

Our algorithms enjoy the combination of (1) having an O(1) amortized time complexity,
(2) using only O(logn)-bit messages, (3) not posing any restrictions on the dynamic behavior
of the environment and in particular not requiring topology changes to be spaced in time, (4)
being deterministic, (5) having strong guarantees for intermediate solutions, and (6) being
applicable for a wide family of tasks. In recent years, there has been much progress on
distributed dynamic algorithms, achieving different combinations of the above promises. Our
algorithms significantly improve upon all prior work by that they guarantee the combination
of all the above properties. We elaborate upon – and compare to – prior work in Section 1.4.

We stress that as opposed to centralized dynamic data structures, not posing any
restrictions on the dynamic behavior of the environment is vital in the distributed setting, as
the input graph is the communication graph itself. More concretely, in centralized dynamic
data structures when multiple topology changes occur, we can simply handle them one by
one. However, in our setting, nodes cannot communicate over a deleted edge, and so we
cannot sequentially apply an independent update algorithm for each topology change – an
edge deletion affects the communication already when it happens, not only when it is handled.

1.1 Motivation
Each of the aforementioned problems is a locally-checkable labeling (LCL) problem. The
notion of an LCL is a celebrated concept in distributed computing, first defined by Naor and
Stockmeyer [32] in order to capture tasks in which nodes can efficiently detect inconsistencies,
motivated by the unstable nature of distributed systems. Since the publication of this
pioneering work, the complexity of solving tasks that can be described as LCLs has been
extensively studied in the distributed setting. We ask the following question, paraphrased in
correspondence with the title of [32]:

Question: What can be fixed locally?

We begin by recalling the definition of LCLs of [32], restricting our attention to LCLs with
radius r = 1. A centered star is a pair (H, s) where H is a star graph and s is its center. An
LCL L is a tuple (Σ,Γ, C), where Σ is a set of input labels, Γ is a set of output labels, and
C is a set of locally consistent labelings. Each element of C is a centered star, with a label
in Σ× Γ for each of its nodes.1

A labeling λ : V → Σ × Γ is called L-legal for a graph G = (V,E), if for every v ∈ V ,
there exists a centered star (H, s) in C with a label-pair at each node, which is consistent
with λ in the following sense: there exists a mapping π that maps the star centered at v
in G into (H, s), with π(v) = s, such that for every node w in the star centered at v, the
label-pair given by λ is the same as the label-pair of the node π(w) in (H, s).

1 In the work of Naor and Stockmeyer [32] the set of labels Σ has a fixed size, while here we omit this
limitation in order to give more power to the labelings. However, algorithmically, we always keep the
size of messages small even when labels are large, by sending only pieces of them.
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As explained in [32], the set C defines allowed labels for neighborhoods, as opposed to
defining a set of forbidden ones. If the LCL has no inputs, then one can simply choose a
default input label, i.e., |Σ| = 1. An algorithm that solves the problem defined by an LCL L
is an algorithm whose output on a graph G is an L-legal labeling.

Not all LCLs are easily fixable. The following variant of the sinkless orientation problem [13]
is an example of an LCL problem that is not easily fixable. Each node has a label that
corresponds to an orientation of its edges, such that labels at endpoints of an edge are
consistent, and such that there is no node of degree greater than 1 that is a sink, i.e., has no
outgoing edge. It is easy to verify that every graph has a valid labeling2, and that this is an
LCL. To see that this LCL cannot be fixed within an amortized complexity of O(1), consider
a graph on n nodes that evolves dynamically, creating two paths of roughly n/2 nodes each.
Each path must be oriented consistently with a single sink in one of its endpoints. Inserting
an edge between the sinks of the two paths forces the orientation of all of the edges in one of
the sub-paths to flip, which takes Ω(n) rounds. Deleting this edge induces again two paths
with a single sink each, and repeating the process of inserting an edge between the new sinks
and deleting it causes a linear number of rounds that can be attributed to only two topology
changes, which implies an amortized time of Ω(n). This holds even if topology changes do
not happen concurrently, and even if the messages can be of arbitrarily large size.

1.2 The challenges
For any LCL problem we address, we assume that the system begins with a globally correct
labeling, and thus what an algorithm needs to do as a consequence of topology changes is
to have the affected nodes update their labels. Naturally, for some problems, the update
procedure may also require that a node updates the labels of its neighbors (more precisely,
this is accomplished via sending messages to its neighbors requiring them to update their
labels). For example, in a solution for maximal matching this might occur when an edge
that is in the matching is deleted, and its endpoints need to match themselves to other
neighbors. At a first glance, this may sound as a simple and straightforward approach for
fixing matchings and problems of local flavor. However, this approach turns out to be far
from trivial, and below we describe multiple key challenges that we must overcome in order
to implement it successfully.

(1) Defining fixing and amortized complexity. We need to define what fixing the solution
means. We aim for our algorithm to work in a very harsh setting, in which it might be the
case that there are so many topology changes that we never actually obtain a globally correct
labeling, but still we maintain strong guarantees for intermediate labelings. Notice that
this is in stark contrast to centralized dynamic data structures, which can always consider
globally correct solutions since topology changes may be handled one-at-a-time because they
only affect the input and not the computation itself. This is also the case for the majority
of previous distributed algorithms: they are designed under the assumption that topology
changes are spaced well enough in time so that it is possible to obtain a globally correct
solution before the next topology change happens.

2 If G is a tree, choose an arbitrary root and orient the edges away from the root. Otherwise, choose a
cycle in G and orient its edges cyclically, then imagine contracting its nodes into a single super-node
and orient edges towards this super-node along some spanning tree, and orient other edges arbitrarily.
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(2) Coping with concurrent fixing with a timestamp mechanism. Because we might need
a node to change the labels of its neighbors and not only its own label in order to fix the
solution, we make sure that concurrent fixing always happens for nodes that are not too close,
and other nodes wait even if their labeled stars are not yet correct (e.g., to avoid two nodes
u, v, trying to get matched to the same node w concurrently). To this end, our method is to
assign a timestamp to each node involved in a change, and fix a node only if its timestamp
is a local minimum in some short-radius neighborhood, thus avoiding conflicting concurrent
fixes. We call such a node active.

(3) Detecting and aborting conflicting timestamps. Such a timestamp mechanism alone
is still insufficient: the uncontrolled number of topology changes may, for example, suddenly
connect two nodes that were previously far enough so that they could become active
simultaneously, but after concluding that they can both become active, an edge insertion
now makes them part of the same short-radius neighborhood. We carefully take care of such
cases where our timestamps have been cheated by the topology changes, by detecting such
occurrences and aborting the fixing, without harming the amortized complexity guarantees.

(4) Bounding the size of timestamps to cope with message size restrictions. Finally,
the restriction on the size of messages forbids unbounded timestamps, despite an unbounded
number of rounds (e.g., times). To resolve this issue, we utilize ideas from the literature
on shared memory algorithms, e.g., [3], for deterministically hashing the timestamps into a
small bounded domain so that the nodes can afford sending a hashed timestamp in a single
small message, and we do so in a way that preserves the total order over timestamps.

1.3 Our contributions
Our main contribution is thus deterministic dynamic distributed fixing algorithms for
several fundamental problems. Our algorithms share a common approach, and only minor
modifications that are specific to each labeling are required. In some cases we can also handle
a node insertion/deletion, which is a-priori possibly harder to deal with, because it may
affect more nodes while in the amortized analysis we count it as a single topology change.

The following theorem summarizes the end-results, which hold in a model with an
unbounded number of topology changes that may occur concurrently, and when only a
logarithmic number of bits can be sent in a message.

I Theorem 1. There is a deterministic dynamic distributed fixing algorithm for (degree+1)-
coloring and for a 2-approximation of a minimum weight vertex cover, which handles
edge insertions/deletions and node insertions in O(1) amortized rounds.

There are deterministic dynamic distributed fixing algorithms for maximal matching,
(∆ + 1)-coloring (where ∆ is the maximum node degree) and MIS, which handle edge/node
insertions/deletions in O(1) amortized rounds.

Section 3 shows our algorithm for maximal matching. This is developed and modified in
the full version of the paper to present our 2-MWVC algorithm. We mention that the labeling
for the solution of 2-MWVC that we maintain is not the naïve one that only indicates which
nodes are in the cover, but rather contains information about dual variables that correspond
to edge weights, and allow the fast fixing.

Section 4 gives our algorithm for MIS. In the MIS case, the restriction of message size
imposes an additional, huge difficulty. The reason is that if an MIS node v needs to leave
the MIS because an edge is inserted between v and some other MIS node u, then all other
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neighbors of v who were previously not in the MIS are now possibly not covered by an MIS
neighbor. Yet, they cannot all be moved into the MIS, as they may have an arbitrary topology
among them. With unbounded messages this can be handled using very large neighborhood
information but such an approach is ruled out by the the restriction of O(logn)-bit messages.

Nevertheless, we prove that with some modifications to our algorithmic approach, we
can also handle MIS without the need to inform nodes about entire neighborhoods. The
road we take here is that instead of fixing its neighborhood, a node tells its neighbors that
they should become active themselves in order to fix their labeled stars. On the surface, this
would entail an unacceptable overhead for the amortized complexity that is proportional
to the degree of the node. The crux in our algorithm and analysis is in blaming previous
topology changes for such a situation – for every node u in the neighborhood of v which is
only dominated by v, there is a previous topology change (namely, an insertion of an edge
{u,w}, where w may or may not be v) for which we did not need to fix the label of w. This
accounting argument allows us to amortize the round complexity all the way down to O(1),
and the same technique is utilized to handle node insertions and deletions. In the full version
of the paper, we present our algorithm for (degree+ 1)-coloring, as well as a generalization
of our algorithm, by defining a family of graph labelings, in the flavor of the LCL definition,
which can all be fixed in constant amortized time.

1.4 Related work
The end results of our work provide fast fixing for fundamental graph problems, whose
static algorithmic complexity has been extensively studied in the distributed setting. A full
overview of the known results merits an entire survey paper on its own (see, e.g., [8,35]). An
additional line of beautiful work studies the landscape of distributed complexities of LCL
problems, and the fundamental question of using randomness (see, e.g., [5, 6, 14,17,18,23]).

For dynamic distributed computing, there is a rich history of research on the important
paradigm of self-stabilization (see, e.g., the book [20]) and in particular on symmetry breaking
(see, e.g., the survey [24]). Related notions of error confinement and fault-local mending
have been studied in [4,30,31]. Our model greatly differs from the above. There are many
additional models of dynamic distributed computation (e.g., [12,29]), which are very different
from the one we consider in this paper.

Some of the oldest works in similar models to ours are [22,26], who provide algorithms for
distance-related tasks. Constant-time algorithms were given in [28] for symmetry-breaking
problems assuming unlimited bandwidth and a single topology change at a time. The work
of [15], provides a randomized algorithm that uses small messages to fix an MIS in O(1)-
amortized update time for a non-adaptive oblivious adversary, still assuming a single change
at a time. The latter left as an open question the complexity of fixing an MIS in the sequential
dynamic setting. This was picked up in [1,2,21,25], giving the first non-trivial sequential MIS
algorithms, which were recently revised and improved [10, 19]. Specifically, the algorithm
of [1] achieves an O(min{∆,m3/4}) amortized message complexity and O(1)-amortized round
complexity and adjustment complexity (the number of vertices that change their output after
each update) for an adaptive non-oblivious adversary in the distributed setting. However,
they handle only a single change at a time, and sometimes need to know the number of
edges, which is global knowledge that our work avoids assuming. In fact, if one is happy with
restricting the algorithm to work only in a model with a single topology change at a time,
then sending timestamps is not required, so O(1)-bit messages suffice in our algorithm for
MIS, resembling what [1] obtains.
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[33] provides a neat log-starization technique, which translates logarithmic static dis-
tributed algorithms into a dynamic setting such that their amortized time complexity becomes
O(log∗ n). This assumes a single change at a time and large messages. [34] shows that maxi-
mal matching have O(1) amortized complexity, even when counting messages and not only
rounds, but assuming a single change at a time.

The (∆ + 1)-coloring algorithm of [9] also implies fixing in a self-stabilizing manner –
after the topology stops changing, only O(∆ + log∗ n) rounds are required in order to obtain
a valid coloring, where ∆ bounds the degrees of all the nodes at all times.

Perhaps the setting most relevant to ours is the one studied in [7], who also address a
very similar highly-dynamic setting. They insightfully provide fast dynamic algorithms for a
wide family of tasks, which can be decomposed into packing and covering problems, in the
sense that a packing condition remains true when deleting edges and a covering condition
remains true when inserting edges. For example, MIS is such a problem, with independence
and domination being the packing and covering conditions, respectively. An innovative
contribution of their algorithms is providing guarantees also for intermediate states of the
algorithm, that is, guarantees that hold even while the system is in the fixing process. They
show that the packing property holds for the set of edges that are present throughout the
last T rounds, and that the covering property holds for the set of edges that are present
in either of the last T rounds, for T = O(logn). Moreover, their algorithms have correct
solutions if a constant neighborhood of a node does not change for a logarithmic number
of rounds. Our algorithm guarantees correctness of labeled stars for nodes for which any
topology change touching their neighborhood has already been handled. In comparison with
their worst-case guarantee of O(logn) rounds for a correct solution, our algorithm only gives
O(n) rounds in the worst case. However, our amortized complexity is O(1), our messages
are of logarithmic size, and our algorithm is deterministic, while the above is randomized
with messages that can be of polylogarithmic size. In addition, a recent work [16] studies
subgraph problems in the same model described in our paper.

A different definition of local fixability [11, Appendix A], suitable for sequential dynamic
data structures, requires a node to be able to fix the solution by changing only its own state.
While this captures tasks such as coloring, and is helpful in the sequential setting for avoiding
the need to update the state of all neighbors of a node, in the distributed setting we can
settle for a less restrictive definition, as a single communication round suffices for updating
states of neighbors, if needed. Our algorithmic framework captures a larger set of tasks:
notably, we provide an algorithm for MIS, while [11] prove that it does not fall into their
definition. In addition, [11, Section 7] raises the question of fixing (in the sequential setting)
problems that are in P-SLOCAL3 [23]. Notably, this class contains approximation tasks, and
indeed for some approximation ratios we can apply our framework: Our algorithm has the
flavor of sequentially iterating over nodes and fixing the labels in their neighborhood, with
the additional power of the distributed setting that allows it to work concurrently on nodes
that are not too close. This also resembles the definition of orderless local algorithms [27],
although a formal definition for the case of fixing does not seem to be simpler than ours.

3 Roughly speaking, SLOCAL(t) is the class of problems that admit solutions by an algorithm that
iterates over all the nodes of the graph, and assigns a solution to each node based on the structure of
its t-neighborhood and solutions already assigned to nodes in this neighborhood. P-SLOCAL is the
class SLOCAL(polylog n).
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2 Model

We assume a synchronous network that starts as an empty graph on n nodes and evolves
into the graph Gi = (Vi, Ei) at the beginning of round i; in most of our algorithms, one
can alternatively assume any graph as the initial graph, as long as the nodes start with a
labeling that is globally consistent for the problem in hand. In some cases, we also allow
node insertion or deletion, and then n serves as a universal upper bound on the number
of nodes in the system. Each node is aware of its unique id, the edges it is a part of, its
weight if there is one, and of n. In addition, the nodes have a common notion of time, so the
execution is synchronous. New nodes do not know the global round number. (We mention
that in our algorithms it is sufficient for each node to know the round number modulo 15n,
and a new node can easily obtain this value from its neighbors, so we implicitly assume all
nodes have this knowledge.)

In each round, each node receives indications about the topology changes that occurred
to its incident edges. We stress that the indications are a posteriori, i.e., the nodes get them
only after the changes occur, and thus cannot prepare to them in advance (these are called
abrupt changes). After receiving the indications and performing local computation, each
node can send messages of O(logn) bits to each of its neighbors.

We work in a distributed setting where each node stores its own label. A distributed
fixing algorithm should update the labels of the nodes in a way that corrects the labeled
stars that become incorrect due to topology changes. Naturally, for a highly-dynamic setting,
we do not require a global consistent labeling in scenarios in which the system is undergoing
many topology changes.

We consider four classical graph problems. In the maximal matching problem, the nodes
have to mark a set of edges such that no two intersect, and such that no edge can be added to
the set without violating this condition. In minimum weight vertex cover (MWVC), the nodes
start with weights, and the goal is to choose a set of nodes that intersect all the edges, and
have the minimum weight among all such sets; we will be interested in the 2-approximation
variant of the problem, where the nodes choose a set of weight at most twice the minimum.
Finally, in the maximal independent set (MIS) problem, the nodes must mark a set of nodes
such that no two adjacent nodes are chosen, and such that no node can be added to the set.

The complexity of distributed fixing algorithms. When the labels of a star become
inconsistent due to changes, a distributed fixing algorithm will perform a fixing process,
which ends when the labels are consistent again, or when other changes occur in this star.
The worst-case round complexity of a distributed fixing algorithm is the maximum number
of rounds such a fixing process may take.

In our algorithms, it could be that it takes a while to fix some star, but we can argue
that this is because other stars are being fixed. We measure this progress with a definition
of the amortized round complexity.

When studying centralized algorithms for dynamic graphs, the amortized complexity
measure is typically defined by an aggregate analysis, i.e., considering the time when the
fixing process ends, and dividing the number of computation steps taken so far by the number
of changes that occurred. The natural generalization of this definition to the distributed
setting could be to take a time when the graph labeling is globally correct, and divide the
number of rounds occurred so far by the number of changes the network had undergone.
The first and most eminent problem in such a definition is that it requires a time when the
global solution is correct, which is something that we cannot demand in a highly-dynamic

OPODIS 2020



28:8 Fast Deterministic Algorithms for Highly-Dynamic Networks

environment. The second problem with it is that the adversary can fool this complexity
measure, by doing nothing for some arbitrary number of rounds in which the graph is correct,
while the algorithm still gets charged for these rounds.

To overcome the above problems, we define the amortized round complexity as follows.
Starting from round 0, in which the labeling is consistent for all stars, we consider the
situation in each round i. We denote by incorrect(i) the number of rounds until round i in
which there exists at least one inconsistent star. These are the computation rounds for which
we charge the algorithm. Notice that we do not count only communication rounds in order to
prevent an algorithm that cheats by doing nothing.4 We denote by changes(i) the number
of changes which occurred until round i. We say that an algorithm has an amortized round
complexity k if for every i with changes(i) > 0, we have incorrect(i)/ changes(i) ≤ k. This
definition captures the rate at which changes are handled, in a way that generalizes the
sequential definition.

Guarantees of our algorithm. Our algorithms have an O(1) amortized fixing time, and in
addition, they have additional desired progress properties. First, our algorithms guarantee a
worst-case complexity of O(n), which implies that repeated changes far from a given star
will not postpone it from being fixed for too long. Moreover, if a labeled star is consistent
and no topology change touches its neighborhood, then it remains consistent. Thus, our
algorithm has strong guarantees also for intermediate solutions.

3 An O(1) amortized dynamic algorithm for maximal matching

The solution to the maximal matching problem at any given time is determined according
to the labels of the nodes. A label of a node v can be either unmatched or matched-to-u,
indicating that v is unmatched, or is matched to u, respectively. Each node starts with the
label unmatched. Alternatively, one can assume any graph as the initial graph, as long as
the nodes start with a legal maximal matching solution. We prove the following.

I Theorem 2. There is a deterministic dynamic distributed fixing algorithm for maximal
matching which handles edge insertions/deletions in O(1) amortized rounds.

Proof. First, we assume that all nodes start with an initial globally consistent solution.

The setup: We denote γ = 5.
Let Fi be a set of edge changes (insertions/deletions) that occur in round i ≥ 0 (for

convenience, the first round is round 0). With each change in Fi, we associate two timestamps
such that a total order is induced over the timestamps as follows: for an edge e = {u, v} in
Fi, we associate the timestamp ts = (i, u, v) with node u, and the timestamp (i, v, u) with
node v. Since u and v start round i with an indication of e being in Fi, both can deduce their
timestamps at the beginning of round i. We say that a node v is the owner of the timestamps
that are associated with it. In each round, a node only stores the largest timestamp that it
owns, and omits the rest.

Notice that timestamps are of unbounded size, which renders them impossible to fit in
a single message. To overcome this issue we borrow a technique of [3], and we invoke a
deterministic hash function H over the timestamps, which reduces their size to O(logn)

4 One could count also rounds in which the labeling is globally correct if the algorithm chooses to
communicate in these rounds. Our algorithm never communicates in such rounds, so such a definition
would not change our amortized complexity.
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bits, while retaining the total order over timestamps. The reason we can do this is that not
every two timestamps can exist in the system concurrently. To this end, we define h(i) = i

mod 3γn and H(ts) = (h(i), u, v) for a timestamp ts = (i, u, v), and we define an order ≺H
over hashed timestamps as the lexicographic order of the 3-tuple, induced by the following
order ≺h over values of h. We say that h(i) ≺h h(i′) if and only if one of the following holds:

0 ≤ h(i) < h(i′) ≤ 2γn, or
γn ≤ h(i) < h(i′) < 3γn, or
2γn ≤ h(i) < 3γn and 0 ≤ h(i′) < γn.

If two timestamps ts = (i, v, u), ts′ = (i′, v′, u′) are stored in two nodes v, v′ at two times
i, i′, respectively, it holds that ts < ts′ (by the standard lexicographic order) if and only if
H(ts) ≺H H(ts′). The reason that this holds despite the wrap-around of hashed timestamps
in the third bullet above, is the following property that we will later prove: for every two
such timestamps, it holds that i′− i ≤ γn. This implies h(i) ≺h h(i′) whenever i < i′ despite
the bounded range of the function h.

The algorithm: In the algorithm, time is chopped up into epochs, each consisting of
γ consecutive rounds, in a non-overlapping manner. That is, epoch j consists of rounds
i = γj, . . . , γ(j + 1)− 1. For every epoch j ≥ 0, we consider a set Dj ⊆ V of dirty nodes at
the beginning of each epoch, where initially no node is dirty (D0 = ∅). Some nodes in Dj

may become clean by the end of the epoch, so at the end of the epoch the set of dirty nodes
is denoted by D′j , and it holds that D′j ⊆ Dj . At the beginning of epoch j + 1, all nodes
that receive any indication of an edge in Fi in the previous epoch are added to the set of
dirty nodes, i.e., Dj+1 = D′j ∪ Ij , where Ij is the set of nodes that start round i with any
indication about Fi, for any γj ≤ i ≤ γ(j + 1)− 1.

Intuitively, the algorithm changes the labels so that the labels at the end of the epoch are
consistent with respect to the topology that was at the beginning of the epoch, unless they
are labels of dirty nodes or of neighbors of dirty nodes.

The algorithm works as follows. In epoch j = 0, the nodes do not send any messages, but
some of them enter I0 (if they receive indications of edges in Fi, for 0 ≤ i ≤ γ − 1).

Denote by N i
v the neighborhood of v in round i, denote by Liv the label of v at the

beginning of round i, before the communication takes place, and denote by L̂iv the label at
the end of the round. Unless stated otherwise, the node v sets L̂iv ← Liv and Li+1

v ← L̂iv.
Now, consider an epoch j > 0. On round γj every node v ∈ Dj may locally change its label
to indicate that it is unmatched, in case the edge between v and its previously matched
neighbor is deleted:

Lγjv =
{

matched-to-u, if L̂γj−1
v = matched-to-u and u ∈ Nγj

v

unmatched, otherwise
(1)

where L̂γj−1
v is the label that v has at the end of round γj − 1 = γ(j − 1) + 4, which, as we

describe below, may be different from its label Lγj−1
v at the beginning of the round.5 Then,

the node v sends Lγjv to its neighbors. These are the labels for the graph Gγj which the
fixing addresses. We stress that the new labels Lγjv might not form consistent stars. Instead,
the nodes update Lγjv and send it to all neighbors in order to maintain a common graph,
with respect to which we show local consistency. As an example, consider a triangle w, v, u,

5 We stress that one can describe our algorithm with labels that can only change at the beginning of a
round, but we find the exposition clearer this way.
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undergoing the deletion of the edge {w, v} and of another edge connecting u with some other
node (see Figure 1). Suppose that w immediately tries to fix the labels in its star, according
to the fact that the edge {w, v} does not exist, while u is selected to fix its own star before v,
without knowing of the deletion of the edge {w, v}. Both nodes then simultaneously try to
change the label of u, and it could not be clear what u should do, and which neighborhood
of u will be corrected.

u

w v

Figure 1 Dashed lines represent edges that were deleted.

We continue describing the algorithm. On rounds γj + 1 to γj + 3 the nodes propagate
the hashed timestamps owned by dirty nodes. That is, on round γj + 1, each node in Dj

broadcasts its hashed timestamp, and on the following two rounds all nodes broadcast the
smallest hashed timestamp that they see (with respect to the order ≺H). Every node v in
Dj which does not receive a hashed timestamp that is smaller than its own becomes active.

On the last round of the epoch, γj + 4, every active node v computes the following
candidate for a new label, denoting by Nγj

v = {u1, . . . , ud} the neighborhood it had at
round γj.

`v =


matched-to-ui, if Lγjv = matched-to-ui
unmatched, if Lγjv = unmatched and for every 1 ≤ i ≤ d, Lγjui

6= unmatched

matched-to-ui, if Lγjv = unmatched and 1 ≤ i ≤ d is the smallest index
for which Lγjui

= unmatched

(2)

Notice that v has the required information to compute the above, even if additional
topology changes occur during the rounds in which timestamps are propagated. Yet, we
need to cope with the fact that topology changes may occur also throughout the current
epoch and, for example, make active nodes suddenly become too close. For this, we denote
by Tj ⊆ Ij the set of tainted nodes who received an indication of a topological change for at
least one of their edges during the epoch j.

Now, only an active node v which is not in Tj sets L̂γj+4
v ← `v and sends this new label to

each neighbor u. Otherwise, an active node v that is tainted (i.e., is in Tj) aborts and remains
dirty for the next epoch. Of course, if nodes u and v are neighbors at the beginning of an
epoch but not when v sends the computed label, then u does not receive this information.

Finally, every active node v /∈ Tj , if L̂γj+4
v = matched-to-u then u updates L̂γj+4

u =
matched-to-v (note that such u has the required information since it receives `v, as otherwise,
if by the time that `v is computed it holds that u and v are no longer neighbors, then v must
be tainted). At the end of round γj + 4 = γ(j + 1)− 1, node v becomes inactive and, unless
it aborts, is not included in D′j , i.e., we initialize D′j = Dj \ {v | v /∈ Tj is active in epoch j}
at the end of epoch j.

Correctness. For correctness we claim the following invariant holds at the end of round
i = γj + 4 = γ(j + 1)− 1: For every two nodes u, v that are clean at the end of the epoch
and for which {u, v} is an edge in Gγj , it holds that (1) at least one of L̂γj+4

u and L̂γj+4
v is

not unmatched and (2) if L̂γj+4
u = matched-to-v then L̂γj+4

v = matched-to-u.
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We prove the above by induction on the epochs. The base case holds trivially as during the
first epoch the labels do not change, and we assume that the nodes start with a legal maximal
matching for the initial graph. Now, assume the above invariants hold for epoch j − 1.

For every two nodes u, v that are clean at the end of the epoch and for which {u, v} is an
edge in Gγj , if their labels do not change during the epoch, then the invariant follows from
the induction hypothesis.

If only one of their labels changes, say that of v, then either v is active and not tainted
or there is a (single) neighbor w of v which is active and not tainted and makes v change its
label. In the former case, since the label `v of v changes compared to Lγjv , it does not remain
unmatched and does not remain matched-to-x for some node x. So the new label `v must
be matched-to-y, for some node y. Since the label of u does not change, we have that u 6= y,
and so if the label of u is not unmatched then it cannot be matched-to-v (as otherwise
Lγjv would be matched-to-u and so `v would also be matched-to-u, thus did not change).
In the latter case, if v changes its label because of the new label `w that is sent to it by a
neighbor w, then `w = matched-to-v and hence the new label of v is set to matched-to-w.

Finally, if both of their labels change, then without loss of generality v is active and not
tainted and computes `v = matched-to-u, making u update its label to matched-to-v. The
crucial thing to notice here is that it cannot be the case that a node wv changes the label
of v and a different node wu changes the label of u at the same time, because this implies
that the distance between wv and wu is at most 3, in which case either at least one of them
aborts due to an edge insertion, or the edge {u, v} is inserted (maybe immediately after
being deleted), but then v and u are not clean.

Since the invariant holds, we conclude that whenever Dj = ∅, it holds that the labeling
is that of a maximal matching for Gγj . Further, what the invariant implies is that some
correctness condition holds even for intermediate rounds: at the end of every epoch j, the
entire subgraph induced by the set of nodes that are clean and have all of their neighborhood
clean consists of nodes with locally consistent labels.

Round complexity. We now prove that the algorithm has an amortized round complexity
of O(1), by proving incorrect(i) ≤ 2γ · changes(i) for all i. First, note that the algorithm
communicates in each round where the graph is incorrect, and these communication rounds
can be split into epochs, implying incorrect(i) ≤ γ · epochs(i), where epochs(i) denotes
the number of epochs of computation done by the algorithm until round i (if round i is the
middle of an epoch then it does not affect the asymptotic behavior, so we can safely ignore
this partial epoch). On the other hand, the node with minimal timestamp at the beginning
of the j-th epoch becomes active during the epoch, and its timestamp is handled – even if
it becomes tainted by a change, the old timestamp is replaced by the new one. So, in each
epoch at least one timestamp disappears from the system. Now, since each topology change
creates at most two timestamps, we have that the number of timestamps created until round
i is at most 2 · changes(i), implying epochs(i) ≤ 2 · changes(i), and the claim follows.

Finally, we show that the timestamps can be represented by O(logn) bits. First, we claim
that for every two timestamps ts = (i, v, u) and ts′ = (i′, v′, u′) such that ts < ts′, that are
simultaneously owned by nodes at a given time, it holds that i′ − i ≤ γn. Assume otherwise,
and consider the first time when this condition is violated by a timestamp ts′, with respect to
a previous timestamp ts < ts′. This means that the owner v of ts does not become active for
more than n epochs. Since up to this point in time there were no violations, in each epoch
at least one timestamp was handled, and this was done in the desired order, i.e., all these
labels where smaller than ts. So, v not becoming active for more than n epochs can only
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happen if at round i there were more than n timestamps which were then not yet handled,
stored in various nodes. But there are at most n nodes and each one stores at most one
timestamp so the above is impossible. Since i′ − i ≤ γn, we have that H(ts) ≺H H(ts′),
because h(i) ≺h h(i′), as argued earlier.

Using the above we can also see that the worst case running time of our algorithm is
O(n). To see this, fix some node v with an inconsistent star which does not experience
topology changes touching its 1-hop neighborhood for (γ + 1)n rounds. This guarantees that
its timestamp does not change throughout these rounds, and after γn rounds its timestamp
must become a local minima. In the following epoch, if no changes occur within its 1-hop
neighborhood then its star becomes consistent, which matches the definition of having a
worst-case complexity of O(n). Further, once a node v successfully invokes a fixing of its
star, the star remains consistently labeled as long as no topology changes touch the 1-hop
neighborhood of v, thus we obtain strong guarantees for intermediate solutions. J

For node insertions and deletions, a direct application of the algorithm of Theorem 2
increases the amortized complexity if all neighbors of a changed node (inserted or deleted)
become dirty and O(∆) timestamps are associated with this topology change. However,
notice that when an edge is inserted, it suffices that only one of its endpoints becomes dirty in
the algorithm and gets matched to the other endpoint if needed. Hence, if a node is inserted,
it suffices that the inserted node becomes dirty, and we do not need all of its neighbors to
become so. An only slightly more subtle rule for deciding which nodes become dirty upon a
node deletion gives the following.

I Theorem 3. There is a deterministic dynamic distributed fixing algorithm for maximal
matching which handles edge/node insertions/deletions in O(1) amortized rounds.

Proof. We modify the algorithm of Theorem 2 as follows. Upon an insertion of a node v,
the node v becomes dirty. Upon a deletion of a node v with neighbors {u1, . . . , ud}, only the
node ui, for 1 ≤ i ≤ d, that is matched to v (if there exists such a node) becomes dirty.

The O(1) amortized round complexity remains, as every topology change induces at most
two new timestamps. Correctness still holds because it is not affected by a node insertion,
which can be viewed as multiple edge insertions (in terms of correctness, but without paying
this cost for the amortized time complexity), and it is not affected by a node deletion because
for any other node uj ∈ {u1, . . . , ud} such that j 6= i it holds that the deletion of v does not
influence its local consistency. J

4 An O(1) amortized dynamic algorithm for MIS

One can use a similar approach in order to obtain an MIS algorithm. However, when a
node v needs to be removed from the MIS due to an edge insertion, a neighbor u of v may
need to join the MIS if none its other neighbors are in the MIS. One way to do this is to
mark all of the neighbors of v as dirty, but this violates the amortized time complexity as
a single topology change may incur too many dirty nodes. Another option is to have v’s
label include neighborhood information such that upon receiving this label, its neighbors
know which of them should be moved into the MIS. This would give a simple O(1) amortized
rounds algorithm for MIS, but only if messages are allowed to be large. Instead, we present a
labeling that does not contain all the neighborhood information and uses only small labels.

To handle the new subset of neighbors that needs to be added to the MIS in the
aforementioned example, our approach is to have the active node simply indicate to all of its
neighbors that they cannot remain clean and must check for themselves whether they need
to change their labels. Of course, such a single topology change may now incur a number of
dirty nodes that is the degree of this endpoint, which may be linear in n.
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Yet, we make a crucial observation here: any node that becomes dirty in this manner,
can be blamed on a previous topology change in which only one node becomes dirty. This
implies a budget, to which we add 2 units for every topology change, and charge either
0, 1, 2, or d (current node degree) units for each invocation of the fixing function, in a
manner that preserves the budget non-negative at all times. Note that due to the accounting
argument, here we must start with an empty graph for the amortization to work, unlike
previous problems, where we could start with any graph as long as the nodes have labels
that indicate a valid solution. Roughly speaking, we rely on the fact that since all nodes
that are in the graph start as MIS nodes because there are no edges, then a node switches
from being an MIS node to being a non-MIS node only upon an insertion of an edge between
two MIS nodes, and the other endpoint of the inserted edge safely remains in the MIS. Note
that we impose the rule that an inserted node never makes a node switch from being an MIS
node to being a non-MIS node, since the inserted node chooses to become an MIS node only
if all of its neighbors are already non-MIS nodes.

I Theorem 4. There is a deterministic dynamic distributed fixing algorithm for MIS, which
handles edge/node insertions/deletions in O(1) amortized rounds.

Proof. We consider labels which are in {true, false} and maintain that the set of nodes
with the label true form an MIS. We start with an empty graph and all labels are true.
We first define the assignments of Liv and `v as in assignments (1) and (2) in the algorithm
for maximal matching in the proof of Theorem 2. Then, we explain how we modify the
algorithm further in order to avoid large messages with neighborhood information.

First, the label for Lγjv does not change from the previous round, i.e., assignment (1) is
Lγjv = L̂

γ(j−1)+4
v . For assignment (2) we set `v to be false if Lγjui

= true for some ui ∈ Nγj
v

and otherwise we set `v to be true. If v is active and not in Tj then it sets L̂γj+4
v to be `v

and sends this label to all of its neighbors. Notice that this is insufficient for arguing that the
labels at the end of the epoch form an MIS if all nodes are clean, for the same reason as in
the tricky example above: if v leaves the MIS due to an edge insertion, its neighbors do not
have enough information to decide which of them joins the MIS. To overcome this challenge,
we consider an algorithm similar to the one of Theorem 2, with the following modifications.

(1) When an edge e = {v, u} is deleted, if the labels of both u and v are false then neither
of them becomes dirty, and if only one of them is false then only this node becomes
dirty.

(2) When an edge e = {v, u} is inserted, if at least one of the labels of u and v is false then
neither of them becomes dirty, and if both are true then only the node with smaller ID
becomes dirty.

(3) When a node v is inserted then only v becomes dirty.
(4) When a node v is deleted then a neighbor z becomes dirty only if its label is false and

it has no neighbor with a label true.

In order for a node v to indicate that new labels may be needed for its neighbors, we add
the following item:
(5) When an active node v changes its label to false, all of its neighbors marked false

that do not have a neighbor marked true become dirty.

As we prove in what follows, this allows the correct fixing process that we aim for, but
this has the cost of having too many nodes become dirty. However, the crucial point here is
that not all nodes that become dirty in items (4) and (5) will actually utilize their timestamp
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– some will drop their timestamp before competing for becoming active, and hence we will
not need to account for fixing them. That is, we add the following item:
(6) When an active node v changes its label to true, all of its dirty neighbors become clean.

Correctness. The correctness follows the exact line of proof of the algorithm in Theorem 2,
with the modification that making some neighbors dirty in item (5) compensates for not
being able to assign them directly with good new labels. That is, at the end of the epoch,
we still have the following guarantee: if all nodes are clean, then their labels induce an MIS;
otherwise, for every two clean neighbors, either exactly one of them is in the MIS, or both
have a neighbor in the MIS.

Amortized round complexity. The proof follows the same lines as the previous complexity
proofs, with the addition of an accounting argument. This is used to prove that the cumulative
number of epochs in which any node becomes active is at most twice the number of topology
changes. This proves our claim of an amortized O(1) round complexity.

First, as in the former algorithms, we note that incorrect(i) ≤ γ ·epochs(i), and at each
epoch at least one timestamp is handled. Thus, we only need to upper bound the number of
timestamps created by round i as a function of changes(i). However, here we need to be
much more careful and we can not simply account each change for two timestamps, as some
changes create much more timestamps than others.

Consider a node v that is deleted in round i as in item (4) (or v is active and marked
false as in item (5)), and a set Z = {z1, . . . , zk} of its neighbors that become dirty by
satisfying the condition in item (4) (or item (5)) above, ordered by their timestamps (i, v, zj)
for 1 ≤ j ≤ k, as induced by this topology change. For each 1 ≤ j ≤ k, if a node zj becomes
active due to this timestamp, then by item (6), starting from round i none of its neighbors
change their label to true. Consider the last round i′ before round i in which the label of zj
is true (i′ exists since this condition occurs initially when the graph is empty). We claim
that the topology change whose associated active node changed the label of zj to false in
round i′ + 1, is either an insertion of an edge {zj , u} that satisfies the condition of item (2)
with ID(zj) < ID(u), or an insertion of the node zj which connects it to at least one node
whose label is true. The reason for this is that these are the only topology changes which
cause zj to be assigned the label false.

Finally, notice that these topology changes both induce only a single dirty node (thus a
single active node and a single epoch), and therefore we can blame zj becoming active on
the corresponding topology change. This is an injective mapping, as any other node cannot
blame these changes (they are changes that made zj dirty), and zj itself may become active
again in the future due to satisfying the condition in item (4) (or item (5)) above only if its
label is changed to false again in between.

In other words, this blaming argument implies epochs(i) ≤ 2 · changes(i) here as well,
completing the proof. J
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Abstract
We give efficient distributed algorithms for the minimum vertex cover problem in bipartite graphs in
the CONGEST model. From Kőnig’s theorem, it is well known that in bipartite graphs the size of a
minimum vertex cover is equal to the size of a maximum matching. We first show that together
with an existing O(n logn)-round algorithm for computing a maximum matching, the constructive
proof of Kőnig’s theorem directly leads to a deterministic O(n logn)-round CONGEST algorithm
for computing a minimum vertex cover. We then show that by adapting the construction, we can
also convert an approximate maximum matching into an approximate minimum vertex cover. Given
a (1 − δ)-approximate matching for some δ > 1, we show that a (1 + O(δ))-approximate vertex
cover can be computed in time O

(
D + poly

( logn
δ

))
, where D is the diameter of the graph. When

combining with known graph clustering techniques, for any ε ∈ (0, 1], this leads to a poly
( logn

ε

)
-

time deterministic and also to a slightly faster and simpler randomized O
( logn
ε3

)
-round CONGEST

algorithm for computing a (1 + ε)-approximate vertex cover in bipartite graphs. For constant
ε, the randomized time complexity matches the Ω(logn) lower bound for computing a (1 + ε)-
approximate vertex cover in bipartite graphs even in the LOCAL model. Our results are also in
contrast to the situation in general graphs, where it is known that computing an optimal vertex
cover requires Ω̃(n2) rounds in the CONGEST model and where it is not even known how to compute
any (2− ε)-approximation in time o(n2).

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Networks →
Network algorithms

Keywords and phrases distributed vertex cover, distributed graph algorithms, distributed optimiza-
tion, bipartite vertex cover

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2020.29

Related Version A full version of the paper is available at https://arxiv.org/abs/2011.10014.

1 Introduction & Related Work

In the minimum vertex cover (MVC) problem, we are given an n-node graph G = (V,E)
and we are asked to find a vertex cover of smallest possible size, that is, a minimum
cardinality subset of V that contains at least one node of every edge in E. In the distributed
MVC problem, the graph G is the network graph and the nodes of G have to compute a
vertex cover by communicating over the edges of G. At the end of a distributed vertex
cover algorithm, every node v ∈ V must know if it is contained in the vertex cover or not.
Different variants of the MVC problem have been studied extensively in the distributed
setting, see e.g., [3, 4, 6, 7, 9, 11,16,18–20,25,26]. Classically, when studying the distributed
MVC problem and also related distributed optimization problems on graphs, the focus has
been on understanding the locality of the problem. The focus therefore has mostly been
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on establishing how many synchronous communication rounds are necessary to solve or
approximate the problem in the LOCAL model, that is, if in each round, each node of G can
send an arbitrarily large message to each of its neighbors.

MVC in the LOCAL model. The minimum vertex cover problem is closely related to the
maximum matching problem, i.e., to the problem of finding a maximum cardinality set of
pairwise non-adjacent (i.e., disjoint) edges. Since for every matching M , any vertex cover
has to contain at least one node from each of the edges {u, v} ∈M , the size of a minimum
vertex cover is lower bounded by the size of a maximum matching. We therefore obtain a
simple 2-approximation S for the MVC problem by first computing a maximal matching
and by defining the vertex cover S as S :=

⋃
{u,v}∈M {u, v}. It has been known since the

1980s that a maximal matching can be computed in O(logn) rounds by using a simple
randomized algorithm [2,22,29]. The fastest known randomized distributed algorithm for
computing a maximal matching has a round complexity of O(log ∆ + log3 logn), where ∆ is
the maximum degree of the graph G [8, 15], and the fastest known deterministic algorithm
has a round complexity of O(log2 ∆ · logn) [15]. A slightly worse approximation ratio of
2 + ε can even be achieved in time O

( log ∆
log log ∆

)
for any constant ε > 0. This matches the

Ω
(

min
{

log ∆
log log ∆ ,

√
logn

log logn

})
lower bound of [25], which even holds for any polylogarithmic

approximation ratio. In [18], it was further shown that there exists a constant ε > 0 such that
computing a (1+ε)-approximate solution for MVC requires Ω(logn) rounds even for bipartite
graphs of maximum degree 3. By using known randomized distributed graph clustering
techniques [27, 30], this bound can be matched: For any ε ∈ (0, 1], a (1 + ε)-approximate
MVC solution can be computed in time O

( logn
ε

)
in the LOCAL model. It was shown in [17]

that in fact all distributed covering and packing problems can be (1 + ε)-approximated in
time poly

( logn
ε

)
in the LOCAL model. By combining with the recent deterministic network

decomposition algorithm of [32], the same result can even be achieved deterministially. We
note that all the distributed (1 + ε)-approximations for MVC and related problems quite
heavily exploit the power of the LOCAL model. They use very large messages and also the
fact that the nodes can do arbitrary (even exponential-time) computations for free.

MVC in the CONGEST model. As the complexity of the distributed minimum vertex
cover and related problems in the LOCAL model is now understood quite well, there has
recently been increased interest in also understanding the complexity of these problems in the
more restrictive CONGEST model, that is, when assuming that in each round, every node can
only send an O(logn)-bit message to each of its neighbors. Some of the algorithms that have
been developed for the LOCAL model do not make use of large messages and they therefore
directly also work in the CONGEST model. This is in particular true for all the maximal
matching algorithms and also for the (2 + ε)-approximate MVC algorithm mentioned above.
Also in the CONGEST model, it is therefore possible to compute a 2-approximation for MVC
in O(log ∆ + log3 logn) rounds and a (2 + ε)-approximation in O

( log ∆
log log ∆

)
rounds. However,

there is no non-trivial (i.e., o(n2)-round) CONGEST MVC algorithm known for obtaining an
approximation ratio below 2. For computing an optimal vertex cover on general graphs, it is
even known that Ω̃(n2) rounds are necessary in the CONGEST model [11]. It is therefore an
interesting open question to investigate if it is possible to approximate MVC within a factor
smaller than 2 in the CONGEST model or to understand for which families of graphs, this is
possible. The only result in this direction that we are aware of is a recent paper that gives
(1 + ε)-approximation for MVC in the square graph G2 in O(n/ε) CONGEST rounds on the
underlying graph G [6].
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MVC in bipartite graphs. In the present paper, we study the distributed complexity of
MVC in the CONGEST model for bipartite graphs. Unlike for general graphs, where MVC is
APX-hard (and even hard to approximate within a factor 2− ε when assuming the unique
games conjecture [24]), for bipartite graphs, MVC can be solved optimally in polynomial
time. While in general graphs, we only know that a minimum vertex cover is at least as large
as a maximum matching and at most twice as large as a maximum matching, for bipartite
graphs, Kőnig’s well-known theorem [12, 23] states that in bipartite graphs, the size of a
maximum matching is always equal to the size of a minimum vertex cover. In fact, if one
is given a maximum matching of a bipartite graph G = (U ∪ V,E), a vertex cover of the
same size can be computed in the following simple manner. Assume that we are given the
bipartition of the nodes of G into sets U and V and assume that we are given a maximum
matching M of G. Now, let L0 ⊆ U be the set of unmatched nodes in U and let L ⊆ U ∪ V
be the set of nodes that are reachable from L0 over an alternating path (i.e, over a path that
alternates between edges in E \M and edges in M). It is not hard to show that the set
S := (U \ L) ∪ (V ∩ L) is a vertex cover that contains exactly one node of every edge in M .
We note that this construction also directly leads to a distributed algorithm for computing an
optimal vertex cover in bipartite graphs G. The bipartition of G can clearly be computed in
time O(D), where D is the diameter of G and given a maximum matching M , the set L can
then be computed in O(n) rounds by doing a parallel BFS exploration on alternating paths
starting at all nodes in L0. Together with the O(n logn)-round CONGEST algorithm of [1]
for computing a maximum matching, this directly leads to a deterministic O(n logn)-round
CONGEST algorithm for computing an optimal vertex cover in bipartite graphs. As our main
contribution, we show that it is not only possible to efficiently convert an optimal matching
into an optimal vertex cover, but we can also efficiently turn an approximate solution of
the maximum matching problem in a bipartite graph into an approximate solution of the
MVC problem on the same graph. Unlike for MVC, where no arbitrarily good approximation
algorithms are known for the CONGEST model, such algorithms are known for the maximum
matching problem [1, 5, 28]. We use this to develop polylogarithmic-time approximation
schemes for the bipartite MVC problem in the CONGEST model. We next discuss our main
contributions in more detail.

1.1 Contributions
Our first contribution is a simple linear-time algorithm to solve the exact minimum vertex
cover problem.

I Theorem 1. There is a deterministic CONGEST algorithm to (exactly) solve the minimum
vertex cover problem in bipartite graphs in time O(OPT · log OPT), where OPT is the size of
a minimum vertex cover.

Proof. As mentioned, the algorithm is a straightforward CONGEST implementation of
Kőnig’s constructive proof. Given a bipartite graph G = (U ∪ V,E), one first computes a
maximum matching M of G in time O(OPT · log OPT) by using the CONGEST algorithm
of [1]. One elects a leader node ` and computes a BFS tree of G rooted at ` in time O(D),
where D is the diameter of G. Let U be the set of nodes at even distance from ` and let V be
the set of nodes at odd distance from `. Let L0 be the set of nodes in U that are not contained
in any edge of M . Starting at L0, we do a parallel BFS traversal on alternating paths. Let
L be the set of nodes that are reached in this way. The set L can clearly be computed in
time O(|M |) = O(OPT). As shown in the constructive proof of Kőnig’s theorem [12, 23], the
minimum vertex cover S is now defined as S := (U \ L) ∪ (V ∩ L). J
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Our main results are two distributed algorithms to efficiently compute (1+ε)-approximate
solutions to the minimum vertex cover problem. We first give a slightly more efficient (and
also somewhat simpler) randomized algorithm.

I Theorem 2. For every ε ∈ (0, 1], there is a randomized CONGEST algorithm that for any
bipartite n-node graph G computes a vertex cover of expected size at most (1 + ε) · OPT in
time O

( logn
ε3

)
, w.h.p., where OPT is the size of a minimum vertex cover of G.

We remark that for constant ε, the above result matches the lower bound of [18] for the
LOCAL model. More precisely, in [18], it is shown that there exists a constant ε > 0 for
which computing a (1 + ε)-approximation of minimum vertex cover requires Ω(logn) rounds
even on bounded-degree bipartite graphs. The second main result shows that similar bounds
can also be achieved deterministically.

I Theorem 3. For every ε ∈ (0, 1], there is a deterministic CONGEST algorithm that for
any bipartite n-node graph G computes a vertex cover of size at most (1 + ε) · OPT in time
poly

( logn
ε

)
, where OPT is the size of a minimum vertex cover of G.

1.2 Our Techniques in a Nutshell
We next describe the key ideas that leads to the results in Theorems 2 and 3. The core
of our algorithms is a method to efficiently transform an approximate solution M for the
maximum matching problem into an approximate solution of MVC. More concretely, assume
that we are given a matching M ⊆ E of a bipartite graph G = (U ∪ V,E) such that M is a
(1− ε)-approximate maximum matching of G (for a sufficiently small ε > 0). In Section 3, we
then first show that we can compute a vertex cover S ⊆ U∪V of size (1+O(ε poly logn)) · |M |
(and therefore a (1 +O(ε poly logn))-approximation for MVC) in time O

(
D + poly

( logn
ε

))
,

where D is the diameter of G. If the matching M has the additional property that there
are no augmenting paths of length at most 2k − 1 for some k = O(1/ε), we show that such
a vertex cover S can be obtained by adapting the constructive proof of Kőnig’s theorem.
Clearly, the bipartition of the nodes of G into sets U and V can be computed in time O(D).
Now, we again define L0 as the set of unmatched nodes in U and more generally for any
integer i ∈ {1, . . . , 2k}, we define Li to be the set of nodes in U ∪ V that can be reached
over an alternating path of length i from L0 and for which no shorter such alternating path
exists. Note that all nodes in set L2j−1 for j ∈ {1, . . . , k} are matched nodes as otherwise,
we would have an augmenting path of length at most 2k − 1. Note that any alternating
path starting at L0 starts with a non-matching edge from U to V and it alternates between
non-matching edges from U to V and matching edges from V to U . For every j ≥ 1, the set
L2j therefore exactly contains the matching neighbors of the nodes in L2j−1 and we therefore
have |L2j | = |L2j−1|. We will show that for every j ∈ {1, . . . , k} the set

Sj :=
⋃

j′∈{1,...,j}

L2j′−1 ∪

U \ ⋃
j′∈{0,...,j−1}

L2j′


is a vertex cover of size |M |+ |L2j | = |M |+ |L2j−1|. Because the sets Li are disjoint, clearly
one of these vertex covers must have size at most

(
1 + 1

k

)
· |M | = (1 +O(ε)) · |M |.

If we do not have the guarantee that M does not have short augmenting paths, we show
that one can first delete O(ε · |M | · poly logn) nodes from U ∪ V such that in the induced
subgraph of the remaining nodes, there are no short augmenting paths w.r.t. M . We also
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show that we can find such a set of nodes to delete in time poly
( logn

ε

)
. We can therefore

then first compute a good vertex cover approximation for the remaining graph and we then
obtain a vertex cover of G by also adding all the removed nodes to the vertex cover.

Given our algorithm to compute a good MVC approximation in time O(D + poly logn)
in Section 4, we show how that in combination with known graph clustering techniques, we
can obtain MVC approximation algorithms with polylogarithmic time complexities and thus
prove Theorems 2 and 3. Given a maximal matching M , we show that we can compute
disjoint low-diameter clusters such that all the edges between clusters can be covered by
O(ε · |M |) nodes. With randomization, such a clustering can be computed by using the
random shifts approach of [10,30] and deterministically such a clustering can be computed
by a simple adaptation of the recent network decomposition algorithm of [32]. Since the
clusters have a small diameter, we can then use the algorithm of Section 3 described above
inside the clusters to efficiently compute a good MVC approximation.

2 Model and Definitions

Communication Model. We work with the standard CONGEST model [31]. The network
is modelled as an n-node undirected graph G = (V,E) with maximum degree at most ∆ and
each node has a unique O(logn)-bit identifier. The computation proceeds in synchronous
communication rounds. Per round, each node can perform some local computations and
send one O(logn)-bit message to each of its neighbors. At the end, each node should know
its own part of the output, e.g., whether it belongs to a vertex cover or not.

Low-Diameter Clustering. In order to reduce the problem of approximating MVC on
general (bipartite) graphs to approximating MVC on low-diameter (bipartite) graphs, we
need a slightly generalized form of a standard type of graph clustering. Let G = (V,E,w) be
a weighted graph with non-negative edge weights w(e) and assume that W :=

∑
w∈E w(e)

is the total weight of all edges in G. A subset S ⊆ V of the nodes of G is called λ-dense
for λ ∈ [0, 1] if the total weight of the edges of the induced subgraph G[S] is at least λ ·W .
A clustering of G is a collection {S1, . . . , Sk} of disjoint subsets Si ⊆ V of the nodes. A
clustering {S1, . . . , Sk} is called λ-dense if the set S := S1 ∪ · · · ∪ Sk is λ-dense. The strong
diameter of a cluster Si ⊆ V is the (unweighted) diameter of the induced subgraph G[Si]
and the weak diameter of a cluster Si ⊆ V is the maximum (unweighted) distance in G

between any two nodes in Si. The strong/weak diameter of a clustering {S1, . . . , Sk} is
the maximum strong/weak diameter of any cluster Si. A clustering {S1, . . . , Sk} is called
h-hop separated for some integer h ≥ 1 if for any two clusters Si and Sj (i 6= j), we have
min(u,v)∈Si×Sj

dG(u, v) ≥ h, where dG(u, v) denotes the hop-distance between u and v in G.
A clustering {S1, . . . , Sk} is called (c, d)-routable if we are in addition given a collection of
trees T1, . . . , Tk in G such that for every i ∈ {1, . . . , k}, the node set of Ti contains the nodes
in Si, the height of Ti is at most d and every edge e ∈ E of G is contained in at most c trees
T1, . . . , Tk. Note that a (c, d)-routable clustering clearly has weak diameter at most 2d. Note
also that any clustering with strong diameter d can easily be extended to a (1, d)-routable
clustering by computing a BFS tree Ti for the induced subgraph G[Si] of each cluster Si.

3 Approximating MVC in Time Linear in the Diameter

In this section, we show how to compute a minimum vertex cover approximation in time
O(D + poly logn) in the CONGEST model, where D is the diameter of the graph. Before
discussing a distributed algorithm, we first describe a generic high-level algorithm to compute
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a (1 − ε)-approximate vertex cover from an appropriate approximate matching M of a
bipartite graph G. Given a matching M of any graph G, a path is said to be augmenting
w.r.t. M in G if it is a path that starts and ends with unmatched vertices and alternates
between matched and unmatched edges. Inspired by the standard constructive proof of
Kőnig’s theorem, we first describe an algorithm that gives an approximate minimum vertex
cover in bipartite graphs from an approximate maximum matching with the guarantee that
no short augmenting paths exist in the graph. We remark that a similar construction has also
been used by Feige, Mansour, and Schapire for approximating the bipartite MVC problem in
the local computation algorithms model [14].

In the following, assume that G = (V,E) is a bipartite graph, where the bipartition of V
is given by V = A∪B. Let k ≥ 1 be an integer parameter and assume that M is a matching
of G with no augmenting paths of length 2k − 1 or shorter. We further define a directed
version ~G of the graph G, where every edge e 6∈M is directed from set A to set B and every
edge e ∈M is directed from B to A (note that by definition of A and B, every edge of G is
between a node in A and a node in B). We then apply the following algorithm to compute a
set S, which we will show is a (1− 1/k)-approximate vertex cover of G.

Basic Approximate Vertex Cover Algorithm
1. Let A0 ⊆ A be the set of unmatched nodes in A.
2. For every i ∈ {1, . . . , k}, let Ai ⊆ A be the set of nodes in A for which the shortest

directed path in ~G from a node in A0 is of length 2i.
3. For every i ∈ {1, . . . , k}, let Bi ⊆ B be the set of nodes in ~G from a nodes in A0 is

of length 2i− 1.
4. Define i∗ := arg mini∈{1,...,k} |Bi|.
5. Output S :=

⋃i∗
i=1Bi ∪

(
A \

⋃i∗−1
i=0 Ai

)
.

I Lemma 4. If the given matching M has no augmenting paths of length at most 2k − 1,
the above algorithm computes a vertex cover S of G of size at most (1 + 1/k) · OPT, where
OPT is the size of a minimum vertex cover of G.

Proof. We first show that S is a vertex cover of G. A bit more generally, for any î ∈ {1, . . . , k},
we define Sî :=

⋃î
i=1Bi ∪

(
A \

⋃î−1
i=0 Ai

)
and show that Sî is a vertex cover of G. For Sî to

not be a vertex cover, there must be an a node u in a set Aj for j ∈
{

0, . . . , î− 1
}
and a

node v in B \
⋃î
j=1Bj . Note that the edge {u, v} cannot be a matching edge because either

u ∈ A0, in which case u is unmatched, or u ∈ Aj for j < î. In the second case, u is reached
over a path of length 2j in the directed graph ~G and thus u’s matching edge connects to
a node in Bj . However, if {u, v} is not a matching edge, it means that the edge {u, v} is
directed from u to v in graph ~G. Therefore, since the shortest directed path from A0 to u in
~G is of length 2j, there must be a directed path from A0 to v of length at most 2j + 1 in ~G.
This means that v must be in one of the sets B1, . . . , Bj+1. Since j < î, this contradicts the
assumption that v ∈ B \

⋃î
j=1Bj . We can therefore conclude that Sî is a vertex cover of G

for every î ∈ {1, . . . , k} and thus, in particular, the set Si∗ is a vertex cover of G.
It remains to show that the size of S is at most (1 + 1/k) · OPT. To prove this, we first

show that for all i ∈ {1, . . . , k}, the set of nodes in Bi are matched nodes. If there is a node
v ∈ Bi for i ≤ k that is unmatched, there is a directed path of length 2i− 1 ≤ 2k − 1 in ~G

from a node in A0 to v. Such a directed path would be an augmenting path of the same
length 2i− 1 ≤ 2k − 1 w.r.t. matching M in G. This cannot be because we assumed that
there are no augmenting paths of length at most 2k− 1 w.r.t. M in G. Further, by definition
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of the directed graph ~G, the reason that a node u is in a set Ai for i ∈ {1, . . . , k} is that the
matching edge of u connects u to a node in Bi. By induction on i, we can therefore conclude
that for all i ∈ {1, . . . , k}, the nodes in Ai are exactly the matching neighbors of the nodes
in Bi and therefore for all such i, we have |Ai| = |Bi|. For every î ∈ {1, . . . , k}, the size of
the set Sî can therefore be computed as

|Sî| =
î∑
i=1
|Bi|+ |A| − |A0|︸ ︷︷ ︸

=|M |

−
î−1∑
i=1
|Ai| = |M |+ |Bî|.

Because the sets Bi for i ∈ {1, . . . , k} are disjoint and they all contain matched nodes, their
total size is at most |M | and therefore, we have |Bi∗ | ≤ |M |/k. We can therefore conclude
that |S| = |M |+ |Bi∗ | ≤ (1 + 1/k) · |M | = (1 + 1/k) · OPT. J

We next discuss how the above algorithm can efficiently be implemented in time O(D +
poly logn) in the CONGEST model, where D is the diameter of the graph. A bit more
precisely, we will show the following. Let G = (V,E) be a bipartite graph with diameter
D and let G′ = (V ′, E′) be a subgraph of G. Assume that each node of G knows if it is
contained in the set V ′ and which of its edges are contained in the set E′. We then show
that for any k ≥ 1, one can run the above algorithm on graph G′ in O(D + k) rounds in the
CONGEST model on graph G. The implementation is relatively straightforward. In time
O(D), one can compute a BFS tree of the graph G, and one can compute the bipartition
of the nodes into sets A and B. Then, in O(k) rounds, one can do the BFS traversal on
the directed graph ~G, starting from nodes in A0 and computing the sets Ai and Bi for
i ∈ {1, . . . , k}. Finally, by using the BFS tree on graph G and a simple pipelining scheme,
one can compute the sizes of all the sets Bi and determine the index i∗ of the smallest such
set. A formal statement is given by the following lemma and a formal proof of the lemma
can be found in the full version of the paper [13].

I Lemma 5. Let G = (V,E) be a bipartite graph of diameter D, let G′ = (V ′, E′) be a
subgraph of G (i.e., V ′ ⊆ V and E′ ⊆ E), and let k ≥ 1 be an integer parameter. Assume
that M is a matching of G′ s.t. there exists no augmenting path of length at most 2k − 1
w.r.t. M in G′. Then, there exists a deterministic CONGEST model algorithm to compute a
(1 + 1/k)-approximate minimum vertex cover of G′ in O(D + k) rounds on graph G.

In combination with a distributed approximate maximum matching algorithm of Lotker,
Patt-Shamir, and Pettie [28], Lemma 5 directly leads to a randomized O(D+poly logn)-round
distributed approximation scheme for the MVC problem.

I Theorem 6. Let G = (V,E) be a bipartite graph of diameter D and G′ = (V ′, E′) be a
subgraph of G (i.e., V ′ ⊆ V and E′ ⊆ E). For ε ∈ (0, 1], there is a randomized algorithm
that gives a (1 + ε)-approximate minimum vertex cover of G′ w.h.p. in O(D + logn

ε3 ) rounds
in the CONGEST model on G.

Proof. The approximate maximum matching algorithm of [28] is based on the classic approach
of Hopcroft and Karp [21]. For a given graph and positive integer parameter k, the algorithm
computes a matchingM of the graph such that there is no augmenting path of length at most
2k − 1 w.r.t. M . When run on an n-node graph, the algorithm w.h.p. has a time complexity
of O(k3 · logn) in the CONGEST model. The theorem therefore directly follows by applying
the algorithm of [28] on G′ with k = d1/εe and by Lemma 5. J
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3.1 Deterministic MVC Approximation
The only part in the algorithm underlying Theorem 6 that is randomized is the approximate
maximum matching algorithm of [28]. In order to also obtain a deterministic distributed
MVC algorithm, we therefore have to replace the randomized distributed matching algorithm
by a deterministic distributed matching algorithm. The algorithm of [28] is based on the
framework of [21] and it therefore guarantees that the resulting matching has no short
augmenting paths. While the size of such a matching is guaranteed to be close to the size of
a maximum matching, the converse is not necessarily true.1 Unfortunately, we are not aware
of an efficient deterministic CONGEST model algorithm to compute a matching M with no
short augmenting paths. To resolve this issue, we therefore have to do some additional work.

For ε > 0, we define an augmenting path w.r.t. a matching in G′ to be short if it is of
length at most ` = 2k′− 1, where k′ = d2/εe. We define δ ≤ ε/(2α) where α = O

( log ∆
ε3

)
. We

first run a polylogarithmic-time deterministic CONGEST algorithm by Ahmadi et al. [1] to
obtain a (1− δ)-approximate maximum matching M in G′. This matching M can potentially
have short augmenting paths. In order to get rid of short augmenting paths, we then
find a subset of nodes S1 such that after deleting the nodes in S1, M is a matching with
no short augmenting paths in the remaining subgraph G′′ of G′. We show that we can
select S1 such that |S1| ≤ αδOPT, where OPT is the size of a minimum vertex cover in
G′. Now that we end up with a matching in G′′ with no short augmenting paths, we can
directly apply our subroutine from above on G′′ and obtain a set S2 which is a (1 + ε

2 )-
approximate vertex cover of G′′. Finally, we deduce that C = S1 ∪ S2 is a vertex cover of
G′. Moreover, since the size of the minimum vertex cover of G′′ is at most OPT, we get
|C| = |S1|+ |S2| ≤ αδOPT + (1 + ε

2 )OPT = (1 + ε)OPT.

Finding S1. We next describe an algorithm to compute the set S1. We assume that we
are given an arbitrary (1− δ)-approximate matching M of G′ = (U ′ ∪ V ′, E′). As discussed
above, we need to find a node set S1 ⊆ U ′ ∪ V ′ that allows to get rid of augmenting paths
of length at most ` = 2k′ − 1. This will be done in (` + 1)/2 stages d = 1, 3, . . . , `. The
objective of stage d is to get rid of augmenting paths of length exactly d. Note that this
guarantees that when starting stage d, there are no augmenting paths of length less than d
and thus in stage d, all augmenting paths of length d are also shortest augmenting paths. In
the following, we focus on a single stage d. Formally, the subproblem that we need to solve
in stage d is the following.

We are given a bipartite graph H = (UH ∪ VH , EH) with at most n nodes and we are
given a matching MH of H. We assume that the bipartition of the graph into UH and VH
is given. Let d be a positive odd integer and assume that H has no augmenting paths of
length shorter than d w.r.t. MH . The goal is to find a set SH ⊆ UH ∪ VH that is as small as
possible such that when removing the set SH from the nodes of H and the resulting induced
subgraph H ′ := H[UH ∪ VH \ SH ] has no augmenting paths of length at most d w.r.t. the
matching M ′H := MH ∩ E(H ′), i.e., w.r.t. to the matching induced by MH in the induced
subgraph H ′ of the remaining nodes.

We therefore need to find a set SH of nodes of H such that SH contains at least one node
of every augmenting path of length d w.r.t. MH in graph H. Further, we want to make sure
that after removing SH , in the remaining induced subgraph H ′ w.r.t. the remaining matching

1 One can for example obtain an almost-maximum matching M for some graph G by taking a maximum
matching of G and flipping an arbitrary matched edge to unmatched. While the matchingM is obviously
a very good approximate matching, it has a short augmenting path of length 1.
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M ′H , there are no augmenting paths that were not present in graph H w.r.t. matching MH .
To guarantee this, we make sure that whenever we add a matched node in UH ∪ VH to SH ,
we also add its matched neighbor to SH . In this way, every node that is unmatched in H ′
was also unmatched in H and therefore any augmenting path in H ′ is also an augmenting
path in H.

Getting Rid of Short Augmenting Paths by Solving Set Cover. The problem of finding
a minimal such collection of matching edges and unmatched nodes can be phrased as a
minimum set cover problem. The ground set P is the set of all augmenting paths of length
d w.r.t. MH in H. For each unmatched node v ∈ UH ∪ VH , we define Pv as the set of
augmenting paths of length d that contain v. Similarly, for each matching edge e ∈MH , we
define Pe as the set of augmenting paths of length d that contain e. The goal is to find a
smallest set C consisting of unmatched nodes v in UH ∪ VH and matching edges e ∈ MH

such that the union of the corresponding sets Pv and Pe of paths covers all paths in P . The
set SH then consists of all nodes in C and both nodes of each edge in C. Let us first have a
look at the structure of augmenting paths of length d in H. Let L0 be the set of unmatched
nodes in UH and more generally let Li ⊆ UH ∪VH for i ∈ {0, . . . , d} be the set of nodes of H
that can be reached over a shortest alternating path of length i from a node in L0. Since the
bipartition into UH and VH is given, the sets L0, . . . , Ld can be computed in d CONGEST
rounds by a simple parallel BFS exploration. Since we assume that H has no augmenting
paths of length shorter than d, every augmenting path of length d contains exactly one node
from every set Li such that the node in Ld is an unmatched node in VH .

We use a variant of the greedy set cover algorithm to find the set C covering all the
shortest augmenting paths in H. In order to apply the greedy set cover algorithm, we need to
know the sizes of the sets Pv, i.e., for every node v, we need to know in how many augmenting
paths of length d the node v is contained. To compute this number, we apply an algorithm
that was first developed in [28] and later refined in [5]. The following lemma summarizes the
result of [5, 28], for a proof see also the full version of this paper [13].

I Lemma 7. [5,28] Let H = (UH ∪VH , EH) be a bipartite graph of maximum degree at most
∆ and MH be a matching of H. There is a deterministic O(d2)-round CONGEST algorithm
to compute the number of shortest augmenting paths of length d passing through every node
v ∈ UH ∪ VH .

We can now use this path counting method to find a small set S of nodes that covers all
augmenting paths of length d. We start with an empty set C. The algorithm then works in
O(d log ∆) phases i = 1, 2, 3, . . . , where in phase i, we add unmatched nodes v and matching
edges e to C such that are still contained in at least ∆d/2i remaining paths. In order to
obtain a polylogarithmic running time, we need to add nodes and edges to C in parallel.
In order to make sure that we do not cover the same path twice, when adding nodes and
edges in parallel, we essentially iterate through the d levels in each phase. The details of the
algorithm are given in the following.
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Covering Paths of Length d: Phase i ≥ 1
Iterate over all odd levels ` = 1, 3, . . . , d:
1. Count the number of augmenting paths of length d passing through each of the

remaining nodes and edges.
2. If ` ∈ {1, d}, for all remaining nodes v ∈ L` that are in pv ≥ ∆d/2i different

augmenting paths of length d, add v to C and remove v and its incident edges from
GH for the remainder of the algorithm.

3. If ` ∈ {2, . . . , d− 1}, for all remaining matching edges e ∈MH connecting two nodes
u ∈ L`−1 and v ∈ L` that are in pe ≥ ∆d/2i different augmenting paths of length d,
add e to C and remove e and its incident edges from GH for the remainder of the
algorithm.

Define SH to contain every node in C and both nodes of every edge in C.

I Lemma 8. Let δ ∈ (0, 1) and assume that MH is a (1− δ)-approximate matching of the
bipartite graph H of maximum degree at most ∆ . Then, the set SH selected by the above
algorithm has size at most αdδ · OPTH , where αd = 2(d+ 3)(1 + d ln ∆) and OPTH is the
size of a maximum matching and thus of a minimum vertex cover of H. The time complexity
of the algorithm in the CONGEST model is O(d4 log ∆).

Proof. We first look at the time complexity of the algorithm in the CONGEST model. The
algorithm consists of O(d log ∆) phases, in each phase, we iterate over O(d) levels and in
each of these iterations, the most expensive step is to count the number of augmenting paths
passing through each node and edge. By Lemma 7, this can be done in time O(d2), resulting
in an overall time complexity of O(d4 log ∆).

For each free node v ∈ UH ∪VH and for each matching edge e ∈MH , let pv and pe be the
number of (uncovered) augmenting paths of length d passing through v and e, respectively.
We will next show that our algorithm is simulating a version of the standard sequential
greedy set cover algorithm. When applying the sequential greedy algorithm, in each step,
we would need to choose a set Pv or Pe of paths that maximizes the number of uncovered
augmenting paths of length d the set covers. We will see that we essentially relax the greedy
step and we obtain an algorithm that is equivalent to a sequential algorithm that always picks
a set of paths that contains at least half as many uncovered paths as possible. To show this,
we first show that for each phase i, at the beginning of the phase, we have pv, pe ≤ ∆d/2i−1

for all unmatched nodes v and matching edges e. For the sake of contradiction, assume that
this is not the case and let i′ be the first phase, in which it is not true. Because every node
and edge can be contained in at most ∆d augmenting paths of length d, the statement is
definitely true for the first phase and we therefore have i′ > 1. We now consider phase i′ − 1.
In each phase, by iterating over all odd levels ` = 1, 3, . . . , d, we iterate over all unmatched
nodes v ∈ UH ∪ VH and all matching edges e ∈MH that are contained in some augmenting
path of length d. For each of them, we add the corresponding set Pv or Pe to the set cover
if we still have pv ≥ ∆/2i′−1 or pe ≥ ∆/2i′−1. At the end of phase i′ − 1, we therefore
definitely have pv, pe < ∆/2i′−1 for all nodes v and matching edges e, which contradicts the
assumption that at the beginning of phase i′, it is not true that pv, pe ≤ ∆/2i′−1 for all such
v and e. Because in each phase i, we only add set Pv and Pe that are contained in at least
∆/2i uncovered paths, we clearly always pick sets that cover at least half as many uncovered
paths as the best current set. Note also that because we iterate through the levels and only
add sets for nodes or edges on the same level in parallel, the set that we add in parallel cover
disjoint sets of paths. The algorithm is therefore equivalent to a sequential algorithm that
adds the sets in each parallel step in an arbitrary order.
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Now, we will show that we remove at most 2(d + 3)(1 + d ln ∆)δ · OPTH nodes from
graph H. Indeed, approximating the set cover problem using the standard greedy algorithm
gives a (1 + ln(s)) approximation to the solution, where s is the cardinality of the largest set.
If we relax the greedy step by at least a factor of two, as our algorithm does, a standard
analysis implies that we still get a 2(1 + ln s)-approximation of the corresponding minimum
set cover problem, where s is still defined as the cardinality of the largest set. In our case,
the largest set Pv or Pe is s ≤ ∆d. Now if the solution to the set cover problem using this
greedy version algorithm is SH and the optimal solution of the set cover problem is S∗, then
|S∗| ≤ |SH | ≤ 2(1 + d ln ∆)|S∗|. Recall that Pe corresponds to a matched edge and by step 3
in our algorithm, both of these matched nodes are removed from the graph H. Hence, we
remove up to 2|SH | ≤ 4(1 + d ln ∆)|S∗| nodes from H.

Next, we give an upper bound to |S∗|, which will finish up our proof. Recall that a
solution to our set cover problem is a set of matched edges Se and a set of unmatched nodes
Sv that cover all augmenting paths of length d in H, i.e., all paths in P. Luckily, there is
a simple solution to the given set cover problem that allows us to upper bound |S∗|. We
just select a maximal set P of vertex-disjoint augmenting paths of length d and we consider
all the unmatched nodes and matched edges on these paths to be our solution S′, where
|S′| = d+3

2 |P |. Clearly, S
′ is a set cover (and thus |S∗| ≤ |S′|), as otherwise there would be

an augmenting path of length d that is not covered by S′. This path has to be vertex-disjoint
from all the paths in P , which is a contradiction to the assumption that P is a maximal set of
vertex-disjoint augmenting paths of length d. Let |M∗H | denote the maximum cardinality of a
matching of graph H. Now, since MH is a (1− δ)-approximate matching, we can clearly have
at most δ|M∗H | vertex-disjoint augmenting paths of at most length d. Hence, the size of P
can never exceed δ|M∗H | i.e. |P | ≤ δ|M∗H |. Thus, |S∗| ≤ |S′| ≤ d+3

2 δ|M∗H |. Hence, we remove
at most 2|SH | ≤ 4(1 + d ln ∆)|S′| ≤ 4(1 + d ln ∆)d+3

2 δ|M∗H | ≤ 2(d+ 3)(1 + d ln ∆)δ|M∗H | =
2(d+ 3)(1 + d ln ∆)δ · OPTH nodes from graph H. J

By iterating over the lengths of shortest paths, we now directly get the following lemma.
For a formal proof of the lemma, we refer to the full version of this paper [13].

I Lemma 9. Let G = (U ∪ V,E) be a bipartite graph, let k ≥ 1 be an integer parameter,
and assume that M is a (1− δ)-approximate matching of G for some δ ∈ [0, 1]. Further, let
OPT be the size of a minimum vertex cover of G. If the bipartition of the nodes of G into U
and V is given, there is an O(k5 log ∆)-time algorithm to compute a node set S1 ⊆ U ∪ V of
size at most 4k(k + 1)(1 + 2k ln ∆)δ · OPT such that in the induced subgraph G[U ∪ V \ S],
there is no augmenting path of length at most 2k − 1 w.r.t. the matching M̄ , where M̄ ⊆M
consists of the edges of M that connect two nodes in U ∪ V \ S1.

We now have everything that we need to also get a deterministic O
(
D+poly

( logn
ε

))
-time

CONGEST algorithm for computing a (1 + ε)-approximate solution for the MVC problem in
bipartite graphs.

I Theorem 10. Let G = (V,E) be a bipartite graph of diameter D and maximum degree ∆
and let G′ = (V ′, E′) be a subgraph of G. For ε ∈ (0, 1], there is a deterministic algorithm
that gives a (1 + ε)-approximate minimum vertex cover of graph G′ in O(D + log4n

ε8 ) rounds
in the CONGEST model on G.

Proof. As a first step, we choose a sufficiently small parameter δ > 0 and we compute a (1−δ)-
approximate solutionM ′ to the maximum matching problem on G′ by using the deterministic
CONGEST algorithm of [1]. For computing such a matching, the algorithm of [1] has a time
complexity of O

( log2 ∆+log∗ n
δ + log ∆

δ2

)
= O

( log2 n
δ2

)
. Let k′ := d2/εe as discussed above. By
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Lemma 9, there is a value α = 4k′(k′ + 1)(1 + 2k′ ln ∆) = O(k′3 log ∆) such that we can find
a set S1 ⊆ V ′ of size |S1| = αδOPT, where OPT is the size of a minimum vertex cover of G′,
such that the following is true. The set S1 can be computed in time O(k′5 log ∆) = O

( logn
ε5

)
.

Let G′′ = G′[V ′ \ S1] be the induced subgraph of G′ after removing all the nodes in S1 and
let M ′′ be the subset of the edges in M ′ that connect two nodes in V ′ \ S1 (i.e., M ′′ is a
matching of G′′). Then, the graph G′′ has no augmenting paths of length at most 2k′ − 1.
By using Lemma 5, we can therefore compute a (1 + 1/k′)-approximate vertex cover S2 (and
thus a (1 + ε/2)-approximate vertex cover) of G′′ in time O(D + k′) = O(D + 1/ε). Because
a minimum vertex cover of G′′ is clearly not larger than a minimum vertex cover of G′, we
therefore have |S2| ≤ (1 + ε/2) · OPT. Note that S1 ∪ S2 is a vertex cover of G′. The size of
S1 ∪ S2 can be bounded as |S1 ∪ S2| ≤ δα · OPT + (1 + ε/2) · OPT. In order to make sure
that this is at most (1 + ε) · OPT, we have to choose δ ≤ ε/(2α). The time complexity to
compute the initial matching M ′ of G′ is therefore O

( log2 n
δ2

)
= O

( log4 n
ε8

)
. J

4 Polylogarithmic-Time Algorithms

We next show how we can use the algorithms of the previous section together with existing
low-diameter graph clustering techniques to obtain polylogarithmic-time approximation
schemes for the minimum vertex cover algorithm in the CONGEST model. First we describe a
general framework for achieving a (1+ε)-approximate minimum vertex cover C of unweighted
bipartite graphs via an efficient algorithm in the CONGEST model based on a given clustering
with some specific properties (cf. Section 2 for the corresponding definitions). We will do
so by proving the following lemma. Note that our general framework applies to both the
randomized and the deterministic case.

I Lemma 11. Let G = (V,E) be a bipartite graph and assume that we are given a maximal
matching M of G. We define edge weights w(e) ∈ {0, 1} such that w(e) = 1 if and only
if e ∈ M . Further, assume that w.r.t. those edge weights, we are given a (1 − η) dense,
3-hop separated, and (c, d)-routable clustering of G, for some η ∈ (0, 1] and some positive
integers c, d > 0. Then, for any ψ ∈ (0, 1], we can find a (1 + 2η + ψ)-approximate minimum
vertex cover by a deterministic CONGEST algorithm in O

(
c ·
(
d+ poly logn

ψ

))
rounds and by

a randomized CONGEST algorithm in O
(
c ·
(
d+ logn

ψ3

))
rounds, w.h.p.

Proof. Let {S1, S2, ..., St} be the collection of clusters of the given 3-hop separated, (1− η)-
dense clustering. Define E′ to be the set of edges for which both endpoints are located
outside clusters and let E′′ to be the set of edges where exactly one of the endpoints is
outside clusters. We also say that e is an edge outside clusters if it is in E′ ∪E′′. Further, let
X to be the set of all matched nodes (w.r.t. the given maximal matching M) that are outside
clusters. Note that since M is a maximal matching, any edge in E′ is necessarily incident to
at least one matched node of M . Therefore, when adding the set X to the vertex cover C,
we cover all edges in E′ and possibly some extra edges in E′′. Now since G is (1− η)-dense,
then at most η|M | matched edges are outside clusters, and when assuming that |M∗| is the
size of a maximum matching of G, we can deduce that |X| ≤ 2η|M | ≤ 2η|M∗| = 2ηOPT,
where OPT is the size of a minimum vertex cover of G. Next, we extend each cluster Si
by at most one hop in radius as follows. For every edge {u, v} ∈ E′′ such that u ∈ Si and
v 6∈ Si, we add the edge {u, v} and node v to the cluster. Let {S′1, S′2, ..., S′t} be the new
collection of extended clusters. All edges of G that are not already covered by X are now
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inside some cluster. In addition, we grow the height of each cluster tree Ti by at most one
hop so that they include the new cluster nodes. We denote the new extended trees by T ′i .
Note that clearly, each edge in E is still in at most c trees. Hence, the new collection of
extended clusters are now 2-hop separated and (c, d+ 1)-routable.

For each cluster S′i, let G′i be the graph consisting of the nodes and edges of the cluster.
We note that because the clusters are 1-hop separated, the graphs G′i are vertex and edge
disjoint. In addition, for each cluster S′i, we define the graph Gi as the union of G′i and the
tree T ′i . Because the clustering is (c, d+ 1)-routable, it follows that every edge of G is used
by at most c of the graph Gi and that the diameter of each graph Gi is at most d+ 1. To
obtain a vertex cover of all edges of G, we now compute a (1 + ψ)-approximate minimum
vertex cover Ci for each extended cluster graph G′i by running the algorithms described in
Theorems 6 and 10. We do this for all clusters in parallel. For each cluster S′i, we use Gi and
G′i as the graphs G and G′ in Theorems 6 and 10. Because each edge is contained in at most
c graphs Gi, we can in parallel run T -round algorithms in all graphs Gi in time c · T . The
time complexities therefore follow directly as claimed from the respective time complexities
in Theorems 6 and 10.

We define Y :=
⋃t
i=1 Ci. Because every edge of G that is not covered by the nodes in

X is inside one of the clusters S′i, clearly, the set X ∪ Y is a vertex cover of G. We already
showed that |X| ≤ 2ηOPT. To bound the size of X ∪ Y , it remains to bound the size of Y .
Let OPTi be the size of an optimal vertex cover of G′i. Because the cluster graphs G′i are
vertex-disjoint, all edges in G′i clearly have to be covered by some node of the cluster S′i and
thus edges in different clusters have to be covered by disjoint sets of nodes. If OPT is the
size of an optimal vertex cover of G, we thus clearly have

⋃t
i=1 OPTi ≤ OPT. Because Ci is

a (1 + ψ)-approximate vertex cover of G′i, we also have |Ci| ≤ (1 + ψ) · OPTi. Together, we
therefore directly get that |Y | ≤ (1+ψ) ·OPT and therefore |X ∪Y | ≤ (1+2η+ψ) ·OPT. J

In order to prove our two main results, Theorems 2 and 3, we will next show how to
efficiently compute the clusterings that are required for Lemma 11. Both clusterings can be
obtained by minor adaptations of existing clustering techniques.

4.1 The Randomized Clustering
We start with describing the randomized clustering algorithm. By using the exponentially
shifted shortest paths approach of Miller, Peng, and Xu [30], we obtain the following lemma.

I Lemma 12. Let G = (V,E,w) be a weighted bipartite graph with non-negative edge weights
w(e). For λ ∈ (0, 1], there is a randomized algorithm that computes a 3-hop separated
clustering of G such that w.h.p., the clustering is (1, O( logn)

λ )-routable and can be computed
in O( logn

λ ) rounds in the CONGEST model and such that the clustering is (1− λ)-dense in
expectation.

The proof of Lemma 12 is a relatively simple adaptation of the clustering algorithm
of [30]. For a proof, see the full version of this paper [13].

We now have everything that we need to prove our first main result, our randomized
polylogarithmic-time approximation scheme for the MVC problem in bipartite graphs.

Proof of Theorem 2. Let G = (V,E) be the given bipartite graph for which we want to
approximate the MVC problem. We first compute a maximal matching M of G, which
we can for example do by using Luby’s algorithm [2, 29] in O(logn) rounds. By using M ,
we then apply Lemma 12 with λ = ε/4 to obtain a 3-hop separated

(
1, O

( logn
ε

))
-routable
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clustering that is (1− ε/4)-dense in expectation. The time for computing the clustering is
O
( logn

ε

)
, w.h.p. By applying Lemma 11 with η = ε/4 and ψ = ε/2, we then get a vertex

cover of G in O
( logn
ε3

)
CONGEST rounds such that the expected size of the vertex cover is at

most (1 + ε) · OPT, where OPT is the size of a minimum vertex cover of G. This concludes
the proof of the theorem. J

4.2 The Deterministic Clustering
We obtain the deterministic version of the necessary clustering by adapting the construction
of a single color class of the recent efficient deterministic network decomposition algorithm
of Rozhoň and Ghaffari [32].

I Lemma 13. Let G = (V,E,w) be a weighted bipartite graph with non-negative edge weights
w(e) ∈ {0, 1}. For λ ∈ (0, 1], there is a deterministic algorithm that computes an (1− λ)-
dense, 3-hop separated, and

(
O(logn), O

( log3 n
λ

))
-routable clustering of G in poly

( logn
λ

)
rounds in the CONGEST model.

Proof. We assume that W :=
∑
w∈E w(e) is the total weight of all edges in G. Let λ ∈ (0, 1].

We adapt the weak diameter network decomposition algorithm of Rozhoň and Ghaffari [32]
applied to the graph G2 in the CONGEST model. When applied to G2, Theorem 2.12 of [32]
shows that the algorithm of [32] computes a decomposition of the nodes V into clusters of
O(logn) colors such that any two nodes in different clusters of the same color are at distance
at least 3 from each other (in G). Each cluster is spanned by a Steiner tree of diameter
O(log3 n) such that each edge of G is used by at most O(logn) different Steiner trees for each
of the O(logn) color classes. For our purpose, we only need to construct the first color class
of this decomposition. For the first color class, the proof of Theorem 2.12 of [32] implies that
the clusters of the first color are 3-hop separated and that they contain a constant fraction
of all the nodes. We need to adapt the construction of the first color class of the algorithm
of [32] in two ways. In the following, we only sketch these changes.

First, we adapt the algorithm so that it can handle weights. In the following, we define
node weight ν(v) ≥ 0 as follows. For each node v, we define ν(v) as the sum of the weights
w(e) of the edges e that are incident to v. Note that this implies that the total weight
of all the nodes is 2W and that the total weight of all the nodes that are not clustered
is an upper bound on the total weight of all the edges outside clusters (i.e., all the edges,
where at most one endpoint is inside a cluster). In the algorithm of [32], the clustering is
computed in different steps. In each step, some nodes request to join a different cluster
and a cluster accepts these requests if the total number of nodes requesting to join the
cluster is large enough compared to the total number of nodes already inside the cluster. If
a cluster does not accept the requests, the requesting nodes are deactivated and will not
be clustered. The threshold on the number of requests required to accept the requests is
chosen such that in the end the weak diameter of the clusters is not too large and at the
same time, only a constant fraction of all nodes are deactivated and thus not clustered.
In our case, we do not care how many nodes are clustered and unclustered, but we care
about the total weight of nodes that are clustered and unclustered. The analysis of [32]
however directly also works if we instead compare the total weight of the nodes that request
to join a cluster with the total weight of the nodes that are already inside the cluster. If the
node weights are polynomially bounded non-negative integers (which they are in our case),
the asymptotic guarantees of the construction are exactly the same. In this way, we can
make sure to construct (O(logn), O(log3 n))-routable, 3-hop separated clusters such that a
constant fraction of the total weight of all the nodes is inside clusters.
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As a second change, in order to make sure that the clustering is also (1−λ)-dense, we need
to guarantee that the total weight of the nodes that are unclustered is at most a λ/2-fraction
of the total weight of all the nodes. We can guarantee this, by adapting the threshold for
accepting nodes to a cluster. We essentially have to multiply the threshold by a factor Θ(λ)
to make sure that this is the case. This increases the maximal possible cluster diameter by a
factor O(1/λ) and it increases the total running time by a factor poly(1/λ). J

Remark: In the above lemma, we assumed for simplicity that the edge weights are either
0 or 1. The construction however directly also works in the same way and with the same
asymptotic guarantees if the edge weights are polynomially bounded non-negative integers.
With some simple preprocessing, one can also obtain the same asymptotic result for arbitrary
non-negative edge weights.

In a similar way as we proved Theorem 2, we can now also prove our second main
result, our deterministic polylogarithmic-time approximation scheme for the MVC problem
in bipartite graphs.

Proof of Theorem 3. Let G = (V,E) be the given bipartite graph for which we want to
approximate the MVC problem. We first compute a maximal matching M of G, which we
can do by using the algorithm of Fischer [15] in O(log2 ∆ · logn) deterministic rounds in
the CONGEST model. By using M , we then apply Lemma 13 with λ = ε/4 to obtain a
(1− ε/4)-dense, 3-hop separated

(
O(logn),poly

( logn
ε

))
-routable clustering. By Lemma 13,

the time for computing the clustering in the CONGEST model is poly
( logn

ε

)
. By applying

Lemma 11 with η = ε/4 and ψ = ε/2, we then get a (1 + ε)-approximate vertex cover of G
in poly

( logn
ε

)
CONGEST rounds, which completes the proof of the theorem. J

References
1 M. Ahmadi, F. Kuhn, and R. Oshman. Distributed approximate maximum matching in the

CONGEST model. In Proc. 32nd Symp. on Distributed Computing (DISC), pages 6:1–6:17,
2018.

2 N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for the
maximal independent set problem. Journal of Algorithms, 7(4):567–583, 1986.

3 M. Åstrand, P. Floréen, V. Polishchuk, J. Rybicki, J. Suomela, and J. Uitto. A local 2-
approximation algorithm for the vertex cover problem. In Proc. 23rd Symp. on Distributed
Computing (DISC), pages 191–205, 2009.

4 N. Bachrach, K. Censor-Hillel, M. Dory, Y. Efron, D. Leitersdorf, and A. Paz. Hardness of
distributed optimization. In Proc. 38th ACM Symp. on Principles of Distributed Computing
(PODC), pages 238–247, 2019.

5 R. Bar-Yehuda, K. Censor-Hillel, M. Ghaffari, and G. Schwartzman. Distributed approxima-
tion of maximum independent set and maximum matching. CoRR, abs/1708.00276, 2017.
Conference version at PODC 2017.

6 R. Bar-Yehuda, K. Censor-Hillel, Y. Maus, S. Pai, and S. V. Pemmaraju. Distributed
approximation on power graphs. In Proc. 39th ACM Symp. on Principles of Distributed
Computing (PODC), pages 501–510, 2020.

7 R. Bar-Yehuda, K. Censor-Hillel, and G. Schwartzman. A distributed (2+ε)-approximation
for vertex cover in o(logδ/ε log log δ) rounds. In Proceedings of the ACM Symposium on
Principles of Distributed Computing (PODC), pages 3–8, 2016.

8 L. Barenboim, M. Elkin, S. Pettie, and J. Schneider. The locality of distributed symmetry
breaking. In Proceedings of 53th Symposium on Foundations of Computer Science (FOCS),
2012.

OPODIS 2020



29:16 Approximating Bipartite Minimum Vertex Cover in the CONGEST Model

9 R. Ben-Basat, G. Even, K. Kawarabayashi, and G. Schwartzman. Optimal distributed covering
algorithms. In Proc. 33rd Symp. on Distributed Computing (DISC), pages 5:1–5:15, 2019.

10 G. E. Blelloch, A. Gupta, I. Koutis, G. L. Miller, R. Peng, and K. Tangwongsan. Nearly-linear
work parallel SDD solvers, low-diameter decomposition, and low-stretch subgraphs. Theory
Comput. Syst., 55(3):521–554, 2014.

11 K. Censor-Hillel, S. Khoury, and A. Paz. Quadratic and near-quadratic lower bounds for the
CONGEST model. In Proc. 31st Symp. on Distributed Computing (DISC), pages 10:1–10:16,
2017.

12 R. Diestel. Graph Theory, chapter 2.1, pages 35–58. Springer, Berlin, 3rd edition, 2005.
13 S. Faour and F. Kuhn. Approximate bipartite vertex cover in the CONGEST model. CoRR,

abs/2011.10014, 2020.
14 U. Feige, Y. Mansour, and R. E. Schapire. Learning and inference in the presence of corrupted

inputs. In Proc. 28th Conf. on Learning Theory (COLT), pages 637–657, 2015.
15 M. Fischer. Improved deterministic distributed matching via rounding. In Proc. 31st Symp.

on Distributed Computing (DISC), pages 17:1–17:15, 2017.
16 M. Ghaffari, C. Jin, and D. Nilis. A massively parallel algorithm for minimum weight vertex

cover. In Proc. 32nd ACM Symp. on Parallelism in Algorithms and Architectures (SPAA),
pages 259–268, 2020.

17 M. Ghaffari, F. Kuhn, and Y. Maus. On the complexity of local distributed graph problems.
In Proc. 39th ACM Symp. on Theory of Computing (STOC), pages 784–797, 2017.

18 M. Göös and J. Suomela. No sublogarithmic-time approximation scheme for bipartite vertex
cover. Distributed Computing, 27(6):435–443, 2014.

19 F. Grandoni, J. Könemann, and A. Panconesi. Distributed weighted vertex cover via maximal
matchings. ACM Trans. Algorithms, 5(1):6:1–6:12, 2008.

20 F. Grandoni, J. Könemann, A. Panconesi, and M. Sozio. A primal-dual bicriteria distributed
algorithm for capacitated vertex cover. SIAM J. Comput., 38(3):825–840, 2008.

21 J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 1973.

22 A. Israeli and A. Itai. A fast and simple randomized parallel algorithm for maximal matching.
Inf. Process. Lett., 22(2):77–80, 1986.

23 D. Kőnig. Gráfok és mátrixok. Matematikai és Fizikai Lapok, 38:116–119, 1931.
24 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-epsilon.

J. Comput. Syst. Sci., 74(3):335–349, 2008.
25 F. Kuhn, T. Moscibroda, and R. Wattenhofer. What cannot be computed locally! In

Proceedings of 23rd ACM Symposium on Principles of Distributed Computing (PODC), pages
300–309, 2004.

26 F. Kuhn, T. Moscibroda, and R. Wattenhofer. The price of being near-sighted. In Proceedings
of 17th Symposium on Discrete Algorithms (SODA), pages 980–989, 2006.

27 N. Linial and M. Saks. Low diameter graph decompositions. Combinatorica, 13(4):441–454,
1993.

28 Z. Lotker, B. Patt-Shamir, and S. Pettie. Improved distributed approximate matching. J.
ACM, 62(5):38:1–38:17, 2015.

29 M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM Journal
on Computing, 15:1036–1053, 1986.

30 G. L. Miller, R. Peng, and S. C. Xu. Parallel graph decompositions using random shifts.
In Proc. 25th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pages
196–203, 2013.

31 D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.
32 V. Rozhoň and M. Ghaffari. Polylogarithmic-time deterministic network decomposition and

distributed derandomization. In Proc. 52nd ACM Symp. on Theory of Computing (STOC),
pages 350–363, 2020.



Distributed Distance Approximation
Bertie Ancona
MIT, Cambridge, MA, USA
bancona@alum.mit.edu

Keren Censor-Hillel
Technion, Haifa, Israel
ckeren@cs.technion.ac.il

Mina Dalirrooyfard
MIT, Cambridge, MA, USA
minad@mit.edu

Yuval Efron
Technion, Haifa, Israel
efronyuv@gmail.com

Virginia Vassilevska Williams
MIT, Cambridge, MA, USA
virgi@mit.edu

Abstract
Diameter, radius and eccentricities are fundamental graph parameters, which are extensively studied
in various computational settings. Typically, computing approximate answers can be much more
efficient compared with computing exact solutions. In this paper, we give a near complete char-
acterization of the trade-offs between approximation ratios and round complexity of distributed
algorithms for approximating these parameters, with a focus on the weighted and directed variants.

Furthermore, we study bi-chromatic variants of these parameters defined on a graph whose
vertices are colored either red or blue, and one focuses only on distances for pairs of vertices that
are colored differently. Motivated by applications in computational geometry, bi-chromatic diameter,
radius and eccentricities have been recently studied in the sequential setting [Backurs et al. STOC’18,
Dalirrooyfard et al. ICALP’19]. We provide the first distributed upper and lower bounds for such
problems.

Our technical contributions include introducing the notion of approximate pseudo-center, which
extends the pseudo-centers of [Choudhary and Gold SODA’20], and presenting an efficient distributed
algorithm for computing approximate pseudo-centers. On the lower bound side, our constructions
introduce the usage of new functions into the framework of reductions from 2-party communication
complexity to distributed algorithms.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Distributed Computing, Distance Computation, Algorithms, Lower Bounds

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2020.30

Related Version A full version of this paper is available at https://arxiv.org/abs/2011.05066.

Funding This project has received funding from the European Research Council (ERC) under the
European Unions Horizon 2020 research and innovation programme under grant agreement No
755839.

1 Introduction

The diameter and radius are central graph parameters, defined as the maximum and minimum
eccentricities over all vertices, respectively, where the eccentricity of a vertex v is the maximum
distance out of v. Computing the diameter and radius of a given graph are cornerstone
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problems with abundant applications. This is particularly the case in the context of distributed
computing, where distances between nodes in a network (and in particular the graph diameter)
directly influence the time it takes to communicate throughout the network.

We focus on computing the diameter, radius and eccentricities in the classic CONGEST
model of distributed computation, in which n nodes of a synchronous network communicate
by exchanging messages of O(logn) bits with their neighbors in the underlying network graph.
In a seminal work, Frischknecht et al. [35] showed that the diameter is hard to compute in
CONGEST, namely that Ω̃(n)1 rounds are required, even in undirected unweighted graphs.
Abboud et al. [1] showed that the same holds for computing the radius. Both of these results
are tight up to logarithmic factors due to algorithms that compute all pairs shortest paths
(APSP) in a given unweighted, undirected graph in O(n) rounds, see Lenzen and Peleg, and
Peleg et al. [50,53]. Recently, Bernstein and Nanongkai [14], presented an algorithm which
computes exact APSP in a given weighted, directed graph in Õ(n) rounds as well.

As computing the diameter and radius exactly in general graphs is hard, a natural
relaxation is to settle for approximate computations. In an unweighted, undirected graph, a
simple observation due to the triangle inequality is that computing a BFS tree from any node
yields a 2-approximation to the diameter or radius, and a 3-approximation of all eccentricities.

Obtaining a more thorough understanding of the complexity landscape of computing
approximations to these distance parameters has been an ongoing endeavour of the community.
The current state of the art for diameter approximation is the algorithm by Holzer et al. [40]
with round complexity of O(

√
n logn+D), that achieves a 3

2 -approximation of the diameter
in a given unweighted, undirected graph (further discussion is deferred to Section 1.2).

However, many open cases have remained, and unveiling the full picture of the trade-
offs between approximation ratios and round complexity for distance parameters in the
CONGEST model has remained a central open problem. In this paper, we give a near-complete
characterization of this trade-off for the problems of diameter, radius and eccentricities,
focusing on the weighted and/or directed variants. For the problem of directed diameter,
only the range [ 3

2 , 2] of approximation ratios remains open.
In some cases, originally motivated by computational geometry problems [4,29,46,57], we

are interested in a “bi-chromatic” definition of the parameters. In the bi-chromatic setting,
the vertices are partitioned into two sets, S and T = V \ S, and the bi-chromatic eccentricity
of a node s ∈ S is the maximum distance from s to a node in T . The bi-chromatic diameter
and radius are the maximum and minimum bi-chromatic eccentricities of nodes in S.

The bi-chromatic versions of diameter and radius have received much recent attention in
the sequential setting [11,24]. In this paper, we initiate the study of these problems in the
CONGEST model, by providing upper and lower bounds for these problems. For example, we
prove that a 5

3 -approximation to bi-chromatic diameter in an unweighted, undirected graph
can be computed in Õ(

√
n + D) rounds, and we prove this is tight in the sense that any

improvement in the approximation ratio incurs a blowup in the round complexity to Ω̃(n).
A more comprehensive display of our results follows. Also, a comparison with previous

work is depicted in Table 1 and Table 2 and is elaborated upon in Section 1.2.

1.1 Our contributions and techniques
As mentioned earlier, the eccentricity ecc(v) of a vertex v is the distance maxu∈V d(v, u).
The diameter D is the largest eccentricity in the graph, and the radius r is the smallest.

1 Throughout the paper, Õ and Ω̃ are used to hide poly-logarithmic factors
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Table 1 Upper bounds for the problems considered in this paper. A variant can be weighted,
directed, both, or neither. Upper bounds hold for the listed variants and all subsets of those variants.
Approximation factors are multiplicative but may omit additive error. The value k may be any
integer greater or equal to 1. We denote the round complexity of the current best exact weighted
SSSP algorithm by T (SSSP ), currently Õ(min

{√
nD,
√
nD

1
4 + n

3
5

}
+D) by [34].

∗for k = 1

Problem Approx. Variant Upper Bound Õ(·) Reference
Diameter Exact wted dir n [14]

2− 1
2k n

1
k+1 +D Theorem 9, [39]∗

2 wted dir T (SSSP ) Corollary 4
2 + ε wted

√
n+D [13]

wted dir
√
nD1/4 +D Corollary 3

Radius Exact wted dir n [14]
2− 1

2k n
1

k+1 +D Theorem 9
2 wted dir T (SSSP ) Corollary 4

2 + ε wted
√
n+D Corollary 2

wted dir
√
nD1/4 +D Corollary 3

Eccentricities Exact wted dir n [14]
3− 4

2k+1 n
1

k+1 +D Theorem 9
2 wted dir T (SSSP ) Corollary 4

2 + ε wted
√
n+D Corollary 2

wted dir
√
nD1/4 +D Corollary 3

Bi-chromatic Diameter Exact wted dir n [14]
5/3

√
n+D Theorem 10

2 wted T (SSSP ) Theorem 11

Directed/weighted Radius and Eccentricities. We present a connection between the
complexity of computing or approximating the Single Source Shortest Paths (SSSP) problem
and the complexity of approximating radius, diameter and eccentricities. Formally, we prove
the following theorem in Section 3.

I Theorem 1. For any ε ≥ 0, given a (1 + ε)-approximation algorithm Aε for weighted and
directed SSSP running in T (n, ε,D) rounds, there exists an algorithm for (2 + ε3 + 3ε2 + 4ε)-
approximate diameter, radius, and all eccentricities in Õ(T (n, ε,D) +D) rounds on weighted,
directed graphs.

We now describe the challenges in proving the above and how we cope with them. A
useful notion for distance parameters is the center of a graph, which is the vertex with the
lowest eccentricity. Given the center c of a graph, we can easily approximate all eccentricities
of a given graph by performing an SSSP algorithm rooted at c, and letting each node v
estimate its eccentricity by outputting d(v, c) + ecc(c). However, computing the center of a
graph, or even its eccentricity (the radius), is a hard task that requires Ω̃(n) rounds [1].

For proving Theorem 1, we rely on an approach of Choudhary and Gold [22]. Here, one
defines a notion of a pseudo-center and one then shows how to compute a pseudo-center of
size O(log2 n) sequentially in near-linear time. A pseudo-center C is a set of nodes, whose
goal is to mimic the center of the graph, by promising that all eccentricities are at least the
maximal distance between any node to the pseudo-center C. Using such a pseudo-center, one
estimates the eccentricity of every node, similarly to the case of computing the actual center.
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Table 2 Lower bounds for the problems considered in this paper. A variant can be weighted,
directed, both, or neither. Lower bounds hold for the listed variants and all supersets of those
variants. Approximation factors are multiplicative.

Problem Approx. Variant Lower Bound Ω̃(·) Reference
Diameter 3/2− ε n [1]

2− ε wted [41]
poly(n) wted

√
n+D [49]

dir Theorem 8
Radius 3/2− ε n [1]

2− ε wted Theorem 5
dir

poly(n) wted
√
n+D Corollary 6

dir
Eccentricities 5/3− ε n [1]

2− ε wted [41]
dir Theorem 5

poly(n) wted
√
n+D Corollary 6

dir
Bi-chromatic Diameter 5/3− ε n Theorem 14

2− ε wted [41]
dir Theorem 15

poly(n) wted
√
n+D Corollary 6

dir

The algorithm of [22] for computing a small pseudo-center can be viewed as a reduction
to Single Source Shortest Paths (SSSP), which is very efficient in the sequential setting.
However, the current state-of-the-art distributed complexity of computing exact SSSP is
very costly, and hence we wish to avoid it. To overcome this, we introduce the notion of an
approximate pseudo-center, which generalizes the notion of a pseudo-center. We prove that
(i) an approximate pseudo-center of small size can be computed efficiently in a distributed
manner (thus avoiding the complexities of exact SSSP), and (ii) an approximate pseudo-center
is still sufficient for approximating the required distance parameters.

From Theorem 1, using the (1 + ε)-approximate SSSP algorithms of [13,34], which run in
Õ((
√
n+D)/ε) rounds on weighted, undirected graphs and Õ((

√
nD1/4 +D)/ε) rounds on

weighted, directed graphs, respectively, we deduce the following corollaries:

I Corollary 2. For any ε = 1/polylog(n), there exists an algorithm for (2 + ε)-approximate
diameter, radius and all eccentricities running in Õ(

√
n+D) rounds on nonnegative weighted

graphs, with n nodes and hop-diameter D.

I Corollary 3. For any ε = 1/polylog(n), there exists an algorithm for (2 + ε)-approximate
diameter, radius and all eccentricities running in Õ(

√
nD1/4 +D) rounds on nonnegative

weighted, directed graphs, with n nodes and hop-diameter D.

Using the exact SSSP algorithm of Chechik and Mukhtar [21] we obtain the following.

I Corollary 4. There exists an algorithm for 2-approximate radius, diameter and all eccent-
ricities running in Õ(

√
nD1/4 +D) rounds on nonnegative weighted, directed graphs, with n

nodes and hop-diameter D.

Regarding radius, the only previous result regarding the complexity of approximating
the radius in the CONGEST model is due to [1], in which they showed that for any ε > 0,
computing an (3/2−ε)-approximation to the radius in undirected, unweighted graphs requires
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Ω̃(n) rounds. Abboud et al. [1] show that any algorithm computing an ( 5
3 − ε)-approximation

of all eccentricities requires Ω̃(n) rounds as well. Having a complete understanding of the
relationship between approximation ratio and the round complexity of computing unweighted,
undirected radius remains an intriguing open problem. As a step towards resolving this
problem, we give a nearly full characterization of the approximation factor to round complexity
mapping for radius in weighted or directed graphs in the CONGEST model.

In Section 4 we prove the following.

I Theorem 5. Given any constant ε > 0, any algorithm (even randomized) computing an
(2− ε)-approximation to the weighted (directed) radius in a given weighted (directed) graph
G requires Ω̃(n) rounds.

A standard technique for proving lower bounds for the CONGEST model, is to reduce it
from 2-party communication complexity. In the context of the distance parameters discussed
in this work, this framework was used by [35] to show that any algorithm that distinguishes
between networks with diameter 2 and 3 requires Ω̃(n) rounds. Later, [1] showed that this
lower bound holds even when one considers sparse networks with only O(n) edges (they also
proved more results as discussed in the related work section).

Many of the papers that employ this framework, reduce from either the Set Disjointness
function, the Equality function, or the Gap Disjointness function [10,16,23,25]. In this work,
we enhance this framework by showing lower bounds using reductions from other functions,
which were not used previously to obtain lower bounds for the CONGEST model. Namely, in
the proof of Theorem 5, we use the Tribes function, defined by Jayram et al. in [45], and
the Hitting Set Existence (HSE) function, which is a communication complexity variant of
a problem introduced by Abboud et al. in [3]. We elaborate upon this framework and the
functions that we use in Section 2.

The following is a corollary of Theorem 7 and Theorem 8 which are stated below for the
diameter, since any finite approximation to the radius, implies a finite approximation to the
diameter, as r ≤ D ≤ 2r.

I Corollary 6. Given any positive function α(n), any algorithm (even randomized) computing
an α(n)-approximation to the weighted (directed) radius in a given weighted (directed) graph
G requires Ω̃(

√
n+D) rounds.

Directed/Weighted Diameter. In previous work, Holzer and Pinsker [41] showed a lower
bound of Ω̃(n) rounds for computing a (2 − ε)-approximation of the diameter of a given
weighted graph. Shortly after, Becker et al. [13] designed an algorithm that computes a
(2 + o(1))-approximation of weighted and directed diameter in Õ(

√
nD1/4 +D) rounds. Such

an algorithm makes one wonder, is there a smooth trade-off between the round complexity
and the approximation ratio when going beyond a 2-approximation, for either the directed
or weighted variants? In other words, can one further reduce the round complexity if we are
willing to settle for a worse approximation ratio? For weighted diameter, this question was
resolved by Lenzen et al. [49] in the negative, in the sense that the dependence on n in the
algorithm of [13] is necessary (up to poly-logarithmic factors) for any approximation of the
diameter in weighted or directed graphs. We give a proof of this result for completeness, and
this allows us to more easily present a similar new result for the bi-chromatic diameter case.
The bi-chromatic diameter is a variant of the diameter problem that is discussed later.

I Theorem 7. Given any positive function α(n), any algorithm (even randomized) computing
an α(n)-approximation to the weighted diameter or bi-chromatic diameter in a given graph
G requires Ω̃(

√
n+D) rounds.
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I Theorem 8. Given any positive function α(n), any algorithm (even randomized) computing
an α(n)-approximation to the diameter in a given directed graph G requires Ω̃(

√
n+D) rounds.

To prove these theorems we reduce from the problem of Spanning Connected Subgraph
Verification (SCSV) to approximating these parameters. The SCSV problem is known to
admit the above lower bound due to Das Sarma et al. [25]. The key challenge is to construct
a reduction in a manner that can be efficiently simulated in CONGEST. The proofs of these
theorems are given in full version of the paper.

Undirected and Unweighted Diameter, Radius and Eccentricities. Abbout et al. [1] show
that for any ε > 0, any algorithm computing an ( 3

2 − ε)-approximation of diameter or radius
in unweighted undirected graphs has round complexity Ω̃(n). Furthermore, any algorithm
computing an ( 5

3 − ε)-approximation to all eccentricities has round complexity Ω̃(n). For
upper bounds, the state of art for diameter approximation is an algorithm by Holzer et
al. [40], computing a 3/2-approximation in Õ(

√
n logn+D) rounds. Fully understanding

the mapping of approximation ratios in the range [ 3
2 , 2) for diameter and radius, and in

the range ( 5
3 , 3) for all eccentricities, to their respective correct round complexity in the

CONGEST model remains open. As a step towards resolving this open problem, in the
full version of the paper, we present a simple distributed implementation of a sequential
approximation algorithm of Cairo et al. [15] for diameter, radius and eccentricities with the
following parameters.

I Theorem 9. For any k ∈ N, there exist algorithms that compute (2 − 1
2k )-approximate

diameter and radius and (3 − 4
2k+1 )-approximate eccentricities on unweighted, undirected

graphs, that have running time of Õ(n
1

k+1 +D) rounds w.h.p.

Bi-chromatic Diameter and Radius. To the best of our knowledge, no previous results
regarding bi-chromatic distance parameters are known in distributed settings. Roughly
speaking, these variants are defined using only distances between pairs of nodes in S × T
where S, T ⊆ V, T = V \S. DST ,RST respectively denote the ST -diameter maxs∈S,t∈T d(s, t)
and the ST -radius mins∈S maxt∈T d(s, t) (also see Section 2.1). In the following, T (SSSP )
refers to the distributed complexity of exact weighted SSSP. The proofs of these theorems
can be found in the full version of the paper

I Theorem 10. There is an algorithm with complexity Õ(
√
n+D) that given an undirected,

unweighted graph G = (V,E), and sets S ⊆ V, T = V \S, w.h.p. computes a value D∗ST such
that 3DST

5 − 6
5 ≤ D

∗
ST ≤ DST .

I Theorem 11. There is an algorithm with complexity T (SSSP ) that given an undirected
graph G = (V,E), and sets S ⊆ V, T = V \S, computes a value D∗ such that DST

2 −W/2 ≤
D∗ ≤ DST . Here W is the minimum edge weight in S × T .

We remark that using very similar algorithms to the ones of Theorem 10 and Theorem 11,
one can obtain the following results, whose proofs we omit due to similarity to the main
ideas in the proofs we provide for the above two theorems.
I Remark 12. There are algorithms with complexity Õ(

√
n+D) that given an undirected,

unweighted graph G = (V,E), and sets S, T ⊆ V , compute w.h.p. the following.
1. A value R∗ST such that RST ≤ R∗ST ≤ 5RST

3 + 5
3 , in the case that S = V \T .

2. A 2-approximation to all ST -eccentricities.
3. A 2-approximation to RST .
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I Remark 13. There are algorithms with complexity T (SSSP ) that given an undirected
graph G = (V,E), and sets S, T ⊆ V , compute the following.
1. A value R∗ST such that RST ≤ R∗ST ≤ 2RST +W , in the case that S = V \T . Here W is

the minimum edge weight in S × T .
2. A 3-approximation to all ST -eccentricities.
3. A 3-approximation to RST .

We complement these upper bounds with several lower bounds. We show that in the
weighted case, one cannot hope to do better than a 5

3 -approximation for bi-chromatic diameter
with O(n1−ε) rounds for some ε > 0. Additionally, as a step towards realizing the complexity
of finding a better than 2-approximation for directed diameter, we show that for bi-chromatic
diameter, in which one is tasked with finding the largest distance between a pair of nodes
in different sets of a given partition of the graph, finding such an approximation is a hard
task. Formally, we prove the following theorems in the full version of the paper due to lack
of space.

I Theorem 14. For all constant ε > 0, there is no o( n
log3 n

) round algorithm for computing
a ( 5

3 − ε)-approximation to the bi-chromatic diameter in an unweighted, undirected graph.

I Theorem 15. For all constant ε > 0, there is no o( n
log2 n

) round algorithm for computing
a (2− ε)-approximation to the bi-chromatic diameter in a directed graph.

Finally, we show that for both the directed and weighted cases, any approximation of the
bi-chromatic diameter requires Ω̃(

√
n+D) rounds. The weighted case is proved as part of

Theorem 7. In the full version of the paper we prove separately the directed case, which is
stated formally as follows.

I Theorem 16. Given any positive function α(n), any algorithm (even randomized) computing
an α(n)-approximation to the bi-chromatic diameter in a given directed graph G requires
Ω̃(
√
n+D) rounds.

1.2 Additional related work
The state of the art algorithm for 3/2-approximation of unweighted, undirected diameter
[40] was preceded by a significant number of works. Notable examples are Holzer’s and
Wattenhofer’s algorithm computing a 3/2-approximation of the diameter in undirected,
unweighted graphs in O(n3/4 +D) rounds [42], and the independent work of Peleg et al. [53],
which achieves the same approximation in O(D

√
n logn) rounds. Later, Lenzen and Peleg [50]

improved this upper bound to O(
√
n logn+D).

Approximations to more concrete variants of distance computations such as APSP
and SSSP have been extensively studied in the CONGEST as well. Examples include
the deterministic (1 + o(1))-approximation to APSP by Nanongkai [52], and the (1 + ε)-
approximation algorithm for SSSP of Becker et al. [13]. The near optimal algorithm of
Bernstein and Nanongkai for APSP [14] was preceded by a series of papers that set to realize
the complexity of APSP in CONGEST [5, 6, 8, 30, 43]. Given that [14] is a randomized Las
Vegas algorithm, there remains a gap between between the best known deterministic and
randomized algorithms for APSP, with the deterministic state of the art being Õ(n4/3) [7].
For SSSP, the state of the art algorithm of [21] was also preceded by a series of improvements
[13,30,31,34,37,38,48,52] from the folklore O(n) Bellman-Ford algorithm.

Approximations to distance computations have been studied in various distributed
settings, such as the congested clique model. Starting from [18], which presented the first
non trivial algorithms for both exact, and approximated APSP in the model. From there
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a series of works designed more and more efficient algorithms for approximating distances
in the model [13, 17, 20, 26, 31, 32, 36], with the most recent work being the poly(log logn)
approximations for APSP and Multi Source Shourtest Paths [27].

Conditional hardness results for these parameters are very well-studied in the sequential
setting, within fine-grained complexity, under assumptions such as the Strong Exponential
Time Hypothesis (SETH) [44]. For details, see e.g., the work of Backurs et al. [11] or the
survey by Vassilevska Williams [56]. Returning to the CONGEST model, in some topologies
such as planar graphs, work by Li and Parter [51] showed that the diameter of an unweighted,
undirected graph can even be computed in a sublinear number of rounds.

The lower bound framework for reducing 2-party communication complexity to CONGEST
was introduced by Peleg and Rubinovich in [54], in which they show that any algorithm
solving the minimum spanning tree (MST) problem has round complexity Ω̃(

√
n + D).

Since then, there has been a surge of lower bounds for the CONGEST model employing this
framework; examples include [2, 10, 23, 25, 28, 33]. In an independent concurrent work, [9]
show another angle of the landscape of the complexity of diameter approximation, proving
that for any constant ε > 0, any algorithm approximating the diameter of a given unweighted,
undirected graph, within a factor of ( 3

5 +ε), ( 4
7 +ε), or ( 6

11 +ε), must have a round complexity
of at least Ω̃(n1/3), Ω̃(n1/4), or Ω̃(n1/6), respectively.

2 Preliminaries

2.1 The Model & Definitions
This paper considers the CONGEST model of computation. In this model, a synchronized
network of n nodes is represented by an undirected, unweighted, simple graph G = (V,E). In
each round, each node can send a different message of O(logn) bits to each of its neighbors.

Next, we define the network parameters that we discuss in the paper.

I Definition 17. Given a weighted, directed graph G = (V,E), denote by d(u, v) the weight
of the lightest directed path starting at node u and ending at node v. If there is no such path,
we define d(u, v) =∞. Here, the weight of a path P is the sum of the weights of its edges.
The eccentricity ecc(u) of a node u is defined to be max

v∈V
d(u, v). The radius r of G is defined

to be min
v∈V

ecc(v). The diameter D of G is defined to be max
v∈V

ecc(v).

The ST variants of these distance parameters are defined as follows.

I Definition 18 (ST and bi-chromatic diameter, radius and eccentricities.). Given a weighted
graph G = (V,E), and two non empty subsets S, T ⊆ V , given v ∈ S, we define its ST -
eccentricity by ecc(v) = max

u∈T
d(v, u). We define the ST -diameter of G to be DST = max

v∈S
ecc(v).

The ST -radius of G is defined to be RST = min
v∈S

ecc(v). When S = V \T , the ST parameters
are called bi-chromatic.

2.2 The Communication Complexity Framework
The high level idea of applying the framework of reductions from 2-party communication
complexity to obtain lower bounds in the CONGEST model is as follows. We pick some
function f : {0, 1}k ×{0, 1}k → {0, 1}, and then reduce any efficient communication protocol
for it to an efficient CONGEST algorithm for the discussed problem. We start with our two
players Alice (A) and Bob (B), each of them respectively receives a binary string of length k
denoted by x, y ∈ {0, 1}k.
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We construct a graph G = (V,E) we call the fixed graph construction, and we partition the
set of vertices V into the sets VA, VB . We call the cut induced by VA, VB the communication
cut, and we denote the number of edges in this cut by |cut|.

Now, given x and the graph G[VA] (i.e., the subgraph of G induced by VA), Alice modifies
the graph G[VA] in any way that may depend only on x, and Bob does the same with y and
G[VB ]. Denote the resulting graph by Gx,y, and denote its number of nodes by n.

The resulting graph Gx,y should be constructed such that it has some property P (e.g.
radius at least 3) iff f(x, y) = 1. Now, assuming there is an algorithm Alg in the CONGEST
model that decides P in T rounds, Alice and Bob can simulate this algorithm on Gx,y, and
the only communication required between them is for simulating messages that are sent
on edges in the communication cut. Thus, Alice and bob can simulate Alg(Gx,y) while
communicating O(T · |cut| · logn) bits of communication. Furthermore, by the property of
Gx,y, deciding P on Gx,y allows them to compute f(x, y) with O(T · |cut| · logn) bits of
communication. Therefore, a lower bound on the communication complexity of f , implies a
lower bound on T , which is the round complexity of the distributed algorithm.

We next elaborate on the functions f that we use in our reductions.

I Definition 19 (The Set Disjointness Problem (Disj) [55]). Alice and Bob receive subsets
X,Y ⊆ [n], respectively, represented as binary vectors of length n. Their goal is to decide
whether X ∩ Y = ∅.

It is known by [12, 47, 55] that the randomized communication complexity of Disj on
inputs of size n is Ω(n).

I Definition 20 (The Tribes (ListDISJ) Problem [45]). Alice and Bob are given sets Ai, Bi ∈
{0, 1}N for each i ∈ [N ]. They must output 1 if and only if there is some i such that Ai and
Bi are disjoint, i.e. there is no j such that Aij = Bij = 1. We treat the inputs x and y as
binary strings of length N2, such that x = A1 ◦ ... ◦AN , y = B1 ◦ ... ◦BN . Here, ◦ refers to
string concatenation.

The Tribes function is defined in [45], where a lower bound of Ω(N2) communication bits
is proved, even for randomized protocols.

The full version of the paper contains discussion of additional functions which are employed
to prove the results not present in this version.

3 Approximation Algorithms

3.1 Approximations for weighted directed variants
In this section, we prove our approximation algorithms, starting with the connection between
the complexity of SSSP and approximating distance parameters. Formally, we prove the
following theorem, and then we deduce Corollaries 2, 3, and 4.

Theorem 1 For any ε ≥ 0, given a (1 + ε)-approximation algorithm Aε for weighted and
directed SSSP running in T (n, ε,D) rounds, there exists an algorithm for (2 + ε3 + 3ε2 + 4ε)-
approximate diameter, radius, and all eccentricities in Õ(T (n, ε,D) +D) rounds on weighted,
directed graphs.

We briefly remind the reader of the discussion in the introduction regarding the theorem.
In order to obtain fast algorithms and maintaining the quality of the approximation, we
generalize the notion of pseudo-center defined by Choudhary and Gold [22] into approximate
pseudo-center. We show how to compute such a set of small size, and we show that such a
set suffices to obtain the approximations detailed in Theorem 1.
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I Definition 21. A α-approximate pseudo-center is a set C of nodes such that for all nodes
v ∈ V , ecc(v) ≥ maxu∈V minc∈C {d(c, u)/α}.

We begin by showing that we can compute a small approximate pseudo-center efficiently.

I Lemma 22. Given a (1 + ε)-approximate, T (n, ε,D)-round SSSP algorithm Aε, there is a
Las Vegas algorithm to compute a (1 + ε)2-approximate pseudo-center of size O(log2(n)) of a
graph G = (V,E) in Õ(T (n, ε,D)) rounds of communication, with high probability.

Proof. Let the set C begin empty, and let W begin as the set V . Throughout the proof,
running Aε outward (inward) from a vertex v ∈ V means computing the distances from v to
the rest of the nodes (to v from the rest of the nodes). We repeat the following until W is
empty:

Assign each node in W to a set S independently with probability min {1, 24 log(n)/|W |}.
Resample if |S| < 8 logn or |S| > 36 logn.
Run Aε outward from each node in S, and for all u ∈ V , compute estimated distances
dAε

(S, u) = mins∈S {dAε
(s, u)}.

Let a be the node with the largest estimated distance from S. Then, we broadcast
dAε

(S, a) to all nodes in the graph using some BFS tree.
Run Aε inward from a, and remove all nodes u where dAε(u, a) ≥ dAε(S, a) from W .
Add S to C.

First, we argue that C is a (1 + ε)2-approximate pseudo-center. We only remove a
node u from W when dAε

(u, a) ≥ dAε
(S, a) for some sample S. Let a∗ be the node that is

truly farthest from S; then dAε
(S, a) ≥ d(S, a∗)/(1 + ε) ≥ maxx∈V minc∈C {d(c, x)/(1 + ε)},

because S ⊆ C. We also note that by similarly bounding the error of Aε, it holds that
dAε(u, a) ≤ (1 + ε)d(u, a) ≤ (1 + ε)ecc(u), so we may conclude that

(1 + ε)ecc(u) ≥ max
x∈V

min
c∈C
{d(c, x)/(1 + ε)}.

In other words, ecc(u) ≥ maxx∈V minc∈C
{
d(c, x)/(1 + ε)2}, which meets the definition of a

(1 + ε)2-pseudo-center.
Next, we argue that each iteration requires Õ(T (n, ε,D)) rounds. Using a Chernoff bound,

it is simple to show that in each round, 8 logn ≤ |S| ≤ 36 logn with probability at least
1− 1/n4, so we expect to resample a sub-constant number of times. We then run Aε from
each node in S and we run it again once to the node a, for a total of O(logn · T (n, ε,D))
rounds. The rest of each iteration involves a constant number of broadcasts that take O(D)
rounds in total.

Finally, we argue that with high probability, we only have O(logn) iterations in our
algorithm. We do this by showing that in iteration i, the size of W reduces by at least half
with high probability, i.e. |Wi|/2 ≥ |Wi+1|. Consider the set X ⊆Wi of |Wi|/2 nodes with
the smallest dAε

(u, a), u ∈Wi. Note that Si is a randomly sampled subset of Wi of size at
least 8 logn, and thus intersects X with probability at least (1− 1/n5), as argued in Lemma
23 below [22] with no further assumptions.

All nodes in Wi\X are at least as far as any node in that intersection under Aε, by
definition. This implies that for all u ∈Wi\X, dAε(u, a) ≥ dAε(S, a), which implies that all
|Wi|/2 nodes of Wi\X will be removed from Wi in iteration i. J

I Lemma 23 (Lemma 2.1 in [22]). Let U be a universe set of size at most n, and let
S1, ..., Sn ⊆ U such that |Si| ≥ L for each i ∈ [n]. Let c be some constant and r = n(c+1) lnn

L .
Let S ⊆ U be a random subset of size r, then it holds that S ∩Si 6= ∅ for all i with probability
1− n−c.
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Now that we showed how to compute an approximate pseudo-center, we show that it is
sufficient for approximating the distance parameters as claimed.

I Lemma 24. Given a (1 + ε)2-approximate pseudo-center C and a (1 + ε)-approximate
SSSP algorithm Aε taking T (n, ε,D) rounds, we may compute (2+ε3 +3ε2 +4ε)-approximate
eccentricities for all nodes in O(|C| · T (n, ε,D) +D) rounds.

Proof. First, we run Aε to and from each node in C, so that each node v ∈ V stores dAε(c, v)
and dAε

(v, c) for all c ∈ C. Each node u internally determines minc∈C {dAε
(c, u)}. Then,

using aggregation over a BFS tree, the nodes determine, and then broadcast the value
DAε

(C) := maxu∈V minc∈C {dAε
(c, u)}. Thus, the aggregation takes O(D) rounds. Each

node v approximates its eccentricity as maxc∈C {dAε
(v, c)}+DAε

(C).
First, note that this estimate is at least the true eccentricity of v, as each computed

distance represents some path in the graph, and in this distance a path can go from v to any
node in C and then any node in V .

We argue that this is a (2 + ε3 + 3ε2 + 4ε)-approximation. The estimated distance
maxc∈C {dAε

(v, c)} is at most (1 + ε) · ecc(v), because Aε overestimates by at most a factor
of 1 + ε. By our definition of (1 + ε)2-approximate pseudo-center, D(C) ≤ (1 + ε)2ecc(v).
Our estimate DAε

(C) is at most (1 + ε) · D(C), so DAε
(C) ≤ (1 + ε)3ecc(v). Thus,

maxc∈C {dAε(v, c)}+DAε(C) ≤ (1 + ε+ (1 + ε)3) · ecc(v) = (2 + ε3 + 3ε2 + 4ε) · ecc(v).
We compute Aε twice for each element of C, and broadcast a constant number of values

to all nodes, so the total number of rounds is O(|C| · T (n, ε,D) +D). J

Proof of Theorem 1. Applying Lemma 22 and Lemma 24, given a (1 + ε)-approximate
algorithm Aε for SSSP running in T (n, ε,D) rounds, we may compute (2 + ε3 + 3ε2 + 4ε)-
approximations for all eccentricities in O(log2(n) · T (n, ε,D) +D) rounds. J

Using the (1 + ε)-approximate SSSP algorithms of [13, 34], which run in Õ((
√
n+D)/ε)

rounds on weighted, undirected graphs and Õ((
√
nD1/4 +D)/ε) rounds on weighted, directed

graphs respectively, we achieve the following corollaries:

I Corollary 2. For any ε = 1/polylog(n), there exists an algorithm for (2 + ε)-approximate
diameter, radius and all eccentricities running in Õ(

√
n+D) rounds on nonnegative weighted

graphs, with n nodes and hop-diameter D.

I Corollary 3. For any ε = 1/polylog(n), there exists an algorithm for (2 + ε)-approximate
diameter, radius and all eccentricities running in Õ(

√
nD1/4 +D) rounds on nonnegative

weighted, directed graphs, with n nodes and hop-diameter D.

Using the exact SSSP algorithm of [21], which runs in Õ(
√
nD1/4 +D) rounds, we obtain

the following corollary.

I Corollary 4. There exists an algorithm for 2-approximate radius, diameter and all eccent-
ricities running in Õ(

√
nD1/4 +D) rounds on nonnegative weighted, directed graphs, with n

nodes and hop-diameter D.

4 Hardness of Approximation

In this section, we prove the lower bound results of the paper. As stated, we use reductions
from 2-party communication complexity. To formalize the reductions, we restate the following
definition from Censor-Hillel et al. [19].
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I Definition 25 (Family of Lower Bound Graphs). Given integers K and n, a Boolean function
f : {0, 1}K × {0, 1}K → {0, 1} and some Boolean graph property or predicate denoted P ,
a set of graphs

{
Gx,y = (V,Ex,y) | x, y ∈ {0, 1}K

}
is called a family of lower bound graphs

with respect to f and P if the following hold:
1. The set of vertices V is the same for all the graphs in the family, and we denote by

VA, VB a fixed partition of the vertices.
2. Given x, y ∈ {0, 1}K , the only part of the graph which is allowed to be dependent on x

(by adding edges or weights, no adding vertices) is G[VA].
3. Given x, y ∈ {0, 1}K , the only part of the graph which is allowed to be dependent on y

(by adding edges or weights, no adding vertices) is G[VB ].
4. Gx,y satisfies P if and only if f(x, y) = 1.
The set of edges E(VA, VB) is denoted by Ecut, and is the same for all graphs in the family.

We use the following theorem whose proof can be found in Censor-Hillel et al. [19], with
CCR(f) denoting the randomized communication complexity of f .

I Theorem 26. Fix a function f : {0, 1}K × {0, 1}K → {0, 1} and a predicate P . If there
exists a family of lower bound graphs {Gx,y} w.r.t f and P , then every randomized algorithm
for deciding P takes Ω(CCR(f)/(|Ecut| logn)) rounds.

4.1 Lower bounds for radius
We start with proving our two lower bounds for weighted or directed radius approximations.

We divide the proof of Theorem 5 into two cases which we prove separately. We prove
the weighted case here, and the proof of the directed case appears in the full version of the
paper.

Theorem 5 [Weighted case] For any ε = 1/poly(n), (2− ε)-approximation of the radius
of a weighted graph with n nodes requires Ω(n/ logn) rounds, even when the graph has
constant hop-diameter.

Proof. We reduce from the Tribes problem with vector sets A and B of size N . This
construction is similar to that of [41, Theorem 7].

Figure 1 illustrates our family of lower bound graphs. We construct four cliques
A0, A1, B0, B1 of size N , where the edges of the cliques have weight t, a value we will
set later. Let Ki be the ith node in clique K. Add two nodes cA and cB .

Connect all nodes in A0 to cA with edges of weight t, and connect all nodes in B0 to cB
with edges of weight t. Connect cA and cB with an edge of weight 1. For all i ∈ [N ] and
b ∈ {0, 1}, connect Abi and Bbi with an edge of weight 1. Connect A0

i and A1
j with an edge of

weight t if and only if Ai[j] = 0. Connect B0
i and B1

j with an edge of weight t if and only if
Bi[j] = 0. Alice will simulate the nodes A0 ∪ A1 ∪ {cA}, and Bob will simulate the nodes
B0 ∪B1 ∪ {cB}.

First, we claim that if (A,B) is a “yes” instance of Tribes, then the radius is at most
t+ 2. To show this, note that in this case, there must be some i such that the ith vectors
of A and B are orthogonal. Consider the node A0

i . It may reach in distance at most t+ 1
all nodes in B0 ∪A0, via a clique edge and an edge in the matching between A0 and B0. It
may also reach {cA, cB} in at most t+ 1. It may also reach all nodes in A1 ∪B1 in distance
at most t + 2, because for any j where Ai[j] = 0 or Bi[j] = 0, either A0

i may reach A1
j in

distance t or B0
i may reach B1

j in distance t. Since Ai and Bi are orthogonal, this is true for
all j. Thus the eccentricity of A0

i is at most t+ 2, which upper-bounds the radius.
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Figure 1 Sketch of Theorem 5, weighted case construction. Bold lines represent edges of weight t.

Second, we claim that if (A,B) is a “no” instance of Tribes, then the radius is at least 2t.
To see this, first note that cA and cB have eccentricity at least 2t, because that is the shortest
possible distance between them and B1 ∪A1. By the same argument, the eccentricity of all
nodes in A1 ∪B1 is also at least 2t. For all i, Ai and Bi are not orthogonal, which means
that for all i there is some j such that neither A0

i nor B0
i has an edge to B1

j or A1
j . Clearly

any other path from B0
i or A0

i to B1
j or A1

j is at least of length 2t, via a clique edge of weight
t. Thus the eccentricities of all nodes are at least 2t, so the radius is at least 2t.

We set t =
⌈ 4
ε

⌉
so that a (2 − ε)-approximate radius algorithm needs to distinguish

between t+ 2 and 2t. The constructed graph GA,B has n = O(N) nodes with a cut of size
O(n), which by Theorem 26 and the lower bound of Ω(N2) for the communication complexity
of Tribes, implies that the radius algorithm requires Ω(n/ logn) rounds. J
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Abstract
We consider the problem of computing shortest paths in hybrid networks, in which nodes can make
use of different communication modes. For example, mobile phones may use ad-hoc connections via
Bluetooth or Wi-Fi in addition to the cellular network to solve tasks more efficiently. Like in this
case, the different communication modes may differ considerably in range, bandwidth, and flexibility.
We build upon the model of Augustine et al. [SODA ’20], which captures these differences by a local
and a global mode. Specifically, the local edges model a fixed communication network in which O(1)
messages of size O(log n) can be sent over every edge in each synchronous round. The global edges
form a clique, but nodes are only allowed to send and receive a total of at most O(log n) messages
over global edges, which restricts the nodes to use these edges only very sparsely.

We demonstrate the power of hybrid networks by presenting algorithms to compute Single-Source
Shortest Paths and the diameter very efficiently in sparse graphs. Specifically, we present exact
O(log n) time algorithms for cactus graphs (i.e., graphs in which each edge is contained in at most
one cycle), and 3-approximations for graphs that have at most n + O(n1/3) edges and arboricity
O(log n). For these graph classes, our algorithms provide exponentially faster solutions than the
best known algorithms for general graphs in this model. Beyond shortest paths, we also provide a
variety of useful tools and techniques for hybrid networks, which may be of independent interest.
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1 Introduction

The idea of hybrid networks is to leverage multiple communication modes with different
characteristics to deliver scalable throughput, or to reduce complexity, cost or power con-
sumption. In hybrid data center networks [10], for example, the server racks can make use of
optical switches [13] or wireless antennas [11] to establish direct connections in addition to
using the traditional electronic packet switches. Other examples of hybrid communication
are combining multipoint with standard VPN connections [30], hybrid WANs [32], or mobile
phones using device-to-device communication in addition to cellular networks as in 5G [22].
As a consequence, several theoretical models and algorithms have been proposed for hybrid
networks in recent years [16, 20, 4, 5].
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In this paper, we focus on the general hybrid network model of Augustine et al. [5]. The
authors distinguish two different modes of communication, a local mode, which nodes can
use to send messages to their neighbors in an input graph G, and a global mode, which
allows the nodes to communicate with any other node of G. The model is parameterized
by the number of messages λ that can be sent over each local edge in each round, and the
total number of messages γ that each node can send and receive over global edges in a
single round. Therefore, the local network rather relates to physical networks, where an edge
corresponds to a dedicated connection that cannot be adapted by the nodes, e.g., a cable, an
optical connection, or a wireless ad-hoc connection. On the other hand, the global network
captures characteristics of logical networks, which are formed as overlays of a shared physical
infrastructure such as the internet or a cellular network. Here, nodes can in principle contact
any other node, but can only perform a limited amount of communication in each round.

Specifically, we consider the hybrid network model with λ = O(1) and γ = O(logn), i.e.,
the local network corresponds to the CONGEST model [28], whereas the global network is
the so-called node-capacitated clique (NCC) [4, 1, 29]. Thereby, we only grant the nodes
very limited communication capabilities for both communication modes, disallowing them,
for example, to gather complete neighborhood information to support their computation.
With the exception of a constant factor SSSP approximation, none of the shortest paths
algorithms of [5], for example, can be directly applied to this very restricted setting, since [5]
assumes the LOCAL model for the local network. Furthermore, our algorithms do not even
exploit the power of the NCC for the global network; in fact, they would also work if the
nodes would initially only knew their neighbors in G and had to learn new node identifiers
via introduction (which has recently been termed the NCC0 model [3]).

As in [5], we focus on shortest paths problems. However, instead of investigating general
graphs, we present polylogarithmic time algorithms to compute Single-Source Shortest Paths
(SSSP) and the diameter in sparse graphs. Specifically, we present randomized O(logn) time
algorithms for cactus graphs, which are graphs in which any two cycles share at most one
node. Cactus graphs are relevant for wireless communication networks, where they can
model combinations of star/tree and ring networks (e.g., [9]), or combinations of ring and
bus structures in LANs (e.g., [24]). However, research on solving graph problems in cactus
graphs mostly focuses on the sequential setting.

Furthermore, we present 3-approximate randomized algorithms with runtime O(log2 n)
for graphs that contain at most n+O(n1/3) edges and have arboricity1 O(logn). Graphs
with bounded arboricity, which include important graph families such as planar graphs,
graphs with bounded treewidth, or graphs that exclude a fixed minor, have been extensively
studied in the past years. Note that although these graphs are very sparse, in contrast to
cactus graphs they may still contain a polynomial number of (potentially nested) cycles. Our
algorithms are exponentially faster than the best known algorithms for general graphs for
shortest paths problems [4, 23].

For the All-Pairs Shortest Paths (APSP) problem, which is not studied in this paper,
there is a lower bound of Ω̃(

√
n) [5, Theorem 2.5] that even holds for Õ(

√
n)-approximations2.

Recently, this lower bound was shown to be tight up to polylogarithmic factors [23]. The
bound specifically also holds for trees, which, together with the results in this paper, shows
an exponential gap between computing the diameter and solving APSP in trees. Furthermore,

1 The arboricity of a graph G is the minimum number of forests into which its edges can be partitioned.
2 The Õ-notation hides polylogarithmic factors.
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the results of [23] show that computing (an approximation of) the diameter in general graphs
takes time roughly Ω(n1/3) (even with unbounded local communication). Therefore, our
paper demonstrates that sparse graphs allow for an exponential improvement.

1.1 Model and Problem Definition
We consider a hybrid network model in which we are given a fixed node set V consisting of n
nodes that are connected via local and global edges. The local edges form a fixed, undirected,
and weighted graph G = (V,E,w) (the local network), where the edge weights are given by
w : E → {1, . . . ,W} ⊂ N and W is assumed to be polynomial in n. We denote the degree
of a node v in the local network by deg(v). Furthermore, every two nodes u, v ∈ V are
connected via a global edge, i.e., the global network forms a clique. Every node v ∈ V has
a unique identifier id(v) of size O(logn), and, since the nodes form a clique in the global
network, every node knows the identifier of every other node. Although this seems to be
a fairly strong assumption, our algorithms would also work in the NCC0 model [3] for the
global network, in which each node initially only knows the identifiers of its neighbors in G,
and new connections need to be established by sending node identifiers (which is very similar
to the overlay network models of [16, 6, 17]). We further assume that the nodes know n (or
an upper bound polynomial in n).

We assume a synchronous message passing model, where in each round every node can
send messages of size O(logn) over both local and global edges. Messages that are sent
in round i are collectively received at the beginning of round i + 1. However, we impose
different communication restrictions on the two network types. Specifically, every node can
send O(1) (distinct) messages over each of its incident local edges, which corresponds to the
CONGEST model for the local network [28]. Additionally, it can send and receive at most
O(logn) many messages over global edges (where, if more than O(logn) messages are sent
to a node, an arbitrary subset of the messages is delivered), which corresponds to the NCC
model [4]. Therefore, our hybrid network model is precisely the model proposed in [5] for
parameters λ = O(1) and γ = O(logn). Note that whereas [5] focuses on the much more
generous LOCAL model for the local network, our algorithms do not require nor easily benefit
from the power of unbounded communication over local edges.

We define the length of a path P ⊆ E as w(P ) :=
∑

e∈P w(e). A path P from u to v is a
shortest path, if there is no path P ′ from u and v with w(P ′) < w(P ). The distance between
two nodes u and v is defined as d(u, v) := w(P ), where P is a shortest path from u to v.

In the Single-Source Shortest Paths Problem (SSSP), there is one node s ∈ V and every
node v ∈ V wants to compute d(s, v). In the Diameter Problem, every node wants to learn
the diameter D := maxu,v∈V d(u, v). An algorithm computes an α-approximation of SSSP, if
every node v ∈ V learns an estimate d̃(s, v) such that d(s, v) ≤ d̃(s, v) ≤ α · d(s, v). Similarly,
for an α-approximation of the diameter, every node v ∈ V has to compute an estimate D̃
such that D ≤ D̃ ≤ α ·D.

1.2 Contribution and Structure of the Paper
The first part of the paper revolves around computing SSSP and the diameter on cactus
graphs (i.e., connected graphs in which each edge is only contained in at most one cycle).
For a more comprehensive presentation, we establish the algorithm in several steps. First,
we consider the problems in path graphs (i.e., connected graphs that contain exactly two
nodes with degree 1, and every other node has degree 2; see Section 2), then in cycle graphs
(i.e., connected graphs in which each node has degree 2, see Section 3), trees (Section 4), and
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pseudotrees (Section 5), which are graphs that contain at most one cycle. For each of these
graph classes, we present deterministic algorithms to solve both problems in O(logn) rounds,
each relying heavily on the results of the previous sections. We then extend our results to
cactus graphs (Section 6) and present randomized algorithms for SSSP and the diameter
with a runtime of O(logn), w.h.p.3

In Section 7, we consider a more general class of sparse graphs, namely graphs with at
most n+O(n1/3) edges and arboricity O(logn). By using the techniques established in the
first part and leveraging the power of the global network to deal with the additional O(n1/3)
edges, we obtain algorithms to compute 3-approximations for SSSP and the diameter in time
O(log2 n), w.h.p. As a byproduct, we also derive a deterministic O(log2 n)-round algorithm
for computing a (balanced) hierarchical tree decomposition of the network.

We remark that our algorithms heavily use techniques from the PRAM literature. For
example, pointer jumping [19], and the Euler tour technique (e.g., [31, 2]), which extends
pointer jumping to certain graphs such as trees, have been known for decades, and are
also used in distributed algorithms (e.g., [16, 6]). As already pointed out in [4], the NCC
in particular has a very close connection to PRAMs. In fact, if G is very sparse, PRAM
algorithms can efficiently be simulated in our model even if the edges are very unevenly
distributed (i.e., nodes have a very high degree). We formally prove this in the full version
of this paper [14]. This allows us to obtain some of our algorithms for path graphs, cycle
graphs, and trees by PRAM simulations (see Section 1.3). We nonetheless present our
distributed solutions without using PRAM simulations, since (1) a direct simulation only
yields randomized algorithms, (2) the algorithms of the later sections heavily build on the
basic algorithms of the first sections, (3) a simulation exploits the capabilities of the global
network more than necessary. As already pointed out, all of our algorithms would also work
in the weaker NCC0 model for the global network, or if the nodes could only contact Θ(logn)
random nodes in each round.4 Furthermore, if we restrict the degree of G to be O(logn),
our algorithms can be modified to run in the NCC0 without using the local network.

Beyond the results for sparse graphs, this paper contains a variety of useful tools and
results for hybrid networks in general, such as Euler tour and pointer jumping techniques
for computation in trees, a simple load-balancing framework for low-arboricity graphs, an
extension of the recent result of Götte et al. [18] to compute spanning trees in the NCC0,
and a technique to perform matrix multiplication. In combination with sparse spanner
constructions (see, e.g., [8]) or skeletons (e.g., [33]), our algorithms may lead to efficient
shortest path algorithms in more general graph classes. Also, our algorithm to construct a
hierarchical tree decomposition may be of independent interest, as such constructions are
used for example in routing algorithms for wireless networks (see, e.g., [15, 21]).

Due to space constraints, all proofs and figures, as well as the detailed description and
some lemmas of our algorithms, are deferred to the full version of this paper [14].

1.3 Further Related Work
As theoretical models for hybrid networks have only been proposed recently, only few
results for such models are known at this point [16, 4, 5]. Computing an exact solution for
SSSP in arbitrary graphs can be done in Õ(

√
SPD) rounds [5], where SPD is the so-called

3 An event holds with high probability (w.h.p.) if it holds with probability at least 1 − 1/nc for an
arbitrary but fixed constant c > 0.

4 We remark that for the algorithms in Section 7 this requires to setup a suitable overlay network like a
butterfly in time O(log2 n), which can be done using well-known techniques.
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shortest path diameter of G. For large SPD, this bound has recently been improved to
Õ(n2/5) [23]. The authors of [5] also present several approximation algorithms for SSSP: A
(1+ε)-approximation with runtime Õ(n1/3/ε6), a (1/ε)O(1/ε)-approximation running in Õ(nε)
rounds and a 2O(

√
log n log log n)-approximation with runtime 2O(

√
log n log log n). For APSP

there is an exact algorithm that runs in Õ(n2/3) rounds, a (1 + ε)-approximation running in
Õ(

√
n/ε) rounds (only for unweighted graphs) and a 3-approximation with runtime Õ(

√
n) [5].

In [23], the authors give a lower bound of Ω̃(n1/3) rounds for computing the diameter in
arbitrary graphs in our model. They also give approximation algorithms with approximation
factors (3/2 + ε) and (1 + ε) that run in time Õ(n1/3/ε) and Õ(n0.397/ε), respectively. Even
though APSP and the diameter problem are closely related, we demonstrate that the diameter
can be computed much faster in our hybrid network model for certain graphs classes.

As already pointed out, the global network in our model has a close connection to overlay
networks. The NCC model, which has been introduced in [4], mainly focuses on the impact
of node capacities, especially when the nodes have a high degree. Since, intuitively, for many
graph problems the existence of each edge is relevant for the output, most algorithms in [4]
depend on the arboricity a of G (which is, roughly speaking, the time needed to efficiently
distribute the load of all edges over the network). The authors present Õ(a) algorithms for
local problems such as MIS, matching, or coloring, an Õ(D + a) algorithm for BFS tree,
and an Õ(1) algorithm to compute a minimum spanning tree (MST). Recently, Õ(∆)-time
algorithms for graph realization problems have been presented [3], where ∆ is the maximum
node degree; notably, most of the algorithms work in the NCC0 variant. Furthermore,
Robinson [29] investigates the information the nodes need to learn to jointly solve graph
problems and derives a lower bound for constructing spanners in the NCC. For example,
his result implies that spanners with constant stretch require polynomial time in the NCC,
and are therefore harder to compute than MSTs. Since our global network behaves like an
overlay network, we can make efficient use of the so-called shortest-path diameter reduction
technique [26]. By adding shortcuts between nodes in the global network, we can bridge large
distances quickly throughout our computations.

As argued before, we could apply some of the algorithms for PRAMs to our model instead
of using native distributed solutions by using PRAM simulations. For example, we are able
to use the algorithms of [12] to solve SSSP and diameter in trees in time O(logn), w.h.p.
Furthermore, we can compute the distance between any pair s and t in outerplanar graphs
in time O(log3 n) by simulating a CREW PRAM. For planar graphs, the distance between s
and t can be computed in time O(log3 n(1 +M(q))/n), w.h.p., where the nodes know a set of
q faces of a planar embedding that covers all vertices, and M(q) is the number of processors
required to multiply two q × q matrices in O(log q) time in the CREW PRAM.

For graphs with polylogarithmic arboricity, a (1 + ε)-approximation of SSSP can be
computed in polylog time using [25] and our simulation framework (with huge polylogarithmic
terms). For general graphs, the algorithm can be combined with well-known spanner
algorithms for the CONGEST model (e.g., [8]) to achieve constant approximations for SSSP in
time Õ(nε) time in our hybrid model. This yields an alternative to the SSSP approximation
of [5], which also requires time Õ(nε) but has much smaller polylogarithmic factors.

2 Path Graphs

To begin with an easy example, we first present a simple algorithm to compute SSSP and
the diameter of path graphs. The simple idea of our algorithms is to use pointer jumping to
select a subset of global edges S, which we call shortcut edges, with the following properties:
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S is a weighted connected graph with degree O(logn) that contains all nodes of V , and for
every u, v ∈ V there exists a path P ⊆ S, |P | = O(logn) (where |P | denotes the number
of edges of P ), such that w(P ) = d(u, v), and no path P such that w(P ) < d(u, v). Given
such a graph, SSSP can easily be solved by performing a broadcast from s in S for O(logn)
rounds: In the first round, s sends a message containing w(e) over each edge e ∈ S incident
to s. In every subsequent round, every node v ∈ V that has already received a message sends
a message k + w(e) over each edge e ∈ S incident to v, where k is the smallest value v has
received so far. After O(logn) rounds, every node v must have received d(s, v), and cannot
have received any smaller value. Further, the diameter of the line can easily be determined
by performing SSSP from both of its endpoints u, v, which finally broadcast the diameter
d(u, v) to all nodes using the global network.

We construct S using the following simple Introduction Algorithm. S initially contains
all edges of E. Additional shortcut edges are established by performing pointer jumping:
Every node v first selects one of its at most two neighbors as its left neighbor `1; if it
has two neighbors, the other is selected as v’s right neighbor r1. In the first round of our
algorithm, every node v with degree 2 establishes {`1, r1} as a new shortcut edge of weight
w({`1, r1}) = w({`1, v}) + w({v, r1}) by sending the edge to both `1 and r1. Whenever at
the beginning of some round i > 1 a node v with degree 2 receives shortcut edges {u, v} and
{v, w} from `i−1 and ri−1, respectively, it sets `i := u, ri := w, and establishes {`i, ri} by
adding up the weights of the two received edges and informing `i and ri. The algorithm
terminates after blog(n − 1)c rounds. Afterwards, for every simple path in G between u

and v with 2k hops for any k ≤ blog(n − 1)c we have established a shortcut edge e ∈ S
with w(e) = d(u, v). Therefore, S has the desired properties, and we conclude the following
theorem.

I Theorem 1. SSSP and the diameter can be computed in any path graph in time O(logn).

3 Cycle Graphs

In cycle graphs, there are two paths between any two nodes that we need to distinguish.
For SSSP, this can easily be achieved by performing the SSSP algorithm for path graphs in
both directions along the cycle, and let each node choose the minimum of its two computed
distances. Formally, let v1, v2, . . . , vn denote the n nodes along a left traversal of the cycle
starting from s = v1 and continuing at s’s neighbor of smaller identifier, i.e., id(v2) < id(vn).
For any node u, a shortest path from s to u must follow a left or right traversal along
the cycle, i.e., (v1, v2, . . . , u) or (v1, vn, . . . , u) is a shortest path from s to u. Therefore,
we can solve SSSP on the cycle by performing the SSSP algorithm for the path graph on
L := (v1, v2, . . . , vn) and R := (v1, vn, vn−1, . . . , v2). Thereby, every node v learns d`(s, v),
which is the distance from s to v in L (i.e., along a left traversal of the cycle), and dr(s, v),
which is their distance in R. It is easy to see that d(s, v) = min{d`(s, v), dr(s, v)}.

Using the above algorithm, s can also easily learn its eccentricity ecc(s) :=
maxv∈V {d(s, v)}, as well as its left and right farthest nodes s` and sr. The left farthest node
s` of s is defined as the farthest node vi along a left traversal of the cycle such that the subpath
in L from s = v1 to vi is still a shortest path. Formally, s` = arg maxv∈V,d`(s,v)≤bW/2c d`(s, v),
whereW =

∑
e∈E w(e). The right farthest node sr is the successor of s` in L (or s, if s` is the

last node of L), for which it must hold that dr(s, sr) ≤ bW/2c. Note that d`(s, s`) = d(s, s`),
dr(s, sr) = d(s, sr), and ecc(s) = max{d`(s, s`), dr(s, sr)}.

To determine the diameter of G, for every node v ∈ V our goal is to compute ecc(v); as a
byproduct, we will compute v’s left and right farthest nodes v` and vr. The diameter can
then be computed as maxv∈V ecc(v). A simple way to compute these values is to employ a
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binary-search style approach from all nodes in parallel, and use load balancing techniques
from [4] to achieve a runtime of O(log2 n), w.h.p. Coming up with a deterministic O(logn)
time algorithm, however, is more complicated.

Due to space constraints, we defer the description of the algorithm to the full version.

I Theorem 2. SSSP and the diameter can be computed in any cycle graph G in time
O(logn).

4 Trees

We now show how the algorithms of the previous sections can be extended to compute SSSP
and the diameter on trees. As in the algorithm of Gmyr et al. [16], we adapt the well-known
Euler tour technique to a distributed setting and transform the graph into a path L of virtual
nodes that corresponds to a depth-first traversal of G. More specifically, every node of G
simulates one virtual node for each time it is visited in that traversal, and two virtual nodes
are neighbors in L if they correspond to subsequent visitations. To solve SSSP, we assign
weights to the edges from which the initial distances in G can be inferred, and then solve
SSSP in L instead. Finally, we compute the diameter of G by performing the SSSP algorithm
twice, which concludes this section.

However, since a node can be visited up to Ω(n) times in the traversal, it may not be
able to simulate all of its virtual nodes in L. Therefore, we first need to reassign the virtual
nodes to the node’s neighbors such that every node only has to simulate at most 6 virtual
nodes using the Nash-Williams forests decomposition technique [27]. More precisely, we
compute an orientation of the edges in which each node has outdegree at most 3, and reassign
nodes according to this orientation (in the remainder of this paper, we refer to this as the
redistribution framework). Due to space constraints, we defer a precise description of the
algorithm to the full version and only state our main results.

The following two lemmas follow from applying PRAM techniques.

I Lemma 3. Let H = (V,E) be a forest in which every node v ∈ V stores some value pv,
and let f be a distributive aggregate function5. Every node v ∈ V can learn f({pu | u ∈ Cv}),
where Cv is the tree of H that contains v, in time O(logn).

I Lemma 4. Any tree G can be rooted in O(logn) time.

By assigning positive or negative weights to the edges of L according to their direction in
the rooted version of G, we easily obtain the following theorem.

I Theorem 5. SSSP can be computed in any tree in time O(logn).

Similar techniques lead to the following lemmas, which we will use in later sections.

I Lemma 6. Let H = (V,E) be a forest and assume that each node v ∈ V stores some value
pv. The goal of each node v is to compute the value sumv(u) :=

∑
w∈Cu

pw for each of its
neighbors u, where Cu is the connected component C of the subgraph H ′ of H induced by
V \ {v} that contains u. The problem can be solved in time O(logn).

5 An aggregate function f is called distributive if there is an aggregate function g such that for any
multiset S and any partition S1, . . . , S` of S, f(S) = g(f(S1), . . . , f(S`)). Classical examples are MAX,
MIN, and SUM.
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I Lemma 7. Let G be a tree rooted at s. Every node v ∈ V can compute its height h(v) in
G, which is length of the longest path from v to any leaf in its subtree, in time O(logn).

For the diameter, we use the following well-known lemma.

I Lemma 8. Let G be a tree, s ∈ V be an arbitrary node, and let v ∈ V such that d(s, v) is
maximal. Then ecc(v) = D.

Therefore, for the diameter it suffices to perform SSSP once from the node s with highest
identifier, then choose a node v with maximum distance to s, and perform SSSP from v.
Since ecc(v) = D, the node with maximum distance to v yields the diameter. Together with
Lemma 3, we conclude the following theorem.

I Theorem 9. The diameter can be computed in any tree in time O(logn).

5 Pseudotrees

Recall that a pseudotree is a graph that contains at most one cycle. We define a cycle node
to be a node that is part of a cycle, and all other nodes as tree nodes. For each cycle node
v, we define v’s tree Tv as the connected component that contains v in the graph in which
v’s two adjacent cycle nodes are removed, and denote h(v) as the height of v in Tv. Due
to space constraints, we omit the details of the algorithm for pseudotrees and only give
a brief description. To compute SSSP, we first need to distinguish the cycle nodes from
the tree nodes. We do this by establishing rings of virtual nodes using the approach of
Section 4 (which must create two rings in a pseudotree). Then, we can reduce the problem
to computing SSSP in cycles and trees, for which we use the algorithms from the previous
sections.

I Theorem 10. SSSP can be computed in any pseudotree in time O(logn).

Computing the diameter is more complicated. Since the longest path may not use any
cycle node at all, each cycle node v first contributes the diameter of its tree Tv as a possible
candidate. Furthermore, v needs to compute its eccentricity ecc(v), and, if its eccentricity is
larger than the height h(v) of its tree Tv, contribute ecc(v)+h(v). To compute its eccentricity,
every cycle node needs to compute the distance to its farthest nodes using the algorithm of
Theorem 2, but also take into account the heights of the trees on the path to these nodes (as
a longer path may lead into those trees).

I Theorem 11. The diameter can be computed in any pseudotree in time O(logn).

6 Cactus Graphs

Our algorithm for cactus graphs relies on an algorithm to compute the maximal biconnected
components (or blocks) of G, where a graph is called biconnected if the removal of a single
node would not disconnect the graph. Note that for any graph, each edge lies in exactly
one block. In case of cactus graphs, each block is either a single edge or a simple cycle. By
computing the blocks of G, each node v ∈ V classifies its incident edges into bridges (if there
is no other edge incident to v contained in the same block) and pairs of edges that lie in the
same cycle. To do so, we first give a variant of [18, Theorem 1.3] for the NCC0 under the
constraint that the input graph (which is not necessarily a cactus graph) has constant degree.
We point out how the lemma is helpful for cactus graphs, and then use a simulation of the
biconnectivity algorithm of [31] as in [18, Theorem 1.4] to compute the blocks of G. The
description and proofs of the following three lemmas are very technical and mainly describe
adaptions of [18]. Therefore, we defer them to the full version [14].
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I Lemma 12 (Variant of [18, Theorem 1.3]). Let G be any graph with constant degree. A
spanning tree of G can be computed in time O(logn), w.h.p., in the NCC0.

I Lemma 13. A spanning tree of a cactus graph G can be computed in time O(logn), w.h.p.

I Lemma 14. The biconnected components of a cactus graph G can be computed in time
O(logn), w.h.p.

Thus, every node can determine which of its incident edges lie in the same block in time
O(logn), w.h.p. Let s be the source for the SSSP problem. First, we compute the anchor
node of each cycle in G, which is the node of the cycle that is closest to s (if s is a cycle node,
then the anchor node of that cycle is s itself). To do so, we replace each cycle C in G by
a binary tree TC of height O(logn) as described in [16]. More precisely, we first establish
shortcut edges using the Introduction algorithm in each cycle, and then perform a broadcast
from the node with highest identifier in C for O(logn) rounds. If in some round a node
receives the broadcast for the first time from `i or ri, it sets that node as its parent in TC

and forwards the broadcast to `j and rj , where j = min{i − 1, 0}. After O(logn) rounds,
TC is a binary tree that contains all nodes of C and has height O(logn). To perform the
execution in all cycles in parallel, each node simulates one virtual node for each cycle it lies
in and connects the virtual nodes using their knowledge of the blocks of G. To keep the
global communication low, we again use the redistribution framework described in Section 4
(note that the arboricity of G is 2).

I Lemma 15. Let T be the (unweighted) tree that results from taking the union of all trees
TC and all bridges in G. For each cycle C, the node aC := arg minv∈C dT (s, v) is the anchor
node of C.

The correctness of the lemma above simply follows from the fact that any shortest path
from s to any node in C must contain the anchor node of C both in G and in T . Therefore,
the anchor node of each cycle can be computed by first performing the SSSP algorithm for
trees with source s in T and then conducting a broadcast in each cycle. Now let v be the
anchor node of some cycle C in G. By performing the diameter algorithm of Theorem 2 in
C, v can compute its left and right farthest nodes v` and vr in C. Again, to perform all
executions in parallel, we use our redistribution framework.

I Lemma 16. Let SG be the graph that results from removing the edge {v`, vr} from each
cycle C with anchor node v. SG is a shortest path tree of G with source s.

Therefore, we can perform the SSSP algorithm for trees of Theorem 5 on SG and obtain
the following theorem.

I Theorem 17. SSSP can be computed in any cactus graph in time O(logn).

To compute the diameter, we first perform the algorithm of Lemma 16 with the node that
has highest identifier as source s,6 which yields a shortest path tree SG. This tree can easily
be rooted using Lemma 4. Let Q(v) denote the children of v in SG, and let B(v) denote the
block of node v in G. Using Lemma 7, each node v can compute its height h(v) in SG and can
locally determine the value m(v) := maxu,w∈Q(v),B(u)6=B(w)(h(u) +h(w) +w(v, u) +w(v, w)).
We further define the pseudotree ΠC of each cycle C as the graph that contains all edges of

6 In the NCC0, this node can be determined by constructing the tree T from Lemma 15 and using
Lemma 3 on T .
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C and, additionally, an edge {v, tv} for each node v 6= aC of C, where tv is a node that is
simulated by v, and w({v, tv}) = maxu∈Q(v)\C(h(u) + w({v, u})). Intuitively, each node v
of C that is not the anchor node is attached an edge whose weight equals the height of its
subtree in SG without considering the child of v that also lies in C (if that exists). Then,
for each cycle C in parallel, we perform the algorithm of Theorem 11 on ΠC to compute
its diameter D(ΠC) (using the redistribution framework). We obtain the diameter of G as
the value D̂ := max{maxv∈V (h(v)),maxv∈V (m(v)),maxcycle C(D(ΠC))}. By showing that
D̂ = D, we conclude the following theorem.

I Theorem 18. The diameter can be computed in any cactus graph in time O(logn).

7 Sparse Graphs

In this final section, we present constant factor approximations for SSSP and the diameter
in graphs that contain at most n+O(n1/3) edges and that have arboricity at most O(logn).
Our algorithm for such graphs relies on an MST M = (V,E′) of G, where E′ ⊆ E. M can be
computed deterministically in time O(log2 n) using [16], Observation 4, in a modified way7.

I Lemma 19. The algorithm computes an MST of G deterministically in time O(log2 n).

We call each edge e ∈ E \ E′ a non-tree edge. Further, we call a node shortcut node if
it is adjacent to a non-tree edge, and define Σ ⊆ V as the set of shortcut nodes. Clearly,
after computing M every node v ∈ Σ knows that it is a shortcut node, i.e., if one of its
incident edges has not been added to E′. In the remainder of this section, we will compute
approximate distances by (1) computing the distance from each node to its closest shortcut
node in G, and (2) determining the distance between any two shortcut nodes in G. For any
s, t ∈ V , we finally obtain a good approximation for d(s, t) by considering the path in M as
well as a path that contains the closest shortcut nodes of both s and t.

Our algorithms rely on a balanced decomposition tree TM , which allows us to quickly
determine the distance between any two nodes in G, and which is presented in Section 7.1.
In Section 7.2, TM is extended by a set of edges that allow us to solve (1) by performing a
distributed multi-source Bellman-Ford algorithm for O(logn) rounds. For (2), in Section 7.3
we first compute the distance between any two shortcut nodes inM , and then perform matrix
multiplications to obtain the pairwise distances between shortcut nodes in G. By exploiting
the fact that |Σ| = O(n1/3), and using techniques of [4], we are able to distribute the Θ(n)
operations of each of the O(logn) multiplications efficiently using the global network. In
Section 7.4, we finally show how the information can be used to compute 3-approximations
for SSSP and the diameter.

For simplicity, in the following sections we assume that M has degree 3. Justifying this
assumption, we remark that M can easily be transformed into such a tree while preserving
the distances in M . First, we root the tree at the node with highest identifier using Lemma 4.
Then, every node v replaces the edges to its children by a binary tree of virtual nodes, where
the leaf nodes are the children of v, the edge from each leaf u to its parent is assigned the
weight w({v, u}), and all inner edges have weight 0.8 The virtual nodes are distributed evenly
among the children of v such that each child is only tasked with the simulation of at most
one virtual node. Note that the virtual edges can be established using the local network.

7 The algorithm of [16] computes a (not necessarily minimum) spanning tree, which would actually already
suffice for the results of this paper. However, if G contains edges with exceptionally large weights, an
MST may yield much better results in practice.

8 Note that the edge weights are no longer strictly positive; however, one can easily verify that the
algorithms of this section also work with non-negative edge weights.
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7.1 Hierarchical Tree Decomposition
We next present an algorithm to compute a hierarchical tree decomposition of M , resulting
in a balanced decomposition tree TM . TM will enable us to compute distances between nodes
in M in time O(logn), despite the fact that the diameter of M may be very high.

Our algorithm constructs TM as a binary rooted tree TM = (V,ET ) of height O(logn)
with root r ∈ V (which is the node that has highest identifier) by selecting a set of global
edges ET . Each node v ∈ V knows its parent pT (u) ∈ V . To each edge {u, v} ∈ ET we assign
a weight w({u, v}) that equals the sum of the weights of all edges on the (unique) path from
u to v in M . Further, each node v ∈ V is assigned a distinct label l(v) ∈ {0, 1}O(log n) such
that l(v) is a prefix of l(u) for all children u of v in TM , and l(r) = ε (the empty word).

From a high level, the algorithm works as follows. Starting with M , within O(logn)
iterations M is divided into smaller and smaller components until each component consists
of a single node. More specifically, in iteration i, every remaining component A handles one
recursive call of the algorithm, where each recursive call is performed independently from the
recursive calls executed in other components. The goal of A is to select a split node x, which
becomes a node at depth i− 1 in TM , and whose removal from M divides A into components
of size at most |A|/2. The split node x then recursively calls the algorithm in each resulting
component; the split nodes that are selected in each component become children of x in TM .

When the algorithm is called at some node v, it is associated with a label parameter
l ∈ {0, 1}O(log n) and a parent parameter p ∈ V . The first recursive call is initiated at node r
with parameters l = ε and p = ∅. Assume that a recursive call is issued at v ∈ V , let A be
the component of M in which v lies, and let A1, A2 and A3 be the at most three components
of A that result from removing v. Using Lemma 6, every node u in A1 can easily compute the
number of nodes that lie in each of its adjacent subtrees in A1 (i.e., the size of the resulting
components of A1 after removing u). It is easy to see that there must be a split node x1 in A1
whose removal divides A1 into components of size at most |A|/2 (see, e.g., [5, Lemma 4.1]); if
there are multiple such nodes, let x1 be the one that has highest identifier. Correspondingly,
there are split nodes x2 in A2 and x3 in A3. v learns x1, x2 and x3 using Lemma 3 and
sets these nodes as its children in TM . By performing the SSSP algorithm of Theorem 5
with source v in A1, x1 learns dM (x1, v), which becomes the weights of the edge {v, x1}
(correspondingly, the edges {v, x2} and {v, x3} are established). To continue the recursion in
A1, x calls x1 with label parameter l ◦ 00 and parent parameter v. Correspondingly, x2 is
called with l ◦ 01, and x3 with l ◦ 10.

I Theorem 20. A balanced decomposition tree TM for M can be computed in time O(log2 n).

It is easy to see that one can route a message from any node s to any node t in O(logn)
rounds by following the unique path in the tree from s to t, using the node labels to find
the next node on the path. However, the sum of the edge’s weights along that path may be
higher than the actual distance between s and t in M .

7.2 Finding Nearest Shortcut Nodes
To efficiently compute the nearest shortcut node for each node u ∈ V , we extend TM to a
distance graph DT = (V,ED), ED ⊇ ET , by establishing additional edges between the nodes
of TM . Specifically, unlike TM , the distance between any two nodes in DT will be equal to
their distance in M , which allows us to employ a distributed Bellman-Ford approach.

We describe the algorithm to construct DT from the perspective of a fixed node u ∈ V .
For each edge {u, v} ∈ ET such that u = pT (v) for which there does not exist a local edge
{u, v} ∈ E′, we know that the edge {u, v} “skips” the nodes on the unique path between
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u and v in M . Consequently, these nodes must lie in a subtree of v in TM . Therefore, to
compute the exact distance from u to a skipped node w, we cannot just simply add up the
edges in ET on the path from u to w, as this sum must be larger than the distance d(u,w).

To circumvent this problem, u’s goal is to establish additional edges to some of these
skipped nodes. Let x ∈ V be the neighbor of u in M that lies on the unique path from u to v
in M . To initiate the construction of edges in each of its subtrees, u needs to send messages
to each child v in TM that skipped some nodes (recall that u is able to do so because it
has degree 3 in TM ). Such a message to v contains l(x), l(u), id(u) and w({u, v}). Upon
receiving the call from u, v contacts its child node y in TM whose label is a prefix of l(x),
forwarding u’s identifier, l(x) and the (updated) weight w({y, u}) = w({u, v})− w({v, y}).
y then adds the edge {y, u} with weight w({y, u}) to the set ED by informing u about it.
Then, y continues the recursion at its child in TM that lies in x’s direction, until the process
reaches x itself. Since the height of TM is O(logn), u learns at most O(logn) additional
edges and thus its degree in DT is O(logn).

Note that since the process from u propagates down the tree level by level, we can perform
the algorithm at all nodes in parallel, whereby the separate construction processes follow
each other in a pipelined fashion without causing too much communication. Together with
Theorem 20, we obtain the following lemma.

I Lemma 21. The distance graph DT = (V,ED) for M can be computed in time O(log2 n).

From the way we construct the node’s additional edges in ED, and the fact that the edges
in ET preserve distances in M , we conclude the following lemma.

I Lemma 22. For any edge {u, v} ∈ ED it holds w({u, v}) = dM (u, v), where dM (u, v)
denotes the distance between u and v in M .

The next lemma is crucial for showing the correctness of the algorithms that follow.

I Lemma 23. For every u, v ∈ V we have that (1) every path from u to v in DT has length
at least dM (u, v), and (2) there exists a path P with w(P ) = dM (u, v) and |P | = O(logn)
that only contains nodes of the unique path from u to v in TM .

For any node v ∈ V , we define the nearest shortcut node of v as σ(v) = arg minu∈Σ d(v, u).
To let each node v determine σ(v) and d(v, σ(v)), we perform a distributed version of the
Bellman-Ford algorithm. From an abstract level, the algorithm works as follows. In the first
round, every shortcut node sends a message associated with its own identifier and distance
value 0 to itself. In every subsequent round, every node v ∈ V chooses the message with
smallest distance value d received so far (breaking ties by choosing the one associated with
the node with highest identifier), and sends a message containing d + w({v, u}) to each
neighbor u in DT . After O(logn) rounds, every node v knows the distance dM (v, u) to its
closest shortcut node u in M . Since for any closest shortcut node w in G there must be a
shortest path from v to w that only contains edges of M , this implies that u must also be
closest to v in G, i.e., u = σ(v), and dM (v, u) = d(v, σ(v)).

Note that each node has only created additional edges to its descendants in TM during
the construction of DT , therefore the degree of DT is O(logn) and we can easily perform
the algorithm described above using the global network.

I Lemma 24. After O(logn) rounds, each node v ∈ V knows id(u) of its nearest shortcut
node σ(v) in G and its distance d(v, σ(v)) to it.
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7.3 Computing APSP between Shortcut Nodes

In this section, we first describe how the shortcut nodes can compute their pairwise distances
in M by using DT . Then, we explain how the information can be used to compute all
pairwise distances between shortcut nodes in G by performing matrix multiplications.

Compute Distances in M . First, each node learns the total number of shortcut nodes
nc := |Σ|, and each shortcut node is assigned a unique identifier from [nc].9 The first part
can easily achieved using Lemma 3. For the second part, consider the Patricia trie P on
the node’s identifiers, which, since each node knows all identifiers, is implicitly given to the
nodes. By performing a convergecast in P (where each inner node is simulated by the leaf
node in its subtree that has highest identifier), every inner node of P can learn the number
of shortcut nodes in its subtree in P . This allows the root of P to assign intervals of labels
to its children in P , which further divide the interval according to the number of shortcut
nodes in their children’s subtrees, until every shortcut node is assigned a unique identifier.

Note that it is impossible for a shortcut node to explicitly learn all the distances to all
other shortcut nodes in polylogarithmic time, since it may have to learn Ω(n1/3) many bits.
However, if we could distribute the distances of all O(n2/3) pairs of shortcut nodes uniformly
among all nodes of V , each node would only have to store O(logn) bits10. We make use of
this in the following way. To each pair (i, j) of shortcut nodes we assign a representative
h(i, j) ∈ V , which is chosen using (pseudo-)random hash function h : [nc]2 → V that is
known to all nodes and that satisfies h(i, j) = h(j, i).11 The goal of h(i, j) is to infer dM (i, j)
from learning all the edges on the path from i to j in DT .

Due to space reasons, we defer a precise description to the full version. From a high level,
each h(i, j) first needs to retrieve the labels of both i and j in TM , which it cannot do directly,
as the nodes may be contacted by many other nodes. Instead, we use techniques from [4] to
distribute the load: h(i, j) participates in the construction of a multicast tree towards both i
and j. Using randomization, these trees can be used to disseminate information from each
node to all nodes in its multicast tree in a broadcast fashion with low congestion rather than
communicating directly. Afterwards, h(i, j) can infer the labels of all nodes on the path from
i to j in DM , and learn their edge weights in a very similar way. By observing that each
node only has to learn O(logn) values, we can use Theorems 2.3 and Theorem 2.4 of [4] in a
straight-forward manner to obtain the following lemma.

I Lemma 25. Every representative h(i, j) learns dM (i, j) in time O(logn), w.h.p.

Compute Distances in G. Let A ∈ Nnc×nc
0 be the distance matrix of the shortcut nodes,

where Ai,j = min{w({i, j}), dM (i, j)}, if {i, j} ∈ E, and Ai,j = dM (i, j), otherwise. Our goal
is to square A for dlogne+ 2 many iterations in the min-plus semiring. More precisely, we
define A1 = A, and for t ≥ 1 we have that A2t

i,j = mink∈[nc](A2t−1

i,k + A2t−1

k,j ). The following
lemma shows that after squaring the matrix dlogne+ 2 times, its entries give the distances
in G.

9 We denote [k] = {0, . . . , k − 1}.
10 In fact, for this we could even allow n pairs, i.e., nc = O(

√
n); the reason for our bound on nc will

become clear later.
11Note that sufficient shared randomness can be achieved in our model by broadcasting Θ(log2 n) random

bits in time O(log n) [4]. Further, note that for a node v ∈ V there can be up to O(log n) keys (i, j) for
which h(i, j) = v, w.h.p., thus v has to act on behalf of at most O(log n) nodes.
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I Lemma 26. A2dlog ne+2

i,j = d(i, j) for each i, j ∈ Σ.

We now describe how the matrix can efficiently be multiplied. As an invariant to our
algorithm, we show that at the beginning of the t-th multiplication, every representative h(i, j)
stores A2t−1

i,j . Thus, for the induction basis we first need to ensure that every representative
h(i, j) learns Ai,j . By Lemma 25, h(i, j) already knows dM (i, j), thus it only needs to retrieve
w({i, j}), if that edge exists. To do so, we first compute an orientation with outdegree
O(logn) in time O(logn) using [7, Corollary 3.12] in the local network. For every edge
{i, j} that is directed from i to j, i sends a message containing w({i, j}) to h(i, j); since the
arboricity of G is O(logn), every node only has to send at most O(logn) messages.

The t-th multiplication is then done in the following way. We use a (pseudo-)random hash
function h : [nc]3 → V , where h(i, j, k) = h(j, i, k). First, every node h(i, j, k) ∈ V needs
to learn A2t−1

i,j .12 To do so, h(i, j, k) joins the multicast group of h(i, j) using [4, Theorem
2.3]. With the help of [4, Theorem 2.4], h(i, j) can then multicast At−1

i,j to all h(i, j, k). Since
there are L ≤ [nc]3 = O(n) nodes h(i, j, k) that each join a multicast group, and each node
needs to send and receive at most ` = O(logn) values, w.h.p., the theorems imply a runtime
of O(logn), w.h.p.

After h(i, j, k) has received A2t−1

i,j , it sends it to both h(i, k, j) and h(j, k, i). It is easy to see
that thereby h(i, j, k) will receive A2t−1

i,k from h(i, k, j) and A2t−1

k,j from h(k, j, i). Afterwards,
h(i, j, k) sends the value A2t−1

i,k + A2t−1

k,j to h(i, j) by participating in an aggregation using
[4, Theorem 2.2] and the minimum function, whereby h(i, j) receives A2t

i,j . By the same
arguments as before, L = O(n), and ` = O(logn), which implies a runtime of O(logn), w.h.p.

I Lemma 27. After dlogne+ 2 many matrix multiplications, h(i, j) stores d(i, j) for every
i, j ∈ [nc]. The total number of rounds is O(log2 n), w.h.p.

7.4 Approximating SSSP and the Diameter
We are now all set in order to compute approximate distances between any two nodes s, t ∈ V .
Specifically, we approximate d(s, t) by

d̃(s, t) = min{dM (s, t), d(s, σ(s)) + d(σ(s), σ(t)) + d(σ(t), t)}.

We now show that d̃(s, t) gives a 3-approximation for d(s, t).

I Lemma 28. Let s, t ∈ V and d(s, t) be the length of the shortest path from s to t. It holds
that d(s, t) ≤ d̃(s, t) ≤ 3d(s, t).

To approximate SSSP, every node v needs to learn d̃(s, v) for a given source s. To
do so, the nodes first have to compute dM (s, v), which can be done in time O(logn) by
performing SSSP in M using Theorem 5. Then, the nodes construct DT in time O(log2 n)
using Lemma 21. With the help of DT and Lemma 24, s can compute d(s, σ(s)), which
is then broadcast to all nodes in time O(logn) using Lemma 3. Then, we compute all
pairwise distances in G between all shortcut nodes in time O(log2 n), w.h.p., using Lemma 27;
specifically, every shortcut node v learns d(σ(s), v). By performing a slight variant of the
algorithm of Lemma 24, we can make sure that every node t not only learns its closest
shortcut node σ(t) in M , but also retrieves d(σ(s), σ(t)) from σ(t) within O(logn) rounds.
Since t is now able to compute d̃(s, t), we conclude the following theorem.

12We will again ignore the fact that a node may have to act on behalf of at most O(log n) nodes h(i, j, k).
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I Theorem 29. 3-approximate SSSP can be computed in graphs that contain at most
n+O(n1/3) edges and have arboricity O(logn) in time O(log2 n), w.h.p.

For a 3-approximation of the diameter, consider D̃ = 2 maxs∈V d(s, σ(s)) +
maxx,y∈Σ d(x, y). D̃ can easily be computed using Lemmas 21, 24, and 27, and by using
Lemma 3 on M to determine the maxima of the obtained values. By the triangle inequality,
we have that D ≤ D̃. Furthermore, since d(s, σ(s)) ≤ D and maxx,y∈Σ d(x, y) ≤ D, we have
that D̃ ≤ 3D.

I Theorem 30. A 3-approximation of the diameter can be computed in graphs that contain
at most n+O(n1/3) edges and have arboricity O(logn) in time O(log2 n), w.h.p.
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Abstract
We study algorithms in the distributed message-passing model that produce secured output, for an
input graph G. Specifically, each vertex computes its part in the output, the entire output is correct,
but each vertex cannot discover the output of other vertices, with a certain probability. This is
motivated by high-performance processors that are embedded nowadays in a large variety of devices.
Furthermore, sensor networks were established to monitor physical areas for scientific research,
smart-cities control, and other purposes. In such situations, it no longer makes sense, and in many
cases it is not feasible, to leave the whole processing task to a single computer or even a group of
central computers. As the extensive research in the distributed algorithms field yielded efficient
decentralized algorithms for many classic problems, the discussion about the security of distributed
algorithms was somewhat neglected. Nevertheless, many protocols and algorithms were devised in
the research area of secure multi-party computation problem (MPC or SMC). However, the notions
and terminology of these protocols are quite different than in classic distributed algorithms. As
a consequence, the focus in those protocols was to work for every function f at the expense of
increasing the round complexity, or the necessity of several computational assumptions. In this
work, we present a novel approach, which rather than turning existing algorithms into secure ones,
identifies and develops those algorithms that are inherently secure (which means they do not require
any further constructions). This approach yields efficient secure algorithms for various locality
problems, such as coloring, network decomposition, forest decomposition, and a variety of additional
labeling problems. Remarkably, our approach does not require any hardness assumption, but only a
private randomness generator in each vertex. This is in contrast to previously known techniques in
this setting that are based on public-key encryption schemes.
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1 Introduction

Over the last few decades, computational devices get smaller and are embedded in a wide
variety of products. High-performance processors are embedded in smart phones, wearable
devices and smart home devices. Furthermore, sensor networks were established to monitor
physical areas for scientific research, smart-cities control and other purposes. In such
situations, it no longer makes sense, and in many cases it is not feasible, to leave the whole
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processing task to a single computer or even a group of central computers. In the distributed
algorithms research field, all the processors are employed to solve a problem together. The
basic assumption is that all the processors run the same program simultaneously. The
network topology is represented by a graph G = (V,E) where each processor (also referred
as node) is represented by a vertex, v ∈ V . Each communication line between a pair of
processors v, u ∈ V in the network is represented by an edge (v, u) ∈ E.

The time complexity of a distributed algorithm is measured by rounds. Each round
consists of three steps: (1) Each processor receives the messages that were sent by its
neighbors on the previous round. (2) Each processor performs a local computation. (3)
Each processor may send messages to its neighbors. The time complexity of distributed
algorithms is measured by the number of rounds necessary to complete an algorithm. Local
computations (that is, computations performed inside the nodes) are not taken into account
in the running time analysis in this model.

Despite the extensive research in the distributed algorithms field in the last decades, the
discussion about the security of distributed algorithms was somewhat neglected. Nevertheless,
many protocols and algorithms were devised in the research area of cryptography and network
security. The secure multi-party computation problem (MPC or SMC) is one of the main
problems in the cryptography research. However, the notions and terminology of these
protocols is quite different than in classic distributed algorithms. Moreover, most of these
protocols assume the network forms a complete graph. Additionally, the protocols have no
restriction on the amount of communication between the nodes.

In this work we devise secure distributed algorithms, in the sense that the output of
each processor is not revealed to others, even though the overall solution expressed by all
outputs is correct. Our notion of security is the following. Consider a problem where the
goal is assigning a label to each vertex or edge of the graph G = (V,E), out of a range
[t], for some positive t. A secure algorithm is required to compute a proper labeling, such
that for any vertex v ∈ V , (respectively edge e ∈ E) the other vertices in V (resp. edges in
E) are not aware of the label of v (resp. e). Moreover, other vertices or edges can guess
the label with probability at most 1/λ, for an appropriate parameter λ ≤ t. Note that this
requirement can be achieved if each participant v (resp. e) in the network computes a set of
labels {l1, l2, ..., lλ} (li ∈ [t]), such that any selection from its set forms a proper solution, no
matter which selections are made in the sets of other participants. For example, in a proper
coloring problem, if each vertex computes a set of colors (rather than just one color), and
the set is disjoint from the sets of all its neighbors, the goal is achieved. In this case each
participant draws a solution from its set of labels uniformly at random. The result is kept
secret by the participant, and thus others can guess it with probability at most 1/λ. Thus, if
the number of labels is small, the possibility of guessing a result of a vertex becomes quite
large, inevitably. As we will demonstrate later, one can artificially increase the amount of
labels to achieve smaller probabilities. However, when it is impossible to use a large number
of labels, other techniques can be taken into account (such as Parter and Yogev’s compiler
[20]). Nevertheless, our method is applicable to various distributed problems. Moreover,
the overhead caused by the privacy preserving is negligible as the round complexity of our
algorithms is similar to the best known (non privacy preserving) algorithms. A summary is
found in Table 1. The parameter λ is referred to as the solution domain in Table 1. The
ratio between t and λ is referred to as the contingency factor. These terms will be discussed
later in Chapter 3.
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Table 1 List of inherently secure algorithms and their privacy attributes.

Problem Type of Graph Rounds Complexity Solution Domain Size Contingency Factor

3∆-Coloring Oriented trees O(log∗ n) ∆ 3
2c ·∆ logn-Coloring General O(1) c · logn/2 O(∆)
O(∆2)-Coloring General log∗ n+O(1) ∆ O(∆)
p-Defective O

((
∆
p

)2)-Coloring General O(log∗ n) O
(

∆
p

)
O
(

∆
p

)
2a · c · logn-Coloring Bounded Arboricity a O(logn) O(logn)/2 O(a)

(O(logn), O(c · logn))- General O(log2 n) c > 1 O(logn)
Network Decomposition

∆-Forest Decomposition General O(1)
( ∆
|E(v)|

)
1

(2 + ε) · a-Forest Decomposition Bounded Arboricity a O(logn)
(((2+ε)·a)
|E(v)|

)
1

O(∆ logn)-Edge Coloring General O(1) c · logn O(∆)
O(∆2)-Edge Coloring General log∗ (n) +O(1) (2∆− 1) O(∆)
p-Defective O

((
∆
p

)2)-Edge Coloring General O(1) O
((

∆
p

)2) 1

(t ·
√

∆)-Edge Coloring of a General Õ(log ∆ + log3 logn) t
√

∆
Dominating Set

2 Background

2.1 Distributed Algorithms

Given a network of n processors (or nodes), consider a graph G = (V,E) such that V =
v1, v2, ..., vn is a set of vertices, each represents a processor. For each two vertices u, v ∈ V ,
there is an edge (u, v) ∈ E if and only if the two processors corresponding to the vertices
u, v have a communication link between them. A communication link may be unidirectional
or bidirectional, resulting in an undirected or a directed graph (respectively). Unless stated
otherwise, the graphs in this work are simple, undirected and unweighted.

Two vertices u, v ∈ V are independent if and only if (u, v) /∈ E. The neighbors set of
a vertex v ∈ V , Γ(v) consists of all the vertices in V that share a mutual edge with v in
E. Formally, Γ(v) = {u ∈ V |(u, v) ∈ E}. The degree of a vertex v ∈ V , deg(v) = |Γ(v)|.
Note that 0 ≤ deg(v) ≤ n− 1. The maximum degree of graph G, ∆(G), is the degree of the
vertex v ∈ V which has the maximum number of neighbors. If the graph G is directed, the
out (respectively, in) degree of vertex v ∈ V (degout(v) and resp. degin(v)) is the number of
edges (u, v) ∈ E (u ∈ V ) with orientation that goes out from (respectively, in to) vertex v.

Throughout this paper, LOCAL model will be used as the message-passing model. In
this model, each communication line can send at each round an unrestricted amount of bits.
It means that the primary measure is the number of rounds each node needs to “consult”
its neighborhood by sending messages. This is in contrast to CONGEST model, where the
bandwidth on each communication line on each cycle is bounded by O(logn).

A single bit can pass from one endpoint of the graph to the other endpoint in D(G)
rounds (where D(G) is the diameter of graph G). Thus, in the LOCAL model we usually
look for time complexity lower than O(D(G)) and even sub-logarithmic (in terms of |V |),
since all the nodes can learn the entire topology of the graph in O(D(G)) rounds and then
perform any computation on the entire graph. Consequently, the research in local distributed
algorithms is focused on solving those graph theory problems which have solutions that
depend on the local neighborhood of each vertex rather than the entire graph topology.

Most of the problems in graph theory may be classified into two types. The first type
is a bipartition of the graph (whether the vertices, the edges, or both) into two sets. For
some problems both of these sets are of interest, and for other problems only one of the sets,
while the other sets may be categorized as “all the rest”. Examples of such problems include
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Maximal Independent Set and Maximal Matching. The other type of problems partitions
the graph into several sets. This type of problems may be referred as “labeling” problems
where there is a set of valid labels and every part of the graph is labeled by a unique label.
Examples of such problems include Coloring and Network Decomposition.

In the following sections we will present some of the problems in the field of graph theory
which exploit the potential of distributed algorithms. While we discuss some of the main
bipartition problems, in our model for privacy preserving the labeling problems are more
relevant.

2.2 Graph Theory Problems

The definition of the problems is given here briefly, a detailed definition can be found in [5].

A function ϕ : V → [α] is a legal α-Coloring of graph G = (V,E) if and only if, for each
{v, u} ∈ E → ϕ(v) 6= ϕ(u). Similarly, a function ϕ : E → [α] is a valid α-edge coloring of
graph G = (V,E) i.f.f. for any vertex v ∈ V there are no two distinct vertices u,w ∈ Γ(v)
such that ϕ((v, u)) = ϕ((v, w)). While a deterministic construction of such (∆ + 1)-graph
coloring requires at least O(log∗ n) rounds [16]. A randomized (∆ + 1)-graph coloring can be
done in poly(log logn) rounds [22]. Graph coloring is of special interest due to its applications
in many resource management algorithms. In particular, certain resource allocation tasks
require a proper coloring (possibly of a power graph) and that each vertex knows its own
color, but not the colors of its neighbors. For example, this is the case in certain variants of
Time Division Multiple Access schemes.

A forest is a graph which contains no cycles. A forest decomposition of graph G = (V,E)
is an edge-disjoint partition of G, to α sub-graphs F1,F2, ...,Fα such that Fi is a forest for
every 1 ≤ i ≤ α. One way to define the arboricity of a graph G is as the minimal number of
forests which are enough to fully cover G.

Given a graph G = (V,E) and a vertex-disjoint partition of graph G = (V,E) to α
clusters C1, C2, ..., Cα, we define an auxiliary graph G = (V, E) such that V = {C1, C2, ..., Cα}
and (Cu, Cv) ∈ E (Cu, Cv ∈ V) iff ∃(u, v) ∈ E such that u ∈ Cu and v ∈ Cv. The partition
C1, C2, ..., Cα is a valid (d, c)-network decomposition [1] if (1) the chromatic number of G is
at most c and (2) the distance between each pair of vertices contained in the same cluster
v, u ∈ Ci is at most d. In strong network decomposition, the distance is measured with respect
to the cluster Ci (in other words, distCi(v, u) ≤ d). In weak network decomposition, the
distance is measured with respect to the original graph G (in other words, distG(v, u) ≤ d).
Different algorithms yield different kind of network decompositions which satisfy different
values of d and c. One of the most valuable decompositions, which presents good trade-off
between the radius of each cluster and the chromatic number of the auxiliary graph is an
(O(logn), O(logn)-network decomposition.

A set I ⊆ V of vertices is called an Independent Set (IS) if and only if for each pair of
vertices v, u ∈ I there is no edge (v, u) ∈ E. An independent set I is Maximal Independent
Set (MIS) i.f.f. there is no vertex v ∈ V \ I such that I ∪ {v} is a valid independent set.
Similarly, a set of edges M ∈ E is called a Matching i.f.f. there is no pair of vertices
u1, u2 ∈ V (u1 6= u2) such that ∃v ∈ V where {(u1, v), (u2, v)} ⊆ M . A matching M is
Maximal Matching (MM ) i.f.f. there is no edge e ∈ E \M such that M ∪ {e} is a valid
matching.
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2.3 Secure Multi-Party Computation

Multi-Party Computation (MPC ) is the ability of a party consisting of n participants to
compute a certain function f(x1, x2, ..., xn) where each participant i(1 ≤ i ≤ n) holds only
its own input xi. At the research fields of cryptography and networks security, Secure
MPC [23] protocols enables parties to compute a certain function f without revealing their
own input (xi). Our security model is information-theoretic secure, which means it is not
based on any computational assumptions. Furthermore, we base our security notion on the
semi-honest model (as was devised by [11]) which means that there are possibly curious
participants but no malicious adversary. In other words, adversary participant can not
deviate from the prescripted protocol. However, it may be curious, meaning it may run an
additional computation in order to find out private data of another participants. Permitting
the existence of malicious adversaries which may collude with t nodes will necessitate the
graph to be (2t+ 1)-connected for security to hold (as shown by [20]), which is not a feasible
constraint.

Previous works on secure-MPC ([23], [11]) do not state any assumptions on the nature of
neither the function f nor the interactions between the participants. As a consequence, the
privacy preserving protocols devised during the past decades are generalized for any kind
of mathematical function and not necessarily computation of graph features. Furthermore,
each of the participants is assumed to be an equal part of the computation. As such, any
pair of participants is assumed to have a private communication line of its own. Translating
those protocols to distributed algorithms for graph theory problems, will require a complete
graph representing the communication which may be different than the input graph of the
problem. While this approach is applicable in many realistic networks and problems, general
networks with non-uniform communication topology may benefit from efficient distributed
algorithms for computations where the desired function f is local. Other works (such as [13]
and [12]) are dedicated to general graphs. However, their goal was not to optimize the rounds
complexity as the protocols created by their algorithms will require at least O(n2) rounds
even for a relatively simple function f . Furthermore, their techniques require a heavy setup
phase, and based on some computational assumptions. Several other works provide secure
protocols for general or sparse graphs ([6] [10] [7]). However, the focus in those protocols
was to work for every function f , at the expense of increasing the round complexity, or the
necessity of several computational assumptions.

Recently, Parter and Yogev [20] [21] suggested a new kind of privacy notion which they
tailored to the CONGEST distributed model. In their notion, the neighbors of each node v
construct a private neighborhood tree throughout which they broadcast a shared randomness.
This randomness is used in order to encrypt the private variable of each neighbor. The
node receives these encrypted private variables x1, x2, ..., xt (t = |Γ(v)|) and performs its
local computation f(x1, x2, ..., xt). Let OPT(G) be the best depth possible for private
neighborhood trees. Parter and Yogev devised an algorithm which constructs such trees in
O(n+ ∆ ·OPT(G)) rounds, where each tree has depth of O(OPT(G) · polylog(n)) and each
edge e ∈ E is part of at most O(OPT(G) · polylog(n)) trees. Using their notion one can turn
any r-rounds algorithm into a secure algorithm with an overhead of poly(∆, logn) ·OPT(G)
rounds for each round. Furthermore, they showed that for a specific family of distributed
algorithms (to which they referred as “simple”), the round overhead can be reduced to
OPT(G) · polylog(n). Using their method they have devised a variety of both global and
symmetry-breaking local algorithms. However, their notion requires an extensive pre-
construction phase additional to the secure computation itself which requires quite high
round complexity. Furthermore, their notion assumes a bridgeless graph, meaning that the
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graph consists of a single connected component and there is no single edge such that its
removal will split the graph into two connected components. The method of Parter and Yogev
relies on cryptographic hardness assumptions, e.g., the existence of a shared randomness and
a public-key encryption scheme. This allows achieving security both for input and output. In
contrast, our current work focuses on output security, but there are no hardness assumptions,
and no requirement for bridgeless graphs.

3 Inherently Secure Distributed Algorithms

Most of the classic distributed algorithms models assume that each vertex is aware of its
neighbors. This is the case in our paper as well. Usually each node does not have any
additional input except for its own ID. The output of the algorithm is a set of labels where
each label corresponds to each vertex. Throughout the current work, vertices IDs will not
be considered as a private input. Formally, from the perspective of node v ∈ V , a classic
distributed algorithm calculates a function fv(DΓ(v)) = lv, where lv ∈ [l] (for some constant l)
is vertex v’s label which was calculated based on the input messages (DΓ(v)) came from vertex
v’s neighbors (Γ(v)). From a global perspective, the algorithm computes: f : G(V,E)→ [l]n.
This work considers the following security notion: each vertex v cannot infer the value of
lu (such that u ∈ V, u 6= v) with a certain probability. Our model assumes that each node
v ∈ V holds a private randomness generator rv.

As an example, consider an algorithm for ∆2 graph multicoloring of graph G = (V,E)
with maximum degree ∆ = ∆(G) which provides any vertex v with a set of ∆ valid colors
ϕ(v) = {x1, x2, ..., x∆}. By “valid” we mean that any of the colors in ϕ(v) is not contained
in any of v’s neighbors’ sets, i.e. xi /∈

⋃
u∈Γ(v)

ϕ(u) (for any 1 ≤ i ≤ ∆). Using this kind of

coloring, v can privately select a random color out of the ∆ valid colors in ϕ(v). Hence, the
identity of the exact color of v can be securely hidden from any of the other vertices in G.

We generalize the above idea as follows. Consider the following family of algorithms.
Each algorithm Π in the Inherently-Secure algorithms family IS consists of two stages: (1)
Calculating a generic set of k possible valid labels. (2) Randomly and privately (using the
private randomness generator rv), each node selects its final label. That is, the first stage
of algorithm Π (denoted by Πgeneric) calculates the function: f1(G(V,E)) = {`u1 , ..., `un

},
where `ui = {l1i , l2i , ..., lki } for any ui ∈ V . Henceforth, Πgeneric will be referred as generic-
algorithm. The first stage can run without any additional security considerations, meaning
any node may know the `ui of other nodes. Later, we will show algorithms which satisfies
even stronger security notion where the identity of `ui

is also kept secret. The second stage
(Πselect) securely calculates the function f2 : [`]kn → [l]n. Overall, algorithm Π indeed
calculates f = f1 ◦ f2 : G(V,E)→ {l1, ..., ln}. Let L be the ground set of valid labels from
which the possible labels are being picked, i.e. for any 1 ≤ i ≤ n and 1 ≤ j ≤ k, li ∈ L and
lji ∈ L .

By increasing the amount of possible values (k) we make the actual labels {l1, l2, ..., ln}
less predictable. However, in order to do so we may need to increase the ground set of the
available labels. For instance, in graph coloring we may want to be able to produce ∆ valid
possible colors for each vertex. However, an increase of the amount of colors (to ∆2) may
be necessary. On the other hand, one may want to minimize the size of the ground set
since large ground sets may lead to trivial algorithms on one hand, and to a higher memory
complexity on the other hand.

In order to analyze this kind of algorithms we define several parameters.
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I Definition 1. The size of the problem domain of a problem P solved by algorithm Π which
calculates the function f : G(V,E)→ {l1, l2, .., ln}, where li ∈ L, is the number of valid labels
for any li, i.e. |L|.

I Definition 2. The size of the solution domain of a generic algorithm Πgeneric which
calculates the function f1 : G(V,E)→ {{l11, l21, ..., lk1}, ...{l1n, l2n, ..., lkn}} is the minimal number
of valid possible labels for any vertex, i.e. k.

I Definition 3. The contingency factor of generic algorithm Πgeneric used to solve problem
P (as they defined on definitions 1 and 2) is the ratio between the size of the problem domain
|L| (Def. 1) and the size of the solution domain k (Def. 2) , i.e. |L|/k.

In order to clarify these definitions, consider the problem of ∆2-graph coloring. The size
of the problem domain is ∆2. A generic algorithm that calculates ∆ possible valid colors
for each vertex will provide a solution domain of size ∆. The contingency factor of this
algorithm will be ∆2

∆ = ∆.
In many cases, the number of labels (i.e. the size of the problem domain) can be increased

artificially by a factor c > 1. This artificial increase will lead to an expansion of the problem
domain by the same factor c. As a result, the contingency factor will remain the same.
That is, the contingency factor is a property of the algorithm itself and not influenced by
artificial increases. Small contingency factor indicates that most of the members of the
problem domain are valid options on the solution domain, while the generic algorithm did
not exclude those members from being considered as valid possible solutions. As such, small
contingency factor indicates that the algorithm preserves better security by excluding only
a small portion of possible solutions. Problems with small problem-domain will have even
smaller solution domain which will lead to a contingency factor that is close to the original
size of the problem domain. Therefore, finding a generic algorithm with good contingency
factor for these problems is a complicated task. As a consequence, we will focus on finding
generic algorithms for problems with relatively large problem-domain, i.e. labeling problems.
For problems with small problem domain, other techniques (such as Parter and Yogev’s
compiler [20]) should be considered.

Note that even though a malicious node may interrupt the validity of the algorithm by
picking a solution which is not part of its solution domain, this kind of intrusion will not
affect the privacy of the algorithm. However, in our model the nodes are not malicious.

3.1 Generic Algorithms for Graph-Coloring
Considering the problem of graph coloring, we will focus on finding generic algorithms that
will provide contingency factor of ∆. This factor is optimal for general graphs, as we prove
in Theorem 4.

I Theorem 4. For any α-coloring problem (α > ∆), and any generic algorithm Π, there is
an infinite family of graphs such that their solution domain must be of size O(α/∆) at most.
Hence, the contingency factor would be at least Ω(∆).

Proof. Suppose for contradiction that there is a valid solution domain such that every vertex
has more than α/∆ valid options. Consider a graph G = (V,E) with clique C ⊆ V of size
|C| = ∆ + 1. Each vertex v ∈ C has ∆ neighbors, each of them has α/∆ valid colors. But
since v and all its neighbors are part of the clique, each of them has a unique set of colors.
It means that there are at least (∆ + 1) · (α/∆) > α colors in the α-coloring, which is a
contradiction. J
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3.1.1 Generic Algorithm for 3∆-Coloring of Oriented Trees
A well known algorithm for 3-Coloring of oriented trees was devised by Cole and Vishkin [8].
The deterministic algorithm exploits the asymmetric relationship between a vertex v and its
parent (in the tree) π(v) in order to get a valid coloring in O(log∗ n) rounds.

For any two integers a and b, let < a, b > be a tuple which can be represented in binary as
the concatenation of the binary representations of a and b. We can define a generic algorithm
that runs Cole Vishkin’s algorithm to get a valid coloring ϕ : V → [3]. Later, each vertex
will set its solution domain ϕ̂(v) as follows: ϕ̂(v) =

⋃
0≤i<∆

< i, ϕ(v) >. As a result, we get

a generic algorithm where each vertex has ∆ valid colors. The validity of this algorithm is
provided by the following Lemma:

I Lemma 5. For any vertex v ∈ V , for every value x ∈ ϕ̂(v), x is not a possible color for
any other vertex u ∈ Γ(v).

Proof. Suppose for contradiction that there exists a vertex u ∈ Γ(v) such that x ∈ ϕ̂(u).
Since, ϕ̂(v) =

⋃
0≤i<∆

< i, ϕ(v) >, there exists a value 1 ≤ i ≤ ∆ such that x =< i, ϕ(v) >=<

i, ϕ(u) >. Hence, ϕ(v) = ϕ(u), which is a contradiction since ϕ is a valid coloring as was
proved by [8]. J

Lemma 5 leads to the following corollary:

I Corollary 6. Given a tree T = (V,E, v), there exists a generic algorithm which provides
any vertex v ∈ V with a set of ∆ possible valid colors

The generic algorithm described above uses a simple approach which achieves privacy
by artificially increasing the size of both the problem domain and the solution domain
accordingly. Another technique is to run an algorithm d times in parallel. For coloring
problems a good d will probably be ∆ (as was shown in Theorem 4). While this approach
will lead in deterministic algorithms to the same results as the previous technique, applying
this technique with random algorithms will lead to solution domain which is somewhat less
predictable than the domain we will receive by artificially increasing the size of the solution
domain.

While these approaches (artificially increasing the size of the solution domain and run
the algorithm multiple times) are useful for problems with very efficient base algorithms (i.e.
Cole Vishkin 3-coloring), for many problems such an efficient algorithm is not yet known.
However, one still may devise efficient generic-algorithms for some of these problems, as
demonstrated in the following sections.

3.1.2 Generic Algorithm for 2∆c · log n-Coloring of General Graphs
While the best known algorithms for (∆ + 1)-Coloring of generic graphs uses logarithmic
number of rounds [14] [18], a reasonable size of contingency factor may yield more efficient
algorithms with sub-logarithmic and even constant number of rounds. As an example,
consider Algorithm 1 which uses O(1) rounds to achieve a secure coloring of general graphs
with contingency factor of O(∆).

Algorithm 1 GENERIC-RANDOM-COLORING.

Result: A set of O(logn) colors for each vertex v ∈ V
1 Every vertex selects independently at random k = c · logn different numbers (c is a

constant, c > 1) I = {< 1, x1 >,< 2, x2 >, ..., < k, xk >} where xi ∈ [2∆] is a
number selected uniformally at random (for each 1 ≤ i ≤ k).

2 Send I to each neighbor.
3 For each message Î = {< 1, x̂1 >,< 2, x̂2 >, ..., < k, x̂k >} received, do I ← I \ Î.
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The fact that Algorithm 1 is privacy preserving is established by the Theorem below. Its
proof can be found in [5]. The contingency factor of the algorithm is 2∆c·logn

c·logn/2 = O(∆).

I Theorem 7. For any vertex v ∈ V , executing algorithm GENERIC-RANDOM-COLORING,
the algorithm produces a set of at least k/2 valid colors in O(1) rounds, with high probability.

3.1.3 Generic Algorithm for O(∆2)-Coloring of General Graphs

Since currently known deterministic algorithms for (∆ + 1)-coloring require at least
√

logn
rounds, applying the simultaneous execution described above with such an algorithm will
lead to relatively poor round complexity. Instead, in this section we generalize a construction
of [3][16] which provides O(∆2)-coloring in log∗ n + O(1) rounds, in order to directly (i.e.
without simultaneous executions) obtain secure algorithm for O(∆2)-coloring. We employ a
Lemma due to Erdös et al. [9].

I Lemma 8. For two integers n and ∆, n > ∆ ≥ 4, there exists a family J of n subsets of

the set {1, ...,m}, m = d∆2 · lnne, such that if F0, F1, ..., F∆ ∈ J then F0 *
∆⋃
i=1

Fi.

A set system J which satisfies the above is referred as ∆-cover-free set.
Erdös et al. [9] also showed an algebraic construction which satisfies Lemma 8. For two

integers n and ∆, using a ground set of size m = O(∆2 · log2 n), they construct a family F
of n subsets of the set {1, ...,m}, such that F is a ∆-cover-free. Linial [16] showed that this
construction can be utilized for distributed graph coloring. We construct a slightly different
family which also provides multiple uncovered elements in each set:

I Theorem 9. For two integers n and ∆, using a ground set of size m = O(∆2 · log2 n),
there exists a family F of n subsets of the set {1, ...,m}, such that if F0, F1, ..., F∆ ∈ F then∣∣∣∣F0 \

∆⋃
i=1

Fi

∣∣∣∣ ≥ ∆.

The proof of Theorem 9 can be found in [5].
These polynomials provides sets of labels such that if every vertex is assigned to a set,

each set has at least ∆ values which are not contained in any of its neighbors’ sets. An
illustration of this construction is provided in [5].

Next, we will use the constructions from [9] and Theorem 9 to devise a generic-algorithm
for O(∆2)-coloring. Our algorithm is similar to Linial’s iterative algorithm ([16]), but instead
of getting only one color on the last iteration, we get ∆ different possible colors (for each
vertex).

Starting with a valid n-coloring for some graph G = (V,E) (the color of each vertex
is its ID), we can apply the coloring algorithm from [16] which will turn the n-coloring
into an O(∆2 log2 n)-coloring in a single round. After log∗ n+O(1) rounds we will get an
O(∆2 log2 ∆)-coloring. For a sufficiently large ∆, it holds that O(∆2 log2 ∆) ≤ (3∆)3. Hence,
in order to further reduce the number of the colors to O(∆3) and get ∆ valid optional
colors we will use the set system from Theorem 9 to reduce the O(∆2 log2 ∆)-coloring to
a q2 = (3∆)2-coloring of G such that each vertex has at least ∆ valid colors. To conclude,
the problem domain is of size 9∆2. The solution domain contains of at least ∆ valid colors.
Consequently, the contingency factor is O(∆), which is proved to be optimal (see Theorem 4).
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3.1.4 Generic Algorithm for p-Defective O
((

∆
p

)2
)
-Coloring of General

Graphs
For a graph G = (V,E), the function ϕ : V → [α] is a valid p-defective α-coloring iff for
each vertex v ∈ V , the number of neighbors which have the same color as v is at most p, i.e.
|{u ∈ Γ(v) | ϕ(v) = ϕ(u)}| ≤ p.

First, we shall find the lower bound of contingency factors for generic algorithms of
defective coloring:

I Theorem 10. For any p-defective α-coloring problem, there is an infinite family of graphs
such that their solution domain must be of size O

(
α · p∆

)
at most and the contingency factor

will be at least Ω
(

∆
p

)
.

Proof. Suppose for contradiction that there is a valid solution domain such that every vertex
has more than α · p∆ valid options. Consider a graph G = (V,E) with a clique C ⊆ V of size
|C| = ∆ + 1. Each vertex v ∈ C has ∆ neighbors, each of them has α · p∆ . Since v and all
its neighbors are part of a clique, each color can be an optional color of at most p different
vertices. It means that there are at least (∆ + 1) · (α · p∆ )/p > α colors in the p-defective
α-coloring, which is a contradiction. J

The results from the previous section can be extended and combined with the results of [4],

to achieve generic algorithm for ρ-defective O
((

∆
ρ

)2
)
-coloring which provides a solution

domain of size O
(

∆
ρ

)
. Such an algorithm provides an optimal contingency factor. The proof

of the next Theorem can be found in [5].

I Theorem 11. Given a graph G = (V,E) (|V | = n) with maximum degree ∆, and a fixed

parameter 1 ≤ p ≤ ∆, there is a generic algorithm that calculates p-defective O
((

∆
p

)2
)
-

coloring with a solution domain of size O(∆/p) and a contingency factor of at least Ω(∆/p),
in O(log∗ n) rounds.

The contingency factor is optimal by Theorem 10.

3.2 Generic Algorithm for Network Decomposition
As was mentioned before, network decomposition may be referred as a labeling problem
where the cluster IDs are the labels and the clusters assignment is the labeling function.
Hence, network decomposition problems are good candidates for generic algorithms. However,
considering the term of privacy in the network decomposition problem, different definitions
may be suggested. One may suggest a permissive notion where all the members of the same
cluster are allowed to share their private data with each other. This permissive notion makes
sense since network decomposition is frequently used as a building block in other algorithms
(such as coloring or finding MIS) where in the first stage each vertex discovers its cluster’s
topology, calculates private solution for the entire cluster, and then communicates with other
clusters in order to generate an overall solution. However, even on a restrictive notion where
each vertex may know only its own cluster assignment, some efficient algorithms may be
suggested. Hence, during this work we will use the restrictive notion.

In section 3.1.1 we have shown how multiple simultaneous executions of the same random
algorithm can expand the solutions domain and provide a generic algorithm for graph
coloring problems. This approach can be adopted in order to expand the solution domain
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of network decomposition algorithms, However, since the network decomposition should
satisfy certain constraints (namely, the depth of the clusters and the chromatic number
of the auxiliary graph), this approach should be implemented carefully. We will use the
weak-diameter (O(logn), O(logn))-network decomposition random algorithm devised by
Linial and Saks [17]. This algorithm runs in O(log2 n) rounds. Our generic algorithm
proceeds as follows. Given a graph G = (V,E), and a positive integer c > 1, execute
Linial and Saks’s algorithm for c times simultaneously, in parallel. Each of the execution
will have its own serial number i ∈ {1, ..., c}. Let Ci : V → {1, ..., O(logn)} be a set of
labeling functions (1 ≤ i ≤ c), such that Ci(v) = j iff vertex v ∈ V was assigned by the i-th
execution to cluster Cj . For each vertex v ∈ V we assign a set of logn different possible labels
C(v) =< 1, C1(v) >, ..., < c, Cc(v) >. Each of the labels will represent a distinct cluster ID.
These labels are different since even if the independent executions produced the same cluster
assignments, the first parameter on each tuple representing the label will be different since it
represents the unique ID of each independent execution.

The clusters assignment described above is a privacy preserving (O(logn), O(c · logn))-
network decomposition. The proof of the following Theorem can be found in [5]

I Theorem 12. Given a graph G = (V,E), there is a generic algorithm which calculates weak-
diameter (O(logn), O(c · logn))-network decomposition in O(log2 n) rounds. The algorithm
produces c valid possible cluster assignments for each vertex v ∈ V .

Since the size of the problem domain is O(c · logn) and the solution domain is of size c,
the contingency factor is O(logn).

Usually, it is useful to set the parameters of the network decomposition to be polylogar-
ithmic in n. Hence, it may be useful to set c = logn and get an (O(logn), O(log2 n))-network
decomposition. On the other hand, in order to preserve privacy, setting c = min(∆, logn) is
sufficient as it allows each of the ∆ neighbors of each vertex to have a different set of possible
cluster assignments.

3.3 Generic Algorithms for Forest Decomposition
An oriented tree is a directed tree T = (V,E, r) where r ∈ V is the root vertex, where
every vertex v ∈ V knows the identity of its parent π(v) and has an oriented edge (v, π(v)).
An oriented forest is such a graph that any of its connected components are oriented trees.
Any graph G = (V,E) with maximum degree ∆ can be decomposed into a set of ∆ edge-
disjoint forests F1, ..., F∆(Fi = (VFi

, EFi
) such that E =

⋃
1≤i≤∆

EFi
. The problem of how to

decompose a graph into forests can be viewed as a labeling problem where each edge should
have a label 1 ≤ i ≤ ∆ that represents the forest Fi which it belongs to. Since in every
oriented forest, each vertex has at most 1 parent, each vertex will have at most ∆ outgoing
edges, each belongs to a different forest. Hence, for each vertex v ∈ V there are

( ∆
degout(v)

)
different options to associate edges to different forests. From the edge’s point of view, each
of the ∆ labels is a valid possible label.

Panconesi and Rizzi [19] devised an algorithm for ∆-forest decomposition of a general
undirected graph in 2 rounds. Their algorithm can be viewed as two separate algorithms,
each of a single round. The first algorithm is a simple yet powerful way to decompose a
directed acyclic graph with maximum outgoing degree d into d oriented forests. The second
is a a way to turn an undirected graph with maximum degree ∆ into a directed acyclic
graph with maximum outgoing degree ∆. Each of these algorithms run in a single round.
Combining these two algorithms produces a 2 round algorithm for ∆-forest decomposition of
any undirected graph with maximum degree ∆.
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Next we will describe Panconesi and Rizzi’s algorithm for forest decomposition of oriented
graphs. We will show how this algorithm can be modified in order to preserve privacy while
maintaining a contingency factor of 1. Later, we will show two algorithms which produce a
directed acyclic graphs. The first is Panconesi and Rizzi’s algorithm for orienting any general
undirected graph. The second algorithm (due to [2]) performs an acyclic orientation for a
graph with bounded arboricity a such that the maximum outgoing degree is b2 + εc · a. The
combination of these algorithms yields a ∆-forest decomposition for graphs with maximum
degree ∆ and b2 + εc · a-forest decomposition for graphs with bounded arboricity a. Both of
them fit the constraint of preserving privacy.

3.3.1 Forest Decomposition of Oriented Graphs
Given a directed acyclic graph G = (V,E), such that each vertex has a set of outgoing edges
E(v) = {(v, u) | (v, u) ∈ E} the single round algorithm of Panconesi and Rizzi [19] goes as
follows. Each vertex v ∈ V , in parallel, assigns a distinct number 1 ≤ i ≤ |E(v)| to each
e ∈ E(v). Let Êi be the set of all edges that were assigned with the number i. The forest
decomposition is the set of forests F1, ..., F∆ where Fi = (V, Êi). The correctness of the
algorithm was proved by [19]. While in the original algorithm the nodes do not assign the
labels randomly, in our algorithm a random assignment is required. Next, we analyze the
privacy of the algorithm. The proof of the following Theorem can be found in [5].

I Theorem 13. Panconesi and Rizzi’s forest decomposition algorithm with random label
assignment is privacy preserving and it has a contingency factor of 1.

3.3.2 Acyclic Orientation of Graphs
Panconesi and Rizzi [19] showed that the simple orientation where each edge is oriented
towards the vertex with the higher ID, is an acyclic orientation. Hence, any undirected graph
can achieve an acyclic orientation in a single round, and can be decomposed privately into ∆
forests in one additional round. This orientation provides each vertex with up to ∆! valid
options for forest assignments. From the edge’s point of view, each of the ∆ labels is a valid
possible label. Barenboim et al. [2] devised an O(logn)-rounds algorithm that receives a
graph with bounded arboricity a and performs an acyclic orientation with maximum outgoing
degree of b2 + εc · a. This orientation is achieved by partitioning the vertices of a graph
G into l = b 2

ε lognc sets H1, ...,Hl such that each vertex v ∈ Hi(i ∈ {1, ..., l}) has at most
(2 + ε) · a neighbors in ∪lj=iHj . Then, the orientation is done such that each edge (u, v) ∈ E
with endpoints u ∈ Hi and v ∈ Hj , points towards the vertex that belongs to the higher
ranked set (in case the two endpoints belong to the same set, the edge will point towards
the vertex with the higher ID). This orientation provides each vertrex with up to

((b2+εc·a)
|E(v)|

)
valid options for forest assignments. From the edge’s point of view, each of the b2 + εc · a
labels is a valid possible label.

3.4 Generic Algorithms for Graph Coloring of Graphs With Bounded
Arboricity a

The forest decomposition algorithms that was described above can be used as building blocks
for other distributed algorithms for classic graph theory problems as graph coloring. In the
following chapter we will use the b2 + εc · a-forest decomposition of [2] that we showed in the
previous chapter to achieve an 2a · c · logn-coloring for graphs with bounded arboricity a (for
any c > 1). We will show that this coloring is private and has contingency factor of O(a).
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Combining the GENERIC-RANDOM-COLORING algorithm (algorithm 1) with the
acyclic orientation algorithm devised by [2] yields a secure algorithm for generic 2a · c · logn-
Coloring for graphs with bounded arboricity a such that from initial selection of k = c · logn
initial colors (for any c > 1), each vertex has, at the end of the execution, at least k/2 valid
optional colors. The algorithm basically performs the original random generic coloring, but
it makes advantage of the acyclic orientation to break the symmetry between each pair of
neighbors and make sure that only O(a) neighbors constraint the valid residual colors of
each vertex.

The algorithm consists of two steps. On the first step, the algorithm performs an acyclic
orientation of graph G such that the maximum outgoing degree is b2 + εc · a. The orientation
is done by invoking the first two steps of procedure Forests-Decomposition (algorithm 2 in
[2]) with graph G and parameter 0 < ε ≤ 2. On the second step the generic coloring is
done. Each vertex v chooses independently at random k = c · logn numbers from the range
[2 · A]. These choices form a set of optional colors: Iv = {< 1, x1 >, ..., < k, xk >}. Next,
each vertex v sends its set of colors Iv to its children (in correspondence to the orientation).
Each vertex u which received a set Iv from one of its parents performs Iu ← Iu \ Iv.

I Lemma 14. The residual set of colors contains at least k/2 colors.

The proof of this Lemma can be found in [5].

I Lemma 15. For any vertex v ∈ V , there is no color < i, xi > in the residual available
colors set Iv such that < i, xi >∈

⋃
u∈Γ(v)

Iu.

Proof. Suppose for contradiction that < i, xi >∈ Iu for some u ∈ Γ(v). Let Fj be the forest
in F which includes the edge (u, v). It means that either u ∈ πj(v) or v ∈ πj(u), which
means that either u or v received it from its parent (v or u, respectively) and should have
removed it from its residual set, contradiction. J

The time complexity of the algorithm follows from the time complexity of Procedure Forest-
Decomposition(a, ε), which is O(logn), plus O(1) for coloring. The size of the problem
domain is 2a · c · logn and the size of the solution domain is c·logn

2 . Hence, the contingency
factor is O(a).

3.5 Generic Algorithms for Edge Coloring
When considering the meaning of privacy in the context of edges, there is a slight difference
between vertex coloring and edge coloring. Since the algorithms in both LOCAL and
CONGEST ran on the vertices (rather than the edges, which represents communication
lines) the color of each vertex should be known only to the vertex itself. On the other hand,
in edge coloring, both edge endpoints are responsible for the coloring of the edge, which
means that in terms of privacy preserving we may consider the edge coloring as private when
at most the two endpoints of each edge know the color of the edge. However, when the graph
is directed, we may demand that only the source endpoint of the edge will be aware of edge’s
color.

Nevertheless, there is a strong connection between graph vertex coloring to edge coloring.
The similarity between the two problems is obvious, but more interestingly, there is a straight
reduction between vertex coloring and edge coloring algorithms for general graphs. In the
following section we will use this reduction in order to perform privacy preserving generic
edge coloring of graphs. This reduction can be used to apply the defective graph coloring we
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presented in section 3.1.4 in order to compute a defective edge coloring. There is however,
a faster way to get a defective edge coloring. This technique, which is due to [15] will be
presented in the later section.

3.5.1 Edge Coloring Using Line Graphs
Given a graph G = (V,E), a line graph L(G) of graph G is a graph which is constructed
as follows. Each edge e ∈ E becomes a vertex of the line graph L(G) = (E, E). Each two
distinct vertices of the line graph e1, e2 ∈ E are connected ((e1, e2) ∈ E) if they are incident
to a single vertex in the original graph, i.e. there exist three vertices v, u, w ∈ V such that
e1 = (v, u) and e2 = (v, w). Observe that the line graph has m ≤ n2 vertices and a maximum
degree of ∆(L(G)) = (2∆(G)− 1). Also observe that a legal vertex coloring in the line graph
L(G) is a legal edge coloring in the original graph. Hence, if any vertex of the original graph
is responsible for the coloring of part of its incident edges, the vertices can produce a legal
graph coloring for the line graph and translate it to a legal edge coloring of the original
graph. The assignment of each vertex to any incident edge can be done by specifying that
for any edge (u, v) ∈ E, the vertex with the greater ID is responsible for the coloring of the
edge in the line graph.

As a result, the algorithms provided in section 3.1 can be applied to the line graph
in order to produce a generic edge coloring. Given a graph G = (V,E) with maximum
degree ∆, the algorithm for 2∆c · logn-Coloring, applied on the line graph L(G), produces
an 2 · (2∆ − 1) · c · log (n2) = 8∆ · c · logn-edge-coloring, with solution domain of size
c · log (n2)/2 = c · logn, which yields a contingency factor of O(∆). The algorithm for O(∆2)-
Coloring, applied on the line graph L(G), produces an O((2∆− 1)2) = O(∆2) edge coloring
of the original graph, with a solution domain of size (2∆− 1), which keeps a contingency
factor of O(∆).

3.5.2 Generic Defective Edge Coloring
The line graph, which was presented in the previous section, can be used in order to perform

a p-defective O
((

2∆−1
p

)2
)
-generic edge coloring of the original graph by applying the

algorithm from Theorem 11 on the line graph. Such an algorithm will achieve a solution
domain of size O(∆/p) and a contingency factor of O(∆/p) as well, both in O(log∗ n) rounds.

There is however a faster privacy preserving algorithm for p-defective O
((

2∆−1
p

)2
)
-defective

coloring based on the algorithm of Kuhn (Algorithm 3 in [15]).
Kuhn’s algorithm goes as follows. Suppose we have an undirected graph G = (V,E) with

maximum degree ∆, and a constant i ≥ 1. Each vertex numbers its adjacent edges with
numbers between {1, ..., d∆/ie} such that each number will be assigned to at most i of the
vertex’s adjacent edges. Then each vertex sends the number of each of its adjacent edges
to the vertex on the other endpoint of the edge. Suppose that for a graph G = (V,E), and
an edge (u, v) ∈ E, eu and ev are the colors that was assigned to edge e by vertex u and v
(respectively). The set {eu, ev} is assigned to be the color of edge e. Kuhn showed that this
simple O(1) rounds algorithm achieves a 4i− 2-defective

(d∆/ie+1
2

)
-Edge Coloring. Setting

p = 4i− 2 we get an p-defective O
((

∆
p

)2
)
-edge coloring.

Kuhn’s algorithm performs communication only between the two endpoints of each edge
and only once. Hence the knowledge about the color of each edge is held only by its two
endpoints. While in Kuhn’s algorithm the nodes do not assign the labels randomly, in our
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algorithm a random assignment is required. Therefore, our algorithm preserves privacy. Since
every vertex assigns the numbers independently, each of the available colors may be assigned
(in certain scenario) to each edge. As a result, we achieve the following theorem.

I Theorem 16. There is a privacy preserving algorithm for p-defective O
((

∆
p

)2
)
-edge

coloring with contingency factor of 1.

3.6 Generic Algorithm for Edge Dominating Set Colored with O(
√

∆)
Colors

The problem of constructing an edge domination set, is a bipartition. However, a useful
variant of this problem, where the dominating set should be colored with O(

√
∆) colors is

actually a labeling problem. A privacy preserving algorithm for this problem can be found
in [5].

4 Conclusion

The computer-science research fields of secure multi-party computation and distributed
algorithms were both highly investigated during the last decades. While both of the fields
prosper and yield many theoretical and practical results, the connection between these fields
was made only seldom. Nevertheless, as implementation of distributed algorithms becomes
common in sensor networks and IoT (Internet of Things) architectures, efficient privacy
preserving techniques are essential.

In this work we present a novel approach, which rather than turning existing algorithms
into secure ones, identifies and develops those algorithms that are inherently secure. Naturally,
our work focuses on labeling problems. The inherently secure algorithms analyzed in this
work are listed in

We believe that these results establishes a broad basis for further research of both
inherently secure algorithm and efficient techniques to translate distributed algorithms into
secure algorithms. Such algorithms will open new possibilities for secure interconnection
between machines, eliminating the need to mediate through a central secure server. As
a consequence, distributed communication would possibly open a free and secure way to
transmit data and solve problems.
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Abstract
In this paper, we focus on the uniform bipartition problem in the population protocol model. This
problem aims to divide a population into two groups of equal size. In particular, we consider
the problem in the context of arbitrary communication graphs. As a result, we investigate the
solvability of the uniform bipartition problem with arbitrary communication graphs when agents in
the population have designated initial states, under various assumptions such as the existence of a
base station, symmetry of the protocol, and fairness of the execution. When the problem is solvable,
we present protocols for uniform bipartition. When global fairness is assumed, the space complexity
of our solutions is tight.
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1 Introduction

1.1 Background

In this paper, we consider the population protocol model introduced by Angluin et al. [5].
The population protocol model is an abstract model for low-performance devices. In the
population protocol model, devices are represented as anonymous agents, and a population
is represented as a set of agents. Those agents move passively (i.e., they cannot control their
movements), and when two agents approach, they are able to communicate and update their
states (this pairwise communication is called an interaction). A computation then consists of
an infinite sequence of interactions.
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Application domains for population protocols include sensor networks used to monitor live
animals (each sensor is attached to a small animal and monitors e.g. its body temperature)
that move unpredictably (hence, each sensor must handle passive mobility patterns). Another
application domain is that of molecular robot networks [28]. In such systems, a large number
of molecular robots collectively work inside a human body to achieve goals such as transport
of medicine. Since those robots are tiny, their movement is uncontrollable, and robots may
only maintain extremely small memory.

In the population protocol model, many researchers have studied various fundamental
problems such as leader election protocols [4] (A population protocol solves leader election if
starting from an initially uniform population of agents, eventually a single agent outputs
leader, while all others output non-leader), counting [8, 10, 11] (The counting problem
consists in counting how many agents participate to the protocol; As the agents’ memory is
typically constant, this number is output by a special agent that may maintain logarithmic
size memory, the base station), majority [6] (The majority problem aims to decide which,
if any, initial state in a population is a majority), k-partition [32, 35, 36] (The k-partition
problem consists in dividing a population into k groups of equal size), etc.

In this paper, we focus on the uniform bipartition problem [33, 35, 36], whose goal is to
divide a population into two stable groups of equal size (the difference is one if the population
size is odd). To guarantee the stability of the group, each agent eventually belongs to a
single group and never changes the group after that. Applications of the uniform bipartition
include saving batteries in a sensor network by switching on only one group, or executing
two tasks simultaneously by assigning one task to each group. Contrary to previous work
that considered complete communication graphs [33, 36], we consider the uniform bipartition
problem over arbitrary graphs. In the population protocol model, most existing works
consider the complete communication graph model (every pairwise interaction is feasible).
However, realistic networks command studying incomplete communication graphs (where
only a subset of pairwise interactions remains feasible) as low-performance devices and
unpredictable movements may not yield a complete set of interactions. Moreover, in this
paper, we assume the designated initial states (i.e., all agents share the same given initial
state), and consider the problem under various assumptions such as the existence of a base
station, symmetry of the protocol, and fairness of the execution. Although protocols with
arbitrary initial states tolerate a transient fault, protocols with designated initial states can
usually be designed using fewer states, and exhibit faster convergence times. Actually, it
was shown in [35] that, with arbitrary initial states, constant-space protocols cannot be
constructed in most cases even assuming complete graphs.

1.2 Related Works
The population protocol model was proposed by Angluin et al. [5], who were recently awarded
the 2020 Edsger W. Dijkstra prize in Distributed Computing for their work. While the
core of the initial study was dedicated to the computability of the model, subsequent works
considered various problems (e.g., leader election, counting, majority, uniform k-partition)
under different assumptions (e.g., existence of a base station, fairness, symmetry of protocols,
and initial states of agents).

The leader election problem was studied from the perspective of time and space efficiency.
Doty and Soloveichik [20] proved that Ω(n) expected parallel time is required to solve leader
election with probability 1 if agents have a constant number of states. Relaxing the number
of states to a polylogarithmic value, Alistarh and Gelashvili [3] proposed a leader election
protocol in polylogarithmic expected stabilization time. Then, Gąsieniec et al. [23] designed
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Table 1 The minimum number of states to solve the uniform bipartition problem with designated
initial states over complete graphs [33, 35].

base station fairness symmetry upper bound lower bound

initialized/non-initialized base station
global asymmetric 3 3

symmetric 3 3

weak asymmetric 3 3
symmetric 3 3

no base station
global asymmetric 3 3

symmetric 4 4

weak asymmetric 3 3
symmetric unsolvable

a protocol with O(log logn) states and O(logn · log logn) expected time. Furthermore, the
protocol of Gąsieniec et al. [23] is space-optimal for solving the problem in polylogarithmic
time. In [29], Sudo et al. presented a leader election protocol with O(logn) states and
O(logn) expected time. This protocol is time-optimal for solving the problem. Finally,
Berenbrink et al. [15] proposed a time and space optimal protocol that solves the leader
election problem with O(log logn) states and O(logn) expected time. In the case of arbitrary
communication graphs, it turns out that self-stabilizing leader election is impossible [7]
(a protocol is self-stabilizing if its correctness does not depend on its initial global state).
This impossibility can be avoided if oracles are available [9, 18] or if the self-stabilization
requirement is relaxed: Sudo et al. [30] proposed a loosely stabilizing protocol for leader
election (loose stabilization relates to the fact that correctness is only guaranteed for a very
long expected amount of time).

The counting problem was introduced by Beauquier et al. [11] and popularized the concept
of a base station. Space complexity was further reduced by follow-up works [10, 24], until
Aspnes et al. [8] finally proposed a time and space optimal protocol. On the other hand, by
allowing the initialization of agents, the counting protocols without the base station were
proposed for both exact counting [16] and approximate counting [1, 16]. In [1], Alistarh et al.
proposed a protocol that computes an integer k such that 1

2 logn < k < 9 logn in O(logn)
time with high probability using O(logn) states. After that, Berenbrink et al. [16] designed a
protocol that outputs either blognc or dlogne in O(log2 n) time with high probability using
O(logn · log logn) states. Moreover, in [16], they proposed the exact counting protocol that
computes n in O(logn) time using Õ(n) states with high probability.

The majority problem was addressed under different assumptions (e.g., with or without
failures [6], deterministic [22, 25] or probabilistic [2, 12, 13, 25] solutions, with arbitrary
communication graphs [27], etc.). Those works also consider minimizing the time and space
complexity. Berenbrink et al. [14] show trade-offs between time and space for the problem.

To our knowledge, the uniform k-partition problem and its variants have only been con-
sidered in complete communication graphs. Lamani et al. [26] studied a group decomposition
problem that aims to divide a population into groups of designated sizes. Yasumi et al. [32]
proposed a uniform k-partition protocol with no base station. Umino et al. [31] extended
the result to the R-generalized partition problem that aims at dividing a population into
k groups whose sizes follow a given ratio R. Also, Delporte-Gallet et al. [19] proposed a
k-partition protocol with relaxed uniformity constraints: the population is divided into k
groups such that in any group, at least n/(2k) agents exist, where n is the number of agents.

Most related to our work is the uniform bipartition solution for complete communication
graphs provided by Yasumi et al. [33, 35]. For the uniform bipartition problem over complete
graphs with designated initial states, Yasumi et al. [33, 35] studied space complexity under
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Table 2 The minimum number of states to solve the uniform bipartition problem with designated
initial states over arbitrary graphs. P is a known upper bound of the number of agents, and l ≥ 3
and h are positive integers.

base station fairness symmetry upper bound lower bound

initialized/non-initialized
global asymmetric 3* 3†

base station
symmetric 3* 3†

weak asymmetric 3P + 1*
3l + 1 for no l · h cycle * 3†

symmetric 3P + 1*
3l + 1 for no l · h cycle * 3†

no base station
global asymmetric 4* 4*

symmetric 5* 5*

weak asymmetric unsolvable*
symmetric unsolvable†

* Contributions of this paper
† Deduced from Yasumi et al. [35]

various assumptions such as: (i) an initialized base station, a non-initialized base station,
or no base station (an initialized base station has a designated initial state, while a non-
initialized has an arbitrary initial state), (ii) asymmetric or symmetric protocols (asymmetric
protocols allow interactions between two agents with the same state to map to two resulting
different states, while symmetric protocols do not allow such a behavior), and (iii) global
or weak fairness (weak fairness guarantees that every individual pairwise interaction occurs
infinitely often, while global fairness guarantees that every recurrently reachable configuration
is eventually reached). Furthermore, they also study the solvability of the uniform bipartition
problem with arbitrary initial states. Table 1 shows the minimum number of states to solve
the uniform bipartition with designated initial states over complete communication graphs.

There exist some protocol transformers that transform protocols for some assumptions
into ones for other assumptions. In [5], Angluin et al. proposed a transformer that transforms
a protocol with complete communication graphs into a protocol with arbitrary communication
graphs. This transformer requires the quadruple state space and works under global fairness.
In this transformer, agents exchange their states even after convergence. For the uniform
bipartition problem, since agents must keep their groups after convergence, they cannot
exchange their states among different groups and thus the transformer proposed in [5] cannot
directly apply to the uniform bipartition problem. Bournez et al. [17] proposed a transformer
that transforms an asymmetric protocol into symmetric protocol by assuming additional
states. In [17], only protocols with complete communication graphs were considered and the
transformer works under global fairness. We use the same idea to construct a symmetric
uniform bipartition protocol under global fairness without a base station.

1.3 Our Contributions
In this paper, we study the solvability of the uniform bipartition problem with designated
initial states over arbitrary graphs. A summary of our results is presented in Table 2. Let
us first observe that, as complete communication graphs are a special case of arbitrary
communication graphs, the impossibility results by Yasumi et al. [35] remain valid in our
setting. With a base station (be it initialized or non-initialized) under global fairness, we
extend the three states protocol by Yasumi et al. [35] from complete communication graphs
to arbitrary communication graphs. With a non-initialized base station under weak fairness,
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we propose a new symmetric protocol with 3P + 1 states, where P is a known upper bound
of the number of agents. These results yield identical upper bounds for the easier cases of
asymmetric protocols and/or initialized base station. In addition, we also show a condition
of communication graphs in which the number of states in the protocol can be reduced from
3P + 1 to constant. Concretely, we show that the number of states in the protocol can be
reduced to 3l+1 if we assume communication graphs such that every cycle either includes the
base station or its length is not a multiple of l, where l is a positive integer at least three. On
the other hand, with no base station under global fairness, we prove that four and five states
are necessary and sufficient to solve uniform bipartition with asymmetric and symmetric
protocols, respectively. In the same setting, in complete graphs, three and four states were
necessary and sufficient. So, one additional state enables problem solvability in arbitrary
communications graphs in this setting. With no base station under weak fairness, we prove
that the problem cannot be solved, using a similar argument as in the impossibility result
for leader election by Fischer and Jiang [21]. Overall, we show the solvability of uniform
bipartition in a variety of settings for a population of agents with designated initial states
assuming arbitrary communication graphs. In cases where the problem remains feasible, we
provide upper and lower bounds with respect to the number of states each agent maintains,
and in all cases where global fairness can be assumed, our bounds are tight.

In this paper, because of space limitations, we omitted proofs of lemmas and theorems
(see the full version [34]).

2 Definitions

2.1 Population Protocol Model
A population whose communication graph is arbitrary is represented by an undirected
connected graph G = (V,E), where V is a set of agents, and E ⊆ V × V is a set of edges
that represent the possibility of an interaction between two agents. That is, two agents
u ∈ V and v ∈ V can interact only if (u, v) ∈ E holds. A protocol P = (Q, δ) consists of
Q and δ, where Q is a set of possible states for agents, and δ is a set of transitions from
Q × Q to Q × Q. Each transition in δ is denoted by (p, q) → (p′, q′), which means that,
when an interaction between an agent x in state p and an agent y in state q occurs, their
states become p′ and q′, respectively. Moreover, we say x is an initiator and y is a responder.
When x and y interact as an initiator and a responder, respectively, we simply say that
x interacts with y. Transition (p, q) → (p′, q′) is null if both p = p′ and q = q′ hold. We
omit null transitions in the descriptions of protocols. Protocol P = (Q, δ) is symmetric
if, for every transition (p, q) → (p′, q′) in δ, (q, p) → (q′, p′) exists in δ. In particular, if a
protocol P = (Q, δ) is symmetric and transition (p, p)→ (p′, q′) exists in δ, p′ = q′ holds. If
a protocol is not symmetric, the protocol is asymmetric. Protocol P = (Q, δ) is deterministic
if, for any pair of states (p, q) ∈ Q × Q, exactly one transition (p, q) → (p′, q′) exists in δ.
We consider only deterministic protocols in this paper. A global state of a population is
called a configuration, defined as a vector of (local) states of all agents. A state of agent a
in configuration C, is denoted by s(a,C). Moreover, when C is clear from the context, we
simply use s(a) to denote the state of agent a. A transition between two configurations C
and C ′ is described as C → C ′, and means that configuration C ′ is obtained from C by a
single interaction between two agents. For two configurations C and C ′, if there exists a
sequence of configurations C = C0, C1, . . . , Cm = C ′ such that Ci → Ci+1 holds for every
i (0 ≤ i < m), we say C ′ is reachable from C, denoted by C ∗−→ C ′. An infinite sequence
of configurations Ξ = C0, C1, C2, . . . is an execution of a protocol if Ci → Ci+1 holds for
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every i (i ≥ 0). An execution Ξ is weakly-fair if, for each pair of agents (v, v′) ∈ E, v
(resp. v′) interacts with v′ (resp., v) infinitely often1. An execution Ξ is globally-fair if, for
every pair of configurations C and C ′ such that C → C ′, C ′ occurs infinitely often when
C occurs infinitely often. Intuitively, global fairness guarantees that, if configuration C

occurs infinitely often, then every possible interaction in C also occurs infinitely often. Then,
if C occurs infinitely often, C ′ satisfying C → C ′ occurs infinitely often, we can deduce
that C ′′ satisfying C ′ → C ′′ also occurs infinitely often. Overall, with global fairness, if a
configuration C occurs infinitely often, then every configuration C∗ reachable from C also
occurs infinitely often.

In this paper, we consider three possibilities for the base station: initialized base station,
non-initialized base station, and no base station. In the model with a base station, we assume
that a single agent, called a base station, exists in V . Then, V can be partitioned into Vb,
the singleton set containing the base station, and Vp, the set of agents except for the base
station. The base station can be distinguished from other agents in Vp, although agents in Vp
cannot be distinguished. Then, the state set Q can be partitioned into a state set Qb for the
base station, and a state set Qp for agents in Vp. The base station has unlimited resources
(with respect to the number of states), in contrast with other resource-limited agents (that
are allowed only a limited number of states). So, when we evaluate the space complexity of
a protocol, we focus on the number of states |Qp| for agents in Vp and do not consider the
number of states |Qb| that are allocated to the base station. In the sequel, we thus say a
protocol uses x states if |Qp| = x holds. When we assume an initialized base station, the
base station has a designated initial state. When we assume a non-initialized base station,
the base station has an arbitrary initial state (in Qb), although agents in Vp have the same
designated initial state. When we assume no base station, there exists no base station and
thus V = Vp holds. For simplicity, we use agents only to refer to agents in Vp in the following
sections. To refer to the base station, we always use the term base station (not an agent). In
the initial configuration, both the base station and the agents are not aware of the number of
agents, yet they are given an upper bound P of the number of agents. However, in protocols
except for a protocol in Section 3.2, we assume that they are not given P .

2.2 Uniform Bipartition Problem

Let f : Qp → {red, blue} be a function that maps a state of an agent to red or blue. We
define the color of an agent a as f(s(a)). Then, we say that agent a is red (resp., blue) if
f(s(a)) = red (resp., f(s(a)) = blue) holds. If an agent a has state s such that f(s) = red

(resp., f(s) = blue), we call a a red agent (resp., a blue agent). For some population V , the
number of red agents (resp., blue agents) in V is denoted by #red(V ) (resp., #blue(V )).
When V is clear from the context, we simply write #red and #blue.

A configuration C is stable with respect to the uniform bipartition if there exists a
partition {Hr, Hb} of Vp that satisfies the following conditions:
1. ||Hr| − |Hb|| ≤ 1 holds, and
2. For every configuration C ′ such that C ∗−→ C ′, each agent in Hr (resp., Hb) remains red

(resp., blue) in C ′.

1 We use this definition for the lower bound under weak fairness, but for the upper bound we use a slightly
weaker version. We show that our proposed protocols for weak fairness works if, for each pair of agents
(v, v′) ∈ E, v and v′ interact infinitely often (i.e., for interactions by some pair of agents v and v′, it is
possible that v only becomes an initiator and v′ never becomes an initiator).
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An execution Ξ = C0, C1, C2, . . . solves the uniform bipartition problem if Ξ includes
a configuration Ct that is stable for uniform bipartition. Finally, a protocol P solves the
uniform bipartition problem if every possible execution Ξ of protocol P solves the uniform
bipartition problem.

3 Upper Bounds with a Non-initialized Base Station

In this section, we prove some upper bounds on the number of states that are required to
solve the uniform bipartition problem over arbitrary graphs with designated initial states and
a non-initialized base station. More concretely, with global fairness, we propose a symmetric
protocol with three states by extending the protocol by Yasumi et al. [35] from a complete
communication graph to an arbitrary communication graph. In the case of weak fairness, we
present a symmetric protocol with 3P + 1 states, where P is a known upper bound of the
number of agents.

3.1 Upper Bound for Symmetric Protocols under Global Fairness
The state set of agents in this protocol is Qp = {initial, red, blue}, and we assume that
f(initial) = f(red) = red and f(blue) = blue hold. The designated initial state of agents
is initial. The idea of the protocol is as follows: the base station assigns red and blue to
agents whose state is initial alternately. As the base station cannot meet every agent (the
communication graph is arbitrary), the positions of state initial are moved throughout the
communication graph using transitions. Thus, if an agent with initial state exists somewhere
in the network, the base station has infinitely many chances to interact with a neighboring
agent with initial state. This implies that the base station is able to repeatedly assign red
and blue to neighboring agents with initial state unless no agent anywhere in the network has
initial state. Since the base station assigns red and blue alternately, the uniform bipartition
is completed after no agent has initial state.

To make red and blue alternately, the base station has a state set Qb = {bred, bblue}.
Using its current state, the base station decides which color to use for the next interaction
with a neighboring agent with initial state. Now, to move the position of an initial state in
the communication graph, if an agent with initial state and an agent with red (or blue) state
interact, they exchange their states. This implies that eventually an agent adjacent to the
base station has initial state and then the agent and the base station interact (global fairness
guarantees that such interaction eventually happens). Transition rules of the protocol are
the following (for each transition rule (p, q)→ (p′, q′), transition rule (q, p)→ (q′, p′) exists,
but we omit the description).

1. (bred, initial)→ (bblue, red)
2. (bblue, initial)→ (bred, blue)
3. (blue, initial)→ (initial, blue)
4. (red, initial)→ (initial, red)

From these transition rules, the protocol converges when no agent has initial state
(indeed, no interaction is defined when no agent has initial state).

I Theorem 1. In the population protocol model with a non-initialized base station, there
exists a symmetric protocol with three states per agent that solves the uniform bipartition
problem with designated initial states assuming global fairness in arbitrary communication
graphs.
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Algorithm 1 Uniform bipartition protocol with 3P + 1 states.

Variables at the base station:
RB ∈ {r, b}: The state that the base station assigns next

Variables at an agent x:
colorx ∈ {ini, r, b}: Color of the agent, initialized to ini
depthx ∈ {⊥, 1, 2, 3, . . . , P}: Depth of agent x in a tree rooted at the base station,
initialized to ⊥

1: when an agent x and the base station interact do
2: if colorx = ini and depthx = 1 then
3: colorx ← RB

4: RB ← RB

5: if depthx = ⊥ then depthx ← 1
6: when two agents x and y interact do
7: if depthy 6= ⊥ and depthx = ⊥ then depthx ← depthy + 1
8: else if depthx 6= ⊥ and depthy = ⊥ then depthy ← depthx + 1
9: if depthx < depthy and colory = ini then

10: colory ← colorx
11: colorx ← ini

12: if depthy < depthx and colorx = ini then
13: colorx ← colory
14: colory ← ini

Note: If depthx = ⊥ holds, colorx = ini holds.

Note that, under weak fairness, this protocol does not solve the uniform bipartition
problem. This is because we can construct a weakly-fair execution of this protocol such that
some agents keep initial state infinitely often. For example, we can make an agent keep
initial by constructing an execution in the following way.

If the agent (in initial) interacts with an agent in red or blue, the next interaction occurs
between the same pair of agents.

3.2 Upper Bound for Symmetric Protocols under Weak Fairness
3.2.1 A protocol over arbitrary graphs
In this protocol, every agent x has variables colorx and depthx. Variable colorx represents the
color of agent x. That is, for an agent x, if colorx = ini or colorx = r holds, f(s(x)) = red

holds. On the other hand, if colorx = b holds, f(s(x)) = blue holds. The protocol is given in
Algorithm 1. Note that this algorithm does not care an initiator and a responder.

The basic strategy of the protocol is the following.
1. Create a spanning tree rooted at the base station. Concretely, agent x assigns its depth

in a tree rooted at the base station into variable depthx. Variable depthx is initialized to
⊥. Variable depthx obtains the depth of x in the spanning tree as follows: If the base
station and an agent p with depthp = ⊥ interact, depthp becomes 1. If an agent q with
depthq 6= ⊥ and an agent p with depthp = ⊥ interact, depthp becomes depthq + 1. By
these behaviors, for any agent x, eventually variable depthx has a depth of x in a tree
rooted at the base station.

2. Using the spanning tree, carry the initial color ini toward the base station and make the
base station assign r and b to agents one by one. Concretely, if agents x and y interact
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and both depthy < depthx and colorx = ini hold, x and y exchange their colors (i.e., ini
is carried from x to y). Hence, since ini is always carried to a smaller depth, eventually
an agent z with depthz = 1 obtains ini. After that, the base station and the agent z
interact and the base station assigns r or b to z. Note that, if the base station assigns r
(resp., b), the base station assigns b (resp., r) next.

Then, for any agent v, eventually colorv 6= ini holds. Hence, there exist dn/2e red (resp.,
blue) agents, and bn/2c blue (resp., red) agents if variable RB in the base station has r
(resp., b) as an initial value. Therefore, the protocol solves the uniform bipartition problem.

I Theorem 2. Algorithm 1 solves the uniform bipartition problem. That is, there exists a
protocol with 3P + 1 states and designated initial states that solves the uniform bipartition
problem under weak fairness assuming arbitrary communication graphs with a non-initialized
base station.

3.2.2 A protocol with constant states over a restricted class of graphs
In this subsection, we show that the space complexity of Algorithm 1 can be reduced to
constant for communication graphs such that every cycle either includes the base station or
its length is not a multiple of l, where l is a positive integer at least three.

We modify Algorithm 1 as follows. Each agent maintains the distance from the base
station by computing modulo l plus 1. That is, we change lines 7 and 8 in Algorithm 1 to
depthx ← depthy mod l + 1 and depthy ← depthx mod l + 1, respectively. Now depthx ∈
{⊥, 1, 2, 3, . . ., l} holds for any agent x. Then we redefine the relation depthx < depthy in
lines 9 and 12 as follows: depthx < depthy holds if and only if either depthx = 1∧depthy = 2,
depthx = 2 ∧ depthy = 3, depthx = 3 ∧ depthy = 4, . . ., depthx = l − 1 ∧ depthy = l, or
depthx = l ∧ depthy = 1 holds.

We can easily observe that these modifications do not change the essence of Algorithm1.
For two agents x and y, we say x < y if depthx < depthy holds. Each agent x eventually
assigns a depth of x modulo l plus 1 to depthx, and at that time there exists a path
x0, x1, . . . , xh such that x0 is a neighbor of the base station, x = xh holds, and xi < xi+1
holds for any 0 ≤ i < h. In addition, there exists no cycle x0, x1, . . . , xh = x0 such that
xi < xi+1 holds for any 0 ≤ i < h. This is because, from the definition of relation ’<’, the
length of such a cycle should be a multiple of l, but we assume that underlying communication
graphs do not include a cycle of agents in Vp whose length is a multiple of l. Hence, similarly
to Algorithm 1, we can carry the initial color ini toward the base station and make the base
station assign r and b to agents one by one.

I Corollary 3. There exists a protocol with 3l + 1 states and designated initial states that
solves the uniform bipartition problem under weak fairness assuming arbitrary communication
graphs with a non-initialized base station if, for any cycle of the communication graphs, it
either includes the base station or its length is not a multiple of l, where l is a positive integer
at least three.

4 Upper and Lower Bounds with No Base Station

In this section, we show upper and lower bounds of the number of states to solve the
uniform bipartition problem with no base station and designated initial states over arbitrary
communication graphs. Concretely, under global fairness, we prove that the minimum number
of states for asymmetric protocols is four, and the minimum number of states for symmetric
protocols is five. Under weak fairness, we prove that the uniform bipartition problem cannot
be solved without a base station using proof techniques similar to those Fischer and Jiang [21]
used to show the impossibility of leader election.
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Algorithm 2 Transition rules of the uniform bipartition protocol with four states.

1. (rω, rω)→ (r, b)
2. (rω, bω)→ (b, b)
3. (rω, r)→ (r, rω)
4. (bω, b)→ (b, bω)
5. (rω, b)→ (r, bω)
6. (bω, r)→ (b, rω)

4.1 Upper Bound for Protocols under Global Fairness
In this subsection, over arbitrary graphs with designated initial states and no base station
under global fairness, we give an asymmetric protocol with four states and a symmetric
protocol with five states.

First, we show the asymmetric protocol with four states. We define a state set of agents
as Q = {rω, bω, r, b} , and function f as follows: f(rω) = f(r) = red and f(bω) = f(b) = blue.
We say an agent has a token if its state is rω or bω. Initially, every agent has state rω, that
is, every agent is red and has a token. The transition rules are given in Algorithm 2 (for each
transition rule (p, q) → (p′, q′) except for transition rule 1, transition rule (q, p) → (q′, p′)
exists, but we omit the description).

The basic strategy of the protocol is as follows. When two agents with tokens interact and
one of them is red, a red agent transitions to blue and the two tokens are deleted (transition
rules 1 and 2). Since n tokens exist initially and the number of tokens decreases by two in an
interaction, bn/2c blue agents appear and dn/2e red agents remain after all tokens (except
one token for the case of odd n) disappear. To make such interactions, the protocol moves a
token when agents with and without a token interact (transition rules 3, 4, 5, and 6). Global
fairness guarantees that, if two tokens exist, an interaction of transition rule 1 or 2 happens
eventually. Therefore, the uniform bipartition is achieved by the protocol.

I Theorem 4. Algorithm 2 solves the uniform bipartition problem. That is, there exists
a protocol with four states and designated initial states that solves the uniform bipartition
problem under global fairness over arbitrary communication graphs.

Furthermore, we obtain a symmetric protocol under the assumption by using a similar
idea of the transformer proposed in [17]. The transformer simulates an asymmetric protocol
on a symmetric protocol. To do this, the transformer requires additional states. Moreover, the
transformer works with complete communication graphs. We show that one additional state
is sufficient to transform the asymmetric uniform bipartition protocol into the symmetric
protocol even if we assume arbitrary graphs (see the full version [34]).

I Theorem 5. There exists a symmetric protocol with five states and designated initial states
that solves the uniform bipartition problem under global fairness with arbitrary communication
graphs.

4.2 Lower Bound for Asymmetric Protocols under Global Fairness
In this section, we show that, over arbitrary graphs with designated initial states and no
base station under global fairness, there exists no asymmetric protocol with three states.

To prove this, we first show that, when the number of agents n is odd and no more than
P/2, each agent changes its own state to another state infinitely often in any globally-fair
execution Ξ of a uniform bipartition protocol Alg, where P is a known upper bound of the
number of agents. This lemma holds regardless of the number of states in a protocol.
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Figure 1 An example of communication graphs G and G′ (n = 5).

I Lemma 6. Assume that there exists a uniform bipartition protocol Alg with designated
initial states over arbitrary communication graphs assuming global fairness. Consider a
graph G = (V,E) such that the number of agents n is odd and no more than P/2. In any
globally-fair execution Ξ = C0, C1, . . . of Alg over G, each agent changes its state infinitely
often.

Proof. (Proof sketch) First, for the purpose of contradiction, we assume that there exists an
agent vα that never changes its state after some stable configuration Ch in a globally-fair
execution Ξ over graph G. Let sα be a state that vα has after Ch. Let vβ ∈ V be an agent
adjacent to vα and Sβ be a set of states that vβ has after Ch. Since the number of states is
finite, there exists a stable configuration Ct that occurs infinitely often after Ch. Next, let
G′1 = (V ′1 , E1) and G′2 = (V ′2 , E2) be graphs that are isomorphic to G. Moreover, let v′α ∈ V ′1
(resp., v′n+β ∈ V ′2) be an agent that corresponds to vα ∈ V (resp., vβ ∈ V ). We construct
G′ = (V ′, E′) by connecting G′1 and G′2 with an additional edge (v′α, v′n+β) (see Figure 1).
Over G′, we consider an execution Ξ′ such that, agents in G′1 and G′2 behave similarly to Ξ
until Ct occurs in G′1 and G′2, and then make interactions so that Ξ′ satisfies global fairness.
Since Ξ is globally-fair, we can show the following facts after G′1 and G′2 reach Ct in Ξ′.

v′α has state sα as long as v′n+β has a state in Sβ .
v′n+β has a state in Sβ as long as v′α has state sα.

From these facts, in Ξ′, v′α continues to have state sα and v′n+β continues to have a state
in Sβ . Hence, in Ξ′, each agent in V ′1 cannot notice the existence of agents in V ′2 , and
vice versa. This implies that, in stable configurations, #red(V ) = #red(V ′1) = #red(V ′2)
and #blue(V ) = #blue(V ′1) = #blue(V ′2) hold. Since the number of agents in G is odd,
#red(V ) − #blue(V ) = 1 or #blue(V ) − #red(V ) = 1 holds in stable configurations of
Ξ. Thus, in stable configurations of Ξ′, |#red(V ′) − #blue(V ′)| = 2 holds. Since Ξ′ is
globally-fair, this is a contradiction. J

Now we prove impossibility of an asymmetric protocol with three states. The outline
of the proof is as follows. For the purpose of contradiction, we assume that there exists a
protocol Alg that solves the problem with three states. From Lemma 6, in any globally-fair
execution, some agents change their state infinitely often. Now, with three states, the number
of red or blue states is at least one and thus, if we assume without loss of generality that the
number of blue states is one, agents with the blue state change their color eventually after a
stable configuration. This is a contradiction.

I Theorem 7. There exists no uniform bipartition protocol with three states and designated
initial states over arbitrary communication graphs assuming global fairness.

4.3 Lower Bound for Symmetric Protocols under Global Fairness
In this section, we show that, with arbitrary communication graphs, designated initial states,
and no base station assuming global fairness, there exists no symmetric protocol with four
states. Recall that, with designated initial states and no base station, clearly any symmetric
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protocol never solves the problem if the number of agents n is two. Thus, we assume that
3 ≤ n ≤ P holds, where P is a known upper bound of the number of agents. Note that the
symmetric protocol proposed in subsection 4.1 solves the problem for 3 ≤ n ≤ P .

I Theorem 8. There exists no symmetric protocol for the uniform bipartition with four
states and designated initial states over arbitrary graph assuming global fairness when P is
twelve or more.

For the purpose of contradiction, suppose that there exists such a protocol Alg. Let
R (resp., B) be a state set such that, for any s ∈ R (resp., s′ ∈ B), f(s) = red (resp.,
f(s′) = blue) holds. First, we show that the following lemma holds from Lemma 6.

I Lemma 9. |R| = |B| holds (i.e., |R| = 2 and |B| = 2 hold).

Let inir and r (resp., inib and b) be states belonging to R (resp., B). In addition, without
loss of generality, assume that inir is the initial state of agents. Then, we can prove the
following lemma.

I Lemma 10. There exists some sb ∈ B such that (inir, inir) → (sb, sb) and (sb, sb) →
(inir, inir) hold.

Without loss of generality, assume that (inir, inir) → (inib, inib) and (inib, inib) →
(inir, inir) exist. For some population V , we denote the number of agents with inir (resp.,
inib) belonging to V as #inir(V ) (resp., #inib(V )). Moreover, let #ini(V ) be the sum of
#inir(V ) and #inib(V ). When V is clear from the context, we simply denote them as #inir,
#inib, and #ini, respectively. Then, we can prove the following lemmas and corollary.

I Lemma 11. There does not exist a transition rule such that #ini increases after the
transition.

I Lemma 12. Consider a globally-fair execution Ξ of Alg with some complete communication
graph G. After some configuration in Ξ, #ini ≤ 1 holds.

I Corollary 13. Consider a state set Ini = {inir, inib}. When s1 /∈ Ini or s2 /∈ Ini holds,
if transition rule (s1, s2)→ (s′1, s′2) exists then f(s1) = f(s′1) and f(s2) = f(s′2) hold.

From now on, we prove Theorem 8. Consider a globally-fair execution Ξ = C0, C1, C2,
. . . of Alg with a ring communication graph G = (V,E) such that the number of agents is
three, where V = {v0, v1, v2}. In a stable configuration of Ξ, either #blue(V )−#red(V ) = 1
or #red(V )−#blue(V ) = 1 holds.

First, consider the case of #blue(V )−#red(V ) = 1.
By Lemma 6, red agents keep exchanging r for inir in Ξ. Moreover, by Lemma 12, there

exists a stable configuration in Ξ such that #ini ≤ 1 holds. From these facts, there exists a
stable configuration Ct of Ξ such that there exists exactly one agent that has inir. Without
loss of generality, we assume that the agent is v0.

Consider the communication graph G′ = (V ′, E′) that includes four copies of G. The
details of G′ are as follows:

Let V ′ = {v′0, v′1, v′2, v′3, . . ., v′11}. Moreover, we define a partition of V ′ as V ′1 = {v′0,
v′1, v′2}, V ′2 = {v′3, v′4, v′5}, V ′3 = {v′6, v′7, v′8}, and V ′4 = {v′9, v′10, v′11}. Additionally, let
V ′red = {v′0, v′3, v′6, v′9} be a set of agents that will have state inir.
E′ = {(v′x, v′y), (v′x+3, v

′
y+3), (v′x+6, v

′
y+6), (v′x+9, v

′
y+9) ∈ V ′ × V ′ | (vx, vy) ∈ E} ∪

{(v′x, v′y) ∈ V ′ × V ′ | x, y ∈ {0, 3, 6, 9}}.
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Figure 2 An image of graphs G and G′.

An image of G and G′ is shown in Figure 2.
Consider the following execution Ξ′ = C ′0, C ′1, C ′2, . . . of Alg with G′ = (V ′, E′).
For i ≤ t, when vx interacts with vy at Ci → Ci+1, v′x interacts with v′y at C ′4i → C ′4i+1,
v′x+3 interacts with v′y+3 at C ′4i+1 → C ′4i+2, v′x+6 interacts with v′y+6 at C ′4i+2 → C ′4i+3,
and v′x+9 interacts with v′y+9 at C ′4i+3 → C ′4i+4.
After C ′4t, make interactions between agents in V ′red until agents in V ′red converge and
#ini(V ′red) ≤ 1 holds. We call the configuration C ′t′ .
After C ′t′ , make interactions so that Ξ′ satisfies global fairness.

Until C ′4t, agents in V ′1 , V ′2 , V ′3 , and V ′4 behave similarly to agents in V from C0 to Ct.
This implies that, in C ′4t, every agent in V ′red has state inir. From Lemma 12, since inir is
the initial state of agents, it is possible to make interactions between agents in V ′red until
agents in V ′red converge and #ini(V ′red) ≤ 1 holds. Moreover, since v0 is the only agent that
has inir in Ct, no agent in V ′i \V ′red(1 ≤ i ≤ 4) has state inir or inib in C ′4t. Hence, #ini ≤ 1
holds in C ′t′ . By Corollary 13, if #ini ≥ 2 does not hold, no agent can change its color.
Thus, since #ini ≤ 1 holds after C ′t′ by Lemma 11, no agent can change its color after C ′t′ .
Since v1 and v2 are blue in Ct, v′1, v′2, v′4, v′5, v′7, v′8, v′10, and v′11 are blue in C ′t′ . In addition,
#blue(V ′red) = #red(V ′red) holds. Hence, #blue(V ′)−#red(V ′) = 8 holds. Since no agent
can change its color after C ′t′ and Ξ′ is globally-fair, this is a contradiction.

Next, consider the case of #red(V )−#blue(V ) = 1. In this case, we can prove in the
same way as the case of #blue(V )−#red(V ) = 1. However, in the case, we focus on inib
instead of inir. That is, we assume that agents in V ′red (i.e., v′0, v′3, v′6, and v′9) have inib in
C ′4t. From C ′4t, we make v′0 (resp., v′6) interact with v′3 (resp., v′9) once. Then, by Lemma 10,
all of them transition to inir. After that, since all agents in V ′red have inir, we can construct
an execution such that only agents in V ′red interact and eventually #ini(V ′red) ≤ 1 holds. As a
result, we can lead to contradiction in the same way as the case of #blue(V )−#red(V ) = 1.

4.4 Impossibility under Weak Fairness
In this subsection, assuming arbitrary communication graphs and designated initial states and
no base station, we show that there is no protocol that solves the problem under weak fairness.
Fischer and Jiang [21] proved the impossibility of leader election for a ring communication
graph. We borrow their proof technique and apply it to the impossibility proof of a uniform
bipartition problem.

The sketch of the proof is as follows: For the purpose of contradiction, let us assume that
there exists such a protocol Alg. Consider an execution Ξ of Alg for a ring R1 with three
agents v0, v1, and v2. Without loss of generality, we assume that #red = 1 and #blue = 2
hold in a stable configuration of Ξ. After that, consider an execution Ξ′ of Alg for a ring
R2 with six agents v′0, v′1, v′2, v′3, v′4, and v′5 (see Figure 3). We construct Ξ′ such that each
agent behaves similarly to Ξ. Concretely, v′i and v′i+3 (0 ≤ i ≤ 3) behave similarly to vi. If

OPODIS 2020



33:14 Uniform Bipartition in the Population Protocol Model with Arbitrary Graphs

𝑣0

𝑣2

𝑣1

𝑅1 𝑅2 𝑣′3𝑣′0

𝑣′2

𝑣′1

𝑣′4

𝑣′5

Figure 3 Ring graphs R1 and R2.

v0 interacts with v1 (resp., v2) in Ξ, v′0 interacts with v′1 (resp., v′2) and v′3 interacts with
v′4 (resp., v′5) in Ξ′. Similarly, If v1 (resp., v2) interacts with v0 in Ξ, v′1 (resp., v′2) interacts
with v′0 and v′4 (resp., v′5) interacts with v′3 in Ξ′. If v1 interacts with v2 in Ξ, v′1 interacts
with v′5 and v′4 interacts with v′2 in Ξ′. Similarly, if v2 interacts with v1 in Ξ, v′5 interacts
with v′1 and v′2 interacts with v′4 in Ξ′. Observe that, if s(vi) = s(v′i) = s(v′i+3) holds before
the interactions for 0 ≤ i ≤ 2, s(vi) = s(v′i) = s(v′i+3) holds even after the interactions.
Thus, since s(vi) = s(v′i) = s(v′i+3) holds in the initial configuration, s(vi) = s(v′i) = s(v′i+3)
continues to hold. Hence, in the stable configuration of Ξ′, #red = 2 and #blue = 4 hold.
This contradicts that Alg solves the problem. Therefore, we have the following theorem.

I Theorem 14. There exists no protocol that solves the uniform bipartition problem with
designated initial states and no base station under weak fairness assuming arbitrary commu-
nication graphs.

5 Concluding Remarks

In this paper, we consider the uniform bipartition problem with designated initial states
assuming arbitrary communication graphs. We investigated the problem solvability, and
even provided tight bounds (with respect to the number of states per agent) in the case of
global fairness.

Our work raises interesting open problems:
Is there a relation between the uniform bipartition problem and other classical problems
such as counting, leader election, and majority? We pointed out the reuse of some proof
arguments, but the existence of a more systematic approach is intriguing.
What is the time complexity of the uniform bipartition problem?
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