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Abstract
Modern machine learning architectures distinguish servers and workers. Typically, a d-dimensional
model is hosted by a server and trained by n workers, using a distributed stochastic gradient descent
(SGD) optimization scheme. At each SGD step, the goal is to estimate the gradient of a cost function.
The simplest way to do this is to average the gradients estimated by the workers. However, averaging
is not resilient to even one single Byzantine failure of a worker. Many alternative gradient aggregation
rules (GARs) have recently been proposed to tolerate a maximum number f of Byzantine workers.
These GARs differ according to (1) the complexity of their computation time, (2) the maximal
number of Byzantine workers despite which convergence can still be ensured (breakdown point),
and (3) their accuracy, which can be captured by (3.1) their angular error, namely the angle with
the true gradient, as well as (3.2) their ability to aggregate full gradients. In particular, many are
not full gradients for they operate on each dimension separately, which results in a coordinate-wise
blended gradient, leading to low accuracy in practical situations where the number (s) of workers
that are actually Byzantine in an execution is small (s << f).

We propose Aksel, a new scalable median-based GAR with optimal time complexity (O(nd)),
optimal breakdown point (n > 2f) and the lowest upper bound on the expected angular error
(O(

√
d)) among full gradient approaches. We also study the actual angular error of Aksel when

the gradient distribution is normal and show that it only grows in O(
√

d log n), which is the first
logarithmic upper bound ever proven on the number of workers n assuming an optimal breakdown
point. We also report on an empirical evaluation of Aksel on various classification tasks, which we
compare to alternative GARs against state-of-the-art attacks. Aksel is the only GAR reaching top
accuracy when there is actually none or few Byzantine workers while maintaining a good defense
even under the extreme case (s = f). For simplicity of presentation, we consider a scheme with a
single server. However, as we explain in the paper, Aksel can also easily be adapted to multi-server
architectures that tolerate the Byzantine behavior of a fraction of the servers.
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8:2 AKSEL: Fast Byzantine SGD

1 Introduction

Machine learning (ML) has gained a lot of attention during the last decades, where data
collection and processing have reached outstanding levels in terms of volume, variety and
velocity. Public awareness of machine learning, especially after the renaissance of neural
networks with the backpropagation algorithm [16], increased greatly when companies like
IBM and DeepMind created computer programs that beat world class champions in various
games. Machine learning started being incorporated within many applications such as
transportation, healthcare, finance, agriculture, retail, and customer service.

Essentially, training a supervised ML algorithm consists in determining the set of para-
meters that minimize the error between the model prediction and the actual output, a
scheme formally called empirical risk minimization [27]. In a single machine, it is common
to use Gradient Descent (GD) to minimize the cost function (which depends on the entire
dataset) by computing its gradient. For modern applications however, even the best and
most expensive hardware would eventually become insufficient.

Almost every industry grade machine learning algorithm is nowadays implemented in a
distributed manner. Most rely on stochastic gradient descent (SGD) [25], a variant of GD
that supports parallelization. However, a distributed architecture induces many challenges,
in particular the risk of partial failures. The classical way to model various failures (e.g.
software bug, arbitrary behavior of the hardware. . . ) is the Byzantine abstraction and the
classical way to deal with them is to use a state machine replication protocol [26], but this
solution entails heavy communication and computational costs.

More specifically, distributed implementations of SGD typically consist of parameter
servers and workers. For simplicity of presentation, we consider the now classical ML scheme
with a single parameter server and several workers [1] (but our result can easily be extended
to a setting with multiple servers). The dataset is distributed over these workers, each of
which computes an estimation of the gradient step based on their share of the data. The
parameter server aggregates all the received gradient estimations and updates the parameter
vector accordingly. The goal is to come up with an estimate of the (true) gradient that would
have been computed on a single machine using GD. The simplest and best way to aggregate
the vectors is through averaging [23] which comes very close to the true gradient. However,
averaging cannot withstand a single Byzantine failure of a worker [4].

To solve this problem, many gradient aggregation rules (GARs) have been proposed to
tolerate a (maximum) number f of Byzantine workers (as we discuss later in “Related work”).
They can be classified in two main families: full-GARs, that select and average gradients of
responsive workers keeping the whole information on the descent direction, and blended-GARs,
that perform coordinate-wise operations on the set of collected gradients, inevitably losing
some information (as illustrated by Figure 2 in Section 6). The former are particularly
appealing in a practical setting because, even if a GAR is devised to tolerate extreme
situations and provide a reasonably good accuracy despite a large number of Byzantine
workers, it is important that the GAR provides very good accuracy in most frequent situations
where the number (s) of actual Byzantine workers in an execution is small (s << f). In this
sense, full gradients inherently enable graceful degradation.

The motivation of this work was to ask whether it is possible to derive a full gradient
aggregation rule defending against 50% of Byzantine workers (n > 2f) with a low time
complexity (O(nd)), which are both optimal, but with an angular error close to that of
averaging (which is not Byzantine-resilient). We answer positively by presenting Aksel2, a

2 Aksel (known as Kusaila in Arabic and Caecilius in Latin) was an Amazigh leader of the 7th century
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new scalable median-based approach to aggregate the gradients. Essentially, Aksel is unique
in the sense that it is a full-gradient GAR using indirectly the power of coordinate-wise
operations to reduce the angular error.

Looking for optimal breakdown point and time complexity is self justifying. But why
seek a low angular error? In fact, this is directly linked to the quality of the solution and the
speed of convergence. Intuitively, a large angle makes enough room for Byzantine workers
to corrupt the machine learning model. Moreover, two models with different GARs can
converge to the same solution, but with different speed. We establish in Corollary 9 the
link between the angle value and the convergence slowdown occasioned by the robust GAR
compared to averaging.

Related work. Most approaches that have been proposed to improve the Byzantine resilience
of gradient descent (and its variants) rely on robust statistics, whilst some use historical
information to identify correct workers. Krum [4] selects the vector with the minimum
score defined as the sum of euclidean distances with its neighbors. m-Krum [9] consists
in averaging m Krum outputs without replacement. Bulyan [12] applies a variant of the
trimmed mean on a selection of vectors obtained from m-Krum.

Median and b-TrMean [31] apply robust statistics on each coordinate of the n gradients.
Trimmed mean (b-TrMean) removes the smallest and the largest b values and averages
the remaining n − 2b values, whereas the median Median is a special case of Trimmed
mean where b = bn2 c. b-Phocas [29] averages the n− b closest values to b-TrMean in each
coordinate. MeaMed [28] is a special case of Phocas where the trimmed mean is replaced
with the median. Geometric Median of Means [8] computes the average of m batches of
gradients, then computes the geometric median of those averages. Since no exact algorithm
is available for GeoMed, the (1 + ε)-approximation is used instead. Draco [7] uses coding
theory and a redundancy scheme to aggregate the gradients. ByzantineSGD [2] and
Kardam [10] both use historical information on the gradients and construct filters that
allow to distinguish bad workers from honest ones. Recent techniques from Multidimensional
approximate agreement [14, 20] are also good candidates because the output of the correct
workers remains inside the convex hull of the correct workers input, which is a desirable
property for the problem at hand.

The median is particularly interesting for it constitutes a straightforward mechanism to
deal with outliers. Yet, although the median is guaranteed to be inside the set of correct
scalar values, its multidimensional variant (Coordinate-wise Median) may not lie within the
convex hull of correct vectors. Second, the median heavily protects against outliers at the
expense of statistical meaning. As a matter of fact, the median throws away many interesting
values which makes it less efficient, as we explain later. b-TrMean and b-Phocas are very
efficient when the truncation parameter b is greater than the number of Byzantine workers.
However, to defend against s = dn2 e − 1, the value of b must be equal to its upper bound and
the two GARs are reduced to their special cases, namely, Median and MeaMed. Otherwise,
they become as vulnerable as averaging, whose deviation under attack is unbounded. One
common aspect about these blended-GARs is the fact that they defend against dimensional
attacks [28] but cannot reach top accuracy in honest settings with none or few Byzantine
workers. The only full-GARs proposed to this day are Krum, m-Krum and Bulyan.
These are all powerful, but they have a high time complexity (at least O(n2d)) and their
breakdown point is far from optimal. Draco is the only aggregation rule not suffering from

who resisted the conquest of North Africa while making pragmatic alliances with the Byzantines.
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vulnerabilities of common statistics. However, it only defends against a very limited number
of Byzantine workers because of the redundancy scheme. Also, Draco cannot be used in
settings where privacy matters, because of the matrix allocation mechanism needed before the
encoding phase. ByzantineSGD and Kardam are different from the first category of GARs
because they use information on past gradients to filter the Byzantine estimates. Although
theoretical guarantees have been provided for convergence, ByzantineSGD requires too
many parameters to be tuned, which make it less practical. Kardam is the only GAR
tolerating asynchrony, but it only works for Lipschitz loss functions, and defends only against
n > 3f . Finally, multidimensional approximate agreement algorithms are round based, which
means that, at each SGD iteration, many rounds (O(log ∆

ε ),∆ being the initial diameter of
the correct set of workers) need to be executed in order to agree on a gradient with an error
rate ε. These techniques may be advantageous in coordinator-free settings (fully decentralized
learning). Table 1 compares various GARs to Aksel according to several properties.

Basically, the full-GARs achieve top accuracy when s << f but are not optimal in
terms of complexity and break down point. They also have a big angular error. In contrast,
blended-GARs have optimal complexity and break down point with a small angular error,
but do not achieve top accuracy when s << f . Aksel achieves the best of both worlds.

Table 1 Comparing the time complexity (TC), the breakdown point (BDP) and the expected
angular error of gradient aggregation rules (GARs). Parameter f denotes the maximal number
of Byzantine workers. Parameter m is specific to m-Krum (which consists in averaging m Krum
outputs without replacement). Parameter b is specific to Phocas and TrMean and sets the level of
truncation. Aksel is the best full-GAR for all three properties.

Angular errorGARs TC BDP
f = O(1) f = O(n)

Averaging O(nd) f = 0 O(
√

d
n ) O(

√
d
n )

Full-aggregathors
Krum O(n2d) n > 2f + 1 O(

√
nd) O(n

√
d)

m-Krum O(n2d) n > 2f + 2
m < n− f − 2 O(

√
nd) O(n

√
d)

Bulyan O(n2d) n > 4f + 2 O(
√
nd) O(n

√
d)

Aksel O(nd) n > 2f O(
√
d) O(

√
d)

Blended-aggregathors
Median O(nd) n > 2f O(

√
d) O(

√
d)

(1 + ε)-GeoMed O(nd) n > 2f O(
√
nd) O(

√
nd)

b-Phocas O(nd) n > 2f
b > f

O(
√

d
n ) O(

√
d)

b-TrMean O(nd) n > 2f
b > f

O(
√

d
n ) O(

√
d)

MeaMed O(nd) n > 2f O(
√
d) O(

√
d)

Contributions. We present in this paper Aksel, a new median based algorithm which is
the first to have the 4 following properties simultaneously:

Optimal time complexity O(nd)
Optimal breakdown point n > 2f
Full gradient aggregation (high accuracy reachable for s << f)
Constant upper bound (O(d) in the number of workers n, see Lemma 10) on the expected
angular error (scalability)
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On the theoretical side, we prove (1) the (α, f)-Byzantine resilience of Aksel; (2) its
convergence for non convex and strongly convex losses; and (3) a logarithmic upper bound of
the real angular error of Aksel.

On the practical side, we report on an empirical evaluation of our distributed imple-
mentation of Aksel. In particular, we consider two state-of-the-art attacks [3, 30] on
academic classification tasks (MNIST, Fashion-MNIST and CIFAR-10). Aksel reaches
the top accuracy when s << f , and maintains a good accuracy in the extreme case s = f .
Aksel does also have some advantages that may appeal to practitioners: it requires no
parameter tuning for the aggregation (a time consuming task in general) and no knowledge
of the number of Byzantine workers (which can be fatal if underestimated, e.g. b-Phocas
and b-TrMean). Aksel is also based on simple mathematical functions (i.e. median,
subtraction, sum-of-squares, averaging) which makes it simple to analyze.

A recent paper [11] proposed a genuinely distributed scheme with multiple servers,
tolerating the Byzantine failures of a fraction of them by composing established GARs such
as Krum, m-Krum and Bulyan. For pedagogical reasons, we present here Aksel in a
single-server setting, focusing on improving resilience to failures of workers. However, Aksel
satisfies the properties required by [11] from a GAR, and could therefore be used also in a
multi-server setting instead of Krum, m-Krum and Bulyan in [11].

Outline. The paper is organized as follow. We first present our model in Section 2. After
some preliminaries in Section 3, we motivate the design of our algorithm and present it in
Section 4. Theoretical guarantees on its Byzantine resilience and convergence are presented
in Section 5. Section 6 reports on a selection of empirical results. We conclude the paper by
discussing some open issues in Section 7. For space limitations, we defer all the proofs and
the full empirical evaluation to the appendix.

2 Model

As discussed previously, most machine learning algorithms use gradient descent (GD) to
minimize a cost function F (wt) where wt is a vector of parameters3 at time t. Typically,
the cost function is a sum of individual errors run through many examples of the data set.
Vanilla GD runs the sum through the entire dataset. However, this takes a lot of time
to compute, and this is not realistic with huge datasets involving hundreds of billions of
examples. Another variant is the stochastic gradient descent algorithm (SGD) which only
uses a single example in each iteration. This method is very fast but noisy. A compromise is
to construct a mini batch, namely a small subset of the dataset, run the sum of individual
errors over this mini batch, and compute the gradient. A randomly sampled mini batch
typically contains redundant examples, which can be useful to smooth out noisy gradients.
Mini batch SGD is a good choice to compute quality gradients in a reasonable time. Besides,
mini batch SGD is highly parallelizable. One can generate n mini batches and compute n
gradients, then average them to get a very good estimate of the true gradient. In a distributed
setting, randomly sampled mini batches are allocated to n workers (compute nodes), and a
server aggregates those gradients then updates the parameter vector wt.

3 For instance, the weights and biases of a neural network.
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8:6 AKSEL: Fast Byzantine SGD

2.1 Distributed SGD
We follow the classical distributed SGD model [1] where a parameter server (PS) broadcasts,
in each synchronous round t, the parameter vector wt ∈ Rd to n workers. We consider that
f among these n workers can be Byzantine. Each correct worker i computes an estimate
Vi

t = G(wt, ξ
t
i) of the gradient ∇F (wt) of the cost function F , where ξti is an independent

and identically distributed (i.i.d.) random variable representing the subset of the dataset,
drawn randomly for worker i. The PS aggregates the n received gradients (Vt

1,Vt
2, ...,Vt

n)
using its choice function A called aggregation rule, then updates the parameter vector using
the following SGD equation:

wt+1 = wt − γA(Vt
1,Vt

2, ...,Vt
n)

where γ is an arbitrary constant called learning rate.

2.2 Adversary
A Byzantine worker has the full knowledge of the system, including the aggregation rule
and the vectors proposed by other workers. It can collude with other Byzantine workers to
perform attacks against the aggregation rule and prevent convergence, or make the model
converge to ineffective solutions. The Byzantine workers can for instance send arbitrary
values, strategically-chosen values that exploit the environment, or null values corresponding
to a classical crash failure. Since we are working in a synchronous system, when a vector is
not received, the PS assumes that it is a null vector. Dimensional attacks were presented in
[28], meaning that corruption can happen anywhere in the gradient matrix as long as each
dimension contains a majority of correct values. However, we believe that such scenario could
be avoided by introducing cryptography schemes (e.g. RSA signatures / AES encryption and
decryption / Diffie-Hellman secure exchange of keys. . . ) to make sure that impersonation is
not possible, and keep the same threat model as in [4].

2.3 Assumptions
We now state the (rather standard) assumptions made in this paper by default: in the rest
of the paper, all assumptions, except Assumption 5, are always assumed to be true, unless
specified otherwise.

I Assumption 1. (Breakdown point) The number of Byzantine workers is strictly less than
the number of correct ones: n > 2f

I Assumption 2. (Smoothness) F is L−smooth:
∀w′,w, ‖∇F (w′)−∇F (w)‖ ≤ L ‖w′ −w‖

I Assumption 3. (Strong convexity) F is K−strongly convex:
∀w′,w, F (w′) ≥ F (w) + 〈∇F (w),w′ −w〉+ K

2 ‖w
′ −w‖2

I Assumption 4. (Bounded variance and unbiased estimators) The proposed vectors are
unbiased estimates of the true gradient and their variance is bounded:
∀i ∈ {1, · · · , n},EVi = ∇F and E ‖Vi −∇F‖2 < dσ2

I Assumption 5. (Normal distribution; not a default assumption) The proposed vectors are
normally distributed around the true gradient ∇F : ∀i ∈ {1, · · · , n},Vi ∼ N (∇F,σ2) where
σ2 = diag(σ2) is a d× d diagonal covariance matrix.
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Assumption 1 is very common in synchronous distributed systems. It is however worth
noting that beyond the classical impossibility results in distributed computing, this assumption
is a direct consequence of another impossibility result in robust statistics [24], even when all
the operations are done in a single machine. Assumptions 2 and 4 are common in the SGD
literature [5] and Assumption 3 is typically needed to prove convergence rates [6]. We also
analyze Aksel and median based GARs in general under Assumption 5. This assumption
is substantiated by recent empirical findings in machine learning, where many normally
distributed datasets naturally yield normally distributed gradients [18]. As we detail later,
our experimental findings illustrate that Aksel performs well in commonly used datasets.

3 Preliminaries

We recall in this section background results on the robustness of the median and the
probabilistic absolute error between the extreme value and the mean of normal samples.
These will also be useful when describing the properties of our algorithm. We also recall the
measure of Byzantine resilience in the context of distributed SGD .

3.1 Robustness of the median
Mosteller and Tukey [21] defined two types of robustness: resistance and efficiency. The
first notion conveys the fact that an infinite change caused by a small part of a group has a
bounded impact on the value of the estimate. The second means that the estimate is close
to the optimal estimate in a variety of situations and not only in a particular one. Many
robust estimators have been proposed for scale and location. In this paper, we focus on the
median, a robust estimator of the location which is the value that separates a sorted set into
two equal parts. Formally: Let X = (x1, x2, · · · , xn) be a set of n values, then:

med(X) = arg min
y

n∑
i=1
|xi − y|

In high dimensions, we work with the coordinate-wise median, defined as follow: Let M =
(V1,V2, · · · ,Vn) be a matrix with n column vectors Vi = (v1i, v2i, · · · , vdi)T in Rd, then:
Median(M) = (m1,m2, · · · ,md)T , where mj = med(vj1, vj2, · · · , vjn),∀j ∈ [1, · · · , d].

The median has high efficiency for normal data (64%) [21], and most importantly, an
optimal breakdown point (50%). The last point implies that corrupting 50% of the data will
have only limited impact on the location parameter. Moreover, as known from the works on
Byzantine tolerant approximate agreement and clock synchronization, the median always lies
inside the subset of correct values when more than 50% of the data is correct. To formalize
this, we restate Lemma 4 from [28] without proof.

I Lemma 6. For a sequence composed of f Byzantine values and n − f correct values
x1, x2, · · · , xn−f , if f ≤ dn2 e−1 (the correct values dominates the sequence), then the median
value m of this sequence satisfies m ∈ [xmin, xmax].

3.2 Distribution of extreme normal values
The maximum or the minimum values observed when drawing normal samples changes
when n takes different values. The extreme value theory [15] shows that the extreme values
of a normal distribution follows a Gumbel distribution, depending on the number n of
samples drawn. Thanks to the symmetry of our problem, we only discuss the maximum

OPODIS 2020



8:8 AKSEL: Fast Byzantine SGD

value. Formulas for the minimum are derived in a similar way. Kotz and Nadarajah [19]
show that the distribution of the maximum of n samples drawn from a standard normal
random variable N (0, 1) with a standard normal quantile function Φ−1(x) has the following
statistics. Let µm(n), σm(n), qpm(n) be the mean, the standard deviation and the pth quantile
of the maximum distribution when n samples are drawn from a standard normal distribution.
Then:

µm(n) = Φ−1(1− 1
n

)

σm(n) = Φ−1(1− 1
n e

)− µm(n)

qpm(n) = µm(n)− σm(n) log(− log(p)) (1)

We use these results to compute a probabilistic bound of the gap between the mean and
the maximum value of n normal samples.

I Lemma 7. Let X = {x1, · · · ,xn−f} be a set of column vectors drawn from a multivariate
normal random variable N (µ,σ2) with µ = (µ1, · · · , µd)T and the covariance matrix σ =
diagn×d(σ). Let B = {b1, · · · ,bf} be a set of arbitrary column vectors and (n, f) ∈ N2.
Let S = X ∪B and M = Median(S). Let Ek be the following event for the kth coordinate:
|M[k]− µ[k]| ≤ λ(n, p). We then have, ∀p ∈ [0, 1) and ∀n ∈ N: P

[∧d
k=1 Ek

]
= p, where

λ(n, p) = Φ−1(1− 1
n

)
(

1 + log
[
− log(p 1

d )
])
− Φ−1(1− 1

ne
)
(

log
[
− log(p 1

d )
])

3.3 Measuring the Byzantine resilience of GARs
We make use of the now classical metric to evaluate the Byzantine resilience of gradient
aggregation rules [4, 12, 9, 28]. This metric encompasses two conditions. First, as long as
a proposed vector lies inside a cone around the true gradient, with an angle less than π

2
(first condition), and as long as its statistical moments are controlled by the moments of the
(correct) gradient estimator G (second condition), this vector can be considered correct and
will make a step toward the minimum of the function being optimized using SGD. The second
condition allows to transfer the control (classically expressed as bounds on the moments
of the gradient estimator G [5]) of the discrete nature of the SGD dynamics to the choice
function X . Below, we recall the definition of (α, f)-Byzantine resilience (introduced in [4]):

I Definition 8. Let 0 < α < π
2 be any angular value and f ∈ {0, · · · , n}. Let V1, · · · ,Vn be

any independent identically distributed random vectors in Rd with EVi = G,∀i ∈ {1, · · · , n}.
Let B1, · · · ,Bf be any random vectors in Rd, possibly dependent on the Vi’s. A choice
function X is said to be (α, f)-Byzantine resilient if, for any 1 ≤ j1 < · · · < jf ≤ n, the
vector X = X (V1, · · · , B1︸︷︷︸

j1

, · · · , Bf︸︷︷︸
jf

, · · · ,Vn) satisfies the following two conditions:

Condition (i): 〈EX ,G〉 ≥ (1− sinα) ‖G‖2

Condition (ii): for r = 2, 3, 4, E ‖X‖r is bounded above by a linear combination of
terms of the form E ‖G‖r1 · · ·E ‖G‖rn−1 with r1 + · · ·+ rn−1 = r

Generally, condition (i) can be proved by showing that EX belongs to the ball centered
at G with radius r = η(.)

√
dσ (formally: ‖EX −G‖ < η(.)

√
dσ), where η(.) is a positive

function, d is the dimension of the model and σ is the standard deviation of the gradient
estimator.

I Corollary 9. The function η(.) is positively correlated to the slowdown of convergence speed
occasioned by the aggregation rule X compared to averaging.
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4 The AKSEL Algorithm

We present our aggregation protocol Aksel in 4.1, discuss the rationale behind its design in
4.2 and give its time complexity in 4.3.

4.1 Aksel
Algorithm 1 Aksel: Scalable gradient aggregation rule.

Input: V = (V1,V2, · · · ,Vn): d× n matrix (received gradients)
Output: Y: d× 1 vector
/* Computing the sum of squares of each column vector Vi centered around the

coordinate-wise median */

1 Let S be a row vector (1× n) and M a column vector (d× 1)
2 M = (M[1],M[2], · · · ,M[d])T = coordinate-wise median vector constructed from V
3 S = (

∑d
j=1(V1[j]−M[j])2,

∑d
j=1(V2[j]−M[j])2, · · · ,

∑d
j=1(Vn[j]−M[j])2)

/* Constructing a robust interval */

4 Let r be the median of the set S
5 Let I = [0, r]

/* Averaging the new subset of column vectors from V */

6 Let N be the subset of vectors Vi’s such that ‖Vi −M‖2 ∈ I and |N| = p

7 Y[j] = 1
p

∑
Vi∈N

Vi[j], ∀j ∈ {1, · · · , d}

4.2 Rationale
The goal of any aggregation rule is to produce a vector as close as possible from the true
gradient of the cost function. This puts conditions on the norm as well as on the direction of
the aggregated vector. Clearly, any rule that focuses only on the vectors norms comparison
will not succeed because of the vulnerabilities of lp-norms, as pointed in [12]. For example,
VCorrect = (2, 2, 2, 2, 5, 5, 5, 3)T and VByzantine = (10, 0, 0, 0, 0, 0, 0, 0)T are two vectors with
the same norm and very different coordinates. One way to address this issue is to add a
constraint on the coordinates of all vectors by centering them around a robust location
estimator. We choose the coordinate-wise median in this work.

Since Median is a blended-GAR and provides only one aggregate which is very far
from the correct mean, we choose to incorporate more vectors in the aggregation process.
Therefore, a better alternative is to choose an interval around the median, and to average the
values within this interval. Using this alternative, we are guaranteed to produce, most of the
times, an aggregated value that lies between the real mean and the deviated median. Figure
1 illustrates the idea that an interval is better than a single value. Many GARs used this
concept on each coordinate to improve the defense mechanism [31, 28, 29]. However, operating
on each coordinate has consequences on the overhead cost of the Byzantine resilience. As
a matter of fact, coordinate-wise operations lead to a blended vector which is different (in
structure) from the full gradients. As a consequence, the top accuracy is never reached even
in honest environments (s = 0).

Aksel is unique in the sense that it is a full-gradient GAR using indirectly the power of
coordinate-wise operations. It performs the filtering method on the squared norms of the
centered vectors, rather than selecting the mean around the median in each coordinate, in
order to aggregate full gradients. Since norms are positive, the filter interval will be [0, r],
where r is the median of norms in our work.
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The idea of centering the vectors around their coordinate-wise median is a very powerful
guardrail against the vulnerability of norms, and also a very handy tool for the proof
development. In fact, it is hard to come up with a probability density function for the sum of
squares of normal variables with nonzero expectation, although a recent work [13] has shown
that it is possible to derive a complex cumulative distribution function (but no elementary
expression for the density function). Subtracting a scalar from each coordinate makes
us close enough to normal variables with zero expectation, whose sum of squares density
function is known and expressed through elementary expressions. We derive in Lemma 16
the expectation and the variance of the sum of squares of normal samples centered around a
scalar (which, in our case, is equal to the median of the n values) for each coordinate.

4.3 Complexity
Our Aksel aggregation rule has an optimal time complexity O(nd). First, Aksel computes
the coordinate-wise median (M) in O(nd) steps. Next, it subtracts M from all n gradients
and computes their euclidean norms, also in O(nd) steps. Then, Aksel computes the median
(m) of the n norms using a Quickselect [17] in O(n) steps. Finally, it averages the vectors
whose norm is less than (m) in O(nd) steps. The global time complexity is therefore O(nd).

Figure 1 Comparison of (1) the median and (2) the mean of an interval around the median, in
terms of distance to the mean. In a setting where the number of Byzantine workers is exactly the
number of correct workers minus one, and their values are all positioned in an extremum side, the
median is always the farthest correct value from the mean among correct values. However, taking
the average of values inside an interval around the median can reduce the distance to the mean
value in many situations.

5 Theoretical Guarantees of Aksel

We give an upper bound on the variance of Aksel and prove its (α, f)-Byzantine resilience
as well as its convergence properties for non convex as well as strongly convex losses.

5.1 Bounded variance
The following lemma states an upper bound of the variance of Aksel.

I Lemma 10. Let V1, · · · ,Vn be any random d-dimensional vectors in Rd, f among them
being possibly Byzantine. Under Assumptions 1 and 4, the variance of Aksel is upper
bounded, and we have:

E ‖A−∇F‖2 ≤
(

4 +
12dn2 e(n− f)

(n− dn2 e − f + 1)2

)
dσ2 ∼ O(d)
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5.2 Byzantine resilience
Following Definition 8, the (α, f)-Byzantine resilience of Aksel can be proved by showing
first that the aggregated vector EA is pointing in the same direction and has a close norm
to the true gradient ∇F (condition i) and its statistical moments are controlled by a linear
combination of the statistical moments of the correct gradient estimator (condition ii). We
prove the two conditions through the following lemmas.

I Lemma 11 (Expected angular error). If Assumptions 1 and 4 hold, the angular error of
Aksel is upper bounded as follow: ‖EA−∇F‖2 ≤ η2(n, f)dσ2 where:

η2(n, f) = 4 +
12dn2 e(n− f)

(n− dn2 e − f + 1)2

I Lemma 12 (Controlled statistical moments). If Assumptions 1 and 4 hold, the statistical
moments of Aksel are upper bounded by a linear combination of the statistical moments of
the correct gradient estimator:

E ‖A‖r ≤ C
∑

r1+···+rn−f =r
‖G‖r1 · · · ‖G‖rn−f

We now present the (α, f)-Byzantine resilience result in the following theorem:

I Theorem 13. Let V1, · · · ,Vn be a set of gradient estimates in Rd. Under Assumptions 1
and 4, if η(n, f)

√
dσ < ‖∇F‖, then Aksel is (α, f)-Byzantine resilient where α ∈ [0, π2 ] is

defined by: sinα = η(n,f)
√
dσ

‖∇F‖

5.3 Convergence for non convex losses
When analyzing optimization algorithms under the non convexity assumption, the objective
function can have several local minima instead of one global minimum. A simple solution
would be to partition the parameter space into many convex pools and proceed as in the
convex case. Bottou [5] proposes however to study the convergence of the objective function
and its gradient instead of the parameter vector itself. When some conditions are met
regarding the cost function being minimized and the learning rate, SGD converges almost
surely to a flat region, where the gradient is very small. Blanchard et al. [4] combine this
result with the (α, f)-Byzantine resilience framework to derive a second result on the almost
sure convergence of SGD using an (α, f)-Byzantine resilient aggregation rule. Since Aksel is
Byzantine resilient, as proven in Theorem 13, we only restate the convergence result without
proof in Theorem 14. The reader is kindly referred to [4] and [5] for more details on the
convergence analysis.

I Theorem 14. Let At be the output of the Aksel aggregation rule over the n received
gradients Vi ∼ G. We assume that (i) the cost function F is three times differentiable
with continuous derivatives and is non negative (F (w) ≥ 0); (ii) the learning rate satisfies∑

t γt = ∞ and
∑
t γ

2
t < ∞; (iii) the gradient estimator satisfies EG(w) = ∇F (w) and

∀r ∈ {2, 3, 4},E ‖G(w)‖r ≤ Ar +Br ‖w‖r; (iv) there exists a constant 0 ≤ α ≤ π
2 such that

∀w, η(n, f)
√
dσ ≤ ‖∇F (w)‖ sinα; (v) finally, beyond a certain horizon ‖w‖2 ≥ D, there

exist ε > 0 and 0 ≤ β ≤ π
2 − α such that:

‖∇F (w)‖ ≥ ε
〈w,∇F (w)〉
‖w‖ ‖∇F (w)‖ ≥ cosβ

Then, the sequence of gradients ∇F (wt) converges almost surely to zero.
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5.4 Convergence for strongly convex losses
Finally, we derive the statistical error rate of SGD using Aksel as an aggregation rule.

I Theorem 15. Let F (w) be the cost function being optimized, ∇F (w) its actual gradient and
A the output of the Aksel aggregation rule over the n received gradients. When Assumptions
1, 2, 3 and 4 hold, then after T iterations of SGD updates using the Aksel GAR with a step
size αt = 1

L , we have:

E ‖wT −w∗‖ ≤
(

1− K

L+K

)T
‖w0 −w∗‖+ 2

√
∆
K

E[F (wT )− F (w∗)] ≤
∆
2L +

(
1− K

L

)T ∥∥∥∥F (w0)− F (w∗)−
∆
2L

∥∥∥∥
with: ∆ =

(
4 + 12dn

2 e(n−f)
(n−dn

2 e−f+1)2

)
dσ2

5.5 Probabilistic upper bound on the real angular error of Aksel
In the previous section and in all the related work, results are derived in expectation. In
fact, recent works only study the expected angular error, the variance (the expected squared
absolute error) and the expected statistical error in convergence. Up to our knowledge, [31] is
the only work addressing these quantities without expectation. More specifically, they study
the two well known GARs Median and TrMean when applied with the gradient descent
algorithm, assuming unbiased gradient estimates with bounded variance and skewness. They
achieve an upper bound on the variance decreasing like O( 1√

n
) using normal approximations

and Berry-Essen inequalities, but their breakdown point is very far from optimal:

α+

√
d log (1 + nmLD)

n(1− α) + 0.4748 S√
m
≤ 1

2 − ε

where α is the ratio of Byzantine workers, n is the number of workers, m is the number of
data points each worker has, D is the diameter of the parameter space, L is the Lipschitz
constant, d is the dimension of the model and S is the skewness upper bound.

We study the optimal robustness (α < 1
2 ) of Aksel applied with stochastic gradient

descent when gradients are normally distributed, and we show that the real angular error only
has a logarithmic growth (O(

√
d logn)) in the number of workers n under this assumption4.

Expectation and variance of the squared norm of a centered vector
An important step in our algorithm is to sum the squares of all the coordinates centered around
their median value. When Assumption 5 holds, it is possible to derive the expectation and
the variance of this quantity using the asymptotic approximation of the Gamma distribution
and simple bounding properties. We formalize this in the following lemma:

I Lemma 16. Let Xi be a normal random variable where µi is the mean, σ2 is the variance
and mi is a value such that |mi − µi| ≤ λσ. If Zi = Xi −mi is the new random variable Xi

centered around mi and S =
∑d
i=1 Z

2
i , then we have:

E[S] = (1 + λ2)dσ2

var[S] = 2dσ4 (1 + 2λ2σ2)
4 This result is interesting in its own right. Many median based GARs can benefit from this new analysis.

In particular, Median which has been studied under non optimal robustness [31] and MeaMed whose
expected angular error was shown to be growing as O(

√
nd) [28]
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Upper bound on the absolute error of Aksel

Note that the (α, f)-Byzantine resilience and convergence theorems will be exactly the same
in our new analysis. It suffices to derive the upper bound on the absolute error ‖A−∇F‖2

and use it in every appearance of E ‖A−∇F‖2 in the previous results while dropping the
expectation sign and introducing the probabilistic statement (with probability p) before each
result.

In the following lemma, we upper bound the absolute error between Aksel’s output and
the true gradient in the squared norm sense.

I Lemma 17. Let V1, · · · ,Vn be any random d-dimensional vectors, f among them being pos-
sibly Byzantine. Let λ = Φ−1(1− 1

n )
(

1 + log
[
− log(p 1

d )
])
−Φ−1(1− 1

ne )
(

log
[
− log(p 1

d )
])

,
where p ∈ [0, 1) is an arbitrary probability. When Assumptions 1 and 5 hold, the gap
‖A−∇F‖ is upper bounded, and we have, with probability p:

‖A−∇F‖2 ≤ 2
[

1 + 2λ2 + λ

√
2(1 + 2λ2)√

d

]
dσ2 ∼ O(d log2 n)

6 Empirical Evaluation

We fully implemented and evaluated Aksel in a distributed setting. Due to space limitations,
we only present here a selection of empirical results. A detailed version of the setup, as well
as an extensive set of experiments, can be found in the appendix.

We tested Aksel (and its competitors) both in settings with no Byzantine players as well
as against two state-of-the-art attacks, namely “A little is enough” [3] and “Fall of empires”
[30]. The first attack leverages the normal distribution of data and proposes gradients that
lie within a small range containing the mean. The second attack focuses on inner product
manipulation: all GARs require their inner product with the true gradient to be positive.

We obtained remarkable results with Aksel, especially on complex datasets (CIFAR10).
In fact, Aksel, as any full-GAR, reaches top accuracy when s << f (see Figure 2). It is
also able to defend against the extreme case s ∼ f while maintaining a descent accuracy,
thanks to its low angular error (see Figure 3). In some experiments, Aksel is the only GAR
reaching the top accuracy while others never converge (Figure 4).

Figure 2 We compare Aksel and averaging (“No Byzantine resilience”) to full-GARs (left) and
blended-GARs (right) in an environment with no Byzantine worker. Here, Aksel, as well as other
full-GARs, perform as well as averaging. (MNIST dataset, using n = 51 workers; the GARs are
tuned to withstand up to 12 Byzantines workers.)

OPODIS 2020



8:14 AKSEL: Fast Byzantine SGD

Figure 3 CIFAR-10 using n = 25 workers and s = f = 11 Byzantine workers implementing attack
[30]. The learning rate schedule is 0.01 for the first 1500 training steps, then 0.001 for the remaining
of the training.

Figure 4 CIFAR-10 using n = 25 workers, including s = f = 5 Byzantine workers implementing
attack [3]. The learning rate schedule is 0.01 for the first 1500 training steps, then 0.001 for the
remaining of the training. Aksel is the only GAR which actually converges.

7 Concluding Remarks

Summary. This paper investigates the parameter server architecture of machine learning
algorithms when trained in untrusted environments. We address time complexity, breakdown
point, angular error and the overhead cost of Byzantine resilience. We propose Aksel, the
first full gradient aggregation rule with optimal time complexity and optimal breakdown point
with a constant expected angular error in the number of workers. Our empirical evaluation
shows that AKSEL achieves top accuracy in frequent situations with none or few Byzantine
workers, while maintaining a good defense in the very few cases where the ratio of Byzantine
workers approaches 50%. We also provide a new upper bound on the angular error of median
based GARs (Aksel included) which grows only in O(

√
d
n ) under optimal robustness.

Discussion. One could also ask whether it is possible to reduce the angular error of Aksel
further and obtain that of averaging (O(

√
d
n )), which is not Byzantine resilient. We foresee

two ways to improve the angular error: either by reducing the breakdown point, which would
result in a interval around the median containing only correct workers (this is the main idea
of b-TrMean and b-Phocas [29]), or by sacrificing the time complexity by computing the
distance between the median and the closest possible Byzantine value, which should give
an idea on how tight the filtering interval should be to average only correct workers. Note
that if we replace Median in Aksel with b-TrMean, it is possible to reduce the expected
angular error to O(

√
d
n ) when f = O(1). However, we prefer the current version of Aksel

because it does not need the truncation parameter b which, if underestimated, can cause a
serious problem in the training.

We see many ways to relax some of the assumptions we make in this paper. We believe
for instance that the Byzantine resilience and the convergence analysis could be done using
biased estimates, as in [6]. One could also derive an upper bound of the variance of gradients
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using the smoothness assumption, as discussed in [22], without assuming a constant upper
bound σ2 (as assumed in all previous papers). Another interesting direction is to leverage
randomness to improve Byzantine resilience.
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