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Abstract
An elegant strategy for proving impossibility results in distributed computing was introduced in the
celebrated FLP consensus impossibility proof. This strategy is local in nature as at each stage, one
configuration of a hypothetical protocol for consensus is considered, together with future valencies of
possible extensions. This proof strategy has been used in numerous situations related to consensus,
leading one to wonder why it has not been used in impossibility results of two other well-known
tasks: set agreement and renaming. This paper provides an explanation of why impossibility proofs
of these tasks have been of a global nature. It shows that a protocol can always solve such tasks
locally, in the following sense. Given a configuration and all its future valencies, if a single successor
configuration is selected, then the protocol can reveal all decisions in this branch of executions,
satisfying the task specification. This result is shown for both set agreement and renaming, implying
that there are no local impossibility proofs for these tasks.
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1 Introduction

An elegant strategy for proving impossibility results in distributed computing was introduced
in the celebrated FLP consensus impossibility proof [17]. This strategy is local in nature
as at each stage, one configuration of a hypothetical protocol for consensus is considered,
together with its future valencies, namely, the decisions the protocol may reach from this
configuration. To apply it, one needs to consider only the interactions of pending transitions
at the configuration, and analyze their commutativity properties. This local nature makes
the strategy very powerful and flexible, and has therefore been used in numerous situations
related to consensus (e.g., [1, 3, 6, 7, 8, 16, 21, 24, 25, 26, 27, 29]).
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For this reason, it would be desirable to be able to use a local strategy, in the style
of FLP, to prove impossibility results for two other important tasks: k-set agreement [15],
an extension of consensus, where processes may decide on up to k different values, and
M -renaming [4], where processes must pick distinct names from a given namespace of size
M . Existing impossibility proofs for these tasks (e.g., [5, 9, 10, 12, 22, 23, 32]) are based on
topological invariant properties of final configurations of a protocol, which are global in nature,
namely, all final configurations are analyzed together to argue that there is no protocol for the
task. For consensus, these configurations are connected, in the graph-theoretic sense. For set
agreement and renaming, higher-dimensional connectivity properties are proved. Researchers
have investigated why only global impossibility proofs have been used for these tasks [2].

This paper provides an explanation of why the impossibility proof strategies for set
agreement and renaming have been of a global nature. It shows that one could not hope to
prove that set agreement and renaming are unsolvable through a local argument, since they
are solvable in a local sense. For a configuration C of the protocol, we denote by χ(C) all
its successor configurations. In a local FLP style of argument, one selects a configuration
C ′ ∈ χ(C), based on the valencies of the configurations in χ(C). The observation is that
valencies can be assigned to χ(C), such that for any chosen configuration C ′ ∈ χ(C),
the protocol can reveal decisions in all final configurations extending C ′, such that the
decisions are consistent both with the valencies and with the task specification. Intuitively, a
hypothetical protocol for set agreement or renaming can “hide” its errors, if one inspects it
only locally.

Intuitively, the reason that a protocol can do this for set agreement and renaming, and
not for consensus, is that the consensus specification is one-dimensional in nature, so one can
“corner” the protocol to reveal a configuration violating agreement (assuming the protocol
terminates). Formally, it is always possible to find a bivalent configuration for consensus,
and it is impossible to locally solve consensus from such a configuration. For set agreement
and renaming, the protocol can “move” its errors around, on a higher dimensional space,
without being cornered, even if the protocol declares all its valencies.

In more detail, given a hypothetical full-information protocol for either set agreement
or renaming, we introduce the notion of valency task for set agreement and for renaming.
The inputs to such a task are the configurations χ(C) of the protocol after ` rounds, ` ≥ 1
(one round after some configuration C). For each configuration C ′ ∈ χ(C), there is a valency,
val(C ′), specifying the outputs of the protocol on executions starting in C ′. The valency
task is thus defined together by both χ(C) and the valencies. A protocol solves the valency
task locally in m ≥ 1 rounds, if starting on any C ′ ∈ χ(C), after m rounds it produces
decisions that are consistent with the task specification (either set agreement or renaming),
and additionally complete, that is, if a value v ∈ val(C ′), then at least one process decides v
in at least one execution starting in C ′. This captures the notion that the values promised
by valencies are indeed decided.

We present the notions of valency task and local solvability in Section 3, and define
valency tasks for set agreement and renaming. We show in Section 4 that for both valency
tasks, set agreement and renaming, for any ` ≥ 1, the task is locally solvable, in one round
(m = 1) in the wait-free model. This theorem implies our main result that there are no
local proofs, in the style of FLP, for set agreement and renaming, as shown in Section 5,
where we present a precise notion of local impossibility proof. The techniques are based
on combinatorial topology arguments explaining how a protocol can “hide” the inevitable
mistakes it must make in some final decisions.
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The setting used is a round-based wait-free model, where n asynchronous processes com-
municate reading and writing shared variables. Since the model is wait-free, the impossibility
results are related to k-set agreement, k = n− 1, and M -renaming, M = 2n− 1. Working
in a round-based model facilitates identification of consistent layers of configurations, and
talking about `-round configurations. Considering wait-free executions allows to assume the
hypothetical protocol decides always after some number of rounds, R. The significance of
these specific cases and the choice of the model is further discussed in Section 6, which also
explains the relation of our results to the approach of Alistarh, Aspnes, Ellen, Gelashvili and
Zhu [2], the first paper that has considered this question, which showed that extension-based
techniques do not suffice for proving the impossibility of solving set agreement.

2 Model of Computation and Its Topological Interpretation

The model we consider is a standard shared-memory system with n ≥ 2 asynchronous wait-
free processes, P0, . . . , Pn−1, communicating by atomically reading and writing to shared
variables.

The IIS model. A protocol specifies, for each process, the steps to perform in order to solve
a task. We consider an iterated immediate snapshot (IIS) [31] model of computation in which
the protocol proceeds in a sequence of asynchronous rounds. In each round r ≥ 1, a process
performs an immediate snapshot (IS) operation on a clean shared array M [r]. The execution
of an IS operation on M [r] is described as a sequence of concurrency classes, i.e., non-empty
sets of processes. Each concurrency class indicates that the processes in the class first write
in M [r] (in some arbitrary order) and then read all entries of M [r] (in some arbitrary order).
Each process appears in exactly one concurrency class for round r, namely, executes one IS,
on each memory M [r].

An execution starting in σ is defined by a sequence of IS executions, one for eachM [r]: the
sequence of concurrency classes on M [1], followed by the sequence of concurrency classes on
M [2], and so on. Since processes access a clean memoryM [r] in every round r, IIS executions
can be equivalently defined as a sequence of concurrency classes with the property that, for
each concurrency class C, the processes in it perform the same number of IS operations in
the concurrency classes preceding C. This means that all of them are poised to perform an
IS operation on the same M [r].

A configuration of the protocol σ = {(P0, v0), . . . , (Pn−1, vn−1)} consists of the local state
vi for each process Pi, during an execution. Notice that the states of the processes define the
values assigned to the entries of M [r]. In an initial configuration σ, each process of σ is in
an initial state determined by its input value (and its id), and all shared variables hold their
initial value. A partial configuration of a configuration σ is a subset of σ.

Tasks. A task T = (I,O,∆) is specified by a set of input assignments I to the processes
participating in an execution, a set of possible output assignments O to the participating
processes, and a mapping ∆ : I 7→ 2O specifying the allowable outputs for each input
assignment. A protocol solves a task T if in every execution starting in any initial configuration
σ ∈ I, every participating process of σ decides an output value, such that the output values
of the processes respect ∆ for their input values. The safety property is that the decisions
of the processes starting with inputs σ ∈ I define an output simplex τ , such that τ ∈ ∆(σ).
The liveness property is that the protocol is wait-free, namely, a process does not take an
infinite number of steps without deciding.

OPODIS 2020
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A task is solvable in the IIS model if and only if is solvable in the standard asynchronous
read/write model [11, 18]. When one is interested only in computability (and not complexity),
the protocol may be assumed to be full-information: a process remembers everything, and
always writes all the information it has. Therefore, the protocol only needs to instruct a
process when to decide, and on which output value.

The following tasks are defined over a domain of possible inputs V = {0, 1, . . . , n− 1}.
For proving impossibility results, it suffices to assume that a process Pi starts with input i.

I Definition 1. In the k-set agreement task [15] processes decide on at most k different
values, among the input values they have observed. The case where k = 1 and V = {0, 1}, is
the binary consensus task.

I Definition 2. In the M -renaming task [4] processes start with distinct values from a large
domain, and decide on distinct values from a smaller domain {0, . . . ,M − 1}.
In the weak symmetry breaking task [19] processes decide values in {0, 1}, such that not all
of them decide the same value.

If there is a protocol solving (2n − 2)-renaming then there is a protocol solving weak
symmetry breaking [19]. Due to its simpler structure and equivalence to (2n− 2)-renaming,
we study weak symmetry breaking instead of studying renaming.

Topological Interpretation. Since protocols preserve topological invariants of the model
of computation, and these invariants, in turn, determine which tasks are solvable, it is
convenient to describe protocols in the topological model of distributed computing [20].

In this model, the inputs of a task form an input complex I, which is a family of sets
closed under containment. Each set in the family is called a simplex. An input simplex σ ∈ I
has the form σ = {(Pi, vi)}, for some subset of processes Pi, denoted ids(σ). It indicates
that process Pi ∈ ids(σ) starts with input vi. The values vi are taken from a universe V
of possible input values. The facets of I are the simplexes of size n, defining the initial
configurations of the system. (A facet is a simplex that is not contained in another simplex.)
The output complex O is defined similarly.

For each input simplex σ ∈ I, a task T = (I,O,∆) specifies an output simplex τ ∈ ∆(σ),
τ = {(Pi, v′i)}. This means that Pi may decide v′i, in an execution starting with inputs
defined by σ, where the processes observe steps by processes in ids(σ).

Consider tuples of the form (P, view), where P is in ids(σ) and view is the state of P after
` rounds of communication. A configuration is a simplex, a set of such tuples, specifying the
states of the processes after ` rounds. The set of all configurations starting in σ, after some
number of rounds ` (including the partial configurations), defines the protocol complex χ`(σ).
The configurations of χ`(σ) are the simplexes of this complex. For a partial configuration
σ′ ⊂ σ, χ`(σ′) is the subset of χ`(σ) corresponding to executions where the processes of
ids(σ′) see only immediate snapshots by themselves.

In our model, the topological invariant preserved is that a full-information protocol
subdivides the input complex.

The protocol complex is denoted χ`(σ), since it turns out that it is the `-th chromatic
subdivision of σ. For example, when n = 3, a configuration may be drawn as a triangle, as
seen in Figure 1(left). The figure depicts the subdivision obtained after one round, χ(σ),
for three processes (p = black, q = grey, r = white), starting in one input simplex σ. It
describes the sequences of concurrency classes that led to four of its simplexes. Notice that a
partial configuration, σ′ ⊂ σ, |σ| = 3, is depicted as a vertex (state of one process) or as an
edge (state of two processes), contained in the triangle σ. The subdivision χ2(σ) is obtained
by replacing each triangle τ of χ(σ), by χ(τ), and so forth.



H. Attiya, A. Castañeda, and S. Rajsbaum 18:5

A task T is solvable in ` rounds if and only if there is a simplicial map δ from the
`-th chromatic subdivision χ`(I) to O that respects ∆, i.e., for every σ ∈ I, δ(χ`(σ)) is a
subcomplex of ∆(σ). (A simplicial map sends vertices of one complex to vertices of another
complex, preserving simplexes.)

If the input complex is finite (i.e., the universe V of possible input values is finite), it is
well-known that there is an integer R, such that processes always decide at the end of the
R-th round in a wait-free protocol. (This follows directly from König’s Lemma.)

The dimension of the protocol complex, as well as the input complex, is n − 1. (The
dimension of a simplex σ is |σ| − 1, and the dimension of a complex is the largest dimension
of any of its simplexes.)

The carrier, carr(τ, χ`(σ)), is the smallest σ′ ⊆ σ, such that τ ∈ χ`(σ′). In the figure,
for the two edges of τ , we have carr(τ ′, χ`(σ)) = σ′, and carr(τ ′′, χ`(σ)) = σ.

A carrier map ∆ : I 7→ 2O sending each input simplex σ ∈ I to a subcomplex ∆(σ) of O,
such that σ ⊆ σ′ implies ∆(σ) ⊆ ∆(σ′).

3 Valency Tasks and Local Solvability

We introduce here the notions of valency task, and of locally solving such a task. Together,
these notions provide the basic step in an impossibility proof in the FLP style, that will be
formally defined in Section 5.

As discussed above, both for set agreement and weak symmetry breaking, one may consider,
without loss of generality, a single input configuration, σ = {(P0, 0), · · · , (Pn−1, n − 1)},
meaning that the initial local states of the processes differ only in their ids. Thus, the input
complex I consists of σ together with each subset of σ. For short, let σ = {0, · · · , n− 1},
and we sometimes abuse notation and denote the input complex also by σ.

Now, assume by way of contradiction that there is a protocol P solving an unsolvable
task T in R rounds, for some R ≥ 1. Namely, the protocol complex is χR(σ), and each vertex
v = (p, view) of this complex corresponds to the state view of a process p, based on which, p
produces an output, after executing an IS on M [R]. Solving the task means that the protocol
determines a simplicial map δ, a coloring of each vertex v of χR(σ) with a decision value,
δ(v), by the map δ(v) = (p, out), in such a way that for any final configuration τ ∈ χR(σ),
the simplex of decision values δ(τ) belongs to ∆(σ). Since the task is unsolvable, there is no
such δ. Intuitively, a local proof demonstrates a contradiction by pinpointing a configuration
τ of the protocol complex where the decisions do not satisfy the task specification, through a
local observation, as follows.

3.1 Overview of the local solvability approach
Assume a protocol P solving the task in R = `+m rounds, and consider all the configurations
after ` ≥ 1 rounds, χ`(σ), and for each configuration σ′ ∈ χ`(σ), the valencies, val(σ′)
determined by P . Namely, for each value v ∈ val(σ′), there is a final configuration τ ∈ χm(σ′),
a successor of σ′ after m rounds, such that at least one process decides on the value v in
τ . The successor configurations of σ′ are all configurations after m additional rounds of
computation by processes in σ′, namely, all simplexes in χm(σ′). Figure 1 (right) depicts
the case of ` = m = 1. The successor τ of σ′ is reached from the initial configuration σ in
`+m rounds. Given χ`(σ) and all the valencies of all these configurations, the impossibility
argument consists of selecting one σ′ ∈ χ`(σ). If there are legal decisions δσ′ for all final
configurations extending σ′, then the impossibility argument did not succeed in finding a
contradiction, because δσ′ could be the map used by P. This is precisely what we show for
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detail of 2-round protocol complex{pqr}

{p}

{{p}}

{{p}{pqr}}

{{pqr}}

1-round protocol complex

Figure 1 Examples.
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Figure 2 Consensus is not locally solvable.

set agreement and weak symmetry breaking: one can define valencies, such that for any
such σ′ there is a protocol δσ′ solving the task locally at σ′. The protocol δσ′ colors the
vertices of χm(σ′) after executing m rounds starting in σ′ and satisfies the task specification,
and additionally, the a priori made commitments expressed by val(σ′) (each val ∈ val(σ′) is
indeed decided, i.e., there is a vertex (p, view) ∈ χm(σ′), with δσ′(p, view) = (p, val)). Thus,
the protocol indeed preserves the valencies.

That is, an incorrect protocol can always hide the error locally. Given that the task
is unsolvable, an error must exist somewhere. However, each particular configuration σ′

inspected looks fine, and the error is moved elsewhere. We stress that this holds for every
` ≥ 1 and m = 1, namely, even inspecting one round before the protocol terminates.

3.2 There is no Locally Solvable Valency Task for Consensus
For consensus, there is no way of defining a locally-solvable valency task. This is indeed
what is expected, since there is a local impossibility proof for consensus. We show that there
is no way to assign valencies, so that a protocol can hide its error. We present the case where
the hypothetical protocol solves consensus in two rounds, `+m = 2, but the general case is
analogous. (See Figure 2.)

Let σ = {0, 1} be the input edge, and the task specification ∆({0}) = {(P0, 0)}, ∆({1}) =
{(P1, 1)}, ∆({0, 1}) = {{(P0, 0), (P1, 0)}, {(P0, 0), (P1, 1)}}. In terms of valencies, for i ∈
{0, 1}, observe that val({i}) = {i} (for any m), because χm(Pi, i) is the solo execution of Pi
with input i, in which Pi must decide i. Thus, val(σ) = {0, 1} as χm(Pi, i) ⊂ χ`(σ).
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Consider the complex χ1(σ), which has the following edges: {(P0, 〈0〉), (P1, 〈0, 1〉)}, cor-
responding to the execution in which P0 goes first and then P1; {(P1, 〈0, 1〉), (P0, 〈0, 1〉)}, cor-
responding to the execution in which both processes run concurrently; {(P0, 〈0, 1〉), (P1, 〈1〉)},
corresponding to the execution in which P1 goes first and then P0. As explained above,
val(P0, 〈0〉) = {0} and val(P1, 〈1〉) = {1}, and the valency of any other vertex of χ(σ),
(P0, 〈0, 1〉) and (P1, 〈0, 1〉), is either {0} or {1}. Thus, there must be an edge σ′ = (u, v) ∈
χ1(σ) among the three edges with val(u) = {0} and val(v) = {1}, and hence val(σ′) = {0, 1}.
We pick such an edge σ′ and observe that consensus is not locally solvable in χ1(σ′), i.e., the
valency task with input σ′ and outputs χ1(σ′) with these valencies is not solvable. This is
because any attempt to color the vertices of χ1(σ′), with one endpoint of the path colored 0
and the other colored 1, will produce an edge τ whose vertices have different colors, violating
the agreement requirement of consensus.

We have seen that for consensus (1-set agreement) it is impossible to define a valency
task that is locally solvable. In Sections 3.3 and 3.4 we show how to specify valency tasks for
set agreement and weak symmetry breaking that are locally solvable, and in Section 4 we
describe protocols that solve them.

3.3 Valency Tasks and Local Solvability for Set Agreement
Consider now the unique input simplex σ = {0, . . . , n− 1} for k-set agreement, k = n− 1.
Processes decide values from σ that they have seen, and such that at most n− 1 different
values are decided in an execution.

Following topology terminology, in the rest of the paper configurations are called simplexes.
First, recall that for a simplex τ ∈ χ`(σ), the carrier of τ in χ`(σ) is the smallest face σ′ ⊆ σ,
such that τ ∈ χ`(σ′). From an operational perspective, carr(τ, χ`(σ)) identifies the set of
processes seen in the `-round IIS execution that ends at configuration τ .

The goal is to define, for each `, a set agreement valency task T = 〈χ`(σ), σ, val〉. This
is a task that respects the set agreement specification: a decided value should have been
seen, namely, a process deciding v must have v in its view. Indeed, agreement tasks such as
consensus and set agreement are specializations of a validity task [14], where this is the only
requirement.

More formally, in a valency task for set agreement, for every simplex τ ∈ χ`(σ), val(τ) ⊆
carr(τ, χ`(σ)). The set of inputs of T are the configurations at round `, namely χ`(σ). For
each configuration τ ∈ χ`(σ), the set of possible decisions val(τ) is a non-empty subset of σ
(this is the standard hypothesis of Sperner’s lemma). Notice that val can be formally defined
as a carrier map.1 The following is a particular set agreement valency task.

I Definition 3 (Locally solvable set agreement valency task). For every integer ` ≥ 1, let
T = 〈χ`(σ), σ, val〉, where val is the carrier map defined by
1. If |τ | ≤ n− 2, then val(τ) = ids(τ),
2. else val(τ) = carr(τ, χ`(σ)).

In the notion of local solvability of valency-tasks, we ask for a protocol that solves T in
m rounds, namely a decision map cτ : χ`+m(σ) → σ that respects T . Thus, cτ is a global
solution to T , but the k-set agreement task is solved only locally at τ : cτ is determined by
a specific input simplex τ ∈ χ`(σ), and cτ (χm(τ)) does not have any simplex with k + 1

1 Formally, the corresponding task specification ∆, for ∆(τ), consists of all output simplexes labeled by
output values from val(τ).
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decisions. Of course, cτ does not globally solve k-set agreement because indeed cτ (χ`+m(σ))
is a Sperner’s coloring and has at least one simplex colored with n different decisions, by
Sperner’s lemma [33]. Recall that a Sperner coloring c : χ`+m(σ)→ σ is a simplicial map
such that c(v) ∈ carr(τ, χ`+m(σ)), for every vertex v of χ`+m(σ).

We have that if cτ solves T in m rounds, for each τ ∈ χ`(σ) and all configurations after m
rounds, χ`+m(τ), it should hold that cτ is consistent, i.e., cτ (χ`+m(τ)) ⊆ val(τ). We require
that cτ is additionally complete, meaning that every value committed by the valencies, is
indeed decided, namely, cτ (χ`+m(τ)) = val(τ).

I Definition 4 (Local solvability of k-set agreement). We say that a set agreement valency task
T = 〈χ`(σ), σ, val〉 is k-locally solvable in m ≥ 1 rounds if for every input simplex τ ∈ χ`(σ)
there is a decision simplicial map cτ : χ`+m(σ)→ σ that is consistent and complete w.r.t. T
and cτ (χm(τ)) does not have simplexes with more than k distinct decisions at its vertices.

We stress that local solvability allows cτ (which depends on τ) to have simplexes not in
χm(τ) with more than k distinct decisions, as it requires that cτ solves k-set agreement only
in χm(τ). Although it is unavoidable that there are simplexes with more than k distinct
decisions somewhere (due to the k-set agreement impossibility), local solvability does not
require that the task is globally unsolvable. Indeed, while we prove (Section 4.1) that the
valency task for set agreement is (n− 1)-locally solvable in a single round, we do not prove it
is globally unsolvable.

3.4 Valency Tasks and Local Solvability for Weak Symmetry Breaking
The weak symmetry breaking task with unique input (n−1)-simplex σ = {0, . . . , n−1} requires
that the binary output coloring on the boundary of χ`(σ) has the next symmetry property
(assuming the protocol terminates in ` rounds) on the vertices V (χ`(σ)), e.g. [12, 13, 23]:

I Definition 5 (Symmetric binary coloring). A symmetric binary coloring of χ`(σ) is a
simplicial map b : V (χ`(σ))→ {0, 1} satisfying that, for any two distinct proper faces σ′, σ′′
of σ of the same dimension, v ∈ V (χ`(σ′)) and φ(v) ∈ V (χ`(σ′′)) have the same binary color,
i.e. b(v) = b(φ(v)), where φ is the simplicial bijection between V (χ`(σ′)) and V (χ`(σ′′)) that
maps vertices preserving order, namely, vertices with the smallest id in ids(σ′) to vertices
with the smallest id in ids(σ′′), vertices with the second smallest id in ids(σ′) to vertices with
the second smallest id in ids(σ′′), and so on.

We remark that a weak symmetry breaking protocol can be transformed into a comparison-
based protocol, in which processes only perform comparisons between inputs. Thus, actual
input values are irrelevant, and only the relative order among them matters. In inputless
weak symmetry breaking, i ∈ σ denotes the process with i-th input, in ascending order.

Output decisions in weak symmetry breaking are binary, hence in valency tasks for weak
symmetry breaking the carrier map val goes from χ`(σ) to {0, 1}, the complex with a single
edge, and its vertices. Since val models the valencies of a hypothetical protocol for weak
symmetry breaking, the valencies must be symmetric on the boundary; this is the only
requirement val must satisfy. The following is a particular weak symmetry breaking valency
task, where it is not hard to check that val is indeed a carrier map.

I Definition 6 (Locally solvable weak symmetry breaking valency task). For every ` ≥ 1, let
T = 〈χ`(σ), {0, 1}, val〉 where val is the carrier map defined by
1. If dim(τ) ≤ n− 3, then val(τ) = {1}.
2. Otherwise, val(τ) = {0, 1}.
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Analogous to set agreement, if a symmetric binary coloring bτ : V (χ`+m(σ)) → {0, 1}
solves T in m rounds then it respects val, or is consistent with T . This means that for every
input simplex τ ∈ χ`(σ), bτ (χ`+m(τ)) ⊆ val(τ). We also require that it is complete, i.e.,
bτ (χ`+m(τ)) = val(τ).

It has been shown [9, 12] that if dim(σ) + 1 is a prime power, then b(χ`(σ)) has at
least one monochromatic simplex (i.e. with all its vertices having the same binary color)
of dimension dim(σ), which implies the impossibility of weak symmetry breaking; those
monochromatic simplexes are the errors that b makes, however, b is able to hide them locally:
for the specified input simplex τ ∈ χ`(σ), b(χm(τ)) does not have monochromatic simplexes
of dimension dim(σ).

I Definition 7 (Local solvability of weak symmetry breaking). We say that a weak symmetry
breaking valency task T = 〈χ`(σ), {0, 1}, val〉 is locally solvable in m ≥ 1 rounds if for every
input simplex τ ∈ χ`(σ) there is a symmetric binary decision map bτ : χ`+m(σ) → {0, 1}
(which is on function of τ) that is consistent and complete w.r.t. T and bτ (χm(τ)) does not
have monochromatic simplexes of dimension dim(σ).

In the next section, we prove that the weak symmetry breaking valency task (Definition 6)
is locally solvable in one round. This result is trivial when dim(σ) + 1 is not a prime power
because in those cases weak symmetry breaking is indeed solvable [13], and hence, there is
a symmetric binary coloring with no monochromatic simplexes (i.e., without errors). The
interesting case in when weak symmetry breaking is not solvable and unavoidable errors need
to be hidden.

4 Solving Valency Tasks

This section contains the proof of Theorems 8 and 10, stating that the set agreement and
weak symmetry breaking valency tasks defined in the previous section, Definitions 3 and 6,
are locally solvable in one round.

4.1 Set Agreement
The following theorem shows that the valency tasks for set agreement defined in the previous
section are locally solvable.

I Theorem 8. For any n ≥ 3 and ` ≥ 1, the set agreement valency task T = 〈χ`(σ), σ, val〉
in Definition 3 is (n− 1)-locally solvable in one round.

The proof of Theorem 8 relies on the following lemma, regarding vertex colorings of the
first standard chromatic subdivision. Roughly speaking, the lemma identifies colorings that,
to some extent, satisfy the properties of a Sperner coloring, but without simplexes with n
different decisions. Figure 3 presents an example of these colorings.

I Lemma 9. Consider the (n− 1)-dimensional simplex ρ = {0, . . . , n− 1} with n ≥ 3. There
is a coloring (simplicial map) c : χ(ρ)→ ρ such that:
1. for every ρ′ ⊂ ρ with dim(ρ′) ≤ n− 3, c(χ(ρ′)) = ρ′,
2. one of the following holds:

a. for every (n− 2)-dimensional face ρ′ ⊆ ρ, c(χ(ρ′)) = ρ,
b. for a chosen (n− 2)-dimensional ρ′′ ⊂ ρ, c(χ(ρ′′)) = ρ′′, and for every other (n− 2)-

dimensional face ρ′ ⊆ ρ, c(χ(ρ′)) = ρ,
3. c(χ(ρ)) = ρ and there is no fully colored (n− 1)-simplex in c(χ(ρ)).
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Figure 3 Example for Lemma 9. Since every vertex v of ρ has dimension n− 3, the only vertex in
χ(v) has color v, implying (1). The coloring satisfies requirement (2.b) of the lemma: for the (n− 2)-face
{0, 2} of ρ, all vertices in χ({0, 2}) have colors in {0, 2}, while for any other (n − 2)-face ρ′ of ρ, every
vertex in χ(ρ′) has a color in ρ. Finally, χ(ρ) has no (n− 1)-simplex with the three colors at its vertices,
implying (3).

For every simplex τ ∈ χ`(σ), let ids(τ) be the simplex containing the first entries of
the vertices in τ (recall that each vertex of χ`(σ) is a pair (v, view) where v is the id of
a process and view is its view after ` rounds); note that ids(τ) is a dim(τ)-face of σ, and
ids(τ) ⊆ carr(τ, σ, χ`), since χ`(σ) is a chromatic subdivision of σ.

Proof of Theorem 8. We prove now that set agreement valency task T = 〈χ`(σ), σ, val〉 is
(n− 1)-locally solvable in one round. To do so, we define a Sperner coloring cτ of χ`+1(σ)
that is consistent and complete w.r.t. the task and has no fully colored (n− 1)-simplexes in
cτ (χ(τ)), for any input simplex τ ∈ χ`(σ). We focus on the case when |τ | = n because for
any simplex τ ′ of a smaller dimension, we can just pick any τ containing τ ′, and set cτ ′ to
cτ restricted to χ(τ ′), i.e. cτ |χ(τ ′).

Thus, for the rest of the proof fix an (n− 1)-dimensional simplex of τ ∈ χ`(σ). We define
a Sperner coloring cτ that is consistent with val and has no fully colored (n− 1)-simplexes
in χ(τ). First, we use Lemma 9 to define cτ restricted to χ(τ), i.e. cτ |χ(τ), and then extend
the coloring to all vertices in χ`+1(σ), to finally obtain cτ .

Let ρ = ids(τ). Note that ρ = σ but for clarity we use ρ. ids’s naturally induce a bijection
between vertices of ρ and τ , and χ(ρ) and χ(τ), respectively, hence any coloring (simplicial
map) χ(ρ)→ ρ induces a coloring χ(τ)→ ids(τ). Below, when we use Lemma 9 applied to
ρ = ids(τ), we can speak about faces of τ instead of faces of ρ.

Observe that either for every (n−2)-face τ ′ of τ , carr(τ ′, σ, χ`) = σ, or for one (n−2)-face
τ ′′ of τ , carr(τ ′, χ`) = ids(τ ′′) and for every other (n− 2)-face τ ′ of τ , carr(τ ′, σ, χ`) = σ.
Intuitively, τ ′ is “inside” χ`(σ) or only one (n− 2)-face of τ ′ “touches” the boundary of χ`(σ)
(see Figure 3). We set cτ |χ(τ) using a coloring of χ(τ) in Lemma 9, as follows. In the former
case, cτ |χ(τ) is obtained with a coloring of χ(τ), as in Case (2.a) of Lemma 9, while in the
latter case, is obtained with a coloring as in case (2.b), where τ ′′ is the chosen face in that
case of the lemma.

We argue that Lemma 9 and the definition of val implies that for any face τ ′ of τ , it
holds that cτ (χ(τ ′)) = val(τ ′), which is good because we want cτ to be consistent and
complete w.r.t. val. If dim(τ ′) ≤ n− 3, then val(τ ′) = ids(τ ′), by definition of val, and from
Lemma 9(1), we know that cτ (χ(τ ′)) = ids(τ ′). Also, by definition of val, if dim(τ ′) > n− 3,
then val(τ ′) = carr(τ ′, σ, χ`). Note that if dim(τ ′) = n− 1 (hence τ ′ = τ), then val(τ ′) = σ,
and cτ (χ(τ ′)) = val(τ ′), by Lemma 9(3). The subcase that remains to be shown is when
dim(ρ) = n− 2. Again, if val(τ ′) = σ, cτ (χ(τ ′)) = val(τ ′), by Lemma 9(3). Thus, consider
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the case val(τ ′) = carr(τ ′, σ, χ`) 6= σ. Observe that this can only happen when τ ′ is at the
boundary of χ`(σ), and hence carr(τ ′, σ, χ`) = ids(τ ′). By Lemma 9(2.b), cτ (χ(τ ′)) = ids(τ ′)
(τ ′ was the chosen (n− 2)-face of τ in case (2.b) of Lemma 9 when defining cτ on χ(τ)).

We now extend the coloring cτ in two steps. First, for any vertex v ∈ χ`(σ) that does
not belong to χ(τ), we first set cτ (v) = id(v). Thus, for any input simplex λ ∈ χ`(σ) that
does not intersect τ , we have that cτ (χ(λ)) = ids(λ). That is fine if dim(λ) 6= n − 2, or
dim(λ) = n−2 and carr(λ, σ, χ`) 6= σ, because in such cases cτ (χ(λ)) = val(λ), by definition
of val.

But if dim(λ) = n− 2 and carr(λ, σ, χ`) = σ, then cτ (χ(λ)) = ids(λ) ⊂ val(λ) = σ, and
then in this case cτ is not complete. Note that the proper contention is because there is
no vertex in χ(λ) that is mapped to the unique vertex in σ \ ids(λ). To solve this issue,
for every such input simplex λ ∈ χ`(σ), we pick one vertex v ∈ χ(λ) with carr(v, λ, χ) = λ

(which belongs to the “central” (n− 2)-simplex of χ(λ)) and set cτ (v) to the unique vertex
in σ \ ids(λ). Therefore, we now have that cτ (χ(λ)) = val(λ) = σ.

To fully prove that cτ is consistent and complete w.r.t. val, the only case that remains
is of an input simplex λ that intersects τ but is not one of its faces. Let λ′ and τ ′ be the
proper faces of λ and τ such that λ = λ′ ∪ τ ′. We already know that cτ (χ(λ′)) = val(λ′) and
cτ (χ(τ ′)) = val(τ ′). If dim(λ′ ∪ τ ′) ≤ n− 3, the definition of val implies that val(λ ∪ τ ′) =
val(λ′)∪ val(τ ′), hence cτ (χ(λ′ ∪ τ ′)) = val(λ∪ τ ′). If dim(λ′ ∪ τ ′) = n− 1, then it must be
that val(λ ∪ τ ′) = σ, from the definition of val, and then clearly cτ (χ(λ′ ∪ τ ′)) = val(λ ∪ τ ′),
by construction. If dim(λ′ ∪ τ ′) ≥ n− 2, we have two cases, val(λ′ ∪ τ ′) is either ids(λ′ ∪ τ ′)
or σ; in any case, the very definition of cτ implies that cτ (χ(λ′ ∪ τ ′)) = val(λ ∪ τ ′).

Therefore, so far we have a coloring cτ that is consistent and complete w.r.t. val and
cτ (χ(τ)) has no fully colored (n− 1)-simplexes (since we defined cτ (χ(τ)) using Lemma 9).
To finally conclude that 〈χ`(σ), σ, val〉 is locally solvable in one round, we argue cτ is a
Sperner coloring, which essentially follows becase val is a Sperner-valency coloring and cτ
is consistent and complete w.r.t. val. To prove the claim in detail, consider any vertex
v ∈ χ`(σ). If v /∈ χ(τ), then cτ (v) = id(v) ∈ carr(v, σ, χ`). Otherwise, let τ ′ = carr(v, τ, χ).
Note that ids(τ ′) ⊆ carr(v, σ, χ`). It follows from Lemma 9 that cτ (χ(τ ′)) is either ids(τ ′)
or σ. If cτ (χ(τ ′)) = ids(τ ′) then cτ (v) ∈ carr(v, σ, χ`). For the remaining case, note that
cτ (χ(τ ′)) = σ only if dim(τ ′) = n − 1 (hence carr(τ ′, σ, χ`) = σ), or dim(τ ′) = n − 2 and
carr(τ ′, σ, χ`) = σ (i.e. τ ′ is not the chosen (n−2)-face of τ in the case (2.b) of Lemma 9); in
either case we have that cτ (v) ∈ carr(v, σ, χ`). We conclude that cτ is a Sperner coloring. J

4.2 Weak Symmetry Breaking
I Theorem 10. For any n ≥ 3 and ` ≥ 1, the weak symmetry breaking valency task
T = 〈χ`(σ), σ, val〉 in Definition 6 is locally solvable in one round.

The proof of Theorem 10 is similar in structure to the proof for set agreement in the
previous section. It relies on Lemma 11 below to produce binary colorings that are almost
symmetric on the boundary and do not have monochromatic dim(σ)-simplexes. Figure 4
shows an example of such a coloring. In the proof of Theorem 10, we use these binary
colorings to locally solve symmetric binary-valency tasks.

I Lemma 11. Consider the (n − 1)-dimensional simplex ρ = {0, . . . , n − 1} with n ≥ 3.
There is a binary coloring (simplicial map) b : χ(ρ)→ {0, 1} such that:
1. for every ρ′ ⊂ ρ with dim(ρ′) ≤ n− 3, b(χ(ρ′)) = {1},
2. for every (n− 2)-dimensional face ρ′ ⊆ ρ, b(χ(ρ′)) = {0, 1},
3. b(χ(ρ)) = {0, 1} and there is no monochromatic (n− 1)-simplex in b(χ(ρ)).
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Figure 4 Example for Lemma 11. Since every vertex v of ρ has dimension n− 3, the only vertex
in χ(v) has color 1, implying (1). For every (n− 2)-face ρ′ of ρ, there are vertices in χ({0, 2}) with
color 0 and 1, implying (2). Finally, χ(ρ) has no monochromatic (n− 1)-simplex, implying (3).

Proof of Theorem 10. We now show that the weak symmetry breaking valency task T =
〈χ`(σ), σ, val〉 is locally solvable in one round. We need to show that for every input simplex
τ ∈ χ`(σ), we define a symmetric binary coloring bτ of χ`+1(σ) that is consistent and
complete w.r.t. val and has no monochromatic (n− 1)-simplexes in bτ (χ(τ)). We focus on
the case is when τ is of dimension n− 1 because for any simplex τ ′ of a smaller dimension,
we can just pick any τ containing τ ′, and set bτ ′ to bτ restricted to χ(τ ′), i.e. bτ |χ(τ ′).

For the rest of the proof fix an (n − 1)-dimensional simplex of τ ∈ χ`(σ). We define
a symmetric binary coloring bτ that is consistent and complete w.r.t. val and has no
monochromatic (n− 1)-simplexes in χ(τ). First, we use Lemma 11 to define bτ restricted to
χ(τ), i.e. bτ |χ(τ), and then extend the coloring to all vertices in χ`+1(σ), to finally obtain bτ .

Let ρ = ids(τ). Note that ρ = σ but for clarity we use ρ. id’s naturally induce a bijection
between ρ and τ , and χ(ρ) and χ(τ), hence any coloring (simplicial map) χ(ρ)→ ρ induces a
coloring χ(τ)→ ids(τ). Below, when we use Lemma 11 applied to ρ = ids(τ), we can speak
about faces of τ instead of faces of ρ.

First, we set bτ |χ(τ) using a coloring of χ(τ) in Lemma 11. We have that bτ |χ(τ) is
consistent and complete with respect to val: for every face τ ′ of τ , if dim(τ ′) ≤ n − 3,
val(τ ′) = {1}, by definition of val, and bτ (χ(τ ′)) = {1}, by Lemma 11(1); and if dim(τ ′) ≥
n− 2, val(τ ′) = {0, 1}, by definition of val, and bτ (χ(τ ′)) = {0, 1}, by Lemma 11(2-3).

We extend bτ in two steps. In the first step, we pick any vertex v ∈ χ`+1(σ) that
does not belong to χ(τ) (which is uncolored yet). If there are faces σ′, σ′′ of σ with the
same dimension such that v ∈ χ`+1(σ′), φ(v) ∈ χ`+1(σ′′) and φ(v) ∈ χ(τ), where φ is the
simplicial bijection between χ`+1(σ′) and χ`+1(σ′′) that maps vertices preserving order, then
set bτ (v) = bτ (φ(v)); otherwise, set bτ (v) = 1. In words: if χ(τ) “touches” the boundary
of χ`+1(σ), we replicate that “part” of the coloring in its symmetric “counterparts” in the
boundary. Observe that bτ is well defined because, since ` ≥ 1, there are no two vertices of
u, v ∈ χ(τ) such that there are two distinct faces σ′, σ′′ of σ of same dimension such that
u ∈ χ`+1(σ′) and v ∈ χ`+1(σ′′); intuitively, χ(τ) can “touch” either χ`+1(σ′) or χ`+1(σ′′)
but not both. Note that bτ is symmetric.

It is not hard to see that for any input simplex λ ∈ χ`(σ) with dim(λ) ≤ n − 3,
bτ (χ(λ)) = val(λ). First, if λ is a face of τ , we have already saw that this is true. Second, if
λ is a face of τ , then bτ (χ(λ)) = {1} because even if a vertex v ∈ χ(λ) is in the boundary
of χ`+1(σ) and gets its color from a vertex u ∈ χ(τ) (i.e. bτ (v) = bτ (u)), it must be that
bτ (u) = 1 because there must be a face τ ′ of τ of dimension dim(λ) such that u ∈ χ(τ ′), and
by Lemma 11(1), bτ (χ(τ ′)) = {1}; and finally, by definition, val(λ) = {1}.
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However, we cannot say that same for any input simplex λ ∈ χ`(σ) with dim(λ) ≥ n− 2.
Consider the case that χ(λ) does not intersect χ(τ) and the boundary of χ`+1(σ); in that
case bτ (χ(λ)) = 1, by definition of bτ , but val(λ) = {0, 1}, by definition of val. We fix
this issue in the second step of the construction: for any λ ∈ χ`(σ) with dim(λ) = n − 2
and bτ (χ(λ)) = {1}, pick the vertex v ∈ χ(λ) with smallest id among the vertices with
carr(v, λ, χ) = λ (namely, v is a vertex with smallest id of the “central” (n− 2)-simplex of
χ(λ)), and set bτ (v) = 0.

By construction, we have that bτ (χ(λ)) = {0, 1} = val(λ). Note that λ is not face of τ
because initially we had bτ (χ(λ)) = {1}, which is not true for (n− 2)-dimensional faces of τ ,
by Lemma 11(2), and if λ intersects τ , then v /∈ χ(τ) because v is an “internal” vertex of χ(λ).
Therefore, bτ |χ(τ) remains the same after the second step. Moreover, since we pick vertices
with smallest id, bτ remains symmetric. Finally, for any λ ∈ χ`(σ) with dim(λ) = n− 1, if
λ = τ , we know already that bτ (χ(λ)) = {0, 1}, and if λ 6= τ , we already saw that for every
(n− 2)-face τ ′ of λ, bτ (χ(τ ′)) = {0, 1}, and thus bτ (χ(λ)) = {0, 1}. Therefore, we conclude
that bτ (χ(λ)) = val(λ), for every input simplex τ ∈ χ`(σ).

Thus, we have shown that bτ is a symmetric binary coloring that is consistent and
complete w.r.t. val. Also, by Lemma 11, bτ (χ(τ)) has no monochromatic simplexes of
dimension n− 1. Therefore, 〈χ`(σ), {0, 1}, val〉 is locally solvable in one round. J

5 Local Valency Impossibility Proofs

Here we make precise our notion of “impossibility proof in the FLP style,” and use Theorems 8
and 10 to argue that such impossibility proofs do not exist for (n− 1)-set agreement and
weak symmetry breaking in the IIS model.

In a local valency impossibility proof for say, set agreement, one assumes by way of
contradiction a hypothetical R-round protocol solving the task. Recall that the protocol
determines valencies, for all simplexes in all rounds, starting with those of the initial
configuration σ. The valencies must respect the task specification, since we asume the
protocol solves the task. For example, val(Pi, i) = {i}, where (pi, i) ∈ σ is the initial state of
Pi (in an execution where Pi sees only itself, it must decide its own input value). A crucial
observation is that what we are given in a local valency impossibility proof are only the
valencies, and there are many protocols that could produce the same valencies (i.e., many
simplicial maps c assigning decisions to χR(σ), yielding the same valencies).

The proof consists of R − 1 phases to select a sequence of simplexes σ0, σ1, . . . , σR−1,
starting with σ0 = σ and such that σ` ∈ χ`(σ) for all 1 ≤ ` ≤ R− 1, extending the sequence
by one at each phase.

Assume we have selected the sequence σ0, . . . , σ`, for some ` ≥ 1. To select σ`+1 ∈
χ(σ`) ⊂ χ`+1(σ), one considers all simplexes in σ′ ∈ χ(σ`), together with their valencies,
val(σ′). When we reach phase R − 1, and we have selected σR−1 ∈ χ(σR−2), the protocol
reveals all decisions in χ(σR−1) ⊂ χR(σ) (and only those decisions). Namely, a simplicial
map c assigning a decision to each vertex of χ(σR−1), respecting all previously observed
valencies, namely, all those in each χ(σ`).

There is a local valency impossibility proof for the task if and only if one can select a
sequence σ0, σ1, . . . , σR−1 such that the task is not locally solvable in one round at σR−1.
Namely, if there is no decision function c, that respects the valencies and is consistent with
the task specification. In the case of set agreement, at least one simplex must have n different
decisions, for any c that respects the valencies.
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Therefore, there is no such a proof if we are able to exhibit valencies of a hypothetical
protocol such that, for any selection σ0, σ1, . . . , σR−1, there is a decision function c corres-
ponding to those valencies that locally solves (n− 1)-set agreement (the argument for weak
symmetry breaking is analogous):

Fix any R ≥ 2.
For the input complex, the valency of each σ′ ⊆ σ is val(σ′) = σ′.
In phase ` ∈ {0, . . . , R − 2}, the valency of each simplex τ ∈ χ(σ`) ⊂ χ`+1(σ) is the
valency of the simplex in the valency task T `+1 = 〈χ`+1(σ), σ, val〉 in Definition 3, namely,
val(τ).
In phase R− 1, the protocol picks a decision map c : χR(σ)→ σ that is consistent and
complete w.r.t T R−1 = 〈χR−1(σ), σ, val〉 and does not have fully colored (n−1)-simplexes
in χ(σR−1) ⊂ χR(σ), and provides only the decisions c(χ(σR−1)). Such a mapping exists
since T R−1 is (n− 1)-locally solvable, due to Theorem 8.

Notice that no matter the simplex σ` we chose in each phase, we cannot find a contradiction
in the decisions of χ(σR−1). The only thing that remains to be argued is that the valencies
are consistent during all phases. More specifically, valencies preserve containment in the
same phase and can only shrink as the phases go by, and additionally they do not contradict
validity, i.e., the valency of a simplex is a subset of its carrier. Thus, for any R, there are
valencies that could be produced by a hypothetical set agreement protocol. This is implied
by the three properties below that are satisfied for every valency task T ` = 〈χ`(σ), σ, val〉,
` ∈ {1, . . . , R− 1}, and whose proof is based on Observation 12. These properties also show
that the decisions of χR−1(σR−1) revealed by the protocol are consistent with all valencies
in all phases.

I Observation 12. For ` ≥ 0, for every γ ∈ χ`(σ), ID(γ) ⊆ carr(γ, σ, χ`). Furthermore, if
dim(carr(γ, σ, χ`)) = dim(γ), then carr(γ, σ, χ`) = ID(γ).

Containment For τ, τ ′ ∈ χ`(σ) with τ ′ ⊂ τ , we have val(τ ′) ⊆ val(τ). By Observation 12,
for every γ ∈ χ`(σ), ID(γ) ⊆ carr(γ, σ, χ`). Since τ ′ ⊂ τ , we have carr(τ ′, σ, χ`) ⊂
carr(τ, σ, χ`). Depending on the dimension of τ , val(τ) is either ID(τ) or carr(τ, σ, χ`);
and similarly for τ ′. Therefore, val(τ ′) ⊆ val(τ).

Valencies shrink Consider any m > ` with 0 ≤ ` + m ≤ R − 1 and the valency task
T `+m = 〈χ`+m(σ), σ, val′〉. For τ ∈ χ`(σ) and τ ′ ∈ χm(τ), val′(τ ′) ⊆ val(τ). The
argument is very similar to the previous one. Since τ ′ ∈ χm(τ) ⊂ χ`(σ), we have that
carr(τ ′, σ, χ`+m) ⊆ carr(τ, σ, χ`). Depending on the dimension of τ , val(τ) is either
ID(τ) or carr(τ, σ, χ`), and we have that ID(τ) ⊆ carr(τ, σ, χ`), by Observation 12; and
similarly for τ ′. Therefore, val′(τ ′) ⊆ val(τ).

Validity For τ ∈ χ`(σ), we have val(τ) ⊆ carr(τ, σ, χ`). If dim(τ) is n − 2 or n − 1,
val(τ) = carr(τ, σ, χ`), and if dim(τ) ≤ n − 3, val(τ) = ID(τ) ⊆ carr(τ, σ, χ`), where
the last containment follows from Observation 12.

The previous properties hold for all simplexes of the valency tasks in Definition 3, and
thus we conclude that there is no contradiction on the valencies provided during the phases.

6 Discussion

This paper argues that the (n− 1)-set agreement and weak symmetry breaking (and hence
(2n− 2)-renaming) impossibilities in the wait-free read/write shared memory model cannot
be proved using local arguments, in the style of FLP. We introduced the notions of valency
task and local solvability for set agreement and weak symmetry breaking. We formalized
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the notion of local-valency impossibility proof for these tasks, where a presumptive protocol
for these tasks can always hide erroneous results, even after committing to valencies one
round before termination. We showed that there are no local-valency impossibility proofs
for (n− 1)-set agreement and weak symmetry breaking in the wait-free read/write shared
memory model.

Alistarh, Aspnes, Ellen, Gelashvili and Zhu [2] studied a similar question by defining a
game between a prover and a protocol, as a way to represent extension-based techniques for
proving impossibility results. They have shown that, for set agreement, a protocol can win
this game against any prover, thus showing extension-based techniques do not suffice for
proving the impossibility of solving set agreement. Their approach is restricted to unbounded
protocols. This also complicates the argument, since they need to work with non-uniform
simplicial subdivisions. In contrast, we consider bounded wait-free. This allows to assume
that all processes decide at the same round, R (hence giving more information and power
to the prover), leading to simpler uniform subdivisions. We stress that there is no loss of
generality in this assumption, since a task is wait-free solvable if and only if it is wait-free
solvable by a protocol where all processes decide at the same round. Furthermore, while
Alistarh et al. study only k-set agreement, we also investigate weak symmetry breaking, and
by reduction, renaming.

Looking forward, it would be interesting to define a notion of valency task that can be
applied to any task, such as approximate agreement. Also, in the context of randomized
and non-deterministic protocols. Another interesting question is how much of the final
decisions the protocol can reveal; for example, revealing consistent decisions even if several
configurations are chosen instead of only one. Finally, we would like to explore local-
valency proofs beyond our wait-free setting, in models that are not round-based [28] or
non-compact [30], like t-resilient models.
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