A Foundation for Ledger Structures

Chad Nester
Tallinn University of Technology, Estonia

—— Abstract

This paper introduces an approach to constructing ledger structures for cryptocurrency systems
with basic category theory. Compositional theories of resource convertibility allow us to express
the material history of virtual goods, and ownership is modelled by a free construction. Our notion
of ownership admits an intuitive graphical representation through string diagrams for monoidal
functors.

2012 ACM Subject Classification Theory of computation — Categorical semantics
Keywords and phrases String Diagrams, Category Theory, Blockchains
Digital Object Identifier 10.4230/OASIcs.Tokenomics.2020.7

Funding Chad Nester: This research was supported by the ESF funded Estonian IT Academy
research measure (project 2014-2020.4.05.19-0001).

1 Introduction

Modern cryptocurrency systems consist of two largely orthogonal parts: A consensus protocol,
and the ledger structure it is used to maintain. While consensus protocols have received a
lot of attention (see e.g. [10, 7]), the design space of the accompanying ledger structures
is barely explored. The recent interest in smart contracts has led to the development of
sophisticated ledger structures with complex behaviour (see e.g. [1, 13]). These efforts have
been largely ad hoc, and the resulting ledger structures are difficult to reason about. This
difficulty also manifests in the larger system, which has contributed to several unfortunate
incidents involving blockchain technology [2].

A strong mathematical foundation for ledger structures would enable more rigorous
development of sophisticated blockchain systems. Further, the ability to reason about the
ledger at a high level of abstraction would facilitate analysis of system behaviour. This is
important: users of the system must understand it in order to use it with confidence. The
formalism we propose has an intuitive graphical representation, which would make this kind
of rigorous operational understanding possible on a far wider scale that it would otherwise
be.

Blockchain systems are largely concerned with recording the material history of virtual
objects, with a particular focus on changes in ownership. The resource theoretic interpretation
of string diagrams for symmetric monoidal categories gives a precise mathematical meaning
to this sort of material history. Building on this, we consider string diagrams augmented with
extra information concerning the ownership of resources. We give these diagrams a precise
mathematical meaning in terms of strong monoidal functors, drawing heavily on the work of
[9], where our augmented diagrams originated. We show that an augmented resource theory
has the same categorical structure as the original, in the sense that the two corresponding
categories are equivalent. Finally, we give a simple example of a ledger structure using our
machinery.

© Chad Nester;
37 licensed under Creative Commons License CC-BY

2nd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2020).
Editors: Emmanuelle Anceaume, Christophe Bisiére, Matthieu Bouvard, Quentin Bramas, and Catherine
Casamatta; Article No. 7; pp. 7:1-7:13

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/OASIcs.Tokenomics.2020.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

7:2

A Foundation for Ledger Structures

2 Monoidal Categories as Resource Theories

We assume familiarity with some basic category theory, in particular with symmetric monoidal
categories. A good reference is [8]. Throughout, we will write composition in diagrammatic
order. That is, the composite of f : X - Y and g : Y — Z is written fg: X — Z. We
may also write go f : X — Z, but we will never write gf : X — Z. We will make heavy
use of string diagrams for monoidal categories (see e.g. [11]), which we read from top to
bottom (for composition) and left to right (for the monoidal tensor). Our string diagrams
for ownership are in fact the string diagrams for monoidal functors of [9].

2.1 Resource Theories

We begin by observing (after [4]) that a symmetric strict monoidal category can be interpreted
as a theory of resource convertibility: Each object corresponds to collection of resources with
A ® B denoting the collection composed of both A and B and the unit I denoting the empty
collection. Morphisms f : A — B are then understood as a way to convert the resources of
A to those of B.

For example, consider the free symmetric strict monoidal category on the set

{bread, dough, water, flour, oven}

of atomic objects, subject to the following additional axioms:

mix : water @ flour — dough knead : dough — dough

bake : dough ® oven — bread ® oven

This category can be understood as a theory of resource convertibility for baking bread.
The morphism mix represents the process of combining water and flour to form a bread
dough, knead the process of kneading the dough, and bake the process of baking the dough
in an oven to yield bread (and an oven). While this model has many failings as a theory of
bread, it suffices to illustrate the idea. The axioms of a symmetric strict monoidal category
provide a natural scaffolding for this theory to live in. For example, consider the morphism

(bake ® 1dough)(lbread ® Uoven,doughbake)

where 04 p: A® B — B® A is the braiding. This morphism has type
dough ® oven ® dough — bread ® bread ® oven

and describes the transformation of two pieces of dough into two loaves of bread by baking
them one after the other in an oven. We obtain a string diagram for this morphism by drawing
our objects as wires, and our morphisms as boxes with inputs and outputs. Composition is
represented by connecting output wires to input wires, and we represent the tensor product
of two morphisms by placing them beside one another. Finally, the braiding is represented
by crossing the involved wires. For the morphism in question, we obtain:

C. Nester

Jow‘h oven dom‘h

bake

bread btead Oven

We will think of our ledger systems in terms of such string diagrams: The state of the
system is a string diagram describing the material history of the resources involved, the
available resources correspond to the output wires, and changes are effected by appending
resource conversions to the bottom of the diagram. From now on we understand a resource
theory to be a symmetric strict monoidal category with an implicit resource-theoretic
interpretation.

2.2 How to Read Equality

Suppose we have a resource theory X, and two resource transformations f,g : A — B.

Each of f and g expresses a different way to transform an instance of resource A into an
instance of resource B, but these may not have the same effect. For example, consider

knead : dough — dough and lgouen : dough — dough from our resource theory of bread.

Clearly these should not have the same effect on the input dough. This is reflected in our
resource theory in the sense that they are not made equal by its axioms. For contrast, we
can imagine a (somewhat) reasonable model of baking bread in which there is no difference
between kneading the dough once and kneading it many times. We could capture this in our
resource theory of baking bread by imposing the equation

knead = knead o knead

In this new resource theory, our equation tells us that kneading dough once has the same
effect as kneading it twice, or three times, and so on, since the corresponding morphisms of
the resource theory are made equal by its axioms. Of course, the material history described
by knead oknead is not identical to that described by knead. In the former case, the kneading
process has been carried out twice in sequence, while in the latter case it has only been
carried out once. That these morphisms are equal merely means that the effect of each
sequence of events on the dough involved is the same.

We adopt the following general principle in our design and understanding of resource
theories: Two transformations should be equal precisely when they have the same effect on
the resources involved.

We further illustrate this by observing that, by the axioms of a symmetric monoidal
category (specifically, by naturality of braiding), the following two transformations in the
resource theory of baking (expressed as string diagrams) are equal. The transformation
on the left describes baking two loaves of bread by first mixing and kneading two batches
of dough before baking them in sequence, while the transformation on the right describes
baking two loaves of bread by mixing, kneading, and baking the first batch of dough, and
then mixing, kneading, and baking the second batch. Thus, according to our resource theory
the two procedures will yield the same result — not an entirely unreasonable conclusion!

7:3

Tokenomics 2020

7:4 A Foundation for Ledger Structures

Watey water flour flour Oven watee watert floor Flour oyen

Knead /
E bake
mix
bake
knead

i

bake

bake

bread oven
e b bread bread oven

3 String Diagrams for Ownership

Ledgers used by blockchain systems are largely concerned with ownership. For example, in
the Bitcoin system, each coin is associated with a computable function called the wvalidator,
which is used to control access to it. Anyone who wishes to use the coin must supply input
data, called a redeemer, and the system only allows them to use the coin in question in case
running the validator on the redeemer terminates in a fixed amount of time. If the validator
is defined only on the data that results from Alice digitally signing a nonce generated by
the system, then that coin can only be used by Alice, who then effectively owns it.

Different use cases call for different authentication schemes. For example, a proposed
application of blockchain technology is to improve supply chain accountability by requiring
participants to log any transfers and transformations of material on a public ledger (see e.g.
[5, 12]). Here ownership implies responsibility, and so for Alice to log the transfer of, say, a
ton of steel to Bob, both Alice and Bob must ratify the transfer via digital signature.

What different use cases have in common is that the resources of the ledger system are
associated with ownership data. We leave the interpretation of this ownership data, including
the specific details of the authentication scheme unspecified, instead giving a structural
account of resource ownership. We develop our account of resource ownership intuitively,
and somewhat informally, by introducing addtional features to string diagrams. This is made
fully formal in the next section.

3.1 Ownership and Collection Management

Begin by assuming a theory of resources X, and a collection C of potential resource owners,
each of which we associate with a colour for use in our diagrams. Suppose for the remainder
that Alice, Bob, and Carol range over C, and are associated with colours as follows:

C. Nester

Mice Bob <Catol

Our goal will be to construct a new theory of resources in which resources and
transformations are associated with (owned and carried out by) elements of C. The objects
of our new resource theory will be collections of owned objects of X. That is, for each object
X of X and each Alice € C we have an object X*'i° which we interpret as an instance of
resource X owned by Alice, along with the empty collection I and composite collections
XAtice @ YBb in which Alice’s instance of X exists alongside an instance of Y owned by
Bob.

Similarly, for each transformation f: X — Y in X, we ask for transformations
XMice _, yhAlice apq fBob . XBob _, yBob for all Alice,Bob € C, whose presence we interpret

as the ability of each owner to effect all possible transformations of resources they own. We

fAlice .

draw these annotated transformations as, respectively:

P X X

Yy Y

Since we are building a theory of resources we must end up with a symmetric monoidal
category, so we also assume the presence of the associated morphisms, such as f*tice g gBob
and O X Alice yBob.

Next, we account for the formal difference between XA1ce @ yAlice and (X @ Y)Atice,
In both situations Alice owns an X and a Y, but in the former they are formally grouped
together, while in the latter they are formally separated. We understand this formal grouping
of Alice’s assets by analogy with physical currency. The situation in which Alice’s assets
are separated is like Alice having two coins worth one euro, while the situation in which they
are grouped together is like Alice having one coin worth two euros. In both cases, Alice
posesses two euros, but the difference is important: Alice cannot give Bob half of the two euro
coin, but can easily give Bob one of the two one euro coins. This distinction is also present
in cryptocurrency systems, where there is an operational difference between having funds
spread across many addresses and having them collected at one address. Reflecting both the
reality of such systems and the principle that one ought to be able to freely reconfigure the
formal grouping of things that they own, we ask that for each X,Y objects of X and each
Alice € C our new resource theory has morphisms ¢y y : X4 @ YAlice 5 (X g Y)htice
and ¥y y : (X @ Y)hice xhlice @ yAlice e draw these morphisms, respectively, as
follows:

These changes of formal grouping should not interact with the resource transformations
of our original theory X, since it ought not matter whether Alice combines (splits) her
resources before or after transforming them. That is, we we require:

[G].] ¢g(17:%?e(f ® g)Ali-ce — (fAli-ce ® glA\lice) ‘}%iﬁ?,
[GZ] (f ® g)Allceq/)g(licyg/ — §{171§e(fA11ce ® gAllce)

7:5

Tokenomics 2020

7:6 A Foundation for Ledger Structures

i

X X

t]
i}

i1

As it stands, there are many non-equal ways for Alice to reconfigure the formal grouping
of their assets. Since these should all have the same effect, we need them all to be equal as
morphisms in our resource theory. It suffices to ask that the ¢**i° and ¥*'i°® maps give,
respectively, associative and coassociative operations, and that they are mutually inverse.
That is (associativity and coassociativity):

[G-3] (A11ce ® 1A11ce) %g{jz (lAllce ® ¢A11ce)¢A}éL’i§e®Z

(GA] V(U © 15°) = W L0 & 4415)

"

and (mutually inverse):

[G 5] wAllce Allce _ 1%{1.;5:;

Alice Al:Lce __ 1Alice Alice
[G.6] oYy = 1 1y

Q X) X | y
b | A v

To complete our treatment of these formal resource groupings, we must deal with the
empty case I*13°. We insist that Alice may freely create and destroy such empty collections
via morphisms ¢4 : [— [AHce and qpftice ; [Atice

—

subject to the following axioms, which state that adding or removing nothing from a group
or resources has the same effect as doing nothing, and that ¢; and v¢; are mutually inverse,
which together ensure that even with ¢; and v; in the mix, any two formal regroupings with
the same domain and codomain are equal.

[G 7] (¢Alice ® 1A1ice) 1}1:.)'1((:e — 1gg.ice — (1:A)élice ® (b%lice) g%’ijce
[G 8] Allce(,t/JAllce ® 1gg.ice) — 1%:([169 — w}A(l’iIce(ll;}ice ® wl[\lice)
[G_g] d).}llcew?llce — 1]

[G].O] w?liced)l}lice — 11[\lice

C. Nester 7:7

X

Finally, we ask that ¢ and 1 behave coherently with respect to the symmetry maps. It
suffices to require that

[G.ll] ‘}%f;%ﬁ%&e = O XAlice yAlice (ﬁ‘%}}?e

3.2 Change of Ownership

Of course, ownership is not static over time. We require the ability the change the owner of
a given collection of resources. To this end we add morphisms 5 °2° : XAice _ xBob ¢
our new resource theory for each object X of X, each Alice,Bob € C. We depict these new
morphisms in our string diagrams as follows:

{

%
ﬂ\n
X

As with regrouping, change of ownership should not interact with resource transformations,
in the sense that:

[0.1] fAlice,_Yéjlice,BOb _ vl)x(lice,Bobeob

b

<

Further, change of ownership must behave coherently with respect to the regrouping
morphisms in the sense that:
[0.2] ¢§%,i§e’y§(1éc;’mb _ (7A11ce,Bob ® 7A11ce,Bob) Bob

X Y XY
[0.3] 7;\(1?5;73"" gg}ay — ﬁ},ﬁ?e(vﬁéi“’mb ® 7?/1ice,Bob)
i i Y b S @ X y
oo ofn g
H-t4 73-59
b3 A X 4 X X Y

Tokenomics 2020

7:8 A Foundation for Ledger Structures

For completeness, we axiomatize the interaction of change of ownership with empty
collections by requiring that:
[0.4] ¢?1iceﬁy?llce,B0b _ d)];()b

Alice,Bob i
[0'5] rYI ice,bo ?ob — w?llce

Finally, we insist that if Alice gives something to Bob, and Bob then gives it to Carol,

this has the same effect as Alice giving the thing directly to Carol. Similarly, if Alice gives

something to Alice, we insist that this has no effect.
Alice,Bob_Bob,Carol Alice,Carol
[O.6] XN =y
[0.7] ,YXICE, 1ce — 1A)éL1ce

We end up with a rather expressive diagrammatic language. For example, if we begin
with the resource theory of bread, then our new resource theory is powerful enough to show:

m dough m oven oven Acugh M! oven

4 oy 4

{? | o ;,f 5 ta { A1 i‘j Ei
| | |
» %

bake s béke
i # J
! _{E baw,":’ i

L e ‘ / %
% % f "'; e “
[b\e olo o | i7"
il | A |] ‘ |
Ul S R A

which captures the fact that the sequence of events on the left in which Carol gives Alice
and Bob each a portion of dough to bake in their ovens, after which they give the resulting
bread to Carol has the same effect as the sequence of events on the right in which Alice
and Bob give their ovens to Carol, who bakes the portions of dough herself before returning
the ovens to their original owners. Notice that our diagrammatic representation of this is
much easier to understand than the corresponding terms in linear syntax!

C. Nester

4 Categorical Semantics

In this section we show how our augmented string diagrams can be given precise mathematical
meaning. Specifically, from a resource theory and a set whose elements we think of as entities
capable of owning resources, we construct a new resource theory in which all resources are
owned by some entity. We finish by showing how to model a simple cyrptocurrency ledger
with our machinery.

4.1 Interpreting String Diagrams with Ownership

If X is a theory of resources and C is our set, we treat C as the corresponding discrete category,
writing A : A — A for the identity maps, and form the product category X x C. Write
objects and maps of this product category as X4 = (X, A) and f* = (f, A) respectively.
Now, define C(X) to be the free strict symmetric monoidal category on X x C subject to the
following additional axioms:

AecC X, Y objects of X AecC

pxy XY -5 (X ®Y)* in C(X) ¢ I — I in C(X)
AecC X, Y objects of X AecC

Py (X@Y)' = X4 oY in C(X) Yt T4 — Tin C(X)

A, BeC X an object of X
voP XA 5 XP in C(X)

and subject to equations [G.1-11] and [0.1-7] for Alice,Bob, Carol € C, X,Y, Z objects
of X, and f, g morphisms of X.
Clearly, C(X) is the new resource theory our coloured string diagrams live in. We think

of objects X# and morphisms f4 as being owned and carried out, respectively, by A € C.

The free monoidal structue gives us the ability to compose such transformations sequentially
and in parallel, and the additional axioms ensure our ownership interpretation of C(X) is
reasonable.

We can characterize the category-theoretic effect of axioms [G.1-11] and [0.1-5] as
follows:

» Proposition 1. For any symmetric monoidal category X and any set C, there is a strong
symmetric monoidal functor

A:X = C(X)
for each A € C. Further, there is a monoidal and comonoidal natural transformation
B A B
between the functors corresponding to any two A, B € C.
Proof. Define A : X — C(X) by A(X) = (X, A) on objects, and A(f) = (f, A) on maps. For
identity maps, A(1x) = (1x,4) = 1(x,4) = lax) since (1x, A) is the identity on (X, A)
in X x C. For composition, A(fg) = (fg,A4) = (f, A)(g,A) = A(f)A(g).Thus A defines a
functor. A is strong symmetric monoidal via the ¢# and ¢4 maps together with [G.1]
through [G.11]. Consider A, B : X — C(X) corresponding to A, B € C. Define y4% : A — B

to have components 7?’3. Then 44# is a monoidal and comonoidal via [0.1] through
[O.5]. <

7:9

Tokenomics 2020

7:10

A Foundation for Ledger Structures

Notice that we did not use [0.6—7] above. These axioms are motivated by our desire to
model resource ownership, but they have an important, if subtle, effect on the theory: they
allow us to show that X and C(X) are equivalent as categories. This means that any suitably
categorical structure is present in X if and only if it is present in C(X) as well. For example,
products in X manifest as products in C(X), morphisms that are monic in X remain monic
in C(X), and so on. We may be confident that our addition of ownership information has not
broken any of the structure of X, or added anything superfluous!

» Proposition 2. There is an adjoint equivalence between X and C(X) for each functor
corresponding to some A € C.

Proof. We show that each A : X — C(X) is fully faithful, and essentially surjective, beginning
with the latter. To that end, suppose that P is an object of C(X). We proceed by structural
induction: If P is I, then ¢¢ witnesses I ~ A(I). If P is an atom (X, A), then (X, A) = A(X).
If Pis @ ® R for some @, R, then by induction we have that Q ~ A(X;) and R ~ A(X>) for

some objects X7, X5 of X. We may now form
A

PX1.x

which witnesses P ~ A(X; ® X3). Thus, A is essentially surjective. To see that A is
fully faithful, let U : C(X) — X be the obvious forgetful functor. The required bijection
X(X,Y) ~C(X)(A(X),A(Y)) is given by A in one direction and U in the other. It sufffices
to show that any morphism h : A(X) — A(Y) with U(h) = f is such that h = A(f). Notice
that since each v4'Z is a monoidal and comonoidal natural transformation, there is a term
equal to h in which all v morphisms occur before all other morphisms (in the sense that
f occurs before g in fg). Since h : A(X) — A(Y) we know that in this equal term the
composite of the v must have type A(X) — A(X), and must therefore be the identity by
repeated application of [0.6] and [0.7]. This gives a term h’ containing no v maps with
h' = h. Similarly, since the various ¢ and 1 morphisms are natural transformations, we
may construct a term h” by collecting all instances of ¢ and 1 terms at the beginning of h'.
Once collected there, the composite of all the ¢ and ¥ must have type A(X) — A(X), and
is therefore equal to the identity. At this point we know that h” : A(X) — A(Y) is such that
W' = A(fy)--- A(fn) for some fi,..., fn in X. By assumption f =U(h) = U(h") = f1 -+ fn,
and therefore h"" = A(f). <

4.2 A Simple Example

In this section we attempt to demonstrate the relevance of the above techniques to the
cryptocurrency world by building a resource theory that models a simple ledger structure
along the lines of Bitcoin [10]. Let 1 be the trivial category, with one object, 1, and one
morphism, the identity 1;. Define N to be the free symmetric strict monoidal category on 1,
write 0 for the monoidal unit of N, and n for the n-fold tensor product of 1 with itself for all
natural numbers n > 1. Notice that n + m is n ® m. We will think of the objects n of N
where n > 1 as coins. Of course, 0 = I represents the situation in which no coin in present.

Define N, to be the result of formally adding a morphism v : 0 — 1 to N, write
g =19 : 0 — 0, and v, : 0 = n for the n-fold tensor product of v with itself for n > 1.
These morphisms confer the ability to create new coins, so we imagine their use would be
restricted in practice. We will not ask for the ability to destroy coins, although there would
be no theoretical obstacle to doing so.

Now, let C be a collection of colours, which we can think of as standing in for cryptographic
key pairs, or simply entities capable of owning coins. Consider C(N,). Objects are lists
ni' ®---@n*, which we interpret as lists of coins, where n;* is a coin of value n; belonging to

C. Nester 7:11

¢; € C. The morphisms are either v¢ for some ¢ € C, the structural morphisms of a monoidal
category, or the ¢,1, and v morphisms added by our construction. For n,m € N and
Alice,Bob € C, the maps ¢hlice : n*tie® @ mAtice — (n 4 m)*ee and plice : (n+m)*iee —
nhlice @ mAlice gllow users to combine and split their coins in a value-preserving manner,
and the ,y’ﬁlice,Bob

Now, a ledger is a (syntactic) morphism a : I — A of C(N,). A transaction to be
included in a consists of a transformation f : X — Y of C(N,) along with information
about which outputs of a are to be the inputs of the transformation, which we package as
t=m(l® f®1): A— B. The result of including transaction ¢ in ledger a is then the
composite ledger toa : I — B. Put another way, a ledger is given by a list of transformations

in C(N,):

maps allow them to exchange coins.

t t t
| NI RSN

For the purpose of illustration, we differentiate between m 4+ n and m ® n in our string
diagrams for N,. We do so by means of the string diagrams for (not necessarily strict)
monoidal categories (see e.g. [3]), as in:

[AE X 1a N+ n m
n m n+m n+m

Now, suppose we have a ledger a : I — v52r°l @ phlice;

Next, form transaction to = (1$*°! @ f5) and append it to obtain ts o t; 0 a

Tokenomics 2020

7:12

A Foundation for Ledger Structures

In this manner, we capture the evolution of the ledger over time. Of course, we can
also reason about whether two sequences of transactions result in the same ledger state by
comparing the corresponding morphisms for equality, although in the case of C(N,) there
isn’t much point, since all morphisms A — B are necessarily equal.

5 Conclusions and Future Work

We have seen how the resource theoretic interpretation of monoidal categories, and in
particular their string diagrams, captures the sort of material history that concerns ledger
structures for blockchain systems. Additionally, we have shown how to freely add a notion
of ownership to such a resource theory, and that the resulting category is equivalent to the
original one. We have also shown that these resource theories with ownership admit an
intuitive graphical calculus, which is more or less that of monoidal functors and natural
transformations. Finally, we have used our machinery to construct a simple ledger structure
and show how it might be used in practice.

While we do not claim to have solved the problem of providing a rigorous foundation
for the development of ledger structures in its entirety, we feel that our approach shows
promise. There are a few differnt directions for future research. One is the development of
categorical models for more sophisticated ledger structures, with the eventual goal being to
give a rigorous formal account of smart contracts. Another is to explore the connections of
the current work with formal treatments of accounting, such as [6].

C. Nester

—— References

1

10

11

12

13

N. Atzei, M. Bartoletti, T. Cimoli, S. Lande, and R. Zunino. Unravelling bitcoin smart
contracts. In POST 2018, volume 10804 of LNCS, pages 217-242, 2018.

N. Atzei, M. Bartolietti, and T. Cimoli. A survey of attacks on ethereum smart contracts. In
POST 2017, volume 10204 of LNCS, pages 164-186, 2017.

J.R.B. Cockett and R.A.G. Seely. Proof theory of the cut rule. In E. Landry, editor, Categories
for the Working Philosopher, pages 223-261. Oxford University Press, 2017.

B. Coecke, T. Fritz, and R.W. Spekkens. A mathematical theory of resources. Information
and Computation, 250:59-86, 2016.

K. Jabbar and P. Bjorn. Infrastructural grind: Introducing blockchain technology in the
shipping domain. In GROUP 2018, 2018.

P. Katis, N. Sabadini, and R.F.C. Walters. On partita doppia. CoRR, 1998.

A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably secure proof-of-
stake blockchain protocol. CRYPTO 2017, Part I, volume 10401 of LNCS, 2017.

S. Mac Lane. Categories for the Working Mathematician. Springer, 1971.

M.B. McCurdy. Graphical methods for tannaka duality of weak bialgebras and weak hopf
algebras. Theory and Applications of Categories, 26:233—280, 2011.

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. URL: https://bitcoin.

org/bitcoin.pdf.

Peter Selinger. A survey of graphical languages for monoidal categories. In New Structures
for Physics, pages 289-355. Springer, 2010.

M. Staples, S. Chen, S. Falamaki, A. Ponomarev, P. Rimba, A.B. Tran, I. Weber, X. Xu, and
J. Zhu. Risks and Opportunities for Systems Using Blockchain and Smart Contracts. Data61
(CSIRO), Sydney, 2017.

Gavin Wood. Ethereum: A secure decentralized generalised transaction ledger, 2014. URL:
https://gavwood. com/paper.pdf.

7:13

Tokenomics 2020

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://gavwood.com/paper.pdf

	Introduction
	Monoidal Categories as Resource Theories
	Resource Theories
	How to Read Equality

	String Diagrams for Ownership
	Ownership and Collection Management
	Change of Ownership

	Categorical Semantics
	Interpreting String Diagrams with Ownership
	A Simple Example

	Conclusions and Future Work

